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ABSTRACT 

The objective of this thesis is to study the Localized Generalization Error Model (L-

GEM) for Multiple Classifier Systems (MCSs). L-GEM for a single classifier was proposed 

by Yeung (2007). It is based on the observation that it will not be reasonable to expect a 

classifier which is trained by using a set of learning samples to recognize unseen samples 

very different from the training set. The L-GEM provides an upper bound for the mean 

square error (MSE) of unseen samples in a neighborhood of each training sample.  

One significant application of the L-GEM is that it could be used as an objective 

function for base classifier training. The assumption of the same width for all dimensions of 

a hidden neuron in the initial version of the L-GEM is now relaxed. The parameters of a 

RBF network are selected by minimizing its localized generalization error bound. The 

characteristics of the proposed objective function are compared with those for regularization 

methods. For the problem of weight selection, RBF networks trained by minimizing the 

proposed objective function consistently outperform RBF networks trained by techniques 

such as Training Error Minimization, Tikhonov Regularization, Weight Decay or Locality 

Regularization. The proposed objective function is equally effective in the selection of three 

parameters simultaneously: center, width and weight. RBF networks trained by minimizing 

the proposed objective function yield better testing accuracies when compared to those 

which minimize training error only. 

A new dynamic fusion method for the construction of a MCS based on L-GEM is 

also proposed. This L-GEM based Fusion method (LFM) uses the L-GEM to estimate the 

local competence of the base classifiers in a MCS. Different from the current dynamic 
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classifier selection methods, the LFM estimates the performance of the base classifiers not 

only using the training samples but also points in local neighborhood regions. Experimental 

results show that a MCS using LFM has a good performance consistently in terms of testing 

classification accuracy and time complexity. The LFM is also compared with twenty one 

current dynamic fusion methods experimentally. The results show that the LFM yields better 

testing accuracies than other dynamic fusion methods. 

L-GEM has been extended from a single classifier system to a MCS, named L-

GEM
MCS

. L-GEM
MCS

 is closely related to the existing error model “Bias Ambiguity 

Decomposition”. L-GEM
MCS

 consists of four terms: base classifier training error, diversity 

of training error, base classifier sensitivity and diversity of sensitivity. The two terms, 

diversity of training error and diversity of sensitivity, are new concepts which could be used 

to characterize the interactions among the base classifiers in MCS. The meaning and 

relationship of these four terms are analyzed and discussed. L-GEM
MCS

 is shown to be 

useful in evaluating the generalization ability of a MCS. It can be used as a selection 

criterion for the best set of classifiers for the construction of a MCS from a pool of diverse 

base classifiers. 
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CHAPTER 1 
INTRODUCTION 

1.1 Pattern Classification 

Pattern classification is the organization of samples into different categories having 

similar properties. A number of samples are given as a training set. The objective of pattern 

classification is to construct a classifier, which learns the knowledge from the given training 

set, to recognize the unseen samples accurately. For example, we want to filter out spam 

mails in our email box. A number of spam mails and non-spam mails should be collected 

and given to the classifier for training purpose. The classifier will learn the difference 

between spam and non-spam mails from the training set. After training, the classifier can 

judge if an unseen email is a spam mail or not based on what the classifier has learnt. 

Obviously, the unseen samples and the training samples should have a certain level of 

similarity. Otherwise, the knowledge gained from the training set cannot help to identify the 

unseen samples correctly. 

1.2 Localized Generalization Error Model (L-GEM) 

A given training set is denoted D={(xi, yi)}
N

i 1= , where N is the number of training 

samples. xi is a n dimension vector denoting the i
th
 training sample,  [xi1, xi2,…, xin]

T
, n is the 

number of features and the superscript T is the vector transpose. yi represents the true class 

ID of xi and yi ∈{ωc}
C

c 1= , where C is the number of classes. The ultimate goal of the 
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classifier is to recognize unseen samples correctly. The ability can be represented by the 

generalization error. In this thesis it is defined, by using the mean square error, as: 

 
( ) ( )( ) ( )∫Ω Ω− dxxpxFxf

2

  (1.1) 

where Ω denotes the entire input space, f(x) is the trained function, F(x) is the target output 

and pΩ(x) denotes the true unknown probability density function of x. As a result, the 

objective of classification is to create a classifier which has a small value of the loss function 

defined in (1.1). 

However, the exact generalization error of a classifier cannot be computed. Many 

methods have been proposed to obtain an estimation on it. These methods can be 

categorized into analytical (e.g. Akaike information criterion (AIC) and VC-dimension), and 

empirical (e.g. cross-validation and bootstrap). However, the estimated values obtained by 

analytical methods are usually very loose or restrictive to a certain classifier [Cherkassky et 

al 1998, 1999, Watanabe 2001]. On the other hand, empirical methods rely on repetitive 

experiments using different training sets randomly selected from the original one. If the 

variance of the classifier is large, the resulting performance is usually not good [Hastie et al 

2001].  

Yeung et al [Ng et al 2007, Yeung et al 2007] proposed a new model called the 

Localized Generalization Error Model (L-GEM). As there is no information about unseen 

samples which are very different from the training set, a classifier cannot learn this part of 

the input space and subsequently the error of the classifier in that region is expected to be 

high. Therefore, it may be counterproductive to assess the generalization performance of the 

classifier on unseen samples very different from the training set. Hence it will be more 

sensible to develop a generalization error model for unseen samples located within a 

neighborhood of each of the training samples. The localized generalization error bound (R
*

Q) 
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is an upper bound for the mean square error (MSE) of unseen samples in a Q neighborhood 

of the training samples.  

The Q neighborhood is simply defined as the union of all Qi neighborhoods of the 

training sample xi. 

 
i

N

i

QQ
1=

= U  , (1.2) 

where { }qxxxxxQ ii ≤∆∆+== ;| , i=1..N, N is the number of training samples, xi∈D. 

When q=0, Qi={xi} and Q=D. When q → ∞, Q → Ω. Therefore, q is the parameter to 

control the size of the region being considered.  

 
Figure 1.1 Q neighborhood of an artificial training set in the input space 

Figure 1.1 illustrates the Q neighborhood of a two-dimensional training set. The 

localized generalization error in the Q neighborhood is defined as: 

 
( ) ( )( ) ( )∫ −=

Q
QQ dxxpxFxfR

2

. (1.3) 

pQ(x) denotes the probability density function of x in Q neighborhood. Since of Q ⊆ 

Ω, the relation between pΩ(x) and pQ(x) is as follows: 

 
)()( xpcxp Q⋅=Ω , (1.4) 
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where the probability of x appearing in Q-neighborhood is s, such as ∫ Ω=
Q

dxxpc )(  and x 

∈ Q.  

The derivation of the upper bound for (1.3) is presented as follows:  

QR ( ) ( )( ) ( )∫ ⋅−=
Q

Q dxxpxFxf
2  

( ) ( )( ) ( )∑ ∫
=






 ⋅−≤

N

i
Q

Q
i

dxxpxFxf
1

2  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )∑ ∫
=






 ⋅−+−+−=

N

i
Q

Qiiii
i

dxxpxFxFxFxfxfxf
1

2 . (1.5) 

Let ( ) ( )ii xfxfY −=∆ , ( ) ( )iii xFxferr −=  and ( ) ( )xFxFA ii −= . Equation (1.5) 

can be expressed as: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )∑ ∫
=






 ⋅−+−+−

N

i
Q

Qiiii
i

dxxpxFxFxFxfxfxf
1

2  

( ) ( )∑∫
=

⋅++∆=
N

i
Q

Qiii
i

dxxpAerrY
1

2  

( ) ( ) ( )
( )( ) ( )( ) ( )( )

( )∑∫
=

⋅










+∆+∆+

++∆
=

N

i
Q

Q

iiiiii

iii

i

dxxp
AerrAYerrY

AerrY

1

222

222
 

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )∑ ∫∑ ∫

∑ ∫∑ ∫

∑ ∫∑ ∫

==

==

==






 ⋅+





 ⋅∆+






 ⋅∆+





 ⋅+






 ⋅+





 ⋅∆=

N

i
Q

Qii

N

i
Q

Qii

N

i
Q

Qii

N

i
Q

Qi

N

i
Q

Qi

N

i
Q

Qi

ii

ii

ii

dxxpAerrdxxpAY

dxxperrYdxxpA

dxxperrdxxpY

11

11

2

1

2

1

2

22

2
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )∑ ∫∑ ∫

∑ ∫∑ ∫

∑ ∫∑ ∫

∑ ∫∑ ∫∑ ∫

==

==

==
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The derivation of the error bound (1.3, 1.5-1.6) is slightly different from the one 

given in [Ng et al 2008, Yeung et al 2007]. Here ε is removed since it is not necessary to be 

included. Assume that x is uniformly distributed in the Q neighborhood, we have: 
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where  ( ) ( )( )∑ −= =
2

1)/1( ii

N

iemp xFxfNR , ( ) ( )ii xfxfY −=∆  and A is the square root 

value of the difference between the maximum and minimum value of the target outputs. The 

value of A is fixed for a given dataset.  

In the L-GEM framework, a classifier with a smaller R
*

Q is preferred. It means that 

we would like to have a classifier with a small combined value of training error and 

sensitivity value. If classifier f yields a smaller R
*

Q than classifier g, then f is expected to a 

better generalization performance than g does. R
*

Q is used as selection criterion in many 

applications, such as model selection [Ng et al 2007, Yeung et al 2007], feature selection 

[Ng et al 2008, Yeung et al 2005] and sample selection [Chan et al 2005]. All experimental 

results have shown consistently good performances. 
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1.3 Multiple Classifier System (MCS) 

Instead of using a single classifier, one may combine the decisions of a number of 

classifiers to solve a classification problem. The goal of a MCS is to improve the 

performance of base classifiers by taking advantage of their collective wisdom. MCS is as 

the same as an ensemble of classifiers. The area of combining classifiers went through 

parallel routes in different research areas, for example, pattern recognition and data fusion. 

Therefore, there are various terms for the same notion. Kuncheva [Kuncheva 2001] 

collected sixteen different aliases, for example, multiple classifier system and ensemble of 

classifiers. The term MCS is used for the International Workshops on Multiple Classifier 

Systems [MCS Workshop] held since 2000. 

Figure (1.2) shows the architecture for a single classifier and a MCS. f represents a 

classifier and  f 
i
 represents a base classifier in a MCS, where i = 1..L and L is the total 

number of base classifiers in a MCS. y is the final decision. 

  
a) Single classifiers b) MCSs 

Figure 1.2 Architectures of single classifiers and MCSs 

For the case of a single classifier (Figure (1.2a)), one classifier makes the final 

decision.  However, in a MCS (Figure (1.2b)), the final decision is made by combining the 

decisions of a number of base classifiers using a fusion method. Some fusion methods make 

use of the information of the input x to determine their parameter settings (for instance, the 

weights). This relationship is represented by a dotted line.  
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The study of MCSs is motivated by a number of appealing reasons. For example, the 

concept of a MCS is a very familiar human experience. Many decisions, especially the 

important ones, are made by a group of people rather than by one person. It would have the 

advantage of easier acceptance by a majority of the people. Moreover, a complex problem 

can be broken down into smaller ones by a MCS. This makes the problems easier to be 

solved and understood. MCSs are also natural extensions of single classifiers. 

It is a view shared by many researchers that MCSs can outperform single classifiers. 

For example, Dietterich suggests three reasons why MCS might be better than a single 

classifier [Dietterich 2000a]. These three reasons are shown in Figure (1.3). f
*
 is the optimal 

classifier for the problem. The outer curve (H) represents the boundary curve for the region 

of all classifiers.  f1,  f2,  f3 and f4 are classifiers. 

   
a) Statistical View b) Computational View c) Representational View 

Figure 1.3 Three views by Dietterich 

Statistical View: A problem arises when the amount of training data available is too 

small compared to the size of the hypotheses space. Without sufficient data the learning 

algorithm can find many different hypotheses in H that all give the same accuracy on the 

training data. If one of these hypotheses is chosen based on a certain criteria, some 

potentially valuable information may be lost. There is also the risk of choosing the wrong 

one. Therefore, by constructing a MCS out of all these estimators, the algorithm can average 

their outputs and may avoid the above problem. Figure (1.3a) illustrates this situation. The 
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inner curve denotes the set of hypotheses that all give good accuracy on the training data. It 

is hoped that, by combining the base classifiers, the resultant classifier will be close to f
*
 

than a classifier randomly chosen from the “good classifier space”. 

Computational View: Many learning algorithms work by performing local search, 

e.g. back propagation in neural network and greedy splitting rule in decision tree. The local 

search may get stuck in local optima. This problem occurs even when there is sufficient 

training data. A MCS constructed by running the local search from many different starting 

points may provide a better approximation to the true unknown function than any of the 

individual classifiers, as shown in Figure (1.3b). 

Representational View: The complexity of the optimal classifier f
*
 cannot be 

known in most situations. As a result, the hypotheses in H cannot represent f
*
. By 

constructing MCSs, it may be possible to expand the space of classifiers. Figure (1.3c) 

illustrates this situation. 

1.4 Problem Statement 

MCS has shown to be a successful technique empirically [Bertolini et al 2009, Chen 

et al 2009, Dietterich 2000b, Ji et al 1997, Tumer et al 2003, Wolpert 1992], but it lacks the 

support of a theoretical justification for its claim on improved performance over single 

classifiers. A few models have been proposed to evaluate the generalization error of a MCS 

[Freund et al 1996, Krogh et al 1995, Tumer et al 1996a, 1996b, Ueda et al 1996]. However, 

they are mainly attempts to describe the generalization error of a MCS in terms of those for 

its base classifiers. Moreover, these models are difficult to use since some components in 

their error estimation model are not computable [Krogh et al 1995, Tumer et al 1996a, Ueda 

et al 1996]. In other cases the error bound could be very loose [Freund et al 1996]. 
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The major goal of this study is to develop a generalization error model for a MCS 

with the following characteristics: 

� To provide a measure of the generalization capability of the MCS 

� To enable a qualitative as well as a quantitative analysis of the relationship 

between the generalization capability of the MCS and its base classifiers 

� To possess ease of computability 

� To be applicable to a wide range of problems relevant to the study of MCSs 

such as dimensionality reduction, base classifier selection, base classifier 

training and fusion parameter selection  

1.5 Contributions of the Thesis 

The main contribution of this thesis can be separated into two categories: theoretical 

contribution and application: 

Theoretical Contribution 

� A comparison on the motivation, the interpretation and the settings of 

parameters between the L-GEM and the Regularization method (Chapter 2) 

for neural network training.  

� A new definition of the sensitivity measure for L-GEM (Chapter 3). 

Computational complexity is reduced and the flexibility increases with this 

new definition. 

� The derivation of the sensitivity measure for the MLP Neural Network and 

the RBF Network (Chapter 3 and Chapter 4). 
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� The derivation of the Localized Generalization Error Model for Multiple 

Classifiers System (L-GEM
MCS

) (Chapter 4). The properties of the L-

GEM
MCS

 are discussed. 

� A discussion on the four components of the L-GEM
MCS

: their meanings and 

relations
 
(Chapter 4).  

� A comparison between the Base Classifier Training Error (Err
base

) and the 

Diversity of the Base Classifier Training Errors (Err
div

) in the L-GEM
MCS

 on 

one hand, with the weighted error and ambiguity term in the Bias 

Ambiguity Decomposition
 
method on the other hand (Chapter 4). A direct 

relationship between Err
div

 and ambiguity was proved. 

� A new definition of the sensitivity terms for L-GEM
MCS 

(Chapter 4). The 

estimation of two sensitivity terms in L-GEM
MCS

 is also proposed. 

Application of L-GEM and L-GEMMCS 

� Proposing a new training method of the RBF network using the L-GEM as 

an objective function (Chapter 2). Well known training methods including 

the regularization method are compared with the L-GEM experimentally. 

� Using L-GEM to calculate the weights in a Dynamic Fusion method for 

MCSs (Chapter 3). The most suitable number of nearest neighborhoods is 

suggested by an empirical evidence. Twenty one current dynamic fusion 

methods are compared with L-GEM in the experiments.  

� MCS comparison using L-GEM
MCS 

(Chapter 4). The best MCS is selected 

from a pool of diversely trained MCSs.  
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� Proposing a new base classifier selection for MCSs using L-GEM
MCS

 

(Chapter 5). A subset of the base classifiers is selected to construct a better 

MCS comparing with the original one. 

1.6 Structure of the Thesis 

This thesis is organized as follows: 

Chapter 2 RBF Network Training 

A novel training objective function using L-GEM is proposed for a RBF network. 

The localized generalization error bound of the network is minimized with respect to its 

weight parameters. The proposed training objective function is compared with three well-

known training methods: Minimizing Training Error, Tikhonov Regularization and Weight 

Decay. Experimental results show that RBF networks trained by minimizing the proposed 

objective function consistently outperform other methods.  

Chapter 3 Dynamic Fusion Method for MCSs 

A new dynamic classifier fusion method named L-GEM Fusion Method (LFM) for 

MCSs is proposed. The localized generalization error upper bound for the neighborhood of a 

testing sample is used to estimate the local competence of the base classifiers in a MCS. 

Different from the recent dynamic classifier fusion methods, the proposed method considers 

not only the training error but also the sensitivities of the base classifiers. Experimental 

results show that the MCSs using LFM outperform other dynamic fusion methods. 

Chapter 4 L-GEM for MCSs (L-GEM
MCS

) 

The L-GEM for single classifiers is extended to the L-GEM
MCS

 for the case of MCSs. 

The L-GEM
MCS

 has a constant term plus four other terms: base classifier training error, 
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diversity of base classifier training error, base classifier sensitivity, and diversity of  base 

classifier sensitivity.  These terms are analyzed and discussed. Experimental result shows 

that MCSs selected using the L-GEM
MCS

 as a selection criteria is not only more accurate but 

also less complex (smaller number of base classifiers) than other methods. 

Chapter 5 Base Classifier Selection for MCSs 

Current methods for MCS construction may require the creation of a large number of 

base classifiers. However, some of the base classifiers may have no contribution to the 

improvement of the performance of the MCS. Pruning has been found to be a useful 

technique for performance improvement. L-GEM
MCS

 is used as a pruning criterion for better 

base classifier selection for a MCS, which is supported by experimental results. 

Chapter 6 Conclusion and Future Work 

The thesis is summarized and concluded. In addition several problems are suggested 

for future research. 
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CHAPTER 2  
RBF NETWORK TRAINING 

Training a classifier with good generalization capability is a major issue for pattern 

classification problems. However, the generalization error of a classifier cannot be 

computed. A common method to train a classifier f(x) is by minimizing the training error 

(empirical risk): 

 ( ) ( )( )∑
=

−=
N

i

iiemp xFxf
N

R
1

21
min  (2.1) 

It is well known that an over-fitting problem may occur if a classifier focuses too 

much on minimizing the training error which may lead to poor generalization capability. 

Regularization is a technique to address this problem. Essentially a regularization term is 

added to the training objective function to reduce the complexity of a classifier. It is based 

on the belief that a more “smooth’ classifier will lead to better generalization capability. 

However, the regularization technique suffers from the fact that, if the training set is not a 

good representation of the feature space, then it will be unreasonable to expect the trained 

classifier in recognizing unseen samples which are very different from the training ones, 

whether the classifier being smooth or not. A more meaningful approach is to select a 

learning objective function related to the generalization error bound. In this chapter, we 

propose a new learning objective function based on the Localized Generalization Error 

Model (L-GEM) developed by Yeung et al [Yeung et al 2007].  

A brief review of RBF training methods and regularization techniques is presented in 

Section 2.1. The new learning objective function is presented and applied to the Two- and 
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Three-Phase Learning Method in Section 2.2. Section 2.3 compares our proposed technique 

with the regularization one and the experimental results are presented in Section 2.4. Section 

2.5 concludes this chapter. 

2.1  Network Training Method 

RBF networks were first introduced in 1988 [Broomhead et al 1988]. They are 

motivated by the locally tuned responses observed in biologic neurons, e.g. the cells in 

visual cortex respond selectively to simulation which is both local in retinal position and 

local in angle of object orientation. This local behavior inspires the design of the RBF 

network.  RBF network is a standard three-layer feed-forward network: the first layer 

consisting of input units, a hidden layer containing the Gaussian function units and the last 

one being the output layer. The RBF network is defined as: 

 ( ) ( )∑
=

=
M

m

mm xxf
1

ϕα , (2.2) 

where M is the number of hidden neurons and ( ) 




 −−=

2

)2/()(exp)( mmm vuxxϕ  is the 

Gaussian function. αm is the m
th
 weight which indicates the importance of the m

th
 Gaussian 

output function. The mapping between the input layer and the hidden layer is nonlinear 

while the transformation from the hidden layer to the output layer is linear.  If the weight 

connected with a certain hidden neuron is close to zero, it means that particular hidden 

neuron has no significant effect on the final output. um is the center position of the Gaussian 

function, vm is the width of the m
th
 center which affects the generalization capability of that 

neuron. A hidden neuron with a larger width has more influence on the final output.  

In the training of a RBF network, after the number of neurons is determined, 

parameters such as center, width and weight will be tuned by using the training samples. F. 
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Schwenker et al [Schwenker et al 2001] categorize the RBF network training into two types: 

Two- and Three-Phase Learning.  

2.1.1 Two Phase Learning 

In the Two-Phase learning, the center and width are decided first. It takes advantage 

of the well-defined meanings of the RBF network parameters. The centers are highly related 

to the density of data points. Without using the class label, K-means [Kiernan et al 1996, 

Mendoza et al 2009, Moody 1991, Moody et al 1989] is the most typical method to divide 

the samples into different clusters. It minimizes the distance between the center and the 

samples in that cluster. Since class label is available in a classification problem, supervised 

method could be used. Learning Vector Quantization (LVQ) algorithm [Vogt 1993] was 

proposed by Kohonen [Kohonen 1990] for vector quantization and classification tasks. 

Different from the unsupervised clustering, each cluster center belongs to a class. A center is 

moved closer to samples in the same class and away from samples belonging to a different 

class. Decision tree [Kubat 1998, Yoo et al 1995] can be used to separate the feature space 

into different regions. Each region represents a center of the RBF network.  

The next step is the selection of the width for each center. The width can be 

determined by computing the variance of all samples in a cluster [Brizzotti et al 1999, De 

Castro et al 1999]. K-nearest-neighbor algorithm [Mak et al 1998, Musavi et al 1992, West 

et al 2009] is sometimes applied and the width is calculated as the mean of distances among 

the centers belonging to other k-nearest hidden neurons. The next phase is to find the 

weights after the centers and widths are decided. They can be easily found by linear 

optimization using any linear least-square method. Gradient Descent [Kiernan et al 1996] 

and Singular Value Decomposition (SVD) [Bruzzone et al 1999, Mak et al 1998] are two 

popular methods. The performance of a RBF network highly depends on the selections of 



CHAPTER 2 RBF NETWORK LEARNING 

 16 

the centers and the widths. However, current methods of tuning these parameters can not 

guarantee good classification result. 

2.1.2 Three Phase Learning 

A classifier trained by the Two-Phase Learning is adjusted again through a further 

optimization procedure in the Three-Phase Learning. The trained classifier is refined by an 

adaptation of all parameters simultaneously by the gradient descent method: 
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In [Meghabghab et al 2004, Montazer et al 2009, Schwenker et al 2001], the 

experimental results showed that the Three-Phase Learning method is better than the Two-

Phase Learning method. After a RBF network is trained, the gradient descent acts as a 

tuning method to refine the classifier. Hence, the number of learning iterations as well as the 

training time can be reduced. 

The objective of the training methods mentioned above is to minimize the mean 

square error (MSE) of the training set. However, the exclusive consideration of the training 

accuracy may lead to an ill-posed problem [Caruana et al 2000, Kon et al 2001, Krzyiak et 

al 1996]. Regularization methods are proposed to address this ill-posed problem.  

2.1.3 Regularization 
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A problem is ill-posed if it does not satisfy all three conditions: existence, 

uniqueness and continuity [Poggio et al 1990]. In most pattern classification problems, the 

information contained in a training set is not sufficient to determine uniquely the classifier in 

regions without samples [Poggio et al 1989]. For a given training set and a desirable 

performance level, many classifiers could be constructed to meet the given requirements 

with obviously different generalization capabilities, hence an ill-posed problem. To solve it, 

some prior knowledge is needed. Regularization assumes a smooth objective function. 

Smoothness means that two similar inputs correspond to two similar outputs. The main idea 

of regularization theory is to have a new training objective function which depends not only 

on the training error but also on the smoothness of the output function. 

 
( )fRR empregemp λφ+=+min

, (2.6) 

where λ is the regularization parameter which controls the trade-off between the training 

error and the smoothness of the classifier and ( )fφ  is the regularization term. The 

regularization term for the well-known Tikhonov regularization method [Chen et al 2000] is 

defined as ( ) 2/
2

Dff =φ , where D is a linear differential operator which is the Frechet 

differential of the Tikhonov functional [Haykin 1994, Tikhonov et al 1977], and it can be 

interpreted as the local linear approximation of the curve. This method makes the solution 

smooth and satisfying the property of continuity. Based on Tikhonov regularization theory, 

Poggio et al. proposed a regularization network in [Poggio et al 1990]. In a regularization 

network, the number of hidden neurons of the RBF network is exactly the same as the 

number of samples. However, the complexity of the RBF network is large when the training 

set is big. To overcome this problem, a generalized RBF network was proposed [Poggio et 

al 1990]. The generalized RBF network is an approximated solution of the regularization 

network. The number of hidden neurons of a generalized RBF network can be less than the 
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number of samples. Another well known regularization method is called weight decay or 

ridge regression [Ng 2004, Young et al 2007]. The regularization term in a weight decay 

method is the norm of weight, which is ( ) 2

2
αφ =f . Large α values cause large variations in 

the outputs of the classifier and may not achieve high predictive performance. Xue et al. 

[Xue et al 2008] proposed Locality Regularization (LR) which reduces the output 

differences of k-nearest training samples according to the L-GEM. In LR, the k value of 

each sample is the number of nearest samples which are in the same class. The 

regularization term is defined as the sensitivity measure, ( ) ααφ '
~
Kf T= , where 
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and K(xi,xj) is the Gaussian kernel. However, their sensitivity term is different from those 

defined in the L-GEM in the sense that their training objective function only considers the 

training samples, while the L-GEM takes into consideration unseen samples in a 

neighborhood of each training sample. Hence the sensitivity term in LR is not related to any 

generalization capability. Moreover, since the number of centers of RBF network is equal to 

the number of training samples, a large training set could result in a complex classifier. The 

figure  Figure (2.1) summarize these three regularization methods. 

 

Figure 2.1 Regularization methods 
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Conclusion 

In conclusion, only minimizing the training error may cause too complex classifiers. 

These complex classifiers will over-fit the training sample and their generalization ability is 

not expected to be good. The regularization technique was proposed to overcome the over-

fitting problem. However, in its attempt to achieve a smoother function, it may need to 

sacrifice the training accuracy. In other words, the classifier’s failure in recognizing some 

local points (certain training points and their neighboring points) may not be offset by any 

success in achieving a globally more smooth function, i.e., it may still fail to recognize 

unseen points very different from the training ones, be it smooth or not. This prompts a 

search for a more meaningful learning objective function which is more closely related to 

the generalization capability of the classifier.  

2.2 L-GEM as an Objective Function for Learning 

The regularization methods attempt to achieve a smoother classifier. However, the 

relation between smoothness and the generalization ability of a classifier is not clear. L-

GEM, which is the upper error bound of the unseen samples in the Q neighborhood, is tied 

to the generalization capability and it may be a more meaningful training objective function. 

In this section, a new learning model using L-GEM as an objective function is proposed and 

the properities of this model are discussed. The section is organized as follows: The 

proposed learning method with L-GEM is introduced in Section 2.2.1. Section 2.2.2 and 

2.2.3 discuss the properties of the new learning method. Finally, this new learning method is 

applied to Two- and Three-Phase Learning Method in Section 2.2.4 and 2.2.5.  

2.2.1 Learning Model with L-GEM 
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In this proposed training method, R
*

Q is used as the objective function. As A is fixed 

for a given dataset, they will not affect R
*

Q in training. Hence, these two parameters are 

ignored and the objective function is now defined as: 

 min ( )( )2
' iQempQ YERR ∆+= . (2.7) 

This objective function is used to adjust the weights. It could also be used to train the 

centers and widths for RBF network. Gradient descent is used to minimize this objective 

function. The parameter set ),,( ktktk vuP α=  is adjusted by a small distance in which the 

objective function decreases most rapidly. 
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whereγ is the training parameter which controls the size of the change in each 

update. The adaptation rule is defined by 
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2.2.2 Stopping Criteria 

The iterative learning process stops when a pre-selected number of iterations or a 

desired value of R
’
Q is achieved. Obviously, prior knowledge is needed to set these threshold 
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values. Other more practical criteria will depend on the changes of R
’
Q and |R

’
Q|. It is 

reasonable to stop the training if the performance change of the classifier is not significant.  

2.2.3 Time Complexity 

Let N denote the number of training samples, n be the number of features, M be the 

number of hidden neurons and e be the number of training epochs. The width, center and 

weight (αk, ukt, vkt) are updated once in each epoch by using all training samples. The time 

complexity of using R
’
Q as the training objective is O(eNMn

2
), in comparison with O(eNMn), 

which is the time required for training by minimizing the training error. 

2.2.4 Two-Phase Learning Method using R’
Q (2PLRQ) 

When R
’
Q is used in the Two-Phase Learning, only weight adaptation rule (∆α) will 

be used. The center and the width of a Gaussian function of the RBF network are 

determined by using clustering methods. Finally, the weight will be updated by ∆α using 

gradient descent to minimize the R
’
Q. This model will be used to compare R

’
Q with 

regularization method which only considers weight update. 

2.2.5 Three-Phase Learning Method using R’Q (3PLRQ) 

Considering that fact that the time complexity of R
’
Q is larger than other methods, 

and the performance of the Three-Phase Learning is better than the Two-Phase Learning 

with a reduced number of learning iterations, the Three-Phase Learning method is expected 

to be a good choice for R
’
Q .  

At first, the centers and widths of RBF network are determined by any method, e.g. 

the ones mentioned in Section 2.1. The weights are calculated by the Singular Value 

Decomposition (SVD) technique. Then the parameters of the trained network will be fine-

tuned by minimizing the objective function R
’
Q using the gradient descent method. 
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2.3 Comparison between R*
Q and Regularization 

2.3.1 Motivation 

L-GEM was developed with the observation that predictions of unseen samples far 

away from training samples are not reliable and could be misleading.  It provides a 

generalization error upper bound for unseen points within a neighborhood containing all 

training points. In L-GEM, a classifier with a small error bound (R
*

Q) is preferred. A small 

R
*

Q indicates that a classifier recognizes well the training samples and its outputs are stable 

in a neighborhood that contains the training samples. On the other hand, regularization is 

motived to address the ill-posed problems in pattern classification. Only minimizing the 

training error in learning may result in many solutions. Additional prior information is 

assumed to make the problem well-posed. Smoothness is a reasonable assumption in 

approximation [Poggio et al 1990]. Smoothness means that a small change in input will 

cause a small change in output. A smooth classifier with small training error is preferred for 

regularization. 

2.3.2 Sensitivity and Regularization Term 

The formula of R
*

Q consists of four terms: training error, sensitivity measure, A and ε. 

Since A and ε are fixed for a given training set, only training error and sensitivity measure 

will affect the classifier’s performance during the training. This framework is similar to the 

regularization method which minimizes the training error and the regularization term. The 

only thing different is between the sensitivity measure and the regularization term. However, 

it is noted that the relation between training error and sensitivity measure in the L-GEM is 

nonlinear.  

Sensitivity measure is defined as the mean value of the squared output differences 

between training and unseen samples within its Q neighborhood. The value of the sensitivity 
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measure is large when the output differences between unseen samples in the Q 

neighborhood and training samples are large. It means that the outputs of the trained 

classifier change substantially when the differences in inputs are relatively small. Classifiers 

with relatively large sensitivity values are not preferred in the L-GEM framework. 

Regularization assumes a smooth target function. Smoothness means small changes in some 

input parameters yield a correspondingly small change in the outputs. Different 

regularization methods have different regularization terms. Tikhonov Regularization 

considers the differentiation of the function and Weight Decay focuses on the values of the 

weights. As a result, a smoother classifier is trained. Conceptually, minimization of 

sensitivity measure and regularization term is the same and both try to stabilize the outputs. 

On the other hand, the sensitivity measure can be shown to be a special case of the weight 

decay. Let 
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The sensitivity term can be written as: 

 ( )( ) ( )
( )

( )

( )
( )∑∑

∑

∑

==

=

= =









































+

−+

















−
≈∆

M

j

jj

M

j
n

i ji

n

i ji

jixx

j

j

jiQ V

v
q

v

u

sE

s
q

YE

ii

1

2

1

1
4

2

1
4

22

2
2

2

1

3

2.0
2

var

exp
3

α

µσ

α .  (2.14) 

This expression is similar to the one obtained in [Poggio et al 1990] which shows 

that the sensitivity measure is a weighted norm of weights. Here the sensitivity measure 

appears as a special form of the regularization term in Weight Decay which is ( )∑ =

M

j jj1

2αλ . 

Comparison of Equation (2.14) and ( )∑ =

M

j jj1

2αλ indicates that V plays a role similar to the 

trade-off parameter (λ) in the regularization method, balancing the training error and the 
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smoothness minimization. In summary, the regularization method minimizes the smoothness 

of a classifier in the whole input space while the sensitivity measure only concerns the 

outputs of the classifier in the Q neighborhood. In this sense, the sensitivity measure is a 

special case of the regularization term. If some parts of the input space do not contain any 

training sample, a classifier cannot learn in those parts since no information is provided. As 

a result, considering the smoothness of outputs in the whole space may not be necessary.  

Although the appearance of the sensitivity measure and the regularization term is 

similar, their interpretations and derivations are very different. Sensitivity measure is closely 

tied to the generalization error and it affects the value of R
’
Q. Minimizing the training error 

and the sensitivity measure together can reduce the error bound of the unseen samples in the 

Q neighborhood. On the other hand, it is not clear how the regularization term is related to 

the generalization ability of a classifier. It is intended to measure the smoothness of a 

classifier. As a result, a classifier which is smooth with good training error is constructed. 

Therefore, learning by using the localized generalization error is intuitively more relevant to 

the ultimate objective of training a classifier. 

2.3.3 Parameter Determination 

The regularization parameter (λ) in the regularization term controls the trade-off 

between the training accuracy and the smoothness of the classifier. When λ = 0, the 

regularization term is ignored. When λ → ∞, the regularization term dominates the training 

and the training samples are neglected. The selection of the value of λ is critical and it 

affects significantly the performance of the trained classifier. Prior information about the 

classification is needed or cross validation method is used for determining λ. The role of q in 

R
’
Q is similar to λ. In L-GEM, q controls the size of the Q neighborhood which contains the 

training set.  
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Given a set of training samples and predefined center, width and weight of a RBF 

network, the sensitivity measure could be shown as an increasing function of q. A larger q 

means that a bigger Q neighborhood is considered. Hence the sensitivity measure is the 

dominating factor in R
’
Q and the effect of the training error will be reduced. On the other 

hand, when q is small, the importance of the training error increases since the neighborhood 

will become smaller. The special case when q = 0 reduces the problem to the minimization 

of the training error only. This is similar to the situation when λ = 0. When q → ∞, the 

sensitivity measure also tends to infinity and the effect of the training error becomes 

insignificant. Therefore, q may be viewed as a trade-off parameter to regulate the 

importance between the training error and the sensitive measure. Cross validation can also 

be used to determine q if no prior information is available. However, there is a significant 

difference between λ and q. While λ is considered as a trade-off parameter between the 

training error and the regularization function, q offers a geometric interpretation in the input 

space. Any available information on the input data distribution may be useful for 
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determining the size of q. For example, in Figure (2.2), some of the samples from the two 

classes are quite close to each other. In this case, q is not expected to be too large. The 

decision boundary trained by R
’
Q with q = 0.01 (Figure (2.2b)) performs better than the one 

trained with q = 0.1 (Figure (2.2a)). 

  
a) q=0.1 b) q=0.01 

Figure 2.2 The decision plane of RBF network using R’
Q with different q values on an artificial dataset. “O” and 

“X” represent the samples in different classes. The white and the gray areas represent the decision regions of the 

RBF network. 

Let P be the pairwise distance from any sample of class 1 to any sample of class 2. 

Three intuitive determination methods of q using the geometric information from the 

training samples are proposed. 1) Average of all P values (Average), 2) The minimum of al 

P values (Shortest) and 3) The average of the smallest 1% among all P values (1% Average). 

The shape of the Qi neighborhood is a square and the q is the half of the width of the 

square. The Euclidean Distance is not a suitable distance measurement in this situation. The 

Chebyshev Distance, also named “Maximum Value Distance” is applied and defined as: 

 
( )||max),( 21

1
21 kk

nk
xxxxd −=

≤≤ , (2.16) 

where xi, xik and n denotes the training sample, one of its feature despondingly and number 

of features.  
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Four datatsets, which are Connectionist, Credit Approval, Dermatology and Heart, of 

UCI Machine Learning repository [MLR] are used. Each dataset is equally divided into two 

parts randomly: training and testing. Only samples in the training set are used during 

training. The samples in the testing set are reserved to evaluate the performances of the 

trained classifiers. The experiment generates ten independent runs for each pair of dataset. 

The inputs of all samples are normalized to [0, 1]. RBF network is applied in this 

experiment. The center and width of the RBF network are determined by K-mean and K-

nearest-neighbor algorithm respectively. Scatter-Based Clustering (SBC) [Sohn et al 1997] 

is used to find the number of centers. RQ
’
 is applied as the training objective function to 

decide the weight. q is determined by the three intuitive methods (Average, Shortest and 1% 

Average) and Cross Validation (CV). In CV, q = {0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 

0.225, 0.25} are tested.  

Table 2.1 CV VS Other q Determination Methods using Geomatric Information 

Average Classification Accuracy of Testing Set over Ten Independent Runs 
  CV Average Shortest 1% Average 

Acc 79.20 69.64 75.85 79.31 Connectionist 

q 0.140 0.381 0.122 0.154 

Acc 87.62 80.36 83.01 86.98 Credit Approval 

q 0.160 0.487 0.033 0.124 

Acc 98.41 92.89 95.77 98.32 Dermatology 

q 0.250 0.481 0.167 0.223 

Acc 80.61 71.74 81.20 78.93 Heart 

q 0.120 0.493 0.104 0.165 

Average Acc 86.46 78.66 83.96 85.89 

 

Table (2.1) shows that the average classification accuracy of testing set. Although 

the CV has the best result, it is a trail and error technique. The three geometric based 

methods are more time efficient and some of them (i.e., the 1% Average) could perform 

almost as well as the CV method. 

2.3.4 Flexibility 

Generally speaking, the regularization technique can be applied to any learning 

method and it is more flexible than the L-GEM. However, there are constraints on 
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regularization technique as well. For example, Tikhonov Regularization can only be applied 

to a differentiable function, while L-GEM has no such restriction. On the other hand, L-

GEM is a general concept and can be applied in many different applications. However, it 

cannot be applied to those classifiers in which the R
*

Q is not avaliable, e.g. rule-based 

systems.   

2.3.5 Conclusion 

In conclusion, sensitivity measure and regularization are similar concepts. Both 

describe the complexity of a classifier. The shapes of decision boundary of classifiers 

trained by 2PLRQ and the regularization method are also smoother than the boundaries 

trained by non-regularization methods. However, the classifier trained by the 2PLRQ is more 

stable in neighborhoods near the training samples. Using R
’
Q as a training objective function 

is more suitable since it is derived from error bounds of unseen samples in the Q 

neighborhood. The experimental performances of the classifiers trained by using L-GEM 

(R
’
Q) and the regularization (Remp+reg) methods will be analyzed and discussed in the next 

session. 

2.4 Comparing the Experimental Results of the 2PLRQ and 
3PLRQ with Others 

In this section, the performance of the 2PLRQ will be analyzed and compared with 

several well-known methods experimentally. Eighteen datasets shown in Table (2.2) from 

the UCI Machine Learning repository [MLR] and Intelligent Data Analysis Group [DAG] 

have been used. They cover a wide range of applications involving two-class and multi-class 

problems. Each dataset is equally divided into two parts randomly: training and testing. The 

experiment generates twenty independent runs for each pair of dataset. Only samples in the 
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training set are used during training. The samples in the testing set are reserved to evaluate 

the performances of the trained classifiers. The inputs of all samples are normalized to [0, 1]. 

Table 2.2 Eighteen Datasets 

Dataset # Class  # Sample  # Feature  

Breast Cancer Wisconsin 2 569 32 

Car Evaluation 4 1728 6 

Connectionist 2 208 60 

Credit Approval 2 690 15 

Dermatology 6 366 34 

Pima Indians Diabetes 2 768 8 

Solar Flare 2 1389 10 

German Credit Data 2 1000 20 

Glass Identification 7 214 10 

Heart 2 270 13 

Hepatitis 2 155 19 

Ionosphere 2 351 34 

Iris 3 150 4 

Thyroid 2 215 5 

Tic-Tac-Toe Endgame 2 958 9 

Titanic 2 2201 3 

Waveform  3 5000 21 

Wine 3 173 13 

 

The experimental results of the 2PLRQ and regularization methods are compared and 

analyzed in Section 2.4.1. 3PLRQ is then compared with Three-Phase Learning using the 

training error as an objective function in Section 2.4.2. Finally, a special situation when the 

training set does not represent the testing set is discussed in Section 2.4.3. 

2.4.1 Comparing the Experimental Results of the 2PLRQ with 
Regularization Methods 

The performances of the 2PLRQ and the well known regularization methods of a 

RBF networks are compared. Generalized RBF network (GRBF), Weight Decay (WD), 

Locality Regularization (LR) and two training methods with MSE training (Singular Value 

Decomposition (SVD) and Gradient Descent with training error (GD)) are considered. As 

these regularization methods are only concerned with weight learning, it is only appropriate 
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to consider the adaptation rule of weights in R
’
Q and the 2PLRQ is used in experiments in 

this section.  

Examples of the decision boundaries of RBF networks trained by these methods are 

illustrated in 2.4.1.1 and their generalization abilities are compared in 2.4.1.2. 

2.4.1.1 Visualization of Decision Boundary of a RBF network 

The shapes of the decision boundary of RBF network trained by different weight 

learning methods are discussed in this section. The Banana dataset is used for this 

illustration. It is a 2-class dataset with 2 features and it can be plotted on a 2-dimenssional 

graph. Figure (2.3) shows that the most complex decision plane is the one trained by LR by 

using all training points as centers. Although the regularization term helps to reduce the 

complexity, the decision plane is still “not smooth”. As SVD and GD only focus on the 

training error, the shapes of the resulting decision planes are more complex comparing with 

those obtained by GRBF, WD and 2PLRQ.  The decision planes for GRBF, WD and 2PLRQ 

are similar. They are smooth in general and also separate the samples from different classes.  

To further investigate the results obtained by GRBF, WD and 2PLRQ, three 

dimensional graphs are plotted. For a two-class problem, two functions f1 and f2 are trained 

to represent the two classes. A sample point x is class 1 if f1 (x) > f2 (x); otherwise it is class 

2. The two functions f1 and f2 for GRBF, WD and 2PLRQ are shown in Figures (2.4a1), 

(2.4b1) and (2.4c1) respectively. Figures (2.4a2), (2.4b2) and (2.4c2) show the function 

output (f) against feature 2 (X2) while the function output (f) against feature 1 (X1) is shown 

in Figures (2.4a3), (2.4b3) and (2.4c3). The normalized samples are located between 0 and 1 

and our discussion below makes reference to the region bounded by the two dotted lines. For 

ease of discussion “the top” shall refer to outputs above 0, and “the bottom” for outputs 

below 0. 
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The outputs of the classifiers trained by 2PLRQ, WD and GRBF against the feature 

X2 are shown in Figures (2.4a2), (2.4b2) and (2.4c2). Although f2 of WD is somewhat stable 

at the top, the outputs of f1 change significantly and form two crests. Moreover, f1 increases 

while f2 decreases over [0,1] at the bottom. For the GRBF, f1 (f2) are decreasing (increasing) 

within [0,1], both in the top and the bottom. On the contrary, the outputs of f1 trained by 

2PLRQ are quite stable at the top and change only slightly at the bottom. Although f2 forms a 

crest at the top, its outputs are stable at the bottom. From Figures (2.4a2), (2.4b2) and 

(2.3c2), the classifier trained by the PLRQ seems to be smoother in general than those 

trained by the GRBF or the WD. From Figures (2.4a3), (2.4b3) and (2.4c3), f1 and f2 of the 

WD and the GRBF form two or three crests with different heights at the top, while at the 

bottom, f1 increases and f2 decreases in [0,1].  On the other hand, f1 and f2 trained by the 

PLRQ are simpler in shape. At the top, f2 has only one crest and it is near 0 at the bottom. 

The heights of the two crests of f1 are very similar, so its outputs will be more stable 

comparing with the classifiers trained by the WD and the GRBF.  
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a) Singular Value Decomposition b) Gradient Descent c) Weight Decay 

d) Generalized RBF network e) Locality Regularization f) 2PLRQ 

Figure 2.3 The decision planes of the RBF network using different weight learning methods on the Banana 

Dataset. “O” and “X” represent the samples in different classes.  

The white and gray areas represent the decision regions of the RBF network. 

  
a1) Weight Decay b1) Generalized RBF network 

 

 
c1) 2PLRQ 
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a2) Weight Decay 

(f X2-axis) 

a3) Weight Decay 

(f X1-axis) 

 

  
b2) Generalized RBF network 

(f X2-axis) 

b3) Generalized RBF network 

(f X1-axis) 

 

  
c2) 2PLRQ 

(f X2-axis) 

c3) 2PLRQ 

(f X1-axis) 

 

Figure 2.4 The functions of RBF network  

using weight decay regularization, Generalized RBF network and 2PLRQ.  

2.4.1.2 Comparison of Generalization Capability 

The objective of this experiment is to compare the generalization capability of the 

RBF network with different weight learning methods. The center and width of the RBF 

classifier are determined first. Then the weights are computed by different learning methods. 
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K-mean (Km), Learning Vector Quantization (LVQ) and Decision tree (DT) are used to find 

the center, and Scatter-Based Clustering (SBC) [Sohn et al 1997] is used to find the number 

of centers for K-mean and Learning Vector Quantization. SBC method was chosen since it 

is independent of any training method. Since the number of centers for the LR is equal to the 

number of training samples, LR is not affected by these clustering methods. The width is 

calculated using the K-nearest-neighbor algorithm (Knn) and the variance method (Var). 

Assuming that no prior information is available, a suitable value for λ (q) is determined by 

cross validation [Haykin 1994] for the regularization method (R
’
Q). 

The average percentage of classification accuracy and its variances of the testing sets 

over twenty independent runs are shown in Table (2.3). Each dataset contains seven rows. 

For each row, an experiment using different center and width selection methods is 

performed. For example, the first row shows results using the Km, and the K-nn. The 

seventh row is the average value of the six experiments with a total of 120 independent runs. 

Each column represents a different weight learning method. The Student’s t-test is applied to 

examine the statistical significance of the performance made by 2PLRQ against the other 

methods. The value of student’s t-test between the 2PLRQ and other methods is shown in the 

bracket. When the absolute t-value is larger than 2.02 (1.98) in each experiment (for the 

average of all experiments), the result is significant at the 95% probability level. The value 

is bolded and underlined in the cell if the performance of 2PLRQ is better than that specific 

method at a 95% significance level.  

The experimental results show that the selection of the center and the width affects 

the performance of the RBF network significantly. Generally, the RBF network using the 

DT as the center selection method yields the lowest testing classification accuracy while the 

Km method performs the best. For the Thyroid case, the average performance by the DT is 

72.95%, while LVQ is 87.17% and Km is 89.34%. When the width is decided using the Knn, 
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the performance of the RBF network is better than the one using the Var. For example, the 

average testing accuracy of using Var is 78.78% and the Knn yields 87.52% for the Thyroid 

dataset. It is not surprising that the overall performance of using Km and Knn is the best 

while the one using DT and Var is the worst. Again for the Thyroid case, the Km and the 

Knn is 94.02% and the DT and Var is 65.35%.  

Table (2.3) also demonstrates that, in general, GRBF and WD perform better than 

SVD and GD. Our results are in agreement with existing findings [Bishop 1995, Ma et al 

2001, Moody 1991]. This is due to the fact that the regularization term can be used to 

improve the generalization capability of a classifier. 

The 2PLRQ outperforms all other weight learning methods. Although sometimes the 

performance of 2PLRQ is worse than others when a particular center and width 

determination method is used, the average result of 2PLRQ is always better than SVD, GD, 

GRBF and WD. For example, in the case of Breast Cancer, GRBF is 0.3% better than 

2PLRQ when Km and Knn are used while the average testing accuracy of GRBF is 0.77% 

lower than 2PLRQ. The improvement of 2PLRQ is significant in most cases. The LR uses all 

training samples as centers, hence its performance is independent of any center selection 

method. This explains why the poor performance of using DT does not affect the LR method, 

and in some cases the average testing accuracy of LR is better than 2PLRQ. For example, , 

the average testing accuracy of the Connectionist dataset using the LR is 72.07% and that of 

using the 2PLRQ is 70.71%. When a more suitable center and width selection method like 

the Km and the Knn is used, the performance of the 2PLRQ is much better than that of the 

LR.  

The average training time and the average number of neurons are shown in Table 

(2.4). For the training time, since the weights can be found by using inverse method for 

SVD, GRBF and WD, the process is very fast. For the GD, LR and 2PLRQ, the learning 
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time is much longer since the gradient descent method is used. The training time of LR is 

the longest since it uses the large number of centers. The GD only considers the training 

error as its objective function which is simpler than the R
’
Q. Hence, a shorter time is needed 

for the GD.  

In conclusion, the experimental results show that for a predefined set of centers and 

widths for RBF network, the 2PLRQ can train a set of weights which offer better 

generalization capability in comparison with other methods. This indicates that minimizing 

the smoothness of a classifier is not enough to achieve a better generalization capability. R
’
Q 

may be considered as a more suitable objective function to reduce the generalization error. 

However, the long training time of 2PLRQ is a major concern. In the next section, it will be 

shown that by applying the R
’
Q to the 3PLRQ, the training time could be reduced. 

Table 2.3 2PLRQ VS Other Methods (Training of Weights for a predefined set of centers and widths) 

Average Classification Accuracy, Variance and Student's t-test Value (In Brackets) of Testing Set over Twenty 

Independent Runs 
 Center, Width 

Selection 

Method 

SVD GD WD GRBF LR* 2PLRQ 

Km, K-nn 93.17 ± 0.01 (8.03) 92.99 ± 0.17 (3.19) 94.05 ± 0.10 (2.69) 96.36 ± 0.02 (-0.76) 96.06 ± 0.01 

LVQ, K-nn 91.71 ± 0.01 (4.85) 91.54 ± 0.01 (5.27) 92.70 ± 0.02 (1.54) 90.78 ± 0.02 (6.42) 93.30 ± 0.01 

DT, K-nn 95.02 ± 0.02 (0.76) 92.56 ± 0.52 (1.70) 94.64 ± 0.29 (0.77) 95.65 ± 0.07 (0.21) 

89.88 ± 0.08 (9.15) 

89.88 ± 0.08 (5.14) 

89.88 ± 0.08 (4.63) 95.92 ± 0.26 

Km, Var 93.47 ± 0.03 (2.55) 93.72 ± 0.02 (2.19) 92.57 ± 0.02 (4.35) 94.39 ± 0.03 (0.80) 94.81 ± 0.03 

LVQ, Var 88.36 ± 0.02 (8.64) 89.19 ± 0.04 (6.09) 89.09 ± 0.02 (6.99) 91.44 ± 0.03 (2.60) 92.96 ± 0.04 

DT, Var 63.89 ± 0.78 (0.41) 63.71 ± 0.90 (0.46) 64.94 ± 0.83 (0.04) 64.82 ± 0.82 (0.09) 

83.45 ± 0.41 (7.64) 

83.45 ± 0.41 (6.34) 

83.45 ± 0.41 (-7.34) 65.07 ± 0.84 B
re

as
t 

C
an

ce
r 

Average 87.60 ± 0.88 (1.57) 87.28 ± 1.02 (1.75) 88.00 ± 0.56 (1.38) 88.91 ± 1.29 (0.54) 86.66 ± 0.19 (2.78) 89.69 ± 1.23 

Km, K-nn 89.48 ± 0.02 (7.03) 90.78 ± 0.03 (3.59) 90.37 ± 0.02 (5.05) 91.19 ± 0.02 (3.18) 92.58 ± 0.02 

LVQ, K-nn 78.71 ± 0.18 (2.41) 80.50 ± 0.24 (1.01) 80.30 ± 0.24 (1.15) 79.58 ± 0.20 (1.72) 81.97 ± 0.19 

DT, K-nn 88.15 ± 0.01 (7.96) 90.15 ± 0.01 (1.86) 90.10 ± 0.01 (2.04) 90.08 ± 0.01 (2.19) 

79.66 ± 0.21 (11.99) 

79.66 ± 0.21 (1.64) 

79.66 ± 0.21 (10.52) 90.78 ± 0.01 

Km, Var 86.22 ± 0.12 (2.29) 82.15 ± 0.31 (4.32) 86.45 ± 0.22 (1.86) 88.66 ± 0.06 (0.46) 89.19 ± 0.22 

LVQ, Var 62.95 ± 0.23 (2.02) 63.51 ± 1.57 (0.82) 64.45 ± 0.70 (0.71) 64.86 ± 0.41 (0.62) 65.97 ± 0.22 

DT, Var 84.81 ± 0.02 (2.10) 81.43 ± 1.55 (2.18) 84.90 ± 1.07 (1.28) 85.30 ± 0.04 (1.80) 

88.05 ± 0.03 (1.02) 

88.05 ± 0.03 (-19.53) 

88.05 ± 0.03 (0.32) 88.64 ± 0.65 

C
ar

 

Average 81.72 ± 0.89 (2.46) 81.42 ± 2.15 (2.12) 82.76 ± 1.02 (1.61) 83.28 ± 0.96 (1.23) 83.85 ± 0.31 (0.96) 84.86 ± 1.01 

Km, K-nn 76.80 ± 0.13 (2.40) 78.60 ± 0.13 (0.73) 78.63 ± 0.13 (0.70) 78.60 ± 0.25 (0.59) 79.40 ± 0.11 

LVQ, K-nn 66.40 ± 0.01 (5.23) 67.20 ± 0.30 (2.64) 67.57 ± 0.30 (2.38) 67.40 ± 0.36 (2.37) 71.20 ± 0.16 

DT, K-nn 78.80 ± 0.00 (2.24) 79.40 ± 0.01 (-0.89) 79.05 ± 0.04 (0.30) 79.20 ± 0.08 (0.00) 

70.73 ± 0.13 (7.88) 

70.73 ± 0.13 (0.39) 

70.73 ± 0.13 (10.19) 79.20 ± 0.00 

Km, Var 65.80 ± 0.06 (2.26) 65.00 ± 0.05 (3.05) 65.31 ± 0.05 (2.73) 64.80 ± 0.13 (2.80) 68.20 ± 0.17 

LVQ, Var 63.20 ± 0.27 (0.02) 57.60 ± 0.00 (4.86) 62.89 ± 0.13 (0.24) 61.60 ± 0.00 (1.41) 63.24 ± 0.27 

DT, Var 61.60 ± 0.55 (0.57) 61.40 ± 0.57 (0.65) 61.51 ± 0.57 (0.61) 61.20 ± 0.57 (0.73) 

73.40 ± 0.17 (-4.02) 

73.40 ± 0.17 (-6.89) 

73.40 ± 0.17 (-5.19) 63.00 ± 0.64 C
o

n
n

ec
ti

o
n

is
t 

Average 68.77 ± 0.64 (1.88) 68.20 ± 1.01 (2.13) 69.16 ± 0.75 (1.43) 68.80 ± 1.08 (1.59) 72.07 ± 0.02 (-1.83) 70.71 ± 0.64 

Km, K-nn 84.75 ± 0.01 (8.15) 84.68 ± 0.01 (8.61) 85.99 ± 0.02 (3.98) 85.96 ± 0.01 (5.15) 87.89 ± 0.02 

LVQ, K-nn 83.23 ± 0.02 (5.49) 85.06 ± 0.06 (0.91) 82.56 ± 0.03 (6.13) 85.27 ± 0.04 (0.68) 85.65 ± 0.02 

DT, K-nn 75.36 ± 0.13 (2.87) 77.03 ± 0.64 (0.93) 76.72 ± 0.46 (1.23) 75.35 ± 0.36 (2.18) 

84.08 ± 0.06 (5.75) 

84.08 ± 0.06 (2.41) 

84.08 ± 0.06 (-4.72) 78.91 ± 0.18 

Km, Var 81.78 ± 0.34 (0.46) 80.06 ± 0.44 (1.19) 81.56 ± 0.61 (0.50) 82.71 ± 0.34 (0.03) 82.77 ± 0.59 

LVQ, Var 82.92 ± 0.00 (19.26) 83.06 ± 0.01 (14.56) 86.45 ± 0.01 (0.08) 86.37 ± 0.01 (0.40) 86.47 ± 0.00 

DT, Var 74.12 ± 0.38 (1.81) 73.46 ± 0.49 (2.00) 75.45 ± 0.57 (1.10) 76.57 ± 0.46 (0.67) 

83.89 ± 0.10 (-0.60) 

83.89 ± 0.10 (3.59) 

83.89 ± 0.10 (-3.15) 78.09 ± 0.58 C
re

d
it

 A
p

p
ro

v
al

  

Average 80.36 ± 0.30 (4.55) 80.56 ± 1.02 (2.72) 81.46 ± 0.82 (2.00) 82.04 ± 0.73 (1.43) 83.99 ± 0.00 (-1.69) 83.30 ± 0.20 

Km, K-nn 97.83 ± 0.01 (0.88) 96.69 ± 0.01 (5.55) 97.56 ± 0.01 (2.03) 97.83 ± 0.01 (0.88) 98.06 ± 0.01 

LVQ, K-nn 91.95 ± 0.04 (3.72) 91.31 ± 0.22 (2.61) 91.65 ± 1.12 (1.10) 93.72 ± 1.95 (0.18) 94.29 ± 0.04 

DT, K-nn 96.37 ± 0.00 (3.23) 96.58 ± 0.00 (13.26) 96.95 ± 0.00 (9.14) 97.26 ± 0.00 (3.51) 

79.96 ± 0.96 (8.22) 

79.96 ± 0.96 (6.40) 

79.96 ± 0.96 (8.03) 97.60 ± 0.01 

Km, Var 72.95 ± 0.26 (2.07) 74.20 ± 0.38 (1.31) 73.24 ± 1.05 (1.34) 73.63 ± 0.36 (1.61) 76.94 ± 0.49 

D
er

m
at

o
lo

g
y

 

LVQ, Var 87.98 ± 0.19 (2.22) 85.91 ± 0.03 (4.81) 88.35 ± 0.28 (1.78) 90.12 ± 0.60 (0.49) 

83.39 ± 0.33 (-3.20) 

83.39 ± 0.33 (4.76) 

83.39 ± 0.33 (-15.36) 
91.10 ± 0.20 
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DT, Var 42.58 ± 0.57 (0.77) 43.12 ± 0.84 (0.53) 42.08 ± 0.76 (0.90) 42.01 ± 1.19 (0.82) 44.69 ± 0.94 

Average 81.61 ± 3.75 (0.83) 81.30 ± 5.22 (0.87) 81.64 ± 3.94 (0.81) 82.43 ± 2.71 (0.55) 81.67 ± 0.15 (1.06) 83.78 ± 4.55 

Km, K-nn 74.12 ± 0.04 (2.62) 73.29 ± 0.03 (4.24) 74.43 ± 0.04 (2.23) 74.53 ± 0.04 (2.03) 75.87 ± 0.05 

Km, Var 72.12 ± 0.16 (1.79) 69.45 ± 0.01 (5.99) 74.03 ± 0.15 (0.22) 73.29 ± 0.17 (0.82) 74.29 ± 0.13 

LVQ, K-nn 73.71 ± 0.01 (7.26) 74.00 ± 0.01 (4.43) 74.43 ± 0.01 (3.19) 73.29 ± 0.02 (5.84) 

71.66 ± 0.10 (4.88) 

69.62 ± 0.03 (5.33) 

71.66 ± 0.10 (5.06) 75.33 ± 0.00 

LVQ, Var 76.26 ± 0.02 (0.92) 75.04 ± 0.01 (4.85) 76.07 ± 0.02 (1.46) 75.86 ± 0.02 (1.84) 76.63 ± 0.01 

DT, K-nn 64.08 ± 0.48 (0.89) 64.95 ± 0.74 (0.41) 66.20 ± 0.78 (-0.12) 65.12 ± 1.00 (0.31) 65.91 ± 0.36 

DT, Var 70.02 ± 0.13 (2.17) 71.07 ± 0.02 (1.65) 70.24 ± 0.11 (2.06) 71.86 ± 0.13 (0.52) 

69.62 ± 0.03 (15.69) 

71.66 ± 0.10 (-3.80) 

69.62 ± 0.03 (3.31) 72.45 ± 0.12 

P
im

a 
 

Average 71.72 ± 0.15 (3.04) 71.30 ± 0.27 (3.32) 72.57 ± 0.23 (1.38) 72.32 ± 0.34 (1.59) 70.64 ± 0.00 (6.44) 73.41 ± 0.22 

Km, K-nn 64.91 ± 0.01 (8.36) 64.25 ± 0.01 (9.95) 66.05 ± 0.01 (4.43) 66.15 ± 0.00 (4.44) 67.27 ± 0.01 

Km, Var 62.32 ± 0.01 (2.93) 57.95 ± 0.26 (4.84) 65.49 ± 0.16 (0.12) 61.08 ± 0.07 (3.64) 65.66 ± 0.25 

LVQ, K-nn 62.61 ± 0.02 (6.22) 57.70 ± 0.49 (4.80) 64.13 ± 0.11 (1.49) 62.16 ± 0.33 (2.42) 

62.90 ± 0.15 (4.98) 

63.43 ± 0.02 (1.90) 

62.90 ± 0.15 (2.69) 65.35 ± 0.02 

LVQ, Var 63.75 ± 0.01 (9.97) 64.07 ± 0.05 (4.56) 62.30 ± 0.05 (7.69) 66.24 ± 0.00 (1.48) 66.67 ± 0.01 

DT, K-nn 61.25 ± 0.02 (5.03) 61.54 ± 0.25 (1.47) 60.61 ± 0.22 (2.43) 60.50 ± 0.18 (2.79) 63.25 ± 0.02 

DT, Var 56.37 ± 0.05 (3.47) 58.50 ± 0.01 (1.09) 59.17 ± 0.07 (0.08) 57.30 ± 0.05 (2.36) 

63.43 ± 0.02 (7.72) 

62.90 ± 0.15 (0.38) 

63.43 ± 0.02 (-5.65) 59.24 ± 0.09 

S
o

la
r 

F
la

re
  

Average 61.87 ± 0.11 (6.05) 60.67 ± 0.17 (7.81) 62.96 ± 0.14 (3.40) 62.24 ± 0.12 (5.11) 63.17 ± 0.08 (3.36) 64.57 ± 0.13 

Km, K-nn 72.02 ± 0.04 (1.01) 71.86 ± 0.02 (1.47) 72.39 ± 0.03 (0.41) 72.21 ± 0.02 (0.78) 72.62 ± 0.03 

LVQ, K-nn 70.79 ± 0.02 (4.17) 70.12 ± 0.00 (10.32) 70.78 ± 0.00 (6.66) 70.05 ± 0.00 (11.88) 72.33 ± 0.01 

DT, K-nn 71.62 ± 0.04 (1.51) 68.26 ± 1.01 (1.98) 69.43 ± 0.47 (2.06) 69.54 ± 0.35 (2.24) 

71.00 ± 0.06 (2.36) 

71.00 ± 0.06 (2.30) 

71.00 ± 0.06 (2.09) 72.95 ± 0.11 

Km, Var 69.43 ± 0.00 (6.11) 69.12 ± 0.00 (12.19) 69.48 ± 0.00 (5.98) 69.98 ± 0.00 (0.75) 70.02 ± 0.00 

LVQ, Var 70.33 ± 0.10 (1.91) 70.86 ± 0.03 (1.99) 70.85 ± 0.08 (1.38) 72.07 ± 0.00 (-0.80) 71.81 ± 0.02 

DT, Var 63.76 ± 0.11 (10.93) 71.29 ± 0.03 (2.42) 68.51 ± 0.03 (7.87) 71.24 ± 0.02 (2.89) 

67.92 ± 0.07 (3.59) 

67.92 ± 0.07 (5.85) 

67.92 ± 0.07 (6.87) 72.60 ± 0.02 G
er

m
an

 C
re

d
it

 

Average 69.66 ± 0.28 (4.83) 70.25 ± 0.92 (2.05) 70.24 ± 0.01 (13.81) 70.85 ± 0.36 (2.16) 69.46 ± 0.05 (11.54) 72.06 ± 0.01 

Km, K-nn 84.60 ± 0.09 (1.37) 85.04 ± 0.10 (0.91) 84.99 ± 0.15 (0.89) 84.71 ± 0.20 (1.04) 86.05 ± 0.14 

LVQ, K-nn 75.46 ± 0.11 (3.77) 76.01 ± 0.10 (3.27) 74.18 ± 0.09 (5.25) 73.04 ± 0.09 (6.43) 79.24 ± 0.09 

DT, K-nn 61.83 ± 0.06 (2.24) 61.00 ± 0.50 (1.71) 61.91 ± 0.36 (1.79) 60.62 ± 0.60 (1.78) 

69.02 ± 0.61 (8.79) 

69.02 ± 0.61 (5.44) 

69.02 ± 0.61 (-2.56) 64.05 ± 0.14 

Km, Var 76.56 ± 0.21 (1.53) 77.79 ± 0.25 (0.65) 74.36 ± 0.21 (3.05) 75.77 ± 0.19 (2.13) 78.79 ± 0.22 

LVQ, Var 74.91 ± 0.07 (7.57) 74.78 ± 0.42 (3.91) 76.41 ± 0.39 (2.93) 78.65 ± 0.13 (2.25) 80.80 ± 0.05 

DT, Var 47.99 ± 0.24 (1.66) 47.71 ± 0.06 (3.99) 48.97 ± 0.07 (1.44) 46.50 ± 0.27 (2.88) 

74.48 ± 0.23 (2.89) 

74.48 ± 0.23 (5.30) 

74.48 ± 0.23 (-22.99) 49.81 ± 0.00 

G
la

ss
 

Average 70.22 ± 2.78 (1.45) 70.39 ± 2.37 (1.43) 70.12 ± 2.10 (1.68) 69.88 ± 1.89 (1.80) 71.75 ± 0.48 (0.95) 73.12 ± 2.01 

Km, K-nn 79.81 ± 0.04 (1.67) 80.16 ± 0.07 (0.88) 80.08 ± 0.05 (1.11) 81.34 ± 0.07 (-0.81) 80.78 ± 0.03 

LVQ, K-nn 76.10 ± 0.25 (4.29) 80.86 ± 0.09 (1.47) 81.57 ± 0.25 (0.72) 79.98 ± 0.10 (2.20) 82.69 ± 0.22 

DT, K-nn 73.02 ± 0.26 (0.62) 66.38 ± 0.94 (3.12) 72.94 ± 1.14 (0.44) 74.34 ± 0.63 (-0.15) 

79.24 ± 0.19 (1.48) 

79.24 ± 0.19 (2.40) 

79.24 ± 0.19 (-3.48) 74.02 ± 0.26 

Km, Var 77.43 ± 0.14 (0.63) 76.98 ± 0.17 (0.94) 77.74 ± 0.16 (0.37) 77.16 ± 0.15 (0.84) 78.22 ± 0.17 

LVQ, Var 80.34 ± 0.08 (0.71) 79.54 ± 0.12 (1.45) 80.63 ± 0.09 (0.36) 80.78 ± 0.10 (0.19) 80.95 ± 0.07 

DT, Var 64.46 ± 0.36 (3.18) 65.87 ± 0.70 (2.09) 64.99 ± 0.39 (2.86) 66.05 ± 0.80 (1.93) 

75.84 ± 0.12 (1.96) 

75.84 ± 0.12 (5.23) 

75.84 ± 0.12 (-2.90) 70.90 ± 0.46 

H
ea

rt
 

 

Average 75.19 ± 0.64 (2.60) 74.97 ± 1.96 (1.99) 76.33 ± 1.27 (1.25) 76.61 ± 0.59 (1.28) 77.54 ± 0.03 (0.50) 77.93 ± 0.69 

Km, K-nn 82.44 ± 0.16 (0.76) 82.44 ± 0.16 (0.76) 80.94 ± 0.12 (2.18) 82.44 ± 0.10 (0.86) 83.33 ± 0.12 

LVQ, K-nn 73.51 ± 0.56 (5.94) 74.14 ± 0.06 (15.34) 81.79 ± 0.45 (1.20) 82.44 ± 0.03 (2.44) 83.63 ± 0.02 

DT, K-nn 82.74 ± 0.04 (1.15) 78.29 ± 1.32 (1.95) 78.40 ± 2.90 (1.29) 82.44 ± 0.03 (1.96) 

71.92 ± 0.55 (6.26) 

71.92 ± 0.55 (6.94) 

71.92 ± 0.55 (6.80) 83.33 ± 0.01 

Km, Var 84.23 ± 0.06 (0.40) 84.23 ± 0.06 (0.40) 84.33 ± 0.03 (0.30) 84.52 ± 0.03 (0.00) 84.52 ± 0.06 

LVQ, Var 80.65 ± 0.55 (2.23) 81.23 ± 0.07 (4.15) 81.27 ± 0.44 (2.07) 83.63 ± 0.01 (1.60) 84.52 ± 0.06 

DT, Var 74.11 ± 0.06 (0.07) 71.29 ± 1.58 (0.81) 74.45 ± 1.05 (-0.05) 74.11 ± 1.22 (0.05) 

78.87 ± 1.74 (1.89) 

78.87 ± 1.74 (1.89) 

78.87 ± 1.74 (-1.20) 74.29 ± 1.18 

H
ep

at
it

is
 

 

Average 79.61 ± 1.22 (2.03) 78.60 ± 2.19 (2.31) 80.20 ± 1.11 (1.63) 81.60 ± 0.79 (0.58) 75.40 ± 0.11 (7.75) 82.27 ± 0.84 

Km, K-nn 87.41 ± 0.03 (2.08) 86.46 ± 0.03 (4.09) 86.46 ± 0.02 (4.47) 87.47 ± 0.03 (1.93) 88.42 ± 0.02 

LVQ, K-nn 79.76 ± 0.08 (6.75) 79.55 ± 0.05 (7.96) 81.40 ± 0.31 (2.57) 80.70 ± 0.37 (2.87) 84.80 ± 0.04 

DT, K-nn 71.23 ± 0.60 (1.25) 70.28 ± 1.58 (1.21) 68.65 ± 1.63 (1.69) 64.30 ± 2.44 (2.56) 

73.51 ± 0.61 (8.46) 

73.51 ± 0.61 (6.31) 

73.51 ± 0.61 (0.32) 74.29 ± 0.61 

Km, Var 63.04 ± 0.43 (1.06) 69.40 ± 0.48 (-1.56) 67.55 ± 0.51 (-0.80) 67.57 ± 0.23 (-0.92) 65.57 ± 0.72 

LVQ, Var 74.57 ± 0.01 (10.29) 78.61 ± 0.15 (3.14) 81.78 ± 0.08 (0.29) 77.56 ± 0.08 (4.87) 82.06 ± 0.09 

DT, Var 67.53 ± 0.53 (1.78) 67.84 ± 0.42 (1.75) 68.76 ± 0.25 (1.44) 70.08 ± 0.11 (0.76) 

78.87 ± 1.74 (-3.79) 

78.87 ± 1.74 (1.05) 

78.87 ± 1.74 (-2.40) 71.18 ± 0.31 

Io
n

o
sp

h
er

e 
 

Average 73.92 ± 0.78 (3.00) 75.35 ± 0.94 (1.80) 75.77 ± 1.02 (1.46) 74.62 ± 1.64 (2.04) 76.19 ± 0.10 (1.51) 77.72 ± 1.14 

Km, K-nn 95.87 ± 0.01 (0.85) 96.19 ± 0.01 (-0.29) 96.15 ± 0.01 (-0.17) 96.19 ± 0.01 (-0.29) 96.10 ± 0.01 

LVQ, K-nn 91.59 ± 0.06 (3.31) 93.97 ± 0.08 (0.61) 92.40 ± 0.09 (2.20) 93.33 ± 0.09 (1.24) 94.54 ± 0.10 

DT, K-nn 93.02 ± 0.11 (1.07) 93.02 ± 0.12 (1.06) 93.41 ± 0.09 (0.75) 93.49 ± 0.08 (0.69) 

94.34 ± 0.73 (0.92) 

94.34 ± 0.73 (0.10) 

94.34 ± 0.73 (-0.08) 94.17 ± 0.12 

Km, Var 95.87 ± 0.03 (0.56) 86.51 ± 0.05 (15.05) 95.06 ± 0.05 (1.78) 94.76 ± 0.02 (2.83) 96.19 ± 0.03 

LVQ, Var 95.71 ± 0.03 (1.53) 83.57 ± 0.34 (9.44) 85.63 ± 0.13 (11.63) 93.02 ± 0.14 (3.76) 96.71 ± 0.05 

DT, Var 84.76 ± 0.93 (2.36) 87.30 ± 0.47 (1.71) 90.32 ± 1.06 (0.27) 86.03 ± 0.72 (2.04) 

90.74 ± 0.37 (3.84) 

90.74 ± 0.37 (4.11) 

90.74 ± 0.37 (0.16) 91.08 ± 0.51 

Ir
is

 

 

Average 92.80 ± 0.22 (3.43) 90.09 ± 0.41 (6.71) 92.16 ± 0.43 (3.67) 92.80 ± 0.27 (3.24) 92.54 ± 1.16 (2.14) 94.80 ± 0.19 

Km, K-nn 94.13 ± 0.06 (2.61) 94.46 ± 0.05 (2.15) 95.22 ± 0.04 (1.18) 95.13 ± 0.04 (1.36) 96.01 ± 0.05 

LVQ, K-nn 85.37 ± 0.08 (5.67) 89.48 ± 0.06 (0.72) 87.01 ± 0.18 (2.81) 86.93 ± 0.22 (2.65) 90.03 ± 0.05 

DT, K-nn 76.74 ± 0.34 (3.60) 77.30 ± 1.09 (1.89) 80.10 ± 0.25 (1.40) 78.09 ± 0.64 (2.00) 

89.19 ± 0.07 (8.78) 

89.19 ± 0.07 (1.07) 

89.19 ± 0.07 (-9.14) 81.84 ± 0.06 

Km, Var 83.49 ± 0.04 (4.73) 83.41 ± 0.11 (3.72) 84.12 ± 0.08 (3.23) 83.61 ± 0.08 (3.79) 86.71 ± 0.05 

LVQ, Var 88.59 ± 0.08 (0.42) 80.18 ± 0.09 (9.83) 87.10 ± 0.08 (2.14) 86.50 ± 0.09 (2.75) 88.95 ± 0.07 

DT, Var 60.24 ± 1.13 (0.60) 60.24 ± 1.25 (0.58) 61.82 ± 1.53 (0.09) 61.02 ± 0.49 (0.43) 

86.64 ± 0.10 (0.08) 

86.64 ± 0.10 (2.46) 

86.64 ± 0.10 (-11.26) 62.13 ± 0.84 

T
h

y
ro

id
 

 

Average 81.43 ± 1.10 (2.15) 80.84 ± 1.41 (2.42) 82.56 ± 1.26 (1.25) 81.88 ± 0.81 (1.95) 87.92 ± 0.09 (-3.80) 84.28 ± 1.01 

Km, K-nn 73.91 ± 0.04 (1.68) 74.73 ± 0.03 (0.41) 74.87 ± 0.04 (0.18) 74.93 ± 0.03 (0.08) 74.98 ± 0.04 

LVQ, K-nn 67.40 ± 0.06 (1.82) 67.88 ± 0.08 (1.15) 68.97 ± 0.06 (-0.09) 67.49 ± 0.05 (1.77) 68.89 ± 0.07 

DT, K-nn 86.42 ± 0.09 (2.12) 84.27 ± 0.40 (2.66) 84.11 ± 0.33 (2.97) 85.39 ± 0.18 (2.61) 

73.46 ± 0.08 (1.94) 

73.46 ± 0.08 (-5.19) 

73.46 ± 0.08 (16.21) 88.42 ± 0.09 

Km, Var 75.53 ± 0.05 (5.46) 74.68 ± 0.56 (2.72) 75.33 ± 0.30 (3.09) 78.60 ± 0.06 (1.14) 79.45 ± 0.06 

LVQ, Var 62.51 ± 0.14 (0.95) 60.02 ± 0.47 (2.07) 63.14 ± 0.71 (0.24) 61.29 ± 0.31 (1.56) 63.63 ± 0.14 

DT, Var 64.39 ± 0.01 (7.29) 63.99 ± 1.35 (1.23) 65.67 ± 1.15 (0.64) 65.39 ± 0.00 (5.77) 

73.55 ± 0.06 (7.62) 

73.55 ± 0.06 (-9.74) 

73.55 ± 0.06 (-9.77) 67.22 ± 0.02 

T
ic

 T
ac

 T
o

e 

 

Average 71.69 ± 0.86 (1.95) 70.93 ± 1.07 (2.49) 72.01 ± 0.62 (1.82) 72.18 ± 0.68 (1.60) 73.50 ± 0.01 (0.41) 73.77 ± 0.49 

Km, K-nn 78.34 ± 0.00 (0.06) 77.80 ± 0.02 (1.64) 78.23 ± 0.01 (0.40) 78.31 ± 0.00 (0.24) 78.35 ± 0.00 

LVQ, K-nn 78.31 ± 0.00 (-0.41) 78.07 ± 0.01 (0.84) 78.22 ± 0.00 (0.12) 77.60 ± 0.00 (4.97) 78.24 ± 0.00 

T
it

an
ic

 

 

DT, K-nn 78.74 ± 0.01 (0.04) 78.21 ± 0.01 (2.04) 78.48 ± 0.01 (0.91) 78.81 ± 0.00 (-0.31) 

78.28 ± 0.00 (0.41) 

78.28 ± 0.00 (-0.22) 

78.28 ± 0.00 (2.58) 78.75 ± 0.00 
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Km, Var 78.31 ± 0.00 (0.04) 69.90 ± 0.09 (3.79) 76.48 ± 0.48 (0.72) 77.78 ± 0.01 (0.28) 78.39 ± 0.91 

LVQ, Var 78.22 ± 0.00 (-0.10) 77.68 ± 0.01 (1.33) 77.20 ± 0.01 (2.66) 77.67 ± 0.00 (1.55) 78.19 ± 0.02 

DT, Var 72.32 ± 0.01 (0.32) 72.35 ± 0.02 (0.18) 72.33 ± 0.02 (0.23) 72.36 ± 0.00 (0.27) 

78.33 ± 0.00 (0.03) 

78.33 ± 0.00 (-0.43) 

78.33 ± 0.00 (-23.91) 72.42 ± 0.01 

Average 77.37 ± 0.06 (0.05) 75.67 ± 0.13 (4.33) 76.83 ± 0.03 (2.05) 77.09 ± 0.06 (0.97) 78.30 ± 0.00 (-4.00) 77.39 ± 0.06 

Km, K-nn 83.43 ± 0.02 (1.88) 80.16 ± 0.06 (5.77) 83.73 ± 0.01 (1.48) 85.43 ± 0.02 (-1.33) 84.60 ± 0.06 

LVQ, K-nn 80.73 ± 0.03 (2.24) 79.10 ± 1.33 (1.08) 81.61 ± 0.80 (0.15) 80.09 ± 0.14 (2.03) 81.93 ± 0.03 

DT, K-nn 84.30 ± 0.00 (2.65) 82.38 ± 0.12 (3.62) 84.44 ± 0.03 (2.09) 85.36 ± 0.01 (0.88) 

71.98 ± 1.41 (4.66) 

71.98 ± 1.41 (3.72) 

71.98 ± 1.41 (5.13) 85.93 ± 0.07 

Km, Var 78.78 ± 0.04 (0.94) 77.13 ± 0.00 (3.59) 79.18 ± 0.04 (0.45) 79.88 ± 0.04 (-0.42) 79.54 ± 0.09 

LVQ, Var 81.38 ± 0.01 (2.50) 80.13 ± 0.00 (6.34) 79.85 ± 0.01 (5.90) 81.93 ± 0.02 (1.24) 82.53 ± 0.03 

DT, Var 72.56 ± 0.49 (2.90) 74.60 ± 1.46 (1.16) 72.97 ± 1.30 (1.81) 76.28 ± 0.02 (1.58) 

75.16 ± 0.01 (6.05) 

75.16 ± 0.01 (15.80) 

75.16 ± 0.01 (2.67) 77.93 ± 0.20 

W
av

ef
o

rm
 

Average 80.20 ± 0.22 (2.05) 78.92 ± 1.40 (2.34) 80.30 ± 0.42 (1.77) 81.50 ± 0.14 (0.65) 73.57 ± 0.04 (10.23) 82.08 ± 0.79 

Km, K-nn 94.79 ± 0.02 (1.23) 95.06 ± 0.02 (0.62) 95.04 ± 0.02 (0.72) 95.19 ± 0.02 (0.31) 95.33 ± 0.01 

LVQ, K-nn 88.79 ± 0.08 (5.74) 92.12 ± 0.17 (1.74) 91.25 ± 0.15 (2.65) 92.52 ± 0.14 (1.50) 94.13 ± 0.09 

DT, K-nn 95.59 ± 0.45 (0.59) 94.11 ± 0.41 (1.30) 95.32 ± 0.48 (0.70) 95.52 ± 0.60 (0.58) 

82.67 ± 0.26 (10.80) 

82.67 ± 0.26 (8.67) 

82.67 ± 0.26 (7.40) 96.85 ± 0.47 

Km, Var 94.53 ± 0.13 (0.23) 94.39 ± 0.09 (0.37) 94.40 ± 0.11 (0.35) 93.73 ± 0.15 (0.89) 94.79 ± 0.14 

LVQ, Var 93.86 ± 0.10 (1.89) 95.99 ± 0.04 (-0.33) 95.26 ± 0.05 (0.57) 96.53 ± 0.03 (-1.04) 95.73 ± 0.09 

DT, Var 63.15 ± 1.67 (1.37) 62.20 ± 1.47 (1.65) 65.08 ± 1.76 (0.90) 64.41 ± 1.81 (1.05) 

87.53 ± 0.70 (3.54) 

87.53 ± 0.70 (4.12) 

87.53 ± 0.70 (-5.28) 68.87 ± 1.79 

W
in

e 

Average 88.45 ± 2.97 (1.08) 88.98 ± 2.77 (0.86) 89.39 ± 2.87 (0.68) 89.65 ± 3.00 (0.56) 85.10 ± 0.06 (3.42) 90.95 ± 3.44 

* LR is not affected by any center selection method, i.e., Km, LVQ, and DT. 

 

Table 2.4  2PLRQ VS Other Methods (Training of Weights for a predefined set of centers and widths) 

Average Number of Center and Average Training Time over Twenty Independent Runs 

Learning Time (s) 
dataset Center # 

SVD GD WD GRBF LR 2PLRQ 

Breast Cancer 13.67 0.10 28.30 0.81 0.13 211.15 86.59 

Car 21.93 0.44 101.76 0.57 0.48 659.28 255.09 

Connectionist 23.86 0.13 7.98 0.43 0.23 234.61 22.53 

Credit Approval 22.13 0.11 30.56 0.52 0.13 214.97 107.99 

Dermatology 29.99 0.16 45.11 0.60 0.19 383.59 118.16 

Pima 31.13 0.13 32.59 0.39 0.41 238.31 93.89 

Solar Flare 23.14 0.17 45.65 0.27 0.19 396.48 166.96 

German Credit 28.65 0.24 57.40 0.09 0.32 725.64 269.86 

Glass 14.72 0.04 22.11 0.48 0.05 160.23 41.44 

Heart 16.82 0.03 10.80 0.38 0.7 78.04 35.49 

Hepatitis 10.65 0.01 3.21 0.37 0.02 65.29 7.40 

Ionosphere 14.24 0.06 17.61 0.12 0.08 186.52 68.78 

Iris 6.35 0.02 7.08 0.55 0.12 49.94 12.82 

Thyroid 11.08 0.02 7.44 0.90 0.04 75.70 16.56 

Tic Tac Toe 42.18 0.16 41.91 0.53 0.18 320.04 133.00 

Titanic 12.95 0.39 93.10 0.09 0.41 498.26 259.18 

Waveform 31.89 2.11 242.85 0.20 2.86 1087.76 664.43 

Wine 16.44 0.02 9.85 0.42 0.03 66.11 24.33 

 

2.4.2 Comparing the Experimental Results of the 3PLRQ with 
Others 

The previous section shows that the 2PLRQ outperforms regularization methods for 

RBF network training. In this section, the performance of 3PLRQ is evaluated 

experimentally. The performance of the Three-Phase Learning (3PL) which adjusts the 



CHAPTER 2 RBF NETWORK LEARNING 

 40 

center, width and weight by using the training error as the objective function is compared 

with the 3PLRQ.  

Similar to the setting in the previous section, the center and width are trained using 

different methods for the first phase of RBF network, i.e., the  Km, LVQ and DT for finding 

the centers, and the Knn and Var for finding the widths. The weights of RBF network are 

initialized by the SVD in the second phase learning. As no prior information is assumed, q is 

determined by cross validation for the 3PLRQ.  

The experimental result is shown in Table (2.5). For comparison purpose, the 

previous results of  SVD, GD, WD, GRBF, LR and 2PLRQ listed in Table (2.3) are included 

again in Table (2.5). The variances and student t-test values have been removed in Table 

(2.5) to facilitate a clearer presentation. Similar to the previous experiments, when the 

absolute t-value is larger than 2.02 (1.98) in each experiment (for the average of all 

experiments), the result is significant at the 95% probability level. The value is bolded and 

underlined in the cell if the performance of 2PLRQ is better than that specific method at a 

95% significance level. 

The experimental result presented in Table (2.5) shows that the 3PLRQ performs 

better than the SVD, GD, WD, GRBF, LR, 2PLRQ and 3PL in almost all cases. For the 

Glass datasets, the 3PLRQ is around 10% better than the SVD, GD, WD, GRBF, LR and 

2PLRQ. When the center and width selection is poor, the difference is more significant. For 

example, in the case of the Breast Cancer, SVD, GD, WD, GRBF, LR and 2PLRQ are 63% - 

65% when DT and Var are the selection methods. After the adjustments of centers, widths 

and weights, the 3PLRQ greatly improves the performance to 76.75%. It demonstrates that 

RBF network can be improved significantly by adjusting the center and width parameters 

appropriately. Although the weight, center and width are refined in the third phase, the 

generalization performance of the RBF network with poor initialization cannot be as good as 
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the one with a good initialization. For example, the testing accuracies for the Heart dataset 

using the 3PLRQ are higher than 80%. However, when DT and Var are used, it falls to 75%. 

This is caused by the local minimum problem in the gradient descent method and the RBF 

classifier cannot be further improved. It also explains why sometimes the 2PLRQ is better 

than the 3PLRQ, for example, for the Hepatitis dataset using LVQ and K-nn, the testing 

accuracy of the 2PLRQ is 83.63% while 3PLRQ is only 80.65%. Similarly, the 3PL also 

faces this same problem. The result shows that in such cases, the 3PLRQ still can perform 

better than the 3PL and the SVD. On average, the testing accuracy of the 3PLRQ is 2% to 

3% higher than the 3PL. It shows that the generalization capability of a trained classifier 

could be improved by tuning the parameters via minimizing the R
’
Q. 

The average number of neurons and the time complexity of using the 3PLRQ are 

shown in Table (2.6). Longer training time is needed by 3PLRQ comparing with the 3PL 

since an additional sensitivity term is calculated during the training. The training time of the 

3PLRQ is much less than the 2PLRQ since the RBF network is already initialized using the 

Two-Phase Learning method, and thus the time needed by the third phase learning is 

reduced. 

Table 2.5 3PLRQ and 3PL (Training of weights, centers and widths)  

VS Other Methods (Training of weights only) 

Average Classification Accuracy of Testing Set over Twenty Independent Runs 

 

Center, Width 

Selection 

Method 

SVD GD WD GRBF LR* 2PLRQ 3PL 3PLRQ 

Km, K-nn 93.17 92.99 94.05 96.36 96.06 95.35 96.69 

LVQ, K-nn 91.71 91.54 92.70 90.78 93.30 93.21 94.05 

DT, K-nn 95.02 92.56 94.64 95.65 

89.88 

89.88 

89.88 95.92 95.43 96.06 

Km, Var 93.47 93.72 92.57 94.39 94.81 96.02 96.23 

LVQ, Var 88.36 89.19 89.09 91.44 92.96 88.46 92.96 

DT, Var 63.89 63.71 64.94 64.82 

83.45 

83.45 

83.45 65.07 76.67 76.75 B
re

as
t 

C
an

ce
r 

Average 87.60 87.28 88.00 88.91 86.66 89.69 90.86 92.12 

Km, K-nn 89.48 90.78 90.37 91.19 92.58 93.77 96.82 

LVQ, K-nn 78.71 80.50 80.30 79.58 81.97 87.30 90.07 

DT, K-nn 88.15 90.15 90.10 90.08 

79.66 

79.66 

79.66 
90.78 91.15 94.07 

Km, Var 86.22 82.15 86.45 88.66 89.19 89.68 91.19 

LVQ, Var 62.95 63.51 64.45 64.86 65.97 65.42 68.11 

DT, Var 84.81 81.43 84.90 85.30 

88.05 

88.05 

88.05 88.64 89.71 89.70 

C
ar

 

Average 81.72 81.42 82.76 83.28 83.85 84.86 86.17 88.33 

Km, K-nn 76.80 78.60 78.63 78.60 79.40 79.60 82.30 

LVQ, K-nn 66.40 67.20 67.57 67.40 71.20 69.60 72.20 

DT, K-nn 78.80 79.40 79.05 79.20 

70.73 

70.73 

70.73 79.20 80.20 83.90 

C
o

n
n

ec
ti

o
n

is
t 

Km, Var 65.80 65.00 65.31 64.80 73.40 68.20 66.40 69.20 
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LVQ, Var 63.20 57.60 62.89 61.60 63.24 66.60 67.80 

DT, Var 61.60 61.40 61.51 61.20 63.00 62.80 64.40 

Average 68.77 68.20 69.16 68.80 72.07 70.71 70.87 73.30 

Km, K-nn 84.75 84.68 85.99 85.96 87.89 85.33 87.37 

LVQ, K-nn 83.23 85.06 82.56 85.27 85.65 85.92 87.20 

DT, K-nn 75.36 77.03 76.72 75.35 

84.08 

84.08 

84.08 78.91 85.71 85.54 

Km, Var 81.78 80.06 81.56 82.71 82.77 83.05 83.49 

LVQ, Var 82.92 83.06 86.45 86.37 86.47 84.58 86.75 

DT, Var 74.12 73.46 75.45 76.57 

83.89 

83.89 

83.89 78.09 77.02 80.69 

C
re

d
it

 A
p

p
ro

v
al

  

Average 80.36 80.56 81.46 82.04 83.99 83.30 83.60 85.17 

Km, K-nn 97.83 96.69 97.56 97.83 98.06 97.72 98.29 

LVQ, K-nn 91.95 91.31 91.65 93.72 94.29 94.86 94.87 

DT, K-nn 96.37 96.58 96.95 97.26 

79.96 

79.96 

79.96 97.60 97.37 97.72 

Km, Var 72.95 74.20 73.24 73.63 76.94 75.24 79.21 

LVQ, Var 87.98 85.91 88.35 90.12 91.10 92.92 92.20 

DT, Var 42.58 43.12 42.08 42.01 

83.39 

83.39 

83.39 44.69 47.34 49.90 D
er

m
at

o
lo

g
y

 

Average 81.61 81.30 81.64 82.43 81.67 83.78 84.24 85.36 

Km, K-nn 74.12 73.29 74.43 74.53 75.87 75.24 77.96 

LVQ, K-nn 73.71 74.00 74.43 73.29 75.33 76.05 75.89 

DT, K-nn 64.08 64.95 66.20 65.12 

71.66 

71.66 

71.66 65.91 74.74 74.93 

Km, Var 72.12 69.45 74.03 73.29 74.29 73.01 75.85 

LVQ, Var 76.26 75.04 76.07 75.86 76.63 77.80 78.01 

DT, Var 70.02 71.07 70.24 71.86 

69.62 

69.62 

69.62 72.45 74.00 75.03 

P
im

a 
 

Average 71.72 71.30 72.57 72.32 70.64 73.41 75.14 76.28 

Km, K-nn 64.91 64.25 66.05 66.15 67.27 66.01 67.39 

LVQ, K-nn 62.61 57.70 64.13 62.16 65.35 65.11 65.38 

DT, K-nn 61.25 61.54 60.61 60.50 

62.90 

62.90 

62.90 63.25 65.26 66.89 

Km, Var 62.32 57.95 65.49 61.08 65.66 66.23 65.73 

LVQ, Var 63.75 64.07 62.30 66.24 66.67 65.94 68.73 

DT, Var 56.37 58.50 59.17 57.30 

63.43 

63.43 

63.43 59.24 61.12 62.25 

S
o

la
r 

F
la

re
  

Average 61.87 60.67 62.96 62.24 63.17 64.57 64.95 66.06 

Km, K-nn 72.02 71.86 72.39 72.21 72.62 72.74 73.36 

LVQ, K-nn 70.79 70.12 70.78 70.05 72.33 72.57 74.76 

DT, K-nn 71.62 68.26 69.43 69.54 

71.00 

71.00 

71.00 72.95 73.52 73.67 

LVQ, Var 70.33 70.86 70.85 72.07 71.81 74.10 74.81 

Km, Var 69.43 69.12 69.48 69.98 70.02 69.57 71.86 

DT, Var 63.76 71.29 68.51 71.24 

67.92 

67.92 

67.92 72.60 69.00 71.86 G
er

m
an

 C
re

d
it

 

Average 69.66 70.25 70.24 70.85 69.46 72.06 71.92 73.38 

Km, K-nn 84.60 85.04 84.99 84.71 86.05 86.34 86.77 

LVQ, K-nn 75.46 76.01 74.18 73.04 79.24 83.93 86.00 

DT, K-nn 61.83 61.00 61.21 60.62 

69.02 

69.02 

69.02 64.05 86.61 88.82 

Km, Var 76.56 77.79 74.36 75.77 78.79 78.41 81.09 

LVQ, Var 74.91 74.78 76.41 78.65 80.80 83.15 82.27 

DT, Var 47.99 47.71 48.97 46.50 

74.48 

74.48 

74.48 49.81 52.09 61.26 

G
la

ss
 

Average 70.22 70.39 70.02 69.88 71.75 73.12 78.42 81.04 

Km, K-nn 79.81 80.16 80.08 81.34 80.78 80.10 83.95 

LVQ, K-nn 76.10 80.86 81.57 79.98 82.69 79.45 84.39 

DT, K-nn 73.02 66.38 72.94 74.34 

79.24 

79.24 

79.24 74.02 81.31 81.37 

Km, Var 77.43 76.98 77.74 77.16 78.22 78.55 81.56 

LVQ, Var 80.34 79.54 80.63 80.78 80.95 81.31 82.98 

DT, Var 64.46 65.87 64.99 66.05 

75.84 

75.84 

75.84 70.90 70.93 75.38 

H
ea

rt
 

 

Average 75.19 74.97 76.33 76.61 77.54 77.93 78.61 81.61 

Km, K-nn 82.44 82.44 80.94 82.44 83.33 82.14 82.74 

LVQ, K-nn 73.51 74.14 81.79 82.44 83.63 76.79 80.65 

DT, K-nn 82.74 78.29 78.40 82.44 

71.92 

71.92 

71.92 83.33 82.44 82.44 

Km, Var 84.23 84.23 84.33 84.52 84.52 85.38 86.18 

LVQ, Var 80.65 81.23 81.27 83.63 84.52 83.46 85.95 

DT, Var 74.11 71.29 74.45 74.11 

78.87 

78.87 

78.87 74.29 75.30 84.23 

H
ep

at
it

is
 

 

Average 79.61 78.60 80.20 81.60 75.40 82.27 80.92 83.70 

Km, K-nn 87.41 86.46 86.46 87.47 88.42 91.33 90.86 

LVQ, K-nn 79.76 79.55 81.40 80.70 84.80 82.13 85.21 

DT, K-nn 71.23 70.28 68.65 64.30 

73.51 

73.51 

73.51 74.29 90.86 90.32 

Km, Var 63.04 69.40 67.55 67.57 65.57 70.62 73.10 

LVQ, Var 74.57 78.61 81.78 77.56 82.06 82.80 83.45 

DT, Var 67.53 67.84 68.76 70.08 

78.87 

78.87 

78.87 71.18 72.07 72.75 

Io
n

o
sp

h
er

e 
 

Average 73.92 75.35 75.77 74.62 76.19 77.72 81.63 82.61 

Km, K-nn 95.87 96.19 96.15 96.19 96.10 96.53 96.73 

LVQ, K-nn 91.59 93.97 92.40 93.33 94.54 93.17 97.26 

DT, K-nn 93.02 93.02 93.41 93.49 

94.34 

94.34 

94.34 94.17 93.97 95.24 

Km, Var 95.87 86.51 95.06 94.76 96.19 96.80 96.75 

LVQ, Var 95.71 83.57 85.63 93.02 96.71 96.25 97.46 

DT, Var 84.76 87.30 90.32 86.03 

90.74 

90.74 

90.74 91.08 92.38 91.33 

Ir
is

 

 

Average 92.80 90.09 92.16 92.80 92.54 94.80 94.85 95.80 

T
h

y
rKm, K-nn 94.13 94.46 95.22 95.13 89.19 96.01 95.36 95.47 
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LVQ, K-nn 85.37 89.48 87.01 86.93 90.03 89.30 92.38 

DT, K-nn 76.74 77.30 80.10 78.09 81.84 86.91 87.26 

Km, Var 83.49 83.41 84.12 83.61 86.71 88.64 91.10 

LVQ, Var 88.59 80.18 87.10 86.50 88.95 91.07 90.77 

DT, Var 60.24 60.24 61.82 61.02 

86.64 

86.64 

86.64 62.13 68.60 71.71 

Average 81.43 80.84 82.56 81.88 87.92 84.28 90.52 91.70 

Km, K-nn 73.91 74.73 74.87 74.93 74.98 82.12 88.83 

LVQ, K-nn 67.40 67.88 68.97 67.49 68.89 74.04 76.04 

DT, K-nn 86.42 84.27 84.11 85.39 

73.46 

73.46 

73.46 88.42 88.79 92.43 

Km, Var 75.53 74.68 75.33 78.60 79.45 81.69 90.60 

LVQ, Var 62.51 60.02 63.14 61.29 63.63 62.47 68.25 

DT, Var 64.39 63.99 65.67 65.39 

73.55 

73.55 

73.55 67.22 69.20 71.43 T
ic

 T
ac

 T
o

e 

 

Average 71.69 70.93 72.01 72.18 73.50 73.77 76.38 81.26 

Km, K-nn 78.34 77.80 78.23 78.31 78.35 78.61 78.53 

LVQ, K-nn 78.31 78.07 78.22 77.60 78.24 78.83 78.90 

DT, K-nn 78.74 78.21 78.48 78.81 

78.28 

78.28 

78.28 78.75 78.78 78.77 

Km, Var 78.31 69.90 76.48 77.78 78.39 78.63 78.64 

LVQ, Var 78.22 77.68 77.20 77.67 78.19 78.39 78.45 

DT, Var 72.32 72.35 72.33 72.36 

78.33 

78.33 

78.33 72.42 74.60 76.32 

T
it

an
ic

 

 

Average 77.37 75.67 76.83 77.09 78.30 77.39 77.97 78.27 

Km, K-nn 83.43 80.16 83.73 85.43 84.60 82.43 86.08 

LVQ, K-nn 80.73 79.10 81.61 80.09 81.93 83.14 83.34 

DT, K-nn 84.30 82.38 84.44 85.36 

71.98 

71.98 

71.98 85.93 85.59 85.96 

Km, Var 78.78 77.13 79.18 79.88 79.54 81.84 83.76 

LVQ, Var 81.38 80.13 79.85 81.93 82.53 81.72 83.98 

DT, Var 72.56 74.60 72.97 76.28 

75.16 

75.16 

75.16 77.93 75.13 79.93 

W
av

ef
o

rm
 

Average 80.20 78.92 80.30 81.50 73.57 82.08 81.64 83.84 

Km, K-nn 94.79 95.06 95.04 95.19 95.33 95.33 95.49 

LVQ, K-nn 88.79 92.12 91.25 92.52 94.13 90.92 92.92 

DT, K-nn 95.59 94.11 95.32 95.52 

82.67 

82.67 

82.67 96.85 95.33 95.99 

Km, Var 94.53 94.39 94.40 93.73 94.79 96.80 96.66 

LVQ, Var 93.86 95.99 95.26 96.53 95.73 95.05 94.98 

DT, Var 63.15 62.20 65.08 64.41 

87.53 

87.53 

87.53 68.87 71.68 76.22 

W
in

e 

Average 88.45 88.98 89.39 89.65 85.10 90.95 90.85 92.05 

* LR is not affected by any center selection method, i.e., Km, LVQ, and DT. 

 

Table 2.6  3PLRQ and 3PL (Training of weights, centers and widths)  

VS Other Methods (training of weights only) 

Average Number of Center and Average Training Time Over Twenty Independent Runs 
Learning Time (s) 

Dataset Center # 
SVD GD WD GRBF LR 2PLRQ 3PL 3PLRQ 

Breast Cancer 13.67 0.10 28.30 0.81 0.13 211.15 86.59 17.84 41.65 

Car 21.93 0.44 101.76 0.57 0.48 659.28 255.09 45.83 64.02 

Connectionist 23.86 0.13 7.98 0.43 0.23 234.61 22.53 6.84 27.63 

Credit Approval 22.13 0.11 30.56 0.52 0.13 214.97 107.99 13.44 34.56 

Dermatology 29.99 0.16 45.11 0.60 0.19 383.59 118.16 36.98 53.60 

Pima 31.13 0.13 32.59 0.39 0.41 238.31 93.89 18.52 35.39 

Solar Flare 23.14 0.17 45.65 0.27 0.19 396.48 166.96 27.23 51.46 

German Credit 28.65 0.24 57.40 0.09 0.32 725.64 269.86 44.68 76.86 

Glass 14.72 0.04 22.11 0.48 0.05 160.23 41.44 13.34 18.56 

Heart 16.82 0.03 10.80 0.38 0.7 78.04 35.49 6.60 22.43 

Hepatitis 10.65 0.01 3.21 0.37 0.02 65.29 7.40 2.45 6.74 

Ionosphere 14.24 0.06 17.61 0.12 0.08 186.52 68.78 16.31 52.68 

Iris 6.35 0.02 7.08 0.55 0.12 49.94 12.82 2.98 9.94 

Thyroid 11.08 0.02 7.44 0.90 0.04 75.70 16.56 3.30 13.98 

Tic Tac Toe 42.18 0.16 41.91 0.53 0.18 320.04 133.00 21.34 45.67 

Titanic 12.95 0.39 93.10 0.09 0.41 498.26 259.18 45.42 89.14 

Waveform 31.89 2.11 242.85 0.20 2.86 1087.76 664.43 155.08 316.95 

Wine 16.44 0.02 9.85 0.42 0.03 66.11 24.33 6.67 21.20 

 

2.4.3 Experiment on a Biased Dataset 
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For a reasonable classification problem, a training set is expected to represent the 

problem in general. This means that the unseen samples should be similar to the training 

samples. Otherwise one can not expect a good performance of the classifier. Our L-GEM 

model is based on the concept of the Q neighborhood near the training samples which is 

expected to cover most of the unseen samples. For example, in the case of the Heart dataset, 

even a small value of 0.1 for q, most of the testing samples will be covered by its Q 

neighborhood when the training and testing set are randomly divided (Figure (2.5)). 

  
Figure 2.5 Distribution of Training and Testing sets 

divided by random selection for the Heart Dataset. 

Figure 2.6 Distribution of Training and Testing sets 

divided by biased selection for the Heart Dataset. 

This section discusses the performances of different learning methods in their 

handling of a special situation when the training set is sampled poorly and it cannot 

represent the classification problem in general. Heart dataset is again used in this experiment. 

When the training and testing set are divided randomly, the testing accuracy of all methods 

is around 76%. A Biased sampling is then selected so that the testing set does not resemble 

the training set. Figure (2.6) shows that most of the testing samples are not covered by the Q 

neighborhood. 

Tables (2.7) and (2.8) show the performances of the various learning methods on the 

biased Heart dataset. Comparing with the randomly spitted Heart dataset, the overall 
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performances for the biased dataset by the same methods drop about 10%. This confirms the 

belief that, when the training samples don’t represent the problem (which means they do not 

resemble the unseen samples), good performance of the classifier can not be expected. It is 

not surprising to observe that the variance for the learning methods for the biased dataset is 

larger due to the larger variations in the testing set. 

Our experimental results show that the R
’
Q still outperforms other methods 

significantly under the biased situation. This indicates a classifier trained with R
’
Q can 

achieve a relatively better generalization capability although most of the unseen samples are 

not included in the Q neighborhood. In Table (2.7), LR sharply drops around 20%. This is 

because the performance of the LR depends too much on the training samples as it uses all 

training samples as centers. The performance of the 3PL drops noticeably from 78.61% to 

63.13% (-15%) in Table (2.8). This is because the 3PL focuses too much on the training 

error. The 3PL tries to refine the trained RBF network to achieve a lower training accuracy. 

However, since in this case the training samples cannot represent the testing samples, its 

performance is poor. 

 

Table 2.7 2PLRQ VS Other Methods (Training of Weights for a predefined set of centers and widths) 

Average Classification Accuracy, Variance and Student's t-test Value (In Brackets) of Testing Set  

over Twenty Independent Runs 
Center, Width 

Selection 

Method 

SVD GD WD GRBF LR* 2PLRQ 

Km, K-nn 69.63 ± 0.53 (0.18) 68.89 ± 0.66 (0.47) 62.31 ± 0.63 (3.14) 66.35 ± 1.15 (1.25) 70.05 ± 0.59 

LVQ, K-nn 62.12 ± 1.20 (3.69) 67.01 ± 0.40 (2.76) 63.20 ± 1.44 (3.12) 68.68 ± 1.42 (1.40) 73.12 ± 0.58 

DT, K-nn 62.33 ± 1.70 (1.08) 61.48 ± 1.00 (1.44) 61.23 ± 0.69 (1.60) 64.13 ± 2.04 (0.61) 

58.20 ± 0.95 (4.28) 

58.20 ± 0.95 (5.40) 

58.20 ± 0.95 (2.35) 66.77 ± 1.71 

Km, Var 59.79 ± 2.78 (1.03) 60.63 ± 3.26 (0.81) 57.62 ± 2.50 (1.55) 59.89 ± 2.95 (0.99) 64.66 ± 1.65 

LVQ, Var 68.15 ± 0.94 (1.16) 67.41 ± 1.77 (1.16) 68.16 ± 0.71 (1.24) 64.76 ± 2.60 (1.65) 71.53 ± 0.76 

DT, Var 64.66 ± 0.95 (1.42) 62.96 ± 0.71 (2.14) 66.23 ± 1.10 (0.86) 65.71 ± 1.62 (0.91) 

56.05 ± 0.94 (2.39) 

56.05 ± 0.94 (5.32) 

56.05 ± 0.94 (4.33) 68.89 ± 0.82 

Average 64.44 ± 0.24 (8.63) 65.40 ± 0.21 (7.20) 63.13 ± 0.16 (12.52) 64.92 ± 0.12 (9.50) 57.13 ± 0.10 (28.13) 69.17 ± 0.12 

* LR is not affected by any center selection method, i.e., Km, LVQ, and DT. 
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Table 2.8 3PLRQ and 3PL (Training of weights, centers and widths)  

VS Other Methods (training of weights only) 

Average Classification Accuracy of Testing Set over Twenty Independent Runs 
Center, Width 

Selection 

Method 

SVD GD WD GRBF LR* 2PLRQ 3PL 3PLRQ 

Km, K-nn 69.63 68.89 62.31 66.35 70.05 70.26 69.95 

LVQ, K-nn 62.12 67.01 63.20 68.68 73.12 62.22 74.50 

DT, K-nn 62.33 61.48 61.23 64.13 

58.20 

58.20 

58.20 66.77 60.32 66.78 

Km, Var 59.79 60.63 57.62 59.89 64.66 53.55 64.50 

LVQ, Var 68.15 67.41 68.16 64.76 71.53 67.83 71.79 

DT, Var 64.66 62.96 66.23 65.71 

56.05 

56.05 

56.05 68.89 55.66 69.42 

Average 64.44 64.73 63.13 64.92 57.13 69.17 61.64 69.49 

* LR is not affected by any center selection method, i.e., Km, LVQ, and DT. 

 

2.4.4 Experiment on the dataset with outliers  

The influence of outliers to a classifier trained by L-GEM is studied in this section. 

Figure (2.7) shows that the decision plane of a classifier trained by using RQ
’
  as objective 

function with different training sets. The decision boundaries are similar in datasets with 

different outliers. This shows that the outliers do not affect the classifiers trained by RQ
’ 

significantly. It may because although the influence of outliers will be boosted, on the other 

handle, the effect of “good” training samples will increase too. The increasing influence of 

“good” training samples may cancel the effect of outlier.  

 
a) Original Dataset 
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b) Original Dataset with Outlier  

(near boundary) 
 c) Original Dataset with Outlier 

(right hand side of the another class) 

d) Original Dataset with Outlier  

(inside the another class) 

 

e) Original Dataset with many Outliers  

(inside the another class) 

Figure 2.7 The decision planes of the RBF network on the different Artificial Dataset 

 “O” and “X” represent the samples in different classes.  

The white and gray areas represent the decision regions of the RBF network.  

2.5 Summary 

In this chapter, a novel training objective function (R
’
Q) based on the Localized 

Generalization Error Model (L-GEM) is proposed. It takes into consideration the 

generalization error of the unseen samples in a neighborhood of the training samples. The 

assumption of the L-GEM that each feature of all centers must have the same width is 
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relaxed. R
’
Q can be used to train any parameter of RBF network, including the weight, center 

and width.  

The R
’
Q and a number of representative regularization methods are compared 

conceptually and experimentally. Both the sensitivity term of R
’
Q and the regularization term 

are utilized for the training of a smooth classifier. However, a major conceptual difference 

between the two is that the R
’
Q is closely related to the errors of unseen samples in a region 

near the training samples, but the regularization term is not directly related to the classifier’s 

generalization capability. The experimental results show that for a given center and width 

initialization, the testing accuracies of RBF network trained by minimizing the R
’
Q 

outperforms RBF network trained by other methods which minimizes the training error and 

the regularization term. One possible explanation is that the R
’
Q minimizes the 

generalization error bound of the unseen samples during the RBF network learning. It is also 

shown when R
’
Q is applied to the Three-Phase Learning method (3PLRQ), it performs better 

than the traditional Three-Phase Learning method minimizing the MSE. The case of the 

training set not resembling the testing set is also discussed. In this situation, the R
’
Q still 

outperforms all other methods. 
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CHAPTER 3 
DYNAMIC FUSION METHOD 
FOR MCSS 

A critical research issue in the study of MCSs is how to combine the base classifiers, 

which is known as “the fusion method” [Dietterich 1997, Ho et al 1994, Ko et al 2008, 

Koppel et al 1996, Merz 1998, Santos et al 2008, Woods et al 1997]. Broadly speaking, base 

classifiers in the MCSs can be combined in two ways: static and dynamic. For a static fusion 

method (e.g. Majority Vote [Battiti et al 1994, Lam et al 1997] and Weighted Average 

[Freund et al 1996, 1997, Fumera et al 2008]), the fusion parameters are decided completely 

during the training phase and they will not be changed in the classification phase. However, 

for a dynamic fusion method (e.g. Mixture of Experts [Jacobs et al 1991] and Dynamic 

Integration [Puuronen et al 1999, Tsymbal et al 1998]), some fusion parameters could be 

changed according to the characteristics of the testing samples and the base classifiers for 

each testing sample. 

One of the major drawbacks of a static fusion method is the assumption that all base 

classifiers will have the same performance in the whole input space. For example, the 

Weighted Average is one of the most popular static fusion methods. A weight is assigned to 

each base classifier according to the training accuracy. A more accurate base classifier is 

assigned a larger value of the weight and vice versa. However, a base classifier may perform 

poorly on average but it could have a good performance in a certain region (R) of the input 

space. The contribution in R may be ignored since a smaller weight is assigned to it. On the 

contrast, in a dynamic fusion method, weight is assigned to each base classifier according to 
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its performance on the local region where the testing sample is located. This means that each 

base classifier can contribute to the MCS according to its local competence. Moreover, the 

performance of a MCS using a static fusion method relies on the assumption that the base 

classifiers make independent errors. This independent error criterion guarantees an 

improvement of MCSs in terms of classification accuracy comparing with its base classifiers 

[Tumer et al 1996b, Kittler et al 1998]. However, in real pattern classification applications, 

it is not easy to design a set of base classifiers which satisfy this criterion [Giacinto et al 

1999]. While in a dynamic fusion method, MCSs need just one base classifier that correctly 

classifies a testing sample [Giacinto et al 1999]. This assumption is easier to achieve than 

the assumption on independent error. Many studies show that dynamic fusion methods 

outperform static fusion methods [Paradeda et al 2008, Puuronen et al 1999, Ruta (2001), 

Tsymbal et al 1998, Woods et al 1997]. 

The weight assignment mechanism in a dynamic fusion method is called the Oracle. 

The Oracle decides the value of weight for each base classifier when classifying a testing 

sample. The information considered by the Oracle can be categorized into two types. The 

first type is the classification accuracy of the base classifiers. Usually, the performance of 

base classifiers on the entire training set or the nearest K training samples (validation 

samples) of the testing sample is considered [Giacinto et al 1999, Kim et al 2005, Ko et al 

2008, Puuronen et al 1999, Tsymbal et al 1998]. A more accurate base classifier gets a 

larger weight. Another type of information considered during the weight assignment is the 

distance between the testing sample and the training samples. It usually acts as a punishment 

to a base classifier if it recognizes wrongly a sample near to the testing sample. In summary, 

the current methods estimate the performance of base classifiers on the testing sample using 

only the information provided by the training samples. Since the L-GEM developed by 

Yeung et al [Yeung et al 2007] estimates the error bound on the unseen samples located 
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within a neighborhood of the training samples, the information on the unseen samples may 

be useful to evaluate the local competence of base classifiers to predict the testing sample. 

A review of dynamic fusion methods is presented in Section 3.1. The new Dynamic 

Fusion Method is presented and discussed in Section 3.2. Experimental results are shown 

and analyzed in Section 3.3 and Section 3.4 concludes this chapter. 

3.1 Dynamic Fusion Method 

Consider a population of L base classifiers trained by a given training set 

( ){ }N

iii yxD
1

, == , where N is the number of training samples. xi = [xi1, xi2,…, xin]
T
 is a n 

dimension vector denoting the i
th
 training sample, n is the number of features and the 

superscript T is the vector transpose. yi represents the true class ID of xi and yi∈{ωc}
C

c 1= , 

where C is the number of classes. For each class ωc, the output of the MCSs using a 

dynamic fusion method is defined by: 

 ( ) ( ) ( )∑
=

=
L

l

l

c

l

c

mcs

c xfxwxf
1

, (3.1) 

where x is a sample, ( )l

cw  is the weight assigned to the l
th
 base classifier calculated by the 

Oracle and ( )l

cf  is the output of the l
th
 base classifier. When a base classifier outputs a 

class label, ( )l

cf  is equal to 1 if the classifier predicts that x belongs to ωc, otherwise ( )l

cf  

is equal to 0. While the output is the probability of the base classifier to decide that the 

sample belongs to ωc, ( )l

cf  is a continuous value. The class ID estimated by the MCS 

( y
mcs

 ) of the sample x is defined by: 

 ( )xfy mcs

c
c

mcs maxarg= . (3.2) 
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Figure (3.1) shows the architecture of MCSs using the dynamic fusion method. 

When a testing sample is presented for classification, each base classifier makes a decision 

on the sample. On the other hand, the Oracle assigns a weight to each base classifier. The 

final decision is calculated by using Equations (3.1) and (3.2). 

 
Figure 3.1 Architecture of Multiple Classifier Systems using Dynamic Fusion Method 

In Dynamic Integration [Puuronen et al 1999, Tsymbal et al 1998], the base 

classifier’s performance on the nearest K training samples of a testing sample is estimated 

using the cross validation. The weight is the product of this local accuracy and the distance 

between the corresponding K training samples and the testing sample. The concept of 

dynamic weight has been applied to Dynamic Selection (the best classifier is used), 

Dynamic Voting (weighted Voting) and Dynamic Voting with Selection (half of the best 

base classifiers are combined by weighted Voting). These methods have been applied to 

many different base classifier construction methods, e.g. Bagging, Boosting and Random 

Forest [Puuronen et al 2001, 2008, Tsymbal 2000, Tsymbal et al 2000a, 2000b, 2003, 2006]. 

The experimental results show that dynamic weight fusion methods outperform the static 

methods. The main drawback is that many classifiers need to be trained by the cross 

validation method for accuracy estimation. The estimated local performance may not reflect 

the true local performance of the final base classifiers. This is because the cross validation 

method is used to estimate the performance of a classifier on the entire input space rather 

than a local region [Duda et al 2000]. 
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K-Nearest-Oracles (KNORA) Dynamic Selection Method was proposed in [Ko et al 

2008]. The concept of KNORA is similar to the Dynamic Integration. Rather than 

estimating the performance of the base classifiers by cross validation, a validation set is used. 

For a testing sample, the weight of a base classifier is calculated according to its 

performance on the nearest K neighbors in the validation set. Four different methods were 

proposed. In KNORA-ELMINATE, only the outputs of the base classifiers which classify 

the nearest K validation samples correctly are used to make the final decision. If no base 

classifier can classify all K samples correctly, K will be decreased until there is one classifier 

which can perfectly classify the sample. The weighted voting method is used in the 

KNORA-UNION method. A base classifier has a larger value of weight if it can classify 

more samples in the K nearest validation set. KNORA-ELIMINATE-W and KNORA-

UNION-W are the same as KNORA-ELIMINATE and KNORA-UNION respectively but 

each vote is weighted by the Euclidean distance between the testing sample and the nearest 

K validation samples. 

Dynamic Weight Update was proposed and applied to Learn++ in [Polikar et al 

2003]. Every base classifier is trained by using different random training datasets. The 

weight of a classifier is determined by the Mahalanobis distance between the testing sample 

and the training dataset of that classifier. Classifiers trained with datasets closer to the 

testing sample are given larger weight values. As mentioned in [Polikar et al 2003], using 

Mahalanobis distance implicitly assumes the dataset follows a Gaussian distribution, which 

in general is not true. Moreover, the classifier trained with datasets close to the testing 

sample may also perform badly in that region. Assigning a large weight value to this 

classifier may not be reasonable. 

In [Abraham et al 2008], a Dynamic Fusion Method is proposed which assigns a 

larger weight to a base classifier with higher confidence about its outputs. The continuous-
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valued output can be interpreted as the probability of a sample in a class. When outputs of 

classifiers are near to 0 or 1, it means the classifiers have confidence about the decision. 

Hence a larger weight is assigned to it. A classifier will have the smallest value of weight 

when it outputs 0.5.  
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The value of the weight is independent of the accuracy of a classifier and it depends 

only on the classifier’s output of the testing sample. A classifier may be wrong although it 

has relatively high confidence on its output. 

Table 3.1 Dynamic Fusion Methods proposed by Woloszynski et al 

Name M matrix 
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Function 
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The weight that depends on the distance function and information of the base 

classifier’s outputs on the training set was proposed in [Woloszynski et al 2006]. The 

distance function measures the distances between the testing sample and the training 

samples. The weight for the testing sample is calculated using the entire training dataset.  
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where g is the distance dependent function. Two types of functions had been used: 

( ) ( )ii xxdxxg ,/1,1 =  and ( ) ( )( )( )2

2 ,1/1, ii xxdxxg += . The value of m depends on the 

output of a base classifier. Totally six methods had been proposed [Woloszynski et al 2006] 

and are summarized in Table (3.1). 

An additional training process is required in some dynamic fusion methods. In 

Mixture of Experts [Jacobs et al 1991], the weights of the base classifiers are calculated by a 

neural network called the Gating Network. The Gating Network is trained using the training 

samples to minimize the following objective function: 
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Fc(x) is the target output of sample x in class c. Similar to the Mixture of Experts, E. 

Kim et al [Kim et al 2005] proposed to use a neural network to estimate the local confidence 

for each base classifier. The local confidence is defined into three types: 
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where y
l
 denotes the estimated class ID of the classifier l. Finally, the neural network 

is trained to minimize the following objective function: 

 

( ) ( )( )∑∑
= =

−=
L

l

N

i

i

l

ci

l

c xwxLCE
1 1

2

. (3.9) 



CHAPTER 3 DYNAMIC FUSION METHOD FOR MCSS 

 56 

Obviously, these fusion methods require additional training and they are more time 

consuming since additional training is required. 

Classifier selection method [Ho et al 1994, Giacinto et al 1999] is a special case of 

dynamic fusion method. Rather than assigning different weights to the base classifiers, the 

Oracle only selects the best base classifier. The most common selection method estimates a 

prior and a posterior probability of the base classifier classifying the testing sample correctly 

using the K-nearest neighbors.  

3.2 Dynamic Fusion Method using L-GEM 

ymcs = ClassifySample ( )KDfffx L

test ,,,...,,, 21  

1. Calculate distance between training sample and testing sample 
 ( ) 2||||, itestitest xxxxdist −=   

2. Build nearest K neighborhoods set ( KX ) 

 Samples with the K smallest dist(xtest, xi) are selected 

3. Calculate the qmax value 

 qmax = max(dist(xtest, K

ix )) 

4. Calculate the weight for each base classifier,  
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1
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5. Normalized the weight if necessary, 
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6. Combine the decisions for each class, 

 ( ) ( )∑
=

=
L

l

test

l

c

l

ctestc xfwx
1

µ  

7. Final Decision 
  ( )testc

c

mcs xy µmaxarg=  

Figure 3.2 The algorithm to classify a sample using LFM 

The algorithm of the L-GEM Fusion Method (LFM) is introduced in this section. 

The framework of LFM is as the same as the currecty existing dynamic fusion methods but 

different local competence measures are applied. The idea of LFM is using the L-GEM as 

Oracle to calculate the weights for base classifiers. When classifying a new sample, the 

Oracle estimates the local generalization error bound of the local region where the sample is 
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located by using L-GEM. The weight to each base classifier is assigned according to the 

estimated local error bound. The outputs issued by the base classifiers are then combined 

using weighted averages. 

Figure (3.2) gives a description of the classification algorithm using LFM. Before 

classifying a testing sample (xtest), L base classifiers are trained by any base classifier 

construction method. l
f  is a vector ( ],...,,[ 21

l

C

ll fff ) which denotes the l
th
 base classifier’s 

outputs, where C is the number of classes and l = 1...L.  D denotes the training set and K is a 

parameter for LFM which represents the number of training samples that are used to 

estimate the local generalization error bound in the L-GEM.  

R
*

Q in Equation (1.7) is the MSE upper bound of unseen samples in a Q 

neighborhood of the entire training set. In LFM, we are only interested in the performance 

of a classifier in the local region where the testing sample is located. As a result, the local 

region of  the testing sample is defined first. The distances (dist) between each training 

sample (xi) and the testing sample are measured, where i = 1…N and N is the number of 

training samples. The K training samples ( '

ix , where i = 1...K) with the smallest distances are 

chosen to form the K neighborhood set ( { }K

ii

K xX
1

'

== ). The largest value of the distance 

between the testing sample and samples in X
K 

is used as the value of q
max

 for the L-GEM. 

Choosing the largest value of the distance will ensure that the local neighborhood ( '

iQ ) of 

each sample in X
K 

can cover the testing sample. The local neighborhood of the testing 

sample (Q
K
) is defined as the union of all local neighborhoods: 

 '

1
i

K

i

K
QQ

=
= U  and { }max''

;| qxxxxxQ ii ≤∆∆+== . (3.10) 
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Figure 3.3 QK neighborhood for a testing sample with 3-nearest neighborhoods 

Figure (3.3) illustrates an example with 3-nearest training samples of a testing 

sample in an artificial dataset. L-GEM is then used to measure the local generalization error 

bound ( *
KQ

R ) of the Q
K
 region for each base classifier. Similar to Equation (1.7), the *

KQ
R  for 

f can be defined as: 
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It is noted that, different from Equation (1.7), only the K-nearest training samples are 

used to calculate the local generalization error bound in the LFM. Since A is fixed for a 

given K neighborhood set, they will not affect the value of *
KQ

R . Thus, this parameter is 

ignored and the new function is now defined as: 
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The definitions of err and ∆Y are the same as in Equation (1.7). They denote the 

training error and the sensitivity term respectively. The definition of the sensitivity term of 

'
KQ

R  is:  
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Throughout this chapter, RBF Network is used for the LFM experiments. The 

function of RBF Network is defined as: 
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where 

 M denotes the number of hidden neurons 

 αm denotes weight of the m
th
 Gaussian output function 

 um denotes the peak position of the m
th
 center and umj is the j

th
 feature of um 

 vm denotes the width of the m
th
 center and vmj is the j

th
 feature of vm 

 xi denotes the sample i and xij is the j
th
 feature of xi  

The sensitivity term of RBF Network (∂f
RBF

/∂xi and df
RBF

/dxit) is defined as: 
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A base classifier with smaller local generalization error bound is more preferred. 

Thus, the weights for the base classifier could be defined as the inverse of '
KQ

R . If necessary, 

the weights can be normalized to [0,1] before used. Finally, the outputs of the base 

classifiers are combined using weighted averaging method. The class having the largest 

value is assigned to the testing sample. 
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Before classifying a testing sample, L base classifiers should be trained using the 

given training set. In MCSs, each base classifier must be different from the others. 

Otherwise it is not necessary to combine the same base classifiers. Thus, the objective of a 

MCS construction method is to build a set of diverse base classifiers. There are many ways 

to construct a MCS, e.g. Bagging and Boosting. The LFM can be applied to any of these 

methods. The only requirement of the LFM is the sensitivity term which must be defined 

and calculated for a base classifier. In this chapter, the sensitivity term is defined as a 

differentiation of the base classifier function. Hence, any differentiable base classifier, e.g. 

MLP Neural Network, RBF Network and SVM, may be used. 

3.2.1 Time complexity 

Time complexity is a concern in the dynamic fusion methods. LFM assigns the 

weights to base classifiers according to the value of '
KQ

R for each testing sample. In general, 

the time required for classifying a sample is more critical than the training time. This is 

because the training process can be completed off-line while classification is a real time task. 

To reduce the time complexity of classifying a sample, any computation independent from 

testing samples can be done during the training process. For the LFM, the training error and 

∂f/∂xi of the sensitivity term (shown in Equation (3.13)) of the base classifiers are calculated 

and stored during the training of the base classifiers. Let N denote the number of training 

samples, n be the number of features, and M be the number of hidden neurons. Assuming 

the RBF Network is used, the time of calculating the training error and ∂f/∂xi for a training 

set is O(2nNM) , in comparison with O(NMn), which is the time required for training error 

calculation only. 

When classifying a sample, similar to most other dynamic fusion methods, the 

distance between the testing sample and each training sample is calculated. The value of q
max
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is equal to the largest distance between the K nearest training samples and the testing 

samples. '
KQ

R  is calculated by using the value of q
max

 and retrieving the training error and 

∂f/∂xi of K nearest training samples. The time complexity is O(KMn) , which is the same as 

other dynamic fusion methods. 

3.2.2 Size of nearest neighborhood (K) 

  
a) 5-Nearest Training Sample b) 2-Nearest Training Sample 

Figure 3.4 Q neighborhood for a testing sample with different K 

An important parameter of LFM is the size of K-nearest neighborhood. The value of 

K determines the number of training samples used to evaluate the local competence of a 

base classifier. It also determines the size of the local neighborhood (Q
K
). Figure (3.4) 

shows the effect of K on Q
K 

for the same dataset. The size of Q
K 

is a non-decreasing function 

of K. When K is large, more training samples are included and bigger region is covered. 

However, the training samples may be located in a region far away from the testing sample. 

Figure (3.4a) shows an example of this situation. This may result in an estimation which 

may not represent the local competence of the base classifiers. On the other hand, while K is 

small, most samples in X
K 

are near to the testing sample. However, only a small region will 

be considered. In this case, the estimation may be inaccurate due to lack of information. 

Figure (3.4b) shows the size of Q
K 

when only two training samples are used. The small Q
K 

neighborhood region may provide very little information for a good estimation. As a result, 



CHAPTER 3 DYNAMIC FUSION METHOD FOR MCSS 

 62 

the value of K cannot be too small. Experimental discussion on K is presented in Section 

3.3.1. 

3.2.3 Why does LFM work? 

Only measuring the performance on the training samples (or validation samples) and 

the distance between testing sample and training sample (or validation samples) may not 

suffice to represent the local competence of a base classifier. A simple example illustrates 

this observation ( Figure (3.5)). 

 
Figure 3.5 Function of two classifiers on a simple artificial data points 

Figure (3.5) shows a simple 2-class classification problem. Each sample has only one 

feature. Class 1 has only one, which is x = 2, while class 2 contains two samples, which are 

x = 4 and 8. An unseen sample (x = 6) is considered for classification. Two classifiers (f1 and 

f2) are trained and combined as a MCS for this classification problem. When the value of the 

classifier’s output is bigger than 0.5, the sample is labeled as class 2, otherwise, it is class 1. 

The output of classifier 1 (f1) is represented by a solid line in the figure and is stable. A 

dotted line denotes classifier 2 (f1) and its output is fluctuating.   

The output of a classifier is the estimation of the posteriori probability ( p(ωc|x) ), 

which is the probability of the sample belongs to class c given that feature value x has been 
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measured [Duda et al 2000]. It is reasonable to expect that the posteriori probability of two 

similar inputs should not be very different. From another point of view, noises may appear 

in samples. The actual value of a sample may be slightly different from the one being 

collected. The performance of a classifier is considered not good if the outputs of two 

similar inputs are very different. However, if the output of a base classifier is fluctuating in 

the local region of the test sample, the base classifier is not expected to recognize that 

samples correctly. This is because the base classifier changes so frequently. As a result, if 

the training error is ignored, a smooth classifier is more preferable in general. A smooth 

classifier should be assigned a larger weight in a MCS.  

The current dynamic fusion methods only consider the error of the training (or 

validation) samples and the distance between the testing sample and the training (or 

validation) samples. In this example, since the outputs of both classifiers on the training 

samples are the same, i.e., f1(2) = f2(2), f1(4) = f2(4) and f1(8) = f2(8), the errors of both 

classifiers on each training sample are the same. Hence, the classifiers are assigned the same 

weight when classifying the testing sample (x = 6) by using the current dynamic fusion 

methods. Different from the current dynamic fusion methods, the LFM uses not only the 

information on the training samples but also the unseen samples in a local region of the 

testing sample. It measures the generalization error bound of the local area where the testing 

sample located. The generalization error bound of the LFM contains both the training 

accuracy term and the sensitivity term which measures the smoothness of the classifier 

output. In this example, as the output of f2 changes rapidly comparing with f1, the sensitivity 

term of classifier 2 is much larger than that for classifier 1. Thus, a small weight is assigned 

to classifier 2. The LFM awards a classifier which has stable outputs in the local region. 

This explains why a MCS using the LFM may achieve a better performance than the one 
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using recent dynamic fusion methods. The experimental results of using the LFM and other 

fusion methods will be discussed and analyzed in the next section. 

3.3 Experiments 

In this section, the performance of the LFM is evaluated experimentally. Twenty 

datasets shown in Table (3.2) from the UCI machine learning repository [MLR] and 

Intelligent Data Analysis Group [DAG] were used. They cover a wide range of applications 

involving two-class and multi-class problems. Each dataset is equally divided into three 

parts: training (35%), validation (15%) and testing (50%) set. Thirty independent runs were 

generated for each dataset. Only samples in the training set are used during training. Some 

dynamic fusion methods require a validation set in classifying samples. The testing set is 

reserved to evaluate the performance of the trained MCSs. The inputs of all samples are 

normalized to [0, 1] to eliminate the effect of a large range of values. 

Table 3.2 Twenty Datasets 

Dataset 
Short 

Name 
# Class # Sample # Feature 

Breast Cancer Wisconsin Canc 2 569 32 

Car Evaluation Car  4 1728 6 

Connectionist Conn 2 208 60 

Credit Approval Cred  2 690 15 

Dermatology Derm 6 366 34 

Pima Indians Diabetes Pima 2 768 8 

Solar Flare Solar  2 1066 9 

German Credit Data Germ 2 1000 24 

Glass Identification Glass 7 214 10 

Heart Heart 2 270 13 

Hepatitis Hepa 2 80 19 

Ionosphere Iono 2 351 33 

Iris Iris 3 150 4 

Multiple Features Feat 10 2000 649 

Image Segmentation Img 7 2310 19 

Spambase Spam 2 4601 57 

Thyroid Thy 2 215 5 

Tic-Tac-Toe Endgame TTT  2 958 9 

Waveform  Wave  3 5000 21 

Wine Wine 3 178 13 
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RBF Network is used as the base classifiers. The number of neurons of RBF 

Network is also selected randomly from two to fifty. The center and width of the neuron is 

determined by K-mean [Kiernan et al 1996] and the K-nearest-neighbor algorithm [Musavi 

et al 1992] respectively. The weight is calculated using Singular Value Decomposition 

(SVD) method [Mak et al 1998]. To diversify a set of base classifiers in a MCS, Bagging 

method [Breiman 1996] is employed. Each base classifier is assigned a different training set 

randomly selected from the original training set with replacement. 

The effect of K-Nearest neighborhood size of the LFM is discussed in Section 3.3.1. 

In Section 3.3.2, the performance of the LFM and the other twenty one fusion methods are 

compared and analyzed using different number of base classifiers. 

3.3.1 Effect of K-Nearest neighborhood size 

The effect of the parameter K on the performance of LFM is discussed 

experimentally in this section. Different sizes of MCSs (L = 5, 10, 20 and 30) using LFM 

with K from 1 to 30 are evaluated for each dataset. Figure (3.6) shows the effect of K on the 

testing accuracies of the MCSs. The line represents the average testing accuracy of MCSs on 

thirty independent runs on different datasets. The dotted lines denote the performance of 

MCSs with different number of individual classifiers while the bold solid black line is the 

average of these MCSs. X-axis and Y-axis represent the value of K and the testing 

classification accuracy respectively. 

The dotted lines have similar shapes in most datasets, especially for Car, Conn, 

Spam, TTT and Wave, in Figure (3.6). This indicates that the value of K has similar effect 

on MCSs with different number of classifiers. Also, combining more base classifiers may 

degrade the performance of MCSs. For example, in the Connectionist dataset, MCSs with 
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10 base classifiers is the most accurate while the performance of the MCSs using 30 base 

classifiers is the worst.  

In most datasets, the performance of MCSs decreases when the value of K increases. 

This indicates that the local region (Q
K
) composed by larger number of nearest samples 

cannot reflect the actual local performance of individual base classifiers. The performance 

of the LFM drops when K increases. On the other side, MCSs with the LFM perform better 

while K is smaller. However, the smallest K, when K=1, does not guarantee having the best 

MCS. The results in dermatology, Solar Flare, German Credit Data, Thyroid and Tic-Tac-

Toe Endgame show that the smallest value is not necessarily the best choice for K. This 

observation from the experimental results agrees with the discussion in Section 3.2.2. 

Moreover, in most datasets, with  the exception of Multiple Features, Thyroid and Pima 

Indians Diabetes, the LFM performs the best when K is between 1 and 5. In short, since K 

determines the size of the local region surrounding the testing sample, it affects the 

performance of the LFM. According to the above experimental results, the range of 1 to 5 

may be a reasonable choice for K in general. 

a) Canc b) Car c) Conn 
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d) Cred e) Derm f) Pima 

g) Solar h) Germ i) Glass 

j) Heart k) Hepa l) Iono 

m) Iris n) Feat o) Img 
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p) Spam q) Thy r) TTT 

 

s) Wave t) Wine  

Figure 3.6 Classification Accuracy of LFM with Different Number of Nearest Neighborhoods over Thirty 

Independent Runs 

3.3.2 Performance comparison between LFM and other 
methods 

In this section, LFM is compared with twenty one well known dynamic fusion 

methods mentioned in Section 3.1: Dynamic Selection (DS), Dynamic Voting (DV), 

Dynamic Voting with Selection (DVS), K-Nearest-Oracles Union (KU), weighted K-

Nearest-Oracles Union (W-KU), K-Nearest-Oracles Eliminate (KE), weighted K-Nearest-

Oracles Eliminate (W-KE), Confidence Measure Method (CM), Mahalanobis Distance 

method (MD), the six methods using different matrixes shown in Table (3.1) (C1 – C6), 

Mixture of Experts (ME), three varies of Dynamic Integration (LC1 – LC3), a priori (Pri) 

and a posteriori (Post) method. The best value of K for LFM, DS, DV, DVS, KU, W-KU, 

KE, W-KE, Pri and Post methods are selected using cross-validation. MLP Neural Network 

is acted as the Gating Network in ME and LC1 – LC3 methods. The summary of these 21 

dynamic fusion methods are shown in Table (3.3). If the dynamic fusion methods consider 
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the accuracy of a classifier or distance between the unseen sample and training samples, a 

“�” is shown in the columns respectively.  

Table 3.3 Summary of Dynamic Fusion Methods Comparied in experiments 

Name Acronym Accuracy Distance References 

Dynamic Selection DS �  

Dynamic Voting DV � � 

Dynamic Voting with Selection DVS � � 

Puuronen et al 1999, 

Tsymbal et al 1998 

K-Nearest-Oracles Union KU �  

Weighted K-Nearest-Oracles Union W-KU � � 

K-Nearest-Oracles Eliminate KE �  

Weighted K-Nearest-Oracles Eliminate W-KE � � 

Ko et al 2008 

Confidence Measure Method CM   Abraham et al 2008 

Mahalanobis Distance MD � � Polikar et al 2003 

Dynamic Method using different 

functions by Woloszynski  
C1 – C6 

� � 
Woloszynski et al 2006 

Mixture of Experts ME � � Jacobs et al 1991 

Dynamic Integration LC1 – LC6 � � Kim et al 2005 

Priori Probability Pri �  

Posteriori Probability Post �  

Ho et al 1994,  

Giacinto et al 1999 

 

The dynamic fusion methods are used to combine the same set of base classifiers to 

form the MCSs. The only difference is the weight of each base classifier. The performances 

of different MCSs (L = 5, 10, 20 and 30) are evaluated.  

In Table (3.4), the Win-Tie-Loss gives the number of datasets for which the MCS 

with LFM performs better/same/worse in comparison with the one by using other fusion 

methods. For example, 15-1-4 is shown in the first cell. It means out of 20 datasets, the 

MCS using LFM performs better in 15, the same in 1 and worse in 4 datasets comparing 

with the one by using DV on the average of 30 independent runs. Each column represents a 

MCS with a different number of base classifiers. Each row represents a fusion method. Let T 

denote the number of datasets. If the number of wins is bigger than or equal to 

2/96.12/ TT + , then the LFM claims to perform significantly better at the 95% 

probability level. In this experiment, as T = 20, the LFM performs significantly better at the 

95% probability level when it wins more than 13 datasets. The value is bolded and 
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underlined in the cell if the performance of the MCS with LFM is better significantly. The 

last row gives the average of figures in each column. 

The table shows the MCS with LFM outperforms other methods in most datasets and 

wins more than 17 datasets on the average. LFM is significantly better than all other fusion 

methods for all sizes of MCSs. Especially comparing with DS, DVS, CM, MD, C1, C2, C3, 

C4 and C5, the MCS with LFM is more accurate in more than 17 datasets. It is noted that 

LFM even has better performances than C3 in all datasets for all sizes of MCSs. The 

performance of the MCS with W-KU and W-KE is the closest to the one with LFM. But 

even in these cases, LFM still wins 15.25 and loses 4.75 on the average for all sizes of 

MCSs. From the average value of Win-Tie-Loss, there is no significant difference between 

the MCSs using different number of base classifiers. LFM is consistently better than other 

fusion methods for about 17.18 datasets, and only worse in for about 2.45 datasets. 

Table 3.4 LFM VS Other Fusion Methods 

Win-Tie-Loss Comparison over Twenty Datasets 

 L = 5 L = 10 L = 20 L = 30 

DS 20-0-0 19-0-1 20-0-0 20-0-0 

DV 15-1-4 13-1-6 16-1-3 17-0-3 

DVS 19-0-1 19-0-1 17-0-3 19-0-1 

KU 17-1-2 18-0-2 16-1-3 14-2-4 

W-KU 15-0-5 15-0-5 16-0-4 15-0-5 

KE 17-0-3 18-0-2 16-0-4 14-0-6 

W-KE 15-0-5 15-0-5 17-1-2 18-0-2 

CM 19-0-1 17-0-3 18-1-1 19-0-1 

MD 19-0-1 18-0-2 17-1-2 18-0-2 

C1 20-0-0 20-0-0 18-2-0 20-0-0 

C2 19-0-1 18-0-2 18-0-2 18-0-2 

C3 20-0-0 20-0-0 20-0-0 20-0-0 

C4 19-0-1 18-0-2 18-0-2 18-0-2 

C5 20-0-0 19-0-1 17-2-1 20-0-0 

C6 18-0-2 17-0-3 16-2-2 18-0-2 

ME 17-1-2 18-0-2 16-1-3 18-0-2 

LC1 18-0-2 17-0-3 17-1-2 18-0-2 

LC2 16-1-3 18-0-2 17-1-2 16-1-3 

LC3 17-0-3 16-0-4 17-1-2 18-0-2 

Pri 15-0-5 15-0-5 17-0-3 16-0-4 

Post 15-0-5 14-0-6 15-0-5 16-0-4 

Average 17.5-0.3-2.3 17.2-0.1-2.8 17.0-0.8-2.3 17.5-0.2-2.4 

 



CHAPTER 3 DYNAMIC FUSION METHOD FOR MCSS 

 71 

The average percentage of classification accuracy of the testing sets of MCSs using 

different fusion methods over 30 independent runs are shown in Tables (3.5) – (3.8). Each 

table shows the performance of a MCS with 5, 10, 20 or 30 base classifiers. A column 

represents a fusion method while a dataset is represented by a row. The first value and 

second value in a cell are the average classification testing accuracy and the variance 

respectively. The Student’s t-test is applied to examine the statistical significance of the 

improvement made by LFM. When the absolute t-value is larger than 2.00 in each 

experiment, a difference between two means is significant at the 95% probability level. The 

value is bolded and underlined in the cell if the performance of MCSs with LFM is 

significantly better than the one using other methods. 

Generally, the MCSs with all fusion methods are slightly more accurate when the 

number of base classifiers increases.  The performance of the MCS increases about 0.6% on 

average when the MCS has 30 base classifiers comparing with having 5 base classifiers. 

Especially for Tic-Tac-Toe Endgame, the testing accuracy of MCSs using LFM is 79.65 

when 5 base classifiers are used. When the number of base classifiers increases to 10, 20 and 

30, the performances of the MCSs are 83.13, 84.30 and 84.68 respectively. MCSs using 

other dynamic fusion methods also improve by 4.5% for the Tic-Tac-Toe Endgame dataset 

when more base classifiers are used. 

The MCS using LFM has better testing accuracy than other fusion methods in nearly 

all cases. In most cases the improvement is 95% significant. For Breast Cancer Wisconsin, 

Dermatology, Solar Flare and Tic-Tac-Toe Endgame dataset, LFM performs significantly 

better than most other dynamic fusion methods. Moreover, the performance of LFM is 

stable. The variance of the testing accuracy is 0.03 on average and it is the smallest among 

all dynamic fusion methods. The variance of DVS is 0.05 which is the largest. The LFM has 

also demonstrated good performances consistently among different datasets. On the contrast, 
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the performance of DS, W-KU, W-KE and Pri is fluctuated. For example, K-KU has great 

performance in Breast Cancer Wisconsin while performing badly in Solar Flare. 

Table 3.5 LFM VS Other Fusion Methods 

Average Classification Accuracy and Variance of Testing Set of MCSs with 5 base classifiers over Thirty 

Independent Runs 

L=5 LFM DS DV DVS KU 
W-

KU 
KE 

W-

KE 
CM MD C1 C2 C3 C4 C5 C6 ME LC1 LC2 LC3 Pri Post 

Canc 96.64 96.16 96.25 96.09 95.84 96.37 95.84 96.38 96.19 96.16 96.19 96.16 96.09 96.09 96.16 96.13 96.19 95.36 96.22 95.93 96.27 95.99 
 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 

Car  89.90 88.64 89.96 86.76 90.03 91.10 90.10 90.10 89.19 89.12 89.10 88.77 88.89 88.88 89.29 89.28 89.41 87.24 89.38 89.99 91.00 90.54 
 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 

Conn 81.38 78.70 80.32 76.08 83.50 82.41 83.85 80.14 79.17 79.08 78.82 75.64 74.85 76.96 79.26 79.35 80.58 78.82 80.32 79.79 82.31 81.61 
 ±0.09 ±0.09 ±0.10 ±0.08 ±0.06 ±0.08 ±0.06 ±0.10 ±0.09 ±0.07 ±0.08 ±0.11 ±0.28 ±0.13 ±0.09 ±0.09 ±0.12 ±0.13 ±0.12 ±0.17 ±0.08 ±0.07 

Cred  85.49 85.23 85.20 85.31 81.77 85.03 81.91 85.23 85.07 85.15 85.15 84.41 84.70 84.73 85.15 85.17 85.02 85.02 85.17 85.33 84.93 84.69 
 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.02 ±0.01 ±0.01 

Derm 97.15 96.47 96.90 95.70 96.75 96.70 96.71 96.90 96.90 96.85 96.85 92.36 96.65 95.25 97.00 97.00 96.25 91.56 96.10 96.90 96.60 96.80 
 ±0.00 ±0.02 ±0.01 ±0.06 ±0.01 ±0.00 ±0.01 ±0.00 ±0.00 ±0.00 ±0.00 ±0.14 ±0.01 ±0.02 ±0.00 ±0.00 ±0.01 ±0.12 ±0.01 ±0.01 ±0.00 ±0.00 

Pima 76.96 76.31 76.70 75.73 68.96 76.29 69.10 76.59 76.52 76.52 76.56 76.44 76.37 76.42 76.56 76.59 76.44 74.64 76.37 76.30 76.19 76.10 
 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 

Solar  66.85 66.35 66.23 66.40 55.25 56.98 56.24 62.66 66.44 66.44 55.45 66.05 55.40 65.38 55.38 66.39 66.42 66.18 66.27 65.93 56.88 66.14 
 ±0.01 ±0.01 ±0.01 ±0.01 ±0.00 ±0.05 ±0.00 ±0.14 ±0.01 ±0.01 ±0.00 ±0.01 ±0.00 ±0.02 ±0.00 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.05 ±0.01 

Germ 74.58 73.99 74.27 73.78 72.85 74.04 72.59 74.16 74.05 73.91 74.09 73.82 74.07 74.02 74.04 73.93 73.89 72.24 74.38 73.80 73.94 73.59 
 ±0.02 ±0.02 ±0.03 ±0.02 ±0.01 ±0.02 ±0.01 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 

Glass 85.54 84.27 85.45 82.51 84.76 86.55 84.61 86.41 84.68 84.68 84.68 84.68 82.34 81.82 85.37 85.45 85.71 77.40 85.19 84.85 86.45 86.19 
 ±0.11 ±0.10 ±0.11 ±0.07 ±0.18 ±0.12 ±0.18 ±0.11 ±0.10 ±0.12 ±0.11 ±0.09 ±0.06 ±0.12 ±0.15 ±0.15 ±0.14 ±0.16 ±0.15 ±0.08 ±0.12 ±0.12 

Heart 82.56 82.09 82.22 82.02 77.85 81.75 77.49 82.02 81.95 82.09 81.95 80.47 81.14 80.74 81.95 81.89 81.75 80.13 81.68 80.74 81.65 81.52 
 ±0.03 ±0.05 ±0.05 ±0.06 ±0.03 ±0.04 ±0.03 ±0.05 ±0.05 ±0.05 ±0.05 ±0.07 ±0.04 ±0.05 ±0.05 ±0.05 ±0.04 ±0.02 ±0.05 ±0.05 ±0.04 ±0.05 

Hepa 86.71 86.09 86.01 86.25 86.01 85.81 85.96 86.01 86.01 86.01 85.78 86.01 86.01 86.01 85.78 85.78 84.62 85.55 85.55 86.01 85.71 85.48 
 ±0.04 ±0.11 ±0.10 ±0.11 ±0.07 ±0.10 ±0.07 ±0.10 ±0.10 ±0.10 ±0.09 ±0.10 ±0.10 ±0.10 ±0.09 ±0.09 ±0.10 ±0.11 ±0.09 ±0.08 ±0.10 ±0.09 

Iono 87.48 87.41 87.58 87.27 84.83 87.38 84.63 87.53 87.01 87.43 87.38 87.27 87.01 87.32 87.32 87.69 86.44 85.25 86.18 86.65 87.28 87.49 
 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.02 ±0.01 ±0.02 ±0.01 ±0.01 

Iris 97.09 96.77 96.73 96.85 95.52 96.53 95.56 96.73 96.85 96.85 96.12 96.73 95.39 96.61 96.12 96.73 96.61 96.61 96.73 96.73 96.43 96.43 
 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 

Feat 99.73 99.68 99.73 99.64 99.73 99.53 99.73 99.68 99.68 99.68 99.68 99.64 99.64 99.59 99.68 99.68 99.64 99.73 99.68 99.73 99.43 99.43 
 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 

Img 83.46 81.36 83.38 77.66 80.09 83.18 80.57 82.77 82.86 82.42 82.77 82.42 80.17 82.94 82.86 82.42 83.12 70.65 83.03 81.13 83.08 82.99 
 ±0.12 ±0.27 ±0.13 ±0.53 ±0.07 ±0.14 ±0.07 ±0.14 ±0.13 ±0.14 ±0.14 ±0.14 ±0.17 ±0.15 ±0.15 ±0.16 ±0.10 ±0.32 ±0.11 ±0.15 ±0.14 ±0.12 

Spam 86.82 86.44 86.90 85.74 85.92 87.39 85.79 87.19 86.64 86.67 84.31 86.65 84.21 86.64 84.33 86.67 86.87 87.09 86.96 87.21 87.29 87.06 
 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 

Thy 95.07 94.62 94.82 94.22 94.82 94.62 94.88 94.90 94.65 94.65 94.73 94.48 94.56 94.65 94.82 94.73 94.73 94.05 94.05 94.14 94.52 94.43 
 ±0.01 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 

TTT  79.65 75.17 78.99 70.77 75.37 79.93 75.80 77.98 75.50 75.61 75.48 74.55 73.68 73.64 76.41 76.43 77.87 75.69 77.17 77.51 79.83 77.10 
 ±0.06 ±0.04 ±0.04 ±0.05 ±0.02 ±0.02 ±0.03 ±0.04 ±0.04 ±0.04 ±0.04 ±0.03 ±0.03 ±0.03 ±0.05 ±0.05 ±0.05 ±0.04 ±0.05 ±0.05 ±0.02 ±0.02 

Wave 86.55 86.33 86.53 85.95 79.79 86.38 80.17 86.58 86.50 86.47 86.47 86.55 86.51 86.50 86.47 86.47 86.49 85.26 86.51 86.53 86.28 86.22 
 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 

Wine  97.42 96.76 97.11 96.18 96.59 96.80 96.56 97.00 96.80 97.00 97.00 96.90 97.00 97.00 97.00 97.00 96.59 95.76 95.97 97.00 96.70 96.70 
 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.03 ±0.04 ±0.01 ±0.02 ±0.02 
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Table 3.6 LFM VS Other Fusion Methods 

Average Classification Accuracy and Variance of Testing Set of MCSs with 10 base classifiers over Thirty 

Independent Runs 

L=10 LFM DS DV DVS KU 
W-

KU 
KE 

W-

KE 
CM MD C1 C2 C3 C4 C5 C6 ME LC1 LC2 LC3 Pri Post 

Canc 96.61 96.02 96.09 95.90 95.84 96.21 95.86 96.22 96.06 96.06 96.06 95.97 96.06 95.97 96.06 96.06 96.06 95.74 96.06 95.77 96.11 95.89 
 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 

Car  91.16 89.52 91.19 86.95 92.05 92.16 91.92 91.20 90.28 90.30 90.39 90.01 90.16 90.19 90.46 90.42 90.56 89.50 90.61 91.02 92.06 91.63 
 ±0.00 ±0.00 ±0.00 ±0.01 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.01 ±0.00 ±0.00 ±0.00 ±0.00 

Conn 82.17 79.41 81.82 75.82 84.29 82.94 83.98 81.38 80.67 79.96 80.05 74.67 75.64 75.73 80.32 80.32 81.02 80.32 81.64 80.67 82.84 82.40 
 ±0.09 ±0.07 ±0.04 ±0.12 ±0.08 ±0.06 ±0.08 ±0.07 ±0.05 ±0.06 ±0.06 ±0.10 ±0.16 ±0.14 ±0.06 ±0.06 ±0.06 ±0.07 ±0.06 ±0.05 ±0.06 ±0.05 

Cred  85.52 85.30 85.36 85.20 81.95 85.08 82.21 85.31 85.25 85.41 85.39 84.78 84.88 84.80 85.36 85.36 85.44 84.67 85.25 85.36 84.98 84.85 
 ±0.02 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.02 ±0.01 ±0.01 ±0.02 ±0.02 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 

Derm 97.05 96.95 97.05 96.85 96.60 96.80 96.67 97.00 96.95 96.95 96.95 92.36 96.90 95.45 96.95 96.95 96.85 93.21 96.15 96.90 96.70 96.75 
 ±0.00 ±0.00 ±0.00 ±0.00 ±0.01 ±0.00 ±0.01 ±0.00 ±0.00 ±0.00 ±0.00 ±0.10 ±0.00 ±0.02 ±0.00 ±0.00 ±0.00 ±0.03 ±0.01 ±0.01 ±0.00 ±0.00 

Pima 76.85 76.14 76.40 75.62 69.13 76.10 69.12 76.47 76.25 76.37 76.61 76.33 76.35 76.30 76.66 76.66 76.21 75.31 76.40 76.18 76.00 76.31 
 ±0.01 ±0.02 ±0.02 ±0.02 ±0.03 ±0.02 ±0.03 ±0.01 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.01 ±0.02 ±0.02 ±0.02 ±0.02 

Solar 66.78 66.38 66.37 66.56 55.26 57.10 56.25 62.66 66.47 66.46 55.40 66.11 55.37 65.21 55.40 66.58 66.20 66.08 66.13 66.06 57.00 66.33 
 ±0.01 ±0.01 ±0.01 ±0.01 ±0.00 ±0.04 ±0.00 ±0.14 ±0.01 ±0.01 ±0.00 ±0.01 ±0.00 ±0.02 ±0.00 ±0.01 ±0.01 ±0.00 ±0.01 ±0.01 ±0.04 ±0.00 

Germ 75.00 74.34 74.67 74.11 73.55 74.55 73.39 74.45 74.22 74.27 74.49 74.05 74.22 74.20 74.35 74.35 74.31 73.20 74.89 74.45 74.45 74.23 
 ±0.03 ±0.02 ±0.02 ±0.01 ±0.01 ±0.03 ±0.01 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.03 ±0.03 ±0.03 ±0.01 ±0.02 ±0.03 ±0.03 ±0.03 

Glass 86.49 85.05 86.93 81.56 86.15 86.81 86.25 86.84 86.67 85.97 86.41 85.80 84.42 83.55 86.58 86.67 86.67 76.88 86.58 86.06 86.71 87.06 
 ±0.07 ±0.09 ±0.09 ±0.09 ±0.13 ±0.10 ±0.13 ±0.09 ±0.08 ±0.09 ±0.08 ±0.08 ±0.09 ±0.17 ±0.09 ±0.09 ±0.11 ±0.11 ±0.10 ±0.13 ±0.10 ±0.10 

Heart 82.56 81.86 81.75 82.22 78.32 81.42 78.32 81.68 81.48 81.62 81.62 80.13 80.61 80.47 81.48 81.48 81.35 80.74 81.01 81.14 81.32 81.18 
 ±0.03 ±0.04 ±0.03 ±0.05 ±0.02 ±0.02 ±0.02 ±0.02 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03 ±0.02 ±0.03 ±0.03 ±0.03 ±0.02 ±0.04 ±0.03 ±0.02 ±0.03 

Hepa 87.41 86.40 86.01 87.18 84.85 85.81 85.13 86.01 85.78 85.78 86.01 85.55 86.01 85.78 86.01 86.01 84.62 85.55 86.01 85.55 85.71 85.71 
 ±0.02 ±0.08 ±0.09 ±0.06 ±0.08 ±0.09 ±0.08 ±0.09 ±0.09 ±0.07 ±0.09 ±0.07 ±0.09 ±0.07 ±0.09 ±0.09 ±0.08 ±0.09 ±0.09 ±0.07 ±0.09 ±0.07 

Iono 87.84 87.86 88.26 87.38 85.87 87.96 85.75 88.00 87.58 87.90 87.69 87.90 87.58 87.84 87.74 88.05 86.44 86.39 87.32 86.23 87.86 88.12 
 ±0.00 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.01 ±0.00 

Iris 97.21 96.61 96.61 96.73 96.00 96.41 96.08 96.48 96.61 96.61 96.00 96.48 95.64 96.48 95.88 96.48 96.36 96.61 96.61 96.24 96.31 96.55 
 ±0.02 ±0.02 ±0.02 ±0.01 ±0.03 ±0.02 ±0.03 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.03 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 

Feat 99.77 99.68 99.73 99.64 99.73 99.53 99.73 99.68 99.68 99.68 99.68 99.59 99.59 99.59 99.68 99.68 99.64 99.73 99.73 99.73 99.43 99.43 
 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 

Img 84.42 81.33 83.55 77.14 81.13 84.04 81.07 82.94 82.68 82.94 82.94 83.12 80.61 82.94 83.29 83.03 83.20 71.95 83.12 82.25 83.94 83.77 
 ±0.08 ±0.25 ±0.09 ±0.55 ±0.09 ±0.10 ±0.09 ±0.10 ±0.11 ±0.10 ±0.09 ±0.10 ±0.11 ±0.10 ±0.10 ±0.10 ±0.10 ±0.22 ±0.09 ±0.11 ±0.10 ±0.11 

Spam 86.72 86.23 86.90 85.23 86.19 87.57 86.10 87.20 86.54 86.54 84.19 86.51 84.09 86.51 84.23 86.57 86.85 87.15 86.89 87.25 87.47 87.11 
 ±0.01 ±0.00 ±0.01 ±0.00 ±0.01 ±0.01 ±0.01 ±0.01 ±0.00 ±0.00 ±0.00 ±0.01 ±0.01 ±0.00 ±0.00 ±0.00 ±0.01 ±0.01 ±0.00 ±0.01 ±0.01 ±0.00 

Thy 95.75 94.65 94.99 94.14 95.07 94.87 94.99 95.24 94.65 94.65 94.82 94.39 94.31 94.56 94.99 94.73 94.90 94.65 94.99 94.39 94.77 95.03 
 ±0.01 ±0.03 ±0.02 ±0.05 ±0.01 ±0.02 ±0.01 ±0.02 ±0.03 ±0.02 ±0.03 ±0.02 ±0.02 ±0.03 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.03 ±0.02 ±0.02 

TTT  83.13 77.43 82.56 71.17 80.13 83.04 79.90 81.51 78.57 78.44 78.31 76.33 75.08 74.97 78.84 78.86 80.72 80.15 80.57 80.57 82.94 80.87 
 ±0.04 ±0.04 ±0.04 ±0.02 ±0.02 ±0.03 ±0.02 ±0.03 ±0.04 ±0.05 ±0.05 ±0.03 ±0.04 ±0.03 ±0.05 ±0.05 ±0.06 ±0.02 ±0.05 ±0.04 ±0.03 ±0.04 

Wave 86.72 86.48 86.73 86.01 81.02 86.53 80.96 86.77 86.72 86.70 86.70 86.68 86.69 86.68 86.70 86.70 86.72 85.58 86.70 86.67 86.43 86.41 
 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 

Wine 97.42 96.66 96.90 96.18 97.00 96.70 96.97 96.90 96.69 96.90 96.90 96.90 96.80 96.90 96.90 96.90 96.80 95.66 96.28 96.90 96.60 96.81 
 ±0.02 ±0.03 ±0.02 ±0.03 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.03 ±0.02 ±0.02 ±0.02 
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Table 3.7 LFM VS Other Fusion Methods 

Average Classification Accuracy and Variance of Testing Set of MCSs with 20 base classifiers over Thirty 

Independent Runs 

L=20 LFM DS DS DVS KU 
W-

KU 
KE 

W-

KE 
CM MD C1 C2 C3 C4 C5 C6 ME LC1 LC2 LC3 Pri Post 

Canc 96.48 96.03 96.19 95.77 95.71 96.31 95.79 96.29 96.13 96.13 96.13 96.00 96.13 96.09 96.13 96.13 96.06 95.90 95.84 96.16 96.21 96.05 
 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 

Car  91.40 89.72 91.24 87.44 93.17 92.32 93.06 91.29 90.49 90.39 90.39 90.23 90.32 90.35 90.57 90.57 90.66 89.42 90.76 91.13 92.22 92.14 
 ±0.00 ±0.00 ±0.00 ±0.01 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.01 ±0.00 ±0.00 ±0.00 ±0.00 

Conn 81.55 77.61 80.23 74.14 85.00 82.06 85.29 79.52 78.82 78.55 78.11 73.61 75.11 75.29 78.46 78.55 79.44 80.05 79.79 80.67 81.96 81.52 
 ±0.09 ±0.07 ±0.08 ±0.07 ±0.08 ±0.06 ±0.08 ±0.07 ±0.05 ±0.07 ±0.07 ±0.13 ±0.15 ±0.18 ±0.07 ±0.07 ±0.08 ±0.06 ±0.06 ±0.04 ±0.06 ±0.06 

Cred  85.65 85.25 85.36 85.28 82.06 85.03 82.48 85.23 85.12 85.17 85.20 84.54 84.38 84.38 85.20 85.20 85.10 84.46 85.04 85.02 84.93 84.66 
 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.02 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.02 ±0.01 ±0.02 ±0.01 

Derm 97.05 96.90 97.00 96.75 96.70 96.80 96.77 96.95 96.85 96.95 96.95 92.61 96.85 94.91 97.05 97.05 96.85 94.66 96.55 96.65 96.70 96.75 
 ±0.00 ±0.00 ±0.00 ±0.01 ±0.00 ±0.00 ±0.01 ±0.00 ±0.00 ±0.00 ±0.00 ±0.08 ±0.00 ±0.02 ±0.00 ±0.00 ±0.01 ±0.02 ±0.01 ±0.00 ±0.00 ±0.00 

Pima 77.08 76.59 76.82 76.11 69.91 76.60 70.14 76.82 76.68 76.80 76.73 76.73 76.73 76.75 76.73 76.80 76.68 75.54 76.52 76.42 76.50 76.83 
 ±0.01 ±0.01 ±0.01 ±0.01 ±0.03 ±0.01 ±0.03 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 

Solar 66.58 66.50 66.27 66.76 55.25 57.08 56.20 62.53 66.51 66.49 55.37 65.58 55.38 65.26 55.37 66.49 66.51 66.73 66.47 66.25 56.98 66.05 
 ±0.01 ±0.01 ±0.01 ±0.01 ±0.00 ±0.04 ±0.00 ±0.14 ±0.01 ±0.01 ±0.00 ±0.02 ±0.00 ±0.03 ±0.00 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.04 ±0.01 

Germ 75.00 74.23 74.64 73.82 73.33 74.49 73.33 74.45 74.25 74.29 74.45 74.27 74.36 74.36 74.40 74.42 74.38 73.51 74.82 74.29 74.39 74.34 
 ±0.03 ±0.02 ±0.02 ±0.02 ±0.01 ±0.02 ±0.01 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.03 

Glass 87.10 84.91 86.75 82.25 86.32 86.81 86.65 87.01 85.28 85.11 85.63 85.63 83.64 84.50 86.06 85.97 86.41 78.61 86.49 86.23 86.71 87.15 
 ±0.07 ±0.10 ±0.12 ±0.09 ±0.13 ±0.11 ±0.13 ±0.11 ±0.12 ±0.10 ±0.10 ±0.14 ±0.09 ±0.13 ±0.11 ±0.11 ±0.08 ±0.03 ±0.11 ±0.13 ±0.11 ±0.11 

Heart 82.49 81.98 81.89 82.29 78.45 81.62 78.46 81.82 81.48 81.68 81.68 80.54 80.34 80.07 81.62 81.62 81.48 79.93 80.74 81.01 81.52 81.25 
 ±0.02 ±0.03 ±0.02 ±0.04 ±0.02 ±0.03 ±0.02 ±0.02 ±0.02 ±0.03 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.03 ±0.04 ±0.03 ±0.02 

Hepa 87.41 86.87 86.48 87.65 86.25 86.51 86.32 86.71 86.25 86.48 86.48 86.48 86.48 86.48 86.71 86.71 86.01 86.01 86.01 86.25 86.41 86.18 
 ±0.06 ±0.06 ±0.05 ±0.06 ±0.13 ±0.06 ±0.10 ±0.06 ±0.05 ±0.05 ±0.05 ±0.05 ±0.05 ±0.05 ±0.06 ±0.06 ±0.05 ±0.10 ±0.07 ±0.05 ±0.06 ±0.06 

Iono 88.16 88.09 88.42 87.48 86.81 88.16 86.81 88.42 87.84 88.31 88.16 88.26 88.00 88.31 88.36 88.73 86.75 85.45 87.01 86.49 88.06 88.58 
 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 

Iris 96.97 96.61 96.61 96.61 96.12 96.41 96.17 96.61 96.61 96.61 96.00 96.61 95.76 96.61 96.00 96.61 96.61 96.73 96.73 96.48 96.31 96.43 

 ±0.02 ±0.02 ±0.02 ±0.01 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.01 ±0.02 ±0.02 ±0.02 ±0.02 

Feat 99.73 99.70 99.73 99.64 99.73 99.53 99.73 99.73 99.73 99.73 99.73 99.59 99.59 99.59 99.73 99.73 99.73 99.73 99.73 99.73 99.43 99.43 
 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 

Img 84.59 81.76 83.98 77.58 81.99 84.30 82.25 83.55 83.29 83.20 83.38 83.38 80.78 83.72 83.64 83.64 83.03 71.43 84.07 82.94 84.20 84.03 
 ±0.07 ±0.19 ±0.11 ±0.36 ±0.11 ±0.13 ±0.11 ±0.10 ±0.10 ±0.10 ±0.10 ±0.10 ±0.10 ±0.11 ±0.10 ±0.10 ±0.10 ±0.23 ±0.10 ±0.08 ±0.13 ±0.12 

Spam 86.64 86.10 86.77 85.08 86.55 87.65 86.47 87.04 86.48 86.43 84.08 86.43 84.00 86.43 84.12 86.45 86.70 87.13 86.79 87.17 87.55 87.14 
 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 

Thy 95.33 94.68 94.82 94.39 95.41 94.70 95.35 95.07 94.65 94.73 94.82 94.39 94.31 94.48 94.82 94.90 94.82 94.99 94.73 95.07 94.60 94.77 
 ±0.01 ±0.03 ±0.02 ±0.03 ±0.01 ±0.02 ±0.01 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.03 ±0.02 ±0.02 ±0.02 

TTT  84.30 78.55 83.91 72.31 82.39 84.24 82.61 82.79 79.22 78.78 78.42 76.20 74.42 74.40 79.45 79.48 81.89 82.88 82.05 82.08 84.14 82.68 
 ±0.04 ±0.05 ±0.06 ±0.05 ±0.04 ±0.05 ±0.03 ±0.04 ±0.03 ±0.03 ±0.03 ±0.04 ±0.03 ±0.03 ±0.03 ±0.03 ±0.04 ±0.03 ±0.04 ±0.05 ±0.05 ±0.03 

Wave 86.89 86.57 86.78 86.19 81.91 86.56 81.84 86.78 86.79 86.75 86.74 86.82 86.79 86.80 86.71 86.71 86.74 85.53 86.77 86.77 86.46 86.51 
 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 

Wine 97.52 96.94 97.11 96.69 97.31 96.91 97.32 97.11 97.00 97.00 97.00 96.90 96.80 96.80 97.11 97.11 96.49 94.94 96.80 97.11 96.81 96.81 
 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.03 ±0.04 ±0.02 ±0.02 ±0.02 ±0.02 
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Table 3.8 LFM VS Other Fusion Methods 

Average Classification Accuracy and Variance of Testing Set of MCSs with 30 base classifiers over Thirty 

Independent Runs 

L=30 LFM DS DV DVS KU 
W-

KU 
KE 

W-

KE 
CM MD C1 C2 C3 C4 C5 C6 ME LC1 LC2 LC3 Pri Post 

Canc 96.38 95.97 96.09 95.77 95.65 96.09 95.69 96.16 96.03 96.03 96.03 95.90 96.00 95.97 96.03 96.03 96.09 95.81 95.97 96.06 95.99 95.86 
 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 

Car  91.45 89.71 91.36 87.31 93.66 92.39 93.63 91.38 90.47 90.33 90.37 90.26 90.33 90.35 90.55 90.56 90.67 89.49 90.69 91.17 92.29 92.13 
 ±0.00 ±0.00 ±0.00 ±0.01 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.01 ±0.00 ±0.00 ±0.00 ±0.00 

Conn 81.20 78.05 80.49 74.93 85.61 82.77 85.31 79.79 78.55 78.02 77.93 74.67 76.43 75.38 78.11 78.02 79.52 80.32 80.41 81.91 82.67 81.96 
 ±0.09 ±0.08 ±0.09 ±0.10 ±0.05 ±0.05 ±0.05 ±0.07 ±0.05 ±0.06 ±0.07 ±0.16 ±0.12 ±0.21 ±0.06 ±0.06 ±0.08 ±0.10 ±0.07 ±0.02 ±0.05 ±0.07 

Cred  85.65 85.24 85.20 85.44 82.21 84.97 81.80 85.20 85.10 85.10 85.17 84.41 84.73 84.62 85.15 85.15 85.20 84.01 85.36 85.10 84.87 84.69 
 ±0.01 ±0.02 ±0.02 ±0.02 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.02 ±0.01 ±0.01 ±0.01 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.01 

Derm 97.10 96.87 96.85 96.85 96.80 96.70 96.82 96.85 96.80 96.80 96.80 92.91 96.75 95.40 96.90 96.90 96.55 94.41 96.25 96.85 96.60 96.65 
 ±0.00 ±0.00 ±0.00 ±0.00 ±0.01 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.06 ±0.00 ±0.01 ±0.00 ±0.00 ±0.01 ±0.02 ±0.01 ±0.00 ±0.00 ±0.00 

Pima 77.32 76.51 76.75 76.09 70.19 76.46 69.99 76.80 76.56 76.59 76.59 76.75 76.78 76.70 76.61 76.61 76.61 75.57 76.59 76.47 76.36 76.57 
 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.01 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.01 ±0.02 ±0.02 ±0.02 ±0.01 

Solar 66.63 66.36 66.29 66.58 55.25 57.08 56.25 62.78 66.49 66.22 55.37 66.22 55.49 66.01 55.33 66.47 66.27 66.40 66.29 66.18 56.98 66.28 
 ±0.01 ±0.01 ±0.01 ±0.01 ±0.00 ±0.04 ±0.00 ±0.15 ±0.01 ±0.01 ±0.00 ±0.01 ±0.00 ±0.01 ±0.00 ±0.01 ±0.01 ±0.00 ±0.01 ±0.01 ±0.04 ±0.01 

Germ 75.15 74.47 74.78 74.24 73.56 74.69 73.49 74.69 74.35 74.42 74.56 74.27 74.40 74.35 74.58 74.60 74.76 73.22 74.98 74.33 74.59 74.59 
 ±0.03 ±0.02 ±0.03 ±0.01 ±0.01 ±0.03 ±0.01 ±0.03 ±0.03 ±0.02 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03 ±0.01 ±0.02 ±0.03 ±0.03 ±0.03 

Glass 86.84 84.79 86.06 82.60 86.58 86.38 86.77 86.49 85.63 85.19 85.37 85.89 83.90 83.81 86.49 86.49 86.15 78.35 86.06 85.80 86.28 86.71 
 ±0.09 ±0.10 ±0.10 ±0.08 ±0.16 ±0.15 ±0.17 ±0.13 ±0.09 ±0.10 ±0.11 ±0.10 ±0.09 ±0.11 ±0.11 ±0.11 ±0.07 ±0.09 ±0.10 ±0.15 ±0.15 ±0.13 

Heart 82.90 82.09 81.95 82.56 78.45 81.55 78.40 81.75 81.89 81.82 81.62 80.27 80.34 80.74 81.55 81.55 81.68 79.80 81.41 81.62 81.45 81.32 
 ±0.03 ±0.03 ±0.03 ±0.03 ±0.02 ±0.03 ±0.02 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03 ±0.02 ±0.00 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03 ±0.02 

Hepa 87.65 86.79 86.48 87.41 86.01 86.28 85.87 86.48 86.25 86.71 86.01 86.25 86.48 86.25 86.48 86.48 85.31 86.01 86.25 85.55 86.18 86.18 
 ±0.03 ±0.07 ±0.09 ±0.04 ±0.13 ±0.09 ±0.13 ±0.09 ±0.07 ±0.04 ±0.08 ±0.04 ±0.05 ±0.04 ±0.09 ±0.09 ±0.07 ±0.06 ±0.05 ±0.07 ±0.09 ±0.09 

Iono 88.21 88.07 88.57 87.43 86.96 88.32 86.70 88.47 88.10 88.21 88.10 88.21 87.90 88.21 88.16 88.47 87.69 86.03 87.27 86.96 88.22 88.48 
 ±0.00 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.01 

Iris 97.09 96.61 96.48 96.85 96.36 96.41 96.37 96.61 96.73 96.48 95.88 96.48 95.88 96.48 95.88 96.48 96.61 96.61 96.61 96.24 96.31 96.31 
 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.03 ±0.02 ±0.02 ±0.02 ±0.03 ±0.02 ±0.02 ±0.02 ±0.02 ±0.01 ±0.02 ±0.02 

Feat 99.73 99.65 99.68 99.64 99.73 99.48 99.73 99.64 99.64 99.64 99.64 99.59 99.59 99.59 99.64 99.64 99.64 99.68 99.68 99.73 99.38 99.38 
 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 

Img 85.11 82.77 84.24 80.17 82.86 84.65 82.61 83.90 83.81 83.81 83.72 83.90 80.87 83.81 83.72 83.72 83.98 73.59 84.33 83.03 84.55 84.29 
 ±0.09 ±0.10 ±0.11 ±0.08 ±0.11 ±0.11 ±0.11 ±0.10 ±0.10 ±0.10 ±0.10 ±0.10 ±0.08 ±0.11 ±0.10 ±0.10 ±0.08 ±0.13 ±0.12 ±0.08 ±0.11 ±0.12 

Spam 86.66 86.10 86.83 85.00 86.94 87.86 86.71 87.03 86.47 86.46 84.08 86.42 84.00 86.42 84.14 86.49 86.77 87.29 86.87 87.26 87.76 87.21 
 ±0.01 ±0.01 ±0.01 ±0.00 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 

Thy 95.33 94.70 94.90 94.39 95.50 94.79 95.39 95.24 94.73 94.82 95.07 94.73 94.56 94.73 95.07 95.07 95.07 94.56 94.90 94.73 94.69 94.86 
 ±0.01 ±0.02 ±0.02 ±0.02 ±0.01 ±0.02 ±0.01 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.03 ±0.04 ±0.02 ±0.02 

TTT  84.68 79.22 84.67 72.96 83.34 84.69 83.44 83.34 80.00 79.75 78.61 76.66 74.63 74.59 79.83 79.83 82.41 83.51 82.67 82.44 84.59 83.55 
 ±0.04 ±0.03 ±0.03 ±0.04 ±0.03 ±0.04 ±0.03 ±0.04 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.03 ±0.03 ±0.03 ±0.03 ±0.04 ±0.02 

Wave 86.87 86.63 86.84 86.22 82.23 86.66 81.80 86.84 86.83 86.82 86.81 86.83 86.82 86.84 86.83 86.83 86.79 85.78 86.79 86.82 86.56 86.56 
 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 

Wine 97.52 97.07 97.31 96.69 97.52 97.11 97.52 97.31 97.21 97.31 97.31 97.21 97.11 97.00 97.31 97.21 96.69 95.87 96.49 97.00 97.01 97.01 
 ±0.02 ±0.02 ±0.02 ±0.02 ±0.01 ±0.02 ±0.01 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.03 ±0.02 ±0.02 ±0.02 ±0.02 ±0.02 ±0.03 ±0.02 ±0.02 ±0.02 

 

Figures (3.7) and (3.8) show the average training and testing time of MCSs with 30 

base classifiers for different dynamic fusion methods on twenty datasets over thirty 

independent runs. Each bar represents the time of MCS using a fusion method.  

The training of C1 – C6 methods is the fastest since no additional information is 

required after the base classifiers are trained. As MD only needs to calculate the mean and 

variance of the training set for each base classifier, it is slightly faster than the fusion 

method, such as, KU, W-KU, KE, W-KE, Pri and Post, which need to calculate the errors 

for the training sample. The calculation of an additional term (sensitivity term) causes LFM 
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to take longer training time which is roughly double the time of other methods using the 

training error only. Generally, DS, DV and DVS should take a longer training time than ME 

and LC1 – LC3. This is because when 5-cross validation is used in DS, DV and DVS, 5 

times more classifiers are trained. However, in this experiment, RBF Network and MLP 

Neural Network are used as base classifiers and the Gate Network for ME and LC1 – LC3. 

The gradient descent training method of MLP Neural Network takes much longer time than 

the training of RBF network. That is the reason why DS, DV and DVS have a shorter 

training time than ME and LC1 – LC3. Moreover, due to the training of additional neural 

networks, the training time of DV, DVS, ME and LC1- LC3 are significantly longer than 

other methods. 

Training Time
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Figure 3.7 LFM VS Other Fusion Methods 

Average Training Time of MCSs with 30 base classifiers on Twenty Datasets 

 over Thirty Independent Runs 
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Figure 3.8 LFM VS Other Fusion Methods 

Average Testing Time of MCSs with 30 base classifiers on Twenty Datasets 

 over Thirty Independent Runs 

The differences of testing time among fusion methods are smaller than those for the 

training time. As C1 – C6 and Post need a complex calculation on weights, they require a 

longer testing time. While ME and LC1 – LC3 have the shortest testing time since the 

values of their weights are only based on the gating network output. The testing time of the 

fusion methods (such as DS, DV, DVS, KU, W-KU, KE, W-KE and Pri) which measure the 

training errors on the K-nearest samples from the testing sample is 23.9 on average. This 

average testing time is similar to the time required by the LFM. This shows that LFM does 

not require much additional time on classifying samples although both training error and 

sensitivity term are considered. 

In conclusion, as the LFM uses the localized generalization error bound, which 

consists of training error and sensitivity term, for weight assignments, additional training 

time (roughly 2 times) is needed comparing with other fusion methods which only calculate 

the training error. However, the training time of the LFM is still much shorter than some 

fusion methods, such as DS, DV, DVS, ME and LC1 – LC3. When classifying samples, the 

time required by LFM is similar to the one considering only the training error. As a result, 
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although additional information is required for the LFM, its training and testing time are 

comparable to those of the current dynamic fusion methods. 

3.4 Conclusion 

In this chapter, a novel dynamic fusion method, the L-GEM Fusion Method (LFM), 

is proposed. The currently available dynamic fusion methods estimate the performances of 

the base classifiers only based on the training samples. The limitation of these approaches is 

that the information of unseen samples near the testing sample have not been considered. 

The LFM measures the generalization error bound on a neighborhood containing the testing 

sample by the L-GEM. The L-GEM uses both the training error and the sensitivity of the 

classifier outputs to assign weight to each base classifier. Conceptually the LFM penalizes a 

fluctuating base classifier by assigning to it a smaller weight.  

Although additional computations are required for LFM, its testing time complexity 

is the same as the dynamic fusion methods which consider the training error only. This is 

because the information on training error and sensitivity can be computed and stored during 

the training phase. The information can be retrieved when classifying testing samples. The 

experimental result also shows that the LFM is competitive with other dynamic fusion 

methods in terms of time complexity. 

The effect of the number of nearest neighborhoods (K) in LFM is studied. The 

performance of a MCS using the LFM decreases when K increases. Based on the 

experimental studies, MCSs perform the best when K is between 1 and 5. LFM has also 

been compared with other twenty one dynamic fusion methods. The experimental results 

show that for a set of trained base classifiers, the testing accuracies of a MCS using LFM 

outperforms those using other fusion dynamic methods. It shows that weight assignment 
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based on localized generalization error bound in LFM can better reflect the actual local 

competence of base classifiers than other dynamic fusion methods. The sensitivity term, in 

addition to the training error term, proves to be useful in estimation the local competence for 

a MCS. 
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CHAPTER 4 
L-GEM FOR MCSS (L-GEM

MCS
) 

The generalization error is the single most important criterion in the evaluation of a 

classifier. However, the exact computation of its value is generally not feasible since the 

probability density function of the input or the true input-output mapping function or both 

are not known. This problem is true for both single and multiple classifiers. Some 

generalization error models proposed for MCSs [Krogh et al 1995, Tumer et al 1996a, Ueda 

et al 1996] are difficult to use since part of their models are not computable. In other cases 

their error bounds may be too loose [Freund et al 1996]. The major contribution of these 

models is their attempt to describe the relationship between the errors of the MCS and its 

base classifiers. This observation motivates us to extend the L-GEM from single classifiers 

to MCSs. 

In this chapter, the factors which affect the performance of MCSs and the existing 

error models for MCSs are presented in Section 4.1. The extension of L-GEM, named L-

GEM
MCS

, form single classifiers to MCSs is derived in Section 4.2, which is the main result 

in this section. The components of the L-GEM
MCS

 are discussed in Section 4.3. Section 4.4 

presents the analysis of  the characteristics of the L-GEM
MCS

. An effective way of 

computing the sensitivity terms in the L-GEM
MCS

 is proposed in Section 4.5. A comparison 

technique for MCSs using the L-GEM
MCS 

is presented in Section 4.6. Section 4.7 concludes 

this chapter. 
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4.1 Existing Error Models for MCSs 

In this section, the existing error models error models for MCSs are introduced. The 

three factors which affact the error of MCSs are discussed and the 

4.1.1 Three Factors Affect the Performance of MCSs  

A MCS combines the outputs of a set of base classifiers to reach the final decision. 

The performance of a MCS is affected by three factors: Base Classifier Performance, Fusion 

Method and Diversity. 

Base Classifier Performance 

Since a MCS is made up by a number of base classifiers, its decision error will 

obviously be affected by its base classifiers. Discussions on error models for single 

classifiers are available in the literature and they will not be presented in this thesis. 

Fusion Method 

A fusion method defines the way to combine the outputs of the base classifiers to 

form the final output for the MCS. It is interesting to note that, although the outputs of the 

base classifiers are the same, the output of the MCS will be different if different fusion 

methods are used. Here is a simple example: 

Table 4.1 MCS with Different Fusion Methods 

 Class1 Class2 

f1(x) 0.2 0.8 

f2(x) 0.7 0.3 

f3(x) 0.7 0.3 

fmcs(x) with Avg 0.53 0.47 

fmcs(x) with Max 0.7 0.8 

 

Table (4.1) shows that the base classifier 1 has 0.2 confidence of x belonging to class 

1 and 0.8 confidence of x belonging to class 2. While both base classifiers 2 and 3 have 0.7 

for class 1 and 0.3 for class 2, If we use the averaging fusion method, class 1 will have a 
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score of 0.53 and class 2 will get 0.47. In this case, the MCS outputs class 1. But when the 

maximum fusion method is used, the output of MCS is class 2 since the value for class 2  

would be 0.8  which is greater than the value of 0.7 for class 1. This simple example shows 

that the performance of a MCS is seriously affected by the choice of the fusion method. 

The simplest fusion method is the weighted average sum 

 ∑
=

=
L

i

ii

mcs xfwxf
1

)()( , (4.1) 

where wi is the non-negative weight for the i
th
 base classifier and 1

1

=∑
=

L

l

lw . When all 

weights are equal to 1/L, it becomes a simple average fusion method. The weighted average 

and the simple average are the most intensively studied fusion technique [Brown 2004, 

Fumera et al 2008, Islam et al 2008, Shirai et al 2008, Skurichina et al 2000, Wolpert et al 

1999] because of their linear property. 

For non-linear fusion methods, the majority vote [Kuncheva et al 2003b, Lam et al 

1996] and the weighted majority vote [Bhadoria et al 2005, Sun et al 2005] are the most well 

known ones. The idea of majority vote is very simple. The decision of a MCS is the class 

selected by most of the base classifiers. A more accurate base classifier is given a larger 

share of votes in the weighted majority vote. 

Order statistics [Tumer et al 1995] has been used as fusion methods. The fusion of 

maximum, minimum and median are: 

 
)}({max)( xfxf i

i

mcs =
, (4.2) 
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There is no evidence that any one of these fusion methods always outperforms the 

others. In general, the performance of the weighted average shows the most satisfying result 

[Kuncheva 2004].  

Diversity 

Diversity is used to measure the degree of difference between the outputs of the base 

classifiers of a MCS. A MCS is said to be very diverse if the outputs of its base classifiers 

are totally different. On the other hand, if all base classifiers yield identical outputs, the 

MCS has zero diversity. If two base classifiers always classify correctly (wrongly), only one 

of them should be in the MCS since they cannot complement each others’ errors. It is an 

intuitively appealing idea to have a most diversified MCS.  

Table 4.2 Comparison between Diverse and Non-Diverse MCSs.  

1 (0) denotes correct (wrong) recognition of the classifier 

 f1 f2 f3 fmcs 

x1 1 1 1 1 

x2 0 0 0 0 

x3 0 0 0 0 

x4 1 1 1 1 

x5 1 1 1 1 

Acc. 60% 60% 60% 60%  

 f1 f2 f3 fmcs 

x1 1 1 0 1 

x2 1 0 1 1 

x3 0 1 1 1 

x4 1 1 0 1 

x5 0 0 1 0 

Acc. 60% 60% 60% 80%  
a) Non-Diverse MCS b) Diverse MCS 

 

 f1 f2 f3 fmcs 

X1 1 1 1 1 

X2 1 0 0 0 

X3 0 0 1 0 

X4 1 1 1 1 

X5 0 1 0 0 

Acc. 60% 60% 60% 40%  
c) Diverse MCS 

 

Table (4.2) gives an example to show the effect of diversity upon the performance 

of a MCS. In this example, the accuracy of each base classifier is fixed at 60% and the 
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majority vote fusion method is used. The effect of different diversity measures will be 

investigated.  

The MCS, shown in Table (4.2a), has identical base classifiers. This MCS has zero 

diversity. Obviously, the decision of the MCS is the same as any of its base classifiers. 

Therefore, its accuracy is also 60%. On the other hand, the outputs of the base classifiers are 

different in Table (4.2b). In this case, the accuracy of the MCS has increased to 80%. 

However, there is no guarantee on improvement of performance for a more diverse MCS. 

Table (4.2c) gives such an example. In fact the accuracy of the MCS is down to 40% 

although it is made up by more diverse base classifiers. It is clear that a more diverse MCS 

is desirable, but the performance of a MCS can only be improved by having good 

“diversity”. The concept of diversity is rather abstract and its definition is by no means 

unique. Many diversity measures have been proposed and the following presents a brief 

discussion on a few representative ones [Banfield et al 2003, 2005, Giacinto et al 2001a, Ho 

1998, Kuncheva et al 2003a, Liu et al 1998, Lu et al 2006, Rasheed et al 2008, Yule 1900].  

The definition of diversity can be separated into two categories according to the 

types of base classifier’s outputs: pairwise and non-pairwise measure. A Pairwise Diversity 

Measure considers a pair of classifiers at a time. Consider the outputs of two classifiers fi 

and fj, as shown in Table (4.3). 

Table 4.3 Output Combinations of Two Classifiers 

 fi correct fj wrong 

fi correct N11 N10 

fj wrong N01 N00 

 

For a pairwise diversity measure, since L base classifiers produce L(L-1)/2 pairwise 

diversity values, the diversity measure is equal to the mean of all pairs.  
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Yule [Yule 1900] proposed a statistical method to evaluate the similarity of two 

variables using the Q statistics (Q). The Q statistic is defined as: 

 
10010011

10010011

NNNN

NNNN
Qij +

−
= . (4.5) 

For statistically independent classifiers, Q = 0. The range of Q is between -1 and 1. 

When Q > 0, the two classifiers tend to give the same answer to the same objects and when 

Q < 0, the two classifiers tend to give the different answer to the same objects. 

The Disagreement Measure (DM) may be the most intuitive diversity measure. It 

measures the probability of two classifiers disagreeing with each other. The value of DM is 

from 0 to 1. When DM is 1, it means the two classifiers always disagree. The definition of 

DM is: 

 
00011011

0110

NNNN

NN
DM ij +++

+
= . (4.6) 

In the Entropy measure (En), the MCS  is most diverse for a particular when L/2 of 

its base classifiers are correct and the rest are wrong. En is defined as: 

  
)}(),(min{

)2/(

11

1

jj

N

i

xlLxl
LLN

En −
−

= ∑
= , (4.7) 

where l(x) indicates the number of base classifiers in the MCS recognizing the sample x 

correctly. En varies between 0 and 1. En = 0 means no diversity and En = 1 means the 

highest diversity.  

Percentage Correct Diversity Measure (PCDM) is an example of non-pairwise 

diversity measure [Banfield 2003]. It finds the number of samples which are classified 

correctly by K% of the base classifiers where K is between 10 and 90. The bounds of 10% 

and 90% are chosen empirically. PCDM is defined as: 
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L

Li

i

0

%,90%01δ  and Li denotes the number of base classifier which 

classifies sample xi correctly. PCDM ranges from 1 (most diverse) to 0 (least diverse). 

There is only one commonly used method to measure the diversity of MCS with 

continuous-valued outputs [Tumer et al 1996a]. This method measures the correlation 

coefficients of the errors of the outputs of individual classifiers. Similar to the label output, 

if the correlation coefficient is equal to 1, it means all classifiers are identical. When the 

correlation coefficient is zero, all classifiers are independent .When the correlation 

coefficient is -1, it is the best case since all classifiers are most diverse. 

4.1.2 Hansen and Salamon Conditions 

Hansen and Salamon [Hansen et al 1990] derive a set of necessary and sufficient 

conditions for a MCS to be more accurate than any of its individual members. The first 

condition is that each base classifier must be accurate. An error rate of each base classifier 

should be better than random guessing, for example, more than 50% for a two-class problem. 

Another condition is related to the diversity among the base classifiers. The errors of the 

base classifiers should be independent. Under these restrictive constraints, the error of a 

MCS can be simply expressed as a combination of the probabilities of base classifiers’ 

errors when the majority vote fusion method is used: 

 ( )
 
∑

=

−−



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

L

Li

iLi
pp

i

L

2/

1  (4.9) 

where p is the probability of error of a base classifier. For example, assuming a MCS with 9 

base classifiers using the majority vote as the fusion method and the error of the base 



CHAPTER 4 L-GEM FOR MCSS (L-GEM
MCS

) 

 88 

classifiers is 40%, the error of this MCS is 32%. It has been shown that Equation (4.9) is 

monotonically decreasing in L. When the performances of the base classifiers are better than 

random guess and their errors are independent, if more base classifiers are used, the less 

error the MCS will cause. In practice this model is not realistic since the statistically 

independent assumption on the errors of the base classifiers is nearly impossible to achieve.  

4.1.3 Bias, Variance and Covariance Decomposition 

The bias-variance decomposition [Geman et al 1992] states that the MSE can be 

broken down into two components: bias and variance. Let f (x; D) denote the output of 

classifier f trained by a set D. Since D is selected randomly, the performance of f is certainly 

depending on D. The bias-variance decomposition is defined as follows: 

 ( )( ) ( )( ) ( )DfDfbiasxFDxfE
Z

;var;)();(
22 +=− , (4.10) 

where ( ) ( ))();(; xFDxfEDfbias
Z

−= , ( ) ( )( )( )2
);();(;var DxfEDxfEDf

ZZ
−=  and Z is a set 

of D of fixed size N. The bias term measures how close the classifier is to its target while the 

variance term measures how stable the classifier is. It means if the given training set D 

changes slightly, a classifier with high variance will tend to exhibit wildly different 

performances when the dataset is changed.  

For a MCS with an average fusion method, the variance term can be further broken 

down. It is known as the Bias-Variance-Covariance decomposition [Ueda et al 1996]: 
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terms are the average bias and variance of each base classifier. The covariance term is a new 

one. It measures the average covariance of each pair of base classifiers and it could be a 

negative value. If the base classifiers are negatively correlated, the covariance term 

contributes to a decrease in the MSE of the MCS. Conversely, if the base classifiers are 

positively correlated, the MSE of the MCS increases. The ideal situation is that the 

covariance is reduced without causing any increase in the bias and the variance terms. This 

error model describes the average error of a classifier on different datasets. It provides some 

general guideline for the design of a MCS in general, which is high bias, low variance and 

low covariance.  

4.1.4 Ambiguity Decomposition 

Korgh and Vedelsby [Krogh et al 1995] have shown that the MSE of a MCS is 

guaranteed to be less than or equal to the average MSE of its base classifiers: 
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mcs xfwxf
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)()( . 

The first term on the right hand side is the weighted average of the MSE of the base 

classifiers and the second term is called ambiguity. Since the ambiguity term is a non-

negative number, the MSE of the MCS must not be larger than the weighted average of the 

MSE of its base classifiers from Equation (4.12).  

The ambiguity term measures the variability of the base classifiers. It is a kind of 

diversity measure. Equation (4.12) shows that the MCS error can be reduced more when the 

ambiguity term is bigger. However, the increase in the ambiguity term may also cause an 

increase of the first term. Hence it is not enough to consider the diversity term alone. A 
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correct balance between the diversity and the accuracies of the base classifiers must be 

stressed. (4.12) helps us understand the combined effect of the base classifiers’ errors and 

the diversity upon the error of the MCS. However, the model fails to identify the 

relationship between the generalization error (on unseen samples)  and the error and the 

diversity on the training set. 

Wolpert and Macready [Wolpert et al 1999] proposed several estimation methods on 

the error and ambiguity terms of the generalization error using the training set. For example: 
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where Dl denotes the subset of D which is not used in the training of fl and |Dl| represents the 

number of training samples in Dl. Only Dl rather than D is used for the evaluation of fl to 

reduce the over-fitting problem. However, there is no justification why this will work. In 

fact, if we sum up the estimated errors and the ambiguity terms, the result is roughly equal 

to the training error, but not necessarily the generalization error of the MCS. 

4.1.5 Tumer and Ghosh Framework 

 
Figure 4.1 Decision boundaries and error associated with approximating the posteriori probabilities  

in Tumer and Ghosh’s framework  
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A framework for analyzing the error of a MCS with the average fusion is proposed 

by Tumer and Ghosh [Tumer et al 1996a, 1996b]. A base classifier i approximates the 

posterior probability of the class ω as: 

 ( ) ( ) ( ) ( )xxPxPxf iii |||ˆ
, ωηωωω +== ,  (4.15) 

where P(ω|x) is the true posteriori probability of class a and ηi(ω|x) is the posteriori 

probability estimation error of the base classifier i on the sample point x.  

Figure (4.1) shows the posteriori probability obtained by a classifier, and the 

associated added error (Eadd) region. The total error (Etotal) of the classifier is defined as: 

 
Bayesianaddtotal EEE += , (4.16) 

where EBayesian denotes the non-reducible Bayesian error. It means that this error cannot be 

reduced by any classifier.  

This framework assumes the estimation errors on different classes are independent 

and identically distributed random variable [Tumer et al 1996a] with zero mean and 

variance 2

iη
σ . Also, the posteriori probabilities are assumed to be monotonic around the 

decision boundary. The added error of a classifier can be expressed as: 
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where s is the difference between the derivatives of the two posteriors. When a MCS is 

considered with addE  and 2

iη
σ  being the same for all base classifiers, the added error of the 

MCS can be shown as: 

 
( )

add

mcs

add E
L

L
E 







 ++
=

11 δ
. (4.18) 



CHAPTER 4 L-GEM FOR MCSS (L-GEM
MCS

) 

 92 

mcs

addE  denotes the added error of MSCs. δ is the correlation coefficient of the 

posteriori probability estimation error of the base classifiers. When δ = 1, the outputs of all 

base classifiers are the same. The error of the MCS is equal to those of its base classifiers. If 

δ = 0, the error of the base classifiers are statistically independent. mcs

addE  is L times smaller 

than addE . 

Roli and Fumera [Roli et al 2002] have extended this framework by easing the 

assumption on the same addE  and 2

iη
σ  for all base classifiers. The relation between a MCS 

with the average fusion and the weighted average fusion has been discussed. However, since 

the true posteriori probability is unknown for a classification problem, ηi, 
2

iη
σ and addE  

cannot be calculated. This framework is for theoretical discussion only.   

4.1.6 VC Dimension Model 

Schapire et al [Freund et al 1996, 1997, Golea et al 1998] derives an upper bound for 

the generalization error of MCSs using weighted majority vote method for two class 

problems. There are two possible class IDs, y∈{-1, +1}. If the value of fi(x) is positive, x 

belongs to class +1. Otherwise, it is -1. A MCS consisting of binary base classifiers using 

weighted majority vote is defined as: 
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where ∑
=

=
L

i

iw
1

1 and wi > 0. The majority vote rule gives the wrong prediction only if yf(x) < 

0. The margin in this case is defined as yf(x). Assume that the base classifier space H is 

finite, and let δ > 0. With probability at least 1 – δ over the random choice of a given 

training set D, f
mcs

 satisfies the following bound for all θ > 0: 
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where N is the number of samples in D. It shows that the large margin of the MCS can 

reduce the upper bound of the MCS. This conclusion is applied to weight adjustment in 

Adaboost [Mason et al 1997, Reyzin et al 2006, Rudin et al 2004].  

Golea et al [Golea et al 1998] improved this result with a tighter error bound. 

Different from Schapire’s one which depends on the complexity of the most complex 

classifier, the generalization error proposed by Golea depends on the complexity term which 

involves the average VC Dimension of the classes of the base classifiers.  Mason et al 

[Mason et al 1997] has applied the generalization error bound to the single hidden-layer 

threshold networks and decision trees. However, as indicated in [Freund et al 1996], this 

upper bound is very loose and can be infinite. Moreover, it is only meaningful when N ≥ 

10000. Thus, this model is only good for theoretical discussion as well. 

4.2 Derivation of L-GEM for MCSs (L-GEMMCS) 

The existing error models for MCSs suffer from the weakness that either some 

components in the models are not computable or the error bound is very loose. The 

Localized Generalization Error Model for MCSs, abbreviated as L-GEM
MCS

, which aims to 

overcome such a weakness, is proposed and derived in this session.  

L-GEM
MCS

 is the extension of the L-GEM for single classifiers to the MCSs. The 

weighted average fusion is selected for the  L-GEM
MCS

 since it is a commonly used fusion 

method. For instance, the Bagging and Boosting technique [Breiman 1994, 1996, Derbeko 

et al 2002, Fumera et al 2008, Shirai et al 2008, Skurichina et al 2000, Wolpert et al 1999], 

also uses the weighted average as its fusion method. 
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We recall here the definition of the Local Generalization Error Bound (R
*

Q) of a 

classifier f in Q neighborhood as given in Equation (1.7): 
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The first two terms are the training error and the sensitivity, and the last term is 

constant for a given dataset. For a MCS function, the error bound becomes: 
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A MCS with the weighted average fusion is defined as: 
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where wl is the weight assigned to the l
th
 base classifier, 1

1

=∑
=

L

l

lw  and fl( ) is the output of 

the l
th
 base classifier.  

By assuming x is uniformly distributed in the Q neighborhood and substituting 

Equation (4.23) to (4.22), the training error becomes: 
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Similarly, the sensitivity term can be expressed as: 
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Finally, R
*

Q of the MCSs is given by: 



CHAPTER 4 L-GEM FOR MCSS (L-GEM
MCS

) 

 96 

( ) ( )( )( )[ ]
( ) ( )( ) ( ) ( )( )( )[ ]

( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )

2

1 1

1

22

1 1

1

22

*

2

2

































+






 −−+






 −

+

−−+

−

=

∑ ∑

∑

∑ ∑

∑

= +=

=

= +=

=

A

xfxfxfxfEEww

xfxfEEw

xFxfxFxfEww

xFxfEw

R

L

l

L

lm

immill
QD

ml

L

l

ill
QD

l

L

l

L

lm

iimiil
D

ml

L

l

iil
D

l

Q

i

i

. (4.26) 

 Let  
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R
*

Q can be rewritten as: 

 ( )2*
ASenSenErrErrR

divbasedivbase

Q ++++= . (4.27) 

Similar to the L-GEM, L-GEM
MCS

 also contains three terms: training error, 

sensitivity and constant A. However, the training error and the sensitivity of L-GEM
MCS

 are 

more complex than similar terms in the L-GEM. The training error in L-GEM
MCS

 consists of 

two components. The first component, the base classifier training errors (Err
base

), is the 

summation of the squared weight multiplied by the mean square training error of the base 

classifiers. Another component, the diversity of base classifier training errors (Err
div

), is the 

summation of the product of the weighted training error of each pair of base classifiers. 
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Similarly, the sensitivity is also combined by two components: base classifier sensitivity 

(Sen
base

) and diversity of base classifier sensitivity (Sen
div

).  Sen
base

 is the summation of 

squared weight multiplied by the mean square base classifiers’ outputs differences between 

the unseen samples in Qi and xi. Sen
div

 is the summation of the product of the weighted 

outputs differences between the unseen samples in Qi and xi of each base classifier pair. The 

detail explanation of each component is discussed in the next section. 

4.3 Components Discussion 

The four terms that make up the L-GEM
MCS

 : Err
base

, Err
div

, Sen
base

 and Sen
div

, are 

discussed in this section. 

Base Classifier Training Error (Errbase) 

This term is defined as the summation of the squared weight multiplied by the mean 

square training error of base classifiers. The performance of the base classifiers will 

certainly affect the overall performance of the MCS. If a MCS is made up of very poorly 

performed base classifiers, it cannot expect a good performance in general. As a smaller R
*
Q 

value is preferred (to be discussed in Section 4.6), Err
base

 should be as small as possible. It 

should be noted that Err
base

 is a non-negative term. The optimal situation is when it is equal 

to zero. It means that each base classifier perfectly classifies each sample in the training set. 

Diversity of Base Classifier Training Error (Errdiv)  

 As discussed in Section 4.1.1, one of the major advantages of considering the MCSs 

is the base classifiers can complement each other. The measurement of the differences 

among the base classifiers is called diversity. In L-GEM
MCS

, the diversity of base classifier 

training errors is a kind of pair-wise diversity. This is because it considers a pair of 

classifiers at each time. Err
div

 measures how much difference in the errors made by the base 
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classifiers on the training set. For example, if the l
th
 classifier estimates the output of xi 

higher than it should be, fl(xi)-F(xi) will be positive. If the m
th
 classifier makes the same 

estimation, then fm(xi)-F(xi) is also positive. The product of fl(xi)-F(xi) and fm(xi)-F(xi) is 

positive. As a result, the value of the diversity of the base classifier training errors becomes 

bigger. This is not a good situation since both classifiers make the same mistake on the same 

sample. In the contrast, if the m
th
 classifier estimates the output of xi lower than it should be, 

then the product of fl(xi)-F(xi) and fm(xi)-F(xi) becomes negative. This will be a preferable 

situation since it causes the Err
div

 to be smaller. Different from Err
base

, Err
div

 can be negative. 

The value of R
*

Q can be reduced if Err
div

 is smaller than 0. As a result, it is desirable to have 

the base classifiers making different errors on the training set. 

Base classifier sensitivity (Senbase) 

Sen
base

 is the summation of squared weight multiplied by the mean square base 

classifiers’ outputs differences between the unseen samples in Qi and xi. The sensitivity 

measure is defined as the classifier output differences between the training sample and the 

unseen samples in its Q-neighborhood. It measures how sensitive the classifier output is to 

the input change. Generally, a classifier is not expected to have a good performance if it is 

very sensitive. This is because in most cases, the outputs of two similar inputs should not be 

very different. Moreover, when a dataset is collected, the actual value of a sample may be 

slightly different from the one being collected. A sensitive classifier will have a poor 

performance in this noise situation. Similar to the Err
base

, Sen
base

 is a non-negative term. It 

means that smaller Sen
base

 is preferable. 

Diversity of base classifier sensitivity (Sendiv)  

Similar to the Err
div

, the Sen
div

 measures the relationship among the sensitivities of 

the base classifiers. Sen
div

 is also a pair-wise diversity measure and considers two classifiers 

at each time. It is the summation of the product of the weighted outputs differences between 
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the unseen samples in Qi and xi of each base classifier pair. It will be negative if the 

sensitivities of base classifiers are different on unseen samples. For example, if the output of 

the l
th
 classifier on x is higher than its output on xi, fl(x)-fl(xi) is a positive value. An 

undesired situation will occur if another classifier has the same behavior on x since it will 

cause the MCS much more fluctuation at that point. The preferable case is that another 

classifier outputs a smaller value, which means fm(x)-fm(xi) is negative. The fluctuation effect 

can then be canceled out. Therefore, a negative Sen
div

 is preferred.  

These four terms are dependent on each other. The change in one term may affect the 

values of the others. For example, if the variability of the individual error increases (Err
div

 

decreases), then Err
base

 will also increase. Therefore, the L-GEM
MCS

 indicates that a good 

MCS should not consider any term individually. A right balance between these four terms 

must be considered. In summary, a MCS will have a smaller R
*

Q if its base classifiers are 

accurate (small Err
base

) and stable (small Sen
base

). Under the unfortunate situation where the 

base classifiers are inaccurate and unstable, it is hoped that their errors will be 

complementary to each other. 

4.4 Characteristics of L-GEMMCS 

4.4.1 An Extension of the L-GEM  

The L-GEM
MCS

 is an extension of the L-GEM for single classifiers. When L = 1, the 

Err
div

 and Sen
div

 are equal to 0 (Equation (4.26)). Then R
*

Q of L-GEM
MCS

 becomes: 
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This result is equal to Equation (1.7).  

4.4.2 Relation between L-GEMMCS and Existing MCS Error 
Models 

Bias, Variance and Covariance Decomposition describes the average error of a 

classifier on different datasets. The three components, which are bias, variance and 

covariance, cannot be calculated. However, RQ
*
 provides the error bound of a trained 

classifier on a particular dataset. Each term in RQ
*
 is computable. 

Tumer and Ghosh model describes the relationship between the added error of a 

MCS and its base classifiers. It does not provide any information on the relation between the 

generalization and training error. In contrast, L-GEM
MCS

 expresses the generalization error 

bound as the summation of training error, sensitivity and a constant. Moreover, the added 

error in Tumer and Ghosh model cannot be calculated. 

VC Dimension Model provides an error upper bound. However, this bound is for 

classifiers with a particular architecture and for the entire input space. These are different 
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from L-GEM
MCS

 which provides an error upper bound of a trained MCS in the Q-

neighborhood. 

 Ambiguity Decomposition does not provide any information on the relation between 

the generalization and training error. The error of the MCS is broken down into Bias and 

Ambiguity terms. The relationship between these two terms and L-GEM
MCS

 are shown as 

follows. Using Equation (4.12), the training error of a MCS can be expressed as: 

( ) ( )( )( ) ( ) ( )( )( ) ( ) ( )( )( )∑∑
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show that: 

 Error - Ambi = Err
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div

 

 (Error - Err
base

) - Ambi = Err
div

, (4.30) 
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Equation (4.30) shows that a bigger Ambi implies a smaller Err
div

. When Ambi is 

equal to (Error - Err
base

), Err
div

 is equal to 0. When Ambi is bigger (smaller) than (Error - 

Err
base

), Err
div

 will become negative (positive) respectively. In Bias Ambiguity 

Decomposition, a MCS with large ambiguity is preferred. It is in agreement with the 
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conclusion in 4.3 which prefers a MCS with smaller Err
div

 when the sensitivity terms are 

ignored. 

4.4.3 The Limiting Cases 

The parameter q in the L-GEM
MCS

 controls the size of the local neighborhood (Q). 

For the special case when q = 0, Q only contains the training samples (Q = D). It follows 

that both Sen
base

 and Sen
div

 become zero and R
*

Q will be determined by Err
base

 and Err
div

 only. 

R
*

Q becomes the training error (Remp) of the MCS.  

When q is bigger, the importance of the training error of the MCS decreases since 

the Q neighborhood will become larger. When q → ∞, Q → Ω, where Ω denotes the entire 

input space. Sen
base

 and Sen
div

 would become the dominating factors of R
*

Q and the effect of 

Err
base

 and Err
div

 will be relatively smaller. When Q → Ω, R
*

Q becomes the upper bound of 

the MCS generalization error in the entire input space (Rture). 

4.4.4 Independent of Training Method 

L-GEM
MCS

 does not depend on the training method of the base classifiers. R
*

Q can be 

calculated for any trained MCS. This property of the L-GEM
MCS

 makes it an useful 

characteristic of a MCS since the base classifiers may be trained by different training 

methods to increase the diversity. 

4.4.5 Time Complexity of L-GEMMCS 

It can be easily shown that the time complexity of the L-GEM
MCS

 is O( nNL(L+1)/2 ), 

where n is the number of features of a sample, L is the number of base classifiers and N is 

number of samples.  

4.4.6 Complexity of the MCSs 
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When a MCS has a “non-smooth” separating surface, its output changes may be very 

sensitive to input changes. The two terms, Sen
base

 and Sen
div

 in the L-GEM
MCS

, represent the 

fluctuations of the MCS outputs in a Q neighborhood. The value of the sum of these two 

terms is large when the output differences between unseen samples and the training samples 

in the Q neighborhood are large. Therefore, the sensitivity terms in the L-GEM
MCS

 could be 

used to describe the complexity of a MCS. 

4.4.7 Limitation 

L-GEM
MCS

 gives an estimate on the generalization error bound in a Q neighborhood 

of the training set. However, it suffers from the same problem as all other methods do, i.e., 

when the training set is not a good representation of the input population, its estimation may 

not be useful. 

4.5 Sensitivity Measures (Senbase and Sendiv) 

An effective way of computing the sensitivity measure is proposed in this section. 

When ||∆x|| is small, the classifier output can be approximated by 
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where H denotes the Hessian matrix with element hij = ∂
2
f / (∂xi ∂xj) and H is assumed to be 

zero approximately for the surfaces with small curvature. Sen
base

 and Sen
div

 become: 
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∆x is assumed to be uniformly distributed in Qi. Hence, ∆x is zero mean and 

uncorrelated. The mean of ∆x∆x
T
 in Qi is δ

2
I, where δ

2
 is equal to q

2
/3. 

One of the advantages of this proposed calculation is its low complexity. This 

advantage is especially important to the MCS since most, if not all, of its computational 

efforts increases with respect to its number of base classifiers. The complicated calculation 

makes the estimation method not practical. Equations (4.33) and (4.34) show that both 

Sen
base

 and Sen
div

 are in terms of ∂f/∂x. A computation reduction could be realized if ∂f/∂x for 
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each base classifier can be calculated and stored first. For instance, when Sen
div

 is computed, 

there is no need to do any pairwise sensitivity computation. One only needs to retrieve the 

values of ∂f/∂x.  

Considering the special case of a MLP Neural Network with one hidden layer: 
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where M denotes the number of hidden neurons, αHm denotes the weight of the m
th
 neuron, 

αIjm denotes the weight between the j
th
 input feature and the m

th
 neuron, xi denotes the 

sample i and xij is the j feature of xi. 

Thus, ∂f
MLP

/∂xi and df
MLP

/dxit are defined as: 
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The calculations of ∂f
RBF

/∂xi and df
RBF

/dxit of a RBF Network are given by Equations 

(3.15) and (3.16). 

4.6 Comparing MCSs Using L-GEMMCS 
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Given a pool of trained MCSs, it is important to know which MCS will have a better 

generalization capability? In this section we want to show that L-GEM
MCS

 can be used as a 

reasonable evaluation criteria to help answer this question. 

  
a) small value of q b) large value of q 

Figure 4.2 Q neighborhoods with different values of q on the same dataset 

Given a training set (D) and two MCSs (f
mcs1

 and f
mcs2

), and for the same Q 

neighborhood, if R
*

Q of f
mcs1

 is smaller than R
*

Q of f
mcs2

, it is expected that f
mcs1

 has better 

generalization ability than f
mcs2

. It should be noted that q is the same for the Q neighborhood 

of f
mcs1

 and f
mcs2

. Otherwise, R
*

Q will be for different regions and the comparison will be 

meaningless. For example, Figure (4.2) shows two Q neighborhoods, QS and 

QL ,corresponding to different values of q on the same dataset. If R
*

QS of f
mcs1

 is smaller than 

R
*

QL of f
mcs2

, no conclusion can be drawn since QS and QL covers unseen samples in different 

regions. In general, R
*

QL is bigger than R
*

Qs since more unseen samples are considered in 

R
*

QL.  

MCSs can be compared in another way by using the L-GEM
MCS

. We can fix the R
*

Q 

and compare the sizes of q of different MCSs. For any given value of R
*

Q, if f
mcs1

 can cover a 

larger region than f
mcs2

, we can expect the generalization ability of f
mcs1

 is better than f
mcs2

.  

By using the definition of Sen
base

 and Sen
div

 in Equations (4.33) and (4.34), R
*

Q in L-

GEM becomes: 
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As A is a constant for a given set, it can be ignored in the MCS comparison. For any 

given R
*

Q, q can be found by:  
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It should be noted (4.39) is valid when the square root of R
*

Q is larger than the square 

root of the sum of Err
base

 and Err
div

. This condition is reasonable since the error of a MCS 

on unseen samples in the Q neighborhood should be larger than its training error, The 

denominator of Equation (4.39) must also be bigger than zero. The denominator is equal to 

zero when all ∂fl / ∂xi are zero, where l = 1..L and i = 1..N. In this situation, all base 

classifiers in a MCS are stable and both Sen
base

 and Sen
div

 are equal to 0. This ideal situation 

rarely happens in practice. 

4.6.1 Experiments 

In this section, the performance on MCS comparison using L-GEM
MCS

 is discussed 

experimentally. A pool of MCSs with different number of base classifiers is trained. The 

best MCS will be chosen according to different selection criteria. R
*

Q in L-GEM
MCS

 will be 

compared with other selection criteria: 1) Training MSE (T-MSE), 2) Training 

Classification Error (T-CE), 3) Training MSE of 5-CV (5CVT-CE), 4) Training 
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Classification Error of 5-CV (5CVT-MSE) and, 5) Bias Ambiguity Decomposition method 

(BAD) [Wolpert et al 1999].  

MLP Neural Network and RBF Network are used as the base classifiers. For the 

MLP Neural Network, it has only one hidden layer and the number of hidden neurons is 

randomly selected from two to fifty. The weights are determined by gradient descent 

[Kiernan et al 1996]. For the RBF network, its number of neurons is selected randomly from 

two to fifty. The center and width of the neurons are determined by K-mean [Kiernan et al 

1996] and the K-nearest-neighbor algorithm [Musavi et al 1992] respectively. The weight is 

calculated using the Singular Value Decomposition (SVD) method [Mak et al 1998]. To 

diversify the base classifiers in a MCS, Bagging method [Breiman 1996] is applied. Each 

base classifier is assigned a different training set which is randomly selected from the 

original training set with replacement. 

Ten MCSs are trained for each number of base classifier, L = 1..50. The pool 

contains 500 MCSs in total. Each MCS consists of half RBF networks and half MLP Neural 

Networks. Average and weighted average are used as the fusion method. The weights of the 

weighted average fusion method are determined according to the training errors of the base 

classifiers. The parameter q in the L-GEM
MCS

 is determined by cross valuation. 

4.6.1.1 Experiment on Benchmark Datasets 

Table (4.4) shows twelve datasets selected from the UCI machine learning repository 

[MLR] and Intelligent Data Analysis Group [DAG]. They cover a wide range of 

applications involving two-class and multi-class problems. Each dataset is equally divided 

into two parts randomly: training and testing. The experiment generates twenty independent 

runs for each pair of dataset. Only samples in the training set are used during training. The 
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samples in the testing set are reserved to evaluate the performances of the trained classifiers. 

The inputs of all samples are normalized to [0, 1].   

Table 4.4 Twelve Datasets 

Dataset 
Short 

Name 
# Class # Sample # Feature 

Breast Cancer Wisconsin Canc 2 569 32 

Car Evaluation Car  4 1728 6 

Connectionist Conn 2 208 60 

Credit Approval Cred  2 690 15 

Pima Indians Diabetes Pima 2 768 8 

Solar Flare Solar  2 1066 9 

Glass Identification Glass 7 214 10 

Heart Heart 2 270 13 

Ionosphere Iono 2 351 33 

Image Segmentation Img 7 2310 19 

Spambase Spam 2 4601 57 

Waveform  Wave  3 5000 21 

 

The results are shown in Tables (4.5) and (4.6). Each dataset contains two rows. The 

first row represents the average percentage of classification accuracy and its variances of the 

testing sets over twenty independent runs. The average number of base classifiers in MCSs 

over twenty independent runs is shown on the second row. Each column represents a 

different selection method for MCS. The Student’s t-test is applied to examine the statistical 

significance of the performance made by L-GEM
MCS

 against the other methods. When the 

absolute t-value is larger than 2.02 in each experiment, the result is significant at the 95% 

probability level. The value is bolded and underlined in the cell if the performance of L-

GEM
MCS

 is better than that specific method at a 95% significance level. 

Table (4.5) demonstrates the MCSs selected by L-GEM
MCS

 perform better than the 

ones selected by other methods when the average fusion is used. In the Car Evaluation, 

Connectionist and Credit Approval datasets, L-GEM
MCS

 is 2% better than other methods on 

average. The performance of the Cross Validation methods (5CVT-CE and 5CVT-MSE) is 

worse than Training Error based methods (T-CE and T-MSE). BAD performs the worst in 
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this experiment, especially in Car Evaluation and Image Segmentation dataset. The 

performance of MCSs using the weighted average fusion method is shown in Table (4.6). 

Similar to Table (4.5), L-GEM
MCS

 outperforms other methods about 2%. It should be noted 

that the performance of 5CVT-CE and 5CVT-MSE slightly improve comparing with Table 

(4.5). The accuracy of MCSs selected by the Cross Validation methods and similar to the 

one selected by T-CE and T-MSE. The MCS selected by BAD also has the lowest accuracy 

and it is about 1% lower than average accuracy. 

Table 4.5 L-GEMMCS VS Other Methods 

Average Classification Accuracy, Variance of Testing Set and Number of Base classifiers of  

MCSs using average over Twenty Independent Runs 

Average L-GEMMCS T-CE T-MSE BAD 5CVT-CE 5CVT-MSE 

Canc Acc (%) 97.16±0.00 96.68±0.00 96.59±0.01 96.33±0.01 96.33±0.00 96.68±0.00 

 L 25.32 28.03 42.22 45.55 18.04 28.05 

Car  Acc (%) 92.54±0.01 91.80±0.00 91.74±0.00 89.8±0.01 91.10±0.00 91.34±0.00 

 L 39.25 36.25 46.30 46.53 19.53 33.50 

Conn Acc (%) 84.08±0.19 80.78±0.23 83.94±0.14 80.30±0.15 81.51±0.11 80.78±0.14 

 L 20.50 9.54 36.02 42.25 19.00 24.36 

Cred  Acc (%) 86.97±0.03 85.23±0.01 85.30±0.02 84.94±0.01 84.87±0.02 84.94±0.04 

 L 37.25 32.54 44.25 42.03 21.25 31.25 

Pima Acc (%) 79.13±0.14 76.50±0.01 76.83±0.02 75.33±0.03 76.18±0.01 76.70±0.02 

 L 42.23 23.04 40.51 46.54 21.00 31.34 

Solar  Acc (%) 67.59±0.01 66.79±0.02 67.16±0.01 66.60±0.04 66.55±0.02 66.32±0.03 

 L 17.49 13.04 47.77 47.25 13.79 25.75 

Glass Acc (%) 89.49±0.12 88.06±0.06 88.77±0.08 88.53±0.04 87.58±0.04 87.82±0.04 

 L 29.00 19.53 44.02 38.06 21.75 41.65 

Heart Acc (%) 82.24±0.06 81.50±0.03 81.5±0.02 80.39±0.04 80.76±0.01 81.13±0.01 

 L 26.34 37.77 46.76 48.53 22.01 29.20 

Iono Acc (%) 89.86±0.02 88.06±0.01 88.91±0.04 88.49±0.01 87.77±0.01 88.06±0.04 

 L 31.50 36.38 43.50 36.74 20.75 30.75 

Img Acc (%) 88.72±0.02 87.34±0.10 87.58±0.11 84.49±0.12 87.10±0.07 87.34±0.06 

 L 21.75 14.56 44.53 44.26 15.03 23.32 

Spam Acc (%) 89.25±0.01 88.15±0.01 87.69±0.01 87.71±0.02 87.56±0.01 87.54±0.01 

 L 43.50 43.77 40.24 48.51 34.23 32.75 

Wave  Acc (%) 88.18±0.00 86.73±0.00 86.69±0.00 86.52±0.00 86.71±0.00 86.65±0.00 

 L 41.62 21.53 46.02 46.75 12.4 21.01 

Average Acc (%) 86.27 84.80 85.23 84.12 84.50 84.61 

 L 31.31 26.33 43.51 44.42 19.90 29.41 

 

Generally, the methods using MSE (L-GEM
MCS

, T-MSE, BAD and 5CVT-MSE) 

tends to select the MCS which contains a large number of base classifiers than the methods 

using classification error (T-CE and 5CVT-CE). The average L in L-GEM
MCS

, T-MSE, 

BAD and 5CVT-MSE, which is about 37, is large than T-CE and 5CVT-CE, which is about 

23. However, since the sensitivity terms (Sen
base

 and Sen
div

) of R
*

Q in L-GEM
MCS

 discourage 
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to the selection of complex MCSs, the number of base classifiers in the MCSs selected by L-

GEM
MCS

, which is about 31 in average, is relatively small among the MSE based methods.  

Table 4.6 L-GEMMCS VS Other Methods 

Average Classification Accuracy, Variance of Testing Set and Number of Base classifiers of  

MCSs using weighted average over Twenty Independent Runs 

Weighted Average L-GEMMCS T-CE T-MSE BAD 5CVT-CE 5CVT-MSE 

Canc Acc (%) 97.42±0.11 97.47±0.00 96.85±0.01 97.65±0.01 95.49±0.00 95.60±0.00 

 L 23.12 26.64 41.76 30.40 28.69 31.14 

Car  Acc (%) 92.54±0.01 91.31±0.01 91.60±0.00 87.83±0.02 90.14±0.00 90.69±0.00 

 L 36.79 19.81 44.56 32.12 21.09 32.13 

Conn Acc (%) 83.42±0.22 79.81±0.14 83.94±0.18 78.60±0.18 81.89±0.06 82.01±0.05 

 L 23.59 22.24 38.15 24.37 18.92 28.15 

Cred  Acc (%) 87.10±0.02 84.94±0.06 85.30±0.02 84.94±0.03 85.99±0.05 86.24±0.03 

 L 28.94 22.79 45.80 17.79 21.23 24.87 

Pima Acc (%) 80.39±0.04 76.83±0.04 76.70±0.01 77.02±0.01 77.07±0.02 76.62±0.01 

 L 35.71 12.12 41.57 14.90 22.85 40.62 

Solar  Acc (%) 68.69±0.01 67.69±0.02 66.98±0.01 65.99±0.02 68.53±0.00 67.81±0.00 

 L 17.18 21.45 46.32 26.55 22.95 41.37 

Glass Acc (%) 91.11±0.06 88.06±0.06 85.68±0.10 85.91±0.11 88.45±0.00 87.47±0.00 

 L 27.23 7.86 44.70 33.59 24.64 27.42 

Heart Acc (%) 83.68±0.03 80.39±0.03 81.31±0.02 82.79±0.04 81.50±0.01 82.23±0.02 

 L 28.39 36.14 45.31 10.31 23.27 22.84 

Iono Acc (%) 89.63±0.02 88.49±0.00 88.91±0.04 87.91±0.03 87.33±0.01 86.55±0.01 

 L 33.34 37.67 43.68 18.47 29.64 34.03 

Img Acc (%) 89.54±0.11 87.10±0.06 88.06±0.14 85.68±0.04 87.88±0.00 87.92±0.00 

 L 20.94 19.11 44.96 33.15 18.81 29.52 

Spam Acc (%) 89.31±0.01 88.07±0.01 87.61±0.01 86.97±0.02 87.67±0.00 87.83±0.00 

 L 43.49 36.36 41.72 16.63 25.23 29.41 

Wave  Acc (%) 89.37±0.08 86.90±0.00 86.66±0.01 86.53±0.00 86.78±0.00 87.88±0.00 

 L 31.36 13.90 48.13 24.34 21.51 45.12 

Average Acc (%) 86.93 84.76 84.97 83.99 84.89 84.90 

 L 29.17 23.01 43.89 23.55 23.24 32.22 

 

The average MCS selection times on twelve dataset over twenty independent runs 

are shown in Table (4.7). As expected, 5CVT-CE and 5CVT-MSE require the longest 

selection time since they need to train 5 times of MCSs. For example, if the MCS consists of 

30 base classifiers, 150 base classifiers have to be trained. Definitely, cross validation is not 

a practical method for MCSs. The selection time of the L-GEM
MCS

 based method is longer 

than other methods since additional sensitivity terms are considered. The time required by 

the L-GEM
MCS

 is less than 2 times of T-CE and T-MSE.  

Table 4.7 L-GEMMCS VS Other Methods 

Average Selection Time of MCSs on Twelve Datasets over Twenty Independent Runs 

Method L-GEMMCS T-CE T-MSE BAD 5CVT-CE 5CVT-MSE 

Time 22.77 13.51 13.52 19.30 1331.77 1332.68 
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4.6.1.2 Experiment on a Biased Dataset 

In general, a training set should be reasonable representative of the underlining 

classification problem. This means that the unseen samples should be similar to the training 

samples. Figure (4.3a) shows good representative training samples in the Glass dataset. The 

dots are the training samples and the crosses are the unseen samples. The shaded area 

denotes the Q neighborhood. In this case, even a small value of 0.1 for q, QS and QL near the 

training samples covers most of the testing samples. Figure (4.3b) shows training samples 

that are not good representatives of the problem. The training samples are all located on the 

left hand bottom corner of the input domain while the testing samples are mainly located in 

the upper right region. Hence most testing points cannot be covered by the Q neighborhood. 

  
a) Random selection b) Biased selection 

Figure 4.3 Distribution of Training and Testing sets divided by different selection  

for the glass Dataset  

This section discusses the performances of different learning methods in their 

handling of a special situation when the training set is sampled poorly and cannot represent 

the classification problem. Glass dataset is again used in this experiment.  

Tables (4.8) and (4.9) show the performance of MCSs selected by L-GEM
MCS

 and 

other selection methods when average and weighted average fusion method is used 

respectively. Refer to Tables (4.5) and (4.6), when the training and testing set are divided 
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randomly, the testing accuracy of all methods is about 88%. Unsurprisingly, the accuracies 

of all methods drop significantly, which is about 75% in average, for the biased dataset. 

Moreover, the variance for all methods for the biased dataset is larger due to the larger 

variations in the testing set. This result is in agreement with the findings in Section 2.4.3. 

When the training samples cannot represent the problem, no classifier is expected to perform 

well. 

Table 4.8 L-GEMMCS VS Other Methods 

Average Classification Accuracy, Variance of Testing Set and Number of Base classifiers of  

MCSs using weighted average over Twenty Independent Runs 

Average L-GEMMCS T-CE T-MSE BAD 5CVT-CE 5CVT-MSE 

Glass Acc (%) 80.96±0.28 80.37±0.28 79.91±0.06 77.10±0.35 75.23±0.21 75.70±0.44 

 L 19.34 13.54 44.43 46.03 20.52 27.53 

 

Table 4.9 L-GEMMCS VS Other Methods 

Average Classification Accuracy, Variance of Testing Set and Number of Base classifiers of  

MCSs using weighted average over Twenty Independent Runs 

Weighted Average L-GEMMCS T-CE T-MSE BAD 5CVT-CE 5CVT-MSE 

Glass Acc (%) 79.83±0.11 79.84±0.35 79.91±0.07 77.10±0.53 64.06±0.34 62.79±0.31 

 L 19.31 23.53 39.68 25.53 21.57 29.59 

 

Conclusion 

The experimental results show that the L-GEM
MCS

 still selects a better MCS than the 

other methods under the biased situation in term of testing accuracy. This indicates that the 

L-GEM
MCS

 can still pick up a MCS with relatively good generalization ability although most 

unseen samples are not located in the Q neighborhood. It should be noted that the 

performance of two 5-CV methods drastically drops 12% to 15%. Cross Validation methods 

try to estimate the generalization error of the MCSs using different subsets of the training 

samples. However, the bias training samples affect their estimations significantly. 
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4.7 Pilot Study on MCSs training using L-GEMMCS 

Chapter 2 shows that L-GEM can be applied as a single classifier training objective 

resulting in good experimental performances comparing with existing methods. Similarly, 

L-GEMMCS can be used as a training objective function for a MCS. In this situation, all 

base classifiers in a MCS will be trained at the same time to minimize the localized 

generalization error bound of the MCS. 

Negative Correlation (NC) [Zanda et al 2007] is a well known MCS training method. 

In NC, the following objective function is used: 
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(4.40) 

The first term in (4.40) is the sum of the training errors of the base classifiers and the 

second term is the diversity term which measures the differences between the errors of base 

classifiers. Therefore, NC minimizes the error and increases the error diversity of base 

classifiers of a MCS. 

One possible choice for the L-GEM
MCS

 objective function is defined as: 

 
( )divbasedivbase

Q SenSenErrErrR +++='

. (4.41) 

The terms under the first square root in (4.41) are similar to the terms in NC 

although the diversity terms are defined differently. The diversity in NC is defined 

intuitively while the diversity term in L-GEMMCS is closely related to the generalization 

error of the MCS. (4.41) has an additional term, namely, the sensitivity of MCSs. 
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The following training methods are compared experimentally: 1) single RBF 

network by 2PLRQ (RBF 2PLRQ), 2) single RBF network by 3PLRQ (RBF 3PLRQ), 3) K-

Nearest Neighborhood (Single K-NN), 4) C4.5 Decision Tree (Single DT), 5) MCS with 

RBF network base classifier by L-GEM
MCS 

(RBF 2PLRQ), 6) MCS with RBF network base 

classifier by NC (RBF 2PLRQ), 7) MCS with K-Nearest Neighborhood (MCS K-NN) and 8) 

MCS with C4.5 Decision Tree (MCS DT). Each MCS contains 10 base classifiers. The base 

classifiers in MCS K-NN and MCS DT are trained by Bagging method [Breiman 1996]. 

Each base classifier is assigned a different training set randomly selected from the original 

training set with replacement. Parameters K, q and λ are determined by CV. 

Four datasets are used from the UCI machine learning repository [MLR]. The 

experiment generates ten independent runs for each pair of dataset. Only samples in the 

training set are used during training. The samples in the testing set are reserved to evaluate 

the performances of the trained classifiers. The inputs of all samples are normalized to [0, 1]. 

Table (4.10) shows the experimental performances of different classifiers. Our first 

observation is that MCSs trained by L-GEM
MCS

 perform the best among all four MCS 

methods for all datasets. The second observation is that the performance of a single 

classifier could be improved by combining a number of them into a MCS. For example, in 

breast cancer dataset, the accuracy of a single K-NN improves by more than 4.5% when a 

number of K-NNs are combined. 

Table 4.10 RBF L-GEMMCS VS other classifier 

Average Classification Accuracy of Testing Set over Ten Independent Runs 

Single Classifiers MCSs  

RBF 

2PLRQ 

RBF 

3PLRQ 

Single 

K-NN 

Single 

DT 

RBF 

L-GEMMCS 

RBF 

NC 

MCS 

K-NN 

MCS 

DT 

Breast Cancer 96.03 96.72 91.24 92.23 97.65  96.01 95.71  96.48  

Car 92.18 96.72 90.02 91.32 98.00  96.45 94.63  94.92  

Connectionist 80.01 82.37 77.24 77.98 83.35  81.48 79.82  80.79  

Credit Approval 87.24 87.32 85.78 87.34 88.35  86.90 88.14  87.51  

Dermatology 97.99 98.19 94.64 96.57 98.23  97.88 96.65  97.56  

Average 90.69  92.26  87.78  89.09  93.12  91.74 90.99  91.45  
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4.8 Conclusion 

The L-GEM
MCS

 is proposed and derived in this chapter. L-GEM
MCS

 contains four 

terms: Err
base

, Err
div

, Sen
base

 and Sen
div

. Err
base

 and Sen
basev

 consider the error and sensitivity 

for each base classifier, while Err
div

 and Sen
div

 measure the relation of error and sensitivity 

between each pair of base classifiers. Similarities and differences between L-GEM
MCS

 and 

the Bias Ambiguity Decomposition are presented. The relationship between Err
base

, Err
div

 

and the Ambiguity term is analyzed and the different characteristics of the L-GEM
MCS

 are 

discussed. A more effective computation of  Sen
base

 and Sen
div

 is proposed and is applied to 

the RBF Network and the MLP Neural Network with one hidden layer. 

L-GEM
MCS

 is applied as criterion to select the best one from a pool of trained MCSs. 

The experimental result shows that when the average and the weighted average fusions are 

used, the MCSs selected by L-GEM
MCS

 outperform the ones chosen by other five selection 

methods in terms of testing accuracy. Moreover, the number of base classifiers in MCSs 

selected by L-GEM
MCS

 is smaller than other MSE based selection methods, such as T-MSE, 

BAD and 5CVT-MSE. The experimental result also shows that L-GEM
MCS

 is competitive 

with other methods in terms of time complexity. 
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CHAPTER 5 
BASE CLASSIFIER SUBSET SELECTION 

USING L-GEM
MCS

 

A long standing problem that exist in the study of the MCSs is the determination of τ, 

the number of base classifiers, to form the MCS, given that a pool of L base classifiers are 

available. Many ad-hoc rules or rules-of-thumb are available. In this chapter we will explore 

the use of L-GEM
MCS

 as an evaluation criteria for selecting a subset of τ base classifiers by 

adding one at a time, assuming that the additional base classifier will contribute to the 

performance improvement of the MCS.  

The success of online classification problems is critically dependent on the value of τ 

[Margineantu et al 1997, Prodromidis et al 2001]. The selection of τ base classifiers out of a 

pool of L is referred to the “pruning” problem. Many studies show that a pruned MCS 

outperforms the original one in terms of accuracy [Aksela 2003, Caruana et al 2004, 

Margineantu et al 2009, Roli et al 2001, Sharkey et al 2000, Zhou et al 2002, 2003]. 

However, the optimal base classifier subset selection is a NP-hard problem. For instance, a 

MCS with L base classifiers, the number of non-empty base classifier subset is 2
L
-1. 

One practical approach to this problem is to use a greedy search to find a sub-

optimal solution to this base classifier subset selection problem. A MCS is constructed by 

adding a base classifier one at a time. In each iteration, the base classifier which is expected 

to improve the generalization ability of the MCS the most is selected. 
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The selection criteria used in the current methods are either based on diversity 

measure [Giacinto et al 2001a, 2001b, Margineantu et al 1997] or intuitive thinking 

[Banfield et al 2005, Martınez-Munoz et al 2004]. These methods offer no theoretical 

justifications for their claims. Our proposed L-GEM
MCS

 ,which estimates the error bound of 

a MCS on unseen samples located within a neighborhood of the training samples, is 

intuitively logical and conceptually appealing to be used as a criteria for base classifier 

subset selection. 

Section 5.1 presents a review of base classifier subset selection methods using a 

greedy search. The new subset selection method using L-GEM
MCS

 is presented and 

discussed in Section 5.2. Experimental results are shown and analyzed in Section 5.3 and 

Section 5.4 concludes this chapter. 

5.1 Base Classifier Subset Selection Methods 

The following notations are needed to facilitate discussion on the base classifier 

selection methods: 

H   a set of trained base classifier 

HS  a set of selected trained base classifier 

CHHS a set of unselected trained base classifier 

mcs

Hf  a MCS combined by base classifiers in H 

Reduce Error (RE) method [Margineantu et al 1997, 2006] may be the simplest for 

base classifier subset selection. This method calculates the training error of mcs

fHs
f ∪ , 
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where
sH HCf ∈ . The base classifier which yields the smallest training error of mcs

fHs
f ∪  will be 

selected. 

Concurrency Thinning (CT) [Banfield et al 2005] incorporates the base classifier 

which is the most complementary to the MCS. The complementary is represented by a score. 

A base classifier is given a high score for obtaining a correct decision, especially when the 

decision of the MCS is incorrect. The score of a classifier is deducted when both the 

ensemble and classifier are in correct. The detail algorithm is shown in Figure (5.1). The 

concept of Complementarily Measure (CM) [Martınez-Munoz et al 2004] is similar to 

Concurrency Thinning. However, Complementarily Measure only counts the number of 

times when the MCS is wrong but the base classifier is correct. 

For each fl ∈CHHS 

 For each xi ∈D 

  If 
mcs

Hs
f correct and fl correct 

   Scorel = Scorel + 1 

  If 
mcs

Hs
f incorrect and fl correct 

   Scorel = Scorel + 2 

  If 
mcs

Hs
f incorrect and fl incorrect 

   Scorel = Scorel - 2 

 End 

End 

fHH SS ∪= , where f has the largest Score 

Figure 5.1 Algorithm of Concurrency Thinning 

The concept of PCDM diversity measure, which is introduced in Section 4.1.1, is 

applied in the Accuracy In Diversity (AID) method [Banfield et al 2005]. The uncertainty 

samples are identified in the training samples. The uncertainty samples are defined as those 

training samples for which the proportions of base classifiers of the MCS can correctly 

classify is between 10% to 90%. The Upper Bound (UB) and Lower Bound (LB) of the 

training samples are defined by the proportion of the uncertainty samples. The base 

classifier which has the highest accuracy on the samples between UB and LB would be 

selected. Figure (5.2) shows the algorithm of AID. 
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Find the uncertainty samples in D 

PCDM = proportion of uncertainty samples 

c

PCDM
PCDMmLB

−
+×=

1
 and ( )PCDMmPCDMUB −×+×= 19.0  

 where m is the mean of accuracy of  f ∈HS 

fHH SS ∪= , where f has the highest accuracy on the points between LB and UB 

Figure 5.2 Algorithm of AID 

Boosting-Based Ordering method is proposed in [Martınez-Munoz et al 2007]. This 

method is similar to the boosting method [Freund 1995, Freund et al 1997]. Each training 

sample is assigned a weight. All weights are initially set to 1/N at first and are adjusted in 

each iteration according to the performance of the MCS. The base classifier with the lowest 

weighted error is selected. The algorithm is shown in Figure (5.3). 

fHH SS ∪= , where f has the lowest weighted error (є) 

Calculate є of 
mcs

Hs
f  

For each xi ∈D 

 If 
mcs

Hs
f  incorrect, wi = wi / 2є 

 Else wi = wi / 2(1 - є) 

End 

Figure 5.3 Algorithm of Boosting-Based Ordering Method 

The Kappa (κ) measure is used for the base classifier selection in [Giacinto et al 

2001a, Margineantu et al 1997]. κ measures the level of agreement of base classifiers while 

correcting for chance. It is defined as: 

 
))(())((

)(2
0001101100100111

00100111

NNNNNNNN

NNNN
ij +++++

−
=κ , (5.1) 

where N
00

, N
01

, N
10

 and N
11

 are defined in Table (4.3). Lower value of κ means higher 

disagreement and hence lower κ is preferred. The base classifier which has the lowest value 

of κ with the MCS is selected. 

Giacinto and Roli [Giacinto et al 2001b] cluster the ensembles based on the Double-

Fault diversity measure (DF). DF is defined as  
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00011011

00

NNNN

N
DFij +++

= . (5.2) 

The rationale behind this method is that classifiers getting wrong at the same time 

are not preferable since they cannot help each other to reduce the error. DF measures the 

probability of two classifiers being wrong at the same time. The value of DF is from 0 to 1 

and smaller value of DF is preferred. The base classifiers are clustered using DF as distance 

matrix and the average linkage clustering is applied. In each iteration, the base classifier 

with the highest training accuracy is selected from each cluster and be integrated to the MCS. 

5.2 L-GEMMCS Base Classifier Subset Selection (LCS) 

The algorithm of the base classifier subset selection method using L-GEM
MCS

 is 

introduced in this section. The method is called L-GEM
MCS

 Base Classifier Subset Selection 

(LCS). The idea of the LCS is to use the L-GEM
MCS

 as a criterion to select the base 

classifier subset. In each iteration, the LCS calculates the local generalization error bound of 

the MCS when an additional base classifier is added to it. The added base classifier which 

contributes to the MCS with the smallest error bound  is chosen.  

Before presenting the algorithm of the LCS in detail, the selection criterion needs to 

be defined. Since A in R
*

Q is a constant when the training set is given, it does not affect the 

selection result. Therefore, A is ignored in the LCS and the selection criterion (R’Q ( f )) is 

defined as: 

 ( ) ( ) ( )( )( ) ( ) ( )( )( )
2

22'














 −+−= i

QD
ii

D
Q xfxfEExFxfEfR

i

. (5.3) 

R’Q of the MCS combined by HS is: 
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 ( )
( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )

2

'
























 −−+

−−

=

∑ ∑

∑ ∑

∈ ∈

∈ ∈

sl sm
i

sl sm

s

Hf Hf

immill
QD

ml

Hf Hf

iimiil
D

ml

mcs

HQ

xfxfxfxfEEww

xFxfxFxfEww

fR . (5.4) 

Let mcs
Err  and mcs

Sen  be: 

 ( ) ( )( ) ( ) ( )( )( )∑ ∑
∈ ∈

−−=
sl smHf Hf

iimiil
D

ml

mcs xFxfxFxfEwwErr , (5.5) 

 ( ) ( )( ) ( ) ( )( )( )∑ ∑
∈ ∈






 −−=

sl sm
iHf Hf

immill
QD

ml

mcs xfxfxfxfEEwwSen .  (5.6) 

( )mcs

HQ s
fR '  becomes: 

 ( ) ( )2' mcsmcsmcs

HQ SenErrfR
s

+= . (5.7) 

Let )( fErr
sH

 and )( fSen
sH

 be: 

 

( ) ( )( ) ( ) ( )( )( )

( ) ( )( )( ) 
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
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. (5.9) 

Consider R’Q of the MCS combined by HS and an additional base classifier fk: 

 { }( )mcs

fHQ ks
fR ∪

'  
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 )()( fSenSenfErrErr
ss H

mcs

H

mcs +++= , (5.10) 

Equation (5.7) shows that the value of ( )mcs

HQ s
fR

'  depends on two components: mcs
Err  

and mcs
Sen . When an additional base classifier (fk) is added to HS, ( )mcs

fHQ ks
fR ∪

'  can be 

calculated by mcs
Err , mcs

Sen , )( fErr
sH

 and )( fSen
sH

, which is shown in Equation (5.10). 

Comparing with Equations (5.7) and (5.10), only two components ( )( fErr
sH

 and )( fSen
sH

) 

are needed to compute ( )mcs

fHQ ks
fR ∪

' . Therefore, there is no need to compute ( )mcs

fHQ ks
fR ∪

'  again 

for each new subset of base classifiers. This reduces the computational complexity of the 

LCS. )( fSen
sH

 can be computed by using Equations (4.33) and (4.34). 

1. Initialization:  

   1.1 0=mcs
Err , 0=mcs

Sen , and φ=sH  

2. Add the best base classifier to HS 

   2.1 ( )( )mcs

fHQ
f

s ks
fRf ∪= 'minarg , where f ∈CHHS 

  (2.2) if ( ) ( ) θ>− ∪
mcs

fHQ

mcs

HQ kss
fRfR

''
 and φ≠sH , Terminate the Loop 

   2.3 )( sH

mcsmcs
fErrErrErr

s
+=  and )( sH

mcsmcs
fSenSenSen

s
+=  

   2.4 HS = HS ∪{ fs } 

   2.5 Goto 2.1 until φ=sH HC  or | HS | = L’ 

Figure 5.4 Algorithm of the base classifier subset selection using L-GEMMCS 
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The algorithm of the LCS is shown in Figure (5.4). The parameters are initialized in 

step 1. Next, the base classifiers are selected one by one iteratively. In step 2.1, R
’
Q is 

calculated for each classifier in CHHS. The classifier fk which yields the lowest value of 

( )mcs

fHQ ks
fR ∪

'  is added to the MCS. It should be noted that HS is empty in the first iteration. 

Therefore, the base classifier which has the lowest single localized generalization error 

bound is selected as the first classifier in the LCS. Step 2.2 is an optional stopping condition. 

A certain level of performance improvement should be expected after a new base classifier 

is added to the MCS. Otherwise, the base classifier should not be selected. θ denotes the 

expected localized generalization error bound improvement. In the special case when θ= 0, 

the base classifier will be selected only if integrationist addition can make R
’
Q of the MCS 

decrease, which is ( ) ( )mcs

fHQ

mcs

HQ kss
fRfR ∪> '' . Finally, the selected classifier is added to the HS. 

The process ends when all base classifiers are selected or the number of selected classifier 

reaches a predetermined number L
’
. 

The time complexity of the LCS is higher than existing selection methods since 

)( fErr
sH

 and )( fSen
sH

 require additional computational effort. The time complexity of 

one iteration for the LCS is O(nN (|HS|+1) |CHHS|), where n is the number of features of a 

sample, N is number of samples and |HS| is the number of classifiers in HS. The time 

complexity is highest when |HS| is equal to |CHHS|. The time complexity of select all base 

classifiers from H using the LCS is ))1((
1

1∑
−

=
−+

H

i
iHinNO , where |H| is the number of 

classifiers in H. 

5.3 Experiments 

Table (5.1) shows thirteen datasets selected from the UCI machine learning 

repository [MLR] and Intelligent Data Analysis Group [DAG]. They cover a wide range of 
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applications involving two-class and multi-class problems. Each dataset is equally divided 

into two parts randomly: training and testing. The experiment generates thirty independent 

runs for each pair of datasets. Only samples in the training set are used during training. The 

samples in the testing set are reserved to evaluate the performances of the trained classifiers. 

The inputs of all samples are normalized to [0, 1]. 

Table 5.1 Twelve Datasets 

Dataset 
Short 

Name 
# Class # Sample # Feature 

Breast Cancer Wisconsin Canc 2 569 32 

Car Evaluation Car  4 1728 6 

Credit Approval Cred  2 690 15 

Dermatology Derm 6 366 34 

Solar Flare Solar  2 1066 9 

German Credit Data Germ 2 1000 24 

Hepatitis Hepa 2 80 19 

Spambase Spam 2 4601 57 

Thyroid Thy 2 215 5 

Tic-Tac-Toe Endgame TTT  2 958 9 

Titanic Tit  2 2201 3 

Waveform  Wave  3 5000 21 

Wine Wine 3 178 13 

 

In this section, the performance of the LCS is discussed and compared with Reduce 

Error (RE), Kappa (Kappa), Complementarily Measure (CM), Concurrency Thinning (CC), 

Accuracy in Diversity (AID), Boosting-Based (Boost) and Clustering (Cluster) method 

experimentally. A random base classifier selection method (Ran) is also included in the 

comparison to show the performance of random guessing. The size of q in the LCS is 

determined by cross validation. 

A pool of trained base classifiers (H) is formed by 50 trained classifiers. Half of 

them are MLP Neural Network and the rests are RBF Network. The base classifiers are 

trained by Bagging [Breiman 1996]. It means each base classifier is assigned a different 

training set which is randomly selected from the original training set with replacement. For 

the MLP Neural Network, it has only one hidden layer. The number of hidden neurons is 

randomly selected from two to fifty. Gradient descent [Kiernan et al 1996] is applied to train 
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the weights. For the RBF network, its number of neurons is also selected randomly from two 

to fifty. The center and width of the neurons are determined by K-means [Kiernan et al 1996] 

and the K-nearest-neighbor algorithm [Musavi et al 1992] respectively. The weight is 

calculated using the Singular Value Decomposition (SVD) method [Mak et al 1998]. The 

base classifiers are combined by the average fusion method. 

All experiments are given the same set of base classifiers. Each base classifier subset 

selection method chooses the most suitable base classifier to be added to the MCS based on 

certain selection criteria. 

The average percentage of classification accuracy and the variance of the testing sets 

of the MCSs combined by the best base classifiers subsets over 30 independent runs are 

shown in Table (5.2). A column represents a fusion method while a dataset is represented by 

a row. The Student’s t-test is applied to examine the statistical significance of the 

improvement made by the LCS. When the absolute t-value is larger than 2.00 in each 

experiment, a difference between two means is significant at the 95% probability level. The 

value is bolded and underlined in the cell if the performance of the MCSs with the LCS is 

significantly better than the one using other methods.  

Table (5.2) shows the best MCS out of the 50 totally created by using the LCS is 

more accurate, which is about 0.89% more in average, than the best ones created by other 

methods. For example, for the Hepatitis and Waveform datasets, LCS is 89.63% and 87.36% 

while the others are only 87.58% and 86.01% on average respectively. Comparing the RE 

with the LCS, RE relies entirely on the training error while the LCS measures both the 

training error and the sensitivity. The experimental results show the best subset of base 

classifiers selected by the RE has a lower accuracy than the LCS. It shows that the 

sensitivity term may be useful for generalization capability estimation. It should also be 
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noted that the Ran may perform better than some selection methods. For example, for the 

Wine dataset, Ran performs second best to the LCS.  

Table 5.2 LCS VS Other Methods 

Average Classification Accuracy and Variance of Testing Set of the Best Base Classifier Subsets 

over Thirty Independent Runs 

 LCS Ran CM Kappa RE Boost AID CC Cluster 

Canc 97.18 96.61 96.83 97.10 97.05 96.92 97.01 96.79 96.96 

 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 

Car  93.85 91.63 92.47 92.47 93.05 92.47 92.47 92.47 92.42 

 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 

Cred  86.90 86.26 86.41 86.41 86.19 86.70 86.37 86.56 86.41 

 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 

Derm 97.75 97.32 97.25 97.25 96.98 97.25 97.25 97.25 97.12 

 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 

Solar  68.21 67.34 67.55 67.01 66.89 67.55 66.92 67.83 67.03 

 ±0.02 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 

Germ 75.92 75.35 75.55 74.85 75.30 75.42 75.25 75.75 74.88 

 ±0.04 ±0.04 ±0.03 ±0.03 ±0.05 ±0.04 ±0.03 ±0.02 ±0.03 

Hepa 89.63 87.82 88.14 87.50 87.50 86.86 86.86 88.46 87.50 

 ±0.10 ±0.18 ±0.19 ±0.10 ±0.20 ±0.25 ±0.21 ±0.15 ±0.12 

Spam 89.13 87.67 88.72 88.89 88.99 88.83 88.95 88.72 88.03 

 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 

Thy 97.22 95.91 96.61 96.85 96.73 96.96 96.96 96.61 96.50 

 ±0.01 ±0.03 ±0.01 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.02 

TTT  87.74 85.99 84.97 86.93 87.42 87.19 87.34 84.97 86.61 

 ±0.05 ±0.02 ±0.04 ±0.02 ±0.02 ±0.03 ±0.02 ±0.04 ±0.02 

Tit  79.71 78.66 78.66 78.62 78.66 78.66 78.66 78.66 78.62 

 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.01 

Wave  87.36 86.70 86.82 86.82 86.80 86.82 86.82 86.82 86.85 

 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 

Wine 98.98 98.01 97.87 97.87 97.73 97.87 97.87 97.87 97.44 

 ±0.02 ±0.02 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03 ±0.04 

 

Table 5.3 LCS VS Other Methods 

Average Size of the Best Base Classifiers Subset  

over Thirty Independent Runs 

 LCS Ran CM Kappa RE Boost AID CC Cluster 

Canc 3.63 4.00 3.00 3.63 3.63 2.38 2.13 6.38 4.50 

Car  5.75 11.63 4.63 4.63 4.13 4.63 4.63 4.63 7.63 

Cred  7.75 5.25 10.50 13.63 5.38 10.13 17.13 15.88 11.25 

Derm 7.63 3.75 5.38 5.38 6.13 5.38 5.38 5.38 6.25 

Solar  23.00 10.25 9.13 30.63 29.00 14.75 26.38 15.38 22.25 

Germ 12.75 17.00 19.88 24.75 20.75 16.50 24.63 11.50 24.75 

Hepa 5.00 5.50 5.50 5.38 1.88 3.38 3.13 4.13 2.50 

Spam 3.75 11.25 1.00 4.13 2.50 1.50 4.88 1.00 24.00 

Thy 8.75 3.25 5.38 3.25 5.38 8.63 8.25 7.50 5.63 

TTT  21.88 27.75 43.25 23.13 22.88 18.00 22.00 48.25 25.38 

Tit  1.80 1.25 1.13 1.23 1.38 1.38 1.25 1.13 12.38 

Wave  31.38 19.25 13.88 13.88 14.25 13.88 13.88 13.88 19.00 

Wine 7.25 4.25 2.25 2.25 2.50 2.25 2.25 2.25 2.75 

 

The average size of the best subset of the base classifiers is shown in Table (5.3). On 

average, for all selection methods, the size of the best subset of the base classifiers is 10.16. 
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This number is relative small since the MLP Neural Network and the RBF Network are 

considered to be good classifiers. Combining too larger a set of this kind of good classifiers 

may not help improve the generalization ability of the MCS. Table (5.3) also indicates that, 

with the exception of the waveform dataset, the size of the best subset selected by LCS is 

relatively small comparing with other selection methods. 

Figure (5.5) shows the testing classification accuracy of the 50 MCSs created with 

different number of base classifiers over 30 independent runs. The X-axis represents the 

number of base classifiers included in the MCSs and the Y-axis is the testing accuracy. The 

performance of the LCS is denoted by a star-line in Figure (5.5). The experimental results 

show that the MCSs created by using the LCS achieve the highest average accuracy in all 

datasets comparing with other base classifier subset selection methods. The performance of 

the MCSs created by the LCS is relatively stable. It is also significant to observe that the 

MCSs created by the LCS show consistently good performances for all datasets. 

 
a) Breast Cancer Wisconsin 
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b) Car Evaluation 

 

 
c) Credit Approval 

 
d) Dermatology 
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e) Solar Flare 

 

 
f) German Credit Data 

 
g) Hepatitis 
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h) Spambase 

 

 
i) Thyroid 

 
j) Tic-Tac-Toe Endgame 
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k) Titanic 

 

 
l) Waveform 

 
m) Wine 

 
Figure 5.5 LCS VS Other Methods 

Classification Accuracy of MCSs with Different Number of Base Classifiers 

 over Thirty Independent Runs 
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Table 5.4 LCS VS Other Fusion Methods 

Win-Tie-Loss Comparison over Twenty Datasets 

 Ran CM Kappa RE Boost AID CC Cluster 

Canc 47-1-2 46-1-3 31-1-18 46-1-3 47-1-2 44-1-5 48-1-1 48-1-1 

Car  49-1-0 48-1-1 48-1-1 38-1-11 48-1-1 48-1-1 48-1-1 47-1-2 

Cred  37-0-13 31-0-19 44-0-6 40-0-10 32-0-18 44-0-6 28-0-22 43-0-7 

Derm 17-11-22 14-11-25 14-11-25 35-13-2 14-11-25 14-11-25 14-11-25 23-16-11 

Solar  45-0-5 33-0-17 47-0-3 49-0-1 37-0-13 49-0-1 39-0-11 47-0-3 

Germ 42-0-8 40-0-10 48-0-2 40-0-10 36-0-14 49-0-1 43-0-7 48-0-2 

Hepa 44-1-5 43-1-6 45-1-4 46-1-3 48-1-1 48-1-1 44-1-5 47-1-2 

Spam 50-0-0 49-0-1 46-0-4 43-0-7 49-0-1 32-0-18 49-0-1 50-0-0 

Thy 49-0-1 49-1-0 43-1-6 39-1-10 40-1-9 42-1-7 49-1-0 49-0-1 

TTT  50-0-0 50-0-0 45-0-5 42-0-8 43-0-7 44-0-6 50-0-0 49-0-1 

Tit  28-22-0 46-4-0 25-25-0 20-30-0 45-5-0 18-32-0 45-5-0 43-7-0 

Wave  45-0-5 50-0-0 50-0-0 41-0-9 50-0-0 50-0-0 50-0-0 40-0-10 

Wine 45-4-1 48-2-0 48-2-0 48-2-0 48-2-0 48-2-0 48-2-0 40-10-0 

Average 42.2-3.1-4.8 42.1-1.6-6.3 41.1-3.2-5.7 40.5-3.8-5.7 41.3-1.7-7.0 40.8-3.8-5.5 42.7-1.7-5.6 44.2-2.8-3.1 

 

In Table (5.4), the Win-Tie-Loss gives the number of times for which the base 

classifiers subset selected by the LCS perform better/same/worse in comparison with the 

ones selected by other selection methods. For example, 47-1-2 is shown in the first cell. It 

means out of 50 subsets, the MCS created by the LCS performs better in 47, the same in 1 

and worse in 2 times comparing with the ones by using Ran on the average of 30 

independent runs. Each column represents a selection method. Each row represents a dataset. 

Let T denote the number of comparison times. If the number of wins is bigger than or equal 

to 2/96.12/ TT + , then the LCS claims to perform significantly better at the 95% 

probability level. In this experiment, as T = 50, the LCS performs significantly better at the 

95% probability level when it wins more than 31 datasets. The value is bolded and 

underlined in the cell if the performance of the MCS created by the LCS is better 

significantly. The last row gives the average of the numbers in each column. 

The table shows the MCSs created by the LCS outperform other selection methods 

in most situations and win more than 40 times on the average. Besides the Breast Cancer 

Wisconsin, Credit Approval, Dermatology and Titanic datasets, LCS is significantly better 

than all selection methods. In Titanic dataset, from Figure (5.5k), LCS always selects the 

most accurate subsets. However, the other methods, such as AID, RE, Kappa and Ran, also 
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have a good performance. It should be noted that the performance of LCS in the 

Dermatology dataset is not as good as in other datasets. Figure (5.5d) shows the best subset 

created by the LCS is formed by three base classifiers. By adding more base classifiers 

apparently would degrade the performance of the MCS. Moreover, although the Ran, CM, 

Kappa, Boost and CC win 24.5 times on average over the LCS for the Dermatology dataset, 

they fail to claim a better performance at the 95% significance level. 

Table 5.5 LCS VS Other Methods 

Average Classification Accuracy and Variance of Testing Set of the MCSs 

over Thirty Independent Runs 

 LCS Ran CM Kappa RE Boost AID CC Cluster 

Canc 96.58 96.25 96.28 96.55 96.41 96.37 96.45 96.03 96.40 

 ±0.01 ±0.01 ±0.01 ±0.01 ±0.04 ±0.01 ±0.01 ±0.01 ±0.01 

Car  92.00 91.10 91.41 91.41 91.91 91.41 91.41 91.41 91.61 

 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 

Cred  85.78 85.67 85.68 85.58 85.54 85.58 85.61 85.60 85.58 

 ±0.01 ±0.02 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 

Derm 96.73 96.72 96.71 96.71 96.56 96.71 96.71 96.71 96.64 

 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 

Solar  66.83 66.58 66.72 66.61 66.23 66.64 66.34 66.72 66.25 

 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 

Germ 74.49 74.27 74.25 73.78 74.20 74.19 73.92 74.26 73.83 

 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 

Hepa 85.93 85.81 85.21 85.07 85.39 85.27 85.16 85.37 85.41 

 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 

Spam 88.31 87.19 87.36 88.23 88.23 87.67 88.28 86.48 87.68 

 ±0.01 ±0.02 ±0.01 ±0.02 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 

Thy 95.83 95.23 94.93 95.55 95.61 95.59 95.55 94.36 95.30 

 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 

TTT  85.83 83.33 82.09 85.23 85.41 85.38 85.39 78.73 84.34 

 ±0.01 ±0.06 ±0.03 ±0.02 ±0.02 ±0.02 ±0.02 ±0.14 ±0.09 

Tit  78.57 78.51 78.31 78.55 78.54 78.35 78.54 78.37 78.32 

 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 

Wave  86.62 86.49 86.43 86.43 86.56 86.43 86.43 86.43 86.55 

 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.02 ±0.01 

Wine 97.42 96.99 96.98 96.98 96.96 96.98 96.98 96.98 97.09 

 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 
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m) Wine  

Figure 5.6 LCS VS Other Methods 

Eror Bar with variances of Testing Set of the MCSs over Thirty Independent Runs 

The average percentage of classification accuracy and the variance of the testing sets 

of the MCSs using base classifier subset selection methods over 30 independent runs are 

shown in Table (5.5) and Figure (5.6). The value is bolded and underlined in the cell if the 

performance of MCSs with LCS is significantly better than the one using other methods. 

This experimental results show the average performance of MCSs combined with the base 

classifiers selected by different selection methods. LCS has the highest testing accuracy on 

average comparing with others in all datasets. In most cases, the improvements are 

significant at 95% level. It indicates that in general, the subset of base classifiers selected by 

LCS is better than other methods in terms of accuracy. Similar to Table (5.2), the 

performance of the Ran may not be the worst. For example, for the Credit Approval, the Ran 

is 85.67% and it is better than all methods except the CM and the LCS. 
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The selection time of different selection methods is shown in Table (5.5). As no 

calculation is required by the Ran method, it has the shortest selection time. Except the LCS, 

the time required by all other methods are similar and the average is 5.7. LCS requires much 

longer time. This is due to the additional calculations of the sensitivity terms (Sen
base

 and 

Sen
div

) in R
’
Q. The average training time of 50 base classifiers in all datasets over 30 

independent runs is 43.5, which is independent of the selection methods used. The selection 

time of LCS is about two times of this training time. Morever, in average, LCS required 

15.77 minutes to select the best base classifier subset in the experiments while 1 – 2 minutes 

are used by other methods. Although LCS is much slower than other methods, the selection 

time used by LCS is still reasonable. Futhermore, since the classifier selection is done prior 

to any classification application task, a longer time for the creation of the MCS may not be a 

critical consideration. 

Table 5.6 LCS VS Other Methods 

Average Selection Time of Testing Set over Thirty Independent Runs 

Method LCS Ran RE Kappa CM CC AID Boost Cluster 

Time 87.67 0.3 5.6 5.9 5.5 6.2 5.5 5.5 5.7 

5.4 Conclusion 

In this chapter, a base classifier subset selection method for MCSs, named L-GEM 

base classifier selection (LCS), is proposed. Current selection methods only use the 

information provided by the training set as the selection criteria, without any theoretical 

justification. Howeevr, the LCS makes use of the generalization error bound as the selection 

criterion.  

The experimental results show that for the same set of trained base classifiers, the 

highest as well as the average testing accuracies of the MCSs created by the LCS are higher 

than those using other selection methods. This indicates that LCS can select the best base 

classifiers from a pool of given classifiers to form a MCS. One possible reason is that R
’
Q 
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can indeed provide a useful estimation of  the generalization ability of the MCS. Although 

the LCS takes a longer time for the selection of the base classifiers, this could be done prior 

to any real classification task. 
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CHAPTER 6 
CONCLUSION AND FUTURE WORK 

This research attempts to find a generalization error bound model for a MCS. The L-

GEM for a single classifier system has been extended to a MCS, called L-GEM
MCS

, for 

supervised classification problems using the Mean Square Error function as its cost function. 

The L-GEM
MCS

  has advantages over the existing models for MCSs in at least two aspects.  

Conceptually speaking, unlike the other models which mainly rely on the training 

error, it takes into consideration both the training error and the output differences between 

unseen samples and the training samples in a region that contains all training samples. In 

other words it also considers the “local smoothness” of the discriminant function (versus the 

“global smoothness considered by the Regularization technique). The L-GEM
MCS

 is 

composed of four terms. Err
base

 (Sen
base

) measures the error (sensitivity) for each base 

classifier, while Err
div

 (Sen
div

) measures the degree of difference between errors (sensitivities) 

of each pair of base classifiers. 

Practically speaking, it provides a easy-to-compute quantitative measure on the 

generalization error bound of the MCS with low computational complexity. Both the L-

GEM and the L-GEM
MCS

 are found to have a wide range of applications. For instance, the 

L-GEM can be used as a training objective function for neural network training by 

minimizing the R
*

Q, with significantly better results than using wither the training error or 

the regularization function as an objective function. Another application is weight 

assignment in dynamic fusion methods. L-GEM proves to be a better way to assign weights 

to classifiers than other existing techniques. The problem of choosing the best one from a 
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given set of trained MCSs according to certain criteria is a practical yet fundamental 

problem for MCSs. Again L-GEM
MCS

 could be used as the selection criteria. Experimental 

results show that the MCSs selected by L-GEM
MCS

 have higher accuracy than those selected 

by other methods. The final application is the determination of the number of base 

classifiers used to form a MCS, given that a pool of trained base classifiers are available. 

Experimental results demonstrate the superiority of using L-GEM
MCS

 as an evaluation 

criteria for base classifiers subset selecting over other methods. 

Until now the L-GEM and the L-GEM
MCS

 have been successfully applied to a wide 

range of pattern classification problems. However, many interesting research problems are 

wide open and a few ones will be mentioned here:  

� Relationship between Localized Generalization Error Bound (in MSE) and 

Classification Error. RQ
*
 in L-GEMMCS is the upper bound on MSE of MCSs in Q 

neighborhood. The relationship between MSE bound and classification error is not 

clear. 

� Determination of parameter q. The parameter q is a critical value in L-GEM
MCS

 as 

it directly affects the computation of the generalization error bound. Parameter q 

has a geometric meaning in the input space and determines the size of Q 

neighborhood. The distribution of the training samples may be helpful to 

determine a proper q.  

� L-GEMMCS Extension to other Fusion Methods. The localized concept in L-GEM 

is very general and could be applied to other fusion methods, for example, the 

fusion methods of label output. 
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� Objective Function of Genetic Algorithm for Sub-Optimal Base Classifiers 

Selection. The result found by genetic algorithm should be better than the greedy 

search in terms of the testing accuracy. The major problem is time complexity. 

� Training MCSs by using R*Q in L-GEMMCS. A pilot study is given in Section 4.7 

which shows that the MCSs trained by L-GEMMCS have good performance. This 

problem can be studied more extensively by analyzing the performance on 

different datasets and reducing the computational complexity. 

� Data Analysis. The most informative samples in a training set for a classifier can 

be found by L-GEM. After a classifier is trained by a training set, L-GEM can be 

applied to estimate the sensitivity of Qi neighborhood of each training samples. If 

the value of sensitivity of a sample is high relatively, it means its classifier’s outputs 

are not stable. This sample may be near to the decision boundary and its sensitivity 

value could be useful information for this classifier. Such samples are called 

Sensitivity Vectors (SVs). SVs in a training set can be selected by using L-GEM 

and can be analyzed in detail. For instance, the outliers in a training set can be 

detected by this method. If the outlier is one of the SVs, this means it is located 

near to the decision boundary and it may affect the shape of the boundary. So, we 

have to analyze it and see if it should be removed. If an outlier is not one of the SVs, 

it is not important since it does not affect the shape of the decision boundary so it 

can be ignored. 

� Application to Unsupervised Learning Problems. An unsupervised learning 

problem could be regarded as a supervised learning problem after the learning 

samples are labeled according to the result of a clustering method. 
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� Time Complexity. The calculation of additional sensitivity term is time consuming 

especially when the size of base classifier is large. This is because one needs to 

evaluate all possible pairs of base classifiers in the MCS. 
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