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ABSTRACT 

 

Many complicated planning problems arise in Printed Circuit Board (PCB) 

assembly. This research focuses on two high-level planning problems, i.e., the 

Component Allocation Problem (CAP) and the Multi-Line Scheduling Problem 

(MLSP), both of which are important for improving production efficiency in PCB 

assembly. 

For a PCB job (batch) to be processed by an assembly line, the component 

allocation problem is investigated, which is to allocate the component placements 

required by the PCB to the placement machines in the line, so that the line cycle time 

is minimized. The problem is intertwined with the lower-level machine optimization 

problems (feeder arrangement and placement sequencing), which determine the 

process (placement) time of each machine. Considering the great computational 

complexity, a decomposed solution strategy is proposed. This strategy relies on a 

regression-based placement time estimator, which can estimate the placement time of 

each machine accurately without solving the machine optimization problems. Based 

on this estimator, a specific genetic algorithm is developed. Experimental tests show 

that the proposed genetic algorithm can solve the problem both effectively and 

efficiently. Compared with the existing software provided by the machine vendor, 

the line cycle time is reduced.  

For a set of PCB jobs to be produced by multiple assembly lines, the multi-line 

scheduling problem is investigated, which is to assign the PCB jobs to the lines and 

sequence the jobs in each line, so that the sum of weighted tardiness and weighted 
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makespan is minimized. A mixed integer linear programming model for the problem 

is established. Line-dependent cycle times, different due dates of the jobs, sequence-

dependent setup times, and precedence constraints are considered so that the model is 

realistic and applicable. Experimental tests show that exact solutions can not be 

obtained for realistic-sized problem instances. A specific genetic algorithm is 

developed for solving the problem. Due to the complexity of the problem, a new 

replacement strategy is proposed to improve the performance of the algorithm. 

Experimental tests show that the genetic algorithm can solve the problem both 

effectively and efficiently. A study of a real case is conducted and illustrates the 

applicability and usefulness of the method.  
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CHAPTER 1 

INTRODUCTION 

 

With rapid development of advanced technologies, electronic products and 

devices can be found in our major life activities of working, living and learning, and 

they significantly affect the quality of life. As the backbone of most electronic 

products, Printed Circuit Boards (PCBs) have become much smaller in size and more 

densely populated with components. As a result, the Surface Mount Technology 

(SMT) has replaced the Pin-through-Hole (PTH) technology since the SMT enables 

to mount a large number of electronic components on a small board. With the 

technological advances of the SMT, the PCB assembly process has evolved from a 

labor-intensive activity to a highly automated one. However, the great expense of the 

assembly machines and the customers’ demands on both speed and quality motivate 

PCB manufacturers to optimize the assembly operations and achieve high production 

efficiency. 

 

1.1 OVERVIEW OF PCB ASSEMBLY 

The PCB assembly process in the SMT environment consists of four main 

operations in sequence, i.e., solder paste application, component placement, solder 

paste reflow, and inspection. Figure 1.1 illustrates a typical PCB assembly line in the 

PCB manufacturing industry.  

First, on the screen printer, solder paste is “printed” to the places where the 

components will be put on the board. Then, the required components are placed onto 
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the board by the placement machine(s). After that, the PCB with the components 

placed on it is conveyed through the reflow oven, which causes the solder paste to 

reflow and form the solder joints. Finally, inspection is performed at the inspection 

station.  

 

Figure 1.1   A typical PCB assembly line 

 

Among these operations, the component placement process is most time-

consuming. For this reason, there may be more than one placement machine in the 

line. In spite of this, the placement process is always the bottleneck process in most 

cases. For this reason, most planning problems in PCB assembly focus on the 

placement process.  

Modern PCB placement machines (as illustrated in Figure 1.2) are much 

sophisticated and very expensive, with each ranging from US $300,000 to 

$1,000,000. In a typical PCB assembly shop, there may be several assembly lines 

with dozens of placement machines, for a total value of several million US dollars.  

The placement process conducted by the placement machines is highly 

automatic. To complete a placement job, the component feeders, each supplying 

components of a specific type, are set up in the feeder carrier of the machine. After 

the PCB is loaded onto the PCB holder, the placing device on the machine begins to 
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pick the components from the feeders and place them onto the board. Section 3.4.1 

will describe the placement process of a placement machine in more details. 

Depending on the operating mode of the pick-and-place process, the placement 

machines can be divided into various types, e.g., sequential pick-and-place, turret-

type, collect-and-place, dual-delivery, and multi-station.  

 

 

Figure 1.2   PCB placement machines 

 

Over the planning horizon, many batches of PCB are required to be produced. 

They are assigned to different assembly lines for production. An assembly line 

usually produces the batches in a flowshop manner, i.e., a new batch of boards can 

only be produced on the line after the completion of the previous batch.  

Due to the wide range of both components and products involved, the 

complexity of the placement machines, and the volatility of customer demand, it is 

extremely difficult to solve the planning problems in multi-line SMT facilities so as 

to improve production efficiency and customer satisfaction at the same time. 
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1.2  PLANNING PROBLEMS IN PCB ASSEMBLY 

1.2.1 Planning Hierarchy 

The planning problems in PCB assembly may vary owing to the great variety 

of production environments concerning shop layout, production mix, setup policy, 

etc. Nevertheless, there are three planning problems that are common for many 

multi-line PCB manufacturers, i.e., the Multi-Line Scheduling Problem (MLSP), the 

Component Allocation Problem (CAP) or the Line Balancing Problem, and the 

Machine Optimization Problem (MOP). Figure 1.3 illustrates the relationship 

between these problems in the planning hierarchy. A similar discussion was 

presented by Ammons et al. [Amm97].  

 

 

Figure 1.3   A general planning hierarchy in PCB assembly 
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First of all, PCB assembly orders (with each order being for a batch of PCB 

of a specific type) during the planning horizon are required to be assigned and 

scheduled on the assembly lines for production. Due to different configurations of 

the assembly lines, the process time for each PCB batch is dependent on the line it is 

assigned to. In addition, due dates of the jobs should be met to maintain customer 

satisfaction. Thus, the decision on this Multi-line Scheduling Problem (MLAP) 

should be made carefully in order to improve the production efficiency while 

meeting the due date requirement. 

Second, after a batch of PCB is assigned to an assembly line, the Component 

Allocation Problem (CAP) is needed to be solved to determine which components on 

the board should be placed by which placement machine in the line (note that the 

placement process is always the bottleneck process in the line and there are more 

than one placement machine on each line). Similar to the traditional line balancing 

problem, the objective of the component allocation problem is usually to minimize 

the cycle time for the assembly line.  

Finally, after the components are allocated to the placement machines in the 

line, the machine optimization problem is required to be solved for each placement 

machine according to the allocated placement task. Due to the unique characteristics 

of the placement process, there are two fundamental subproblems for machine 

optimization. The first is the Feeder Arrangement Problem (FAP), which determines 

the assignment of different component feeders to the feeder slots of the feeder carrier 

on the machine. The second is the Placement Sequencing Problem (PSP), which 
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decides the sequence for the components to be placed onto the board. These two 

subproblems are important for reducing the assembly time for each single machine. 

The above-mentioned problems are of great importance for the manufacturers 

to make effective use of most valuable resources (i.e., placement machines) and 

thereby offer opportunities for significant cost reductions. Increased production 

efficiency may reduce the need for additional capital expenditures for expensive 

equipment, and improve the production capacity at the same time.  

 

1.2.2 A general planning process 

Although the three planning problems in PCB assembly are of different levels 

at the planning hierarchy, they are highly interrelated (Figure 1.3). On one hand, the 

lower-level problems are based on the solutions to the higher-level problems. On the 

other hand, the solutions to the higher-level problems are influenced by the solutions 

to the lower-level problems.  

For example, the machine optimization problems (i.e., the feeder arrangement 

and placement sequence) for each machine cannot be solved before component 

allocation decisions are made. At the same time, solutions to the component 

allocation problem cannot be evaluated without knowing the process time for each 

machine in the line, which in turn is determined by solving the machine optimization 

problems. Similarly, solutions to the component allocation problems provide the 

information on line cycle times for the scheduling problem.  

Usually, the planning problems in PCB assembly are tackled in a 

decomposition manner. If in the planning period there are a set of n PCB jobs to be 
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completed in an assembly shop with K assembly lines, the general planning process 

can be illustrated in Figure 1.4.  

 

 

Figure 1.4   A general planning process in PCB assembly 

 

In the first step, a set of n × K Component Allocation Problems (with each 

corresponding to a job and an assembly line) are solved to obtain the cycle time 

information (including all the cycle time values for each job on each line). Based on 

the cycle time information, the process time for each job on each line can then be 

calculated as the product of the corresponding cycle time and the batch size. Sample 

results in the first step can be illustrated in Table 1.1.  

In the second step, based on the process time information obtained in the first 

step, the Multi-Line Scheduling Problem can be solved to determine the assignment 
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of the jobs to the assembly lines and the start time for each job. A sample results in 

this step can be illustrated in Table 1.2.  

In the final step, based on the job assignment and corresponding component 

allocation decisions, the Machine Optimization Problems (MOPs) are solved to 

determine the feeder arrangement and placement sequence for each job on each 

machine.  

 

Table 1.1  Process times for each job on each line (in hours) 

 PCB 1 PCB 2 PCB 3 … PCB n 

Line 1 2.87 3.51 4.11 …… 2.98 

Line 2 5.60 4.84 6.34 …… 4.87 

Line 3 5.62 5.98 7.84 …… 6.55 

…… …… …… …… ……  

Line K 4.54 3.97 4.27 …… 5.60 

 

Table 1.2  A solution to the multi-line scheduling problem  

 PCB 1 PCB 2 PCB 3 … PCB n 

Assembly line 1 5 1 …… 4 

Start time (hour) 11.4 2.7 2.0 …… 15.87 
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1.3 PROBLEMS 

This thesis focuses on the first two planning problems in the planning 

hierarchy for PCB assembly, i.e., the Multi-Line Scheduling Problem (MLSP) and 

the Component Allocation Problem (CAP). The motivation of studying these two 

problems is discussed in the following.  

First of all, because the machine optimization problems are machine-specific 

and the machine technologies evolve much rapidly, generally-applicable solution 

methods for these machine optimization problems is not realistic. Many machine 

vendors have provided optimization software to tackle these problems for their own 

machines, e.g., Flexa for Fuji machines, PT200 for Panasonic machines, UPS for 

Universal machines, HLC for JUKI machines, etc.  

Comparatively, the CAP and the MLSP are of the higher planning levels at 

the planning hierarchy and do not depend on the machine technological 

characteristics as much as the machine optimization problems. Therefore, they are 

more general to different manufacturers. Hence, their significance has been 

recognized by many production managers. On the other hand, owing to the 

complexity and realistic constraints, current solution methods for the CAP and the 

MLSP are not effective and required to be investigated thoroughly.  

For the component allocation problem, the solution is influenced by the 

machine optimization problems. The optimal solution to the component allocation 

problem can only be obtained through the integration of the problem with the 

machine optimization problems. However, due to the great computational complexity, 

it is impossible to solve the machine optimization problems whenever a component 
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allocation solution is evaluated. For this reason, an effective and efficient solution 

method is required.  

For the multi-line scheduling problem, production managers mainly concern 

about meeting the due dates and improving production efficiency at the same time. 

However, most researchers in the literature solve the job assignment problem without 

considering due date requirement. The resulting job assignment solutions are far 

from reality and the desired production efficiency can hardly be achieved. For this 

reason, the job assignment and timing of the jobs should be determined 

simultaneously. The formulation and modeling of the multi-line scheduling problem 

with due date constraints should be established and investigated. However, the due 

date constraints may greatly increase the complexity of the scheduling problem 

[Mok01]. There is a need to develop an efficient method to solve the problem.  

 

1.4 OBJECTIVES 

The ultimate aim of this research is to optimize the production plans for PCB 

assembly so that both production efficiency and customer satisfaction can be 

improved. To this end, two important planning problems are investigated, i.e., the 

Component Allocation Problem (CAP) and the Multi-Line Scheduling Problem 

(MLSP). Effective solution approaches for solving these problems are developed. 

There are five objectives to be achieved in this research, which are described as 

follows.  

The first objective is to develop an effective decomposed solution strategy for 

solving the component allocation problem. Since the component allocation problem 
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is combined with the machine optimization problems, in order to improve the 

efficiency for solving realistic-sized problems, the solution strategy will rely on a 

placement time estimator that can estimate the placement (process) time for a 

machine to complete a specific PCB. Based on the placement time estimation, an 

algorithm or heuristic could be developed to solve the component allocation problem 

effectively without tackling the machine optimization problems.  

After the decomposed solution strategy has been proposed, the second 

objective is to examine the feasibility of developing the relative placement time 

estimator. A placement time estimator for a turret type placement machine will be 

constructed in this research.  The placement time estimator should be able to estimate 

the placement time without solving the machine optimization problems. The 

effectiveness of the placement time estimator should be evaluated based on the 

statistical analysis.  

The third objective is to develop a specific heuristic method for solving the 

component allocation problem, with the solutions being evaluated by the developed 

placement time estimator. The effectiveness and efficiency of the heuristic method 

should be examined through solving some problem instances.  

Since the specific multi-line scheduling problem in PCB assembly has not 

been investigated in the literature, the fourth objective is to establish a complete 

mathematical model for the problem with an objective which considers both the 

production efficiency and due date satisfaction. The validation and the complexity of 

the models should be examined.  
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Since the multi-line scheduling problem is shown to be extremely complex, 

the fifth objective is to develop an effective and efficient heuristic method for solving 

the multi-line scheduling problem. The effectiveness and efficiency of the heuristic 

method should be examined through experimental tests. 

 

1.5 SCOPE OF THIS THESIS 

This research is mainly devoted to the two important planning problems in 

PCB assembly, i.e., the Multi-Line Scheduling Problem (MLSP) and the Component 

Allocation Problem (CAP). These problems arise from the environment relating to 

the high-mix and medium-to-high-volume production mode and the shop floors with 

multiple assembly lines. This manufacturing environment is commonly seen in many 

PCB manufacturing companies.  

The structure of the thesis is organized as follows. 

In Chapter 2, an extensive literature review is conducted to demonstrate what 

have been studied on the planning problems in PCB assembly, including the machine 

optimization problems, the component allocation problem, and the job assignment 

and scheduling problem. Since most of the planning problems in PCB assembly are 

difficult combinatorial problems, heuristic methods for solving combinatorial 

problems are also surveyed.  

Chapter 3 is devoted to the component allocation problem. A decomposed 

solution strategy based on a regression-based placement time estimator is proposed 

for the problem. The purpose of this placement time estimator is to accurately and 

efficiently estimate the process time for each machine in the line without tackling 
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machine optimization problems (that is, the feeder arrangement problem and the 

placement sequencing problems). A placement time estimator for a turret-type 

placement machine is developed and the effectiveness of the estimator is examined 

through some experimental tests. A genetic algorithm, which uses this placement 

time estimator for solution evaluation, is developed for solving the component 

allocation problem. Numerical results on some problem instances are reported.  

In Chapter 4, the multi-line scheduling problem is investigated. A complete 

mathematical model for the multi-line scheduling problem is established. The model 

is verified through solving some randomly generated small-sized instances. Based on 

the established model, an effective and efficient genetic algorithm is developed. 

Numerical results on solving some problem instances and a case study are reported. 

Finally, Chapter 5 summarizes the distinctive achievements of this research. 

Both the academic and industrial contributions of this research are concluded. Some 

recommendations for future work are suggested.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

Numerous researchers have investigated the planning problems in PCB 

assembly. However, not all the problems have been studied intensively and 

thoroughly. In this chapter, a comprehensive literature review on these problems is 

conducted. The focus is to clarify what have been done and what have not, with the 

latter providing the rationale for this research.  

Section 2.2 surveys relative research on the machine optimization problems, 

i.e., the problems of the lowest planning level. The main difficulty for solving these 

problems is discussed. After that, literature relating to the component allocation 

problem (CAP) is reviewed in Section 2.3. The main drawback of existing solution 

methods is discussed. In Section 2.4, literature relating to the line assignment and 

scheduling problem in PCB assembly is reviewed. Some realistic constraints for this 

problem, which are neglected in most of the research, are discussed. Since the 

investigated multi-line scheduling problem (MLSP) is found to be much similar to 

the well-investigated parallel-machine scheduling problem (PMSP), literature 

relating to the parallel-machine scheduling problem is also reviewed. In Section 2.5, 

a survey on the heuristic methods for combinatorial problems, which most of the 

planning problems in PCB assembly belong to, is presented. Finally, some remarks 

concerning the literature reviews are summarized in Section 2.6. 
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2.2 MACHINE OPTIMIZATION PROBLEMS 

Electronic components (possibly hundreds or thousands) are assembled onto 

a board by PCB placement machines (Figure 2.1). A typical placement machine has a 

feeder carrier, a PCB table, and a placement device. The feeder carrier consists of 

many feeder slots where the component feeders are located. The component feeders 

are used to provide the machine with a continuous supply of components. Generally, 

the placement device picks components from the feeders and places them onto the 

board according to a certain operational method. Based on different operational 

methods, the machines can be classified into several categories: sequential pick-and-

place [Bal88], turret-type [Leu93], single-gantry collect-and-place [Gru04], dual-

gantry collect-and-place, multi-station [Csa00a], as shown in Figure 2.1.  

Optimization of the feeder arrangement and sequencing of the component 

placements are two most important factors for improving the efficiency of placement 

machines. They correspond to two fundamental subproblems for machine 

optimization, i.e., the Feeder Arrangement Problem (FAP) and the Placement 

Sequencing Problem (PSP). The feeder arrangement problem is to decide the 

assignment of different component feeders to the slots on the feeder carrier, while the 

placement sequencing problem is to decide the placement sequence of the 

components.  
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Figure 2.1  Different PCB placement machine types 

 

Numerous researchers have conducted investigations into the machine 

optimization problems. Most researchers find that these problems are much difficult 
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two problems in the literature. Some researchers focus on one of the two problems, 

assuming the solution to the other is given. Some researchers rely on an iterative 

procedure to tackle these two problems. The other researchers propose integrated 

heuristic or metaheuristic methods to solve the two problems simultaneously. The 

following survey is conducted according to this classification.  

 

2.2.1 Separated solution methods 

In the literature, some researchers focused on only one of the two machine 

optimization subproblems, i.e., the feeder arrangement problem and the placement 

sequencing problem, while assuming the solution to the other is given in advance.  

Drezner and Nof [Dre84] are the first researchers who investigated the 

optimization problems for PCB placement machines. They considered a sequential 

pick-and-place machine and tackled the placement sequencing problem, assuming 

the feeder arrangement had been determined in advance.  

Similarly, Ball and Magazine [Bal88] solved the placement sequencing 

problem, assuming the feeder arrangement was fixed. The problem was modeled as a 

rural postman problem and a heuristic approach was used to solve the problem. 

De Souza and Wu [Des94] studied the placement sequencing problem for a 

turret-type machine. They incorporated a knowledge-based component placement 

system with a Traveling Salesman Problem (TSP) algorithm to solve the problem.  

Kumar and Li [Kum95] established an integrated model for these two 

problems. The model was decomposed into a TSP and a minimum weight matching 

problem (MWMP) by adding extra constraints.  
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Moyer and Gupta [Moy96a] studied the feeder arrangement problem for the 

turret-type machine based on the assumption that the placement sequence was 

predetermined. The problem was formulated as the Quadratic Assignment Problem 

(QAP) and solved by two heuristic methods.  

Ahmadi and Mamer [Ahm99] modeled the problem of sequencing the 

component types for placement and the problem of scheduling the movements 

between points on the PCB as a collection of interdependent TSPs.  

Klomp et al . [Klo00] solved the component allocation problem for a turret-

type machine and considered a feeder and its corresponding cluster (that is, a set of 

locations served by a single feeder) as a node in a complete graph.  

Kim and Park [Kim04] also solved these two subproblems separately. A 

clustering algorithm and an assignment algorithm were applied to solve the feeder 

arrangement problem, while an assignment algorithm and a connection algorithm 

were applied to solve the placement sequencing problem.  

Li et al . [Lis07] considered a collect-and-place machine with a revolving 

head. They first solved the placement sequencing problem as a TSP. Then the feeder 

arrangement problem was solved in the second stage using a Genetic Algorithm 

(GA).  

 

2.2.2 Iterative solution methods 

Some researchers focused on an approach which consists of tackling both 

problems (the feeder arrangement problem and the placement sequencing problem) 

by iterating their solutions.  
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Foulds and Hamacher [Fou93] used an iterative approach for a sequential 

pick-and-place machine. The placement sequencing problem was solved by a TSP 

heuristic and the feeder arrangement problem was solved by a QAP heuristic.  

Egbelu et al . [Egb96] also considered a sequential pick-and-place machine 

and solved the two problems iteratively. The feeder arrangement problem was solved 

by a cutting plane and exchange heuristic, while the placement sequencing problem 

was solved by a composite procedure of a farthest insertion algorithm and a 3-opt 

local search.  

Crama et al. [Cra90] adopted an iterative approach for a single-gantry collect-

and-place machine. The authors solved the placement sequencing problem using the 

approach proposed by Leipälä and Nevalainen [Lei89] and solved the feeder 

arrangement problem using a simple local search method.  

Grunow et al . [Gru04] considered a collect-and-place machine with a 

revolving head and solved the feeder arrangement problem and the placement 

sequencing problem iteratively. They first obtained initial feeder arrangement using a 

simple heuristic, and then solved the PSP as a simple Vehicle Routing Problem 

(VRP). After that, the initial solutions were improved by iteratively applying a 2-opt 

local search to one of the two solutions while fixing the other one.  

 

2.2.3 Integrated solution methods 

Many researchers proposed heuristic or metaheuristic methods for solving the 

feeder arrangement and placement sequencing problems simultaneously.  
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Leipälä and Nevalainen [Lei89] stated that the iterative approach was fast but 

obtained inferior solutions. They solved the feeder arrangement and placement 

sequencing problems integrally for a sequential pick-and-place machine. A simple 

pairwise exchange heuristic was used to solve the feeder arrangement problem, while 

the evaluation of each feeder arrangement solution was performed by solving the 

placement sequencing problem using a modified farthest insertion heuristic. A 

similar integrated approach was adopted by Sohn and Park [Soh96] for a turret-type 

machine.  

Broad et al . [Bro96] established an integrated Integer Programming (IP) 

model for the two problems for a sequential pick-and-place machine. The model was 

solved by a binary integer programming package. They stated that realistic instances 

were solved efficiently using a 1% tolerance on the difference between the objective 

values from the integer solution and the Linear Programming (LP) relaxation.  

Deo et al . [Deo02] also studied a sequential pick-and-place machine.  They 

considered multiple setups which were necessary with limited feeder holding 

capacity. They proposed a genetic algorithm for tackling the integrated problem.  

Leu et al . [Leu93] proposed a two-link genetic algorithm to simultaneously 

solve the feeder arrangement problem and the placement sequencing problem for 

both a sequential pick-and-place and a turret-type machine. Ong and Khoo [99] 

modified the two-link genetic algorithm proposed by Leu et al . [Leu93] and 

considered the case in which feeder duplication is allowed, i.e., components of the 

same type can be stored in more than one feeder. Ho and Ji [How03, How04] also 
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modified the two-link genetic algorithm proposed by Leu et al . [Leu93] for both a 

sequential pick-and-place and a turret-type machine.  

Moyer and Gupta [Moy96b] proposed a specific heuristic to solve the two 

problems simultaneously for a turret-type machine. The aim of the heuristic is to 

generate a placement sequence and feeder setup to exploit the unique characteristics 

of the turret-type machines. They argued that on average, their approach was 

superior to the genetic algorithm proposed by Leu et al. [Leu93].  

Yeo et al . [Yeo96] proposed a rule-based approach to simultaneously solve 

the feeder arrangement problem and the placement sequencing problem for a turret-

type machine. The approach is based on a one-pitch incremental feeder heuristic and 

a nearest neighbor heuristic.  

Ellis et al . [Ell01] proposed a heuristic for solving the feeder arrangement 

problem and the placement sequencing problem simultaneously for a turret-type 

machine. They used a construction procedure with a set of rules to generate an initial 

component placement sequence and feeder arrangement, and an improvement 

procedure to improve the initial solution. 

Magyar et al . [Mag99] studied a single-gantry collect-and-place machine. 

They proposed a hierarchical solution approach to solve the problem of determining 

the placement sequence, assignment of different nozzles to the robot head, and feeder 

setup.  

Altimeter et al . [Alt00] proposed an integrated model for the feeder 

arrangement problem and the placement sequencing problem for a single-gantry 
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collect-and-place machine, and devised an algorithm which converts these two 

problems into a number of vehicle routing problems.  

Ayob and Kendall [Ayo05] also studied a single-gantry collect-and-place 

machine. They proposed a triple objective function to minimize the assembly time, 

feeder movements and PCB table movements. 

For a dual-gantry collect-and-place machine, the efficiency is largely 

determined by the gantry workload and the gantry scheduling [Su05]. Tirpak et al . 

[Tir00] proposed an adaptive simulated annealing algorithm for solving three 

optimization problems simultaneously, i.e., the feeder setup, nozzle setup and 

placement sequencing.  

Sun et al. [Sun05] also studied a dual-gantry collect-and-place machine. They 

proposed a genetic algorithm to decide the component allocation between the two 

revolving heads and feeder arrangement. In order to evaluate the workload of each 

delivery unit, they used a greedy heuristic for work cycle formation and pickup 

sequencing decisions. Computational performance was examined using real 

industrial data.  

Kulak et al  [Kul07] proposed genetic algorithms for both single-gantry and 

dual-gantry collect-and-place machines with revolving heads. The feeder 

arrangement problem and the placement sequencing problem were solved by genetic 

algorithms (GAs). A clustering algorithm was integrated in the GAs to group 

placement operations in each collect-and-place cycle.  

Ho et al. [How07] adopted the genetic algorithm which was similar to that in 

[How03] to solve the feeder arrangement problem and the placement sequencing 
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problem simultaneously for a dual-gantry collect-and-place machine with revolving 

heads.   

Compared with other types of placement machine, the optimization of multi-

station machines has been tackled by relatively few researchers. Due to concurrency 

of the stations, synchronization is the most crucial factor for the optimization 

problem [Csa00a].  

Wang et al . [Wan99] proposed a genetic algorithm to optimize feeder setup 

for a multi-station placement machine. Crasser et al . [Csa00b] employed a 

knowledge-based system to optimize a multi-station machine. The system divides the 

optimization problem into two subproblems, i.e., assignment of components to the 

stations, and feeder arrangement within the stations.  

In other work, Crasser et al . [Csa00a] also studied a multi-station placement 

machine and proposed a two-phrase approach. Since the machine has many stations, 

they tackled component allocation to stations, feeder setups and placement 

sequencing for each station. They partitioned the optimization problem into two 

phases and solved them using a tabu search and a specific heuristic, respectively.  

Recently, Grunow et al . [Gru03] established an integer programming model 

for the optimization of a multi-station machine. They proposed two different solution 

procedures for the problem with the aim of balancing workloads of stations.  

It can be seen from the above survey that numerous researchers have 

investigated the machine optimization problems. However, solutions to the machine 

optimization problems are not general for all types of machines. All the researchers 

only proposed a specific solution method for the machine they investigated. Due to 
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the ever-advancing technology and the large variety of placement machines, 

development of a general solution is far from feasible.  

On the other hand, there seems to be a gap between the research in the 

literature and industrial solutions. In fact, different machine vendors have provided 

optimization software to tackle the machine optimization problems for their own 

machines. For example, there are Flexa for Fuji machines, PT200 for Panasonic 

machines, UPS for Universal machines, HLC for JUKI machines, etc. Most of the 

software provides effective and efficient solutions to machine optimization. However, 

few researchers in the literature have conducted comparison between their solutions 

with existing solutions in the industry.  

  

2.3 THE COMPONENT ALLOCATION PROBLEM 

The component allocation problem (CAP) arises when a batch of PCB is 

assigned to an assembly line with multiple placement machines for production. The 

CAP is to allocate the components required by the PCB to machines in the line so 

that the makespan or cycle time is minimized.  

Compared with the machine optimization problems, research on the 

component allocation problem has received less attention.  

As discussed in Chapter 1, the solution to the component allocation problem 

is tightly intertwined with the solutions to the machine optimization problems 

because the latter determine the actual process time for each machine (see Figure 

1.3). Most researchers tackled the component allocation problem individually by 
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using oversimplified estimation methods for obtaining process time, which reduce 

the effectiveness of the solutions.  

 

2.3.1 Approaches based on roughly estimated process times 

Crama et al . [Cra90] proposed a hierarchical approach to solve the 

component allocation problem for the collect-and-place machines, assuming constant 

unit time for a machine to place the components of the same type. In this way, the 

component allocation problem was solved separately without considering the 

machine optimization problems. They argued that the approach obtained results 

similar to those obtained by the approach proposed in a confidential report of the 

Philips Center for Quantitative Methods. However, they agreed that the process time 

for a component is actually not constant and dependent on the solutions to the 

machine optimization problems. Therefore, the solution obtained in this way cannot 

be effective. 

Ji et al . [Jip01] established a mixed integer programming model for the 

component allocation problem. The model also uses estimated unit time for 

processing a component of a specific type. In their model, components of the same 

type are allowed to be allocated to different machines, that is, feeder duplication is 

allowed. They proposed a genetic algorithm to solve the problem which yields less 

than 1% difference between the best found solutions and optimal solutions. However, 

the solutions are also evaluated based on the roughly estimated process time values.  

Kodek and Krisper [Kod04] addressed the component allocation problem and 

proposed an optimal branch-and-bound-based algorithm. They showed that the 
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algorithm could obtain the optimal solution for the problems with up to 50-80 

variables. However, they also assumed the constant unit time for components of a 

specific type. 

Some researchers considered the case for multiple boards to be produced on 

the same line without feeder changeover. Ben-Arieh and Dror [Ben90] proposed 

simple heuristics for a case with two machines and multiple boards. They stated that 

the solution results were within 0.5% from optimality. However, as mentioned in the 

paper, they also assumed that the process time was one unit for each component, 

regardless of the board type and component location on the board.  

McGinnis et al . [Mcg92] stated that the most appropriate objective function 

for the multiple-board case consists of minimizing the sum over all board types of 

the process time of these board types on their bottleneck machines. Similar to those 

in the aforementioned papers, the model they proposed uses estimated placement 

time pjkm

Ammons et al . [Amm97] also considered the multiple-board case and 

proposed a more general feeder allocation model by allowing for feeder duplication 

and partial feeder setups. They solved the mixed integer programming model by 

branch-and-bound. In the model, they also used rough estimates of placement time 

for a component of a specific type. They mentioned that these estimates yielded a 

poor approximation of actual makespan. An industrial case study was presented. 

 for machine m of all components of type j on board k. The authors 

mentioned that these placement time values must be roughly estimated, since feeder 

allocation, feeder location and placement sequencing decisions eventually interfere 

with each other to determine actual assembly time.  
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Throughput improvements of up to 8-10% over the company’s current manual 

procedure conducted by the process engineer were obtained. DePuy et al . [Dep01] 

proposed an integer programming heuristic for the same problem and conducted 

several case studies to demonstrate the effectiveness of the method.  

With considering sequence-dependent setup times (feeder changeover), 

Gronalt and Zeller [Gro00] investigated both the component allocation problem and 

the job sequencing problem to minimize makespan for an assembly line with two 

placement machines to produce boards of multiple types. Two heuristic procedures 

were proposed and proved to be effective for solving some real problems.  

Ashayeri and Selen [Ash07] also considered the feeder changeover time and 

solved the job sequencing problem along with the component allocation problem for 

each job. The authors proposed two decomposed planning strategies: one focuses on 

minimum number of changeovers and the other on minimum process time. They 

stated that both strategies did not deviate excessively from optimal solutions.  

 

2.3.2 Approaches based on actual process times 

All the models in above-mentioned research assume constant process time for 

a specific machine to place a component of a specific type. However, the actual 

placement times may differ a lot from these rough estimates. Some influential factors 

should be considered, like the closeness of the components, number of feeders 

required. These factors are key factors considered in the machine optimization 

problems, i.e., the feeder arrangement problem and the placement sequencing 

problem, which eventually determine the process time for a machine. 
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Only a few researchers have considered the interaction between the 

component allocation problem and the machine optimization problems. Lapierre et al. 

[Lap00] tackled the feeder allocation problem for a line and the feeder arrangement 

problem for each machine simultaneously. They claimed that, for the particular 

machine type considered in their paper, the placement time is independent of the 

placement sequence. Therefore, they assumed that the process time of a component 

was constant when feeder arrangement was determined. In this way, they were able 

to establish a model which simultaneously determines feeder allocation to machines 

and feeder arrangement on each machine. They proposed Lagrangian relaxation 

techniques to solve the integrated problem and stated that the techniques obtained 

little difference between the best found solutions and the lower bounds. However, 

Duman [Dum05] recently proved that the assumption made by Lapierre et al . is not 

true and showed that placement time is actually dependent on placement sequence 

even for the concerned machine.  

Crama et al. [Cra97] proposed a heuristic method to estimate the process time 

for a machine to place all allocated components. However, the heuristic exploits the 

operation characteristics of the turret-type machines and cannot be easily applied to 

other machine types. In addition, the proposed estimation method requires nontrivial 

computational efforts. As the result, the authors can only use a simple local search to 

solve the component allocation problem.  
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2.4 THE JOB ASSIGNMENT AND SCHEDULING PROBLEM 

The scheduling problem investigated in this thesis arises when a set of PCB 

batches are required to be processed by multiple assembly lines. In this research, the 

problem is named as the Multi-Line Scheduling Problem (MLSP). The problem is to 

simultaneously determine the assignment of jobs to assembly lines and the 

sequencing of jobs in each line, so that the makespan is minimized while meeting 

due date requirement.  This section surveys the literature relating to the line 

assignment and scheduling problem in PCB assembly. Because the Multi-Line 

Scheduling Problem (MLSP) is found to be much similar to the Parallel-Machine 

Scheduling Problem (PMSP), literature relating to the PMSP is also discussed.  

 

2.4.1 The line assignment problem in PCB assembly 

In the literature, most researchers mainly focused on solving the line 

assignment problem without considering the due dates of the jobs. The line 

assignment problem is aimed to improve the production efficiency through 

appropriate assignment of jobs to lines. Even without considering the due date 

requirement, the line assignment problem is complex due to the job and line 

dependent process times.  

Balakrishnan and Vanderbeck [Bal99] considered the line assignment 

problem in a high-mix, low-volume environment. With the use of a partial setup 

policy, the objective of the problem is to minimize the setup cost while adding an 

upper-bound on the allowed workload per line. They established an integer 
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programming model for the problem and proposed a heuristic method based on 

column generation. 

Ellis and Bhoja [Ell02] considered the line assignment problem together with 

the component allocation problem. They solved the two problems in a decomposed 

manner. They stated that by solving the component allocation problem the cycle time 

for each line can be obtained. For the line assignment problem, they considered both 

the objective of minimizing the total line time (total production time for all the lines) 

and the objective of balancing the workload across the lines. They formulated the 

problem as a mixed-integer programming (MIP) model and solved it using an MIP 

solver with certain optimality tolerance.  

Ji and Ho [Jip05] also addressed the line assignment problem with the 

objective of minimizing the total production time. A PCB batch is allowed to be split 

and produced on different lines. Similar to the model proposed by Balakrishnan and 

Vanderbeck [Bal99], an upper-bound is set for the allowed workload per line. They 

stated that assignment of a small quantity of boards to a line was impractical and 

should be associated with penalty in the objective function. They proposed a genetic 

algorithm which was shown to be able to solve the problem effectively and 

efficiently.  

Çatay et al . [Çat06] considered the job assignment problem in an open shop 

environment in which the machines were decoupled and each PCB job could have 

more than one operation to be processed by different machines. They proposed a 

three step hierarchical scheduling methodology for solving the problem. However, as 
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stated by the authors, the flow-line organization of machines, as investigated in this 

thesis, is more typical for most PCB manufacturers.  

Feo and Bard [Feo95] seem to be the only researchers who consider due date 

constraints in the scheduling problem for PCB assembly. They developed a greedy 

constructive heuristic for solving the problem. In the heuristic, a composite of slack 

time and process time are used for the greedy function during the solution 

construction. The users are allowed to rank the schedules obtained in multiple runs of 

the heuristic according to their own objectives, e.g., weighted throughput and 

weighted tardiness.  

Comparatively, the multi-line scheduling problem (MLSP) investigated in 

this research involves some practical constraints and considerations that have been 

neglected in related research in the literature, which can be described as follows.  

First, most researchers do not consider the due dates of the jobs. A realistic 

objective of the scheduling problem should not only consider improving production 

efficiency, but also due date requirement. In addition, each job may have its ready 

time due to reasons like material availability. For most PCB manufacturers, these 

time constraints are practical. Without considering the ready times and due dates in 

the scheduling model, the desired efficiency cannot be achieved in real production. 

On the other hand, these time constraints may greatly increase the complexity of the 

scheduling problem [Mod01] and necessitate an efficient solution method.   

Second, the setup (or transition) time for a job on an assembly line may 

depend on the job that is previously processed on the machine. In an investigated 

PCB manufacturer, for example, the PCBs are classified into two types: those meet 
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the RoHS (Restrict of Hazardous Substances) compliance and those do not. The 

setup time for an RoHS job that immediately follows a non-RoHS job is longer than 

the setup time otherwise. Therefore, the setup time can be seen as sequence 

dependent, which adds extra complexity to the problem.  

Third, there may be precedence requirements between the jobs. For example, 

it is common for both sides of a PCB to be processed. Precedence constraints exist 

for the two jobs, which process each side of the same board.  

All the above considerations are realistic for many PCB manufacturers and 

should be considered in the scheduling problem. However, to the best of our 

knowledge, such a specific multi-line scheduling problem in PCB assembly has not 

been investigated in the literature.  

 

2.4.2 The parallel-machine scheduling problem 

Based on the investigation on other production scheduling problems in the 

literature, it is found that the Multi-Line Scheduling Problem (MLSP) investigated in 

this research is much akin to the Parallel-Machine Scheduling Problem (PMSP), if 

each assembly line in the MLSP is considered as a single machine.  

The parallel-machine scheduling problem has been intensively studied in the 

literature. A survey on the literature relating to the parallel-machine scheduling 

problems is presented in this section, followed by the discussion on the gap between 

the multi-line scheduling problem in PCB assembly and the parallel-machine 

scheduling problems which have been studied in the literature. 
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The Parallel-Machine Scheduling Problem (PMSP) considers scheduling a set 

of jobs Ji (i = 1, …, n) on a set of parallel machines Mj

There are many performance criteria to be considered when solving the 

parallel-machine scheduling problem. The criteria can be classified into two types, 

i.e., the criteria based upon completion time measures, and the criteria based upon 

due date measures, while the latter greatly increases the complexity of the scheduling 

problem [Mok01].  

 (j = 1, …, m) to optimize a 

certain performance measure [Mok01]. Each job can be completed by any one of the 

m machines.  

Based on the machines, the PMSP can be divided into three types, i.e., 

identical, uniform, and unrelated [Che90]. For the identical machines, the process 

time for a job is independent of the machine which processes it; for the uniform 

machines, each machine has a different speed, sj (j = 1, …, m) and the process time 

for a job is the basic job process time divided by the machine speed, pij = pi/sj; for 

unrelated machines, there is no particular relationship among process time values for 

the jobs and thus a matrix pij

For the multi-line scheduling problem in PCB assembly, the process time for 

a job is dependent on the assigned line and there is no particular relationship among 

the process time values for the jobs, so the multi-line scheduling problem is more 

similar to the unrelated parallel-machine scheduling problem. 

 (i = 1, …, n; j = 1, …, m) for the process times is 

needed.  

Sotskov and Shaklevich [Sot95] stated that the identical parallel-machine 

scheduling problem with makespan minimization, which is a relatively easy type of 
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PMSP, is NP-hard. It is unlikely that polynomial algorithms may exist to solve the 

problem unless P = NP [Coo71, Kar72].  

Exact algorithms are available mainly for the identical PMSP, for example, 

the branch and bound algorithms [Del95; Elm74; Bar77; Sar88; Bel94; Yal02; Nes08; 

Shi08], and the dynamic programming [Rot66; Law69; Gra79; Len80; Leu82]. 

However, as mentioned by Mokotoff [Mok01], these enumerative algorithms can 

only solve some small-sized problem instances. Furthermore, the unrelated parallel-

machine scheduling problems are much more difficult than identical or uniform 

machine scheduling problems [Mar97].  

Recently, Bard and Rojanasoonthon [Bar06] developed a branch-and-price 

algorithm for unrelated PMSP and successfully solved many 100-job instances. 

However, their problem has an uncommon objective which is to maximize the 

weighted number of jobs scheduled, where a job in a higher priority class has more 

weight or value than a job in a lower priority class.  

Most researchers focus on developing heuristic methods for solving the 

parallel-machine scheduling problems. Hübscher and Glover [Hüb94] presented a 

tabu search for the identical PMSP to minimize the makespan. They introduced an 

influential diversification which improves the behavior and quality of the solutions 

obtained by the general tabu search. França et al . [Fra94] proposed a composite 

heuristic and stated that the heuristic could achieve near-optimal solutions to the 

testing instances in short computational times. Scutella et al. [Scu00] considered the 

same problem by introducing new local search techniques whose neighborhood 

structure is based on multiple exchanges of jobs among machines. They showed that, 
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by means of the proposed algorithms, near optimal solutions could be obtained when 

the running time was not important and satisfactory ones could be found rapidly.  

For the unrelated PMSP to minimize the makespan, van de Velde [Van93] 

presented a heuristic based on an iterative local search. Glass et al . [Gla94] and 

Piersma and van Dijk [Pie96] presented heuristics using local search which were 

shown to be more efficient. Glass et al . [Gla94] compared the relative performance 

of Genetic Algorithm (GA), Simulated Annealing (SA) and Tabu Search (TS) on the 

same problem. They stated that for these three algorithms, TS generates slightly 

better solutions in a short time, and GA and SA improves as the time limit increases. 

Piersma and van Dijk [Pie96] developed a new local search algorithm for a similar 

problem. They showed that a tabu search with an efficient neighborhood search 

strategy performed better than general local search algorithms. Srivastava [Sri98] 

also presented a tabu search which was shown to be very effective to provide near 

optimal solutions. Sourd [Sou99] presented two algorithms based on large 

neighborhood improvement procedures. One is based upon a partial and heuristic 

exploration of a search tree, and the other one is based on the duality approach of van 

de Velde [Van93]. Frangioni et al. [Fra04] proposed new local search algorithms for 

the same problem. They stated that the new approaches have better performance than 

the branch-and-bound algorithm proposed by Dell’Amico and Martello [Del95] and 

the heuristic proposed by França et al . [Fra94]. Rojanasoonthon and Bard [Roj05] 

considered the unrelated PMSP to minimize the weighted number of scheduled jobs, 

where a job in a higher priority class has more value than a job in a lower priority 

class.  
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As the time constraints like due date constraints are presented, the complexity 

of the scheduling problem will be greatly increased [Mok01]. Bean [Bea94] 

developed a genetic algorithm for the identical multiple machine problem to 

minimize the total tardiness, introducing random keys representation scheme to 

maintain feasibility from parent to offspring. Sivrikaya-Serifoglu and Ulusoy [Siv99] 

provided two genetic algorithms for a more complex problem that appears when 

scheduling a set of independent jobs, with different due dates and ready times, 

sequence-dependent setups, on a set of identical parallel machines with the objective 

of minimizing the sum of weighted earliness and tardiness. Suresh and Chaudhuri 

[Sur96] proposed a tabu search algorithm considering a bicriteria objective to 

minimize the makespan and maximum tardiness. For the scheduling problem to 

minimize the maximum lateness on unrelated machines, a tabu search based on the 

adaptive memory search was presented by Smutnicki [Smu98]. Armentano and de 

França Filho [Arm07] considered the uniform PMSP to minimize the total tardiness 

and proposed an adaptive memory-based GRASP (Greedy Randomized Adaptive 

Search Procedure) approach for the problem. Anghinolfi and Paolucci [Ang07] 

investigated the uniform PMSP with ready times and sequence-dependent setup 

times to minimize the total tardiness. They proposed a hybrid metaheuristic approach 

which integrates several features from tabu search (TS), simulated annealing (SA) 

and variable neighbourhood search (VNS). Zhou et al . [Zho07] proposed a new ant 

colony approach for solving the unrelated PMSP to minimize the total weighted 

tardiness and compared the results with a general ant colony algorithm.  
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As mentioned earlier, the Multi-Line Scheduling Problem (MLSP) in PCB 

assembly can be seen as a special type of unrelated parallel-machine scheduling 

problem (PMSP) with sequence-dependent setup times and precedence constraints. 

The objective of the MLSP considers both the production efficiency and due date 

requirement. The unique objective and additional constraints add extra complexity to 

the NP-hard unrelated PMSP. Both a complete mathematical model and an efficient 

solution method are required for the investigated multi-line scheduling problem. 

 

2.5 HEURISTIC METHODS 

Most of the optimization problems in PCB assembly are difficult 

combinatorial optimization problems. By allowing enough time, an exact algorithm 

can produce an optimal solution for a combinatorial optimization problem of small 

size. However, these exact algorithms are usually inefficient due to the time they 

require. In practice, a heuristic solution is highly desirable. In this section, a survey is 

conducted on the heuristic methods for combinatorial optimization. The heuristic 

methods that have been used for solving the planning problems in PCB assembly in 

the literature are also discussed. 

 

2.5.1 Heuristic methods for combinatorial optimization 

Many surveys of heuristic approaches such as [Sil80] and [Zan89] attempt to 

classify the heuristics into several broad categories: construction methods (usually 

for generating initial solutions), neighborhood search (improvement) techniques, 

relaxation techniques, etc. The other common classification of heuristics is single 



CHAPTER 2: LITERATURE REVIEW  38 

solution approaches and population-based approaches [Blu01]. Basic local search 

(deterministic iterative improvement), simulated annealing, tabu search etc., are 

examples of single solution approaches, whereas genetic algorithms, ant colony 

algorithms, evolutionary strategies, etc., are examples of population-based 

approaches. 

A constructive heuristic (also known as a greedy approach) constructs a 

solution based on some criteria. The aim of a constructive heuristic is to build a 

solution from scratch. Some of the common constructive heuristics are nearest 

neighbor, multiple fragment and insertion heuristics [Joh90]. These approaches are 

often simple but practical as an initialization method that can produce an initial 

solution for starting the local search. Many constructive heuristics are problem-

specific in order to satisfy the problem constraints.  

Comparatively, a neighborhood search is more general. It attempts to 

improve the solution by exploring the neighborhood of the present solution [Aar97]. 

The neighborhood of a solution is the set of solutions that are close to the current 

solution in some sense. The important decision in a neighborhood search is of 

deciding the neighborhood structure and how to explore solutions in the 

neighborhood. A basic neighborhood search begins the search from a given solution, 

and then iteratively tries to improve the solution quality by applying move operators. 

The search stops when it gets trapped in a local optimum or the stopping criteria are 

met.  

Traditional neighborhood search methods can generate good solutions 

efficiently at a reasonable computational cost but without being able to guarantee 
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optimality [Ree95]. More advanced heuristic approaches, called metaheuristics, 

guide local search heuristics to escape from local optima [Ree95]. Some of the 

common metaheuristics are Tabu Search (TS), Simulated Annealing (SA), and 

Genetic Algorithms (GA).  

Tabu search (TS), primarily suggested by Glover and Hansen [Glo89, Glo90], 

makes use of memory structures and incorporates the deterministic improvement 

algorithm (i.e. the descent method) with the possibility of accepting a worse solution 

in order to escape from local optima [Aar97]. It is a systematic search approach that 

exploits adaptive memory structures [Glo90]. The best legal neighbor of the current 

solution is always selected even if that solution is worse than that of the current 

solution. To prevent a cyclic move (moving back to a recently visited solution), the 

set of legal neighbors is restricted by a tabu list. However, an illegal neighbor that 

attains a certain aspiration level can still be accepted. The flowchart of a standard TS 

method is illustrated in Figure 2.2 [Glo93]. 
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Figure 2.2  Flowchart of a standard tabu search method 

 

Simulated annealing (SA), first proposed by Kirkpatrick et al . in 1983 

[Kir83], is motivated from the analogy between combinatorial optimization problems 

and the physical annealing of solids (crystals) [Aar89] in which a solid is heated until 

it melts and is then slowly cooled to a state of minimum energy such that a uniform 

crystal structure, that is said to be in ground state, can be developed. The analogy 

associates the states of the physical system with the set of solutions, the physical 

energy of the solid as the objective function while the ground state is a globally 

optimal solution. The main idea of simulated annealing is to accept all improving 

solutions while probabilistically accepting worse solutions based on a control 

parameter (i.e. temperature in physical annealing). A cooling schedule is a vital 

component of the simulated annealing algorithm. It includes the upper and lower 
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limit of the temperature parameter and the rate at which the temperature is reduced. 

The algorithm begins with a high temperature, which means a high probability of 

accepting worse solutions. As the search progresses, the temperature is gradually 

decreased, as such reducing the probability of accepting non-improving solutions. At 

temperature zero, the algorithm only accepts improving solutions. The algorithm 

ends when a stopping condition is met. Figure 2.3 summarizes the general SA 

procedure [Pha00]. 

 
Figure 2.3  Flowchart of a standard simulated annealing method 
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Genetic algorithms (GA), originally developed by Holland in the 1960’s, are 

a population-based method inspired by the principles of natural evolution [Man99]. 

The algorithm starts the search with a population of individual chromosomes 

(solutions) generated randomly or heuristically. In each generation (iteration), the 

population is evolved using genetic operators such as mutation and crossover to 

produce offspring (new individuals of the next generation). Mutation is a unary 

operator that introduces random modifications of the chromosome in order to add 

diversity to the population. The crossover operator combines two parents (individuals 

from the current generation) to generate new offspring. The crossover operation aims 

to propagate good solution components from parents to offspring. The selection 

mechanism usually chooses the parents based on survival of the fittest individuals. 

That is, the better fitness values are more likely to be chosen to undergo reproduction 

in order to produce offspring. The whole procedure is shown in Figure 2.4 [Dav91]. 
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Figure 2.4  Flowchart of standard genetic algorithms 
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tackled the feeder arrangement problem by using two heuristic methods. For the 

more difficult combined problem of feeder arrangement and placement sequencing, 

many researchers also relied on heuristic methods [Cra90; Gru04; Moy96b; Yeo96; 

Ellis01].  

Besides traditional heuristic methods, many researchers proposed 

metaheuristics for solving the machine optimization problems. Among these 

metaheuristic methods, genetic algorithms have been used extensively and 

demonstrated successful applications. For example, Khoo and Loh [Kho00] 

developed a prototype genetic algorithm to solve the machine optimization problems 

for a Fuji FCP-IV machine. Wang et al. [Wan99] argued that their genetic algorithm 

method performed as well as a human expert in optimizing the feeder arrangement 

problem for a Fuji QP-122 machine. Several researchers used genetic algorithms to 

solve the integrated problem of feeder arrangement and placement sequencing and 

achieved good results [Leu93; Ong99; Deo02; HoW03; HoW04]. Sun et al. [Sun05], 

Kulak et al  [Kul07], and Ho et a l. [How07] also relied on genetic algorithms for 

solving the optimization problems for collect-and-place machines. Besides genetic 

algorithms, simulated annealing was used by Tirpak et al . [Tir00] to solve the 

optimization problems for a dual-gantry collect-and-place machine. Csaszar et al . 

[Csa00a] proposed a tabu search and a specific heuristic to optimize a multi-station 

placement machine. 

Heuristic methods have also been used to solve the component allocation 

problem [Cra97; Ben90; Gro00; Lap00] and the line assignment problem [Bal99; 

Feo95]. Nevertheless, genetic algorithms have also demonstrated successful 
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applications for these high-level problems. Ji et al . [JiP01] proposed a genetic 

algorithm to solve the component allocation problem which obtained less than 1% 

difference between the best found solutions and the optimal solutions. For the line 

assignment problem, Ji and Ho [Jip05] developed a genetic algorithm and obtained 

good results. They stated that the proposed genetic algorithm could solve the 

problem both effectively and efficiently.  

 

2.6 SUMMARY 

In this chapter, an extensive literature review on the planning problems in 

PCB assembly, i.e., the machine optimization problems, the component allocation 

problem, and the line assignment and scheduling problem, has been conducted. As 

all these problems are much difficult combinatorial optimization problems, literature 

relating to heuristic methods for combinatorial optimization problems has also been 

reviewed. Some remarks concerning the reviews can be summarized as follows. 

1. The machine optimization problems have been investigated intensively. Most 

researchers rely on heuristic methods for solving these problems due to the 

great complexity of the problems. Nevertheless, a generally applicable 

solution approach is not available because of the large variety of machine 

types and ever-advancing technologies. Most of the machine vendors have 

provided optimization software for their own machines, which exploits the 

technological characteristics of their machines. 

2. The component allocation problem (CAP) has also been investigated by quite 

a few researchers. However, no effective approach has been proposed to 
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consider the interaction between the component allocation problem and the 

lower-level machine optimization problems. The objective values for the 

component allocation problem algorithms proposed in the literature are 

mainly based on the over-simplified estimate of process time for each 

machine. Therefore, the solutions obtained by the current CAP algorithms are 

not good enough due to the estimation error.  

3. The line assignment and scheduling problem in PCB assembly has received 

relatively few attentions in the literature. Most of the relative research focuses 

on the line assignment problem for improving the production efficiency, 

while neglecting some realistic constraints like the ready time and due date 

for each job. These constraints may significantly increase the computational 

complexity of the problem. An efficient heuristic method is required.  

4. The multi-line scheduling problem (MLSP) in PCB assembly investigated in 

this research is found to be much similar to the well-known unrelated 

parallel-machine scheduling problem (PMSP). However, the sequence-

dependent setup times, the job precedence constraints, and the unique 

objective which considers both production efficiency and due date 

requirement, may greatly increase the complexity of the problem. A complete 

mathematical model and an efficient solution method for the specific MLSP 

have not been established in the literature.  

5. Due to the simplicity and flexibility, genetic algorithms have been used 

extensively and demonstrated successful applications in solving the planning 

problems in PCB assembly. In this project, the genetic algorithms will also be 
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proposed to solve the investigated planning problems, i.e., the component 

allocation problem (CAP), and the multi-line scheduling problem (MLSP).  

 

In the next chapter, a detailed description of the component allocation 

problem (CAP) will be given. An effective solution strategy will be proposed. 

Experimental tests on some problem instances will be conducted to examine the 

effectiveness and efficiency of the proposed method.  
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CHAPTER 3 

THE COMPONENT ALLOCATION PROBLEM (CAP) 

 

3.1 INTRODUCTION 

When a batch of PCB is assigned to an assembly line for processing, the 

Component Allocation Problem (CAP) is required to be solved to allocate 

components required by the PCB to the placement machines in the line, with the 

objective of minimizing the makespan or cycle time.   

As discussed in Section 1.2, the component allocation problem is dependent 

on the solutions to the lower-level machine optimization problems, which eventually 

determine the actual process time for each machine. In this chapter, a decomposed 

solution strategy is proposed for solving the Component Allocation Problem (CAP). 

The solution strategy relies on a so-called placement time estimator, which can 

accurately estimate the placement time for a machine without solving the machine 

optimization problems. Based on the placement time estimator, an algorithm or 

heuristic can be developed to solve the component allocation problem effectively 

without tackling the machine optimization problems. 

The structure of this chapter is organized as follows. The component 

allocation problem is formulated and described in detail in Section 3.2. The 

decomposed solution strategy is proposed and described in detail in Section 3.3. The 

development of a placement time estimator is described in Section 3.4, followed by 

the development of a specific genetic algorithm for solving the component allocation 



CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 49 

problem in Section 3.5. Numerical results on solving some problem instances are 

presented in Section 3.6. The main work of this chapter is summarized in Section 3.7. 

 

3.2 PROBLEM FORMULATION 

If a batch of a specific PCB is assigned to an assembly line with multiple 

placement machines for production, one should decide the allocation of the 

components required by the PCB to the placement machines in the line so that the 

process time on the bottleneck machine is minimized. In the literature, this problem 

is called the Component Allocation Problem (CAP).  

In practice, the components of the same type may be split and assigned to 

more than one machine in the line, which is called feeder duplication.  However, 

some manufacturers prefer not adopting feeder duplication due to the expensiveness 

of the feeders. Feeder duplication is not considered in this research. Without feeder 

duplication, the component allocation problem is reduced to allocating the 

component feeders (with each feeder supplying components of a specific type) to the 

machines.  

Figure 3.1 shows an example for the component allocation problem. In the 

example, a batch of PCB with 22 components of 8 different types is to be assembled 

by an assembly line with 4 placement machines. Each machine in the line is 

responsible for placing components of 2 types, so that the greatest process time 

among the 4 machines is minimized. For a realistic PCB, there may be hundreds of 

components and dozens of component types, and the component allocation problem 

is very complicated.  
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Figure 3.1  An example for the component allocation problem 
 

A complete mathematical formulation is established in this chapter. Let j = 

1, …, J denote the component types required by the PCB and let Ck be the feeder 

capacity on machine k. The following 0-1 decision variables are introduced: 

xjk :  = 1, if the feeder for component j is set up on machine k; and = 0, 

otherwise.  

Let x denote the component allocation represented by all xjk, and tk(x) denote 

the process time for machine k (k = 1, …, K) induced by the component allocation x. 

With X denoting the set of feasible component allocations, a mathematical model for 

the component allocation problem can be written as: 
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  }1,0{∈jkx  for all j, k.     (3.4) 

(Model 3-1) 

 

Not considering the minimax operator in the objective function (3.1), the 

model could still be highly nonlinear due to the nonlinear relationship between ( )xtk , 

the process time for machine k and the component allocation x. In fact, the actual 

value of the process time for each machine is determined by the solutions to the 

machine optimization problems, i.e., the feeder arrangement problem and the 

placement sequencing problem for the machine, both of which are NP-hard.  

Integration of the component allocation problem with these machine 

optimization problems will result in a very complicated model, which is difficult 

even for heuristic methods [Cra02]. Therefore, an effective and efficient solution 

strategy is required.  

 

3.3 A SOLUTION STRATEGY 

In this section, a decomposed solution strategy is proposed for solving the 

component allocation problem, without tackling the lower-level machine 

optimization problems, i.e., the feeder arrangement problem and the placement 

sequencing problem.  
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The proposed solution strategy is inspired by a similar solution strategy for 

solving the so-called Location Routing Problem (LRP), which is also a hierarchical 

planning problem in logistics [Lap88].  

The location routing problem can be defined as follows: Customers 

distributed in a planning area are planned to be served by several facilities. A feasible 

set of potential facility sites and expected demands of each customer are given. Each 

customer is assigned to a facility which will supply its demand. The shipments of 

customer demand are carried out by vehicles which are dispatched from the facilities, 

and operated on routes that include multiple customers. There is a fixed cost 

associated with opening a facility at each potential site, and a distribution cost 

associated with any routing of vehicles, which includes the cost of acquiring the 

vehicles used in the routing, and the cost of delivery operations. The cost of delivery 

operations is linear in the total distance traveled by the vehicles. In the LRP, the 

objective is to simultaneously seek the optimal location of facilities, the optimal 

allocation of customers to facilities, and the associated minimum-cost routes to serve 

the customers.  

Chien [Chi93] proposed a nested heuristic approach for the LRP using some 

TSP (Traveling Salesman Problem) optimal tour estimators, which can accurately 

estimate the traveling distance of the optimal tour for a TSP without solving the TSP. 

With an accurate and fast TSP estimator, the LRP can then be decomposed into a 

modified location problem with the routing costs approximated by the estimator, and 

a multi-depot vehicle routing problem once the location sites have been determined. 

It was shown that this nested approach reduces the complexity of solving the location 
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and the routing problems simultaneously, and hence, may provide good feasible 

solutions to the LRP in less computation time.  

The TSP optimal tour estimators have been well investigated. Most of these 

TSP optimal tour estimators are based on linear regression models that take into 

account the most important factors, including the number of visited locations and the 

area of the service region.  

The following equation shows an example of an effective TSP tour estimator 

[Kwo95].  

T * = nand /5696.00212.2 +       (3.5) 

where  

T * is the estimated length of the optimal tour for a TSP, 

d is the average straight-line distance from the customers to the depot, 

n is the number of points (customers plus depot) in a TSP 

a is area of the smallest rectangle that covers all the customer locations 

It is well known that for many placement machines, the placement 

sequencing problem can be formulated as a TSP while the feeder arrangement of the 

machine is fixed [Lei89; Moy97]. It may be possible to develop a placement time 

estimator, which can estimate the placement (process) time without solving the 

machine optimization problems. Similar to the location routing problem, the 

component allocation problem can then be solved as a general minimax problem 

(Model 3-1), with the process time for each machine approximated by the placement 

time estimator.  
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Based on the above discussion, the solution strategy for the component 

allocation problem can be proposed as follows: 

 Develop a regression-based placement time estimator which can yield 

accurate estimates of placement time without solving the machine 

optimization problems. 

 Develop a specific genetic algorithm for solving the component 

allocation problem, with the solutions evaluated using the placement time 

estimator.  

In the following sections, the proposed solution strategy is implemented and 

described in more details. First, the effectiveness of the estimator is examined by 

developing a placement time estimator for a turret-type placement machine. After 

that, a specific genetic algorithm for the component allocation problem is devised, 

using the placement time estimator to evaluate solutions. The effectiveness and 

efficiency of the solution method is examined through solving problem instances.  

 

3.4 A REGRESSION-BASED PLACEMENT TIME ESTIMATOR 

As discussed in Section 1.1, there are different types of placement machines 

available in the industry. The technological characteristics and operation modes may 

differ from a machine type to another. Therefore, specification and calibration of the 

placement time estimators should be different for different machine types. In this 

section, a placement time estimator will be developed specifically for a turret-type 

placement machine, Fuji CP732. Nevertheless, the methodology is general for 

developing the placement time estimators for different machine types.  
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Like the TSP tour estimator shown in (3.5), the proposed placement time 

estimator is based on linear regression method. For most regression applications, it 

requires decisions on which variables to be included in the model, the form the 

variables should take (for example, x, x2, 1/x, etc), and the functional form of the 

model [Raw98]. This process is called model specification. In order to specify a most 

suitable model, the characteristics of the investigated placement machine should be 

examined.  

The development of the placement time estimator involves the following 

process. First, the placement process of the investigated machine is analyzed and the 

influential factors to the placement time are identified. Then, the functional form of 

the regression model is decided. After that, experimental tests are conducted for 

collecting the required data for model calibration. Finally, the model is fit on the 

collected experimental data, and a statistical analysis is conducted.  

 

3.4.1 The placement process and influential factors 

The Fuji CP732 placement machine is illustrated in Figure 3.2. The 

placement device is a turret with 16 stations. There is a placement head on each 

station. Each pick-and-place cycle consists of two stages. In the first stage, the 

placement head on station 1 picks a component from a component feeder on the 

feeder carrier while the placement head on station 9 places another one onto the PCB. 

The time for the placement head to pick a component from the positioned feeder 

carrier and the time for the placement head to place a component on the positioned 

PCB are fixed and equivalent. This time is referred to as the fixed pick and place 
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time (FPP). In the second stage, the turret rotates by 22.5º. At the same time, the 

feeder carrier moves along X axis to locate the required feeder under station 1, and 

the PCB holder moves to locate the next placement location under station 9. So, the 

time for the second stage is decided by the longest one among the PCB movement 

time, feeder carrier movement time, and turret rotation time (which is usually the 

shortest). The aforementioned cycle is repeated until the placement for the current 

PCB is finished.  

 

 
Figure 3.2  Illustration of a Fuji CP732 machine 

 

As discussed in Chapter 1, the feeder arrangement problem (FAP), which 

determines the location of different component feeders on the feeder carrier, and the 

placement sequencing problem (PSP), which determines the component placement 

sequence, are two fundamental problems for machine optimization. The two 
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problems are intertwined with each other to determine the feeder movement time and 

the PCB movement time in each pick-and-place cycle. The objective of the two 

machine optimization problem is to minimize the total process time for a PCB. 

Obviously, the two machine optimization problems are highly dependent on 

the characteristics of the currently processed PCB, e.g., the locations and number of 

the components on the board. These factors are influential to the final process time, 

which is the objective value for the machine optimization problems. Therefore, the 

placement time for the PCB may be estimated through considering these factors.  

Based on the above observation, the factors affecting the placement time 

should be included in the estimator. Firstly, the number of the pick-and-place cycles 

is determined by the total number of components. For this reason, the number of 

components to be placed may have impact on the placement time. Secondly, the 

closeness of the component locations on the board influences the moving time of the 

PCB holder and thus affects the placement time. Thirdly, the number of component 

types influences the number of required feeders and thus affects the moving time of 

the feeder carrier. These three factors are most important and should be considered in 

the development of the placement time estimator.  Since the impacts of these factors 

on the placement time are different, the model should be appropriately specified to 

reflect these impacts. 

 

3.4.2 Model specification 

Suppose on a PCB, there are a set of N components belonging to F 

component types to be placed by a machine. Let A denote the area of the smallest 



CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 58 

rectangle that covers all the components. Thus, A reflects the closeness of the 

component locations to some extent. As discussed earlier, all the three factors, N, F, 

A, may influence the placement time.  

However, the variable, A, may not have linear effect on the placement time. 

Similar to the TSP tour estimator (3.5), other two variables are proposed: AN  and 

AFN . The introduction of these two variables can be explained as follows. The 

term NA /  reflects the average closeness of all the components, while the term 

NAF /  reflects the average closeness of the components of the same type. In 

addition, it can be inferred that the marginal effect of the component closeness on the 

placement time may increase with the number of the components. For this reason, 

two interaction terms NAN / and NAFN /  (that is, AN  and AFN ) may be 

more appropriate as potential estimator variables than A for the linear regression 

model. This inference has been illustrated through preliminary results.  

Totally four variables, N, F, AN , and AFN  are considered as candidate 

variables in the linear regression model. The model for the estimator with all the 

candidate variables is given as follows: 

AFbNAbFbNbbCT N43210 ++++=        (3.6) 

In the above model, there are 4 potential estimator variables, including 

different forms of the same basic variables. However, too many variables may cause 

overfitting, which reduces or destroys the ability of the model to generalize beyond 

the fitting data. In order to avoid overfitting of the regression model, the all-possible-

regressions procedure is used, i.e., all possible regression models with every possible 
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subsets of variables are tested and compared. The best subset of variables can then be 

identified. This will be discussed in Subsection 3.4.4.  

 

3.4.3 Data collection 

To calibrate the regression model, a data set is required. In this section, 

experimental tests are conducted to obtain the data. For this purpose, some PCBs are 

generated randomly and the placement time values for these PCBs are collected.  

Nowadays, most of the machine vendors provide machine optimization 

software to determine the feeder arrangement and placement sequence for the 

placement machine. After deciding the feeder arrangement and placement sequence, 

the software can then simulate the placement process and calculate the placement 

time. Although the simulation process is much time-consuming, the simulated 

placement times are much accurate. For practical considerations, these simulated 

placement times obtained by the software will be used for fitting the estimating 

model.  

It should be noted that the placement time estimator based on this data is not 

to estimate the optimal placement time because the machine optimization software 

cannot guarantee optimal solutions to the machine optimization problems. Instead, 

the estimator is to estimate the placement time that is achieved by the solutions to the 

machine optimization problems obtained by the vendor software. This is nontrivial 

because the machines will operate according to the feeder arrangement and the 

placement sequence obtained by the vendor software, rather than optimal 

optimization solutions, and the placement times obtained by the vendor software 
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represent the realistic placement times in the shop floor. On the other hand, if the 

vender software is adjusted or new optimization methods are used, the estimator 

should be built again with new placement time data.  

Based on the above discussion, the generated PCBs will be input into the 

machine software, i.e., Fuji Flexa, and relative placement time values are obtained. 

Before the discussion on the experiments for collecting the placement time data, the 

following assumptions are made. 

 The speed setting for the PCB holder is at high-speed for all the 

components. Usually, the moving speed of the PCB holder is set to be 

slower for larger components in order to prevent them from slipping 

away from the board. However, a turret-type placement machine usually 

processes small components and uses a high-speed setting.  

 The placement times do not include the board loading time and the 

fiducial time (for coordinate calibration before placement), both of which 

are very small and can be easily added to the final process time.  

In the experiments, 100 virtual PCBs are generated. For each of the 100 PCBs, 

The width and the length of a PCB are generated independently and uniformly within 

the range [100mm, 500mm]. The number of components is generated independently 

and uniformly within the range [50, 800]. For each component, its x coordinate on 

the board is generated randomly within the range of [0, width] and its y coordinate is 

generated randomly within the range of [0, length].  

The number of component types for a PCB is generated independently and 

uniformly within the range [5, 30]. In order to reflect the characteristics of realistic 
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PCBs, the usage pattern of different component types is not uniform. For each 

component type, a so-called usage frequency index is generated randomly within (0, 

1). The roulette wheel selection method is used for the determination of the type for 

each component. Let pi be the usage frequency index for component type i. For each 

component on the board, a random number R is generated within (0, ∑ ip ). The type 

of this component, t, is determined, such that: 
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.     (3.7) 

It should be noted that the actual number of component types used by a PCB 

may be less than the number of all component types, because some component types 

may not be used at all.  

The data of the 100 PCBs are input into the vendor software, Fuji Flexa, and 

the placement time values are obtained. The obtained data are summarized in Table 

3.1. The detailed information of the first PCB (with 61 components) is shown in 

Appendix I.   
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Table 3.1 Characteristics and placement time values (in seconds) for the 100 PCBs 

PCB N a F b A c CT d PCB N a F b A c CT d 
1 61 7 155400 12.15 51 394 17 135954 53.95 
2 63 14 114285 13.03 52 398 11 72072 44.37 
3 64 18 23210 11.5 53 400 22 159676 60.18 
4 66 23 48792 12.36 54 423 24 57360 51.29 
5 70 10 55419 11.56 55 448 7 28890 40.04 
6 72 16 187056 16.03 56 463 24 45384 53.28 
7 76 21 50304 13.43 57 466 14 90584 54.8 
8 82 19 88550 15.36 58 472 23 80301 59.98 
9 103 14 66005 16.99 59 473 27 186333 71.24 
10 107 6 65988 14.97 60 503 13 88550 56.16 
11 110 7 152852 19.31 61 508 15 155628 66.24 
12 112 11 51156 15.83 62 517 14 79866 56.11 
13 114 19 27537 16 63 520 21 107797 66.1 
14 120 14 206298 22.75 64 533 23 176512 75.96 
15 139 16 119798 24.42 65 539 6 179935 57.49 
16 148 6 124608 20.83 66 543 16 29150 52.35 
17 193 27 77714 31.78 67 575 15 205480 75.06 
18 213 15 68705 29.73 68 582 28 56000 67.42 
19 213 27 84413 34 69 606 11 63360 61.78 
20 216 23 123185 35.01 70 609 8 61712 59.06 
21 217 12 77592 28.8 71 610 19 50851 64.14 
22 224 13 56810 28.09 72 610 27 144189 84.6 
23 250 16 29280 28.79 73 620 7 67398 58.15 
24 255 11 65411 31.75 74 628 14 153080 75.89 
25 258 19 101040 38.32 75 638 23 76544 73.9 
26 259 10 86229 33.01 76 643 13 184868 79.62 
27 291 16 138408 42.34 77 651 22 92336 76.05 
28 291 17 66980 36.38 78 656 23 80832 76.79 
29 292 13 91368 37.9 79 656 6 41334 57.88 
30 292 9 83616 33.84 80 656 20 163815 85.72 
31 301 19 88105 41.35 81 675 28 89579 82.89 
32 311 22 177184 50.3 82 690 14 136452 78.4 
33 316 15 164592 47.01 83 692 25 197918 97.92 
34 317 26 20705 35.21 84 710 17 35035 67.14 
35 325 27 43803 40.83 85 719 22 95238 83.68 
36 325 17 39610 36.47 86 723 6 162640 74.74 
37 333 27 51106 43.35 87 727 9 74868 71.23 
38 337 28 88695 48.47 88 730 8 62622 67.19 
39 339 9 99880 39.35 89 759 10 66742 72.62 
40 340 15 139840 46.52 90 767 7 94363 72.57 
41 345 25 49698 44.85 91 774 8 50440 69.84 
42 366 15 72128 43.78 92 777 20 51562 78.72 
43 367 6 51339 36.12 93 782 28 112812 96.29 
44 372 14 37604 39.3 94 782 21 133901 94.72 
45 378 23 69136 49.39 95 784 24 17760 71.41 
46 382 15 97410 48.61 96 784 14 46364 75.92 
47 383 7 57620 38.25 97 790 22 134568 95.74 
48 386 23 177508 61.31 98 791 10 210834 89.37 
49 386 26 100989 54.68 99 798 25 123060 96.86 
50 387 21 159201 56.52 100 800 14 67518 80.22 

a number of components on the PCB 
b number of component types used by the PCB 
c area of the smallest rectangle that covers all the components 
d placement time required by the machine to place the components 
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3.4.4 Model fitting and statistical analysis 

The all-possible-regressions procedure is used for identifying the most 

suitable model with the best subset of the candidate variables which are discussed in 

Subsection 3.4.2.  

All possible regression models with every possible subsets of variables are fit 

on the collected data and the results are compared. Table 3.2 summarizes the results 

for the best models with the highest R2 (coefficient of determination) for all subset 

sizes, which are obtained by MINITAB 14.  

Table 3.2 lists for each model the R2, Mallows’ Cp (an assessment statistic 

which will be discussed later), the S value (standard error of estimate), and a listing 

of the variables in the model. For example, the best one-variable model is a function 

of N and produces an R2 value of 89.8; the best two-variable model uses N 

and NAF  and has an R2 value of 99.9; and so forth. Looking at the R2 values, it can 

be seen that this statistic increases rather rapidly going from one to two variables, 

and changes very little as more variables are added.  

To decide the most suitable model, the Mallows’ Cp (Mallow, 1973) values 

are considered here. The Cp statistic is defined as follows: 

2)2()(
+−−= pn

MSE
pSSEC p       (3.8) 

where  

MSE is the mean squared error for the full model (3.6), 

SSE(p) is the sum of squared errors for the subset model containing p 

predictor variables 

n is the sample size.  
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For any given number of selected variables, larger Cp values indicate models 

with larger mean squared error. For any subset model with Cp > (p + 1), there is 

evidence of bias due to an incompletely fitting model. On the other hand, if Cp < (p + 

1), a model is said to be overfit. It is suggested that the smallest subset model such 

that 2(p +1) > Cp > (p + 1) for all model parameter estimates works best (Hocking, 

1976). Following this principle, the model with the two variables N and NAF  is 

the smallest model with suitable Cp = 3.3 and should be the most appropriate model.  

 

Table 3.2  Statistical results for all subset models 

p 

(number of 

variables) 

R 2 Cp S 
Variables 

N F AN  AFN  

1 0.898 6653.8 7.5432 √    

1 0.757 16007.4 11.651   √  

1 0.719 18516.7 12.526    √ 

1 0.641 61950.6 22.870  √   

2 0.999 3.3 0.9104 √   √ 

2 0.961 2506.9 4.7065 √  √  

2 0.937 4081.6 5.9634 √ √   

2 0.787 14015.2 10.962  √ √  

2 0.785 14188.6 11.029   √ √ 

3 0.999 3.1 0.90459 √  √ √ 

3 0.999 3.2 0.90523 √ √  √ 

3 0.993 373.6 2.0016 √ √ √  

3 0.787 14000.6 11.012  √ √ √ 

4 0.999 5.0 0.90891 √ √ √ √ 

 

http://en.wikipedia.org/wiki/Parameter�
http://en.wikipedia.org/wiki/Estimates�
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The statistical results for the selected model with variables N and NAF  are 

shown in Table 3.3. Based on the results, the final form of the regression model is: 

NAFNCT 797000.07060.0533.0 ++=         (3.9) 

The significance value of the F statistic is less than 0.05, which means that 

the variation explained by the model is not due to chance. The high value of R2 of 

0.999 indicates that the regression model fits the data very well. The standard error 

of estimate is only 0.9104, indicating that the model has high accuracy of estimation 

and is suitable for estimating the placement time.  

Table 3.3  Regression analysis results for the selected model by MINITAB 

Predictor               Coef          SE Coef             T             P 

Constant             0.5326            0.2170          2.45     0.016 

N                   0.0706135      0.0005198      135.85     0.000 

NAFN /  0.00079736    0.00000979        81.43     0.000 

 

S = 0.910399      R-Sq = 99.9%      R-Sq(adj) = 99.9% 

 

Source                DF         SS          MS                F           P 

Regression            2    54691      27346   32993.16    0.000 

Residual Error     97         80              1 

Total                    99   54772 

 

Figure 3.3 shows the histogram of standardized residual. The shape of the 

histogram approximately follows the shape of the normal distribution, showing that 

the normality assumption is not violated.  
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Figure 3.3  Histogram of standardized residual by MINITAB 

 

In the literature, most researchers estimate the placement time only based on 

the number of components. From Table 3.2, it can be seen that the R2 value for the 

model with one variable N is only 0.898, and the standard error of estimate is 7.5432, 

much larger than the other models with F and A, too. This indicates that considering 

only the component number may yield inaccurate estimate of the placement time.  

From the proposed placement time estimator (3.9), some implications can also 

be made.  

First, the placement time for processing the same number of components may 

differ a lot with different number of component types and different closeness degrees 

of component locations. For example, the placement time with N = 200, F = 10, A = 

10000 mm2 is estimated to be 17.74 seconds and the placement time with N = 200, F 
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= 20, A = 20000 mm2 is estimated to be 21.30 seconds. The percentage difference 

between the two placement time values for the same number of components is 20%.  

Second, for solving the component allocation problem, evenly balanced 

solution does not necessarily mean that the line cycle time is minimized. The A 

values, which influence the placement time estimation, are dependent on how the 

components are allocated to the machines. The placement time estimator developed 

in this research considers all the factors that affect the placement time and can yield 

fast and accurate estimates of placement time, without solving the machine 

optimization problems. It can be used to evaluate the solutions for the component 

allocation problem, without adding significant computational efforts.  

 

3.5 A GENETIC ALGORITHM FOR THE CAP 

Based on the placement time estimator developed in the previous section, an 

algorithm could be developed to solve the Component Allocation Problem (CAP) 

without tackling the machine optimization problems.  

However, even with the process time for each machine estimated by the 

efficient placement time estimator, the component allocation problem, which is 

formulated as a minimax assignment problem (Model 3.1), is still NP-hard [Jip01].  

In order to solve the problem efficiently, a genetic algorithm, which uses the 

placement time estimator for solution evaluation, is proposed.  

The general process for genetic algorithms has been discussed in Chapter 2 

(see Figure 2.4). The key issues in developing a genetic algorithm are the 

representation scheme, genetic operators, fitness evaluation, and reproduction 



CHAPTER 3: THE COMPONENT ALLOCATION PROBLEM 68 

method. In this section, these issues are described in detail, followed by the 

experimental tests to examine the effectiveness and efficiency of the solution 

methods.  

 

3.5.1 Representation scheme 

The representation scheme refers to how the solution is represented by a 

chromosome in the genetic algorithm. In most cases, problems can be represented in 

more than one way, some of which may be more amenable to evolutionary 

techniques than others [Dej06].  

There are two primary approaches one might take in choosing a 

representation: a phenotypic approach in which individuals represent solutions 

internally exactly as they are represented externally and a genotypic approach in 

which individuals internally represent solutions encoded in a universal representation 

language. Although a genotypic approach encourages rapid prototyping of new 

applications, it is difficult to take advantage of domain knowledge. Therefore, a 

phenotypic approach, which allows for more exploitation of problem-specific 

properties, is used for the investigated component allocation problem.  

The representation scheme of the genetic algorithm is illustrated in Figure 3.4. 

Each gene in the chromosome represents a feeder for a specific component type, with 

its value representing the machine to which the feeder is assigned.  

Consider that the first PCB with 61 components and 7 component types in 

Table 3.1 (Detailed data for the PCB is shown in Appendix I) is processed by an 

assembly line with 4 placement machines. The chromosome in Figure 3.4 represents 
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a solution to the component allocation problem in this case. For example, the third 

gene which represents the feeder for component type 3 is allocated to machine 2. 

That is, all the components of type 3 are placed by machine 2.  

 
Figure 3.4  A chromosome in the proposed GA for the CAP 

 

According to the solution represented by the chromosome in Figure 3.4, the 

component allocation solution for the PCB is shown in Table 3.4.  

 

3.5.2 Genetic operators 

Genetic (reproductive) operators refer to the mechanisms for generating new 

chromosomes from existing ones. Genetic operators are much important for the 

performance of genetic algorithms and should be carefully designed according to the 

specific characteristics of the problem. Owning to the phenotype representation 

scheme, the genetic operators can be more meaningful to take advantage of domain 

knowledge.  

 

 

 

 

 

All components of type 3 are placed by machine 2 

2 1 3 2 1 4 4 
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Table 3.4  Component allocation solution represented by a GA chromosome 

Component 
Number 

Type X Y 
Allocated 
Machine 

Component 
Number 

Type X Y 
Allocated 
Machine 

1 1 303 167 1 32 3 102 319 2 
2 5 348 310 2 33 3 278 198 2 
3 4 151 297 1 34 3 352 293 2 
4 5 81 327 2 35 3 395 253 2 
5 6 106 109 3 36 5 344 156 2 
6 2 91 347 4 37 4 340 298 1 
7 2 92 90 4 38 5 22 124 2 
8 1 300 271 1 39 2 210 83 4 
9 5 445 118 2 40 2 156 43 4 
10 1 121 196 1 41 3 286 208 2 
11 2 277 341 4 42 2 394 73 4 
12 5 179 346 2 43 2 247 353 4 
13 2 443 121 4 44 3 121 3 2 
14 1 381 90 1 45 4 171 325 1 
15 3 163 45 2 46 3 363 331 2 
16 1 29 211 1 47 2 239 132 4 
17 5 164 342 2 48 5 91 212 2 
18 4 225 39 1 49 5 180 44 2 
19 2 113 294 4 50 2 90 308 4 
20 7 293 244 4 51 3 61 280 2 
21 2 73 13 4 52 4 243 353 1 
22 5 245 212 2 53 4 151 352 1 
23 4 95 112 1 54 3 255 259 2 
24 5 385 148 2 55 1 434 179 1 
25 5 1 251 2 56 1 397 341 1 
26 1 242 233 1 57 4 274 225 1 
27 1 299 18 1 58 2 1 259 4 
28 3 167 209 2 59 2 105 272 4 
29 4 269 148 1 60 4 81 300 1 
30 2 381 117 4 61 1 269 74 1 
31 2 198 260 4           
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There are several common crossover operators for the genetic algorithm, 

including one-point crossover, multipoint crossover, and uniform crossover. Through 

preliminary tests, there is no significant difference among the performances of these 

crossover operators. Since the uniform crossover is the most common one among 

them, the uniform crossover is adopted in the proposed GA. 

For the uniform crossover, an offspring is generated from two parents, with 

each gene being selected randomly from the corresponding genes of the parents. The 

uniform crossover can be illustrated in Figure 3.5.  

 

Figure 3.5  Uniform crossover 
 

Two mutation operators will be tried and compared, i.e., the random-point 

mutation and the swap mutation. These two mutation operators are shown to have 

different performance in the proposed GA. Relative experiment results will be 

discussed later.  

For the random-point mutation, each gene in the chromosome is changed to a 

random feasible value with certain possibility. The random-point mutation can be 

illustrated in Figure 3.6. 

2 1 2 4 3 2 

1 4 2 1 2 3 

1 1 2 4 3 3 

Parent 1 

Parent 2 

Child 1 

4 

1 

4 

2 4 2 1 2 2 Child 2 1 
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Figure 3.6  Random-point mutation 
 

For the swap mutation, each chromosome, with certain possibility, will be 

adjusted through exchange of two randomly-selected genes. The swap mutation can 

be illustrated in Figure 3.7. 

 

Figure 3.7  Swap mutation 
 

Owing to the phenotype representation scheme, these two mutation operators 

have different practical effects on the solutions. The random-point mutation virtually 

adjusts the solution by reallocating a component type to a different machine. In the 

example shown in Figure 3.6, the component type 5, which is originally allocated to 

machine 2, is reallocated to machine 1 after random-point mutation. Comparatively, 

the swap mutation virtually adjusts the solution by exchanging component types 

1 4 2 1 2 3 Before mutation 

1 4 2 1 1 3 After mutation 

Random feasible value 

4 

4 

1 4 2 1 2 3 Before mutation 

1 4 3 1 2 2 After mutation 

4 

4 
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among two machines. In the example shown in Figure 3.7, the component type 3 and 

6 are originally allocated to machine 2 and 3, respectively. After the swap mutation, 

the component type 3 is allocated to machine 3 while the component 6 is allocated to 

machine 2.  

Since the two mutation operators have different practical effects on the 

allocation solutions, their performance will be compared in the following 

experimental tests in Section 3.6. 

 

3.5.3 Fitness evaluation based on the estimator 

3.5.3.1 Fitness function 

The placement time estimator established in Section 3.4 is used for evaluating 

the chromosomes in the genetic algorithm. Since the objective of the algorithm is to 

minimize the largest placement time of the machines, the fitness value of each 

chromosome could be set to the inverse of the largest placement time, that is, 

max

1
CT

fitness =        (3.10) 

where CTmax is the largest process time of the machines. 

However, this fitness function does not give any feedback to the algorithm 

when two solutions have the same value of the largest placement time. In order to 

tackle this problem, a new fitness function is proposed: 

   
LT*bCT*a

fitness
+

=
max

1      (3.11) 

where CTmax is the largest process time of the machines, LT is the sum of the process 

times for all the machines in the line, a and b are two weighting coefficients.  
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Fitness function (3.11) considers reducing both the placement time for the 

bottleneck machine and the sum of the placement times of all machines. Coefficient 

a is much larger than coefficient b so that the genetic algorithm gives much higher 

priority to minimizing the placement time of the bottleneck machine, which is the 

objective of the problem. The performances of the two fitness functions (3.10) and 

(3.11) will be compared in the following experimental tests. 

 

3.5.3.2 Estimation of placement time 

The placement time for each machine is estimated by the established 

placement time estimator (3.9), which requires the calculation of the three values, i.e., 

the number of the components allocated to the machine, N, the number of component 

types, F, and the area of the smallest rectangle that covers all the allocated 

components, A.  

While the number of the allocated components N and the number of 

component types F can be obtained easily, the calculation of the area of the smallest 

rectangle that covers all allocated components involves finding the smallest and the 

largest coordinates of the allocated components and thus requires nontrivial 

computational time.  

Consider the same CAP example discussed in Subsection 3.5.1 and the 

chromosome illustrated in Figure 3.4. The components allocated to machine 1 can be 

obtained and  listed in Table 3.5.  
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Table 3.5  List of components allocated to machine 1 

Component 

Number 
Type X Y 

1 1 303 167 

3 4 151 297 

8 1 300 271 

10 1 121 196 

14 1 381 90 

16 1 29 211 

18 4 225 39 

23 4 95 112 

26 1 242 233 

27 1 299 18 

29 4 269 148 

37 4 340 298 

45 4 171 325 

52 4 243 353 

53 4 151 352 

55 1 434 179 

56 1 397 341 

57 4 274 225 

60 4 81 300 

61 1 269 74 

 

From the table, it can be easily seen that the number of the allocated 

components N = 20, and the number of component types F = 2. To obtain the value 

of A, the smallest and largest coordinates of the components should be determined. 

From the table, it is found that the smallest X and Y coordinates are 29 and 18, 

respectively, and the largest X and Y coordinates are 434 and 353, respectively. 

Therefore, A = (434 － 29)  × (353 － 18) = 135675. 
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The placement time for machine 1 can be estimated by estimator (3.9) as 

follows. 

NAFNCT 797000.07060.0533.0 ++= = 0.533 + 1.412 + 1.857 = 3.802 

seconds. 

For a realistic case, the number of components allocated to a machine may be 

several hundred. In some preliminary experimental tests, it is found that the solution 

evaluation occupies the majority of computation time of the algorithm. Since the 

calculation of A values requires nontrivial computational efforts, in order to improve 

the efficiency of the genetic algorithm, the following method is proposed to calculate 

the A values.  

At the beginning of the genetic algorithm, some preliminary calculations are 

conducted, that is, for each component type i, the number of components belonging 

to type i, and the smallest and largest coordinates for the components of type i are 

determined. Table 3.6 summarizes the preliminary calculation results for the problem. 

With these preliminary calculation results, the computational efforts required 

for solution evaluation in the GA can be significantly reduced. Consider the same 

example discussed above, knowing that component types 1 and 4 are allocated to 

machine 1, the values of N and A for machine 1 can be easily obtained as follows: 

N = N1 + N4 = 10 + 10 = 20; 

A = (max (Xmax
1, Xmax

4) － min (Xmin
1, Xmin

4) ) × (max (Ymax
1, Xmax

4) －min 

(Ymin
1, Ymin

4) ) = (434 －29) × (353 －18) = 135675. 
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Table 3.6  Preliminary calculations for the GA 

Component 

Type 

Number of 

Components 

Ni 

Xmin Ymin Xmax Ymax 

1 10 29 18 434 341 

2 16 1 13 443 308 

3 11 61 3 395 319 

4 10 81 39 340 353 

5 12 1 44 445 346 

6 1 106 109 106 109 

7 1 293 244 293 244 

 

In the preliminary experiments, it is found that this method for calculating the 

parameters for the placement time estimator can save more than 90% of 

computational time for the proposed genetic algorithm.  

 

3.5.4 The general framework 

The selection mechanisms are the driving force for genetic algorithms. There 

are two places in genetic algorithms where a selection occurs: when choosing parents 

to produce offspring, and when choosing which individuals will survive. If the 

combined selection pressure is too strong, the genetic algorithm is likely to converge 

too quickly to a suboptimal region of the space. As a consequence, usually one of the 

two selection processes (i.e., either parent or survival selection) adopts random 

selection method, while the other adopts fitness-based selection method [Dej06].  
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In the proposed GA, the parents are randomly selected. The replace-worst 

replacement strategy is adopted for selecting the chromosomes for survival, that is, a 

new generation is formed by selecting the best individuals from the parents and the 

offspring. The general framework of the proposed genetic algorithm can be 

illustrated in Figure 3.8.  

The general process for the proposed GA is described as follows. 

At the beginning of the algorithm, an initial population of chromosomes is 

randomly generated. This procedure consists of randomly allocating the component 

types to machines in the line.  

Then, for each generation, pairs of chromosomes are randomly selected and 

the crossover operator is applied to each pair of parents to produce offspring. The 

number of parents is determined by the crossover rate Cr, which represents the 

percentage of population to be chosen as parents. The generated children are then 

mutated according to a certain mutation possibility Mr. For the random-point 

mutation, Mr represents the possibility for each gene in a chromosome to be changed. 

For the swap mutation, Mr represents the possibility for a chromosome to be selected 

for mutation.  

After the reproductive operations, the best chromosomes from the original 

chromosomes and the offspring are selected for survival in the next generation. 

The genetic algorithm is run until there is no improvement on the best found 

solution during a certain number of generations. 
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Figure 3.8  General framework for the proposed GA for the CAP 

 

3.6 EXPERIMENTAL TESTS 

This section is devoted to the experimental tests of the proposed solution 

method for the component allocation problem. The experiments are divided into two 

parts: the experiments for improving performance of the genetic algorithm, and the 

experiments for evaluating the effectiveness and efficiency of the proposed solution 

method for solving the component allocation problem. 
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3.6.1 Experiments for improving GA performance 

As discussed in Section 3.5, two different mutation operators and two 

different fitness functions are proposed for the genetic algorithm. Their performance 

in the algorithm is compared through experimental tests. The algorithms are coded in 

Microsoft Visual C++ 2005, and run on a desktop computer with Pentium IV 2.26 

GHz CPU and 1 GB RAM. 

 

3.6.1.1 Problem instances 

In the experiments, a set of 10 realistic PCBs are generated and used for 

evaluating the performance of the proposed GA method for the component allocation 

problem. The PCBs are assumed to be produced in an assembly line which consists 

of four CP732 placement machines.  

The PCBs are generated in a similar way as discussed in Subsection 3.4.3, 

with realistic sizes comparable to those in a telecommunication product manufacturer. 

For each PCB, the number of components is generated independently and uniformly 

within the range [800, 1000]. The width and the length of the PCB are generated 

independently and uniformly within the range [400mm, 600mm]. The number of 

component types is generated independently and uniformly within the range [50, 70]. 

The locations of components are randomly generated within the board size. The 

characteristics of the generated PCBs are shown in Table 3.7.  
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Table 3.7 Characteristics of the 10 PCBs 

PCB N a F b L c W  d 

1 831 51 483 429 

2 851 58 459 447 

3 861 64 446 414 

4 873 63 494 524 

5 881 61 589 407 

6 914 52 444 494 

7 925 62 521 473 

8 944 60 438 404 

9 950 55 532 576 

10 960 66 538 530 
a Number of components on the PCB 
b Number of component types used by the PCB 
c Length of the PCB 
d Width of the PCB 

 

3.6.1.2 Parameter setting for the GA 

The GA parameters, i.e., the population size, crossover rate, and mutation rate, 

should be determined first.  

The parameters for the genetic operators are determined through trial and 

error. The crossover rate Cr is set to 0.8. That is, 80% of the population members are 

randomly selected as parents to produce 80 children in each generation. For the 

random-point mutation, every gene in a child will be randomly changed with 

possibility of 0.02. For the swap-mutation, each child will be selected to be mutated 

with the possibility of 0.005.  
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The population size, i.e., the number of chromosomes in each generation, can 

be viewed as a measure of the degree of parallelism of the searching process, in the 

sense that each chromosome represents an independent agent exploring a particular 

area of the solution space. As the fitness landscape becomes more complex with 

multiple peaks, discontinuities, etc., more parallelism is required [Dej06]. However, 

as the population size is larger than a suitable value, its contribution to the algorithm 

performance becomes trivial with respect to the additional computational time.  

As stated by De Jong [Dej06], a GA is not highly sensitive to moderate 

changes in the population size. Therefore, experimental tests are conducted to choose 

a suitable population size from several values, i.e., 10, 50, 100, 150, and 200. The 

uniform crossover, the swap mutation, and the fitness function (3.11) are used in this 

experiment. The GA is tested on the problem for the smallest PCB with 831 

components. The algorithm is run for 4000 generations. 

Figure 3.9 shows the convergence process for multiple GA runs with 

different population sizes. It can be seen that the GA with population size of 100 

achieves much better solutions than the GAs with population size 10 and 50. 

However, when the population size increases from 100 to 200, the algorithm 

converges at a similar solution value. Table 3.8 shows the average results for 10 runs. 

It can be seen that the computation time spent by the GA with population size of 200 

is significantly larger than that spent by the GA with population size of 100, while 

the objective values for the two GAs are almost the same. Similar observations are 

also obtained for other problem instances. Therefore, 100 is considered to be a 

suitable population size for the proposed GA to solve the test instances.  
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Figure 3.9  Convergence process for the GAs with different population sizes 

 

Table 3.8  Experimental results for different population sizes 

 
Population 

size =10 

Population 

size =50 

Population 

size =100 

Population 

size =200 

Objective value 32.96 33.03 32.71 32.70 

CPU time 4.2 9.7 17.7 52.6 
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3.6.1.3 Selection of genetic operators 

The performance of the two mutation operators, i.e., the random-point 

mutation and the swap mutation, are compared in the following experiments.  

In the experiments, two GAs with different mutation operators are tested. In 

both GAs, the fitness function (3.11) is used. Each GA is run 10 times for each of the 

10 instances. For each run, the algorithm is not terminated until there is no 

improvement on the best found solution during 4000 generations. Figure 3.10 

compares the objective values obtained by the two GAs.  

 Figure 3.10  Experimental results for two mutation operators 

 

It is found that all the results obtained by using swap mutation are better than 

those obtained by using random-point mutation. The average percentage reduction in 

line cycle time is about 1.4%.  

This result is due to line balancing characteristics of the component allocation 

problem. The two mutation operators have different practical modification to the 
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chromosomes. As discussed in Subsection 3.5.2, the random-point mutation adjusts 

the solution by reallocating a component type to a different machine, while the swap 

mutation adjusts the solution by exchanging component types among two machines. 

For an already good solution that survives into the late period of the algorithm, a 

reasonable way for reducing the line cycle time is to exchange components between 

two machines, rather than reallocate a component type from a machine to another 

machine. For this reason, the swap mutation may have a greater chance of reducing 

the line cycle time than the random-point mutation.  

Because the GA with the swap mutation achieves better solutions than the 

GA with the random-point mutation, the swap mutation is used in the proposed GA 

for solving the component allocation problem.  

 

3.6.1.4 Selection of fitness function 

Here, experiments are conducted to compare the performance of the two 

fitness functions (3.10) and (3.11). Two genetic algorithms with these two fitness 

functions are tested.  

For the fitness function (3.11), the weighting coefficient for the bottleneck 

placement time, a, and that for the total placement time, b, are set to be 1 and 0.001, 

respectively. Swap mutation operator is used in both algorithms. Each GA is run 10 

times for each of the 10 instances. Figure 3.11 compares the average objective values 

obtained by the two GAs.  
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Figure 3.11  Experimental results for two fitness functions 

 

From the results, it is found that all the objective values (line cycle times) 

obtained by using function (3.11) are better than those obtained by using function 

(3.10). The average percentage reduction in cycle time is about 1.9%.  

This result is also due to line balancing characteristics of the component 

allocation problem. The fitness function (3.11) is helpful in providing differential 

feedback to the genetic algorithm even for the solutions that have the same 

bottleneck placement time but different total placement time. In this way, the genetic 

algorithm may reduce the total placement time for the machines even it cannot 

reduce the process time for the bottleneck machine at a certain stage.  

Because the GA with fitness function (3.11) achieves significantly better 

solutions than the GA with fitness function (3.10), the fitness function (3.11) is used 

in the proposed GA for solving the problem.  
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3.6.2 Experiments for evaluating the solution method 

In this subsection, experiments are conducted to examine the effectiveness of 

the proposed GA method for the component allocation problem.  

 

3.6.2.1 Evaluation of the solutions with actual placement times 

Because the objective values (line cycle time) in the genetic algorithm are 

based on the placement times approximated by the placement time estimator, in order 

to evaluate the realistic quality of the solutions, the actual placement times should be 

used. For this end, the component allocation solutions are input into the machine 

vendor software, Flexa, and the actual placement time for each machine is obtained. 

Then, based on the actual placement time for each machine in the line, the actual line 

cycle time can be obtained.  

Table 3.9 summarizes the results for the 10 problem instances obtained by the 

proposed GA. The results are the averages of 10 runs. From the table, it can be seen 

that the GA solves the problems in a very short time. The average CPU time is 16.34 

seconds. This shows that the proposed GA based on the placement time estimator 

can solve the component allocation problem efficiently.   

The estimated cycle times are very close to the actual cycle times obtained by 

Flexa. The percentage difference is only 1.30%, indicating the placement time 

estimator is much effective in estimating the placement time values.  
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Table 3.9 Solutions to the CAP instances 

PCB N a CPU b CT-GA c CT-real d diff e 

1 831 11.06 32.62  33.52  2.68% 

2 851 15.02 34.41  34.89  1.38% 

3 861 15.87 34.36  34.58  0.64% 

4 873 19.61 33.47  33.81  1.01% 

5 881 14.51 35.46  35.78  0.89% 

6 914 12.29 35.28  35.84  1.56% 

7 925 16.41 38.01  38.59  1.50% 

8 944 18.57 39.80  40.17  0.92% 

9 950 17.72 40.11  40.43  0.79% 

10 960 22.36 42.09  41.42  1.62% 

Average 16.34 36.56  36.90  1.30% 
a Number of components 
b CPU time for the genetic algorithm 
c Estimated cycle time obtained by GA (excluding the board loading time)  
d Real cycle time obtained by GA (excluding the board loading time)  
e Absolute percentage difference between estimated cycle time and real cycle time  

 

3.6.2.2 Comparison with machine vendor software 

The software of the machine vendor also provides solutions to the component 

allocation problem (which is referred to as line balancing problem in the software). 

The solutions obtained by the vendor software will be used as benchmark solutions.  

Before the comparison, the approach adopted by the software is discussed. In 

the machine vendor software, the machine optimization problems are solved using 

simple heuristics, so that the component allocation problem can be solved in 
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combination with solutions to the machine optimization problems.  

Due the integration of the component allocation problem with the solutions to the 

machine optimization problems, the heuristic used by the software for solving the 

component allocation problem is rather simple. The heuristic can be described as the 

following steps: (1) Allocate one unassigned component type with the largest 

component number to each machine, (2) For each machine and the currently 

allocated components, solve the machine optimization problems and calculate the 

placement time for each machine, (3) Allocate one unassigned component type with 

the largest component number to the machine with the smallest placement time, and 

(4) Update the placement time of the machine in Step (3) by solving the optimization 

problems again, and (5) Repeat step 3 and 4 until all the component types are 

allocated. This simple heuristic gives priority to first allocating those component 

types with the largest quantities, so that the line can be well balanced at the end. 

However, as discussed in Section 3.4.4, a well-balanced solution does not necessarily 

mean that the minimal cycle time can be achieved. Other factors like the number of 

component types and the closeness of the component locations should also be 

considered.  

In order to evaluate the effectiveness of the proposed solution method, the 

results are compared with those obtained by the vender software. The results are 

shown in Table 3.10. For all instances except PCB 6, the actual cycle times obtained 

by the GA are smaller than those obtained by the vendor software. The overall 

reduction in line cycle time is 0.82%.  
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Although the improvement achieved by the proposed method is not so great, 

the result is encouraging because the GA obtains the solutions without calculating 

exact placement times through simulation, as the vendor software does. The 

placement time simulation requires knowledge of technological characteristics of the 

machine, e.g., the moving speed of the PCB holder, the rotation speed of the turret. 

Due to severe competition, most machine vendors are reluctant to release these 

parameters. 

 

Table 3.10  Comparison between GA solutions and vendor software solutions 

PCB CT-real a CT-vendor b CT-diff c LT-real d LT-vendor 

 

LT-diff f 

1 33.52  33.86  1.00% 130.28  132.22  1.47% 

2 34.89  35.20  0.88% 136.74  139.01  1.63% 

3 34.58  35.11  1.51% 136.83  139.15  1.67% 

4 33.81  33.93  0.35% 131.31  133.69  1.78% 

5 35.78  36.01  0.64% 140.72  142.61  1.33% 

6 35.84  35.78  -0.17% 141.02  142.53  1.06% 

7 38.59  39.01  1.08% 152.71  154.33  1.05% 

8 40.17  40.54  0.91% 156.59  159.85  2.04% 

9 40.43  40.87  1.08% 158.69  160.40  1.07% 

10 41.42  41.84  1.00% 162.21  165.69  2.10% 

Avg. 36.90  37.22  0.82%  144.71  146.95  1.52%  
a Real cycle time obtained by GA (excluding the board loading time)  
b Cycle time obtained by vender software (excluding the board loading time)  
c Percentage improvement of CT, i.e., (CT- vendor － CT-real) / CT- vendor 
d Total process time of all machines obtained by the genetic algorithm 
e Total process time of all machines obtained by the vendor software 
f Percentage improvement of LT, i.e., (LT-vendor － LT-real) / LT-vendor 
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The columns LT-real and LT-vendor in Table 3.10 show the total placement 

time of all machines for the GA solution and the software solution, respectively. It 

can be seen that the percentage reduction of the total process time are generally 

greater than the reduction of the line cycle time.  

To explain this, consider the instance of PCB 1. Figure 3.12 shows the GA 

solutions for the instance with PCB 1. In the figure, the “Estimated solution” shows 

the placement times estimated by the placement estimator. It can be seen that the 

workload is well balanced over the machines with the estimated placement times. 

The bottleneck machine is machine 3 whose placement time is 32.62 seconds. The 

“Actual solution” shows the actual placement times for the GA solution. It can be 

seen that the difference among the actual placement times is much greater than the 

difference among the estimated placement times. This is caused by the estimation 

error of the placement time estimator. Considering the actual placement times, the 

bottleneck machine is machine 1, for which the placement time is 33.52 seconds. 

This indicates that the estimation error, though small, deteriorates the allocation 

solution to some extent.  

If the actual placement times are known, the GA solution can be manually 

adjusted as the following. First, on machine 1, which is the bottleneck, find the 

component type that has fewest components. Then, allocate this component type to 

machine 2, of which the actual placement time is smallest. After the adjustment, the 

bottleneck machine becomes machine 4, of which the actual placement time is 33.20 

seconds. This experiment indicates that the GA solutions may be easily improved by 

obtaining the actual placement times at the end of the GA.  
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Figure 3.12  Analysis of GA solutions for the case with PCB 1 

 

3.6.2.3 Experiments on PCBs with clustered component locations 

For some realistic PCBs, the components may be clustered in location. The 

experiments in this subsection are conducted to examine whether such a property 

may affect the performance of the proposed solution method for solving the 

component allocation problem. 

For this purpose, another set of 10 PCBs is generated. Different from the 

PCBs in the original set of PCBs, the components of each type are clustered in 

location to some extent. First, a virtual center location (xi, yi) is randomly generated 

for each component type i. Then, for each component belonging to type i, an initial 
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location (x0, y0) is generated randomly. Then the location for this component is 

adjusted to be )
2

,
2

( 00 ii yyxx ++ . In this way, the same components are clustered.  

Figure 3.13 illustrates the process for generating the component locations. In 

the figure, components 1, 2, and 3 are belonging to type i. The initial locations for 

these components are generated randomly, as shown in Figure 3.13 (a). Then, a 

virtual center is generated randomly for the components of type i. The locations for 

the three components are adjusted to new locations which are closer to the virtual 

center point. Figure 3.13 (b) shows the new locations for the components after the 

adjustment.  

 

 

Figure 3.13  Process for generating the clustered component locations 

 

Both the proposed GA and the machine vendor software are used for solving 

the new problem instances. The results are summarized in Table 3.11.   

For all instances, the real cycle times obtained by the GA are significantly 

smaller than those obtained by the vendor software. The overall percentage 
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improvement is 2.48%, which is much larger than that for the original instances. The 

greater improvement for the new instances is due to the non-uniform distribution of 

the components, which can be exploited by the GA to allocate more closely located 

components to the same machines. This can be illustrated by Figure 3.14, which 

shows the allocation results for PCB 11. The GA solution allocates closely located 

components to each machine, while the vendor software obtains the solution without 

considering the component locations.  

Table 3.11  Comparison between GA solutions and software 

solutions for PCBs with clustered locations 

PCB CT-real a CT-vendor b CT-diff c LT-real d LT-vendor e LT-diff f 

11 25.77  26.94  4.34% 101.50  106.03  4.27% 

12 30.97  31.72  2.36% 119.62  123.63  3.24% 

13 27.10  27.73  2.27% 105.54  108.77  2.97% 

14 28.26  29.58  4.46% 112.30  115.58  2.84% 

15 30.21  31.08  2.80% 116.49  121.82  4.38% 

16 29.13  29.46  1.12% 112.67  115.74  2.65% 

17 30.56  31.38  2.61% 118.80  122.92  3.35% 

18 31.93  32.76  2.53% 126.63  128.95  1.80% 

19 30.33  30.72  1.27% 116.67  120.71  3.35% 

20 32.32  32.66  1.04% 124.95  128.13  2.48% 

Avg. 29.66  30.40  2.48% 115.52  119.23  3.13% 
a Real cycle time obtained by GA (excluding the board loading time)  
b Cycle time obtained by vender software (excluding the board loading time)  
c Percentage improvement of CT, i.e., (CT-vendor － CT-real) / CT-vendor 
d Total process time of all machines for GA solution 
e Total process time of all machines for vendor software solution 
f Percentage improvement of LT, i.e., (LT-vendor － LT-real) / LT-vendor 
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Figure 3.14  Allocation solutions by GA and vendor software for PCB 11 
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3.7 SUMMARY 

This chapter has investigated the component allocation problem (CAP) in 

PCB assembly and proposed an effective method for the problem. Some remarks can 

be summarized as follows. 

1. The component allocation problem in PCB assembly, which is to allocate 

components of a PCB to different placement machines in an assembly line, is 

much complicated due to its dependency on the solutions to the machine 

optimization problems for each machine. It is infeasible to solve the 

component allocation problem and the machine optimization problems 

simultaneously due to great computational complexity.  

2. A solution strategy has been proposed to solve the component allocation 

problem and the machine optimization problems in a decomposed manner. 

The solution strategy relies on a placement time estimator that can estimate 

the placement time for each machine without solving the machine 

optimization problems.  

3. A placement time estimator for a turret-type machine, i.e., Fuji CP732, has 

been established in this research. The placement time estimator is based on 

the linear regression approach. The regression model considers all the 

influential factors that may affect the placement time, including the number 

of components, number of component types, and closeness of the components. 

The regression model is specified based on observations of the operation 

mode, and calibrated using a set of experimental data. Statistical analysis 

shows that the placement time estimator has very high R2 of 0.99, showing 
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that the estimator can yield accurate estimates of placement time. The 

significance value of the F statistic is less than 0.05, which means that the 

variation explained by the model is not due to chance.  

4. An analysis based on the proposed placement time estimator shows that the 

placement times estimated only by the number of components are inaccurate 

and thus not suitable to be used in the algorithms for solving the component 

allocation problem. As most of existing approaches for the component 

allocation problem adopt rough estimates of placement time based only on 

the number of components, the relative solutions cannot be good enough. 

Besides the number of components, the number of component types and the 

closeness of the component locations should also be considered for 

estimating the placement times.  

5. A specific genetic algorithm, which uses the established placement time 

estimator for solution evaluation, has been proposed to solve the component 

allocation problem. Using the placement time estimator, the algorithm 

considers all the influential factors implicitly when solving the component 

allocation problem. The mutation operator and fitness function are found to 

be important for the performance of the GA in solving the component 

allocation problem. The GA using the swap mutation operator achieves the 

average cycle time 1.4% shorter than that achieved by the GA using the 

random-point mutation, while the GA with fitness function considering both 

the line cycle time and the total line time achieves the average cycle time 

1.9% shorter than that achieved by the GA with fitness function considering 
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only the line cycle time. These improvements are due to the line balancing 

characteristics of the component allocation problem.  

6. Experimental results show that the proposed GA can solve the component 

allocation problem effectively and efficiently and achieve better solutions 

than those obtained by the software provided by the machine vendor. The 

results are encouraging, especially because the GA obtains the solutions 

without calculating the placement times through simulation, as the vendor 

software does. Even better solutions could be expected if the GA solutions 

are further improved by some adjustments based on the simulated placement 

times. The experiments also show that the component clustering 

characteristics of the PCB can be exploited by the proposed GA method to 

obtain better solutions.  

 

The method proposed in this chapter has shown to be able to solve the 

component allocation problem effectively and efficiently and improve the production 

efficiency for a PCB assembly line. The component allocation problem presumes 

that a particular batch of PCB is assigned to and produced by an assembly line. In the 

next chapter, the scheduling problem for multiple PCB batches and multiple 

assembly lines, i.e., the Multi-Line Scheduling Problem (MLSP), is discussed and 

investigated.  
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CHAPTER 4 

THE MULTI-LINE SCHEDULING PROBLEM (MLSP) 

 

4.1 INTRODUCTION  

The component allocation problem which arises when a batch of PCB is 

processed by an assembly line has been discussed and investigated in Chapter 3. On 

a higher planning level, a planning problem should be solved to schedule different 

PCB batches on multiple assembly lines (see Section 1.2.1).  

For the scheduling problem in a multi-line PCB assembly shop, which is 

referred to in the following as the Multi-Line Scheduling Problem or MLSP, several 

unique characteristics need to be considered, which make the MLSP different from 

other scheduling problems. The characteristics for the multi-line scheduling problem 

in PCB assembly can be described as follows. First, the process time for each job 

depends on the assembly line it is assigned to. That is, the process time is line-

dependent. Second, the setup time (or transition time) for a job depends on the job 

previously processed on the line. That is, the setup time is considered to be sequence-

dependent. Third, there may be precedence requirement between the jobs. Forth, 

each job has its ready time and due date. Similarly, each assembly line may have its 

ready time. Fifth, the objective of the problem should consider both production 

efficiency and due date satisfaction. As discussed in Chapter 2, this specific 

scheduling problem has not been investigated in the literature.  

In this chapter, a complete mathematical model for the Multi-Line Scheduling 

Problem (MLSP) in PCB assembly is established. The proposed model explicitly 
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considers line dependent process times, ready time and due date constraints for the 

jobs, sequence dependent setup times, and precedence constraints between jobs. The 

objective of the model considers both the satisfaction of due date requirement and 

improvement of production efficiency. Experimental tests on solving some problem 

instances are conducted to verify the established model.  

Due to the great complexity of the problem, a genetic algorithm is proposed. 

The efficiency and effectiveness of the GA are examined through both generated test 

instances and a realistic case study.  

This chapter is organized as follows: In Section 4.2, a Mixed Integer Linear 

Programming (MILP) model for Multi-Line Scheduling Problem (MLSP) is 

developed. To verify the model, optimal solutions to some small problem instances 

are obtained through using an existing LP solver. Section 4.3 describes the 

development of the specific genetic algorithm for the MLSP, followed by the 

experimental tests in Section 4.4. A case study is conducted and described in Section 

4.5. Finally, Section 4.6 summarizes the main work in this chapter. 

 

4.2 A MATHEMATICAL MODEL AND EXACT SOLUTIONS 

Mathematical modeling is to describe a problem in a mathematical way, and 

is a significant activity for better understanding and analyzing the problem. In such a 

mathematical way, much of the ambiguity and imprecision in verbal communication 

can be overcome. Meanwhile, an effective mathematical model can help to capture 

the essential features of the problem and provide considerable insights into the 



CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 101 

problem. Furthermore, the optimal solutions to some problem instances can be the 

benchmark for the heuristic solutions.  

Since there is no existing mathematical model for the investigated multi-line 

scheduling problem, this section is devoted to the development of a mathematical 

model for the problem. 

 

4.2.1 Description of the MLSP 

During a planning horizon, there are a set of PCB batches to be proposed on 

multiple assembly lines. For most PCB manufacturers, meeting the due date 

requirement is the paramount objective in order to maintain the customer satisfaction. 

At the same time, in order to improve the production capacity with limited expensive 

assembly equipment, it is vital for the manufacturers to achieve high production 

efficiency, which is usually represented by a short makespan for the jobs. Therefore, 

the objective for the Multi-Line Scheduling Problem (MLSP) considers both due date 

satisfaction and makespan reduction at the same time.  

The constraints for the MLSP may differ from a manufacturing environment 

to another. The investigated multi-line scheduling problem arises from a particular 

manufacturer of telecommunication products. Some assumptions and constraints for 

the problem are described as follows.  

 The PCBs are produced in batches. Each batch consists of identical PCBs 

with the same ready time and due date. Processing of a batch is called a job. 

Processing of the same boards but different sides (front sides and back sides) 

are considered as two different jobs.  
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 A new job can start only after the completion of the previous job on the same 

line, i.e., pre-emption is not allowed. 

 The assembly lines are unrelated, which means that the process time for each 

job depends on the assembly line to which the job is assigned. These process 

times can be obtained through solving a set of Component Allocation 

Problems (CAPs), which has been investigated in Chapter 3. Because the 

proposed solution method for the CAP has not been implemented for 

practical use in the investigated manufacturer, these time values can be 

obtained by using the vendor software of the machine vendor (See Subsection 

3.6.2.2).  

 For practical considerations, a back-side job (a job processing the back sides 

of boards) can only begin 2 hours after the start time of the corresponding 

front-side job.  

 The PCBs are categorized into two types: those should meet the RoHS 

(Restriction of Hazardous Substances) compliance and those are not required 

to. A common setup time of 16 minutes (0.27 hours) is required (for 

uploading programs, adjusting component feeders, etc). A special setup time 

of 2 hours is required when an RoHS job is processed right after a non-RoHS 

job on the same line.  

Although not all of the above assumptions and constraints are valid for other 

PCB manufacturing environments, they are quite common and thus should be 

considered in the scheduling problem investigated in this research.  
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4.2.2 A mathematical model 

Consider n jobs {J1, J2, …, Jn} to be processed on K assembly lines. Each 

job Ji ∈{J1, J2, …, Jn} has a time window (ai, bi), where ai is the earliest time that 

the job can begin (job ready time) and bi is the latest time that the job should finish 

(job due date). For an assembly line k, there is also an earliest start time defined by 

Rk

There is a nonnegative time cost for each line and each job s

. 

ik, representing 

the process time for job i processed by line k, and a nonnegative time cost for each 

pair of jobs tij

kit

 (i, j ≠ 0), representing the setup time (setup time) for processing job i 

immediately after job j on the same line. There is also a setup time  required for 

line k to process the first job Ji

In order to facilitate the formulation of the mathematical model, a dummy job 

J

 (i ≠ 0) on that line. 

0 that each assembly line starts with and a dummy job Jn+1 that each assembly line 

finishes with are introduced. There is no time window for J0 and Jn+1

The notation used in the mathematical model is summarized as follows: 

, and the 

process times for them are zero.  

 

Sets and Indices: 

i, j: indices of jobs 

k, k1, k2

N: the set of all jobs excluding the dummy jobs (J

: indices of assembly lines 

0 and Jn+1

N

) 

 0: the set of all jobs including the dummy jobs (J0 and Jn+1

N

)  

 1: the set of jobs that process the front sides of boards  
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K: the set of assembly lines 

B(i): the job that processes the same boards but different sides with job i 

 

Parameters: 

n: number of jobs 

q: weight for minimizing the makespan of all jobs 

pi

s

: weight for minimizing tardiness of job i 

ik

t

:  process time for job i on line k 

ij

kit

: setup time for job j if it is processed right after job i on the same line 

: setup time for line k if job i is the first job on line k, the value depends 

on the initial RoHS status of line k, i.e., the RoHS status of the job 

produced on the line before this planning period 

ai

b

:  ready time for job i 

i

R

: due date for job i 

k

M

: ready time for line k 

1~M5

 

,: large positive constants 

Decision variables: 

xijk

w

: 0-1 variable. = 1 if job j is processed right after i on line k, and = 0 

otherwise 

ik

C

: start time for job i on line k 

max

L

:  max completion time of the jobs, i.e., makespan 

i: tardiness (in time) for job i 
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The objective of the multi-line scheduling problem is to minimize the sum of 

weighted tardiness and weighted makespan, which is shown in the objective function 

(4.1).  

)min( maxqCLp
Ni

ii +∑
∈

      (4.1) 

In the objective function, pi is the weight for minimizing the tardiness of job i, 

which relates to the importance of the corresponding customer. q is the weight for 

minimizing the makespan Cmax. In the model, pi

The tardiness of each job, L

 (i = 1, 2, …, n) are set to values 

much larger than q so that the model gives a higher priority to ensuring due date 

satisfaction.  

i

ikik sw +

, is defined by constraint sets (4.2) and (4.3) as a 

nonnegative value. In constraint set (4.2),  represents the finish time of job i 

on line k, and bi )1(1 ijkxM − is the due date for job i. The term  ensures that this 

requirement applies only when job i and job j are processed on line k consecutively.  

0
1 ,,)1( NjNiKkxMbswL ijkiikiki ∈∀∈∀∈∀−−−+≥        (4.2) 

NiLi ∈∀≥ 0        (4.3) 

The makespan is the completion time for all the jobs. Therefore, in constraint 

set (4.4), the makespan is set to be greater than the finish time of each job. In the 

constraint set, ikik sw +  represents the finish time of job i on line k. Similarly, the 

term )1(2 ijkxM −  ensures that the requirement applies only when job i and job j are 

processed on line k consecutively. 

0
2max ,,)1( NjNiKkxMswC ijkikik ∈∀∈∀∈∀−−+≥   (4.4) 
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To ensure a feasible solution, the following constraints are required for a 

feasible job-line assignment. Constraint set (4.5) ensures that each job should be 

processed by exactly one line; constraint set (4.6) ensures that the number of the first 

producing jobs on the lines must not exceed K; similarly, constraint set (4.7) ensures 

the number of the last producing jobs on the lines must not exceed K. Constraint set 

(4.8) ensures that the same line processes jobs one by one, i.e., if job j is assigned to 

line k, both its predecessor and successor must be processed by line k. 
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Constraint set (4.9) and constraint set (4.10) are introduced to ensure the start 

times of any two consecutive jobs i and j on the same line to be strictly increasing. 

The term )1(3 ijkxM −  in constraint set (4.9) ensures that the relative requirement 

applies only if job j is processed right after i on line k; similarly, the term 

)1( 04 ikxM −  in constraint set (4.10) ensures that the relative requirement applies only 

if job i is the first job to be processed on line k. 

jiNjiKkxMwtsw ijkjkijikik ≠∈∀∈∀−≤−++ ,,,)1(3   (4.9) 

NiKkxMwtw ikikkik ∈∀∈∀−≤−+ ,)1( 040     (4.10) 
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The start time for each line cannot be earlier than its ready time for the line 

and this is ensured by constraint set (4.11). 

KkRw kk ∈∀≥0        (4.11) 

Similarly, each job cannot start before its ready time and this is ensured by 

constraint set (4.12).  

NiKkaw iik ∈∀∈∀≥ ,        (4.12) 

In order to ensure that the process of a back-side job can only start 2 hours 

after the start time of the corresponding front-side job, constraint set (4.13) is 

introduced. The term ∑∑
∈∈
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After the above discussion, a complete mathematical model for the 

scheduling problem can be written as follows. 

 

)min( maxqCLp
Ni

ii +∑
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      (4.1) 

Subject to: 

0
1 ,,)1( NjNiKkxMbswL ijkiikiki ∈∀∈∀∈∀−−−+≥        (4.2) 

NiLi ∈∀≥ 0         (4.3) 

0
2max ,,)1( NjNiKkxMswC ijkikik ∈∀∈∀∈∀−−+≥   (4.4) 
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0,,}1,0{ NjiKkxijk ∈∀∈∀∈        (4.14) 

Model 4-1 

 

The established model (4-1) is a Mixed Integer Linear Programming (MILP) 

model, which can be solved by several existing LP solver packages like CPLEX. 

Based on observation, the established model is found to be much akin to the Parallel-

Machine Scheduling Problem (PMSP) if each assembly line is considered as a single 

machine. Sotskov and Shaklevich [Sot95] proved that the identical parallel-machine 

scheduling problem with makespan minimization, which is a relatively easy type of 
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PMSP, is NP-hard. For the investigated multi-line scheduling problem in PCB 

assembly, the assembly lines are not identical but unrelated, in that the process times 

for a job on different lines are different. In this sense, the multi-line scheduling 

problem can be viewed as an unrelated PMSP, which is much more difficult than the 

identical PMSP.  

Furthermore, the combined objective of due date satisfaction and makespan 

minimization, sequence-dependent setup times, and precedence constraints may 

greatly increase the complexity of the problem.   

 

4.2.3 Exact solutions 

In order to verify the established model for the multi-line scheduling problem, 

some problem instances are generated and solved using a commercial LP solver, 

CPLEX 10.2.  

In the experiments, seven problem instances are generated. For each instance, 

there are different numbers of jobs and different numbers of assembly lines, as 

shown in Table 4.1.  

For each instance, the process time for a job on a particular line is determined 

randomly. In addition, there may be the case that a job cannot be processed by a 

particular line. In order to reflect real situations, the process time for job i on line k is 

generated as follows. The possibility that job i cannot be processed by line k is 0.2. If 

job i can be processed by line k, then the process time sik is generated randomly 

within [avgi － 1, avgi + 1] hours, where avgi is an average process time for job i 

and is randomly generated within [3, 10] hours.  
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Table 4.1  Characteristics of test instances 

Instance Name Number of jobs Number of lines 

Test-n10k3 10 3 

Test-n10k4 10 4 

Test-n11k 3 11 3 

Test-n11k4 11 4 

Test-n12k4 12 4 

Test-n15k4 15 4 

Test-n20k4 20 4 

 

The ready time for job i, i.e., ai, is generated as follows. The possibility that 

the ready time for job i is 0, is set to 0.5. If the ready time for job i is not 0, then it is 

generated randomly within [0, Cexp / 2] hours, with the value rounded to an integer, 

where Cexp

kavgC
i

i /
n

1
exp 








= ∑

=

 is a value which is computed by equation (4.15).  

       (4.15) 

The due date for job i, i.e., bi, is generated randomly among [Cexp / 2, 2Cexp], 

with the value rounded to an integer. The ready times and due dates are generated in 

this way to ensure a realistic number of jobs which have tight due dates. Whether a 

job processes single-sided PCBs, front-sides of PCBs, or back-sides of PCBs is 

determined randomly.  
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Table 4.2 shows the job data for the first instance Test-n10k3. The data for 

the other six instances are shown in Appendix II ～ VII. 

 

Table 4.2  Data for the first instance Test-n10k3 

job 

number 

ready 

time 

due 

date a if_front b bk_job c RoHS d pe 
i  

process time f 
g 

line 1 line 2 line 3 

1 0 15 0 \ 0 2 4.56 5.02 5.34 

2 0 9 0 \ 1 2 6.34 6.01 6.98 

3 4 21 1 4 0 3 1000 4.54 4.23 

4 0 18 0 \ 0 3 6.32 7.42 7.92 

5 0 25 1 6 1 1 8.92 9.21 8.97 

6 0 19 0 \ 1 1 4.30 1000 1000 

7 0 28 1 8 0 1 3.21 3.29 3.87 

8 8 25 0 \ 0 1 5.72 5.03 4.78 

9 8 18 1 10 1 2 1000 8.92 9.87 

10 10 27 0 \ 1 2 7.72 6.92 7.34 

ready time of line 1.48 0 0.78 

initial RoHS status of lines 1 h 0 0 
a ready time for the job 
b due date for the job 
c indicator for a front-side job. Value one indicates that the job is a front-side job, zero otherwise 
d corresponding back-side job number 
e indicator for RoHS jobs. Value 1 indicates that the job processes RoHS boards, 0 otherwise 
f weight for tardiness penalty (weight for makespan penalty is set to 0.01) 
g process time for each job on each line. If a job cannot be processed on the line, the time is set to 

1000 
h

 
 initial RoHS status of the line 
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All the time values in Table 4.2 are shown in hours. If a job cannot be 

processed on an assembly line, then the process time is set to be 1000. The weights 

for tardiness penalty, pi 

With the data in Table 4.2, the complete MILP model for instance Test-n10k3 

can be obtained. Note that the large numbers in the Model, M

, are randomly chosen from {1, 2, 3}, with a higher value 

representing greater importance of the customer. The weight for makespan penalty, q, 

is set to a much smaller value, 0.01, so that the problem gives a higher priority to 

tardiness minimization.  

1~M5

 

, are all set to 

10000.  The model is input into CPLEX. The complete model is listed as follows.  

Minimize  

2.00L01+2.00L02+3.00L03+3.00L04+1.00L05+1.00L06+1.00L07+1.00L08

+2.00L09+2.00L10+0.01Cmax 

 

Subject to  

Constraint set (4.2): 

cons.1:   L01 - w0101 - 10000x010201 > =  - 10010.44 

cons.2:   L01 - w0101 - 10000x010301 > =  - 10010.44 

cons.3:   L01 - w0101 - 10000x010401 > =  - 10010.44 

cons.4:   L01 - w0101 - 10000x010501 > =  - 10010.44 

cons.5:   L01 - w0101 - 10000x010601 > =  - 10010.44 

cons.6:   L01 - w0101 - 10000x010701 > =  - 10010.44 

cons.7:   L01 - w0101 - 10000x010801 > =  - 10010.44 

cons.8:   L01 - w0101 - 10000x010901 > =  - 10010.44 

cons.9:   L01 - w0101 - 10000x011001 > =  - 10010.44 

cons.10:   L01 - w0101 - 10000x011101 > =  - 10010.44 

cons.11:   L02 - w0201 - 10000x020101 > =  - 10002.66 

…… 
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cons.300:   L10 - w1003 - 10000x101103 > =  - 10019.66 

 

Constraint set (4.3): 

cons.301:   L01 > = 0 

cons.302:   L02 > = 0 

cons.303:   L03 > = 0 

cons.304:   L04 > = 0 

cons.305:   L05 > = 0 

cons.306:   L06 > = 0 

cons.307:   L07 > = 0 

cons.308:   L08 > = 0 

cons.309:   L09 > = 0 

cons.310:   L10 > = 0 

 

Constraint set (4.4): 

cons.311:   Cmax - w0101 - 10000x010201 > =  - 9995.44 

cons.312:   Cmax - w0101 - 10000x010301 > =  - 9995.44 

cons.313:   Cmax - w0101 - 10000x010401 > =  - 9995.44 

cons.314:   Cmax - w0101 - 10000x010501 > =  - 9995.44 

cons.315:   Cmax - w0101 - 10000x010601 > =  - 9995.44 

cons.316:   Cmax - w0101 - 10000x010701 > =  - 9995.44 

cons.317:   Cmax - w0101 - 10000x010801 > =  - 9995.44 

cons.318:   Cmax - w0101 - 10000x010901 > =  - 9995.44 

cons.319:   Cmax - w0101 - 10000x011001 > =  - 9995.44 

cons.320:   Cmax - w0101 - 10000x011101 > =  - 9995.44 

cons.321:   Cmax - w0201 - 10000x020101 > =  - 9993.66 

…… 

cons.610:  Cmax - w1003 - 10000x101103 > =  - 9992.66 

 

Constraint set (4.5): 

cons.611:  x010201 + x010202 + x010203 + x010301 + x010302 + x010303 + 
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x010401 + x010402 + x010403 + x010501 + x010502 + x010503 + 

x010601 + x010602 + x010603 + x010701 + x010702 + x010703 + 

x010801 + x010802 + x010803 + x010901 + x010902 + x010903 + 

x011001 + x011002 + x011003 + x011101 + x011102 + x011103 = 1 

cons.612:  x020101 + x020102 + x020103 + x020301 + x020302 + x020303 + 

x020401 + x020402 + x020403 + x020501 + x020502 + x020503 + 

x020601 + x020602 + x020603 + x020701 + x020702 + x020703 + 

x020801 + x020802 + x020803 + x020901 + x020902 + x020903 + 

x021001 + x021002 + x021003 + x021101 + x021102 + x021103 = 1 

cons.613:  x030101 + x030102 + x030103 + x030201 + x030202 + x030203 + 

x030401 + x030402 + x030403 + x030501 + x030502 + x030503 + 

x030601 + x030602 + x030603 + x030701 + x030702 + x030703 + 

x030801 + x030802 + x030803 + x030901 + x030902 + x030903 + 

x031001 + x031002 + x031003 + x031101 + x031102 + x031103 = 1 

…… 

cons.620:  x100101 + x100102 + x100103 + x100201 + x100202 + x100203 + 

x100301 + x100302 + x100303 + x100401 + x100402 + x100403 + 

x100501 + x100502 + x100503 + x100601 + x100602 + x100603 + 

x100701 + x100702 + x100703 + x100801 + x100802 + x100803 + 

x100901 + x100902 + x100903 + x101101 + x101102 + x101103 = 1 

 

Constraint set (4.6): 

cons.621:  x000101 + x000201 + x000301 + x000401 + x000501 + x000601 + 

x000701 + x000801 + x000901 + x001001 + x001101 = 1 

cons.622:  x000102 + x000202 + x000302 + x000402 + x000502 + x000602 + 

x000702 + x000802 + x000902 + x001002 + x001102 = 1 

cons.623:  x000103 + x000203 + x000303 + x000403 + x000503 + x000603 + 

x000703 + x000803 + x000903 + x001003 + x001103 = 1 

 

Constraint set (4.7): 

cons.624:  x001101 + x011101 + x021101 + x031101 + x041101 + x051101 + 
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x061101 + x071101 + x081101 + x091101 + x101101 = 1 

cons.625:  x001102 + x011102 + x021102 + x031102 + x041102 + x051102 + 

x061102 + x071102 + x081102 + x091102 + x101102 = 1 

cons.626:  x001103 + x011103 + x021103 + x031103 + x041103 + x051103 + 

x061103 + x071103 + x081103 + x091103 + x101103 = 1 

 

Constraint set (4.8): 

cons.627:  x000101 + x020101 + x030101 + x040101 + x050101 + x060101 + 

x070101 + x080101 + x090101 + x100101 - x010201 - x010301 - 

x010401 - x010501 - x010601 - x010701 - x010801 - x010901 - 

x011001 - x011101 = 0 

cons.628:  x000201 + x010201 + x030201 + x040201 + x050201 + x060201 + 

x070201 + x080201 + x090201 + x100201 - x020101 - x020301 - 

x020401 - x020501 - x020601 - x020701 - x020801 - x020901 - 

x021001 - x021101 = 0 

cons.629:  x000301 + x010301 + x020301 + x040301 + x050301 + x060301 + 

x070301 + x080301 + x090301 + x100301 - x030101 - x030201 - 

x030401 - x030501 - x030601 - x030701 - x030801 - x030901 - 

x031001 - x031101 = 0 

…… 

cons.656:  x001003 + x011003 + x021003 + x031003 + x041003 + x051003 + 

x061003 + x071003 + x081003 + x091003 - x100103 - x100203 - 

x100303 - x100403 - x100503 - x100603 - x100703 - x100803 - 

x100903 - x101103 = 0 

 

Constraint set (4.9) 

cons.657:  w0101 - w0201 + 10000x010201 < = 9993.44 

cons.658:  w0101 - w0301 + 10000x010301 < = 9995.17 

cons.659:  w0101 - w0401 + 10000x010401 < = 9995.17 

cons.660:  w0101 - w0501 + 10000x010501 < = 9993.44 

cons.661:  w0101 - w0601 + 10000x010601 < = 9993.44 
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cons.662:  w0101 - w0701 + 10000x010701 < = 9995.17 

cons.663:  w0101 - w0801 + 10000x010801 < = 9995.17 

cons.664:  w0101 - w0901 + 10000x010901 < = 9993.44 

cons.665:  w0101 - w1001 + 10000x011001 < = 9993.44 

cons.666:  w0201 - w0101 + 10000x020101 < = 9993.39 

…… 

cons.926: w1003 - w0903 + 10000x100903 < = 9992.39 

 

Constraint set (4.10): 

cons.927: w0001 - w0101 + 10000x000101 < = 9999.73 

cons.928: w0001 - w0201 + 10000x000201 < = 9999.73 

cons.929: w0001 - w0301 + 10000x000301 < = 9999.73 

cons.930: w0001 - w0401 + 10000x000401 < = 9999.73 

cons.931: w0001 - w0501 + 10000x000501 < = 9999.73 

cons.932: w0001 - w0601 + 10000x000601 < = 9999.73 

cons.933: w0001 - w0701 + 10000x000701 < = 9999.73 

cons.934: w0001 - w0801 + 10000x000801 < = 9999.73 

cons.935: w0001 - w0901 + 10000x000901 < = 9999.73 

cons.936: w0001 - w1001 + 10000x001001 < = 9999.73 

cons.937: w0002 - w0102 + 10000x000102 < = 9999.73 

…… 

cons.956: w0003 - w1003 + 10000x001003 < = 9998.00 

 

Constraint set (4.11): 

cons.957: w0001 > = 1.48 

cons.958: w0002 > = 0.00 

cons.959: w0003 > = 0.78 

 

Constraint set (4.12): 

cons.960: w0101 > = 0.00 

cons.961: w0201 > = 0.00 
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cons.962: w0301 > = 4.00 

cons.963: w0401 > = 0.00 

cons.964: w0501 > = 0.00 

cons.965: w0601 > = 0.00 

cons.966: w0701 > = 0.00 

cons.967: w0801 > = 8.00 

cons.968: w0901 > = 8.00 

cons.969: w1001 > = 10.00 

cons.970: w0102 > = 0.00 

…… 

cons.989: w1003 > = 10.00 

 

Constraint set (4.13): 

cons.990: w0301 - w0401 + 10000x030101 + 10000x030201 + 10000x030401 + 

10000x030501 + 10000x030601 + 10000x030701 + 10000x030801 + 

10000x030901 + 10000x031001 + 10000x031101 + 10000x040101 + 

10000x040201 + 10000x040301 + 10000x040501 + 10000x040601 + 

10000x040701 + 10000x040801 + 10000x040901 + 10000x041001 + 

10000x041101 < = 19998 

cons.991: w0501 - w0601 + 10000x050101 + 10000x050201 + 10000x050301 + 

10000x050401 + 10000x050601 + 10000x050701 + 10000x050801 + 

10000x050901 + 10000x051001 + 10000x051101 + 10000x060101 + 

10000x060201 + 10000x060301 + 10000x060401 + 10000x060501 + 

10000x060701 + 10000x060801 + 10000x060901 + 10000x061001 + 

10000x061101 < = 19998 

cons.992: w0701 - w0801 + 10000x070101 + 10000x070201 + 10000x070301 + 

10000x070401 + 10000x070501 + 10000x070601 + 10000x070801 + 

10000x070901 + 10000x071001 + 10000x071101 + 10000x080101 + 

10000x080201 + 10000x080301 + 10000x080401 + 10000x080501 + 

10000x080601 + 10000x080701 + 10000x080901 + 10000x081001 + 

10000x081101 < = 19998 
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cons.993: w0901 - w1001 + 10000x090101 + 10000x090201 + 10000x090301 + 

10000x090401 + 10000x090501 + 10000x090601 + 10000x090701 + 

10000x090801 + 10000x091001 + 10000x091101 + 10000x100101 + 

10000x100201 + 10000x100301 + 10000x100401 + 10000x100501 + 

10000x100601 + 10000x100701 + 10000x100801 + 10000x100901 + 

10000x101101 < = 19998 

cons.994: w0301 - w0402 + 10000x030101 + 10000x030201 + 10000x030401 + 

10000x030501 + 10000x030601 + 10000x030701 + 10000x030801 + 

10000x030901 + 10000x031001 + 10000x031101 + 10000x040102 + 

10000x040202 + 10000x040302 + 10000x040502 + 10000x040602 + 

10000x040702 + 10000x040802 + 10000x040902 + 10000x041002 + 

10000x041102 < = 19998 

…… 

cons.1025:   w0903 - w1003 + 10000x090103 + 10000x090203 + 10000x090303 + 

10000x090403 + 10000x090503 + 10000x090603 + 10000x090703 + 

10000x090803 + 10000x091003 + 10000x091103 + 10000x100103 + 

10000x100203 + 10000x100303 + 10000x100403 + 10000x100503 + 

10000x100603 + 10000x100703 + 10000x100803 + 10000x100903 + 

10000x101103 < = 19998 

 

Bounds 

Cmax free 

L01 free  L02 free  L03 free  L04 free 

L05 free  L06 free  L07 free  L08 free 

L09 free  L10 free   

w0001 free  w0002 free  w0003 free  w0101 free 

w0102 free  w0103 free  w0201 free  w0202 free 

w0203 free  w0301 free  w0302 free  w0303 free 

w0401 free  w0402 free  w0403 free  w0501 free 

w0502 free  w0503 free  w0601 free  w0602 free 

w0603 free  w0701 free  w0702 free  w0703 free 
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w0801 free  w0802 free  w0803 free  w0901 free 

w0902 free  w0903 free  w1001 free  w1002 free 

w1003 free   

 

Binary 

x000101 x000201 x000301 x000401 x000501 x000601 

x000701 x000801 x000901 x001001 x001101 x010101 

x010201 x010301 x010401 x010501 x010601 x010701 

x010801 x010901 x011001 x011101 x020101 x020301 

x020401 x020501 x020601 x020701 x020801 x020901 

x021001 x021101 x030101 x030201 x030301 x030401 

x030501 x030601 x030701 x030801 x030901 x031001 

…… 

x100603 x100703 x100803 x100903 x101003 x101103 

 

End 

 

 

The test instances are solved by CPLEX 10.2, running on a desktop machine 

with Intel Xeon 2.80 GHz CPU and 2 GB RAM. Of the seven instances, only four 

instances can be solved to optimality, and the computational times are great.  

The CPLEX results and optimal solution for the first instance Test-n10k3 are 

listed in the following. Table 4.3 summarizes the characteristics of the model and the 

optimal solution for the instance. For this instance with only 10 jobs and 3 assembly 

lines, there are totally 377 variables (333 integer variables) and 1025 linear 

constraints. CPLEX spent 1441 seconds to solve the problem to optimality. The 

CPLEX results and optimal solutions for Test-n10k4, Test-n11k3, and Test-n11k4 

are given in Appendices II, III, and IV, respectively. 
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Integer optimal 

Objective =   6.5810000000e-001 

Solution time = 1441 sec.   

Iterations = 19819576   

Nodes = 823593  

 

Variable Name Solution Value Variable Name Solution Value 

L06   0.200000  L08   0.190000 

Cmax   26.81 

x000101  1.000000  x010401  1.000000 

x040601  1.000000  x060801  1.000000 

x081101  1.000000  x000202  1.000000 

x020902  1.000000  x090702  1.000000 

x071102  1.000000  x000303  1.000000  

x030503  1.000000  x051003  1.000000 

x101103  1.000000   

w0101   1.75   w0401   6.58 

w0601   14.9   w0801   19.47 

w0202   2   w0902   8.28 

w0702   17.47   w0303   4 

w0503   10.23   w1003   19.47 

All other variables are zero. 

 

Table 4.3  Characteristics of the model and optimal solution for Test-n10k3 

No. of integer 
variables  

No. of 
variables 

No. of linear 
constraints 

Objective 
(hours) 

CPU time 
(sec.) 

333 377 1025 0.6581 1441 
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The Gantt chart in Figure 4.1 shows the optimal schedule for instance Test-

n10k3. The start times for the jobs are shown above the job items. For example, job 1, 

job 4, job 6, and job 8 are processed on line 1, consecutively. Because the ready time 

for line 2 is 1.48 and the initial status of line 1 is RoHS (as shown in Table 4.2), the 

start time for job 1 on line 1, w11 = 1.48 + 0.27 = 1.75 (0.27 is the normal setup time). 

Similarly, because both job 1 and job 4 are non-RoHS jobs, the setup time between 

them is also 0.27. The start time for job 4 on line 1, w41 = w1 + s11 + t14 = 1.75 + 

4.56 + 0.27 = 6.58. However, the setup time between Job 1 and Job 6 is 2 hours 

because Job 1 is a non-RoHS Job and Job 6 is an RoHS job. Therefore, the start time 

for job 6 on line 1, w61 = w4 + s41 + t46

From the figure, it can be seen that the precedence constraints between front-side 

jobs and back-side jobs are also satisfied. For example, job 7 and job 8 are the front 

sides and back sides of the same boards, respectively. Therefore, the start time of job 

8 cannot be earlier than 2 hours after the start time of job 7.   

 = 6.58 + 6.32 + 2 = 14.9. 

Based on the obtained schedule, there are two jobs that are completed beyond 

their due dates, i.e., job 6 and job 8. For job 6, the complete time is 19.2 and the due 

date is 19. For job 8, the complete time is 25.19 and the due date is 25. The 

makespan for all the jobs is 26.81, which is the complete time for the last finished 

job, job 10. The objective value for this optimal solution can be calculated as (19.2 

－ 19) + (25.19 － 25) + 0.01×26.81 = 0.6581.  
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Figure 4.1   A Gantt chart for the optimal schedule of the instance Test-n10k3  

 

The results for all the seven instances are summarized in Table 4.4. Due to the 

great complexity, CPLEX only obtains the optimal solutions to the first four 

instances and the computation times are substantial. When the problem size increases, 

the complexity of the MILP model increases exponentially. For the instance Test-

n12k4, which has two more jobs and one more line than the instance Test-n10k3, the 

number of variables and the number of constraints are almost doubled. For Test-

n12k4, CPLEX fails to find the optimal solution within 10 days.  

For a realistic problem instance, there may be many more jobs and assembly 

lines than the test instances. Thus, optimal solutions are infeasible for realistic MLSP 

instances. For this reason, a more efficient heuristic solution is required. 
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Table 4.4  CPLEX computational results for the test instances 

Instances 
No. of 

variables 

No. of linear 

constraints 
Optimal solution CPU time (minutes) 

Test-n10k3 377 1025 0.6581 24.0 

Test-n10k4 499 1376 0.2311 33.0 

Test-n11k3 447 1213 2.1005 161.2 

Test-n11k4 592 1638 8.1449 1669.4 

Test-n12k4 693 1924 No solution found for 240 hours 

Test-n15k4 1044 2910 No solution found for 240 hours 

Test-n20k4 1789 5076 No solution found for 240 hours 

 

 

4.3 A GENETIC ALGORITHM FOR THE MLSP 

As discussed in the previous section, the multi-line scheduling problem is 

very complex for exact solutions. In order to solve the problem efficiently, a specific 

Genetic Algorithm (GA) is proposed.  

 

4.3.1 Representation scheme 

For the multi-line scheduling problem, the solution representation is not 

straightforward, because a solution to the problem consists of assigning jobs to 

assembly lines and sequencing jobs within each line at the same time.  

In the proposed genetic algorithm, a special permutation-type representation 

scheme is suggested (see Figure 4.2). For a problem with n jobs and k lines, the 

chromosome for a solution x has the form of a string of length (n + k). Figure 4.2 
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illustrates a chromosome for the problem instance Test-n10k3, which is discussed in 

Section 4.2. The instance has 10 jobs and 3 assembly lines. In the chromosome 

shown in the figure, the genes valued 1 to 10 represent jobs 1 to 10, respectively, 

while genes valued 11, 12, and 13 represent lines 1, 2, and 3, respectively. 

 

 

Figure 4.2  A chromosome in the proposed GA for the MLSP 

 

Based on the chromosome in Figure 4.2, jobs 8, 5 and 6 are processed by line 

1 consecutively. Similarly, jobs 2, 9, 10 and 7 are processed by line 2 consecutively, 

and jobs 1, 3 and 4 are processed by line 3 consecutively.  

The scheduling solution represented by the chromosome in Figure 4.2 is 

shown as follows: 

Line 1:  Job 8→Job 5→Job 6 

Line 2:  Job 2→Job 9→Job 10→Job 7 

Line 3:  Job 1→Job 3→Job 4 

The advantage of using such a permutation-type representation scheme is that 

many genetic operators for permutation representation are available and can be 

readily used in the proposed GA, which will be discussed later.  

 

5 6 2 9 10 13 1  11 4 3 7  12 8 
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4.3.2 Fitness evaluation 

Since the investigated problem is a minimization problem, the fitness value of 

a chromosome is set to be the inverse of the objective value, which is defined by 

function (4.1) in Model 4-1.  

In order to compute the objective value for a chromosome, the start times for 

all the jobs need to be determined according to the chromosome representation. The 

following illustrates the procedure for the determination of the job start times 

according to a given chromosome.  

Step 1: For each line in sequence, consider the start time for the first job. If 

the start time for the first job can be determined, move on to determine the start times 

for the following jobs on the line one by one, until the start time of a certain job 

cannot be determined.  

Step 2: For each line in sequence, reconsider the start time for the job that 

cannot be determined in Step 1.  

Step 3: Repeat Step 2 until the start times for all the jobs have been 

determined, or no start time of any job can be determined.  

Because the objective of the scheduling problem considers due date 

satisfaction and makespan reduction, both of which require reducing the finish times 

for the jobs, the start time for each job should be as early as possible. For a non-back-

side job, the start time should consider the finish time for the previous job and its 

own ready time. For a back-side job, however, the special precedence constraint 

should also be considered, that is, a back-side job can only begin 2 hours after the 

start time of the corresponding front-side job (see Section 4.2). For example, suppose 
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that job i and job j process the front sides and back sides of the same boards, 

respectively, and are produced on the same line consecutively. If the start time and 

process time for job i is a and b, respectively, the setup time from job i to job j is c, 

and the ready time for job j is d, then the start time for job j should be max {a + b + c, 

a + 2, d}.  

Consider the chromosome in Figure 4.2, which represents a solution to the 

instance Test-n10k3. The procedure for deciding the job start times can be described 

as follows. 

1. On Line 1, Job 8 is a back-side job and the start time of its corresponding 

front-side job (Job 7) has not yet been determined. Therefore, the procedure 

moves on to consider Line 2.  

2. On Line 2, the ready time for the line is 0. Because the initial status for Line 2 

is non-RoHS and the first job, i.e., Job 2, is an RoHS job. So the setup time of 

Job 2 is 2 hours. The start time of Job 2 is 0 + 2 = 2 hours. The process time 

for Job 2 on Line 1 is 6.01 hours. So the complete time of Job 2 is 2 + 6.01 = 

8.01 hours. The next job on Line 2 is Job 9, which requires a setup time of 

0.27 hours (because both Job 2 and Job 9 are RoHS jobs). So the start time of 

Job 9 is 8.01 + 0.27 = 8.28 hours. The process time for Job 9 on Line 2 is 8.92 

hours. So the complete time of Job 9 is 8.28 + 8.92 = 17.2 hours. The next job 

on Line 2 is Job 10, which requires a setup time of 0.27 hours (because both 

Job 9 and Job 10 are RoHS jobs). So the start time of Job 10 is 17.2 + 0.27 = 

17.47 hours. The process time for Job 10 on Line 2 is 6.92 hours. So the 

complete time of Job 10 is 17.47 + 6.92 = 24.39 hours. The last job on Line 2 
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is Job 7, which also requires a setup time of 0.27 hours. So the start time of 

Job 7 is 24.39 + 0.27 = 24.66 hours. The process time for Job 7 on Line 2 is 

3.29 hours. So the complete time of Job 7 is 24.66 + 3.29 = 27.95 hours. 

3. On Line 3, the ready time for the line is 0.78. Because the initial status for 

Line 3 is non-RoHS and the first job, i.e., Job 1, is a non-RoHS job. So the 

setup time of Job 2 is 0.27 hours. The start time of Job 1 is 0.78 + 0.27 = 1.05 

hours. The process time for Job 1 on Line 3 is 5.34 hours. So the complete 

time of Job 1 is 1.05 + 5.34 = 6.39 hours. The next job on Line 3 is Job 3, 

which requires a setup time of 0.27 hours (because both Job 2 and Job 9 are 

non-RoHS jobs). So the start time of Job 3 is 6.39 + 0.27 = 6.66 hours. The 

process time for Job 3 on Line 3 is 4.23 hours. So the complete time of Job 5 

is 6.66 + 4.23 = 10.89 hours. The last job on Line 3 is Job 4, which requires a 

setup time of 0.27 hours (because both Job 3 and Job 4 are non-RoHS jobs). 

So the start time of Job 4 is 10.89 + 0.27 = 11.16 hours. The process time for 

Job 4 on Line 3 is 7.92 hours. So the complete time of Job 4 is 11.16 + 7.92 = 

19.08 hours. 

4. The procedure moves back to consider the jobs on Line 1. For Job 8 which is 

a back-side job corresponding to Job 7, the start time of Job 8 can only be 2 

hours later than the start time of Job 7. Therefore, the start time of Job 8 is 

24.66 + 2 = 26.66. The process time for Job 8 on Line 1 is 5.72 hours. So the 

complete time of Job 8 is 26.66 + 5.72 = 32.38 hours. The next job on Line 1 

is Job 5, which requires a setup time of 2 hours (because Job 8 is a non-RoHS 

job and Job 5 is an RoHS job). So the start time of Job 5 is 32.38 + 2 = 34.38 
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hours. The process time for Job 5 on Line 1 is 8.92 hours. So the complete 

time of Job 5 is 34.38 + 8.92 = 43.3 hours. The last job on Line 1 is Job 6, 

which requires a setup time of 0.27 hours (because both Job 5 and Job 6 are 

RoHS jobs). So the start time of Job 6 is 43.3 + 0.27 = 43.57 hours. The 

process time for Job 6 on Line 1 is 4.30 hours. So the complete time of Job 6 

is 43.57 + 4.30 = 47.87 hours. 

Following the above procedure, the detailed schedule represented by the GA 

chromosome in Figure 4.2 can be obtained, which is shown as the Gantt chart in 

Figure 4.3.  

 

 

Figure 4.3  Detailed schedule represented by a chromosome in the GA 

 

Based on the schedule shown in Figure 4.3, there are 4 jobs, i.e., Job 4, Job 5, 

Job 8, and Job 6, which are completed beyond due dates. The makespan for all the 

jobs is 47.87 hours, which is the completion time of Job 6. The objective value is 

then calculated using the objective function in Model 4-1. 

26.66 
    Job 8 

2.00 
       Job 2 

1.05 
     Job  1 

34.38 
     Job 5 

8.28 
          Job 9 

6.66 
     Job 3 

43.57 
     Job 6 

17.47 
        Job 10 

11.16 
           Job 4 

24.66 
       Job 7 

0 10 20 30 40 50 60 

line 3 

line 2 

line 1 

Time 
(hours) 



CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 129 

Objective = maxqCLp
Ni

ii +∑
∈

 = 3 × (19.08–18) + 1 × (43.3–25) + 1 × (47.87

–19) + 1 × (32.38–25) + 0.01 × 47.87 = 58.2687.  

The fitness value of the chromosome is the inverse of the objective value: 

Fitness = 1 / 58.2687 = 0.0172. 

It should be noted that there may be some chromosomes that represent 

infeasible solutions. Consider the following scheduling solution for the same 

problem: 

Line 1:  Job 4→Job 5→Job 1 

Line 2:  Job 8→Job 9→Job 10→Job 7 

Line 3:  Job 10→Job 3→Job 4 

For the above solution, all the first jobs on the three lines, i.e., Job 4, Job 8 

and Job 10, are the back-side jobs, which cannot be processed before their 

corresponding front-side jobs. In the genetic algorithm, the fitness values of such 

infeasible chromosomes are set to zero.  

 

4.3.3 Genetic operators 

Because the proposed GA adopts a permutation-type representation scheme, 

the genetic operators for a permutation-type representation can be readily used for 

the proposed GA, which include partially mapped crossover (PMX), edge crossover, 

order crossover (OX), cycle crossover, swap mutation, scramble mutation, inversion 

mutation, etc. In preliminary tests, it is found that there is no significant difference 

among the performance of the above crossover operators and the mutation operators 
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for solving the investigated problem. In the proposed GA, the two commonly-used 

operators, the order crossover (OX) and swap mutation, will be used.  

The swap mutation has been discussed in Chapter 3. The order crossover (OX) 

operator was designed by Davis [Dav91] and is suitable especially for permutation 

problems. The process of the operator can be described as follows.  

1. Choose two crossover points at random, and copy the segment between them 

from the first parent into the first offspring. 

2. Start from the second crossover point in the second parent, copy the 

remaining unused numbers into the first child in the order that they appear in 

the second parent, wrapping around at the end of the list. 

3. Create the second offspring in an analogous manner, with the parent roles 

reversed.  

The procedure for the OX operator is shown in Figure 4.4.  

 

Figure 4.4  Order crossover (OX)  
 

11 8 5 6 2 Parent 1 

Parent 2 

Child 1 

9 

Child 2 

7 4 13 10 12 

11 3 2 1 7 4 9 5 13 10 12 

3 1 

8 6 

5 6 2 9 13 10 11 12 3 8 7 4 1 

2 1 7 4 13 8 12 3 11 5 6 9 10 



CHAPTER 4: THE MULTI-LINE SCHEDULING PROBLEM 131 

4.3.4 Replacement strategies 

The replacement strategy defines how to select new individuals for the new 

generations. One of the commonly-used replacement strategies for genetic 

algorithms is the replace-worst strategy, which has been used in the genetic 

algorithm proposed for the component allocation problem (see Chapter 3).  

 However, due to the complicated structure of chromosome representation 

(which combines both the assignment of jobs to lines and sequencing of jobs in each 

line), the genetic operators may be ineffective for producing good offspring.  

Therefore, the replace-worst strategy may probably remove those potential 

chromosomes before they produce better offspring, and thus lead to early 

convergence. For this reason, a new replacement strategy is proposed and tried in the 

genetic algorithm proposed for the scheduling problem.  

The new replacement strategy incorporates two different replacement policies, 

i.e., the replace-parent policy and the replace-worst policy. For the replace-parent 

policy, every new offspring only compares with its parents, and replaces the parent 

that is worse than the offspring. The replace-parent policy is applied in every 

generation while the replace-worst policy is applied only once during certain number 

of generations. By adjusting the frequency for the replace-worse policy, the 

convergence of the searching process and the diversity of the population can be well 

balanced. 

In order to examine the effectiveness of the new replacement strategy, two 

GAs are implemented and compared in the following experimental tests, i.e., the 

GA-R, which uses the common replace-worst replacement strategy, and the GA-N, 
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which uses the new replacement strategy. The general process for the GA-R is the 

same as the GA for the Component Allocation Problem (CAP) discussed in Chapter 

3 (see Figure 3.7). The general process for the GA-N is illustrated in Figure 4.5. In 

the figure, Cw is the cycle (in generations) for applying the replace-worst policy. For 

example, if Cw

 

 = 20, then the replace-worst policy will apply once every 20 

generations.  

Figure 4.5  General framework for the GA-N for the MLSP 
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4.4 EXPERIMENTAL TESTS 

The test instances generated in Section 4.2 are used to test the proposed 

genetic algorithms. The two GAs using two different replacement strategies, i.e., 

GA-R and GA-N, are tested.  

The GAs are coded in Microsoft Visual C++ 2005, and run on a desktop 

machine with Intel Xeon 2.80 GHz CPU and 2 GB RAM, which is the same machine 

used by CPLEX in Section 4.2.  

 

4.4.1 Parameter setting for the GAs 

Like the GA for the Component Allocation Problem (CAP) in Chapter 3, the 

parameters for the genetic operators for the GA-R and GA-N for the multi-line 

scheduling problem are determined through trial and error. The crossover rate Cr is 

set to 0.9. That is, 90% of the population members are randomly selected as parents 

to produce 90 children in each generation. The swap mutation rate Mr

For the GA-N, it is found that the cycle for the replace-worst policy, C

 is set to 0.1, 

which means that each child is selected with possibility of 0.1 to be mutated. Similar 

to the discussion in Chapter 3, the population sizes for both GAs are set to 100.  

w, has 

significant effect on the performance of the algorithm. In order to evaluate this effect 

and determine the most suitable value for Cw

Figure 4.6 shows the results for the instance Test-n20k4 obtained by GA-N 

with different C

, the following experiments are 

conducted. 

w values, i.e., 1, 5, 20, 60, and 200 generations. For each run, the 

algorithm terminates when there is no improvement during 3000 generations. In the 
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figure, the unit for Cw values are shown in unit of n generations (n is the number of 

jobs, i.e., 20). From the results, it can be seen that the GA-N with Cw = 1 obtains a 

high objective value (which represent a bad solution). The objective value decreases 

rapidly while increasing the Cw value. It can be seen that the algorithm achieves the 

best objective value when Cw = 60 (i.e., 3n). When Cw > 60, the objective value 

increases again with the Cw

A similar observation is achieved for other instances. For example, Figure 4.7 

shows the results for the instance Test-n15k4. It shows that the cycle for the replace-

worst policy C

 value.  

w has a significant effect on the performance of the GA-N. If Cw is too 

small, the replace-worst policy applies too frequently and thus a chromosome is not 

allowed to have enough time to generate good offspring. On the other hand, if Cw is 

too large, the algorithm spends too much time on exploitation that the exploration of 

the whole solution space is weak. In this sense, an appropriate Cw

From the experiments, it can be seen that the most appropriate C

 value is unique for 

achieving a good balance between exploitation and exploration of the algorithm.  

w value is 

related to the problem size. For most of the problem instances, the appropriate Cw 

values range from 2n to 3n generations (n is the number of jobs). In the following 

experiments, Cw for the GA-N is set to 3n. 
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Figure 4.6  Objective values for Test-n20k4 obtained with different Cw
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Figure 4.7  Objective values for Test-n15k4 obtained with different Cw values 
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4.4.2 Numerical results 

The two GAs, i.e., the GA-R and GA-N, are run for all the generated 

instances. Both the algorithms are run 20 times for each instance. Each run 

terminates when there is no improvement during 3000 generations. Table 4.5 shows 

the results for all the problem instances obtained by GA-R and GA-N.  

 

Table 4.5  Numerical results obtained by the two GAs 

Instances 
Optimal 

Values 

GA-R GA-N 

ave. σ  a CPU b ave.c σ  a CPU b c 

Test-n10k3 0.6581 0.6581 0 3.84 0.6581 0 2.02 

Test-n10k4 0.2311 0.2350 0.0082 4.27 0.2311 0 3.94 

Test-n11k3 2.1005 2.4508 0.4628 3.15 2.1005 0 3.69 

Test-n11k4 8.1449 8.3879 0.5433 4.45 8.1449 0 3.70 

Test-n12k4 \ 0.2439 0.0029 3.56 0.2439 0 3.66 

Test-n15k4 \ 1.5319 1.7071 3.91 0.7469 0.0151 3.90 

Test-n20k4 \ 14.3834 7.0809 6.22 8.1544 1.9878 7.05 

a Average objective value for 20 runs;   
b Standard deviation of objective values for 20 runs. 
c

 

 Average CPU time (in seconds) 

From table 4.5, it can be seen that the two GAs solve the problem instances 

with small computational times. The average objective values obtained by the GA-N 

are generally smaller than those obtained by the GA-R, while the computational 

times for the two GAs are similar. Furthermore, the GA-N achieves smaller standard 
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deviation of objective values than the GA-R, indicating that the GA-N has greater 

reliability than the GA-R. For example, the objective value for the instance Test-

n20k4 obtained by the GA-N is 8.1544, which is 43.3% smaller than that achieved by 

the GA-R, 14.3834. The standard deviation of objective values for the GA-N is 

1.9878, which is also much smaller than that for the GA-R, 7.0809. The results show 

that the new replacement strategy significantly improves the performance of the 

genetic algorithm for solving the investigated problem.  

Figure 4.8 shows the convergence process for the GA-R and the GA-N for 

the instance Test-n20k4. From the figure, it can be seen that the GA-N avoids early 

convergence that occurs in the GA-R and obtains much better solution in the end, 

This indicates that the exploration and exploitation of the algorithm are well 

balanced by adopting the new replacement strategy. 
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Figure 4.8  Convergence process for the GA-R and the GA-N 
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The GA-N obtains optimal solutions for all the four instances that can be 

solved by CPLEX, while the computational times for the GA-N are much shorter. 

For example, CPLEX spends 1669.4 minutes to solve the instance Test-n11k4 to 

optimality, while the GA-N spends only 3.70 seconds for obtaining the same results. 

Even for some large instances, which CPLEX fails to solve, the GA-N spend very 

short computational times for obtaining good results (The GA solutions for Test-

n12k4, Test-n15k4, and Test-n20k4 are shown in Appendices V, VI, and VII). Even 

for the largest instance Test-n20k4, the GA-N obtains the result within 10 seconds, 

indicating that the GA-N is able to solve the problem efficiently. 

 

4.5  A CASE STUDY  

In order to evaluate the practical usefulness of the proposed GA method for 

the multi-line scheduling problem, a case study is conducted.  

A realistic scheduling problem in an investigated PCB manufacturer is 

considered. Table 4.6 shows the job data for the problem. In this case, the jobs that 

are due within seven days are considered for the scheduling problem. There are 

totally 46 jobs to be processed by 5 assembly lines. The ready times and initial RoHS 

status of the assembly lines are shown in Table 4.7. The time values in both tables 

are shown in hours. 
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Table 4.6  Data for the problem in the case study 

Job 
# 

Ready 
time

Due 
datea if_frontb bk_jobc RoHSd pe 

i
Process timef 

g 
Line 1 Line 2 Line 3 Line 4 Line 5 

1 0 45 0 \ 0 1 1000 11 11 1000 1000 
2 0 45 0 \ 0 1 13.62 13.2 13.2 12.75 12.75 
3 45 245 1 4 0 1 15.89 14.49 14.49 13.87 13.87 
4 45 245 0 \ 0 1 15.89 14.49 14.49 14.64 14.64 
5 0 245 1 6 1 1 17.48 15.12 15.12 15.12 15.12 
6 0 245 0 \ 1 1 23.64 18.89 18.89 26.31 26.31 
7 0 245 1 8 1 1 24.51 22.75 24.68 22.75 22.75 
8 0 245 0 \ 1 1 24.51 22.75 24.68 22.75 22.75 
9 22 178 1 10 1 1 15.23 12.75 15.14 12.75 14.75 
10 22 178 0 \ 1 1 15.23 12.75 15.14 12.75 14.75 
11 0 89 0 \ 1 1 8.89 6.5 7.52 1000 1000 
12 45 178 1 13 0 1 14.23 11.89 1000 1000 1000 
13 45 178 0 \ 0 1 14.23 11.89 1000 1000 1000 
14 45 201 1 15 0 1 12.5 12.22 11.73 11.78 11.78 
15 45 201 0 \ 0 1 12.74 9.36 9.66 11.56 11.56 
16 76 134 1 17 0 1 15.84 13.24 1010 13.24 13.24 
17 76 134 0 \ 0 1 15.84 13.24 1010 13.24 13.24 
18 76 223 1 19 0 1 8.66 8.32 1000 8.32 8.32 
19 76 223 0 \ 0 1 8.66 8.32 1000 8.32 8.32 
20 48 178 1 21 0 1 11.74 11.45 11.66 11.45 11.45 
21 48 178 0 \ 0 1 11.32 11.22 11.35 11.24 11.24 
22 48 134 1 23 1 1 5.36 4.98 4.68 1000 1000 
23 48 134 0 \ 1 1 9.84 7.62 11.62 1000 1000 
24 68 201 0 \ 1 1 10.56 1000 10 1000 1000 
25 48 201 1 26 0 1 11.82 10.55 10.36 10.55 10.55 
26 48 201 0 \ 0 1 13.03 11.77 10.74 11.77 11.77 
27 0 67 1 28 0 1 8.96 8.08 8.29 8.08 8.08 
28 0 67 0 \ 0 1 10.85 9.41 10.59 9.41 9.41 
29 45 245 1 30 0 1 7.68 7.59 7.77 7.12 7.12 
30 45 245 0 \ 0 1 7.93 7.47 7.2 6.89 6.89 
31 0 245 1 32 0 1 1000 16.42 21.83 17.81 17.81 
32 0 245 0 \ 0 1 1000 16.42 21.83 17.81 17.81 
33 0 67 0 \ 0 1 9.56 1000 11 1000 1000 
34 0 112 1 35 0 1 15.98 15.48 15.21 1000 1000 
35 0 112 0 \ 0 1 14.87 12.89 16.94 1000 1000 
36 22 156 0 \ 0 1 11.65 11.45 11.66 11.45 11.45 
37 89 201 1 38 0 1 11.39 11.22 11.35 11.24 11.24 
38 89 201 0 \ 0 1 9.37 1000 1000 8.82 8.82 
39 0 178 1 40 1 1 35.17 33.87 36.74 30.92 30.92 
40 0 178 0 \ 1 1 16.21 11.98 15.75 15.75 15.75 
41 82 223 1 42 1 1 45.78 39.55 40.33 37.81 37.81 
42 82 223 0 \ 1 1 6.74 5.87 6.23 4.85 4.85 
43 82 223 1 44 1 1 18.46 18.34 19.29 16.69 16.69 
44 82 223 0 \ 1 1 6.88 7.02 1000 6.59 6.59 
45 82 223 1 46 1 1 27.45 1000 1000 22.92 22.92 
46 82 223 0 \ 1 1 27.45 1000 1000 22.92 22.92 

a ready time for the job 
b due date for the job 
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c indicator for a front-side job. Value one indicates that the job is a front-side job, zero otherwise 
d corresponding back-side job number 
e indicator for RoHS jobs. Value 1 indicates that the job processes RoHS boards, 0 otherwise 
f weight for tardiness penalty (weight for makespan penalty is set to 0.01) 
g

 

 process time for each job on each line. If a job cannot be processed on the line, the time is set to 

1000 

 
Table 4.7  Ready times and initial RoHS status for assembly lines 

 Line 1 Line 2 Line 3 Line 4 Line 5 

Ready time 1.52 0 1.78 2.66 0 

Initial RoHS status 0 1 0 0 1 

 

It should be noted that in practice, the scheduling problem should be solved 

each time when there is new production orders in the planning period. All the jobs 

that have not been processed should be scheduled. However, the jobs that have been 

started on a particular line and have not been finished are not considered in the 

scheduling. The ready time of an assembly line is set to be the finish time of the 

unfinished job on the line. Accordingly, the initial RoHS status of the lines should be 

the RoHS status of these unfinished jobs.  

The proposed genetic algorithm, the GA-N, is used to solve the case problem. 

The algorithm is run only once and terminates when there is no improvement on the 

best chromosome during 3000 generations. The detailed schedule obtained by the 

proposed GA is shown in Figure 4.9.  

The schedule obtained by the GA is compared with that obtained by the 

scheduling staff of the company (as shown in Figure 4.10). The proposed GA solves 

the problem with 64.2 seconds. Based on the schedule obtained by the proposed GA, 
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all the jobs are finished before their due dates. The makespan obtained by the GA is 

131.22 hours, which is 8.88% shorter than that obtained by the company scheduling 

staff, which is 144 hours.  

The results are much encouraging, and the company managers are satisfied. 

Reduced makespan means higher production efficiency. The production capacity of 

the company can be increased without further investment on the expensive assembly 

equipment. In a make-to-order environment, larger production capacity is crucial for 

PCB manufacturers to gain more profits and become more competitive.  
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4.6 SUMMARY 

This chapter investigated the Multi-Line Scheduling Problem (MLSP) in PCB 

assembly and proposed an effective solution method for the problem. Some main 

remarks can be summarized as follows. 

1. A Mixed Integer Linear Programming (MILP) model has been established for 

the multi-line scheduling problem in PCB assembly. The objective of the 

model considers both due date requirement and production efficiency while 

giving a higher priority to the former. Precedence constraints between jobs 

and sequence-dependent setup times are also considered to make the model 

more realistic and applicable.  

2. Some test instances have been generated and used to verify the established 

model. The instances are solved by a commercial LP solver, CPLEX. The 

results show that the established mathematical model is able to find optimal 

solution while satisfying all the practical constraints. However, the 

computational complexity is shown to be extremely great. CPLEX fails to 

solve the test instance with only 12 jobs and 4 lines within 240 hours. Exact 

solutions are impossible for real-sized problems. 

3. In order to solve the problem efficiently, a GA method has been developed. 

Because of the great complexity of the problem, a new replacement strategy 

has been proposed to improve the performance of the GA. Experimental tests 

show that the algorithm using the new replacement strategy achieves a good 

balance between exploration and exploitation, and obtains significantly better 

solutions than the algorithm using the common replace-worst strategy.  
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4. The proposed GA method obtains the optimal results for all the instances that 

can be solved by CPLEX. The computational times for the GA method are 

short. The results show that the proposed GA method can solve the multi-line 

scheduling problem both effectively and efficiently.  

5. A case study on solving a realistic scheduling problem in a PCB company is 

conducted. The proposed method is able to find an effective scheduling result 

for the problem. Compared to the solution obtained by the scheduling staff in 

the company, the proposed method obtains a better schedule with a makespan 

that is 8.88% shorter, while satisfying the due date requirement. The 

production capacity of the company can be increased without further 

investment on the equipment or sacrifice of customer satisfaction. 

 

The solution method proposed in this chapter has shown to be able to solve 

the multi-line scheduling problem both effectively and efficiently. Since the 

established model considers realistic constraints and a reasonable objective in PCB 

assembly environment, the results are highly valuable to PCB manufacturers. The 

research results in this chapter and those in Chapter 3 are complementary to each 

other, in that the production efficiency of each line can be improved by solving the 

component allocation problem, while the production efficiency of the whole 

assembly shop can be achieved by solving the multi-line scheduling problem. In 

Chapter 5, this research will be concluded by summarizing the main achievements, 

academic contributions, and possible benefits to industry. Some possible future work 

related to this research will also be given.  
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CHAPTER 5 

CONCLUSIONS AND SUGGESTIONS FOR 

FUTURE RESEARCH 

 

5.1 CONCLUSIONS 

In this research, two important planning problems in PCB assembly have 

been addressed, i.e., the Component Allocation Problem (CAP) and the Multi-Line 

Scheduling Problem (MLSP). The component allocation problem is vital for 

improving the throughput of a PCB assembly line, while the multi-line scheduling 

problem is important for improving overall production efficiency and meeting due 

date requirement.  

The component allocation problem is to allocate components required by a 

PCB to different machines in an assembly line, so that the line cycle time is 

minimized. The component allocation problem is found to be interrelated with the 

machine optimization problems, i.e., the feeder arrangement problem and the 

placement sequencing problem, for the solutions to the component allocation 

problem are eventually influenced by the solutions to the machine optimization 

problems for each machine in the line. In order to reduce the computational 

complexity caused by this interrelationship, a decomposed solution strategy has been 

proposed. The effectiveness and efficiency of the proposed solution strategy for the 

component allocation problem has been examined in the experimental tests.  

The multi-line scheduling problem is to schedule PCB batches on multiple 

assembly lines, so that the sum of weighted tardiness and weighted makespan is 
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minimized. The specific multi-line scheduling problem is shown to be a special type 

of unrelated Parallel-Machine Scheduling Problem (PMSP) with sequence-dependent 

setup times and precedence constraints, which is NP-hard. Due to the complexity of 

the problem, a specific Genetic Algorithm (GA) has been proposed to solve the 

problem. Experimental tests have been conducted to examine the effectiveness and 

efficiency of the GA method.  

The main conclusions of this research are as follows. 

1. The Component Allocation Problem (CAP) is extremely complicated for the 

evaluation of the solutions involves solving the machine optimization 

problems for each machine in the line. The proposed solution strategy aims to 

solve the component allocation problem without tackling the machine 

optimization problems. The solution strategy relies on a regression-based 

placement time estimator, which can estimate the placement time for each 

machine in the line without solving the machine optimization problems. 

Based on this placement time estimator, algorithms or heuristics can be 

devised to solve the component allocation problem without tackling the 

machine optimization problems.  

2. A placement time estimator for a turret-type placement machine has been 

established to examine the feasibility of the solution strategy for the 

component allocation problem. The estimator is based on a linear regression 

model, which considers all the influential factors that may affect the 

placement time, including the number of components, the number of 

component types, and the closeness of the components. The regression model 
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is calibrated using a data set which is obtained through experiments. 

Statistical analysis shows that the placement time estimator has a high R2

3. The proposed solution strategy for the component allocation problem is 

implemented through the development of a specific genetic algorithm, which 

uses the established placement time estimator for solution evaluation. Based 

on the placement time estimator, the genetic algorithm is able to consider all 

the influential factors that affect the placement time for each machine when 

solving the component allocation problem. Experiments on solving some 

problem instances show that the proposed solution method can achieve better 

solutions than those obtained by the software provided by the machine vendor. 

The results are encouraging, especially because the GA obtains the solutions 

without calculating the exact placement times through simulation, as the 

vendor software does. Even better solutions could be expected if the GA 

solutions are further improved by some adjustments based on the simulated 

placement times. 

 

value of 0.99, showing that the estimator can yield accurate estimates of 

placement time, without solving the machine optimization problems.  

4. A Mixed Integer Linear Programming (MILP) model has been established for 

the multi-line scheduling problem in PCB assembly. A reasonable objective 

and some practical constraints are considered in the model. The objective 

considers both due date satisfaction and production efficiency while giving a 

higher priority to due date satisfaction. Precedence constraints between jobs 

and sequence-dependent setup times are also considered to make the model 
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more realistic and applicable. Some test instances are generated and used to 

verify the established model. The instances are solved by a commercial LP 

solver, CPLEX. The testing results show that the established model is able to 

find effective solutions to the scheduling problem. However, while some 

small instances could be solved to optimality, the computational complexity 

is shown to be extremely great. Exact solutions are impossible for real-sized 

problems. 

5. In order to solve the multi-line scheduling problem efficiently, a specific 

genetic algorithm has been developed. In order to improve the performance of 

the GA, a new replacement strategy is proposed and used in the genetic 

algorithm. Experimental tests show that the algorithm using the new 

replacement strategy can obtain much better solutions than the algorithm 

using the replace-worst replacement strategy, which is one of the most 

commonly-used replacement strategies. The proposed GA method obtains the 

optimal results for all the instances that can be solved by CPLEX, with much 

less computational time. A case study on solving a realistic scheduling 

problem is also conducted. The results show that the proposed GA method is 

able to solve realistic multi-line scheduling problems. Compared to the 

solution obtained by the scheduling staff in the investigated manufacturer, the 

proposed GA method obtains a schedule with much smaller makespan while 

ensuring due date satisfaction. This shows that the proposed solution method 

can help the manufacturers to improve both production efficiency and 

customer satisfaction. 
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5.2 ACADEMIC CONTRIBUTIONS 

The planning problems in PCB assembly have been investigated by numerous 

researchers. Relative papers on this topic have been published in the operations 

research, industrial engineering and production management literature. The academic 

contributions of this research can be summarized as follows.  

First of all, the decomposed solution strategy proposed for the component 

allocation problem is an attempt to solve the higher-level planning problems 

effectively by relaxing the dependency on the lower-level planning problems. The 

successful implementation of this solution strategy indicates its potential use for 

solving other hierarchical planning problems.  

Second, a placement time estimator that can estimate the placement time for a 

PCB placement machine rapidly and accurately has been successfully established. 

Although the placement time is determined by the solutions to the complicated 

machine optimization problems, i.e., the feeder arrangement and placement sequence, 

it can be accurately estimated using the regression method. The successful 

development of the estimator provides an efficient way for obtaining objective values 

for a complicated planning problem without solving it. The approach might be 

important for applications like decision support systems.  

Third, results of experimental tests indicate that, for the genetic algorithm for 

the component allocation problem, the swap mutation operator and the fitness 

function considering both cycle time and total line time perform significantly better 

than the random-point mutation operator and the fitness function considering only 

cycle time, respectively. These findings are thought to be due to the line balancing 
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property of the component allocation problem. Therefore, the results may be 

transferable to other types of line balancing problems, although a further research is 

required. 

Fourth, a complete mathematical model has been established for the multi-

line scheduling problem in PCB assembly, which fills up a gap in the relative 

research. The established model is different from existing models in the literature, in 

that it considers a more reasonable objective and some practical constraints, which 

are realistic in many PCB manufacturing environments.  

Finally, a new replacement strategy has been proposed for the genetic 

algorithm and shown to be effective for improving the algorithm performance in 

solving the multi-line scheduling problem. The new replacement strategy can achieve 

a good balance between solution exploration and exploitation and thus improve the 

performance of the algorithm. The new replacement strategy may be helpful for 

solving other complicated optimization problems.  

 

5.3 POSSIBLE BENEFITS TO INDUSTRY 

The planning problems investigated in this research are quite common in 

many PCB manufacturers. The established approaches are important for the 

manufacturers to improve production efficiency while maintaining customer 

satisfaction.  

The established approach for the multi-line scheduling problem helps the 

manufacturers to make an effective schedule that considers both due date satisfaction 

and makespan reduction. Some realistic considerations are made in the established 
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model so that the solution is more applicable. These considerations include the 

sequence-dependent setup times, precedence requirements between jobs, ready times 

and due dates for the jobs, ready times for the assembly lines, etc. In addition, the 

approach allows PCB manufacturers to define relative importance for each order 

while optimizing the schedule. A realistic problem case is studied and it shows that 

the established approach can achieve a better scheduling result than the scheduling 

staff in the investigated manufacturing company. The makespan is reduced by 8.88%, 

indicating that production efficiency is improved. The production capacity of the 

company can be increased without further investment on the expensive assembly 

equipment.  

The established approach for the component allocation problem is important 

for improving the line throughput when a job is assigned to a specific assembly line. 

Experimental tests show that the proposed method can achieve better solutions than 

those obtained by the existing software provided by machine vendor. Since the 

established approach for the component allocation problem relies on the regression-

based placement time estimator, knowledge on technological specifications of the 

placement machines is not necessary. Nevertheless, even better solutions could be 

expected if the technological specifications about the machine are known. 

Furthermore, the proposed method is applicable to assembly lines with mixed-vendor 

machines, to which the vendor software is not applicable.  

 



CHAPTER 5: CONCLUSIONS AND FUTURE WORK 153 

5.4 FUTURE WORK 

 Due to the large variety of manufacturing environments in PCB assembly, 

certain limitations exist in this research. Some possible future work related to this 

research is suggested as follows. 

1. The placement time estimators for other types of placement machines should 

be established. 

In this research, the placement time estimator for a turret-type placement 

machine is established and shown to be effective for obtaining accurate 

estimates of placement time. However, due to different operation modes, the 

specification of the estimator for a different machine, e.g., a sequential pick-

and-place machine, may be different. The effectiveness of the regression 

method should be examined for other machine types.  

2. Other approaches can be tried for the placement time estimators. 

Although the regression method is shown to be effective for estimating the 

placement time for the turret-type machine, the effectiveness may not hold. 

Other methods can be considered in the development of the estimators in the 

future. One alternative is the neural network approach, which has shown to be 

as effective as the linear regression approach for developing TSP minimum 

tour estimator [Kwo95]. 

3. The component allocation problem with feeder duplication should be 

investigated. 

The component allocation problem investigated in this research does not 

consider feeder duplication, which allows the same components to be 
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assigned to more than one machine in the line. By intuition, feeder 

duplication is beneficial for reducing the line cycle time, although some PCB 

manufacturers do not consider feeder duplication due to the expensiveness of 

the feeders. However, the complexity of the component allocation problem 

greatly increases with feeder duplication for the problem not only determines 

the assignment of feeders to machines, but also the allocation of the same 

components to different machines.  

4. Integration of the approaches established in this research with the existing 

machine vendor software should be done to facilitate practical use in the 

industry.  

The solutions to the multi-line scheduling problem and the component 

allocation problem serve as input to the lowest-level machine optimization 

problems, i.e., the feeder arrangement and placement sequence for each 

single machine. Most PCB manufacturers currently use software packages 

provided by machine vendors for solving the machine optimization problems. 

Therefore, integration of the established approaches with the existing 

machine optimization software is necessary for practical use in the industry.  

 

Due to the ever-advancing technologies in PCB assembly, planning problems 

in PCB assembly are becoming more and more complicated. Solutions to these 

problems have been and will always be essential for improving production efficiency 

and maintaining customer satisfaction. The approaches and methodologies developed 

in this research are the results of a successful application of operations research 
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techniques in PCB assembly planning. Both industrial benefits and academic 

contributions of this research have been illustrated. Nevertheless, much research 

work should be done in the future to adopt the developed approaches in various and 

variable planning situations.  
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APPENDIX I 

DATA FOR THE TEST PCB WITH 61 COMPONENTS 

Number of components: 61 

Number of component types: 7 

Table I-1  Data for the PCB with 61 components 

Component 
Number Type X Y Component 

Number Type X Y 

1 1 303 167 32 3 102 319 
2 5 348 310 33 3 278 198 
3 4 151 297 34 3 352 293 
4 5 81 327 35 3 395 253 
5 6 106 109 36 5 344 156 
6 2 91 347 37 4 340 298 
7 2 92 90 38 5 22 124 
8 1 300 271 39 2 210 83 
9 5 445 118 40 2 156 43 
10 1 121 196 41 3 286 208 
11 2 277 341 42 2 394 73 
12 5 179 346 43 2 247 353 
13 2 443 121 44 3 121 3 
14 1 381 90 45 4 171 325 
15 3 163 45 46 3 363 331 
16 1 29 211 47 2 239 132 
17 5 164 342 48 5 91 212 
18 4 225 39 49 5 180 44 
19 2 113 294 50 2 90 308 
20 7 293 244 51 3 61 280 
21 2 73 13 52 4 243 353 
22 5 245 212 53 4 151 352 
23 4 95 112 54 3 255 259 
24 5 385 148 55 1 434 179 
25 5 1 251 56 1 397 341 
26 1 242 233 57 4 274 225 
27 1 299 18 58 2 1 259 
28 3 167 209 59 2 105 272 
29 4 269 148 60 4 81 300 
30 2 381 117 61 1 269 74 
31 2 198 260         
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APPENDIX II 

THE MLSP INSTANCE Test-n10k4 AND ITS SOLUTION  

 

Table II-1  Data for the MLSP instance Test-n10k4 

job 

number 

ready 

time

due 

datea if_frontb bk_jobc RoHSd pe 
i 

process timef 
g 

line 1 line 2 line 3 line 4 

1 0 18 0 \ 0 2 1000 4.23 5.68 5.24 

2 0 11 0 \ 1 3 2.45 2.36 2.45 2.65 

3 5 15 1 4 0 1 3.79 3.54 3.57 3.97 

4 0 9 0 \ 0 1 8.96 8.29 1000 8.08 

5 5 25 1 6 1 2 10.85 10.59 9.41 9.41 

6 0 19 0 \ 1 2 7.68 7.77 7.12 7.12 

7 0 8 1 8 0 1 1000 1000 8.28 6.89 

8 8 25 0 \ 1 1 6.42 11.83 7.22 7.90 

9 8 40 1 10 0 1 6.21 9.53 8.63 8.01 

10 10 27 0 \ 1 1 1000 11 10.65 10.41 

ready time of line 0 4 0 2.5 

initial RoHS status of lines 0 h 1 1 1 
a ready time for the job 
b due date for the job 
c indicator for a front-side job. Value one indicates that the job is a front-side job, zero otherwise 
d corresponding back-side job number 
e indicator for RoHS jobs. Value 1 indicates that the job processes RoHS boards, 0 otherwise 
f weight for tardiness penalty (weight for makespan penalty is set to 0.01) 
g process time for each job on each line. If a job cannot be processed on the line, the time is set to 

1000 
h

 
 initial RoHS status of the line 
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Optimal solution to Test-n10k4 obtained by CPLEX: 

 

Integer optimal 

Objective =   2.23110000000e-001 

Solution time = 1982 sec.   

Iterations = 24566571 

Nodes = 1054239 

 

Variable Name Solution Value Variable Name Solution Value 

Cmax   23.11 

x000201  1.000000  x020601  1.000000 

x060801  1.000000  x081101  1.000000 

x000102  1.000000  x010302  1.000000 

x030902  1.000000  x091102  1.000000 

x000503  1.000000  x051003  1.000000  

x101103  1.000000  x000704  1.000000 

x070404  1.000000  x041104  1.000000 

w0302   4.77   w0201   1.75 

w0601   4.78   w0902   8.58 

w1003   12.46   w0404   7.43 

w0704   0.27   w0102   0.27 

w0503   2.78   w0801   12.73 

All other variables are zero. 

 

 

 

 

 

 

 



APPENDIX II: THE MLSP INSTANCE Test-n10k4 AND ITS SOLUTION 174 

 

1.75
      Job 2

0.27
              Job 1

2.78
                              Job 5

0.27
                         Job 7

4.78
                              Job 6

4.77
          Job 3

12.46
                                 Job 10

7.43
                           Job 4

12.73
                        Job 8

8.58
                            Job 9

0 5 10 15 20 25

line 4

line 3

line 2

line 1

Time
(hours)  

Figure II-1  Optimal schedule for the instance Test-n10k4 shown as Gantt chart 
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APPENDIX III 

THE MLSP INSTANCE Test-n11k3 AND ITS SOLUTION  

 

Table III-1  Data for the MLSP instance Test-n11k3 

job 

number 

ready 

time

due 

datea if_frontb bk_jobc RoHSd pe 
i 

process timef 
g 

line 1 line 2 line 3 

1 5 20 0 \ 0 1 6.86 6.21 6.27 

2 0 09 0 \ 1 1 5.65 5.02 4.89 

3 4 15 1 4 0 2 1000 8.75 8.10 

4 0 18 0 \ 0 2 6.74 6.08 5.75 

5 0 25 1 6 1 1 8.41 8.02 8.56 

6 0 19 0 \ 1 3 5.12 4.87 4.90 

7 8 40 0 \ 0 2 3.65 3.05 1000 

8 10 27 0 \ 1 3 6.87 6.12 6.78 

9 5 16 0 \ 1 1 1000 4.57 3.54 

10 0 8 1 11 0 1 5.19 4.54 4.91 

11 8 25 0 \ 1 1 9.75 9.87 9.51 

ready time of line 1.48 0 0.78 

initial RoHS status of lines 0 h 1 1 
a ready time for the job 
b due date for the job 
c indicator for a front-side job. Value one indicates that the job is a front-side job, zero otherwise 
d corresponding back-side job number 
e indicator for RoHS jobs. Value 1 indicates that the job processes RoHS boards, 0 otherwise 
f weight for tardiness penalty (weight for makespan penalty is set to 0.01) 
g process time for each job on each line. If a job cannot be processed on the line, the time is set to 

1000 
h

 
 initial RoHS status of the line 
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Optimal solution to Test-n11k3 obtained by CPLEX: 

 

Integer optimal 

Objective =   2.10050000000e-000 

Solution time = 9670 sec.   

Iterations = 133680879 

Nodes = 6875180 

 

Variable Name Solution Value Variable Name Solution Value 

L11   1.050000  L01   0.790000 

Cmax   26.05 

x001001  1.000000  x100401  1.000000 

x041101  1.000000  x111201  1.000000 

x000202  1.000000  x020302  1.000000 

x030102  1.000000  x010702  1.000000 

x071202  1.000000  x000503  1.000000  

x050903  1.000000  x090603  1.000000 

x060803  1.000000  x081203  1.000000 

w0903   9.88   w1001   1.75 

w0702   21.06   w0102   14.58 

w0202   0.27    w0603   13.69 

w0803   18.86   w1101   16.30  

w0302   5.56   w0401   7.56 

w0503   1.05    

All other variables are zero. 
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Figure III-1  A Gantt chart for the optimal schedule of Test-n11k3 
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APPENDIX IV 

THE MLSP INSTANCE Test-n11k4 AND ITS SOLUTION  

 

Table IV-1  Data for the MLSP instance Test-n11k4 

job 

number 

ready 

time

due 

datea if_frontb bk_jobc RoHSd pe 
i 

process timef 
g 

line 1 line 2 line 3 line 4 

1 0 18 0 \ 0 2 1000 4.23 5.68 5.24 

2 0 11 0 \ 1 3 2.45 2.36 2.45 2.65 

3 5 15 1 4 0 1 3.79 3.54 3.57 3.97 

4 0 9 0 \ 0 1 8.96 8.29 1000 8.08 

5 5 25 1 6 1 2 10.85 10.59 9.41 9.41 

6 0 19 0 \ 1 2 7.68 7.77 7.12 7.12 

7 0 8 1 8 0 1 1000 1000 8.28 6.89 

8 8 25 0 \ 1 1 6.42 11.83 7.22 7.90 

9 8 40 1 10 0 1 6.21 9.53 8.63 8.01 

10 10 27 0 \ 1 1 1000 11 10.65 10.41 

11 0 15 0 \ 0 3 6.87 6.25 6.45 5.94 

ready time of line 0 4 0 2.5 

initial RoHS status of lines 0 h 1 1 1 
a ready time for the job 
b due date for the job 
c indicator for a front-side job. Value one indicates that the job is a front-side job, zero otherwise 
d corresponding back-side job number 
e indicator for RoHS jobs. Value 1 indicates that the job processes RoHS boards, 0 otherwise 
f weight for tardiness penalty (weight for makespan penalty is set to 0.01) 
g process time for each job on each line. If a job cannot be processed on the line, the time is set to 

1000 
h

 
 initial RoHS status of the line 
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Optimal solution to Test-n11k4 obtained by CPLEX: 

 

Integer optimal 

Objective =   8.14490000000e-000 

Solution time = 100198 sec. 

Iterations = 1863477209 

Nodes = 86954671 

 

Variable Name Solution Value Variable Name Solution Value 

L07    0.550000  L08   0.750000 

L04    6.080000  L10   0.490000 

Cmax   27.49 

x001101  1.000000  x110501  1.000000 

x051201  1.000000  x000302  1.000000 

x030102  1.000000  x010902  1.000000 

x091202  1.000000  x000703  1.000000 

x070603  1.000000  x060803  1.000000  

x081203  1.000000  x000204  1.000000 

x020404  1.000000  x041004  1.000000 

x101204  1.000000 

w1101   0.27   w0501   9.14 

w0302   5.00   w0102   8.81 

w0902   13.31   w0703   0.27 

w0603   11.14   w0803   18.53 

w0204   2.77   w0404   7.00 

w1004   17.08 

All other variables are zero. 
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Figure IV-1  A Gantt chart for the optimal schedule of Test-n11k4 
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APPENDIX V 

THE MLSP INSTANCE Test-n12k4 AND ITS SOLUTION  

 

Table V-1  Data for the MLSP instance Test-n12k4 

job 
number 

ready 
time

due 
datea if_frontb bk_jobc RoHSd pe 

i 
process timef 

g 
line 1 line 2 line 3 line 4 

1 0 15 0 \ 0 1 1000 5.23 4.68 5.24 
2 0 14 0 \ 1 1 2.45 3.36 2.45 2.65 
3 5 20 1 4 0 2 3.79 4.54 3.57 3.97 
4 5 20 0 \ 0 1 8.96 8.29 1000 8.08 
5 3 15 1 6 1 3 9.85 1000 10.41 10.41 
6 3 15 0 \ 1 1 7.68 7.77 8.12 8.12 
7 0 23 1 8 0 1 1000 1000 8.28 7.89 
8 8 22 0 \ 1 3 7.42 6.83 1000 7.90 
9 5 21 1 10 0 1 9.21 9.53 8.63 8.01 
10 5 21 0 \ 1 1 1000 11 10.65 10.41 
11 0 25 0 \ 0 1 6.87 7.25 6.45 1000 
12 0 24 0 \ 1 1 4.87 5.04 5.65 4.98 

ready time of line 3 0 0 0 
initial RoHS status of lines 0 h 0 1 0 

a ready time for the job 
b due date for the job 
c indicator for a front-side job. Value one indicates that the job is a front-side job, zero otherwise 
d corresponding back-side job number 
e indicator for RoHS jobs. Value 1 indicates that the job processes RoHS boards, 0 otherwise 
f weight for tardiness penalty (weight for makespan penalty is set to 0.01) 
g process time for each job on each line. If a job cannot be processed on the line, the time is set to 

1000 
h

 
 initial RoHS status of the line 
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Figure V-1  A Gantt chart for the GA solution of Test-n12k4 
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APPENDIX VI 

THE MLSP INSTANCE Test-n15k4 AND ITS SOLUTION  

 

Table VI-1  Data for the MLSP instance Test-n15k4 

job 
number 

ready 
time

due 
datea if_frontb bk_jobc RoHSd pe 

i 
process timef 

g 
line 1 line 2 line 3 line 4 

1 5 18 0 \ 1 1 9.20 9.32 8.14 8.78 
2 0 24 1 3 1 2 1000 1000 8.28 7.89 
3 0 24 0 \ 1 2 7.76 6.44 1000 7.56 
4 10 16 0 \ 0 1 4.81 5.15 5.54 4.41 
5 5 30 0 \ 0 3 2.67 3.45 2.57 2.68 
6 8 27 1 7 0 3 1000 5.88 4.43 5.07 
7 8 27 0 \ 0 3 9.08 1000 10.80 10.74 
8 5 20 0 \ 0 2 7.71 7.34 8.57 8.87 
9 6 26 0 \ 1 1 6.14 7.33 6.40 1000 
10 12 28 0 \ 1 1 1000 11.00 10.71 10.44 
11 5 26 0 \ 0 3 4.68 5.40 5.74 4.87 
12 0 30 1 13 0 1 3.98 4.70 3.41 3.89 
13 0 30 0 \ 0 1 8.76 8.01 1000 8.03 
14 2 25 0 \ 1 1 1000 11.21 10.87 10.55 
15 10 42 0 \ 0 1 6.57 7.01 6.70 1000 

ready time of line 2.7 1.4 0 0.50 
initial RoHS status of lines 1 h 0 0 1 

a ready time for the job 
b due date for the job 
c indicator for a front-side job. Value one indicates that the job is a front-side job, zero otherwise 
d corresponding back-side job number 
e indicator for RoHS jobs. Value 1 indicates that the job processes RoHS boards, 0 otherwise 
f weight for tardiness penalty (weight for makespan penalty is set to 0.01) 
g process time for each job on each line. If a job cannot be processed on the line, the time is set to 

1000 
h

 
 initial RoHS status of the line 
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Figure VI-1  A Gantt chart for the GA solution of Test-n15k4 
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