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ABSTRACT

Device Represented of Averaged Fourier Transforms (DRAFT) has been proved to be
fruitful in generating SPICE macromodels for series, parallel and series-parallel resonant
converters. However, The macromodels are inaccurate when state variables are not
sinusoidal and the more accurate version of the models lead to convergence problems in
a simulator. In this thests, a novel macromodel and a new SPICE simulation program are
presented. An algorithm of the new macromodel is extended from the averaged Fourier
transforms. The algorithm uses actual solutions of state variables. A SPICE macromodel
for a resonant converter is generated by the algorithm. The simulated results of the new
macromodel are much more accurate than those given by the previous macromodels. A
new nonlinear dependent source is proposed to enhance SPICE. The new source can
solve equations of the form f{x)=0 with no convergence problems. The implementation
of the new source is presented. A macromodel for a resonant converter is taken as an
example to demonstraie the application of the new source. In addition, a new SPICE
simulation program is written based on SPICE3 using object-oriented programming
paradigms. The internal structure of the new SPICE simulation program is outlined. The
object-oriented programming paradigms provide a set of features to simplify the internal
structure of the new SPICE. When comparing with SPICE3, the new SPICE has many

advantages for further development and maintenance.
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Chapter 1
Introduction

Virtually all electronic products require power supplies. The demand for higher
reliability and efficiency coupled with compact size has tightened the requirements on
power supply circuit designs. To meet these challenges, the switching mode power
supply (SMPS) makes use of electronic switches, inductors and capacitors to procegs
electric power. Since ideal switches, inductors and capacitors do not dissipate power, the
SMPS can be designed to have high efficiency and small size. The heart of a SMPS is a
DC-DC converter, which accepts a DC input and produces a controlled DC output. The
conventional topology of a switching-mode DC-DC converter is largely of the Pulse-
Width-Modulation (PWM) type. The efficiency of a well-designed and well built PWM
converter typically ranges from 80% to 85%. Recently, the development of high
frequency resonant power converters has become more significant. The resonant type
converters process energy in a sinusoidal fashion with the switches commutated under
zero-current/voltage that results in a much higher internal converter frequency (50kHz to
3MHz), smaller LC tank circuit and higher efficiency (greater than 90%). However, the
circuit complexity of the resonant converters makes them less attractive to designers.
This is because of the highly nonlinear nature of the switching circuitry and the lack of
the sophisticated support like computer-aided design tools for analysis and design. The
pertodic switching actions lead to abrupt changes in both voltage and current in the
converters. Such nonlinear operation has invalidated the direct application of the general
circuit simulator like SPICE [1] that is the industry-standard circuit simulation software.

SPICE can only perform full circuit transient analysis. Thousands of time steps within a
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single switching period will be analyzed by SPICE. However, circuit designers are often
interested in the steady-state response of SMPS. This makes the simulation time hours or
even days for a single transient analysis. To analyze fully the system response, it may be
necessary to generate hundreds of transient runs. With this lengthy simulation time,

simulation of system response using full-transient analysis is often considered

impractical.

L MODELLING, SIMULATION AND ANALYSIS OF RESONANT
CONVERTERS

Over the past decade, a good deal of research has been devoted to "linearizing" the
physical systems. The sampled-data method [2] is an algorithm to calculate numerically
the transient as well as steady state waveforms of state variables. Within a switching
cycle, the values of the state variables at the end of a stage are calculated from those at
the start of the stage. The calculated values of the state variables at the end of the stage
will be used as mitial values for the next stage. The process is then continued forward.
We thus have an exact large-signal sampled-data description of the dynamics of a power
converter circuit. By using the sampled-data method, there is a huge speed advantage
over the conventional full circuit simulation as the switching details are being omitted.
However, it is too specific and difficult to use. In the method of complex analysis
f3,11,19], the tank variables are assumed sinusoidal and hence most of the devices can
be replaced by complex impedances. The tank circuit is then modelled by its equivalent
circuit of complex impedances. Other circuit components are replaced by devices of

their averaged impedances. The Fourter series [4,10] approach adopts the same
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calculation as complex analysis at each harmonic frequency. Due to the complexity of
calculating the overall effect of different harmonics, the analysis is limited to the point of
setting up a set of general equations. Instead, complex impedance analysis is used to
complete the calculation. The state-spacé approach [9,21] is an accurate method of
calculating the steady state solution of the state variables. However, due to the
complexity of the approach, not all closed-form solutions of state variables can be found,
and therefore the proinlem must be solved by numerical methods. The state-plane
technique [12,25,31-32] is a technique to map the results of the state-space calculation
onto a two-dimensional graph of state variables. The resulting graph is a symmetrical
piecewise connected arcs of circles. The number of connected arcs equals the number of
stages of the converter. However, the state variables cannot be solved analytically. The
approaches mentioned above cannot avoid the tedious mathematical manipulations.
None of the methods can be easily implemented in a general circuit simulator like
SPICE. Recently, the macromodel for resonant converters [5] is an averaged model that
allows performing DC, AC and transient analyses in SPICE at a speed several orders of
magnitude faster than the full-transient simulation. The model uses the sinusoidal
averaging of state variables. Both the tank inductor current and tank capacitor voltage
are assumed sinusoidal. This assumption allows the nonlinear time variant nature of the
switching circuitry to be transformed into a time invariant equivalent circuit. The model
that results in a set of "linearized” equations can be easily implemented in the circuit
simulator with the SPICE arbitrary dependent source. The power circuit designers can
analyze the complete system response quickly at this functional model. However, the

functional model is inaccurate when the tank state variables are no longer sinusoidal or
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lack of simulation features that simulate equations having no closed-form solutions

obstacles more accurate models being implemented into SPICE.

Since functional models can be conveniently used by engineers, and can give a fast
physical insight into the static operation and dynamic behavior of the converters. Many
circuit designers can use SPICE to simulate their designs at functional model level
_before building breadboards to reduce design time, cost, and increase the insight into
mportant design issues. However, using functional models in the existing SPICE
program usually results in convergence problems. Also, the SPICE program does not
have suitable devices/features for SMPS circuit simulation (both in full circuit level and
in functional level). When SMPS circuit designers want refinement of the SPICE
program for tackling their problems at programming level, they become power users
(programmers) of SPICE. Unfortunately, the modification of the program is a hard job
for someone who is not familiar with the SPICE program structure. It is because of the

size and the complexity of the internal structure of the program.

H. THE NEW MACROMODEL AND THE NEW SPICE SIMULATION
PROGRAM

The purpose of this project is to develop an improved macromodel that allows all system
level DC, AC and transient analyses to be carried out using the entire resonant converter
as a circuit primitive, and a new SPICE simulation program with functional level
simulation enhancement. In addition, the new SPICE simulation program should allow

future development and modification eastly.
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The new macromodel applies the actual solutions of the state variables instead of the
sinusoidal approximations. This approach can overcome the limitation of the existing
macromodels and gives a more accurate functional model for resonant converters. In
addition, a new nonlinear dependent source which does not exist in SPICE (and its
variants) is developed for inputting the algebraic equations .having no closed-form
solutions directly via circuit netlist file. The new nonlinear dependent source can be
implemented into the new SPICE simulation program, as well as the UC Berkeley
SPICE3 program [1]. Moreover, the new program is written in object-oriented
programming paradigms rather than the traditional procedure programming paradigms.

It gives a clear hierarchy internal structure.

IHI. THESIS ORGANISATION

This thesis is organized in six chapters. Chapter 2 reviews the existing macromodels for
resonant converters, and discusses the current limitation. Chapter 3 introduces the new
improved macromodel. An example implementation of the new macromodel for a half-
bridge series resonant converter is derived and the verification of the new macromodel
with the full circuit simulation is shown. Chapter 4 deals with the enhancement of the
SPICE circuit simulator (macromodel simulator). A new nonlinear dependent source for
functional level simulation is developed. An example of application of the new source
arriving from a macromodel for a resonant converter is discussed. Chapter 5 introduces a
new SPICE simulation program. An overview of the internal structure of SPICE3 is
presented. An outline of the basic structure of the new SPICE is given. A comparison of

SPICE3 program structure and the new program structure is discussed. In concluding the
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thesis, Chapter 6 discusses some aspects of the improvement of the new SPICE
simulator. A hint for future development of functional model simulation is also

provided.
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Chapter 2

Review of Existing Macromodels for Resonant Converters

This chapter will focus on the method of the Device Representation of Averaged Fourier
Transforms (DRAFT) macromodelling for resonant converters. The macromodels for
series resonant converter [6], parallel resonant converter [7] and series-parallel resonant
converter [8]) have been developed. Such models give excellent results when using the
sinusoidal approximation for the state variables of resonant converters with the
mentioned constraints. They also can be incorporated with a control circuit to complete
the design. The models can simulate in a general circuit simulator SPICE using all high
level analyses: AC, DC and transient. Thus, macromodelling is a very useful tool for fast
simulation of resonant converters. However, when the state variables are deviated from
sinusoidal, the output of the models will deviate from the actual output of the converters
and make the solutions of the models inaccurate. Tl}erefore, this chapter will study in
detail the operation of resonant converters, different modes of operation and the
mathematical expressions for the converters. Then we will have a review of the method
of DRAFT macromodelling and point out its limitations.

Section I illustrates the circuit operation and waveforms for an ideal half bridge series
resonant converter. The equivalent circuit for the converter and the state space equations
are presented. Then, section II describes the Device Representation of Averaged

Transforms macromodels for resonant converters and the limitation of the models.
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L RESONANT CONVERTER

A resonant converter contains a resonant tank, chopper, rectifier and an output filter. The
resonant tank is used to convert a chopped DC input from the chopper to produce a
piecewise sinusoidal current before the curfent is rectified.

A. Series Resonant Converter
A half-bridge serie; resonant converter will be studied in this section. The circuit
schematic of a half-bricige series-resonant converter is shown in figure 2-1. As the name
implies, the resonant inductor (L) and the resonant capacitor (C) are connected in series.

The inductor current is rectified by the diode bridge and filtered by a larger capacitor

before being delivered to the output load.

|-
1
O
Q
AAAY
=
o

i

Cutput filter

Chopper Resonant tank Rectifier

Figure 2-1, A half-bridge series resonant converter.

B. Circuit topologies

Firstly, the circuit can be divided into four parts: chopper, resonant tank, rectifier and

output filter as shown in figure 2-1.
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Chopper

The chopper shown in figure 2-1 is a half-bridge conﬁguratiqn with two switches which
chop the line-input voltage (¥5), and two capacitors (C;) which are used as a potential
divider. The switches are nomally power MOSFETS which are driven by two

complementary square pulses with less than 50% duty cycle.

Resonant tank

The resonant tank is a series connection of the resonant inductor (L) and the resonant

capacitor (C).

Rectifier and output filter

The AC current from the resonant tank shown in figure 2-1 is rectified by the full-wave
bridge rectifier to a DC current followed by a filter capacitor (C,) and then delivered to
the load.- The filter capacitor is usually very large. The load can be represented as a
constant output voltage source (¥,). The RC time constant is chosen to be large enough

that the capacitor voltage varies extremely slowly compared to the switching frequency.

C. Mode of operation

A typical output voltage versus switching frequency of the converter is given in figure 2-

1
2, where £, is the resonant frequenc L= ). In the steady state, the operation of
Jo q y (/. 7 m Y p

the half-bridge series resonant converter basically has two modes depending on the

switching frequency (f;).
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Figure 2-2, Output voltage versus switching frequency characteristic.

Below resonance (f,/2< f,<f,)

In this mode operation, state variables (v.,i, ) have four stages of operation in one

switching cycle.

/0/ t L { /

swi | Dl | SWw2 | D2

Stage 1 2 3 a

h 4
F Y
y
A
h 4

Figure 2-3, The inductor current and capacitor voltage waveform below resonance.

Stage 1 (0< ¢ <t))
The waveforms of the state variables are shown in figure 2-3. Before the start of a

switching cycle, the resonant inductor current (i} is positive. When S#/ is on at =0, the
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resonant inductor current (iz) increases and reaches its peak amplitude. SW/ remains

conducting until it is naturally turned off when the resonant inductor (i;) reduces to zero.

Stage 2 (1;< t <t;)
When the resonant inductor current (ir) reverses its direction as it feeds energy back to

the input source (V¢/2), the anti-parallel diode (D;) conducts. At the same time, Vp

reverses its polarity.

Stage 3 (£;< t <t3)

When SW2 switches on at time ¢, (the resonant inductor current (iz) transfers from D; to

SW2) and remains conducting until it is naturally tumed off at ;.

Stage 4 (1:< t <ty)
When the resonant inductor current (iy) reverse its direction and continuous to flow

through D; , the converter enters stage 4. Stage 4 ends when S#/ switches on again.

Above resonance ( f;> f5)

There are four stages of operation in one switching cycle in this mode, as shown in

figure 2-5.
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Suag kS D2 | sw2 1131

4

Figure 2-4, The inductor current and capacitor voltage waveform above resonance.

Stage 1 (0< ¢ <¢f))
The waveforms of the state variables are shown in figure 2-4. The resonant inductor

current (iz) begins at zero, increases and reaches its peak amplitude where SW! is on.

Stage 2 (¢;< t <t3)
When SW1 is forced to switch off at time ¢;, the resonant inductor current (i;) continues

to follow through D;. D; starts to conduct as it is forward biased. Because of the large

negative DC voltage applied across the LC resonant tank ( Vg = —% -V, ) as shown in

figure 2-5, the resonant inductor current (i,) through D; goes to zero quickly.
Stage 3 (1;< ¢ <t3)

SW2 is turned on just before time ¢,, and begins to conduct when J; reverses its direction

and feeds energy back to the input source (V).
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Stage 4 (1;< t <t,)

When §W2 is forced to switch off at time ¢;, the resonant inductor current (i;) continues

to flow through the path along D;. D; starts to conduct as it is forward biased until i,

goes back to zero.

D. Equivalent circuit of the half-bridge series-resonant converter
Direct analysis (transient, AC and DC analyses) of such a complicated circuit as shown
in Figure 2-1 is almost impossible [5-9,21,26]. Therefore, we must make some
simplifying assumptions first. The half-bridge series resonant converter with ideal
devices is assumed. The output voltage across the capacitor (C,) is assumed to be a DC
voltage (¥,) without any ripple. The voltage drop of rectified diode is negligible. For the
tank circuit, the output voltage (¥,) is reflected back to thé rectifier input as Vgg (Vg5 =
*V,) where Vg5 is equal to ¥, if the tank circuit current (i;, ) is positive, and ¥V is equal
to -¥, if i is negative. The input voltage (¥s) is divided equally between the two
symmetrical input capacitors (Cy). They serve as the input sources during each half

switching cycle. Moreover, the tank circuit current i, and the tank capacitor voltage
(v ) are time varying at a speed comparable to the switching frequency. Let us refer to
these tank -circuit variables as "fast” variables. The output voltage ¥, and input voltage
V¢ are varying much more slowly (more than an order of magnitude in terms of

frequency) than the fast variables. They are referred to as "slow" variables. For the input

circuit, the fast tank circuit current i, is reflected back to the line input as a slow

variable given by the averaging current E Similarly, the fast /, is rectified to the output
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filter and can be averaged to [i,| at the output circuit. Therefore, the half-bridge series

resonant converter can be represented by an equivalent circuit of figure 2-5. It is still a
non-linear time-variant equivalent circuit.

C L Y,

A
+
B

Figure 2-5, An equivalent circuit of a series resonant converter.

1. State-space equation
Using the equivalent circuit model shown in figure 2-5, the tank circuit state-space

equations are given by

ﬂ Y +vs —sgn(iL)VO . (2-1)
dt L
dv. i,
e L 2-2
d C (2-2)
14
where v, = i7s.

In matrix form, the state-space equation is given by

di 1 .

—(-i[i —Z 0 Ve —Vosgn(z,_)+vs

dve |~ i)t L (23
hadel 0 — (k& 0

dt C
Equation (2-3) can be rewritten in short form as follows. (The matrix and vector

variables are typed in boldface and their elements are in regular font.)
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dx (2-4)

— = Ax+Bu
dt
. AT -
where x={v. i) isthe state vector,
1
-—— 0
A=| L 1 is the state matrix,
0 —
C
—Vosgn ("1.)'*' Vs
and Bu = L is the input vector.

0
: Vs . . : : , : :
Since v = i; and sgn(i,)=+1 are discontinuous binary functions of time, equation

(2-4) is a highly nonlinear time-varying state-space equation of the converter and it is

difficult to solve analytically.

IL DEVICE REPRESENTATION OF AVERAGED FOURIER
TRANSFORMS (DRAFT) MACROMODEL

This section presents an overview of Device Representation of Averaged Fourier
Transforms (DRAFT) macromodelling [5-8]. The theory of the method is derived from
the extended describing function method [20,23]. After extension of the extended
describing function method, the macromodel allows AC, DC and transient analyses to be
carried out in a fast, easy and familiar manner in a general-circuit simulator SPICE. In

section A, we will describe the extended describing function first.
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A. Extended describing function
In this method, the tank state variables in equation (2-5a) are represented by a power
series of sine function (Fourier series) with respect to an integral multiple of switching

frequency. In equation (2-5a), 7 is the set of all integers. x(¢) is the tank state variable. @y
is the angular switching frequency and (x) ,(t) is the k-th coefficient and is determined

by equation (2-5b).
x(6) =Y (x), (©yexp(jkw;t) (2-52)

kel

2r
=

(x) . ()= -20—);; x(z)exp(- jka)sr}iz' (2-5b)

t

As mentioned in section I, the state-space equation of a resonant converter is given by
dx
-—=Ax+Bu (2-6)
dt

where x is the state vector, A the state matrix, u the excitation vector and B the
excitation matrix.

Using equation (2-5), the time-varying state-space equation (2-6) can be transformed to a
time invariant state-space equation (2-7) for each multiple of switching frequency. This
is done by applying the Averaged Fourier Transforms of the state-space equation for
each harmonic component of the Fourier series. Equation (2-7) is complex. There are
actually two real variable equations (2-8) that describe the system dynamics of the

converter at each harmonic frequency.

dg? b= — jkwg(x), + (Ag +Bu), (2-7)
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i‘;)—"— = kaw (x);‘ +(Ax+Bu),
. (2-8)

d_(d’?l — kay(x), +{Ax+Bu)’

To simplify the calculation, only the fundamental term of equation (2-8) is retained to
complete the analysis for the converter.
B. DRAFT macromodel

. The DRAFT macromodel makes use of equation (2-8) at the fundamental frequency to
implement the macromodel in SPICE by using the dependent sources. The macromodel
is a time-invariant averaged model and can perform all high level simulation provided by
SPICE. It gives excellent results for state variables being almost sinusoidal. However,
when the state variables deviate from sinusoidal waveforms, The DRAFT macromodel

will give results that also deviate from the actual calculation [6-8].

C. The current limitations
Since the state variables are abrupt functions that should be fully described by the
Fourier series with an infinite number of harmonics, the accuracy and order of the model
depend on the number of harmonics retained in the averaged method [8). An approach
that is more general is to increase the number of harmonics used in the DRAFT
macromodel. However, each harmonic term requires a separate implementation of
equations (2-8). The contributions of all harmonics result in a complicated mathematical
equation which gives rise to convergence problems. Therefore, the optimized result of

the macromodel for resonant converters [5-8) is that only fundamental sinusoidal
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approximation is used. In summary, the approach of DRAFT macromodelling based on

the extended describing function method, has two main problems:

1. The macromodel is not general enough to be suitable in all operation conditions for
resonant converters. |

2. SPICE (macromodel simulator) does not have enough robust tools for simulating the

mode! of non-linear circuit.

D. The new macromodel and new SPICE
Therefore, the following chapters in this thesis are devoted to develop a new
macromodel and a new circuit simulation program (an object-SPICE). The new
macromodel will allow all system. level DC, AC and transient analyses to bé carried out
using the entire resonant converter as a circuit primitive. It can be applied accurately to
the conventional frequency controlled resonant converters operated in all conduction
modes. The object-SPICE accepts a description of a circuit and determines the quiescent
operation point of the circuit, the time-domain response of the circuit and the frequency-
domain response of the circuit. It can be used not only for the circuit-level simulation but
also for the functional-mode level simulation, including some difficult functions for non-
linear circuit modelling, In addition, the object-SPICE should allow future development

and modification easily.
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Chapter 3

The New Macromodel

The new macromodel applies the actual solutions of the state variables instead of the
sinusoidal approximations. This approach can overcome the limitation of the existing
macromodels and gives a more accurate functional model for resonant converters. A new

transform (Averaged Piecewise Transform) will be developed in this chapter.

L AVERAGED PIECEWISE TRANSFORM MACROMODEL
The transformation is based on three assumptions, namely piecewise approximation,

symmetrical behavior and slow-fast assumption. We will describe them one by one.

1. Piecewise approximation
The tank state variables (x(t)) of a resonant power converter can be generally

represented by a piecewise differentiable sinusoidal function with a natural frequency

(@, ) within a switching period (2%.).

@y
x()= X, sinfw, (¢ -7,)] telt] (3-1)
where i=1---2n is the i-stage of the converter, ¢, =0, ¢, =2 and 1, =2—n.
| Wg Wg

. .2
X, and 7, have a period z ,x(t) has a period il
@y Wy
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2. Symmetrical behavior
The new transform can be simplified by using the half-cycle symmetrical behavior of the
state variables [2]. Therefore, only the first half switching cycle is considered and

transformed.

3. Slow-fast assumption
The slow-fast assumption [5-8] of the state-space equatton of the resonant converter is
used.
» Slow variables are treated as constants with respect to the fast variables.
» Averaged fast variables can replace fast variables when solving for slow
variables.

* Averaged fast variables are slow functions.
Therefore, the slow averaged input current (E) of a converter shown in figure 2-5 is

given by integrating the fast tank state variables (equation (3-1)) as follows:
iy =<5 [x(o)dr
%3 0

3-2
X +X —X cos(r,w,)- X, cos(rnwo_%) (3-2)
@y .

n-1

O | T
ot |- X, +ZX, cos((7,. = 7,)@)
k=2

=2
where Z is a function of X,and z,. Both X,and 7, are slow. x(z) is the tank circuit

current /, .
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The slow averaged output current of the converter is given by equation (3-3).

T

=95 Noova
- 6[|x(t)[t

IO

X, —-X +X cos(rw,)— X, cos(r,m, — M) (3-3)

oy

= O n—l n-1
° _;Xk+§chos((rl—l - 7,)0,)

where m is a function of X, and 7,. x(t) is the tank circuit current.

A. Theory of Averaged Piecewise Transform

Based on the above assumptions, the tank state variables (x(t)) are extended from the
Fourier series (equation 2-5) by using the natural frequency (w,) instead of the
switching frequency (). Since the state variables having displacement symmetry, the

transform taken in the first half period is identical to the transform taken in the second

half period. Thus the tank state variables are represented in the form

rﬁZﬂ(x)k(r)exp(jkwot) re (]
=1 4
’ \;(x)k[hwiJexp{jk%(t—-a%+£;ﬂ telt, b, o

where (x)k(r) is a slow function, and also called the coefficient of the averaged

. . . T . ) -
piecewise transform. It has a period — and is determined by
Wy

ki
+—
Wy

(x)k(t)=%s- J.}c(r)exp(— jko, T (3-3)

i

Similarly, the differentiation of the coefficient (3-5) ts computed as
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I
+—

<%>k(:)=% Tsd:,—(:)exp(“jk%f)df

!
Integrating by parts gives

.

<ﬂ>k (1)=2s, ].+‘j+ ...... ‘:l-+ ;fs de(f) exp(- jkw,t)d

dt T

4

e )expl- gl + o e )explc jhoyekis

+ [x(r)exp(— jka)or)]:l’ + jkao, Ix(r)exp(— Jka,T)dT

=—2 f g

T
P—

+ [x(r)exp(— jka)or)]j:“‘—s + jkw, Ix(r)exp(— Jkao,T)dT

rl’l

J

Hence, collecting the term exp(~ jka,t,) and rewriting the terms

{x[t + wlsJ eXI{— Jkes, (t + wism — [x{t)exp(= jka,t)]

by Ed; rjx(z')exp(— Jkawyt)dT gives
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r[x(tl _)_ x(tl +)]CXP(_ Jka, (¢, ))
+[x(, =)= x(t, +)]exp(= jke, (2,))

<-d_x> (t) — _a_;'S_J + [x(tn—l _)- x(tn—l +)]exp(— Jkay (2, ))
afy " 7 | +xlr, —Jexpl- jkwo (1))~ x(t, +)exp(- jx)

T
i+— +—

+;— Ix(r)exp(— Jkw,t)dT + Jka, Ix(r)exp(— Jr'ka)or)dfJ
2 f

!

d .
=L (), + jranf),

25 4, Jexple )l Jexp(- ko 1)

+ 3 [xle; +)- x{t; - Yexp(- ke, (1,))

i=
(3-6)
where 7 is the number of stages within a half switching cycle and ¢, is the end time of

the stage i. x(f,+) is the right hand side limits of the state variable x(t) at

t,(x{t;+)=lim x{t) ) and x{t, =) is the left hand side limits of the state variable x() at
-4+
t(xlt; =)= lirﬂ x(¢) ), as shown in figure 3-1. It should be noted that exp(— jka,(t, +))

is equal to exp(~ j7) according to equation (3-4).

Stage I “vs i i+

Figure 3-1, The steady state waveform of a state variable.
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B. Derivation of the time invariant equations
In the previous sub-section, the theory of Averaged Piecewise Transform has been
described. In this sub-section, the application of Averaged Piecewise Transform will be

illustrated. The state-space equation of the converter for the tank circuit is given by

é= Ax+Bu (3-7)
dt

where x is the state vector, A the state matrix, u the excitation vector and B the
excitation matrix. It is a time varying state-space equation. There are a number of stages
within a switching cycle. Each stage is governed by an individual set of state-space
equations. In each stage, the state-space equation (3-7) is solved to give the solution of
tank state variables. The tank state variables are in the form
x(t)= X, sinfw, (t -7,)] relt 1] (3-8)

where i=1---2n; is the i-stage of the converter, 2# is the number of stage in a switching
period. X,, ; are the function of excitation variables, tank element values and the initial
values of the state variables at stage i. Different stages have different excitations and
initial values of the state variables on the state space equation. Therefore, there are a
total of 2n different X, and r, in a switching cycle. To apply the Averaged Piecewise
Transform to the converter, the tank state variables equation (3-8) is substituted into

equation (3-6) to give

- X, sin(B-t,_ o, + o )l:l -exp(— m)]

<dx> (t) _ d (x) + kao<x> _ @y Wy W
dt/, dr' 't S 3 =R _
- (X, - X,,,)sin(B) exp(~ jkt,w,)
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(3-9)

where B is a constant which is the difference between r; and ¢, at stage i. For the tank

circuit current, B is equal to zero. For the tank capacitor voltage, B is equal to % Note

that it is difficult to find all X, and z,. However, the values of the state variables at the
end of the previous stage (stage i-1) can be used as the initial values of the state variables

of the stage i. Thus, X, can be in terms of X, and r; can be in terms of r,_,. The

substitution continues backward. X, is eventually a function k,(X,,x), and 7, is a

function g,(z,,u). We have

X, =k(X,,u)

7, = g,(z,,u) (3-10)
where u is the excitation variable of the state space equation. Substituting equation (3-
10) into (3-8) gives

x )= fi(X,,7,,u,t) (3-11)

A set of state variables in terms of only X, and 7, can be obtained.

1. Transformation of the derivative of the k-th coefficient

Substituting equation (3-11) into the derivative equation (3-9) gives
dx d .
<E>k ()= Z(x),( + jkawy{x), +h(X,,7,,u) (3-12)
where /4 is a function of X, and 7,, and « is the excitation variable only.

2. Derivation the averaged input current and output current/voltage

Rewriting equations (3-2) and (3-3) according to equation (3-11) gives
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is =v(X,,7,,u) (3-13)

_"—'Q(prl’u) (3-14)

10

where both v and ¢ are functions of X,,7,and u.

3. Solving X; and T,

By using the theory in section I-A, equation (3-11) is computed as

T
+—
Ws

(,0=2 [ee)exp(- jkayeie

t

Since x{r) is a piecewise function, the integration can be partitioned as

f

<x)k(t)=& _Ifx,(r)+l]‘x2(r)+»~-+wjx"(r) exp(- jkw,r)d7

Tl

Hence, we have

(x)k (t) = g(X,,r,,u,t) (3-15)
where g is a function of X,, r,, v and ¢. £,(i=1---n) equals to 7, in (3-9) or the
switching period. Therefore, equation (3-15) becomes a function of X,, r,and  only.

Since equation (3-15) is a complex equation, there are two corresponding equations in
real variables for equation (3-15) (one for the real part and the other for the imaginary

part). Hence, there are two coefficient equations (3-15) with two unknowns ( X,,z,). X,

and 7,can be solved in term of the real and imaginary parts of the coefficients of the

state variable (Re{(x) (¢)} and Im{(x) (r)}). It is shown that equations (3-12), (3-13)
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and (3-14) are time-invariant equations in terms of X, and 7, only. Therefore, using
equation (3-15), a complete set of time-invariant equations is established.

C. Averaged Piecewise Transform macromodel for a resonant converter
This section presents the implementation of a SPICE macromodel using the time
invariant equation (3-15). The derivative of k-th coefficient equation (3-12) can be
written as

dx d ‘
<;>k (¢)= E(x)k + jkwy(x), +h(X,,7,,u) (3-16)

where x is the tank state variable.

Equation (3-16) can be written by considering the tank inductor and capacitor in the

form of
(v), = L{g; (i), + Jkao(D), +h, (X.,r,,u)} | (3-17)
(i), = C{%(v)k + jkw, (v}, +h,.(X,,r1,u)} (3-18)

and equations {3-17) and (3-18) are rearranged to give

L—g—;(i)k = ~L{jka, (i), +h, (X, 7, u)}+ (), (3-19)
C%(v)k = —Clka,(v), + b (X, 7 u)}+ (), - (3-20)

Actually, both equations (3-19) and (3-20) are complex and four corresponding

differential equations in real variables are given below.

L%(f)? = L () + 14X, 7 )} () (3-21)
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d
dt(

L™ = L ke (3% + B (X, )} ()

CL o)1 =l + K m ) (0

Cjt( -c{- ka, (v h'"‘(Xl,r,,u)} oM

(3-22)

(3-23)

(3-24)

Thus equations (3-21), (3-22), (3-23), (3-24) can be modelled by two equivalent circuit

models with four dependent sources for the resonant tank of the converter shown in

figure 3-2.
Re Im
v .\ Re v . Im
%9 (i & % (i) k
e I I I
AN AN
N4 Re \V4
jRE Vitoul) Im Vitotary
(total) Ltotat)
Real part resonant tank model Imaginary part resonant tank model
where fary = C {’ca)o (vc>:m + k(X1 u)}

‘(mmn = C{‘ k‘:‘)o vc A h:lm(annu)}
V(I:::al) L{"a’o i!_ hRe(Xl’TI’ )}

(rora!) _L{_ka’o _hlm(Xl’Tls”)}

Figure 3-2, The SPICE macromodel for the resonant tank circuit.

To complete the macromodel for a resonant converter, two additional equations (3-13)

and (3-14) are used for the model of the input and output equivalent circuits. Thus, the
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complete SPICE macromodel derived by Averaged Piecewise Transform is shown in

figure 3-3.

i

L

Re
Viotat)

(@

L

Im
Viotar)

Figure 3-3, The complete SPICE macromodel for a Series Resonant Converter.,
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IL AVERAGED PIECEWISE TRANSFORM (APT) MACROMODEL FOR A
SERIES RESONANT CONVERTER

This section presents an example application of the APT macromodel for a half-bridge
series resonant converter. The circuit of the half-bridge series resonant converter was
described in Chapter 2. The detailed operation and equivalent circuit for the converter

were also presented. We now recall the circuit shown in figure 3-4.

Vo
4|§w1 D1 —
I -
. YY) —
Ty, AT TR | Te sk
s
by '
C, | ! i ZTS
e
“;W2 D2 Resonant tank
JT_ L

Figure 3-4, A half-bridge series resonant converter.

The steady state waveforms of the tank inductor current (ii)} and the tank capacitor
voltage (v¢) for the converter operating above resonant mode are shown in figure 3-5
(detailed in Chapter 2 Section B-2). Using the assumption in section I (equation (3-1)),
the solutions of ii and vc at the first two stages in a period are written in a piecewise

sinusoidal function with the angular resonance frequency (@,, ).
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Figure 3-5, The above resonance waveforms of the tank inductor current (f,) and
the tank capacitor voltage (vc).
Atstage 1 (0<t<t))
i, (t)= X, sin(w,(t-1,)) (3-25a)
ve, () =—X,Z, cos(w, (- 1,)) (3-25b)
At stage 2 (1<t <1)

()= - Fo=XZ) Gy 1) (3-263)

ILZ
o

ve, ()= 2V, - X,Z,)) cos(w,t) (3-26b)

The Characteristic impedance =2, = Q

L
C
Angular resonance frequency =@, = !
=@, = —=—
JLC

where the amplitude and phase of {;,(t) in equation (3-25a) are represented by the
variables X, and 7, (Actually X,, 7, are the functions of ¥,,,¥;,Z, and the initial values

of v. and i, at stage 1). Based on equation (3-25a), the amplitudes of v (¢) in
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equations (3-25b) and (3-26) can be written in terms of X}, ¥,,Z, by replacing the initial
value at each stage.

A. Transformation of the derivatives of (i, (¢)) and (v.(r))

For t,=0,t, =7,and ¢, = f- , substituting them into equation (3-25) and (3-26) gives
s

i (tl —) = iLl('_rl) =0

"c(’: _)= Ve (T|)= -X\Z,

il.(t +)=i!.2(0)=0
( ) vcz(o) 2V, -X\Z,

" )—az( S 'r,J=-(ZVO—X'ZO)Sin(w‘“(w%‘“J

Z,

)
ol )[w—](zvxz)[w[w—]]
J ) (2v, - X;Zo)sin[wo{-g: -1, D

i!.(tz +)=iaz i_rl ==
@ Z, (3-27)

5

velt, +)= vc{fm-rlj =(2v, - X]Zo)cos{coo(wi— T, ]]+ 2V,

s 8

The calculation is not simple. However, we can use Mathematica [35] to do the
calculation in a computer. {Mathematica is a powerful tool (mathematical software) to
compute the engineering mathematics described in Appendix II). All the following
results are generated by Mathematica.

Putting equation (3-27) into equation (3-6) and using the first coefficient (k=1) we get
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(B} (=240 -0y - 222 2ot X2 {LHW[ —D

7z, 2a; @

<ﬂ>‘(t)=%<li‘>' +0)o<iL >r _ w.S‘ (zVO _XIZO)Sin(;rmoJSin[wo(r; __?_JJ

7l g @y
. VsV, cos(a)or,)
<d—> ()= 2 (ve) ~afvc) +2254 o, ”’(%J(“’[ LJJ
s
,_ 2V, + X, Z,)sin(w,7,)
<%€-> 0)- gt_<vc>i a)o(vc)' ¥ % +(2V, - XlZo)sin[a)o[r, —ZD

Wy

(3-28)
B. Transformation of the input current and the output current
Substituting equations (3-25a) and (3-26a) into equation (3-2) becomes

@ R
i|=—= ||li,(¢)dt
lol P 6” L( )l

=% Jin@de+ [i,,(0ae (3-29)

Q a

~ 20, + X, cos(@,z,)

Wy
aw,Z, |+(2V, - X,Zo)cos{a)o(r, —iJJ
@

§

Similarly, the average value of the input current ;; is given by
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b4

ws

- w .
=== j:L(t)dr

T 0

T
LN S
Wy

9| T @di— [y (3-30)
T 1]

0

~20, +2X,2, - X,Z, cos(w,7,)
wS

AL, |+ (ZVO - X|Zo)cos[a)o[rl —g—}}

§

C. Transformation of the tank state variables
Substituting equations (3-25) and (3-26) into (3-5), we have

F 4
+—
@y

(i!_ >k (t) = % i (r)exp(— jka’or}!r

,t_a © o (3-31)
(=2 frel)ewpl- oprlin
:
For ¢ starting at 0 (+=0) and k=1, equation (3-31) can be rewritten as
I (z)exp(- jo,t Mt
¢ (3-32)
(ve))= 2% e s
0
As mentioned in section I-B, the integration is computed as follow
(@.))= Iu. ()exp(~ jwor )z + J’Lz(t 7, Jexp(~ jwor Mz
"” (3-33)
(=2 oo ool joubirs fucle—s )l joue )i
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Substituting equations (3-25) and (3-26) into (3-33) and writing the result by equating

the real and imaginary parts, the following equations are obtained.

(i, =——(C+D)

B drw,Z,
N 1
() = dr,Z, (4+5)
| (3-34)
(vc> - 4, (A ‘B)
i 1
{ve) = p— (C-D)

where

C = (-2, 4 + X,0,Z, )eos (0,7, )+ 0 2V, - X,Zo)cos(wor, - 27:&)0]
M

D= 2(00(27rV0 =27 V0, -7X Z, )sin(wor,)

A=2aw,(27V, -2tV 0, — 72X, Z, )cos(w,7,)

B =2V, 0, + X,0,Z, )sin{w,r, )+ (27, ——XlZo)sin(worl - 2”‘00)

@y

Solving equation (3-34) for X, and 7, gives

X, = %[,/QZ +P? 2y, 1+ 0% )J | (3-35)

) g

_ (0 | )
7, = tan (P] (3-36)

where Q= Z,(i, )’ —(vc)i,P = Zo(‘}.y +(ve)’
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D. Creating the APT macromodel for the series resonant converter

The APT macromodel contains two parts: the resonant tank model and the input/output

model. They are illustrated as follows.

1. The series resonant tank model
Using the method in section I-C, equation (3-28) can be modelled by two equivalent

circuits for the series resonant tank shown in figure 3-6, where ¥, and ¥, are used as the

current sensors in SPICE simulations

V), .
I > (’ L );c
v
N ir
\V e
jRe Vivotaty
(total)

T\' 7N (’L)g

c' ¥ L
’@7 i A

i(lrr:m[) Vitoral) 7

Imaginary part resonant tank model

Figure 3-6, The resonmant tank model of the series resonant converter for the

Averaged Piecewise Transform.
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v(‘f:m,) = a)oL(iL)i + 205 L(=2V, + X, Z,) cosz(%—Jsin{wo(r, —iﬂ

7[20 2(05 a)S
Vs =V, Cos(worl) 5-37)
i 2w.C
Ity = WpClve) ——2 —
(toral} o ( C) T .4.(21/0--XIZO)cc;s2 7200 COS; Wyl T, — r

v(l:';'m:) = —Cl)oL<iL )r + wSL(ZVO — X’ Zo) Sin( o JSin[wo[Tl - iJJ

nZ, 2w, Wg
(2V, + X,Z,)sin{w,7,) (3-38)
m - C " Ws
o oClve) 27 |+(2V, - X,Z,)sin| o, r,—-z-’f
Wy

2. The input and output macrmodel of the series resonant converter

The input macromodel of the series resonant converter is shown in figure 3-7. Using the

equation (3-30), the circuit of figure 3-7 is obtained.

46 O

Figure 3-7, The input model of the series resonant converter.

-2, +2X,Z, - X,Z, coslw,r,)

- @ . ..
Note that o =—2 : , Vg is the line input
s mw,Z, +(2Vo —X,Zo)cos[a)o[r, —fD 5 P
s

voltage of the converter.
Similarly, the output model of the series resonant converter is shown in figure 3-8 and

equation (3-29) is used.
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Figure 3-8, The output model of the series resonant converter.

-2V, + X, cos(a)or, )

In figure 3-8,

5

= @y )
[ = , C, is the output filter of
 aw,Z, +(2VO—XIZO)cos(a)o(r, -1D ° P

the converter and R, is the load resistor.

3. The complete Averaged Piecewise Transform macromodel of the series resonant

converler
Collecting figures 3-6, 3-7 and 3-8, the complete macromodel of the converter is shown
in figure 3-9. It is noticed that equations (3-29), (3-30), (3-37) and (3-38) govern the

voltage and current sources (except V) in the macromodel. There are two unknown
variables X,and 7, in all equations. Hence, we can use equations (3-35) and (3-36) to

complete the implementation of the macromodel.
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Figure 3-9, The complete Averaged Piecewise Transform macromodel of the series

resonant converter.

In this section, we have developed the APT macromodel for a series-resonant converter.

In section III, we will verify its validity and compare it with the DRAFT macromodel.

III. COMPARISON OF THE APT MACROMODEL AND THE DRAFT
MACROMODEL

This section presents the accuracy of the APT macromodel. A comparison of the resuits
from the DRAFT macromodel and the APT macromodel is shown in the following
sections. The full circuit models are also taken to verify the accuracy of the APT

macromodel. As the DRAFT macromodel is inaccurate when the circuit is operated with

R . . . .
a large —2 (>0.5) ratio for a series resonant converter [6], the following experiments are
2]

mainly carried out with Ry =2,
a
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A. Circuit
The idealized full circuit models shown in figure 3-10 are taken from established designs
[6,20] to verify the corresponding APT macromodel developed in section II. The
component values used are shown in table 3-1. The driving source (¥, ) is generated by a
voltage controlled Wien-bridge oscillator {detailed in Appendix I). All the diodes in the

circuit are idealized by setting the emission coefficient n=1 4 in the SPICE diode model.

The simulation results of DRAFT and APT macromodels can be generated quickly and
easily from a single .DC, .AC and .TRAN command in SPICE. However, the full circuit
simulation can only be performed for transient analysis. The DC analysis results are
taken from the steady state of the transient analysis at different switching frequencies.
The AC analysis are measured by the .FOUR command in the SPICE at the different

modulation frequencies (described in Appendix I).

All results in the following section are generated by SPICE3f3 [1] of U.C. Berkeley.
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Figure 3-10, Full SPICE model for a series resonant converter.

Parameter Value

L 197uH
C 100nF
Co 14.2uF
Vs 14V

Ro 88.769Q2

Table 3-1, Components used in the series resonant converter.

Characteristic parameter Value
Zo 44.385Q
Jo 35.86kHz

Table 3-2, Characteristic parameters calculated.
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B. DC analysis

A comparison of simulation results with Ry =0.1, 0.5, 1.0 and 2.0 is shown in figure 3-
o

R, .
11. The results are accurate at all the —2 ratios for the APT macromodel. However, the
: a

results from the DRAFT macromodel are accurate only for g—o =0.1.
a

Vo/Volts
16.0 '
14.0 7\ Averaged Piecewise
i
i
12.0 ¥
: Ro=88.769Q2
10.0 |
8.0 . <=$ Ro=44.385Q
i : TS Re=22.1920
P R p— E e e e e e e .
20 "o e , Ro=4.438C
. | i
0.0 P . e e . P - M PN [ . R -
35.0 40.0 45.0 50.0 55.0 60.0

Frequency / kHz

Figure 3-11, Comparison of simulation results for the series resonant converter

with %9= 0.1, 0.5, 1.0 and 2.0 (Zo =44.38472). The results from DC analyses (full
0

lines) of the DRAFT macromeodel, the Average Piecewise Transform macromodel

and from steady state transient simulations (polygons) of a full model.
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C. Transient analysis
The comparison of simulation results from DRAFT, APT macromodels and the full
simulation is shown in figure 3-12. The response firstly shows that the converter starts
up from ‘cold’ and reaches the steady state, then the drive frequency is abruptly changed
between 50kHz and 40kHz. The result is excellent from the APT macromodel while that

from the DRAFT macromodel deviates from the full transient simulation.

15-0 ™ A [E— I e »‘ PRPRT [P —
o L—/\mf\'
& - " |
% Averaged Piecewise
100 Transform EE—
-
I
d— :
=1
B
5 |
O 50 },
i
i
i '
nﬂ ..‘.l..._._ R
30 4.0 50 6.0
Time (ms)
(a)
50.0 Il ]
i i {
. H |
{ -
: |
- n .
2 : i
2 40.0 !
E :
5 :
¥
Jo.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

Time (ms)
(b)

Figure 3-12, Comparison of results from transient analyses of the DRAFT
macromodel, the Average Piecewise Transform macromodel and from transient

simulation of a full model. A step change in switching frequency is applied.
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D. AC analysis

The result for the control-to-output small Signal responses of the converter at a switching
frequency of 38kHz is shown in figure 3-13. The comparison of simulation results from
DRAFT, APT macromodels and the full simulation is demonstrated. Also, both
magnitude and phage curves from the APT macromodel in the response are in good
agreement with the simulation results from the full circuit model. However, the results

from the DRAFT macromodel is in poor agreement for both curves with those generated

from the full circuit model.
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Figure 3-13, Comparison of results from AC small signal analyses (full lines) of the

DRAFT macromodel, the Averaged Piecewise Transform macromodel and from

t simulations (squares) of a full model.
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E. Conclusion

This chapter has presented a novel SPICE macromodel for resonant converters.
Averaged Piecewise Transform is used to generate the time invariant equations which
are transformed to the circuit-oriented SPICE macromodel. When comparing with the
DRAFT macromodel, the APT macromodel is much more accurate. Although the
equivalent circuit model derived in t_his chapter is applied to the series resonant converter
ogly, it can be extended to other resonant converters (parallel and series-parallel resonant

converters) using the same basic transform.
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Chapter 4

Enhancement of A Macromodel Simulator

In chapter 2, for the previous (DRAFT) macromodel for resonant converters, the tank
state variables were actually described by Fourier series with an infinite number of
harmonic components. The most accurate macromodel for resonant converters requires
an infinite number of harmonics tank-circuit models. However, the macromodel
incorporating higher harmonics results in a set of complex analytical equations. Some
analytical equations that cannot be simulated directly and effectively using available
dependent sources in a SPICE family simulator (macromodel simulator) require indirect
and complex inputs. This approach often leads to convergence problems [5-8]. To
overcome the problems, the Averaged Piecewise Transform macromodel developed in
chapter 3 provides more accurate results than the DRAFT. However, Averaged
Piecewise Transform requires a complex mathematical manipulation. In this chapter, a
new SPICE nonlinear dependent source is developed for the input of analytical equations
having no closed-form solutions. The new source is added to SPICE3 by modifying the
program of the arbitrary source device package. Actually, the new source is not specific
to the problem of the DRAFT macromodel but general as a new feature of simulation of

"in-line" equations for SPICE.

Section 1 introduces the new source and describes the implementation of the new
dependent source into U. C. Berkeley SPICE3f3 [1] (SPICE3) at programming level.
Section II uses an example of a DRAFT macromodel for a resonant converter with

higher harmonics (up to 25 harmonics) to illustrate the usefulness of the new nonlinear
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dependent source. A further example is given in Appendix VI for reference. Finally,

section III discusses the simulation results by using the new dependent source.

L THE NEW SPICE NON-LINEAR DEPENDENT SOURCE

Suppose that x is a root of a nonlinear equation of the form f(x)=0 for a given
function f. The nonlinear equation can easily be solved with a new implementation of
SPICE3 nonlinear dependent source (B) with a new option called FZERO. Thus, the

general form for B becomes

BXXXXXXX N+ N- <FZERO=EXPR>
where N+ is the positive node, and N- is the negative node. The values of the FZERO
parameters determine the voltages across the device. If FZERO is given then the device
is a voltage source with a root finding feature. The <EXPR> expressions given for
FZERO may be any function of voltages and currents. These functions can be: abs, acos,
acosh, asin, asinh, atan, atanh, cos, cosh, exp, In, log, sin, sinh, sqrt, and tan. For
example, the root of the equation: |

f(x) =[In(cos(x)))* - [sin(In(x))]"* - 0.3799 = 0 (4-1)
given in [14] can be calculated by using the new FZERQ option (similar to voltage V
and current I parameters):

B1 3 0 FZERO = [In(cos(v(3))]*2 - sqrt[sin(In(v(3)))] — 0.3799 (4-2)
SPICE will calculate v(3) such that {In(cos(v(3))]* - [sin(In(v(3)))]"* -0.3799= 0. Hence,

x 18 the voltage at node 3.
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A. Numerical method

For solving the nonlinear equation in the form of f(x) =0, a numerical method called
Tensor method [15-16,30] is used by the new nonlinear dependent source. The algorithm

of Tensor method is as follows. Given f : R ->R ,find x € R such that

f(x)=0 (4-3)
can be computed using the iteration process
X = 8(Xy, %) (4-4)
with the Tensor algorithm given by
2 e

glx,x,)=x- ;
T A - f) - f1(0)s]
where s =x_ —x . Beginning with an initial guess x;and x,, (4-6) is used to generate

<¢g, where ¢>0 1s a

subsequent iterations until the #” iteration satisfies ’xﬂ -X,
specified bound on the acceptable accuracy of the solution. By using x,, x, can be
calculated by the well known Newton-Raphson method [34] and is given by

M:%-%%% (4-6)

We will discuss the implementation of the new nonlinear dependent source to SPICE3f3

(SPICE3) in the next section.

B. Implementation of the new source

When adding a new device in SPICE3, we can add the new device programming codes

to the existing routines of the SPICE3 program [33]. Each device is described by
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functions that provide the device specific operation and data that describes the

parameters of the devices [1].

For new devices, it is necessary to define their own internal data structures and operating

functions. To simplify the implementation of the new source, we can modify the existing

SPICE3 arbitrary source. The arbitrary source consists of data structures and functions

which are also suitable for the new source. The modification of the arbitrary source can

be divided into two areas and five steps:

1. Data structure area

The first area is to modify the data structure of the arbitrary source. An additional
type name (ASRC FZERO) is created and implemented in the C programming
language header file:
asrcdef.h

in the arbitrary source. When the program calls the arbitrary source, all relative
functions and data provided by the new source are identified by the ASRC_FZERO
typle name.

A parameter table - ASRCptable[] in asrc.c file stores all necessary parameters for
the arbitrary source. A new set of parameters is added into the table and given below.

IP("fzero", ASRC_FZERO, IF_PARSTREE, "Voltage souce")

where IP is an input parameters macro. "fzero" is the parameter name that the user
uses to refer to the new source. ASRC_FZERO is a type name. IF_ PARSTREE is a
constant to indicate that the parameter requires a parse tree representing an

expression. The "Voltage source” is the description of the new source.
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2. Functional package area

We then add the type name ASRC_FZERO into all necessary functions given as -
follows:
ASRCset()
ASRCpzset()
ASRCpzld()
ASRCconvTest()

ASRCacld()
where ASRCset() int asrcset.c file is used for parameter preprocessing. ASRCpzset() in
asrcpzset.c file is almost exactly the same as ASRCset() and is called during the pole-
zero analysis. ASRCconvTest() in asrcconvtest.c file performs the convergence test.
ASRCacld() in asrcacld.c file is used for the AC analysis to generate a Sparse matrix
in SPICE3.
All decision trees in these functions are added with ASRC_FZERO option.
In ASRCparm() in asrcparam.c file, the type name ASRC_FZERO is addea to an
input parser for the root finding option by using the programming statement:

here->ASRCtype = ASRC_FZERO

where here->ASRCtype is a device pointer to set options for the arbi.trary source.
When the new source is requested by the user, the pointer points to ASRC_FZERO.
Finally, the function ASRCload() (implemented in asrcload.c file) is rewritten in the
following way. A flow chart identifying the original and modified routines is shown
in figure 4-1. Since this routine is used in the inner iteration loop of the DC and

transient analyses to load the sparse matrix, at each iteration we have the previous
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solutions as the input. With reference to figure 4-1, the routine starts by filling vector
values from the previous solutions. A new option ASRC_FZEROQO has been added to
the original decision tree of V and L. If the new option is detected, the root of the
expression is calculated using the Tensor method menttoned in the previous section.
Otherwise, the calculation follows the original design. The solution obtained is put

into the right hand side of the sparse matrix for subsequent calculations.

Afier the modified SPICE3 program is recompiled, the new nonlinear dependent source

is created. The application of the new source is demonstrated in section II
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valuas from b ———— - — —_———
previous solution
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aevaluate the right
hand side of the
| sparse matrix

Put the root of
equation into right
hand side of
sparse matrix

Insart the right
hand side values
into sparse matrix

Modified routine
— — — — Original routine

Figure 4-1, Flowchart of the modified ASRCload() routine.
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II. APPLICATION OF THE NEW NONLINEAR DEPENDENT SOURCE

1;2/ | ]
= C I D1 /\ SW1
100nF 197 uH B Vo142 uF
A H NYY‘\___.__:__‘. Ro —_—
* Ve~ iy C,
Vs o D2 ZANSW2
14v > —

Figure 4-2, The power stage of a series resonant converter.
The DRAFT macromodel 6] for a half-bridge series resonant converter shown in figure
4-2 1s used to illustrate the usefulness of the new nonlinear source. The macromodel
obtained by transforming the state-space equation of the converter to an (almost) time-
invariant state-space equation (equation (4-7)) by using the Fourier series has been

discussed in chapter 2.

' —jka;s(vC)k +

C
2 , (4-7)
(ve), 77 s +VoexpUke))
- jkag(i,), - 3 11 7

where (-)kdenotes the ith coefficient of the Fourier series. w; is the switching

frequency.
The phase angle, p, can be calculated by
0=>1Isinflp-4,] (4-8)
=1

for each harmonic / =135,
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e =2l v 0, = (|
i ; (IL)i,k

({+) , and (s}, are the real and imaginary parts of the kth coefficient. #=1,3,5,7.. )

The averaged input current (g) and output current (|—i:|) are given by summing the

contributions of all harmonics /=1,3,5---

— 2,
== ) —~cos(f, 4-9
is ﬂ;l 0s(6,) 4-9)
and
Ii:[ = ZZ:icos(t',o -8) (4-10)
il

In [6], only the fundamental component is used for SPICE calculation for the reason that
firstly, the fundamental approximation gives satisfactory results, and secondly, there is
no such feature provided by SPICE to input an in-line equation in the form of equation
(4-8). In addition, the incorporation of higher harmonics using the indirect input via the
original dependent sources causes convergence problems. This prevents the
incorporation of higher harmonics. The accuracy of the DRAFT macromodel is limited

by the macromodel simulator SPICE. In the following section, equation (4-8) can be
inputted directly via the circuit netlist file to SPICE3 with the new nonlinear dependent

source. A comparison of simulation results of the fundamental macromodel and one

with higher harmonics will be shown.
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III. SIMULATION RESULTS

Equations (4-7), (4-8), (4-9) and (4-10) are directly implemented into the modified
SPICE3. Therefore, the macromodel of the series resonant converter with up to 25"
harmonics can be simulated in SPICE3, as shown in figure 4-3. The component values
of the series resonant converter are taken from [6]. The simulated results of the steady-
state output voltage as a function of switching frequency above resonance for different
R,/Z, ratios (0.1, 0.5 and 2.0) are shown in figure 4-4. It is shown that when
compared with the full circuit simulation, the fundamental approximation deviates much
when R,/Z, is greater than 0.5. The addition of the 3™ harmonics gives better results.
The addition of 39+5%+7% +9%+11" +13" +15"™ harmonics shows excellent agreement
even for R, =2Z,. The open loop Bode response of the series resonant converter at a
switching frequency of 38kHz for R, =2Z, is shown in figure 4-5. The fundamental

approximation model deviates from the full transient simulations, and the
19439454749 1 1"+13%+15™ harmonics model gives better results. Moreover, the

results of the macromodel in 1543+5%+7% | +19"4+21"+23"+25™ harmonics and the

full model are in good agreement.

IV. CONCLUSION

A new nonlinear dependent source has been developed for SPICE3 to simulate equations
having no closed-form solutions. An example using the new source is illustrated by a

macromodel of the series resonant converter. An additional example other than resonant
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converters is given in Appendix VII. On the other hand, the implementation of the new
source into the SPICE3 program reveals that the main problem in attempting to
understand and modify SPICE3 is the sheer size of the program and the complexity of
the program organization. Therefore, we will discuss how to simplify the whole internal

structure of SPICE3 in chapter 5.
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Figure 4-3, A macromodel for the series resonant converter incorporating with

higher harmonics.
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Figure 4-4, Comparsion of simulation result for the series resonant converter with
Ro/Z0=0.1, 0.5 and 2.0 (Z0=44.3847Q). The results from DC analyses (full lines) of

the macromodel with fundamental average, the macromodel with fundamental +
3™ harmonic, the macromodel with fundamental +3¢ +5™ +7" +9™ +11" +13" +

15" harmeoinces and from steady state tramsient simulations (polygons) of a full

model.
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Figure 4-5, Comparison of results from AC small signal analyses (full lines) of the
fundamental averaged macromodel, the fundamental +3™ +5™ +7" +9* +11'" +13"
+15" harmonics macromodel, the fundamental+3"+5™"+7"+9"+11"+13"+15"

+17"+194215+23"94+25" harmonics macromodel and from transient simulations

(pluses) of a full model.
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Chapter 5

The New Macromodel Simulator, Object-SPICE

Although circuit simulation programs differ considerably in size and capability; most
simulation programs consist of four major subprograms: input, circuit setup, analysis and
output subprograms. The input and output subprograms determine how easy the
simulation program is to use. The circuit setup and analysis are the major parts of the
program to perform circuit analyses and provide outputs of the simulation. They are the
core of the simulation program and play a dominant role in enhancement, modification
and future development of the simulator. For this reason, the largest portion of the
development effort for simulation programs is devoted to the implementation of an
efficient and clear internal structure.

Many simulators including SPICE2 [18], SPICE3 [1] and many commercial version of
SPICE program (i.é. INTUSQFT SPICE, PSPICE) which use the SPICE2, SPICE3 as
the engine cannot give a clear detailed internal structure. SPICE3 was rewritten from
SPICE2 using the same basic algorithms. SPICE3 has made it as simple as possible by
partitioning the program into packages. However, both SPICE2 and SPICE3 using the
conventional procedure-programming paradigm inevitably produce a complex intemal
structure. The reason is that procedural program defines data and functions separately. It
makes the user difficult to identify an individual package which contains both functions

and data structures. It is even more difficult to understand the overall program from the

isolated package.
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To solve this problem, a new SPICE will be rewritten from SPICE3. The new SPICE
program is written by using C++ object-oriented programming language [22] and
therefore called object-SPICE.

Section I in this chapter presents an overview of the internal structure of SPICE3 and
illustrates the difficulties faced by a programmer (power user) who wants to modify and
enhance SPICE3. Section II gives the outline of the whole structure of object-SPICE.
The detailed structulre of object-SPICE is described in Appendix IV for someone who
needs to modify the simulation program. In section III, a comparison between SPICE3
and object-SPICE is given. The advantages of using object-oriented programming
paradigm in object-SPICE are mentioned. Finally, the modification of object-SPICE and

conclusion are presented in section IV and V respectively.

I OVERVIEW OF INTERNAL STRUCTURE OF SPICE3

The internal structure of SPICE3 is shown in figure 5-1. The program contains six major
functional packages and two categories of data structures. A brief overview of these

packages and their corresponding data structures is presented below. The detailed

description of the structures can be found in [1].
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______ data
Circuit
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Figure 5-1, The internal structure of the SPICE3.

A. Functional packages
e "Sparse matrix" package
This package handles the sparse matrix generated by the application of the modified
nodal analysis algorithm to the simulated circuit.
» "Device" package
This package contains all devices used by SPICE3. It performs all the necessary set-up

operations as well as initializes the sparse matrix for the simulation. It then uses the
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sparse matrix package to collect pointers to specific matrix locations where they will be
referenced regularly.

» "Analysis" package

This package contains all basic algorithms for circuit analyses used by SPICE3. It
performs the simulation by calling on device functions, matrix operations and generates
the results.

¢ "Numerical algorithm" package

This package handles the basic numerical algorithms used by the analysis package. It
includes numerical integration functions and Newton-Raphson iteration loops.

¢ "Front end" package

This package handles the input language, graphical output, output data management and
user interface.

¢ "Circuit" package

This package is used to hold other packages together. It guides the sequence of analyses
and loops through the various devices, and provides an interface to the front end

package.

B. Data structure
The data structure of SPICE3 can be broken into two major categories: global and local.
Global data can be used by all functional packages in the program. The most frequently

used data structure is the CK Tcircuit structure that knows all details of circuit simulation

in the program. Local data is used within each functional package.
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C. Uniform standard interface
The largest part of SPICE3 is the "device" and "analysis" packages. There are a total of
26 devices and 11 analyses provided by SPICE3. To cater for further addition of new
devices and new analyses, template function pointers are defined. Two sets of template
functions have been used for devices and analyses. Each set of template functions is
collected into the data structures shown in figure 5-1. The data structure serves as a
uniform standard interface to be used by other packages. This structure contains a set of
function pointers to functions used to implement a particular device or analysis. For
example, the function pointer DEVsetup in a device interface will point to RESsetup or
CAPsetup to deal with a resistor or a capacitorr respectively. Similarly, an analysis
interface is a data structure that describes all necessary functions for any analysis. Other

packages can use the interface to perform an analysis without knowing the type of

analysis.

D. Execution sequence of functional packages

h 4

Circuit package

L4
h

Device package

Front end package

Anaiysis.package \l

Front end package

Numerical algorithm _ Spare matrix
package " package

Figure 5-2, The sequence of execution of functional packages.
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During the simulation, the major sequence of execution of functional packages is shown
in figure 5-2. The front end package reads a circuit netlist and parse into a internal data
structure. The data structure is passed to the device package for setting up devices used
by the analysis package. The data structure is then manipulated by the circuit package
for guiding a sequence of analysis loop. The analysis package calls functions from the
numerical and sparse matrix packages to perform analyses. Finally, the results of

analyses are plotted by the front end package to complete the simulation.

E. Current limitations of the SPICE3 program
The SPICE3 program consists of six functional packages, the modification of the
program can focus on an individual package for specific functions and data. Each
package contains data and functions manipulating in declaration files (header files) and
implementation files (routine files) respectively. However, the following difficulties
have been found.

1. Although SPICES3 is divided into six major functional packages, the source code of
the program is physically divided into packages by the header files. In order to be
consistent and easy to maintain, each package has a header file which declares all
functions for that package. Since there is no explicit way to declare public functions
or private functions, it is hard to identify an entry point of a package.

2. Some functions from different packages are grouped into a single header (e.g. Circuit

package, Numerical package). Consequently, the programmer can only use the

function name to guess the properties of those functions as SPICE3 sometimes uses a
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specific naming system for functions. For example, all functions in the device
package uses leading characters — DEV, while functions in the front end package
uses other leading characters — FTE. For functions that do not follow this naming
system, one can refer to the SPICE3 document. However, some functions are not
documented, their role in SPICE3 becomes difficult to guess.

3. The uniform standard interfaces which are used for device and analysis packages are
all recognized by other functional packages. However, it is hard to find where the
function pointers point to. The actual function becomes "hidden" in the program. A
programmer has to find the interface, then the linking table. The linking table is the
only place to find the actual function.

4. Functions in a package use data structure declared outside the package. When a
programmer traces the definition of the structure, the structure has sub-structures
which are declared inside other packages. Sooner or later, the programmer becomes

exhausted.

To solve the above problems, SPICE3 has been rewritten as object-SPICE. Object-
SPICE utilizes the features of object oriented programming paradigms [22]. The

fundamental concepts of object programming are:

1. "Object” which allows some data and functions to be isolated from other data and

functions,

2. "Inheritance among objects” which can reduce the duplication of programming

codes, and

3. "Polymorphism" which allows removing function pointers for the uniform standard

interfaces.
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Based on the object programming, we have developed a novel SPICE simulation

program — object-SPICE by using the same basic algorithm of SPICE3.

IL. OBJECT-SPICE SIMULATION PROGRAM

The six packages in SPICE3 have been replaced by six objects in object-SPICE. The

details will be explained in the following sub-sections.

SPICE object

Data

Functions

Figure 5-3, The object diagram in object-SPICE.

A. Objects in the program

Object-SPICE is implemented with objects. An "object” is a structure that consists of
data and functions, as shown in figure 5-3. The data and functions inside an object can
be declared as public to allow access by other objects. They can also be declared as
private to be isolated from other objects. Object-SPICE can be developed into sii major

isolated objects shown in figure 5-4. A detailed description of each object is given in

Appendix I'V-IL
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Analyses Data

Devices Data

Front end Data

Circuit Data
Numercial
Algorithm Data
Sp arge Data
matrx

Figure 5-4, Isolated objects in object-SPICE.

“Devices" object handles all types of devicgs provided by object-SPICE. For each
type of devices, there is a group of necessary models and functions for performing all
necessary jobs required by other objects.

"Analyses" object handles all types of analyses provided by object-SPICE. For each
type of analyses, there is a basic algorithm for calling on device functions, numerical

methods, matrix operations and output operations as needed to perform the type of

analysis.
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e "Sparse matrix" object handles sparse matrices in the program. The object provides
the matrix allocation, matrix element creation and calculation of the solution of
circuit equations.

¢ "Numerical algorithm" object is respohsible for the basic numerical iterations and
integration methods used by object-SPICE as well as inserts devices equations into
matrices.

e "Circuit" object pfovides the basic functionality of the circuit simulation. It
establishes the initial condition, determines the operating point of the simulated
circuit and drives the various devices to setup their parameters for circuit
simulations.

¢ "Front end" object handles the front end command loop of the program. It reads the

input circuits files, runs the simulation, and collects the output results.

B. Inheritance among the objects
Functionally, there is not much difference between a package and an object. However,
both data and functions can be declared explicitly as private and public. Public functions
and data can be accessed outside the object while private functions and data can only be
accessed within the object. Programmers can easily identify public and private functions

and data via the header files,
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Circuit
Data abstraction

|
Devices } Analyses
_____ DISTOAN ! DISTOAN
NOISEAN | NOISEAN -
CKTtypelook | _____ L] _ | cxrypelook
CKTtemp Functions CKTtemp
CKTfndBranch abstraction CKTfndBranch

Figure 5-5, Abstraction of the common properties (data structure and functions)

from devices and analyses object into circuit object.

Circuit
DISTOAN
NOISEAN

CKTtypelook
CKTtemp
CKTfndBranch

T

Devices Analyses

Figure 5-6, The hierarchy structure of circuit, devices and analyses objects.
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Another advantage of using object programming is that we can have inheritance among
the objects. Inheritance can reduce the size of program codes and increase readability.

The inheritance of objects in object-SPICE can be illustrated using the devices and

analyses objects.

1. Code reuse

In object-SPICE, both the analyses and devices objects have the common properties
(data structure and functions) shown in figure 5-5. There are two common data
structures (DISTOAN and NOISAN) in both objects. Similarly, both objects encapsulate
three common functions (CKTtypelook, CKTtemp and CKIfndBranch). All these
common properties are then abstracted into a higher level object - circuit object. This
results 1n a hierarchy with circuit object and its two child objects, devices and analyses,
as shown in figure 5-6. In other words, the circuit is 2 more general object, while the
devices and analyses represent specific objects of the circuit. The properties of the
circuit can be inherited or overridden by its child objects. Therefore, inheritance among

devices and analyses objects can reduce duplication of programming codes.

2. The hierarchy tree

The same mechanism is applied to all objects in object-SPICE. A single hierarchy tree
has been established as shown in figure 5-7. The bottom level of the tree is the devices
and analyses object. The circuit object is at a higher level of these two objects. The
circuit object is abstracted into general numerical and sparse matrix objects which are

the elementary objects to perform simulation by the program. Finally, the common
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properties in both sparse matrix and front end objects are abstracted into a higher level of
the hierarchy tree, common root object. The common root object is the most basic object
in object-SPICE. It provides the basic properties for the whole program. The program is

developed into the single hierarchy tree. The detailed hierarchy tree of the program is

described in Appendix IV.
Common root
|
Spare matrix
f
Numercial
algorithm
4
Circuit
[ ]
Analyses Devices Front end

Figure 5-7, The simplified hierarchy tree of object-SPICE.

SPICEanalysis
an_func
AC analysis DC analysis Transtent analysis OP analysis
an_func an_func an_func an_func

Figure 5-8, The function an_func in SPICEanalysis object.
Page 73



C. Polymorphism
Section I-C has described SPICE3 using function pointers to select the appropriate
device or analysis functions. In this section, we will present the miechanism used in
object-SPICE. Instead of function pointers, object-SPICE contains a new generic
interface in both analyses and devices objects. Figure 5-8 shows the interface for the
analyses object. SPICEanalysis (a general analyses object) provides a generic interface
for all specific analysis objects. Each type of analyses inherits all features from the
common object — SPICEanalysis, and adds its own properties to form a specific analysis
object. However, each specific analysis object in figure 5-8 implements its own version
of function an_func. Other objects in the program can call or send messages to a
different analysis function in the program using the same function an_func. Object-
SPICE will automatically perform the analysis function that is specified by the user. For
the devices object, each device inherits all data and functions in the common basic
SPICEdev object and adds its own features to form a specific object of that type. Each
device has a common interface (a2 common function name). The detailed mechanism of

the generic interfaces for both analyses object and devices object is given below.

D. Analysis generic interface
Figure 5-9 shows the mechanism of the generic interface provided by SPICEanalysis.
1. setParms function is called for setting the necessary parameters for a specific analysis.

The setParms function in a TRANinfo object (an object performing transient analysis in
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the program) will override the SPICEanalysis setParms function for storing the
necessary parameter values.

2. askQuest function is called for querying the parameters used by the specific analysis.
In transient analysis, the askQuest function in the TRANinfo object will override the
askQuest contained in the SPICEanalysis.

3. an_init function is called for initializing the specific analysis. The an_init member
function in the TRANinfo object will override the SPICEanalysis an_init function for
setting up the transient analysis.

4. an_func function is called for actually performing specific analysis. The an_func
function in the TRANInfo object will also override the an_finc function contained in the
SPICEanalysis object for carrying out the analysis.

In addition to overriding the SPICEanalysis base object functions, the TRANinfo object
has three additional properties - time point cleanup, breakpoint cleanup and calculation
of truncation error, which are mediated by the additional member functions: CK T accept,
CKTclrBreak and CKTtrunc.

Similarly, the ACinfo object carries out the AC analysis by replacing all functions
provided by SPICEanalysis except the an_init function. The ACinfo object uses the

an_init function provided by the SPICEanalysis.
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SPICEanalysis Functions
I y setParam
askQuest
so. an_init
an_func
TRANinfo e ACinfo
Transient
Analysis
Functions AC analysis
setParam .n Functions
askQuest setParam
an_init askQuest
an_func
CKTaccept an_func
CKTclrBreak
CKTturne

Figure 5-9, The generic interface in the SPICEanalysis object.

E. Devices generic interface
The SPICEdev object provides the generic interface for all device objects. Each device
object inherits or overrides the base object functions: DEVparam, DEVioad, ... ,
DEVpzload, as shown in figure 5-10. When the arbitrary dependent source is called,
functions in SPICEdev are replaced by functions in the dependent source object
{WinASRC object). Likewise, when the constant voltage source is called, functions in

SPICEdev are overridden by functions in the voltage source object (WinVSRC object).
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SPICEdev Functions
DEVparam

) DEV load

DEVpioad

WinASRC .o WinVSRC

Arbitrary Source Voltage Source
Functions Functions
DEVparam .o | DEVparam
DEV load DEV load
DEVpzoad DEVpzoad

Figure 5-10, The generic interface in the SPICEdev object.

Devices Spar?c
object mAtrix
object

Numeric

al object

Call Front end
object

Analyse

3 object

Input
circuit

— Output

main

Call Analyses
object

Figure 5-11, The overall operation of cbject-SPICE.

F. The overall operation of object-SPICE
Object-SPICE will create all individual objects during circuit simulation. All these
objects perform operations isolated from each other. In figure 5-11, the main function in

Page 77



the program calls the front end object to setup the simulation. It then sends the circuit
analysis message to the analyses object and requests a service for performing analyses.
The analyses object then invokes the devices object and the numerical algorithm object

for further activities to complete the simulation and output required results.

III. DISCUSSION
An overview of the. two programs has been presented in previous sections. By using
object-SPICE, the limitations of SPICE3 mentioned in section I-E have been eliminated.
The reasons are illustrated in subsection A. However, the improvement of readability
does have speed penalty. A comparison of the speed of object-SPICE and SPICE3 is
given in subsection B.

A. Internal structures

The first problem in section I-E is solved by having the explicit way of declaring

[a—y

public and private functions and data.

2. The second problem is that some header files contain functions from different
packages. No separation is provided for each package in SPICE3. However, in
object-SPICE, all functions have been arranged into their own objects. No
combination of such functions exists.

3. For the third problem, object-SPICE uses the function polymorphism to realize the
generic interface. No function pointer and the linking table exist anymore.

4. Finally, a data structure declared outside a package in SPICE3 makes the
programmer difficult to trace. In object-SPICE, objects are related in the form of a

hierarchy tree. Functions manipulate a data structure outside an object. Such the data
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structure is declared inside an object which is at a higher level of that object. The

programmer finds the structure consistently from the tree.

B. Speed of object-SPICE
The speed of object-SPICE has been measured using circuits from the SPICE3C1 user
guide [1,18]. The result is generated by a 166MHz P5 personal computer and shown in
table 5-2. Object-SPICE is about 13% slower than SPICE3. However, the simplicity of
the internal structure of object-SPICE simulation program leads to greater code

maintainability.
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Circuit name Run time u§ing Ruq timeusing | R, -R, , 10 0%
SPICE3 in Object-SPICE R,
second (R3) in second (R,)
BSIMITST 0.631 0.651 3.169
BITNOISE 0.070 0.100 42.857
BSIM2TST 0.391 0.451 15.345
DIODISTO 0.061 0.0699 14.590
LTRA_1 3.365 3.655 8.618
LTRA_2 25.236 25938 2.781
LTRA_3 7.040 7.361 4.559
MOSAMP2 0.912 0.941 3.179
MOSMEM 0.130 0.160 23.076
PZ2 0.020 0.020 0.000
PZT 0.030 0.040 33.333
RCA3040 0.431 0.481 11.600
RTLINV 0.080 0.090 12.500
RTL INVERTER 0.04 0.050 25.000
SCHMITT 0.100 0.110 10.000
DIFFPAIR 0.200 0.230 15.000
R, - R,

Note: The average value of *100 % =13.271%

3

Table 5-2, The total analysis time for benchmark circuits for SPICE3 and object-SPICE.
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IV. MODIFICATION OF OBJECT-SPICE

When enhancement of the program is required, the modification of the new program can

be realized in several ways: A new class' (e.g. new device) can inherit from the existing

class of object-SPICE anq can add the specific data and functions. The second way is to
copy the existing class and modify the code for particular functions and data structures
of that class. The new class is then added to the hierarchy tree of the program. The
casiest way is the direct modification of the existing classes of object-SPICE. An
example of the modification of the arbitrary source developed in Chapter 4 is presented.

The modification can also be done on object-SPICE. It is outlined as follows:

e The data structures and operation functions are modified in the class of arbitrary
source only.

e First, the data structure that is specific for the dependent source is added to the data
declaration of the class of arbitrary source.

e Next, the operation functions in the class of arbitrary source (DEVacload, DEVask,
DEVeonvTest, DEVioad, DEVparam, DEVpzLoad, DEVpzSetup, DEVsetup) is
modified. The detailed modification of each function is the same as that mentioned
.in Chapter 4.

¢ Finally, object-SPICE is recompiled.
It is shown that the benefits of the implementation of a dependent source using object-

SPICE are: (1) The implementation is localized in the class of arbitrary source. (2) There

" A class is a language construct to implement an object in a program.
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is no linking table and function pointers. (3) The user can directly modify the function in
the arbitrary source class but in SPICE3 the user needs to deal with pointers.

For users who are familiar with SPICE3, a cross-reference table of the functions used by

SPICE3 and object-SPICE is given in Appendix V.

V. CONCLUSION

Object-SPICE presentéd in this chapter utilizes features of object-oriented programming
(such as object, inheritance and polymorphism). Object-SPICE yields a much clearer
structure when compared to the internal structure of SPICE3 by (1) removing the
function pointer reference, (2) declaring private and public parts of each object, (3)

combining data and functions to form an isolated object. Object-SPICE is about 13%

slower than SPICE3.
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Chapter 6

Conclusion

L SUMMARY

In this thesis, a new macromodel for resonant converters, -a new dependent source for
SPICE simulation and a new SPICE have been presented. The new macromodel was
‘extended from the macromodel using Device Representation Averaged Fourier
Transform (DRAFT). Improved results of the new macromodel over the existing
macromodel have been illustrated. The new dependent source has been implemented in
both SPICE3 and the new SPICE for simulating equations having no closed-form
solutions. An example of using the new source was given. Finally, the new SPICE has
been developed in a clear hierarchical structure, allowing easy further development and
maintenance. Some of the research works on SPICE macromodel has been published in
international conference proceedings and is attached in Appendix VIII. A summary of

the important results from each chapter is presented below.

Chapter 2 reviewed the operation of a resonant converter, the equivalent circuit and
state-space equations of the converter. A description of the existing (DRAFT)
macromodel for resonant converters has been given. DRAFT is developed based on the
Extended Describing Function Method. The Extended Describing Function Method

represents the state variable by Fourier series. This approach limits the performance of

the DRAFT macromodel.
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In chapter 3, a new averaging method has been proposed. The new averaging method
has been extended from DRAFT. The development of the new macromodel for resonant
converters has been divided into two parts. The first part is to develop a set of time-
invariant equations. The second is to develop an equivalent circuit for the ttme-invariant
equations. Then the equivalent circuit has been implemented in SPICE to perform all
high level analyses: such as AC, DC, and transient analyses. An example of the new
macromodel (APT macromodel) for a half-bridge series resonant converter has been
developed. A comparison of the simulation results generated from the new macromodel

with that from the DRAFT macromodel has shown that the APT macromodel can give a

much more accurate result.

In order to enhance SPICE to simulate macromodels of converters, chapter 4 has
introduced a new tool — a new nonlinear dependent source for simulating equations
having no closed-form solutions. The implementation of the new source into SPICE3 at
programming level has been given. A numerical method called Tensor method has been
proposed for solving such equation in SPICE3. An example of the DRAFT macromodel
for a resonant converter incorporating with higher harmonics has demonstrated the
robustness and usefulness of the new nonlinear dependent source. An additional example

other than resonant converters is given in Appendix VIL

While the new source has been developed, the main problem in attempting to understand
and modify SPICE3 is the sheer size of the program and the complexity of the program

organization. Thus, a new SPICE simulation program has been developed with a clear
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internal structure for power users of SPICE in chapter 5. An overview of the internal
structure of SPICE3 program has been given. The internal structure of SPICE3 can be
broken into six major functional packages and the corresponding data structures.
Problems of modification and understanding the programming structure have been
addressed. An alternative approach for writing the SPICE program has been proposed.
The new SPICE program (object-SPICE) has been fewn'tten from SPICE3 by using
object oriented programming paradigms. An outline of the internal structure of object-
SPICE has been presented. A comparison of SPICE3 program and object-SPICE

program was made. Advantageé for further development and maintenance of obj.ect-

SPICE have been addressed.

Someone who wishes to implement the object-SPICE program should refer to the

document in the Appendixes. The details of each object of object-SPICE and. the

hierarchy tree are described in Appendix IV.

IL. FURTHER DEVELOPMENT

In this section, we will discuss the limitations of the Averaged Piecewise Transform, the
new nonlinear dependent source and the object-SPICE and then give some suggestions
for the direction of the further development.

1. The limitation of the Averaged Piecewise Transform (APT)

Although the equivalent circuit model derived in this thesis is applied to the series
resonant converters, it can be extended to other converters. For example, in PWM type
converters, the natural frequency of state variables is extremely slower than the

switching frequency of converters. The APT can also be used by applying the solutions
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of state variables of that converters and then deriving time invariant equivalent circuits.
Similarly, for another example, in phase shift resonant converters operating below
resonant frequency, the natural frequency of the state variable is extremely higher than
the switching frequency of the éonvertérs. At this mode of operation, another set of the
state variables is applied to the APT. By using the same mechanism, a time-invariant
equivalent model can be derived. The APT can basically apply to any kind of converters
with actual solutions of state variables. However, the APT requires very complicate
mathematical-manipulations and easily causes convergence problems in SPICE
simulations. Therefore, the further development of the APT is to develop a new
transform. The new transform should not require the actual solutions of the state
- variables in calculations in order to simplify the mathematical manipulations.

2. The limitation of the new nonlinéar dependent source

Convergence problem arises from multiple solutions. When performing macromodel
simulation in SPICE, the macromodel requires the new nonlinear dependent source.
However, SPICE and the new dependent source use their own local convergence method
to calculate solutions. It is difficult for the system to handle the multiple solution
problem. Therefore, further work of the new source should be devoted to find or develop
a global convergence method for the simulator to deal with the multiple solutions
problem in simulations.

3. The limitation of object-SPICE

Totally, 50 classes have been developed inside object-SPICE. Almost all classes are
derived from a single base class. A single hierarchy tree has been established for

increasing both extendibility and readability. Four sets of function polymorphism have
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been implemented into object-SPICE to reduce complexity. However, due to time
constraint, the front end object reuses the codes from SPICE3. Therefore, it is difficult to
undel;stand and modify the program. Further work should be done to implement the front
end object. In object-SPICE, the fron‘t end object contains function pointers to
manipulate all user commands (e.g. RUN, PLOT, PRINT, SOURCE, AC, DC, TRAN,
FOURIER). A linking table still exists and contains functions to implement the
corresponding user cc.>mmands. This affects the consistency and readability of the
program. The direct way to replace the function pointers and the linking table is to
inherit a set of new objects from the front end object in order to form a function
polymorphism. The new set of objects contains all these functions and corresponding
data structures. All functions then use¢ a common function name (e.g. COMM _func).
Each function in a new object implements its own version of COMM func.
Consequently, all indirect pointer references and linking table are removed. Such
modification extends the hierarchy tree of object-SPICE at the front end object. All these

functions are then included in the hierarchy tree of object-SPICE and can be found

directly from the tree.
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Appendix I
SPICE Simulation Techniques

I INTRODUCTION

SPICE simulation techniques used in this thesis are described in the following section.
IL. DESIGN OF A VOLTAGE-CONTROLLED-OSCILLATOR

In the full-transient simulation of resonant converters, the driving voltage is generated by
switches controlied by a voltage-controlled oscillator (VCO). A simplified VCO using a
Wien bridge oscillator has Been proposed [5,6]. The circuit in SPICE is shown below:

*Varying Pulse generator
.SubCkt VCO nfin no

ba no ¢ V=3*V(nc)

bR1 no nl I=le-6*V{nfin)*V(no,nl)
Rrl no nl 1T

Cl nl nc 159.1549431n ic=1
*{1u/Twopi}

bR2 nc 0 I=le-6*vV{nfin)*V(nc)
Rr2 nc 0 1T

.C2 nc 0 159.1549431n ic=0
*{1u/Twopi }

.ends VCO

III. THE TECHNIQUE OF AC EQUIVALENT FULL-TRANSIENT

ANALYSIS
As only transient analysis can be performed in the full-transient simulation, the small
signal response is extracted from the steady state of the transient simulation [25]. The

control-to-output response will be described by using the following procedures.
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1. Modifying the control signal with a single-frequency FM in the SPICE lists below

va 8 0 sffm(0 700 38k 76m 5k)
rs 8 7 100k
ds 6 7 dz

de 6 0 dz
where 700 is the magnitude of modulated signal, 38k is the switching frequency and

76m is modulation index and 5k is the small signal frequency.

2. Make sure that the converter has entered steady-state before measuring the output

response, as the example below:
.tran 0.1lus 12m 6m 0.lus uic

where 6m is the time to allow the converter to enter steady state. The simulated results is

record from 6m to 12m (it should be more than the period of 5k small signal).

3. The output response can be extracted by .FOUR command in the SPICE:

.four 5k v{Ro) v(vf)

Where 5k is the small signal frequency, v(Ro) is the output voltage of the converter and
v(vf) is the reference voltage. The .FOUR command is used to extract DC component of
the fundamental frequency component of the Fourier analysis of v(Ro) and v(vf). It
should be notice that the ratio of fundamental and DC magnitudes of v(Ro). The ratio is

larger than 3% to compensate for the effects of switching noise but smaller than 10% to

avoid nonlinearity [5].
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IV. METHODS OF HANDLING CONVERGENCE PROBLEMS

The convergence problems in SPICE simulations usually occur in the bias point
calculation or transient analysis. These problems are usually caused by two main factors:
1) discontinuities in the device equations that make solving the matrices difficult, and 2)
constraints on the analysis technique that prevent the SPICE algorithms from solving the
equations. To overcome convergence problems during the bias point calculation, we can
use the following options:

e Setting the initial voltage at designed nodes at the beginning of the analysis

procedure (.nodeset v (no)=0) allows SPICE to converge on difficult circuits.

e And using the option control (.option itll=1e6) increase the maximum

number of DC iterations.

SPICE simulations suffer convergence problems in a transient analysis. The following
method is adopted to handle these problems.
e Increasing the maximum number of iterations (.option it14=500).

¢ Reducing the maximum simulation time step in a transient option.
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Appendix IT
Mathematica Techniques

I INTRODUCTION

Mathematica is a software program basically.combines symbolic and numerical
calculations, plots, graphics programming and interactive environment. Generally,
the program can be divided into two parts: The Mathematica kernel and the front end.
The Mathematica kemél is the part of the program which actually performs the
calculations (consists of several 100000 lines of source code written in an object
oriented extension of C). Standard C code is produced by a precompilation. Since
there is no assumptions about the target computer are made, the same source code
can be compiled essentially on all systems. Therefore, the same kernel program can
be used on a large variety of computers. The front ends is used to handle the
interaction between the user and the kernel. It is called notebooks. These notebooks
consist of Mathematica input and output, text and graphics. The two-dimensional

typeset input and output is used. The Mathematica techniques used in this report are

illustrated in follows.

IL TECHNIQUES
1. A function called £, which is a sine function with amplitude (Ao) and phase (th),
is defined. The Mathematica command to define this function is
£(t_ ] = Ao Sin[t-th];
2. Using the command ExpToTrig [expr] converts exponential form in expr to
trigonometric functions. For example,
ExpToTrig[i3 Exp{-I Wo]ll
Results
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i3 (Cos[Wo]-I Sin[Wol)
3.Getting the real and imaginary part of the expression, we use the commands
ComplexExpand [re [expr]] and ComplexExpand [Im(expr]]. Using
the equation in 2 gives
ComplexExpand [Re[i3 (Cos([Wo]l-I Sin[Wol)]]
ComplexExpand [Im[i3 (Cos[Wo]l-I Sin[Wol)]]
Resuts
i3 Cos[Wol
-13 Sin([Wo]
4. Calculating the integration, the two-dimensional form can be used to enter the
expression. The integrate are entered in two-dimensional form by using a palette

in Mathematica.
fs in [xMx

Results

Cos [a] -Cos [b]

Page 92



Appendix I11
The Netlist file of Averaged Piecewise Macromodel for the Series

Resonant Converter

Spice3 modeling of series resonant converter

* Param L = 197u

* Param C = 100n

* Param Vs = 14

* Param wo = {1/SORT(L*C)}= 225302.9545
*.Param 1_wo = {SQRT(L*C)}}=

* . Param Zo = {SQRT(L/C)}=44.3846B204

* Param 1_Zo = {SQRT(C/L)}=

* ,Param Rs = 1lu

*

Vs ns 0 14

bis ns 0 i=v{nido)+v(nigo)
*

bio 0 no i=v(nigo)-v(nido)
Co no 0 14.2u

Ro no 0 88.76936408

*

bvsor nrl nr5 v=44.38468204*i (vii)

behr nr5 0 v=- (-2*v{no) +v(nao))* (1+cos (v{ntw))) *v{nsinl) /(v (ntw))
Rr nrl nr2 1lu

Lr nr2 nr3 1%7e-6

Vir nr3 nr4 0

Cr nr4 0 100e-9

bvr 0 nr4 i=v{ni4)/44.38468204

bstr 0 nr4 i=-2*100e-9*v(nws)*{v{ns)-v(no) *v{ncos)+(2*v(no) -
vinao) ) *(1+cos (vintw) }) *vincosl) /2)/{3.14159265359)

*

bvsoi nil ni5 v=-44.38468204*i (vir)

bchi nis 0 v=(-2*v{no)+v(nao))}*sin(vi{ntw))*v(nsinl)/v(ntw)
Ri nil ni2 1u

Li ni2 ni3 197e-6

Vii ni3 ni4 0

Ci ni4 0 100e-9

bvi 0 ni4 i=-v{nr4)/44.38468204

bsti 0 ni4 i=-100e-9*v{nws)*{(2*v{no}+v{nao))*v{nsin}- (2*v(no) -
vi{nao))*v{nsin2})}/(2*3.14155265359)

*

bas nas 0 v=44.38468204*1 (vir)-v(nis4)
Ras nas 0 1leé

bac nac 0 v=i(vii)*44.38468204+v(nr4)
Rac nac 0 leé6

+*

bthe nthe 0 v=atan(v(nas)/v(nac})
Rthe nthe 0 1leé

bsin nsin 0 wv=sin{v(nthe)}

Rsin nsin 0 1leé6

bcos ncos ¢ v=cos(v(nthe))

Rcos ncos 0 leé

bntw ntw 0 v=3.14159265359%225302.9545/v {nws)

Rntw ntw Q0 leé6
bsinl nsinl 0 v=sin{v(ntw)-v(nthe})
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Rsinl nsinl 0 1leé

bcosl ncosl 0 v=cos (v{ntw)-v{nthe))
Rcosl ncosl 0 leé

bsin2 nsin2 0 v=sin(2*v{ntw)-v(nthe))
Rsin2 nsin2 0 1leé6

bcos2 nces2 0 v=cos (2*v{ntw)}-v(nthe))
Recos2 ncos2 0 leéd

*

bao nao 0 v=led*({sqrt (v{nas) 2+v{nac)”2)+2*v(no)* (1+v(nthe) /v(ntw}) -
V{nao))

RA0 nao 0 1le$s

bido nido 0 vsvinws)*100e-9*v(nao)*{v{ncos)-1)/3.14159265359
RIDo nido 0 1leé

bigo nigqo 0 v=(v{nws}*100e-9/3.14159265359) * (v(nao) -2*v(no}}*(1-
vi{ncosl})

RIQo nigeo ¢ leé6

*

vEis nfs 0 38k ac 1

*PWL(0 37.93k 1.6m 37.93k 1.602m 35.93k 4.1m 35.93k 4.102m 37.93k
6.6m 37.93k)

Rfs nfs 0 leé

bws nws 0 v=2+%3.14159265359*v(nfs)

Rws nws 0 leé

*

.nodeset v{no)=0

.ie v(no)=0

.option itll=leé itl2=leé reltol=0.001 itl4=500 trtol=0.1

* _tran 0.600u ém 0 0.6u uic

* dc VEs 35k 60k 0.2k

.ac dec 101 10 35k

* .print ac vdb(no)

.End
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Appendix IV

Classes of object-SPICE

L OVERVIEW OF CLASSES IN OBJECT-SPICE

Object-SPICE contains approximately 800 files in C++ language?, it was written for
use on the personal computer. The computer operates under the Windows NT
operating system. The program is developed with a clear internal structure that a
detailed hierarchy chart of the program is established in three major categories shown
in figure AS-1. The SPICE simulator is the main portion of the program. The

simulator calls the specific devices for making simulation and performing analyses.

2 CHt language is a programming language supporting the OOP paradigm.
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Hierarchy Chart

The new SPICE Class
MISC
t Winspmatrix IFfrontEnd I— WinINP T_ CP_fie
t WinNI Front end T_ FTE
t CKTgeneral
T' IFsimulator t SPICEanalysis t SPICEdev
1 } i
SIMinfo 4 ACinfo  winaSRC WinMes
L Communicator — DCinfo WinBjt inMos
| DCTinfo 1 WinBsiml —  WinMos2
= DISTOinfo u W'L'nBsimZ =  WinMos3
— NOISEinfo m WinCap —  WinMos6
- OPTme 1 WinCecs . WinRes
—
- PZinfo B WinCcvs — - WinSw
SENSinfo B WinCsw = WinTra
TFinfo — WinDio = WinUrc
— TRANinfo -,_ Winlnd — WinVccs
L| SEN2info u Winlsre —I WinVcvs
| — WinJfet —I WinVsre
SPICE simulator ——l
— WinMut

—l WinLtra

Figure AS-1, The internal structure of object SPICE simulation program.
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SPICE simulator

In this category, all internal algorithms, device equations and analysis methods are
encapsulated in forty-two classes shown in figure A5-2. The SPICE simulator
performs the specific analysis through the SPICEanalysis class and its derivatives.
The simulator calis on the SPICEdev class for setting up a set of circuit equations. By
using the basic algorithm with the WinNI class for the numerical iteration and
integration, the simulator then performs factorization to complete the solution of the
circuit equations on the Winspmatrix class. The overview of each class in this

category is given below.

1. A Winspmatrix class handles sparse matrices in SPICE. The class provides

matrices allocation, elements creation in matrices and calculation of the solution of

circuit equations,

2. A WinNI class is responsible for the basic numerical iteration and integration
methods used by SPICE as well as places device equations in the circuit simulation

into parse matrices.

3. A CKTgeneral class provides the basic functionality of the circuit simulation. It
establishes the initial condition, determines the operating point of the simulated

circuit and drives the various devices to setup their parameters for the circuit

simulation,
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4. A SPICEanalysis class encapsulates all type of analysis provides by SPICE. For
each type analysis, by calling on device functions, numerical methods, matrix

operations and output operations as needed to perform the required analysis.

5. A SPICEdev class handles all type of devices provided by SPICE. For each type of
device, there is a group of necessary functions for performing all necessary jobs for
the simulation on instances and models of that type.

The detailed descriptions of these classes are given in next section.

The relationship of these classes is shown in figure A5-2. The Winspmatrix class that
is at the highest level in the hierarchy tree within this category, is a single base class
for the SPICE simulator. The Winspmatrix class provides a useful capability to all
classes derived from it. The second level of the tree is the WinNI class that is derived
form Winspmatrix class. The CKTgeneral class is the child class of the WinNI class
providing basic functionality for the SPICEanalyéis and SPICEdev classes. All
device classes and analyses classes are at the lowest level, handling a particular

device equation and analysis method used by the simulator respectively.
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Winspmatrix

t WinNI

T— CKTgeneral
T— SPICEanalysis t SPICEdev

J A 4

|| ACinfo —  WinASRC —  WinMes
. . .
. . .
. . .

L{ SEN2info —  WinLtra —  WinMut

Figure AS-2, The hierarchy chart of SPICE simulator.

Front end

The second category of classes in the hierarchy chart shown in figure AS-1 is the
front end of the program that contains four classes. These classes are: CP_fte, FTE,
WinINP and IFfrontEnd classes. They work for the development of an input
language, graphics output and data management. The overview of each class in this

category is given below.

1. A CP_fte class handles the front end command loop of SPICE. It provides an
interactive command mode for SPICE. It is responsible for reading the input
commands from the user, parsing the command line to perform the necessary

commands provided by SPICE and recording the history of the command line.
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2. A FTE class reads the input circuit via netlist file and runs the circuit. It then is
responsible for plotting results generated by the SPICE simulator, writing an output

raw file and printing out the resource usage information of SPICE.

3. A WinINP class handles the tools necessary to parse netlist format input. It is
responsible for examining all of the SPICE input line, allocating and initializing the

symbol tables which is used for storing the node names of the simulated circuit and

performing the evaluation at each node.

4. An IFfrontEnd class provides output functionality for SPICE. It is responsible for
recording simulation data that result from the analyses preformed by the SPICE
simulator.

The relationship of these classes is shown in figure A5-3. All classes in this category
are derived from the MISC class that is root class of the SPICE program providing
utilities functions for its derivative. Both IFfrontEnd and WinINP classes that are
independent each other are located at the second level of the hierarchy chart. The
CP_fte class also is another child class of the MISC class and gives basic
functionality for the FTE class. The FTE class derived from the CP_fte class
providing a specific operation of reading a simulation circuit and writing the results

data.

MISC

IFfrontEnd WinINP t CP_fic

t FTE

Figure A5-3, The hierarchy chart of front end.
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Communicator

In this category, the [Fsimulator and its derivative classes shown in figure A5-1 are
derived from the CKTgeneral class that gives a set of basic functions for circuit
simulation. They support methods for communication between the front end (CP_fte,
FTE, WinINP and IFfrontEnd classes) and the SPICE simulator (Winspmatrix,
WinNI, SPICEdev and SPICEanalysis classes). Classes that are in this category are
responsible for creating a new circuit structure and a new set of analysis parameters
for the SPICE simulator. The program then performs simulations requested by the
front end of the program through the communicator. The detailed descriptions of

classes in both front end and communicator categories are given in the following

section.

IL. THE CLASSES OF OBJECT SPICE

ACinfo
MISC
T—' Winsprnatrix
WinINI
CKTgencral

L SPICEanalysis

T— ACinfo

The ACinfo class encapsulates an AC analysis. It performs the AC analysis by
computing a DC operating point and all the necessary small signal parameters, then
sweeps all AC sources through a set of frequencies, computing the AC small-signal
response. The ACinfo class stores the necessary small signal parameters values with
The ACinfo::setParms function. There are three mutually exclusive keywords: dec,

oct and lin and the last one specified overrides the others. The AskQuest member
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function performs a query of those parameters. The ACinfo class actually performs

the analysis with the ACinfo::an_func member function.

DCOinfo
MISC
T— Winspmatrix

1 E——

L CKTgcneral

L SPICEanalysis

DCOinfo

The DCOinfo class provides a DC analysis that all capacitances are open circuited
and all inductances are shorted. The result is both outputs as an analysis and left in
the CKTrhsOld’ vector for future use by other analyses. DCOinfo responsible for the
DC analysis calls the DCOinfo::an_func member function, which uses the Newton-
Raphson iteration to solve the circuit. Besides the simple the Newton-Raphson
iteration, the DCOinfo::an_func has Gmin Stepping and source stepping techniques.
Both askQuest and setParm member functions always retum E_BADPARM, since

the DC operating point analysis does not support any options.

DCTinfo
‘ MISC l
T—[ Winspmatrix l
T— WinMNI |

T—‘ CKTgencral |

T~i SPICEanalysis

U ocen |
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The DCTinfo class is responsible for a DC transfer curve analysis, which sweeps a
voltage or current source through a set of values and stores the output variables for
sequential source. The class assumes only two levels of nesting in the loop for the
analysis. It responsible for setting_ the necessary parameters calls The
DCTinfo::setParm function. The class provides the DC transfer curve analysis with
The DCTinfo::an_func member function. The DCTinfo::askQuest function always

return E BADPARM owing to the historical reasons.

TFinfo

MISC

L Winspmatrisx

Win™I

CKTgeneral

L SPICEanalysis

TFinfo

The TFinfo class allows a small signal DC transfer function to be computed. It
supports calculations of the DC small-signal value of the transfer function
(output/input), input resistance, and output resistance. The setParm member function
stores specified parameters into the transfer function analysis structure. The TFinfo
class uses the TFinfo::askQuest function to query parameters of a transfer function
analysis. This function always returns E_ BADPARM, the actual query code still to
be written as the need for it arises. The TFinfo class responsible for the actual

analysts calls the TFinfo::ana_func function.

? CKTrhsOld is the right hand side vector for the matrix package from the previous iteration which
now contain the solution for that iteration.
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TRAN:Iinfo

MISC

L Winspmatrix

WinINI

L CKTgeneral

T'-'— SPICEanalysis

T— TRANiInfo

- The TRANInfo class encapsulates a transient analysis. In order to query parameters
of the analysis, set the needed paramaters and perform the transient analysis call the
TRANinfo member functions: askQuest, setParm and an_func. Besides these basic
members, the TRANinfo class provides three other member functions:

e CKTaccept, a function that allows each device to perform any once per

time point cleanup or preparation for the next time point.
o CKTclrBreak, a function that is used to clear a breakpoint.
¢ CKTtrunc, a function that‘is used to calculate the truncation error.

The TRANiInfo class also has an initialized function name an_init that is used to set

up the analysis.

SENSinfo

T—I WinTV1 |
T—-L CKTgeneral |

T’”I SPICEanalysis

T-"' SENSinfo
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The SENSinfo class supprots a sensitivity analysis. To set up and query parameters
in sensitivity structures that the simulator uses in the sensitivity analysis, use the
SENSinfo member functions setParm and askQuest. In addition, the analysis is
performed by calling the SENSinfo member function an_func. The sensitivity
analysis through private member functions in the SENSinfo class provides for setting

parameters, incrementing frequency, loading devices and setting the devices

temperature.
QOPTinfo
MISC
Winspmatrix
WinMN |
CKTgeneral
SPICEanalysis

OFPTinfo

The OPTinfo class provides an overall control of various parameters effecting the
analysis operations, such as numerical tolerances, operating temperature, DC
iteration limit, number of Gmin steps etc. The OPTinfo class supports member
function for setting values of parameters, which SPICE placed on a ".options" card,
working with the OPTinfo::setParm function. OPTinfo handles requests of overall
information about the circuit with the OPTinfo::askQuest member function. The class
does not provides the an_func member function, since it does not perform an actual

analysis but use a same interface of another analysis.

NOISEinfo
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MISC

Winsprmatrix
L{ WinM1I
CKTgeneral |
SPICEanalysis

L{ NCOISEinfo I

The NOISEinfo class is responsible for a noise anlaysis of the circuit. It uses

NOISEinfo::setParm, NOISEinfo::askQuest to store and request parameters of the
noise analysis. NOISEinfo class performs the analysis by calling member function

an_func. Besides these basic member functions in the class, the NOISEinfo class has

another member function:

e CKTnoise, a function that works for naming and evaluating all of the

noise sources in the circuit.

DISTO1nfo

l MISC
TAI Winspmatrix
L WinN1

CHKTgcneral

L{ SPICEanalysis

T—1 DISTCOinfo

The DISTOinfo class handles a small-signal distortion analysis of the circuit. The
class responsible for storing parameters of the analysis calls the DISOinfo::setParm
member function, which is similar to the ACinfo::setParm function which has three
mutually exclusive keywords: dec, oct, and lin, but the DISTOinfo::setParm provides

an additional parameter F2QVERF1. It also supports query of parameters with the

Page 106



DISTOinfo member function askQuest. The class works for setting up and

performing the analysis by calling DISTQinfo::CKTdisto and DISTOinfo::an_func.

WinINP

MISC

T— WinlNP

The WinINP class provides tools necessary to parse netlist format input. It
responsible for examining all of the SPICE input line except for ".MODEL" cards
calls the WinINP member function INPpas2. The INPpas2 member function handles
the individual device lines by calling a separate member function. These functions
name INP2X where X is the keyletter used by SPICE for the first letter of the device
name. The class handles ".MODEL" card by using WinINP::INPpasl member
function. To allocate and initialize symbol table which is used for node names of the
circuit calls the WinINP::INPtablnit member function. The WinINP class frees the
space allocated for the symbol table with the WinINP::INPtabEnd member function.
It calls WinINP::INPgetTak to find a next token on the input line given. To performs
evaluating numbers, inserting string into the string table operation uses the
WinINP::INPgetValue member function. Both  WinINP::INPerrCat and
WinINP::INPerr member functions handle error message during the parsing

operation.

SIMinfo
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MISC

VWinspmatrix
WinINT
T CKTgeneral

t« IFsimulator

SIMinfo

The SIMinfo class supports communication between a front end (IfrontEnd, WinINP,

CP_fie and FTE classes) and SPICE simulator (SPICEanalysis, SPICEdev, WinNI

and Winspmatrix classes). The class provides six areas of the functionality:

Circuit area, which allocates a structure necessary to describe a circuit and
sets a pointer to the newly allocated structure by calling the
SIMinfo::newCircuit member function. Besides newCircuit, the area
handles freeing the structure with the SIMinfo::deleteCircuit member
function.

Node area, which creates a node in the circuit and sets a pointer to the
newly node by using the SIMinfo::newNode member function. Specifying
a node to be the ground node of the circuit and connecting a terminal of
an instance to a node uses the SIMinfo::bindNode member function. The
area sets parameters of a node by calling SIMinof::setNodParm.

Instance area, which creates a device (instance) of a specified type in the
circuit using the SIMinfo::newlnstance member function. It provides
SIMinfo::setInstanceParm and SIMinfo::askInstanceQuest to set and
request parameters of an instance.

Model area, which creates a model of a device in the circuit using

SIMinfo::newModel. It provides SIMinfo:setModelParm  and

SIMinfo::askModelParm to set and query parameters of the device model.
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Besides these member functions, it allows to find and remove a specified
model from the circuit by callng SIMinfo:find and
SIMinfo::deleteModel.

o Analysis area, which creates a new analysis using the SIMinfo class
member function, newAnalysis. To set and ask the analysis parameters
calls SIMinfo::setAnalysisParm and SIMinfo::askAnalysisQuest member
funcitons. It responsible for locating the analysis uses the
SIMinfo::findAnalysis member function.

¢ Task area, which creates a new task (a group of analyses) associated with
circuit using SIMinfo::newTask. Finding and deleting the tasks uses the

SIMinfo class member functions, findTask and deleteTask.

CKTgeneral

MISC I

L Winspmatrix
L WinMI1

CKTgencral

The CKTgeneral class is the base class for SPICEanalysis, SPICEdev and
[Fsimulator classes. The class encapsulates the original routines in CKT package
used by SPICE3. It supports establishing the initial conditions before performing an
analysis, determining operating point of the circuit for the SPICEanalysis class and
outputting analysis results by calling CKTgeneral::CKTic, CKTgeneral::CKTop and
CKTgeneral::CKTdump member functions. CKTgeneral::CKTacDump  is
responsible for the outputs of AC analysis. The CKTgeneral class also provides

member functions for driving the SPICEdev class:
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CKTpName, a driving function that takes and sets parameters by name on
a device.

CKTtemp, a driving function that calls temperature dependency member
functions in the SPICEdev class.

CKTsetup, a driving function that calls all devices setup member
functions in the circuit.

CKTunsetup, a driving function that frees CKTstates® vectors used by
devices in the circuit.

CKTtypelook, a member function that finds a device in the circuit.

Besides these member functions, the class has CKTgeneral::CKTdItNNum,

CKTgeneral::CKTnames and CKTgneral::CKTnum2nod to generate a namelist of

nodes and equations, convert a node number to a node pointer and delete a node from

the circuit.

WinNI

MISC

L Winspmatrix

Win1

The WinNI class provides basic functionality for the CKTgeneral class and

encapsulates the numerical iteration and integration used b'y SPICE. It has the

following services:

o The WinNI class has the WinNI::CKTload member function to load all devices in

the circuit at each iteration of transient and operating point analysis. To use the

WinNI::CKTacLoad member function drives device loading member functions in
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the SPICEdev class for a AC analysis. It provides WinNL::CKTnodName for
output a name of a node in the circuit. Also, to initialize, reinitialize and free data
structure used by the WinNI class call WinNI::Nlinit, WinNI::NIreinit and
WinNI::Nldestroy member functions. |

e The WinNI class responsible for the Newton-Raphson iteration, numerical
integration and finding roots of a complex polynomial calls WinNI::Nliter,
WinNI::Nlintegrated and WinNI::NIpzMuller member functions. The class
supports computing an integration coefficient by using the WinNI::NIconCof

member function.

Winspmatrix

MISC |

|
L ee—

The Winspmatrix class is the base class for SPICE simulator classes. It handles all

routines in the spare matrix package used by SPICE3. It provides
Winspmatrix::SMPnewMatrix for initializing the spare matrix. To clear to zero all
entries in the spare matrix uses Winspmatrix::SMPclear or Winspmatrix::SMPcClear
member functions. The SMPcClear is responsible for complex entries. First, the class
handles removing zero from the diagonal of the spare matrix with the
Winspmatrix::SMPpreorder member function, then calls Winspmatrix::SMPreorder,
Winspmatrix::SMPluFac and Winspmatrix::SMPsolve to reorder the spare matrix,
perform L-U decompositions and solve matrix equations. The class handles a
complex matrix using SMPcReorder, SMPcluFac and SMPcSolve member functions

instead. It also provides Winspmatrix::SMPfindElt and Winspmatrix::SMPmakeElt

* CKTstates are vectors that are used to store the per time point data.
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member functions for finding an element in the spare matrix, creating the element in
the spare matrix. Besides these functions, it has Winspmatrix::SMPmatsize and
Winspmatrix::SMPprint member functions to measure size of the matrix and print the

matrix.

[FfrontEnd

MISC

T— [FfrontEnd

The IFfrontEnd class provides output functionality for SPICE simulator classes. The
class responsible for recording time for statistics gathering uses the
[FfrontEnd::IFseconds member function. It prbvides the IFfrontEnd::IFerror member
function for SPICE simulator classes to output messages. To initialize and free data
type uses by IFfrontEnd calls IFfrontEnd::newUid and IFfrontEnd::IFdelUid member
functions. Besides these functions, the clas§ handles output for the SPICEanalysis
class with five member functions:
o OUTpBeginPlot, a function that describes the plot to be produced.
o OUTpData, an output function that is called repeatedly and outputs data
for the SPICEanalysis class per point.
e OUTendPlot, a function that tells that all data has been outputted.
e [FpauseTest, a function that indicates that the front end classes wants
control.
¢ QUTattributes, a function that allows the SPICEanalysis class to output

additional information other than linear scale plot.
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The cross-reference table of functions for SPICE3 and object-SPICE

Appendix V

SPICE3f3 function |Object SPICE member functions accessibility

Circuit glue

CKTacDump CKTgeneral::CKTacDump( CKTecircuit *, double, |protected
GENERIC *)

CKTacLoad WinNI::CK TacLoad(CK Tcircuit*) protected

CKTaccept TRANIinfo::CKTaccept{ CK Tcircuit *) private

CKTconvTest WinNE:CK TeonvTest(CK Teircuit*) protected

CKTfndBr CKTgeneral::CKTfnBranch(CK Tcircuit *,[Fuid) protected

CKTic CKTgeneral::CKTic{CKTcircuit *) protected

CKTload WinNL:CK Tload{ GENERIC *) protected

CKTpzlLoad PZinfo::CKTpzLoad{CKTcircuit *,Spcomplex *,int) |private

CKTsetup CKTgeneral::CK Tsetup{CKTcircuit *) protected

CKTpzSetup PZinfo::CKTpzSetup(CK Tcircuit *) private

CKTtemp CKTgeneral;; CKTtemp(CK Tcircuit *) protected

CKTtrunc TRANinfo::CKTtrunc{CK Tcircuit *,double *) private

Analysis packages

ACsetParm ACinfo::setParm{CKTcircuit *,GENERIC *,int public
JFvalue *)

ACaskQuest ACinfo::askQues(CKTcircuit *,GENERIC ¥*,int public
JFvalue *)

ACan ACinfo::an_func{CKTcircuit *,int) public

DCOaskQuest DCOinfo::askQues(CKTcircuit *, GENERIC *,int  |public
JFvalue *)

DCOsetParm DCOinfo::setParm{CKTcircuit *, GENERIC *,int  [public
,JFvalue *)

DCop DCOinfo::an_func(CKTcircuit *,int) public

DCTaskQuest DCTinfo::askQues(CK Tcircuit *, GENERIC *,int  |public
JFvalue *)

DCTsetParm DCTinfo::setParm{CK Tcircuit *, GENERIC *,int public
JFvalue *)

DCtrCurv DCTinfo::an_func(CKTeircuit *,int) public

TFanal TFinfo::an_func(CKTcircuit *,int) public

TFaskQuest TFinfo::askQues(CKTcircuit *,GENERIC *,int public
,[Fvalue *)

TFsetParm TFinfo::setParm{CK Tcircuit *,GENERIC *,int public
JFvalue *)

TRANaskQuest TRANInfo::askQues(CK Tcircuit *, GENERIC *,int |public
JFvalue *)

TRANsetParm TRANiInfo::setParm{CKTcircuit *, GENERIC *,int |public
JFvalue *)

DCtran TRANinfo::an_func(CKTcircuit *,int) public

PZan PZinfo::an_func{CKTcircuit * int) public

PZaskQuest PZinfo::askQues(CKTcircuit * GENERIC * int public
,[Fvalue *)

PZsetParm PZinfo::setParm({CKTcircuit *,GENERIC *,int public
JFvalue ¥)

SENSask SENSinfo::askQues(CK Tcircuit * GENERIC *,int  [public
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JFvalue *}

SENSsetParam SENSinfo::setParm(CKTeircuit *, GENERIC *,int  |public
JIFvalue *)

sens_sens SENSinfo::an_func(CKTcircuit *,int) public

Analysis control

CKTsetOpt OPTinfo::setParm{CK Tcircuit *, GENERIC *, int  |public
Jfvalue *)

CKTacct OPTinfo::askQuest{GENERIC *, GENERIC *,int  |public
JFvalue *)

Utility

CKTclrBreak TRANIinfo::CK TcirBreak{CK Tcircuit *) private

CKTdump CKTgeneral::CKTdump(CK Tcircuit *, double protecied
,GENERIC *)

CKTlinkEq SPICEdev::CK.TlinkEq{CKTcircuit *,CKTnode *) |protected

CKTmkCur SPICEdev::CKTmkCur{CK Tcircuit *,CKTnode protected
** IFuid ,char *)

CKTmkNode SPICEdev::CKTmkNode(CKTcircuit *,CKTnode  |protected
TS

)

CKTmkVolt SPICEdev::CKTmkVolt(CK Tcircuit *,CKTnode protected
** IFuid ,char *)

CKTnames CKTgeneral::CK Tnames(CKTcircuit *, int ,IFuid  |protected
*k

)

CKTnum2nod CKTgeneral::CKTnum2nod(CKTcircuit *, int) protected
CKTpModName SPICEdev::CKTpModName(char *,Ifvalue protected
* CKTcircuit *,int ,JFuid ,GENmodel **)

CKTpName CKTgeneral::CKTpName(char *, IFvalue protected

* CKTcircuit *int ,char * GENinstance **)

CKTsetBreak SPICEdev::CKTsetBreak(CK Tcircuit *, double) protected
CKTterr SPICEdev::CKTterr(int ,CK Tcircuit * ,double *) protected
CKTtypelook CKTgeneral::CKTtypelook(char *) protected
CKTbreakDump SPICEdev::CKTbreakDump(CKTcircuit *) protected
Numerical package

Niaclter WinNI::Nlaclter{ CKTcircuit *) protected
NIcomCof WinNI::NIcomCof{ CKTcircuit *) protected
NlconvTest WinNIi::NlconvTest{CK Tcircuit *) protected
Nidestroy WinNI::NIdestroy(CKTcircuit *) protected
Nlinit WinNIL::Nlinit{ CKTcircuit *) protected
Nlintegrate WinNI::Nlintegrate(CK Tcircuit *, double *, double |protected

*, double , int )

Nliter WinNI::Nliter{ CKTcircuit *, int) protected
NlpzMuller WinNI:NIpzMuller(PZtrial **, PZtrial *) protected
NIpzComplex WinNI::NIpzComplex(PZtrial **, PZtrial *) protected
NipzSym2 WinNI::NIpzSym2(PZtrial **, Pzirial *) protected
NIpzSym WinNI::NIpzSym(PZtrial **, Pztrial *) protected
Nlreinit WinNI::Nlreinit{ CKTcircuit *) protected
NlsenReinit WinNI::NIsenReinit{ CKTcircuit *) protected
Sparse Matrix Package

SMPnewMatrix Winspmatrix::SMPnewMatrix{ SMPmatrix **) protected
SMPdestroy Winspmatrix::SMPdestroy( SMPmatrix *) protected
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SMPaddElt Winspmatrix::SMPaddEI{SMPmatrix *, int ,int protected
,double)
SMPclear Winspmatrix::SMPclear(SMPmatrix *) protected
SMPfindElt Winspmatrix::SMPfindElt((SMPmatrix *, int ,int ,int} |protected
SMPmakeElt Winspmatrix::SMPmakeElt(SMPmatrix *,int ,int)  |protected
SMPnewNode Winspmatrix::SMPnewNode(int ,SMPmatrix *) protected
SMPgetError Winspmatrix:: SMPgetError(SMPmatrix *,int ,int)  |protected
SMPmatSize Winspmatrix:: SMPmatSize{SMPmatrix *) protected
SMPpreOrder Winspmatrix::SMPpreOrder(SMPmatrix *) protected
SMPreorder Winspmatrix:: SMPreorder(SMPmatrix * double protected
,double ,double)
SMPluFac Winspmatrix::SMPluFac(SMPmatrix *,double protected
,double)
SMPsolve Winspmatrix::SMPsolve(SMPmatrix *,double protected
,double)
SMProwSwap Winspmatrix:: SMProwSwap(SMPmatrix *,int ,int) |protected
SMPcolSwap Winspmatrix::SMPc¢olSwap{SMPmatrix *,coll protected
,col2)
SMPprint Winspmatrix::SMPprint(SMPmatrix * FILE)} protected
SMPfillup Winspmatrix::SMPfillup(SMPmatrix *) protected
SMPcClear Winspmatrix::SMPcClear(SMPmatrix *) protected
SMPcLUfac Winspmatrix::SMPcLUfac(SMPmatrix * double) protected
SMPcProdDiag Winspmatrix::SMPcProdDiag(SMPmatrix *, protected
complex ¥, int *)
SMPcReorder Winspmatrix::SMPcReorder(SMPmatrix *,double  [protected
,double ,int *)
SMPcSolve Winspmatrix::SMPcSolve(SMPmatrix *,double protected
*.double *,double * double *)
Input package
INPpasl WinINP::INPpas1(GENERIC *,card *INPtables public
* GENERIC *)
INPpas2 WinINP::INPpas2{GENERIC * card *INPtables public
* GENERIC *)
INP2B WinINP::INP2B(GENERIC*,INPtables* card*) private
INP2C WinINP::INP2C(GENERIC* INPtables* card*) private
INP2D WinINP::INP2D(GENERIC* INPtables* card*) private
INP2E WinINP::INP2E(GENERIC* INPtables* card*) private
INP2F WinINP::INP2F(GENERIC* INPtables* card*) private
INP2G WinINP:: INP2G(GENERIC* INPtables* card*) private
INP2H WinINP:: INP2H(GENERIC* INPtables*,card*) private
INP2I WinINP:: INP2I{GENERIC* INPtables* card*) private
INP2J WinINP:: INP2J(GENERIC*, INPtables*,card*) private
INP2K WinINP:: INP2K(GENERIC*,INPtables*,card*) private
INP2L WinINP:: INP2L(GENERIC*,INPtables*,card*) private
INP2M WinINP:: INP2ZM{GENERIC* INPtables* card*) private
INP20O WinINP:: INP2O{GENERIC* INPtables*,card*) private
INP2Q WinINP:: INP2Q(GENERIC* INPtables* card*,GE [private
NERIC*)
INP2R WinINP::INP2R(GENERIC*,INPtables*,card*) private
INP2S WinINP:: INP2S{GENERIC* INPtables* card*) private
INP2T WinINP::INP2T(GENERIC*,INPtables* card*) private
INP2U WinINP:: INP2U(GENERIC* INPtables*,card*) private
INP2V WinINP::INP2V(GENERIC*,INPtables*,card*) private
INP2W WinINP::INP2W(GENERIC* INPtables* card*) private
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INP2Z WinINP:: INP2Z(GENERIC* ,INPtables*,card*) private

INP2dot WinINP::INP2dot(GENERIC* INPtables*,card*,GE [private
NERIC* GENERIC*)

Interface functions

IFeval IFparseTree::IFeval{IFparseTree *,double *,double [public
* double *)

IFnewUid [FfrontEnd::IFnewUid(GENERIC *,Ifuid *,Ifuid public
,char *, int GENERIC **)

Convenience functions

INPaName WinINP::INPaName(char * Ifvalue *, GENERIC public
* int *)

INPapName WinINP::INPapName(GENERIC *,int public
type, GENERIC *,char * IFvalue *)

INPcaseFix WinINP::INPcaseFix(char *) public

INPdevParse WinINP::INPdevParse(char **,GENERIC *,int private
LGENERIC * double *,int * INPtables *)

INPdoOpts WinINP::INPdoOpts(GENERIC *,GENERIC *,card [private
* INPtables *)

INPdomodel WinINP::INPdomodel(GENERIC *,card private
* INPtables *)

INPerrCat WinINP::INPerrCat(char *,char *) public

INPerror WinINP::INPerror(int) public

INPevaluate WinINP::INPevaluate(char **, int *,int) private

INPfindLev WinINP::INPfindLev{(char *, int *) private

INPgetMod WinINP::INPgetMod(GENERIC *,char *,INPmodel (private
** INPtables *)

INPgetTok WinINP;: INPgetTok{char **,char **) public

INPgetValue WinINP::INPgetValue(GENERIC *,char **,int public
JNPtables *)

INPkillMods WinINP::INPkillMods() public

INPlookMod WinINP::INPlookMod(char *) private

INPmakeMod WinINP::INPmakeMod(char *, int , card *) private

INPmkTemp WinINP:: INPmkTemp(char *) public

[NPpName WinINP:: INPpName(char *,Ifvalue *, GENERIC private
*.int ,GENERIC *)

INPparseTree WinINP::INPparseTree{char ** INPparseTree private
** GENERIC * INPtables *)

mkcon WinINP::mkcon(double) . |private

mkb WinINP::mkb(int ,INPparseNode *,INPparseNode (private
»®

)

mkf WinINP::mkf(int ,INPparseNode *) private

PTcheck WinINP::PTcheck({INPparseNode *} private

PTparse WinINP::PTparse(char **) private

makepnode WinINP::makepnode{PTelement *) private

mkbnode WinINP::mkbnode(int, INPparseNode private
* INPparseNode *)

mkfnode WinINP::mkfnode(char * INPparseNode *) private

mknnode WinINP::mknnode(double) private

mksnode WinINP::mksnode(char *) private

PTlexer WinINP::PTlexer(char **) private

INPptPrint WinINP::.INPptPrint(char *,IfparseTree *) private

INPtablnit WinINP::INPtabInit(int ) public

INPtermInsert WinINP:: INPtermInsert{ GENERIC * char **, private

INPtables * GENERIC **)
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INPmkTerm WinINP::INPmkTerm(GENERIC *,char public
** INPtables *, GENERIC **)

INPgndInsert WinINP::INPgndInsert{GENERIC *,char **, private
INPtables *,GENERIC **)

INPinsert WinINP::INPinsert{char **, INPtables *) public

INPtabEnd WinINP::INPtabEnd(INPtables *) public

hash WinINP::hash(char *, int) private

INPtypelook WinINP:: INPtypelook(char *) private
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Appendix VI

The programming list of the modified ASRCload() routine

//asrcload.cpp

/1—

* gingh@ic.Berkeley.edu

*/

#include "spice.h"
#include <stdio.h>
#finclude "cktdefs.h"
fiinclude “"asrcdefs.h"
#include "sperror.h”
#include "util.h"
#include "suffix.h"

#include "Agrecitf.h"

double *asr¢ vals, *asrc_derivs;

int asrc_nvals;
/*BRGSUSED*/
int

ASRCload (GENmodel *, CKTcircuit *)
GENmodel *inModel;
CKTcircuit *ckt;

{

/* actually load the current voltage value into the
* gparse matrix previously provided

*/

#define NONODE 9959

int it, fun_maxit;
double x,xb,ep,il,ep_per;
ep_per=0.1;
it=0;
fun maxit=ckt->CKTdcMaxIter;
static char *msg = "Too many iteraticns without convergence";

static char *msgl = "No node for fzero function to iterate";

register ASRCmodel *model = (ASRCmodel*)inModel;
register ASRCinstance *here;
int i, v_first, j, branch, fun_ind;
int node_num, fun_node_num;
int size,error;
double rhs,fun rhs,prev_rhs;
double prev;
double diff;
double tol;

fun ind=NONQDE;

double xf, *asrc_derivs_prev;

/* loop through all the Arbitrary source models */
for( ; model != NULL; model = model->ASRCnextModel } {

/* loop through all the instances of the model */

for (here = model-»ASRCinstances; here != NULL ;
here=here->ASRCnextInstance)

{

/t
* Get the function and its derivatives evaluated
*/

v_first = 1;

i = here->ASRCtree->numvars;

if (asrc_nvals < i) {

1f {asrc_nvals) {
FREE (asre_vals} ;
FREE {asrc¢_derivs) ;

}

asrc_nvals = i;

asrc_valas = NEWN(double, i);
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asrc_derivs = NEWN(double, i};

j=0;

/t
» Fill the vector of values from the previous solution
L 4
/
for( i=0; i < here->ASRCtree->numVars; i++){
if{ here-s>ASRCtree->varTypes[i] == IF_INSTANCE) {
branch = CKTfndBranch(ckt,
here- >ASRCtree->varsa[i] .uvValue} ;
asrc_valsii] = *{ckt->CKTrhsOld+branch);
} else {
if (here->ASRCtype == ASRC_FZERO} {//add code for fzero as follows//
fun_node_num = {{CKTnode *) (here->ASRCtree-»vars[i] .nValue))-

»>number ;
if (({CKTnede *) (here->ASRCtree->vars[i].nValue})->number ==

here->ASRCposNode) {
fun_ind = i; //find the node number for fzero

}

asre_vala[i] = *{ckt->CKTrheOld+fun_node_num};
lelse {//end of the code for fzero//
node num = ((CKTnode *) (here->ASRCtree-»>vars(i]. nvalue}) -
>number ;
asrc_vals([i] = *{ckt->CKTrhsOld+node num):}
}
}
FA if ({*{here->ASRCtree->IFeval}) (here->ASRCtree, ckt->CKTgmin, &rhs,
asrc_vals,asrc derivs) == OK}

{*/// comment out the original statement
if{ here->ASRCtype == ASRC_VOLTAGE || here->ASRCtype ==
ASRC_CURRENT) {//add code for fzero as follows//
error=here->ASRCtree-»IFeval (here->ASRCtree, ckt->CKTgmin, &rhs,
asrc_vals,asrc_derivs);
lelse if (here->ASRCtype == ASRC_FZERO) {

if (fun_ind == NONODE) (
/*printf('No node for fzero function to iterate\n",fun ind);* /

errMsg = MALLOC{strlen(msgl)+1);
strepy (errMsg, msgl) ;
return (E_NOTERM) ;

xb = asrc_vals[fun_ind];
for (;;}{
it=++it;
if (it > fun_maxit) {
/*printf {"too many iterations without convergence: $d iter's\n",
iterno) ; */
//ckt->CKTstat->STATnuUmIter += it;
errMsg = MALLOC {strlen(msg}+1) ;
strepy (errMsg, mag) ;
return(E_ITERLIM);

error=here->ASRCtree->IFeval (here->ASRCtree, ckt->CKTgmin, &fun_rhs,
asrc_vals,asrc_derivs) ;

if {xb=asrc_vals[fun_ind]} {asrc_vals[fun_ind] = asrc_vals[fun_ind] -
fun_rhs/asrc_dexivs{fun_ lnd],} //Newton g method
xf = asrc_vals|fun_ind] - asrc_derivs[fun_ ind) *pow( {(xb~-

asrc_vals([fun_indj}, 2)/(2* {prev_rhs-fun_rhs-asrc derlvs[fun ind] * {xb-
asrc_vals[fun_ind]}));//Tensor's method
if (fabs(xf-asrc_vals[fun ind]} »= ep && asrc_vals{fun_ind] ==
0} {
xb = asrc_vals(fun_ind];
error=here->ASRCtree->IFeval (here->ASRCtree, ckt-
>CKTgmin, &prev_rhs,
asrc_vals,asrc_derivs);
asrc_vals{fun_ind] = x£:
continue;
//}else if (fabs(asrc_vals[fun_ind]-xb} »= ep) {
}else if {fabs{(xf-asrc_vals[fun_ind])}/asrc_vals[fun_ ind] *100}

>= ep_per) {
xb = asrc_vals([fun_ind];
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error=here->ASRCtree->IFeval (here->ASRCtree, ckt-
>CKTgmin, &prev_rhs,
asrc_vals, asrc_derivs});

asrc_vals{fun_ind] = xf;
continue; }

else(

rhs = asrc_vals[fun_ind];

break;

}

}

}

if {error ==0K){//end of the code for fzero//
/* The convergence test */

if { (ckt->CKTmode & MODEINITFIX} ||
{ckt->CKTmode & MODEINITFLOAT) )

#ifndef NEWCONV
prev = here->ASRCprev_value;
diff = FABS( prev - rhs);
if ( here-»>ASRCtype == ASRC_VOLTAGE| |here->ASRCtype ==
ASRC_FZERO} {//add ASRC_FZERO for fzero//
tol = ckt->CKTreltol *
MAX (FABS (rhs) , FABS (prev)) + ckt->CKTveoltTol;
} else {
tol = ckt->CKTreltel *
MAX (FABS (rhs) , FABS (prev)) + ckt->CKTabstol;

}

if ( diff > tol) |
ckt-»>CKTnoncon++;
ckt-»>CKTtroubleElt = {@GENinstance *} here;
}
#endif /* NEWCONV */

}

here->ASRCprev_value = rhs;
/* The ac load precomputation and storage */

if (ckt->CKTmode & MODEINITSMSIG) |

size = {here->ASRCtree->numVars)+l ;

here->ASRCacValues = NEWN(double, size);

for { i = 0; i < here->ASRCtree-s>numVars; i++){

if ( here->ASRCtype == ASRC_FZERO && i==fun_ind)
here-»>ASRCacValues [i] = asrc_derivs(i]; //add code for
fzaro

else
here->ASRCacValues [i) = agrc derival[i];

}

for{i=0; i < here->ASRCtree->numvVars; i++) |

rhs -= {asrc_vals([i] * asrc_derivs[il};

switch(here->ASRCtree->varTypes[i]) {

cage IF INSTANCE:

if{ here->ASRCtype == ASRC_VOLTAGE||here->ASRCtype ==
ASRC_FZERO) {//add ASRC_FZERQ for fzero//

/* covs o/
if(v_first){

* {(here->ASRCposptr [j++]) += 1.0;
* (here->ASRCposptr{j++]) -= 1.0;
* (here->ASRCposptr [j++]) -= 1.0;
* (here->ASRCposptr [j++]) += 1.0;
v_£irst = 0;
}
* (here->ASRCposptr(j++]} -= asrc_derival[i];
} else{ -
/* cocs +f
* {here->ASRCposptx [j++]}) += asrc_derivsl[i};
* (here->ASRCposptrlj++]} -= asrc_derivsl(i];
}
break;

case IF_NODE:

Page 120



if (here->ASRCtype == ASRC_VOLTAGE||here->ASRCtype ==
ASRC_FZERO) {//add ASRC_FZERO for fzerc//
/* vCvs */
if{ v_first){

* (here->ASRCposptr [j++]) += 1.0;
* (here->ASRCposptr [j++]) -= 1.0;
* (here->ASRCposptr [j++]) -= 1.0;
* {here->ASRCposptr [j++]) += 1.0;
v_first = 0;
}
* (here->ASRCposptr[j++}) -= asrc_derivs([i];
} else {
J*vees«/
*(here->ASRCpogptr [j++]) += asrc_derivs[i];
* {(here->ASRCposptr [j++]) -= asrc_derivs[i];
}
break:

default:
return{E_BADPARM) ;

}

/* Insert the RHS */
if( here->ASRCtype == ASRC_VOLTAGE |[here->ASRCtype ==
ASRC_FZERO} {//add ASRC_FZERO for fzero//
* {ckt ->CKTrhs+ (here->ASRCbranch}) += rhs;
} else {
* {ckt->CKTrhs+ (here~->ASRCposNode)) -= rhs;
* {(ckt->CKTrhs+ {here->ASRCnegNode) ) += rhs;

}

/* Store the rhs for small signal analysis */
if (ckt->CKTmode & MODEINITSMSIG) {

if ( here->ASRCtype == ASRC_FZERO)
here->ASRCacValues [here->ASRCtree->numvars] = rhs;//add code

for fzero//
else

here->ASRCacValues [here->ASRCtree->numvars] rhs;

} else{
return (E_BADPARM) ;
}

}

return (OK) ;
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Appendix VII

Additional example for using the new nonlinear dependent source
The generalized state-space model [17,28] for another type of DC-DC converter —
PWM boost converters [27,29] with feedback controls as shown in Figure A7-1 is
used to illustrate the usefulness of new nﬁnlinear source. The averaged state-space

equations generated by [17,28] is given by
d(i),

dt
d(v),

dt

=~ jkay <i>k + El:(_<v>k + (qv)k)

),

= —jkay (v)k * é ((i)k - (qi)* - T)

(A7-1)

where () denotes the kth coefficient (index-k) of the Fourier series. w, is a

switching frequency. g=1 when the switch is on (close) and g=0 when it is off (open).

The control scheme is given by

my + m, cos(wzt” +6,) - —;t' =0 (A7-2)

where m, is a modulating signal. m, and 8, are functions of averaged state variables

((0>. ). § is the peak magnitude of the sawtooth signal.

D
Y <
. Yl L

" sy T

Figure A7-1, Boost converter.
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In [17,28], £ is to be solved at which the sawtooth signal crosses the modulating
signal in each switching cycle. Equation (A7-2) is input directly via a circuit netlist
file to SPICE3 while [14,17,28] requires indirect and additional input using the
spec.ial technique [14,17,24]. Both methods can simulate the result with the index-
O+index-1 averaged model without difﬁcuity. However, the special technique fails to
converge when using the index-0+index-1+index-3 averaged model. The new
nonlinear dependent source can solve the average model indifferent to the number of

indexes used. The result of capacitor voltage for index-0+index-1+index-3 is shown

in Fig. A7-2.

index-0+index-1+index-3

switched

Capacitor Voltage v(no)

Time

Figure A7-2, Closed-loop simulation for a boost converter with Vin=5V,

L=50uH, C=44uF, R=28Q, and fs=50kHz and from transient simulation

(switched) of a full model.

The netlist of the averaged model for the boost converter is given below.

modelling the boost converter in 3 harmonics

L]

vEs nfs ¢ 50000

rfs nfs ¢ imeg

bws nws 0 v=2+*pi*v{nfs)
rws nwg 0 lmeg

L

bd nd 0 fzero=(0.13-0.174*(i(vi0)+2*i({vrl)*cos(2*pi*+v(nd})-
2*i{vil)*sin(2*pi*v{nd})+2*%i{vr3}*cos(2*I*pi*v(nd))-
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2*i(vi3) *sin(2*3*pi*v(nd}} ) +0.0435*(v{no}+2*v{nrcl) *cos (2*pi*v(nd) ) -
2*»v(nicl}*sin{2*pi*v{nd) }+2*v(nrcl) *cos (2*3*pi*v{nd})-2+v{nic3}*sin{2*3*pi*v(nd)))-v(nd))
-

rd nd 0 imeg

bgd nqC 0 v=vind}

rqd nqé 0 lmeg

bgr ngrl 0 v=sin{2+*pi*v{nd))/(2+*pi)

rqgr ngrl ¢ 1lmeg

bgi ngil 0 v={(cos{2*pitv(nd})-1)/{2*pi)

rqi ngil 0 lmeg

bqr3 ngr3 ¢ v=sin{2+3*pi*v(nd))/(2+pi+*3)

rgr3 ngr3 0 lmeg

bgild ngi3 0 va(cos{2*3*pi*v{nd)}-1}/(2*pi*3}

rqi3 ngi3 0 lmeg

W

.ic v(no)=5

vin nin 0 5

*rmin ni ni0 lu

11 nin ni® S0u

*ica=0.5

vwi0 ni0 ni0l 0

bi0l nidl nifd2 wve(l-v(ng0))*v(no}
bi02 nid3 nid2 ve=2+*(v(nrci)*vingrl)+v{nicl)*vingil))
Bi03 0 ni03 v=2+*(v(nreld) *v{ngrd)+v{nicld)*vingil))
o

bcO 0 no i={l-v{ng0))*i{vi0)

becl no 0 i=2*(i(vri}+*v(ngril)+i(vil)*v(ngil))
bel no 0 i=2+*(i(vr3}l*v(ngr3)+i(vi3)*v(ngil})
cl no 0 4.4u

boouts no 0 i=v{no)/v(ro)

*rl no 0 28

*rmS no 0 lmeg

*

bnli nli 0 vev(nws)*S0e-6%1{vil)

12 nli nri 50u

*rm3 nrla nrl lu

vrl nrl nrll 0

bril nrll nrl2 v={1-v(ng0))*v(nrcl}
brl2 0 nrl2 ve=vi{no)*vingrl)

L3

bnly © nlr v=vinws}*50e-6%1i (vrl)

13 nlr nil 50u

*rm4 nila nil 2u

vil nil nill ©

bill nill nil2 v=(1-v{ng0))*vinicl}
bil2 0 nil2 vev(no)*v(ngil)

L ]

brc0 O nrcl i=(1-v(ng0})*i(vrl)

brcl nrel 0 i=i(vi0)*v{nqril}

brc2z 6 nrcl isvinws}*4.4e-6*v{nicl)
€2 nxcl 0 4.4u

booutd nrcl 0 iovinrel)/vire)

*r2 nrcl O 28

*rm2 nrcl 0 lmeg

L]

bicd 0 nicl i=(1-v(ng0))*i(vil)

bicl nicl 0 i=i{vi0)*vingil)

bic2 nicl 0 i=vinws)*4.4e-6*v{nrcl)
c3 nicl 0 4.4u

booutd nicl 0 isvinigl)/viro)

*xr3 nicl 0 28

*rml nicl 0 lmeg

+*

brl3i nl3i 0 v=3*vinws)*S0e-6*i{vi3)
12h3 nl3i nr3 50u

*rm3 nr3a nrld lu

ved nrld nri3d ¢

br3i3 nr3i3 nr3i2 v=(1l-ving0d})}*v{nrc3)
br3i2 0 nri2 v=v(no)*v(ngrl)

-

bnl3r ¢ nl3r v=3*v(nws) *50e-6*i (vrl)
13h3 nl3ir nild 50u

*rmd4 ni3a nild 1lu

vid ni3 nildl @

bi3l ni33 ni32 v=(1-v{ng0))*v(nicl)
bi32 0 ni32 vsv{(no)*v{ngil)

-

bredo 0 nreld i=(l-v(ngQ))*i{vrl}
bre3l nred 0 i=i{vi0)+*v(ngr3)

bre32 0 nrc3 ia3*v(nws}*4.de-6*v(nicl}
c2hld nrcld @ 4.4u

boout?2 nrcld 0 i=v{nrcl)/v{ro)
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*r2h3 nrcl ¢ 28

*

bic30 0 nicd i={l-v{ng0))*i(vil)

bic31 nicd 0 i=i(vi0)}*v(ngi3)

bic32 nicd 0 i=3*v(nwa}*4.4e-6*v{nrel)
c3h3 nicl 0 4.4u

boout niec3 0 iavinicd)/v{re)

*r3hl nic3 0 28

*

vro ro 0 28

*pwl {0 28 0.8m 28 0.80im 18 2m 18 2.00im 28 2.5m 28)
rro ro 0 lmeg

.tran 0.6u 1m 0 0.6u uic

* ac dec 101 10 100k

*.dc vEfs Sk 1000k p00

cend
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Appendix VIIT

Published paper

1. Wong S. C., Lei W. H. and Lee Y. S. “Averaged Piecewise Transform for
Resonant Power Converters”. Proc. IEEE 1999 International Conference on

Power Electronics and Drive Systems, Hong Kong, 972-977 August, 1999, pp.

972-977 (1999)
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uses complex analysis so maks 2 comparizon uf I
ﬁopalagm. Kazimigrauk o o {11] st Fowige series o
amalyzs the rosonant cenveriss o the ';:eeaglsemy doamata,
Butursels & o [12] use sateplane i
sieady-state and. smalsignal. behavao
converters, Witnkski o al (13 ds¢ lamped pammeter
equivilent ciropits fo obiain the smadbsigesl equivalent
circuite. Hach of the sbove techuigues have specific and
siggnl ficant reskistions. None of the methods ¢an be easily

mr;mrm:i it 8 single SPICE &r*@riﬂ m:at gt per€Grm de,
ag, and ransient analyses . :
Macromedels bassd on the cmﬁyrmﬁ RN §?§ has found

to bo sucowssli] for osesies [‘Iui] paratle] 115, and series--

parallel {16, 17} resonand powdr converders [the approach
used by [17) s 6 special case of {M«*L}%ﬁ H-offers o speed
podvantage of e 1o theee orders of mognitde gver the fll
gireuis simalation withou: auy coive

o

siemalators, The method assumes that the sesonset tank state |

variables can be represected 8 3 series of siarsoidal Tunction
with the harmome lfrequencies besg the  nitiples of
swilching frequency. However, i§ &8 well known that abrupt

propoged b ¢ implement o hscromndel.

 wariables buy o
waduinl Treguéncy,

g o ohbitain the
-;_:._t EgEOrRnd. P

gene protikin b Shedt

fusictions cansat b fepresented by Fourier sevies with a finke
aumber of Mormonins, This fimits te acoumey of e
mperornedel at s optifmam to retain only the fundsmental
componznt a5 § Badenl o spoed.

In dis paper, a new averaped pises-wise wansform i
Instead of using
Fourter series to represent the tank stute variables, the piece-
wige differentiadie: solutivn of the tank state varisbles at each
stages of & swiching cyele are used in this new transform.
Such change fsduses a0 sn:s,m;}tiam gn the ek stale
setunl solution of the varisbles at their
) i ot of te pivce-wise trausform &
extragt the myptitedes and phages of each tank stats vanables
within s repeadable dycle o be implemenmed @ the
macrotwdel, .

1. Faeonry

Suppose that 2 state variable »{) can bo represented by a
meeeewise difforehtable sinusoidel Tunction with atural
frequenty aiy | it 5w1h,h1;1g perad of 2a/la;

el @
3n iz the &stage of the converter, £, =0,
Pt

R e

sty =; me{a{( {ren ]

where {0

. }r. .
£, e g g
&y frg
It iy noted tha .-t:{f)- hag poried 2aiag, but A and o
kave period 2w /oy Equation {13 can be vansformed o a

{adrast) tma-invariant stale space squation by using the

' '?is:es:‘é\afigc*umizsfam

j 3 (‘I’J ( kﬁ;ﬁfﬁ‘(ﬁbf}
. ¢ - - \1

- jex: jfgmg_{sw ’it"%'ﬁ"';t rel o}

firy fo 3 | &y ?,j

g J
S {2
{x}, [t} nas period n/w; and is dewermined by
.
A
“}g ) ‘*Eli* : f\i‘ el ket e (3}

E3S

Simdlarly, we c‘:mx:w;ite
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T1E IMPLEMENTATION

As an example, the theory is spplied 1o a halfbridge series
resonant converier 8¢ showa in Fig!' 1. The ircwit pisansters

are given in the figure and divdes are sssumed fo be idoal.

Throughous the analysis, the switching  Fregquency i
considered ta be higher than the resemnt Troquency. A state-

space raodel for this circuit wkes the f“}rm_

N | q‘

Gl (1ol s (orsmt ) Tspideg)
ja] L o L

_affi;_J o il o

N S R GO A5 :

{3}
where sun{e) is e sige functions

A Solutiver of the stargapace suation

The typical waviforims of the fank iaductar corrent {43, the
tank capucitor vollage [ve) and total voltage ¥ ovir the
vasomant Wk age shown in Fig, 2. Suppose. SH#1 and S#2
oper atel clige alerasisly in complementary fashion at z
froquency squal to wy . Using the assumption in equation {1},
the solutions of & sad ve a2 the first bvo stages in a pedod are

Swritien Bn- @ iplesewise sinusoldal fenction with mngular

respannce frequeney iy . Thus,
Atstape I{fas=4)

g Ath s X sinke, b £ B EY
veakt) 2~ 7, cosfma - o, ) {&b}
Atstage 2{h<ran)
Ft?i"‘) s M&m{azhx} {7u}
o
voa [ths {2V, ~ X 2 Yeos{o 1) ki

whizre

. ; . . £
[he {harscieristic impadence = 2, T‘!E" £
. . i A

The ﬁm;‘»iéme;if: ';,msﬁ pi;as-%e of §,,(¢) 1 equation (82} is
represented by the vardable A, and 1. Base ou oquation
{0z}, the ampditudes of equation {8b) and {7} can by writlen
terms of X,V 2 by substituting the indal values o vach
stage, o :

8. Devivetion of sveraged iisuaisloarien equations

We shall age the sew aversged pigccewise bamsform to
irnglernapt 2 manderandel of the series-resonsnt converter in
this and the following sectons, The A0 step in the mudolling
process i whodeénve the averaged tme-invasiant equationg of
rank simtes variabies #f end v We can spply the mansform
equation (4) 19 cguaiien (& and {7} Now that eguation {4} i
2 coraplen eguaticn, there are two corresponding equations in
real variabiles fofig for real part and the other for imagicary
party,  Oonsistent wath Py 3wt heve
=84 = ryamdsy = o fey. Caliulating the end pomta of
each piets slonsoddal function for equation (9) and equation

7. and then, pueing
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it} = j,;,lf:fg Y k) =i (0

ity "n.f“"‘"“ byt *}”f:;LM”TJL
@y oy

'i-‘c(fl ""} W ?-’c;_ {1'3 }, Vf%a';*!‘:l.fm i—‘Cg’;{}i,

volty -y = vey (e~ g}

25 4

and

VYef{fy )= a.'“{g«-»« LK B2
s :

in equation (4), we can ehbain Towr stemplified fime-invariang
squazimm of the tank state varidbles

&rﬁg_ § Y
f -mmr(f w il dd

‘ez‘;; (} 2} el )
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i L IRy
! Fl ]
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g d Fe
e /
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Iz i+ wk«»}bm” ?“""" l
i 1 3 [ [l ' g ’ig

(8

i as . S I wad feV denotec
where {x), denctes the real part of {x), §1¥3£i Crpy denotes
the imaginary part of {x} . Both of theny we real And

squations {B) &5 given by pulting =1,

Then; let ws derive the aversge input cutrent {is) and
output sarrent { o} of e series resonant converter, 1t can
be found by atraipht forward intogration, As the indwoser
swrent {{,) % & pletewise sinusoidal function, the

intogration should be partitioned. It is shown in equationg (9}
and {10}

[ Jr‘ﬁ-a"-‘i" Ep = X ﬁghﬂ‘&(wg?’}\=

Pt S

e
mapdy {2V, - X fd}ﬂﬁ..{ﬁ?g{ !}
, Wy i

5
{9}
X
g 3
E:f = ﬂfz {3t
"oy
i . A 1
§Ti . ] & !
e g |
Fafm ﬂ;rm j‘z“u}a&n} 'gf‘ggmg
0 2 J
{2, 2 X, conlisn, )
;W ﬁ.}“s‘ 4 f‘ §
g Fy |+ {20y -~ X fﬂ}i,ﬂy. arﬁ; £y = «][
kY 8y )
(10

Belore we proceed 1o modsl the converter, we need twe
additional equations o complete puwr ansform. Equations
{35 (3) and €10Y ¢l oonmin two unknown variables &) and
;. They car be solved by appbving enusden {3) 19 squations
{0 awd (7). we plsg %s;m’ Tour squaions

(ol Y+
mp.?(,% +0)

P 1
{i; }* E—
vl:rex:r -.f ”

e
(g o=

{4+

{11}
I8 L
fuad ,-L«..mg,e,g Y
TRT O dmay,
b w o h oD
YPe i rhil?;w{_‘;{ }

where
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O b-2Womg + X mpdo Soosligr, )

{ 1z
a2, ~ X\ 2y ) }mﬁa syt . )

3, &

L= ey (Baby = 2o ¥y ~ a3y deinfeg e, }

A= oy (2n¥y ~ 2 Fpmg ~ 2K, 2 oddusn )

8= (2,m, K,.r.:?i" )
. P |
+ (’25"&7 - X & }}s.mi BTy e i
395 ;

Solving equation {11), the nugnitude X, and the phase r
mre given by

pes _____“ Q + ({3‘,
t'?‘ \

T, = tan ‘{i"-»}
) F

thﬁﬂi Q = .2; {3"-‘},' el {'E’C}F ,F w ?:LI {!L }i +{i»”l:'-)f

za,mf-f’«; SR 413
i".ﬁf: i

{13}

& Maoromadel

Mow the collection of eguations (B, {12}, ()3}, the averspe
nput equation {3) and the average output squadion {10) gives
a complete model for the halflid dge series  tesonEml
converter, The macromodel for the converter iz shown ja Fig,
3. Extracting the resondnt tank {shewn in Fig. {} from the
converter, aml conpeoting wiel dependent voliage source
{ F"mwl re the tank inductoer in sevies and tawl dependont

curent souwroe (5, ) to the task .:apas:amf in peratiel

models the real part circuit, "ﬂf"zaisr]}* ﬁ@rrtct;:w 3} fretil) arsd
210 e resonang lank wmodeld the imagmm’ part sisoe,

{ reiad )

where dependent voltage sources snd dependemt Cuwent
sources are obtsined by rewriting sydativh (8! with £ aagl

£ The input and oupu past of e conviirter wre modelsd by

squation {9} and {10% The volnge sourees ¥, and ¥ are
used as the curvent sensors iy SPICE singdatiens. The oaly
independent sotree fa Fig. 3is ¥y, i‘?ve otfErs ave Sepsndens
sousees whose contrel equations are glven by

oty = 0o L{iy)

, v N
Qe (W, ~ X E 0 [ wg Yo |
T 808 it :z;QE 7y e
Eﬁg’;& i Efi"g i ¢ a; }
{ ‘ F ,
Re i %
85y =)
¥y ¥ penslogr,
Ran NP
.
R S R S AL Raial oy .
a \‘.EE‘-}: {i
oy o i x ‘1
I - X Eg heos @]y e
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Fig. 3. The complete averaged plocewise macromodel ot the
sEries regonant converter,
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V. Resuurs

We bave Enplementsd Bz complete mastomnde] of the serles
sesonant convertey i SPICES (e technigue wpplies equally

well to oher resonant converters tike parailel, soriev-paralied -

and phase tontrofied resonsnt convenersy. The component
valuns are daken frors estblished designs {2, 14] as shewn in

Fig. 1. All the diodes used are idealized by 5

gomiu i the
FPICE diode medel, The rosulle of rhe. swa&}»&mﬁ: oustpet

voliage 58 ¢ function of switching frmumsy SHOVE TRSODRRCE

for differemt R, /7, ratios (0.1, @5 L6 and 3, i}) are shown.

it Fig. 4. Tt is shown that the new macromadel gives osurate
resudts even for Ky = 2Z, where the old nmacromodel

deviated Fom the full taosient ﬁmamm's T demdmerate -

the accuracy of the sew macromodel, tammient and ac omall
signal aualvses ave also performedt fir By = 38, Fig §
shows the respouses when o drive frequensy. abruptly shanges
between SOKHz snd 40kHz2, Fig. 6 shows the open lmga Bode
respanse of the seres tesonant converter at 3 swikhing
Frequeney of 38kHz.

V. CoNCLIsIeN .

An avernped piste-wise transd foin has lsuar; :iwa!{g}ad W
eaadel the resonant converter. THe Bew ransformation has &
bester  acswsacy over the avemped _‘“ﬁ_{m;ﬂ sangform

(conformal mapping) when implemennd 45 o nuacromadel in
SPICE.
otk
sy e j e :
mesm
R P f”'r
R4 IR0
g RasARE
T ey

Fig. 4. Comparison of sivulations résult for the sertes rainnant
converier with Ree™ 0.1, 0.5, 1.0 and 2.0 {20 =44 J84703)
The reeplty from DO analysis {fudl Hises) of the cordbrmal
wagping mocramadel and the piccewize micromedel and
fromz sseady staty ransdent’ sivsuletions (podygons) of 2 fll
muodel

Suwitehing frropeary fdin

Dtz Vel (o)

P UL SR i

%

Fig. 5. Comparison of resulis frow ransient sualysis of the
conformnl. mapping  mecromodsl  and  the  pleqewiss
mavreriodel and from mungient simulation of 2 fulf meded, A
step change iu switching frequency is applied,
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