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Abstract 
 

 To reduce cost and size, most digital cameras capture scene with a single-sensor 

image acquisition system in which the sensor is coated with a Bayer color filter array 

(CFA) and samples only one of the three primary colors (red, green and blue) at each 

pixel. The mosaic sensor raw data, referred to as Bayer CFA image, is then converted 

to full-color image by estimating the two missing components of the pixels. This 

process is called color interpolation or color demosaicing, and it is critical to a digital 

camera as it determines the output quality of the camera. The demosaiced full-color 

image may then be enhanced with a post-processing step to attain a visually pleasing 

output before being compressed for storage. 

 Recently, such a demosaicing-then-compression arrangement is found to be 

sub-optimal from the compression point of view because eventually the compression 

process has to remove the redundancy introduced in the demosaicing process. To 

solve this problem, the system is modified by adding an additional processing branch 

or by replacing the original pipeline with a new one to allow direct compression of the 

Bayer CFA image before demosaicing. As a result, more sophisticated demosaicing 

and post-processing algorithms can be applied and carried out offline in a powerful 

computer to attain a higher quality output. 

 This thesis investigates various processing algorithms to improve the 

performance of an advanced pipeline in terms of quality and complexity. It deals 

exclusively with raw Bayer CFA images and focuses on addressing the problem of 

color demosaicing, digital zoom and image compression respectively. 

 Color demosaicing is one of the most important processes in a single-sensor 

image acquisition system as it turns a CFA image into a full-color image. In this thesis, 

a feature preserving demosaicing algorithm is first presented to restore a full-color 
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image from a Bayer CFA image. This algorithm uses the variance of color differences 

as a supplementary criterion to determine the interpolation direction for estimating the 

missing green components. The missing red and blue components are then estimated 

based on the interpolated green plane. This algorithm can effectively preserve the 

details in texture regions and, at the same time, can significantly reduce the color 

artifacts. Simulation results show that the proposed algorithm produces superior 

demosaicing results both objectively and subjectively. 

 Digital zoom is another common process performed in a digital camera. 

Basically it performs interpolation and hence employs similar signal processing 

concept as color demosaicing does. However, in a conventional system, the zooming 

process is generally carried out separately in the post-processing step. Accordingly, 

the information available on the raw sensor data is not always utilized consistently 

and efficiently to yield the enlarged output image. To remedy such inefficiency, a 

joint color demosaicing and digital zooming algorithm is proposed for digital cameras 

to produce a high quality zoomed output at a reduced computation cost. This 

algorithm directly extracts the edge information from raw sensor data for interpolation 

in both demosaicing and zooming to preserve edge features in its output. It allows the 

extracted information to be exploited consistently in both stages and also efficiently as 

no separate extraction process is required in different stages. This algorithm can 

produce a zoomed full-color image as well as a zoomed Bayer CFA image with 

outstanding performance as compared with conventional approaches which generally 

combine separate color demosaicing and digital zooming schemes in a straightforward 

manner. 

 Simulation results show that our first proposed demosaicing algorithm can 

provide a high quality output. However, it may not be suitable for real-time realization 

in a low-profile camera as its computational complexity is comparatively high. 
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Inspired by the idea of sharing edge information in the realization of the joint 

demosaicing and zooming algorithm, a more advanced and efficient demosaicing 

algorithm is proposed for constructing a full-color image. This algorithm exploits a 

new edge-sensing measure called integrated gradient (IG) to effectively extract 

gradient information in both color intensity and color difference domains 

simultaneously. This measure is reliable and supports full resolution, which allows 

one to interpolate the missing samples along an appropriate direction and hence 

directly improves the demosaicing performance. By sharing IG in different 

demosaicing stages to guide the interpolation of various color planes, it guarantees the 

consistency of the interpolation direction in different color channels and saves the 

effort required to repeatedly extract gradient information from intermediate 

interpolation results at different stages. An IG-based green plane enhancement is also 

proposed to further improve the efficiency of the algorithm. Simulation results 

confirmed that this proposed demosaicing algorithm outperforms other up-to-date 

demosaicing algorithms including our first proposed demosaicing algorithm in terms 

of output quality at a complexity of around 80 arithmetic operations per pixel. 

 The lossless compression of Bayer CFA images is finally addressed in this thesis. 

Since a Bayer CFA image acts as a “digital negative” and can be used as an ideal 

original archive format, lossless compression of Bayer CFA images is highly 

preferred especially in the field of high-end digital photography. However, as 

different color channels are interlaced in a Bayer CFA image, the spatial correlation 

of a Bayer CFA image is seriously damaged. Conventional lossless image 

compression schemes such as JPEG-LS and JPEG2000 cannot make use of the spatial 

correlation to attain a good compression performance. A prediction-based lossless 

compression scheme is proposed in this thesis to effectively de-correlate the pixel 

redundancy in a Bayer CFA image. This scheme exploits a context matching 
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technique to rank the neighboring pixels when predicting a pixel, an adaptive color 

difference estimation scheme to remove the color spectral redundancy when handling 

red and blue samples, and an adaptive codeword generation technique to adjust the 

divisor of Rice code when encoding the prediction residues. Simulation results show 

that the proposed compression scheme can achieve a better compression performance 

than conventional lossless Bayer CFA image coding schemes. 
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Chapter 1 Introduction 

 

1.1 Structure of Digital Camera 

 Over the last decade, digital camera has become one of the most popular portable 

devices in the field of consumer electronics. Inside a digital camera, a single-sensor 

image acquisition system is generally employed to lower the device’s cost, size and 

complexity. To acquire scenes in a digital format, a camera first allows light to pass 

through an optical system, where focusing, shutter control, and optical zoom are 

performed. The light information is then sampled by an image sensor where the 

optical signal is converted to electronic signal in digital form. Figure 1.1 shows a 

typical single-sensor image acquisition system used in a camera [1-3]. 

 

 

 

 

Figure 1.1 A single-sensor image acquisition system inside digital cameras 

 

 

 Charge coupled device (CCD) [4,5] and complementary metal oxide 

semiconductor (CMOS) [5,6] are the two common types of image sensors used in a 

acquisition system. These sensors consist of a two-dimensional (2-D) light-sensitive 

element array. It measures the amount of incident light at each array location, where 
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the pixel intensity is digitized, to construct an image. Since each light-sensitive 

element is a monochromatic device which senses the light signal within the same 

frequency range, it is not allowed to acquire color information directly with the sensor. 

To make it output color data, a "mosaic" pattern of color filters, called color filter 

array (CFA), is positioned on top of the sensor to filter out two of the red, green, and 

blue components of the light falling onto the light-sensitive elements. Consequently, 

each element and hence each pixel holds only one of the three primary colors and, as a 

result, a mosaic gray-scale like image is constituted as the sensor output. 

 

 

 

Figure 1.2 Bayer CFA pattern with green-red-green-red phase in the first row 

 

 

 Many CFA patterns are suggested in the literature [7,8]. Among them, the Bayer 

CFA pattern [9], as shown in Figure 1.2, is the most popular one because it provides 

the most optimal spatial arrangement of the three primary colors on a square grid [10]. 

Under the Bayer CFA configuration, green color is measured in a quincunx form with 

a sampling rate double that of the red and blue channels. Red and blue colors are 

sampled in a rectangular grid, which interlaces with the green sampling grid, 

occupying one-fourth area of the whole image individually. The green channel is 

sampled at a higher sampling rate because the spectral response of green color is close 

to the luminance response of human visual system [11,12]. This allows the camera to 
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maintain the maximum perceived sharpness in the luminance channel. The red and the 

blue colors, on the contrary, serve as chrominance channels for color reproduction.  

Though there are some other CFA patterns, the Bayer CFA pattern is the focus in 

the discussion of this thesis as it is the most popular CFA pattern nowadays and it is 

easy to modify a processing algorithm for Bayer CFA images to handle images using 

other CFA patterns. Accordingly, hereafter in this thesis, whenever a CFA image is 

referred to, a Bayer CFA image is actually referred to unless specified otherwise. 

 Since the sensors record a color component at each pixel location, a sub-sampled 

or incomplete image is provided in the sensor output. To make the image become a 

full-color image, a series of imaging processes have to be carried out in the 

acquisition pipeline. Figure 1.1 shows a typical processing pipeline used in an image 

acquisition system. As shown in the figure, the raw CFA data is first pre-processed to 

remove the defective pixels generated because of malfunctioning of the light-sensitive 

elements. The pre-processed mosaic CFA image is then converted to a full-color 

image. This process is called color interpolation or color demosaicing [13]. In practice, 

it estimates the two missing color components of a pixel from adjacent pixels. The 

demosaiced full-color image is post-processed next. In post-processing, imaging 

operations like color correction, noise reduction, digital zoom, edge sharpening, white 

balance (WB), etc are carried out to improve the visual quality. Finally, the enhanced 

image is compressed, in JPEG format in general, for storage or transmission. 

 Recently, this conventional processing pipeline is found to be sub-optimal from 

the compression point of view. It is because the demosaicing process carried out in the 

early stage always introduces some redundancy which should be removed in the later 

compression stage. The task of compression is always made difficult and inefficient 

accordingly.  

To solve this problem, an alternative processing pipeline, as shown in Figure 1.3, 
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has been proposed in [14-17] recently. This new pipeline allows one to compress the 

raw sensor image directly without prior demosaicing. Under the new pipeline 

configuration, more sophisticated demosaicing and post-processing algorithms can be 

applied and carried out offline in a powerful personal computer to produce a more 

visually pleasing color output. Besides, as the compression step handles the CFA 

image whose data size is only one-third of that of a full-color image, the new 

compression-then-demosaicing configuration can effectively increase the pipeline 

throughput without degrading the output image quality. It has been proven that this 

new pipeline outperforms the conventional one when the quality requirement of the 

color output is high [18]. 

 

 

 

 

Figure 1.3 The new imaging pipeline added in many prosumer and professional 

grade digital cameras as an optional imaging path 

 

 

 As a matter of fact, the new pipeline has been adapted in many prosumer and 

professional grade digital cameras. It serves as an optional imaging path to allow the 

cameras to deliver a precise and high quality output in a more efficient way. Although 

the pipeline can provide a satisfactory performance, there is still room for 

improvement. It is highly desired to investigate some more sophisticated imaging 

algorithms and camera technologies for this new pipeline. 
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1.2 The Addressed Problems 

 The most challenging issue encountered in designing a digital camera is to yield 

a precise and high quality output image in a short period of time with low power 

consumption. To achieve this goal, besides upgrading a camera’s hardware 

specification, optimizing its processing pipeline is alternatively a more flexible and 

cost effective approach. In this thesis, three imaging processes in the processing 

pipeline including color demosaicing, digital zooming and image compression are 

addressed. These processes determine the output quality of a camera and hence are 

important to a camera. 

 Color demosaicing, as mentioned before, is the process of interpolating two 

missing color components for each pixel based on the available component and 

neighboring pixels in a CFA image. This process is critical to a digital camera as it is 

responsible for the production of a full-color image. In other words, it determines the 

output quality of the camera. Generally, simple demosaicing algorithms use 

non-adaptive interpolation techniques to estimate the missing samples. However, 

these simple demosaicing algorithms always reduce the sharpness of the color output 

while increasing the visibility of false color artifacts. To achieve higher visual quality 

output, advanced demosaicing algorithms tend to introduce some more complex 

operations to estimate the missing samples adaptively. These advanced algorithms can 

provide a superior result as compared with the non-adaptive algorithms. However, 

they require high computation effort in general. 

 Digital zoom is one of the most commonly performed processing operations in a 

digital camera. To obtain an enlarged full-color image from a small CFA image, the 

CFA image is either 1) firstly demosaiced and then enlarged or 2) firstly enlarged and 

then demosaiced. However, no matter which approach is used, the zooming and the 
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demosaicing processes are executed separately in the processing pipeline. As the 

actual process behind the zooming and the demosaicing processes is interpolation, 

similar signal processing techniques are employed in both processes. It would be a 

good idea to carry out both processes at the same time from efficiency point of view. 

Besides, if the two processes are performed separately, the information available on 

the raw sensor data cannot be utilized consistently and efficiently to produce the 

enlarged output. Accordingly, combining the zooming and the demosaicing processes 

seems to be a more efficient and cost-effective approach as compared with carrying 

out them separately. 

 In the new processing pipeline, the sensor raw CFA data is first compressed 

before color demosaicing. Whenever it is necessary, the compressed CFA data is 

decoded and then demosaiced offline to produce a full-color output. This arrangement 

motivates the need of compression technique for the CFA images. Generally, the 

compression of a CFA image can be either lossy or lossless. Lossy compression 

reduces the image data size by discarding the visually redundant information. It offers 

a higher compression ratio in general as compared with lossless compression, but only 

an approximation of the original data can be reconstructed afterwards. Lossless 

compression, on the contrary, allows one to reconstruct the exact original data from 

the compressed data. It offers an ideal original archive format for high-end 

photography applications to produce a high quality full-color output from a raw CFA 

image. Many standard lossless image compression schemes such as JPEG-LS [19] 

and JPEG2000 [20] can be used to encode a CFA image. However, these schemes are 

generally proposed for coding natural gray-level images. Because of the interlaced 

arrangement of the color samples in a CFA image, the spatial correlation among 

adjacent pixels is weak and hence only a fair performance can be attained by using 

these schemes. 
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 In this thesis, based on our studies on the structure of the new processing 

pipeline and the characteristics of a CFA image, four processing algorithms are 

proposed to tackle the problems. Specifically, two of them are for color demosaicing, 

one is for joint demosaicing and zooming, and one is for lossless CFA image 

compression. These algorithms deal executively with Bayer CFA images and aim at 

improving the performance of the processing pipeline in a camera. 

 

1.3 Thesis Outline 

 This thesis is structured as follows. In Chapter 2, a brief literature review of 

relevant works is provided, on which the present works are based. Some important 

background information on color demosaicing, digital zoom and lossless CFA image 

compression techniques are covered in this chapter. 

 In Chapter 3, a study is first carried out to see why visual artifacts are always 

introduced and why image features cannot be preserved during demosaicing when the 

conventional adaptive color plane interpolation algorithm [21,22] is used. Based on 

the study result, a color difference variance-based demosaicing algorithm is presented. 

This algorithm not only can preserve image features but also can produce color 

outputs with less color artifacts. It achieves outstanding performance both 

subjectively and objectively. 

 In Chapter 4, a low-complexity joint color demosaicing and zooming algorithm 

is presented. By sharing the edge information extracted directly from a CFA image, 

missing color samples are interpolated consistently and efficiently in both 

demosaicing and zooming. This algorithm is proposed for low-profile portable 

capturing devices, where no optical zooming system is equipped, to produce full-color 

images with superior visual quality. 
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 In Chapter 5, inspired by the joint algorithm presented in Chapter 4, another 

demosaicing algorithm is proposed. This algorithm aims at producing high quality 

output images at a low computation cost. A new gradient measure is defined for being 

shared in various stages throughout the demosaicing process to interpolate different 

color channels. Simulation results confirm that, as even compared with the 

demosaicing algorithm proposed in Chapter 3, this algorithm produces output of 

superior quality at a relatively low computation cost. 

 In Chapter 6, a lossless CFA image compression scheme is presented. A context 

matching-based prediction technique (CMBP) is introduced in the scheme to 

de-correlate the pixel dependency. The prediction residue is then encoded with 

context-based entropy coding technique in which Rice code is exploited adaptively. 

This scheme can effectively remove the CFA data redundancy with a reasonable 

computational effort. 

 At last, in Chapter 7, a brief conclusion is given. All the contributions made in 

this thesis are summarized. Some future possible extensions of the present work are 

also discussed in the chapter. 
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Chapter 2 A Comprehensive Literature 

Review 

 

2.1 Introduction 

 This chapter reviews some existing works that are relevant to our present works. 

In Section 2.2, the background of color demosaicing and some common color 

interpolation algorithms are presented. In Section 2.3, various digital zooming 

approaches and some state-of-art zooming techniques are described. Finally, in 

Section 2.4, a brief review of various Bayer CFA image compression schemes is 

provided. 

 

2.2 Color Demosaicing 

 As mentioned in Chapter 1, color demosaicing is the process to restore a 

full-color image from a CFA image. This process determines the output quality of a 

camera and, hence, is critical to a digital camera. 

 There are many demosaicing algorithms proposed in the literature [13]. In 

general, a demosaicing algorithm can be classified as either heuristic or non-heuristic. 

A heuristic approach does not try to solve a mathematically defined optimization 

problem while a non-heuristic approach does. The following sub-sections provide 

reviews on the demosaicing techniques of these two approaches respectively. 

 

2.2.1 Heuristic Approach 

 Most existing demosaicing algorithms are heuristic. They generally involve 

filtering operations that are based on assumptions about color images. Early heuristic 
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demosaicing algorithms include nearest neighbor replication, bilinear interpolation 

and bicubic interpolation[23]. These algorithms basically interpolate each color plane 

separately and then combine the three independently interpolated planes to produce 

the full-color image. Although these plane-wise demosaicing algorithms are very 

simple and easy for implementation, they generally introduce severe artifacts such as 

blurring, false color and zipper effect around edges. As a reference, Figure 2.1 shows 

a simulation result of the bilinear interpolation. From the result, one can see clearly 

the visual artifacts. 

 

 

(a) 

(b) 

Figure 2.1 (a) original full-color image and (b) bilinear demosaiced image 

 

 



11 

(a) 

(b) 

Figure 2.2 (a) G-R and (b) G-B difference planes of the full-color image shown in 

Figure 2.1a 

 

 

 To diminish the artifacts, more advanced demosaicing algorithms [24-26] exploit 

the spectral correlation between color channels. They found that hues of a full-color 

image such as green-to-red and green-to-blue differences vary smoothly within an 

object. As an example, Figure 2.2 shows two color difference planes of the full-color 

image shown in Figure 2.1a, which demonstrates the smoothness of the hue planes. 

Based on this finding, these algorithms estimate the missing red and blue samples by 

linearly interpolating the hues. Generally, these smooth hue transition-based 

demosaicing algorithms provide sharper edges as well as lesser color artifacts as 
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compared with the plane-wise demosaicing algorithms. Nevertheless, for pixels in 

sharp edges or in fine detail areas where the assumed spectral correlation does not 

hold, large interpolation errors are still produced. Figure 2.3 shows the interpolation 

result produced by a smooth hue transition-based demosaicing algorithm, which 

illustrates the large errors in the fence regions. 

 

 

 

Figure 2.3 Simulation result generated by the smooth hue transition-based 

demosaicing algorithm [24] 

 

 

 To preserve edge structures to where human visual system is sensitive, many 

adaptive demosaicing algorithms try to perform the interpolation along the edges. In 

[21,22], Hamilton and Adams propose the well-known second order directional 

Laplacian interpolation filter for interpolating the missing samples. In their algorithm, 

the interpolation direction is selected based on the local pixel intensity gradients of a 

Bayer image. Figure 2.4 shows the demosaicing result generated with the directional 

Laplacian filter. It reveals that the directional Laplacian filter can produce a better 

result than the plane-wise and the smooth hue transition-based interpolation 

algorithms. However, it still cannot completely recover the image details. 
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Figure 2.4 A demosaiced image produced by applying the directional Laplacian 

interpolation filter 

 

 

 

Figure 2.5 Result of a weighted average-based demosaicing algorithm 

 

 

 In [27-34], the idea of directional interpolation is extended to allow interpolating 

along edges in any orientation. They calculate weights on the basis of edge directions 

and interpolate the missing samples by assigning the weights to their neighborhoods. 

These weighted average demosaicing algorithms generally provide satisfactory results 

around edges. But for pixel in fine detailed or textured areas where edges are in 

different directions or not well-defined, these algorithms always introduce undesirable 

errors. Figure 2.5 shows the simulation result provided by the weighted average 

demosaicing algorithm [30], which as an example demonstrates the undesirable 
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errors. 

 Recently, the directional Laplacian filter has been proven to be a good 

approximation of the optimal interpolator for Bayer images in one-dimension [35]. 

Many demosaicing algorithms try to orient the filter horizontally, vertically or 

sometimes diagonally to give the interpolations with fewer artifacts. These algorithms 

utilize the smooth property of the color difference signals as prior knowledge to 

determine the filter orientation. Specifically, they do it by comparing the smoothness 

of color difference signals in various directions. The demosaicing algorithms 

proposed in [35-38] are some examples of this decision-based approach. In [35], 

Hirakawa and Parks first produce two full-color images by horizontally and vertically 

filtering the CFA image with the Laplacian filter. At each pixel, the final estimate is 

determined by picking one of the estimates from the two interpolated full-color 

images at the same position with the least misguidance level of the images as the 

selection criterion. In [36], Wu et al. adopt the pixel selection framework and apply 

Fisher’s discriminant to preserve the highest correlation of color difference signals in 

the output. In [37], Menon et al. compute the local color difference gradients in both 

horizontal and vertical directions and then determine the interpolation direction with 

the least color difference gradients. In [38], Tsai and Song propose a hard-decision 

scheme which selects the direction by comparing the horizontal and vertical 

heterogeneity values of the pixels. In general, these decision-based demosaicing 

algorithms perform well in most image areas. They can preserve the edge features 

even in pattern regions. As an example, Figure 2.6 shows a demosaiced result yielded 

by the algorithm proposed in [37], which is an algorithm in this category. At the 

moment, the decision-based demosaicing algorithms are the most effective, in the 

sense of quality and complexity, for reproducing a full-color image from a CFA 

image. 
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Figure 2.6 Simulation result of the decision-based demosaicing algorithm [37] 

 

 

2.2.2 Non-Heuristic Approach 

 Some demosaicing algorithms provide solutions in a non-heuristic approach. 

They interpolate the missing samples by solving a mathematically defined 

optimization problem. References [10,12,39-42] are some examples of this approach. 

Specifically, Gunturk et al. in [12] uses the Projection-Onto-Convex-Sets (POCS) 

technique to maintain the output image within the “observation” and the “detail” 

constraint sets. Li [39] approximates the estimates in color difference (G-R and G-B) 

domains iteratively with a spatially adaptive stopping criterion. Alleyson et al. [10] 

and Lian et al. [40] derive the optimal filters in Fourier domain for recovering the 

luminance and chrominance terms of the image. Zhang and Wu [41] estimate the 

missing samples by fusing the primary difference signals using the linear minimum 

mean square-error estimation (LMMSE) technique, while Muresan and Parks [42] 

introduces a nonlinear interpolation scheme based on edge information. Generally, 

these non-heuristic demosaicing algorithms offer a more accurate estimation as 

compared with the edge-directed algorithms in heuristic approach. As an example, 

Figure 2.7 shows a result of the non-heuristic demosaicing algorithm proposed in [12] 

for visual comparison. 
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Figure 2.7 Demosaiced image produced by the non-heuristic algorithm [12] 

 

 

2.3 Digital Zoom 

 Along with color demosaicing, zooming is probably the most commonly 

performed processing operation in a digital camera. Under practical size and power 

constraints, a typical portable device is generally not equipped with a complex optical 

system to achieve high optical zooming power as such an optical system is expensive 

and sizable. For this reason, digital zooming is usually used to enhance the zooming 

power of a digital camera. 

 

2.3.1 Zooming-after-Demosaicing Approach 

 Various approaches can be exploited to produce a full-color zooming result from 

a CFA image. Traditionally, it is done by performing a digital zooming process after 

demosaicing the CFA image as shown in Figure 2.8a. In this 

zooming-after-demosaicing approach, the zooming process is performed on the 

demosaiced full-color image either in a component-wise manner [43-46] or in a vector 

manner [47-50]. 
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Figure 2.8 Image zooming approaches: (a) zooming-after-demosaicing and (b) 

demosaicing-after-zooming 

 

 

 In a component-wise interpolation, each color plane is treated as a gray-level 

image and interpolated with a gray-scale image interpolation technique independently. 

The zoomed full-color image is then formed by combining the three interpolated color 

planes. As for a vector color interpolation, each pixel in the image forms a color 

vector with the three color components as elements. Various vector operations are 

then performed on the color vectors to produce the zoomed full-color image. As the 

interpolation carried out in the zooming process is based on the demosaicing result 

and demosaicing may introduce artifacts such as blurred edges and false colors 

[51,52], the quality of the resultant zoomed image can be very poor in regions of 

complicated details. 

 

2.3.2 Demosaicing-after-Zooming Approach 

 In recent years, an alternative approach as shown in Figure 2.8b is used instead. 

In this approach, a zooming process is directly applied to the CFA image to generate 

an enlarged CFA image such that a conventional demosaicing technique can be 

performed on the enlarged CFA image to produce a zoomed full-color image. In 

[53-55], one can find three of the successful examples. A linear interpolation-based 

digital zooming algorithm and an adaptive edge sensing-based digital zooming 
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algorithm are, respectively, introduced in [53] and [54] to operate on the raw sensor 

data to produce an enlarged CFA image for further demosaicing. In [55], local color 

ratio and edge-sensing weight coefficients are utilized wherever necessary in CFA 

zooming, demosaicing and post-processing to produce the final zoomed full-color 

image. 

 

2.4 Color Filter Array Image Compression 

 As mentioned in Chapter 1, a CFA image in general is first interpolated via a 

demosaicing process to form a full-color image before being compressed for storage. 

Figure 2.9a shows the workflow of this imaging chain. 

 

 

(a) 

(b) 

Figure 2.9 Single-sensor camera imaging chain: (a) the demosaicing-first scheme, 

(b) the compression-first scheme 

 

 

 Recently, some reports [14-18] indicated that such a demosaicing-first 

processing sequence was inefficient in a way that the demosaicing process always 

introduced some redundancy which should eventually be removed in the following 

compression step. As a result, an alternative processing sequence [14-17] which 

carries out compression before demosaicing as shown in Figure 2.9b has been 

proposed lately. Under this new strategy, digital cameras can have a simpler design 
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and lower power consumption as computationally heavy processes like color 

demosaicing can be carried out in an offline powerful personal computer. This 

motivates the demand of CFA image compression schemes. 

 There are two categories of CFA image compression schemes: lossy and lossless. 

Lossy schemes compress a CFA image by discarding its visually redundant 

information. These schemes usually yield a higher compression ratio as compared 

with the lossless schemes. Schemes presented in [14-18,56-61] are some examples of 

this approach. In these schemes, different lossy compression techniques such as 

discrete cosine transform (DCT) [56], vector quantization (VQ) [57,58] sub-band 

coding with symmetric short kernel filters [14], transform followed by JPEG or JPEG 

2000 [16,17,59-61] and low-pass filtering followed by JPEG-LS or JPEG 2000 

(lossless mode) [15] are used to reduce data redundancy. 

 In some high-end photography applications such as commercial poster 

production, original CFA images are required for producing high quality full-color 

images directly. They serve as a digital version of film negative and make an ideal 

original archive format. In such cases, lossless compression of CFA images is 

necessary. Some standard lossless image compression schemes like JPEG-LS [19] 

and JPEG2000 [20] can be used to encode a CFA image but only a fair performance 

can be attained. Recently, an advanced lossless CFA image compression scheme 

(LCMI) [62] was proposed. In the scheme, the mosaic data is first de-correlated by the 

Mallat wavelet packet transform. Then, the de-correlated wavelet coefficients are 

compressed by adaptive Rice code. This scheme offers a higher compression 

performance than the JPEG-LS and JPEG2000 lossless image compression schemes 

at a lower complexity cost. 
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Chapter 3 Color Demosaicing Algorithm I: 

Color Demosaicing Using Variance 

of Color Differences 

 

3.1 Introduction 

 As mentioned in Chapter 2, a number of heuristic demosaicing algorithms, to a 

certain extent, were developed based on the framework of the adaptive color plane 

interpolation algorithm (ACPI) proposed in [21,22]. For examples, algorithms in 

[35-37] exploit the same interpolators used in ACPI to generate the green plane. The 

improved demosaicing performance of these advanced heuristic algorithms is 

generally achieved by that they can interpolate the missing samples along a correct 

direction. In this chapter, based on the framework of ACPI, a new heuristic 

demosaicing algorithm is proposed. This algorithm uses the variance of pixel color 

differences to determine the interpolation direction for interpolating the missing green 

samples. Simulation results showed that the proposed algorithm was superior to other 

state-of-art demosaicing algorithms in terms of both subjective and objective criteria 

when it was proposed. In fact, it is still one of the best color demosaicing algorithms 

at the moment. In particular, it can outstandingly preserve the texture details in an 

image. 

 This chapter is organized as follows. In Section 3.2, the ACPI algorithm [22] is 

revisited. An analysis is made and our motivation to develop the proposed algorithm 

is presented. In Section 3.3, the details of our demosaicing algorithm are presented 

while, in Section 3.4, some simulation results are presented for comparison study. 

Finally, in Section 3.5, a brief conclusion is given. 



21 

3.2 Observations on the Adaptive Color Plane Interpolation Algorithm 

 In ACPI [21,22], the green plane is handled first and the other color planes are 

handled based on the estimation result of the green plane. When the green plane is 

processed, for each missing green component in the CFA, the algorithm performs a 

gradient test and then carries out an interpolation along the direction of smaller 

gradient to determine the missing green component. 
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Figure 3.1 Four 5×5 regions of Bayer CFA pattern having their centers at (a) red, (b) 

blue, (c)-(d) green CFA samples 

 

 

 A pixel without green component in the Bayer CFA may have a neighborhood as 

shown in either Figure 3.1a or 3.1b. Without losing the generality, here we consider 

the former case only. In this case, the horizontal gradient ΔHi,j and the vertical 

gradient ΔVi,j at position (i,j) are estimated first to determine the interpolation 

direction as follows. 

 

 2,2,,1,1,, 2   jijijijijiji RRRGGH  (3.1) 

 jijijijijiji RRRGGV ,2,2,,1,1, 2    (3.2) 

 

where Rm,n and Gm,n denote the known red and green CFA components at position 
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(m,n). Based on the values of ΔHi,j and ΔVi,j, the missing green component gi,j in 

Figure 3.1a is interpolated as follows. 
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In fact, it is shown in [35] that eqns. (3.3) and (3.4) are the approximated optimal 

CFA interpolators in horizontal and vertical directions and eqn. (3.5) is good enough 

for interpolating diagonal image features. 

 Since the red and the blue color planes are determined based on the estimation 

result of the green plane and the missing green components are in turns determined by 

the result of the gradient test, the demosaicing result highly relies on the success of 

the gradient test. A study was performed here to evaluate how significant the gradient 

test is to the performance of the algorithm. 

 In a simulation of our study, twenty-four 24-bit (of bit ratio R:G:B=8:8:8) digital 

color images of size 512×768 pixels each as shown in Appendix A were sampled 

according to Bayer CFA to form a set of testing images. These images are part of the 

Kodak color image database and include various scenes. The testing images were 

reconstructed with ACPI [22] and the ideal ACPI. The ideal ACPI is basically ACPI 

except that, in determining a missing green component, it computes all gi,j estimates 

with eqns. (3.3)-(3.5) and picks the one closest to the real value of the missing 

component without performing any gradient test. Note that in this simulation all 

original images are known and hence the real value of a missing green component of 
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the testing images can be used to implement the ideal ACPI. In practice, the original 

images are not known and hence the performance of the ideal ACPI is practically 

unachievable. The ideal ACPI is only used as a reference in our study. 

 We measured the peak signal-to-noise ratio (PSNR) of the interpolated green 

planes of both ACPI [22] and the ideal APCI with respect to the original green plane. 

We found that the average PSNR achieved by the ideal ACPI was 43.83dB while that 

achieved by ACPI was only 38.18dB. This implies that there is a great room for 

improving the performance of ACPI. Based on this simulation result, we have two 

observations. First, the interpolators used in [22] can be very effective if there is an 

‘effective’ gradient test to provide some reliable guidance for the interpolation. 

Second, the current gradient test used in [22] is not good enough. 

 After having the ‘ideal’ green plane with the ideal ACPI, we proceeded to 

interpolate the red and the blue planes with it to produce a full-color image with the 

same procedures as originally proposed in ACPI. The quality of the output was 

measured in terms of color-peak signal-to-noise ratio (CPSNR) which is defined in 

eqn. (3.24). As expected, it achieves extremely high score and, subjectively, it is hard 

to distinguish the recovered image from the original full-color image. Table 3.1 shows 

the performance of various algorithms for comparison. As shown in Table 3.1, the 

ideal ACPI provides a very outstanding performance as compared with any other 

evaluated demosaicing algorithms. This shows that the approach used in [22] to 

derive the other color planes with a ‘good’ green plane is actually very effective. As a 

good green plane relies on a good gradient test, the key of success is again the 

effectiveness of the gradient test or, to be more precise, the test for determining the 

interpolation direction. This finding motivates the need to find an effective and 

efficient gradient test to improve the performance of ACPI. 
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Image 

Non-Heuristic 
Algorithms 

Heuristic Algorithms 

AP 
[12] 

DUOR
[42,63] 

DSA 
[39] 

BI 
[23]

ACPI
[22]

ECI
[26]

PCSD
[36]

DAFD
[28]

EECI
[30]

AHDA
[35] 

VCD 
w/o 

Refine. 

VCD 
w/ 

Refine.

Ideal 
ACPI

1 37.70 34.66 38.32 26.21 33.59 33.81 36.40 35.92 37.99 35.16 35.97 38.53 38.83

2 39.57 39.22 39.95 33.08 39.00 38.88 39.67 39.70 40.49 39.19 39.68 40.43 42.32

3 41.45 41.18 41.18 34.45 40.50 40.87 41.77 41.00 42.64 41.59 41.72 42.54 43.69

4 40.03 38.56 39.55 33.46 38.50 39.43 39.53 39.64 40.51 38.94 39.60 40.50 41.51

5 37.46 35.25 36.48 26.51 34.79 35.29 37.17 36.15 38.04 35.74 36.15 37.89 38.81

6 38.50 37.87 39.08 27.66 34.79 34.95 38.86 36.94 38.10 37.57 38.01 40.03 40.64

7 41.77 41.39 41.50 33.38 40.84 40.54 41.48 41.03 42.73 40.92 41.02 42.15 43.69

8 35.08 31.04 35.87 23.39 32.04 30.52 34.48 33.34 35.20 33.77 34.25 36.41 36.93

9 41.72 41.27 41.94 32.16 40.15 39.55 41.99 40.73 42.58 41.09 41.63 43.04 44.01

10 42.02 40.39 41.80 32.38 39.84 40.30 41.75 41.13 42.52 40.71 41.20 42.51 43.48

11 39.14 37.42 38.92 28.96 35.97 36.24 38.57 38.09 39.46 37.53 37.99 39.86 40.94

12 42.51 42.30 42.37 33.27 40.53 40.02 42.61 41.13 42.63 41.75 42.09 43.45 44.22

13 34.30 31.08 34.91 23.79 29.65 31.33 32.85 33.64 34.38 31.52 32.32 34.90 35.15

14 35.60 35.58 34.52 29.05 35.43 35.43 35.44 35.52 37.13 35.49 36.08 36.88 38.96

15 39.35 37.77 38.97 33.04 37.61 38.94 38.93 39.09 39.49 38.03 38.95 39.78 41.15

16 41.76 41.82 41.60 31.13 38.33 37.91 42.73 40.14 41.16 41.40 41.64 43.64 44.02

17 41.11 39.06 40.97 31.80 38.28 39.26 40.49 40.44 41.36 39.42 39.84 41.21 42.50

18 37.45 35.28 37.27 28.30 34.38 35.79 36.35 37.01 37.73 35.31 35.81 37.49 38.64

19 39.46 38.06 39.96 27.84 37.27 35.29 39.54 37.39 40.13 38.48 39.28 41.00 42.00

20 40.66 39.05 40.51 31.51 38.48 38.70 40.05 40.09 41.33 39.27 39.67 41.07 42.03

21 38.66 36.22 38.93 28.38 35.13 35.72 37.36 37.62 38.96 36.55 37.12 39.12 39.88

22 37.55 36.49 37.67 30.14 36.16 36.45 37.06 37.08 38.28 36.51 37.08 37.97 39.83

23 41.88 41.34 41.79 34.83 41.70 41.68 42.15 41.62 42.91 41.85 42.22 42.89 44.46

24 34.78 32.49 34.82 26.83 32.15 33.76 34.58 34.28 34.82 33.64 34.12 35.04 36.82

Avg. 39.15 37.70 39.12 30.06 36.88 37.11 38.83 38.28 39.61 37.98 38.48 39.93 41.02

Table 3.1 The CPSNR performance (in dB) of various algorithms 
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Figure 3.2 An example where a simple gradient test does not work: (a) a 5×5 block 

in texture region, (b) pixel values along the vertical line across the block 

center and (c) pixel values along the horizontal line across the block 

center 
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 When we probed into the gradient test used in [22], we found that the test 

encountered problems when dealing with pixels in texture regions. Figure 3.2 shows 

an example where the test does not work properly. A 5×5 block located in a texture 

region is extracted for inspection as shown in Figure 3.2a. Figures 3.2b and 3.2c show, 

respectively, the pixel values of the vertical and the horizontal lines across the block 

center. Suppose the black dots in the plots are the CFA samples while the others are 

the samples needed to be estimated. Consider that we are going to estimate the green 

component of the block center. As the black dash lines in vertical direction are flatter 

than that in horizontal direction, the test provides a misleading result. The algorithm 

interpolates vertically to determine the missing green component although it should 

interpolate horizontally. That is the reason why details cannot be preserved in a 

texture region with ACPI. 

 

3.3 Proposed Color Difference Variance-Based Color Demosaicing Algorithm 

 Based on the observations presented in Section 3.2, the proposed algorithm put 

its focus on how to effectively determine the interpolation direction for estimating a 

missing green component in edge regions and texture regions. In particular, variance 

of color differences is used in the proposed algorithm as a supplementary criterion to 

determine the interpolation direction for the green components. 

 For the sake of reference, hereafter in this chapter, a pixel at location (i,j) in the 

CFA is represented by either (Ri,j, gi,j, bi,j), (ri,j, Gi,j, bi,j) or (ri,j, gi,j, Bi,j), where Ri,j, Gi,j 

and Bi,j denote the known red, green and blue components and ri,j, gi,j and bi,j denote 

the unknown components in the CFA. The estimates of ri,j, gi,j and bi,j are denoted as 

jiR ,
ˆ , jiG ,

ˆ  and jiB ,
ˆ . To get jiR ,

ˆ , jiG ,
ˆ  and jiB ,

ˆ , preliminary estimates of ri,j, gi,j and 

bi,j may be required in the proposed demosaicing algorithm. These intermediate 
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estimates are denoted as jir ,ˆ , jig ,ˆ  and jib ,
ˆ . 

 

3.3.1 Interpolating Missing Green Components 

 In the proposed algorithm, the missing green components are first interpolated in 

a raster-scan manner. As far as a missing green component in the Bayer CFA is 

concerned, its neighborhood must be in a form as shown in either Figure 3.1a or 3.1b. 

Without losing the generality, let us consider the case shown in Figure 3.1a only. For 

the other case, the same treatment used in this case can be done to estimate the 

missing green component by exchanging the roles of the red components and the blue 

components. 

 In Figure 3.1a, the center pixel pi,j is represented by (Ri,j, gi,j, bi,j), where gi,j is the 

missing green component needed to be estimated. The proposed algorithm computes 

the two following parameters instead of ΔHi,j and ΔVi,j, as in ACPI algorithm. 
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 These two parameters are used to estimate whether there is sharp horizontal or 

vertical gradient change in the 5×5 testing window (with pi,j as the window center). A 

large value implies that there exists a sharp gradient change along a particular 
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direction. The ratio of the two parameters is then computed to determine the dominant 

edge direction. 
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 A block is defined to be a sharp edge block if e>T, where T is a predefined 

threshold value to be discussed in more details in Section 3.4. If a block is a sharp 

edge block, the missing green component of the block center is interpolated as 

follows. 
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 The block classifier based on eqns. (3.6)-(3.8) and threshold T is used to detect 

sharp edge blocks and determine the corresponding edge direction for interpolation. In 

eqns. (3.6) and (3.7), both inter-band and intra-band color information is used to 

evaluate parameters LV and LH. The first summation terms of eqns. (3.6) and (3.7) 

contribute the intra-band information, which involves the difference between a pixel 

and its second next pixel. Obviously, the resolution that it supports cannot detect a 

sharp line of one pixel width. The supplementary intra-band color information 

contributed by the second summation terms of eqns. (3.6) and (3.7) is used to improve 

the resolution of the edge detector. 

 A block which is not classified to be an edge block is considered to be in a flat 

region or a pattern region. It was found that, in a local region of a natural image, the 
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color differences of pixels are more or less the same [64]. Accordingly, the variance 

of color differences can be used as supplementary information to determine the 

interpolation direction for the green components. 

 

 

 

Figure 3.3 9×9 window of Bayer CFA pattern 

 

 

 In the proposed algorithm, we extend the 5×5 block of interest into a 9×9 block 

by including more neighbors as shown in Figure 3.3 and evaluate the color differences 

of the pixels along the axis within the 9×9 window. Let 2
, jiH  and 2

, jiV   be, 

respectively, the variances of the color differences of the pixels along the horizontal 

axis and the vertical axis of the 9×9 block. In particular, they are defined as 
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where dp,q is the color difference of pixel (p,q) and Ψ={0,1,2,3,4} is a set of 
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indexes which helps to identify a pixel in the 9×9 support region. The values of di,j+n 

and di+n,j for nΨ should be pre-computed and they are determined sequentially as 

follows. 
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Here, bilinear interpolation is used with the concern about the realization complexity 

to estimate di,j+n and di+n,j for n=1,3. In fact, there was no obvious improvement in 

the simulation results when other interpolation schemes such as cubic interpolation 

were used. 

 To provide some more information about eqns. (3.13) and (3.14), we note that 

the missing green components are estimated in a raster-scan fashion and hence the 

final estimates of the green components in position i,j={(i,j+n),(i+n,j) | n=-2,-4} are 

already computed. As for the missing green components of the pixels in position 

{(i,j+n),(i+n,j) | n=0,2,4}, their preliminary estimates njig ,ˆ  and jnig ,ˆ   have to be 

evaluated. Specifically, njig ,ˆ  and jnig ,ˆ   are, respectively, estimated to be H
njig ,  

and V
jnig ,  unconditionally. Note the di,j involved in eqn. (3.11) uses the jig ,ˆ  

determined with eqn. (3.3) while the di,j involved in eqn. (3.12) uses the jig ,ˆ  
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determined with eqn. (3.4). 

 The variance of the color differences of the diagonal pixels in the 9×9 window, 

say 2
, jiD , are determined by 
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The same set of eqns. (3.13)-(3.16) are used to get the color difference dp,q required in 

the evaluation of 2
, jiD . However, the preliminary estimates njig ,ˆ  and jnig ,ˆ   

involved in these equations are determined with eqn. (3.5) instead of eqns. (3.3) and 

(3.4). 

 Finally, the interpolation direction for estimating the missing green component at 

pi,j=(Ri,j, gi,j, bi,j) can be determined based on 2
, jiH , 2

, jiV  and 2
, jiD . It is the 

direction providing the minimum variance of color difference. The missing green gi,j 

can then be estimated with either formulation (3.3), (3.4) or (3.5) without concerning 

ΔHi,j and ΔVi,j as follows. 
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 Once the missing green component is interpolated, the same process is 

performed for estimating the next missing green component in a raster-scan manner. 

For estimating the missing green component in the case shown in Figure 3.1b, one can 
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replace the red samples by the corresponding blue samples and follow the procedures 

above to determine its interpolation direction and its interpolated value. 

 The complexity of the realization of eqn. (3.18) and its preparation work (eqns. 

(3.11)-(3.17)) is large. When e>T, a sharp edge block is clearly identified. In that case, 

using eqns. (3.9) and (3.10) to interpolate missing components can save a lot of effort 

and, at the same time, provide a good demosaicing result. 

 

3.3.2 Interpolating Missing Red and Blue Components at Green Sampling 

Positions 

 After interpolating all missing green components of the image, the missing red 

and blue components at green CFA sampling positions are estimated. Figures 3.1c and 

3.1d show the two possible cases where a green CFA sample is located at the center of 

a 5×5 block. For the case shown in Figure 3.1c, the missing components of the center 

are obtained by 
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As for the case shown in Figure 3.1d, the missing components of the center are 

obtained by 
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3.3.3 Interpolating Missing Blue (Red) Components at Red (Blue) Sampling 

Positions 

 Finally, the missing blue (red) components at the red (blue) sampling positions 

are interpolated. Figure. 3.1a and 3.1b show the two possible cases where the pixel of 

interest lies in the center of a 5×5 window. For the case shown in Figure 3.1a, the 

missing blue sample at the center, bi,j, is interpolated by 
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 As for the case shown in Figure 3.1b, the missing red sample at the center, ri,j, 

can also be obtained with eqn. (3.23) by replacing the blue estimates with the 

corresponding red estimates in eqn. (3.23). At last, the final full-color image can be 

obtained. 

 

3.3.4 Refinement 

 Refinement schemes are usually exploited to further improve the interpolation 

performance of various demosaicing algorithms [27-32,35,36]. In fact, there are even 

some post-processing algorithms proposed as stand-alone solutions to improve the 

quality of a demosaicing result [51,65]. In the proposed algorithm, we use the 

refinement scheme suggested in the enhanced ECI algorithm [30] as we found that it 

matched the proposed algorithm to provide the best demosaicing result after 

evaluating some other refinement schemes with the proposed algorithm. This 

refinement scheme processes the interpolated green samples jiG ,
ˆ  first to reinforce 

the interpolation performance and, based on the refined green plane, it performs a 
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refinement on the interpolated red and blue samples. In particular, each of the 

estimated samples is refined as a weighted-sum of its neighboring samples with the 

reciprocal of local gradients as the weights. One can see [30] for more details on the 

refinement scheme. 

 

3.4 Performance Evaluation 

 Simulation was carried out to evaluate the performance of the proposed 

algorithm. The 24 digital color images shown in Appendix A were used to generate a 

set of testing images as mentioned in Section 3.2. The color-peak signal-to-noise ratio 

(CPSNR) was used as a measure to quantify the performance of the evaluated 

demosaicing algorithms, which is defined as 
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respectively, the original and the reconstructed images of size H×W each. 

 In the proposed algorithm, a pixel is interpolated according to the nature of its 

local region. The 5×5 region centered at the pixel is first classified to be either a sharp 

edge block or not with threshold T. A non-edge block is then extended from 5×5 to 

9×9 to compute 2
, jiH , 2

, jiV  and 2
, jiD  for further classification. An empirical 

study was carried out to select an appropriate threshold value of T and check if 9×9 is 

an appropriate size of the extended local region for estimating 2
, jiH , 2

, jiV  and 

2
, jiD  in the realization of the proposed algorithm. Figure 3.4 shows the performance 

at different settings. It shows that T=2 and an extended region of size 9×9 can provide 
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a performance close to the optimal. Hereafter, all simulation results of the proposed 

algorithm presented in this chapter were obtained with this setting. 
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Figure 3.4 Performance of the proposed algorithm at different settings of threshold 

T and window size 
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 Ten existing demosaicing algorithms, including BI [23], AP [12], DUOR [42,63], 

DSA [39], ACPI [22], ECI [26], PCSD [36], EECI [30], AHDA [35] and DAFD [28], 

were implemented for comparison. The proposed demosaicing algorithm is referred to 

VCD hereafter in this thesis for clear reference. In the realization of DUOR, the 

correction step described in [63] was applied to the demosaicing result of [42]. Table 

3.1 tabulates the CPSNR performance of different demosaicing algorithms. It reveals 

that the proposed algorithm produces the best average performance among the tested 

algorithms. In additional, it was found that the proposed algorithm could handle fine 

texture patterns well. For images which contain many fine texture patterns such as 

Image 6, 8, 16 and 19, the proposed algorithm obviously outperforms the other 

demosaicing solutions. For example, as far as Image 8 is concerned, the CPSNR 

achieved by the proposed algorithm is 1.21dB higher than that of the CPSNR 

achieved by EECI, which is the second best among all evaluated algorithms in a way 

that it achieved the second best average CPSNR performance in the simulation. 

 Figures 3.5, 3.6 and 3.7 show some demosaicing results of Image 1, 15 and 19 

for comparison. They show that the proposed algorithm can preserve fine texture 

patterns and, accordingly, produce less color artifacts. Recall that the proposed 

algorithm is actually developed based on ACPI. As compared with ACPI, the 

proposed algorithm produces a demosaicing result of much less color artifact by 

interpolating missing components along a better direction. In fact, the average 

CPSNR of the proposed algorithm (39.93dB) is much closer than that of ACPI 

(36.88dB) to that achieved by the ideal ACPI (41.02dB). These results show that the 

gradient test proposed in the proposed algorithm is more reliable than that of ACPI. 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l)  

Figure 3.5 Part of the demosaicing results of Image 1: (a) the original, (b) BI, (c) 

ACPI, (d) ECI, (e) AP, (f) PCSD, (g) EECI, (h) DUOR, (i) AHDA, (j) 

DSA, (k) DAFD and (l) the proposed algorithm 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l)  

Figure 3.6 Part of the demosaicing results of Image 15: (a) the original, (b) BI, (c) 

ACPI, (d) ECI, (e) AP, (f) PCSD, (g) EECI, (h) DUOR, (i) AHDA, (j) 

DSA, (k) DAFD and (l) the proposed algorithm 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l)  

Figure 3.7 Part of the demosaicing results of Image 19: (a) the original, (b) BI, (c) 

ACPI, (d) ECI, (e) AP, (f) PCSD, (g) EECI, (h) DUOR, (i) AHDA, (j) 

DSA, (k) DAFD and (l) the proposed algorithm 
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Image 

Non-Heuristic 
Algorithms 

Heuristic Algorithms 

AP 
[12] 

DUOR 
[42,63] 

DSA 
[39] 

BI 
[23]

ACPI
[22]

ECI
[26]

PCSD
[36]

DAFD
[28]

EECI
[30]

AHDA
[35] 

VCD 
w/o 

Refine. 

VCD 
w/ 

Refine.

Ideal 
ACPI

1 1.646 2.102 1.570 5.258 2.380 2.359 1.742 1.989 1.506 1.619 1.862 1.463 1.357 

2 1.664 1.733 1.609 3.179 1.795 1.829 1.595 1.603 1.488 1.600 1.640 1.499 1.250 

3 0.951 0.998 0.995 1.808 1.053 1.018 0.933 1.033 0.861 0.932 0.954 0.880 0.763 

4 1.286 1.535 1.354 2.568 1.562 1.381 1.337 1.357 1.210 1.322 1.355 1.216 1.038 

5 2.167 2.690 2.426 5.866 2.788 2.725 2.134 2.594 1.943 2.210 2.435 2.031 1.837 

6 1.245 1.260 1.203 3.752 1.693 1.720 1.143 1.471 1.214 1.136 1.284 1.063 0.987 

7 1.106 1.123 1.149 2.218 1.151 1.246 1.087 1.236 0.974 1.128 1.131 1.033 0.879 

8 1.867 2.527 1.737 6.016 2.398 2.845 1.819 2.280 1.690 1.734 1.959 1.587 1.456 

9 0.841 0.870 0.833 1.903 0.945 0.984 0.787 0.987 0.773 0.818 0.819 0.742 0.643 

10 0.826 0.927 0.835 1.860 0.971 0.924 0.813 0.960 0.766 0.842 0.858 0.773 0.671 

11 1.474 1.623 1.473 3.932 1.918 1.976 1.466 1.646 1.341 1.428 1.596 1.330 1.171 

12 0.677 0.691 0.688 1.546 0.800 0.811 0.653 0.762 0.640 0.659 0.693 0.614 0.548 

13 2.582 3.403 2.503 7.310 4.054 3.338 2.980 2.781 2.438 2.750 3.128 2.445 2.196 

14 1.944 2.043 2.135 4.199 2.210 2.169 1.925 1.996 1.717 1.875 1.969 1.748 1.453 

15 1.429 1.597 1.493 2.602 1.653 1.484 1.462 1.492 1.323 1.464 1.477 1.337 1.112 

16 1.030 0.977 1.018 2.928 1.350 1.439 0.925 1.193 1.035 0.918 1.032 0.871 0.818 

17 1.329 1.513 1.341 2.863 1.674 1.529 1.399 1.503 1.279 1.395 1.474 1.308 1.121 

18 2.184 2.587 2.352 4.936 2.752 2.372 2.364 2.428 2.070 2.395 2.409 2.132 1.730 

19 1.288 1.495 1.247 3.646 1.625 1.734 1.293 1.488 1.186 1.272 1.337 1.144 0.993 

20 1.003 1.135 1.029 2.204 1.244 1.207 1.051 1.084 0.928 1.032 1.102 0.963 0.856 

21 1.328 1.561 1.311 3.544 1.865 1.726 1.447 1.485 1.241 1.367 1.538 1.262 1.129 

22 1.497 1.712 1.538 2.998 1.737 1.613 1.559 1.571 1.395 1.593 1.591 1.450 1.155 

23 0.950 1.018 0.990 1.513 0.998 0.968 0.965 0.996 0.893 0.968 0.961 0.918 0.761 

24 1.438 1.766 1.483 3.563 1.834 1.693 1.470 1.596 1.335 1.486 1.567 1.363 1.167 

Avg. 1.406 1.620 1.430 3.425 1.769 1.712 1.431 1.564 1.302 1.414 1.507 1.299 1.129 

Table 3.2 Performance of various algorithms in terms of S-CIELab color difference 

 

 

 Table 3.2 shows the performance of various algorithms in terms of S-CIELab 

color difference (ΔE) [66]. The proposed algorithm provides the best performance 

among the evaluated algorithms again. With the proposed gradient testing tool, a 

simple heuristic algorithm can provide a subjectively and objectively better 

demosaicing performance as compared with many state-of-art algorithms 

[12,22,26,30,35,36,39,42]. 
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Ideal ACPI  

ACPI The proposed algorithm 

Figure 3.8 Direction maps obtained with different algorithms for interpolating 

missing green samples 
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Pixel nature 
of the group 

Group 1 

oursiACPIACPI DDD 
Group 2 

oursiACPIACPI DDD 
Group 3 

oursiACPIACPI DDD 

% of pixels 17.12% 19.07% 34.84% 

 ACPI 
Ours w/o 

Refinement
ACPI 

Ours w/o 
Refinement

ACPI 
Ours w/o 

Refinement

MSE/pixel 8.537 28.779 64.341 7.231 31.766 22.670 

Table 3.3 MSE contributed by different groups of pixels 

 

 

 The proposed algorithm is developed based on the fact that the interpolation 

direction for each missing green sample is critical to the final demosaicing result. A 

study was carried out to investigate how significant the improvement with respect to 

ACPI could be when the proposed algorithm was used to find a better interpolation 

direction for a pixel. Note that demosaicing along edges in a natural image 

significantly reduces the demosaicing error. Figure 3.8 shows some interpolation 

direction maps obtained with ACPI, the ideal ACPI and the proposed algorithm for 

comparison. 

 Table 3.3 shows the performance of ACPI and the proposed algorithm in finding 

an appropriate interpolation direction. This Table shows the contribution of 3 different 

groups of pixels to the minimum square error (MSE) of the green plane in the final 

demosaicing result. Pixels in the testing images are grouped according to the 

following three constraints: (1) oursiACPIACPI DDD  , (2) oursiACPIACPI DDD   and 

(3) oursiACPIACPI DDD  , where ACPID , iACPID  and oursD  are, respectively, a 

pixel’s interpolation directions estimated with ACPI, the ideal ACPI and the proposed 

algorithm. One can see that the percentage of Group 2 pixels is higher than that of 

Group 1 pixels. This implies that, when the proposed algorithm is used, there are 

more hits on iACPID . Even in the case of oursiACPI DD  , the estimate of the proposed 

algorithm is better in a way that the interpolation result provides a lower MSE. One 

can see the reduction in MSE/pixel achieved by the proposed algorithm in Group 3 
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pixels. Besides, the average penalty introduced by Group 1 pixels to the proposed 

algorithm is just 20.3 (=28.8-8.5) while the average penalty introduced by Group 2 

pixels to ACPI is 57.1 (=64.3-7.2) in terms of MSE per pixel. 

 

 

 
Original version Simplified version 

ADD MUL SHT ABS ADD MUL SHT ABS

Edge/non-edge block classification 26 1 0 8 26 1 0 8 

Estimating missing green sample   

 
Case: In edge block 9 0 5 0 9 0 5 0 

Case: In non-edge block 97 39 11 0 61 4 7 19

Estimating missing red/blue sample 4 0 1 0 4 0 1 0 

Refinement 19 14 0 0 19 14 0 0 

Total   

 
Case: In edge block 58 15 6 8 58 15 6 8 

Case: In non-edge block 146 54 12 8 110 19 8 27

(a) 

 
Original version Simplified version 

ADD MUL SHT ABS ADD MUL SHT ABS

Estimating missing red sample 4 0 1 0 4 0 1 0 

Estimating missing blue sample 2 0 1 0 2 0 1 0 

Refinement 34 18 0 0 34 18 0 0 

Total 38 18 2 0 38 18 2 0 

(b) 

Table 3.4 Arithmetic operations required by the proposed algorithm to estimate two 

missing color components at (a) a red/blue sampling position or (b) a 

green sampling position 

 

 

 Table 3.4 shows the complexity of the proposed algorithm in terms of number of 

additions (ADD), multiplications (MUL), bit-shifts (SHT) and absolute-value-taking 

operations (ABS). A comparison operation is considered as an addition in this thesis 

for easier comparison. Note that some intermediate computation results can be reused 

during demosaicing and this was taken into account when the complexity of the 

proposed algorithm was estimated. Its complexity can be reduced by simplifying the 
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estimation of 2
, jiH  , 2

, jiV  and 2
, jiD . In particular, eqns. (3.11), (3.12) and (3.17) 

can be simplified by replacing Ψ with Ψs={0,±2,±4} and turning all involved square 

operations into absolute value operations. Some demosaicing performance is 

sacrificed due to the simplification. The simplified version provided an average 

CPSNR of 39.89dB and an average S-CIELab color difference of 1.305 in our 

simulations. Its complexity is also shown in Table 3.4. In our simulations, the average 

execution times for the proposed algorithm and its simplified version to process an 

image on a 2.8GHz Pentium 4 PC with 512MB RAM are, respectively, 0.2091s and 

0.1945s. 

 

3.5 Chapter Summary 

 In this chapter, an adaptive demosaicing algorithm was presented. It makes use 

of the color difference variance of the pixels located along the horizontal axis and that 

along the vertical axis in a local region to estimate the interpolation direction for 

interpolating the missing green samples. With such an arrangement, the interpolation 

direction can be estimated more accurately and, hence, more fine texture pattern 

details can be preserved in the output. Simulation results show that the proposed 

algorithm is able to produce a subjectively and objectively better demosaicing result 

as compared with a number of advanced algorithms. 

 



45 

Chapter 4 A Low-Complexity Joint Color 

Demosaicing and Zooming 

Algorithm for Digital Camera 

 

4.1 Introduction 

 As mentioned in Chapter 2, there are generally two conventional approaches, 

namely zooming-after-demosaicing and demosaicing-after-zooming, to produce a 

zoomed full-color image. However, no matter which approach we take, the zooming 

and demosaicing processes are carried out independently. Since the actual process 

behind both zooming and demosaicing is interpolation and similar signal processing 

concepts are employed in both cases, when the zooming and demosaicing steps are 

performed separately, the information available on the raw sensor data is not always 

utilized consistently and efficiently to produce the enlarged output. In this chapter, a 

low-complexity joint color demosaicing and digital zooming algorithm is proposed 

for a digital single-sensor camera to solve this problem. Figure 4.1 shows the concept 

of the proposed joint demosaicing and zooming approach. 

 

 

 

Figure 4.1 Workflow of the proposed joint demosaicing and zooming algorithm 
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 By considering that the green channel provides twice information as compared 

with the red and the blue channels in a Bayer CFA image [54], the proposed algorithm 

starts with estimating all missing green samples in the original CFA image. For each 

missing green sample, it estimates its appropriate interpolation direction based on 

local intensity gradients and local variances of color difference values, and picks a 

corresponding linear interpolator to estimate its intensity value. The green plane is 

then enlarged in a way that all missing green components in the enlarged image are 

estimated based on (i) the green intensity values of their known or determined 

neighbors and (ii) the interpolation directions of the closest neighbors whose green 

components are determined in the previous stage. By so doing, the edge information 

extracted from the raw sensor data for interpolation is used in demosaicing and 

zooming consistently. It is also used efficiently as no separate extraction process is 

required in different stages. Finally, the red and the blue missing samples in the 

enlarged image are estimated with the interpolated green plane and the color 

difference model used in [26]. 

 Simulation results show that the proposed algorithm is superior to conventional 

approaches, which are generally combinations of different demosaicing and zooming 

algorithms, in zooming CFA images and producing zoomed full-color images in terms 

of output quality at low complexity. 

 This chapter is structured as follows. In Section 4.2, a color difference 

variance-based green plane demosaicing scheme is introduced. In Section 4.3, the 

details of our joint demosaicing and zooming algorithm is described. In Sections 4.4 

and 4.5, simulation results and a complexity analysis of the proposed algorithm are 

respectively provided. Finally, a conclusion is given in Section 4.6. 
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4.2 Color Difference Variance-Based Green Plane Demosaicing Scheme 

 The proposed green plane demosaicing scheme processes the pixels one by one 

in a raster-scanning order. Based on a symmetric local region of the pixel of interest, 

the scheme determines the interpolation direction and then interpolates the missing 

green component of the concerned pixel. 

 In the proposed scheme, the well-known directional second-order Laplacian 

interpolators proposed by Hamilton and Adams [22,64] are used to interpolate the 

missing green component as they were proven to be a simple yet good approximation 

of the optimal CFA interpolator [35]. In general, in a CFA image, the local region of a 

pixel without green component is in a pattern as shown in either Figure 4.2a or 4.2b. 

Without losing generality, only the former case is considered in this chapter of the 

thesis. For handling the case shown in Figure 4.2b, one can exchange the roles of red 

samples and blue samples and then follow the procedures for handling the case shown 

in Figure 4.2a to estimate the missing green components. 

 

 

 

 
   (a) (b) 

Figure 4.2 Two 5×5 regions of Bayer pattern having centers at (a) red and (b) blue 

samples 
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 For the case shown in Figure 4.2a, the missing green component of the center 

pixel (i,j) is estimated with one of the following directional interpolators. 
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where Rm,n and Gm,n respectively denote the known red and green CFA components of 

pixel (m,n), and H
jig , , V

jig ,  and D
jig ,  are the three possible estimates of the missing 

green component obtained with corresponding interpolators. 

 The selection of the interpolator is a critical factor to the demosaicing 

performance. Many adaptive demosaicing algorithms use local gradients to determine 

the interpolation direction and in turn the interpolator [22,64,67]. However, though 

this determination criterion works very well in simple edge regions, some image 

pattern features such as those shown in Figure 4.3b may not be preserved well with 

this criterion. As the color difference of a pixel (either green-to-red or green-to-blue) 

usually varies smoothly over a local region in a typical image, the local variance of its 

value is used as supplementary information to determine the interpolation direction in 

the proposed scheme when a texture region is encountered. 

 To reach a better decision, the proposed scheme is a two-pass estimation scheme. 

In the first pass, the scheme raster-scans the CFA image and detects if a particular 

pixel is in a sharp horizontal or vertical edge region. If it is, interpolation direction 

will be determined and the missing green component of the pixel will be interpolated 

accordingly. Otherwise, the pixel will be left behind and processed in the second pass. 



49 

In the second pass, the color difference information in a local region is used to 

determine the interpolation direction. Note that, in Pass 2, the green components 

estimated in Pass 1 can be used with those known green components to pick 

appropriate interpolators and perform the interpolation, which helps to improve the 

interpolation result. 

 Figure 4.4 summarizes how to select an interpolator for a particular pixel in 

different passes of the proposed scheme. The details are as follows. 

 

 

(a) (b) (c) 

Figure 4.3 (a) Original green planes of the original full-color images, (b) green 

planes generated by algorithm [22] and (c) green planes generated by the 

proposed green plane demosaicing scheme (The input for generating (b) 

and (c) were obtained by sampling (a) according to the Bayer CFA 

pattern.) 
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Figure 4.4 Procedures for determining the direction to interpolate a missing green 

component in the proposed green plane demosaicing scheme 

 

 

Pass 1 

 Both local intensity gradient and color difference are exploited in this pass to 

evaluate two parameters for a 5×5 local region to see whether there is sharp horizontal 

or vertical gradient change within the region. For the case shown in Figure 4.2a, the 

two parameters are computed as 
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 The 5×5 window is selected because it matches the support of interpolators (4.1), 

(4.2) and (4.3). Note that, in both eqns. (4.4) and (4.5), the first summation term 
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contributes intra-band gradient information while the second summation term 

contributes supplementary inter-band color information. The second term is used to 

improve the detection performance in some scenarios when the pixel of interest is on 

a sharp line of one pixel width. 

 The ratio of LH and LV, which is defined to be 

 

 |)/(log| 2
HV LLE  , (4.6) 

 

is then used to classify the region and determine the dominant edge direction. A 

region is said to be a sharp edge region if its associated E is larger than a predefined 

threshold value T. Our experimental results showed that T=1 provided a good 

detection result. We note that eqn. (4.6) is not a completely symmetric function with 

respect to LV/LH. However, this small asymmetry does not affect its detection 

performance. 

 If the pixel of interest, say pixel (i,j), locates at the center of a sharp edge region, 

its interpolation direction Diri,j{H,V,D} as well as its green estimate gi,j are 

determined as follows. 
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Otherwise, it is left behind for being processed in Pass 2.  

 As will be discussed later, to help selecting an interpolator for a pixel, sometimes 

it is necessary for one to make a preliminary estimation of some other pixels’ missing 

green components. Unlike these estimates which are temporarily obtained for 

selecting an interpolator, the estimate obtained from eqn. (4.7) is determined with the 
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selected interpolator. Accordingly, it is referred to as a formal estimate for future 

reference. 

 Once a missing green component is handled, the same process is performed for 

estimating the next missing green component in a raster-scan manner. For estimating 

the missing green component in the case shown in Figure 4.2b, one can replace the 

red samples by the corresponding blue samples and follow the procedures above to 

determine its interpolation direction and its interpolated value. At the end of the first 

pass, the missing green components of the center pixels in all 5×5 sharp edge regions 

should be determined. 

 

Pass 2 

 In the second pass, all missing green components which have not yet been 

estimated in the first pass are processed in a raster-scan manner. The involved pixels 

are considered to be in a flat region or a texture region (non-edge region). As a region 

of size 5×5 does not provide enough information to determine the interpolation 

direction in pass 1, the local region of interest is extended to 9×9 pixels in Pass 2 to 

cover more samples such that more useful information can be extracted at a 

reasonable increase in computation cost. In fact, based on our empirical study, we 

found that a region of 9×9 pixels provided the best overall zooming performance in 

terms of signal-to-noise ratio as compared with other possible sizes such as 13×13. 

 For the case shown in Figure 4.2a, to determine the interpolation direction for the 

center pixel, the variances of the color difference values of the pixels along the axes 

of the extended 9×9 local region, say HΦi,j and VΦi,j, are computed. Figure 4.5 shows 

the pixels involved in the computation. In formulation, HΦi,j and VΦi,j are defined as 
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Figure 4.5 The pixels along the horizontal and vertical axes of a 9×9 window in a 

Bayer CFA image 
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where dp,q is a color difference value of pixel (p,q). The values of di,j+2n and di+2n,j for 

n{0,±1,±2} are computed as follows. 
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Note that the green components for computing dp,q{di,j+2n, di+2n,j | n=-1,-2} have 

been estimated before as all missing green components are estimated in a raster-scan 

order. As for those for computing dp,q{di,j+2n, di+2n,j | n=1,2}, they may have been 
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estimated in the first pass. If they are not, the preliminary estimates H
njig 2,   and 

V
jnig ,2 , which are obtained from eqns. (4.1) and (4.2), will be, respectively, used to 

compute di,j+2n and di+2n,j. 

 Sometimes neither a horizontal nor a vertical interpolator can provide a good 

estimation result and the diagonal interpolator defined in eqn. (4.3) is preferred. 

Another color difference variance of the pixels within the 9×9 window, say DΦi,j, is 

used to detect this situation. In formulation, it is defined as 
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 Similar to the computation of HΦi,j and VΦi,j, to get dp,q{di,j+2n,di+2n,j | n=0,±1,±2} 

for evaluating DΦi,j, the formal estimates of the involved missing green components 

will be used if they exist. Otherwise, the preliminary estimate D
qpg ,  obtained from 

eqn. (4.3) is used to get D
qpqpqp gRd ,,,  . 

 With parameters HΦi,j, VΦi,j and DΦi,j, the desired interpolator for estimating the 

missing green component in the center of the region is selected and its formal estimate 

is determined by 
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 For the case shown in Figure 4.2b, one can treat blue samples as red samples and 
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follow the above procedures to estimate the missing green component. A complete 

demosaiced green plane is obtained after Pass 2. Figure 4.3c shows some green planes 

obtained with the proposed green plane demosaicing scheme. 

 

4.3 Joint Demosaicing and Zooming Algorithm 

 Since the green channel provides twice information as compared with the red and 

the blue channels in a CFA image, the proposed joint demosaicing and zooming 

algorithm starts with green-plane interpolation. The red and the blue plane 

interpolations then follow with reference to the interpolated green plane. Assume that 

a CFA image s of size M×N has to be enlarged to a zoomed full-color image S of size 

λM×λN. The proposed algorithm supports a zooming factor λ=2k, where k is a positive 

integer. In this thesis, λ=2 is selected for simplicity to facilitate the following 

discussion. 

 For the sake of reference, hereafter, a pixel at location (m,n) in image s is 

denoted by sm,n ={sr(m,n), sg(m,n), sb(m,n)} with sr(m,n), sg(m,n) and sb(m,n) as its red, green and 

blue components, while a pixel at location (m,n) in image S is represented by 

Sm,n={Sr(m,n), Sg(m,n), Sb(m,n)} with Sr(m,n), Sg(m,n) and Sb(m,n) as the corresponding color 

components. 

 Figure 4.6 shows how image S is obtained using CFA image s step by step in 

different stages for reference. In particular, the circles with segmented edges denote 

the pixels to be processed in the following processing stage, and the existence of the 

color in a division denotes that the corresponding color component is known or has 

been estimated in a previous processing stage. 
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(a)  (b) (c) 

(d) (e) 

(f) (g) 

Figure 4.6 Spatial arrangement of the intermediate results of the proposed joint 

demosaicing and zooming algorithm: (a) raw sensor output CFA image, 

(b) after demosaicing green-plane, (c) after spatial expansion, (d) after 

estimating diagonal green components, (e) after estimating all green 

components (f) intermediate result containing the enlarged CFA image 

and (g) final enlarged full-color image 
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4.3.1 Green Plane Demosaicing and Interpolation 

 In the proposed algorithm, the green plane demosaicing scheme described in 

Section 4.2 is carried out first to estimate the missing green components in the small 

CFA image s. It results in a direction map indicating the interpolation directions for 

the missing green components and a complete demosaiced green plane of image s as 

shown in Figure 4.6b. 

 Median filtering is then applied to the color difference planes of image s to refine 

the demosaiced green plane. For a pixel which is in the middle of the pattern shown in 

Figure 4.2a, its demosaiced green component sg(i,j) is refined by 

 

 ),()2,)((),2)((),)((),( ),,median( jirjirgjirgjirgjig sddds    (4.13) 

 

where d(g-r)(m,n)=sg(m,n)–sr(m,n) is the green-to-red color difference of the pixel at location 

(m,n) and median(•) denotes the median operator which provides the median value of 

its given inputs. Note that all sr(m,n) involved in eqn. (4.13) are raw sensor components 

in image s. Median filtering is used here to enhance the demosaiced green plane 

because of its simplicity and its proven good performance in handling this case. To 

refine a pixel which is in the middle of the pattern shown in Figure 4.2b, the same 

refinement step can be used after replacing red samples with corresponding blue 

samples. 

 The enhanced partially-demosaiced image s is then expanded to form an image 

of the same size as the zoomed image S. In particular, we have 

 

 jiji sS ,12,12  , ),( ji  in image s. (4.14) 
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Figure 4.6c shows the spatial arrangement of the output of this stage. 

 In Figure 4.6c, three-fourth of the green components are missing. Those of the 

pixels marked with segmented edges are interpolated first as each one of them is 

surrounded by four known green components at its corners as shown in Figure 4.6c. 

Let Sg(p,q) be one of the pixels marked with segmented edges, and Sg(p-1,q-1), Sg(p-1,q+1), 

Sg(p+1,q-1) and Sg(p+1,q+1) be the four known green components surrounding Sg(p,q). The 

value of Sg(p,q) is determined as the weighted sum of PDS
~

 and NDS
~

, where 

2/)(
~

)1,1()1,1(   qpgqpgPD SSS  and 2/)(
~

)1,1()1,1(   qpgqpgND SSS  are average 

values of diagonal neighboring green samples of pixel (p,q). In particular, we have 
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 In eqn. (4.15), NDS
~

 contributes less to Sg(p,q) if ND  is larger than PD  and 

vice versa. This weighting mechanism automatically directs the interpolation along an 

edge if there is. Figure 4.6d shows the spatial arrangement of the output of this stage. 

 The remaining missing green components in Figure 4.6d are then interpolated by 

simple directional bilinear interpolation. Let the location of the pixel whose green 

component is currently being estimated be (p,q). As shown in Figure 4.6d, for each 

pixel having a missing green component at this stage, there is a neighboring pixel 

whose green component was determined when demosaicing the green plane of CFA 
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image s. Let the location of this neighboring pixel of Sp,q be (i,j). Sg(p,q) is then 

estimated as 

 

 
































DS
SSSS

VS
SS

HS
SS

S

jig
qpgqpgqpgqpg

jig
qpgqpg

jig
qpgqpg

qpg

)( if  
4

)( if  
2

)( if  
2

),(
),1(),1()1,()1,(

),(
),1(),1(

),(
)1,()1,(

),(  (4.17) 

 

where (Sg(i,j)) denotes the interpolation direction for estimating Sg(i,j) when 

demosaicing the green plane of s. 

 In eqn. (4.17), by taking the advantage of the edge consistency in a small region, 

missing green components in a local region are interpolated with the same direction. 

This process provides a simple but effective means to preserve edge feature in the 

zooming result. Figure 4.6e shows the spatial arrangement of the output of this stage 

where all the missing green components of image S are determined. 

 

4.3.2 Red Plane and Blue Plane Interpolations 

 To constitute the missing red and blue components in Figure 4.6e, the color 

difference model used in [26] is employed. For each pixel whose red (blue) 

component is missing, its green-to-red (green-to-blue) color difference value is 

bilinearly interpolated from the neighboring pixels having known red (blue) CFA 

components and its intensity value can then be determined. 

 For example, when the red components of pixels (p,q), (p,q+4), (p+4,q) and 

(p+4,q+4) are known and one wants to estimate the red component of pixel (p+m,q+n) 

for 0≤m,n≤4, the green-to-red color difference value of pixel (p+m,q+n) is first 
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linearly interpolated as follows. 
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The missing red color component is then estimated by 

 

 ),)((),(),( nqmprgnqmpgnqmpr dSS   . (4.19) 

 

 In practice, the interpolation of all missing red and blue components can be done 

in parallel so as to reduce the processing time. However, when the components are 

processed sequentially, one can interpolate some of them first to obtain an 

intermediate result as shown in Figure 4.6f. This intermediate result contains all color 

components of image S in CFA format, which allows image S to be stored in CFA 

format well before its full-color image is finally determined as shown in Figure 4.6g. 

 Unlike the algorithm proposed in [55] where the color difference information 

used in the CFA zooming process is obtained from color components located at 

different positions, the proposed algorithm extract color difference information from 

color components of the same pixel. This helps to eliminate color artifacts in the 

resultant image. 
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4.4 Performance Evaluation 

 Simulation was carried out to evaluate the performance of the proposed joint 

demosaicing and zooming algorithm. Some other algorithms for generating zoomed 

full-color images were also evaluated for comparison. Among them, Lukac’s 

algorithms ((CIZBP) [54] and (DCZPS) [55]) were examples of the 

demosaicing-after-zooming approach shown in Figure 2.8b. For the 

zooming-after-demosaicing approach, various demosaicing algorithms in the literature 

such as ACPI [22], AP [12], PCSD [36], AHDA [35], NCED [27] and BICD [23] 

were combined with bilinear image zooming algorithms (BI) [44] to produce zoomed 

full-color images. 

 Note that some other interpolation algorithms such as cubic interpolation can 

also work with NCED, PCSD, AHDA, AP, ACPI and BICD to provide a zoomed 

full-color image. However, BI was used in our simulations as low complexity is one 

of the key concerns in our study. Other interpolation algorithms are comparatively 

more complicated. In fact, after demosaicing, sophisticated edge-sensing interpolation 

algorithms may not provide better zooming performance as compared with BI. When 

demosaicing and zooming are separately performed, the artifacts introduced during 

demosaicing may fool an edge-sensing interpolator and an interpolation in a wrong 

direction may even amplify the artifacts. 

 The twenty-four original 24-bit (8-bit for each color component) full-color 

images shown in Appendix A are utilized in the simulation. Each of them is of size 

512×768 pixels. They were down-sampled by pixel omission to full-color images of 

size 256×384 each and then sub-sampled according to the Bayer CFA pattern, with 

starting sampling sequence of “GRGR…” in the first row, to form a set of small CFA 

testing images. The CFA testing images were then processed with different evaluated 
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algorithms to produce zoomed full-color images for comparison. 

 Table 4.1 tabulates the performance of various algorithms in terms of the 

color-peak signal-to-noise ratio (CPSNR) of their outputs. The definition of the 

CPSNR is given by eqn. (3.24) which is described in Chapter 3. From the table, one 

can observe that the proposed algorithm provides the best performance. 

 

 

Image 
Demosaicing after Zooming Approach 

Zooming after Demosaicing 
Approach 

Ours
ACPI 
+BI 

AP 
+BI 

PCSD 
+BI 

AHDA
+BI 

NCED
+BI 

BICD
+BI 

DCZPS
CIZBP
+NCED 

CIZBP
+AP 

CIZBP
+AHDA

1 23.74 24.44 23.97 24.20 24.40 21.60 22.52 22.55 22.23 22.69 24.57

2 30.24 30.46 30.36 30.42 30.69 28.61 29.06 29.12 28.88 29.24 30.55

3 31.20 31.67 31.78 31.87 32.18 29.67 30.17 30.25 29.86 30.37 31.99

4 30.31 30.84 30.72 30.65 31.18 28.49 28.89 28.82 28.55 28.95 30.87

5 23.28 24.33 24.16 24.06 24.50 21.29 22.05 21.91 21.60 22.08 24.43

6 24.79 25.63 25.71 25.73 25.58 23.37 24.06 23.93 23.67 24.09 26.01

7 30.33 30.76 30.68 30.72 31.17 27.23 28.07 28.11 27.71 28.22 30.87

8 21.01 21.57 21.39 21.53 21.56 18.84 19.76 19.81 19.50 19.95 21.86

9 29.69 30.14 30.15 30.22 30.30 26.79 27.87 28.07 27.65 28.25 30.48

10 29.49 30.54 30.26 30.10 30.54 27.38 28.18 28.08 27.78 28.23 30.63

11 26.27 26.97 26.79 26.84 27.04 24.50 25.24 25.19 24.90 25.32 27.12

12 30.67 31.20 31.19 31.24 31.31 28.64 29.37 29.39 29.05 29.57 31.46

13 21.03 22.02 21.71 21.70 22.08 19.82 20.37 20.12 19.91 20.25 22.18

14 25.72 25.95 25.81 25.93 26.40 24.09 24.59 24.52 24.23 24.63 25.98

15 29.91 30.44 30.30 30.29 30.67 28.34 28.66 28.67 28.31 28.79 30.55

16 28.39 29.21 29.33 29.31 29.19 27.04 27.63 27.58 27.31 27.72 29.63

17 29.23 30.14 29.86 29.87 30.24 27.17 27.89 27.81 27.51 27.96 30.28

18 25.36 26.22 25.86 25.86 26.35 23.69 24.36 24.17 23.92 24.30 26.17

19 25.50 26.03 26.19 26.21 25.87 22.95 23.99 24.19 23.85 24.33 26.50

20 28.83 29.43 29.22 29.33 29.65 26.62 27.51 27.66 27.24 27.85 29.77

21 25.51 26.37 26.16 26.18 26.45 23.78 24.53 24.39 24.09 24.53 26.62

22 27.29 27.90 27.64 27.66 28.04 25.63 26.27 26.16 25.91 26.29 27.90

23 31.30 31.79 31.98 32.10 32.16 28.94 29.48 29.44 29.08 29.58 32.22

24 23.79 24.78 24.50 24.43 24.81 22.50 23.04 22.77 22.56 22.92 24.87

Avg. 27.20 27.87 27.74 27.77 28.02 25.29 25.98 25.95 25.64 26.09 28.06

Table 4.1 CPSNR performance (in dB) of various algorithms in producing a zoomed 

full-color image 
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 Table 4.2 shows the performance of the evaluated algorithms in terms of 

S-CIELab color difference. The S-CIELab color difference is defined as the Euclidean 

distance between the original color of a pixel and its reproduction in S-CIELab color 

metric space [66]. Again, the proposed algorithm provides the best performance. 

 

 

Image 
Demosaicing after Zooming Approach 

Zooming after Demosaicing 
Approach 

Ours
ACPI 
+BI 

AP 
+BI 

PCSD 
+BI 

AHDA
+BI 

NCED
+BI 

BICD
+BI 

DCZPS
CIZBP
+NCED 

CIZBP
+AP 

CIZBP
+AHDA

1 5.755 4.828 5.262 4.460 4.697 8.249 6.547 6.259 6.716 6.134 4.350

2 3.821 3.662 3.724 3.379 3.416 4.848 4.113 3.959 4.151 3.891 3.449

3 2.348 2.213 2.134 1.998 1.974 2.869 2.607 2.435 2.599 2.429 2.060

4 3.398 3.013 3.092 2.859 2.749 4.214 3.620 3.524 3.747 3.509 2.879

5 8.216 6.947 7.104 6.428 6.206 10.490 8.829 8.332 9.183 8.295 6.543

6 4.334 3.536 3.421 3.095 3.454 5.691 4.464 4.389 4.695 4.303 3.081

7 2.821 2.847 2.740 2.698 2.455 4.227 4.069 3.779 4.077 3.876 2.679

8 6.231 5.393 5.433 4.884 5.230 9.220 7.492 6.954 7.577 6.888 4.694

9 2.175 2.009 1.927 1.818 1.858 3.085 2.670 2.447 2.622 2.434 1.808

10 2.247 1.943 1.966 1.840 1.847 3.124 2.619 2.415 2.620 2.402 1.836

11 4.521 3.937 3.978 3.572 3.658 6.049 4.957 4.638 5.055 4.578 3.569

12 1.841 1.652 1.615 1.489 1.539 2.416 2.034 1.914 2.056 1.893 1.489

13 8.754 6.921 7.471 6.580 6.603 10.67 8.426 8.522 9.012 8.330 6.464

14 5.479 5.011 5.088 4.657 4.497 6.899 5.874 5.686 6.100 5.651 4.764

15 3.449 3.181 3.214 2.987 2.930 4.100 3.698 3.518 3.783 3.524 3.041

16 3.332 2.743 2.579 2.365 2.700 4.353 3.492 3.417 3.647 3.359 2.354

17 3.465 2.944 3.078 2.811 2.767 4.571 3.989 3.747 4.030 3.705 2.836

18 6.346 5.500 5.806 5.421 5.131 7.919 6.654 6.555 6.936 6.469 5.462

19 3.925 3.353 3.384 3.061 3.261 5.632 4.497 4.260 4.573 4.216 3.024

20 2.691 2.372 2.448 2.213 2.145 3.476 2.988 2.752 3.041 2.761 2.185

21 4.293 3.537 3.695 3.290 3.329 5.561 4.515 4.374 4.727 4.315 3.256

22 3.880 3.494 3.603 3.414 3.286 4.769 4.043 3.989 4.181 3.954 3.409

23 2.112 2.097 2.069 1.967 1.916 2.489 2.459 2.363 2.470 2.359 1.994

24 4.560 3.847 3.992 3.616 3.574 5.920 4.774 4.621 4.963 4.553 3.574

Avg. 4.166 4.828 3.701 3.371 3.384 5.452 6.547 4.369 4.690 4.326 3.367

Table 4.2 S-CIELab color difference performance of various algorithms in 

producing a zoomed full-color image 
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 As mentioned earlier, using sophisticated edge-sensing interpolation algorithms 

instead of BI after demosaicing in the zooming-after-demosaicing approach may not 

provide a better zooming performance. Table 4.3 shows the zooming performance of 

some other combinations [68,69] for comparison. It shows that BI is a good choice in 

view of both complexity and quality. 

 

 

Demosaicing 
algorithm 

Zooming algorithm 

Bilinear (BI) Cubic [68] Edge-adaptive [69]

ACPI 27.20 27.12 26.72 

AP  27.87 27.86 27.48 

PCSD 27.74 27.68 27.29 

AHDA 27.77 27.70 27.46 

NCED 28.02 28.03 27.61 

BICD 25.29 25.26 24.69 

(a) CPSNR (in dB) 

Demosaicing 
algorithm 

Zooming algorithm 

Bilinear (BI) Cubic [68] Edge-adaptive [69]

ACPI 4.1664 4.3199 4.4760 

AP 3.6242 3.6817 3.7368 

PCSD 3.7009 3.8086 3.9343 

AHDA 3.3709 3.4357 3.4744 

NCED 3.3841 3.4306 3.5173 

BICD 5.4518 5.7043 6.1156 

(b) S-CIELab color difference 

Table 4.3 Average performance of various combinations in producing a zoomed 

full-color image when the zooming-after-demosaicing approach is used. (a) 

CPSNR (in dB) and (b) S-CIELab color difference 
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 Objective measures may not be accurate and reliable enough to tell the quality 

difference among the processing results. Figures 4.7 and 4.8 show, respectively, some 

zooming results of images 19 and 8 for visual comparison. They reveal that the 

proposed algorithm outstandingly preserves the image features with less color 

artifacts. For example, as shown in Figure 4.7, the proposed algorithm can reproduce 

the fence texture with very little color artifacts but the others cannot. One can also see 

from Figure 4.8 that, while most of the other algorithms totally destroy the letters on 

the wall in their outputs, the proposed algorithm can preserve most of the details and 

introduces less color artifacts. These results, to a large extent, reflect the robustness of 

the proposed joint demosaicing and zooming algorithm in which the interpolation 

direction is determined directly from the raw sensor data and then used effectively and 

consistently in different stages to interpolate the green plane. 

 CIZBP [54] was a dedicated algorithm proposed for zooming CFA images. To 

make a direct comparison with CIZBP, zoomed CFA images produced by the 

proposed algorithm were extracted from the intermediate results having the available 

color components shown in Figure 4.6f for comparison. Corresponding reference 

CFA images were generated by sub-sampling Io according to the Bayer pattern. The 

difference between the zoomed CFA image output of a particular algorithm and its 

corresponding reference was then measured in terms of PSNR=10log10(2552/MSE), 

where MSE is the mean square error of all available color components in the involved 

CFA image. On average, the PSNRs achieved by CIZBP and the proposed algorithm 

are 25.51dB and 28.22dB respectively. 
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 (a) input CFA image  

(b) the full-color original (c) PCSD+BI (d) BICD+BI 

(e) ACPI+BI (f) AHDA+BI (g) AP+BI 

(h) NCED+BI (i) DCZPS (j) CIZBP+AP 

(k) CIZBP+AHDA (l) CIZBP+NCED (m) Ours 

Figure 4.7 Part of the processing results of Image 19 for visual comparison 
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 (a) input CFA image  

(b) the full-color original (c) PCSD+BI (d) BICD+BI 

(e) ACPI+BI (f) AHDA+BI (g) AP+BI 

(h) NCED+BI (i) DCZPS (j) CIZBP+AP 

(k) CIZBP+AHDA (l) CIZBP+NCED (m) Ours 

Figure 4.8 Part of the processing results of Image 8 for visual comparison 
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4.5 Computational Complexity 

 In this section, a computational complexity analysis of the proposed algorithm is 

provided. The complexity is measured in terms of number of primitive operations 

including addition (ADD), multiplication (MUL), bit-shift (SHT) and taking absolute 

value (ABS). A comparison is considered as an addition for easier presentation. 

 Table 4.4 summarizes the complexity required by the proposed algorithm to 

estimate a missing component in different stages. The stages into which the algorithm 

is decomposed in our complexity analysis matches those presented in Figure 4.6 for 

easy reference. Note that some intermediate computation results can be reused in later 

stages and this was taken into account when the complexity of the proposed algorithm 

was estimated. 

 

 

Action taken in a particular stage Operation 

Action Stage ADD MUL SHT ABS

Estimating a missing 
G component 

(a)→(c) in 
Figure 4.6

In sharp edge region 35 1 2 8 

In non-sharp edge region 93 25 6 8 

(c)→(d) in Figure 4.6 14 3 2 2 

(d)→(e) in Figure 4.6 3 0 1 0 

Estimating a missing 
R or B component 

(e)→(f) in Figure 4.6 2 1 1 0 

(f)→(g) in Figure 4.6 2 1 1 0 

Table 4.4 Complexity required for estimating a missing component in different 

stages of the proposed joint demosaicing and zooming algorithm 

 

 

 In practice, the real number of operations required to produce a zoomed 

full-color image with the proposed algorithm is image-dependent and it relies on how 

many missing green components are in sharp edge regions. Table 4.5 lists the average 

number of operations per pixel required by different algorithms in processing 24 

testing images in our simulations. The complexity of BICD+BI and ACPI+BI is lower 
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than that of the proposed algorithm but their output quality is poor as shown in 

Figures 4.7 and 4.8. As for PCSD+BI and AHDA+BI, their complexity is close to 

ours but their output qualities are a bit lower especially in terms of the CIELab color 

difference criterion. The complexity of the proposed algorithm is around 22% of that 

of DCZPS [55]. When zooming a CFA image, the complexity of the proposed 

algorithm is around half of that of CIZBP [54]. In fact, the computation effort for the 

proposed algorithm to produce a zoomed full-color image is less than that required for 

CIZBP [54] to produce a zoomed CFA image. 

 

 

Algorithms ADD MUL SHT ABS Total 

BICD+BI 5.25 0.00 4.25 0.00 9.50 

Producing a zoomed full-color image 

ACPI+BI 6.25 0.00 3.49 0.99 10.73 

PCSD+BI 28.25 2.00 3.50 3.00 36.75 

AHDA+BI 26.00 2.00 8.25 1.00 37.25 

AP+BI 64.90 7.88 32.25 0.50 105.53 

NCED+BI 71.25 34.50 10.25 2.00 118.00 

DCZPS 67.50 43.44 0.00 16.88 127.82 

Ours 19.02 3.68 3.41 1.43 27.54 

Producing a zoomed CFA image 

CIZBP 25.88 14.25 0.00 4.50 44.63 

Ours 16.27 3.68 2.03 1.43 23.41 

Table 4.5 Averaged number of operations per pixel required by various algorithms 

 

 

 In our simulations, the average execution time for the proposed algorithm to 

produce a zoomed full-color image from a 256×384 CFA image with a zooming 

factor of 2 on a 3.0GHz Pentium 4 PC with 1024MB RAM is 0.062s. 
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4.6 Chapter Summary 

 In this chapter, a low complexity joint demosaicing and zooming algorithm is 

proposed. With the use of the local color difference variances, the raw sensor data is 

considered directly to determine the interpolation direction for estimating the missing 

green components in the zoomed image. With this arrangement, the green plane can 

be efficiently interpolated with preserved image details. With reference to the 

interpolated green plane, the red and the blue planes are then interpolated at low 

complexity. Simulation results show that the proposed algorithm produces images 

providing the most details and the least color artifacts at the lowest complexity as 

compared with conventional approaches which generally perform 

demosaicing-after-zooming or zooming-after-demosaicing. 
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Chapter 5 Color Demosaicing Algorithm II: 

On the Use of Integrated Gradient 

for Color Demosaicing 

 

5.1 Introduction 

 Though early demosaicing algorithms [22,28,30,67,70] try to extract gradient 

information from color intensity domains to guide the interpolation in corresponding 

color planes, recent demosaicing algorithms [36-38] generally put their focus on the 

color difference domains and exploit the inter-channel spectral correlation to guide the 

interpolation. However, in either approach, the information extracted from the color 

difference and the color intensity domains is not properly balanced. This bias may 

result in misleading information which guides one to interpolate samples along a 

wrong direction. 

 In order to improve the output quality, some demosaicing algorithms such as [28] 

and [30] re-extract gradient information from intermediate interpolation results 

obtained at different stages. This adapt-to-new-information approach is great but it 

does not always work properly. For example, in texture areas where the spectral 

correlation is locally ambiguous along the horizontal and vertical directions, the 

gradient information extracted at different stages can be mutually contradictory and 

makes the situation confusing. Besides, gradient estimation is generally 

computationally expensive and hence repeated estimation increases the complexity a 

lot. 

 Color artifacts in high frequency areas are commonly found in the outputs of 

various demosaicing algorithms. The most common solution for this problem is to 
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introduce a post-processing step [29,51] to suppress the artifacts after demosaicing. 

Nevertheless, as all missing samples have to be processed again in the post-processing 

stage, it seems not an efficient approach from system point of view. Besides, as the 

interpolation of the red and the blue planes is carried out before the enhancement of 

the green plane, one cannot make use of the enhanced green plane as a “better” 

reference to interpolate the red and the blue planes. This also lowers the efficiency. 

 In this chapter, an efficient decision-based demosaicing algorithm is proposed to 

reconstruct color images from Bayer images. It aims at producing high quality output 

images at a low computation cost. Figure 5.1a shows a flow diagram of the proposed 

demosaicing algorithm. In this algorithm, a new directional edge-sensing parameter 

called integrated gradient (IG), which extracts gradient information in both color 

intensity (CI) and color difference (CD) domains simultaneously, is defined for being 

shared in various stages throughout the demosaicing process to interpolate the color 

channels. This IG is not only used as an edge detector to determine the interpolation 

direction when interpolating a green sample, but also used to adjust the coefficients of 

two spatial-variant interpolators when estimating the missing red and blue samples. In 

addition, a green plane enhancement which works with the IG is introduced to further 

improve the algorithm’s performance. Simulation results confirmed that the proposed 

demosaicing algorithm provides superior output quality at a comparatively low 

computation cost. 

 This chapter is organized as follows. In Section 5.2, the proposed IG is discussed. 

Section 5.3 presents the details of the proposed demosaicing algorithm. Section 5.4 

provides some experimental results of the proposed algorithm for comparison study 

while Section 5.5 shows the computational complexity of the proposed algorithm. 

Finally, a conclusion is given in Section 5.6. 
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ĝ ĝ

ĝĝ

ĝ ĝ

ĝĝ
ĝ ĝ

ĝĝ
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Figure 5.1 The spatial arrangement of the proposed demosaicing algorithm’s 

intermediate results: (a) workflow of the algorithm, (b) raw sensor output 

Bayer image at point A, (c) green plane interpolation result at point B, (d) 

green plane enhancement result at point C, (e) intermediate interpolation 

result during red and blue plane interpolations, and (f) final interpolation 

result at point D 

 

5.2 Extraction of Integrated Gradient 

 Since our human visual system is sensitive to edge structures, many demosaicing 

algorithms try to avoid doing interpolation across edges. To achieve the goal, 

gradients are estimated in various directions at each pixel to guide the interpolation 

along an edge. 

 A similar idea is exploited in the proposed algorithm. The contrast is that, instead 

of using the intensity gradient as in conventional approaches, the proposed algorithm 

uses a measure called integrated gradient (IG) to guide the interpolation. This IG is a 
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combination of the gradients in both the color intensity (CI) domain and the color 

difference (CD) domain, which provides more information for one to reach a better 

decision in selecting the interpolation direction. This section presents the definition of 

this IG and its rationale. 

 The IG associated with a particular pixel is defined on the neighboring samples 

of the pixel in its local region. In practice, the available samples in the 5×5 local 

region of a pixel can be in one of four patterns shown in Figure 5.2. 

 

 

  
   (a) (b) (c) (d) 

Figure 5.2 Four 5×5 regions of Bayer CFA pattern having their centers at (a)-(b) 

green, (c) red and (d) blue Bayer samples 

 

 

 Before we define IG, let’s first define an intermediate measure called weaker 

integrated gradient (WIG). It is so called because, as compared with IG, it extracts 

information from fewer CI and CD planes and hence provides less information for 

edge detection.  

 Figure 5.3a shows a cross template for extracting Bayer samples to calculate the 

WIG of the pixel located at the template center. The template has four extensions. The 

Bayer samples covered in a particular extension of the template (including the center) 

are used to compute the WIG along the corresponding direction. No matter which 

possible 5x5 Bayer pattern is concerned (see Figure 5.2), after rotating the Bayer 

sample patterns covered by the northbound, the westbound and the southbound 
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extensions of the cross template by 90º, 180º and 270º respectively, they are all in the 

same standard pattern form shown in Figure 5.3b as those patterns covered by the 

eastbound extension do. Hence, as long as the eastbound WIG is defined, the 

westbound, the northbound and the southbound WIGs can also be defined in the same 

manner. To save the effort, here we just define the eastbound WIG. 

 

 

 

(a) (b) 

Figure 5.3 (a) a cross template for computing WIGs, (b) all possible Bayer patterns 

covered for computing the eastbound WIG of a pixel and their 

generalized form 

 

 

 In the generalized form shown in Figure 5.3b, X and Y denote the colors of the 

corresponding Bayer samples in a concerned pattern. In formulation, the eastbound 

WIG is defined as 

 

 ),(
~

),(),( jijiji E
XY

E
X

E
XY    (5.1) 

 

where ),( jiE
X  and ),(

~
jiE

XY  are, respectively, the eastbound CI and CD gradients 

of pixel (i,j). α is a weighting factor used to control the contribution of the two 

gradients. The determination of its value will be discussed later. In the notations, 

superscript E and subscripts XY and X, respectively, denote the direction of the WIG, 
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the involved CD plane and the involved CI plane. 

 The CI gradient ),( jiE
X  measures the extent of eastbound CI change and is 

defined on the color channel that contains the Bayer sample of pixel (i,j). Specifically, 

we have 

 

 )2,(),(),(  jiXjiXjiE
X  (5.2) 

 

where X(i,j) is the known Bayer sample at position (i,j). The CI gradient is used to 

identify edges and hence only the gradient magnitude is concerned. There is likely an 

edge if ),( jiE
X  is large. In fact, ),( jiE

X  is commonly used in a number of 

conventional demosaicing algorithms for edge detection [13,67]. However, since 

pixels (i,j) and (i,j+2) are two pixels apart, the resolution that ),( jiE
X  supports may 

not be able to detect a thin line of one pixel width. 

 The CD gradient ),(
~

jiE
XY  is introduced to solve this problem. It provides 

supplementary edge detection information by evaluating the CD change of two 

successive pixels along the same eastbound direction. In formulation, it is defined as 

 

 
2

|)2,()1,(||)1,(),(|
),(

~ 


jidjidjidjid
ji XYXYXYXYE

XY  (5.3) 

 

where ),( jid XY  represents the X-Y CD value at position (i,j). The determination of 

),( jid XY  will be discussed later. 

 From eqn. (5.3), one can see that ),(
~

jiE
XY  is contributed by two items, each of 

which provides the absolute value of the CD change within one pixel along the 

eastbound direction. This increase in resolution allows one to detect a line of one pixel 
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width. In particular, the 1st item is for detecting the edge between pixels (i,j) and 

(i,j+1), while the 2nd item is for detecting the edge between pixels (i,j+1) and (i,j+2). 

When there is a line of one pixel width passing pixel (i,j+1), both edges on (i,j+1)’s 

left and right can be detected. In contrast, ),( jiE
X  fails in such a case. ),(

~
jiE

XY  is 

the average of these two magnitude items and hence the detection result can be 

faithfully reported. The absolute value nature of the items prevents their detection 

results from canceling with each other in averaging. 

 The WIG of pixel (i,j) only provides the edge information extracted from the X 

plane and the X-Y plane. It might happen that, over the edge to be detected, there is 

only sharp change in the Y plane or another CD plane. In that case, WIG fails to 

detect the edge. To solve this problem, more CI or CD planes should be included in 

the detection. One of the possible solutions is to combine the eastbound WIGs of 

pixels (i-1,j), (i,j) and (i+1,j) to form the eastbound IG of pixel (i,j). 

 As an example, for the case shown in Figure 5.2b, the eastbound IG of (i,j) can 

be defined as 
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 for the case shown in Figure 5.2b. (5.4) 

 

Note that ),( jiE
GB  is weighted by 2 to balance the contribution of the CD (CI) 

gradients extracted from different CD (CI) planes to ),( jiE . By so doing, CD 

gradients from R-G and G-B planes have equal votes in eqn. (5.4). Similarly, CI 

gradients from R and G planes also have equal votes. 
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 However, this definition of IG makes IGs along different directions incompatible. 

Though the Bayer patterns shown in Figures 5.2c and 5.2d are symmetric in all four 

(E,S,W,N) directions, the ones shown in Figure. 5.2a and 5.2b are not. To obtain the 

northbound IG of the pixel (i,j) shown in Figure 5.2b, one can rotate Figure 5.2b 

clockwise by 90º and then compute the eastbound IG of the rotated version with eqn. 

(5.4). In other words, we have 
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 for the case shown in Figure 5.2b. (5.5) 

 

From eqns. (5.4) and (5.5), one can see that ),( jiE  carries information from the R 

plane but not the B plane while ),( jiN  does the opposite. They are not compatible 

and hence it does not make sense to compare them. 

 By considering the aforementioned compatibility constraint, we regulate the 

definition of IG to eliminate the items that cause the incompatibility and, accordingly, 

modify eqns. (5.4) and (5.5) as 
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 for the case shown in Figure 5.2b. (5.6) 

and 







 

 1

),(
~

),(
~

2),(),(
k

N
BG

N
GR

N
G

N kjijijiji   

 for the case shown in Figure 5.2b. (5.7) 

 

Note that ),( jiE
G  and ),( jiN

G ’s original scaling factor of 2 is also eliminated in 
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eqns. (5.6) and (5.7). However, this can be compensated for by adjusting weighting 

factor α at the end. 

 Due to the absolute value nature of ),(
~

jiE
XY  (see eqn. (5.3)) and the fact that 

),(),( jidjid YXXY  , we have ),(
~

),(
~

jiji E
YX

E
XY   . In other words, both ),( jiE  

and ),( jiN  now carry the information extracted from the same G, G-R and G-B 

planes, and hence they are compatible. As a matter of fact, with this regulated 

definition, all four IGs of any particular pixel are compatible. 

 To maintain this compatibility, though theoretically a full-color image of 3 color 

components contains 3 CI and 3 CD planes, we do not further include more CI and 

CD planes in the definition of IG. This final definition of IG is used in the proposed 

demosaicing algorithm. 

 Similarly, the eastbound IGs of pixel (i,j) in cases shown in Figures 5.2a, 5.2c 

and 5.2d are, respectively, defined as 
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 for the case shown in Figure 5.2a. (5.8) 
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 for the case shown in Figure 5.2c. (5.9) 

and 







 

 1

),(
~

),(
~

2),(),(
k

E
GR

E
BG

E
B

E jkijijiji   

 for the case shown in Figure 5.2d. (5.10) 

 

 The northbound, the westbound and the southbound IGs of a pixel can be defined 

similarly as before. As a matter of fact, they can be determined by rotating the Bayer 
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image clockwise by 90º, 180º and 270º respectively and then computing the eastbound 

IGs of the rotated versions. 

 As a final remark, we note that, due to the absolute value nature of each 

component in the definition of IG, we have )2,(),(  jiji WE  and 

),2(),( jiji NS  . By making use of this property, one can save an amount of 

realization effort. 

 

5.2.1 Color Difference Estimation for Computing IGs 

 Neither ),( jid RB  nor ),( jid BR  is required in the computation of IGs. As for 

),( jidGB , ),( jid BG , ),( jidGR  and ),( jid RG , not every one of them is required and 

their estimation depends on which IG of pixel (i,j) is evaluated. 

 When computing an eastbound or westbound (northbound or southbound) IG, 

preliminary estimates of the required CDs are estimated along a row (column). For 

example, to estimate )1,( jid XY  for the pixel (i,j+1) shown in the generalized 

pattern in Figure 5.3b when evaluating ),(
~

jiE
XY , a preliminary estimate )1,(  jid XY  

is first obtained with 
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 Figure 5.4a shows how to generate the CD planes for computing 

eastbound/westbound IGs. In a Bayer image, the sensor pattern repeats every other 

row and every other column. For each row, the Bayer sample sequence is convolved 

with [-0.5, 1, -0.5] to provide preliminary CD estimates with eqn. (5.11). The output 
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is a sequence of alternate preliminary estimates GRd   and RGd   ( BGd   and GBd  ). 

Since we have ),(),( jidjid YXXY   in theory, by negating every second estimate in 

a row, we have a row of GRd   ( GBd  ). A 3-point averaging filter is then applied to 

remove the potential high frequency noise in each row, which produces the final CD 

estimates dGR (dGB). The G-R (G-B) plane is constructed with all odd (even) rows. 

 To get the required G-R and G-B planes for computing the northbound or 

southbound IG, one can follow the same procedures as presented in Figure 5.4a after 

rotating the Bayer image by 90º. 

 Figure 5.5 shows the CD planes of a testing image for computing IGs of different 

directions. The vertical (horizontal) resolution supported by the CD planes shown in 

Figure 5.5b (Figure 5.5c) is identical to that of the original image, which enables one 

to detect a one-pixel thin line. One can see that some edges can only be detected in a 

particular CD plane but not the other one. That explains why IG instead of WIG is 

used in our detection process. 

 

5.2.2 Realization in Practice 

 Figure 5.4a presents the idea how CDs are estimated step by step. These steps 

can be combined to make their realization much easier by making use of the following 

facts. First, the functions of the two approaches of implementation shown in Figure 

5.4b are identical so one can replace the upper approach with the lower one in the 

realization. Second, the negation process in the lower approach can be skipped as 

|)1,(),(|  jidjid YXXY , the absolute value of the sum of two successive output 

values of the filter, equals to |)1,(),(|  jidjid XYXY . It is already the information 

required for computing ),(
~

jiE
XY  and hence the corresponding IG. 
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(a) 

HPF LPFXYd  XYd  XYd  XYd 

Ftr
–

–

Ftr = Linear convolution with [1, -3, 4, -3, 1]/6

Y X YX

Y X YX XYd XYd XYd XYd

XYd XYd XYd XYd

XYd YXd XYd YXd

XYd  XYd YXd  YXd 

(b) 

Figure 5.4 Estimation of color difference values for computing eastbound or westbound IGs. (a) realization procedure and (b) 

alternative implementations of the core module form 
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Original dGB plane dGR plane 

(a) (b) 

dGB plane dGR plane 

(c) 

Figure 5.5 (a) Part of a testing image, (b) color difference planes for computing northbound or southbound IGs and (c) color difference 

planes for computing eastbound or westbound IGs 
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 Based on these facts, one can first convolve each row of the Bayer image with 

filter kernel F = [1,-3,4,-3,1]*[1,1] = [1,-2,1,1,-2,1], where the * sign denotes 

convolution and the underscore marks the position of the pixel of interest, and 

combine the filter outputs of all rows to form an intermediate plane s(i,j) 

( ))1,(),((6  jidjid YXXY  if (i,j) carries a X Bayer sample, or 

))1,(),((6  jidjid XYYX  if (i,j) carries a Y Bayer sample). ),(
~

jiE
XY  can then be 

obtained with 

 

  )1,(),(
12

1
),(

~
 jisjisjiE

XY . (5.12) 

 

5.2.3 Determination of Parameter α 

 Parameter α is a weighting factor used to control the contribution of the CI and 

CD gradients to IG. An empirical study was carried out to investigate its impact to the 

demosaicing performance. It was found that the optimum in terms of CPSNR 

happened at around α=2 and, within the range of 1<α<6, the CPSNR variation of the 

results achieved by the proposed demosaicing algorithm was less than 0.05dB as 

shown in Figure 5.6. By considering this, the value of α is selected to be 3/2 such that 

the computation of ),(
~

jiE
XY  using the approach presented in Section 5.2.2 only 

involves shift and add operations. This saves realization effort. 
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Figure 5.6 CPSNR performances of the proposed demosaicing algorithm achieved 

with different α values 

 

 

5.3 Proposed Demosaicing Algorithm 

 Figure 5.1 briefly illustrates the workflow of the proposed demosaicing 

algorithm. After IG extraction, the proposed algorithm interpolates the green plane 

first. The resultant green plane is then enhanced to provide a reference for the 

subsequent red plane and blue plane interpolations. The extracted IGs are used in 

various stages of the proposed algorithm to improve the interpolation efficiency. The 

details of these stages are described in this section. 

 For the sake of reference, hereafter, a pixel at location (i,j) in the Bayer image is 

represented by either (R(i,j), g(i,j), b(i,j)), (r(i,j), G(i,j), b(i,j)) or (r(i,j), g(i,j), B(i,j)), 

where R(i,j), G(i,j), and B(i,j) denote the known red, green and blue Bayer samples 

and r(i,j), g(i,j) and b(i,j) denote the unknown samples of corresponding color 

channels in the image. The final estimates of r(i,j), g(i,j) and b(i,j) are denoted as 

),(ˆ jir , ),(ˆ jig  and ),(ˆ jib  respectively for clear presentation. 
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5.3.1 Green Plane Interpolation 

 As far as a pixel which does not have a green Bayer sample is concerned, the 

pattern of its local region must be in the form shown in either Figures 5.2c or 5.2d. 

Without losing generality, the former pattern is discussed here. For the pattern shown 

in Figure 5.2d, one can exchange the red samples with the corresponding blue 

samples and then performs the interpolation in the same way. 

 For the case shown in Figure 5.2c, the missing green sample of pixel (i,j) can be 

interpolated with one of the following Laplacian interpolation filters as proposed in 

[22]. 
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where H
jig , , V

jig ,  and D
jig ,  are, respectively, the estimates obtained with the 

corresponding horizontal, vertical and diagonal interpolators. 

 The selection of the interpolators is critical to the demosaicing performance. In 

the proposed demosaicing algorithm, the high performance two-step estimation 

scheme proposed in Section 4.2 is modified in three aspects to estimate the missing 

green samples at a reduced complexity. First, instead of the parameters LH and LV 

used in Section 4.2, IGs are utilized to determine the interpolation direction of the 

missing green sample to improve the performance. Second, the pixels in flat intensity 

regions are processed in the first pass rather than in the second pass to save 
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computation effort. Third, in the second pass, the analysis on the variance of local CD 

values is simplified without sacrificing its reliability. Figure 5.7 summarizes the 

procedures of the proposed two-step estimation scheme. 
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Figure 5.7 Procedures for interpolating a missing green sample in the proposed 

demosaicing algorithm 

 

 

 In the first pass of the estimation scheme, it raster-scans the Bayer image to 

classify the local region of each pixel of interest. For this purpose, for each pixel 

which carries a R or B Bayer sample as the pixel (i,j) shown in Figures 5.2c or 5.2d, 

three parameters are defined based on IGs as follows. 

 

 ),(),( jijiH WE   (5.16) 

 ),(),( jijiV NS   (5.17) 

 )/,/max( VHHV   (5.18) 
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The classification criteria shown in Figure 5.7 are then used in the proposed scheme to 

classify a region into a flat, edge or pattern region. 

 As soon as a pixel’s local region is classified, the preliminary estimate of its 

missing green sample, say ),(~ jig , is interpolated with an appropriate interpolator as 

follows unless pixel (i,j) is classified to be in a pattern region. 
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where T is a predefined threshold to be discussed later. Those pixels in pattern regions 

will be handled in pass 2. 

 The above estimation process is carried out at each pixel which does not have a 

green Bayer sample. At the end of pass 1, preliminary estimates of all the missing 

green samples in flat or edge regions are interpolated. 

 The second pass handles all those pixels left behind after the first pass. By 

considering that the information available in IGs is not rich enough for one to decide 

the interpolation direction in the first pass, extra CD information is exploited in the 

second pass. 

 Though one may use the CD estimates already obtained in IG extraction to save 

the effort, a re-estimation using the green estimates obtained in pass 1 is performed in 

our realization as these green estimates are generally more accurate and hence can 

guide one to have a better decision. 

 Assume that the green sample of pixel (i,j) shown in Figure 5.1c cannot be 

determined in pass 1. In pass 2, the CD estimates of pixel (m,n){(i,j±2t),(i±2t,j) | 

t=0,1,2,…L} are re-evaluated as 
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where ),( nmH
GR , ),( nmV

GR  and ),( nmD
GR  are, respectively, the green-to-red CD 

estimates of pixel (m,n) used to estimate the CD variation along the horizontal, the 

vertical and the diagonal axes passing pixel (i,j). Note that H
nmg , , V

nmg ,  and D
nmg ,  are 

obtained with eqns. (5.13), (5.14) and (5.15) respectively. Parameter L determines the 

number of pixels involved in the estimation of the CD variation along an axis. In 

particular, the extent of CD variation along the three axes are measured by 
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Note that 1-norm instead of 2-norm is used here to save the computation effort. 

 Based on the fact that CDs are generally locally constant in pattern areas, the 

missing green sample of pixel (i,j) can be estimated by using the interpolator whose 

associated direction provides the minimum CD variation. 
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 For the case that pixel (i,j) contains a blue Bayer sample as shown in Figure 5.2d, 
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one can interchange the roles of red samples and blue samples and then follow the 

same procedures as mentioned before to determine its green estimate ),(~ jig . 

 At the end of pass 2, a complete demosaiced green plane is obtained. Figure 5.1c 

shows the spatial arrangement of the available color samples in the processing image 

after green plane interpolation. 

 An empirical study was carried out to investigate the impact of the threshold T 

used in eqn. (5.19) and the parameter L used in eqn. (5.21) to the demosaicing 

performance of the proposed algorithm. In the study, 24 full-color images shown in 

Appendix A were sub-sampled according to the Bayer pattern to form a set of testing 

CFA images, and the performance is measured in terms of the CPSNR defined in eqn. 

(3.24). Figure 5.8 reports the connection between their values and the CPSNR 

performance of the proposed algorithm. Based on this study result, the settings of 

T=1.7 and L=3 are selected. All the simulation results reported in this thesis are 

obtained with these settings unless other arrangements are specified. 

 

 

 

Figure 5.8 CPSNR performances of the proposed demosaicing algorithm under 

different settings of threshold T and parameter L 
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5.3.2 Green Plane Enhancement 

 With the fully populated green plane, the proposed demosaicing algorithm then 

enhances the demosaiced green samples prior to the interpolation of the red and the 

blue planes. Since the high frequency proportion of a CD signal is generally weak 

[26], the proposed enhancement scheme is carried out in the CD domain to produce 

more accurate green estimates. 

 Without losing generality, the case of enhancing the demosaiced green sample at 

a red Bayer sample position, as depicted in Figure 5.2c, is described in this paper. As 

for the case shown in Figure 5.2d, one can exchange the role of the red and the blue 

samples and perform the same treatment used in this case to achieve the goal. 

 After green plane interpolation, ),(~ jig  is available for all pixels without green 

Bayer samples and it is the ‘best’ green estimate so far. Based on the idea that a better 

temporary green estimate can be used to derive a better CD estimate and hence a 

better interpolation result, in green plane enhancement the CD estimate of a pixel is 

re-evaluated with ),(~ jig . For example, for the pixel (i,j) shown in Figure 5.2c, its 

G-R CD is re-evaluated as 

 

 ),(),(~),( jiRjigjidGR     for (i,j) carrying R Bayer sample. (5.23) 

 

 After re-evaluating the G-R CDs of all pixels carrying R Bayer samples, the CD 

estimate of pixel (i,j) is further adjusted to be ),(ˆ jid GR  by fusing ),( jidGR  with 

),(
~

jid GR , an interpolation result based on )2,( jidGR  and ),2( jidGR  , as 

follows. 
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)1(),(),(ˆ jidjidjid GRGRGR     for (i,j) carrying R Bayer sample (5.24) 

 

where β is a weighting factor controlling the fusion. In formulation, ),(
~

jidGR  is 

defined as 
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 for (i,j) carrying R Bayer sample (5.25) 

 

where ),(/1 jiw kk   for k{E,W,S,N}. Since a large value of ),( jik  implies that 

there is a great change of either CD or CI in the corresponding direction, the 

weighting mechanism in eqn. (5.25) automatically directs the interpolation of 

),(
~

jidGR  along an edge when there is. 

 Parameter β can be determined off-line by linear regression. In our study, a set of 

training images obtained by sub-sampling half of the images shown in Appendix A 

according to the Bayer pattern were used in the training process. For the simulation 

results reported in this chapter, β is selected to be 0.33. 

 For information, Figure 5.9 shows the average CPSNR performance of the 

proposed demosaicing algorithm under different values of β when the testing images 

in the non-training set are demosaiced. It is observed that the CPSNR attains its 

maximum when the β value is in between 3.0 and 3.5. This result supports our choice 

of the value of β in this section. 

 With the adjusted ),(ˆ jidGR , the demosaiced green sample is updated to be 

 

 ),(),(ˆ),(ˆ jiRjidjig GR     for (i, j) carrying R Bayer sample. (5.26) 
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Similar procedures can be performed with the same parameter β to enhance the 

demosaiced green samples at pixels carrying blue Bayer samples. At the end of the 

enhancement, all ),(~ jig  are updated and finalized to be ),(ˆ jig  as shown in Figure 

5.1d. 
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Figure 5.9 Average CPSNR performance of the proposed demosaicing algorithm for 

the testing images in the non-training set versus the value of parameter β 
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5.3.3 Red Plane and Blue Plane Interpolations 

 Based on the enhanced green plane produced in green plane enhancement, a 

partial G-R (G-B) plane which covers all pixels carrying red (blue) Bayer samples can 

be constructed. In the proposed demosaicing algorithm, with the help of IGs, an 

interpolation is carried out in the partial G-R (G-B) plane to derive a full size G-R 

(G-B) plane. The missing red (blue) samples can then be derived from the G-R (G-B) 

plane and the enhanced green plane. 

 Again, without losing generality, only the red plane interpolation is described 

here. The blue plane interpolation can be achieved in the same manner by 

interchanging the role of red and blue samples. 

 During green plane enhancement, the ),(ˆ jidGR  for pixels carrying R Bayer 

samples are evaluated with eqn. (5.24) and they are ready to form a partial G-R plane. 

The complete G-R plane is interpolated with this partial plane through two steps. In 

step 1, the ),(ˆ jidGR  for pixels carrying B Bayer samples are first interpolated. 

 Consider the pixel (i,j) shown in Figure 5.2d. Its four diagonal neighbors carry R 

Bayer samples and hence )1,1(ˆ  jidGR  are known. Accordingly, ),(ˆ jidGR  can be 

interpolated with 
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    for k1{S,N} and k2{E,W}. (5.28) 
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 Theoretically, the weight 21kkw  should be derived from the 2-norm of two 

perpendicular IGs ( ),(1 jik  and ),(2 jik ). However, our empirical study shows that 

the improvement over 1-norm is insignificant for almost all the testing images. 

 To complete the G-R plane, the G-R CDs for pixels carrying G Bayer samples 

are interpolated in step 2. For the pixel (i,j) shown in Figures 5.2a or 5.2b, ),(ˆ jidGR  

is interpolated with 
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 for (i,j) carrying G Bayer sample (5.29) 

 

where ),(/1 jiw kk   for k{E,W,S,N}. 

 With the complete G-R plane and the enhanced green plane, all missing red 

samples can be estimated by 
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 As mentioned, the blue plane interpolation is performed in the same way by 

exchanging the role of red and blue samples. The interpolations of the two color 

planes are independent and they can be carried out in parallel. Figure 5.1e shows the 

spatial arrangement of the intermediate red and blue planes obtained after step 1 and 

Figure 5.1f shows that of the final reconstructed full-color image. 
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5.4 Simulation Results 

 Simulations were carried out to evaluate the performance of the proposed 

demosaicing algorithm. Some other state-of-art demosaicing algorithms such as AP 

[12], AF [40], DLMSE [41], AHDA [35], PCSD [36], DFPD [37] and HPHD [38] as 

well as the color difference variance-based demosaicing algorithm (VCD), presented 

previously in Chapter 3, were evaluated for comparisons. The 24 digital full-color 

testing images displayed in Appendix A were used in the simulations. These full-color 

images were first sub-sampled according to the Bayer pattern to form a set of testing 

Bayer images. They were then reconstructed to full-color images by the evaluated 

demosaicing algorithms. Whenever there is a post-processing scheme recommended 

by the authors of a particular demosaicing algorithm to enhance its demosaicing 

results, the scheme was performed in the simulation as suggested. For reference and 

clear presentation, the proposed IG-based demosaicing algorithm is referred to as 

IGCD hereafter in this thesis. 

 Similar to the previous chapters, the color peak signal-to-noise ratio (CPSNR) 

and the S-CIELAB [66] were exploited to measure the quality of the demosaiced 

images. One can refer to eqn. (3.24) in Chapter 3 for the definition of CPSNR. 

 Tables 5.1 and 5.2 respectively list the CPSNR and the S-CIELAB measures of 

various demosaicing algorithms. As mentioned, recommended post-processing was 

performed to improve the demosaicing performance of HPHD, AHDA, DFPD and 

VCD. One can see from the tables that the proposed algorithm outperforms the other 

demosaicing algorithms for the majority of the testing images. For the images which 

contain many fine structures such as Image 1, 6, 9 and 13, the proposed algorithm 

provides significant performance improvement over the others. As an example, for 

Image 1 in which the fine stone structure is almost everywhere, the proposed 
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algorithm provides a CPSNR of 39.96dB which is around 1dB higher than the second 

best CPSNR performance provided by other evaluated algorithms in the simulation. 

Consistent performance improvement can also be found when the S-CIELAB measure 

is used. These results demonstrate that the proposed demosaicing algorithm is robust 

to the input when recovering a full-color image from a Bayer image. 

 Figure 5.10 shows part of the demosaicing results of Image 19 for visual 

comparison. It can be observed that the proposed demosaicing algorithm produces the 

best perceptual result as compared with the other evaluated algorithms. Especially in 

the area near the boundary of the fence and the grass, the proposed algorithm can not 

only preserve the fine fence details but also produce a result with almost invisible 

color artifacts. Though some other sophisticated algorithms such as AHDA, DLMSE 

and HPHD can also reproduce the fence details, noticeable color artifacts can be 

found in their demosaiced results. Figures 5.11 and 5.12 show the demosaicing results 

of two other testing images and similar observation can be made. 
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Image 
AP 
[12] 

AF 
[40] 

DLMSE
[41] 

AHDA
[35] 

PCSD
[36] 

DFPD
[37] 

HPHD 
[38] 

VCD 
(Ours) 

IGCD
(Ours)

1 37.70 37.44 38.41 35.16 36.32 36.56 39.00 38.53 39.96

2 39.57 40.63 40.85 39.19 39.98 40.40 40.96 40.43 40.99

3 41.45 42.52 42.56 41.59 41.82 41.95 43.01 42.54 43.26

4 40.03 40.42 40.44 38.94 39.52 39.79 40.89 40.50 40.56

5 37.46 37.91 37.98 35.74 37.15 37.18 38.61 37.89 38.31

6 38.50 37.87 40.11 37.57 38.72 38.93 40.53 40.03 41.00

7 41.77 42.83 42.32 40.92 41.51 41.80 43.01 42.15 42.64

8 35.08 35.10 35.97 33.77 34.39 34.94 36.94 36.41 37.35

9 41.72 42.62 42.98 41.09 42.03 42.27 42.90 43.04 43.42

10 42.02 42.61 42.56 40.71 41.74 42.02 42.56 42.51 42.83

11 39.14 39.17 39.94 37.53 38.52 38.83 40.51 39.86 40.66

12 42.51 42.60 43.38 41.75 42.63 42.84 43.88 43.45 44.13

13 34.30 33.66 34.71 31.52 32.64 32.81 35.32 34.90 36.03

14 35.60 36.93 36.79 35.49 35.69 36.36 37.48 36.88 37.10

15 39.35 39.78 39.80 38.03 38.93 39.20 39.81 39.78 39.84

16 41.76 40.97 43.67 41.40 42.55 42.72 44.08 43.64 44.47

17 41.11 41.14 41.58 39.42 40.40 40.37 41.60 41.21 41.77

18 37.45 37.38 37.75 35.31 36.23 36.40 38.02 37.49 37.96

19 39.46 40.01 40.98 38.48 39.48 39.74 41.35 41.00 41.79

20 40.66 41.08 41.21 39.27 40.02 40.05 41.68 41.07 41.71

21 38.66 38.55 39.03 36.55 37.27 37.47 39.60 39.12 39.99

22 37.55 38.32 38.29 36.51 37.13 37.52 38.43 37.97 38.48

23 41.88 42.99 43.16 41.85 42.21 42.50 43.10 42.89 43.20

24 34.78 34.88 35.56 33.64 34.38 34.55 35.25 35.04 35.39

Avg. 39.15 39.48 40.00 37.98 38.80 39.05 40.36 39.93 40.54

Table 5.1 CPSNR performance (in dB) of various demosaicing algorithms 
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Image 
AP 
[12] 

AF 
[40] 

DLMSE
[41] 

AHDA
[35] 

PCSD
[36] 

DFPD
[37] 

HPHD 
[38] 

VCD 
(Ours) 

IGCD
(Ours)

1 1.6460 1.6328 1.4552 1.6186 1.7422 1.8101 1.4301 1.4630 1.2747

2 1.6639 1.5218 1.4262 1.5995 1.5951 1.5866 1.4445 1.4985 1.4019

3 0.9509 0.8828 0.8699 0.9321 0.9325 0.9334 0.8444 0.8802 0.8270

4 1.2863 1.2195 1.1836 1.3219 1.3367 1.3479 1.1990 1.2156 1.1737

5 2.1668 1.9992 1.9906 2.2099 2.1340 2.2147 1.8585 2.0313 1.8815

6 1.2447 1.2805 1.0472 1.1364 1.1426 1.1871 1.0164 1.0627 0.9682

7 1.1062 0.9704 1.0194 1.1284 1.0871 1.0715 0.9643 1.0329 0.9827

8 1.8668 1.7597 1.6003 1.7335 1.8194 1.8824 1.5243 1.5865 1.4305

9 0.8411 0.7566 0.7408 0.8182 0.7873 0.7930 0.7743 0.7418 0.7274

10 0.8263 0.7597 0.7623 0.8424 0.8134 0.8241 0.7853 0.7727 0.7519

11 1.4742 1.4182 1.3053 1.4281 1.4657 1.4986 1.2759 1.3302 1.2041

12 0.6765 0.6497 0.6071 0.6586 0.6532 0.6605 0.5951 0.6143 0.5782

13 2.5824 2.7044 2.4334 2.7502 2.9799 3.0769 2.3441 2.4453 2.1993

14 1.9443 1.7917 1.7151 1.8750 1.9254 1.9172 1.6292 1.7484 1.6392

15 1.4286 1.3302 1.3121 1.4643 1.4622 1.4475 1.3287 1.3372 1.2963

16 1.0303 1.0776 0.8515 0.9184 0.9249 0.9567 0.8411 0.8710 0.8107

17 1.3292 1.2973 1.2585 1.3952 1.3991 1.4382 1.3023 1.3076 1.2590

18 2.1841 2.0626 2.0821 2.3947 2.3639 2.3462 2.0613 2.1318 2.0837

19 1.2877 1.1971 1.1142 1.2723 1.2928 1.3143 1.1420 1.1439 1.0715

20 1.0030 0.9563 0.9451 1.0316 1.0506 1.0796 0.9158 0.9633 0.8974

21 1.3281 1.3302 1.2510 1.3669 1.4471 1.4995 1.2028 1.2616 1.1567

22 1.4973 1.3690 1.3974 1.5933 1.5594 1.5298 1.3698 1.4495 1.3977

23 0.9500 0.8773 0.8737 0.9676 0.9647 0.9438 0.8911 0.9183 0.8869

24 1.4378 1.3669 1.3300 1.4855 1.4697 1.5032 1.3165 1.3628 1.3074

Avg. 1.4064 1.3421 1.2738 1.4143 1.4312 1.4526 1.2524 1.2988 1.2170

Table 5.2 S-CIELab color difference performance of various demosaicing 

algorithms 
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(a) Origin (b) AP 

(c) AHDA (d) AF 

(e) PCSD (f) DLMSE 

(g) VCD (h) HPHD 

(i) DFPD (j) IGCD 

Figure 5.10 Part of the demosaicing results of Image 19 produced by various 

demosaicing algorithms 
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(a) Origin (b) AP 

(c) AHDA (d) AF 

(e) PCSD (f) DLMSE 

(g) VCD (h) HPHD 

(i) DFPD (j) IGCD 

Figure 5.11 Part of the demosaicing results of Image 8 produced by various 

demosaicing algorithms 
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(a) Origin (b) AP 

(c) AHDA (d) AF 

(e) PCSD (f) DLMSE 

(g) VCD (h) HPHD 

(i) DFPD (j) IGCD 

Figure 5.12 Part of the demosaicing results of Image 1 produced by various 

demosaicing algorithms 
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5.5 Computational Complexity 

 This section reports the computational complexity of the proposed demosaicing 

algorithm in terms of number of additions (ADD), multiplications (MUL), bit-shifts 

(SHT) and absolute-value-taking operations (ABS). A comparison operation is 

considered as an addition in our report. 

 Table 5.3 shows the number of arithmetic operations required per involved pixel 

in different stages of the proposed demosaicing algorithm. In this Table, ΩR, ΩG and 

ΩB denote the set of pixels carrying R, G and B Bayer samples respectively. 

 

 

Operational Step ADD MUL SHT ABS 

Extraction of IGs for (i,j){ΩR,ΩG,ΩB} 16 0 6 4 

G plane interpolation for (i,j){ΩR,ΩB} 

• If (i,j) is in flat regions 12 0 5 0 

• If (i,j) is in edge regions 14 1 5 0 

• If (i,j) is in pattern regions 52 1 6 12 

G plane enhancement for (i,j){ΩR,ΩB} 9 9 0 0 

Interpolating B samples for (i,j){ΩR} 11 9 0 0 

Interpolating R samples for (i,j){ΩB} 11 9 0 0 

Interpolating R/B samples for (i,j){ΩG} 14 12 0 0 

Table 5.3 Number of arithmetic operations required per involved pixel in the 

proposed demosaicing algorithm 

 

 

 The computational complexity of the other evaluated demosaicing algorithms is 

tabulated in Table 5.4 for comparison. The complexity figures for AP, AF, AHDA 

and PCSD are directly taken from Lian’s paper [40]. For VCD, DFPD [37] and 

HPHD [38], the figures are, respectively, extracted from their corresponding papers. 

As for DLMSE [41], its complexity is derived based on its realization presented in 

[41]. A comparison operation is considered as an addition in our derivation. 
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 ADD MUL SHT ABS Total 

AP 384 384 - - 768 

AF 40.5 10.5 11 3 54 

DLMSE 72.5 36 5.5 - 114 

AHDA 184 12 - 49 245 

PCSD 149 60 5 8 222 

DFPD 28.5 0.5 6 1 36 

HPHD 176.5-207 81-86 11-18 20.5-31 289-342 

VCD 48-92 16.5-36 4-7 4 72.5-139 

IGCD 39-59 15-15.5 8.5-9 4-10 66.5-93.5 

Table 5.4 Complexity of various demosaicing algorithms in terms of number of 

arithmetic operations per pixel 

 

 

 From Table 5.4, one can see that the proposed demosaicing algorithm requires 

the least computation effort in the four demosaicing algorithms providing the best 

CPSNR and S-CIELAB performance. In the worst case where all red and blue Bayer 

samples are in pattern regions, the proposed algorithm requires totally at most 93.5 

operations to reconstruct a color pixel on average, which is at least 67% lower than 

that required by HPHD, the second best in terms of CPSNR and S-CIELAB. 

Although the complexity of AF and DFPD is lower than that of the proposed 

algorithm, their output quality is low as shown in Figs. 9 and 10. It reveals that the 

cost performance of the proposed algorithm is high. 

 In our simulations, the average number of arithmetic operations is around 80 per 

pixel. The execution time for the proposed demosaicing algorithm to process a Bayer 

image of size 768x512 on a 3.4GHz Pentium 4 PC with 1024MB RAM is 0.0948s on 

average. 
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5.6 Chapter Summary 

 In this chapter, a new edge-sensing measure called integrated gradient is 

proposed. This measure effectively extracts gradient information from a Bayer image 

in both color intensity and color difference domains, and consequently provides 

reliable and complete information for one to interpolate missing samples in a Bayer 

image along an appropriate direction. 

 An efficient decision-based demosaicing algorithm is then developed. Under the 

guidance of the same integrated gradients, the proposed demosaicing algorithm 

interpolates different color planes in different stages. Though the algorithm updates 

the green plane and the corresponding color difference planes in the course to provide 

better references for interpolation, computationally expensive re-estimation of local 

gradients based on intermediate interpolation results is avoided. It guarantees the 

consistency of the interpolation direction in different color channels and saves the 

effort required to repeatedly extract gradient information from intermediate 

interpolation results at different stages. 

 Unlike some other demosaicing algorithms which carry out a post-processing 

step to enhance all color planes at the end, the proposed demosaicing algorithm 

enhances the green plane before the interpolation of the red and blue planes based on 

the integrated gradients. By so doing, it provides a better reference for one to 

interpolate the red and blue planes. This automatically improves the quality of the 

resultant red and blue planes, and hence eliminates the necessity of another 

enhancement step for the red and blue planes after their interpolation. 

 Simulation results confirmed that the proposed demosaicing algorithm 

outperforms state-of-art demosaicing algorithms in terms of output quality at a 

complexity of around 80 arithmetic operations per pixel. 
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Chapter 6 A Lossless Compression Scheme for 

Bayer Color Filter Array Images 

 

6.1 Introduction 

 In this chapter, a prediction-based lossless CFA image compression scheme is 

proposed. Figure 6.1 shows the structure of the proposed scheme. This scheme 

divides a CFA image into two sub-images: a green sub-image which contains all 

green samples of the CFA image and a non-green sub-image which holds the red and 

the blue samples. The green sub-image is coded first and the non-green sub-image 

follows based on the green sub-image as a reference. To reduce the spectral 

redundancy, the non-green sub-image is processed in the color difference domain. In 

contrast, the green sub-image is processed in the intensity domain such that its 

processing result is used as a reference for coding the color difference content of the 

non-green sub-image. Both the sub-images are processed in raster-scan sequence with 

our proposed context matching-based prediction technique to remove the spatial 

dependency. The prediction residue planes of the two sub-images are then entropy 

encoded sequentially with our proposed realization scheme of adaptive Rice code. 

 Experimental results show that the proposed compression scheme can effectively 

and efficiently reduce the redundancy in both spatial and color spectral domains. As 

compared with the existing lossless CFA image coding schemes such as [14-16], the 

proposed scheme provides the best compression performance in our simulation study. 

 This chapter is structured as follows. The proposed context matching-based 

prediction technique is presented in Section 6.2. Section 6.3 shows how to estimate a 

missing green sample in the non-green sub-image of a CFA image for extracting the 

color difference information when compressing the non-green sub-image. In Section 
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6.4, how the prediction residue is adaptively encoded with Rice Code is provided. 

Section 6.5 demonstrates some simulation results and, finally, a conclusion is given in 

Section 6.6. 
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Figure 6.1 Structure of the proposed compression scheme: (a) encoder and (b) 

decoder 

 

 

6.2 Context Matching-Based Prediction 

 The proposed prediction technique handles the green plane and the non-green 

plane separately in a raster-scan manner. It weights the neighboring samples such that 

the one has higher context similarity to that of the current sample contributes more to 

the current prediction. Accordingly, this prediction technique is referred to as context 
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matching-based prediction (CMBP) in this chapter. 

 The green plane (green sub-image) is handled first as a CFA image contains 

double number of green samples to that of red/blue samples and the correlation among 

green samples can be exploited easily as compared with that among red or blue 

samples. Accordingly, the green plane can be used as a good reference to estimate the 

color difference of a red or blue sample when handling the non-green plane 

(non-green sub-image). 

 

6.2.1 Prediction on the green plane 

 As the green plane is raster-scanned during the prediction and all prediction 

errors are recorded, all processed green samples are known and can be exploited in the 

prediction of the pixels which have not yet been processed. 

 Assume that we are now processing a particular green sample g(i,j) as shown in 

Figure 6.2a. The four nearest processed neighboring green samples of g(i,j) form a 

candidate set Фg(i,j)={g(i,j-2),g(i-1,j-1),g(i-2,j),g(i-1,j+1)}. The candidates are ranked 

by comparing their support regions (i.e. context) with that of g(i,j). 

 The support region of a green sample at position (p,q), Sg(p,q), is defined as shown 

in Figure 6.3a. In formulation, we have Sg(p,q)={(p,q-2),(p-1,q-1),(p-2,q),(p-1,q+1)}. 

The matching extent of the support region of g(i,j) and the support region of g(m,n) 

for g(m,n)Фg(i,j) is then measured by 
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 Though a higher order distance such as Euclidian distance can be used instead of 
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eqn. (6.1) to achieve a better matching performance, we found in our simulations that 

the improvement was not significant enough to compensate for its high realization 

complexity. 

 Let g(mk,nk)Фg(i,j) for k=1,2,3,4 be the 4 ranked candidates of sample g(i,j) such 

that )( ),()( uu nmgi,jg ,SSD ≤ )( ),()( vv nmgi,jg ,SSD  for 1≤u<v≤4. The value of g(i,j) can then 

be predicted with a prediction filter as 
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where wk for k=1,2,3,4 are normalized weighting coefficients such that 1
4

1


k

kw . 

 

 

   (a) Фg(i,j) (b) Фc(i,j) 

Figure 6.2 Positions of the pixels included in the candidate set of (a) a green sample 

and (b) a red/blue sample 

 

 

 
   (a) Sg(i,j) (b) Sc(i,j)  

Figure 6.3 The support region of (a) a green sample and (b) a red/blue sample 
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Figure 6.4 The four possible directions associated with a green pixel 

 

 

Figure 6.5 The four possible directions associated with a green pixel 

 

 

 Let Dir(i,j){W,NW,N,NE} be a direction vector associated with sample g(i,j). It 

is defined as the direction pointed from sample g(i,j) to g(i,j)’s 1st ranked candidate 

),( 11 nmg . Figure 6.4 shows its all possible values. This definition applies to all green 

samples in the green sub-image. As an example, Figure 6.5 shows the direction map 

of the testing image generated by sub-sampling Image 1 in Appendix A according to 

Bayer CFA. If the direction of g(i,j) is identical to the directions of all green samples 
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in Sg(i,j), pixel (i,j) will be considered in a homogenous region and ),(ˆ jig  will then 

be estimated to be ),( 11 nmg  directly. In formulation, we have 

 

 ),(),(ˆ 11 nmgjig     if Dir(i,j)=Dir(a,b) (a,b)Sg(i,j) (6.3) 

 

which implies {w1,w2,w3,w4}={1,0,0,0}. Otherwise, g(i,j) is considered to be in a 

heterogeneous region and a pre-defined prediction filter is used to estimate g(i,j) with 

eqn. (6.2) instead. 

 In our study, wk are obtained by quantizing the training result derived by linear 

regression with a set of training images covering half of the testing images. The 

training images were obtained by sampling the 24 full-color images shown in 

Appendix A according to Bayer CFA. The quantization is performed in order to 

reduce the realization effort of eqn. (6.2). After all, when g(i,j) is not in a 

homogeneous region, the coefficients of the prediction filter used to obtain the result 

presented in this chapter are given by {w1,w2,w3,w4}={5/8,2/8,1/8,0}, which allows 

the realization of eqn. (6.2) to be achieved with only shift and addition operations as 

follows. 
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 The prediction error is determined with ),(ˆ),( jigjig  . Figure 6.6 summaries 

how to generate the prediction residue of the green plane of a CFA image. 

 In CMBP, a green sample is classified according to the homogeneity of its local 

region to improve the prediction performance. Figure 6.7 shows the effect of this 

classification step. By comparing Figures 6.7a and 6.7b, one can see that the approach 
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with classification can handle the edge regions more effectively and more edge details 

can be eliminated in the corresponding prediction residue planes. Another supporting 

observation is the stronger de-correlation power of the approach using classification. 

Figure 6.8 shows the correlation among prediction residues in the green plane of 

testing image generated with Image 8 under the two different conditions. The 

correlation of the residues obtained with region classification is lower, which implies 

that the approach is more effective in data compression. Besides, the entropy of the 

prediction residues obtained with region classification is also lower. As far as the 

testing image generated with Image 8 is concerned, their zero-order entropy values are, 

respectively, 6.195 bpp and 6.039 bpp. 
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Figure 6.6 Steps to handle the green plane of a CFA image in CMBP 
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(a) 

   

(b) 

Figure 6.7 Prediction residues of the green planes of testing image Image 1 and 8  

(a) without region classification and (b) with region classification 
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Figure 6.8 Correlation among the prediction residues associated with the green 

sub-image of testing image Image 8: (a) without region classification, 

and (b) with region classification 
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6.2.2 Prediction on non-the green plane 

 As for the case when the sample being processed is a red or blue sample in the 

non-green plane, the prediction is carried out in the color difference domain instead of 

the intensity domain as in the green plane. This is done to remove the inter-channel 

redundancy. 

 Since the non-green plane is processed after the green plane, all green samples in 

a CFA image are known and can be exploited when processing the non-green plane. 

Besides, as the non-green plane is raster-scanned in the prediction, the color 

difference values of all processed non-green samples in the CFA image should also be 

known and hence can be exploited when predicting the color difference of a particular 

non-green sample. 

 Let d(p,q) be the green-red (or green-blue) color difference value of a non-green 

sample c(p,q). Its determination will be discussed in detail in Section 6.3. For any 

non-green sample c(i,j), its candidate set is Фc(i,j)={d(i,j-2),d(i-2,j-2),d(i-2,j), 

d(i-2,j+2)}, and its support region (context) is defined as Sc(i,j)={(i,j-1),(i-1,j),(i,j+1), 

(i+1,j)}. Figures 6.2b and 6.3b show, respectively, the positions of the pixels involved 

in the definition of Фc(i,j) and Sc(i,j). 

 The prediction for a non-green sample is carried out in the color difference 

domain. Specifically, the predicted color difference value of sample c(i,j) is given by 
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where wk and d(mk,nk) are, respectively, the kth predictor coefficient and the kth ranked 

candidate in Фc(i,j) such that )( ),()( uu nmci,jc ,SSD ≤ )( ),()( vv nmci,jc ,SSD  for 1≤u<v ≤4, where 
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 In the prediction carried out in the green plane, region homogeneity is exploited 

to simplify the prediction filter and improve the prediction result. Theoretically, 

similar idea can be adopted in handling a non-green sample by considering the 

direction information of its neighboring samples. For any non-green sample c(i,j), if 

the directions of all green samples in Sc(i,j) are identical, pixel (i,j) can also be 

considered as in a homogenous region. Its predicted color difference value ),(ˆ jid  

can then be estimated as follows. 

 

 ),(),(

),( if   )2,2(

),( if   ),2(

),( if   )2,2(

),( if   )2,(

),(ˆ
jicSnm

NEnmDirjid

NnmDirjid

NWnmDirjid

WnmDirjid

jid 






















  (6.7) 

 

 However, such an arrangement is abandoned when a non-green sample is 

processed in CMBP as edges are generally deemphasized in the color difference 

domain. As a matter of fact, simulation results showed that this arrangement did not 

improve the prediction result of d(i,j). For example, as far as the testing image 

generated with Image 8 is concerned, the zero-order entropy value of { ),(ˆ),( jidjid   

| (i,j)non-green sub-image} obtained without region classification and that obtained 

with region classification are, respectively, 5.423 bpp and 5.434 bpp. The entropy of 

the resultant residue plane is even higher when region classification is exploited. 

Furthermore, as shown in Figure 6.10, the correlation coefficients of the prediction 

residues are more or less the same no matter whether region classification is used or 
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not, which shows that region classification does not effectively contribute to the 

de-correlation performance. As a result, in the proposed scheme, a single pre-defined 

prediction filter is used to estimate d(i,j) with eqn. (6.5) no matter whether the pixel is 

in a homogeneous region. 

 Again, wk are trained with the same set of training images used to train the 

predictor coefficients in eqn. (6.2). For the compression results reported in this 

chapter, the predictor used for the color difference prediction is 
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 The prediction error is then obtained with ),(ˆ),( jidjid  . Figure 6.9 summaries 

how to generate the prediction residue of the corresponding color difference plane for 

the non-green plane of a CFA image. 

 

 

),( samplegreen -noneach for  steps following  thedo image, scan the-Raster jic

sdifferencecontext   by  their  in    candidates  allsort    and
),( ),(  differencecontext    Determine

),(

),(),(),(

jic

jicnmcjic nmSSD
Φ

Φ

}{ },,,{ where

),(),(ˆ

8
1

8
1

8
2

8
4

4321

4

1

,,,wwww

nmdwroundjid
k

kkk











 



),(ˆ),( jidjid 

41for    ),(),(
such  that in    cadidates  sorted    theare  4321for    ),(

),(),(),(),(

),(




vuSSDSSD
Φ,,,knm

vvuu nmcjicnmcjic

jickk

),( differencecolor  Estimate jid

 

Figure 6.9 Steps to handle the non-green plane of a CFA image in CMBP 
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Figure 6.10 Correlation among the prediction residues associated with the non-green 

sub-image of testing image Image 8: (a) without region classification, 

and (b) with region classification 
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 In CMBP, all real green, red and blue samples are encoded in a raster-scan 

manner. The four samples used for predicting sample g(i,j) in eqn. (6.2) are g(i,j)’s 

closest processed neighboring samples of the same color. They have the highest 

correlation to g(i,j) in different directions and hence can provide a good prediction 

result even in an edge region. A similar argument applies to explain why Фc(i,j) is used 

when handling a non-green sample c(i,j). 

 As for the support region, no matter the concerned sample is green or not, its 

support is defined based on its four closest known green samples as shown in Figure 

6.3. This is because the green channel has a double sampling rate as compared with 

the other channels in a CFA image and hence provides a more reliable context for 

matching. 

 In the proposed compression scheme, as green samples are encoded first in raster 

sequence, all green samples are known in the decoder and hence the support of a 

non-green sample can be non-causal while the support of a green sample has to be 

causal. This non-causal support tightly and completely encloses the sample of interest. 

It models image features such as intensity gradient, edge orientation and textures 

better such that more accurate support matching can be achieved. 

 

6.3 Adaptive Color Difference Estimation 

 When compressing the non-green color plane, color difference information is 

exploited to remove the color spectral dependency. Here, we show how our proposed 

method estimates the color difference value of a pixel without having a known green 

sample of the pixel. 

 Let c(m,n) be the intensity value of the available color sample (either red or blue) 

at a non-green sampling position (m,n). The green-red (green-blue) color difference of 
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pixel (m,n), d(m,n), is obtained by 

 

 )()(ˆ)( m,n-cm,ngm,nd   (6.9) 

 

where ),(ˆ nmg  represents the estimated intensity value of the missing green 

component at position (m,n). 

 In the proposed estimation, ),(ˆ nmg  is adaptively determined according to the 

horizontal gradient δH and the vertical gradient δV at (m,n) as follows. 
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where 2/))1()1((  m,ngm,ngGH  and 2/))1()1(( ,nmg,nmgGV   

denote, respectively, the preliminary green estimates obtained by linearly 

interpolating the adjacent green samples horizontally and vertically. Note that, in eqn. 

(6.10), the missing green value is determined in such a way that a preliminary 

estimate contributes less if the gradient in the corresponding direction is larger. The 

weighing mechanism will automatically direct the estimation process along an edge if 

there is. 

 To simplify the estimation of ),(ˆ nmg , one can check if pixel (m,n) is in a 

homogenous region by comparing the direction of (m,n)’s four neighboring green 

samples in Sc(m,n). A straight forward estimation of ),(ˆ nmg  can then be performed if 

it is. Specifically, we have 
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In other words, as far as eqn. (10) is concerned, we have 
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when pixel (m,n) is in a homogenous region. Remind that the green plane is encoded 

first, and hence the directions of all green samples are available for the detection. 

 When pixel (m,n) is not in a homogenous region or the common direction of all 

green samples in Sc(m,n) is not N or W, a more sophisticated approach is used to 

estimate gradients δH and δV for realizing eqn. (6.10). Specifically, they are 

determined by averaging all local green gradients in the same direction within a 5×5 

window as 
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 To reduce the effort, a simpler approach can be used to estimate δH and δV with 

the four adjacent green samples in Sc(m,n) as follows. 

 

 )1,(1),(  nmgnmgH   and  ),1(),1( nmgnmgV  . (6.13) 
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 In this chapter, all simulation results related to the proposed algorithm were 

obtained with eqn. (6.12) instead of eqn. (6.13) unless it is specified otherwise. 
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Figure 6.11 Steps to estimate the color difference value of a non-green sample 
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Figure 6.12 Correlation among the prediction residues associated with the non-green 

sub-image of testing image Image 8: (a) without region classification, 

and (b) with region classification in determining d(i,j) 

 

 



124 

 Figure 6.11 summaries how to estimate the color difference value of a non-green 

sample in a CFA image. The proposed method works with CMBP as shown in Figure 

6.9 to produce a residue plane associated with the non-green sub-image. One can skip 

the classification of a region (i.e. the realization of eqn. (6.11)) by bypassing the two 

decision steps in the flowchart shown in Figure 6.11. Figure 6.12 shows the 

correlation of the residues obtained under the two different conditions. For the testing 

image generated with Image 8, the zero-order entropy value of { ),(ˆ),( jidjid   | 

(i,j)non-green sub-image} obtained with region classification and that obtained 

without region classification are, respectively, 5.434 bpp and 5.437 bpp. The 

reduction in entropy may not be significant when region classification is exploited, 

but the reduction in complexity is considerable as the realization of eqn. (6.12) (or 

(6.13)) can be saved in this case. 

 

6.4 Proposed Compression Scheme 

 As shown in Figure 6.1, to encode a CFA image, the CFA image is first divided 

into a green sub-image and a non-green sub-image. The green sub-image is coded first 

and the non-green sub-image follows based on the green sub-image as a reference. 

 To code a sub-image, the sub-image is raster-scanned and each pixel is predicted 

with its 4 neighboring pixels by using the prediction scheme proposed in Section 6.2. 

The prediction error of pixel (i,j) in the CFA image, say e(i,j), is given by 
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where g(i,j) and d(i,j) are, respectively, the real green sample value and the color 



125 

difference value of pixel (i,j). d(i,j) is estimated by the method described in Section 

6.3. ),(ˆ jig  and ),(ˆ jid , respectively, represent the predicted green intensity value 

and the predicted color difference value of pixel (i,j). The error residue e(i,j) is then 

mapped to a non-negative integer as follows to reshape its value distribution to an 

exponential one from a Laplacian one. 
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 The E(i,j)’s from the green sub-image are raster-scanned and coded with Rice 

code first. The E(i,j)’s from the non-green sub-image are further decomposed into two 

residue sub-planes. One carries the E(i,j)’s originated from the red CFA samples 

while the other one carries those originated from the blue CFA samples. The two 

residue sub-planes are then raster-scanned and coded with Rice code as well. Their 

order of processing does not matter as there is no interdependency among these two 

residue sub-planes. That they are separately handled is just because the Rice code can 

be made adaptive to their statistical properties in such an arrangement. For reference, 

the residue sub-planes originated from the red, the green and the blue CFA samples 

are, respectively, referred to as ER, EG and EB. 

 Rice code is employed to code E(i,j) because of its simplicity and high efficiency 

in handling exponentially distributed sources. When Rice code is used, each mapped 

residue E(i,j) is split into a quotient Q=floor(E(i,j)/2k) and a remainder 

R=E(i,j)mod(2k), where parameter k is a non-negative integer. The quotient and the 

remainder are then saved for storage or transmission. The length of the codeword used 

for representing E(i,j) is k–dependent and is given by 
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Parameter k is critical to the compression performance as it determines the code 

length of E(i,j). For a geometric source S with distribution parameter (0,1) (i.e. 

Prob(S=s) =(1-)s for s=0,1,2,…), the optimal coding parameter k is given as 
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where 2/)15(   is the golden ratio [71]. Since the expectation value of the 

source is given by µ= (1-)-1, as long as µ is known, parameter  and hence the 

optimal coding parameter k for the whole source can be determined easily. 

 In the proposed compression scheme, µ is estimated adaptively in the course of 

encoding ER, EG and EB. In particular, it is estimated by 
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where ~  is the current estimate of µ for selecting the k to determine the codeword 

format of the current E(i,j), p~  is the previous estimate of ~ , Mi,j is the local mean 

of E(i,j) in a local region defined by Set ζi,j, and  is a weighting factor which 

specifies the significance of p~  and Mi,j when updating ~ . Set ζi,j is a set of four 

processed pixel locations which are closest to pixel (i,j) and, at the same time, possess 

samples of the same color as pixel (i,j) does. When coding EG, it is defined to be 
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{(i,j-2),(i-1,j-1),(i-2,j),(i-1,j+1)}. For coding ER and EB, Set ζi,j is defined to be 

{(i,j-2),(i-2,j-2),(i-2,j),(i-2,j+2)}. ~  is updated for each E(i,j). The initial value of 

p~  is 0 for all residue sub-planes. 

 Experimental results showed that =1 can provide a good compression 

performance. Figure 6.13 shows how parameter  affects the final compression ratio 

of the proposed compression scheme. Curve R, G and B respectively show the cases 

when coding ER, EG and EB. The curve marked with ‘All’ shows the overall 

performance when all residue sub-planes are compressed with a common  value. 
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Figure 6.13 Average output bit-rates of the proposed compression scheme achieved 

with different  values 

 

 

 The decoding process is just the reserve process of encoding. The green 

sub-image is decoded first and then the non-green sub-image is decoded with the 

decoded green sub-image as a reference. The original CFA image is then 

reconstructed by combining the two sub-images. 
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6.5 Performance Evaluation 

 Simulations were carried out to evaluate the performance of the proposed 

compression scheme. The twenty-four 24-bit color shown in Appendix A were 

sub-sampled according to the Bayer pattern to form a set of 8-bit testing CFA images. 

These testing CFA images are of size 512×768 each. They were then directly coded 

by the proposed compression scheme for evaluation. Some representative lossless 

compression schemes such as JPEG-LS [19], JPEG2000 (lossless mode) [20] and 

LCMI [72] were also evaluated for comparison. 

 JPEG-LS and JPEG2000 are dedicated for compressing gray-scale images. To 

handle a CFA image, one can add a pre-processing step to turn a CFA image into 4 

sub-images as shown in Figure 6.14 and then encode the 4 sub-images individually 

with either JPEG-LS or JPEG2000 as if they were grey-scale images. 

 

 

 

Figure 6.14 The pre-processing step used to divide a CFA image into four channel 

sub-images for evaluating the performance of JPEG-LS and JPEG2000. 
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 Table 6.1 lists the average output bit-rates of the CFA images achieved by 

various compression schemes in terms of bits per pixel (bpp). It clearly shows that the 

proposed scheme outperforms all other evaluated schemes in all testing images. 

Especially for the images which contain many edges and fine textures such as Image 1, 

5, 8, 13, 20 and 24, the bit-rates achieved by the proposed scheme are at least 0.34 

bpp lower than the corresponding bit-rates achieved by LCMI, the scheme offers the 

second best compression performance. These results demonstrate that the proposed 

compression scheme is robust to remove the CFA data dependency even though the 

image contains complicated structures. On average, the proposed scheme yields a 

bit-rate as low as 4.622 bpp. It is, respectively, around 78.3%, 92.1% and 94.5% of 

those achieved by JPEG-LS, JPEG2000 and LCMI. When the pre-processing step 

shown in Figure 6.14 is used, the bit-rates achieved by JPEG-LS and JPEG2000 are, 

respectively, 0.382 bpp and 0.629 bpp higher than that of the proposed method. As a 

final remark, the proposed method yields an average zero-order entropy of 4.869 bpp, 

which is 0.156 bpp lower than that attained by LCMI. 

 In the proposed compression scheme, the non-green sub-image is processed in 

the color difference domain. Accordingly, the missing green samples in the sub-image 

have to be estimated for extracting the color difference information of the non-green 

sub-image. An estimation method for estimating the missing green samples and its 

simplified version (using eqn. (6.13) instead of eqn. (6.12) to estimate δH and δV), are 

proposed in Section 6.3. Obviously, one can make use of some other estimation 

methods such as bilinear interpolation [23] (BI), edge sensing interpolation [28] (ESI) 

and adaptive directional interpolation [67] (ADI) to achieve the same objective. 
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Image JPEG-LS JPEG2000
JPEG-LS 

/w pre-proc.
JPEG2000 

/w pre-proc.
LCMI Ours 

1 6.403 5.816 5.944 6.211 5.824 5.478 

2 6.787 5.134 4.632 4.871 4.629 4.331 

3 5.881 4.216 4.117 4.331 3.965 3.746 

4 6.682 4.931 4.827 4.988 4.606 4.379 

5 6.470 5.947 6.187 6.540 5.859 5.409 

6 5.871 5.210 5.220 5.433 5.139 4.881 

7 5.974 4.500 4.426 4.737 4.299 3.960 

8 6.295 5.899 6.044 6.433 5.966 5.570 

9 5.074 4.391 4.440 4.617 4.319 4.188 

10 5.395 4.556 4.558 4.833 4.415 4.227 

11 5.370 4.986 5.070 5.340 4.952 4.683 

12 5.628 4.485 4.404 4.644 4.307 4.089 

13 6.747 6.372 6.568 6.817 6.503 6.138 

14 6.289 5.555 5.740 6.035 5.487 5.170 

15 6.317 4.656 4.335 4.613 4.396 4.102 

16 5.289 4.552 4.724 4.934 4.521 4.376 

17 4.965 4.547 4.801 5.041 4.499 4.286 

18 6.184 5.570 5.766 5.980 5.538 5.284 

19 5.470 4.909 5.084 5.234 4.898 4.711 

20 4.317 4.026 3.402 3.694 4.054 3.541 

21 5.467 5.039 5.073 5.272 4.983 4.803 

22 6.188 5.218 5.238 5.432 5.060 4.847 

23 6.828 4.525 4.097 4.217 3.960 3.847 

24 5.719 5.223 5.401 5.770 5.257 4.873 

Avg. 5.900 5.011 5.004 5.251 4.893 4.622 

Table 6.1 Achieved bit-rates (in bits/pixel) of various lossless compression schemes 
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Image

The proposed compression scheme with 

BI ESI  ADI  
Method in Section 6.3 

Using 
eqn. (6.13) 

Using 
eqn. (6.12)

1 5.414 5.411 5.349 5.299 5.245 

2 4.366 4.365 4.367 4.343 4.319 

3 3.724 3.721 3.709 3.682 3.664 

4 4.314 4.312 4.304 4.305 4.275 

5 5.312 5.301 5.267 5.221 5.191 

6 4.851 4.849 4.802 4.744 4.684 

7 3.890 3.893 3.881 3.868 3.858 

8 5.574 5.570 5.447 5.326 5.300 

9 4.154 4.156 4.113 4.090 4.071 

10 4.173 4.171 4.142 4.102 4.081 

11 4.625 4.618 4.586 4.526 4.483 

12 4.085 4.083 4.063 4.014 3.977 

13 5.969 5.967 5.981 5.963 5.918 

14 5.030 5.028 5.006 4.980 4.935 

15 4.192 4.186 4.161 4.162 4.145 

16 4.295 4.291 4.275 4.206 4.152 

17 4.202 4.201 4.163 4.147 4.132 

18 5.117 5.116 5.126 5.120 5.089 

19 4.705 4.703 4.627 4.579 4.552 

20 3.701 3.698 3.676 3.665 3.663 

21 4.737 4.735 4.723 4.703 4.674 

22 4.732 4.732 4.730 4.734 4.697 

23 3.844 3.841 3.838 3.837 3.827 

24 4.787 4.785 4.771 4.705 4.672 

Avg. 4.575 4.572 4.546 4.513 4.484 

Table 6.2 Average bit-rates (in bits/pixel) for coding non-green sub-images with the 

proposed compression scheme when using a particular estimation method 

to estimate a missing green sample for reference 

 

 

 For comparison, a simulation was carried out to evaluate the performance of 

these methods when they were used to compress a non-green sub-image with the 

proposed compression scheme. In this study, only the non-green sub-images are 

involved as the compression of green sub-images does not involve the estimation of 

missing green components. In the realization of BI, a missing green sample is 
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estimated by rounding the average value of its four surrounding known green samples. 

For ESI, the four surrounding known green samples are weighted before averaging. 

The weights are determined according to the gradients among the four known green 

samples [28]. ADI is a directional linear-based interpolation method in which the 

interpolation direction is determined by comparing the horizontal and vertical green 

gradients to a pre-defined threshold [67]. The threshold value was set to be 30 in our 

simulation as it provided the best compression result for the training set. 

 Table 6.2 reveals the average bit rates of the outputs achieved by the proposed 

compression scheme when different methods were used to estimate the missing green 

samples in the non-green sub-images. It shows that the adaptive estimation methods 

proposed in Section 6.3 are superior to the other evaluated estimation methods. On 

average, the best proposed estimation method achieves a bit-rate of 4.484 bpp which 

is around 0.1 bpp lower than that achieved by BI. 

 

 

Methods used to estimate missing 
green samples in non-green planes 

ADD MUL CMP SHT ABS Total

BI 21.70 0.00 6.00 3.70 3.00 34.4

ESI 42.70 12.00 6.00 2.70 9.00 72.4

ADI 23.45 0.00 9.86 3.70 5.00 42.0

Method in Section 6.3 using eqn. (6.13) 22.35 2.65 7.93 3.70 3.00 39.6

Method in Section 6.3 using eqn. (6.12) 29.43 2.65 7.93 3.70 3.00 46.7

Table 6.3 Average complexity (in operations/pixel) for different variants of the 

proposed compression scheme to generate prediction residues of both 

green and non-green sub-imagesimages 

 

 

 While Table 6.2 reports the compression performance of the proposed 

compression scheme and its various variants, Table 6.3 lists their complexity cost paid 

for producing all prediction residues of both green and non-green planes. It is 

measured in terms of the average number of operations required per pixel in our 
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simulations. Operations including addition (ADD), multiplication (MUL), bit-shift 

(SHT), comparison (CMP) and taking absolute value (ABS) are all taken into account. 

 The proposed compression scheme is composed of four functional components. 

A study was carried out to evaluate the contribution of each component to the overall 

performance of the scheme. The same set of 24 testing CFA images were used again 

in the evaluation. 

 In particular, when the prediction components are switched off (i.e. 

),(ˆ jig = ),(ˆ jid =0 in Figure 6.1a), the zero-order entropy values of {e(i,j) | (i,j)green 

sub-image} and {e(i,j) | (i,j)non-green sub-image} are, respectively, 7.114 bpp and 

6.295 bpp on average, which are around 40.3% and 34.2% higher than the case when 

the prediction components are on. As for the component of color difference estimation, 

the proposed adaptive color difference estimation scheme provided a non-green 

residue plane of zero-order entropy 4.690 bpp on average, which is 0.114 bpp lower 

than that provided by using bilinear interpolation instead. 

 To show the contribution of the proposed adaptive Rice code encoding scheme, 

we encoded E(i,j) with the conventional Rice code instead of the proposed one for 

comparison. In its realization, the coding parameter k for coding a sub-image is fixed 

and determined with eqn. (6.17). The parameter µ is estimated to be the mean of E(i,j) 

in the sub-image. After all, it achieved an average bit-rate of 5.084 bpp, which is 

0.462 bpp higher than that achieved by using the proposed adaptive Rice code 

encoding scheme. 

 When the proposed compression scheme (with eqn. (6.12)) was implemented in 

software with C++ programming language, the average execution time to compress a 

512×768 CFA image on a 3.0GHz Pentium 4 PC with 1024MB RAM is around 

0.1019s. 
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6.6 Chapter Summary 

 In this chapter, a lossless compression scheme for Bayer CFA images is 

proposed. This scheme separates a Bayer CFA image into a green sub-image and a 

non-green sub-image and then encodes them separately with predictive coding. The 

prediction is carried out in the intensity domain for the green sub-image while it is 

carried out in the color difference domain for the non-green sub-image. In both cases, 

a context matching technique is used to rank the neighboring pixels of a pixel for 

predicting the existing sample value of the pixel. The prediction residues originated 

from the red, the green and the blue samples of the Bayer CFA images are then 

separately encoded. 

 The value distribution of the prediction residue can be modeled as an exponential 

distribution, and hence Rice code is used to encode the residues. We assume the 

prediction residue is a local variable and estimate the mean of its value distribution 

adaptively. The divisor used to generate the Rice code is then adjusted accordingly so 

as to improve the efficiency of Rice code. 

 Experimental results show that the proposed compression scheme can efficiently 

and effectively de-correlate the data dependency in both spatial and color spectral 

domains. Consequently, it provides the best average compression ratio as compared 

with the latest lossless Bayer CFA image compression schemes. 
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Chapter 7 Conclusions and Future Works 

 

7.1 General Conclusions 

 As compared with upgrading hardware specifications, optimizing the processing 

pipeline is alternatively a more cost effective approach to enhance the overall 

performance of a digital camera. In this thesis, several elements in the pipeline 

including color demosaicing, digital zoom and image compression are addressed and 

four proposals have been made to improve the performance of the processing pipeline. 

 One of the challenging tasks in color demosaicing is to preserve the image edge 

features. We conducted a study to investigate why the image features cannot be 

preserved in the output when the conventional adaptive color plane interpolation 

algorithm [21,22] were used. In Chapter 3, the study results are reported. Based on the 

study results, an adaptive feature-preserving demosaicing algorithm is presented. In 

the algorithm, the color difference variance of the pixels along the horizontal and 

vertical axes is used as supplementary information to more accurately determine the 

interpolation direction for the missing green samples. As a result, finer texture pattern 

details can be preserved in the output. Simulation results show that the proposed 

algorithm can produce a better demosaicing result, both subjectively and objectively, 

as compared with a number of advanced demosaicing algorithms. 

 Chapter 4 addresses the problem of digital zoom. A low complexity joint 

demosaicing and zooming algorithm is proposed in the chapter to produce an enlarged 

output in an efficient way. By sharing the edge information extracted from the raw 

sensor data, the missing samples in the three color planes are estimated one by one. 

Specifically, the missing green samples in the enlarged image are estimated first. The 

red and the blue missing samples are then estimated based on the interpolated green 
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plane as a reference. This arrangement not only can consistently utilize the raw sensor 

data but also can efficiently interpolate the missing samples in the enlarged image as 

no separate extraction process is required in different stages. Simulation results reveal 

that the proposed algorithm outperforms the conventional approaches, which 

generally perform demosaicing-after-zooming or zooming-after-demosaicing, in terms 

of both output quality and complexity. 

 Inspired by the idea of sharing extracted edge information in different stages in 

the joint algorithm presented in Chapter 4, an efficient decision-based demosaicing 

algorithm is proposed in Chapter 5 to further improve the processing pipeline 

performance in terms of both quality and complexity. In the proposed algorithm, a 

new edge-sensing measure called integrated gradient, which extracts gradient 

information in both color intensity and color difference domains simultaneously, is 

developed for being shared in various stages throughout the demosaicing processes to 

interpolate the color channels. This measure is used not only to determine the 

interpolation direction for estimating the missing green samples, but to refine the 

interpolation results of the missing red and blue samples as well. A green plane 

enhancement which works with the integrated gradient is also introduced to further 

improve the algorithm’s efficiency. Simulation results confirmed that the proposed 

algorithm outperforms the state-of-art demosaicing algorithms in terms of output 

quality at a complexity of around 80 arithmetic operations per pixel. 

 The issue of image compression is finally addressed in Chapter 6. Based on the 

fact mentioned in recent reports that the compression-first schemes outperform the 

conventional demosaicing-first schemes in terms of output image quality, an efficient 

prediction-based lossless compression scheme for Bayer CFA images is proposed in 

the chapter. In this scheme, a context matching technique, an adaptive color difference 

estimation scheme and an adaptive codeword generation technique are exploited 
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respectively to rank the neighboring pixels when predicting a pixel, to remove the 

color spectral redundancy when handling red and blue samples, and to adjust the 

divisor of Rice code when encoding the prediction residues. Experimental results 

show that the proposed compression scheme can efficiently and effectively reduce the 

data redundancy in both spatial and color spectral domains. As compared with the 

latest lossless Bayer CFA image coding schemes, the proposed scheme provides the 

best compression performance in our simulation study. 

 On the whole, a set of four image processing techniques have been developed to 

improve the performance of the processing pipeline and in turns the camera. These 

techniques deal executively with the Bayer CFA image and outperform most 

state-of-art techniques in terms of output quality, compression ratio and complexity. 

 

7.2 Future Works 

 Though significant contribution has been made in our work to improve the 

performance of a digital camera, there is still room for further improvement. To 

enable a camera to capture a precise and high quality output at low power 

consumption, besides the issues addressed in this thesis, some other issues should also 

be addressed in future study. In this section, we will discuss some of the possible 

research directions or extensions of the current piece of work. 

 No matter whether it is in a conventional or an updated processing pipeline, 

noise reduction is generally carried out in the post-processing step on the demosaiced 

full-color images. However, such an arrangement is unreasonable because the 

demosaicing process always blends the sensor noise across color channels and 

correlates the noise with signals in the demosaiced output, which makes the task of 

denoising complicated and inefficient. To solve this problem, a dedicated noise 
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reduction algorithm or a joint denoising and demosaicing algorithm for the Bayer 

CFA images should be developed. As the input Bayer CFA image is always noisy in 

real situation, the noise-free input assumption made in most existing demosaicing 

algorithms is not upheld. A Bayer CFA image-based noise reduction algorithm which 

can handle a more realistic situation should be able to significantly improve the 

quality of the demosaiced output. 

 As a matter of fact, a joint demosaicing and denoising algorithm has been 

recently proposed in [73], in which the authors treat both demosaicing and denoising 

as an estimation problem and use the total least square (TLS) technique [74] to 

accomplish the two tasks simultaneously. Although the algorithm is shown to perform 

better than many demosaicing-then-denoising algorithms, it is not suitable for 

real-time implementation because of its high computational complexity requirement. 

Accordingly, investigation of some robust and practical denoising algorithms is still 

worth being deployed. 

 Recently, Kodak Image Sensor Solutions announced a new CFA pattern [75] for 

CMOS and CCD digital image sensors to enhance their performance under low-light 

conditions. This new pattern, as shown in Figure 7.1, builds upon the standard Bayer 

pattern by adding a panchromatic pixel next to each red, green and blue pixel. This 

panchromatic pixel senses all visible wavelengths and allows detecting luminance 

signals with a very high sensitivity. The sensitivity of the entire sensor is raised 

accordingly to provide a more detailed image. The remaining red, green and blue 

pixels presented on the sensor, on the other hand, constitute a set of chrominance 

channels for collecting color information. Reference [75] shows some image 

examples for references. They demonstrate that this new pattern can produce the 

full-color output with much less color artifacts than the conventional Bayer CFA 

pattern, especially in a low-light situation. In addition, it can get rid of motion blur a 
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lot as the high sensitive panchromatic pixel enables a faster shutter speed. 

 

 

 

Figure 7.1 Layout of the new CFA pattern 

 

 

 With the new CFA layout, the current image processing chain structure as well 

as the processing algorithms in a camera must be changed. It requires research on 

understanding the effects of using this sensor technology in cameras. Besides, the 

development of new processing pipeline architectures as well as software algorithms 

specifically designed to work with the raw data generated from the new image sensor 

are also needed to be performed. 
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Appendix A Testing Images 
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Image 6 



141 

 

 

Image 7 Image 8 

 
Image 9 

 
Image 10 

Image 11 Image 12 



142 

 

 

Image 13 Image 14 

Image 15 Image 16 

 
Image 17 

 
Image 18 



143 

 

 

 
Image 19 

Image 20 

Image 21 Image 22 

Image 23 Image 24 

 



144 

References 

 

[1] R. Ramanath, W. E. Snyder, Y. Yoo and M. S. A. D. M. S. Drew, “Color 

image processing pipeline,” IEEE Signal Processing Magazine, vol. 22, no. 1, 

pp. 3443, 2005. 

[2] J. Adams, K. Parulski and K. Spaulding, “Color processing in digital 

cameras,” IEEE Micro, vol. 18, no. 6, pp. 2030, 1998. 

[3] K. Parulski and K. Spaulding, "Color image processing for digital cameras," 

Digital Color Imaging Handbook, G. Sharma, ed., pp. 727757, Boca Raton, 

FL: CRC Press, 2003. 

[4] P. L. P. Dillon, D. M. Lewis and F. G. Kaspar, “Color Imaging System Using 

a Single CCD Area Array,” IEEE Journal of Solid-State Circuits, vol. 13, no. 

1, pp. 2833, 1978. 

[5] M. M. S. Battiato, “An Introduction to the Digital Still Camera Technology,” 

ST Journal of System Research - Special Issue on Image Processing for 

Digital Still Camera, vol. 2, no. 2, pp. 19, Dec. 2001. 

[6] T. Lule, S. Benthien, H. Keller, F. A. M. F. Mutze, P. A. R. P. Rieve, K. A. S. 

K. Seibel, M. A. S. M. Sommer and M. A. B. M. Bohm, “Sensitivity of CMOS 

based imagers and scaling perspectives,” IEEE Transactions on Electron 

Devices, vol. 47, no. 11, pp. 21102122, Nov. 2000. 

[7] R. Lukac and K. N. Plataniotis, “Color filter arrays: design and performance 

analysis,” IEEE Transactions on Consumer Electronics, vol. 51, no. 4, pp. 

12601267, Nov. 2005. 

[8] J. J. G. Savard, "Color Filter Array Designs," 

http://www.quadibloc.com/other/cfaint.htm. 

[9] B. E. Bayer, Color imaging array, U.S. Patent No. 3,971,065, to Eastman 

Kodak Company (Rochester, NY), 1976. 

[10] D. Alleysson, S. Susstrunk and J. Herault, “Linear demosaicing inspired by the 

human visual system,” IEEE Transactions on Image Processing, vol. 14, no. 4, 

pp. 439449, Apr. 2005. 



145 

[11] R. Ramanath, W. Snyder, G. Bilbro and W. Sander, “Demosaicking methods 

for Bayer color arrays,” Journal of Electronic Imaging, vol. 11, no. 3, pp. 

306315, Jul. 2002. 

[12] B. K. Gunturk, Y. Altunbasak and R. M. Mersereau, “Color plane 

interpolation using alternating projections,” IEEE Transactions on Image 

Processing, vol. 11, no. 9, pp. 9971013, Sep. 2002. 

[13] B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schafer and R. M. 

Mersereau, “Demosaicking: color filter array interpolation,” IEEE Signal 

Processing Magazine, vol. 22, no. 1, pp. 4454, 2005. 

[14] T. Toi and M. Ohta, “A subband coding technique for image compression in 

single CCD cameras with Bayer color filter arrays,” IEEE Transactions on 

Consumer Electronics, vol. 45, no. 1, pp. 176180, Feb. 1999. 

[15] X. Xie, G. Li, Z. Wang, C. Zhang, D. Li and X. Li, "A novel method of lossy 

image compression for digital image sensors with Bayer color filter arrays," 

Proceedings of IEEE International Symposium on Circuits and Systems 

(ISCAS'05), pp. 49954998, 2005. 

[16] S. Y. Lee and A. Ortega, "A novel approach of image compression in digital 

cameras with a Bayer color filter array," Proceedings of IEEE International 

Conference on Image Processing (ICIP'01), 3, pp. 482485, 2001. 

[17] C. C. Koh, J. Mukherjee and S. K. Mitra, “New efficient methods of image 

compression in digital cameras with color filter array,” IEEE Transactions on 

Consumer Electronics, vol. 49, no. 4, pp. 14481456, Nov. 2003. 

[18] N. X. Lian, L. Chang, V. Zagorodnov and Y. P. Tan, “Reversing 

demosaicking and compression in color filter array image processing: 

Performance analysis and modeling,” IEEE Transactions on Image Processing, 

vol. 15, no. 11, pp. 32613278, Nov. 2006. 

[19] Information Technology - Lossless and Near-Lossless Compression of 

Continuous-Tone Still Images (JPEG-LS), ISO/IEC Standard 14495-1, 1999. 

[20] Information technology - JPEG 2000 image coding system - Part 1: Core 

coding system, INCITS/ISO/IEC Standard 15444-1, 2000. 



146 

[21] J. F. Hamilton and J. E. Adams, Adaptive color plane interpolation in single 

sensor color electronic camera, U.S. Patent No. 5,506,619, to Eastman Kodak 

Company (Rochester, NY), 1996. 

[22] J. F. Hamilton and J. E. Adams, Adaptive color plane interpolation in single 

sensor color electronic camera, U.S. Patent No. 5,652,621, to Eastman Kodak 

Company (Rochester, NY), 1997. 

[23] T. Sakamoto, C. Nakanishi and T. Hase, “Software pixel interpolation for 

digital still cameras suitable for a 32-bit MCU,” IEEE Transactions on 

Consumer Electronics, vol. 44, no. 4, pp. 13421352, Nov. 1998. 

[24] D. R. Cok, Signal processing method and apparatus for producing 

interpolated chrominance values in a sampled color image signal, U.S. Patent 

No. 4,642,678, to Eastman Kodak Company (Rochester, NY), 1987. 

[25] W. T. Freeman, Median filter for reconstructing missing color samples, U.S. 

Patent No. 4,724,395, to Polaroid Corporation (Cambridge, MA), 1988. 

[26] S. C. Pei and I. K. Tam, “Effective color interpolation in CCD color filter 

arrays using signal correlation,” IEEE Transactions on Circuits and Systems 

for Video Technology, vol. 13, no. 6, pp. 503513, Jun. 2003. 

[27] R. Lukac, K. N. Plataniotis, D. Hatzinakos and M. Aleksic, “A novel cost 

effective demosaicing approach,” IEEE Transactions on Consumer 

Electronics, vol. 50, no. 1, pp. 256261, Feb. 2004. 

[28] R. Lukac and K. N. Plataniotis, “Data adaptive filters for demosaicking: A 

framework,” IEEE Transactions on Consumer Electronics, vol. 51, no. 2, pp. 

560570, May 2005. 

[29] W. M. Lu and Y. P. Tan, “Color filter array demosaicking: new method and 

performance measures,” IEEE Transactions on Image Processing, vol. 12, no. 

10, pp. 11941210, Oct. 2003. 

[30] L. Chang and Y. P. Tan, “Effective use of spatial and spectral correlations for 

color filter array demosaicking,” IEEE Transactions on Consumer Electronics, 

vol. 50, no. 1, pp. 355365, Feb. 2004. 

[31] R. Lukac and K. N. Plataniotis, “Normalized color-ratio modeling for CFA 

interpolation,” IEEE Transactions on Consumer Electronics, vol. 50, no. 2, pp. 

737745, May 2004. 



147 

[32] N. Kehtarnavaz, H. J. Oh and Y. Yoo, “Color filter array interpolation using 

color correlation and directional derivatives,” Journal of Electronic Imaging, 

vol. 12, no. 4, pp. 621632, Oct. 2003. 

[33] A. Lukin and D. Kubasov, "An improved demosaicing algorithm," 

Proceedings of Graphicon, 2004. 

[34] R. Ramanath and W. E. Snyder, “Adaptive demosaicking,” Journal of 

Electronic Imaging, vol. 12, no. 4, pp. 633642, Oct. 2003. 

[35] K. Hirakawa and T. W. Parks, “Adaptive homogeneity-directed demosaicing 

algorithm,” IEEE Transactions on Image Processing, vol. 14, no. 3, pp. 

360369, Mar. 2005. 

[36] X. Wu and N. Zhang, “Primary-consistent soft-decision color demosaicking 

for digital cameras - (Patent pending),” IEEE Transactions on Image 

Processing, vol. 13, no. 9, pp. 12631274, Sep. 2004. 

[37] D. Menon, S. Andriani and G. Calvagno, “Demosaicing with directional 

filtering and a posteriori decision,” IEEE Transactions on Image Processing, 

vol. 16, no. 1, pp. 132141, Jan. 2007. 

[38] C. Y. Tsai and K. T. Song, “Heterogeneity-projection hard-decision color 

interpolation using spectral-spatial correlation,” IEEE Transactions on Image 

Processing, vol. 16, no. 1, pp. 7891, Jan. 2007. 

[39] X. Li, “Demosaicing by successive approximation,” IEEE Transactions on 

Image Processing, vol. 14, no. 3, pp. 370379, Mar. 2005. 

[40] N. X. Lian, L. Chang, Y. P. Tan and V. Zagorodnov, “Adaptive filtering for 

color filter array demosaicking,” IEEE Transactions on Image Processing, vol. 

16, no. 10, pp. 25152525, Oct. 2007. 

[41] L. Zhang and X. Wu, “Color demosaicking via directional linear minimum 

mean square-error estimation,” IEEE Transactions on Image Processing, vol. 

14, no. 12, pp. 21672178, Dec. 2005. 

[42] D. D. Muresan and T. W. Parks, “Demosaicing using optimal recovery,” IEEE 

Transactions on Image Processing, vol. 14, no. 2, pp. 267278, Feb. 2005. 



148 

[43] S. Battiato, G. Gallo and F. Stanco, “A locally adaptive zooming algorithm for 

digital images,” Image and Vision Computing, vol. 20, no. 11, pp. 805812, 

Sep. 2002. 

[44] P. Thevenaz, T. Blu and M. Unser, “Interpolation revisited,” IEEE 

Transactions on Medical Imaging, vol. 19, no. 7, pp. 739758, Jul. 2000. 

[45] H. Jung Woo and L. Hwang Soo, “Adaptive image interpolation based on 

local gradient features,” IEEE Signal Processing Letters, vol. 11, no. 3, pp. 

359362, Mar. 2004. 

[46] L. Zhang and X. Wu, “An edge-guided image interpolation algorithm via 

directional filtering and data fusion,” IEEE Transactions on Image Processing, 

vol. 15, no. 8, pp. 22262238, Aug. 2006. 

[47] N. Herodotou and A. N. Venetsanopoulos, “Colour image interpolation for 

high resolution acquisition and display devices,” IEEE Transactions on 

Consumer Electronics, vol. 41, no. 4, pp. 11181126, Nov. 1995. 

[48] R. Lukac, B. Smolka, K. Martin, K. N. Plataniotis and A. N. Venetsanopoulos, 

“Vector filtering for color imaging,” IEEE Signal Processing Magazine, vol. 

22, no. 1, pp. 7486, Jan. 2005. 

[49] R. Lukac, K. N. Plataniotis, B. Smolka and A. N. Venetsanopoulos, "Vector 

operators for color image zooming," Proceedings of IEEE International 

Symposium on Industrial Electronics (ISIE'05), 3, pp. 12731277, 2005. 

[50] Y. Cha and S. Kim, “Edge-forming methods for color image zooming,” IEEE 

Transactions on Image Processing, vol. 15, no. 8, pp. 23152323, Aug. 2006. 

[51] R. Lukac, K. Martin and K. N. Plataniotis, “Demosaicked image 

postprocessing using local color ratios,” IEEE Transactions on Circuits and 

Systems for Video Technology, vol. 14, no. 6, pp. 914-920, Jun 2004. 

[52] P. Longere, Z. Xuemei, P. B. Delahunt and D. H. Brainard, “Perceptual 

assessment of demosaicing algorithm performance,” IEEE Proceedings, vol. 

90, no. 1, pp. 123132, Jan. 2002. 

[53] R. Lukac and K. N. Plataniotis, “Digital zooming for color filter array based 

image sensors,” Real-Time Imaging, vol. 11, no. 2, pp. 129138, Apr. 2005. 



149 

[54] R. Lukac, K. N. Plataniotis and D. Hatzinakos, “Color image zooming on the 

Bayer pattern,” IEEE Transactions on Circuits and Systems for Video 

Technology, vol. 15, no. 11, pp. 14751492, Nov. 2005. 

[55] R. Lukac, K. Martin and K. N. Plataniotis, “Digital camera zooming based on 

unified CFA image processing steps,” IEEE Transactions on Consumer 

Electronics, vol. 50, no. 1, pp. 1524, Feb. 2004. 

[56] Y. T. Tsai, “Color image compression for single-chip cameras,” IEEE 

Transactions on Electron Devices, vol. 38, no. 5, pp. 12261232, May 1991. 

[57] A. Bruna, F. Vella, A. Buemi and S. Curti, "Predictive differential modulation 

for CFA compression," Proceedings of the 6th Nordic Signal Processing 

Symposium - NORSIG 2004, pp. 101104, 2004. 

[58] S. Battiato, A. Bruna, A. Buemi and F. Naccari, "Coding techniques for CFA 

data images," Proceedings of IEEE International Conference on Image 

Analysis and Processing (ICIAP'03), pp. 418423, 2003. 

[59] A. Bazhyna, A. Gotchev and K. Egiazarian, "Near-lossless compression 

algorithm for Bayer pattern color filter arrays," Proceeding of SPIE - the 

International Society for Optical Engineering, vol. 5678, pp. 198209, 2005. 

[60] B. Parrein, M. Tarin and P. Horain, "Demosaicking and JPEG2000 

compression of microscopy images," Proceedings of IEEE International 

Conference on Image Processing (ICIP'04), pp. 521524, 2004. 

[61] R. Lukac and K. N. Plataniotis, “Single-sensor camera image compression,” 

IEEE Transactions on Consumer Electronics, vol. 52, no. 2, pp. 299307, 

May 2006. 

[62] N. Zhang and X. L. Wu, “Lossless compression of color mosaic images,” 

IEEE Transactions on Image Processing, vol. 15, no. 6, pp. 13791388, Jun. 

2006. 

[63] D. D. Muresan and T. W. Parks, "Optimal recovery demosaicing," 

Proceedings of IASTED Signal and Image Processing (SIP'02), pp. 260265, 

2002. 

[64] J. E. Adams, "Design of practical color filter array interpolation algorithms for 

digital cameras," Proceeding of SPIE - the International Society for Optical 

Engineering, vol. 3028, pp. 117125, 1997. 



150 

[65] R. Lukac and K. N. Plataniotis, “A robust, cost-effective postprocessor for 

enhancing demosaicked camera images,” Real-Time Imaging, vol. 11, no. 2, 

pp. 139150, Apr. 2005. 

[66] X. Zhang, "S-CIELAB: A Spatial Extension to the CIE L*a*b* DeltaE Color 

Difference Metric," http://white.stanford.edu/~brian/scielab/scielab.html. 

[67] R. H. Hibbard, Apparatus and method for adaptively interpolating a full color 

image utilizing luminance gradients, U.S. Patent No. 5,382,976, to Eastman 

Kodak Company (Rochester, NY), 1995. 

[68] R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE 

Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 6, pp. 

11531160, Dec. 1981. 

[69] S. Battiato, G. Gallo and F. Stanc, "A new edge-adaptive zooming algorithm 

for digital camera," Proceedings of IASTED Signal Processing and 

Communications (SPC'00), pp. 144149, 2000. 

[70] C. A. Laroche and M. A. Prescott, Apparatus and method for adaptively 

interpolating a full color image utilizing chrominance gradients, U.S. Patent 

No. 5,373,322, to Eastman Kodak Company (Rochester, NY), 1994. 

[71] A. Said, On the determination of optimal parameterized prefix codes for 

adaptive entropy coding, Technical Report HPL-2006-74, HP Laboratories 

Palo Alto, 2006. 

[72] X. Wu and Z. Lei, “Improvement of Color Video Demosaicking in Temporal 

Domain,” IEEE Transactions on Image Processing, vol. 15, no. 10, pp. 

31383151, 2006. 

[73] K. Hirakawa and T. W. Parks, “Joint demosaicing and denoising,” IEEE 

Transactions on Image Processing, vol. 15, no. 8, pp. 21462157, 2006. 

[74] K. Hirakawa and T. W. Parks, "Image Denoising for Signal-Dependent 

Noise," Proceedings of IEEE International Conference on Acoustics, Speech, 

and Signal Processing (ICASSP '05), 2, pp. 2932, 2005. 

[75] J. Compton and J. Hamilton, "Color Filter Array 2.0," 

http://johncompton.pluggedin.kodak.com/default.asp?item=624876. 

 

 


	theses_copyright_undertaking
	b23061777



