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Abstract 

Cancer studies are one of the hot topics in medical and bioinformatics domains. Scientists 

are using microarray technologies and data mining techniques to study cancer at molecular 

levels.  Two data mining techniques, namely, pattern mining and clustering, are heavily 

used in the field of bioinformatics to analyze gene expression data. 

   

In this thesis, the basic problem in organizing the information from the gene expression 

data in an easy understandable way for the domain experts in the further knowledge 

discovery process are investigated.  We have introduced the Emerging Pattern Based 

Projected Clustering (EPPC) approach to organize the gene expression data into 

meaningful clusters.  We apply the ideas of the emerging patterns and projected clustering 

together to form emerging pattern based projected clusters for the biologists.  The resulting 

clusters can be used in the cancer detection problem and the experiment results show that 

its classification performance is comparable with ORCLUS, the state-of-the-art clustering 

approach.  With its strength in readability, we believed that the resulting clusters are useful 

for the domain experts in conducting further experiments and studies. 
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1 Introduction 

Bioinformatics has recently become a hot research topic in computer science and 

molecular biology societies and it is a multi-disciplinary subject involving molecular 

biology, computer science, mathematics and statistics [1-3].  In this bioinformatics era, 

there exists huge volume of data but only limited useful information.  Molecular biologists 

and computer scientists are working together as alliances since they are complementary to 

each other and can speed up the growth of bioinformatics for improving our understanding 

of nature.  However, they are making troubles to each other that fast developments in one 

field will introduce a lot of works for the other one.  The major difference between these 

two relationships is that alliances communicate and help each other but trouble makers do 

not.  Therefore, a major goal of data miner with computing/informatics backgrounds is 

how to improve the communication with molecular biologists in the context of 

bioinformatics.  A solution to this problem is to generate understandable data mining 

results so as to improve the communications with and minimize the workloads of 

molecular biologists in their bioinformatics knowledge discovery process. 

 

In this thesis, we introduce a new clustering approach, called emerging pattern based 

projected clustering (EPPC), to assist the knowledge discovery process.  EPPC is an 

integrated approach of emerging pattern mining [4] and projected clustering [5] to obtain 

easy-to-understand analysis results of high dimensional data.  In order to show the 

effectiveness of EPPC, we apply the ideas of EPPC to the problem of cancer detection and 

classification. 
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1.1 Gene expression data and cancer correlation analysis 

The studies of cancers have been an important research topic in medical areas for many 

years. It is important because cancers are still top killer diseases and many people lost their 

life because of cancers. There is a prediction from National Cancer Institute (NCI) that 

500,000 U.S. people will die of cancer yearly [6].   

 

While the causes of cancers are still mysterious, statistical based analysis has been 

suggested to solve the problem.  It is insufficient and time-consuming. Scientists have 

identified some of the risk factors, such as smoking increases the chance of developing 

lung cancer, based on statistical based studies.  These studies suggested the ways to 

prevent cancers but there are cases that cancer may still develop even all risk factors are 

absent and hypothesis from those  observations do not hold all times.  On the other hand, 

the lag time of such kinds of statistical based studies may be very long.  An example given 

by NCI about smoking and lung cancer relationship has a lag time of 20 years [7]. In other 

words, we may not find out those side effects about smoking at very beginning.  Therefore, 

new methods for cancers related studies are needed. 

 

Although cancers cannot be cured completely at this stage, treatments to earlier cancers are 

always more effective.  An example in [7] shows that the five-year survival rates for the 

stage I and stage III melanoma are around 90% and 20% respectively.  It clearly shows that 

cancers are easier to be cured if they are detected and treated at the earlier stage.  However, 

earlier cancers has no symptoms [7] and most of the patients only have medical check up 

until they feel pains or significant changes are found in their bodies.  Most of the time 

when cancers are found, it is late.   
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Screening methods [6], such as cancer imaging and pap tests, were introduced to detect 

earlier cancers without symptoms.  However, those existing screening methods are disease 

specific and making uncomfortable feeling to patients. Moreover, they have their own 

limitations. 

 

Cancers are cells losing growth control that is originally controlled by genes.  Those 

abnormal growth tissues invade surrounding tissues and cause functional damages of 

organs.  Microarrays are now used to measure those cellular activities during protein 

synthesis and gene expression data from these experiments provides the opportunities to 

detect earlier cancer at molecular levels.  Scientists found that the context of expression 

levels of cancerous and normal tissues are not the same.  Therefore, large scale 

comparative studies of gene expression profiles have been conducted.  Using gene 

expression data becomes a new direction in cancer detection and it requires the use of 

modern bioinformatics techniques, such as data mining, for efficient analysis and assistant 

of any further discovery. 

 

1.2 Problems and objectives 

Cancer detection and classification using gene expression data is one of the new research 

directions in bioinformatics and data mining originally designed to discover knowledge 

and information from data is now heavily used in this problem.  In general, cancer 

detection using gene expression data and data mining techniques can be divided into two 

sub-problems: 

∼ How to classify the tissue samples correctly? 

∼ How to provide easy understandable result for molecular biologists to conduct 

further investigation? 
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In order to classify the tissue samples correctly, we need to tackle the specificity of gene 

expression data that has created certain challenges to existing data mining algorithms.  The 

major problems in handling gene expression data include: 

∼ The high dimensional gene expression data is not easy to manipulate and 

understand. 

∼ There exist limited records of gene expression data and they are typically not 

sufficient to approximate the real world.  

 

In data mining, there are two major approaches employed for classification problems. They 

are pattern based approach and clustering based approach.  However, they are different 

when coping with gene expression data and are not easy to generate understandable results 

for molecular biologists to carry out further investigations.  Specifically, we have to 

address the following questions: 

∼ How can we help the user to understand large amount of patterns found by pattern 

based approach in an easier way? 

∼ How can we improve the understandability of clusters by grouping samples 

according to biological meaningful information instead of using distance measure 

without reason behind?  

 

In this research, our aim is to introduce a new data mining approach for effective 

knowledge discovery in bioinformatics databases.  To demonstrate its effectiveness, we try 

to apply the proposed approach to the cancer detection and classification problems. To 

achieve this aim, the following issues are addressed:  
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∼ Tackle the curse of dimensionality problem of high dimensional gene expression 

data using the idea of projected clustering  

∼ Make use of the easy-to-understand patterns (domain knowledge) extracted from 

gene expression data to organize the gene expression data into manageable number 

of clusters in order to minimize the effort in analyzing the huge amounts of patterns 

and enhance the biological meaningfulness of clusters at the same time 

∼ Investigate how the pattern mining approach and clustering approach, i.e., 

emerging pattern mining and projected clustering, can be integrated to combine 

their strengths and compensate their weaknesses. 

∼  

1.3 Organization  

This thesis consists of six chapters.  In chapter 2, we look into the bioinformatics 

researches from the data mining perspectives.  The cancer detection problem is highlighted.  

In chapter 3, we review the two data mining techniques that designed for high dimensional 

data.  They are the emerging patterns and projected clustering techniques (ORCLUS).  In 

chapter 4, we introduce the concept of emerging pattern based projected clustering (EPPC), 

the problems in mining EPPC and the framework for mining EPPC is introduce.  We 

evaluate the performance of EPPC in cancer classification problem in chapter 5.  The final 

chapter concludes the thesis and outlines future works. 
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2 Literature Reviews 

In this chapter, we are going to “look into bioinformatics from a data mining perspective”.  

Bioinformatics is a newly established research discipline and data mining techniques are 

becoming one of its most popular ingredients.  The major reason for this merge is that 

existing problems in the field of bioinformatics are closely matched with the basic 

ideas/assumptions of data mining.  In this chapter, we will go through the backgrounds of 

bioinformatics and briefly review the existing data mining techniques for bioinformatics 

and cancer detection applications. 

 

2.1 A brief look into bioinformatics 

The field of bioinformatics has experienced an explosive growth in recent years and there 

are many novel methods available now.  It is very difficult to predict the growth of this 

young field.  But we all sure that bioinformatics has already undergone its dark age, the 

embryonic stage, and it will grow rapidly in the near future.  In this section, we will look at 

its development history, motivations, definition, aims, possible research directions and one 

of its applications – cancer detection. 

 

2.1.1 Its development history 

Molecular biology and computer science researches have been carried out separately at the 

beginning, but some of the most fundamental problems in the molecular biology seem to 

be appropriately addressed by computer science techniques.  In late-1960s, researchers 

started to combine the computational information from computing techniques and the 

experimental information from molecular biology laboratory together to provide better 

understanding and new insight about macromolecules, genes and proteins.  This era can be 
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considered as the birth of computational biology.  In 1970s, the computational 

requirements for the field became solid and computation methods are being used in the 

problem of sequence alignment, evolutionary tree analysis and construction, prediction of 

protein structure, protein folding problem and so on.  In 1980s, the field of computational 

biology was dominated by sequence analysis, molecular databases, protein structure 

prediction and molecular evolution that were almost hopeless to be solved without the aids 

of computer.  In 1990s, breakthroughs in hardware, database, internet and various 

computational technologies support the rapid development of the field and today it has 

already become an independent discipline with its own problems and achievements and 

called bioinformatics.  Details about the development of bioinformatics can be found in [8]. 

 

At the time now, the coverage of bioinformatics may have unpredictable changes, but its 

skeleton has become solid and there are two promising trends we can observed.  First, the 

diversity, volume and complexity of information available are increasing.  Second, its 

dependency on the informatics techniques is also increasing.  Since existing informatics 

techniques are not designed for bioinformatics originally, it is indispensable to design new 

techniques or tailor existing informatics techniques to meet the needs arisen from 

bioinformatics problems.  

 

2.1.2 Its motivations 

The motivations of bioinformatics come from both molecular biology and computer 

science domains.  In the molecular biology area, there is a flood of new data and new 

problems.  In the computer science area, improved computation power, disk storage 

capacity, database, internet technologies and various types of algorithms and analysis 

methods provide opportunities to solve those complicated problems. 
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Advancements in biotechnology, such as the invention of microarray technologies, have 

created the floods of new data and problems in field of bioinformatics.  Scientists started to 

open the molecular black box within cells.  They are not limited to study those large cell 

components by using electronic microscopes and it is possible to discover the secret of life 

at molecular level.  Various types of new and complex biological data, such as raw DNA 

and protein sequence, macromolecular structure, genomes, gene expression, literature and 

metabolic pathways data [1], are now available and they are being produced at a 

phenomenal rate.  For example, the GeneBank repository and SWISS-PROT database are 

doubling their size in every 15 months [1].  The flood of data not only provides 

opportunities in different research topics and also promotes the needs of using computer 

technologies. 

 

Fortunately, the improvements in CPU, disk storage, database and internet technologies 

were also rapid in this decade.  Research works requiring high computational power and 

large disk storage, such as matching between DNA sequences, become possible.  The high 

connection speed of internet and advanced databases technologies also help scientists to 

access valuable data and summit new entries in anywhere around the world.  

Breakthroughs in computing technologies, such as new algorithms in data mining and 

machine learning areas, are essential to support and speed up the developments of 

molecular biology since those biological data are often too large and too complex to be 

manipulated by human.  It is also important in supporting the rapid growth of 

bioinformatics communities. 
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2.1.3 Its definition & aims 

Since bioinformatics has become an independent discipline, pioneers are trying to draw a 

clear picture for it by proposing a formal definition in recent years.  Most of them [1-3] 

define bioinformatics as the application of science of informatics, including mathematics, 

statistics and computer science, to molecular biology.  Luscombe [1] has proposed a very 

detail definition for bioinformatics, highlighting some of the most important aspects in this 

field.  His proposed definition is quoted below. 

“Bioinformatics is conceptualizing biology in terms of molecules (in the 

sense of Physical chemistry) and applying “informatics techniques” 

(derived from disciplines such as applied maths, computer science and 

statistics) to understand and organize the information associated with 

these molecules, on a large scale. In short, bioinformatics is a 

management information system for molecular biology and has many 

practical applications.” 

 

According to Luscombe’s definition [1], the aims of bioinformatics can be summarized 

into four aspects.  They are organizing data, developing intelligent tools using informatics 

techniques, analyzing data and interpreting results in biological meaningful manner and 

using the newly discovered knowledge in practical applications. 

 

The first aim is perhaps the simplest one focusing on the organization of data for the 

researchers to access available information and to submit their new data efficiently.  All 

breakthroughs in disk storage, database technology, internet technology have make 

contributions for this aim.  For example, large sequence database called GeneBank which 

contains more than 22 millions sequence records is now freely accessible for the 
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researchers around the world through the Internet.  Scientists can search for the DNA 

sequences in it and submit new DNA sequences that they found.  On the other hand, some 

researchers are focusing on the challenges come from the legacy data, and the 

heterogeneous, complex and geographically dispersed nature [9] of different data sources.   

 

The second aim of bioinformatics is to develop more intelligent tools by using informatics 

techniques for scientists to analyze available data.  Tools are needed to be efficient in front 

of the large amount of data.  We also need intelligent tools like sequence searching tools 

called FASTA [10] and PSI-BLAST [11].  They are not just a simple text-based search tool 

using heuristics to solve the string matching problems efficiently, but also consider 

matches with biologically significance.  Therefore, researchers who carefully model and 

develop appropriate algorithmic techniques for developing biologically intelligent and 

scalable tools are always expertise in computational theory, as well as having thorough 

understanding in biology [12]. 

 

The third aim is to use those intelligent tools to analyze the data and interpret results in 

biological meaningful manner.  Biological studies are not limited to each individual 

biological system by using traditional laboratory experiments.  Bioinformatics allows the 

global analysis for the available data to uncover new principles that may apply across 

many biological systems using informatics techniques.  In recent years, scientists are not 

limited to study only few genes in their life time, but they can use microarray data to study 

relation between thousands of genes simultaneously.  Tools like laboratory management 

information system (LIMS) [9] are always needed and they are typically integrated with 

intelligent analysis and visualization tools to form a platform for bioinformatics researches.  

Scientists may use such a research platform to incorporate biological models and domain 
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knowledge to perform further studies and simulations in order to discover those common 

principles between different biological systems.  

 

The forth aim is to use those newly discovered knowledge in practical applications.  For 

example, the specific gene expression patterns found in cancerous tissues through 

bioinformatics studies can be used to improve the cancer diagnosis and improve the 

treatment plans [13].  Moreover, those newly obtained patterns may also provide valuable 

directions for scientists to conduct any further studies.  For example, genes that are 

contained in a specific pattern discovered in cancerous tissues are likely to be correlated 

and they open up further research opportunities in understanding the cancer developments. 

 

The ultimate goal of bioinformatics is likely to be the understanding of nature [12].  

Integrative genomics [14], translational genomics [14], system biology [15] are being 

promoted by the pioneers as the coming future in bioinformatics.  These researches focus 

on understanding the relationships between different types of data, different species and 

different biological system models and they are trying to discover the secret of nature from 

different levels and perspectives.  In order to reach this ultimate goal, it is very important 

to understand the knowledge embedded in those available data thoroughly and there is a 

definite need in developing intelligent tools that is capable to provide easy understandable 

and usable form of biological meaningful information for further knowledge discovery at 

this time. 

 

2.1.4 Its research directions 

There are some common practices among scientists.  It is because most of their ultimate 

goals are closely related to improve the understanding of nature even researchers are 
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proceeding their own researches in various levels by using different types of data that are 

diverse in size and complexity.  For examples, there are studies in separating coding and 

non-coding regions using raw DNA sequence data, studies in correlating expression 

patterns using gene expression data and so on [1].  Similar to the research methodologies in 

other disciplines, studying bioinformatics cannot leave out steps like choosing target data 

for a specific topic, understanding and organizing the data, applying suitable informatics 

techniques, analyze the results and formulate biological hypothesis for biologists to 

undergo further studies. 

 

Although the steps of researches are almost the same in the field of bioinformatics, 

pioneers are having different views on the research directions for bioinformatics.  For 

example, Molidor [16] said that bioinformatics should start from sequence analysis to gene 

expression data analysis, then it comes to the age of integrative and translational genomics 

and finally it opens the opportunities in personalized medicine; Durand [14] stressed the 

necessity of an integrated platform that provides fully integrations on heterogeneous and 

distributed data sources for easy comparisons between different analysis approaches; Yao 

[15] forecasted the future of system biology by illustrating the migration of the field from 

data-driven approach to model-driven approach; Wiemer [3] and Martin-Sanchez [17] 

illustrated the integration possibilities with medical informatics.   

 

Luscombe has summarized his point of views into a two dimensional bioinformatics 

spectrum [1] that is easy to understand.  The vertical axis of the spectrum demonstrates 

how the depth direction of bioinformatics can aid rational drug design to minimize the 

effort in biology laboratory.  It starts with simulations by using a single sequence with the 

gene findings, structure prediction and miscellaneous algorithms to find the corresponding 

protein structure, force field at the protein surface and finally paving the ways for drugs 
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design.  For the horizontal axis of the spectrum, the breadth direction highlights how the 

biological data and informatics techniques have broadened the scope of biology studies.  In 

this dimension, comparative analysis is always used to discover those hidden principles or 

novel patterns between data in large scales. 

 

As mentioned previously, there is a definite need to develop informatics tools that can 

provide biological meaningful results and those results are needed to be easy-to-understand.  

In addition, it is not limited to use data driven approach in bioinformatics researches. 

Model driven approach that incorporates available biological knowledge or knowledge 

from other disciplines to discover the new biological knowledge may have potential 

advantages.  Developing tools that can make use of the domain knowledge in knowledge 

discovery and generate biological meaningful and easy-to-understand results is one of the 

promising trends in bioinformatics. 

 

On the other hand, the bioinformatics spectrum [1] has generalized those major research 

topics in the field of bioinformatics into two directions, i.e. the depth and the breadth 

directions.  The depth direction focuses on the inference process of new biological 

knowledge which is always facilitated by the informatics techniques like case-based 

reasoning. On the other hand, the breadth direction focuses on the comparative analysis of 

biological data and techniques like data mining are deemed appropriate.  Therefore, 

employing data mining and incorporating useful biological knowledge for large scale 

comparative studies is one of the promising trends in the coming future. 
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2.1.5 Its application: Cancer detection 

Cancer is referred to a group of diseases related to cell growth through which the disease 

can spread throughout our body [7, 18].  It arises from the loss of growth controls in cells 

and those cells keep dividing even new cells are not needed.  These extra cells form a mass 

of tissue and they are classified as cancer if they can invade and damage nearby tissues or 

organs.  Scientists are trying to determine the possible causes of cancer and they have 

already identify some risk factors [7, 18], such as smoking tobacco, but there are still many 

people getting cancer with the absence of all known risk factors.  It shows that our 

knowledge about cancer is still limited and the development of cancer is interpreted as a 

result of complex mix of factors related to lifestyle, heredity and environment [18].   

 

Cancer detection is important because it is one of the top killer diseases.  Our knowledge in 

cancer development is still limited and the number of new patients is increasing.  In 2004, 

an estimation of 0.5 million patients in United States will be die of cancer [6].  Cancer 

detection is important because cancer is easier to be cured if it is detected and treated in its 

early stage.  For example, the five-year survival rate for patients with Melanoma in stage 

III is just around 20% but it is around 90% for stage I cases [7].  However, cancer detection 

is not easy since early cancer may not have any symptoms.  Most of the patients only visit 

their doctors when they noticed changes occurred in their body or felt pain.  When such 

changes are noticeable, the development of cancer is no longer at its early stage.  For these 

reasons, improving the cancer detection methods should be at high priority for cancer 

researchers.  

 

In order to detect the earlier stage cancer, different screening techniques have been 

introduced but they have their own limitations.  Screening techniques are now available to 
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check for some of cancers in a person who does not have any symptoms and the estimates 

of deaths that can be avoided through screening vary from 3% to 35% [6].  It is because 

treatments for cancers are much easier in earlier stage.  Cancer imaging, such as X-ray 

imaging and CT scans, is used to check any suspicious areas or abnormalities of a person 

that might be cancerous.  However, some of the imaging procedures may be uncomfortable 

or require patients to stay in a small space for some time [19].  Exposure to more X-rays or 

radioactive substances are required.  Some of the methods may require the injection of 

contrast agents, steroids or histamine blockers and they may cause discomfort or allergy 

[19].  Laboratory tests, such as blood and urine tests, pap test, are medical procedures that 

samples of blood, urine, or other tissues or substances in the body are checked for cancer 

and test values are usually matched with some normal ranges.  However, many factors will 

affect the results of those tests.  For example, sex, age, race, medical history, general health, 

specific foods, drugs and even how closely the patient follows the pre-test instructions will 

vary the testing results [20].  All laboratory test results must be interpreted in the context of 

the overall health of the patient and are generally used along with other exams or tests.  So, 

family doctor who is familiar with the patient’s medical history and current health 

conditions is critical for the accuracy of laboratory tests [20].  Sometimes, interpretations 

may be a bit subjective.  Last but not least, most of the existing screening methods are 

specific to certain types of cancers and there are no effective screening methods available 

for some cancers [6].  

 

Cancer genetics is rapidly expanding and DNA-based testing can be used to confirm a 

specific mutation as the cause of the inherited risk in developing cancer [7, 21].  Mutations 

related in cancer development can be detected by using DNA-based testing related data, 

such as microarray profiles of normal and cancerous tissues, in comparative analysis 

studies.  The great differences in gene expression profiles obtained by microarray between 
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the normal and tumor tissues are not limited to be used as a screening procedure and may 

also be employed by the physicians for cancer diagnosis [22].  Moreover, this method can 

be applicable to all cancers and therefore it is especially useful for those cancers that have 

no effective screening method currently.   

 

Although cancer detection can benefit from the comparative studies in gene expression 

data, the gene expression data itself is complex to understand.  In recent years, researchers 

have paid great efforts in this topic.  Details about gene expression data and some of the 

recent works in bioinformatics data mining are reviewed in section 2.2.2 and 2.2.3 

respectively.  In general, bioinformatics techniques are important for us to develop some 

effective methods that can incorporate the biological knowledge and provide easy-to-

understand and biologically meaningful information for cancer detection problem using 

gene expression data. 

 

2.2 Use of data mining in bioinformatics 

The field of data mining is evolving in this decade along with the rapid growth in our data 

generation, data collection, data warehousing and distribution abilities.  Huge scientific 

databases and different types of data are waiting for data miners to discover new 

knowledge.  Bioinformatics provides new types of data and applications for data miners 

and computer scientists are using different data mining techniques to solve the problems.  

In this section, motivations and aims of using data mining in bioinformatics, nature and 

challenges of gene expression data, data mining techniques used for the problem of cancer 

detection with gene expression data are reviewed. 
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2.2.1 Motivations and aims 

The popularity of data mining is mainly due to the fact that the growth of our capabilities 

in discovery useful knowledge cannot catch up the advancements in data generation, 

collection, warehousing and distributions abilities.  Huge amounts of available data has far 

exceeded our ability for comprehensions and it is considered as a “data rich but 

information poor” situation [23].  Therefore, data mining which refers to a class of 

methods that are used under some computational efficiency limitations in the knowledge 

discovery process [24] becomes one of the essential components in discovering new 

knowledge.   

 

In the mean time, the advancements in biotechnologies, such as DNA sequencing, gene 

expression profiling techniques, help molecular biologists to generate huge amounts of 

biological data and the volume of data is challenging biologists for conducting further 

investigations.  For example, sequence databases, GenBank and SWISS-PROT, are 

doubling their size almost yearly [1].  New types of data provide either different scale or 

granularity of researches or totally new research opportunities.  For example, gene 

expression data provides opportunities for biologists to study large number of genes at one 

time instead of just focusing on few genes in the past.  It comes to a “data rich and 

information poor” situation in the field of bioinformatics now and it demands on new 

methodologies for in-depth analysis.  Therefore, data mining techniques that are motivated 

by similar challenges and have already successfully implemented in other domains, such as 

discovering consumers’ behavior, are naturally be one of most appreciated informatics 

techniques for bioinformatics studies.  
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The aims of employing data mining techniques in bioinformatics are similar to other types 

of data, such as sales patterns analysis, that assists domain experts for efficient in-depth 

analysis.  In general, it is used to transform biological data and observations into structured 

and meaningful information that scientists can access, visualize and understand easily [25].  

Moreover, it should be capable to provide various degrees of details and different 

viewpoints of knowledge [25] and improve the drug target discovery, diagnostics, design 

of treatment plans and so on [26].  Finally, it should be capable to help scientists to 

discover the connections between different biological systems [25] and ultimately help us 

to understand the nature [12].  In summary, data mining is useful to extract information 

from biological data for various applications and further knowledge discovery in 

bioinformatics and the fundamental scope of using data mining in bioinformatics is to 

improve the readability and understandability of data. 

 

2.2.2 New data, new challenges: Gene expression data 

In this bioinformatics age, different types of new biological data and research topics are 

evolving.  A precise list of them can be found in [1].  Among them, gene expression data is 

one of the popular types of data in both bioinformatics and data mining communities.  It is 

because the gene expression data can provide different research opportunities in cancers, 

such as cancer detection and diagnosis mentioned in section 2.1.5.  In this section, the 

backgrounds of gene expression data are first introduced, its features and its challenges for 

existing data mining techniques are also discussed. 

  

“Gene expression” is the term used to describe the transcription process of the information 

contained within DNA into mRNA during the protein synthesis process.  Genes are said to 

be “expressed” if they are turned on during protein synthesis and the amounts of mRNA 
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produced are measured as the gene expression level [22].  By using the microarray 

containing many DNA samples, scientists can determine the expression levels of thousands 

genes in a single experiment by measuring the amount of mRNA bound to each spot on the 

array [27].  The details of microarray technologies can be found in [22, 27]. 

 

Every cell of our body contains a full set of chromosomes and identical genes and only a 

fraction of genes are turned on [22].  Scientists found that the contexts of gene expression 

are different among different types of tissues.  For example, brain and muscles tissues are 

different in context [27] and they are also different under various conditions, such as under 

the influence of drugs [27].  Therefore, gene expression data is widely used in cancer 

detection studies since the expression profiles of normal and cancerous tissues are having 

significant differences. 

 

Gene expression data is high dimensional in nature.  Its high dimensionality is inherited by 

the physical properties of microarray technologies.  For example, a single microarray 

experiment can examine 40,000 genes from 10 different samples under 20 different 

conditions and produces at least 8,000,000 pieces of information [27].  In addition, gene 

expression data contain relatively limited records when compared with the number of 

attributes.  If genes are interpreted as attributes in the gene expression data and the attribute 

to samples ratio will be very large in the above example.  The gene expression level is 

measured by the amount of mRNA in each spot of microarray labeled by fluorescent dyes 

[27] and the measured intensity of the dyes is numeric in nature.  Since microarray 

experiments are still expensive in terms of time and cost, most of such experiments have 

been conducted to investigate preferred biological or medical significant properties, such 

as for cancer diagnosis purposes.  Therefore, most of the gene expression data contain 

predefined class labels with important biological meaning. 
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The major challenge in studying gene expression data comes from its high dimensionality.  

Most of the existing data mining algorithms are computationally infeasible for data with 

high dimensionality.  For example, the Apriori algorithm is almost computationally 

infeasible to mine long gene expression patterns since the number of candidate itemsets is 

too large in high dimensional gene expression data while the k-means algorithm may not 

form meaningful clusters because of the sparseness of data [5, 28, 29].  On the other hand, 

gene expressions always have large number of attributes but limited number of records.  It 

is difficult for data mining algorithms to obtain good approximation for the real world and 

the models learned may not be robust for the new data.  The readability and 

understandability of the mining results are also very important for gene expression data 

and some of the data mining techniques are weak in this issue.  In the case of cancer 

diagnosis, it is very difficult to get the trusts from users, i.e. the medical officers, if class 

label is assigned with a numerical score only. 

 

2.2.3 Techniques for cancer detection using gene expression 

data 

Data mining is one of the appreciated techniques for bioinformatics with tones of 

published literatures.  In section 2.1.5, we have discussed the cancer detection problem 

briefly and we have illustrated the potential of using of gene expression data in achieving 

high accuracy cancer detection.  Then, we have studied the properties of gene expression 

data and the challenges for existing data mining algorithm in section 2.2.2.  In this section, 

some popular data mining techniques for gene expression data in cancer detection problem 

are discussed below.  In most of the literatures, cancer classification is used instead of 

cancer detection.  They are more or less the same in technology basis but cancer 
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classification is just a broader topic that its scopes also include the identification of cancer 

types and cancer subtypes.  In this section, we review the techniques used for gene 

expression data and this two terms are considered as equivalent. 

 

2.2.3.1  Naïve Bayes method 

Naïve Bayes (NB) method uses probabilistic induction to assign the class labels to testing 

samples.  It assumes the attributes in samples are conditionally independent given the class 

label and models each class as a set of Gaussian distributions.  Each gene in the training 

data form Gaussian distributions for every class and the class label is assigned to the data 

instances with maximum probability.   

 

NB method is simple to use but it has two major limitations. First, it assumes genes in 

samples are orthogonal to each other but this assumption seems not close to the truth [30].  

Scientists are interesting to study the genes interaction and most of them believe there 

should be correlation among genes.  The above assumption may provide inaccurate 

classification and it is incapable to discover biological information, like genes interaction.  

Second, it assumes data are in Gaussian distribution [30].  It is quite restrictive to use and 

the limited size of available gene expression dataset is very difficult to determine their 

distributions followed.  Thus, its performance is limited because of these two fundamental 

assumptions. 

 

2.2.3.2 Artificial neural networks 

Artificial neural network (ANN) consists of basic units, called neurons, that simulating 

those biological neurons in our brain.  Each neuron has multiple inputs and single output.  

They are connected to each other with a weight and form a network.  The topology of 

ANN is problem dependent, but in general it has number of input layer neurons equivalent 



 22

to the number of available attributes in data, number of output layer neurons equivalent to 

the number of available classes and neurons in hidden layer.  In the training phase, the 

ANN is first trained with training samples by using a learning algorithm.  The learning 

algorithm adjusts the weights in those connections between neurons and the learned 

information is existed as the patterns of connection weights in ANN.  In the testing phase, 

a testing instance is input through the input layer and started to evaluate layer by layer.  

The output neuron with the maximum value in ANN indicated the corresponding class 

label for that testing sample. 

 

ANN is able to handle many interacting variables and non-linear behavior of the tissue 

samples and class labels [31].  It also provided comparable results with other methods [30] 

that shown in the literatures.  However, it performs classification in a black box manner 

[30].  Information learned during the training phase may not be extracted into rules or any 

easy understandable formats easily [31], so its benefits to bioinformatics become limited.  

Moreover, the risk of premature convergence and the problem dependency of choosing 

suitable topology and learning algorithm make ANN is very difficult to obtain a optimal 

network [31]. 

 

2.2.3.3 Decision trees  

Decision trees also called as classification trees.  It consists of a set of internal nodes and 

leaf nodes.  The internal nodes are splitting criterions that comprise of a splitting attribute 

and predicates defined on this attribute.  The leaf nodes are single class labels.  In the tree 

construction process, the entropy based measure is always used to determine the best 

attribute with maximum information gain for splitting.  This process is a top-down 

recursive divide-and-conquer process [23] and it stop if all samples are belongs to some 
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classes or no remaining attributes available for further separation.  Sometimes, tree is 

pruned by using heuristics to avoid overfitting problem.   

 

Decision tree is an attractive approach in bioinformatics is mainly due to its readability.  

The result of decision tree are very interpretable [30] and understandable knowledge in 

forms of hierarchical trees or sets of rules extracted [31].  Those trees and rules are 

provided valuable information for the scientists for further studies.  On the other hand, it 

do not need to provide any parameters and its construction is relative fast [30].  However, 

the resulting tree is always error-prone when the number of training examples per class is 

small [31], the robustness of the decision tree in front of new data is questionable for small 

gene expression dataset. 

 

2.2.3.4 k-Nearest Neighbour 

k-nearest neighbour (k-NN)is one of the similarity based methods.  It tried to find the most 

similar set of training samples for the testing sample and use majority of the voting to 

determine the class for the testing sample.  The distance metric that it used can be any 

similarity measure based on attributes’ values.  The most common similarity measures are 

Euclidean distance and Pearson correlation. 

 

k-NN is relatively less prone to noise and bias in the data [30, 32] since the testing samples 

is evaluated by set of instances and it does not have the problem of repeat the training 

when new data is available.  However, it is not scalable because the computation of 

similarity is very expensive if the dataset is large [30].  On the other hand, the similarity 

measure in high dimensional data, such as gene expression data, may suffer from the curse 

of dimensionality problem and affect the accuracy. 
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2.2.3.5 Association rule based classifier 

CBA (Classification Based on Association) classifier is one of the successful application 

methods in using association rule in the classification problem.  The basic idea of CBA is 

to extract a special type of association rules, class association rules (CARs), and use them 

in classifying testing samples.  The major difference between class association rules and 

general association rules is that its consequence is class label, but there is no such 

restriction in a typical association rule.  In the classification process, set of CARs that 

satisfied the minimum requirements of support and confidence are selected.  Then, the best 

rule with highest confidence and support is used to classify the testing instances.  The class 

label of the best CAR whose antecedent is contained in the testing instances is then 

assigned. 

 

CBA classifier that incorporating the idea of association rules into the classification 

problem achieved high classification accuracy and the major advantage for gene expression 

studies is that the classification results are easy to understand.  However, the large set of 

discovered rules is always a problem and it is more serious for the gene expression data 

that is high dimensional in nature.  In general, discovering such a huge set of rules is 

computational expensive and it is difficult for the scientists to find a good target for further 

studies.  Increasing the support threshold, or confidence threshold, or both may reduce the 

number of CARs found but it will suffer the risk of dramatically degrading in classification 

accuracy and it is not an ultimate solution. 

 

2.2.3.6 Cluster based methods 

Grouping similar objects is one of the most basic abilities of human being [33].  We 

always found that many individual objects may have properties in common and the basic 

idea of cluster based method is to group the training samples into different clusters based 
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on different similarity or distance measures.  For example, early people can classify plants 

into groups, such as poisonous or edible by using their appearance, their color or their 

tastes.  Those cluster representatives, such as the centroids of clusters, are used to represent 

large number of instances that originally difficult for us to manage and understand.  To 

form clusters from data, it is needed to define some effective measures, called objective 

functions, to evaluate the similarity or distance between objects.  In the classification 

process, the similarities or distances between the testing sample and clusters 

representatives are measured and then the testing sample is assigned to its closest cluster. 

 

There are many well known clustering algorithms, such as k-means and fuzzy c-means, are 

shown to be useful in organizing gene expression data into clusters for the classification of 

cancer.  They are generally less prone to noise and bias in the data and information 

organized into manageable number of clusters are always easier for scientists to choose the 

appropriate target for further investigations.  However, most of the clustering algorithms 

form clusters by using the tightness of data point and it is often lack of practical 

meaningful support, not easy to understand and not easy to be applicable in biology related 

domain.  On the other hand, most of the clustering algorithms suffer from the curse of 

dimensionality problem for high dimensional gene expression data and meaningful clusters 

are not easy to obtain.  Feature selection is often used to prune useless features before 

forming reliable clusters, but it is still not possible to prune off too many feature without 

information loss [5, 28].   

 

2.3 Summary 

In this chapter, we started from the history of bioinformatics and followed by its 

definitions, motivations and aims.  We also discussed some of research directions for the 
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field in general and stressed on the hot topic, cancer classification using gene expression 

data.  From the data mining perspectives, the problem of cancer detection by gene 

expression data comparative analysis motivated the development of new data mining 

algorithms.  The new data mining algorithms needed to solve the challenges come from the 

gene expression data, such as high dimensionality and limited records.  In reviewing and 

appreciating those existing data mining techniques applied to the gene expression data 

cancer detection problem, understandability is always the most important requirement in 

bioinformatics communities. 
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3 Projected clustering and emerging patterns  

Clustering and pattern mining approaches are two main streams in data mining domains for 

years and there are tones of algorithms proved to be applicable for different type of data 

effectively.  However, most of them do not work well for high dimensional data, such as 

gene expression data mentioned in the previous chapter.  Those traditional algorithms are 

challenged not only by the volume of available of data and also challenged by their 

complexity as mentioned in Section 2.2.2.   In recent years, new clustering and pattern 

mining algorithms are developed to tackle the problems raised by those high dimensional 

data.   

 

In this chapter, we will review an outstanding clustering and a new pattern mining 

algorithm, projected clustering and mining emerging patterns, in details.  First of all, the 

motivation, assumptions, objectives and definitions of these two algorithms will be 

highlighted.  Second, their own problem statement will be stated.  Finally, we will 

comment on their strengths and weaknesses. 

 

3.1 Projected clustering 

One of the most important breakthroughs of the traditional clustering approach is the 

concept of the projected clustering introduced by Aggarwal in 1999 [5].  Projected clusters 

are defined as subset of data points whose distance between themselves within the cluster 

is minimal in the corresponding subspace of dimensions.  Projected clusters can capture 

sets of closely related data points in different subspaces.  It is believed that set of data 

points are closely related to each others in their own subspace and the projected clusters 
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can offer experts useful and realistic new insights for the knowledge discovery purpose 

with additional subspace information.   

 

3.1.1 Introduction 

Advancements in data collection and storage technologies provide new opportunities to 

have data not only in large volume but also in high dimensionality.  Such as the microarray 

technologies introduced in Section 2.2.2, it generates data with thousands of dimensions.  

It is promising that our ability in data generation will continue to improve in the coming 

future and there is a need to focus on development of new data mining techniques specified 

for high dimensional data. 

 

The major reason leads us to focus on the concept of clustering using feature subspace is 

that almost all well known clustering algorithms, such as k-means, trends to break down in 

high dimensional feature space [5].  The quality of those clusters obtained by traditional 

clustering algorithm using full feature space degrade too fast while the dimensionality 

increase because of the inherent sparsity of the data [28, 29] and it is referred as curse of 

dimensionality problem in the literature [5, 28, 29].  Theoretical results have shown that 

the distance between every pair of points in high dimensional space are nearly the same 

[34].  Therefore, the meaningfulness of those resulting clusters are now being questioned 

[28, 29]. 

 

Feature selection is well adopted approach to reduce the dimensionality of data but it may 

not be sufficient for all situations.  Example from Aggarwal [5] illustrated that feature 

selection is not good enough to solve the problem in forming clusters in three dimensional 

space effectively by discarding any features if different set of points are correlated with 



 29

respect to different set of features.  In such case, applying feature selection to form clusters 

may suffer from unpredictable information loss.  Aggarwal [28, 29] commented that 

feature selection may not always be feasible to prune off too many dimension without 

information loss. 

 

Therefore, the idea of projected clustering was introduced.  It is a redefinition of the 

clustering problem with special consideration in the relationship between resulting clusters 

and their corresponding feature spaces that targeted to minimize the information loss.  In 

short, its objective is to group data points with high dimensionality into clusters under 

different feature subspaces. 

 

In the projected clustering problem, there are some basic assumptions [5, 28, 29].  It is 

assumed that not all the available dimensions are relevant to a cluster, some of the 

dimensions are irrelevant to a cluster and it can be considered as noise.  Moreover, the 

dimensions that relevant to the clusters are data locality specific.  It means that data points 

in different clusters are correlated with respect to a different and specific set of features.  

The projected clusters may have different numbers of relevant dimensions and the 

dimension projection may exist in arbitrarily oriented subspaces of lower dimensionality.   

 

The formal definition of generalized projected cluster was given by Aggarwal in [29].  It 

was defined as a partition of a set C of data points with a set ξ of vectors such that points in 

C are closely clustered in subspace ξ and the dimensionality of ξ is much lower than the 

dimensionality of full feature space.  Examples of projected clusters are available in [28, 

29]. 
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3.1.2 Projected clustering algorithm 

Aggarwal has defined the problem of finding projected clusters as a two-fold problem [5].  

The first problem is to locate a set of clusters’ center and the second problem is to find the 

appropriate set of dimensions for each cluster.  The problem of finding clusters’ center in 

full dimensional environment has been studied for many years and there are many state-of-

the-art approaches available, such as k-means methods.  Therefore, the focus of the 

projected clustering algorithm, such as PROCLUS and ORCLUS, are stressed to the 

problem of finding set of projected dimensions for each cluster.   

 

Both PROCLUS and ORCLUS are projected clustering algorithms introduced by 

Aggarwal [5, 29].  PROCLUS is the first algorithm of projected clustering.  It is a 

simplified model that dimension projection can only be made on the axis-parallel manner.  

However, Aggarwal considered the distribution of data points may not be necessary 

parallel to the dimension axis.  It is because there may be inter-attribute correlations 

existed in the real data and the projections in arbitrary directions may be more appropriated 

to capture the skews in data distributions.  ORCLUS is a generalized projected clustering 

algorithm that allows the dimension projection in arbitrary directions, so we chose 

ORCLUS to illustrate the concept of projected clustering in this thesis. 

 

3.1.2.1 Overview 

In the model of ORCLUS, data points may get aligned along arbitrarily skewed and 

elongated shape in lower dimensional space because of the inter-attribute correlations 

exists [28, 29].   Each orthogonal set of vectors, called projected dimensions, defined a 

subspace for a projected cluster is then used to capture the nature of skews and correlations 

in the attributes.  The objective of ORCLUS is to discover tightest projected clusters, in 
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terms of projected energy [5, 28, 29], with unique subspace of dimensions.  The subspace 

of dimensions in original feature space is represented by a set of projected dimensions.   

 

There are four user inputs in ORCLUS.  The number of resulting projected clusters k and 

their cardinality of dimensions l are specified by user.  The rate of reduction in number of 

clusters (α) and dimensions (β) are two important user input parameters to control the 

quality and the efficiency of ORCLUS algorithm.  The output of the ORCLUS are (k+1) 

projected clusters and each of them having a subset ξ of dimensions with cardinality equal 

to l. 

 

3.1.2.2 ORCLUS: A three phase algorithm 

ORCLUS employed the variant of hierarchical merging approach to maintain the 

feasibility in handling large dataset.  Hierarchical approach is prohibitively expensive for 

large dataset.  Therefore, cluster is used as a generic unit during the merging operation of 

ORCLUS instead of considering a single data instances as the merging unit.  During each 

merging operation, the number of clusters and the dimensionality of clusters are decreased 

gradually with the rate equal to α and β respectively.  It stops when k projected clusters 

with dimensionality equal to l are obtained.   

 

The ORCLUS algorithm consists of three phases.  They are the initialization, iterative and 

refinement phase.  In this section, we will discuss the aims of each phase and how they 

work briefly. 

 

The aim of the initialization phase is to find out a superset of piercing set of medoids for 

the iteration phase.  In order to obtain a set of reliable clusters, we try to pick at least one 
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seed in each natural cluster in this phases.  Due to the computational complexity, it is not 

feasible to start up with a large number of seeds.  So, greedy algorithm is applied to find 

out a small enough superset of piercing set of mediods that is few times larger than the user 

specified number of final clusters (k) in this initialization phase.  The technique of the 

greedy algorithm is widely used in the partitioning approach.  The idea is that every new 

initial cluster seed for the superset of piercing set of medoids is selected with maximum 

distances with the set of selected seeds. 

 

The aim of iterative phase is to improve the quality of the set of cluster centers by hill 

climbing approach.  In most of the cases, even domain experts do not know the number of 

natural clusters in advance.  Therefore, it started with a superset of piercing set of cluster 

centers from previous phase and the projected dimensions for each projected clusters are 

initialized with full dimensionality.  By merging closest clusters and evaluate a new set of 

projected dimensions iteratively, the best set of cluster centers are found. 

 

There are three operations in this phase and they are the assignment, dimension projection 

and merging operation.  Firstly, data points are assigned to the closest cluster seed among 

all available clusters and their corresponding set of projected dimensions.  Secondly, the 

new projected dimensions for different clusters are evaluated from their own data points.  

Finally, the closest clusters are merged to form a new one.     

 

The aim of the refinement phase is simple that targeted to ensure the quality of the 

clustering result by one pass over data with the best set of cluster seeds found in the 

iterative phase.  In this phase, the data points are assigned to the closest cluster seeds found 

in iterative phase and then the projected dimensions of each cluster are deduced from this 

final set of clusters like the iterative phase. 
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3.1.2.3 Dimension projection process in ORCLUS 

The major difference between projected clustering and traditional clustering is that it 

consists of the dimension projection process that does not exist in traditional clustering 

approach.  In Figure 3.1, dataset with 3 available dimensions are used as an example to 

illustrate the difference between traditional clustering approach and projected clustering 

approach.  In this example, two clusters (Cluster A & B) are formed under the 3 

dimensional spaces by using traditional clustering approach.  However, projected 

clustering approach form Cluster A and Cluster B under different sets of dimensional space 

by using the dimensional projection process.  In most of the cases, the dimensionalities of 

the projected clusters are much smaller than the full dimensionality of dataset and tighter 

clusters can be formed. 

 

Figure 3.1 Example of projected clusters 

The dimension projection mechanism of ORCLUS is employed the idea of singular value 

decomposition (SVD) that used in the feature reduction for years.  The original idea of 

SVD is to transform the original data space into a new coordinate system in which the 

(second order) correlations in the data are minimized.  In the transformed orthonormal 

system, the dimensions of transformed data space are defined by the eigenvectors and their 
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eigenvalues denote the spread (or variance) of data points along each such newly defined 

dimensions.     

 

The problem of choosing the projected dimension in ORCLUS is just opposite to the 

problem of feature reduction.  In the feature reduction problem, dimensions preferred are 

those captured the world with least amount of information lost.  So, those dimensions 

(eigenvectors) with maximum spread (largest in eigenvalue) are used to retain most of the 

information.  However, in the projected clustering problem, we want to find the 

dimensions that capture the greatest amount of similarity among those points in the same 

cluster.  Therefore, those dimensions (eigenvectors) with least spread (smallest in 

eigenvalue) that retain the information about the similarity of the points with least spread 

in each cluster are being used.  In general, the dimension projection process of ORCLUS is 

a variant of the SVD techniques to obtain the projected dimensions that data points within 

a projected cluster are closest to each other. 

 

3.1.3 Strength and weakness of ORCLUS 

The strength of ORCLUS is that it can form reliable clusters for high dimensional data.  It 

is originally designed for the high dimensional data and it provided a new view point in 

tackle the curse of dimensionality problem raised from the high dimensional data.  Because 

of the sparsity of data points in the high dimensional space, most traditional algorithms 

trends to fail in providing meaningful clusters.  With the dimension projection process in 

ORCLUS data points are clustered with different transformed feature spaces in lower 

dimensionality instead of full feature space.  The distances between data points in the 

projected dimension space is more significant to be distinguished, thus data points can be 

partitioned into meaningful clusters.  On the other hand, ORCLUS allows different sets of 
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projected dimensions for different clusters.  It overcomes the limitations in the traditional 

features selection approach that all clusters are partitioned under the same reduced feature 

space.  Since feature selection techniques can not reduce too many features without any 

information loss [28, 29], ORCLUS always gives clusters with lower dimensionality and 

more descriptive sets of projected dimensions.  In terms of the intra cluster similarity and 

inter cluster dissimilarity, ORCLUS with lesser information lost always give better results 

when compared with those traditional clustering approaches in reduced feature space. 

 

There are different sets of projected dimensions are associated with those resulting 

projected clusters which provide additional information for the domain experts for further 

knowledge discovery.  In those traditional clustering approaches, we only have distance 

related information about data instances in different clusters.  ORCLUS projected clusters 

provide not only distance information but also the information on different sets of related 

features.  This additional feature related information makes the clustering results more 

descriptive and it is potentially useful for the domain expert to analysis available data in 

more detail manner.  It is absolutely the advantages of ORCLUS in further knowledge 

discovery. 

 

ORCLUS is very powerful to provide reliable projected clusters.  Its dimension projection 

ability can form projection clusters in arbitrarily oriented subspace that capture all possible 

data skews and feature correlation in data sucessfully.  However, the resulting clusters are 

not very easy to understand.  The sets of projected dimensions of ORCLUS clusters are 

eigenvectors that each of them is linear combinations of those original features.  It is never 

easy for users to interpret, especially for biologists.  Therefore, the idea of ORCLUS is 

potentially useful for molecular biologists in further knowledge discovery but make it 

applicable is still not an easy task. 
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3.2 Emerging pattern mining 

Emerging patterns (EPs) are one of novel patterns introduced by Dong in 1999 [4].  EPs 

are defined as the patterns whose support values are having great differences between 

different data partitions.  It captures sets of features that are important in differentiating 

different samples into correct data partitions.  EPs have proved to be applicable in the 

classification problem in the literatures and it is also believed that it can offer domain 

experts useful and new insight in difference description for knowledge discovery process.    

 

3.2.1 Introduction 

In the past, the problem of mining interest patterns from raw data was focused on those 

patterns having high support values in the dataset which called frequent patterns.  There 

existing quite a lot of state-of-the-art representations and mining algorithms for such 

frequent patterns.  However, patterns that can be used in the different description between 

datasets are also important in the knowledge discovery process, such as helping us in 

making decision in classification problems.   

 

On the other hand, not only patterns have high occurrence are important.  In many 

problems, patterns with low to medium support are also important if they show great 

differences on different data partitions.  For example, the patterns exists in tumor tissues 

are always having lower occurrence when compare with those present in normal tissues, 

but they are very important in both cancer classification application and further knowledge 

discovery. 
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The objective of emerging patterns is to define a new type of pattern that can be used to 

describe the difference between datasets.  It is because only the occurrence of patterns may 

not be sufficient for the decision making.  By introducing the difference in patterns 

occurrence between datasets, more complicated problems can be solved. 

 

Another objective of the emerging patterns is that its discriminatory power is being 

employed and targeted for creating the new generation of classifier to solve the 

classification problem in high dimensional data related applications, such as cancer tissue 

classification with gene expression data. 

 

In the problem of mining and using EPs, there are two basic assumptions.  First, the 

importance of the support differences between two data partitions is assumed to be higher 

than the support value alone in a pattern.  Therefore, the usefulness of EPs is no longer 

considered by the support value in the first place.  The growth rate of the EPs, defined in 

[4], is the major consideration of EPs’ usefulness.  Second, low to medium support EPs are 

also important.  It is because there are many applications in our real world are targeting for 

the low support patterns.  One of the typical examples is the use of tumor patterns in cancer 

detection and classification problem.  In this example, tumor patterns are most likely to 

have lower support values in the dataset when compare those patterns exists in normal 

tissues. 

 

The formal definition of the growth rate and emerging patterns (EPs) can be found in [4].  

In general, the growth rate is defined as the ratio of the support value between two datasets 

or data partitions.  Any patterns with growth rates that are larger than the user specified 

threshold, are EPs.  Examples of emerging pattern [35], {gene(K03001) ≥ 89.2} and 
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{gene(R76254) ≥ 127.16} and {gene(D31767) ≥ 63.03}, discovered from colon tumor 

dataset [36]later, changes it occurrence of 0% in normal tissue to 75% in cancerous tissue. 

 

3.2.2 Border based mining algorithms  

The problem of mining EPs with growth rate larger than the user specified threshold is 

simply divided into the two problems.  The first one is to find the set of patterns with high 

support values in dataset D1, and the second one is to find the set of patterns with low 

support values in dataset D2.  The first problem is being one of the famous studies among 

different data mining parties and there are many innovative algorithms to solve it 

efficiently.  However, mining patterns with low support value are still a very challenging 

task nowadays and most of the case it will become computational infeasible if the dataset 

is large in size. 

Therefore, Dong [4] defines the problem of mining EPs in another way.  The first problem 

is to find the patterns with high support values in both dataset.  The second problem is to 

subtract the results obtained from the first problem in order to obtain the set of EPs that 

having high support value in dataset D1 but not in D2.  The focus in the EPs mining is the 

subtraction process between two large itemsets. 

 

3.2.2.1 Overview 

The basic assumption in mining EPs is that the importance of the difference in occurrence 

between two datasets is higher than the occurrence alone.  Therefore, the nice property 

used by those apriori-based algorithm, called subset-closedness [4], does not hold for EPs.  

In order to extract EPs from the data, another nice properties [4] called interval-closedness 

are introduced.  The idea of border representation is used with respects to the interval-

closedness property.  Patterns are then represented by a border with the most general set of 
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patterns as its left boundary and most specific set of patterns as its right boundary.  For any 

patterns that is the superset of a pattern in the left boundary and is the subset of a pattern in 

the right boundary, it is said to be contained in the border.  For example [4], there are total 

12 itemsets ({1,2}, {1,2,3}, {1,2,4}, {1,2,5}, {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,2,3,4,5}, 

{1,2,6}, {1,2,4,6}, {1,2,5,6}, {1,2,4,5,6}) contained in {{1,2}, {{1,2,3,4,5}, {1,2,4,5,6}}.  

By using the interval-closedness properties together with the border based mining 

algorithm, enumeration of patterns during the EPs mining process which is very time 

consuming is minimized. 

 

The objective of those border based algorithms is to discover all EPs by using border 

representations.  As mentioned in previous section, the mining for EPs is transformed to a 

subtraction process between two large itemsets in different datasets.  Therefore, there are 

two objectives of those border based mining algorithms, they are generating the border 

representing the frequent itemsets of each dataset and performing subtraction between 

borders.  

 

In order to extract EPs in border representation from the dataset, there is an important input 

from user is needed.  It is the growth rate of EPs that is defined by the ratio between the 

background dataset and target dataset support values [4].  

 

3.2.2.2 Border-Diff and MBD-LLBorder 

The border based algorithm will take borders that representing collections of large itemsets 

as inputs.  By using the set operation, difference between borders can be obtained and the 

output border is representing the EPs between two dataset with the growth rate larger than 

the user requirement.  In [4], the border based algorithms called Border-Diff and MBD-

LLBorder are described in detail and we will introduce these two algorithms in brief here.  
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The purpose of Border-Diff is to derive the differential between a pair of borders with 

special form: [L2, {U}] = [{∅},{U}] – [{∅}, R1].  [L2, {U}] is the border that contains the 

small itemset of a dataset with left boundary equal to L2 and right boundary that is the 

universal set {U}.  [{∅},{U}] is the universe of the space and [{∅}, R1] is the collection 

of large itemsets in dataset.  By using the Border-diff algorithm, we can found out the 

collection of small itemsets in border representation by limited the calculation on the 

itemsets appeared in the borders and it is very important that for large dataset or high 

dimensional data.  It is because the candidates of small itemsets are large in volume and it 

is not feasible to extract them easily.   

 

MBD-LLBorder is the main algorithm that aims to discover EPs by manipulating only two 

input borders.  The two input borders are the large borders that representing those large 

itemsets in two data datasets respectively.  In each iteration of the algorithm, it uses one 

itemset in the right boundary of large border of dataset D2 and the whole right boundary of 

large border of dataset D1 to find out the itemsets that should exist in the left boundary of 

resulting border.   

 

3.2.2.3 The EPs selection problems  

The use of mined EPs always depends on the problem we want to solve.  Although we can 

mine all the EPs by using the border based algorithms theoretically, it is not common to 

use all of them in solving problems.  It is because there always exists in a large number of 

EPs, selection of EPs become one of the important issues in real applications.  There is a 

specific types of EPs, called Jumping EPs [37], is use extensively in different applications.  

It is because JEPs has the highest discriminatory power with infinity growth rate.  The 
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infinity growth rate means that these EPs only found in one dataset but never exists in the 

others and their high discriminatory power is most important in classification related 

applications.  

 

On the other hand, the occurrence of EPs is another consideration in selection of EPs.  If 

EPs are having the same growth rate, the one with higher the occurrence in the dataset 

always interpreted as more important.  The basic assumption of this interpretation is just 

what frequent pattern used historically.  In general, itemsets in the left boundary of EPs 

border are more general one when compared with those existed in right boundary and they 

always have higher occurrence.  Therefore, they are always employed in applications. 

 

3.2.3 Strengths and weaknesses 

The first strength of EPs is that it makes a great change in the view points on importance of 

patterns.  It is because we only consider the occurrence of patterns is not sufficient in many 

applications. For example, patterns exist in tumor tissue are very important in cancer 

detection problem, but it always have low occurrence when compared with those patterns 

come from normal tissue.  In many cases, the difference in occurrence between dataset is 

more important than occurrence alone and EPs are targeted to capture such difference.   

 

The second strength is high discriminatory power of EPs and it can be specified by the user 

defined growth rate.  By definition, EPs with larger growth rate have higher discriminatory 

power and those EPs with large growth rate has been proven to be useful in the 

classification problem in the literatures [38-41].  For example, JEP-Classifier and DeEPs 

which adopts the eager learning and lazy learning approaches are EPs based classifiers that 

give high performance in the classification problem.   
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The third advantage is that EPs are also easy to understand because they are just the 

collection of attributes with specified range of value in raw dataset.  Readability is one of 

the important requirements in the knowledge discovery of biological domain because any 

hypothesis we mined should undergo the validation by domain experts in laboratories.  If 

the hypothesis obtained is not easy to understand, it may not be helpful in the further 

knowledge discovery.  

 

Finally, EPs with low support values can be obtained efficiently by using the border based 

mining algorithms.  Like the example mention previously, EPs with low support value are 

potentially useful for cancer detection problem.  Patterns with low support are difficult to 

find by most of the well known pattern mining algorithms and border based algorithms 

make EPs with low to medium support to be available in many real situations. 

 

However, there are also limitations in using EPs.  The number of EPs that obtained is large 

in volume especially for high dimension data.  The large volume of patterns found may not 

be easy for us to apply in the application and it also makes difficulties for the domain 

experts in the further knowledge discovery process.  Top EPs that have highest value in 

occurrence are always used as solutions instead of complete set of EPs are used in order to 

maintain the efficiency for the system.  However, too less EPs are used will actually lower 

the accuracy and the robustness for unseen data but too many EPs will lower the system 

efficiency.  It is very difficult to get such a magic number of EPs to be used in every 

application. 
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3.3 Summary 

The major problem for pattern mining approach, such as using emerging patterns, is that 

there are too many patterns extracted from the data.  The large amount of mined patterns 

are difficult for the domain experts to discovery any further knowledge and they are not 

easy to be applicable.  Clustering are more efficient approaches when compared with 

pattern mining approach because of relative limited numbers of result clusters are obtained.  

However, most of the clustering approaches group data instances by geometric distances.  

The reasons behind the resulting clusters may not be biologically meaningful and easy to 

understand for biologists.  We found that these two approaches of data mining techniques 

are rarely work together, but they are strong in different areas and there is an opportunities 

to integrate them to get both their strengths and compromise their weakness.  This leading 

to our approach introduced in the rest of the thesis, the emerging pattern based projected 

clustering approach. 
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4 Emerging Pattern Based Projected Clusters 

A new kind of knowledge representation, called emerging pattern based projected clusters 

(EPPCs), are introduced in this chapter.  EPPCs are defined as those projected clusters 

whose projected dimensions are the collection of attributes in the emerging patterns (EPs) 

mined from the dataset using data mining techniques.  It is believed that by using the 

EPPCs to group the data instances into different clusters, the correlation between those 

instances are much easier for the domain expert to analyze.  In this chapter, the definition 

and problem of forming EPPCs is presented together with the EPPC framework. 

 

4.1 Introduction 

In previous chapter, we have introduced two powerful data mining techniques that targeted 

for high dimensional data. Emerging patterns are one of the outstanding pattern mining 

approaches and it has proved to be applicable in bioinformatics problems [35].  Since the 

number of available data record is still limited when compared with the number of 

available dimensions, the emerging patterns extracted may not be sufficient to approximate 

the real world.  The large number mined emerging patterns are also not easy for the 

domain experts to use and conduct biological experiments for further knowledge discovery 

efficiently.  Projected clustering is one of the state-of-the-art clustering approaches that it 

tackled the curse of dimensionality problem and let clustering in high dimensional data 

being possible.  However, the resulting projected clusters with complicated projected 

dimensions are not easy to understand, especially by biologists.  These two effective data 

mining approaches have their own limitations and they are still insufficient for the 

bioinformatics domain that results are required to be easy for understanding and efficient 

in supporting further knowledge discovery in laboratories.  
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In this chapter, a new knowledge representation, called emerging pattern based projected 

clusters (EPPCs), are introduced.  The rationale of EPPCs is intended to integrate the 

emerging patterns and projected clusters to get both their strengths.  The resulting EPPCs 

are potentially useful, efficient and understandable for the biologists.  In the following 

section, we begin by an example of EPPCs and followed by the definition of EPPCs given 

in Section 4.3.  Then the problem in finding EPPCs is discussed and framework to mine 

EPPCs is also introduced. 

 

4.2 Example of emerging pattern based projected clusters 

Example 4.2.1  There are some EPPCs generated from the colon dataset [36].  The 

following are three typical EPPCs consisting of different sets of cluster dimensions and 

data instances: 

Table 4.1 Examples of EPPCs from colon dataset 

Cluster Dimension 
 No. of 

sample 
Tissue 
 Type Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 

Cluster 1 7 Normal H51015 R10066 U32519 T47377 Z50753 

Cluster 2 6 Cancer M76378 T47377    

Cluster 3 10 Cancer H08393 M76378    

 

In above table, three EPPCs are selected to demonstrate the two important characteristics 

of resulting EPPCs obtained from the colon dataset [36].  The first feature is that EPPCs 

are projected clusters with subset of attributes as its projected dimensions.  Unlike the k-

mean clustering approach, it uses corresponding subset of attributes in evaluating the 

distances between each instance and cluster representatives instead of using the full 

dimensionality.  For example, Cluster 3 using 2 genes, H08393 and M76378, out of 2000 

in raw data as its projected dimensions to group 10 instances.  Another feature of EPPCs is 

that each of them may have their own sets of projected dimensions in different size.  
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Unlike those ORCLUS projected clusters which consist of same number of projected 

dimensions (principal components) among all projected clusters.  In our example, Cluster 1 

has 5 projected dimensions;  Cluster 2 and 3 have 2 projected dimensions. 

 

4.3 Definition of emerging pattern based projected clusters 

Before proceeding to describe our EP-based projected clustering (EPPC) algorithm, we 

introduce some notations and definitions.  Let N be the total number of data points and ni 

be the number of data points in cluster Ci.  Assume that the dimensionality of full data 

space D is equal to d and the dimensionality of projected space Di of cluster Ci is equal to 

di, where di ≤ d.  Let },,,{ 21 ni xxxX
r

K
rr

=  be the set of data points in cluster Ci, 

},,,{ 21 ijdjjj xxxp K
r

= be the projected point and is
r  be the centroid of cluster Ci, i.e. 

∑ =
= in

j iji nps
1

/
rr . Finally, the (projected) distance of projected point jp

r  to the center of 

cluster Ci is written as ),,( iij DspPdist
rr .   

 

By means of the projected distance, the emerging pattern based projected clusters are 

defined as below: 

Definition 4.3.1 Given a set of data points N, an emerging pattern based projected cluster 

(EPPC) Ci consists of set of data points },,,{ 21 ni xxxX
r

K
rr

=  that their projected distance 

),,( iij DspPdist
rr  between its centroid is

r  are minimal among all available EPPC (C1 ,…, Cn ) 

in the data space. The projected dimensions Di are the collection of attributes of emerging 

patterns mined from the data. 

 

Note that using emerging patterns to form projected clustering provides certain flexibility 

to users.  Users are not limited to use only one EP in dimension projection process to form 



 47

1-EPPCs.  More than one EP are also applicable to generate m-EPPCs and the resulting 

clusters always give better results in the classification problem when proper number of EPs 

are used.  Detail experimental results can be found in Chapter 5.  Therefore, m-EPPC in 

this thesis is referred as an EPPC with its projected dimensions Di equivalent to the union 

of all attributes among m EPs. 

 

4.4 The problem of finding emerging pattern based projected 

clusters 

Finding EPPCs is a two-fold problem that is similar to ORCLUS projected clustering 

algorithm in [5, 28].  First, we have to locate the clusters’ center.  Second, we needed to 

find out the projected dimensions for each clusters.   

 

The first problem is well defined in those partitioning methods of clustering approach.  In 

most of the cases, a set of seeds are carefully selected using different heuristics at the 

beginning and improve the quality of those seeds iteratively.  For example, the new seeds 

are selected by maximizing the distance between the set of previously selected seeds in 

order to obtain a piercing set of seeds at the beginning.  And the quality of those initial 

cluster centers is improved iteratively by some well known approaches, such as k-means 

and k-medoids algorithms. Therefore, our EPPC algorithm is focused on the second 

problem in finding projected dimensions for the projected clusters. 

 

The second problem was stated as the redefining clustering for high-dimensional data in 

the literature [28].  Under traditional clustering problem definition, this problem does not 

exist.  Full dimensional space of the data instances are used in grouping objects into 

clusters.  However, the available dimensions of objects can be considered as infinity in 
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reality and those available dimensions that we have considered in the traditional clustering 

approach can be interpreted as a simplified or reduced feature space obtained by our 

limited data acquisition abilities.  And we can interpret the traditional clustering problem 

as a model of simplified clustering problem with the dimension projection problem 

excluded.  But actually, the feature selection process can be interpreted as dimension 

projection with same set of projected dimensions for all clusters and it is performed by the 

domain experts using their domain knowledge in the data acquisition and preprocessing 

process.  Since our knowledge in life science is still very limited, the complexity of the 

data is very difficult to reduce during the data preparation or collection stage.  Data in the 

domain of bioinformatics, such as gene expression data, are high dimensional in nature.  

Dimension projection process becomes core problem in handling high dimensional data 

and it is the major focus in our project. 

 

4.5 Emerging Pattern Based Projected Clustering Framework 

We have discussed the problem of finding emerging pattern based projected clusters 

(EPPCs) in previous section.  However, the successfulness of finding EPPCs also depends 

on the availability of the emerging patterns (EPs) from the dataset.  In this chapter, we 

introduce the framework in finding and using EPPCs which consists of three phases.  The 

phase one of the framework is discovering the emerging patterns from the dataset.  The 

EPs mined are used as the input in the phase two to form the EPPCs.  Finally, the EPPCs 

obtained are using in the classification problem in phase three.   

 

4.5.1 Overview of the EPPC framework 

In the past, mining EPs and projected clustering techniques were used independently in 

solving different types of problem since they are strong in different areas.  In this section, 
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they are integrated to form a framework in solving the bioinformatics problems, such as 

classification of the tumor and normal tissues with gene expression data.  

 

As shown in the Figure 4.1, the whole framework consists of three phases.  The aim of the 

phase one is to extract the EPs from the raw data.  The mined EPs are large in volume and 

representatives are selected as the input of the phase two.  The purpose of phase two is to 

form the EPPCs by using the selected EPs and our EPPC algorithm.  The resulting EPPCs 

are used in the phase three that in classifying the new testing data samples.   

In the following subsections, we discuss each phase in details with the problem of 

classifying cancer tissues and normal tissues in colon dataset [36] as an example for 

illustration. 

 

 

Figure 4.1 Flowchart of the EPPC framework 
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4.5.2 Phase 1: Mining emerging patterns 

In this phase, our objective is to extract the domain knowledge in terms of EPs and the 

resulting EPs are used to generate the EPPCs.  By using the border based mining 

algorithms introduced by Dong and Li [4, 37], those EPs are extracted for the next phase.  

The complete flow of mining EPs is shown in the Figure 4.2 below. 

 

Figure 4.2 Flowchart of mining of EPs 

4.5.2.1 Preprocessing 

By definition [4], the EPs are patterns which having great differences in support values 

between different datasets.  In mining EPs from the data for the classification problem of 

cancer and normal tissues, the first step is to divide the dataset into partitions by using 
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available class labels, such as “cancerous” or “normal”.  The next step is to discretize each 

attributes, gene expression values, that are continuous in nature into intervals with entropy 

discretization before proceed.  Each interval of a gene expression values will be interpreted 

as an item in the data space in our pattern mining process later.   After the discretization 

process, we found that not all the genes that their values can be discretized into intervals 

with respect to those available class labels.  Those genes failed to be discretized are filtered 

out because they are considered as not discriminatory in distinguishing the cancerous and 

normal tissues.  In most of the case, the raw data consists of large number of attributes and 

there may be still quite a large number of attributes left after discretization process.  For 

example, there are 135 out of 2000 genes that can be discretized into 2 intervals and totally 

270 items can be encoded from the colon dataset [36].  However, 270 items are not a small 

number in pattern mining problem.  It always takes us a long time in the mining patterns 

and generates tons of resulting patterns.  Too many patterns found may not be good in 

most of the cases that it leads difficulties in any further analysis and applications.  

Therefore, optional selection process is advised before the mining process actually started.  

The entropy value obtained during the discretization process is then used to select the top-n 

most discriminatory attributes from the data.  In the colon dataset [36], 35 genes with 

smallest entropy value are selected because of they are the most discriminatory among 135 

discretized genes and 35 attributes would be more than enough for our problem.  

 

4.5.2.2 Mining emerging patterns by border based algorithms 

As mentioned in Section 3.2, mining emerging patterns are not feasible by using apriori 

based algorithms.  In this step, the border based algorithms introduced by Dong & Li [4, 37] 

are used.  In general, BORDER-DIFF [4] and MDB-LLBORDER [4] is most suitable 

partners that they can find out all the EPs with growth rate large than the user supplied 

threshold.  However, in terms of the clustering aspects, JEPs is always preferred since one 
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of the fundamental objectives of forming clusters is trying to maximize the dissimilarity 

between clusters and JEPs has growth rate equal to infinity which is highest in 

discriminatory power among all EPs.  In our framework, JEPs are used to form EPPCs 

because of its high discriminatory power and also obtaining JEPs by using border based 

algorithm HORIZON-MINER [37] and MDB-LLBORDER is more efficient.  As shown in 

the Figure 4.2, HORIZON-MINER is used to mine the frequent itemsets from every 

partition of dataset.  After that, MDB-LLBORDER use the output borders from 

HORIZON-MINER to perform the subtraction operation to obtain a JEP border.  Since the 

mining process in extracting JEPs by using border representation do not needed to perform 

enumeration and support counting for pattern candidates.  It is very efficient for the gene 

expression data that is high dimensional in nature. 

 

4.5.2.3 Postprocessing (optional) 

By using the border based algorithms, mining EPs or JEPs become feasible.  A border that 

contains all the EPs that their growth rate larger than the threshold are obtained.  There 

may be some cases to form emerging pattern based projected clustering under some 

constraints.  In order to select the desirable set of EPs for the next phase, the border of EPs 

may be first enumerated.  However, the number of EPs that we needed in next step is 

always small and we can use those EPs at the left boundary of border that has the highest 

occurrence and without undergo the enumeration process.  Therefore, this step is optional 

and it exists for the completeness of the framework only. 
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4.5.3 Phase 2: Forming EP-based projected clusters by EPPC 

algorithm 

In this phase, our goal is to form the EPPCs from the training data.  By using EP-based 

projected clustering (EPPC) algorithm, EPPCs are obtained.  Our proposed EPPC 

algorithm includes three phases that similar to [28], namely, initialization, iteration and 

refinement phase. 

 

In the initialization phase, its goal is to pick up the initial cluster seeds for the iteration 

phase.  In the iteration phase, data points are assigned to different clusters and projected 

dimension of those newly formed clusters are being evaluated.  Its goal is to improve the 

quality the set of clusters continuously until the user specified numbers of clusters are 

obtained.  Once a set of best cluster seeds is obtained after iterations, the refinement phase 

will start and all the data points will be reassigned to those cluster seeds obtained 

previously to form a set of final clusters.  The goal of refinement phase is to ensure the 

quality of clusters with best clusters’ center found in iterative phase.  The overviews of the 

EPPC algorithms are shown in Figure 4.3 and Figure 4.4.  The details of each phase are 

provided in the following sections. 
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Figure 4.3 Flowchart of the EPPC algorithm 
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Figure 4.4 The EPPC algorithm 

4.5.3.1 Initialization phase 

In this phase, the number of final clusters is defined by the users.  We randomly pick k0 

initial cluster seeds from the dataset, where k0 should be several times larger than k, and the 

projected dimensions of all initial seeds are initialized to the full dimensions of the dataset 

initially. 

 

4.5.3.2 Iterative phase 

The goal of the iteration phase is to improve the quality of the cluster seeds iteratively in 

order to find the best clusters.  There are three operations in this phase, namely, assignment, 

dimension projection and merging.  

 

For the assignment operation, there should be kc cluster seeds in the current iteration.  In 

this operation, the data points in the dataset are assigned to their closest seed.  We use the 

distance metric, such as City segmental distance or Euclidean distance, to measure the 

Algorithm EPPC (k0, k, E){Initialization phase Pick k0 > k initial cluster seeds randomly from the dataset; Set no. of current cluster to no. of initial cluster; for each cluster { Set the cluster dimension to full dimensionality } Iterative phase While no. of current cluster > user requirement { Assign the data points to the nearest cluster seeds; Determine the cluster dimensions associated to each cluster; Merge the closest clusters and obtain the new seed for the newly merged cluster; Update the no. of current cluster; } Refinement phase Reassign the data points to the set of good seeds obtained from iteration phase; Determine the cluster dimensions associated to each cluster; Return the projected clusters with cluster seeds, corresponding dimensions and data points; }  



 

distances between the data points and cluster seeds under those projected dimensions, i.e. 

the projected distance, ),,( iij DspPdist
rr . After the partitions are formed, the centroids of 

each partition are evaluated and they are used as the new seeds in the next iteration.  This 

procedure is illustrated in Figure 4.5 below.  

 

Figure 4.5 Data point assignment algorithm 

For the dimension projection operation, those partitions formed by the assignment 

operation consist of a set of data points.  In this operation, the projected dimensions of each 

projected cluster are evaluated by their own data points.  For each partition, we examine its 

data points and find those EPs embedded.  The user specified numbers of EPs that are most 

frequently occurred are chosen and the union dimension comprised in this set of EPs act as 

the set of projected dimensions for that particular partition.  This procedure is described in 

Figure 4.6.  

Algorithm Data_Point_Assignment {for each data point { for each cluster { Determine the projected distance between the data points and current seeds; } Add the data points to their nearest cluster; } Remove cluster from the set if it is empty; Set the centroids of those projected clusters as the new cluster seed;  Return the cluster seed and data set in projected clusters; } 

 

Algorithm Dimension_Projection {for each cluster { Find the user specified number of EPs that having mostfrequent occurrence among the data points in the cluster; Find the corresponding attributes that make up the corresponding set of EPs; Set the projected dimensions to that collections of attributes; } Return the dimensions for the projected clusters;  } 
56

 

Figure 4.6 Dimension projection algorithm 
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In the last operation, i.e. the merging operation, the closest pair of clusters is merged 

together to form a new cluster.  The clusters undergo this operation is obtained by 

evaluating the average distance between the union of data points and new cluster seed of 

merged clusters.  In short, the smaller the average distance, the closer the pair of clusters. 

The details of this operation can be found in Figure 4.7. 

 

Figure 4.7 Cluster merging algorithm 

4.5.3.3 Refinement phase 

Finally in the refinement phase, the resulting cluster seeds obtained from the iteration 

phase are then used to form the final clusters by assigning all the data points to them once 

again.  The goal of this phase is to ensure that all data points are assigned to the closest 

cluster seeds after the final cluster seeds are found.  The assignment operation and 

dimension projection operation shown in Figure 4.5 and Figure 4.6 are process once more 

time in this refinement phase. 

 

4.5.4 Phase 3: Using EP-based projected clusters 

In this phase, our first objective is to assign the class labels to those EPPCs formed in 

previous phase and our second objective is using the resulting EPPCs to solve the 

classification problem for the new data.   

 

Algorithm Cluster_Merging {for each pair of cluster { Find the closest pair of clusters from the set of existing clusters;  Merge the data points of the two clusters; Find the projected dimensions of the unified data points; Find the new seed of the unified data points; Evaluate the radius of the merged clusters; } Merge the closest pair of clusters such that the radius of the merged clusters is minimal; Return the set of new cluster seeds; } 
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In section 4.5.3.3, data instances are reassigned to the closest cluster seed to form EPPCs 

with best quality.  However, EPPC may consists of data points with different class labels 

and we have to deduce its class label before use.  The simplest way to assign the label to 

those resulting clusters is using class label of the majority of the data instances.  Although 

it is rare, there may be still some cases that the number of data instances with different 

class labels are the same.  In this case, we will compare the percentages of data instances 

for each class in the training dataset to make the final decision.  If it is still a problem in 

giving the label to a cluster, it will be labeled as unclassified. 

 

In the classification problem of tumor and normal tissues, we try to measure the projected 

distance between the new data instances and the centroids of our EPPCs.  The new data 

instance is assigned to the cluster with minimal projected distances and also the 

corresponding class label is assigned to it. 
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5 Simulation Results 

In this chapter, the performances of using EP-based projected clusters (EPPCs) are 

evaluated.  First of all, the potential of using EPPCs on the gene expression data is 

illustrated by comparing K-means clusters and EPPCs for colon cancer data.  Second, we 

compared our EPPCs with the projected clusters formed by state-of-the-art algorithm, 

ORCLUS, in classifying colon cancer data.  In these experiments, the powers of EPPCs, 

high classification accuracy and readability, on the bioinformatics problems are 

demonstrated.  Finally, we studied the performance of EPPCs with different cancer 

datasets and proved it can be applicable in cancer classification problem. 

 

5.1 Forming generic EP-based projected clusters 

In this experiment, we formed the generic EPPCs by using 1 EP in the dimension 

projection process.  The clustering error of 1-EPPCs are compared with k-mean clusters 

and we proved that projected clusters are more applicable for gene expression data that it is 

high dimensional in nature. 

 

5.1.1 Dataset and experimental settings 

The colon tumor dataset was collected by Alon et al [36] at Princeton University.  The 

dataset consists of 2000 gene expression values of 40 tumor and 22 normal colon tissues 

samples and it is publicly available at 

http://microarray.princeton.edu/oncology/affydata/index.html. Since the original dataset 

consists of 2000 gene expression values as attributes for total 62 samples and not all of 

those attributes are useful in separating samples into different classes, the dataset is first 

reduced its size by using the entropy discretization method provided by MLC++ [42].  The 



 60

entropy method finds a total of 135 significant genes that are relevant to classify samples 

into different classes and we pick the 35 top-ranked genes as mentioned in [43] to generate 

a reduced dataset.  In order to facilitate the study of the relationship between different gene 

expression values and the types of tissue, each gene expression value of the reduced 

dataset is normalized before they undergo the clustering process.  The mean of the 

normalized gene expression values is equal to zero while the standard deviation is equal to 

one.   

 

In this experiment, we report the clustering performance of our proposed EPPC algorithm.  

Different number of initial and final clusters combination are used and three most popular 

distance metrics, namely, Euclidean, City block and City segmental distance, are employed.  

All samples in the dataset are used in the experiments and the error of the resulting cluster 

is calculated as: 

dataset in samples of number Total
clusters  wrongin samples of NumberError Clustering =  

In order to minimize the effect from different initializations, each combination of 

experiment settings was simulated 50 times and the average error rate is listed in Table 5.1-

Table 5.3 in following section. 

 

5.1.2 Clustering performance 

5.1.2.1 Clustering error of EPPCs 

According to our experimental result shown in Table 5.1 - Table 5.3, the City segmental 

distance gives the smallest cluster errors in general.  It was observed that in every final 

cluster, the number of projected dimensions varies due to different EPs being used in 

projections. Thus, the smaller the clustering error means the better clustering subspaces 

were identified.  Moreover, there is a most significant decrement in clustering error as a 
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result of increasing the number of final clusters from 4 to 8.  It is because there may have 

quite a number of sources causing the cancer to develop. In our clustering context, there 

may be more than two natural clusters exist in those gene expression data and using 8 final 

clusters gives a much better result than using 4. It suggested that the number of natural 

clusters may between 4 and 8.  When the number of the final clusters is larger than the 

number of natural clusters available in the data, any further increase in the number of final 

clusters may not be so important and thus the improvement in the clustering error becomes 

limited.  Although we only have two class labels obtained from the microarray experiments, 

we can guess the number of natural clusters from our clustering results and such kind of 

information is potentially useful in providing some directions for further biological studies. 

Table 5.1 Clustering error based on Euclidean distance 

Final Cluster Num. 

. 4 8 12 16 20 24 28 32 
8 0.221 0.135       
16 0.249 0.167 0.152 0.110     
24 0.243 0.165 0.151 0.135 0.140 0.095   
32 0.272 0.177 0.136 0.135 0.113 0.122 0.123 0.084 In

iti
al

 C
lu

st
er

 N
um

 

40 0.257 0.174 0.137 0.116 0.103 0.092 0.102 0.096 

Table 5.2 Clustering error based on City Block distance 

 

Final Cluster Num. 

. 4 8 12 16 20 24 28 32 
8 0.288 0.129       
16 0.304 0.230 0.222 0.107     
24 0.311 0.233 0.213 0.206 0.198 0.092   
32 0.284 0.240 0.197 0.182 0.177 0.166 0.162 0.080 In

iti
al

 C
lu

st
er

 N
um

 

40 0.318 0.237 0.199 0.170 0.154 0.145 0.138 0.114 

 

Table 5.3 Clustering error based on City Segmental distance 

Final Cluster Num. 

. 4 8 12 16 20 24 28 32 
8 0.195 0.129       
16 0.188 0.157 0.141 0.107     
24 0.193 0.152 0.136 0.120 0.117 0.093   
32 0.209 0.167 0.143 0.123 0.114 0.100 0.089 0.076 In

iti
al

 C
lu

st
er

 N
um

 

40 0.197 0.169 0.147 0.119 0.096 0.085 0.076 0.074 
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5.1.2.2 Clustering Error of k-mean clusters 

In order to demonstrate the effectiveness of the EPPC algorithm, the K-means algorithm 

implemented by a public domain package called NetLab3.2  was used to cluster the same 

set of reduced colon data that is used in previous experiment.  Again, the simulation was 

repeated for 50 times for each individual setting. As shown in Table 5.4, the performance 

of the K-means algorithm is not as accurate as ours.   

Table 5.4 Clustering error using k-means algorithm 

Cluster Num. 

8 16 24 32 

A
vg

 E
rr

or
 

0.321 0.270 0.233 0.190 

 

5.2 Classification using m-EPPCs 

In this set of experiments, we divided the dataset into two partitions for training and testing.  

Projected clusters are formed with different combination of projected dimension numbers, 

initial and final cluster numbers.  The classification accuracies of ORCLUS projected 

clusters and EPPCs on unseen testing data are examined and their performances are 

detailed in the following sections. 

 

5.2.1 Dataset and experimental setting 

We also employed the colon tumor dataset collected by Alon et al [36] at Princeton 

University, the details of the dataset and its preprocess steps can be found in Section 5.1.1.  

In the following experiments, we report and compare the classification performances of 

those projected clusters generated by our EPPC algorithm and ORCLUS [28].  Initially, a 

specified portion of tumor and normal samples are randomly selected and used as the 

training dataset to generate projected clusters.  Then, the rest of the records act as testing 
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samples and they are assigned to those resulting projected clusters accordingly.  

Measurement of the classification accuracy is defined below. 

samples testing of number Total
clusters correct in samples testing of No.accuracy tionClassifica =  

In order to minimize the effect of initial points and ordering problems in clustering, we 

repeated every experiment for 50 times for different number of initial clusters and final 

clusters, with training and testing samples that selected and ordered randomly. 

 

5.2.2 Classification performance 

5.2.2.1 ORCLUS projected clusters 

In this experiment, we studied the classification performance of ORCLUS projected 

clusters.  The focus of this experiment is on the effects of ORCLUS projected clusters with 

different number of projected dimensions and their performance in classification for the 

colon dataset [36].  We implemented ORCLUS and used Euclidean distance as a distance 

metrics by following the methodology in [28].  Each projected dimension is equivalent to 

one principal component of the covariance matrix of the datasets.  The details of the 

dimension projection mechanism are available in [28].  In this test, we use 70% of samples 

(43 samples with 28 tumor tissues and 15 normal tissues) from the dataset as training data 

and choose the number of principal components (l) that we are interested in to 1, 5, 10, 15, 

16, 17, 18, 19, 20 and 35.  The averaged classification accuracy of those 50 repetitions 

respect to different number of initial clusters and final clusters are studied.  

 

From the experiment results, we found that the relationship between the classification 

accuracy and number of projected dimensions are similar among different of number of 

initial clusters.  For example, Figure 5.1 and Figure 5.2 are the summaries of the 
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experimental results in different number of initial clusters and they give the similar 

tendency in classification performances.    
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Figure 5.1 Classification accuracy of ORCLUS projected clusters (Initial cluster = 40) 
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Figure 5.2 Classification accuracy of ORCLUS projected clusters (Initial cluster = 32) 

 



 65

Figure 5.1 summarized the experiment results with the number of initial clusters equal to 

40 is employed to demonstrate the variation in classification performances of projected 

clusters with different number of projected dimensions in the followings.  We found that if 

we used less than 15 principal components as projected dimensions to form ORCLUS 

projected clusters.  The resulting clusters give relatively low classification rate for those 

testing samples in cancer detection.  By increasing the number of the projected dimensions 

from 1 to 15, the classification accuracy of those projected clusters are increased 

significantly as shown in the Figure 5.1.  In the case of more than 15 principal components 

are used, the classification rate is much higher in general but the improvements in terms of 

the classification accuracy by further increasing the number of projected dimensions are 

flattened.  The reason is that the increase the number of projected dimensions will increase 

the volume of information extracted form the training data and form more reliable clusters, 

thus the higher classification rates are obtained in general when the numbers of projected 

dimensions are increased.  But if the number of projected dimensions reaches the optimal, 

any further increment of projected dimensions will not introduce relevant information.  

Besides, it will introduce additional distance between the testing samples and the projected 

clusters’ centers and it may cause the distance between the testing samples and those 

cluster centers become too close to distinguish from the most desirable cluster and affected 

the classification accuracy.  It is referred as curse of dimensionality problem in literature 

[28]. 

 

We can deduce the optimal number of projected dimensions with respect to different 

number of final clusters from Figure 5.1.  According to our experiment results, if the 

number of final clusters is smaller than 24, the projected clusters formed by 35 principal 

components give the highest classification rate.  However, projected clusters generated by 

20 principal components give the highest classification accuracy when the number of final 
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clusters are larger than 24.  It is explainable that the smaller in the number of the final 

clusters, cluster centers are far away to each other.  The distance between those testing 

samples and different resulting projected cluster centers are always in greater differences.  

Therefore, the higher dimensionality may not degrade the classification accuracy very 

much and the additional dimensions may give more relevant information for the testing 

samples to distinguish the correct clusters from the rest of undesired clusters.  That is the 

reason for those projected clusters with higher dimensionality classified those testing 

samples better if the number of final clusters is small.   If the number of projected clusters 

increased, the distance between them decreased.  The negative effects of increasing 

dimensionality of the projected clusters overwrite its benefits and then the drop in 

performance occurred.  That is the reason why projected clusters with 20 dimensions give 

higher classification rate when compare with projected clusters with 35 dimensions if the 

number of clusters larger than 24 in Figure 5.1. 

Since our reduced dataset consists of 35 dimensions, the projected clusters with 35 

dimensions do not provide any advantages in dimensional reduction aspect and it may not 

very interesting for further studies.  However, the classification accuracy of projected 

clusters with 20 and 15 projected dimensions is very close to those projected clusters with 

35 projected dimensions as shown in Figure 5.1 and they are more applicable in real 

applications.  In Figure 5.3, we provide a detail investigation to the classification 

performances of those projected clusters with 15 to 20 dimensions.  In terms of 

classification accuracy, we cannot found an optimal number of dimensions easily from 

Figure 5.3 that can outperform the others in cancer detection.  Since the differences in 

classification rate between those projected clusters as shown in Figure 5.3 is very small.  

We use the classification rate of projected clusters consists of 17 projected dimensions as 

representative, as shown in Table 5.5, for comparison purpose in the rest of the paper, 

because its performance is generally good in different number of final clusters. 
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Figure 5.3 Classification accuracy of ORCLUS projected clusters (Initial cluster = 40) 

Table 5.5 Classification accuracy of ORCLUS projected clusters 

 (No. of PC = 17; 70% training data) 

Final Cluster Num. 

. 4 8 12 16 20 24 28 32 36 40 

8 0.846 0.838         

16 0.844 0.841 0.819 0.809       

24 0.833 0.845 0.843 0.807 0.815 0.796     

32 0.829 0.833 0.815 0.814 0.799 0.799 0.804 0.783   

In
iti

al
 C

lu
st

er
 N

um
 

40 0.819 0.841 0.837 0.813 0.788 0.786 0.801 0.805 0.791 0.780 

 

5.2.2.2 EPPC projected clusters 

In this experiment, we study the effect of using different number of EPs to generate m-

EPPCs by our proposed EPPC algorithm on the performance of the classification.  We also 

used Euclidean distance as a metrics for the m-EPPC to obtain projected clusters in order 

to compare with ORCLUS.  In this test, we employ the same set of training and testing 

samples that we used in previous experiment, i.e. 70% of samples from the dataset are 

selected and ordered randomly for training. Sets of EPs, consists of total 1, 3, 5, 6, 7, 8 and 

10 EPs, are used to generate projection dimensions for the projected clusters in different 
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sets of experiments and the average classification accuracy of those 50 repetitions are 

studied with different number of initial clusters and final clusters.  

 

According to the experimental results, the relationship between the classification rate and 

the number of EPs used for dimension projection in EPPC is similar among different 

number of initial clusters and we used the Figure 5.4 with 40 initial clusters for illustration.  

Figure 5.4  shows the classification accuracy of emerging pattern based projected clusters 

(m-EPPCs) and we found that if only one EP is used to generate the projected clusters, the 

classification rate such 1-EPPCs are not good enough when compared with 3-EPPCs and 

other m-EPPCs (1<m≤10) in any number of final clusters.  The major reason is that a 

single EP is unlikely to be adequate to capture all the significant dimensions that should be 

included in desired projected clusters.  In most of the cases, using set of EPs to generate 

projected clusters can include more relevant and significant attributes and thus they always 

obtain higher classification rate as shown in our results. In general, more EPs used in 

generating projected clusters, the higher the classification accuracy can be obtained.  In 

Figure 5.4, we can observe this trend by considering the improvement of classification 

performance from 1-EPPCs to 5-EPPCs.  However, the situation becomes messy when the 

number of EPs used is more than 5. 5-EPPCs, 7-EPPCs and 10-EPPCs give the optimal 

classification accuracy in different number of final clusters but when the number of final 

clusters is smaller than 24, 10-EPPCs give better results and 5-EPPCs give the best 

classification rate when the number of final cluster is larger than 24.  These findings are 

very similar to the results obtained in the previous set of experiments about the ORCLUS 

projected clusters studies. That is the limited number of final clusters mean the distance 

between them are larger and clusters with higher dimensionality may give results that 

better than the lower dimensional clusters.  In these studies, they proved that the dimension 



 69

projection by using EPs is reasonable since the experimental results obtained by m-EPPCs 

can be explained thoroughly by principles of clusters’ dimensionality.  
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Figure 5.4 Classification accuracy of EPPC projected clusters (Initial cluster = 40) 
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Figure 5.5 Classification accuracy of EPPC projected clusters (Initial cluster = 40) 

It is interesting that the classification rates obtained by 1-EPPCs are especially low when 

the number of final clusters either very small or very large.  Its shape in Figure 5.4  shows 

that it is totally different from the others m-EPPCs.  The reason behind is that if the 
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number of final clusters are limited, the set of projected clusters that generated by single 

EP are not enough to capture the real world since single EP can only provide limited 

information for the projected dimensions.  On the other hand, if there are too many final 

clusters, some of clusters’ projected dimensions will be very similar because similar EPs 

are likely to be employed in the generation of projected dimensions and those similar 

clusters with relatively smaller inter-cluster distance may not distinguish the samples 

accurately. 

 

From Figure 5.4, we found that the projected clusters generated by set of EPs with a 

number of used EP larger than 5 give very impressive classification rates in different 

number of final cluster.  In Figure 5.5, we take a closer look to the classification accuracy 

from 5-EPPCs to 10-EPPCs.  5-EPPCs give the best classification result when the number 

of final cluster is larger than 24 but it does not perform well if the number of final cluster is 

less than 24.  10-EP project clusters perform similarly in opposite manner.  However, 7-EP 

projected clusters perform well in all combination of final clusters generally and it is used 

as the representative in the comparative studies between ORCLUS projected clusters and 

m-EPPCs.  The performances of 7-EPPCs in different environments are summarized in 

Table 5.6.  

Table 5.6 Classification accuracy of 7-EPPC projected clusters (70% training data) 

Final Cluster Num. 

. 4 8 12 16 20 24 28 32 36 40 

8 0.852 0.838         

16 0.839 0.823 0.807 0.807       

24 0.857 0.834 0.815 0.804 0.798 0.807     

32 0.844 0.829 0.822 0.826 0.816 0.802 0.803 0.823   

In
iti

al
 C

lu
st

er
 N

um
 

40 0.852 0.822 0.819 0.817 0.817 0.800 0.799 0.815 0.829 0.836 
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5.2.2.3 Comparative studies on ORCLUS and EPPC 

In above experiments, we have examined the performances of ORCLUS projected clusters 

and m-EPPCs in the classification problem.  Moreover, we have selected one 

representative from both technologies that have generally good performance in most of the 

examined conditions for comparison.  They are the projected clusters with 17 principal 

components as projected dimensions obtained by ORCLUS and projected clusters with 

projected dimensions generated by set of 7 EPs with EPPC.   

 

Their performances in classification respected to different combinations of initial and final 

clusters number are compared and shown in the Table 5.6.  The bolded entries in Table 5.6 

are the experimental results that 7-EPPCs give a better performance when compare with 

ORCLUS projected clusters with 17 projected dimensions in Table 5.5.  We found that the 

performance of 7-EPPCs obtained from our proposed EPPC algorithm is slightly better 

than the representative ORCLUS projected clusters.  We got 16 cases out of 30 that give 

better classification accuracy.   

Table 5.7 Summary of ORCLUS and EPPC 

 ORCLUS EPPC 

Use of class label (domain knowledge) No Yes 

User inputs 

No. of final cluster 

No. of principal component for dimension 

projection 

No. of final cluster 

No. of EPs for dimension projection 

Dimension projection Using principal component Using EPs 

Individual set of dimensions for each cluster Yes Yes 

Projected dimension Linear combination of all existing attributes Collection of attributes 

No. of projected dimension for each cluster Same in each cluster Vary in different clusters 

Classification accuracy High High 

Readability Bad Good 
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In addition to the classification power, other differences between ORCLUS and EPPC are 

summarized in Table 5.7.  The major difference of EPPC is that it utilized the information 

in predefined classes, domain knowledge, which always available in gene expression data 

but ORCLUS do not make use of it.  In the readability aspect, the result clusters’ projected 

dimension of EPPCs are more easy to interpret.  Further discuss on readability are 

available in later section. 

 

5.2.2.4 Readability – projected dimensions of resulting projected clusters 

In traditional clustering algorithms, the resulting clusters only provide information on those 

data points that are said to be similar under a predefined distance metric.  Most of the 

distance metrics, such as Euclidean distance, are geometrically meaningful with respect to 

the full dimensional data space.  But it is questionable to group data points in meaningful 

clusters [5, 28] and it would be very difficult for users to interpret when the number of 

dimensions of data is large. 

 

Projected clustering works on a step further and it provides flexibility to individual clusters 

in having their own set of dimensions that they are significant to group the data points.  

More meaningful clusters can be formed in different subspaces instead of using the full 

data space and it successfully tackled the curse of dimensionality problem.  ORCLUS use 

the principal components generated from the covariance matrix of data as the projected 

dimensions of its projected clusters.  In our previous experiment, we show that ORCLUS is 

powerful to form projected clusters and those resulting clusters are applicable in the cancer 

detection (classification) with high classification accuracy.  However, those projected 

dimensions in terms of principal components are not easy to interpret by users, especially 

for the biologists.  A sample of tumor cluster with 5 projected dimensions is shown in 
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Table 5.8.  Each dimension of ORLCUS projected clusters is equivalent to a column in 

Table 5.8.  Each projected dimension can be interpreted as a linear combination of 35 

original dimensions in reduced dataset and they are never easy for user to interpret. 

Table 5.8 Sample Tumor cluster - 5 dimensions projected cluster generated by ORCLUS 

Gene No. D1 D2 D3 D4 D5 
M26383 0.097 0.239 -0.062 -0.030 0.051 
M63391 -0.224 0.013 -0.277 -0.026 -0.074 
R87126 0.163 -0.142 0.094 -0.017 0.300 
M76378 -0.202 -0.053 0.551 0.064 -0.188 
H08393 0.037 0.015 -0.040 0.002 0.025 
X12671 0.077 0.034 0.011 -0.013 -0.029 
R36977 -0.021 -0.051 -0.023 -0.017 -0.009 
J02854 -0.011 0.271 0.065 -0.111 0.270 
M22382 -0.012 -0.056 -0.114 0.010 -0.020 
J05032 0.008 0.090 0.170 -0.013 -0.022 
M76378 -0.157 0.040 0.029 0.068 -0.105 
M76378 -0.055 0.052 -0.341 0.088 -0.090 
M16937 -0.034 0.073 0.114 -0.018 -0.088 
H40095 -0.012 -0.027 -0.309 0.003 -0.031 
U30825 0.107 0.073 0.103 -0.080 0.090 
H43887 -0.112 -0.084 -0.124 -0.046 -0.169 
X63629 0.036 -0.030 0.162 0.029 -0.114 
H23544 0.195 -0.084 -0.176 -0.027 -0.167 
R10066 -0.060 -0.085 0.145 0.011 -0.077 
T96873 0.045 -0.018 0.268 -0.033 0.035 
T57619 0.001 0.253 -0.008 -0.034 0.015 
R84411 0.147 0.110 0.003 -0.035 -0.254 
U21090 -0.231 -0.336 -0.272 -0.083 0.425 
U32519 -0.238 -0.396 0.086 -0.031 0.026 
T71025 0.076 -0.120 0.167 -0.063 0.461 
T92451 -0.169 -0.140 0.044 -0.052 -0.239 
U09564 0.422 0.229 -0.048 0.024 0.067 
H40560 0.177 -0.245 -0.155 -0.021 -0.055 
T47377 -0.123 0.192 -0.007 -0.042 0.209 
X53586 -0.064 0.013 0.047 -0.179 0.125 
U25138 0.340 -0.070 -0.076 0.011 -0.192 
T60155 0.178 0.119 0.009 -0.057 0.167 
H55758 -0.024 -0.030 -0.012 -0.080 -0.092 
Z50753 -0.474 0.493 -0.106 0.016 0.028 
U09587 0.001 -0.011 0.000 0.946 0.145 

 

Our EPPC algorithms formulate projected clusters by using the discrimination power of the 

emerging patterns.  In previous experiments, we showed that EPPC can form reliable 

projected clusters and those resulting clusters are also applicable in cancer detection 

problem.  The classification accuracy of EPPC is comparable or even better than ORCLUS 

in some situations.  More important is that the projected clusters formed by EPPC are just 

collections of attributes.  They are easy to interpret by the users.  Three samples of EPPCs 

are extracted and shown in Table 4.1 previously.  In that example, it is not difficult to 



 74

understand that cluster 2 consists of 6 cancerous tissues that those tissues samples are 

similar in gene expression values with respect to two suspecting gene M76378 and T47377. 

 

5.3 More classifications using n-EPPCs 

In this section, we used different cancer gene expression datasets to evaluate the 

performance of m-EPPCs in cancer classification problem.  Again, we tested projected 

clusters for classification with different combinations of projected dimensions, initial and 

final clusters.  In addition to above three parameters, we also test m-EPPCs with different 

size of reduced datasets that having different number of selected attributes.  The 

classification accuracies of state-of-art ORCLUS projected clusters are used to compare 

with m-EPPCs. 

 

5.3.1 Datasets and experimental settings 

In this set of experiments, we experiment three more gene expression data are employed 

together with the colon tumor [36] mentioned in previous section.  They are ALL-AML 

leukemia [44], ovarian [45] and lung [46] cancer data and their details are list in Table 5.9.  

Initially, data sources that are not predefined into two partitions with be first divided with 

70% of instances as training data and the rest of instances are identified as testing data.  

Then, entropy discretization method [42] provided by MLC++ is applied to the training 

dataset.  The entropy method finds sets of significant genes that are most relevant to 

classify those training samples and we pick different number of top-ranked genes 

(attributes) with smallest entropy values to form reduced datasets with different size for 

our experiments.  Value of reduced datasets is being normalized and the mean of 

normalized gene expression values is equal to zero and standard deviation is equal to one.  
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Finally, the testing dataset is also reduced its size with those selected top-ranked genes and 

normalized with values obtained in training samples. 

Table 5.9 Cancer gene expression data details 

No. of instance 
Cancer type 

No. of 

class 

Predefined training 

and testing partition Training Testing Total 

No. of 

attributes 

ALL-AML 2 Yes 
27 (ALL) 

11 (AML) 

20 (ALL) 

14 (AML) 

38 (training) 

34 (testing) 
7129 

Colon 2 No 
28 (negative) 

15 (positive) 

12 (negative) 

7 (positive) 

43 (training) 

19 (testing) 
2000 

Lung 2 Yes 
16 (MPM) 

16 (ADCA) 

15 (MPM) 

134 (ADCA) 

32 (training) 

149 (testing) 
12533 

Ovarian 2 No 
64 (normal) 

113 (cancer) 

27 (normal) 

49 (cancer) 

177 (training) 

76 (testing) 
15154 

 

In the following experiments, we report the classification performance of our m-EPPCs 

and ORCLUS projected clusters.  Four cancer data are used to demonstrate the usefulness 

of above projected clustering techniques in solving cancer classification problem.  Reduced 

dataset with different number of available attributes are used to generate projected clusters 

with different combinations of the number of initial, final clusters and number of projected 

dimensions.  The measurement of classification error we use here is similar to Section 

5.1.1. 

samples testing of number total
clusters  wrongto assigned samples testing of No.error tionClassifica =  

Again, 50 repeated experiments with training and testing samples that selected and ordered 

randomly are used to minimize the effect of initial points and ordering problems occurred 

in clustering. 
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5.3.2 Classification performance 

In this set of experiments, we studied the classification performance of ORCLUS and 

EPPC projected clusters for different cancer gene expression data.  We first focus on the 

classification performance of EPPC under different size of reduced datasets.  Then, we also 

evaluated classification performance with the relationship between different size of 

reduced datasets and different number of EPs used in dimension projections selectively.  In 

order to minimize the bias in comparison, the performances of different sizes of reduced 

datasets are being evaluated by using the average classification error obtained from 

experiments using different combination of three experimental parameters.  They are the 

number of projected dimensions of projected clusters, the number of initial clusters and the 

number of resulting final clusters.  The performance of EPPC is compared with the state-

of-art projected clustering techniques ORCLUS. 

 

5.3.2.1 Different size of reduced dataset 

Before the classification take place, it is often to reduced size of dataset to improve the 

performance in terms of speed and accuracy.  In previous classification experiment of 

colon tumor dataset [36], we use a reduced dataset with top-35 ranked genes (attributes) 

obtained by entropy discretization method [42].  The reason for us to select 35 top-ranked 

genes is influenced by the works of Li [35, 43].  In those literatures, they have shown that 

reduced dataset with 35 top-ranked genes are well performed to classify the colon data [36].  

However, different datasets may require different size of the reduced datasets to obtain 

optimal solutions.  In this section, we analyze the classification performance of ORCLUS 

and m-EPPCs with reduced datasets contain 20, 30, 35, 40 and 50 top-ranked genes. 
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In comparing the classification error with different number of attributes of the reduced 

dataset for ORCLUS and m-EPPCs, we take the mean of classification error with different 

possible combinations of the number of initial, final clusters and projected dimensions.  

The possible testing combinations of these three parameters are listed in Table 5.10 below.   

Table 5.10 Possible combinations of testing parameters 

 No. initial clusters No. of final clusters No. of projected dimension / EP 

ORCLUS 8, 16, 24, 32 4, 8, 12, 16, 20, 24, 28, 32 5, 10, 15, 20, 25, 30, 40, 50 

EPPC 8, 16, 24, 32 4, 8, 12, 16, 20, 24, 28, 32 5, 10, 15, 20, 25, 30, 40, 50  

 

According to our experiment results, we found that the optimal numbers of attributes in 

reduced datasets for those cancer datasets are not the same.  In Figure 5.6, the experimental 

results of cancer classification with ORCLUS and EPPC projected clusters are shown.  We 

observed that there is an increase in classification error with increasing the number of 

attributes in reduced dataset of ALL-AML.  It suggested that the optimal number of 

attributes for ALL-AML reduced dataset should be less than 20.  It is because additional 

attributes that are not useful in classifying data instances will increase the additional 

distance between them and finally cause the curse of dimensionality problem and lower 

down the classification accuracy.  Classification of colon and lung cancer datasets are 

performing the best with 35 top-ranked attributes used and the optimal number of attributes 

for ovarian cancer classification is found to be 40 according our experiment results.  These 

3 datasets show a drop in classification error when increasing the number of top ranked 

attributes from 20 to their own optimal value and finally classification error increased 

again with additional attributes are used.   
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Figure 5.6 Classification error (mean) - different size of reduced dataset 

In Figure 5.6, the experimental results of classification with EPPC are also shown.  The 

shapes of the classification error curves that we have obtained are very similar to the line 

for ORCLUS.  It proved that EPPC can also applicable to cancer classification like 

ORCLUS.  It is interesting that the optimal number of attributes for the classification 

problem may not exactly the in those tested datasets.  The major reason is that the 

dimension projection of EPPC and ORCLUS are not the same, they are using emerging 

patterns and principal components respectively, and therefore the number of attributes 

needed for forming reliable clusters may not be the same.  These optimal numbers are 

datasets dependent and they are not predictable.  Our experimental results have just show 

the approximation with limited data instances for problem space of these 4 cancer datasets.  
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In terms of the further knowledge discovery, the small the number of attributes needed in 

EPPC is likely to be beneficial.  It is because the more the attributes we used, it will be 

more difficult for user to interpret for most of the cases.  In Figure 5.6, the colon and 

ovarian dataset for EPPC are shown with the top-20, top-30 and top-35 reduced dataset 

only.  The reason is that EPPC is now bottlenecked at the generation of EPs from data.  

Increase of attributes of dataset is still expensive in the process of EPs generation.  In terms 

of classification error, these tested reduced datasets have already outperformed ORCLUS 

with all tested reduced dataset (for classification error, see Table 5.11 and Table 5.12 for 

details).  Therefore, the further investigations with top-40 and top 50 reduced datasets are 

neglected here. 

Table 5.11 ORCLUS Classification performance with different size of reduced dataset 

Classification error (ORCLUS)  Dataset Size of reduced 

dataset Max Min Average  

ALL-AML Top 20 0.2865  0.0294  0.1010   

 Top 30 0.2994  0.0359  0.1099   

 Top 35 0.3171  0.0465  0.1307   

 Top 40 0.3029  0.0371  0.1222   

 Top 50 0.3288  0.0535  0.1416   

Colon Top 20 0.3126  0.1484  0.2085   

 Top 30 0.3137  0.1421  0.2040   

 Top 35 0.2716  0.1379  0.1980   

 Top 40 0.3032  0.1305  0.1996   

 Top 50 0.3095  0.1463  0.2079   

Lung Top 20 0.4161  0.1544  0.2328   

 Top 30 0.3670  0.1007  0.1669   

 Top 35 0.2836  0.0847  0.1519   

 Top 40 0.3490  0.0871  0.1580   

 Top 50 0.3624  0.0819  0.1742   

Ovarian Top 20 0.2729  0.0208  0.1010   

 Top 30 0.2571  0.0168  0.0802   

 Top 35 0.2600  0.0192  0.0815   

 Top 40 0.2661  0.0100  0.0605   

 Top 50 0.3008  0.0121  0.1010   
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Table 5.12 EPPC Classification performance with different size of reduced dataset 

Classification error (EPPC) Dataset Size of reduced 

dataset Max Min Average 

Orclus (Average) – 

EPPC (Average) 

ALL-AML Top 20 0.1906  0.1394  0.1562  -0.0552 

 Top 30 0.2141  0.1465  0.1686  -0.0587 

 Top 35 0.2006  0.1459  0.1653  -0.0346 

 Top 40 0.1882  0.1400  0.1590  -0.0368 

 Top 50 0.2171  0.1076  0.1511  -0.0095 

Colon Top 20 0.2221  0.1389  0.1871  0.0214 

 Top 30 0.2432  0.1389  0.1777  0.0263 

 Top 35 0.2253  0.1368  0.1720  0.026 

 Top 40 NaN NaN NaN NaN 

 Top 50 NaN NaN NaN NaN 

Lung Top 20 0.3368  0.1651  0.2348  -0.002 

 Top 30 0.3672  0.0340  0.1537  0.0132 

 Top 35 0.3934  0.0695  0.1949  -0.043 

 Top 40 0.4217  0.0443  0.1994  -0.0414 

 Top 50 0.4166  0.0554  0.1987  -0.0245 

Ovarian Top 20 0.0737  0.0213  0.0360  0.065 

 Top 30 0.0671  0.0208  0.0339  0.0463 

 Top 35 0.0616  0.0221  0.0339  0.0476 

 Top 40 NaN NaN NaN NaN 

 Top 50 NaN NaN NaN NaN 

 

In general, we found that EPPC and ORCLUS both are very close in classification 

performance as shown in Table 5.11 and Table 5.12.  The differences between the 

classification error is just around 5% and for those classification rate that EPPC outperform 

the ORCLUS are bolded in Table 5.12.  We found that EPPC outperform the ORCLUS in 

colon and ovarian cancer data on average.   

 

5.3.2.2 Different number of projected dimensions / EPs 

In Section 5.2.2, we mentioned that the influences of initial clusters number for both 

ORCLUS and m-EPPCs are not that great if its value is larger than the number of nature 
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clusters and we have also analyzed the relationship between the numbers of projected 

dimensions with the numbers of final clusters.  In previous section, we found that m-

EPPCs have comparable performance with ORCLUS or even outperform ORCLUS in 

some of the datasets.  In this section, we focus on the relationship between the numbers of 

projected dimension and the sizes of reduced dataset with respect to the classification error. 

 

According to our experiment results, we observed that there are some differences between 

ORCLUS and m-EPPCs under those situations with different combinations of Top-n 

reduced datasets and Top-n of projected dimensions.  In Table 5.11 and Table 5.12, they 

show that the performance of ORCLUS for lung cancer dataset are slightly better than our 

m-EPPCs around 0.2%-4% with different sizes of reduced datasets and it shows that the 

ORCLUS under the larger size of reduced datasets, such as Top-35 and Top-40 cases, 

perform even better.  In Figure 5.7, it shows the details in classification errors for both 

ORCLUS and EPPC with different sizes of reduced dataset against the number of 

projected dimensions separately.  In general, we observed that with small number of 

projected dimensions, the performance of ORCLUS is better than EPPC, it is because the 

projected dimensions of ORCLUS are principal components that are the linear 

combinations of attributes in reduced datasets and normally each of them may likely to 

embed more information than an emerging pattern that is just a collection of few attributes.  

It is the major reason for ORCLUS gives better performance in the environment with small 

number of projected dimensions.  While the number of projected dimension increased, the 

unions of EPs show their power in embedding discriminative information by providing 

much lower classification error in all tested reduced dataset of lung cancer data.  Since the 

maximum principal components of ORCLUS are equivalent to the number of attributes in 

reduced dataset, we only compare performance of ORCLUS and EPPC with the same 

number of projected dimension and the majority of cases we compared are low in the 
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number of projected dimensions.  Therefore, the averaged classification error of m-EPPC 

for lung cancer dataset that shown in Table 5.11 and Table 5.12 is a little bit higher than 

ORCLUS.  In Figure 5.7, we also found that the more the information for a clusters may 

not be a good news all the time in general.  From those ORCLUS lines in Figure 5.7, they 

generally got a U-shape.  It is because the classification accuracies are improved from not 

enough dimensions to an optimal point and they drop again when suffering the curse of 

dimensionality problem that caused by considering too many dimensions in ORCLUS.  

However, the EPs are collection of attributes in those reduced dataset, the union of EPs 

may not actually increase the number of dimension used all the time.  Therefore, the 

classification performance of EPPC is much more stable in lung cancer that shown in 

Figure 5.7 with a L-shape.   

 

Since the numbers of projected dimensions we choose to solve the classification problems 

are critical to the performance, it would be valuable if we can obtain a magic number in 

advance.  However, it is data dependent and unpredictable in nature.  We can only obtain it 

by some intelligent trial-and-error manner expensively [28].  Therefore, EPPC is more 

applicable to many problems since it is less sensitive to the available attributes in datasets 

and the number of projected dimensions that we choose. 
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Figure 5.7 Classification error of Lung  

(Top-n reduced dataset v.s. Top-n projected dimension) 
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Figure 5.8 Classification error of ALL-AML  

(Top-n reduced dataset v.s. Top-n projected dimension) 

n Figure 5.8, we plot the classification error of the ALL-AML dataset.  We found that m-

PPC is very stable in its classification performances and increases in number of projected 

imension only improve the performance slightly.  On the other hand, ORCLUS seems not 
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worked as stable as EPPC, but it outperform EPPC algorithm in most of the cases with 

enough number of projected dimensions.  The major reason of above findings is caused by 

the nature of those extracted EPs in ALL-AML dataset.  We extracted large number of EPs 

with high occurrence in dataset but the portion of high occurrence EPs used in our 

experiments are not that large when comparing with experiments of lung cancer.  Every 

EPs is a piece of knowledge extracted from the datasets and the top-m EPs that we selected 

are the most relevant knowledge for our problem.  For ALL-AML dataset, it seems quite 

difficult to select out most significant, appropriate descriptions for the dataset without 

serious information lost and thus top-m EPs that we employed is limited in solving the 

problems.  For lung cancer dataset, we got enough knowledge with top-m selected EPs 

with insignificant information lost.  The usage details of mined EPs for these two datasets 

are shown in Table 5.13 for reference.  In Figure 5.9 - Figure 5.11, we try to illustrate 

above hypothesis by introducing additional EPs in running EPPC for some of the ALL-

AML reduced datasets and compared its performance with ORCLUS.  We found that the 

extra EPs increased the portion of the use of high occurrence EPs in different amounts in 

Top-20, Top-30 and Top-35 reduced datasets respectively and the classification results 

show significant improvements.  For example, in the case of Top-20 reduced dataset of 

ALL-AML, the EPPC gives comparable performance with ORCLUS. 

 

On the other hand, the complicated principal components representations always do a 

better job in ALL-AML dataset.  It is because the space described by principal components 

can be interpreted as the transformation of feature space and the information of the datasets 

are concentrated in those top ranked of components.  Therefore, using small numbers of 

top ranked principal components are always good enough for the problem and 

improvements by further increasing the number of projected dimensions in ORCLUS are 

not as significant as EPPC.   
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One interesting points that we found from the results of ALL-AML experiments is that 

when very small number of projected dimensions are used.  EPPC outperforms ORCLUS 

and it is very likely that EPPC can be identified most relevant knowledge from the dataset 

successfully. 

Table 5.13 Percentage of high occurrence used in previous experiments 

Dataset Size of reduced 

datset 

Total no. of EPs High Occurrence EPs  Max % of high occurrence EPs used in 

expt. shown in Figure 5.7, Figure 5.8 

ALLAML Top20 81 81 24.69% 

 Top30 228 218 13.76% 

 Top35 438 310 11.29% 

 Top40 717  468 8.55% 

 Top50 1064 623 8.03% 

Lung Top20 39 39 51.28% 

 Top30 95 95 31.58% 

 Top35 144 144 24.31% 

 Top40 193 193 20.73% 

 Top50 344 322 15.53% 
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Figure 5.9 Classification Error (ALLAML - Top20 reduced dataset) 
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Figure 5.10 Classification Error (ALLAML –Top30 reduced dataset) 
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Figure 5.11 Classification Error (ALLAML –Top35 reduced dataset) 
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6 Conclusion and Future Works 

In this thesis, we have studied one of the problems in the field of bioinformatics using data 

mining technique, it is the molecular classification of cancer by gene expression data.  In 

this chapter, we summarize the results of our work in Section 6.1.  In Section 6.2 - 6.4, we 

discuss the contributions of our works and some future research issues on Emerging 

Pattern-based Projected Clustering. 

 

6.1 Summary of our works 

We have investigated (in Chapter 2) the molecular classification of cancers which is a 

bioinformatics issue from the data mining point of view.  We started from the motivation 

of the field bioinformatics, its definitions, its aims to the research trends and challenges of 

applying data mining in the problem of molecular classification of cancers.  We identified 

the nature of this new type of data, the gene expression data, and the challenges that it 

caused for those well known data mining algorithms. 

We have reviewed (in Chapter 3) two promising data mining techniques, emerging patterns 

and projected clustering.  We have discussed the rationales of introducing these algorithms, 

their objectives, assumption they have made and their own framework.  We have 

commented on their strength and weakness and before we show the opportunities of their 

integration. 

We have proposed (in Chapter 4) the idea of Emerging Pattern-based Projected Clusters 

and its definitions.  EPPC is introduced because of the insufficient of existing algorithm to 

provide easy understanding results of the problem of molecular cancer classification.  

Moreover, we have discussed the problem of finding EPPC and introduced a framework to 

find EPPC for the classification purpose. 
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We have evaluated (in Chapter 5) the performance of EPPC.  We have used k-mean 

algorithm to compare with EPPC to show the dimension projection is essential for success.  

We has compared EPPC with state-of-art projected clustering algorithm ORCLUS in terms 

of classification accuracy, readability and stability. 

 

6.2 Contributions 

In this research, we have make contributions in the following ways: 

1. Introduce the integration of two data mining techniques, they are the emerging 

patterns and projected clustering.  In the past, these two techniques are used 

independently on different problems and we integrated them to get both their 

strengths. 

2. Apply the emerging pattern based projected clustering techniques to molecular 

cancer classification by gene expression data.  Gene expression data are high 

dimension in nature and it challenged most of the existing data mining algorithms.  

By using EPPC, we can classify cancer accurately by using gene expression data. 

3. Improve the readability of projected clusters by using emerging patterns.  Projected 

clusters are useful to handle the high dimensional data but it is not easy to 

understand.  By using the emerging patterns in dimension projection process.  The 

EPPCs are easy to understand and it facilitates the further knowledge discovery. 

 

Publications: 

1. Larry T. H. Yu, Fu-lai Chung and Stephen C. F. Chan, "Emerging Pattern Based 

Projected Clustering for Gene Expression Data," Proceedings of European 

Workshop on Data Mining and Text Mining for Bioinformatics (with 

ECML/PKDD-2003), Dubrovnik, Croatia, pp. 71-75, 2003. 
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2. Larry T. H. Yu, Fu-lai Chung, Stephen C. F. Chan and Simon M. C. Yuen, "Using 

Emerging Pattern Based Projected Clustering and Gene Expression Data for 

Cancer," Proceedings of 2nd conference on Asia-pacific Bioinformatics, Dunedin, 

New Zealand, pp. 75-84, 2004. 

 

6.3 Limitations 

In this research, we have focused on the integration of emerging patterns and projected 

clustering techniques and our studies are limited in the following areas. 

1. There are always huge amount of JEPs can be extracted for EPPC and it is possible 

to obtain better EPs by using constraints in mining EPs.  However, mining EPs with 

constraints more close to the researches about mining EPs and it is not included in 

our studies at this moment. 

2. Emerging patterns used in this research are JEPs with growth rate equal to infinity 

and it gave us promising results.  Theoretically, not only JEPs are applicable to 

EPPC algorithm and the properties of using other types of EPs for EPPC not being 

studied at this stage.  Moreover, using other data mining patterns, such as frequent 

patterns, together with projected clustering technique are not covered here. 

 

6.4 Future works 

We list below main problems of our interest for further research topics. 

1. Theoretically, all EPs can be extracted by border based algorithms.  In this research, 

we may be only interested in those top n (say 50) high occurrence JEPs in complex 

left boundary in the dimension projection process.  Our approach is to select JEPs 

with maximum occurrence.  If the size of candidate set is larger than n, we select n 

of them randomly.   However, constraints are often existed in practical problems.  
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Instead of select JEPs with considering their occurrence, it is a problem for us to 

study in applying constraints in the problem of JEPs selection. 

2. By definition, JEPs is the EPs with maximum discrimination power.  However, EPs 

with high growth rate, or even different types of patterns, are also applicable in 

concept of EPPC potentially.  It is an interesting topic to introduce other patterns in 

forming useful clusters for different type of data or problems. 

3. Although n-EPPCs are readable in nature, it would be fruitful if we can visualize 

those resulting clusters interactively.  Interactive visualization can enhance the 

users to discover further knowledge from inter-clusters relationships and intra-

cluster relationships. 
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