

The Hong Kong Polytechnic University

Department of Industrial and Systems Engineering

Optimization of Production Planning in

Printed Circuit Board Assembly

WU Yongzhong

A thesis submitted in partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

October 2008

CERTIFICATE OF ORIGINALITY

 I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written, nor

material that has been accepted for the award of any other degree or diploma, except

where due acknowledgement has been made in the text.

 (Signed)

 Wu Yongzhong (Name of student)

 iii

ABSTRACT

Many complicated planning problems arise in Printed Circuit Board (PCB)

assembly. This research focuses on two high-level planning problems, i.e., the

Component Allocation Problem (CAP) and the Multi-Line Scheduling Problem

(MLSP), both of which are important for improving production efficiency in PCB

assembly.

For a PCB job (batch) to be processed by an assembly line, the component

allocation problem is investigated, which is to allocate the component placements

required by the PCB to the placement machines in the line, so that the line cycle time

is minimized. The problem is intertwined with the lower-level machine optimization

problems (feeder arrangement and placement sequencing), which determine the

process (placement) time of each machine. Considering the great computational

complexity, a decomposed solution strategy is proposed. This strategy relies on a

regression-based placement time estimator, which can estimate the placement time of

each machine accurately without solving the machine optimization problems. Based

on this estimator, a specific genetic algorithm is developed. Experimental tests show

that the proposed genetic algorithm can solve the problem both effectively and

efficiently. Compared with the existing software provided by the machine vendor,

the line cycle time is reduced.

For a set of PCB jobs to be produced by multiple assembly lines, the multi-line

scheduling problem is investigated, which is to assign the PCB jobs to the lines and

sequence the jobs in each line, so that the sum of weighted tardiness and weighted

 iv

makespan is minimized. A mixed integer linear programming model for the problem

is established. Line-dependent cycle times, different due dates of the jobs, sequence-

dependent setup times, and precedence constraints are considered so that the model is

realistic and applicable. Experimental tests show that exact solutions can not be

obtained for realistic-sized problem instances. A specific genetic algorithm is

developed for solving the problem. Due to the complexity of the problem, a new

replacement strategy is proposed to improve the performance of the algorithm.

Experimental tests show that the genetic algorithm can solve the problem both

effectively and efficiently. A study of a real case is conducted and illustrates the

applicability and usefulness of the method.

 v

ACKNOWLEDGMENTS

This research would have not been so successful without the help of many

people who took great support. I would like to take this opportunity to express my

heartfelt gratitude towards my chief supervisor Dr P. Ji., whose tireless inspiration

and help guided me to overcome the difficulties in my PhD study and my life. His

encouragement and valuable suggestions have significantly helped the development

of the project.

Besides, I have to express my sincere gratitude to my family (my wife, Peng

Cui, in particular), and friends for their tremendous support and encouragement.

Definitely, the financial support from The Hong Kong Polytechnic University

enables this project possible. I would like to acknowledge all parties from the heart

including those mentioned above together with those who helped me indeed but

missed to thank before.

 vi

TABLE OF CONTENTS

CERTIFICATE OF ORIGINALITY ii

ABSTRACT iii

ACKNOWLEDGEMENTS v

LIST OF FIGURES x

LIST OF TABLES xiii

1 INTRODUCTION 1

1.1 OVERVIEW OF PCB ASSEMBLY 1

1.2 PLANNING PROBLEMS IN PCB ASSEMBLY 4

1.2.1 Planning hierarchy 4

1.2.2 A general planning process 6

1.3 PROBLEMS 9

1.4 OBJECTIVES 10

1.5 SCOPE OF THIS THESIS 12

2 LITERATURE REVIEW 14

2.1 INTRODUCTION 14

2.2 THE MACHINE OTIMIZTION PROBLEMS 15

2.2.1 Separated solution methods 17

2.2.2 Iterative solution methods 18

2.2.3 Integrated solution methods 19

 vii

2.3 THE COMPONENT ALLOCATION PROBLEM 24

2.3.1 Approaches based on roughly estimated process times 25

2.3.2 Approaches based on actual process times 27

2.4 THE LINE ASSIGNMENT AND SCHEDULING PROBLEM 29

2.4.1 The line assignment problem in PCB assembly 29

2.4.2 The parallel-machine scheduling problem 32

2.5 HEURISTIC METHODS 37

2.5.1 Heuristic methods for combinatorial optimization 37

2.5.2 Heuristic methods used in PCB assembly 43

2.6 SUMMARY 45

3 THE COMPONENT ALLOCATION PROBLEM (CAP) 48

3.1 INTRODUCTION 48

3.2 PROBLEM FORMULATION 49

3.3 A SOLUTION STRATEGY 51

3.4 A REGRESSION-BASED PLACEMENT TIME ESTIMATOR 54

3.4.1 The placement process and influential factors 55

3.4.2 Model specification 57

3.4.3 Data collection 59

3.4.4 Model fitting and statistical analysis 63

3.5 A GENETIC ALGORITHM FOR THE CAP 67

3.5.1 Representation scheme 68

3.5.2 Genetic operators 69

 viii

3.5.3 Fitness evaluation based on the estimator 73

3.5.4 The general framework 77

3.6 EXPERIMENTAL TESTS 79

3.6.1 Experiments for improving GA performance 80

3.6.2 Experiments for evaluating the solution method 87

3.7 SUMMARY 96

4 THE MULTI-LINE SCHEDULING PROBLEM (MLSP) 99

4.1 INTRODUCTION 99

4.2 A MATHEMATICAL MODEL AND EXACT SOLUTIONS 100

4.2.1 Description of the MLSP 101

4.2.2 A mathematical model 103

4.2.3 Exact solutions 109

4.3 A GENETIC ALGORITHM FOR THE MLSP 123

4.3.1 Description of the MLSP 123

4.3.2 Fitness evaluation 125

4.3.3 Genetic operators 129

4.3.4 Replacement strategies 131

4.4 EXPERIMENTAL TESTS FOR THE MLSP 133

4.4.1 Parameter setting for the GAs 133

4.4.2 Numerical results 136

4.5 A CASE STUDY 138

4.6 SUMMARY 144

 ix

5 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 146

5.1 CONCLUSIONS 146

5.2 ACADEMIC CONTRIBUTIONS 150

5.3 POSSIBLE BENEFITS TO INDUSTRY 151

5.4 FUTURE WORK 153

REFERENCES 156

APPENDICES

APPENDIX I: DATA FOR THE TEST PCB WITH 61 COMPONENTS 171

APPENDIX II: THE MLSP INSTANCES Test-n10k4 AND

ITS SOLUTION 172

APPENDIX III: THE MLSP INSTANCES Test-n11k3 AND

ITS SOLUTION 175

APPENDIX IV: THE MLSP INSTANCES Test-n11k4 AND

ITS SOLUTION 178

APPENDIX V: THE MLSP INSTANCES Test-n12k4 AND

ITS SOLUTION 181

APPENDIX VI: THE MLSP INSTANCES Test-n15k4 AND

ITS SOLUTION 183

APPENDIX VII: THE MLSP INSTANCES Test-n20k4 AND

ITS SOLUTION 185

 x

LIST OF FIGURES

Figure 1.1 A typical PCB assembly line 2

Figure 1.2 PCB placement machines 3

Figure 1.3 A general planning hierarchy in PCB assembly 4

Figure 1.4 A general planning process in PCB assembly 7

Figure 2.1 Different PCB placement machine types 16

Figure 2.2 Flowchart of a standard tabu search method 40

Figure 2.3 Flowchart of a standard simulated annealing method 41

Figure 2.4 Flowchart of standard genetic algorithms 43

Figure 3.1 An example for the component allocation problem 50

Figure 3.2 Illustration of a Fuji CP732 machine 56

Figure 3.3 Histogram of standardized residual by MINITAB 66

Figure 3.4 A chromosome in the proposed GA for the CAP 69

Figure 3.5 Uniform crossover 71

Figure 3.6 Random-point mutation 72

Figure 3.7 Swap mutation 72

Figure 3.8 General framework for the proposed GA for the CAP 79

Figure 3.9 Convergence process for the GAs with different population sizes 83

Figure 3.10 Experimental results for two mutation operators 84

Figure 3.11 Experimental results for two fitness functions 86

 xi

Figure 3.12 Analysis of GA solutions for the case with PCB 1 92

Figure 3.13 Process for generating the clustered component locations 93

Figure 3.14 Allocation solutions by GA and vendor software for PCB 11 95

Figure 4.1 Optimal schedule for the instance Test-n10k3

shown as Gantt chart 122

Figure 4.2 A chromosome in the proposed GA for the MLSP 124

Figure 4.3 Detailed schedule represented by a chromosome in the GA 128

Figure 4.4 Order crossover (OX) 130

Figure 4.5 General framework for the GA-N for the MLSP 132

Figure 4.6 Objective values for Test-n20k4 obtained with

different Cw

Figure 4.7 Objective values for Test-n15k4 obtained with

 values 135

different Cw

Figure 4.8 Convergence process for the GA-R and the GA-N 137

 values 135

Figure 4.9 The schedule for the case problem obtained by

the proposed GA 142

Figure 4.10 The schedule for the case problem obtained by the

scheduling staff in the company 143

Figure II-1 A Gantt chart for the optimal schedule of Test-n10k4 174

Figure III-1 A Gantt chart for the optimal schedule of Test-n11k3 177

 xii

Figure IV-1 A Gantt chart for the optimal schedule of Test-n11k4 180

Figure V-1 A Gantt chart for the GA solution of Test-n12k4 182

Figure VI-1 A Gantt chart for the GA solution of Test-n15k4 184

Figure VII-1 A Gantt chart for the GA solution of Test-n20k4 186

 xiii

LIST OF TABLES

Table 1.1 Process times for each job on each line (in hours) 8

Table 1.2 A solution to the multi-line scheduling problem 8

Table 3.1 Characteristics and placement time values (in seconds) for the 100 PCBs

 62

Table 3.2 Statistical results for all subset models 64

Table 3.3 Regression analysis results for the selected model by MINITAB 65

Table 3.4 Component allocation solution represented by a GA chromosome 70

Table 3.5 List of components allocated to machine 1 75

Table 3.6 Preliminary calculations for the GA 77

Table 3.7 Characteristics of the 10 PCBs 81

Table 3.8 Experimental results for different population sizes 83

Table 3.9 Solutions to the CAP instances 88

Table 3.10 Comparison between GA solutions and vendor software solutions 90

Table 3.11 Comparison between GA solutions and software solutions

for PCBs with clustered locations 94

Table 4.1 Characteristics of test instances 109

Table 4.2 Data for the first instance Test-n10k3 111

Table 4.3 Characteristics of the model and optimal solution for Test-n10k3 120

Table 4.4 CPLEX computational results for the test instances 123

 xiv

Table 4.5 Numerical results obtained by the two GAs 136

Table 4.6 Data for the problem in the case study 139

Table 4.7 Ready times and initial RoHS status for assembly lines 140

Table I-1 Data for the test PCB with 61 components 171

Table II-1 Data for the MLSP instance Test-n10k4 172

Table III-1 Data for the MLSP instance Test-n11k3 175

Table IV-1 Data for the MLSP instance Test-n11k4 178

Table V-1 Data for the MLSP instance Test-n12k4 181

Table VI-1 Data for the MLSP instance Test-n15k4 183

Table VII-1 Data for the MLSP instance Test-n20k4 185

 1

CHAPTER 1

INTRODUCTION

With rapid development of advanced technologies, electronic products and

devices can be found in our major life activities of working, living and learning, and

they significantly affect the quality of life. As the backbone of most electronic

products, Printed Circuit Boards (PCBs) have become much smaller in size and more

densely populated with components. As a result, the Surface Mount Technology

(SMT) has replaced the Pin-through-Hole (PTH) technology since the SMT enables

to mount a large number of electronic components on a small board. With the

technological advances of the SMT, the PCB assembly process has evolved from a

labor-intensive activity to a highly automated one. However, the great expense of the

assembly machines and the customers’ demands on both speed and quality motivate

PCB manufacturers to optimize the assembly operations and achieve high production

efficiency.

1.1 OVERVIEW OF PCB ASSEMBLY

The PCB assembly process in the SMT environment consists of four main

operations in sequence, i.e., solder paste application, component placement, solder

paste reflow, and inspection. Figure 1.1 illustrates a typical PCB assembly line in the

PCB manufacturing industry.

First, on the screen printer, solder paste is “printed” to the places where the

components will be put on the board. Then, the required components are placed onto

CHAPTER 1: INTRODUCTION 2

the board by the placement machine(s). After that, the PCB with the components

placed on it is conveyed through the reflow oven, which causes the solder paste to

reflow and form the solder joints. Finally, inspection is performed at the inspection

station.

Figure 1.1 A typical PCB assembly line

Among these operations, the component placement process is most time-

consuming. For this reason, there may be more than one placement machine in the

line. In spite of this, the placement process is always the bottleneck process in most

cases. For this reason, most planning problems in PCB assembly focus on the

placement process.

Modern PCB placement machines (as illustrated in Figure 1.2) are much

sophisticated and very expensive, with each ranging from US $300,000 to

$1,000,000. In a typical PCB assembly shop, there may be several assembly lines

with dozens of placement machines, for a total value of several million US dollars.

The placement process conducted by the placement machines is highly

automatic. To complete a placement job, the component feeders, each supplying

components of a specific type, are set up in the feeder carrier of the machine. After

the PCB is loaded onto the PCB holder, the placing device on the machine begins to

Screen
printer

Placement
machine

Placement
machine

Reflow
oven

Solder paste
application Component placement Solder paste

reflow

Inspection
station

Inspection

CHAPTER 1: INTRODUCTION 3

pick the components from the feeders and place them onto the board. Section 3.4.1

will describe the placement process of a placement machine in more details.

Depending on the operating mode of the pick-and-place process, the placement

machines can be divided into various types, e.g., sequential pick-and-place, turret-

type, collect-and-place, dual-delivery, and multi-station.

Figure 1.2 PCB placement machines

Over the planning horizon, many batches of PCB are required to be produced.

They are assigned to different assembly lines for production. An assembly line

usually produces the batches in a flowshop manner, i.e., a new batch of boards can

only be produced on the line after the completion of the previous batch.

Due to the wide range of both components and products involved, the

complexity of the placement machines, and the volatility of customer demand, it is

extremely difficult to solve the planning problems in multi-line SMT facilities so as

to improve production efficiency and customer satisfaction at the same time.

CHAPTER 1: INTRODUCTION 4

1.2 PLANNING PROBLEMS IN PCB ASSEMBLY

1.2.1 Planning Hierarchy

The planning problems in PCB assembly may vary owing to the great variety

of production environments concerning shop layout, production mix, setup policy,

etc. Nevertheless, there are three planning problems that are common for many

multi-line PCB manufacturers, i.e., the Multi-Line Scheduling Problem (MLSP), the

Component Allocation Problem (CAP) or the Line Balancing Problem, and the

Machine Optimization Problem (MOP). Figure 1.3 illustrates the relationship

between these problems in the planning hierarchy. A similar discussion was

presented by Ammons et al. [Amm97].

Figure 1.3 A general planning hierarchy in PCB assembly

MACHINE
OPTIMIZATION

MULTI-LINE
SCHEDULING

LINE BALANCING

High level

Middle level

Low level

Job assignment & timing

Component allocation

Feeder
arrangement

Placement
sequencing

Assignment solution Job-Line process time

Allocation solution Job-machine cycle time

CHAPTER 1: INTRODUCTION 5

First of all, PCB assembly orders (with each order being for a batch of PCB

of a specific type) during the planning horizon are required to be assigned and

scheduled on the assembly lines for production. Due to different configurations of

the assembly lines, the process time for each PCB batch is dependent on the line it is

assigned to. In addition, due dates of the jobs should be met to maintain customer

satisfaction. Thus, the decision on this Multi-line Scheduling Problem (MLAP)

should be made carefully in order to improve the production efficiency while

meeting the due date requirement.

Second, after a batch of PCB is assigned to an assembly line, the Component

Allocation Problem (CAP) is needed to be solved to determine which components on

the board should be placed by which placement machine in the line (note that the

placement process is always the bottleneck process in the line and there are more

than one placement machine on each line). Similar to the traditional line balancing

problem, the objective of the component allocation problem is usually to minimize

the cycle time for the assembly line.

Finally, after the components are allocated to the placement machines in the

line, the machine optimization problem is required to be solved for each placement

machine according to the allocated placement task. Due to the unique characteristics

of the placement process, there are two fundamental subproblems for machine

optimization. The first is the Feeder Arrangement Problem (FAP), which determines

the assignment of different component feeders to the feeder slots of the feeder carrier

on the machine. The second is the Placement Sequencing Problem (PSP), which

CHAPTER 1: INTRODUCTION 6

decides the sequence for the components to be placed onto the board. These two

subproblems are important for reducing the assembly time for each single machine.

The above-mentioned problems are of great importance for the manufacturers

to make effective use of most valuable resources (i.e., placement machines) and

thereby offer opportunities for significant cost reductions. Increased production

efficiency may reduce the need for additional capital expenditures for expensive

equipment, and improve the production capacity at the same time.

1.2.2 A general planning process

Although the three planning problems in PCB assembly are of different levels

at the planning hierarchy, they are highly interrelated (Figure 1.3). On one hand, the

lower-level problems are based on the solutions to the higher-level problems. On the

other hand, the solutions to the higher-level problems are influenced by the solutions

to the lower-level problems.

For example, the machine optimization problems (i.e., the feeder arrangement

and placement sequence) for each machine cannot be solved before component

allocation decisions are made. At the same time, solutions to the component

allocation problem cannot be evaluated without knowing the process time for each

machine in the line, which in turn is determined by solving the machine optimization

problems. Similarly, solutions to the component allocation problems provide the

information on line cycle times for the scheduling problem.

Usually, the planning problems in PCB assembly are tackled in a

decomposition manner. If in the planning period there are a set of n PCB jobs to be

CHAPTER 1: INTRODUCTION 7

completed in an assembly shop with K assembly lines, the general planning process

can be illustrated in Figure 1.4.

Figure 1.4 A general planning process in PCB assembly

In the first step, a set of n × K Component Allocation Problems (with each

corresponding to a job and an assembly line) are solved to obtain the cycle time

information (including all the cycle time values for each job on each line). Based on

the cycle time information, the process time for each job on each line can then be

calculated as the product of the corresponding cycle time and the batch size. Sample

results in the first step can be illustrated in Table 1.1.

In the second step, based on the process time information obtained in the first

step, the Multi-Line Scheduling Problem can be solved to determine the assignment

Step 1:
Solve the n × K
CAPs for each job
and each line

Job-Line process time

Job assignment

Component allocation
Step 2:
Solve the MLSP
based on the process
time information

Step 3:
Solve the MOPs for
each machine and
allocated task

CHAPTER 1: INTRODUCTION 8

of the jobs to the assembly lines and the start time for each job. A sample results in

this step can be illustrated in Table 1.2.

In the final step, based on the job assignment and corresponding component

allocation decisions, the Machine Optimization Problems (MOPs) are solved to

determine the feeder arrangement and placement sequence for each job on each

machine.

Table 1.1 Process times for each job on each line (in hours)

 PCB 1 PCB 2 PCB 3 … PCB n

Line 1 2.87 3.51 4.11 …… 2.98

Line 2 5.60 4.84 6.34 …… 4.87

Line 3 5.62 5.98 7.84 …… 6.55

…… …… …… …… ……

Line K 4.54 3.97 4.27 …… 5.60

Table 1.2 A solution to the multi-line scheduling problem

 PCB 1 PCB 2 PCB 3 … PCB n

Assembly line 1 5 1 …… 4

Start time (hour) 11.4 2.7 2.0 …… 15.87

CHAPTER 1: INTRODUCTION 9

1.3 PROBLEMS

This thesis focuses on the first two planning problems in the planning

hierarchy for PCB assembly, i.e., the Multi-Line Scheduling Problem (MLSP) and

the Component Allocation Problem (CAP). The motivation of studying these two

problems is discussed in the following.

First of all, because the machine optimization problems are machine-specific

and the machine technologies evolve much rapidly, generally-applicable solution

methods for these machine optimization problems is not realistic. Many machine

vendors have provided optimization software to tackle these problems for their own

machines, e.g., Flexa for Fuji machines, PT200 for Panasonic machines, UPS for

Universal machines, HLC for JUKI machines, etc.

Comparatively, the CAP and the MLSP are of the higher planning levels at

the planning hierarchy and do not depend on the machine technological

characteristics as much as the machine optimization problems. Therefore, they are

more general to different manufacturers. Hence, their significance has been

recognized by many production managers. On the other hand, owing to the

complexity and realistic constraints, current solution methods for the CAP and the

MLSP are not effective and required to be investigated thoroughly.

For the component allocation problem, the solution is influenced by the

machine optimization problems. The optimal solution to the component allocation

problem can only be obtained through the integration of the problem with the

machine optimization problems. However, due to the great computational complexity,

it is impossible to solve the machine optimization problems whenever a component

CHAPTER 1: INTRODUCTION 10

allocation solution is evaluated. For this reason, an effective and efficient solution

method is required.

For the multi-line scheduling problem, production managers mainly concern

about meeting the due dates and improving production efficiency at the same time.

However, most researchers in the literature solve the job assignment problem without

considering due date requirement. The resulting job assignment solutions are far

from reality and the desired production efficiency can hardly be achieved. For this

reason, the job assignment and timing of the jobs should be determined

simultaneously. The formulation and modeling of the multi-line scheduling problem

with due date constraints should be established and investigated. However, the due

date constraints may greatly increase the complexity of the scheduling problem

[Mok01]. There is a need to develop an efficient method to solve the problem.

1.4 OBJECTIVES

The ultimate aim of this research is to optimize the production plans for PCB

assembly so that both production efficiency and customer satisfaction can be

improved. To this end, two important planning problems are investigated, i.e., the

Component Allocation Problem (CAP) and the Multi-Line Scheduling Problem

(MLSP). Effective solution approaches for solving these problems are developed.

There are five objectives to be achieved in this research, which are described as

follows.

The first objective is to develop an effective decomposed solution strategy for

solving the component allocation problem. Since the component allocation problem

CHAPTER 1: INTRODUCTION 11

is combined with the machine optimization problems, in order to improve the

efficiency for solving realistic-sized problems, the solution strategy will rely on a

placement time estimator that can estimate the placement (process) time for a

machine to complete a specific PCB. Based on the placement time estimation, an

algorithm or heuristic could be developed to solve the component allocation problem

effectively without tackling the machine optimization problems.

After the decomposed solution strategy has been proposed, the second

objective is to examine the feasibility of developing the relative placement time

estimator. A placement time estimator for a turret type placement machine will be

constructed in this research. The placement time estimator should be able to estimate

the placement time without solving the machine optimization problems. The

effectiveness of the placement time estimator should be evaluated based on the

statistical analysis.

The third objective is to develop a specific heuristic method for solving the

component allocation problem, with the solutions being evaluated by the developed

placement time estimator. The effectiveness and efficiency of the heuristic method

should be examined through solving some problem instances.

Since the specific multi-line scheduling problem in PCB assembly has not

been investigated in the literature, the fourth objective is to establish a complete

mathematical model for the problem with an objective which considers both the

production efficiency and due date satisfaction. The validation and the complexity of

the models should be examined.

CHAPTER 1: INTRODUCTION 12

Since the multi-line scheduling problem is shown to be extremely complex,

the fifth objective is to develop an effective and efficient heuristic method for solving

the multi-line scheduling problem. The effectiveness and efficiency of the heuristic

method should be examined through experimental tests.

1.5 SCOPE OF THIS THESIS

This research is mainly devoted to the two important planning problems in

PCB assembly, i.e., the Multi-Line Scheduling Problem (MLSP) and the Component

Allocation Problem (CAP). These problems arise from the environment relating to

the high-mix and medium-to-high-volume production mode and the shop floors with

multiple assembly lines. This manufacturing environment is commonly seen in many

PCB manufacturing companies.

The structure of the thesis is organized as follows.

In Chapter 2, an extensive literature review is conducted to demonstrate what

have been studied on the planning problems in PCB assembly, including the machine

optimization problems, the component allocation problem, and the job assignment

and scheduling problem. Since most of the planning problems in PCB assembly are

difficult combinatorial problems, heuristic methods for solving combinatorial

problems are also surveyed.

Chapter 3 is devoted to the component allocation problem. A decomposed

solution strategy based on a regression-based placement time estimator is proposed

for the problem. The purpose of this placement time estimator is to accurately and

efficiently estimate the process time for each machine in the line without tackling

CHAPTER 1: INTRODUCTION 13

machine optimization problems (that is, the feeder arrangement problem and the

placement sequencing problems). A placement time estimator for a turret-type

placement machine is developed and the effectiveness of the estimator is examined

through some experimental tests. A genetic algorithm, which uses this placement

time estimator for solution evaluation, is developed for solving the component

allocation problem. Numerical results on some problem instances are reported.

In Chapter 4, the multi-line scheduling problem is investigated. A complete

mathematical model for the multi-line scheduling problem is established. The model

is verified through solving some randomly generated small-sized instances. Based on

the established model, an effective and efficient genetic algorithm is developed.

Numerical results on solving some problem instances and a case study are reported.

Finally, Chapter 5 summarizes the distinctive achievements of this research.

Both the academic and industrial contributions of this research are concluded. Some

recommendations for future work are suggested.

 14

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

Numerous researchers have investigated the planning problems in PCB

assembly. However, not all the problems have been studied intensively and

thoroughly. In this chapter, a comprehensive literature review on these problems is

conducted. The focus is to clarify what have been done and what have not, with the

latter providing the rationale for this research.

Section 2.2 surveys relative research on the machine optimization problems,

i.e., the problems of the lowest planning level. The main difficulty for solving these

problems is discussed. After that, literature relating to the component allocation

problem (CAP) is reviewed in Section 2.3. The main drawback of existing solution

methods is discussed. In Section 2.4, literature relating to the line assignment and

scheduling problem in PCB assembly is reviewed. Some realistic constraints for this

problem, which are neglected in most of the research, are discussed. Since the

investigated multi-line scheduling problem (MLSP) is found to be much similar to

the well-investigated parallel-machine scheduling problem (PMSP), literature

relating to the parallel-machine scheduling problem is also reviewed. In Section 2.5,

a survey on the heuristic methods for combinatorial problems, which most of the

planning problems in PCB assembly belong to, is presented. Finally, some remarks

concerning the literature reviews are summarized in Section 2.6.

CHAPTER 2: LITERATURE REVIEW 15

2.2 MACHINE OPTIMIZATION PROBLEMS

Electronic components (possibly hundreds or thousands) are assembled onto

a board by PCB placement machines (Figure 2.1). A typical placement machine has a

feeder carrier, a PCB table, and a placement device. The feeder carrier consists of

many feeder slots where the component feeders are located. The component feeders

are used to provide the machine with a continuous supply of components. Generally,

the placement device picks components from the feeders and places them onto the

board according to a certain operational method. Based on different operational

methods, the machines can be classified into several categories: sequential pick-and-

place [Bal88], turret-type [Leu93], single-gantry collect-and-place [Gru04], dual-

gantry collect-and-place, multi-station [Csa00a], as shown in Figure 2.1.

Optimization of the feeder arrangement and sequencing of the component

placements are two most important factors for improving the efficiency of placement

machines. They correspond to two fundamental subproblems for machine

optimization, i.e., the Feeder Arrangement Problem (FAP) and the Placement

Sequencing Problem (PSP). The feeder arrangement problem is to decide the

assignment of different component feeders to the slots on the feeder carrier, while the

placement sequencing problem is to decide the placement sequence of the

components.

CHAPTER 2: LITERATURE REVIEW 16

Figure 2.1 Different PCB placement machine types

Numerous researchers have conducted investigations into the machine

optimization problems. Most researchers find that these problems are much difficult

and intertwined with each other to influence the efficiency of the machine. Due to the

great computational complexity, it is not realistic to use mathematical programming

approaches to solve the combined problem of feeder arrangement and placement

sequencing. Alternatively, there are three different ways in the literature to tackle the

Feeders

PCB

X

Feeders
Feeders

Placement Location

Pickup Location

Fixed turret

PCB

PCB

Head

X

Y

Y

(a) Sequential pick-and-place (b) Turret-type

X

X

Y

Y

Feeders

(c) Dual-gantry collect-and-place

X

Collecting operations

Placing
operations Head

PCB

Feeders

PCB

Station

(d) Multi-station

PCB

Conveyer

CHAPTER 2: LITERATURE REVIEW 17

two problems in the literature. Some researchers focus on one of the two problems,

assuming the solution to the other is given. Some researchers rely on an iterative

procedure to tackle these two problems. The other researchers propose integrated

heuristic or metaheuristic methods to solve the two problems simultaneously. The

following survey is conducted according to this classification.

2.2.1 Separated solution methods

In the literature, some researchers focused on only one of the two machine

optimization subproblems, i.e., the feeder arrangement problem and the placement

sequencing problem, while assuming the solution to the other is given in advance.

Drezner and Nof [Dre84] are the first researchers who investigated the

optimization problems for PCB placement machines. They considered a sequential

pick-and-place machine and tackled the placement sequencing problem, assuming

the feeder arrangement had been determined in advance.

Similarly, Ball and Magazine [Bal88] solved the placement sequencing

problem, assuming the feeder arrangement was fixed. The problem was modeled as a

rural postman problem and a heuristic approach was used to solve the problem.

De Souza and Wu [Des94] studied the placement sequencing problem for a

turret-type machine. They incorporated a knowledge-based component placement

system with a Traveling Salesman Problem (TSP) algorithm to solve the problem.

Kumar and Li [Kum95] established an integrated model for these two

problems. The model was decomposed into a TSP and a minimum weight matching

problem (MWMP) by adding extra constraints.

CHAPTER 2: LITERATURE REVIEW 18

Moyer and Gupta [Moy96a] studied the feeder arrangement problem for the

turret-type machine based on the assumption that the placement sequence was

predetermined. The problem was formulated as the Quadratic Assignment Problem

(QAP) and solved by two heuristic methods.

Ahmadi and Mamer [Ahm99] modeled the problem of sequencing the

component types for placement and the problem of scheduling the movements

between points on the PCB as a collection of interdependent TSPs.

Klomp et al . [Klo00] solved the component allocation problem for a turret-

type machine and considered a feeder and its corresponding cluster (that is, a set of

locations served by a single feeder) as a node in a complete graph.

Kim and Park [Kim04] also solved these two subproblems separately. A

clustering algorithm and an assignment algorithm were applied to solve the feeder

arrangement problem, while an assignment algorithm and a connection algorithm

were applied to solve the placement sequencing problem.

Li et al . [Lis07] considered a collect-and-place machine with a revolving

head. They first solved the placement sequencing problem as a TSP. Then the feeder

arrangement problem was solved in the second stage using a Genetic Algorithm

(GA).

2.2.2 Iterative solution methods

Some researchers focused on an approach which consists of tackling both

problems (the feeder arrangement problem and the placement sequencing problem)

by iterating their solutions.

CHAPTER 2: LITERATURE REVIEW 19

Foulds and Hamacher [Fou93] used an iterative approach for a sequential

pick-and-place machine. The placement sequencing problem was solved by a TSP

heuristic and the feeder arrangement problem was solved by a QAP heuristic.

Egbelu et al . [Egb96] also considered a sequential pick-and-place machine

and solved the two problems iteratively. The feeder arrangement problem was solved

by a cutting plane and exchange heuristic, while the placement sequencing problem

was solved by a composite procedure of a farthest insertion algorithm and a 3-opt

local search.

Crama et al. [Cra90] adopted an iterative approach for a single-gantry collect-

and-place machine. The authors solved the placement sequencing problem using the

approach proposed by Leipälä and Nevalainen [Lei89] and solved the feeder

arrangement problem using a simple local search method.

Grunow et al . [Gru04] considered a collect-and-place machine with a

revolving head and solved the feeder arrangement problem and the placement

sequencing problem iteratively. They first obtained initial feeder arrangement using a

simple heuristic, and then solved the PSP as a simple Vehicle Routing Problem

(VRP). After that, the initial solutions were improved by iteratively applying a 2-opt

local search to one of the two solutions while fixing the other one.

2.2.3 Integrated solution methods

Many researchers proposed heuristic or metaheuristic methods for solving the

feeder arrangement and placement sequencing problems simultaneously.

CHAPTER 2: LITERATURE REVIEW 20

Leipälä and Nevalainen [Lei89] stated that the iterative approach was fast but

obtained inferior solutions. They solved the feeder arrangement and placement

sequencing problems integrally for a sequential pick-and-place machine. A simple

pairwise exchange heuristic was used to solve the feeder arrangement problem, while

the evaluation of each feeder arrangement solution was performed by solving the

placement sequencing problem using a modified farthest insertion heuristic. A

similar integrated approach was adopted by Sohn and Park [Soh96] for a turret-type

machine.

Broad et al . [Bro96] established an integrated Integer Programming (IP)

model for the two problems for a sequential pick-and-place machine. The model was

solved by a binary integer programming package. They stated that realistic instances

were solved efficiently using a 1% tolerance on the difference between the objective

values from the integer solution and the Linear Programming (LP) relaxation.

Deo et al . [Deo02] also studied a sequential pick-and-place machine. They

considered multiple setups which were necessary with limited feeder holding

capacity. They proposed a genetic algorithm for tackling the integrated problem.

Leu et al . [Leu93] proposed a two-link genetic algorithm to simultaneously

solve the feeder arrangement problem and the placement sequencing problem for

both a sequential pick-and-place and a turret-type machine. Ong and Khoo [99]

modified the two-link genetic algorithm proposed by Leu et al . [Leu93] and

considered the case in which feeder duplication is allowed, i.e., components of the

same type can be stored in more than one feeder. Ho and Ji [How03, How04] also

CHAPTER 2: LITERATURE REVIEW 21

modified the two-link genetic algorithm proposed by Leu et al . [Leu93] for both a

sequential pick-and-place and a turret-type machine.

Moyer and Gupta [Moy96b] proposed a specific heuristic to solve the two

problems simultaneously for a turret-type machine. The aim of the heuristic is to

generate a placement sequence and feeder setup to exploit the unique characteristics

of the turret-type machines. They argued that on average, their approach was

superior to the genetic algorithm proposed by Leu et al. [Leu93].

Yeo et al . [Yeo96] proposed a rule-based approach to simultaneously solve

the feeder arrangement problem and the placement sequencing problem for a turret-

type machine. The approach is based on a one-pitch incremental feeder heuristic and

a nearest neighbor heuristic.

Ellis et al . [Ell01] proposed a heuristic for solving the feeder arrangement

problem and the placement sequencing problem simultaneously for a turret-type

machine. They used a construction procedure with a set of rules to generate an initial

component placement sequence and feeder arrangement, and an improvement

procedure to improve the initial solution.

Magyar et al . [Mag99] studied a single-gantry collect-and-place machine.

They proposed a hierarchical solution approach to solve the problem of determining

the placement sequence, assignment of different nozzles to the robot head, and feeder

setup.

Altimeter et al . [Alt00] proposed an integrated model for the feeder

arrangement problem and the placement sequencing problem for a single-gantry

CHAPTER 2: LITERATURE REVIEW 22

collect-and-place machine, and devised an algorithm which converts these two

problems into a number of vehicle routing problems.

Ayob and Kendall [Ayo05] also studied a single-gantry collect-and-place

machine. They proposed a triple objective function to minimize the assembly time,

feeder movements and PCB table movements.

For a dual-gantry collect-and-place machine, the efficiency is largely

determined by the gantry workload and the gantry scheduling [Su05]. Tirpak et al .

[Tir00] proposed an adaptive simulated annealing algorithm for solving three

optimization problems simultaneously, i.e., the feeder setup, nozzle setup and

placement sequencing.

Sun et al. [Sun05] also studied a dual-gantry collect-and-place machine. They

proposed a genetic algorithm to decide the component allocation between the two

revolving heads and feeder arrangement. In order to evaluate the workload of each

delivery unit, they used a greedy heuristic for work cycle formation and pickup

sequencing decisions. Computational performance was examined using real

industrial data.

Kulak et al [Kul07] proposed genetic algorithms for both single-gantry and

dual-gantry collect-and-place machines with revolving heads. The feeder

arrangement problem and the placement sequencing problem were solved by genetic

algorithms (GAs). A clustering algorithm was integrated in the GAs to group

placement operations in each collect-and-place cycle.

Ho et al. [How07] adopted the genetic algorithm which was similar to that in

[How03] to solve the feeder arrangement problem and the placement sequencing

CHAPTER 2: LITERATURE REVIEW 23

problem simultaneously for a dual-gantry collect-and-place machine with revolving

heads.

Compared with other types of placement machine, the optimization of multi-

station machines has been tackled by relatively few researchers. Due to concurrency

of the stations, synchronization is the most crucial factor for the optimization

problem [Csa00a].

Wang et al . [Wan99] proposed a genetic algorithm to optimize feeder setup

for a multi-station placement machine. Crasser et al . [Csa00b] employed a

knowledge-based system to optimize a multi-station machine. The system divides the

optimization problem into two subproblems, i.e., assignment of components to the

stations, and feeder arrangement within the stations.

In other work, Crasser et al . [Csa00a] also studied a multi-station placement

machine and proposed a two-phrase approach. Since the machine has many stations,

they tackled component allocation to stations, feeder setups and placement

sequencing for each station. They partitioned the optimization problem into two

phases and solved them using a tabu search and a specific heuristic, respectively.

Recently, Grunow et al . [Gru03] established an integer programming model

for the optimization of a multi-station machine. They proposed two different solution

procedures for the problem with the aim of balancing workloads of stations.

It can be seen from the above survey that numerous researchers have

investigated the machine optimization problems. However, solutions to the machine

optimization problems are not general for all types of machines. All the researchers

only proposed a specific solution method for the machine they investigated. Due to

CHAPTER 2: LITERATURE REVIEW 24

the ever-advancing technology and the large variety of placement machines,

development of a general solution is far from feasible.

On the other hand, there seems to be a gap between the research in the

literature and industrial solutions. In fact, different machine vendors have provided

optimization software to tackle the machine optimization problems for their own

machines. For example, there are Flexa for Fuji machines, PT200 for Panasonic

machines, UPS for Universal machines, HLC for JUKI machines, etc. Most of the

software provides effective and efficient solutions to machine optimization. However,

few researchers in the literature have conducted comparison between their solutions

with existing solutions in the industry.

2.3 THE COMPONENT ALLOCATION PROBLEM

The component allocation problem (CAP) arises when a batch of PCB is

assigned to an assembly line with multiple placement machines for production. The

CAP is to allocate the components required by the PCB to machines in the line so

that the makespan or cycle time is minimized.

Compared with the machine optimization problems, research on the

component allocation problem has received less attention.

As discussed in Chapter 1, the solution to the component allocation problem

is tightly intertwined with the solutions to the machine optimization problems

because the latter determine the actual process time for each machine (see Figure

1.3). Most researchers tackled the component allocation problem individually by

CHAPTER 2: LITERATURE REVIEW 25

using oversimplified estimation methods for obtaining process time, which reduce

the effectiveness of the solutions.

2.3.1 Approaches based on roughly estimated process times

Crama et al . [Cra90] proposed a hierarchical approach to solve the

component allocation problem for the collect-and-place machines, assuming constant

unit time for a machine to place the components of the same type. In this way, the

component allocation problem was solved separately without considering the

machine optimization problems. They argued that the approach obtained results

similar to those obtained by the approach proposed in a confidential report of the

Philips Center for Quantitative Methods. However, they agreed that the process time

for a component is actually not constant and dependent on the solutions to the

machine optimization problems. Therefore, the solution obtained in this way cannot

be effective.

Ji et al . [Jip01] established a mixed integer programming model for the

component allocation problem. The model also uses estimated unit time for

processing a component of a specific type. In their model, components of the same

type are allowed to be allocated to different machines, that is, feeder duplication is

allowed. They proposed a genetic algorithm to solve the problem which yields less

than 1% difference between the best found solutions and optimal solutions. However,

the solutions are also evaluated based on the roughly estimated process time values.

Kodek and Krisper [Kod04] addressed the component allocation problem and

proposed an optimal branch-and-bound-based algorithm. They showed that the

CHAPTER 2: LITERATURE REVIEW 26

algorithm could obtain the optimal solution for the problems with up to 50-80

variables. However, they also assumed the constant unit time for components of a

specific type.

Some researchers considered the case for multiple boards to be produced on

the same line without feeder changeover. Ben-Arieh and Dror [Ben90] proposed

simple heuristics for a case with two machines and multiple boards. They stated that

the solution results were within 0.5% from optimality. However, as mentioned in the

paper, they also assumed that the process time was one unit for each component,

regardless of the board type and component location on the board.

McGinnis et al . [Mcg92] stated that the most appropriate objective function

for the multiple-board case consists of minimizing the sum over all board types of

the process time of these board types on their bottleneck machines. Similar to those

in the aforementioned papers, the model they proposed uses estimated placement

time pjkm

Ammons et al . [Amm97] also considered the multiple-board case and

proposed a more general feeder allocation model by allowing for feeder duplication

and partial feeder setups. They solved the mixed integer programming model by

branch-and-bound. In the model, they also used rough estimates of placement time

for a component of a specific type. They mentioned that these estimates yielded a

poor approximation of actual makespan. An industrial case study was presented.

 for machine m of all components of type j on board k. The authors

mentioned that these placement time values must be roughly estimated, since feeder

allocation, feeder location and placement sequencing decisions eventually interfere

with each other to determine actual assembly time.

CHAPTER 2: LITERATURE REVIEW 27

Throughput improvements of up to 8-10% over the company’s current manual

procedure conducted by the process engineer were obtained. DePuy et al . [Dep01]

proposed an integer programming heuristic for the same problem and conducted

several case studies to demonstrate the effectiveness of the method.

With considering sequence-dependent setup times (feeder changeover),

Gronalt and Zeller [Gro00] investigated both the component allocation problem and

the job sequencing problem to minimize makespan for an assembly line with two

placement machines to produce boards of multiple types. Two heuristic procedures

were proposed and proved to be effective for solving some real problems.

Ashayeri and Selen [Ash07] also considered the feeder changeover time and

solved the job sequencing problem along with the component allocation problem for

each job. The authors proposed two decomposed planning strategies: one focuses on

minimum number of changeovers and the other on minimum process time. They

stated that both strategies did not deviate excessively from optimal solutions.

2.3.2 Approaches based on actual process times

All the models in above-mentioned research assume constant process time for

a specific machine to place a component of a specific type. However, the actual

placement times may differ a lot from these rough estimates. Some influential factors

should be considered, like the closeness of the components, number of feeders

required. These factors are key factors considered in the machine optimization

problems, i.e., the feeder arrangement problem and the placement sequencing

problem, which eventually determine the process time for a machine.

CHAPTER 2: LITERATURE REVIEW 28

Only a few researchers have considered the interaction between the

component allocation problem and the machine optimization problems. Lapierre et al.

[Lap00] tackled the feeder allocation problem for a line and the feeder arrangement

problem for each machine simultaneously. They claimed that, for the particular

machine type considered in their paper, the placement time is independent of the

placement sequence. Therefore, they assumed that the process time of a component

was constant when feeder arrangement was determined. In this way, they were able

to establish a model which simultaneously determines feeder allocation to machines

and feeder arrangement on each machine. They proposed Lagrangian relaxation

techniques to solve the integrated problem and stated that the techniques obtained

little difference between the best found solutions and the lower bounds. However,

Duman [Dum05] recently proved that the assumption made by Lapierre et al . is not

true and showed that placement time is actually dependent on placement sequence

even for the concerned machine.

Crama et al. [Cra97] proposed a heuristic method to estimate the process time

for a machine to place all allocated components. However, the heuristic exploits the

operation characteristics of the turret-type machines and cannot be easily applied to

other machine types. In addition, the proposed estimation method requires nontrivial

computational efforts. As the result, the authors can only use a simple local search to

solve the component allocation problem.

CHAPTER 2: LITERATURE REVIEW 29

2.4 THE JOB ASSIGNMENT AND SCHEDULING PROBLEM

The scheduling problem investigated in this thesis arises when a set of PCB

batches are required to be processed by multiple assembly lines. In this research, the

problem is named as the Multi-Line Scheduling Problem (MLSP). The problem is to

simultaneously determine the assignment of jobs to assembly lines and the

sequencing of jobs in each line, so that the makespan is minimized while meeting

due date requirement. This section surveys the literature relating to the line

assignment and scheduling problem in PCB assembly. Because the Multi-Line

Scheduling Problem (MLSP) is found to be much similar to the Parallel-Machine

Scheduling Problem (PMSP), literature relating to the PMSP is also discussed.

2.4.1 The line assignment problem in PCB assembly

In the literature, most researchers mainly focused on solving the line

assignment problem without considering the due dates of the jobs. The line

assignment problem is aimed to improve the production efficiency through

appropriate assignment of jobs to lines. Even without considering the due date

requirement, the line assignment problem is complex due to the job and line

dependent process times.

Balakrishnan and Vanderbeck [Bal99] considered the line assignment

problem in a high-mix, low-volume environment. With the use of a partial setup

policy, the objective of the problem is to minimize the setup cost while adding an

upper-bound on the allowed workload per line. They established an integer

CHAPTER 2: LITERATURE REVIEW 30

programming model for the problem and proposed a heuristic method based on

column generation.

Ellis and Bhoja [Ell02] considered the line assignment problem together with

the component allocation problem. They solved the two problems in a decomposed

manner. They stated that by solving the component allocation problem the cycle time

for each line can be obtained. For the line assignment problem, they considered both

the objective of minimizing the total line time (total production time for all the lines)

and the objective of balancing the workload across the lines. They formulated the

problem as a mixed-integer programming (MIP) model and solved it using an MIP

solver with certain optimality tolerance.

Ji and Ho [Jip05] also addressed the line assignment problem with the

objective of minimizing the total production time. A PCB batch is allowed to be split

and produced on different lines. Similar to the model proposed by Balakrishnan and

Vanderbeck [Bal99], an upper-bound is set for the allowed workload per line. They

stated that assignment of a small quantity of boards to a line was impractical and

should be associated with penalty in the objective function. They proposed a genetic

algorithm which was shown to be able to solve the problem effectively and

efficiently.

Çatay et al . [Çat06] considered the job assignment problem in an open shop

environment in which the machines were decoupled and each PCB job could have

more than one operation to be processed by different machines. They proposed a

three step hierarchical scheduling methodology for solving the problem. However, as

CHAPTER 2: LITERATURE REVIEW 31

stated by the authors, the flow-line organization of machines, as investigated in this

thesis, is more typical for most PCB manufacturers.

Feo and Bard [Feo95] seem to be the only researchers who consider due date

constraints in the scheduling problem for PCB assembly. They developed a greedy

constructive heuristic for solving the problem. In the heuristic, a composite of slack

time and process time are used for the greedy function during the solution

construction. The users are allowed to rank the schedules obtained in multiple runs of

the heuristic according to their own objectives, e.g., weighted throughput and

weighted tardiness.

Comparatively, the multi-line scheduling problem (MLSP) investigated in

this research involves some practical constraints and considerations that have been

neglected in related research in the literature, which can be described as follows.

First, most researchers do not consider the due dates of the jobs. A realistic

objective of the scheduling problem should not only consider improving production

efficiency, but also due date requirement. In addition, each job may have its ready

time due to reasons like material availability. For most PCB manufacturers, these

time constraints are practical. Without considering the ready times and due dates in

the scheduling model, the desired efficiency cannot be achieved in real production.

On the other hand, these time constraints may greatly increase the complexity of the

scheduling problem [Mod01] and necessitate an efficient solution method.

Second, the setup (or transition) time for a job on an assembly line may

depend on the job that is previously processed on the machine. In an investigated

PCB manufacturer, for example, the PCBs are classified into two types: those meet

CHAPTER 2: LITERATURE REVIEW 32

the RoHS (Restrict of Hazardous Substances) compliance and those do not. The

setup time for an RoHS job that immediately follows a non-RoHS job is longer than

the setup time otherwise. Therefore, the setup time can be seen as sequence

dependent, which adds extra complexity to the problem.

Third, there may be precedence requirements between the jobs. For example,

it is common for both sides of a PCB to be processed. Precedence constraints exist

for the two jobs, which process each side of the same board.

All the above considerations are realistic for many PCB manufacturers and

should be considered in the scheduling problem. However, to the best of our

knowledge, such a specific multi-line scheduling problem in PCB assembly has not

been investigated in the literature.

2.4.2 The parallel-machine scheduling problem

Based on the investigation on other production scheduling problems in the

literature, it is found that the Multi-Line Scheduling Problem (MLSP) investigated in

this research is much akin to the Parallel-Machine Scheduling Problem (PMSP), if

each assembly line in the MLSP is considered as a single machine.

The parallel-machine scheduling problem has been intensively studied in the

literature. A survey on the literature relating to the parallel-machine scheduling

problems is presented in this section, followed by the discussion on the gap between

the multi-line scheduling problem in PCB assembly and the parallel-machine

scheduling problems which have been studied in the literature.

CHAPTER 2: LITERATURE REVIEW 33

The Parallel-Machine Scheduling Problem (PMSP) considers scheduling a set

of jobs Ji (i = 1, …, n) on a set of parallel machines Mj

There are many performance criteria to be considered when solving the

parallel-machine scheduling problem. The criteria can be classified into two types,

i.e., the criteria based upon completion time measures, and the criteria based upon

due date measures, while the latter greatly increases the complexity of the scheduling

problem [Mok01].

 (j = 1, …, m) to optimize a

certain performance measure [Mok01]. Each job can be completed by any one of the

m machines.

Based on the machines, the PMSP can be divided into three types, i.e.,

identical, uniform, and unrelated [Che90]. For the identical machines, the process

time for a job is independent of the machine which processes it; for the uniform

machines, each machine has a different speed, sj (j = 1, …, m) and the process time

for a job is the basic job process time divided by the machine speed, pij = pi/sj; for

unrelated machines, there is no particular relationship among process time values for

the jobs and thus a matrix pij

For the multi-line scheduling problem in PCB assembly, the process time for

a job is dependent on the assigned line and there is no particular relationship among

the process time values for the jobs, so the multi-line scheduling problem is more

similar to the unrelated parallel-machine scheduling problem.

 (i = 1, …, n; j = 1, …, m) for the process times is

needed.

Sotskov and Shaklevich [Sot95] stated that the identical parallel-machine

scheduling problem with makespan minimization, which is a relatively easy type of

CHAPTER 2: LITERATURE REVIEW 34

PMSP, is NP-hard. It is unlikely that polynomial algorithms may exist to solve the

problem unless P = NP [Coo71, Kar72].

Exact algorithms are available mainly for the identical PMSP, for example,

the branch and bound algorithms [Del95; Elm74; Bar77; Sar88; Bel94; Yal02; Nes08;

Shi08], and the dynamic programming [Rot66; Law69; Gra79; Len80; Leu82].

However, as mentioned by Mokotoff [Mok01], these enumerative algorithms can

only solve some small-sized problem instances. Furthermore, the unrelated parallel-

machine scheduling problems are much more difficult than identical or uniform

machine scheduling problems [Mar97].

Recently, Bard and Rojanasoonthon [Bar06] developed a branch-and-price

algorithm for unrelated PMSP and successfully solved many 100-job instances.

However, their problem has an uncommon objective which is to maximize the

weighted number of jobs scheduled, where a job in a higher priority class has more

weight or value than a job in a lower priority class.

Most researchers focus on developing heuristic methods for solving the

parallel-machine scheduling problems. Hübscher and Glover [Hüb94] presented a

tabu search for the identical PMSP to minimize the makespan. They introduced an

influential diversification which improves the behavior and quality of the solutions

obtained by the general tabu search. França et al . [Fra94] proposed a composite

heuristic and stated that the heuristic could achieve near-optimal solutions to the

testing instances in short computational times. Scutella et al. [Scu00] considered the

same problem by introducing new local search techniques whose neighborhood

structure is based on multiple exchanges of jobs among machines. They showed that,

CHAPTER 2: LITERATURE REVIEW 35

by means of the proposed algorithms, near optimal solutions could be obtained when

the running time was not important and satisfactory ones could be found rapidly.

For the unrelated PMSP to minimize the makespan, van de Velde [Van93]

presented a heuristic based on an iterative local search. Glass et al . [Gla94] and

Piersma and van Dijk [Pie96] presented heuristics using local search which were

shown to be more efficient. Glass et al . [Gla94] compared the relative performance

of Genetic Algorithm (GA), Simulated Annealing (SA) and Tabu Search (TS) on the

same problem. They stated that for these three algorithms, TS generates slightly

better solutions in a short time, and GA and SA improves as the time limit increases.

Piersma and van Dijk [Pie96] developed a new local search algorithm for a similar

problem. They showed that a tabu search with an efficient neighborhood search

strategy performed better than general local search algorithms. Srivastava [Sri98]

also presented a tabu search which was shown to be very effective to provide near

optimal solutions. Sourd [Sou99] presented two algorithms based on large

neighborhood improvement procedures. One is based upon a partial and heuristic

exploration of a search tree, and the other one is based on the duality approach of van

de Velde [Van93]. Frangioni et al. [Fra04] proposed new local search algorithms for

the same problem. They stated that the new approaches have better performance than

the branch-and-bound algorithm proposed by Dell’Amico and Martello [Del95] and

the heuristic proposed by França et al . [Fra94]. Rojanasoonthon and Bard [Roj05]

considered the unrelated PMSP to minimize the weighted number of scheduled jobs,

where a job in a higher priority class has more value than a job in a lower priority

class.

CHAPTER 2: LITERATURE REVIEW 36

As the time constraints like due date constraints are presented, the complexity

of the scheduling problem will be greatly increased [Mok01]. Bean [Bea94]

developed a genetic algorithm for the identical multiple machine problem to

minimize the total tardiness, introducing random keys representation scheme to

maintain feasibility from parent to offspring. Sivrikaya-Serifoglu and Ulusoy [Siv99]

provided two genetic algorithms for a more complex problem that appears when

scheduling a set of independent jobs, with different due dates and ready times,

sequence-dependent setups, on a set of identical parallel machines with the objective

of minimizing the sum of weighted earliness and tardiness. Suresh and Chaudhuri

[Sur96] proposed a tabu search algorithm considering a bicriteria objective to

minimize the makespan and maximum tardiness. For the scheduling problem to

minimize the maximum lateness on unrelated machines, a tabu search based on the

adaptive memory search was presented by Smutnicki [Smu98]. Armentano and de

França Filho [Arm07] considered the uniform PMSP to minimize the total tardiness

and proposed an adaptive memory-based GRASP (Greedy Randomized Adaptive

Search Procedure) approach for the problem. Anghinolfi and Paolucci [Ang07]

investigated the uniform PMSP with ready times and sequence-dependent setup

times to minimize the total tardiness. They proposed a hybrid metaheuristic approach

which integrates several features from tabu search (TS), simulated annealing (SA)

and variable neighbourhood search (VNS). Zhou et al . [Zho07] proposed a new ant

colony approach for solving the unrelated PMSP to minimize the total weighted

tardiness and compared the results with a general ant colony algorithm.

CHAPTER 2: LITERATURE REVIEW 37

As mentioned earlier, the Multi-Line Scheduling Problem (MLSP) in PCB

assembly can be seen as a special type of unrelated parallel-machine scheduling

problem (PMSP) with sequence-dependent setup times and precedence constraints.

The objective of the MLSP considers both the production efficiency and due date

requirement. The unique objective and additional constraints add extra complexity to

the NP-hard unrelated PMSP. Both a complete mathematical model and an efficient

solution method are required for the investigated multi-line scheduling problem.

2.5 HEURISTIC METHODS

Most of the optimization problems in PCB assembly are difficult

combinatorial optimization problems. By allowing enough time, an exact algorithm

can produce an optimal solution for a combinatorial optimization problem of small

size. However, these exact algorithms are usually inefficient due to the time they

require. In practice, a heuristic solution is highly desirable. In this section, a survey is

conducted on the heuristic methods for combinatorial optimization. The heuristic

methods that have been used for solving the planning problems in PCB assembly in

the literature are also discussed.

2.5.1 Heuristic methods for combinatorial optimization

Many surveys of heuristic approaches such as [Sil80] and [Zan89] attempt to

classify the heuristics into several broad categories: construction methods (usually

for generating initial solutions), neighborhood search (improvement) techniques,

relaxation techniques, etc. The other common classification of heuristics is single

CHAPTER 2: LITERATURE REVIEW 38

solution approaches and population-based approaches [Blu01]. Basic local search

(deterministic iterative improvement), simulated annealing, tabu search etc., are

examples of single solution approaches, whereas genetic algorithms, ant colony

algorithms, evolutionary strategies, etc., are examples of population-based

approaches.

A constructive heuristic (also known as a greedy approach) constructs a

solution based on some criteria. The aim of a constructive heuristic is to build a

solution from scratch. Some of the common constructive heuristics are nearest

neighbor, multiple fragment and insertion heuristics [Joh90]. These approaches are

often simple but practical as an initialization method that can produce an initial

solution for starting the local search. Many constructive heuristics are problem-

specific in order to satisfy the problem constraints.

Comparatively, a neighborhood search is more general. It attempts to

improve the solution by exploring the neighborhood of the present solution [Aar97].

The neighborhood of a solution is the set of solutions that are close to the current

solution in some sense. The important decision in a neighborhood search is of

deciding the neighborhood structure and how to explore solutions in the

neighborhood. A basic neighborhood search begins the search from a given solution,

and then iteratively tries to improve the solution quality by applying move operators.

The search stops when it gets trapped in a local optimum or the stopping criteria are

met.

Traditional neighborhood search methods can generate good solutions

efficiently at a reasonable computational cost but without being able to guarantee

CHAPTER 2: LITERATURE REVIEW 39

optimality [Ree95]. More advanced heuristic approaches, called metaheuristics,

guide local search heuristics to escape from local optima [Ree95]. Some of the

common metaheuristics are Tabu Search (TS), Simulated Annealing (SA), and

Genetic Algorithms (GA).

Tabu search (TS), primarily suggested by Glover and Hansen [Glo89, Glo90],

makes use of memory structures and incorporates the deterministic improvement

algorithm (i.e. the descent method) with the possibility of accepting a worse solution

in order to escape from local optima [Aar97]. It is a systematic search approach that

exploits adaptive memory structures [Glo90]. The best legal neighbor of the current

solution is always selected even if that solution is worse than that of the current

solution. To prevent a cyclic move (moving back to a recently visited solution), the

set of legal neighbors is restricted by a tabu list. However, an illegal neighbor that

attains a certain aspiration level can still be accepted. The flowchart of a standard TS

method is illustrated in Figure 2.2 [Glo93].

CHAPTER 2: LITERATURE REVIEW 40

Figure 2.2 Flowchart of a standard tabu search method

Simulated annealing (SA), first proposed by Kirkpatrick et al . in 1983

[Kir83], is motivated from the analogy between combinatorial optimization problems

and the physical annealing of solids (crystals) [Aar89] in which a solid is heated until

it melts and is then slowly cooled to a state of minimum energy such that a uniform

crystal structure, that is said to be in ground state, can be developed. The analogy

associates the states of the physical system with the set of solutions, the physical

energy of the solid as the objective function while the ground state is a globally

optimal solution. The main idea of simulated annealing is to accept all improving

solutions while probabilistically accepting worse solutions based on a control

parameter (i.e. temperature in physical annealing). A cooling schedule is a vital

component of the simulated annealing algorithm. It includes the upper and lower

Initial solution

Create neighborhood
solutions

Select the best
admissible solution

Terminate? Update memory
lists

Final solution

Yes

No

Evaluate the solutions

CHAPTER 2: LITERATURE REVIEW 41

limit of the temperature parameter and the rate at which the temperature is reduced.

The algorithm begins with a high temperature, which means a high probability of

accepting worse solutions. As the search progresses, the temperature is gradually

decreased, as such reducing the probability of accepting non-improving solutions. At

temperature zero, the algorithm only accepts improving solutions. The algorithm

ends when a stopping condition is met. Figure 2.3 summarizes the general SA

procedure [Pha00].

Figure 2.3 Flowchart of a standard simulated annealing method

Evaluate the solution

Accept?

Update the solution

Change
temperature?

Terminate?

Decrease temperature

Generate a new
solution

Final solution

Yes

Yes

Yes

No

No

No

Initial solution

CHAPTER 2: LITERATURE REVIEW 42

Genetic algorithms (GA), originally developed by Holland in the 1960’s, are

a population-based method inspired by the principles of natural evolution [Man99].

The algorithm starts the search with a population of individual chromosomes

(solutions) generated randomly or heuristically. In each generation (iteration), the

population is evolved using genetic operators such as mutation and crossover to

produce offspring (new individuals of the next generation). Mutation is a unary

operator that introduces random modifications of the chromosome in order to add

diversity to the population. The crossover operator combines two parents (individuals

from the current generation) to generate new offspring. The crossover operation aims

to propagate good solution components from parents to offspring. The selection

mechanism usually chooses the parents based on survival of the fittest individuals.

That is, the better fitness values are more likely to be chosen to undergo reproduction

in order to produce offspring. The whole procedure is shown in Figure 2.4 [Dav91].

CHAPTER 2: LITERATURE REVIEW 43

Figure 2.4 Flowchart of standard genetic algorithms

2.5.2 Heuristic methods used in PCB assembly

Because most of the planning problems in PCB assembly are difficult

combinatorial optimization problems, most researchers rely on heuristic methods for

solving these problems.

For the machine optimization problems which are NP-hard, many researchers

proposed specific heuristic methods. Ball and Magazine [Bal88] proposed a heuristic

approach for solving the placement sequencing problem. Moyer and Gupta [Moy96a]

Initial solutions

Evaluate the solutions

Select solutions for the next
generation

Terminate?

Final solution

Yes

No

Select some solutions

Generate the offspring by
crossover and mutation

CHAPTER 2: LITERATURE REVIEW 44

tackled the feeder arrangement problem by using two heuristic methods. For the

more difficult combined problem of feeder arrangement and placement sequencing,

many researchers also relied on heuristic methods [Cra90; Gru04; Moy96b; Yeo96;

Ellis01].

Besides traditional heuristic methods, many researchers proposed

metaheuristics for solving the machine optimization problems. Among these

metaheuristic methods, genetic algorithms have been used extensively and

demonstrated successful applications. For example, Khoo and Loh [Kho00]

developed a prototype genetic algorithm to solve the machine optimization problems

for a Fuji FCP-IV machine. Wang et al. [Wan99] argued that their genetic algorithm

method performed as well as a human expert in optimizing the feeder arrangement

problem for a Fuji QP-122 machine. Several researchers used genetic algorithms to

solve the integrated problem of feeder arrangement and placement sequencing and

achieved good results [Leu93; Ong99; Deo02; HoW03; HoW04]. Sun et al. [Sun05],

Kulak et al [Kul07], and Ho et a l. [How07] also relied on genetic algorithms for

solving the optimization problems for collect-and-place machines. Besides genetic

algorithms, simulated annealing was used by Tirpak et al . [Tir00] to solve the

optimization problems for a dual-gantry collect-and-place machine. Csaszar et al .

[Csa00a] proposed a tabu search and a specific heuristic to optimize a multi-station

placement machine.

Heuristic methods have also been used to solve the component allocation

problem [Cra97; Ben90; Gro00; Lap00] and the line assignment problem [Bal99;

Feo95]. Nevertheless, genetic algorithms have also demonstrated successful

CHAPTER 2: LITERATURE REVIEW 45

applications for these high-level problems. Ji et al . [JiP01] proposed a genetic

algorithm to solve the component allocation problem which obtained less than 1%

difference between the best found solutions and the optimal solutions. For the line

assignment problem, Ji and Ho [Jip05] developed a genetic algorithm and obtained

good results. They stated that the proposed genetic algorithm could solve the

problem both effectively and efficiently.

2.6 SUMMARY

In this chapter, an extensive literature review on the planning problems in

PCB assembly, i.e., the machine optimization problems, the component allocation

problem, and the line assignment and scheduling problem, has been conducted. As

all these problems are much difficult combinatorial optimization problems, literature

relating to heuristic methods for combinatorial optimization problems has also been

reviewed. Some remarks concerning the reviews can be summarized as follows.

1. The machine optimization problems have been investigated intensively. Most

researchers rely on heuristic methods for solving these problems due to the

great complexity of the problems. Nevertheless, a generally applicable

solution approach is not available because of the large variety of machine

types and ever-advancing technologies. Most of the machine vendors have

provided optimization software for their own machines, which exploits the

technological characteristics of their machines.

2. The component allocation problem (CAP) has also been investigated by quite

a few researchers. However, no effective approach has been proposed to

CHAPTER 2: LITERATURE REVIEW 46

consider the interaction between the component allocation problem and the

lower-level machine optimization problems. The objective values for the

component allocation problem algorithms proposed in the literature are

mainly based on the over-simplified estimate of process time for each

machine. Therefore, the solutions obtained by the current CAP algorithms are

not good enough due to the estimation error.

3. The line assignment and scheduling problem in PCB assembly has received

relatively few attentions in the literature. Most of the relative research focuses

on the line assignment problem for improving the production efficiency,

while neglecting some realistic constraints like the ready time and due date

for each job. These constraints may significantly increase the computational

complexity of the problem. An efficient heuristic method is required.

4. The multi-line scheduling problem (MLSP) in PCB assembly investigated in

this research is found to be much similar to the well-known unrelated

parallel-machine scheduling problem (PMSP). However, the sequence-

dependent setup times, the job precedence constraints, and the unique

objective which considers both production efficiency and due date

requirement, may greatly increase the complexity of the problem. A complete

mathematical model and an efficient solution method for the specific MLSP

have not been established in the literature.

5. Due to the simplicity and flexibility, genetic algorithms have been used

extensively and demonstrated successful applications in solving the planning

problems in PCB assembly. In this project, the genetic algorithms will also be

CHAPTER 2: LITERATURE REVIEW 47

proposed to solve the investigated planning problems, i.e., the component

allocation problem (CAP), and the multi-line scheduling problem (MLSP).

In the next chapter, a detailed description of the component allocation

problem (CAP) will be given. An effective solution strategy will be proposed.

Experimental tests on some problem instances will be conducted to examine the

effectiveness and efficiency of the proposed method.

 48

CHAPTER 3

THE COMPONENT ALLOCATION PROBLEM (CAP)

3.1 INTRODUCTION

When a batch of PCB is assigned to an assembly line for processing, the

Component Allocation Problem (CAP) is required to be solved to allocate

components required by the PCB to the placement machines in the line, with the

objective of minimizing the makespan or cycle time.

As discussed in Section 1.2, the component allocation problem is dependent

on the solutions to the lower-level machine optimization problems, which eventually

determine the actual process time for each machine. In this chapter, a decomposed

solution strategy is proposed for solving the Component Allocation Problem (CAP).

The solution strategy relies on a so-called placement time estimator, which can

accurately estimate the placement time for a machine without solving the machine

optimization problems. Based on the placement time estimator, an algorithm or

heuristic can be developed to solve the component allocation problem effectively

without tackling the machine optimization problems.

The structure of this chapter is organized as follows. The component

allocation problem is formulated and described in detail in Section 3.2. The

decomposed solution strategy is proposed and described in detail in Section 3.3. The

development of a placement time estimator is described in Section 3.4, followed by

the development of a specific genetic algorithm for solving the component allocation

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 49

problem in Section 3.5. Numerical results on solving some problem instances are

presented in Section 3.6. The main work of this chapter is summarized in Section 3.7.

3.2 PROBLEM FORMULATION

If a batch of a specific PCB is assigned to an assembly line with multiple

placement machines for production, one should decide the allocation of the

components required by the PCB to the placement machines in the line so that the

process time on the bottleneck machine is minimized. In the literature, this problem

is called the Component Allocation Problem (CAP).

In practice, the components of the same type may be split and assigned to

more than one machine in the line, which is called feeder duplication. However,

some manufacturers prefer not adopting feeder duplication due to the expensiveness

of the feeders. Feeder duplication is not considered in this research. Without feeder

duplication, the component allocation problem is reduced to allocating the

component feeders (with each feeder supplying components of a specific type) to the

machines.

Figure 3.1 shows an example for the component allocation problem. In the

example, a batch of PCB with 22 components of 8 different types is to be assembled

by an assembly line with 4 placement machines. Each machine in the line is

responsible for placing components of 2 types, so that the greatest process time

among the 4 machines is minimized. For a realistic PCB, there may be hundreds of

components and dozens of component types, and the component allocation problem

is very complicated.

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 50

Figure 3.1 An example for the component allocation problem

A complete mathematical formulation is established in this chapter. Let j =

1, …, J denote the component types required by the PCB and let Ck be the feeder

capacity on machine k. The following 0-1 decision variables are introduced:

xjk : = 1, if the feeder for component j is set up on machine k; and = 0,

otherwise.

Let x denote the component allocation represented by all xjk, and tk(x) denote

the process time for machine k (k = 1, …, K) induced by the component allocation x.

With X denoting the set of feasible component allocations, a mathematical model for

the component allocation problem can be written as:

()xtkKkXx ,...1
maxmin
=∈

 (3.1)

Subject to: ∑
=

=
K

k
jkx

1
1 for all j, (3.2)

Line

machine 1 machine 2 machine 3 machine 4

PCB

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 51

 ∑
=

≤
J

j
kjk Cx

1
 for all k, (3.3)

 }1,0{∈jkx for all j, k. (3.4)

(Model 3-1)

Not considering the minimax operator in the objective function (3.1), the

model could still be highly nonlinear due to the nonlinear relationship between ()xtk ,

the process time for machine k and the component allocation x. In fact, the actual

value of the process time for each machine is determined by the solutions to the

machine optimization problems, i.e., the feeder arrangement problem and the

placement sequencing problem for the machine, both of which are NP-hard.

Integration of the component allocation problem with these machine

optimization problems will result in a very complicated model, which is difficult

even for heuristic methods [Cra02]. Therefore, an effective and efficient solution

strategy is required.

3.3 A SOLUTION STRATEGY

In this section, a decomposed solution strategy is proposed for solving the

component allocation problem, without tackling the lower-level machine

optimization problems, i.e., the feeder arrangement problem and the placement

sequencing problem.

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 52

The proposed solution strategy is inspired by a similar solution strategy for

solving the so-called Location Routing Problem (LRP), which is also a hierarchical

planning problem in logistics [Lap88].

The location routing problem can be defined as follows: Customers

distributed in a planning area are planned to be served by several facilities. A feasible

set of potential facility sites and expected demands of each customer are given. Each

customer is assigned to a facility which will supply its demand. The shipments of

customer demand are carried out by vehicles which are dispatched from the facilities,

and operated on routes that include multiple customers. There is a fixed cost

associated with opening a facility at each potential site, and a distribution cost

associated with any routing of vehicles, which includes the cost of acquiring the

vehicles used in the routing, and the cost of delivery operations. The cost of delivery

operations is linear in the total distance traveled by the vehicles. In the LRP, the

objective is to simultaneously seek the optimal location of facilities, the optimal

allocation of customers to facilities, and the associated minimum-cost routes to serve

the customers.

Chien [Chi93] proposed a nested heuristic approach for the LRP using some

TSP (Traveling Salesman Problem) optimal tour estimators, which can accurately

estimate the traveling distance of the optimal tour for a TSP without solving the TSP.

With an accurate and fast TSP estimator, the LRP can then be decomposed into a

modified location problem with the routing costs approximated by the estimator, and

a multi-depot vehicle routing problem once the location sites have been determined.

It was shown that this nested approach reduces the complexity of solving the location

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 53

and the routing problems simultaneously, and hence, may provide good feasible

solutions to the LRP in less computation time.

The TSP optimal tour estimators have been well investigated. Most of these

TSP optimal tour estimators are based on linear regression models that take into

account the most important factors, including the number of visited locations and the

area of the service region.

The following equation shows an example of an effective TSP tour estimator

[Kwo95].

T * = nand /5696.00212.2 + (3.5)

where

T * is the estimated length of the optimal tour for a TSP,

d is the average straight-line distance from the customers to the depot,

n is the number of points (customers plus depot) in a TSP

a is area of the smallest rectangle that covers all the customer locations

It is well known that for many placement machines, the placement

sequencing problem can be formulated as a TSP while the feeder arrangement of the

machine is fixed [Lei89; Moy97]. It may be possible to develop a placement time

estimator, which can estimate the placement (process) time without solving the

machine optimization problems. Similar to the location routing problem, the

component allocation problem can then be solved as a general minimax problem

(Model 3-1), with the process time for each machine approximated by the placement

time estimator.

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 54

Based on the above discussion, the solution strategy for the component

allocation problem can be proposed as follows:

 Develop a regression-based placement time estimator which can yield

accurate estimates of placement time without solving the machine

optimization problems.

 Develop a specific genetic algorithm for solving the component

allocation problem, with the solutions evaluated using the placement time

estimator.

In the following sections, the proposed solution strategy is implemented and

described in more details. First, the effectiveness of the estimator is examined by

developing a placement time estimator for a turret-type placement machine. After

that, a specific genetic algorithm for the component allocation problem is devised,

using the placement time estimator to evaluate solutions. The effectiveness and

efficiency of the solution method is examined through solving problem instances.

3.4 A REGRESSION-BASED PLACEMENT TIME ESTIMATOR

As discussed in Section 1.1, there are different types of placement machines

available in the industry. The technological characteristics and operation modes may

differ from a machine type to another. Therefore, specification and calibration of the

placement time estimators should be different for different machine types. In this

section, a placement time estimator will be developed specifically for a turret-type

placement machine, Fuji CP732. Nevertheless, the methodology is general for

developing the placement time estimators for different machine types.

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 55

Like the TSP tour estimator shown in (3.5), the proposed placement time

estimator is based on linear regression method. For most regression applications, it

requires decisions on which variables to be included in the model, the form the

variables should take (for example, x, x2, 1/x, etc), and the functional form of the

model [Raw98]. This process is called model specification. In order to specify a most

suitable model, the characteristics of the investigated placement machine should be

examined.

The development of the placement time estimator involves the following

process. First, the placement process of the investigated machine is analyzed and the

influential factors to the placement time are identified. Then, the functional form of

the regression model is decided. After that, experimental tests are conducted for

collecting the required data for model calibration. Finally, the model is fit on the

collected experimental data, and a statistical analysis is conducted.

3.4.1 The placement process and influential factors

The Fuji CP732 placement machine is illustrated in Figure 3.2. The

placement device is a turret with 16 stations. There is a placement head on each

station. Each pick-and-place cycle consists of two stages. In the first stage, the

placement head on station 1 picks a component from a component feeder on the

feeder carrier while the placement head on station 9 places another one onto the PCB.

The time for the placement head to pick a component from the positioned feeder

carrier and the time for the placement head to place a component on the positioned

PCB are fixed and equivalent. This time is referred to as the fixed pick and place

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 56

time (FPP). In the second stage, the turret rotates by 22.5º. At the same time, the

feeder carrier moves along X axis to locate the required feeder under station 1, and

the PCB holder moves to locate the next placement location under station 9. So, the

time for the second stage is decided by the longest one among the PCB movement

time, feeder carrier movement time, and turret rotation time (which is usually the

shortest). The aforementioned cycle is repeated until the placement for the current

PCB is finished.

Figure 3.2 Illustration of a Fuji CP732 machine

As discussed in Chapter 1, the feeder arrangement problem (FAP), which

determines the location of different component feeders on the feeder carrier, and the

placement sequencing problem (PSP), which determines the component placement

sequence, are two fundamental problems for machine optimization. The two

PCB

1

Turret

2

3

4

6

7

8
9

10

11

12

13

14

15

16

Camera

Component feeders

Feeder carrier

X

Y

5

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 57

problems are intertwined with each other to determine the feeder movement time and

the PCB movement time in each pick-and-place cycle. The objective of the two

machine optimization problem is to minimize the total process time for a PCB.

Obviously, the two machine optimization problems are highly dependent on

the characteristics of the currently processed PCB, e.g., the locations and number of

the components on the board. These factors are influential to the final process time,

which is the objective value for the machine optimization problems. Therefore, the

placement time for the PCB may be estimated through considering these factors.

Based on the above observation, the factors affecting the placement time

should be included in the estimator. Firstly, the number of the pick-and-place cycles

is determined by the total number of components. For this reason, the number of

components to be placed may have impact on the placement time. Secondly, the

closeness of the component locations on the board influences the moving time of the

PCB holder and thus affects the placement time. Thirdly, the number of component

types influences the number of required feeders and thus affects the moving time of

the feeder carrier. These three factors are most important and should be considered in

the development of the placement time estimator. Since the impacts of these factors

on the placement time are different, the model should be appropriately specified to

reflect these impacts.

3.4.2 Model specification

Suppose on a PCB, there are a set of N components belonging to F

component types to be placed by a machine. Let A denote the area of the smallest

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 58

rectangle that covers all the components. Thus, A reflects the closeness of the

component locations to some extent. As discussed earlier, all the three factors, N, F,

A, may influence the placement time.

However, the variable, A, may not have linear effect on the placement time.

Similar to the TSP tour estimator (3.5), other two variables are proposed: AN and

AFN . The introduction of these two variables can be explained as follows. The

term NA / reflects the average closeness of all the components, while the term

NAF / reflects the average closeness of the components of the same type. In

addition, it can be inferred that the marginal effect of the component closeness on the

placement time may increase with the number of the components. For this reason,

two interaction terms NAN / and NAFN / (that is, AN and AFN) may be

more appropriate as potential estimator variables than A for the linear regression

model. This inference has been illustrated through preliminary results.

Totally four variables, N, F, AN , and AFN are considered as candidate

variables in the linear regression model. The model for the estimator with all the

candidate variables is given as follows:

AFbNAbFbNbbCT N43210 ++++= (3.6)

In the above model, there are 4 potential estimator variables, including

different forms of the same basic variables. However, too many variables may cause

overfitting, which reduces or destroys the ability of the model to generalize beyond

the fitting data. In order to avoid overfitting of the regression model, the all-possible-

regressions procedure is used, i.e., all possible regression models with every possible

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 59

subsets of variables are tested and compared. The best subset of variables can then be

identified. This will be discussed in Subsection 3.4.4.

3.4.3 Data collection

To calibrate the regression model, a data set is required. In this section,

experimental tests are conducted to obtain the data. For this purpose, some PCBs are

generated randomly and the placement time values for these PCBs are collected.

Nowadays, most of the machine vendors provide machine optimization

software to determine the feeder arrangement and placement sequence for the

placement machine. After deciding the feeder arrangement and placement sequence,

the software can then simulate the placement process and calculate the placement

time. Although the simulation process is much time-consuming, the simulated

placement times are much accurate. For practical considerations, these simulated

placement times obtained by the software will be used for fitting the estimating

model.

It should be noted that the placement time estimator based on this data is not

to estimate the optimal placement time because the machine optimization software

cannot guarantee optimal solutions to the machine optimization problems. Instead,

the estimator is to estimate the placement time that is achieved by the solutions to the

machine optimization problems obtained by the vendor software. This is nontrivial

because the machines will operate according to the feeder arrangement and the

placement sequence obtained by the vendor software, rather than optimal

optimization solutions, and the placement times obtained by the vendor software

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 60

represent the realistic placement times in the shop floor. On the other hand, if the

vender software is adjusted or new optimization methods are used, the estimator

should be built again with new placement time data.

Based on the above discussion, the generated PCBs will be input into the

machine software, i.e., Fuji Flexa, and relative placement time values are obtained.

Before the discussion on the experiments for collecting the placement time data, the

following assumptions are made.

 The speed setting for the PCB holder is at high-speed for all the

components. Usually, the moving speed of the PCB holder is set to be

slower for larger components in order to prevent them from slipping

away from the board. However, a turret-type placement machine usually

processes small components and uses a high-speed setting.

 The placement times do not include the board loading time and the

fiducial time (for coordinate calibration before placement), both of which

are very small and can be easily added to the final process time.

In the experiments, 100 virtual PCBs are generated. For each of the 100 PCBs,

The width and the length of a PCB are generated independently and uniformly within

the range [100mm, 500mm]. The number of components is generated independently

and uniformly within the range [50, 800]. For each component, its x coordinate on

the board is generated randomly within the range of [0, width] and its y coordinate is

generated randomly within the range of [0, length].

The number of component types for a PCB is generated independently and

uniformly within the range [5, 30]. In order to reflect the characteristics of realistic

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 61

PCBs, the usage pattern of different component types is not uniform. For each

component type, a so-called usage frequency index is generated randomly within (0,

1). The roulette wheel selection method is used for the determination of the type for

each component. Let pi be the usage frequency index for component type i. For each

component on the board, a random number R is generated within (0, ∑ ip). The type

of this component, t, is determined, such that:

∑∑
==

<<
t

i
i

-t

i
i pRp

1

1

1

. (3.7)

It should be noted that the actual number of component types used by a PCB

may be less than the number of all component types, because some component types

may not be used at all.

The data of the 100 PCBs are input into the vendor software, Fuji Flexa, and

the placement time values are obtained. The obtained data are summarized in Table

3.1. The detailed information of the first PCB (with 61 components) is shown in

Appendix I.

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 62

Table 3.1 Characteristics and placement time values (in seconds) for the 100 PCBs

PCB N a F b A c CT d PCB N a F b A c CT d
1 61 7 155400 12.15 51 394 17 135954 53.95
2 63 14 114285 13.03 52 398 11 72072 44.37
3 64 18 23210 11.5 53 400 22 159676 60.18
4 66 23 48792 12.36 54 423 24 57360 51.29
5 70 10 55419 11.56 55 448 7 28890 40.04
6 72 16 187056 16.03 56 463 24 45384 53.28
7 76 21 50304 13.43 57 466 14 90584 54.8
8 82 19 88550 15.36 58 472 23 80301 59.98
9 103 14 66005 16.99 59 473 27 186333 71.24
10 107 6 65988 14.97 60 503 13 88550 56.16
11 110 7 152852 19.31 61 508 15 155628 66.24
12 112 11 51156 15.83 62 517 14 79866 56.11
13 114 19 27537 16 63 520 21 107797 66.1
14 120 14 206298 22.75 64 533 23 176512 75.96
15 139 16 119798 24.42 65 539 6 179935 57.49
16 148 6 124608 20.83 66 543 16 29150 52.35
17 193 27 77714 31.78 67 575 15 205480 75.06
18 213 15 68705 29.73 68 582 28 56000 67.42
19 213 27 84413 34 69 606 11 63360 61.78
20 216 23 123185 35.01 70 609 8 61712 59.06
21 217 12 77592 28.8 71 610 19 50851 64.14
22 224 13 56810 28.09 72 610 27 144189 84.6
23 250 16 29280 28.79 73 620 7 67398 58.15
24 255 11 65411 31.75 74 628 14 153080 75.89
25 258 19 101040 38.32 75 638 23 76544 73.9
26 259 10 86229 33.01 76 643 13 184868 79.62
27 291 16 138408 42.34 77 651 22 92336 76.05
28 291 17 66980 36.38 78 656 23 80832 76.79
29 292 13 91368 37.9 79 656 6 41334 57.88
30 292 9 83616 33.84 80 656 20 163815 85.72
31 301 19 88105 41.35 81 675 28 89579 82.89
32 311 22 177184 50.3 82 690 14 136452 78.4
33 316 15 164592 47.01 83 692 25 197918 97.92
34 317 26 20705 35.21 84 710 17 35035 67.14
35 325 27 43803 40.83 85 719 22 95238 83.68
36 325 17 39610 36.47 86 723 6 162640 74.74
37 333 27 51106 43.35 87 727 9 74868 71.23
38 337 28 88695 48.47 88 730 8 62622 67.19
39 339 9 99880 39.35 89 759 10 66742 72.62
40 340 15 139840 46.52 90 767 7 94363 72.57
41 345 25 49698 44.85 91 774 8 50440 69.84
42 366 15 72128 43.78 92 777 20 51562 78.72
43 367 6 51339 36.12 93 782 28 112812 96.29
44 372 14 37604 39.3 94 782 21 133901 94.72
45 378 23 69136 49.39 95 784 24 17760 71.41
46 382 15 97410 48.61 96 784 14 46364 75.92
47 383 7 57620 38.25 97 790 22 134568 95.74
48 386 23 177508 61.31 98 791 10 210834 89.37
49 386 26 100989 54.68 99 798 25 123060 96.86
50 387 21 159201 56.52 100 800 14 67518 80.22

a number of components on the PCB
b number of component types used by the PCB
c area of the smallest rectangle that covers all the components
d placement time required by the machine to place the components

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 63

3.4.4 Model fitting and statistical analysis

The all-possible-regressions procedure is used for identifying the most

suitable model with the best subset of the candidate variables which are discussed in

Subsection 3.4.2.

All possible regression models with every possible subsets of variables are fit

on the collected data and the results are compared. Table 3.2 summarizes the results

for the best models with the highest R2 (coefficient of determination) for all subset

sizes, which are obtained by MINITAB 14.

Table 3.2 lists for each model the R2, Mallows’ Cp (an assessment statistic

which will be discussed later), the S value (standard error of estimate), and a listing

of the variables in the model. For example, the best one-variable model is a function

of N and produces an R2 value of 89.8; the best two-variable model uses N

and NAF and has an R2 value of 99.9; and so forth. Looking at the R2 values, it can

be seen that this statistic increases rather rapidly going from one to two variables,

and changes very little as more variables are added.

To decide the most suitable model, the Mallows’ Cp (Mallow, 1973) values

are considered here. The Cp statistic is defined as follows:

2)2()(
+−−= pn

MSE
pSSEC p (3.8)

where

MSE is the mean squared error for the full model (3.6),

SSE(p) is the sum of squared errors for the subset model containing p

predictor variables

n is the sample size.

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 64

For any given number of selected variables, larger Cp values indicate models

with larger mean squared error. For any subset model with Cp > (p + 1), there is

evidence of bias due to an incompletely fitting model. On the other hand, if Cp < (p +

1), a model is said to be overfit. It is suggested that the smallest subset model such

that 2(p +1) > Cp > (p + 1) for all model parameter estimates works best (Hocking,

1976). Following this principle, the model with the two variables N and NAF is

the smallest model with suitable Cp = 3.3 and should be the most appropriate model.

Table 3.2 Statistical results for all subset models

p

(number of

variables)

R 2 Cp S
Variables

N F AN AFN

1 0.898 6653.8 7.5432 √

1 0.757 16007.4 11.651 √

1 0.719 18516.7 12.526 √

1 0.641 61950.6 22.870 √

2 0.999 3.3 0.9104 √ √

2 0.961 2506.9 4.7065 √ √

2 0.937 4081.6 5.9634 √ √

2 0.787 14015.2 10.962 √ √

2 0.785 14188.6 11.029 √ √

3 0.999 3.1 0.90459 √ √ √

3 0.999 3.2 0.90523 √ √ √

3 0.993 373.6 2.0016 √ √ √

3 0.787 14000.6 11.012 √ √ √

4 0.999 5.0 0.90891 √ √ √ √

http://en.wikipedia.org/wiki/Parameter�
http://en.wikipedia.org/wiki/Estimates�

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 65

The statistical results for the selected model with variables N and NAF are

shown in Table 3.3. Based on the results, the final form of the regression model is:

NAFNCT 797000.07060.0533.0 ++= (3.9)

The significance value of the F statistic is less than 0.05, which means that

the variation explained by the model is not due to chance. The high value of R2 of

0.999 indicates that the regression model fits the data very well. The standard error

of estimate is only 0.9104, indicating that the model has high accuracy of estimation

and is suitable for estimating the placement time.

Table 3.3 Regression analysis results for the selected model by MINITAB

Predictor Coef SE Coef T P

Constant 0.5326 0.2170 2.45 0.016

N 0.0706135 0.0005198 135.85 0.000

NAFN / 0.00079736 0.00000979 81.43 0.000

S = 0.910399 R-Sq = 99.9% R-Sq(adj) = 99.9%

Source DF SS MS F P

Regression 2 54691 27346 32993.16 0.000

Residual Error 97 80 1

Total 99 54772

Figure 3.3 shows the histogram of standardized residual. The shape of the

histogram approximately follows the shape of the normal distribution, showing that

the normality assumption is not violated.

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 66

Figure 3.3 Histogram of standardized residual by MINITAB

In the literature, most researchers estimate the placement time only based on

the number of components. From Table 3.2, it can be seen that the R2 value for the

model with one variable N is only 0.898, and the standard error of estimate is 7.5432,

much larger than the other models with F and A, too. This indicates that considering

only the component number may yield inaccurate estimate of the placement time.

From the proposed placement time estimator (3.9), some implications can also

be made.

First, the placement time for processing the same number of components may

differ a lot with different number of component types and different closeness degrees

of component locations. For example, the placement time with N = 200, F = 10, A =

10000 mm2 is estimated to be 17.74 seconds and the placement time with N = 200, F

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 67

= 20, A = 20000 mm2 is estimated to be 21.30 seconds. The percentage difference

between the two placement time values for the same number of components is 20%.

Second, for solving the component allocation problem, evenly balanced

solution does not necessarily mean that the line cycle time is minimized. The A

values, which influence the placement time estimation, are dependent on how the

components are allocated to the machines. The placement time estimator developed

in this research considers all the factors that affect the placement time and can yield

fast and accurate estimates of placement time, without solving the machine

optimization problems. It can be used to evaluate the solutions for the component

allocation problem, without adding significant computational efforts.

3.5 A GENETIC ALGORITHM FOR THE CAP

Based on the placement time estimator developed in the previous section, an

algorithm could be developed to solve the Component Allocation Problem (CAP)

without tackling the machine optimization problems.

However, even with the process time for each machine estimated by the

efficient placement time estimator, the component allocation problem, which is

formulated as a minimax assignment problem (Model 3.1), is still NP-hard [Jip01].

In order to solve the problem efficiently, a genetic algorithm, which uses the

placement time estimator for solution evaluation, is proposed.

The general process for genetic algorithms has been discussed in Chapter 2

(see Figure 2.4). The key issues in developing a genetic algorithm are the

representation scheme, genetic operators, fitness evaluation, and reproduction

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 68

method. In this section, these issues are described in detail, followed by the

experimental tests to examine the effectiveness and efficiency of the solution

methods.

3.5.1 Representation scheme

The representation scheme refers to how the solution is represented by a

chromosome in the genetic algorithm. In most cases, problems can be represented in

more than one way, some of which may be more amenable to evolutionary

techniques than others [Dej06].

There are two primary approaches one might take in choosing a

representation: a phenotypic approach in which individuals represent solutions

internally exactly as they are represented externally and a genotypic approach in

which individuals internally represent solutions encoded in a universal representation

language. Although a genotypic approach encourages rapid prototyping of new

applications, it is difficult to take advantage of domain knowledge. Therefore, a

phenotypic approach, which allows for more exploitation of problem-specific

properties, is used for the investigated component allocation problem.

The representation scheme of the genetic algorithm is illustrated in Figure 3.4.

Each gene in the chromosome represents a feeder for a specific component type, with

its value representing the machine to which the feeder is assigned.

Consider that the first PCB with 61 components and 7 component types in

Table 3.1 (Detailed data for the PCB is shown in Appendix I) is processed by an

assembly line with 4 placement machines. The chromosome in Figure 3.4 represents

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 69

a solution to the component allocation problem in this case. For example, the third

gene which represents the feeder for component type 3 is allocated to machine 2.

That is, all the components of type 3 are placed by machine 2.

Figure 3.4 A chromosome in the proposed GA for the CAP

According to the solution represented by the chromosome in Figure 3.4, the

component allocation solution for the PCB is shown in Table 3.4.

3.5.2 Genetic operators

Genetic (reproductive) operators refer to the mechanisms for generating new

chromosomes from existing ones. Genetic operators are much important for the

performance of genetic algorithms and should be carefully designed according to the

specific characteristics of the problem. Owning to the phenotype representation

scheme, the genetic operators can be more meaningful to take advantage of domain

knowledge.

All components of type 3 are placed by machine 2

2 1 3 2 1 4 4

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 70

Table 3.4 Component allocation solution represented by a GA chromosome

Component
Number

Type X Y
Allocated
Machine

Component
Number

Type X Y
Allocated
Machine

1 1 303 167 1 32 3 102 319 2
2 5 348 310 2 33 3 278 198 2
3 4 151 297 1 34 3 352 293 2
4 5 81 327 2 35 3 395 253 2
5 6 106 109 3 36 5 344 156 2
6 2 91 347 4 37 4 340 298 1
7 2 92 90 4 38 5 22 124 2
8 1 300 271 1 39 2 210 83 4
9 5 445 118 2 40 2 156 43 4
10 1 121 196 1 41 3 286 208 2
11 2 277 341 4 42 2 394 73 4
12 5 179 346 2 43 2 247 353 4
13 2 443 121 4 44 3 121 3 2
14 1 381 90 1 45 4 171 325 1
15 3 163 45 2 46 3 363 331 2
16 1 29 211 1 47 2 239 132 4
17 5 164 342 2 48 5 91 212 2
18 4 225 39 1 49 5 180 44 2
19 2 113 294 4 50 2 90 308 4
20 7 293 244 4 51 3 61 280 2
21 2 73 13 4 52 4 243 353 1
22 5 245 212 2 53 4 151 352 1
23 4 95 112 1 54 3 255 259 2
24 5 385 148 2 55 1 434 179 1
25 5 1 251 2 56 1 397 341 1
26 1 242 233 1 57 4 274 225 1
27 1 299 18 1 58 2 1 259 4
28 3 167 209 2 59 2 105 272 4
29 4 269 148 1 60 4 81 300 1
30 2 381 117 4 61 1 269 74 1
31 2 198 260 4

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 71

There are several common crossover operators for the genetic algorithm,

including one-point crossover, multipoint crossover, and uniform crossover. Through

preliminary tests, there is no significant difference among the performances of these

crossover operators. Since the uniform crossover is the most common one among

them, the uniform crossover is adopted in the proposed GA.

For the uniform crossover, an offspring is generated from two parents, with

each gene being selected randomly from the corresponding genes of the parents. The

uniform crossover can be illustrated in Figure 3.5.

Figure 3.5 Uniform crossover

Two mutation operators will be tried and compared, i.e., the random-point

mutation and the swap mutation. These two mutation operators are shown to have

different performance in the proposed GA. Relative experiment results will be

discussed later.

For the random-point mutation, each gene in the chromosome is changed to a

random feasible value with certain possibility. The random-point mutation can be

illustrated in Figure 3.6.

2 1 2 4 3 2

1 4 2 1 2 3

1 1 2 4 3 3

Parent 1

Parent 2

Child 1

4

1

4

2 4 2 1 2 2 Child 2 1

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 72

Figure 3.6 Random-point mutation

For the swap mutation, each chromosome, with certain possibility, will be

adjusted through exchange of two randomly-selected genes. The swap mutation can

be illustrated in Figure 3.7.

Figure 3.7 Swap mutation

Owing to the phenotype representation scheme, these two mutation operators

have different practical effects on the solutions. The random-point mutation virtually

adjusts the solution by reallocating a component type to a different machine. In the

example shown in Figure 3.6, the component type 5, which is originally allocated to

machine 2, is reallocated to machine 1 after random-point mutation. Comparatively,

the swap mutation virtually adjusts the solution by exchanging component types

1 4 2 1 2 3 Before mutation

1 4 2 1 1 3 After mutation

Random feasible value

4

4

1 4 2 1 2 3 Before mutation

1 4 3 1 2 2 After mutation

4

4

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 73

among two machines. In the example shown in Figure 3.7, the component type 3 and

6 are originally allocated to machine 2 and 3, respectively. After the swap mutation,

the component type 3 is allocated to machine 3 while the component 6 is allocated to

machine 2.

Since the two mutation operators have different practical effects on the

allocation solutions, their performance will be compared in the following

experimental tests in Section 3.6.

3.5.3 Fitness evaluation based on the estimator

3.5.3.1 Fitness function

The placement time estimator established in Section 3.4 is used for evaluating

the chromosomes in the genetic algorithm. Since the objective of the algorithm is to

minimize the largest placement time of the machines, the fitness value of each

chromosome could be set to the inverse of the largest placement time, that is,

max

1
CT

fitness = (3.10)

where CTmax is the largest process time of the machines.

However, this fitness function does not give any feedback to the algorithm

when two solutions have the same value of the largest placement time. In order to

tackle this problem, a new fitness function is proposed:

LT*bCT*a

fitness
+

=
max

1 (3.11)

where CTmax is the largest process time of the machines, LT is the sum of the process

times for all the machines in the line, a and b are two weighting coefficients.

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 74

Fitness function (3.11) considers reducing both the placement time for the

bottleneck machine and the sum of the placement times of all machines. Coefficient

a is much larger than coefficient b so that the genetic algorithm gives much higher

priority to minimizing the placement time of the bottleneck machine, which is the

objective of the problem. The performances of the two fitness functions (3.10) and

(3.11) will be compared in the following experimental tests.

3.5.3.2 Estimation of placement time

The placement time for each machine is estimated by the established

placement time estimator (3.9), which requires the calculation of the three values, i.e.,

the number of the components allocated to the machine, N, the number of component

types, F, and the area of the smallest rectangle that covers all the allocated

components, A.

While the number of the allocated components N and the number of

component types F can be obtained easily, the calculation of the area of the smallest

rectangle that covers all allocated components involves finding the smallest and the

largest coordinates of the allocated components and thus requires nontrivial

computational time.

Consider the same CAP example discussed in Subsection 3.5.1 and the

chromosome illustrated in Figure 3.4. The components allocated to machine 1 can be

obtained and listed in Table 3.5.

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 75

Table 3.5 List of components allocated to machine 1

Component

Number
Type X Y

1 1 303 167

3 4 151 297

8 1 300 271

10 1 121 196

14 1 381 90

16 1 29 211

18 4 225 39

23 4 95 112

26 1 242 233

27 1 299 18

29 4 269 148

37 4 340 298

45 4 171 325

52 4 243 353

53 4 151 352

55 1 434 179

56 1 397 341

57 4 274 225

60 4 81 300

61 1 269 74

From the table, it can be easily seen that the number of the allocated

components N = 20, and the number of component types F = 2. To obtain the value

of A, the smallest and largest coordinates of the components should be determined.

From the table, it is found that the smallest X and Y coordinates are 29 and 18,

respectively, and the largest X and Y coordinates are 434 and 353, respectively.

Therefore, A = (434 － 29) × (353 － 18) = 135675.

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 76

The placement time for machine 1 can be estimated by estimator (3.9) as

follows.

NAFNCT 797000.07060.0533.0 ++= = 0.533 + 1.412 + 1.857 = 3.802

seconds.

For a realistic case, the number of components allocated to a machine may be

several hundred. In some preliminary experimental tests, it is found that the solution

evaluation occupies the majority of computation time of the algorithm. Since the

calculation of A values requires nontrivial computational efforts, in order to improve

the efficiency of the genetic algorithm, the following method is proposed to calculate

the A values.

At the beginning of the genetic algorithm, some preliminary calculations are

conducted, that is, for each component type i, the number of components belonging

to type i, and the smallest and largest coordinates for the components of type i are

determined. Table 3.6 summarizes the preliminary calculation results for the problem.

With these preliminary calculation results, the computational efforts required

for solution evaluation in the GA can be significantly reduced. Consider the same

example discussed above, knowing that component types 1 and 4 are allocated to

machine 1, the values of N and A for machine 1 can be easily obtained as follows:

N = N1 + N4 = 10 + 10 = 20;

A = (max (Xmax
1, Xmax

4) － min (Xmin
1, Xmin

4)) × (max (Ymax
1, Xmax

4) －min

(Ymin
1, Ymin

4)) = (434 －29) × (353 －18) = 135675.

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 77

Table 3.6 Preliminary calculations for the GA

Component

Type

Number of

Components

Ni

Xmin Ymin Xmax Ymax

1 10 29 18 434 341

2 16 1 13 443 308

3 11 61 3 395 319

4 10 81 39 340 353

5 12 1 44 445 346

6 1 106 109 106 109

7 1 293 244 293 244

In the preliminary experiments, it is found that this method for calculating the

parameters for the placement time estimator can save more than 90% of

computational time for the proposed genetic algorithm.

3.5.4 The general framework

The selection mechanisms are the driving force for genetic algorithms. There

are two places in genetic algorithms where a selection occurs: when choosing parents

to produce offspring, and when choosing which individuals will survive. If the

combined selection pressure is too strong, the genetic algorithm is likely to converge

too quickly to a suboptimal region of the space. As a consequence, usually one of the

two selection processes (i.e., either parent or survival selection) adopts random

selection method, while the other adopts fitness-based selection method [Dej06].

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 78

In the proposed GA, the parents are randomly selected. The replace-worst

replacement strategy is adopted for selecting the chromosomes for survival, that is, a

new generation is formed by selecting the best individuals from the parents and the

offspring. The general framework of the proposed genetic algorithm can be

illustrated in Figure 3.8.

The general process for the proposed GA is described as follows.

At the beginning of the algorithm, an initial population of chromosomes is

randomly generated. This procedure consists of randomly allocating the component

types to machines in the line.

Then, for each generation, pairs of chromosomes are randomly selected and

the crossover operator is applied to each pair of parents to produce offspring. The

number of parents is determined by the crossover rate Cr, which represents the

percentage of population to be chosen as parents. The generated children are then

mutated according to a certain mutation possibility Mr. For the random-point

mutation, Mr represents the possibility for each gene in a chromosome to be changed.

For the swap mutation, Mr represents the possibility for a chromosome to be selected

for mutation.

After the reproductive operations, the best chromosomes from the original

chromosomes and the offspring are selected for survival in the next generation.

The genetic algorithm is run until there is no improvement on the best found

solution during a certain number of generations.

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 79

Figure 3.8 General framework for the proposed GA for the CAP

3.6 EXPERIMENTAL TESTS

This section is devoted to the experimental tests of the proposed solution

method for the component allocation problem. The experiments are divided into two

parts: the experiments for improving performance of the genetic algorithm, and the

experiments for evaluating the effectiveness and efficiency of the proposed solution

method for solving the component allocation problem.

Select best solutions for
survival in the next generation

Terminate?

Final solution

Yes

No

Randomly select parents

Randomly generate
solutions

Generate offspring by
crossover and mutation

Evaluate the solutions

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 80

3.6.1 Experiments for improving GA performance

As discussed in Section 3.5, two different mutation operators and two

different fitness functions are proposed for the genetic algorithm. Their performance

in the algorithm is compared through experimental tests. The algorithms are coded in

Microsoft Visual C++ 2005, and run on a desktop computer with Pentium IV 2.26

GHz CPU and 1 GB RAM.

3.6.1.1 Problem instances

In the experiments, a set of 10 realistic PCBs are generated and used for

evaluating the performance of the proposed GA method for the component allocation

problem. The PCBs are assumed to be produced in an assembly line which consists

of four CP732 placement machines.

The PCBs are generated in a similar way as discussed in Subsection 3.4.3,

with realistic sizes comparable to those in a telecommunication product manufacturer.

For each PCB, the number of components is generated independently and uniformly

within the range [800, 1000]. The width and the length of the PCB are generated

independently and uniformly within the range [400mm, 600mm]. The number of

component types is generated independently and uniformly within the range [50, 70].

The locations of components are randomly generated within the board size. The

characteristics of the generated PCBs are shown in Table 3.7.

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 81

Table 3.7 Characteristics of the 10 PCBs

PCB N a F b L c W d

1 831 51 483 429

2 851 58 459 447

3 861 64 446 414

4 873 63 494 524

5 881 61 589 407

6 914 52 444 494

7 925 62 521 473

8 944 60 438 404

9 950 55 532 576

10 960 66 538 530
a Number of components on the PCB
b Number of component types used by the PCB
c Length of the PCB
d Width of the PCB

3.6.1.2 Parameter setting for the GA

The GA parameters, i.e., the population size, crossover rate, and mutation rate,

should be determined first.

The parameters for the genetic operators are determined through trial and

error. The crossover rate Cr is set to 0.8. That is, 80% of the population members are

randomly selected as parents to produce 80 children in each generation. For the

random-point mutation, every gene in a child will be randomly changed with

possibility of 0.02. For the swap-mutation, each child will be selected to be mutated

with the possibility of 0.005.

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 82

The population size, i.e., the number of chromosomes in each generation, can

be viewed as a measure of the degree of parallelism of the searching process, in the

sense that each chromosome represents an independent agent exploring a particular

area of the solution space. As the fitness landscape becomes more complex with

multiple peaks, discontinuities, etc., more parallelism is required [Dej06]. However,

as the population size is larger than a suitable value, its contribution to the algorithm

performance becomes trivial with respect to the additional computational time.

As stated by De Jong [Dej06], a GA is not highly sensitive to moderate

changes in the population size. Therefore, experimental tests are conducted to choose

a suitable population size from several values, i.e., 10, 50, 100, 150, and 200. The

uniform crossover, the swap mutation, and the fitness function (3.11) are used in this

experiment. The GA is tested on the problem for the smallest PCB with 831

components. The algorithm is run for 4000 generations.

Figure 3.9 shows the convergence process for multiple GA runs with

different population sizes. It can be seen that the GA with population size of 100

achieves much better solutions than the GAs with population size 10 and 50.

However, when the population size increases from 100 to 200, the algorithm

converges at a similar solution value. Table 3.8 shows the average results for 10 runs.

It can be seen that the computation time spent by the GA with population size of 200

is significantly larger than that spent by the GA with population size of 100, while

the objective values for the two GAs are almost the same. Similar observations are

also obtained for other problem instances. Therefore, 100 is considered to be a

suitable population size for the proposed GA to solve the test instances.

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 83

Figure 3.9 Convergence process for the GAs with different population sizes

Table 3.8 Experimental results for different population sizes

Population

size =10

Population

size =50

Population

size =100

Population

size =200

Objective value 32.96 33.03 32.71 32.70

CPU time 4.2 9.7 17.7 52.6

32.60

32.80

33.00

33.20

33.40

33.60

33.80

34.00

0 1000 2000 3000 4000
Generations

Line cycle time (s)

Population size=10

Population size=50

Population size=200

Population size=100

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 84

3.6.1.3 Selection of genetic operators

The performance of the two mutation operators, i.e., the random-point

mutation and the swap mutation, are compared in the following experiments.

In the experiments, two GAs with different mutation operators are tested. In

both GAs, the fitness function (3.11) is used. Each GA is run 10 times for each of the

10 instances. For each run, the algorithm is not terminated until there is no

improvement on the best found solution during 4000 generations. Figure 3.10

compares the objective values obtained by the two GAs.

 Figure 3.10 Experimental results for two mutation operators

It is found that all the results obtained by using swap mutation are better than

those obtained by using random-point mutation. The average percentage reduction in

line cycle time is about 1.4%.

This result is due to line balancing characteristics of the component allocation

problem. The two mutation operators have different practical modification to the

30

32
34

36
38

40

42
44

46

1 2 3 4 5 6 7 8 9 10
Problem instance

Line cycle time (s)

swap mutation
random-point mutation

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 85

chromosomes. As discussed in Subsection 3.5.2, the random-point mutation adjusts

the solution by reallocating a component type to a different machine, while the swap

mutation adjusts the solution by exchanging component types among two machines.

For an already good solution that survives into the late period of the algorithm, a

reasonable way for reducing the line cycle time is to exchange components between

two machines, rather than reallocate a component type from a machine to another

machine. For this reason, the swap mutation may have a greater chance of reducing

the line cycle time than the random-point mutation.

Because the GA with the swap mutation achieves better solutions than the

GA with the random-point mutation, the swap mutation is used in the proposed GA

for solving the component allocation problem.

3.6.1.4 Selection of fitness function

Here, experiments are conducted to compare the performance of the two

fitness functions (3.10) and (3.11). Two genetic algorithms with these two fitness

functions are tested.

For the fitness function (3.11), the weighting coefficient for the bottleneck

placement time, a, and that for the total placement time, b, are set to be 1 and 0.001,

respectively. Swap mutation operator is used in both algorithms. Each GA is run 10

times for each of the 10 instances. Figure 3.11 compares the average objective values

obtained by the two GAs.

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 86

Figure 3.11 Experimental results for two fitness functions

From the results, it is found that all the objective values (line cycle times)

obtained by using function (3.11) are better than those obtained by using function

(3.10). The average percentage reduction in cycle time is about 1.9%.

This result is also due to line balancing characteristics of the component

allocation problem. The fitness function (3.11) is helpful in providing differential

feedback to the genetic algorithm even for the solutions that have the same

bottleneck placement time but different total placement time. In this way, the genetic

algorithm may reduce the total placement time for the machines even it cannot

reduce the process time for the bottleneck machine at a certain stage.

Because the GA with fitness function (3.11) achieves significantly better

solutions than the GA with fitness function (3.10), the fitness function (3.11) is used

in the proposed GA for solving the problem.

30

32
34

36
38

40

42
44

46

1 2 3 4 5 6 7 8 9 10
Problem instance

Line cycle time (s)

Fitness function 3.11
Fitness function 3.10

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 87

3.6.2 Experiments for evaluating the solution method

In this subsection, experiments are conducted to examine the effectiveness of

the proposed GA method for the component allocation problem.

3.6.2.1 Evaluation of the solutions with actual placement times

Because the objective values (line cycle time) in the genetic algorithm are

based on the placement times approximated by the placement time estimator, in order

to evaluate the realistic quality of the solutions, the actual placement times should be

used. For this end, the component allocation solutions are input into the machine

vendor software, Flexa, and the actual placement time for each machine is obtained.

Then, based on the actual placement time for each machine in the line, the actual line

cycle time can be obtained.

Table 3.9 summarizes the results for the 10 problem instances obtained by the

proposed GA. The results are the averages of 10 runs. From the table, it can be seen

that the GA solves the problems in a very short time. The average CPU time is 16.34

seconds. This shows that the proposed GA based on the placement time estimator

can solve the component allocation problem efficiently.

The estimated cycle times are very close to the actual cycle times obtained by

Flexa. The percentage difference is only 1.30%, indicating the placement time

estimator is much effective in estimating the placement time values.

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 88

Table 3.9 Solutions to the CAP instances

PCB N a CPU b CT-GA c CT-real d diff e

1 831 11.06 32.62 33.52 2.68%

2 851 15.02 34.41 34.89 1.38%

3 861 15.87 34.36 34.58 0.64%

4 873 19.61 33.47 33.81 1.01%

5 881 14.51 35.46 35.78 0.89%

6 914 12.29 35.28 35.84 1.56%

7 925 16.41 38.01 38.59 1.50%

8 944 18.57 39.80 40.17 0.92%

9 950 17.72 40.11 40.43 0.79%

10 960 22.36 42.09 41.42 1.62%

Average 16.34 36.56 36.90 1.30%
a Number of components
b CPU time for the genetic algorithm
c Estimated cycle time obtained by GA (excluding the board loading time)
d Real cycle time obtained by GA (excluding the board loading time)
e Absolute percentage difference between estimated cycle time and real cycle time

3.6.2.2 Comparison with machine vendor software

The software of the machine vendor also provides solutions to the component

allocation problem (which is referred to as line balancing problem in the software).

The solutions obtained by the vendor software will be used as benchmark solutions.

Before the comparison, the approach adopted by the software is discussed. In

the machine vendor software, the machine optimization problems are solved using

simple heuristics, so that the component allocation problem can be solved in

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 89

combination with solutions to the machine optimization problems.

Due the integration of the component allocation problem with the solutions to the

machine optimization problems, the heuristic used by the software for solving the

component allocation problem is rather simple. The heuristic can be described as the

following steps: (1) Allocate one unassigned component type with the largest

component number to each machine, (2) For each machine and the currently

allocated components, solve the machine optimization problems and calculate the

placement time for each machine, (3) Allocate one unassigned component type with

the largest component number to the machine with the smallest placement time, and

(4) Update the placement time of the machine in Step (3) by solving the optimization

problems again, and (5) Repeat step 3 and 4 until all the component types are

allocated. This simple heuristic gives priority to first allocating those component

types with the largest quantities, so that the line can be well balanced at the end.

However, as discussed in Section 3.4.4, a well-balanced solution does not necessarily

mean that the minimal cycle time can be achieved. Other factors like the number of

component types and the closeness of the component locations should also be

considered.

In order to evaluate the effectiveness of the proposed solution method, the

results are compared with those obtained by the vender software. The results are

shown in Table 3.10. For all instances except PCB 6, the actual cycle times obtained

by the GA are smaller than those obtained by the vendor software. The overall

reduction in line cycle time is 0.82%.

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 90

Although the improvement achieved by the proposed method is not so great,

the result is encouraging because the GA obtains the solutions without calculating

exact placement times through simulation, as the vendor software does. The

placement time simulation requires knowledge of technological characteristics of the

machine, e.g., the moving speed of the PCB holder, the rotation speed of the turret.

Due to severe competition, most machine vendors are reluctant to release these

parameters.

Table 3.10 Comparison between GA solutions and vendor software solutions

PCB CT-real a CT-vendor b CT-diff c LT-real d LT-vendor

LT-diff f

1 33.52 33.86 1.00% 130.28 132.22 1.47%

2 34.89 35.20 0.88% 136.74 139.01 1.63%

3 34.58 35.11 1.51% 136.83 139.15 1.67%

4 33.81 33.93 0.35% 131.31 133.69 1.78%

5 35.78 36.01 0.64% 140.72 142.61 1.33%

6 35.84 35.78 -0.17% 141.02 142.53 1.06%

7 38.59 39.01 1.08% 152.71 154.33 1.05%

8 40.17 40.54 0.91% 156.59 159.85 2.04%

9 40.43 40.87 1.08% 158.69 160.40 1.07%

10 41.42 41.84 1.00% 162.21 165.69 2.10%

Avg. 36.90 37.22 0.82% 144.71 146.95 1.52%
a Real cycle time obtained by GA (excluding the board loading time)
b Cycle time obtained by vender software (excluding the board loading time)
c Percentage improvement of CT, i.e., (CT- vendor － CT-real) / CT- vendor
d Total process time of all machines obtained by the genetic algorithm
e Total process time of all machines obtained by the vendor software
f Percentage improvement of LT, i.e., (LT-vendor － LT-real) / LT-vendor

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 91

The columns LT-real and LT-vendor in Table 3.10 show the total placement

time of all machines for the GA solution and the software solution, respectively. It

can be seen that the percentage reduction of the total process time are generally

greater than the reduction of the line cycle time.

To explain this, consider the instance of PCB 1. Figure 3.12 shows the GA

solutions for the instance with PCB 1. In the figure, the “Estimated solution” shows

the placement times estimated by the placement estimator. It can be seen that the

workload is well balanced over the machines with the estimated placement times.

The bottleneck machine is machine 3 whose placement time is 32.62 seconds. The

“Actual solution” shows the actual placement times for the GA solution. It can be

seen that the difference among the actual placement times is much greater than the

difference among the estimated placement times. This is caused by the estimation

error of the placement time estimator. Considering the actual placement times, the

bottleneck machine is machine 1, for which the placement time is 33.52 seconds.

This indicates that the estimation error, though small, deteriorates the allocation

solution to some extent.

If the actual placement times are known, the GA solution can be manually

adjusted as the following. First, on machine 1, which is the bottleneck, find the

component type that has fewest components. Then, allocate this component type to

machine 2, of which the actual placement time is smallest. After the adjustment, the

bottleneck machine becomes machine 4, of which the actual placement time is 33.20

seconds. This experiment indicates that the GA solutions may be easily improved by

obtaining the actual placement times at the end of the GA.

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 92

Figure 3.12 Analysis of GA solutions for the case with PCB 1

3.6.2.3 Experiments on PCBs with clustered component locations

For some realistic PCBs, the components may be clustered in location. The

experiments in this subsection are conducted to examine whether such a property

may affect the performance of the proposed solution method for solving the

component allocation problem.

For this purpose, another set of 10 PCBs is generated. Different from the

PCBs in the original set of PCBs, the components of each type are clustered in

location to some extent. First, a virtual center location (xi, yi) is randomly generated

for each component type i. Then, for each component belonging to type i, an initial

28.50
29.00
29.50
30.00
30.50
31.00
31.50
32.00
32.50
33.00
33.50
34.00

1 2 3 4 Machine

Line cycle time (s) Estimated solution
Actual solution
Adjusted solution

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 93

location (x0, y0) is generated randomly. Then the location for this component is

adjusted to be)
2

,
2

(00 ii yyxx ++ . In this way, the same components are clustered.

Figure 3.13 illustrates the process for generating the component locations. In

the figure, components 1, 2, and 3 are belonging to type i. The initial locations for

these components are generated randomly, as shown in Figure 3.13 (a). Then, a

virtual center is generated randomly for the components of type i. The locations for

the three components are adjusted to new locations which are closer to the virtual

center point. Figure 3.13 (b) shows the new locations for the components after the

adjustment.

Figure 3.13 Process for generating the clustered component locations

Both the proposed GA and the machine vendor software are used for solving

the new problem instances. The results are summarized in Table 3.11.

For all instances, the real cycle times obtained by the GA are significantly

smaller than those obtained by the vendor software. The overall percentage

Randomly generated center
for components of type i

1

2
3

1

2 3

(a) Initial distribution

(b) Final distribution

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 94

improvement is 2.48%, which is much larger than that for the original instances. The

greater improvement for the new instances is due to the non-uniform distribution of

the components, which can be exploited by the GA to allocate more closely located

components to the same machines. This can be illustrated by Figure 3.14, which

shows the allocation results for PCB 11. The GA solution allocates closely located

components to each machine, while the vendor software obtains the solution without

considering the component locations.

Table 3.11 Comparison between GA solutions and software

solutions for PCBs with clustered locations

PCB CT-real a CT-vendor b CT-diff c LT-real d LT-vendor e LT-diff f

11 25.77 26.94 4.34% 101.50 106.03 4.27%

12 30.97 31.72 2.36% 119.62 123.63 3.24%

13 27.10 27.73 2.27% 105.54 108.77 2.97%

14 28.26 29.58 4.46% 112.30 115.58 2.84%

15 30.21 31.08 2.80% 116.49 121.82 4.38%

16 29.13 29.46 1.12% 112.67 115.74 2.65%

17 30.56 31.38 2.61% 118.80 122.92 3.35%

18 31.93 32.76 2.53% 126.63 128.95 1.80%

19 30.33 30.72 1.27% 116.67 120.71 3.35%

20 32.32 32.66 1.04% 124.95 128.13 2.48%

Avg. 29.66 30.40 2.48% 115.52 119.23 3.13%
a Real cycle time obtained by GA (excluding the board loading time)
b Cycle time obtained by vender software (excluding the board loading time)
c Percentage improvement of CT, i.e., (CT-vendor － CT-real) / CT-vendor
d Total process time of all machines for GA solution
e Total process time of all machines for vendor software solution
f Percentage improvement of LT, i.e., (LT-vendor － LT-real) / LT-vendor

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 95

Figure 3.14 Allocation solutions by GA and vendor software for PCB 11

0 0

0 0

0 0

00

(a) GA solution

(b) Vendor software solution

Allocation to Machine 1

Allocation to Machine 3 Allocation to Machine 4

Allocation to Machine 2

Allocation to Machine 1 Allocation to Machine 2

Allocation to Machine 3 Allocation to Machine 4

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 96

3.7 SUMMARY

This chapter has investigated the component allocation problem (CAP) in

PCB assembly and proposed an effective method for the problem. Some remarks can

be summarized as follows.

1. The component allocation problem in PCB assembly, which is to allocate

components of a PCB to different placement machines in an assembly line, is

much complicated due to its dependency on the solutions to the machine

optimization problems for each machine. It is infeasible to solve the

component allocation problem and the machine optimization problems

simultaneously due to great computational complexity.

2. A solution strategy has been proposed to solve the component allocation

problem and the machine optimization problems in a decomposed manner.

The solution strategy relies on a placement time estimator that can estimate

the placement time for each machine without solving the machine

optimization problems.

3. A placement time estimator for a turret-type machine, i.e., Fuji CP732, has

been established in this research. The placement time estimator is based on

the linear regression approach. The regression model considers all the

influential factors that may affect the placement time, including the number

of components, number of component types, and closeness of the components.

The regression model is specified based on observations of the operation

mode, and calibrated using a set of experimental data. Statistical analysis

shows that the placement time estimator has very high R2 of 0.99, showing

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 97

that the estimator can yield accurate estimates of placement time. The

significance value of the F statistic is less than 0.05, which means that the

variation explained by the model is not due to chance.

4. An analysis based on the proposed placement time estimator shows that the

placement times estimated only by the number of components are inaccurate

and thus not suitable to be used in the algorithms for solving the component

allocation problem. As most of existing approaches for the component

allocation problem adopt rough estimates of placement time based only on

the number of components, the relative solutions cannot be good enough.

Besides the number of components, the number of component types and the

closeness of the component locations should also be considered for

estimating the placement times.

5. A specific genetic algorithm, which uses the established placement time

estimator for solution evaluation, has been proposed to solve the component

allocation problem. Using the placement time estimator, the algorithm

considers all the influential factors implicitly when solving the component

allocation problem. The mutation operator and fitness function are found to

be important for the performance of the GA in solving the component

allocation problem. The GA using the swap mutation operator achieves the

average cycle time 1.4% shorter than that achieved by the GA using the

random-point mutation, while the GA with fitness function considering both

the line cycle time and the total line time achieves the average cycle time

1.9% shorter than that achieved by the GA with fitness function considering

CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 98

only the line cycle time. These improvements are due to the line balancing

characteristics of the component allocation problem.

6. Experimental results show that the proposed GA can solve the component

allocation problem effectively and efficiently and achieve better solutions

than those obtained by the software provided by the machine vendor. The

results are encouraging, especially because the GA obtains the solutions

without calculating the placement times through simulation, as the vendor

software does. Even better solutions could be expected if the GA solutions

are further improved by some adjustments based on the simulated placement

times. The experiments also show that the component clustering

characteristics of the PCB can be exploited by the proposed GA method to

obtain better solutions.

The method proposed in this chapter has shown to be able to solve the

component allocation problem effectively and efficiently and improve the production

efficiency for a PCB assembly line. The component allocation problem presumes

that a particular batch of PCB is assigned to and produced by an assembly line. In the

next chapter, the scheduling problem for multiple PCB batches and multiple

assembly lines, i.e., the Multi-Line Scheduling Problem (MLSP), is discussed and

investigated.

 99

CHAPTER 4

THE MULTI-LINE SCHEDULING PROBLEM (MLSP)

4.1 INTRODUCTION

The component allocation problem which arises when a batch of PCB is

processed by an assembly line has been discussed and investigated in Chapter 3. On

a higher planning level, a planning problem should be solved to schedule different

PCB batches on multiple assembly lines (see Section 1.2.1).

For the scheduling problem in a multi-line PCB assembly shop, which is

referred to in the following as the Multi-Line Scheduling Problem or MLSP, several

unique characteristics need to be considered, which make the MLSP different from

other scheduling problems. The characteristics for the multi-line scheduling problem

in PCB assembly can be described as follows. First, the process time for each job

depends on the assembly line it is assigned to. That is, the process time is line-

dependent. Second, the setup time (or transition time) for a job depends on the job

previously processed on the line. That is, the setup time is considered to be sequence-

dependent. Third, there may be precedence requirement between the jobs. Forth,

each job has its ready time and due date. Similarly, each assembly line may have its

ready time. Fifth, the objective of the problem should consider both production

efficiency and due date satisfaction. As discussed in Chapter 2, this specific

scheduling problem has not been investigated in the literature.

In this chapter, a complete mathematical model for the Multi-Line Scheduling

Problem (MLSP) in PCB assembly is established. The proposed model explicitly

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 100

considers line dependent process times, ready time and due date constraints for the

jobs, sequence dependent setup times, and precedence constraints between jobs. The

objective of the model considers both the satisfaction of due date requirement and

improvement of production efficiency. Experimental tests on solving some problem

instances are conducted to verify the established model.

Due to the great complexity of the problem, a genetic algorithm is proposed.

The efficiency and effectiveness of the GA are examined through both generated test

instances and a realistic case study.

This chapter is organized as follows: In Section 4.2, a Mixed Integer Linear

Programming (MILP) model for Multi-Line Scheduling Problem (MLSP) is

developed. To verify the model, optimal solutions to some small problem instances

are obtained through using an existing LP solver. Section 4.3 describes the

development of the specific genetic algorithm for the MLSP, followed by the

experimental tests in Section 4.4. A case study is conducted and described in Section

4.5. Finally, Section 4.6 summarizes the main work in this chapter.

4.2 A MATHEMATICAL MODEL AND EXACT SOLUTIONS

Mathematical modeling is to describe a problem in a mathematical way, and

is a significant activity for better understanding and analyzing the problem. In such a

mathematical way, much of the ambiguity and imprecision in verbal communication

can be overcome. Meanwhile, an effective mathematical model can help to capture

the essential features of the problem and provide considerable insights into the

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 101

problem. Furthermore, the optimal solutions to some problem instances can be the

benchmark for the heuristic solutions.

Since there is no existing mathematical model for the investigated multi-line

scheduling problem, this section is devoted to the development of a mathematical

model for the problem.

4.2.1 Description of the MLSP

During a planning horizon, there are a set of PCB batches to be proposed on

multiple assembly lines. For most PCB manufacturers, meeting the due date

requirement is the paramount objective in order to maintain the customer satisfaction.

At the same time, in order to improve the production capacity with limited expensive

assembly equipment, it is vital for the manufacturers to achieve high production

efficiency, which is usually represented by a short makespan for the jobs. Therefore,

the objective for the Multi-Line Scheduling Problem (MLSP) considers both due date

satisfaction and makespan reduction at the same time.

The constraints for the MLSP may differ from a manufacturing environment

to another. The investigated multi-line scheduling problem arises from a particular

manufacturer of telecommunication products. Some assumptions and constraints for

the problem are described as follows.

 The PCBs are produced in batches. Each batch consists of identical PCBs

with the same ready time and due date. Processing of a batch is called a job.

Processing of the same boards but different sides (front sides and back sides)

are considered as two different jobs.

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 102

 A new job can start only after the completion of the previous job on the same

line, i.e., pre-emption is not allowed.

 The assembly lines are unrelated, which means that the process time for each

job depends on the assembly line to which the job is assigned. These process

times can be obtained through solving a set of Component Allocation

Problems (CAPs), which has been investigated in Chapter 3. Because the

proposed solution method for the CAP has not been implemented for

practical use in the investigated manufacturer, these time values can be

obtained by using the vendor software of the machine vendor (See Subsection

3.6.2.2).

 For practical considerations, a back-side job (a job processing the back sides

of boards) can only begin 2 hours after the start time of the corresponding

front-side job.

 The PCBs are categorized into two types: those should meet the RoHS

(Restriction of Hazardous Substances) compliance and those are not required

to. A common setup time of 16 minutes (0.27 hours) is required (for

uploading programs, adjusting component feeders, etc). A special setup time

of 2 hours is required when an RoHS job is processed right after a non-RoHS

job on the same line.

Although not all of the above assumptions and constraints are valid for other

PCB manufacturing environments, they are quite common and thus should be

considered in the scheduling problem investigated in this research.

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 103

4.2.2 A mathematical model

Consider n jobs {J1, J2, …, Jn} to be processed on K assembly lines. Each

job Ji ∈{J1, J2, …, Jn} has a time window (ai, bi), where ai is the earliest time that

the job can begin (job ready time) and bi is the latest time that the job should finish

(job due date). For an assembly line k, there is also an earliest start time defined by

Rk

There is a nonnegative time cost for each line and each job s

.

ik, representing

the process time for job i processed by line k, and a nonnegative time cost for each

pair of jobs tij

kit

 (i, j ≠ 0), representing the setup time (setup time) for processing job i

immediately after job j on the same line. There is also a setup time required for

line k to process the first job Ji

In order to facilitate the formulation of the mathematical model, a dummy job

J

 (i ≠ 0) on that line.

0 that each assembly line starts with and a dummy job Jn+1 that each assembly line

finishes with are introduced. There is no time window for J0 and Jn+1

The notation used in the mathematical model is summarized as follows:

, and the

process times for them are zero.

Sets and Indices:

i, j: indices of jobs

k, k1, k2

N: the set of all jobs excluding the dummy jobs (J

: indices of assembly lines

0 and Jn+1

N

)

 0: the set of all jobs including the dummy jobs (J0 and Jn+1

N

)

 1: the set of jobs that process the front sides of boards

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 104

K: the set of assembly lines

B(i): the job that processes the same boards but different sides with job i

Parameters:

n: number of jobs

q: weight for minimizing the makespan of all jobs

pi

s

: weight for minimizing tardiness of job i

ik

t

: process time for job i on line k

ij

kit

: setup time for job j if it is processed right after job i on the same line

: setup time for line k if job i is the first job on line k, the value depends

on the initial RoHS status of line k, i.e., the RoHS status of the job

produced on the line before this planning period

ai

b

: ready time for job i

i

R

: due date for job i

k

M

: ready time for line k

1~M5

,: large positive constants

Decision variables:

xijk

w

: 0-1 variable. = 1 if job j is processed right after i on line k, and = 0

otherwise

ik

C

: start time for job i on line k

max

L

: max completion time of the jobs, i.e., makespan

i: tardiness (in time) for job i

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 105

The objective of the multi-line scheduling problem is to minimize the sum of

weighted tardiness and weighted makespan, which is shown in the objective function

(4.1).

)min(maxqCLp
Ni

ii +∑
∈

 (4.1)

In the objective function, pi is the weight for minimizing the tardiness of job i,

which relates to the importance of the corresponding customer. q is the weight for

minimizing the makespan Cmax. In the model, pi

The tardiness of each job, L

 (i = 1, 2, …, n) are set to values

much larger than q so that the model gives a higher priority to ensuring due date

satisfaction.

i

ikik sw +

, is defined by constraint sets (4.2) and (4.3) as a

nonnegative value. In constraint set (4.2), represents the finish time of job i

on line k, and bi)1(1 ijkxM − is the due date for job i. The term ensures that this

requirement applies only when job i and job j are processed on line k consecutively.

0
1 ,,)1(NjNiKkxMbswL ijkiikiki ∈∀∈∀∈∀−−−+≥ (4.2)

NiLi ∈∀≥ 0 (4.3)

The makespan is the completion time for all the jobs. Therefore, in constraint

set (4.4), the makespan is set to be greater than the finish time of each job. In the

constraint set, ikik sw + represents the finish time of job i on line k. Similarly, the

term)1(2 ijkxM − ensures that the requirement applies only when job i and job j are

processed on line k consecutively.

0
2max ,,)1(NjNiKkxMswC ijkikik ∈∀∈∀∈∀−−+≥ (4.4)

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 106

To ensure a feasible solution, the following constraints are required for a

feasible job-line assignment. Constraint set (4.5) ensures that each job should be

processed by exactly one line; constraint set (4.6) ensures that the number of the first

producing jobs on the lines must not exceed K; similarly, constraint set (4.7) ensures

the number of the last producing jobs on the lines must not exceed K. Constraint set

(4.8) ensures that the same line processes jobs one by one, i.e., if job j is assigned to

line k, both its predecessor and successor must be processed by line k.

Nix
Kk iNj

ijk ∈∀=∑ ∑
∈ ∈

1
}{\0

 (4.5)

Kkx
Nj

jk ∈∀≤∑
∈

1
}0{\
0

0

 (4.6)

Kkx
nNi

kni ∈∀≤∑
+∈

+
}1{\

,1,
0

1 (4.7)

NjKkxx
jNi

jik
jNi

ijk ∈∀∈∀=− ∑∑
∈∈

,0
}{\}{\ 00

 (4.8)

Constraint set (4.9) and constraint set (4.10) are introduced to ensure the start

times of any two consecutive jobs i and j on the same line to be strictly increasing.

The term)1(3 ijkxM − in constraint set (4.9) ensures that the relative requirement

applies only if job j is processed right after i on line k; similarly, the term

)1(04 ikxM − in constraint set (4.10) ensures that the relative requirement applies only

if job i is the first job to be processed on line k.

jiNjiKkxMwtsw ijkjkijikik ≠∈∀∈∀−≤−++ ,,,)1(3 (4.9)

NiKkxMwtw ikikkik ∈∀∈∀−≤−+ ,)1(040 (4.10)

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 107

The start time for each line cannot be earlier than its ready time for the line

and this is ensured by constraint set (4.11).

KkRw kk ∈∀≥0 (4.11)

Similarly, each job cannot start before its ready time and this is ensured by

constraint set (4.12).

NiKkaw iik ∈∀∈∀≥ , (4.12)

In order to ensure that the process of a back-side job can only start 2 hours

after the start time of the corresponding front-side job, constraint set (4.13) is

introduced. The term ∑∑
∈∈

−−
}{\

)(
}{\

5
0

2
0

1
)2(

iNj
jkiB

iNj
ijk xxM is to ensure the appropriate

condition for the constraint to apply.

∑∑
∈∈

−−≤−+
}{\

)(
}{\

5)(
0

2
0

121
)2()2(

iNj
jkiB

iNj
ijkkiBik xxMww

 1
21 ,, NiKkKk ∈∀∈∀∈∀ (4.13)

After the above discussion, a complete mathematical model for the

scheduling problem can be written as follows.

)min(maxqCLp
Ni

ii +∑
∈

 (4.1)

Subject to:

0
1 ,,)1(NjNiKkxMbswL ijkiikiki ∈∀∈∀∈∀−−−+≥ (4.2)

NiLi ∈∀≥ 0 (4.3)

0
2max ,,)1(NjNiKkxMswC ijkikik ∈∀∈∀∈∀−−+≥ (4.4)

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 108

Nix
Kk iNj

ijk ∈∀=∑ ∑
∈ ∈

1
}{\0

 (4.5)

Kkx
Nj

jk ∈∀=∑
∈

1
}0{\
0

0

 (4.6)

Kkx
nNi

kni ∈∀=∑
+∈

+
}1{\

,1,
0

1 (4.7)

NjKkxx
jNi

jik
jNi

ijk ∈∀∈∀=− ∑∑
∈∈

,0
}{\}{\ 00

 (4.8)

jiNjiKkxMwtsw ijkjkijikik ≠∈∀∈∀−≤−++ ,,,)1(3 (4.9)

NiKkxMwtw ikikkik ∈∀∈∀−≤−+ ,)1(040 (4.10)

KkRw kk ∈∀≥0 (4.11)

NiKkaw iik ∈∀∈∀≥ , (4.12)

∑∑
∈∈

−−≤−+
}{\

)(
}{\

5)(
0

2
0

121
)2()2(

iNj
jkiB

iNj
ijkkiBik xxMww

 1
21 ,, NiKkKk ∈∀∈∀∈∀ (4.13)

0,,}1,0{ NjiKkxijk ∈∀∈∀∈ (4.14)

Model 4-1

The established model (4-1) is a Mixed Integer Linear Programming (MILP)

model, which can be solved by several existing LP solver packages like CPLEX.

Based on observation, the established model is found to be much akin to the Parallel-

Machine Scheduling Problem (PMSP) if each assembly line is considered as a single

machine. Sotskov and Shaklevich [Sot95] proved that the identical parallel-machine

scheduling problem with makespan minimization, which is a relatively easy type of

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 109

PMSP, is NP-hard. For the investigated multi-line scheduling problem in PCB

assembly, the assembly lines are not identical but unrelated, in that the process times

for a job on different lines are different. In this sense, the multi-line scheduling

problem can be viewed as an unrelated PMSP, which is much more difficult than the

identical PMSP.

Furthermore, the combined objective of due date satisfaction and makespan

minimization, sequence-dependent setup times, and precedence constraints may

greatly increase the complexity of the problem.

4.2.3 Exact solutions

In order to verify the established model for the multi-line scheduling problem,

some problem instances are generated and solved using a commercial LP solver,

CPLEX 10.2.

In the experiments, seven problem instances are generated. For each instance,

there are different numbers of jobs and different numbers of assembly lines, as

shown in Table 4.1.

For each instance, the process time for a job on a particular line is determined

randomly. In addition, there may be the case that a job cannot be processed by a

particular line. In order to reflect real situations, the process time for job i on line k is

generated as follows. The possibility that job i cannot be processed by line k is 0.2. If

job i can be processed by line k, then the process time sik is generated randomly

within [avgi － 1, avgi + 1] hours, where avgi is an average process time for job i

and is randomly generated within [3, 10] hours.

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 110

Table 4.1 Characteristics of test instances

Instance Name Number of jobs Number of lines

Test-n10k3 10 3

Test-n10k4 10 4

Test-n11k 3 11 3

Test-n11k4 11 4

Test-n12k4 12 4

Test-n15k4 15 4

Test-n20k4 20 4

The ready time for job i, i.e., ai, is generated as follows. The possibility that

the ready time for job i is 0, is set to 0.5. If the ready time for job i is not 0, then it is

generated randomly within [0, Cexp / 2] hours, with the value rounded to an integer,

where Cexp

kavgC
i

i /
n

1
exp

= ∑

=

 is a value which is computed by equation (4.15).

 (4.15)

The due date for job i, i.e., bi, is generated randomly among [Cexp / 2, 2Cexp],

with the value rounded to an integer. The ready times and due dates are generated in

this way to ensure a realistic number of jobs which have tight due dates. Whether a

job processes single-sided PCBs, front-sides of PCBs, or back-sides of PCBs is

determined randomly.

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 111

Table 4.2 shows the job data for the first instance Test-n10k3. The data for

the other six instances are shown in Appendix II ～ VII.

Table 4.2 Data for the first instance Test-n10k3

job

number

ready

time

due

date a if_front b bk_job c RoHS d pe
i

process time f
g

line 1 line 2 line 3

1 0 15 0 \ 0 2 4.56 5.02 5.34

2 0 9 0 \ 1 2 6.34 6.01 6.98

3 4 21 1 4 0 3 1000 4.54 4.23

4 0 18 0 \ 0 3 6.32 7.42 7.92

5 0 25 1 6 1 1 8.92 9.21 8.97

6 0 19 0 \ 1 1 4.30 1000 1000

7 0 28 1 8 0 1 3.21 3.29 3.87

8 8 25 0 \ 0 1 5.72 5.03 4.78

9 8 18 1 10 1 2 1000 8.92 9.87

10 10 27 0 \ 1 2 7.72 6.92 7.34

ready time of line 1.48 0 0.78

initial RoHS status of lines 1 h 0 0
a ready time for the job
b due date for the job
c indicator for a front-side job. Value one indicates that the job is a front-side job, zero otherwise
d corresponding back-side job number
e indicator for RoHS jobs. Value 1 indicates that the job processes RoHS boards, 0 otherwise
f weight for tardiness penalty (weight for makespan penalty is set to 0.01)
g process time for each job on each line. If a job cannot be processed on the line, the time is set to

1000
h

 initial RoHS status of the line

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 112

All the time values in Table 4.2 are shown in hours. If a job cannot be

processed on an assembly line, then the process time is set to be 1000. The weights

for tardiness penalty, pi

With the data in Table 4.2, the complete MILP model for instance Test-n10k3

can be obtained. Note that the large numbers in the Model, M

, are randomly chosen from {1, 2, 3}, with a higher value

representing greater importance of the customer. The weight for makespan penalty, q,

is set to a much smaller value, 0.01, so that the problem gives a higher priority to

tardiness minimization.

1~M5

, are all set to

10000. The model is input into CPLEX. The complete model is listed as follows.

Minimize

2.00L01+2.00L02+3.00L03+3.00L04+1.00L05+1.00L06+1.00L07+1.00L08

+2.00L09+2.00L10+0.01Cmax

Subject to

Constraint set (4.2):

cons.1: L01 - w0101 - 10000x010201 > = - 10010.44

cons.2: L01 - w0101 - 10000x010301 > = - 10010.44

cons.3: L01 - w0101 - 10000x010401 > = - 10010.44

cons.4: L01 - w0101 - 10000x010501 > = - 10010.44

cons.5: L01 - w0101 - 10000x010601 > = - 10010.44

cons.6: L01 - w0101 - 10000x010701 > = - 10010.44

cons.7: L01 - w0101 - 10000x010801 > = - 10010.44

cons.8: L01 - w0101 - 10000x010901 > = - 10010.44

cons.9: L01 - w0101 - 10000x011001 > = - 10010.44

cons.10: L01 - w0101 - 10000x011101 > = - 10010.44

cons.11: L02 - w0201 - 10000x020101 > = - 10002.66

……

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 113

cons.300: L10 - w1003 - 10000x101103 > = - 10019.66

Constraint set (4.3):

cons.301: L01 > = 0

cons.302: L02 > = 0

cons.303: L03 > = 0

cons.304: L04 > = 0

cons.305: L05 > = 0

cons.306: L06 > = 0

cons.307: L07 > = 0

cons.308: L08 > = 0

cons.309: L09 > = 0

cons.310: L10 > = 0

Constraint set (4.4):

cons.311: Cmax - w0101 - 10000x010201 > = - 9995.44

cons.312: Cmax - w0101 - 10000x010301 > = - 9995.44

cons.313: Cmax - w0101 - 10000x010401 > = - 9995.44

cons.314: Cmax - w0101 - 10000x010501 > = - 9995.44

cons.315: Cmax - w0101 - 10000x010601 > = - 9995.44

cons.316: Cmax - w0101 - 10000x010701 > = - 9995.44

cons.317: Cmax - w0101 - 10000x010801 > = - 9995.44

cons.318: Cmax - w0101 - 10000x010901 > = - 9995.44

cons.319: Cmax - w0101 - 10000x011001 > = - 9995.44

cons.320: Cmax - w0101 - 10000x011101 > = - 9995.44

cons.321: Cmax - w0201 - 10000x020101 > = - 9993.66

……

cons.610: Cmax - w1003 - 10000x101103 > = - 9992.66

Constraint set (4.5):

cons.611: x010201 + x010202 + x010203 + x010301 + x010302 + x010303 +

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 114

x010401 + x010402 + x010403 + x010501 + x010502 + x010503 +

x010601 + x010602 + x010603 + x010701 + x010702 + x010703 +

x010801 + x010802 + x010803 + x010901 + x010902 + x010903 +

x011001 + x011002 + x011003 + x011101 + x011102 + x011103 = 1

cons.612: x020101 + x020102 + x020103 + x020301 + x020302 + x020303 +

x020401 + x020402 + x020403 + x020501 + x020502 + x020503 +

x020601 + x020602 + x020603 + x020701 + x020702 + x020703 +

x020801 + x020802 + x020803 + x020901 + x020902 + x020903 +

x021001 + x021002 + x021003 + x021101 + x021102 + x021103 = 1

cons.613: x030101 + x030102 + x030103 + x030201 + x030202 + x030203 +

x030401 + x030402 + x030403 + x030501 + x030502 + x030503 +

x030601 + x030602 + x030603 + x030701 + x030702 + x030703 +

x030801 + x030802 + x030803 + x030901 + x030902 + x030903 +

x031001 + x031002 + x031003 + x031101 + x031102 + x031103 = 1

……

cons.620: x100101 + x100102 + x100103 + x100201 + x100202 + x100203 +

x100301 + x100302 + x100303 + x100401 + x100402 + x100403 +

x100501 + x100502 + x100503 + x100601 + x100602 + x100603 +

x100701 + x100702 + x100703 + x100801 + x100802 + x100803 +

x100901 + x100902 + x100903 + x101101 + x101102 + x101103 = 1

Constraint set (4.6):

cons.621: x000101 + x000201 + x000301 + x000401 + x000501 + x000601 +

x000701 + x000801 + x000901 + x001001 + x001101 = 1

cons.622: x000102 + x000202 + x000302 + x000402 + x000502 + x000602 +

x000702 + x000802 + x000902 + x001002 + x001102 = 1

cons.623: x000103 + x000203 + x000303 + x000403 + x000503 + x000603 +

x000703 + x000803 + x000903 + x001003 + x001103 = 1

Constraint set (4.7):

cons.624: x001101 + x011101 + x021101 + x031101 + x041101 + x051101 +

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 115

x061101 + x071101 + x081101 + x091101 + x101101 = 1

cons.625: x001102 + x011102 + x021102 + x031102 + x041102 + x051102 +

x061102 + x071102 + x081102 + x091102 + x101102 = 1

cons.626: x001103 + x011103 + x021103 + x031103 + x041103 + x051103 +

x061103 + x071103 + x081103 + x091103 + x101103 = 1

Constraint set (4.8):

cons.627: x000101 + x020101 + x030101 + x040101 + x050101 + x060101 +

x070101 + x080101 + x090101 + x100101 - x010201 - x010301 -

x010401 - x010501 - x010601 - x010701 - x010801 - x010901 -

x011001 - x011101 = 0

cons.628: x000201 + x010201 + x030201 + x040201 + x050201 + x060201 +

x070201 + x080201 + x090201 + x100201 - x020101 - x020301 -

x020401 - x020501 - x020601 - x020701 - x020801 - x020901 -

x021001 - x021101 = 0

cons.629: x000301 + x010301 + x020301 + x040301 + x050301 + x060301 +

x070301 + x080301 + x090301 + x100301 - x030101 - x030201 -

x030401 - x030501 - x030601 - x030701 - x030801 - x030901 -

x031001 - x031101 = 0

……

cons.656: x001003 + x011003 + x021003 + x031003 + x041003 + x051003 +

x061003 + x071003 + x081003 + x091003 - x100103 - x100203 -

x100303 - x100403 - x100503 - x100603 - x100703 - x100803 -

x100903 - x101103 = 0

Constraint set (4.9)

cons.657: w0101 - w0201 + 10000x010201 < = 9993.44

cons.658: w0101 - w0301 + 10000x010301 < = 9995.17

cons.659: w0101 - w0401 + 10000x010401 < = 9995.17

cons.660: w0101 - w0501 + 10000x010501 < = 9993.44

cons.661: w0101 - w0601 + 10000x010601 < = 9993.44

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 116

cons.662: w0101 - w0701 + 10000x010701 < = 9995.17

cons.663: w0101 - w0801 + 10000x010801 < = 9995.17

cons.664: w0101 - w0901 + 10000x010901 < = 9993.44

cons.665: w0101 - w1001 + 10000x011001 < = 9993.44

cons.666: w0201 - w0101 + 10000x020101 < = 9993.39

……

cons.926: w1003 - w0903 + 10000x100903 < = 9992.39

Constraint set (4.10):

cons.927: w0001 - w0101 + 10000x000101 < = 9999.73

cons.928: w0001 - w0201 + 10000x000201 < = 9999.73

cons.929: w0001 - w0301 + 10000x000301 < = 9999.73

cons.930: w0001 - w0401 + 10000x000401 < = 9999.73

cons.931: w0001 - w0501 + 10000x000501 < = 9999.73

cons.932: w0001 - w0601 + 10000x000601 < = 9999.73

cons.933: w0001 - w0701 + 10000x000701 < = 9999.73

cons.934: w0001 - w0801 + 10000x000801 < = 9999.73

cons.935: w0001 - w0901 + 10000x000901 < = 9999.73

cons.936: w0001 - w1001 + 10000x001001 < = 9999.73

cons.937: w0002 - w0102 + 10000x000102 < = 9999.73

……

cons.956: w0003 - w1003 + 10000x001003 < = 9998.00

Constraint set (4.11):

cons.957: w0001 > = 1.48

cons.958: w0002 > = 0.00

cons.959: w0003 > = 0.78

Constraint set (4.12):

cons.960: w0101 > = 0.00

cons.961: w0201 > = 0.00

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 117

cons.962: w0301 > = 4.00

cons.963: w0401 > = 0.00

cons.964: w0501 > = 0.00

cons.965: w0601 > = 0.00

cons.966: w0701 > = 0.00

cons.967: w0801 > = 8.00

cons.968: w0901 > = 8.00

cons.969: w1001 > = 10.00

cons.970: w0102 > = 0.00

……

cons.989: w1003 > = 10.00

Constraint set (4.13):

cons.990: w0301 - w0401 + 10000x030101 + 10000x030201 + 10000x030401 +

10000x030501 + 10000x030601 + 10000x030701 + 10000x030801 +

10000x030901 + 10000x031001 + 10000x031101 + 10000x040101 +

10000x040201 + 10000x040301 + 10000x040501 + 10000x040601 +

10000x040701 + 10000x040801 + 10000x040901 + 10000x041001 +

10000x041101 < = 19998

cons.991: w0501 - w0601 + 10000x050101 + 10000x050201 + 10000x050301 +

10000x050401 + 10000x050601 + 10000x050701 + 10000x050801 +

10000x050901 + 10000x051001 + 10000x051101 + 10000x060101 +

10000x060201 + 10000x060301 + 10000x060401 + 10000x060501 +

10000x060701 + 10000x060801 + 10000x060901 + 10000x061001 +

10000x061101 < = 19998

cons.992: w0701 - w0801 + 10000x070101 + 10000x070201 + 10000x070301 +

10000x070401 + 10000x070501 + 10000x070601 + 10000x070801 +

10000x070901 + 10000x071001 + 10000x071101 + 10000x080101 +

10000x080201 + 10000x080301 + 10000x080401 + 10000x080501 +

10000x080601 + 10000x080701 + 10000x080901 + 10000x081001 +

10000x081101 < = 19998

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 118

cons.993: w0901 - w1001 + 10000x090101 + 10000x090201 + 10000x090301 +

10000x090401 + 10000x090501 + 10000x090601 + 10000x090701 +

10000x090801 + 10000x091001 + 10000x091101 + 10000x100101 +

10000x100201 + 10000x100301 + 10000x100401 + 10000x100501 +

10000x100601 + 10000x100701 + 10000x100801 + 10000x100901 +

10000x101101 < = 19998

cons.994: w0301 - w0402 + 10000x030101 + 10000x030201 + 10000x030401 +

10000x030501 + 10000x030601 + 10000x030701 + 10000x030801 +

10000x030901 + 10000x031001 + 10000x031101 + 10000x040102 +

10000x040202 + 10000x040302 + 10000x040502 + 10000x040602 +

10000x040702 + 10000x040802 + 10000x040902 + 10000x041002 +

10000x041102 < = 19998

……

cons.1025: w0903 - w1003 + 10000x090103 + 10000x090203 + 10000x090303 +

10000x090403 + 10000x090503 + 10000x090603 + 10000x090703 +

10000x090803 + 10000x091003 + 10000x091103 + 10000x100103 +

10000x100203 + 10000x100303 + 10000x100403 + 10000x100503 +

10000x100603 + 10000x100703 + 10000x100803 + 10000x100903 +

10000x101103 < = 19998

Bounds

Cmax free

L01 free L02 free L03 free L04 free

L05 free L06 free L07 free L08 free

L09 free L10 free

w0001 free w0002 free w0003 free w0101 free

w0102 free w0103 free w0201 free w0202 free

w0203 free w0301 free w0302 free w0303 free

w0401 free w0402 free w0403 free w0501 free

w0502 free w0503 free w0601 free w0602 free

w0603 free w0701 free w0702 free w0703 free

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 119

w0801 free w0802 free w0803 free w0901 free

w0902 free w0903 free w1001 free w1002 free

w1003 free

Binary

x000101 x000201 x000301 x000401 x000501 x000601

x000701 x000801 x000901 x001001 x001101 x010101

x010201 x010301 x010401 x010501 x010601 x010701

x010801 x010901 x011001 x011101 x020101 x020301

x020401 x020501 x020601 x020701 x020801 x020901

x021001 x021101 x030101 x030201 x030301 x030401

x030501 x030601 x030701 x030801 x030901 x031001

……

x100603 x100703 x100803 x100903 x101003 x101103

End

The test instances are solved by CPLEX 10.2, running on a desktop machine

with Intel Xeon 2.80 GHz CPU and 2 GB RAM. Of the seven instances, only four

instances can be solved to optimality, and the computational times are great.

The CPLEX results and optimal solution for the first instance Test-n10k3 are

listed in the following. Table 4.3 summarizes the characteristics of the model and the

optimal solution for the instance. For this instance with only 10 jobs and 3 assembly

lines, there are totally 377 variables (333 integer variables) and 1025 linear

constraints. CPLEX spent 1441 seconds to solve the problem to optimality. The

CPLEX results and optimal solutions for Test-n10k4, Test-n11k3, and Test-n11k4

are given in Appendices II, III, and IV, respectively.

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 120

Integer optimal

Objective = 6.5810000000e-001

Solution time = 1441 sec.

Iterations = 19819576

Nodes = 823593

Variable Name Solution Value Variable Name Solution Value

L06 0.200000 L08 0.190000

Cmax 26.81

x000101 1.000000 x010401 1.000000

x040601 1.000000 x060801 1.000000

x081101 1.000000 x000202 1.000000

x020902 1.000000 x090702 1.000000

x071102 1.000000 x000303 1.000000

x030503 1.000000 x051003 1.000000

x101103 1.000000

w0101 1.75 w0401 6.58

w0601 14.9 w0801 19.47

w0202 2 w0902 8.28

w0702 17.47 w0303 4

w0503 10.23 w1003 19.47

All other variables are zero.

Table 4.3 Characteristics of the model and optimal solution for Test-n10k3

No. of integer
variables

No. of
variables

No. of linear
constraints

Objective
(hours)

CPU time
(sec.)

333 377 1025 0.6581 1441

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 121

The Gantt chart in Figure 4.1 shows the optimal schedule for instance Test-

n10k3. The start times for the jobs are shown above the job items. For example, job 1,

job 4, job 6, and job 8 are processed on line 1, consecutively. Because the ready time

for line 2 is 1.48 and the initial status of line 1 is RoHS (as shown in Table 4.2), the

start time for job 1 on line 1, w11 = 1.48 + 0.27 = 1.75 (0.27 is the normal setup time).

Similarly, because both job 1 and job 4 are non-RoHS jobs, the setup time between

them is also 0.27. The start time for job 4 on line 1, w41 = w1 + s11 + t14 = 1.75 +

4.56 + 0.27 = 6.58. However, the setup time between Job 1 and Job 6 is 2 hours

because Job 1 is a non-RoHS Job and Job 6 is an RoHS job. Therefore, the start time

for job 6 on line 1, w61 = w4 + s41 + t46

From the figure, it can be seen that the precedence constraints between front-side

jobs and back-side jobs are also satisfied. For example, job 7 and job 8 are the front

sides and back sides of the same boards, respectively. Therefore, the start time of job

8 cannot be earlier than 2 hours after the start time of job 7.

 = 6.58 + 6.32 + 2 = 14.9.

Based on the obtained schedule, there are two jobs that are completed beyond

their due dates, i.e., job 6 and job 8. For job 6, the complete time is 19.2 and the due

date is 19. For job 8, the complete time is 25.19 and the due date is 25. The

makespan for all the jobs is 26.81, which is the complete time for the last finished

job, job 10. The objective value for this optimal solution can be calculated as (19.2

－ 19) + (25.19 － 25) + 0.01×26.81 = 0.6581.

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 122

Figure 4.1 A Gantt chart for the optimal schedule of the instance Test-n10k3

The results for all the seven instances are summarized in Table 4.4. Due to the

great complexity, CPLEX only obtains the optimal solutions to the first four

instances and the computation times are substantial. When the problem size increases,

the complexity of the MILP model increases exponentially. For the instance Test-

n12k4, which has two more jobs and one more line than the instance Test-n10k3, the

number of variables and the number of constraints are almost doubled. For Test-

n12k4, CPLEX fails to find the optimal solution within 10 days.

For a realistic problem instance, there may be many more jobs and assembly

lines than the test instances. Thus, optimal solutions are infeasible for realistic MLSP

instances. For this reason, a more efficient heuristic solution is required.

4.00
 Job 3

2.00
 Job 2

1.75
 Job 1

10.23
 Job 5

8.28
 Job 9

6.58
 Job 4

19.47
 Job 10

17.47
 Job 7

14.9
 Job 6

19.47
 Job 8

0 5 10 15 20 25 30

line 3

line 2

line 1

(hours)
Time

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 123

Table 4.4 CPLEX computational results for the test instances

Instances
No. of

variables

No. of linear

constraints
Optimal solution CPU time (minutes)

Test-n10k3 377 1025 0.6581 24.0

Test-n10k4 499 1376 0.2311 33.0

Test-n11k3 447 1213 2.1005 161.2

Test-n11k4 592 1638 8.1449 1669.4

Test-n12k4 693 1924 No solution found for 240 hours

Test-n15k4 1044 2910 No solution found for 240 hours

Test-n20k4 1789 5076 No solution found for 240 hours

4.3 A GENETIC ALGORITHM FOR THE MLSP

As discussed in the previous section, the multi-line scheduling problem is

very complex for exact solutions. In order to solve the problem efficiently, a specific

Genetic Algorithm (GA) is proposed.

4.3.1 Representation scheme

For the multi-line scheduling problem, the solution representation is not

straightforward, because a solution to the problem consists of assigning jobs to

assembly lines and sequencing jobs within each line at the same time.

In the proposed genetic algorithm, a special permutation-type representation

scheme is suggested (see Figure 4.2). For a problem with n jobs and k lines, the

chromosome for a solution x has the form of a string of length (n + k). Figure 4.2

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 124

illustrates a chromosome for the problem instance Test-n10k3, which is discussed in

Section 4.2. The instance has 10 jobs and 3 assembly lines. In the chromosome

shown in the figure, the genes valued 1 to 10 represent jobs 1 to 10, respectively,

while genes valued 11, 12, and 13 represent lines 1, 2, and 3, respectively.

Figure 4.2 A chromosome in the proposed GA for the MLSP

Based on the chromosome in Figure 4.2, jobs 8, 5 and 6 are processed by line

1 consecutively. Similarly, jobs 2, 9, 10 and 7 are processed by line 2 consecutively,

and jobs 1, 3 and 4 are processed by line 3 consecutively.

The scheduling solution represented by the chromosome in Figure 4.2 is

shown as follows:

Line 1: Job 8→Job 5→Job 6

Line 2: Job 2→Job 9→Job 10→Job 7

Line 3: Job 1→Job 3→Job 4

The advantage of using such a permutation-type representation scheme is that

many genetic operators for permutation representation are available and can be

readily used in the proposed GA, which will be discussed later.

5 6 2 9 10 13 1 11 4 3 7 12 8

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 125

4.3.2 Fitness evaluation

Since the investigated problem is a minimization problem, the fitness value of

a chromosome is set to be the inverse of the objective value, which is defined by

function (4.1) in Model 4-1.

In order to compute the objective value for a chromosome, the start times for

all the jobs need to be determined according to the chromosome representation. The

following illustrates the procedure for the determination of the job start times

according to a given chromosome.

Step 1: For each line in sequence, consider the start time for the first job. If

the start time for the first job can be determined, move on to determine the start times

for the following jobs on the line one by one, until the start time of a certain job

cannot be determined.

Step 2: For each line in sequence, reconsider the start time for the job that

cannot be determined in Step 1.

Step 3: Repeat Step 2 until the start times for all the jobs have been

determined, or no start time of any job can be determined.

Because the objective of the scheduling problem considers due date

satisfaction and makespan reduction, both of which require reducing the finish times

for the jobs, the start time for each job should be as early as possible. For a non-back-

side job, the start time should consider the finish time for the previous job and its

own ready time. For a back-side job, however, the special precedence constraint

should also be considered, that is, a back-side job can only begin 2 hours after the

start time of the corresponding front-side job (see Section 4.2). For example, suppose

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 126

that job i and job j process the front sides and back sides of the same boards,

respectively, and are produced on the same line consecutively. If the start time and

process time for job i is a and b, respectively, the setup time from job i to job j is c,

and the ready time for job j is d, then the start time for job j should be max {a + b + c,

a + 2, d}.

Consider the chromosome in Figure 4.2, which represents a solution to the

instance Test-n10k3. The procedure for deciding the job start times can be described

as follows.

1. On Line 1, Job 8 is a back-side job and the start time of its corresponding

front-side job (Job 7) has not yet been determined. Therefore, the procedure

moves on to consider Line 2.

2. On Line 2, the ready time for the line is 0. Because the initial status for Line 2

is non-RoHS and the first job, i.e., Job 2, is an RoHS job. So the setup time of

Job 2 is 2 hours. The start time of Job 2 is 0 + 2 = 2 hours. The process time

for Job 2 on Line 1 is 6.01 hours. So the complete time of Job 2 is 2 + 6.01 =

8.01 hours. The next job on Line 2 is Job 9, which requires a setup time of

0.27 hours (because both Job 2 and Job 9 are RoHS jobs). So the start time of

Job 9 is 8.01 + 0.27 = 8.28 hours. The process time for Job 9 on Line 2 is 8.92

hours. So the complete time of Job 9 is 8.28 + 8.92 = 17.2 hours. The next job

on Line 2 is Job 10, which requires a setup time of 0.27 hours (because both

Job 9 and Job 10 are RoHS jobs). So the start time of Job 10 is 17.2 + 0.27 =

17.47 hours. The process time for Job 10 on Line 2 is 6.92 hours. So the

complete time of Job 10 is 17.47 + 6.92 = 24.39 hours. The last job on Line 2

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 127

is Job 7, which also requires a setup time of 0.27 hours. So the start time of

Job 7 is 24.39 + 0.27 = 24.66 hours. The process time for Job 7 on Line 2 is

3.29 hours. So the complete time of Job 7 is 24.66 + 3.29 = 27.95 hours.

3. On Line 3, the ready time for the line is 0.78. Because the initial status for

Line 3 is non-RoHS and the first job, i.e., Job 1, is a non-RoHS job. So the

setup time of Job 2 is 0.27 hours. The start time of Job 1 is 0.78 + 0.27 = 1.05

hours. The process time for Job 1 on Line 3 is 5.34 hours. So the complete

time of Job 1 is 1.05 + 5.34 = 6.39 hours. The next job on Line 3 is Job 3,

which requires a setup time of 0.27 hours (because both Job 2 and Job 9 are

non-RoHS jobs). So the start time of Job 3 is 6.39 + 0.27 = 6.66 hours. The

process time for Job 3 on Line 3 is 4.23 hours. So the complete time of Job 5

is 6.66 + 4.23 = 10.89 hours. The last job on Line 3 is Job 4, which requires a

setup time of 0.27 hours (because both Job 3 and Job 4 are non-RoHS jobs).

So the start time of Job 4 is 10.89 + 0.27 = 11.16 hours. The process time for

Job 4 on Line 3 is 7.92 hours. So the complete time of Job 4 is 11.16 + 7.92 =

19.08 hours.

4. The procedure moves back to consider the jobs on Line 1. For Job 8 which is

a back-side job corresponding to Job 7, the start time of Job 8 can only be 2

hours later than the start time of Job 7. Therefore, the start time of Job 8 is

24.66 + 2 = 26.66. The process time for Job 8 on Line 1 is 5.72 hours. So the

complete time of Job 8 is 26.66 + 5.72 = 32.38 hours. The next job on Line 1

is Job 5, which requires a setup time of 2 hours (because Job 8 is a non-RoHS

job and Job 5 is an RoHS job). So the start time of Job 5 is 32.38 + 2 = 34.38

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 128

hours. The process time for Job 5 on Line 1 is 8.92 hours. So the complete

time of Job 5 is 34.38 + 8.92 = 43.3 hours. The last job on Line 1 is Job 6,

which requires a setup time of 0.27 hours (because both Job 5 and Job 6 are

RoHS jobs). So the start time of Job 6 is 43.3 + 0.27 = 43.57 hours. The

process time for Job 6 on Line 1 is 4.30 hours. So the complete time of Job 6

is 43.57 + 4.30 = 47.87 hours.

Following the above procedure, the detailed schedule represented by the GA

chromosome in Figure 4.2 can be obtained, which is shown as the Gantt chart in

Figure 4.3.

Figure 4.3 Detailed schedule represented by a chromosome in the GA

Based on the schedule shown in Figure 4.3, there are 4 jobs, i.e., Job 4, Job 5,

Job 8, and Job 6, which are completed beyond due dates. The makespan for all the

jobs is 47.87 hours, which is the completion time of Job 6. The objective value is

then calculated using the objective function in Model 4-1.

26.66
 Job 8

2.00
 Job 2

1.05
 Job 1

34.38
 Job 5

8.28
 Job 9

6.66
 Job 3

43.57
 Job 6

17.47
 Job 10

11.16
 Job 4

24.66
 Job 7

0 10 20 30 40 50 60

line 3

line 2

line 1

Time
(hours)

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 129

Objective = maxqCLp
Ni

ii +∑
∈

 = 3 × (19.08–18) + 1 × (43.3–25) + 1 × (47.87

–19) + 1 × (32.38–25) + 0.01 × 47.87 = 58.2687.

The fitness value of the chromosome is the inverse of the objective value:

Fitness = 1 / 58.2687 = 0.0172.

It should be noted that there may be some chromosomes that represent

infeasible solutions. Consider the following scheduling solution for the same

problem:

Line 1: Job 4→Job 5→Job 1

Line 2: Job 8→Job 9→Job 10→Job 7

Line 3: Job 10→Job 3→Job 4

For the above solution, all the first jobs on the three lines, i.e., Job 4, Job 8

and Job 10, are the back-side jobs, which cannot be processed before their

corresponding front-side jobs. In the genetic algorithm, the fitness values of such

infeasible chromosomes are set to zero.

4.3.3 Genetic operators

Because the proposed GA adopts a permutation-type representation scheme,

the genetic operators for a permutation-type representation can be readily used for

the proposed GA, which include partially mapped crossover (PMX), edge crossover,

order crossover (OX), cycle crossover, swap mutation, scramble mutation, inversion

mutation, etc. In preliminary tests, it is found that there is no significant difference

among the performance of the above crossover operators and the mutation operators

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 130

for solving the investigated problem. In the proposed GA, the two commonly-used

operators, the order crossover (OX) and swap mutation, will be used.

The swap mutation has been discussed in Chapter 3. The order crossover (OX)

operator was designed by Davis [Dav91] and is suitable especially for permutation

problems. The process of the operator can be described as follows.

1. Choose two crossover points at random, and copy the segment between them

from the first parent into the first offspring.

2. Start from the second crossover point in the second parent, copy the

remaining unused numbers into the first child in the order that they appear in

the second parent, wrapping around at the end of the list.

3. Create the second offspring in an analogous manner, with the parent roles

reversed.

The procedure for the OX operator is shown in Figure 4.4.

Figure 4.4 Order crossover (OX)

11 8 5 6 2 Parent 1

Parent 2

Child 1

9

Child 2

7 4 13 10 12

11 3 2 1 7 4 9 5 13 10 12

3 1

8 6

5 6 2 9 13 10 11 12 3 8 7 4 1

2 1 7 4 13 8 12 3 11 5 6 9 10

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 131

4.3.4 Replacement strategies

The replacement strategy defines how to select new individuals for the new

generations. One of the commonly-used replacement strategies for genetic

algorithms is the replace-worst strategy, which has been used in the genetic

algorithm proposed for the component allocation problem (see Chapter 3).

 However, due to the complicated structure of chromosome representation

(which combines both the assignment of jobs to lines and sequencing of jobs in each

line), the genetic operators may be ineffective for producing good offspring.

Therefore, the replace-worst strategy may probably remove those potential

chromosomes before they produce better offspring, and thus lead to early

convergence. For this reason, a new replacement strategy is proposed and tried in the

genetic algorithm proposed for the scheduling problem.

The new replacement strategy incorporates two different replacement policies,

i.e., the replace-parent policy and the replace-worst policy. For the replace-parent

policy, every new offspring only compares with its parents, and replaces the parent

that is worse than the offspring. The replace-parent policy is applied in every

generation while the replace-worst policy is applied only once during certain number

of generations. By adjusting the frequency for the replace-worse policy, the

convergence of the searching process and the diversity of the population can be well

balanced.

In order to examine the effectiveness of the new replacement strategy, two

GAs are implemented and compared in the following experimental tests, i.e., the

GA-R, which uses the common replace-worst replacement strategy, and the GA-N,

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 132

which uses the new replacement strategy. The general process for the GA-R is the

same as the GA for the Component Allocation Problem (CAP) discussed in Chapter

3 (see Figure 3.7). The general process for the GA-N is illustrated in Figure 4.5. In

the figure, Cw is the cycle (in generations) for applying the replace-worst policy. For

example, if Cw

 = 20, then the replace-worst policy will apply once every 20

generations.

Figure 4.5 General framework for the GA-N for the MLSP

Terminate?

Final solution

Yes

Yes

Randomly select parents

Every Cw generations?

Apply replace-
parent policy

Apply replace-worst
strategy

No

Randomly
generate solutions

Evaluate the solutions

Generate offspring by
crossover and mutation

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 133

4.4 EXPERIMENTAL TESTS

The test instances generated in Section 4.2 are used to test the proposed

genetic algorithms. The two GAs using two different replacement strategies, i.e.,

GA-R and GA-N, are tested.

The GAs are coded in Microsoft Visual C++ 2005, and run on a desktop

machine with Intel Xeon 2.80 GHz CPU and 2 GB RAM, which is the same machine

used by CPLEX in Section 4.2.

4.4.1 Parameter setting for the GAs

Like the GA for the Component Allocation Problem (CAP) in Chapter 3, the

parameters for the genetic operators for the GA-R and GA-N for the multi-line

scheduling problem are determined through trial and error. The crossover rate Cr is

set to 0.9. That is, 90% of the population members are randomly selected as parents

to produce 90 children in each generation. The swap mutation rate Mr

For the GA-N, it is found that the cycle for the replace-worst policy, C

 is set to 0.1,

which means that each child is selected with possibility of 0.1 to be mutated. Similar

to the discussion in Chapter 3, the population sizes for both GAs are set to 100.

w, has

significant effect on the performance of the algorithm. In order to evaluate this effect

and determine the most suitable value for Cw

Figure 4.6 shows the results for the instance Test-n20k4 obtained by GA-N

with different C

, the following experiments are

conducted.

w values, i.e., 1, 5, 20, 60, and 200 generations. For each run, the

algorithm terminates when there is no improvement during 3000 generations. In the

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 134

figure, the unit for Cw values are shown in unit of n generations (n is the number of

jobs, i.e., 20). From the results, it can be seen that the GA-N with Cw = 1 obtains a

high objective value (which represent a bad solution). The objective value decreases

rapidly while increasing the Cw value. It can be seen that the algorithm achieves the

best objective value when Cw = 60 (i.e., 3n). When Cw > 60, the objective value

increases again with the Cw

A similar observation is achieved for other instances. For example, Figure 4.7

shows the results for the instance Test-n15k4. It shows that the cycle for the replace-

worst policy C

 value.

w has a significant effect on the performance of the GA-N. If Cw is too

small, the replace-worst policy applies too frequently and thus a chromosome is not

allowed to have enough time to generate good offspring. On the other hand, if Cw is

too large, the algorithm spends too much time on exploitation that the exploration of

the whole solution space is weak. In this sense, an appropriate Cw

From the experiments, it can be seen that the most appropriate C

 value is unique for

achieving a good balance between exploitation and exploration of the algorithm.

w value is

related to the problem size. For most of the problem instances, the appropriate Cw

values range from 2n to 3n generations (n is the number of jobs). In the following

experiments, Cw for the GA-N is set to 3n.

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 135

Figure 4.6 Objective values for Test-n20k4 obtained with different Cw

 values

Figure 4.7 Objective values for Test-n15k4 obtained with different Cw values

Objective

6

7

8

9

10

11

12

13

14

0 2 4 6 8 10
Cw (n generations)

Objective

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 2 4 6 8 10

Cw (n generations)

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 136

4.4.2 Numerical results

The two GAs, i.e., the GA-R and GA-N, are run for all the generated

instances. Both the algorithms are run 20 times for each instance. Each run

terminates when there is no improvement during 3000 generations. Table 4.5 shows

the results for all the problem instances obtained by GA-R and GA-N.

Table 4.5 Numerical results obtained by the two GAs

Instances
Optimal

Values

GA-R GA-N

ave. σ a CPU b ave.c σ a CPU b c

Test-n10k3 0.6581 0.6581 0 3.84 0.6581 0 2.02

Test-n10k4 0.2311 0.2350 0.0082 4.27 0.2311 0 3.94

Test-n11k3 2.1005 2.4508 0.4628 3.15 2.1005 0 3.69

Test-n11k4 8.1449 8.3879 0.5433 4.45 8.1449 0 3.70

Test-n12k4 \ 0.2439 0.0029 3.56 0.2439 0 3.66

Test-n15k4 \ 1.5319 1.7071 3.91 0.7469 0.0151 3.90

Test-n20k4 \ 14.3834 7.0809 6.22 8.1544 1.9878 7.05

a Average objective value for 20 runs;
b Standard deviation of objective values for 20 runs.
c

 Average CPU time (in seconds)

From table 4.5, it can be seen that the two GAs solve the problem instances

with small computational times. The average objective values obtained by the GA-N

are generally smaller than those obtained by the GA-R, while the computational

times for the two GAs are similar. Furthermore, the GA-N achieves smaller standard

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 137

deviation of objective values than the GA-R, indicating that the GA-N has greater

reliability than the GA-R. For example, the objective value for the instance Test-

n20k4 obtained by the GA-N is 8.1544, which is 43.3% smaller than that achieved by

the GA-R, 14.3834. The standard deviation of objective values for the GA-N is

1.9878, which is also much smaller than that for the GA-R, 7.0809. The results show

that the new replacement strategy significantly improves the performance of the

genetic algorithm for solving the investigated problem.

Figure 4.8 shows the convergence process for the GA-R and the GA-N for

the instance Test-n20k4. From the figure, it can be seen that the GA-N avoids early

convergence that occurs in the GA-R and obtains much better solution in the end,

This indicates that the exploration and exploitation of the algorithm are well

balanced by adopting the new replacement strategy.

0
20

40
60

80
100

120
140

160
180

200

0 500 1000 1500 2000
Generations

Objective GA-N
GA-R

Figure 4.8 Convergence process for the GA-R and the GA-N

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 138

The GA-N obtains optimal solutions for all the four instances that can be

solved by CPLEX, while the computational times for the GA-N are much shorter.

For example, CPLEX spends 1669.4 minutes to solve the instance Test-n11k4 to

optimality, while the GA-N spends only 3.70 seconds for obtaining the same results.

Even for some large instances, which CPLEX fails to solve, the GA-N spend very

short computational times for obtaining good results (The GA solutions for Test-

n12k4, Test-n15k4, and Test-n20k4 are shown in Appendices V, VI, and VII). Even

for the largest instance Test-n20k4, the GA-N obtains the result within 10 seconds,

indicating that the GA-N is able to solve the problem efficiently.

4.5 A CASE STUDY

In order to evaluate the practical usefulness of the proposed GA method for

the multi-line scheduling problem, a case study is conducted.

A realistic scheduling problem in an investigated PCB manufacturer is

considered. Table 4.6 shows the job data for the problem. In this case, the jobs that

are due within seven days are considered for the scheduling problem. There are

totally 46 jobs to be processed by 5 assembly lines. The ready times and initial RoHS

status of the assembly lines are shown in Table 4.7. The time values in both tables

are shown in hours.

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 139

Table 4.6 Data for the problem in the case study

Job

Ready
time

Due
datea if_frontb bk_jobc RoHSd pe

i
Process timef

g
Line 1 Line 2 Line 3 Line 4 Line 5

1 0 45 0 \ 0 1 1000 11 11 1000 1000
2 0 45 0 \ 0 1 13.62 13.2 13.2 12.75 12.75
3 45 245 1 4 0 1 15.89 14.49 14.49 13.87 13.87
4 45 245 0 \ 0 1 15.89 14.49 14.49 14.64 14.64
5 0 245 1 6 1 1 17.48 15.12 15.12 15.12 15.12
6 0 245 0 \ 1 1 23.64 18.89 18.89 26.31 26.31
7 0 245 1 8 1 1 24.51 22.75 24.68 22.75 22.75
8 0 245 0 \ 1 1 24.51 22.75 24.68 22.75 22.75
9 22 178 1 10 1 1 15.23 12.75 15.14 12.75 14.75
10 22 178 0 \ 1 1 15.23 12.75 15.14 12.75 14.75
11 0 89 0 \ 1 1 8.89 6.5 7.52 1000 1000
12 45 178 1 13 0 1 14.23 11.89 1000 1000 1000
13 45 178 0 \ 0 1 14.23 11.89 1000 1000 1000
14 45 201 1 15 0 1 12.5 12.22 11.73 11.78 11.78
15 45 201 0 \ 0 1 12.74 9.36 9.66 11.56 11.56
16 76 134 1 17 0 1 15.84 13.24 1010 13.24 13.24
17 76 134 0 \ 0 1 15.84 13.24 1010 13.24 13.24
18 76 223 1 19 0 1 8.66 8.32 1000 8.32 8.32
19 76 223 0 \ 0 1 8.66 8.32 1000 8.32 8.32
20 48 178 1 21 0 1 11.74 11.45 11.66 11.45 11.45
21 48 178 0 \ 0 1 11.32 11.22 11.35 11.24 11.24
22 48 134 1 23 1 1 5.36 4.98 4.68 1000 1000
23 48 134 0 \ 1 1 9.84 7.62 11.62 1000 1000
24 68 201 0 \ 1 1 10.56 1000 10 1000 1000
25 48 201 1 26 0 1 11.82 10.55 10.36 10.55 10.55
26 48 201 0 \ 0 1 13.03 11.77 10.74 11.77 11.77
27 0 67 1 28 0 1 8.96 8.08 8.29 8.08 8.08
28 0 67 0 \ 0 1 10.85 9.41 10.59 9.41 9.41
29 45 245 1 30 0 1 7.68 7.59 7.77 7.12 7.12
30 45 245 0 \ 0 1 7.93 7.47 7.2 6.89 6.89
31 0 245 1 32 0 1 1000 16.42 21.83 17.81 17.81
32 0 245 0 \ 0 1 1000 16.42 21.83 17.81 17.81
33 0 67 0 \ 0 1 9.56 1000 11 1000 1000
34 0 112 1 35 0 1 15.98 15.48 15.21 1000 1000
35 0 112 0 \ 0 1 14.87 12.89 16.94 1000 1000
36 22 156 0 \ 0 1 11.65 11.45 11.66 11.45 11.45
37 89 201 1 38 0 1 11.39 11.22 11.35 11.24 11.24
38 89 201 0 \ 0 1 9.37 1000 1000 8.82 8.82
39 0 178 1 40 1 1 35.17 33.87 36.74 30.92 30.92
40 0 178 0 \ 1 1 16.21 11.98 15.75 15.75 15.75
41 82 223 1 42 1 1 45.78 39.55 40.33 37.81 37.81
42 82 223 0 \ 1 1 6.74 5.87 6.23 4.85 4.85
43 82 223 1 44 1 1 18.46 18.34 19.29 16.69 16.69
44 82 223 0 \ 1 1 6.88 7.02 1000 6.59 6.59
45 82 223 1 46 1 1 27.45 1000 1000 22.92 22.92
46 82 223 0 \ 1 1 27.45 1000 1000 22.92 22.92

a ready time for the job
b due date for the job

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 140

c indicator for a front-side job. Value one indicates that the job is a front-side job, zero otherwise
d corresponding back-side job number
e indicator for RoHS jobs. Value 1 indicates that the job processes RoHS boards, 0 otherwise
f weight for tardiness penalty (weight for makespan penalty is set to 0.01)
g

 process time for each job on each line. If a job cannot be processed on the line, the time is set to

1000

Table 4.7 Ready times and initial RoHS status for assembly lines

 Line 1 Line 2 Line 3 Line 4 Line 5

Ready time 1.52 0 1.78 2.66 0

Initial RoHS status 0 1 0 0 1

It should be noted that in practice, the scheduling problem should be solved

each time when there is new production orders in the planning period. All the jobs

that have not been processed should be scheduled. However, the jobs that have been

started on a particular line and have not been finished are not considered in the

scheduling. The ready time of an assembly line is set to be the finish time of the

unfinished job on the line. Accordingly, the initial RoHS status of the lines should be

the RoHS status of these unfinished jobs.

The proposed genetic algorithm, the GA-N, is used to solve the case problem.

The algorithm is run only once and terminates when there is no improvement on the

best chromosome during 3000 generations. The detailed schedule obtained by the

proposed GA is shown in Figure 4.9.

The schedule obtained by the GA is compared with that obtained by the

scheduling staff of the company (as shown in Figure 4.10). The proposed GA solves

the problem with 64.2 seconds. Based on the schedule obtained by the proposed GA,

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 141

all the jobs are finished before their due dates. The makespan obtained by the GA is

131.22 hours, which is 8.88% shorter than that obtained by the company scheduling

staff, which is 144 hours.

The results are much encouraging, and the company managers are satisfied.

Reduced makespan means higher production efficiency. The production capacity of

the company can be increased without further investment on the expensive assembly

equipment. In a make-to-order environment, larger production capacity is crucial for

PCB manufacturers to gain more profits and become more competitive.

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 144

4.6 SUMMARY

This chapter investigated the Multi-Line Scheduling Problem (MLSP) in PCB

assembly and proposed an effective solution method for the problem. Some main

remarks can be summarized as follows.

1. A Mixed Integer Linear Programming (MILP) model has been established for

the multi-line scheduling problem in PCB assembly. The objective of the

model considers both due date requirement and production efficiency while

giving a higher priority to the former. Precedence constraints between jobs

and sequence-dependent setup times are also considered to make the model

more realistic and applicable.

2. Some test instances have been generated and used to verify the established

model. The instances are solved by a commercial LP solver, CPLEX. The

results show that the established mathematical model is able to find optimal

solution while satisfying all the practical constraints. However, the

computational complexity is shown to be extremely great. CPLEX fails to

solve the test instance with only 12 jobs and 4 lines within 240 hours. Exact

solutions are impossible for real-sized problems.

3. In order to solve the problem efficiently, a GA method has been developed.

Because of the great complexity of the problem, a new replacement strategy

has been proposed to improve the performance of the GA. Experimental tests

show that the algorithm using the new replacement strategy achieves a good

balance between exploration and exploitation, and obtains significantly better

solutions than the algorithm using the common replace-worst strategy.

CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 145

4. The proposed GA method obtains the optimal results for all the instances that

can be solved by CPLEX. The computational times for the GA method are

short. The results show that the proposed GA method can solve the multi-line

scheduling problem both effectively and efficiently.

5. A case study on solving a realistic scheduling problem in a PCB company is

conducted. The proposed method is able to find an effective scheduling result

for the problem. Compared to the solution obtained by the scheduling staff in

the company, the proposed method obtains a better schedule with a makespan

that is 8.88% shorter, while satisfying the due date requirement. The

production capacity of the company can be increased without further

investment on the equipment or sacrifice of customer satisfaction.

The solution method proposed in this chapter has shown to be able to solve

the multi-line scheduling problem both effectively and efficiently. Since the

established model considers realistic constraints and a reasonable objective in PCB

assembly environment, the results are highly valuable to PCB manufacturers. The

research results in this chapter and those in Chapter 3 are complementary to each

other, in that the production efficiency of each line can be improved by solving the

component allocation problem, while the production efficiency of the whole

assembly shop can be achieved by solving the multi-line scheduling problem. In

Chapter 5, this research will be concluded by summarizing the main achievements,

academic contributions, and possible benefits to industry. Some possible future work

related to this research will also be given.

 146

CHAPTER 5

CONCLUSIONS AND SUGGESTIONS FOR

FUTURE RESEARCH

5.1 CONCLUSIONS

In this research, two important planning problems in PCB assembly have

been addressed, i.e., the Component Allocation Problem (CAP) and the Multi-Line

Scheduling Problem (MLSP). The component allocation problem is vital for

improving the throughput of a PCB assembly line, while the multi-line scheduling

problem is important for improving overall production efficiency and meeting due

date requirement.

The component allocation problem is to allocate components required by a

PCB to different machines in an assembly line, so that the line cycle time is

minimized. The component allocation problem is found to be interrelated with the

machine optimization problems, i.e., the feeder arrangement problem and the

placement sequencing problem, for the solutions to the component allocation

problem are eventually influenced by the solutions to the machine optimization

problems for each machine in the line. In order to reduce the computational

complexity caused by this interrelationship, a decomposed solution strategy has been

proposed. The effectiveness and efficiency of the proposed solution strategy for the

component allocation problem has been examined in the experimental tests.

The multi-line scheduling problem is to schedule PCB batches on multiple

assembly lines, so that the sum of weighted tardiness and weighted makespan is

CHAPTER 5: CONCLUSIONS AND FUTURE WORK 147

minimized. The specific multi-line scheduling problem is shown to be a special type

of unrelated Parallel-Machine Scheduling Problem (PMSP) with sequence-dependent

setup times and precedence constraints, which is NP-hard. Due to the complexity of

the problem, a specific Genetic Algorithm (GA) has been proposed to solve the

problem. Experimental tests have been conducted to examine the effectiveness and

efficiency of the GA method.

The main conclusions of this research are as follows.

1. The Component Allocation Problem (CAP) is extremely complicated for the

evaluation of the solutions involves solving the machine optimization

problems for each machine in the line. The proposed solution strategy aims to

solve the component allocation problem without tackling the machine

optimization problems. The solution strategy relies on a regression-based

placement time estimator, which can estimate the placement time for each

machine in the line without solving the machine optimization problems.

Based on this placement time estimator, algorithms or heuristics can be

devised to solve the component allocation problem without tackling the

machine optimization problems.

2. A placement time estimator for a turret-type placement machine has been

established to examine the feasibility of the solution strategy for the

component allocation problem. The estimator is based on a linear regression

model, which considers all the influential factors that may affect the

placement time, including the number of components, the number of

component types, and the closeness of the components. The regression model

CHAPTER 5: CONCLUSIONS AND FUTURE WORK 148

is calibrated using a data set which is obtained through experiments.

Statistical analysis shows that the placement time estimator has a high R2

3. The proposed solution strategy for the component allocation problem is

implemented through the development of a specific genetic algorithm, which

uses the established placement time estimator for solution evaluation. Based

on the placement time estimator, the genetic algorithm is able to consider all

the influential factors that affect the placement time for each machine when

solving the component allocation problem. Experiments on solving some

problem instances show that the proposed solution method can achieve better

solutions than those obtained by the software provided by the machine vendor.

The results are encouraging, especially because the GA obtains the solutions

without calculating the exact placement times through simulation, as the

vendor software does. Even better solutions could be expected if the GA

solutions are further improved by some adjustments based on the simulated

placement times.

value of 0.99, showing that the estimator can yield accurate estimates of

placement time, without solving the machine optimization problems.

4. A Mixed Integer Linear Programming (MILP) model has been established for

the multi-line scheduling problem in PCB assembly. A reasonable objective

and some practical constraints are considered in the model. The objective

considers both due date satisfaction and production efficiency while giving a

higher priority to due date satisfaction. Precedence constraints between jobs

and sequence-dependent setup times are also considered to make the model

CHAPTER 5: CONCLUSIONS AND FUTURE WORK 149

more realistic and applicable. Some test instances are generated and used to

verify the established model. The instances are solved by a commercial LP

solver, CPLEX. The testing results show that the established model is able to

find effective solutions to the scheduling problem. However, while some

small instances could be solved to optimality, the computational complexity

is shown to be extremely great. Exact solutions are impossible for real-sized

problems.

5. In order to solve the multi-line scheduling problem efficiently, a specific

genetic algorithm has been developed. In order to improve the performance of

the GA, a new replacement strategy is proposed and used in the genetic

algorithm. Experimental tests show that the algorithm using the new

replacement strategy can obtain much better solutions than the algorithm

using the replace-worst replacement strategy, which is one of the most

commonly-used replacement strategies. The proposed GA method obtains the

optimal results for all the instances that can be solved by CPLEX, with much

less computational time. A case study on solving a realistic scheduling

problem is also conducted. The results show that the proposed GA method is

able to solve realistic multi-line scheduling problems. Compared to the

solution obtained by the scheduling staff in the investigated manufacturer, the

proposed GA method obtains a schedule with much smaller makespan while

ensuring due date satisfaction. This shows that the proposed solution method

can help the manufacturers to improve both production efficiency and

customer satisfaction.

CHAPTER 5: CONCLUSIONS AND FUTURE WORK 150

5.2 ACADEMIC CONTRIBUTIONS

The planning problems in PCB assembly have been investigated by numerous

researchers. Relative papers on this topic have been published in the operations

research, industrial engineering and production management literature. The academic

contributions of this research can be summarized as follows.

First of all, the decomposed solution strategy proposed for the component

allocation problem is an attempt to solve the higher-level planning problems

effectively by relaxing the dependency on the lower-level planning problems. The

successful implementation of this solution strategy indicates its potential use for

solving other hierarchical planning problems.

Second, a placement time estimator that can estimate the placement time for a

PCB placement machine rapidly and accurately has been successfully established.

Although the placement time is determined by the solutions to the complicated

machine optimization problems, i.e., the feeder arrangement and placement sequence,

it can be accurately estimated using the regression method. The successful

development of the estimator provides an efficient way for obtaining objective values

for a complicated planning problem without solving it. The approach might be

important for applications like decision support systems.

Third, results of experimental tests indicate that, for the genetic algorithm for

the component allocation problem, the swap mutation operator and the fitness

function considering both cycle time and total line time perform significantly better

than the random-point mutation operator and the fitness function considering only

cycle time, respectively. These findings are thought to be due to the line balancing

CHAPTER 5: CONCLUSIONS AND FUTURE WORK 151

property of the component allocation problem. Therefore, the results may be

transferable to other types of line balancing problems, although a further research is

required.

Fourth, a complete mathematical model has been established for the multi-

line scheduling problem in PCB assembly, which fills up a gap in the relative

research. The established model is different from existing models in the literature, in

that it considers a more reasonable objective and some practical constraints, which

are realistic in many PCB manufacturing environments.

Finally, a new replacement strategy has been proposed for the genetic

algorithm and shown to be effective for improving the algorithm performance in

solving the multi-line scheduling problem. The new replacement strategy can achieve

a good balance between solution exploration and exploitation and thus improve the

performance of the algorithm. The new replacement strategy may be helpful for

solving other complicated optimization problems.

5.3 POSSIBLE BENEFITS TO INDUSTRY

The planning problems investigated in this research are quite common in

many PCB manufacturers. The established approaches are important for the

manufacturers to improve production efficiency while maintaining customer

satisfaction.

The established approach for the multi-line scheduling problem helps the

manufacturers to make an effective schedule that considers both due date satisfaction

and makespan reduction. Some realistic considerations are made in the established

CHAPTER 5: CONCLUSIONS AND FUTURE WORK 152

model so that the solution is more applicable. These considerations include the

sequence-dependent setup times, precedence requirements between jobs, ready times

and due dates for the jobs, ready times for the assembly lines, etc. In addition, the

approach allows PCB manufacturers to define relative importance for each order

while optimizing the schedule. A realistic problem case is studied and it shows that

the established approach can achieve a better scheduling result than the scheduling

staff in the investigated manufacturing company. The makespan is reduced by 8.88%,

indicating that production efficiency is improved. The production capacity of the

company can be increased without further investment on the expensive assembly

equipment.

The established approach for the component allocation problem is important

for improving the line throughput when a job is assigned to a specific assembly line.

Experimental tests show that the proposed method can achieve better solutions than

those obtained by the existing software provided by machine vendor. Since the

established approach for the component allocation problem relies on the regression-

based placement time estimator, knowledge on technological specifications of the

placement machines is not necessary. Nevertheless, even better solutions could be

expected if the technological specifications about the machine are known.

Furthermore, the proposed method is applicable to assembly lines with mixed-vendor

machines, to which the vendor software is not applicable.

CHAPTER 5: CONCLUSIONS AND FUTURE WORK 153

5.4 FUTURE WORK

 Due to the large variety of manufacturing environments in PCB assembly,

certain limitations exist in this research. Some possible future work related to this

research is suggested as follows.

1. The placement time estimators for other types of placement machines should

be established.

In this research, the placement time estimator for a turret-type placement

machine is established and shown to be effective for obtaining accurate

estimates of placement time. However, due to different operation modes, the

specification of the estimator for a different machine, e.g., a sequential pick-

and-place machine, may be different. The effectiveness of the regression

method should be examined for other machine types.

2. Other approaches can be tried for the placement time estimators.

Although the regression method is shown to be effective for estimating the

placement time for the turret-type machine, the effectiveness may not hold.

Other methods can be considered in the development of the estimators in the

future. One alternative is the neural network approach, which has shown to be

as effective as the linear regression approach for developing TSP minimum

tour estimator [Kwo95].

3. The component allocation problem with feeder duplication should be

investigated.

The component allocation problem investigated in this research does not

consider feeder duplication, which allows the same components to be

CHAPTER 5: CONCLUSIONS AND FUTURE WORK 154

assigned to more than one machine in the line. By intuition, feeder

duplication is beneficial for reducing the line cycle time, although some PCB

manufacturers do not consider feeder duplication due to the expensiveness of

the feeders. However, the complexity of the component allocation problem

greatly increases with feeder duplication for the problem not only determines

the assignment of feeders to machines, but also the allocation of the same

components to different machines.

4. Integration of the approaches established in this research with the existing

machine vendor software should be done to facilitate practical use in the

industry.

The solutions to the multi-line scheduling problem and the component

allocation problem serve as input to the lowest-level machine optimization

problems, i.e., the feeder arrangement and placement sequence for each

single machine. Most PCB manufacturers currently use software packages

provided by machine vendors for solving the machine optimization problems.

Therefore, integration of the established approaches with the existing

machine optimization software is necessary for practical use in the industry.

Due to the ever-advancing technologies in PCB assembly, planning problems

in PCB assembly are becoming more and more complicated. Solutions to these

problems have been and will always be essential for improving production efficiency

and maintaining customer satisfaction. The approaches and methodologies developed

in this research are the results of a successful application of operations research

CHAPTER 5: CONCLUSIONS AND FUTURE WORK 155

techniques in PCB assembly planning. Both industrial benefits and academic

contributions of this research have been illustrated. Nevertheless, much research

work should be done in the future to adopt the developed approaches in various and

variable planning situations.

REFERENCES 156

REFERENCES

[Aar89] Aarts, E. H. L., 1989, Simulated Annealing and Boltzmann Machine:

A St ochastic A pproach t o C ombinatorial O ptimization and N eural

Computing, Wiley.

[Aar97] Aarts, E. and Lenstra, J. K., 1997, Local Se arch i n C ombinatorial

Optimization, Wiley.

[Abd88] Abdul-Razaq, T. S. and Potts, C. N., 1988, Dynamic programming

state–space relaxation for single–machine scheduling, Journal of t he

Operational Research Society, 39(2), 141–152.

[Ahm99] Ahmadi, R. H. and Mamer, J. W., 1999, Routing heuristics for

automated pick and place machines, European Journal of Operational

Research, 117, 533–552.

[Alt00] Altinkemer, K., Kazaz, B., Köksalan, M. and Moskowitz, H., 2000,

Optimization of printed circuit board manufacturing: Integrated

modeling and algorithms, European Journal of Operational Research,

124, 409–421.

[Amm97] Ammons, J. C., Carlyle, M., Cranmer, L., DePuy, G., Ellie, K.,

McGinnis, L.F., Tovey, C. A. and Xu, H., 1997, Component

allocation to balance workload in printed circuit card assembly

systems, IIE Transactions, 29, 265–275.

[Ang07] Anghinolfi, D. and Paolucci, M., 2007, Parallel machine total

tardiness scheduling with a new hybrid metaheuristic approach,

REFERENCES 157

Computers & Operations Research, 34(11), 3471–3490.

[Arm07] Armentano, V. A. and de França Filho, M. F., 2007, Minimizing total

tardiness in parallel machine scheduling with setup times: An adaptive

memory-based GRASP approach. European J ournal of O perational

Research, 183, 100–114.

[Ash07] Ashayeri, J. and Selen, W., 2007, A planning and scheduling model

for onsertion in printed circuit board assembly, European Journal of

Operational Research, 183, 909–925.

[Ayo05] Ayob, M., Kendall, G., 2005a. A triple objective function with a

chebychev dynamic point specification approach to optimize the SMD

placement machine, European Journal of Operational Research, 164,

609–626.

[Ayo08] Ayob, M. and Kendall, G., 2008, A survey of surface mount device

placement machine optimization: Machine classification, European

Journal of Operational Research, 186, 893–914.

[Bal88] Ball, M.O. and Magazine, M. J., 1988, Sequencing of insertions in

printed circuit board assembly, Operations Research, 36, 192–201.

[Bal99] Balakrishnan, A. and Vanderbeck, F., 1999, A tactical planning model

for mixed–model electronics assembly operations, Operations

Research, 47, 3, 395–409.

[Bar77] Barnes, J. W. and Brennan, J. J., 1977, An improved algorithm for

scheduling jobs on identical machines, IIE Transactions, 9, 25–31.

[Bar06] Bard, J. F. and Rojanasoonthon, S., 2006, A branch-and-price

REFERENCES 158

algorithm for parallel machine scheduling with time windows and job

priorities, Naval Research Logistics, 53, 1, 24–44.

[Bea94] Bean, J., 1994, Genetic algorithms and random keys for sequencing

and optimization, ORSA Journal on Computing, 6, 154–160.

[Bel94] Belouadah, H. and Potts, C. N., 1994, Scheduling identical parallel

machines to minimize total weighted completion time, Discrete

Applied Mathematics, 48, 201–218.

[Ben90] Ben–Arieh, D. and Dror, M., 1990, Part assignment to electronic

insertion machines: Two machine case, International J ournal of

Production Research, 28(7), 1317–1327.

[Blu01] Blum, C. and Roli, A., 2001, Metaheuristics in combinatorial

optimization: Overview and conceptual comparison, Technical Report

TR/IRIDIA/2001-13, IRIDIA, Belgium.

[Bro96] Broad, K., Mason, A., Rönnqvist, M. and Frater, M., 1996, Optimal

robotic component placement, Journal of t he O perational R esearch

Society, 47, 1343–1354.

[Çat06] Çatay, B., Vakharia, A. J., Erengüç, S. S., 2006, Printed circuit board

scheduling in an openshop manufacturing environment, International

Journal of Advanced Manufacturing Technology, 29, 980–989.

[Che90] Cheng, T. C. E. and Sin, C. C. S., 1990, A state-of-the-art review of

parallel–machine scheduling research, European J ournal of

Operational Research, 47 271–292.

[Chi93] Chien, T. W., 1992, Heuristic procedures for practical–sized

REFERENCES 159

uncapacitated location–capacitated routing problems, Decision

Sciences, 24, 995–1021.

[Coo71] Cook, S. A., 1971, The complexity of theorem–proving procedures,

Proceedings of t he 3 rd

[Cra90] Crama, Y., Kolen, A. W. J., Oerlemans, A. G. and Spieksma, F. C. R.,

1990, Throughput rate optimization in the automated assembly of

printed circuit boards, Annals of Operations Research, 26, 455–480.

 annual A CM Sy mposium on T heory of

Computing, 151–158.

[Cra97] Crama, Y., Flippo, O. E., Klundert, J. V. D. and Spieksma, F. C. R.,

1997, The assembly of printed circuit boards: A case with multiple

machines and multiple board types, European Journal of Operational

Research, 98, 457–472.

[Cra02] Crama, Y., Klundert, J. V. D. and Spieksma, F. C. R., 2002,

Production planning problems in printed circuit board assembly,

Discrete Applied Mathematics, 123, 339–361.

[Csa00a] Csaszar, P., Tirpak, T. M. and Nelson, P. C., 2000a, Optimization of a

high–speed placement machine using tabu search algorithms, Annals

of Operations Research, 96, 125–147.

[Csa00b] Csaszar, P., Nelson, P. C., Rajbhandari, R. R. and Tirpak, T. M.,

2000b, Optimization of automated high–speed modular placement

machines using knowledge-based systems, IEEE T ransactions on

Systems, Man, and Cybernetics-Part C: Applications and Reviews, 30,

4, 408–417.

REFERENCES 160

[Dav91] Davis, L., 1991, Handbook of G enetic A lgorithms, Van Nostrand

Reinhold, New York.

[Del95] Dell’Amico, M. and Martello, S., 1995, Optimal scheduling of tasks

on identical parallel processors, ORSA J ournal on C omputing, 2(7),

191–200.

[Dej06] De Jong, K. A., 2006, Evolutionary C omputation: A U nified

Approach, The MIT Press, London.

[Dep01] DePuy, G. W., Savelsbergh, M. W. P., Ammons, J. C. and McGinnis,

L. F., 2001, An integer programming heuristic for component

allocation in printed circuit card assembly systems, Journal of

Heuristics, 7, 351–369.

[Des94] De Souza, R. and Lijun, W., 1994. CPS: A productivity tool for

component placement in multi–head concurrent operation PCBA

machines, Journal of Electronics Manufacturing, 4 (2), 71–79.

[Deo02] Deo, S., Javadpour, R. and Knapp, G. M., 2002, Multiple setup PCB

assembly planning using genetic algorithms, Computers & Industrial

Engineering, 42, 1–16.

[Dre84] Drezner, Z. and Nof, S., 1984, On optimizing bin picking and

insertion plans for assembly robots, IIE Transactions, 16, 262–270.

[Dum05] Duman, E., 2005, A note on ‘balancing printed circuit board assembly

line systems’, International Journal of Production Research, 43(18),

3955–3957.

[Egb96] Egbelu, P. J., Wu, C. T. and Pilgaonkar, R., 1996, Robotic assembly

REFERENCES 161

of printed circuit boards with component feeder location consideration.

Production Planning & Control, 7, 162–175.

[Ell01] Ellis, K. P., Vittes, F. J. and Kobza, J. E., 2001, Optimizing the

performance of a surface mount placement machine, IEEE

Transactions on E lectronics P ackaging M anufacturing, 24, 3, 160–

170.

[Ell02] Ellis, K. P. and Bhoja, S., 2002, Optimization of the assignment of

circuit cards to assembly lines in electronics assembly, International

Journal of Production Research, 40, 11, 2690–2631.

[Elm74] Elmaghraby, S. E. and Park, S. H., 1974, Scheduling jobs on a

number of identical machines, IIE Transactions, 6, 1–13.

[Feo95] Feo, T. A. and Bard, J. F., 1995, Facility-wide planning and

scheduling of printed wiring board assembly, Operations R esearch,

43(2), 219–230.

[Fou93] Foulds, L. R. and Hamacher, H. W., 1993, Optimal bin location and

sequencing in printed circuit board assembly. European J ournal of

Operational Research, 66, 279–290.

[Fra94] França, P. M., Gendrau, M., Laporte, G. and Muller, F. M., 1994, A

composite heuristic for the identical parallel machine scheduling

problem with minimum makespan objective, Computers &

Operations Research, 21(2), 205–210,.

[Fra04] Frangioni, A., Necciari, E. and Scutella, M. G., A multi–exchange

neighborhood for minimum makespan parallel machine scheduling

javascript:submit_form()�
javascript:submit_form()�

REFERENCES 162

problems, Journal of Combinatorial Optimization, 8(2), 195–220.

[Gla94] Glass, C. A., Potts, N. and Shade, P., 1994, Unrelated parallel

machine scheduling using local search, Mathematical and

Computational Modeling, 20, 41–52.

[Glo89] Glover, F., 1989, Tabu search: Part I, ORSA Journal on Computing, 1,

190–206.

[Glo90] Glover, F., 1990, Tabu search: Part II, ORSA Journal on Computing, 2,

4–32.

[Glo93] Glover, F., Taillard, E. and De Werra, D., 1993), A user's guide to

tabu search, Annals of Operations Research, 41(3), 3–28.

[Gol89] Goldberg, D. E., 1989, Genetic A lgorithms i n Search, O ptimisation

and Machine Learning, Addison Wesley.

[Gra79] Graham, R. L., Lawler, E. L., Lenstra, J. K. and Rinnooy Kan A. H.

G., 1979, Optimization and approximation in deterministic

sequencing and scheduling: A survey, Annals of D iscrete

Mathematics, 5, 287–326.

[Gro00] Gronalt, M. and Zeller, R., 2000, Component allocation and job

sequencing for two series–connected SMD placement machines,

International Journal of Production Research, 38(2), 409–427.

[Gru03] Grunow, M., Günther, H. O. and Schleusener, M., 2003, Component

allocation for printed circuit board assembly using modular placement

machines, International Journal of Production Research, 41(6), 1311

–1331

REFERENCES 163

[Gru04] Grunow, M., Günther, H. O., Schleusener, M. and Yilmaz, I. O., 2004,

Operations planning for collect-and-place machines in PCB assembly,

Computers & Industrial Engineering, 47, 409–429.

[How03] Ho, W. and P. Ji., 2003, Component scheduling for chip shooter

machines: A hybrid genetic algorithm approach. Computers and

Operations Research, 30, 2175–2189.

[How04] Ho, W. and P. Ji., 2004, A hybrid genetic algorithm for component

sequencing and feeder arrangement, Journal of I ntelligent

Manufacturing, 15, 307–315.

[How07] Ho, W., Ji, P. and Wu, Y., 2007, A heuristic approach for component

scheduling on a high–speed PCB assembly machine, Production

Planning & Control, 18(8), 655 – 665

[Hüb94] Hübscher, R. and Glove, F., Applying tabu search with influential

diversification to multiprocessor scheduling, Computers and

Operations Research, 8(21), 877–884.

[Jip01] Ji, P., Sze, M. T., Lee, W.B., 2001, A genetic algorithm of

determining cycle time for printed circuit board assembly lines,

European Journal of Operational Research, 128, 175–184.

[Jip05] Ji, P. and Ho, W., 2005, PCB assembly line assignment: a genetic

algorithm approach, Journal of M anufacturing T echnology

Management, 16(6), 682–692.

[Joh90] Johnson, D. S., 1990, Local optimization and the traveling salesman

problem, In: Goos, G. and Hartmanis, J.: Automata, L anguages and

REFERENCES 164

Programming, Springer, Heidelberg.

[Kar72] Karp, R. M., 1972, Reducibility among combinatorial problems, In

Miller, R. E. and Tatcher, J. W., eds.: Complexity of C omputer

Computations, Plenum Press, New York, 85–103.

[Kho00] Khoo, L. P. and Loh, K. M., 2000, A genetic algorithms enhanced

planning system for surface mount PCB assembly, International

Journal of Advanced Manufacturing Technology, 16, 289–296.

[Kim04] Kim, K. M. and Park, T. H., 2004, PCB assembly optimization of chip

mounters for multiple feeder assignment, SICE Annual Conference in

Sapporo, 1425–1430.

[Kir83] Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P., 1983, Optimization

by simulated annealing, Science, 220(4598), 671–680.

[Klo00] Klomp, C., Klundert, J. V. D., Spieksma, F. C. R. and Voogt, S.,

2000, The feeder rack assignment problem in PCB assembly: A case

study. International Journal of Production Economics, 64, 399–407.

[Kod04] Kodek, D. M. and Krisper, M., 2004, Optimal algorithm for

minimizing production cycle time of a printed circuit board assembly

line, International J ournal of P roduction R esearch, 42(23), 5031–

5048.

[Kul07] Kulak, O., Yilmaz, I. O. and Günther, H. O., 2007, PCB assembly

scheduling for collect-and-place machines using genetic algorithms,

International Journal of Production Research, 45(17), 3949 –3969.

[Kum95] Kumar, R. and Li, H., 1995, Integer programming approach to printed

REFERENCES 165

circuit board assembly time optimization, IEEE T ransactions on

Components, P ackaging, and M anufacturing T echnology-Part B , 18

(4), 720–727.

[Kwo95] Kwon, O., Golden, B., and Wasil, E., 1995, Estimating the length of

the optimal TSP tour: An empirical study using regression and neural

networks, Computers and Operations Research, 22, 1039–1046.

[Len80] Lenstra, J. K. and Rinnooy Kan, A. H. G., 1980, An Introduction to

Multi-processor Scheduling, Matematisch Centrum, Amsterdam.

[Lap88] Laporte, G., 1988, Location–routing problems, In: Golden, B. and

Assad, A., Vehicle R outing: M ethods and St udies, Elsevier Science

Publishers, Amsterdam.

 [Lap00] Lapierre, S. D., Debargis, L. and Soumis, F., 2000, Balancing printed

circuit board assembly line systems, International J ournal of

Production Research, 38 (16), 3899–3911.

[Law69] Lawler, E. L. and Moore, J. M., 1969, A functional equation and its

application to resource allocation and sequencing problems,

Management Science, 16, 77–84.

[Lei89] Leipälä, T. and Nevalainen, O., 1989, Optimization of the movements

of a component placement machine, European Journal of Operational

Research, 38, 167–177.

[Leu82] Leung, J. Y. T., 1982, On scheduling independent tasks with restricted

execution times, Operations Research, 30, 163–171.

[Leu93] Leu, M. C., Wong, H. and Ji, Z., 1993, Planning of component

REFERENCES 166

placement/insertion sequence and feeder setup in PCB assembly using

genetic algorithm, Journal of Electronic Packaging, 115, 424–432.

[Lis07] Li, S., Hu, C. and Tian, F., 2007, Enhancing optima feeder assignment

of the multi-head surface mounting machine using genetic algorithms,

Applied Soft Computing, 8, 522–529.

[Mag99] Magyar, G., Johnsson, M. and Nevalainen, O., 1999, On solving

single machine optimization problems in electronics assembly,

Journal of Electronics Manufacturing, 9(4), 249–267.

[Man99] Man, K. F., Tang, K. S. and Kwong, S., 1999, Genetic A lgorithm:

Concepts and Design, Springer.

[Mar97] Martello, S., Soumis, F. and Toth, P., 1997, Exact and approximation

algorithms for makespan minimization on unrelated parallel machines,

Discrete Applied Mathematics, 2(87), 169–188.

[Mcg92] McGinnis, L. F., Ammons, J. C., Carlyle, M., Cranmer, L., DePuy, G.

W., Ellis, K. P., Tovey, C. A. and Xu, H., 1992, Automated process

planning for printed circuit card assembly, IIE Transaction, 24, 18–30.

[Mok01] Mokotoff, E., 2001, Parallel machine scheduling problems: a survey,

Asia-Pacific Journal of Operational Research, 18, 193–242.

[Moy96a] Moyer, L. K., Gupta, S. M., 1996a, SMT feeder slot assignment for

predetermined component placement paths, Journal of E lectronics

Manufacturing, 6, 173–192.

[Moy96b] Moyer, L. K. and Gupta, S. M., 1996b, Simultaneous component

sequencing and feeder assignment for high speed chip shooter

REFERENCES 167

machines, Journal of Electronics Manufacturing, 6, 271–305.

[Moy97] Moyer, L. K. and Gupta, S. M., 1997, An efficient assembly

sequencing heuristic for printed circuit board configurations, Journal

of Electronics Manufacturing, 72, 143–160.

[Mok01] Mokotoff, E., 2001, Parallel machine scheduling problems: a survey,

Asia-Pacific Journal of Operational Research, 18, 193–242.

[Nes08] Nessah, R., Yalaoui, F. and Chu, C. B., 2008, A branch-and-bound

algorithm to minimize total weighted completion time on identical

parallel machines with job release dates, Computers & O perations

Research, 35, 1176–1190.

[Ong99] Ong, N. S. and Khoo, L. P., 1999, Genetic algorithm approach in PCB

assembly, Integrated Manufacturing Systems, 10, 256–265.

[Pha00] Pham, D. T., and Karaboga, D., 2000, Intelligent O ptimisation

Techniques: G enetic A lgorithms, T abu Se arch, S imulated A nnealing

and Neural Networks, Springer, New York.

[Pie96] Piersma, N. and van Dijk, W., 1996, A local search heuristic for

unrelated parallel machine scheduling with efficient neighborhood

search, Mathematical and Computational Modeling, 24, 11–19.

[Ree95] Reeve, C. R. and Beasley, J. E., 1995, Chapter 1. Introduction, In:

Reeves, C. R., Modern H euristic T echniques f or C ombinatorial

Problems, McGraw-Hill.

[Raw98] Rawlings, J. O., Pantula, S. G. and Dickey, D. A., Applied Regression

Analysis: A Research Tool, Second Edition, Springer, New York.

javascript:submit_form()�
javascript:submit_form()�
javascript:submit_form()�

REFERENCES 168

[Roj05] Rojanasoonthon, S. and Bard, J., A GRASP for parallel machine

scheduling with time windows, Informs Journal of Computing, 17(1),

32–51.

[Rot66] Rothkoph, M. H.,1966, Scheduling independent tasks on parallel

processors, Management Science, 5(12), 437–447.

[Sar88] Sarin, S. C., Ahn, S. and Bishop, A. B., 1988, An improved branching

scheme for the branch and bound procedure of scheduling n jobs on m

parallel machines to minimized total weighted flowtime, International

Journal of Production Research, 26, 1183–1191.

[Scu00] Scutella, M. G., Frangioni, A. and Necciari, E., 2000, Multi-exchange

algorithms for the minimum makespan machine scheduling problem,

17th European Conference on Operational Research, Budapest.

[Shi08] Shim, S. O. and Kim, Y. D., 2008, A branch and bound algorithm for

an identical parallel machine scheduling problem with a job splitting

property, Computers & Operations Research, 35, 863–875.

[Sil80] Silver, E., Vidal, R. V. and de Werra, D., 1980, A tutorial on heuristic

methods, European Journal of Operational Research, 5, 153–162.

[Siv99] Sivrikaya–Serifoglu, F. and Ulusoy, G., 1999, Parallel machine

scheduling with earliness and tardiness penalties, Computers and

Operations Research, 26 (8), 773–787.

[Smu98] Smutnicki, C., 1998, Various optimizers for single–stage production,

Naval Research Logistics Quarterly, 3, 59–66.

[Soh96] Sohn, J. and Park, S., 1996, Efficient Operation of a Surface

javascript:submit_form()�
javascript:submit_form()�
javascript:submit_form()�
javascript:submit_form()�

REFERENCES 169

Mounting Machine with a Multihead Turret, International Journal of

Production Research, 34(4), 1131–1143.

[Sot95] Sotskov, Y. N. and Shaklevich, N. V., 1995, NP–hardness of shop

scheduling problems with three jobs, Discrete A pplied Mathematics,

59, 237 –266.

[Sou99] Sourd, F., 1999, Scheduling T asks on U nrelated M achines: L arge

Neighborhood Improvement Procedures, Manuscript LIP6, Université

Pierreet Marie Curie, Paris.

[Sri98] Srivastava, B., 1998, An effective heuristic for minimizing makespan

on unrelated parallel machines, Journal of the Operational Research

Society, 49(8), 886–894.

[Sun05] Sun, D. S., Lee, T. E and Kim, K. H., 2005, Component allocation

and feeder arrangement for a dual-gantry multi-head surface mounting

placement tool, International J ournal of P roduction E conomics, 95,

245–264.

[Sur96] Suresh, V and Chaudhuri, D., 1996, Bicriteria scheduling problem for

unrelated parallel machines, Computers and Industrial E ngineering,

30 (1), 77–82.

[Tir00] Tirpak, T. M., Nelson, P. C. and Aswani, A. J., 2000, Optimization of

revolver head SMT machines using adaptive simulated annealing

(ASA), Electronics M anufacturing T echnology Symposium, T wenty-

Sixth IEEE/CPMT, 214–220.

[Van93] Van de Velde, S. L., 1993, Duality–based algorithms for scheduling

REFERENCES 170

unrelated parallel machines, ORSA Journal on Computing, 5, 192–205.

[Wan99] Wang, W., Nelson, P.C. and Tirpak, T.M., 1999, Optimization of

high–speed multistation SMT placement machines using evolutionary

algorithms., IEEE T ransactions on E lectronics P ackaging

Manufacturing, 22 (2), 137–146.

[Yal02] Yalaoui, F. and Chu, C. B., 2002, Parallel machine scheduling to

minimize total tardiness, International J ournal of P roduction

Economics, 76(3), 265–279.

[Yeo96] Yeo, S. H., Low, C. W. and Yong, K. H., 1996, A rule–based frame

system for concurrent assembly machines, International J ournal o f

Advanced Manufacturing Technology, 12, 370–376.

[Zan89] Zanakis, S. H., Evans, J. R. and Vazacopoulos, A. A., 1989, Heuristic

methods and applications: A categorized survey, European Journal of

Operational Research, 43, 88–110.

[Zho07] Zhou, H., Li, Z. D. and Wu, X. J., 2007, Scheduling unrelated parallel

machine to minimize total weighted tardiness using ant colony

optimization, IEEE I nternational C onference on A utomation and

Logistics, 132–136.

APPENDIX I: DATA FOR THE TEST PCB WITH 61 COMPONENTS 171

APPENDIX I

DATA FOR THE TEST PCB WITH 61 COMPONENTS

Number of components: 61

Number of component types: 7

Table I-1 Data for the PCB with 61 components

Component
Number Type X Y Component

Number Type X Y

1 1 303 167 32 3 102 319
2 5 348 310 33 3 278 198
3 4 151 297 34 3 352 293
4 5 81 327 35 3 395 253
5 6 106 109 36 5 344 156
6 2 91 347 37 4 340 298
7 2 92 90 38 5 22 124
8 1 300 271 39 2 210 83
9 5 445 118 40 2 156 43
10 1 121 196 41 3 286 208
11 2 277 341 42 2 394 73
12 5 179 346 43 2 247 353
13 2 443 121 44 3 121 3
14 1 381 90 45 4 171 325
15 3 163 45 46 3 363 331
16 1 29 211 47 2 239 132
17 5 164 342 48 5 91 212
18 4 225 39 49 5 180 44
19 2 113 294 50 2 90 308
20 7 293 244 51 3 61 280
21 2 73 13 52 4 243 353
22 5 245 212 53 4 151 352
23 4 95 112 54 3 255 259
24 5 385 148 55 1 434 179
25 5 1 251 56 1 397 341
26 1 242 233 57 4 274 225
27 1 299 18 58 2 1 259
28 3 167 209 59 2 105 272
29 4 269 148 60 4 81 300
30 2 381 117 61 1 269 74
31 2 198 260

APPENDIX II: THE MLSP INSTANCE Test-n10k4 AND ITS SOLUTION 172

APPENDIX II

THE MLSP INSTANCE Test-n10k4 AND ITS SOLUTION

Table II-1 Data for the MLSP instance Test-n10k4

job

number

ready

time

due

datea if_frontb bk_jobc RoHSd pe
i

process timef
g

line 1 line 2 line 3 line 4

1 0 18 0 \ 0 2 1000 4.23 5.68 5.24

2 0 11 0 \ 1 3 2.45 2.36 2.45 2.65

3 5 15 1 4 0 1 3.79 3.54 3.57 3.97

4 0 9 0 \ 0 1 8.96 8.29 1000 8.08

5 5 25 1 6 1 2 10.85 10.59 9.41 9.41

6 0 19 0 \ 1 2 7.68 7.77 7.12 7.12

7 0 8 1 8 0 1 1000 1000 8.28 6.89

8 8 25 0 \ 1 1 6.42 11.83 7.22 7.90

9 8 40 1 10 0 1 6.21 9.53 8.63 8.01

10 10 27 0 \ 1 1 1000 11 10.65 10.41

ready time of line 0 4 0 2.5

initial RoHS status of lines 0 h 1 1 1
a ready time for the job
b due date for the job
c indicator for a front-side job. Value one indicates that the job is a front-side job, zero otherwise
d corresponding back-side job number
e indicator for RoHS jobs. Value 1 indicates that the job processes RoHS boards, 0 otherwise
f weight for tardiness penalty (weight for makespan penalty is set to 0.01)
g process time for each job on each line. If a job cannot be processed on the line, the time is set to

1000
h

 initial RoHS status of the line

APPENDIX II: THE MLSP INSTANCE Test-n10k4 AND ITS SOLUTION 173

Optimal solution to Test-n10k4 obtained by CPLEX:

Integer optimal

Objective = 2.23110000000e-001

Solution time = 1982 sec.

Iterations = 24566571

Nodes = 1054239

Variable Name Solution Value Variable Name Solution Value

Cmax 23.11

x000201 1.000000 x020601 1.000000

x060801 1.000000 x081101 1.000000

x000102 1.000000 x010302 1.000000

x030902 1.000000 x091102 1.000000

x000503 1.000000 x051003 1.000000

x101103 1.000000 x000704 1.000000

x070404 1.000000 x041104 1.000000

w0302 4.77 w0201 1.75

w0601 4.78 w0902 8.58

w1003 12.46 w0404 7.43

w0704 0.27 w0102 0.27

w0503 2.78 w0801 12.73

All other variables are zero.

APPENDIX II: THE MLSP INSTANCE Test-n10k4 AND ITS SOLUTION 174

1.75
 Job 2

0.27
 Job 1

2.78
 Job 5

0.27
 Job 7

4.78
 Job 6

4.77
 Job 3

12.46
 Job 10

7.43
 Job 4

12.73
 Job 8

8.58
 Job 9

0 5 10 15 20 25

line 4

line 3

line 2

line 1

Time
(hours)

Figure II-1 Optimal schedule for the instance Test-n10k4 shown as Gantt chart

APPENDIX III: THE MLSP INSTANCE Test-n11k3 AND ITS SOLUTION 175

APPENDIX III

THE MLSP INSTANCE Test-n11k3 AND ITS SOLUTION

Table III-1 Data for the MLSP instance Test-n11k3

job

number

ready

time

due

datea if_frontb bk_jobc RoHSd pe
i

process timef
g

line 1 line 2 line 3

1 5 20 0 \ 0 1 6.86 6.21 6.27

2 0 09 0 \ 1 1 5.65 5.02 4.89

3 4 15 1 4 0 2 1000 8.75 8.10

4 0 18 0 \ 0 2 6.74 6.08 5.75

5 0 25 1 6 1 1 8.41 8.02 8.56

6 0 19 0 \ 1 3 5.12 4.87 4.90

7 8 40 0 \ 0 2 3.65 3.05 1000

8 10 27 0 \ 1 3 6.87 6.12 6.78

9 5 16 0 \ 1 1 1000 4.57 3.54

10 0 8 1 11 0 1 5.19 4.54 4.91

11 8 25 0 \ 1 1 9.75 9.87 9.51

ready time of line 1.48 0 0.78

initial RoHS status of lines 0 h 1 1
a ready time for the job
b due date for the job
c indicator for a front-side job. Value one indicates that the job is a front-side job, zero otherwise
d corresponding back-side job number
e indicator for RoHS jobs. Value 1 indicates that the job processes RoHS boards, 0 otherwise
f weight for tardiness penalty (weight for makespan penalty is set to 0.01)
g process time for each job on each line. If a job cannot be processed on the line, the time is set to

1000
h

 initial RoHS status of the line

APPENDIX III: THE MLSP INSTANCE Test-n11k3 AND ITS SOLUTION 176

Optimal solution to Test-n11k3 obtained by CPLEX:

Integer optimal

Objective = 2.10050000000e-000

Solution time = 9670 sec.

Iterations = 133680879

Nodes = 6875180

Variable Name Solution Value Variable Name Solution Value

L11 1.050000 L01 0.790000

Cmax 26.05

x001001 1.000000 x100401 1.000000

x041101 1.000000 x111201 1.000000

x000202 1.000000 x020302 1.000000

x030102 1.000000 x010702 1.000000

x071202 1.000000 x000503 1.000000

x050903 1.000000 x090603 1.000000

x060803 1.000000 x081203 1.000000

w0903 9.88 w1001 1.75

w0702 21.06 w0102 14.58

w0202 0.27 w0603 13.69

w0803 18.86 w1101 16.30

w0302 5.56 w0401 7.56

w0503 1.05

All other variables are zero.

APPENDIX III: THE MLSP INSTANCE Test-n11k3 AND ITS SOLUTION 177

1.05
 Job 5

0.27
 Job 2

1.75
 Job 10

9.88
 Job 9

5.56
 Job 3

7.56
 Job 4

13.69
 Job 6

14.58
 Job 1

16.30
 Job 11

18.86
 Job 8

0 5 10 15 20 25 30

line 3

line 2

line 1

Time
(hours)

21.06
 Job 7

Figure III-1 A Gantt chart for the optimal schedule of Test-n11k3

APPENDIX IV: THE MLSP INSTANCE Test-n11k4 AND ITS SOLUTION 178

APPENDIX IV

THE MLSP INSTANCE Test-n11k4 AND ITS SOLUTION

Table IV-1 Data for the MLSP instance Test-n11k4

job

number

ready

time

due

datea if_frontb bk_jobc RoHSd pe
i

process timef
g

line 1 line 2 line 3 line 4

1 0 18 0 \ 0 2 1000 4.23 5.68 5.24

2 0 11 0 \ 1 3 2.45 2.36 2.45 2.65

3 5 15 1 4 0 1 3.79 3.54 3.57 3.97

4 0 9 0 \ 0 1 8.96 8.29 1000 8.08

5 5 25 1 6 1 2 10.85 10.59 9.41 9.41

6 0 19 0 \ 1 2 7.68 7.77 7.12 7.12

7 0 8 1 8 0 1 1000 1000 8.28 6.89

8 8 25 0 \ 1 1 6.42 11.83 7.22 7.90

9 8 40 1 10 0 1 6.21 9.53 8.63 8.01

10 10 27 0 \ 1 1 1000 11 10.65 10.41

11 0 15 0 \ 0 3 6.87 6.25 6.45 5.94

ready time of line 0 4 0 2.5

initial RoHS status of lines 0 h 1 1 1
a ready time for the job
b due date for the job
c indicator for a front-side job. Value one indicates that the job is a front-side job, zero otherwise
d corresponding back-side job number
e indicator for RoHS jobs. Value 1 indicates that the job processes RoHS boards, 0 otherwise
f weight for tardiness penalty (weight for makespan penalty is set to 0.01)
g process time for each job on each line. If a job cannot be processed on the line, the time is set to

1000
h

 initial RoHS status of the line

APPENDIX IV: THE MLSP INSTANCE Test-n11k4 AND ITS SOLUTION 179

Optimal solution to Test-n11k4 obtained by CPLEX:

Integer optimal

Objective = 8.14490000000e-000

Solution time = 100198 sec.

Iterations = 1863477209

Nodes = 86954671

Variable Name Solution Value Variable Name Solution Value

L07 0.550000 L08 0.750000

L04 6.080000 L10 0.490000

Cmax 27.49

x001101 1.000000 x110501 1.000000

x051201 1.000000 x000302 1.000000

x030102 1.000000 x010902 1.000000

x091202 1.000000 x000703 1.000000

x070603 1.000000 x060803 1.000000

x081203 1.000000 x000204 1.000000

x020404 1.000000 x041004 1.000000

x101204 1.000000

w1101 0.27 w0501 9.14

w0302 5.00 w0102 8.81

w0902 13.31 w0703 0.27

w0603 11.14 w0803 18.53

w0204 2.77 w0404 7.00

w1004 17.08

All other variables are zero.

APPENDIX IV: THE MLSP INSTANCE Test-n11k4 AND ITS SOLUTION 180

0.27
 Job 11

5.00
 Job 3

0.27
 Job 7

2.77
 Job 2

9.14
 Job 5

8.81
 Job 1

11.14
 Job 6

7.00
 Job 4

13.31
 Job 9

18.53
 Job 8

17.08
 Job 10

0 5 10 15 20 25 30

line 4

line 3

line 2

line 1

Time
(hours)

Figure IV-1 A Gantt chart for the optimal schedule of Test-n11k4

APPENDIX V: THE MLSP INSTANCE Test-n10k4 AND ITS SOLUTION 181

APPENDIX V

THE MLSP INSTANCE Test-n12k4 AND ITS SOLUTION

Table V-1 Data for the MLSP instance Test-n12k4

job
number

ready
time

due
datea if_frontb bk_jobc RoHSd pe

i
process timef

g
line 1 line 2 line 3 line 4

1 0 15 0 \ 0 1 1000 5.23 4.68 5.24
2 0 14 0 \ 1 1 2.45 3.36 2.45 2.65
3 5 20 1 4 0 2 3.79 4.54 3.57 3.97
4 5 20 0 \ 0 1 8.96 8.29 1000 8.08
5 3 15 1 6 1 3 9.85 1000 10.41 10.41
6 3 15 0 \ 1 1 7.68 7.77 8.12 8.12
7 0 23 1 8 0 1 1000 1000 8.28 7.89
8 8 22 0 \ 1 3 7.42 6.83 1000 7.90
9 5 21 1 10 0 1 9.21 9.53 8.63 8.01
10 5 21 0 \ 1 1 1000 11 10.65 10.41
11 0 25 0 \ 0 1 6.87 7.25 6.45 1000
12 0 24 0 \ 1 1 4.87 5.04 5.65 4.98

ready time of line 3 0 0 0
initial RoHS status of lines 0 h 0 1 0

a ready time for the job
b due date for the job
c indicator for a front-side job. Value one indicates that the job is a front-side job, zero otherwise
d corresponding back-side job number
e indicator for RoHS jobs. Value 1 indicates that the job processes RoHS boards, 0 otherwise
f weight for tardiness penalty (weight for makespan penalty is set to 0.01)
g process time for each job on each line. If a job cannot be processed on the line, the time is set to

1000
h

 initial RoHS status of the line

APPENDIX V: THE MLSP INSTANCE Test-n10k4 AND ITS SOLUTION 182

5.00
 Job 6

0.27
 Job 7

0.27
 Job 2

0.27
 Job 1

12.95
 Job 8

10.16
 Job 10

3.00
 Job 5

5.77
 Job 9

20.64
 Job 12

13.68
 Job 3

15.68
 Job 4

17.52
 Job 11

0 5 10 15 20 25 30

line 4

line 3

line 2

line 1

Time
(hours)

Figure V-1 A Gantt chart for the GA solution of Test-n12k4

APPENDIX VI: THE MLSP INSTANCE Test-n15k4 AND ITS SOLUTION 183

APPENDIX VI

THE MLSP INSTANCE Test-n15k4 AND ITS SOLUTION

Table VI-1 Data for the MLSP instance Test-n15k4

job
number

ready
time

due
datea if_frontb bk_jobc RoHSd pe

i
process timef

g
line 1 line 2 line 3 line 4

1 5 18 0 \ 1 1 9.20 9.32 8.14 8.78
2 0 24 1 3 1 2 1000 1000 8.28 7.89
3 0 24 0 \ 1 2 7.76 6.44 1000 7.56
4 10 16 0 \ 0 1 4.81 5.15 5.54 4.41
5 5 30 0 \ 0 3 2.67 3.45 2.57 2.68
6 8 27 1 7 0 3 1000 5.88 4.43 5.07
7 8 27 0 \ 0 3 9.08 1000 10.80 10.74
8 5 20 0 \ 0 2 7.71 7.34 8.57 8.87
9 6 26 0 \ 1 1 6.14 7.33 6.40 1000
10 12 28 0 \ 1 1 1000 11.00 10.71 10.44
11 5 26 0 \ 0 3 4.68 5.40 5.74 4.87
12 0 30 1 13 0 1 3.98 4.70 3.41 3.89
13 0 30 0 \ 0 1 8.76 8.01 1000 8.03
14 2 25 0 \ 1 1 1000 11.21 10.87 10.55
15 10 42 0 \ 0 1 6.57 7.01 6.70 1000

ready time of line 2.7 1.4 0 0.50
initial RoHS status of lines 1 h 0 0 1

a ready time for the job
b due date for the job
c indicator for a front-side job. Value one indicates that the job is a front-side job, zero otherwise
d corresponding back-side job number
e indicator for RoHS jobs. Value 1 indicates that the job processes RoHS boards, 0 otherwise
f weight for tardiness penalty (weight for makespan penalty is set to 0.01)
g process time for each job on each line. If a job cannot be processed on the line, the time is set to

1000
h

 initial RoHS status of the line

APPENDIX VI: THE MLSP INSTANCE Test-n15k4 AND ITS SOLUTION 184

3.40
 Job 1

2.00
 Job 14

0.27
 Job 2

2.97
 Job 12

10.11
 Job 4

13.14
 Job 6

0.77
 Job 1

7.22
 Job 8

15.53
 Job 11

19.57
 Job 9

17.98
 Job 10

15.20
 Job 7

26.24
 Job 5

21.20
 Job 13

24.55
 Job 15

0 5 10 15 20 25 30 35

1

2

3

4

Time
(hours)

Figure VI-1 A Gantt chart for the GA solution of Test-n15k4

	theses_copyright_undertaking
	b22867132

