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Abstract 

The multi-criteria and multi-expert decision aiding models investigate the problems of 

identifying candidates, analyzing the criteria, and selecting the best alternative(s) based 

on the aggregation of the perceptions and preferences of the group decision makers. 

Although many studies have investigated these problems, there are no conclusions as to 

a single decision model that can dominate others. Among the various well-known 

models, the Analytic Hierarchy Process (AHP) /Analytic Network Process (ANP) is 

popular, and is applied in various domains, although there are some limitations. The 

Cognitive Network Process (CNP) is developed on the improvement of AHP/ANP with 

the cognitive decision process. 

The CNP model is one of the models of the multi-criteria and multi-experts decision 

aiding. It applies the interdisciplinary techniques of decision sciences, cognitive sciences 

and fuzzy soft computing, on the basis of the mathematical modeling development. 

The cognitive architecture of the CNP is mainly comprised of five processes: Problem 

Cognition Process (PGP), Cognitive Assessment Process (CAP), Cognitive Prioritization 

Process (CPP), Multiple Information Fusion Process (MIP), and Decisional Volition 

Process (DVP). In PGP, decision problems are formed as a Structural Assessment 

Network (SAN). In CAP, a Compound Linguistic Ordinal Scale (CLOS) model is 

proposed for the improvement of rating activities of the assessment. In CPP, a Cognitive 
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Prioritization Operator (CPO) of a Pairwise Opposite Matrix (POM) is proposed to 

derive the utility set from the POM. In MIP, a Cognitive Style and Aggregation Operator 

(CSAO) model is proposed for selection of aggregation operators to aggregate the utility 

sets with respect to the attitudes or cognitive styles of the decision makers. In DVP, a 

valuation function of the utility sets is used to provide the decision solution.  

The framework of CNP includes primitive and extent types. The primitive type is a 

individual decision making model using linguistic variables represented by crisp 

numbers. The extent types include the notions of the collective judgments and fuzzy 

linguistic variables. 

The main contribution of the CNP includes the mathematical developments of CLOS, 

POM, CPO, CSAO, fuzzy POM, and fuzzy CPO. The numerical analyses with the 

discussions of these concepts are performed respectively. Five cases selected from other 

publications illustrate the usability and validity of the CNP, with comparisons with the 

(fuzzy) AHP/ANP, and complementation with other decision models. 

Like the impacts of AHP/ANP, the proposed CNP can be applied in many domains such 

as material management, transportation management, psychometrics, social sciences, 

business research, decision sciences, computer sciences, and engineering management. 

The CNP is the ideal alternative of the AHP/ANP. 
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Chapter 1 Introduction 

1.1 Research background and motivation 

In modern scientific decision making, there is a need to weigh, rate and quantify 

uncertain attributes with numerical determination as there is insufficient information to 

understand the attributes of the decision problem. These activities of weighing, rating 

and quantifying are subjective measures. A common finding is that subjective measures 

have been extremely popular in operational settings due to their high face validity and 

the ease of data collection (Yeh and Wickens, 1988). Subjective measures are relatively 

inexpensive to obtain, non-intrusive, convenient, and easy to analyze (Liou and Wang, 

1994). Subjective measures are essential for the input of the decision system. The 

decision systems have been studied by many authors, most of which are listed in the web 

site of International Society on Multiple Criteria Decision Making (2009). The 

significant models of decision making, rating scales, and the techniques including soft 

computing and cognition are reviewed in chapter 2.  

 

1.2 Research problems and gaps 

The design of suitable linguistic terms for subjective measures is essential to the 

accuracy of the evaluation. In the cases of the general evaluation processes, the experts 

design the criteria with numerical grades from 1 to 5 in a questionnaire. Usually, they 
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just provide the numbers with linguistic terms, as in the Likert Scale (Likert, 1932), such 

as 5 for strongly agree, 4 for agree, 3 for neutral, 2 for disagree, and 1 for strongly 

disagree. When the raters observe the possible choices, the brain will process the 

external information, and then choose one from the predefined options to describe their 

perceptions. This induces seven fundamental questions: 

a) whether numbers are appropriate to represent the actual measurement of human 

thinking - as human judgment unlikely provides accurate numerical determination. 

In the real-world, the uncertainty, constraints, and even the vague knowledge of the 

experts imply that decision makers cannot provide exact numbers to express their 

opinions (Ben-Arieh and Chen, 2006). The use of linguistic labels makes expert 

judgment more reliable and consistent (Ben-Arieh and Chen, 2006). 

b) whether numbers are appropriate to represent these linguistic terms. In fact, better 

designed survey forms apply adjectives associated with numbers. In the above 

example, why are all the intervals between the adjacent terms equal to 1? What are 

the arguments that the interval between neutral and agree is equal to the interval 

between agree and disagree? The commonly used Likert categories are not 

necessarily evenly spaced along this level of agreement continuum, although 

researchers frequently assume that they are (Blaikie, 2003). In fact, the mapping 

from the linguistic domain to the numerical domain seems not to be defined in any 
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theoretical mathematical models. The questions of the semantics of a language for 

the representation of measurement results are not yet clear (Muravyov  and 

Savolainen, 1997). 

c) whether there is a sufficient number of options for the rating to distinguish the 

difference. Is 5 enough? Or 9? Or even more? Miller (1956) indicated that an expert 

could manage a set with  7 2  terms while Bonissine et al (1986) pointed out that 

one could manage up to 11 or 13 terms. This is open to discussion as 11 or 13 terms 

are excessive for raters to make decisions. Chapter 4 proposes a Compound 

Linguistic Ordinal Scale (CLOS) model which can handle (7±2)((7±2)-1)+1=[21,73] 

linguistic terms and more.  

d) whether the decision makers or auditors rethink their choices. Using precise values 

to rate the fuzzy environment is a single thinking step, which is regarded as hasty 

decision making, and usually induces excessively subjective benchmarking. 

e) whether the same rating categories can be applied to every question. In the above 

example, can the five linguistic terms apply to every question in the whole 

questionnaire? 

f) whether each question is of the same weight if there are multi-criteria decisions. In 

other words, is each question of the same importance? 

g) whether people’s votes all carry the same weight if there are multi-expert decisions. 
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For example, is there any difference in the opinion of someone with five-years’ 

working experience and the vote of someone without any experience, or just one 

year’s experience, when it comes to evaluating work-related objects? 

h) whether a pairwise rating method is superior to a direct rating method?  

i) which aggregation method is the most preferable as different aggregation operators 

produce different results. 

 

It seems there is a lack of theoretical mathematical models (as the literature does not 

contain any related mathematical model for modeling the distribution of the linguistic 

terms for the terms set in a matrix) associated with an appropriate management 

framework for addressing the questions (a) to (e). 

To address the problems (a) to (e), and typically (b), adopting a statistical model 

may be the correct approach. However, to allocate the right number to each linguistic 

term is time consuming. Additionally it is expensive to acquire the sample data, and the 

result is usually not universally applied. This can be seen in the research from Hakel 

(1968) and a comparison with Simpson (1944) who investigated twenty modifying 

words such as usually, often, sometimes, occasionally, seldom, and rarely and 

commonly.  
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A probability model, such as the Gaussian normal distribution, may help in finding 

the solution for the linguistic terms in discrete order such as “…, little below good, 

absolutely good, little above good, …”. A fundamental assumption of probability is 

entailed in the axiom of additivity where all events that satisfy specific properties must 

add up to one. This assumption forces the conclusion that the probability of an event 

occurring necessarily entails knowledge of the remaining events. Therefore the boundary 

of each event is crisp, and cannot be fuzzy. This articulates the challenge of measuring 

the fuzziness associated with an expert judgment, as a probability model is not 

appropriate for finding the distribution of linguistic terms. However, no research is 

found to deal with this case using fuzzy theory. Chapter 4 proposes the Compound 

Linguistic Ordinal Scale model to address these issues. 

For the question (f) to (h), the popular tool to produce the weights of the criteria or 

experts is the pairwise comparison of the AHP (Saaty, 1980). Yuen and Lau (2009) have 

compared the direct rating method with AHP, and concluded that the approximated 

value of the Pairwise Reciprocal Matrix (PRM) of AHP is questionable. On the other 

hand, the direct rating method is excessively subjective. Chapter 5 proposes the 

Cognitive Prioritization Operator (CPO) and the Pairwise Opposite Matrix (POM) to 

address these issues 

For question (i), the weighted arithmetic mean is the most popular operator (e.g. 
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AHP, SMART, ELECTRE, DEA and PROMETHEE in chapter 2.2). The alternative is 

the geometric mean (e.g. generalized means in chapter 2.2). However, they may produce 

different results. Chapter 6 proposes the Cognitive Style and Aggregation Operator 

(CSAO) model to address this issue. 

 

1.3 Research objectives 

To fill the above gaps, this research proposes the Cognitive Network Process 

model comprising the key concepts of the Compound Linguistic Ordinal Scale (CLOS), 

the Cognitive Prioritization Operator (CPO) , the Pairwise Opposite Matrix (POM), and 

the Cognitive Style and Aggregation Operator (CSAO).  

The framework of CNP includes the primitive and extent types. The primitive type 

is the individual decision making model using the linguistic variable represented by a 

crisp number. The extent type is the collective decision making model using the 

linguistic variable represented by a fuzzy number. 

The Cognitive Network Process concerns the improvement of the analytical 

network process in view of the novel definitions for the cognitive process, including the 

sensation and perception of the problems from the experts by using CLOS, CPO, POM, 

and CSAO. The CNP should be an ideal framework to improve the complex decision 

making process. For the impacts, like the impacts of AHP/ANP, the proposed CNP can 
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be applied in many domains such as material management, inventory management, 

transportation management, psychometrics, social sciences, business research, decision 

sciences, computer sciences, and engineering management. The CNP is the ideal 

alternative for AHP/ANP. 

 

1.4 Organization of the research 

The thesis is divided into nine chapters. The outlines of the remaining chapters are 

as follows: 

i. Chapter 2 reviews the fundamental concepts as the basis for the development of 

the Cognitive Network Process (CNP) model. The CNP is the model which mainly 

intends to address the limitations of the Analytic Hierarchy Process (AHP) 

/Analytic Network Process (ANP). Thus two sections for AHP/ANP and fuzzy AHP 

are presented in detail in this chapter after some key concepts and other well-known 

decision models are reviewed: Multi-attribute Utility Theory (MAUT), Simple 

Multi-attribute Rating Technique (SMART), generalized means, preference relation, 

ELECTRE, PROMETHEE, DEA, and TOPSIS. The CNP is the broad concept, 

rather than the primitive CNP, on the development of the improvement of ANP. The 

concepts of soft computing and cognitive sciences are also reviewed to extend the 

notion of the primitive CNP. The reviews of soft computing include fuzzy linguistic 
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variables, membership functions, basic operations of fuzzy sets, and aggregation 

operators, whilst the notions of cognitive sciences includes the topics of cognitive 

psychology, cognition and decision making, perception and computation 

intelligence, cognitive style and decision making, and cognitive architecture and 

intelligent decision agent systems. The topics of the rating scale and measurement 

are also reviewed: the definitions of measurement and scale, Likert-like scales, 

syntactic forms, and computation rules.  

ii. Chapter 3 discusses the cognitive architecture of the cognitive network process, 

which includes definitions, algorithms and formulations of the general notations of 

the process algebra of CNP. It states various high motivations for further discussion 

in the following chapters 4-8. 

iii. Chapter 4 proposes the Compound Linguistic Ordinal Scale (CLOS) Model.  

Rating Scale Models (RSMs) have been applied in survey or questionnaire 

applications in various research areas. Their rating interfaces, however, possibly 

lead to problems concerning the choices of linguistic terms, accuracy of linguistic 

representation of numbers and decisions in rating dilemmas. To address the above 

problems, this chapter proposes a CLOS Model, which is an ordinal-in-ordinal 

scale model, as a promised alternative for the classic RSMs, which provide usually 

7±2 options. CLOS, which provides (7±2)((7±2)-1)+1=[21,73] options or more, is a 
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Deductive Rating Strategy (DRS) of the Hedge-Direction-Atom Linguistic 

Representation Model (HAD LPM), with a cross reference relationship. The 

simulation result indicates that the proposed model helps to reduce the bias of the 

rating dilemma for a single rater and more accurately reflects consistency among 

raters. The contribution is that the model can be applied in large scale systems, 

surveys and questionnaires, psychometrics and collective multi-criteria decision 

problems of various fields. 

iv. Chapter 5 proposes the cognitive prioritization operators (CPOs) of the pairwise 

opposite matrices (POMs). The pairwise reciprocal matrix of AHP has been studied 

by many scholars. However, there are significant queries about the appropriateness 

of using the pairwise reciprocal matrix (PRM) to represent the pairwise comparison. 

This research proposes the POM as the ideal alternative with respect to the human 

linguistic cognition of the rating scales of the comparison. Several cognitive 

prioritization operators (CPOs) are proposed to derive the individual utility vector 

(or priority vector) of the pairwise opposite matrix. Not only are the rigorous 

mathematical proofs of the new models demonstrated, but solutions of the CPOs 

are also illustrated by the presentation of graph theory. The measurement models of 

the CPOs for the POM are also developed. The comprehensive numerical analyses 

show the validity of CPOs and how the PRM is superior to the POM. POM and 
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CPOs, which correct the fallacy of the PRM associated with the prioritization 

operators, should be the ideal models for multi-criteria decision making problems in 

various fields. 

v. The selection of the aggregation operators can be determined by the cognitive style. 

Chapter 6 proposes a Cognitive Style and Aggregation Operator (CSAO) model to 

analyze the mapping relationship between aggregation operators and cognitive 

styles represented by the decision attitudes. The numerical examples illustrate how 

decision attitudes of the aggregation operators can be determined by the selection 

strategy of CSAOs I and II. The CSAO model can be applied in decision making 

systems with the selection problems of the appropriate aggregation operators with 

considerations of decision attitudes. 

vi. The narrow definition of the CNP is of a single decision maker, and the compound 

linguistic variable in the crisp value. This is called primitive CNP. Chapter 7 

extends the concept of CNP, and proposes a broader definition of CNP, which is 

named the fuzzy collective cognitive network process (FCCNP). FCCNP is of 

multiple decision makers with fuzzy inputs. FCCNP can be divided as the collective 

CNP (CCNP) and fuzzy CNP (FCNP). CCNP is of multiple decision makers with 

crisp inputs whilst FCNP is of a single decision maker with fuzzy inputs. The 

numerical analysis is performed to validate the essential functions, i.e. the fuzzy 
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prioritization operators. 

vii. In chapter 8, five cases are illustrated and discussed. Case 1 presents the high 

school section (Saaty, 1980, p26-28) with comparisons of primitive CNP and AHP 

models. Case 2 presents the transportation company selection problem (Kulak and 

Kahramna, 2005) with comparisons of the primitive CNP and AHP, and both 

prioritization measurement models are also used. Case 3 compares the CNP and the 

improved ANP models for the R&D project selection problem (Yuen and Lau, 

2009). Case 4 compares the fuzzy CNP and Fuzzy AHP models for the software 

product selection problem (Yuen and Lau, 2008c). Case 5 illustrates the use of the 

fuzzy collective CNP model as the evaluation model for the problem of supplier 

number optimization (Berger et al, 2004). 

viii. Finally, chapter 9 concludes the work undertaken. The contributions and the 

motivations of this research are also presented.  
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Chapter 2 Literature Review 

2.1 Introduction 

This chapter reviews the fundamental concepts as the basis for the development of 

the Cognitive Network Process (CNP) model. The CNP is the model which mainly 

intends to address the limitations of the Analytic Hierarchy Process (AHP) /Analytic 

Network Process (ANP). Thus two sections for AHP/ANP and fuzzy AHP are presented 

in detail in this chapter after some key concepts and other well-known decision models 

are reviewed. Unless specified, in this chapter, the prioritization operator of AHP means 

analytic prioritization operator, and pairwise comparison or pairwise matrix means the 

analytic pairwise comparison and analytic pairwise matrix. However, these names are 

not for other chapters which imply cognitive ones of the CNP. The CNP is the broad 

concept rather than the primitive CNP on the development of the improvement of ANP. 

The concepts of soft computing and cognitive sciences are also reviewed to extend the 

notion of the primitive CNP. The framework CNP is an interdisciplinary notion. It can be 

incorporated with other decision models. Thus some decision models, which potentially 

can be fused with the CNP, are also reviewed. 

In some sections, some new equations are proposed by the author to bridge the gap 

for some concepts, especially for the use of the comparison with CNP model, after the 

key concepts are reviewed. Particularly in the AHP and Fuzzy AHP sections, the new 
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functions are used for the comparisons in Chapter 8. 

The structure of this chapter is as follows. Chapter 2.2 reviews the concepts of 

Multi-Criteria Decision Aiding (MCDA) including Multi-attribute Utility Theory 

(MAUT), Simple Multi-attribute Rating Technique (SMART), generalized means, 

preference relation, ELECTRE, PROMETHEE, TOPSIS and Data Envelopment 

Analysis (DEA). Chapter 2.3 presents the essential reviews of soft computing including 

fuzzy linguistic variables, membership functions, basic operations of fuzzy sets, and 

aggregation operators. Chapter 2.4 presents the reviews of the rating scales and 

measurement including the definitions of measurement and scale, Likert-like scales, 

syntactic forms, and computation rules. Chapter 2.5 presents the concepts of AHP/ANP 

in depth including the pairwise (reciprocal) matrix, (analytical) prioritization operators 

(AOs), synthesis methods, and measurement models for POs. Chapter 2.6 reviews the 

two types of Fuzzy Analytic Hierarchy Process, Extent Analysis Method (EAM) and 

modified fuzzy Logarithmic Least Squares Method (mf-LLSM), and the fuzzy 

measurement models are also proposed for comparing these two methods, as the 

literature review did not reveal any measurement models of the fuzzy POs. Finally, 

chapter 2.7 briefly reviews the notions of cognitive sciences including the topics of 

cognitive psychology, cognition and decision making, perception and computation 

intelligence, cognitive style and decision making, and cognitive architecture and 
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intelligent decision agent system. 

 

2.2 Multi criteria decision aiding 

The Multi-Criteria Decision Aiding (MCDA) or Multi-Criteria Decision Making 

(MCDM) models have been studied extensively. The huge bibliography of MCDA 

research can be found in the web site of the International Society on Multiple Criteria 

Decision Making (2009). The recommended textbooks are in (Ozturk et al., 2005). This 

section reviews and presents only the essential concepts and selected models related to 

the CNP framework. 

Prior to introduction of MCDA models, a decision matrix O  is defined in the 

following form: 
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 (2.2.1) 

jc C  is the criterion. ijr r  is the rating score or utility values from the rating. 

jw W  is the weight of the criterion jc , and usually is normalized, ie. 
1

1
n

j

j

w


 . 

iT T  is the alternative. O  can be written in its transposition form in other study. Both 

styles have appeared in the literature. 
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2.2.1 MAUT 

Most of the MCDA models apply Multi-attribute Utility Theory (MAUT). The 

basis of MAUT is the use of utility functions. Utility functions can be applied to 

transform the raw performance values of the alternatives against diver criteria, both 

factual (objective, quantitative) and judgmental (subjective, qualitative), to a common, 

dimensionless scale (Fulop, 2005). The CNP is developed on the basis of MAUT.  

 

2.2.2 SMART 

The Simple Multi-attribute Rating Technique (SMART) is the weight arithmetic 

mean of the set of rating values  ijr  of the alternatives in a general decision matrix. It 

has the form: 

1
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j ij

j

i m

j

j

w r
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w










, 1, ,i n   (2.2.2) 

, where ijr  is the utility value or performance value. 

 

2.2.3 Generalized means 

The generalized means model is the weighted geometric mean of the ranking 

values of the alternatives in a general decision matrix. It has the form: 
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The difference of SMART and generalized means is only in the aggregation 

operator definition. If each aggregation operator (AO) produces one type of decision 

model, there are many MCDA models, as Chapter 2.3.4 reviews a number of AOs. 

Chapter 6 proposes the Cognitive Style of Aggregation Operator (CSAO) model to 

utilize the AOs. In the default setting, like AHP, the weighted arithmetic mean (wam) is 

applied. 

 

2.2.4 Axioms of preference relation 

According to the review of Ozturk et al. (2005), the notion of binary relations 

appears for the first time in De Morgan‟s study (1864). It is defined as a set of ordered 

pairs in Peirce‟s works (1880, 1881, 1883). Some of the first work dedicated to the study 

of preference relations can be found in (Dushinik and Miller, 1941; Sott and Suppes, 

1958). More general concepts for models of arbitrary relations will be introduced in 

(Tarski, 1954, 1955).The following notations adopts Rouben and Vincke‟s work (1985) 

with a modification that fits for the notation system of CNP (Chapter 3).  

 

Considering one cluster   , iClst nd gn , nd is the node,  ign gn  is the set of 

granular data of nd. The following definition holds. 
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Definition 2.1 (Binary Relation): Let gn  be a finite set of elements ( 1 2, , zgn gn gn ), a 

binary relation R on the set gn  is a subset of the Cartesian product gn gn , that is, a 

set of order pairs, i.e.   ,j kgn gn  such that jgn  and kgn  are in :gn R gn gn  . 

 

For an ordered pair  ,j kgn gn  which belongs to R, the notation is indifferently of 

the form as follows: 

 ,j kgn gn R  or   j kgn R gn  or  ,j kR gn gn  (2.2.4) 

Let R and T be two binary relations on the same set gn . The set operations are of 

the form: 

Inclusion: R T  iff    T j k j kgn R gn gn gn ; (2.2.5) 

Union:    j kgn R T gn  iff   j kgn R gn  or  T j kgn gn ; (2.2.6) 

Intersection:    j kgn R T gn  iff   j kgn R gn  and  T j kgn gn ; (2.2.7) 

Relative Product:   .  j kgn RT gn  iff     gn:     and  T i j i i kgn gn R gn gn gn  ;

 (2.2.8) 

The properties of the asymmetric aR , the symmetric sR  and the complementary  

part 'R  of the binary relation R are shown as follows: 

  a

j kgn R gn  iff   j kgn R gn  and    k jgn R gn ; (2.2.9) 

  s

j kgn R gn  iff   j kgn R gn  and   k jgn R gn ; (2.2.10) 

'  j kgn R gn  iff    j kgn R gn  and    k jgn R gn  (2.2.11) 
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The complement cR , the converse (the dual) dR , and the co-dual cdR  of R  

are the forms respectively: 

  c

j kgn R gn  iff    j kgn R gn ; (2.2.12) 

  d

j kgn R gn  iff   k jgn R gn ; (2.2.13) 

  cd

j kgn R gn  iff    k jgn R gn ; (2.2.14) 

More relations of R are illustrated as follows: 

Reflexive, if   j kgn R gn ,  jgn gn  ; (2.2.15) 

Irreflexive, if   c

j jgn R gn ,  jgn gn  ; (2.2.16) 

Symmetric, if     j k k jgn R gn gn R gn , ,  j kgn gn gn  ; (2.2.17) 

Antisymmetric, if    ,    = j k k j j kgn R gn gn R gn gn gn , ,  j kgn gn gn  ; (2.2.18) 

Asymmetric, if     c

j k k jgn R gn gn R gn , ,  j kgn gn gn  ; (2.2.19) 

Complete, if          j k k jgn R gn or gn R gn ,  j kgn gn gn   ; (2.2.20) 

Strongly complete, if         j k k jgn R gn or gn R gn , ,  j kgn gn gn  ; (2.2.21) 

Transitive, if,    ,     j i i k j kgn R gn gn R gn gn R gn , , ,  i j kgn gn gn gn  ; (2.2.22) 

Negatively transitive    ,     c c c

j i i k j kgn R gn gn R gn gn R gn , , ,  i j kgn gn gn gn  ;

 (2.2.23) 

Negative transitive, if      ,   j k j i i kgn R gn gn R gn gn R gn , , ,  i j kgn gn gn gn  ;

 (2.2.24) 

Semitransitive, if    ' '  ,     ,   j i i k j i i kgn R gn gn R gn gn R gn gn R gn , 
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', , ,  i i j kgn gn gn gn gn  ; (2.2.25) 

Ferrers relation, if    ' '  ,     ,   j i i k j i i kgn R gn gn R gn gn R gn gn R gn , 

', , ,  i i j kgn gn gn gn gn  . (2.2.26) 

 

Iff R is reflexive, symmetric and transitive, R is equivalent relation E of the form: 

 E j kgn gn  iff 
 R  R 

 
 R  R 

j i k i

j

i j i k

gn gn gn gn
gn gn

gn gn gn gn


  


; (2.2.27) 

 

The binary preference relation with utility theory is of the form: 

 
    1

    
    0

j k

j k

j k

iff gn R gn true
u gn R gn

iff gn R gn false


 


; (2.2.28) 

, where {1,0} is the set of the utility values. 

Similarly, the discrete preference with the discrete utility is of the form: 

   j i k iu gn R gn v , where  :i i iv v R R  ,  1 2, , , nv v v v   (2.2.29) 

The continuous preference with the continue utility of the form: 

   'j i ku gn R gn v ,  where    ' 0,1iv f R  . (2.2.30) 

 

The continue interval  0,1  can be other intervals. This is only the scaling 

problem. Out ranking methods, including ELECRE, AHP and CNP, are based on this 

combination of MAUT and preference model. The difference is the definition of the 

form,    j ku gn R gn , including the scale values and operations. 
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The preference model can be shown in a matrix which is shown in following 

example. 

 

Example 2.1 

Let R be a binary relation defined in a set of granular data  1 2 3 4, , ,gn gn gn gn gn , 

which is from nd . If the set of the relation, R’={  1 2,gn gn ,  2 3,gn gn ,  2 4,gn gn , 

 3 1,gn gn ,  4 2,gn gn },  is true and others pairs are false, the matrix representation of 

  ,R Clst nd gn  is illustrated as follows: 

  

1 2 3 4 1 2 3 4

11 12 13 141 1

21 22 24 242 2

31 32 33 343 3

41 42 43 444 4

0 1 0 0

, 0 0 1 1

1 0 0 0

0 1 0 0

gn gn gn gn gn gn gn gn

b b b bgn gn

R Clst nd gn b b b bgn gn

b b b bgn gn

b b b bgn gn

   
    
   
   
   

  

 

In CNP, the utility value (or performance value) is rated from the matrix of 

Compound Linguistic Ordinal Scale (CLOS) (chapter 4). The CNP applies the pairwise 

opposite matrix which is the preference function of the following definition using 

preference model notation: 

 
,

 R 0   ,  

,

j k

b R

u gn gn R

b R





 


 
 







; (2.2.31) 

  means the positive preference,   means the negative preference, and   means the 

equal preference. The level of the preference is rated from a score. b  is the positive 
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number from the discrete interval scale derived from CLOS. b  is the negative number 

from the opposite of the above CLOS. Details are in chapters 3, 4,5, and 7 respectively. 

 

2.2.5 ELECTRE  

The ELECTRE, ELimination Et Choix Traduisant la REalité,  (ELimination and 

Choice Expressing REality),  initially appeared in a French operations research journal 

by Roy (1968). The development of ELECRE methods lasts about four decades. The key 

version is shown in table 2.1. This section does not intend to review all versions of 

ELECRE, but only the most fundamental one, ELECRE I. The details of the ELECRE 

family can be referred to in the reviewed references (Pomerol and Barba-Romero, 2000; 

Figueira et al., 2005b; Bouyssou, 2006). The presentation of ELECTRE of Figueira et al. 

(2005b) is applied, but is modified to fit for the notation system of CNP. In fact, the 

Pairwise Opposite Matrix of CNP can be applied for determination of the weights of 

ELECTRE. 

 

Considering   , iClst nd gn , let the preference relation R be 


, where  

  j kgn gn


 means jgn  outranks kgn  (that is , “ jgn  is at least as good as kgn ”). 

The Concordance index   and  the discordance index   are two essential concepts 

in ELECTRE.   
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Table 2.1: The various version of ELECTRE (Pomerol and Barba-Romero, 2000, p184)  

Version First reference 
Type of 

criterion 

Weights 

required 
Fuzzy 

Type of 

problem 

I Roy (1968) simple yes No selection 

II 
Roy and Bertier 

(1973) 
simple yes little ranking 

III Roy (1978) Psudo yes yes ranking 

IV 
Roy & Hugonnard 

(1982) 
Psudo no No ranking 

IS 
Roy and Skalla 

(1985) 
psedo yes No selection 

 

For an ordered pair of granular information  ,j kgn gn , the concordance index is of 

the form: 

 
    :

  

i j i k

jk j k i

i g gn g gn

gn gn w 


  


 (2.2.32) 

, where 
1

1
z

i

i

w


 , and     : i j i ki g gn g gn  is the set of indices for all criteria 

belonging to the concordant coalition with the outranking relation, i.e.   j kgn gn . 

The value of the concordance index jk  must be greater than or equal to a given 

concordance level, s, whose value generally falls within the range   0.5,1 min jw 
 

, 

i.e., jk s   

On the other hand, the discordance is measured by a discordance level defined as 

follows: 

 
    

    
:

  max
i j i k

jk j k i k i j
i g gn g gn

gn gn g gn g gn 


  


 (2.2.33) 

The power of the discordance means that if its value surpasses a given level,  , 
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the assertion is no longer valid. Discordant coalition expects no power whenever 

jk  . 

Both concordance and discordance indices have to be computed for every pair of 

actions  ,j kgn gn  in the set  1 2, , zgn gn gn gn   such that j kgn gn  . Such a 

computing procedure leads to a binary relation in comprehensive terms on the set gn . 

For each  ,j kgn gn , only one of the following four situation occurs: 

1.    j kgn gn


 &    k jgn gn 


   j kgn gn 


 ( jgn  is strictly preferred 

to kgn ); 

2.   k jgn gn


 &    j kgn gn 


   k jgn gn 


 ( kgn  is strictly preferred 

to jgn ); 

3.    j kgn gn


 &    k jgn gn


   j kgn gn   ( jgn  is indifferent to kgn ); 

4.    k jgn gn 


&    k jgn gn 


   j kgn gn 


 ( jgn  is incomparable to 

kgn ); 

From the above forms,   is the negation operation,   means “imply”. 


 

means “be strictly preferred to”, 


 means “be incomparable to”, and   means “be 

indifferent to”. 

The second procedure consists of exploiting this outranking relation to identify a 

small as possible subset of actions, from which the best compromise action could be 

selected. Let gn  be the partition. Each class on 1 2, ,gn gn gn 
 

  is composed of a 
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set of (considerate) equivalent actions. The new preference relation, ' , is defined on 

gn , which is of the form: 

 '   &   | ,   'j k j kp q p q p qgn gn gn gn gn gn gn gn for gn gn      


; (2.2.34) 

 

2.2.6 PROMETHEE 

According to Brans and Mareshal (2005), PROMETHEE (Preference Ranking 

Organization METHod for Enriching Evaluations) was firstly developed by Brans in 

1982 at a conference.  PROMETHEE Ι deals with a partial preorder, PROMETHEE II 

deals with a complete preorder, PROMETHEE III deals with an interval order 

emphasizing indifference, PROMETHEE IV deals with continuous set of possible 

alternatives, PROMETHEE V supports the optimization under constraints and 

PROMETHEE VI is a representation of the human brain. GAIA provides graphical 

representation supporting the PROMETHEE. The details are reviewed by Brans and 

Mareshal (2005). This section only investigates the foundations, PROMETHEEs Ι and II 

(Brans and Mareshal , 2005), with the modification notation that fits for the CNP model. 

Consider a typical decision matrix O  shown in Eq. 2.2.1. Let a multi-criteria 

problem be of the form: 

 1 2 1, , , , : ,i i ij i inMax r r r r r r i    (2.2.35) 

The natural dominance relation associated to a multi-criteria problem of the above 
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form is defined as follows: 

'

'

'

:

:

ij i j

i i

ik i k

j r r
T T

k r r

 


 



 (2.2.36) 

' ': ij i j i ij r r T T     (2.2.37) 

'

'

'

:

:

ij i j

i i

ik i k

j r r
T T

k r r

 
 

 
 (2.2.38) 

,where 


,  and   stand for preference, indifference and incomparability. 

 

Table 2.2: Types of generalized criteria (  P d : Preference function) (Brans and 

Mareshal , 2005)  

Generalized criterion Definition 
Parameters to 

fix 

Usual criterion  
0 0

  
1 0

d
P d

d


 


 - 

U-Shape criterion  
0

  
1

d q
P d

d q


 


 q 

V-Shape criterion  

0 0

  0

1

d

P d d p d p

d p




  
 

 p 

Level criterion  

0

1 2   

1

d q

P d q d p

d p




  
 

 p,q 

V-Shape with indifference 

criterion 
     

0

  

1

d q

P d d q p q q d p

d p




    
 

 p,q 

Gaussian criterion   2

22

0               0

 

1      0

d

s

d

P d

e d





 
  

 s 
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The information requested to run PROMETHEE consists of the information 

between the criteria, and the information within the criteria. Information between the 

criteria refers to the determination of the weights of the criteria. Usually the set of the 

normalized weights,  jW w ,  is applied such that 
1

1
n

j

j

w


 . W can be derived by 

pairwise opposite comparison (Chapter 5) using CLOS (Chapter 4). 

The information within the criteria refers to the performance values on the criteria 

by the preference function of the form: 

    , ,j i k j j i kP T T F d T T , ,i kT T T  , (2.2.39) 

,where the deviation function is of the form: 

 ,j i k ij kjd T T r r  , (2.2.40) 

for which,  0 , 1j i kP T T   (2.2.41) 

The pair   , ,j j i kc P T T  is called the generalized criterion associated with the 

criterion j. Such a generalized criterion has to be defined for each criterion. Brans and 

Mareshal (2005) proposed six types of preference functions (table 2.2), the parameters 

are defined as follows: 

q is a threshold of indifference; 

p is a threshold of strict preference; 

s is an intermediate value between q and p. 

As soon as evaluation table or the decision matrix O ,   , ,j j i kc P T T  and W are 
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determined, the PROMETHEE procedure can be performed. Firstly, the aggregated 

preference indices and outranking flows are defined. The aggregated preference indices 

are of the form: 

   
1

, ,
n

i k j i k j

j

T T P T T w


  , ,i kT T T  , (2.2.42) 

   
1

, ,
n

k i j k i j

j

T T P T T w


  , ,i kT T T  , (2.2.43) 

The aggregated preference index  ,i kT T  expresses the degree of how iT  is 

preferred to kT  over all the criteria whilst  ,k iT T  shows how kT  is preferred to iT  

over all the criteria. The following properties hold. 

 , 0i iT T  ; (2.2.44) 

 0 , 1i kT T  ; (2.2.45) 

 0 , 1k iT T  ; (2.2.46) 

    0 , , 1i k k iT T T T    . (2.2.47) 

If  ,i kT T  approximate to 0, there is a weak global preference of iT  over kT , 

and vice versa. 

Each alternative iT  is facing (m-1) other alternatives in T.  In order to rank the 

alternatives, the outranking flows are defined for the following two forms. 

The positive outranking flow is of the form: 

   
1

1
,

1

m

i i k

k

T T T
n

 





  (2.2.48) 

The negative outranking flow is of the form: 
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   
1

1
,

1

m

i k i

k

T T T
n

 





  (2.2.49) 

The positive outranking flow expresses how an alternative iT  is outranking all the 

others. It is its power, and its outranking character. The higher  iT   gives a better 

alternative. Conversely, the negative outranking flow expresses how an alternative iT  is 

outranked by all the others. It is its weakness, and its outranked character. The lower 

 iT   gives a better alternative. 

The PROMETHEE I partial ranking  , ,I I I 


 is obtained from both positive 

and negative outranking flows of the following three forms: 

1. I

i kT T


 iff (    i kT T    &    i kT T   ) or (    i kT T    & 

   i kT T   ) or (    i kT T    &    i kT T   ); 

2. I

i kT T  iff  (    i kT T    &    i kT T   ); 

3. I

i kT T  iff (    i kT T    &    i kT T   ) or  (    i kT T    & 

   i kT T   ) 

The PROMETHEE II consists of the  ,II II 


 complete ranking. The net 

outranking flow is applied and is of the form: 

     i i iT T T     ,  1, ,i m    (2.2.50) 

The higher  iT  follows the better alternative. Thus,  

II

i kT T


 iff    i kT T  ; (2.2.51) 

II

i kT T  iff    i kT T  . (2.2.52) 
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The net outranking flow function can produce disputable results as more information 

gets lost by using this function  . From the above forms, two properties hold. 

 1 1iT   ,  1, ,i m   ; (2.2.53) 

 
1

0
m

ii
T


 . (2.2.54) 

As the net flow   provides a complete ranking, it may be compared with a utility 

function (Brans and Mareshal, 2005). One advantage is that it is built on clear and 

simple preference information of weights and preferences functions, and that it does rely 

on comparative statements rather than on absolute statements (Brans and Mareshal, 

2005). It is possible to integrate PROMETHEE into the CNP framework. However, this 

is beyond the scope of this research. 

 

2.2.7 TOPSIS 

TOPSIS stands for Technique for Order Preference by Similarity to Ideal Solution, 

which was initially proposed by Hwang and Yoon (1981).  TOPSIS is of the notion that 

the chosen alternative should have the shortest distance from the positive-ideal solution 

(PIS) and the longest distance from the negative-ideal solution (NIS) (Hwang and Yoon, 

1981). The presentation of TOPSIS (Yoon and Hwang, 1995) is used with modification 

for the CNP framework. 

Consider a typical mxn decision matrix O  shown in Eq. 2.1. Let J   be the set 
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of benefit (or positive) criteria, i.e. more is better, and J   be the set of negative criteria, 

less is better. The calculation consists of six steps. 

Step 1: calculate the normalized decision matrix 


    ,j ijO w r


. The score ijr  is 

normalized as the normalized score ijr


 by the root-sum-square function of the form: 

1

ij

ij m

ij

i

r
r

r







, 1, ,i m  , 1, ,j n  . (2.2.55) 

Step 2: calculate the weighted normalized decision matrix  ˆ
îjO r . Each normalized 

score ijr


 is multiplied by its associated weight jw . Thus, the weighted normalized 

score îjr  is of the form: 

îj j ijr w r 


, 1, ,j n   (2.2.56) 

Step 3: Determined the positive-ideal solution and the negative-ideal solution 

respectively by the following forms: 

 1 , , , ,j nr r r r      ,     ˆ ˆmax ;  minj ij ij
ii

r r j J r j J     ; (2.2.57) 

 1 , , , ,j nr r r r      ,     ˆ ˆmin ;  maxj ij ij
i i

r r j J r j J     . (2.2.58) 

Step 4: Calculate the separation measures by m-dimensional Euclidean distance. The 

separation from the ideal alternative is of the form: 

 
2

1

ˆ
n

i j ij

j

r r  



  , 1, ,i m   (2.2.59) 

Similarly, the separation from the negative ideal alternative is of the form: 

 
2

1

ˆ
n

i j ij

j

r r  



  , 1, ,i m   (2.2.60) 
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Step 5: calculate the relative closeness *

i  to the ideal solution  

* i
i

i i




 



 



, 1, ,i m   (2.2.61) 

Usually the ideal option is with *

i  closest to 1.  

Step 6: The ideal alternative is of the form: 

*

kT T , where  *max : 1, ,ik Arg i m  
 

  (2.2.62) 

  Or rank alternatives according to *

i  in descending order. 

In step 2, the weights can be determined by the cognitive prioritization of the 

pairwise opposite matrix (chapter 5) using the Compound Linguistic Ordinal Scale 

(chapter 4). TOPSIS can be fitted into the application of the CNP framework. However, 

this attempt is beyond the scope of the research. 

 

2.2.8 Data Envelopment Analysis 

Data Envelopment Analysis (DEA) was initially proposed by Charnes, Cooper, and 

Rhodes (CCR) in 1978. The major difference from the above decision model is that DEA 

considers the multiple output data and the multiple input data to measure the efficiency 

of the alternatives (or decision making units). DEA is optimization programming to 

determine the weights and efficiency by maximizing the ratio: 

 

 

virtual output

virtual input
 (2.2.63) 

Usually the virtual output (or input) is the linear combination of the input (or 
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output) variables multiplied by its weights, as follows: 

Virtual input = 
0

1

m

i i

i

v x


   (2.2.64) 

Virtual output =
0

1

s

r r

r

u y


  (2.2.65) 

The notions of the input matrix and the output matrix can respectively be presented 

as follows: 

 

1 1

11 1 1 11 1 11

1 1

1 1

|

j n j n

j n j n

i ij in i ij ini

m mj mn m mj mnm

T T T T T T

v v v x x xc

Input V X
v v v x x xc

v v v x x xc

  
  
   
  
  
  
  
  

   

   

         

   

         

   

 (2.2.66) 

 

 

1 1

11 1 1 11 1 11

1 1

1 1

|

j n j n

j n j n

r rj rn r rj rnr

s sj sn s sj sns

T T T T T T

u u u y y yd

Output U Y
u u u y y yd

u u u y y yd

  
  
   
  
  
  
  
  

   

   

         

   

         

   

 (2.2.67) 

 

X and Y represent the input data matrix and output data matrix respectively for a 

set of Decision Making Units (DMUs) denoted by  jT T . V and U are the matrices of 

the corresponding weights with respect to X and Y respectively, and usually are solved 

by an optimization model. 
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In order to calculate the efficiency and weights of input data and output data, two 

essential models of DEA are introduced: CCR and BCC. The notations below are of 

minor modification. 

CCR  (Charnes et al., 1978) of a DMUo or To , o=1,…,n, is of the form:  

    , ,ij rjCCR x y o   

1

1

1

1

. . 1, 1, 2, ,

0, 1, 2, ,

0, 1, 2, ,

s

ro ro

r
o m

io io

i

s

ro rj

r

m

io ij

i

ro

io

u y

max h

v x

u y

s t j n

v x

u r s

v i m











 

 

 














 (2.2.68) 

For the DMUo, if 0h =1, rou >0, and iov >0, DMUo is efficient. Otherwise, the DMUo 

is inefficient. The above fractional program is equivalent to the linear program (Banker 

et al.,1984) as follows: 

    , ,ij rjLPCCR x y o   

0

1

1

1 1

. . 1

        , 1, 2, ,

>0, 1, 2, ,

>0, 1,2, ,

s

ro ro

r

m

io io

i

s m

ro rj io ij

r i

r

i

max h u y

s t v x

u y v x j n

u r s

v i m









 





 

 

 





  





 (2.2.69) 

  is the sufficient small value, i.e. 0.0000001. 
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The CCR (Charnes et al., 1978) was extended by Banker et al. (1984) (BCC) as 

follows: 

 

    , ,ij rjBCC x y o   

1

1

1

1

. . 1, 1, 2, ,

>0, 1, 2, ,

>0, 1,2, ,

s

ro ro o

r
o m

io io

i

s

r rj o

r

m

i ij

i

r

i

u y u

max h

v x

u y u

s t j n

v x

u r s

v i m



















 

 

 














 (2.2.70) 

The above fractional program is equivalent to the linear program (Banker et al., 

1984) as follows: 

    , ,ij rjLPBCC x y o   

1

1

1 1

. . 1

        0, 1, 2, ,

>0, 1,2, ,

>0, 1,2, ,

s

o r ro o

r

m

i io

i

s m

r rj i ij o

r i

r

i

max h u y u

s t v x

u y v x u j n

u r s

v i m









 

 



   

 

 





  





 (2.2.71) 

 

On the basis of the above four DEA forms, if different aggregation operators are 

applied, the results may be different, as there is no critical reason that only weighted 
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arithmetic mean is the choice. Thus this study proposes various general forms that 

different aggregation operators can be applied. 

On the basis of CCR, the general form is as below: 

    , ,CCR ij rjG x y o   

 

 

 
 

0 0

0

0 0

,

,

,
. . 1, 1,2, ,

,

0, 1,2, ,

0, 1,2, ,

T

j j

T

j j

r

i

F u y
max h

F v x

F u y
s t j n

F v x

u r s

v i m



 

 

 







 (2.2.72) 

F is an aggregation operator. The quasi-linear means (table 2.3) are the ideal 

choices for F. In the conventional DEA optimization, F is the weighted arithmetic mean. 

T

jy  and T

jx  are row vector j‟s of  
T

rjy  and  
T

ijx  respectively, which are the same 

as the transposition of the column vector j‟s of  
T

ijx  and  
T

rjy  respectively. 

The above fractional general form is equivalent to the linear program as follows: 

    , , ,LPCCR ij rjG x y o F   

 

 

   
0 0

,

. . , 1

        , , , 1, 2, ,

>0, ,  1, 2, ,

>0, ,  1, 2, ,

o o o

T T

o j o j

ro ro o

io io o

max h F u y

s t F v x

F u y F v x j n

u u u r s

v v v i m









 

  

  







 (2.2.73) 

On the basis of BCC, the general form is of the form: 

    , , ,BCC ij rjG x y o F   
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 

 

 
 

'

'

,

,

,
. . 1, 1,2, ,

,

>0, 1,2, ,

>0, 1,2, ,

o o o

o

o o

T

j j o

T

j j

r

i

F u y u
max h

F v x

F u y u
s t j n

F v x

u r s

v i m









 

 

 







 (2.2.70) 

The above fractional program is equivalent to the linear program as follows: 

    , , ,LPBCC ij rjG x y o F   

 

 

   

'

'

,

. . , 1

        , , 0, 1,2, ,

>0, 1,2, ,

>0, 1,2, ,

o o o o

j j

T T

o j o j o

r

i

max h F u y u

s t F v x

F u y F v x u j n

u r s

v i m





 



   

 

 







 (2.2.71) 

 

Regarding DEA, the input matrix and the output matrix can be determined by the 

proposed CNP measurement. The input variables and output variables may consider the 

predefined priority set, which is derived by CNP, to represent the importance from the 

perceptions of the decision makers in addition to the weights determined by an 

optimization model. 

 

2.3 Fuzzy soft computing 

Zedah (2001) defined soft computing as follows: 

“By design, soft computing is pluralistic in nature in the sense that it is a coalition of 

methodologies which are drawn together by a quest for accommodation with the 
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pervasive imprecision of the real world. At this juncture, the principal members of the 

coalition are fuzzy logic, neuro-computing, evolutionary computing, probabilistic 

computing, chaotic computing and machine learning. What is important is that members 

of the coalition are, for the most part, complementary rather than competitive.” 

As the research of soft computing is vast, this section only reviews the key 

concepts of the fuzzy soft computing which are used by the CNP model. The key 

concepts are as follows. 

 

2.3.1 Fuzzy linguistic variable and membership functions 

Fuzzy linguistic labels are applied in most decision models. A fuzzy linguistic 

label can be represented by a fuzzy number which is represented by a fuzzy set (Zadeh 

1965, 1975, 1996). Fuzzy sets capture the ability to handle uncertainty by approximate 

methods.  

Let X be a universal set (or universal of discourse) of elements x‟s, and then a 

fuzzy set   in X is a set of ordered pairs, i.e.    , :x x x X   .   is called 

the membership function (regarding its operation) or the grade of membership 

(regarding its output) which defined as  : 0,1X   (Zadeh 1965). 

The following is a list of the types of memberships. (a) to (i) are from (Pedrycz, 

1997; Bargiela and Pedrycz, 2003; Pedrycz and Gomide, 2007; Engelbrecht 2007 ) 
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whilst (j) to (n) are defined by the author. 

 

a) The triangular membership function 

 

,   

,   

0,        

x l
l x m

m l

u x
x m x u

u m

otherwise




  




  






 , l m u  , (2.3.1) 

l  is the fuzzy up boundary, and u is the fuzzy low boundary and m is the modal value. 

The triangular membership is applied mostly in fuzzy theories and applications. 

 

b)   membership function 

 
 

2

0,           

1 ,   
k x l

x l
x

e x l
  


 

 

, 0k      Or  (2.3.2) 

   

 

2

2

0                  ,    

,   
1

x l

x k x l
x l

k x l






 


 

, 0k   (2.3.3) 

 

c) S membership function 

 

2

2

0             ,    

2      ,  

1 2 ,  

0                ,     

x l

x l
l x m

u l
x

x u
m x u

u l

x u






       
 

 
     




 (2.3.4) 
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d) Trapezoidal membership function 

 

0             ,    

     ,  

1             ,  m

     ,  

0                ,     

x l

x l
l x m

m l

x x

u x
x u

u

x u

 








  




  
 
  


 

 (2.3.5) 

e) Gaussian membership function 

   
2

, 0
k x m

x e k
 

    Or  (2.3.6) 

 
 

2

2

x m

x e 


 

  (2.3.7) 

 

f) Non-Symmetric Gaussian fuzzy sets 

 

 

 

2

2

2

2

,  

,   

x m

x m

k

e x m
x

e x m





 

 


 

 




 (2.3.8) 

g) Exponential-like function 

 
 

2

1

1
x

k x m
 

 
  , 1k    Or  (2.3.9) 

 
 

 

2

2
1

k x m
x

k x m





 
  , 0k   (2.3.10) 

 

h) Logistic function 

 
1

1 kx
x

e
 




 (2.3.11) 
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i)  quadratic function 

 
 

22 1 1
1-p ,    ,

0    ,   otherwise

m m
x m x

x p p

   
   

   



 (2.3.12) 

The membership functions can be represented by the general form  x d   ; , , : 

  is the modal value of a fuzzy set  , d  is the equal distance from   to the 

boundary, and    is the scale factor to shape the membership, and 0  . The 

membership functions, which are newly proposed by the author, are shown as follows. 

j) Triangular-based membership function 

 

 

, 

             1                 , 

, 

0                                   otherwise

TbMF

x d
x d

d

x

x d
x d

d







 
  




 

 
  



    
     
  


 
  

    
    

 



,

,

,

 (2.3.13) 

 

k) Parabola-based membership function 

 

2

1  

0                                    otherwise

PbMF
x

x d d
d




   




            
    

   



, ,

,

 (2.3.14) 

l) Linear Complex Cosine-based Membership function 

 
1

1  
2

0                                    otherwise

LCCbMF
d x

Cos x d d
d




   

 

                     


, ,

,

 (2.3.15) 



Chapter 2 Literature Review 

 

41 
 

m) Linear Simplified Cosine-based Membership function 

 
  

2

0                                    otherwise

LCSbMF
x

Cos x d d




   

 

                  



, ,

,

 (2.3.16) 

 

n) Parabolic Sine-based Membership function 

 
2

1  
2

0                                    otherwise

PSbMF
x

Sin x d d
d




   

 

                           



, ,

,

 (2.3.17) 

The Sine functions and Cosine functions can be interchanged by 

substituting    2
Sin Cos    . 

This research recommends the PbMF, type k. 

 

2.3.2 Basic operations of triangular fuzzy sets 

Consider two TFNs  1 1 1 1, ,l m u   and  2 2 2 2, ,l m u  . The most essential 

operational axioms are as follows: 

Addition: 

   

 

1 2 1 1 1 2 2 2

1 2 1 2 1 2

, , , ,

           , ,

l m u l m u

l l m m u u

   

   
  (2.3.18) 

Subtraction:  

   

 

1 2 1 1 1 2 2 2

1 2 1 2 1 2

, , , ,

           , ,

l m u l m u

l l m m u u

   

   
 (2.3.19) 
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Multiplication:  

   

 

1 2 1 1 1 2 2 2

1 2 1 2 1 2

, , , ,

           , ,

l m u l m u

l l m m u u

  



 

  
 (2.3.20) 

Division:  

   

 

1 2 1 1 1 2 2 2

1 2 1 2 1 2

/ , , / , ,

           / , / , /

l m u l m u

l l m m u u

  


 (2.3.21) 

Inversion: 

      
1

1 1 1 1 1 1 1 1, , 1 / ,1/ ,1/l m u u l m u l

   .  (2.3.22) 

 

Example 2.1: 

Let  1 5,6,7  , 2

1 1 1
, ,

4 3 2


 
  
 

. Then their memberships are: 

 
1

5,   5 6

7 ,   6 7

0,        

x x

x x x

otherwise



  


   



,  
2

1 1
5,   

4 3

1
7 ,   7

2

0,        

x x

x x x

otherwise




  




   





. 

Addition of both is 1 2

21 19 15
, ,

4 3 2
 

 
   

 
, subtraction of both is 

1 2

19 17 13
, ,

4 3 2
 

 
   

 
, multiplication of both is 1 2

5 7
,2,

4 2
 

 
  
 

 , and division of both 

is  1

2

20,18,14



 . Inversions of both are 1

1

1 1 1
, ,

7 6 5
   

  
 

 and  1

2 2,3,4   . 

 

2.3.3 Aggregation operator properties 

Aggregation Operators (AOs) are applied in many domains on problems 
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concerning the fusion of a collection of information granules. These domains include 

mathematics, physics, engineering, economics, management, and social sciences. 

According to (Fodor and Roubens,1994; M. Grabisch et al., 1995; Yager and 

Rybalov ,1998; Detyniecki, 2000; Calvo and Mesiar, 2003) , there are some properties 

for the aggregators:  

 

1. Boundary conditions :  0, ,0 0A   and  1, ,1 1A  ; 

2. Monotonicity:    1 1, , , , , , ' , ,i n i nA x x x A x x x     if 'i ix x . 

3. Continuity: A is continuous with respect to each of its variables. 

4. Associativity:     1 2 3 1 2 3, , , ,A x x x A x A x x   1 2 3, ,A A x x x . 

5. Symmetry: also known as commutativity or anonymity. For every permutation 

δ of  1,2, ,n , the operator satisfies:         1 21 2
, , , , , , nn

A x x x A x x x
  

  . 

6. Bisymmetry:          11 12 21 22 11 21 12 22, , , , , ,A A x x A x x A A x x A x x  

7. Absorbent Element:  1, , , , nA x a x a  ; 

8. Neutral Element:    ( ) ( 1)

1 1 1, , , , , ,n n

n nA x e x A x x

    

9. Idempotence:  , , ,A x x x x ; 

10. Compensation:      1 1 2 1min , , , maxn n

i i n i ix A x x x x    

11. Reinforcement: full, downward, and upward reinforcements (Yager and 

Rybalov ,1998). 
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Different operators are associated with different choices of the above properties. 

There are no absolute rules that associate what properties to what operators. The 

researchers usually define some properties, and then create their operators. 

 

2.3.4 Categories of Aggregation Operators 

Aggregation operators (AOs) can be classified as the non-weighted AO and 

weighted AO (Yuen, 2009d). As a non-weighted AO is the special case of a weighted 

AO such that all weights are equal, the weighted AOs are discussed. Aggregation 

operators have been contributed by many researchers. The followings introduce 

operators which are frequently used (Yuen, 2009d). 

 

a) Quasi-linear means 

The general form of quasi-linear means (Bullen et el. 1988; Marichal, 1998;, Smolikava 

and Wachowiak, 2002) is of the form:  

   1

1

1
,

n

i i

i

qlm W C h h c
n





 
  

 
  , pc I .  (2.3.23) 

The function :h I  , called the generator of  ,qlm w c  is continuous and strictly 

monotonic. If  h x x , qlm is the weighted root power (wrp) or weighted generalized 

mean, and other three types are extensions (table 2.3). 
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Table 2.3: Some forms of Quasi-linear means  

1. Weighted Root Power 

 
1/

1

; ,
n

i i

i

wrp W C wc






 
  
 
  

2. Weighted Harmonic mean ( 1   ): 

 

1

1
,

n
i

i
i

whm W C
w

c




 

3. Weighted  Geometric mean  ( 0  ): 

 
1

, i

n
w

i

i

wgm W C c


  

4. Weighted  Arithmetic mean  1 : 

 
1

,
n

i ii
wam W C wc


  

 

b) Ordered Weighted Averaging 

OWA (Yager, 1988, 2004) is the weighted arithmetic mean (wam) in which its 

weight values are related to the order position of C . 

 
1

,
n

i ji
owa W C wb


 ,  (2.3.24) 

, where jb  is the jth largest of the C ,  0,1iw   and 
 1, ,

1i

i n

w





. iw  can be 

generated from a regular non-decreasing quantifier Q, which is of the form:  

1
i

i i
w Q Q

n n

   
    

   
, 1, ,i n  , (2.3.25) 

 where Q can be defined by  ;Q r r  , 0  . 

 

c) Weighted median 

In weighted median aggregation (Yager, 1994; Smolikava and Wachowiak, 2002), 

each element ic  is replaced by two elements:  

 1i i i ic w w c      (2.3.26) 
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i i ic w c   .  (2.3.27) 

Then the median value is computed by 

   1 1, , , , , , , ,i i n nwmed W C Median c c c c c c        . (2.3.28) 

Alternatively, ic  and ic  can be computed by T-conorm and T-norm, denoted as S 

and T respectively, having the forms  

 1 ,i i ic S w c    (2.3.29) 

 ,i i ic T w c   (2.3.30) 

S and T are defined as follows. 

 

d) T-norms and T-conorms 

T-norms have the properties in which  ,1T x x  and    , min ,T x y x y  

whilst T-conorms have the properties in which  ,0S x x  and    , max ,S x y x y  

(Detyniecki, 2000). Different kinds of T-norms and T-connorms (Detyniecki, 2000; 

Smolikava and Wachowiak, 2002) are shown in table 2.4.  

 

e) Weighted Gamma Operator 

Zimmermann and Zysno (1980) proposed a gamma operator on the unit interval 

based on T-norms and T-conorms. Calvo and Mesiar (2003) modified the equation with 

a weighted assignment, which is of the form: 
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      
1

1 1
; , 1 1 ii

n n ww

i ii i
wgo C W c c

 




 
    . (2.3.31) 

 

Table 2.4: Forms of T-norms and T-connorms  

1. Min-Max    , min ,Tm a b a b     , max ,Sm a b a b  

2. Lukasiewicz    , max 1,0Tl a b a b       , min ,1Sl a b a b   

3. Product/ 

Probabilistic 
 ,Tp a b ab   ,Sp a b a b ab    

4. Dubois and 

Prade 

 
 

; ,
max , ,

a b
Tdp a b

a b





 , 

 0,1   

 

  

    

; ,

1 1
1

max 1 , 1 ,

Sdp a b

a b

a b







 


 

 

,  0,1   

5. Yager 

 

    
1/

; ,

max 0,1 1 1

Ty a b

a b
 

 

    
 

 

 ; ,Sy a b 

  
1/

min 1, a b


  , 0   

6. Frank 

 

  

; ,

1 1
log 1

1

a b

Tf a b





 





  
 

  

 

, 0, 1    

 

  1 1

; ,

1 1
1 log 1

1

a b

Sf a b





 



 



  
  

  

 

7. Weber-Sugen

o 

 ; ,

1
max ,0

1

T

T

T

Tws a b

a b a b









     
 

 

1T    

 

 

; ,

min ,1

T

S

Sws a b

a b a b







   

 1

T
S

T








 

8. Schweizer & 

Sklar 

 

 

       
1

; ,

1 1 1 1 1

Tss a b

a b a b
    

 

       
 

 

 
1

; ,Sss a b a b a b         

, 0   
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f) OWMAX and OWMIN 

Ordered weighted maximum (owmax) and ordered weighted minimum operators 

(owmin) were proposed by Dubois el at. (1988). Unlike OWA which deals with 

weighted arithmetic mean, owmax and owmin apply weighted maximum and minimum 

(Marichal, 1988).  

For any weight vector    1, , 0,1
n

nW w w   such that 11 nw w   , owmax 

is of  the form: 

   ( )
1

owmax ,

n

i i
i

W C w c


  ,  0,1
n

C .  (2.3.32) 

For  0,1
n

W   such that 1 0nw w   , owmin is of the form: 

   ( )
1

owmin ,

n

i i
i

W C w c


  ,  0,1
n

C . (2.3.33) 

g) Leximin ordering 

Leximin ordering was proposed by Dubois et al. (1996). Yager (1997) improved the 

Lexmin ordering, based on OWA weights. Let   denote a distention threshold between 

the values being aggregated, the Leximin is of the form:  

 
1

leximin ,
n

i ii
W C wb


  (2.3.34) 

, where ib  is a sorted nC I  in descending order such that 1 nb b  . In addition,  

 
 

 

( )

( )

1

   , 1      
1

,

, 2, ,
1

n j

n j

j n j

n j

j

w LexW n

j n







 

 


 
   

 
  



, jw W  (2.3.35) 
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2.4 Rating scales and measurement 

The details of the related topics of the rating scales and measurement are as 

follows. 

2.4.1 Measurement and scales 

Many fields of various activities involve assessment. Assessment takes on many 

forms such as interviews, examinations, multiple choices, diagnostic tests, and 

continuous assessments. A rating scale model is an essential component for these forms 

and attracts close attention from academics as applications in assessment are vast, 

including such fields as crime, economics, finance, education, politics, marketing, 

engineering, social science, and physiology.  

Such assessments are usually referred to as psychometrics, which is the science of 

how to maximize the quality of assessment (Rust and Golombok, 1999). In 

psychometrics, the ordinal rating scales are usually referred to as soul searching for an 

appropriate category or statement in the set of alternatives representing the possible 

views of or possible perceptions toward the attributes of the objects. A good 

psychometric scale plays an essential role in determining the quality of the assessment. 

Rating scales are often applied in measurement. Measurement consists of rules for 

assigning symbols to objects so as to (1) represent quantities of attributes numerically 

(scaling) or (2) define whether the objects fall into the same or into a different category 

with respect to a given attribute (classification) (Nunnally and Bernstein,1994). The 

meaning of “symbol” includes the logically defined definite objects, and the dynamic 

processes unifying language and cognition (Hadamard, 1996).  

Regarding syntactic symbols, a study (Zorzi et al., 2002) that appeared in Nature 

concluded that “although most people focus on symbolic aspects of numbers, and few 
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seem to be aware of the intimate relationship between numbers and visuo-spatial 

representations, thinking of numbers in spatial terms (as has been reported by great 

mathematicians (Hadamard,1996) ) may be more efficient because it is grounded in the 

actual neural representation of numbers”. This research suggests that the best actual 

neural representation of numbers or quantity concepts for most people is the linguistic 

terms or words which are the basis of the qualitative representation for quantity.  

In the social sciences, most of the time the “objects” are people, a “rule” involves 

the explicitly stated assignment of numbers, and “attributes” concerns particular features 

of the objects (e.g. people) that are not themselves measured; It is their attributes that are 

measured (e.g. self-esteem) (Netemeyer et al. 2003).  

Measurement includes evaluating numbers such that they reflect the differing 

degrees of the attribute being assessed (DeVellis,1991; Haynes et al. 1999; Nunnally and 

Bernstein, 1994; Netemeyer et al. 2003). Measurement is related to other forms of 

symbolic representation such as that involved in computer data representation and 

natural language (Finkelstein and Learning, 1984). 

The types of measurement can be classified as nominal, ordinal, interval, and ratio 

(Stevens,1946). This classification outline is still used and discussed by many recent 

researchers. Nominal-level and Ordinal-level measurements are referred to as 

Categorical Measurement whilst Interval-level and ratio-level measurements are referred 
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to as metric measurement (Blaikie,2003). Qualitative data and quantitative data are used 

to refer to data in words and numbers respectively (Blaikie,2003). Interval and ratio 

scales, represented by a numerical system, are usually used in psychophysics on the 

basis of quantitative data whilst nominal and ordinal scales, including linguistic 

representation and/or numerical enumeration, are usually used by psychologists or in 

psychometrics. When an observer estimates a measure, it is a subjective judgement, and 

estimates lie along a psychological continuum (Mcdonnell,1969). The fact is that the use 

of linguistic labels makes expert judgment more reliable and consistent (Ben-Arieh and 

Chen, 2006). 

 

2.4.2 Likert-Like Scales 

The ordinal rating scales are usually referred to as mind searching for an 

appropriate category or statement in the set of alternatives representing the possible 

views of our possible perceptions toward the attributes of the objects.  

The Likert scale (1932), which is an the ordinal scale, is widely used in various 

studies. Others (or Likert-Like Scales), which can be regarded as minor variations of 

Likert scale, include numerical scale (fig.2.2) graphic rating scale (fig. 2.3), visual 

analogue scale (Wewers and Lowem,1990) (fig. 2.4), and semantic differential scale 

(Osgood et al., 1957) (fig. 2.5).  
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Figure 2.1: Likert scale 

 

Figure 2.2: Numerical scale 

 

Figure 2.3: Graphic rating scale 

Bad Excellent

1 5432  

Figure 2.4: Visual analogue scale 

 

Figure 2.5: Semantic differential scale 

 

 

Figure 2.6: Fuzzy set scale 

 

Thus, the general form of the Likert-like scales can be defined as follows. 

Definition 2.2  RC S , , : The general form of a qualitative rating scaling model is 

3-tuple  RC S , ,  where the scale for response RC is the function displaying response 

categories for raters, the scaling function S defines rating categories, and reference 

function  is to apply S to RC. 

For example, the Likert Scale is 3-tuple    X
RC X f  

'
, ', ' , ' , . RC  is 

shown in fig. 2.1,   X
S X f  

'
', ' , '  is the scale model. The response linguistic 

categories  'Bad','Weak','Fair','Good','Excellent' ' and the interval scale 

 1 2 3 4 5X ' , , , ,  where  X
X f 

'
'  is the function of rules for assigning numbers 
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to the linguistic labels in the categories. Natural and programming languages are usually 

considered in view of their syntactic, pragmatic (procedural, algorithmic, functional), 

and semantic aspects (Muravyov and Savolainen, 1997). The questions of the semantics 

of a language for the representation of measurement results are not yet clear (Muravyov 

and Savolainen, 1997).  Thus, the assignment of  X
X f 

'
'  of a Likert Scale is 

open to discussion, especially the interval analysis and numerical representation 

analysis.  

A fuzzy linguistic variable which consists of linguistic labels is also considered as 

a type of ordinal scale as it is a single step rating process in the rating interface, but its 

numerical representation methods are fuzzy numbers. 

The use of linguistic labels makes expert judgment more reliable and consistent 

(Ben-Arieh and Chen, 2006). This is due to the fact that humans employ mostly words in 

computing and reasoning, arriving at conclusions expressed as words from premises 

expressed in a natural language or having the form of mental perceptions (Zadeh, 1996).  

 

2.4.3 Cardinal number of rating scale 

Regarding the cardinal number of the set of the terms, the qualitative scales, i.e. 

ordinal and nominal, are referred to as being „soft‟ or „weak scales‟ (Muravyov and 

Savolainen, 1997). This may be due to the reason that the number of the terms is very 
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limited, as an expert could usually only manage a set with  7 2  terms (Miller, 1956). 

The incomplete and ambiguous scale category descriptors may result in significant 

evaluation errors and may not reflect the facts. If fewer categories, i.e., 3 or 5, are 

applied, the descriptors are clearly insufficient. Increasing the number of ordinal 

categories will induce ambiguity. This can be referred to in the research from Hakel 

(1968) and a comparison with Simpson (1944) who investigated twenty modifying 

words like usually, often, sometimes, occasionally, seldom, rarely and commonly. He 

concluded that they do not mean the same thing to all people. The problem also appears 

in a similar study by Hoyt (1972) who investigated how people interpret quantifying 

adjectives such as a clear mandate, most, numerous, a substantial majority, a minority of, 

a large proportion of, a significant number of, many,…., hardly any, a couple, and a few. 

In view of the number of rating options and computational methods, chapter 4 

proposes a Syntactic Rule Algorithm (Algorithm 4.1) to produce a large scale of terms , 

e.g.  1 1,    , 7 2m n m n    , to reduce the softness and weakness of the scales. The 

Deductive Rating Strategy Algorithm (Algorithm 4.3) as a rating interface is proposed to 

improve the rating process. 

 

2.4.4 Numerical representation and computational rules 

Regarding the computational methods to map the linguistic labels to numerical 
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symbols, Zorzi et al. (2002) has alleged that research into numerical representation for 

linguistic terms is limited. Steven (1946) has implied that linearity of an ordinal scale is 

open to question. Blaikie (2003) has argued that the commonly used Likert categories 

are not necessarily evenly spaced along this level of agreement continuum, although 

researchers frequently assume that they are. There are many situations where 

observations cannot be described accurately when, for instance, they depend on 

environmental conditions or on individual responses (Urso and Gastaldi, 2002). For 

another reason, the findings of the studies (Simpson, 1944; Hakel, 1968) also supports 

the views that the ordinal position of the words is not well defined and universally 

applied, and intervals are not even. The studies (Simpson, 1944; Hakel, 1968) also imply 

that statistics from a population is not an effective method to get the representation value. 

Fuzzy theory may be the appropriate approach to address the problem.  

However, there are limitations to bridge the classical measurement and fuzzy 

theory for the following three reasons. 

Firstly, most fuzzy studies focus on physiological measurement, that is to fuzzify 

the crisp value of the measureable object on the basis of a physiological instrument, and 

then to make further calculation. Examples like the temporary, the numerical value, 5 

degree, physiological measurement, may be fuzzifed as “cold”, with a certain 

membership, i.e. 0.8, for a term set. “Temperature=(Cold,0.8)” set associated with other 
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parameters are defuzzified to a meaningful result with the dedicated aggregators. This 

process is “number in and number out” via words in the middle (NI-NO-WM). 

For many measurement applications, after the surveys are completed, the data are 

collected and further processed to answer research questions about characteristics, 

relationships, patterns or influences in some social phenomenon. This is called data 

analysis which can be divided into four types: univariate descriptive, bivariate 

descriptive, explanatory, and inferential (Blaikie,2003). After data analysis, the study 

concludes their findings mainly by using words. 

It seems there is a gap when applying fuzzy theory to such kinds of data analysis. 

A problem may be attributed to the properties of fuzzy numbers. If the data type is the 

fuzzy number, the data type will not be applied in the model. In this situation, a fuzzy 

number can be converted into a crisp number. A crisp number can be regarded as a 

special fuzzy number having no fuzziness associated with it (Wewers and Lowem, 1990). 

Typically a triangular number (a,b,c) is used to represent a linguistic label. Usually the 

modal value of the triangle number is used to represent the linguistic label. However, 

this approach leads to comes back to the same assignment method of Likert scales; for 

example, 1 is for “very disagree”, and 5 is for “very agree”. Due to a lack of theoretical 

approaches to develop a pattern using a collection of crisp numbers presenting a 

collection of linguistic labels with the fuzzy theory, chapter 4 proposes a Semantic Rule 
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Algorithm (algorithm 4.2) to address the problem. 

Secondly, the literature on decision problems mainly discusses two main problems: 

the aggregation process and the exploitation process (Herrera and Martinez, 2001).  

However, there is a lack of research discussing the problem of WI-WO-NM. For 

example, the 2-tuple fuzzy linguistic model (Herrera and Martinez, 2001), which claims 

to be superior to classic fuzzy linguistic representation, is an approximative 

computational model based on the Extension Principle (Degani and Bortolan  1988; 

Chang and Chen, 1994), and the Ordinal Linguistic Computation Model (Yager, 1995). 

However it ignores the process of rating and assessment in the beginning stage. Also the 

2-tuple fuzzy linguistic term model is still only a numerical assessment with partial 

linguistic assessment. 

A 2-tuple fuzzy linguistic term  is , is a numerical number in manner. For 

example, in fig. 2.6, assume the expert thinks that some attribute of an object is 3 4  . , 

then 3s Fair' '  with 0 4  . , i.e.    33 4 0 4s . , . .   and   still need a 

numerical justification from the expert. It is questionable how the data obtained from the 

expert‟s subjective measurement approximates to decimal accuracy, instead of fuzzy 

linguistic input. In the real world, the uncertainty, constraints, and even the vague 

knowledge of the experts imply that decision makers cannot provide exact numbers to 

express their opinions (Ben-Arieh and Chen, 2006). To address this problem, this study 
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changes   into a linguistic symbol, which is transferred into a number though fuzzy 

normal distribution. Another barrier of 2-tuple is that this method needs a dedicated 

fuzzy aggregator and cannot correspond to classical statistical research for most 

psychometric research, especially the fields of social science and psychological 

measurement. 

Thirdly, although there are many fuzzy set and fuzzy logic studies (e.g. Bilgic, and 

Turksen,2000; Türksen, 1991; Deschrijver and Kerre, 2007; Zadeh, 1975, 

1996,2005,2008), the theoretical distribution of the collective patterns of the rating 

scales in the assessment processes does not seem to have received enough attention in 

the fuzzy set theory literature, which mainly considers the approaches of the elicitation 

of the membership. The problem of numerical representation for the linguistic terms is 

still unsolved.  

It seems the field of psychometric measurement in assessment processes such as 

psychometric scales developed by fuzzy theory, have not received enough attention in 

the fuzzy theory literature, especially the problem of how to reduce the vagueness of the 

intervals of ordinal rating categories and the problem of numerical representation for the 

linguistic terms. The Compound Linguistic Ordinal Scale Model (chapter 4) is proposed 

to address this issue. 
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2.5 Analytic Hierarchy Process / Analytic Network Process (AHP/ANP) 

The pairwise comparison method is originated from psychological research 

(Thurstone, 1927). Prof. Saaty further developed the concept in a mathematical way, and 

applied the concept in Analytic Hierarchy Process (AHP) (Saaty, 1980, 1990, 1994,2000, 

2001) and Analytic Network Process (ANP) (Satty 2005). The pairwise comparison 

method has been widely studied extensively and applied in multi-criteria decision 

making (MCDM) domains about 30 years, e.g. the survey from Ho (2008). However, 

there are criticisms against this method (e.g. Belton and Gear, 1983; Dyer, 1990a and 

1990b; Murphy, 1993; Perez, 1995; Forman and Gass, 2001; Wang and Elhag, 2006; 

Rozann, 2007). The related topics of Analytic Hierarchy Process / Analytic Network 

Process are illustrated as the following sections. 

 

2.5.1 The processes 

The AHP consists of four major operations: definition, assessment, prioritization, 

and synthesis. In definition, experts need to define an objective of the problem O , a set 

of alternatives of the solution  1 2, , , , ,j mT t t t t   , and a set of criteria to be 

evaluated  1 2, , , , ,i nC c c c c   . In the assessment, decision makers need to set the 

verbal judgment for each pairwise comparison on the basis of their experience and 

knowledge. The verbal judgment is usually on a 9-point verbal scale with corresponding 
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numerical representations illustrated in table 2.5. The pairwise comparison is performed 

by a pairwise comparison matrix, denoted by  ijA a , 10 ij jia a   , , 1,2, ,i j n  , 

where ija  is a numeric point to estimate the relative importance of object i dominating 

object j. A pairwise comparison matrix is also called a reciprocal matrix due to the axiom 

of  10 ij jia a  . The reciprocal matrices of all assessments are formed by transforming 

the linguistic labels to numerical values.  

 

Table 2.5: Pairwise comparison scale schema  

Verbal Scales Numerical Representation 

Equally important 1 

Weakly important 2 

Moderately important 3 

Moderately plus 4 

Strongly important 5 

Strong Plus 6 

Very Strongly 7 

Very, very strongly 8 

Extremely important 9 

Reciprocals of Above ( from 1/2 to 1/9 ) 

 

To determine the validity of a pairwise matrix, the concept of Consistency Ratio is 

applied. If CR>0.1, the pairwise matrix is not consistent, then the comparisons should be 

revised. Otherwise, the pairwise matrix is accepted. Consistency Ratio is obtained by 

dividing Consistency Index by Random Index (table 2.6) which is an average random 
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consistency index derived from a sample of randomly generated reciprocal matrices 

using the scales in table 2.5. Consistency index is in the form max

1

n
CI

n

 



, where a 

principal eigenvalue max  can be derived by the form 

2

max

1

1

1

ij

i j n ij

n
n




  

 


 , 

1
ij

ij

i j

a

w w


 
  
 
 

. A is consistent if max n  , and it is not consistent if max n  . 

 

Table 2.6: Random consistency index (R.I) (Saaty, 1980)  

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

RI 0 0 .58 .90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59 

 

In the prioritization process, a local priority vector  1, , nW w w  , 
1

1
n

ii
w


  

is generated from a reciprocal matrix A  by a Prioritization Operator (PO), i.e. 

:PO A W . PO has been studied by many studies. This study reviews eleven 

important prioritization operators further stated in Chapter 2.5.2. 

 

In the synthesis stage, the local priority vectors W‟s are aggregated as a global 

priority vector  1, , nV v v  by an aggregation operator  :Agg W V . Usually the 

aggregation operator uses the weighted average summation operator. 

These four operations are likely to induce four fundamental problems: (i) selection 

of criteria in stage one; (ii) selection of numerical scales in stage two; (iii) selection of 
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prioritization operators (or methods) in stage three; and (iv) selection of aggregation 

operators in stage four. These problems probably create rank reversals. Problem (ii) has 

been addressed by Compound Linguistic Ordinal Scale (Yuen and Lau, 2009).  

 

Concerning problem (iii), although there are many POs (illustrated in Chapter 

2.5.2), actually the best prioritization operator relies on the particular content of a 

pairwise matrix, and none of prioritization methods performs better than the others in 

every inconsistent case. (Yuen, 2009b, 2009c, 2009g; Srdjevic, 2005; Mikhailov and 

Sing, 1999) also have verified this issue. Thus, it is appropriate to propose a framework 

to select the most appropriate prioritization operator for each reciprocal matrix among 

sufficient PO candidates with defined measurement methods. A Mixed Prioritization 

Operators Strategy using defined measurement methods (Yuen, 2009b, 2009c, 2009g; 

Srdjevic, 2005) can address this issue. 

If a unique operator is proposed, the proof is needed to show that this unique 

operator performs better than others on the basis of some measurement criteria. The 

measurement method should be reasonable and convincible. Chapter 2.5.2 demonstrates 

the analytical prioritization operators whilst Chapter 2.5.3 presents the measurement 

methods, which are further illustrated by the graph theory in Chapter 2.5.4.  
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2.5.2 Analytical prioritization operators (APOs) 

a)  Eigenvector(EV) 

Eigenvector operator is proposed by (Saaty, 1980). EV is to derive the principal 

eigenvector max  of A as the non-normalized priority vector 'w  by solving the 

following Eigen system. 

max' 'Aw w ,  1' ' , , 'nw w w   (2.5.1) 

And the solution of 'w , which is normalized as  iw ,  is given by  

' lim
k T

k Tx

A e
w

eA e

 
  

 
,  1,1, ,1e    

1

'
,  1,2, ,

'

i
i n

ii

w
w i n

w


 


  (2.5.2) 

b)  Normalization Operators 

Normalization operator was introduced in (Saaty, 1980). The methods are named 

according to their calculation steps since Saaty (1980) has not given them appropriate 

names. 

b-1)  Normalization of the Row Sum (NRS) 

NRS is to sum the elements in each row and normalize by dividing each sum by 

the total of all the sums, thus the results now add up to unity. NRS has the form: 

1
'      1,2, ,

n

i ijj
a a i n


    

1

'
    1,2, ,

'

i
i n

ii

a
w i n

a


 


  (2.5.3) 
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b-2)  Normalization of Reciprocals of Column Sum (NRCS) 

NRCS is to take the sum of the elements in each column, form the reciprocals of 

these sums, and then normalize so that these numbers are added to unity, e.g. to divide 

each reciprocal by the sum of the reciprocals. It has the following form: 

1

1
'      j 1,2, ,i n

iji

a n
a



 


  

1

'
    1,2, ,

'

i
i n

ii

a
w i n

a


 


  (2.5.4) 

 

b-3) Arithmetic Mean of Normalized Columns (AMNC)  

Each element in A is divided by the sum of each column in A, and then the mean of 

each row is taken as the priority iw . It has the following form: 

1

'      , 1,2, ,
ij

ij n

iji

a
a i j n

a


 


 , and  

1

1
'     1,2, ,

n

i ijj
w a i n

n 
    (2.5.5) 

b-4) Normalization of Geometric Means of Rows (NGMR) 

NHMR is to multiply the n elements in each row and take the nth root, and then 

normalize so that these numbers add to unity. It is the following form: 

1/

1
' ,  1,2, ,

n n

i ijj
w a i n


    

1

'
,    1,2, ,
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w
w i n

w


 


  (2.5.6) 
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c) Direct Least Squares / Weighted Least Squares (DLS/WLS) 

This method is used to minimize the sum of errors of the differences between the 

judgments and their derived values. The Direct Least Squares  proposed in (Chu et al, 

1979) has the following form: 

2

1 1
Min          

n n
i

iji j
j

w
a

w 

 
 

 
   

 
1

Subject to 1,   0, 1,2, ,
n

i ii
w w i n


     (2.5.7) 

The above non-linear optimization problem has no special tractable form or closed 

form and is very difficult to be solved (Chu et al, 1979). For efficient computation with 

closed form, Chu et al (1979) modified the objective function and proposed the 

Weighted Least Squares (WLS) in the following form: 

 
2

1 1
Min          

n n

i ij ji j
w a w

 
   

 
1

Subject to 1,   0, 1,2, ,
n

i ii
w w i n


     (2.5.8) 

Although this method provides the closed form for the answer, the variance likely 

is larger than DLS.  

 

d) Logarithm Least Squares Method (LLS)  

LLS initially were proposed by Crawford and Williams (1985), and has been 

intensively studied by many authors (e.g. Saaty and Vagas, 1984; Budescu et al, 1986; 

Zahedi, 1986; Blankmeyer , 1987; Golany and Kress , 1993; Lootsma, 1996; Barzilai, 
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1997; Lin, 2006). The LLS has the following form: 

  
2

1
Min          ln ln ' ln '

n n

ij i ji j i
a w w

 
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1

Subject to ' 1,   ' 0, 1,2, ,
n

i ii
w w i n


     (2.5.9) 

The final result  iw  is derived from normalization of  'iw . Crawford and 

Williams (1985) have proved that the solution is unique, and is equivalent to NGMR, 

which is preferable due to its simplicity. 

 

e) Fuzzy Programming (FP) 

The FP is proposed by Mikhailov (2000), and has the form: 
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 (2.5.10) 

 m n

j ijR R a   is the row vector. The values of the left and right tolerance 

parameters jd   and jd   represent the admissible interval of approximate satisfaction of 

the crisp equality  0T

jR W  . The measure of intersection of   is a natural 

consistency index of the FP. Its value however depends on the tolerance parameters. For 

the practical implementation of the FP, it is reasonable that all these parameters has 

equal values. Limitation of this method is that parameters jd 
 and jd   are undermined 

by Mikhailov (2000). This leads to infinite candidate values for the parameters.  

Mikhailov (2000) sets 1j jd d    in his example. 
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f)  Goal Programming (GP) 

Bryson (1995) proposed goal programming operator (GP), which uses relative 

deviations ij

ij







  to measure the relationship between i

j

w
w

 and ija . The relationship 

has the following form: 

ij i
ij

ij j

w
a

w









  
  

  
  

,  

,where  1   &    1ij ij      or  1   &    0ij ij     (2.5.11) 

In Bryson‟s method, the aim is to minimize  ij ij

i j i

  



 . To solve Eq. 2.5.11 , the 

non-linear programming problem is translated into the linear goal programming problem 

with the following form: 

 
1

Min          ln = ln ln
n n

ij iji j i
  

 
    

  Subject to ln ln ln ln ln ,   ,i j ij ij ijw w a i j IJ         

,where   , :1IJ i j i j n    ; ln ij
  and ln ij

  are non-negative. (2.5.12) 

Ideally the objective value should be 0 when ln ln 0ij ij    , i.e. 1ij ij    . 

The computer tries to minimize the value as low as possible for the solution by many 

loops. In the simulation of this research, GP does not provide the unique results of the 

priorities, even if the same objective value is achieved by the functions FindMinimum[.] 

and NMinimize[.] in Mathematica. Also Lingo and Mathematica provide different 

priority results subject to the same objective values. Also the priority vector with adding 

0,iw i   as the constraints is different from the one without adding 0,iw i  , 
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although the objective values are the same. These facts can be concluded that GP leads 

to various priority vectors for a same objective values. (The mathematical proof is left 

for readers as it is beyond the research purpose.) 

 

g)  Enhanced Goal Programming (EGP) 

Lin (2006) has proposed Enhanced Goal Programming model, which is the 

combination of GP and LLS, and has the form: 

Min          ln    

 

 
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 (2.5.13) 

, where   , :1IJ i j i j n    , ln 0ij
  , ln 0ij

   and   is a sufficient small 

positive number. The term sufficiently small means that any increase of   will cause 

ln  to lose its optimality. In his paper,   is set to 1010  as an example, which is 

approximate to 0. When ln  reaches its optimum, a tradeoff rate exists between ln  

and  . The decrease of   leads to the increase of ln . The effect of  is to depress 

ln  to increase. When   is sufficiently small, any sacrifice of ln  for reducing   

would be fruitless. Thus the model forces the solution to minimize ln  before 

minimizing  . However, this optimization method induces more computational effort 

than LLS and GP. 
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h)  Least Penalty Optimization Operators 

LPO operators are proposed in the research (Yuen, 2009h) after several POs are 

reviewed. Least Penalty Optimization (LPO) operators are the POs that the penalty is 

used in the optimization model. Two LPO operators are proposed: Least Product of 

Penalty and Direct Squares (LPPDS) and Least Product of Penalty and Weighted 

Squares (LPPWS). 

The LPPDS Operator is to apply a set of penalties  ijB  in the Direct Least 

Squares, and it has the following form: 
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i ii
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
     

1 2 3, ,    are the penalty weights. 

The solution can be easily solved by some software tools such as Excel, Mathlab, 

Lingo, as well as Mathematica which is used in this research. Yuen (2009h) indicated 

that LPPDS performs better than DLS, and other POs on the basis of Root Mean Penalty 

Weighted Square Variance (RMPWSV) measurement, which is shown in the next 

section. 
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The LPPWS Operator is to apply a set of penalties  ijB  in the Weighted Least 

Squares, and it has the following form: 

 
2

1 1
Min      G =

n n

ij i ij ji j
B w a w
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i ii
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Unlike Weighted Least Squares, it is very difficult to get the closed form of the 

above solutions. Thus this research suggests numerical methods to solve equations, 

which is performed by many software tools. Yuen (2009h) indicated that LPPWS 

performs better than WLS on the basis of the Root Mean Penalty Weighted Square 

Variance (RMPWSV) measurement model, which is shown in the next section. 

 

Example 2.2 

Consider a 3x3 pairwise matrix with the priority set  1 2 3, ,W w w w . The reciprocal 

matrix with CR is: 

1 1
1

4 2

4 1 5

1
2 1

5

A

 
 
 

  
 
 
 

, CR= 0.081 (2.5.16) 
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The results of the above eleven prioritization operators are shown in table 2.7 (The 

result of NGMR is the same as the one of LLS). P11 is the Least Product of Penalty and 

Direct Squares operator, and P12 is the Least Product of Penalty and Weighted Squares 

operator. As it can be observed that different prioritization operators produce different 

values, and possibly lead to different local rank. For the local rank, the larger number of 

the priority is defined as the higher rank. The question is which PO the most appropriate 

to represent the approximate value is. Thus this follows the discussion of Prioritization 

Operator Measurement Models in the next section. 

 

Table 2.7: Prioritization results for various analytic prioritization operators  

Notations POs w1 w2 w3 Local Rank 

P1 EV 0.1265 0.6870 0.1865 (1,3,2) 

P2 NRS 0.1171 0.6689 0.2140 (1,3,2) 

P3 NRCS 0.1448 0.6992 0.1560 (1,3,2) 

P4 AMNC 0.1307 0.6768 0.1925 (1,3,2) 

P5 NGMR/ LLS 0.1265 0.6870 0.1865 (1,3,2) 

P6 DLS 0.1587 0.6926 0.1487 (2,3,1) 

P7 WLS 0.1535 0.6977 0.1487 (2,3,1) 

P8 FP 0.1282 0.7179 0.1538 (1,3,2) 

P9 LGP 0.0769 0.7692 0.1538 (1,3,2) 

P10 EGP 0.1265 0.6870 0.1864 (1,3,2) 

P11 LPPDS 0.1551 0.6898 0.1551 (1,3,1) 

P12 LPPWS 0.1552 0.6896 0.1552 (1,3,1) 
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2.5.3. Analytic prioritization operator measurement models 

When a problem is introduced, many possible solutions are proposed. This leads to 

a question which solution model the best one is. Thus the study of the measurement 

models is introduced. This also leads to various measurement models. Then the next 

question is which measurement model the most appropriate is. The fittest measurement 

model must be supported by the convincible reasons that it performs better than other 

models.  

The Analytic Prioritization Operator Measurement Models evaluate the fitness of 

the prioritization operators (Yuen, 2009g). Thus they can be used for selecting the fittest 

PO by the comparing different POs (Yuen, 2009g). Several important measurement 

models are reviewed. By taking the advantages and eliminating the disadvantages of 

these methods, a new variance model is developed. 

Golany and Kress (1993) proposed the Total Deviation (TD) to measure the sum of 

the square deviations between ratio of weights and their corresponding entry in the 

matrix. Mikhailov and Sing (1999) took the square root of TD as Euclidean Distance 

(ED) as follows: 

 

2

1 1

,
n n

i
ij

i j j

w
ED A W a

w 

 
  

 
 

  (2.5.17) 

As ED depends on the size, i.e. nxn, of the reciprocal matrix A, for easier 

interpretation of the result, it is more appropriate to use the average of the value. The 
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Root Mean Square Variance takes the root of the average of the sum of square deviations 

(yuen, 2009b, 2009c, 2009g), as follows: 

 

2

1 1

1
,

n n
i

ij

i j j

w
RMSV A W a

n n w 

 
  

   
  (2.5.18) 

However, a limitation of TD/ED/RMSV is that the penalty weights are not justified. 

For example, the penalty of the condition  &  1& i
i j ij ij

j

w
w w a a True

w

 
    

 
 

 is not 

the same as the one of the condition  &  1&
j

i j ij ji

i

w
w w a a True

w

 
    

 
. In short, the 

weights of these two conditions should not be equal. 

 

To determine the variance associated with penalty weights, Minimum Violation 

(Golany and Kress, 1993), which is used in (Mikhailov and Sing, 1999 ; Srdjevic , 2005),  

can be further developed as weight determination, as follows: 

 , ij

i j

MV A W I  

1  ,  &  1 

0.5 ,  &  1

0.5 ,  &  1

0 ,

i j ij

i j ij

ij

i j ij

w w a

w w a
I

w w a

Otherwise

 


 
 

 


 (2.5.19) 

 

A mistake of above function is that  ijI  should be 1 if  &  1i j ijw w a  . In 

addition, as the value of MV depends on the size ( 2n ) of the matrix (usually a larger 

sized matrix leads to a higher value of MV), the mean value of MV is more appropriate 
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for measuring POs. Thus, on the basis of these two improvements, the Mean MV (yuen, 

2009b, 2009c, 2009g) has the form: 

 

 
2

1
, ij

i j

MMV A W I
n

 
  

 
  

,where 

 

 

 ,  &  1    1

1  &  1

0.5 ,  &  1
0.5 ,  &  1
0 ,

i j ji

i j ji

ij
i j ji

i j ji

w w a

w w a

I w w a

w w a

Otherwise

 


 
   


 


; (2.5.20) 

A limitation of MMV is that it counts the penalty scores only, and ignores the 

actual variance values. 

Finally, to combine the advantages of RMSV and MMV, and offset their shortages, 

the Root Mean Penalty Weighted Square Variance   (which is revised from yuen 

(2009b, 2009c, 2009g)), as follows: 

 
1

, ij

i j

RMPWSV A W Y
n n

  

  

, where  

2

1

2

2

2

3

  ,  &  1    

                       &  1 

    ,  &  1

                       or  &  1

        ,       

i
ij i j ij

j

i j ij

i
ij ij i j ij

j

i j ij

i
ij

j

w
a w w a

w

or w w a

w
Y a w w a

w

w w a

w
a otherwise

w







 
   

 
 

 

 
    

 
 

 

 
 

 
 

  

















, 1 2 31       (2.5.21) 
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 1 2 3, ,     is the vector of penalty weights. RMSV is the special case of 

RMPWSV if 1 2 3 1     . In MMV, 1 2 30, 0.5, 1     .  However, zero of 1  

can cancel the variance. By default settings of  , 1 1   is defined, and also 

2 33, 10   .  

Remarks: PO Measurement models such as RMPWSV and RMSV for CNP are 

different from ones for AHP, although they have the same name. More PO measurement 

models of AHP can be referred to the study (Yuen, 2009g). 

 

2.5.4. Graph theory interpretation 

The conventional graph theory can show the prioritization problem of only three 

criteria. If more than three criteria, the graphical representation is impossible as it is a 

complex hyper dimensional problem. In fact, the visualization of the hyper dimensions is 

out of the human perception. Thus, 2D and 3D representations are applied for a 

prioritization problem of three criteria since the reciprocal matrix of two criteria is 

always consistent, as follows (Yuen, 2009h). 

 

a)  Two dimensional representation 

Consider a 3x3 prioritization problem with the priority set  1 2 3, ,W w w w  

which is of the form: 
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12 13

12

13 23

1

1 1 5

1 1 1

a a

A
a

a a

 
 
 

  
 
  
 

 (2.5.22) 

 

As the axiom of the ratio scale is the form i
ij

j

w
a

w
 ,  a system of three linear 

equations is of the form: 

1 12 2

1 13 3

2 23 3

0

0

0

w a w

w a w

w a w

 


 
  

 (2.5.23) 

Another axiom of the priorities is the form 
1

1
n

ii
w


 , thus 1 2 3 1w w w   . To 

eliminate 3w  and plot a plane of 1w  and 2w , the new form of the linear system is : 

 

 

1
2

12

1 13

2 13

13

23 1

2

23

1

1

1

w
w

a

w a
w a

a

a w
w

a





 

 

 
 



 (2.5.24) 

 

To illustrate the above linear system, the next step is to plot the lines in the 2D 

plane.  Let 12

1

4
a  , 13

5

4
a  , and 23 5a  , the matrix is perfectly consistent. In fig. 2.7, 

the three equations have an intercept point (0.172,0.690), which is the unique solution of 

the priorities. 
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Figure 2.7: The feasible points of APOs in overview  

 

Figure 2.8: The feasible solution region of APOs  

 

 

Figure 2.9: The feasible solution region of APOs in focus view  
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Consider the matrix in Example 1, i.e. 13

1

2
a  . In fig. 2.8, the Feasible Solution 

Region is constituted by three lines. Fig 3 shows the focus view of the region.  It can be 

observed that all solutions of all prioritization operators proposed in this paper are 

located within this region. The index number indicates the index of the PO, which is 

defined in table 1. In fig. 2.9, it can be seen that the results of 5 and 10, as well as 11 and 

12 are overlapped. 

It might be suggested to draw some lines for the proposed Prioritization Operator 

Measurement Functions, e.g. ED 

2

1 1

0
n n

i
ij

i j j

w
a

w 

 
  

 
 

  or RMPWSV 

2

1 1

0
n n

i
ij ij

i j j

w
Y a

w 

 
   
 
 

 , to elaborate the best approximate solution points. However, it 

is impossible to show the lines in the plane. The reason is that, for  1 0,1w  , 2w  is the 

complex number after the algebraic elimination operation, or vice versa. Thus the third 

dimension is needed to be created for measurement functions.  

 

b) Three dimensional representation 

In the 2D plane of 1w  and 2w , a dimension z is created for exploring the 

evaluation value by a measurement function. Two measurement functions are explored 

and compared in this section: Root Mean Square Variance (RMSV) and Root Mean 

Penalty Weighted Square Variance (RMPWSV).  
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Fig 2.10 shows the RMSV and RMPWSV for all  1 2, 0,1w w   from a top view. It 

shows that there are three white lines to separate the regions in the graph of RMPWSV 

whilst this does not happen in RMSV. The reason can be found in fig. 2.11 which shows 

the same content of fig. 2.10 but from a side view. It can be observed that some areas are 

leveled up accordingly. This is due to the fact that the penalty weights  ,ij i jB w w  

increase in 3 or 10 times. This is similar to the earthquake. If the intensity of the 

earthquake increases, the degree of the level increases also. For instance,  1 2 3, ,    is 

from  1,3,10  to  1,10,100 . This is shown in fig. 2.12.  

 

 

 

 
 

Graph of Root Mean Square Variance 

 

 

gap

 

Graph of Root Mean Penalty Weighted 

Square Variance 

Figure 2.10: Top view of the measurement values of APOs on plane ( 1w , 2w )  
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Root Mean Square Variance 

 

The Most Feasible Solution Region

 

Root Mean Penalty Weighted Square 

Variance 

Figure 2.11: Side view of the measurement values of APOs on plane ( 1w , 2w )  

 

 

The Most Feasible Solution Region

 

RMPWSV with penalty set 

   1 2 3, , 1,3,10     

 

The Most Feasible Solution Region

 

RMPWSV with penalty set  

   1 2 3, , 1,10,100     

Figure 2.12: The Most Feasible Solution Region of APOs with respect to two   values  

 

The least value of z , i.e. minz , implies the most appropriateness of the 

combination of the priorities. Thus minz  is in the lowest plane, which is called the Most 

Feasible Solution Region (MFSR). The MFSR in fig. 2.12 is also within the Feasible 

Solution Region (FSR) shown in figs. 2.8 and 2.9. minz  can be found by an optimization 

model discussed in the next section.  
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Example 2.3 

This example continues Example 1. Firstly the Root Mean Square Variance, Mean 

Minimum Violation, and Root Mean Penalty Weighted Square Variances are found. Then 

the solution points of each POs on RMSV and RMPWSV in the three dimensional 

graphs respectively are shown. Finally the results are interpreted. 

 

Table 2.8: Analytic prioritization operators‟ measurement results  

Notations POs RMSV MMV RMPWSV PO Ranks 

P1 EV 0.6743 0 0.6743 (8,1,6) 

P2 NRS 0.8502 0 0.8502 (11,1,9) 

P3 NRCS 0.4703 0 0.4703 (5,1,3) 

P4 AMNC 0.6590 0 0.6590 (7,1,5) 

P5 NGMR 0.6743 0 0.6743 (8,1,6) 

P6 DLS 0.4349 0.2222 1.2804 (1,11,11) 

P7 WLS 0.4396 0.2222 1.2411 (2,11,10) 

P8 FP 0.6171 0 0.6171 (6,1,4) 

P9 LGP 2.0006 0 2.0006 (12,1,12) 

P10 EGP 0.6744 0 0.6744 (10,1,8) 

P11 LPPDS 0.4418 0 0.4418 (3,1,1) 

P12 LPPWS 0.4419 0 0.4419 (4,1,2) 

 

Table 2.8 shows RMSV, MMV, and RMPWSV. Although both DLS and WLS have 

the least two RMSV, they have the highest two violations. Thus RMPWSVs of only DLS 

and WLS increases (with respect to RMSV of them) and become the highest two. Others 

remain unchanged, e.g. their RMPWSV is the same as their RMSV. 
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When assigning the solution points of all POs in the 3D graphs shown in Fig. 2.13. 

It shows that DLS, WLs, LPPWS, LPPDS are close with respect to RMSV, and DLS is 

the best solution using RMSV as the measurement criterion. The related values can be 

found in Table 2.7. However, when RMPWSV is used, the results of the DLS and WLS 

are otherwise due to their volitions. In Fig. 2.13, it can be observed that DLS and WLS 

are not in the Most Feasible Solution Region (MFSR). Thus LPPWS and LPPDS are the 

best two POs. And LPPDS performs the best result. 

LGP is not the appropriate method as it always in the intercept of two lines (Fig. 

2.8), which means relatively high value of RMSV or RMPWSV. In order to investigate 

the validity of LPPWS and LPPDS with more cases, Yuen (2009h) performed various 

numerical analyses. 

 

 

LGP

DLS
LPPDSLPPWSWLS

 

Solution points of POs using RMSV 

 

LGP

DLS

WLS

LPPDS LPPWS

 

Solution points of POs using RMPWSV 

Figure 2.13: Focus views of solution points of APOs in the 3D graph  
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2.6 Fuzzy Analytic Hierarchy Process (FAHP) 

The Analytic Hierarchy Process (Saaty, 1980) is a popular model to aggregate 

multiple criteria for decision making. The limitation is that the measurement scale for 

the value of the utility function, which is basically numerical and probabilistically 

judgmental, induces evaluation problem. This introduces the studies on fuzzy AHP (e.g. 

LaarHoven and Pedrycz, 1983; Boender et al. 1989; Chang, 1996; Wang et al., 2006, 

2008; Yuen, 2008; Yuen and Lau, 2008b, 2008c) to address the limitation. Applications 

of the Analytic Hierarchy Process (AHP) and the Fuzzy Analytic Hierarchy Process 

increasingly address the attentions of the industry applications and scholarly research. 

2.6.1 FAHP classifications 

This review, which is revised from (Yuen, 2008), classifies the Fuzzy AHP into 

two types of core processes. Type I includes fuzzy assessment, fuzzy prioritization, 

defuzzification, and crisp synthesis. Type II includes fuzzy assessment, fuzzy 

prioritization, and fuzzy synthesis. The Extent Analysis Method (EAM) (Chang, 1996) is 

Type I whilst modified Fuzzy LLSM (Wang et al., 2006, 2008) is Type II. 

In the fuzzy assessment, a fuzzy comparison matrix is expressed by  

 

     

     

     

12 12 12 1 1 1

21 21 21 2 2 2

1 1 1 2 2 2

1,1,1 , , , ,

, , 1,1,1 , ,

, , , , 1,1,1

n n n

n n n

ij nxn

n n n n n n

l m u l m u

l m u l m u
A a

l m u l m u

 
 
  
 
  
 





   



 (2.6.1) 
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,where    1, , 1 ,1 ,1ij ij ij ij ji ji ji jia l m u a u m l    ,for , 1, ,i j n   and i j . 

 1,1,1ija   if i j .   

The verbal judgment is usually on a 9 point verbal scale represented by fuzzy 

numbers: (1,1,1) for equal importance, (1.5, 2, 2.5) for weak importance, and finally 

(8.5,9,9.5) for extreme importance. In this study, A  is further decomposed as follows: 

 

12 1
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1 2
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1
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 (2.6.2) 
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 (2.6.4) 

 

The fuzzy consistence ratio (FCR) of A  , which is proposed by this study,  is 

defined as 

     
0.25 0.5 0.25

l m uFCR CR A CR A CR A    (2.6.5) 

,where CR  is the function of the crisp consistency ratio of the crisp AHP. If FCR >1, 

revision of A  is needed. 
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In the fuzzy prioritization, A  is derived as a vector of fuzzy priorities or fuzzy 

relative weights  iW w  and  , ,U M L

i i i iw w w w . These two steps are the same in the 

Type I and Type II methods, but the following steps are different. 

In the Type I method, each iw  is defuzzified as a crisp number, and then these 

crisp numbers are synthesized. This synthesized step is the same as the crisp AHP. The 

aggregation technique  :Agg W V  is usually the weighted average method. Thus 

the final value is the crisp number. 

In the Type II method, each iw  is directly aggregated as a global fuzzy priority 

vector  1, , nV v v  ,  , ,U M L

i i i iv v v v     by a fuzzy aggregation operator 

 :FAgg W V . 

The problems of Fuzzy AHP are similar to the generic AHP problems as the Fuzzy 

AHP is the extension of the AHP.  

 

2.6.2 Extent analysis method 

Chang (1996) proposed an Extent Analysis Method to derive the priority of a 

fuzzy comparison matrix, with five steps as follows: 

Step 1: sum up each row of A  by fuzzy addition: 

1 1 1 1

, ,
n n n n

i ij ij ij ij

j j j j

RS a l m u
   

 
   

 
    , 1, ,i n   (2.6.6) 



Chapter 2 Literature Review 

 

86 
 

Step 2:  normalize iRS , 1, ,i n   by 

1 1 1

1 1 1 1 1 1 1

, ,

n n n

ij ij ij

j j ji
i n n n n n n n

j ij ij ij

j i j i j i j
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  
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 
 
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 
 
 

  

   
, 1, ,i n   (2.6.7) 

Step 3: compute the degree of possibility of i jS S  by 
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   
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i j

i j j j

i i j j
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V S S u

u m m l

otherwise

 

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


, , 1, , ;i j n j i  ,  

 , ,i i i iS l m u  and  , ,j j j jS l m u . (2.6.8) 

Step 4: calculate the degree of possibility of jS  over all the other (n-1) fuzzy numbers 

by  

 
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j i n j i

V S S j n j i V S S i n
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

   (2.6.9) 

Step 5: derive the priority vector  1, , nW w w   of A  by the following form: 
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i j
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V S S j n j i
w
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

  

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


, 1, ,i n   (2.6.10) 

 

One critical error of EAM is the steps 1 and 2 which can be regarded as the Fuzzy 

Normalized Row Sum Method (NRSM) in direct form. However, this normalization 

method is false as    1, , 1 ,1 ,1ij ij ij ij ji ji ji jia l m u a u m l   . To improve this error,  

l

ijl A , m

ijm A , u

iju A  is used in Eqs.  2.2.6 and 2.6.7. In other words, ijl A , 

ijm A , iju A . 
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In addition, as many fuzzy AHP applications are used in Chang‟s EAM (2006), 

Wang (2008) pointed out some other shortcomings of Chang‟s model and proposed a 

modified fuzzy LLSM on the basis of previous studies (LaarHoven and Pedrycz, 1983; 

Boender et al. 1989). 

 

2.6.3 Modified fuzzy logarithmic least squares method (mf-LLSM) 

The modified fuzzy LLSM (Wang et al., 2006, 2008) derives the priorities of the 

triangular fuzzy comparison matrix. The FPO of MF-LLSM has following form: 

 

 

  

2

1 1,

2

2

 ln ln ln

                          + ln ln ln

                          + ln ln ln

n n
L U

i j ij

i j j i

M M

i j ij

U L

i j ij

Min J w w l

w w m

w w u

  

  

 

 

 

 

Subject to 

 

 

1,

1,

1

1

1

1

1 1, ,

2

0

n
L U

i j

j j i

n
U L

i j

j j i

n
M

i

i

n
L U

i i

i

U M L

i i i

w w

w w

w i n

w w

w w w

 

 






 




 



 



 

   











  (2.6.11) 
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The optimum solution to the above model forms a normalized vector of triangular 

fuzzy weights  , ,U M L

i i i iw w w w , 1, ,i n  . 

 

Table 2.9: Synthesis of local fuzzy weights of the modified fuzzy LLSM  

Alternatives Criterion 1   Criterion j   Criterion m Global 

 fuzzy weights 
 1 1 1

L M Uw w w, ,  
  

 L M U
j j jw w w, ,  

  
 L M U

m m mw w w, ,  

1A  
 11 11 11

L M Uw w w, ,  
  

 1 1 1
L M U
j j jw w w, ,  

  
 1 1 1

L M U
m m mw w w, ,   

1 1 1

L M U
A A A

w w w, ,  

             

kA  
 1 1 1

L M U
k k kw w w, ,  

  
 L M U

kj kj kjw w w, ,  
  

 L M U
km km kmw w w, ,  

k k k

L M U
A A A

w w w 
 
 

, ,  

             

nA  
 1 1 1

L M U
n n nw w w, ,  

  
 L M U

nj nj njw w w, ,  
  

 L M U
nm nm nmw w w, ,  

n n n

L M U
A A A

w w w 
 
 

, ,  

 

After the local fuzzy weights are obtained, a global fuzzy weight should then be 

calculated with the presentation in table 2.9. Global fuzzy weights can be obtained by 

solving the following two linear programming models and an equation for each decision 

alternative.  

1

   1
k

m
L L

kj jA
w w

j

w Min w w k K




   , , , ,     (2.6.12) 

1

   1
k

m
U U

kj jA
w w

j

w Max w w k K




   , , , ,     (2.6.13) 

1

   1
k

m
M M M

kj jA
w w

j

w Max w w k K




   , , , ,    (2.6.14) 
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where   1 1
1 1

mU M L
w m j j j jj

W w w w w w w j m


       , , | , , , ,  is the 

space of weights  L M U
j j jw w w, ,  is the normalized triangular fuzzy weight of criterion j 

 1j m , ,  and  L M U
kj kj kjw w w, ,  is the normalized triangular fuzzy weight of alternative 

kA  with respect to the criterion j  1 1k K j m  , , ; , , . 

 

Remarks: EAM produces fuzzy relative weights from the Fuzzy Normalized Row Sum 

Method (NRSM) in Steps 1-2, although the result is not correct. These fuzzy weights are 

finally converted to a crisp weight value. On the other hand, the MF-LLSM produces a 

fuzzy value by the fuzzy optimization method. It is more appropriate to compare 

MF-LLSM and NRSM of EAM.  

In order to fairly critique both methods, the Fuzzy Prioritization Measurement 

(FPM) model is proposed to measure the fitness levels for a fuzzy comparison matrix in 

next section. 

 

2.6.4 Fuzzy analytic prioritization measurement models 

The Fuzzy Analytic Prioritization Measurement (FAPM) model evaluates the 

validity of the fuzzy analytic prioritization operators. The crisp Root Mean Penalty 

Weighted Square Variance (RMPWSV) (Chapter 2.5.3) is extended as a Fuzzy 
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RMPWSV (FPRMPWSV) by considering a modal value and two interval values of A . 

Thus the FPRMPWSV is of the form: 

 , ,L M U    , where (2.6.15) 

    ,L L

iWRMSV l w  , (2.6.16) 

    ,M M

iWRMSV m w  , (2.6.17) 

    ,U U

iWRMSV u w  . (2.6.18) 

FPM model is the aggregation of the 3 values of the FPRMPWSV and is defined 

as follows: 

ˆ L L M M U U            (2.6.19) 

, where M L   or M U  , and 1L M U     .  By default 0.5M   and 

0.25L U   . 

 

Example 2.4 

Two fuzzy analytic comparison matrices are illustrated: one is from Wang et al. 

(2008), and another is proposed by the author. 

Consider two decision criteria with their fuzzy relative weights (Wang et al.,2008): 

1w  (0.65, 0.7,0.75) and  2 0.25,0.3,0.35w  . Thus the fuzzy comparison matrix is:  

   

   

1,1,1 1.8571,2.333,3

0.3333,0.4286,0.5385 1,1,1
A

 
  
 
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By using the Fuzzy Normalized Row Sum Method (FNRS) of EAM,  then 

1w  (0.516, 0.700, 0.955), and  2 0.24,0.3,0.367w  . For the FWRMSV  =(0.147, 0, 

0.2017). The aggregation of FWRMSV ̂  is 0.0827. 

By using the modified fuzzy LLSM, 1w  (0.65, 0.700, 0.75), and 

 2 0.250,0.300,0.350w  . Then  = (0.379, 0, 0.438), and ˆ 0.203  , which is larger 

than FNRS. 

Another example is of the form: 

     

     

     

1,1,1 1,2,3 3,4,5

1 3,1 2,1 1,1,1 1,2,3

1 5,1 4,1 3 1 3,1 2,1 1,1,1

A

 
 

  
 
 

. 

For FNRS,  = (0.8172, 0, 0.6282), and ̂ 0.361. For modified fuzzy LLSM, 

 = (0.9195, 0, 0.692), and ̂ 0.403, which is also larger than FNRS. 

The above results can conclude that although Wang et al. (2008) has proved that 

EAM may produce wrong decision, in this study, the modified fuzzy LLSM produces a 

higher aggregated value of FWRMSV than FNRS of EAM, if only the fuzzy 

prioritization process is considered only. This means that the modified fuzzy LLSM may 

produce rank reversals due to the approximated fitness being lower than the FNRS. 

However, as the modified fuzzy LLSM produces the result in fuzzy number, it is 

selected for comparisons in Chapter 8. 
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2.7 Cognitive sciences 

In the 1960s, cognitive psychology represented a new branch of psychology. 

Cognitive psychology is the scientific study of the mind. It has been developed in the 

other branches, such as behavioral psychology, and was heavily influenced by 

technological developments and the way they help us in understanding complex 

behaviours (Braisby and Gellatly, 2005). Cognitive psychology is committed to using 

computers as a tool for aiding understanding of the mind (Braisby and Gellatly, 2005). 

Some of the fundamental questions that cognitive psychology examines are: how does 

memory work? How do we perceive our environment? How do we infer from patterns of 

light or sound the presence of objects in our environment, and their properties? How do 

we reason, and solve problems? How do we think? (Braisby and Gellatly, 2005). 

Cognitive science is a broad view of the cognition study of the mind, and is not 

limited to the psychological aspect. Cognitive Science can be roughly summed up as the 

scientific interdisciplinary study of the mind, including philosophy, psychology, 

linguistics, artificial intelligence, robotics, and neuroscience (Friedenber and Silverman, 

2006). Cognitive science is not a unified field of study like each of the disciplines 

themselves, but a collaborative effort among researchers working in various fields 

(Friedenber and Silverman, 2006).  

This research is interested in the decision making issues for CNP from cognitive 



Chapter 2 Literature Review 

 

93 
 

aspects. Several essential development topics are reviewed as follows. 

 

2.7.1 Cognitive decision making 

In psychology, descriptive and normative theories are commonly used. Normative 

theories define the supposed ideal decision whilst descriptive theories attempt to 

characterize how people actually make decisions (Ayton, 2005). The subjective expected 

utility (SEU) theory (Von Neumann & Morgenstern ,1947), which is a normative theory, 

has been widely studied in choice problems using probability theory. 

Regarding the cognitive theories, one obstacle for the development of the 

cognitive theories of judgment and decision making behavior is that there are 

considerable differences among the theories that (appropriately) are called cognitive 

(Hastie and Pennington, 1995).  On the other hand, decision making is the 

transdisciplinary research in many areas such as mathematics, business, economics, 

industry engineering, computer science, psychology. In any one area, there are also 

many sub-areas. For example, in chapter 2.2, there are several models with different 

mathematical algorithms in the fields of mathematics.  Thus it is difficult to unify the 

notion of cognitive decision making in a single field. Cognitive decision making should 

be studied in the interdisciplinary aspects of cognitive sciences and decision making. 

Among each, they are related to other disciplines that are also related. In the CNP model, 
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the cognitive perspective of decision making, which is the symbolic mathematical 

system using process algebra representation, is proposed in chapter 3.  

 

2.7.2 Perception and computational intelligence 

According to Mather (2006), the methods used to study perception include Lesion 

experiments, clinical studies, single-unit recordings, brain imaging, psychophysics, and 

artificial intelligence. Artificial intelligence is the computational method to make a 

machine to function as a human brain. AI also has the name computational intelligence. 

The perception of the Cognitive Network Process is studied from the computational 

intelligence (or the alternative name, artificial intelligence) perspective. 

The concept of computation lies in the concept of representation at the heart of 

most present-day theories of perception (Mather, 2006). Boring (1950) noted: “The 

immediate objects of the perception of our senses are merely particular states induces in 

the nerves” (P82). As the specific internal state of the brain, in the form of a particular 

pattern of neural activity, in some sense represents the state of the outside world. 

Perception must involve the formation of these representations in the brain 

(Mather,2006). Most modern theories of perception are in essence theories about how 

the brain builds and uses representation of the world (Mather, 2006).  

There are two views of the representation in the brain: analogue representation and 
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symbolic representation. In the concept of analogue representation, the values in one 

system, such as spatial position or response rate, vary proportionately with values in 

another system (Mather, 2006). Symbolic representation is a representation in which 

discrete symbols such as characters or words in one system act as tokens for the state of 

another system (Mather, 2006). The computation model of the CNP applies the symbolic 

representation notion as symbolic representation and computations have traditionally 

been associated with human cognition, such as problem solving (Newell and Simon, 

1972; Mather, 2006) . 

Computation can be defined as the manipulation of quantities or symbols 

according to a set of formal rules, which is called algorithms (Mather, 2006). The 

perception systems can be considered as representational systems- internal brain states 

representing the state of the outside world (Mather, 2006). Perceptual analysis proceeds 

through a series of representation, reflecting a series of neural processing stages (Mather, 

2006). Then representation at each level is computed as a new representation at the next 

level. 

Sensation is also the key notion of perception. According to Mather (2006), 

“simulation of the sense organ induces a conscious mental state. For example, we may 

sense “sound” when air pressure waves enter the ear. These mental states have particular 

qualitative, experiential and felt properties such as loudness, pain or color (sometimes 
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are called sensations or qualia). By their very nature, sensations are private, and 

accessible only to the person who has them. Most researchers believe that sensations can 

be regarded as identical to specific brain states or functions of brain states. For example, 

there is a specific brain state associated with the sensation of the colour red. If one‟s 

sensation of colour changed to, say, green, there would be a corresponding change in 

brain state. The assumed link between sensations and brain states lies at the very 

foundation of modern theories of perception, as will become clear below. However, an 

“explanatory gap” (Levine, 1983, 1999) remains between the physical world (brain 

states) and the mental world (sensations). No one has been able to explain precisely how 

the qualitative nature of sensation can be explained by reference to neural activity.” 

From the above reviews, it can be concluded that in the decision model from a 

subjective aspect, the decision matrix usually is the output perception of the experts 

through the symbolic representation function of the external world and the sensation 

function of the symbolic representation. In other words, experts are essential for the 

accuracy of the decision result as they provide the inputs of the decision matrix. 

 

2.7.3 Cognitive style and decision making 

The term 'cognitive style', was used by Allport (1937), and has been described as a 

person's typical or habitual mode of problem solving, thinking, perceiving and 
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remembering (Rading and Cheema, 1991). , a style is considered to be a fairly fixed 

characteristic of an individual (Rading and Cheema, 1991). 

Studies in cognitive styles initially developed as a result of interest in individual 

differences, particularly during the 1960's (Rading and Cheema, 1991). Since the early 

1970‟s, they have been more seriously considered by the teaching and training world 

(Rading and Cheema, 1991). Recently, they may be developed with artificial intelligence. 

The new field may be called cognitive styles of computation, which is to classify the 

individual styles of the algorithms‟ or functions within the same category. One example 

is in chapter 6. 

Different researchers have used a variety of labels for the styles they have 

investigated. Rading and Cheema (1991) suggested that the labels be grouped into two 

principal cognitive styles. These were labeled the Wholist-Analytic and 

Verbialiser-Imager dimensions. 

Most researchers apply a set of uni-dimensional labels, which are postulated in the 

individual preferences, for the statistical research of the cognitive style. This leads to not 

having a formal definition of the labels of the cognitive style.  In this research, the 

cognitive style is described by a variable decision attitude which includes three basic 

labels: pessimistic, neural, and optimistic. 

In decision making, decision attitudes can be applied. There are decision attitudes 
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for the assessment (DAFA), decision attitudes for the information fusion (DAFA), 

decision attitudes for the volition (DAFV). However, this research is limited only to the 

scope of decision attitudes for the information fusion (chapter 6). 

In chapters 2.3.4 and 2.3.5, the aggregation operator is a function or an algorithm to 

process information, analogous to the human‟s information process. Cognitive 

psychology deals with the human information process. Cognitive style is the individual 

differences of the information processes of the mind. As there are similar relationships 

between the attributes of the aggregation operators and the cognitive styles, chapter 6 

proposes the Cognitive Style and Aggregation Operator (CSAO) model, which includes 

several algorithms to classify the individual style of the AOs using the linguistic 

approach. 

 

2.7.4 Cognitive architecture and intelligent decision agent system 

Newell (1973) argued that it was not sufficient to develop a collection of discrete 

models to describe a broad range of psychological phenomena. This leads to the 

development of cognitive architecture (Mulholland and Watt, 2005). According to 

Mulholland and Watt (2005), Cognitive Architecture is an overarching framework that 

can account for a number of phenomena using a fixed set of mechanisms.  

To extend the definition of the cognitive architecture, it can be regarded as a Multi 
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Agent System performing dedicated tasks though different activities performed by the 

agents. An agent is a type of hardware or (more usually) a software entity with some of 

these characteristics (Ferber, 1999; Shoham, 1999; He and Leung 2002): ongoing 

execution, environmented awareness, agent awareness, autonomy, adaptiveness, 

intelligence, mobility, anthropomorphism, and ability to reproduce. A Multi Agent 

System (MAS) is a group of the agents joined together to complete a task. A MAS has 

the following characteristics (He et al 2002; Jennings at el 1998): (1) each agent has 

partial information or limited capabilities (knowledge, information, or resources), thus 

each agent has a limited viewpoint; (2) there is no global system control; (3) data in an 

MAS are decentralized; (4) computation is asynchronous; and (5) different agents can be 

heterogeneous, for example, with respect to knowledge representation, data format, 

reasoning model, solution evaluation criteria, goal, architecture, algorithm, language, or 

hardware platform.  

The Intelligent Decision Agent System is defined as a multi-agent-system, 

including an intelligent decision agent which is the agent embedded with computational 

algorithms that can “think and make a decision”.  

The studies (Yuen 2009a; Yuen and Lau, 2006, 2008a) have proposed a framework 

to apply the decision algorithms in an enterprise system. The enterprise decision 

platform (Fig. 2.14), which is a kind of Intelligent Decision Agent System, contains 
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seven tiers described below:  

In the Presentation Service Agents Tier (PSAT), different roles of users can 

interact with the systems by different devices such as web browsers, window client 

applications, mobile devices, and office documents such as spread sheets and office 

Word documents. Each device can be regarded as an agent communicating with others 

by web services. Depending on the user requirements on a specific environment, the 

interface can be implemented only without implementation of the business logic in this 

layer. This layer is crucial to the user-friendly experiences such as delivery of right 

information to right place with right format. 
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Figure 2.14: The cognitive framework of enterprise decision platform  
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The Security Service Agents Tier (SSAT) involves the protocols for remote access 

control, as well as authentication and authorization. Security is the top consideration in 

the enterprise system. If this function is ignored, no one would like to use the system due 

to the unreliability. Thus, this tier is the view of every one. The security management 

corresponds to controlling the delivery of the right resources to the right people. SSAT 

includes three service agents: Authentication Service Agent which identifies the user, 

Authorization Service Agent which manages the user‟s rights, and the Transportation 

Security Service Agent which responds by ensuring that no data is released in the 

transportation process. 

The Project Service Agents Tier (PSAT) is designed in view of the project 

management that administers the corresponding projects. PSAT provides services for 

end users, such as auditors, domain experts and decision makers, so that they can 

interact with their dedicated projects. The agents in this tier are dynamically created or 

inherited from the decision template in the Application Service Agents Tier, and are 

further modified to meet the special requirements by the domain experts.  

The Application Service Agents Tier (ASAT) is designed with reference to the 

application domain experts for the evaluation scope for their corresponding projects. 

ASAT provides a set of decision templates to meet different decision project 

requirements, thus this layer enables knowledge sharing of design project criteria, 
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aggregation rules and other attributes. Each template can be regarded as a template 

service agent such as: Vendor Selection Service Agent, and Partner Selection Service 

Agent. The Application Service Agent Tier follows the business process managed in the 

Decision Making Process Service Agents Tier. 

The Decision Making Process Services Agents Tier (DMPSA) includes various 

algorithms of the decision models. While an expert defines a certain decision model for 

a decision problem, the agents embedded the decision algorithms will perform the 

related jobs. 

The Component Service Agents Tier (CSAT) is designed with reference to 

software developers to develop the corresponding components. CSA exposes the web 

interfaces for the decision components, including the decision algorithms, as the 

consumable web methods. CSAT consists of four component service agents. The 

Intelligence Service Agent comprises decision algorithms for linguistic modelling, 

linguistic representation, granular aggregation, rule reasoning, and result exploitation. 

The Resources Access Service Agents provide the services for data access among their 

upper and lower tiers. The External Access Agent provides services to access external 

agents that are out of this framework, such as email server agents and SMS server agent. 

The Common Library includes the general components for the application such as the 
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graphic engine agent which is usually created from third party software obtained from 

vendors. 

The Database Service Agents Tier (DSAT) is designed with reference to database 

management. DSAT contains three database systems which perform different roles. The 

Intelligent Database Service Agent provides the general patterns of parametric inputs 

from domain experts. The Knowledge Database Service Agent stores the general 

templates for each project and the templates are derived from the application services 

layer. The Information Database Service Agent organizes the data for each project which 

is queried and updated in the Project Service Agent Tier. Separation of these three 

databases services improves accessibility and manageability of the system. 

Five advantages of the seven tier design are: 

 Role separations: the new architecture meets different users‟ perspectives. Each 

user performs his job without heavy influence to others.  

 Reusability: the components are implemented as web methods, which can share 

and distribute the services to other agents by the loose coupling. A new project 

can be created rapidly from the application template. 

 Knowledge Sharing: The components are implemented as services. Each 

application class can consume the services with loose coupling. Each project can 
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inherit the design, criteria, and the schema from multiple application classes. 

Each user can query multiple projects in a single profile. 

 Extensibility and Flexibility:  the agents in each tier can be added and modified. 

Interfaces of the agents in the presentation tiers can be changed accordingly as the 

business logic is implemented in the components service tier, which are further 

propagated in ASAT and PSAT. 

 Cross platforms and cross applications: end users use different devices to 

communicate with the systems regardless of the platforms or the applications they 

used. Development of the Application Service Agent does not rely on the vendors 

(e.g. MySQL, Oracle, or Microsoft) of the database system, as the Database 

Service Agents handle this issue.  
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Chapter 3 Cognitive Network Process 

3.1 Introduction 

The Cognitive Network Process  , , , ,CNP PGP CAP AAP IFP DVP  is the 

cognitive architecture which comprises of five cognitive decision processes: the Problem 

Cognition Process (PCP), Cognitive Assessment Process (CAP), Cognitive Prioritization 

Process (CPP), Multiple Information Fusion Processes (MIP), and Decisional Volition 

Process (DVP). The cognitive architecture of CNP is shown in fig. 3.1. 
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Figure 3.1: The cognitive architecture of the CNP  

 

In view of the collaboration functions, the CNP is handled by two stages: the 

human cognition stage and the machine cognition stage. The human cognition process 

involves PCP and CAP, which are not handled by computer algorithm so far since they 

are of very complex psycho-intelligence. The Machine cognition stage comprises of CPP, 

MIP and DVP, which are associated with comprehensive algorithms to ensure the 
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efficacy of action. Algorithm 3.1 shows the procedure of CNP. 

 

Algorithm 3.1 (Cognitive Network Process): 

Input: Feasible Decision Problem 

// Human Cognition Stage 

Step 1: Problem Cognition Process (PCP) 

Step 2: Cognitive Assessment Process (CAP) 

//Machine Cognition Stage 

Step 3: Cognitive Prioritization Process (CPP) 

Step 4: Multiple Information fusion process (MIP) 

Step 5: Decisional Volition Process (DVP). 

Output: Feasible Solution.               #End 

 

Each process is developed in this chapter, and several important functions are 

further investigated in the development and testing in chapters 4-6. 

 

3.2 Problem cognition process 

Problem Cognition Process   , , , , , ,PCP DP O C CGr T X SAN    is to 

formulate the Decision Problem (DP) as the measurable Structural Assessment Network 
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(SAN) model, which comprises of four units: an objective O, a criteria structure (or 

structural criteria) C  determined by criteria granulation process (CGr), a set of 

alternatives T , and a list of measurement scale schema  , X . 

The objective O of the decision problem (DP) is usually one sentence statement 

expressing the desired goal of the decision maker. A set of alternatives (or candidates) 

 1, , , ,i mT T T T   of the DP is the possible solutions for the desired goal. These 

alternatives are evaluated with respect to the structural criteria C . 

 

3.2.1 Structural criteria 

The structural criteria can be divided as several layers by a Criteria Granulation 

process (CGr). The number of the layers depends on the complexity of the SAN, and the 

usual number is two, and up to three layers.  

The first layer criteria set is determined by the criteria granulation of the objective, 

   iCGr O c , and    1 2, , , , ,i i nC c c c c c    . 

The second layer criteria set is determined by the criteria granulation of one first 

layer criterion, i.e.         , ,1 ,, , ,     , 1, ,
ii i j i i q i iCGr c c c c q c i n       ; 
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The third layer criteria set is determined by criteria granulation of one second layer 

criterion, i.e.      
,, , , , ,1 , ,= , ,

i ji j i j k i j i j qCGr c c c c  , 
, ,i j i jq c  , 

        , , | 1, , , 1, , ii j i j i n j q     . 

To simplify the initial illustration of the CNP model, a criterion is assumed in 

upper layer which is dependent of its sub-criteria set (or attribute set) in the lower layer, 

and each criterion in each layer is independent. 

Sometimes some elements in C  are deductive or negative. To address this 

problem, the criteria granulation function can classify the elements into a positive set 

and negative set. The presentation is as follows. 

The first layer criteria vector is in the form: 

  ,C C C  ,  1 ', , nC c c   ,  ' 1, ,n nC c c

  ;  

or simply       1 ' ' 1, , , , ,n n nCGr O c c c c   .  

The second layer criteria vector is the form:  

           , , ,1 , ' , ' 1 ,, , , , , ,
i i ii i j i j i i q i q i qCGr c c c c c c c 

     

, where    , '  &  , 1, ,i i j i iq c q c i n     . 

The third layer criteria vector is of the form: 

         , , ,, , , , , , ,1 , , ' , , ' 1 , ,, = , , , , ,
i j i j i ji j i j k i j k i j i j q i j q i j qCGr c c c c c c c 

    
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, where 
, , , , ,'   &  i j i j k i j i jq c q c  ,         , , | 1, , , 1, , ii j i j i n j q     ; 

 

The above illustration shows a case of three layers. Mathematically, it can be 

expended into many layers by adding more dimensions in the subscript, e.g. , , , ,i j k zc  . 

However, real practice usually applies one or two layer(s), and up to three layers. Four 

layers are rare. This happens in quantitative and qualitative research regarding the 

concept of the multidimensional scale. 

 

c1

c1,1 c1,j

ci

ci,1 ci,j

cn

c1,1 c1,j

O

T1 Ti Tm

Objective

Criteria

 Structure

Alternatives

, ii qc
1,i qc , ni qc

 

Figure 3.2: A structured assessment network of CNP with only positive criteria  

 

3.2.2 Structure assessment network 

If the structural criteria are of positive contribution to the objective, the model of 

this decision problem is named “Cognitive Hierarchy Process” (Fig. 3.2). Otherwise, if 



Chapter 3 Cognitive Network Process 

 

110 

 

some members in the structural criteria are the positive contributions to the objective 

whilst some are the negative contributions, this model is called “Cognitive Network 

Process” (Fig. 3.3). In fact, the CHP is a special case of the CNP. 

 

C+

c1 ci cn'

C-

cn'+1 cn

O

T1 Ti Tm

Objective

Criteria

 Structure

Alternatives
 

Figure 3.3: A structured assessment network of CNP with positive and negative criteria  

 

3.2.3 Clusters of SAN 

A Structured Assessment Network (SAN) comprises clusters joined by nodes. A 

cluster  ,Clst nd gn  is a node nd with a set of granules gn derived from the criteria 

granulation function  CGr nd .  Thus, a cluster is also denoted by   ,Clst nd CGr nd . 

The clusters can be classified as three categories: objective cluster (or O cluster), 
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structural criteria clusters, and measurable cluster (or ic


 Cluster). Table 3.1 gives a 

description of cluster units. 

Objective cluster    , iClst O c   is the cluster with the node of the objective 

which is measured by the set of first layer criteria. 

Structural criteria clusters can be classified as first layer criterion clusters ( ic  

cluster), second layer criterion clusters ( ,i jc  cluster), and so on. Thus the n-order layer 

criterion cluster is the cluster with the node of n-order layer criterion, which is measured 

by its granules in the (n+1)-order layer. 

A measurable cluster or ic


 Cluster is defined as the cluster with the node of a 

criterion in the lowest layer of criteria structure, and the node is measured by the 

comparison of the set of alternatives, or by the direct measurement from the obsolete 

scale, without comparison. If the measurement is from the comparison of the set of 

alternatives, this measurement is called “relative measurement”. If the measurement 

comes from a score of the absolute scales without mutual comparison, this measurement 

is called “absolute measurement”. 

The cardinal number of the set of the measurable criterion cluster set  ic


 relies 

on the number of the layer of the criteria structure,  for example,  
1 1

in q

i iji j
c q

 
 


 

in the three layer structural criteria.  



Chapter 3 Cognitive Network Process 

 

112 

 

Cluster Categories Diagram Number of clusters 

Objective Cluster 

( O Cluster) 

  , iClst O c  

O

c1 ci cn
 

1 

First Layer Criterion Cluster 

( ic  Cluster) 

  ,, : 1, ,i i j iClst c c j q   

ci

ci,1 ci,j , ii qc
 

n 

Second Layer Criterion Cluster 

( ,i jc  Cluster) 

  , , , ,, : 1, ,i j i j k i jClst c c k q   

ci,j

ci,j,1 ci,j,k , , iji j qc
 

 , 1

n

i j ii
c q


  

Measurable Criterion cluster 

(Or Input Cluster) 

( ic


 Cluster) 

 ,iClst c T


 

T1 Ti Tm

ic


 

 in c
 

 

Table 3.1: Description of cluster categories  
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3.2.4 Compound rating scale 

A list of measurement scale schemas   is used to quantify or qualify the criteria. 

Let a measurement scale schema be .   can be single space or multiple spaces 

of the rating scales. A classical schema uses a single space, i.e.  

 1 2, , , , ,i p      . The rating interfaces of the classical rating scales, however, 

possibly lead to problems concerning the choices of linguistic terms, accuracy of 

linguistic representation of numbers and decisions in rating dilemmas (chapter 4). To 

address the above problems, this research (chapter 4) proposes a Compound Linguistic 

Ordinal Scale (CLOS) model , which is an ordinal-in-ordinal scale model, as a promised 

alternative for the classic Rating Scale Models, which provide 7±2 options usually. 

CLOS, which provides (7±2)((7±2)-1)+1=[21,73] options or more, is the Deductive 

Rating Strategy (DRS) of the Hedge-Direction-Atom Linguistic Representation Model 

(HAD LPM) with a cross reference relationship. The simulation result (which is shown 

in chapter 4) indicates that the proposed model helps to reduce the bias of the rating 

dilemma for a single rater and more accurately reflects consistency among raters.  

Regarding the syntactic form, CLOS is established on a compound linguistic 

variable mn  which comprises elements from the linguistic term vectors 

respectively: hedge vector hV


, directional vector dV


, and atomic vector aV


. A matrix 
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of compound linguistic variable mn  is built on the Syntactic Rule Algorithm 

(algorithm 4.1)  , ,mn h d aG V V V 
  

, has following form: 

1 2 1 1 1

2 1

1 2 1

2 1 2 2 2 1

1 2 1

1 2 1

1

1

2

                       

n n

n n

n n

n

m m m n

n n

hd a hd a hd a

hd a hd a hd a

mn

a a a a

hd a hd a hd a

m
hd a hd a hd a

v v v v v v

v v v v v v

v v v v

v v v v v

v v v v v v

  

  



   




   

















   









   

   

 

   

   





    







    



 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.1) 

, where hdv  is the element of the combination of hV


 and dV


. 

Regarding the rating process, CLOS is a dual rating scale. If triple spaces are 

applied, the evaluation effort must increase, whilst a single space is less representative. 

Thus double spaces are the middle way to improve the assessment quality. The 

measurement scale in fact is the psychometric scale. The CNP employs CLOS as the 

ideal interface to quantify the human perception of an object by a deductive rating 

strategy (algorithm 4.3). 

Regarding the numerical representation, this research further develops a Semantic 

Rule Algorithm or a Fuzzy Normal Distribution    X
X f M     (algorithm 4.2)  

in chapter 4. 

If the data type of the rating scale is a fuzzy number, then the CNP model is 

classified as a fuzzy CNP problem. If the data type is a crisp number, then the CNP 
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model is a crisp CNP model or a CNP model. The crisp CNP problem is the special case 

of the fuzzy CNP problem as the crisp CNP model does not need the interval computing, 

but relies on the modal value of the fuzzy number.  The extension can be found in 

chapter 7. 

 

To conclude the procedure of PCP, algorithm 3.2 is proposed as follows. 

Algorithm 3.2 (Problem Cognition Process  , , ,PCP O C T  ): 

Input: Feasible Decision Problem 

Step 1: Establish objective O; 

Step 2: Search a list of the possible alternatives T ; 

Step 3: Define the strutral criteria C ; 

Step 4: Determine a list of measurement Scales  ; 

Output: Structured Assessment Network and  .       #End 

 

3.3 Cognitive assessment process 

In the Cognitive Assessment Process   , ,ndCAP Clst B Chk , a list of the 

Pairwise Opposite Matrices (POMs) is assessed by the Cognitive Assessment Function 

of the clusters  Clst  performed by the decision makers (or raters) . The clusters are 
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from the Structural Assessment Network. The Accordance check  Chk  is the 

mathematical algorithm or function to examine the Accordance Index of ndB . 

 

3.3.1 Pairwise opposite matrix 

One of the innermost layers of the CNP onion is the Pairwise Opposite Matrix 

(Cognitive Pairwise Matrix, or Cognitive Comparison Matrix) ndB  of  ,Clst nd gn  

which is of the form: 

  

1 2

1 11 12 1

2 21 22 2

1 2

,

n

n

nd n

n n n n

gn gn gn

gn b b b

B Clst nd gn gn b b b

gn b b b



 
 

 
 
 
 
 







    



,  

n gn ,    ij i jb V gn V gn  . (3.2) 

 iV gn  is the utility value of ign . ijb  is from a scale schema  . The calculation of 

 iV gn  can be found in chapter 3.4 and 5 in details.  

In the primitive CNP, there are several types of POMs. 

The POM of O cluster by the set of cognitive assessment functions is of the form 

   , iClst O c . The Pairwise Opposite Matrix of one measurable cluster 

  , iClst O c  is of the form. 
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   

1 2

1 11 12 1

2 21 22 2

1 2

,

n

n

O i n

n n n nn

c c c

c b b b

B Clst O c c b b b

c b b b



 
 

 
 
 
 
 







    



 (3.3)  

Similarly, the list of the POMs of ic


 Cluster by the set of cognitive assessment 

functions is the form: 

             1
1

, , , , , ,
n

i i n
i

C l s t c T C l s t c T c T c T   


  
   

  (3.4) 

The Pairwise Opposite Matrix of one measurable cluster  ,iClst c T


 is of the 

form. 

  

1 2

1 11 12 1

2 21 22 2

1 2

,

m

m

c i m

m m m mm

T T T

T b b b

B Clst c T T b b b

T b b b



 
 

 
 
 
 
 










    



, for all i (3.5)  

This matrix construction can be deductive for applying in other clusters. 

 

3.3.2 Cognitive assessment function 

The Cognitive Assessment Function    . , ,Sen Per Val   comprises the three 

expert psychological activities: 

1. Sensation ( Sen ): The process to obtain sensory inputs of the information with 

respective to the Structured Assessment Network Model. 
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2. Perception ( Per ): the process to recognize and understand the sensory inputs. 

3. Valuation ( Val ): the process to provide the psychological value for the 

perception of the sensory inputs. The value can be in number or in linguistic 

terms. 

 

3.3.3 Accordance check 

Let   : , 1, ,ijB b i j n   be the pairwise opposite matrix and 

  : , 1, ,ijD d i j n    be the contradiction matrix.  The Accordant Index is in the 

form: 

1 1

2

n n

ij

i j

d

AI
n

 



,  

 
2

1 T

ij i j ijd Mean B B b


  
       

,  , 1, ,i j n  . (3.6) 

where 0AI  ,  is the normal utility, and then n  is the population utility. If 0AI  , 

then B is perfectly accordant;  If 0 0.1AI  , then B is satisfactory. If 0.1AI  , then 

B is unsatisfactory  (The details of the mathematical development is in chapter 5).  

To conclude the CAP, the following algorithm is proposed. 

Algorithm 3.3 (Cognitive Assessment Process): 

Input: Structured Network Model 

Step 1: Sensation of the question forms and external information 
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Step 2: Perception of the sensation 

Step 3: Valuation: measurement of their perception 

Step 4: Check Accordance Index of the Assessment 

Step 5: Loop until all VI’s are feasible 

Output: A set of opposite pairwise matrices        #End 

 

3.4 Cognitive prioritization process 

One of the innermost layers of the CNP onion is the Cognitive Prioritization 

Process. The details are as follows. 

The Cognitive Prioritization Process is of the form  , ,CPP B V . A pairwise 

opposite matrix B  is prioritized to the absolute priority vector W, i.e.  : B V  .  

The POM is to interpret the utility values of the node’s granules. Let a set of the 

real (ideal) utility be  1, , nV v v  , and the comparison score be ij i jb v v  . The 

ideal pairwise opposite matrix of  ,Clst nd gn  is nd i jB v v   
 . A subjective 

judgmental pairwise matrix is nd ijB b    .  ndB  is determined by ndB   as follows: 

1 1 1 2 1 12 1

2 1 2 2 2 21 2

1 2 1 2

0

0

0

n n

n n

nd ij ij nd

z z n n z z

v v v v v v b b

v v v v v v b b
B b b B

v v v v v v b b

     
   

  
                
   

     

 

 
       

 

 (3.7) 
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The value of  1, , nV v v   can be determined by the Cognitive Prioritization 

Operator (CPO). Various Cognitive Prioritization Operators (CPOs) are proposed in 

chapter 5. The Least Penalty Squares (LPS) or the Discrete Least Squares (DLS), which 

is the default setting for CPO, is of the form: 

 

 
2

1 1
Min        =

n n

ij ij i ji j i
b v v

  
    


 

, 

1

2

3

,    v  &  b 0

    or v  &  b 0

,    v  &  b 0

    or  &  b 0

 ,               

i j ij

i j ij

i j ijij

i j ij

v

v

v

v v

otherwise







 


 

   
  



, 1 2 31       (3.8) 

1
s.t.      ,

           v 0, 1,2, ,

n

ii

i

v n

i n






 




,  

, where  in v , and   is the normal utility,  1 2 3, ,    is a set of penalty indices. 

The above optimization model is also named the optimization operator. The 

solution can be easily formed by some software tools such as Excel, Mathlab, Lingo, as 

well as Mathematica, which is used by this research. 

 Another alternative of the CPO is the Row Average plus the normal Utility (RAU), 

which is of the form: 

1

1 n

i ij

j

v b
n




 
  
 
 ,  1, ,  i n    (3.9) 

In most cases, if AI 1, the results of RAU and LPS are the same or very closed 

with measurements of the Cognitive Distortion Index (chapter 5.6.3)  
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To conclude the CPP, the following algorithm is proposed. 

Algorithm 3.3 (Cognitive Prioritization Process): 

Input: A set of opposite pairwise matrices; 

      Determination of output type:  Absolute Weight or Relative Weight 

Process: Cognitive Prioritization of each pairwise matrix 

Output: A list of weight with respect the matrices     #End 

 

3.5 Multiple information fusion processes 

Information Fusion Process   , , *, ,IFP X Y AO AO SAO  is the function to 

aggregate multiple sources of data granules X  from each evaluated cluster of SAN to 

an overall result set Y  to represent the attributes of the decision objective by the 

selection of the most appropriate aggregation operator (AO*) among a set of the AO 

candidates   AO AO , i.e.   *:SAO AO AO , and * :AO X Y . 

In cognitive psychology, cognitive psychologists investigate how people (or 

animals) select sensory information, and choose a method to process information. In 

view of the computational intelligence aspect of cognitive psychology, chapter 6 

proposes a Cognitive Style and Aggregation Operator (CSAO) model for the evaluation 

and selection of AOs on the basis of the decision attitudes.  
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Multiple Information Fusion Processes     , ,MIF dg IFP Y  are the processes 

which apply a course of Information Fusion processes  IFP  to digest the input of the 

set of data granules  dg  to complete a final task, e.g. to calculate the overall score Y . 

In CNP, there are three categories of IFP due to the sources of the data granules: 

fusion of decisional matrix, fusion of structural criteria, and fusion of collective 

judgment. The fusion of collective judgment will be discussed in chapter 7. 

 

3.5.1 Decisional matrix 

The decisional matrix O  is constructed with respect to the objective 

cluster   , , ,j j iClst O c v T , and has the form: 

 1

1

1

j n

j n

i ij

m

v v v

c c c

T

O

T a

T

 
 
 
 
 
 
 
 

 

 





 (3.10) 

,where jv  is the utility weight. In CNP, j

j

v  is not necessary equal to 1. This is just 

the issue of the rescaling function, i.e. : j jf v w ,  1, ,j n    and 1j

j

w  . In 

the CNP,  jv  is derived from the cognitive prioritization of the POM in CPP.  

If the criteria include both positive and negative elements, they can be separated 

into two matrices: a positive decisional matrix and a negative decisional matrix. 
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The positive decisional matrix is built with respect to  , ,Clst O C T   as below: 

 1 '

1 '

1

i n

j n

i ij

m

v v v

c c c

T

O

T a

T



 
 
 
 
 
 
 
 

 

 





 (3.11) 

The set of positive weight  1 ', , nv v  is derived from the differential 

prioritization of the POM of C .   

Negative Decisional matrix is built with respect to  , ,Clst O C T  , and has the 

form: 

 ' 1

' 1

1

n i n

n j n

i ij

m

v v v

c c c

T

O

T a

T







 
 
 
 
 
 
 
 

 

 





 (3.12) 

The set of positive weight  ' 1, ,n nv v   is derived from the cognitive 

prioritization of the opposite comparison matrix of C .   

For better presentation, both matrices can be formed in the partitions of a matrix, 

i.e. O O O     . 
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3.5.2 Aggregation matrices of structural criteria 

An aggregation matrix of structural criteria is used to aggregate elements in the 

lower layer criteria as the value of a node in the upper layer.  

An aggregation matrix of the first layer criterion is built on the first layer criterion 

cluster   ,, : 1, ,i i j iClst c c j q  , i , as follows: 

 ,1 , ,

,1 , ,

1

' '

,

i i j i n

i i j i n

i

m

i

i j

c

T

T

T

v v v

c c

c i

a

 
  
 
 
 
 
 
 

 

 





 (3.13) 

, where    

,1 , ,

,1

, '

,

,1 , 1 2 3

'

, , ( , , , , )   ,

i i j i n

i

i j

i n

i i n

j j

C C C

C

C

C

v v CPO i
a

   

 
 
  
 
 
 
 
 

 





 . (3.14) 

Similarly, an aggregation matrix of the second layer criterion is built on the cluster 

  , , , ,, : 1, ,i j i j k i jClst c c k q  , and has the form: 

 , ,1 , , , ,

, ,1 , , , ,

1

'
'

, ,

ij

ij

i j i j k i j q

i j i j k i j q

i

m

ij

i k

c

T

T

T

v v v

c c

c i j

a

 
  
 
 
 
 
 
 

 

 





 (3.15) 

The set of the utility weights of the ,i jc  cluster, i.e.  , ,, ,1 , ,, , , ,
iji j ki j i j qv v v   is 
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derived from the differential prioritization of the opposite comparison matrix of the node 

,i jc .   

The measurable criteria are the lowest level of the structural criteria. The 

measurement value is propagated into the upper levels, and finally reach the top level for 

constructing the decision matrix. There are two methods for setting the measurable 

criterion 
i

c


: one is direct rating; and the other is getting the differential prioritization of 

the opposite matrix 
i

c


  from the differential pairwise rating. The former method is the 

Absolute Measurement which is useful whilst the measurable criteria are available. The 

latter method is the Relative Measurement which is useful whilst the measurable 

criteria are unavailable, and can be achieved by subjective measurement. 

The matrix of the subjective comparison measurement for the measurable criterion 

is constructed with respect to the cluster  ,
i

Clst c T


, and has the form: 

1 '

1

' ', '

j m

i

i i j

m

T T T

T

c
T b

T

 
 
 
 
 
 
 
 



 





,  , ,i i n


  (3.16) 

 

3.5.3 Aggregation of clusters 

Consider a cluster  ,Clst nd gn . The aggression function for a node nd is to 

combine the set of its data granules  ing  and the set of the corresponding weights of 
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the granules  iwng  into a meaningful or representative value for nd. The function has 

the form: 

  1
,

ing

i i i
nd Agg ng wng


     (3.17) 

, where ing  is the cardinal number of the nodes. 

Consider a typical CNP structure comprising the structural criteria of two layers 

and one expert layer:  the Objective cluster   , : 1, ,iClst O c i q  , ic  Cluster 

  ,, : 1, ,i i j iClst c c j q   , and expert cluster,   ,i kClst c e


. On the basis of a 

template clusters, the following forms are defined. 

The aggression function for a criterion c   is to combine its sub-criteria (or ic ) 

and weights of the sub-criteria iw  into a meaningful or representative value for O. The 

function has the form: 

  1
,

q

i i i
O Oagg c w


     (3.18) 

, where q is the cardinal number of the sub-criteria. 

Likewise, aggregation of ic  has the form: 

   
1

,
jq

i i ij ij
j

c Cagg c w


 
 

  (3.19) 

Note that the cardinal number iq may not be equal to the cardinal number 'i iq   . 

Thus, C  is a non-rectangular matrix or a jagged array, i.e. 

    
11,1 1, ,1 ,, , , , , ,

nq n n qC c c c c    . 

Aggregation operators are essential in the information fusion. There are a number 
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of AOs (see chapter 2.3.5), which produce different values, although many decision 

applications use the simple weighted average (or weighted arithmetic mean). The 

question is which aggregation operator the most suitable. 

Interestingly, this study (chapter 6) finds that the selection of the aggregation 

operators can be determined by the decision attitudes. Thus a Cognitive Style and 

Aggregation Operator (CSAO) model is proposed to analyze the mapping relationship 

between aggregation operators and decision attitudes. The selection of the most 

appropriate AOs ( SAO ) can be determined by the CSAO  model of the decision 

attitude input, i.e. SAO CSAO . The CSAO has the following form: 

   *: , , ,CSAO AO X D da AO  (3.20) 

,where X  is the set of data granules, da  is a prefer decision attitude, AO* is the most 

preferable AO, and  AO  is the set of AO candidates.  The details of the development 

of CSAO algorithm are given in Chapter 6. 

 

3.6 Decisional volition process 

The Decisional Volition Process     *, , , , ,i iDVP c v T VL EV t  is the process to 

decide the final decision  *

1, , mt T T T    with the inputs of a set of first layer criteria 

 ic  and the corresponding weight set  iv  by the volition function VL . *:VL T t , 

where     : ,i iEV c v T  is the evaluation function. 



Chapter 3 Cognitive Network Process 

 

128 

 

The evaluation function EV  is the special case of information fusion, which 

discusses the fusion of the decisional matrix which comprises  ic  and  iv , in order  

to return the value of T . Usually, the best alternative is determined by the highest score 

 *T Max T , and its position   is returned by the argument of the maximum function 

argmax .  

 * *t VL T T  , where 
 

  1 2
1,2, ,

arg max , , , , ,i m
i m

T T T T





   (3.21) 

(In rare cases, if lowest score is applied, the argument of the minimum function 

arg min is used.) 

Sometimes, *t  may be a vector of chosen alternatives. This means that more than 

one candidate is chosen. Let '  be the number of candidates to be selected.  The 

ordering function returns the vector of ranking values with respect to T , and has the 

form: 

    | 1, ,Ordering T I i i m    

, where    
1

m

k i

k

I i r T


 ,  

 
1   ,  &   i  

0,              

i k

k i

T T k
r T

Otherwise

 
 


 (3.22) 

Thus *t  is the form: 

          * | ' , , 1, ,it T m I i I i Ordering T i m        (3.23) 

 

Another issue is to define the Evaluation function as the form: :PEV C t  , where 
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the value of t   is from the continuous scale and C is the aggregated overall result from 

MIP. The PEV  is the parametric evaluation function of the decision problem. In other 

words, the CNP of the previous four steps can serve as the evaluation platform to 

measure the input parameters of the parametric (valuation) function of the decision 

problem. Examples are shown in Case 5 of chapter 8. 

 

3.7 Extensions of cognitive network process 

The Cognitive Network Process can be classified into sixteen types. Four types are 

classified from the viewpoint of measurements and another four types are classified 

from the viewpoint of experts and data types. A combination of both gives sixteen types. 

The details are given below. 

 

3.7.1. Measurement views 

Table 3.2 presents four types of CNP regarding measurements: relative positive 

(RP) measurement, absolute positive (AP) measurement, relative positive and negative 

measurement RPN, and absolute positive and negative (APN) measurement. 

Relative Measurement means the value of the measurable criteria is derived by 

opposite comparison judgment. Absolute Measurement means the value of the 

measurable criteria is derived by direct rating. Positive Measurement means the values 
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of all criteria are positive. Positive and negative measurement means some criteria are 

positive and the remainders are negative. In other words, PR is the special case of RPN 

where there are no negative criteria. Similarly AP is the special case of APN. 

 

Table 3.2: Types of CNP in views of measurements  

  Measurable Criteria 

  Relative Measurement Absolute Measurement 

S
tr

u
ct

u
ra

l 
C

ri
te

ri
a 

N
at

u
re

 

Positive 

Measurement 

RP AP 

Positive and 

Negative 

Measurement 

RPN APN 

 

 In the applications chapter, absolute measurement of the CNP is illustrated in 

case 5 of chapter 8; Relative measurement of the CNP is illustrated in cases 1-4. 

 

3.7.2 Expert and data type views 

Table 3.3 shows different types of CNP due to the data types and number of 

experts in the CNP system. Data types are classified as a crisp number and a fuzzy 

number. The number of experts is referred to “collective”, which is more than one expert, 

and “individual”, for a single expert. 
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Table 3.3: Types of CNP model in views of experts and data types  

 Number of Experts 

Individual Collective 

D
ata T

y
p
e 

Crisp 

Primitive Cognitive Network 

Process 

(P-CNP) 

Collective Cognitive Network Process 

(C-CNP) 

Fuzzy 

Fuzzy Cognitive Network 

Process 

(F-CNP) 

Fuzzy Collective Cognitive Network 

Process 

(FC-CNP) 

 

In the narrow view of the definition of the Cognitive Network Process, CNP is the 

crisp inputs of the individual decisions. In the broad definition, for the variations of CNP, 

the Collective Cognitive Network Process (C-CNP) is the crisp inputs of the collective 

decision; the Fuzzy Cognitive Network Process (F-CNP) is the fuzzy inputs of the 

individual decision; the Fuzzy Collective Cognitive Network Process (FC-CNP) is the 

fuzzy inputs of the collective decision.  

 

In the applications chapter, P-CNP is demonstrated in cases 1-3 of chapter 8; 

F-CNP is illustrated in case 4 whilst F-CCNP is presented in case 5. 
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3.8 Summary 

This chapter presents the cognitive structure of the cognitive network process, 

which comprises the formulations of the algorithms of the cognitive decision process 

represented by process algebra. It states various high motivations for further discussion 

in the coming chapters: Chapter 4 discusses the development of CLOS which is used in 

the Cognitive Assessment Process; Chapter 5 discusses the development of the Pairwise 

Opposite matrix and Cognitive Prioritization Operator which is used in the Cognitive 

Prioritization Process; Chapter 6 discusses the aggregation operator issue in the Multiple 

Information Fusion Process; Chapter 7 discusses the extension models of the CNP. The 

applicability and usability of the CNP is illustrated in Chapter 8, and conclusions are 

drawn in chapter 9. 
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Chapter 4 Compound Linguistic Ordinal Scale 

4.1. Introduction 

The organization of this chapter is structured as follows. Chapter 4.2 introduces the 

concept of Hedge-Direction-Atom Linguistic Representation Model (HDA-LRM) and 

the syntactic rules for Compound Linguistic Variable (CLV), HDA-LRM. Next, the 

semantic rules or “Computing with CLV” for HDA-LRM are discussed in chapter 4.3. 

These are how to map CLV into represented numbers in a matrix by Fuzzy Normal 

Distribution. Chapter 4.4 illustrates the Compound Linguistic Ordinal Scale (CLOS) 

Model, which is a rating scales model applying the Deductive Rating Strategy (DRS) 

and HDA-LRM. In chapter 4.5, the simulation analyses of the CLOS model are 

performed. The analysis includes comparisons of various scenarios with different 

parameters, and a comparison with a classical ordinal model. Finally, conclusions are 

drawn in chapter 4.6. 

 

4.2. Hedge-direction-atom linguistic representation model (HDA-LRM) 

A Hedge-Direction-Atom Linguistic Representation Model is 3-tuple 

  , ,
X

X f  . X  or X  is the set of representation values of Compound Linguistic 

Variable   (definition 4.2) from the numeric-linguistic representation function 

  :X
f X  .  
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If X  is the set of pure numerical values, HDA-LRM can be applied to the 

classical statistics and probability theory directly. If X  is the set of fuzzy numbers, 

then   , ,
X

X f   can be integrated with a fuzzy reasoning model as a pure fuzzy 

model. Therefore, the dedicated fuzzy aggregators are discussed for further analysis. As 

classical rating scales with statistics and probability theory are successfully applied in 

different application domains, such as psychometrics and quantitative research in 

business management and social sciences as stated earlier, this research focuses 

discussion of X  when it is a set of crisp values, and demonstrates how classical rating 

applications can improve with the introduction of the new theory (please refer to 

Example 4.3). 

 

Defining appropriate schema for processing the meaning of the linguistic symbols 

of a fuzzy linguistic variable is challenging as it requires linguistic terms which are 

universally understood and accepted in a fuzzy quantitative sense. It seems that there is a 

lack of convenient rules in the literature to build a set of a large scale of linguistic terms 

and a lack of theory relating to computation of the distribution of the linguistic terms 

into numbers. Compound Linguistic Variable is the ideal term set formulation system for 

this problem. CLV is built on the following definition. 
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Definition 4.1 (Linguistic Variable) (Zadeh,1975): A linguistic variable is characterized 

by a quintuple   , , , ,T X G M   in which   is the name of a linguistic variable; T( ) 

(or simply T) denotes the term-set of  , that is, the set of names of linguistic values of 

 , with each value being a fuzzy variable denoted generally by   and ranging over a 

universe of discourse X which is associated with the base variable x; G is syntactic rule 

(which usually has the form of a grammar) for generating the names,  , of values of  ; 

and M is a semantic rule for associating with each   meaning, M( ), which is a fuzzy 

subset of X.  

CLV extends above foundation, and is defined as follows: 

 

Definition 4.2 (CLV): A Compound Linguistic Variable   , , , ,T X G M   is a 

linguistic variable   whose term-set (T) in matrix form is governed by syntactic rules 

G and is characterized by semantic rules M mapping   into the universal of discourse 

X (Real number domain). Each term   in T contains the continuous or discrete 

elements x’s generated by M in X.  

To illustrate CLV, term-set is described as follows. 

 

Definition 4.3 (  T  ): The syntactic pattern of a linguistic term-set T for CLV is a 

quintuple  , , ,h d aV V V G
  

. A term-set T of a linguistic variable   is syntactically 
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mapped from , ,h d aV V V
  

 with the syntactic relation G , i.e.: 

    : , ,h d aG V V V T  
  

  (4.1) 

where  “ ” denotes “be linguistically mapped to”, G  is the syntactic relationship 

function for  . , ,h d aV V V
  

 is defined in definitions 4.4-4.7. Notations of hV , dV , aV , 

which are not vectorized or ordered, are different from , ,h d aV V V
  

 . This difference is 

shown in example 4.1. 

 

Definition 4.4 ( aV


): An atomic linguistic term av  is used to roughly describe the 

statement or measures the objects in the initial sense. A vectorized atomic linguistic 

variable aV


 is the form 
11
, ,

n i n

n

a a a a
j

V v v v


    
   


  where   11 j n

n
j a a av v v     

and a av V


. n is an odd number and larger than or equal to three. For example, 

 Poor, Weak, Fair, Good, ExcellentaV 


 where Poor < Weak < Fair < Good < 

Excellent. 

 

Definition 4.5 ( hV


): A Hedge term hv  is the communicative strategies for adjusting the 

linguistic quantity in av . A vectorized hedge linguistic variable hV


 is the form: 

1
=

ih h
i

V v



 
 


 where  1 ihi v


  and h hv V


. For example,  Little,Quite,MuchhV 


 

where Little < Quite < Much. 
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Definition 4.6 ( dV


): A Directional term dv  is used for decision making strategies to 

define the direction of hv ’s . A vectorized directional linguistic variable dV


 consists of 

three ordinal directional terms dv ’s ,i.e. 
3

d d d
1

= , , 
id d

i
V v v v v 


   

   


 with  3

1 ii dv  

(or d d dv v v   ). A static point dv   is the separation line to divide the positive 

domain and negative domain of a linguistic term. dv   modifies the hv  as a positive 

linguistic term while dv   does as a negative linguistic term since hv  is the pure 

“qualitative quantity” in nature. For Example,  Below,Absolutely,AbovedV 


 where 

Below < Absolutely < Above. 

hv  and dv  can form syntactic terms as a directional hedge linguistic term hdv . 

Thus the following definition is introduced. 

 

Definition 4.7 ( hdV


): Let 
1i

m

hd hd
i

V v


 
 


 with  1 i

m
i hdv . To extend the notations for 

its properties, then 

hd h dv v v   , where 
1ihd hd hd

i
v V v




  
 


, hV 


 (4.2) 

hd h d d hdv v v v V
   


  , where  1hd hdV v









 (4.3) 

hd h dv v v   , where 
2i

m

hd hd hd
i

v V v




 
  
 


 (4.4) 

hdv   is a negative hedge linguistic term, hdv   is a static hedge linguistic term, and 

hdv   is a positive hedge linguistic term. “ ” is a “linguistic addition” which means the 

addition of two linguistic terms in the string format (“+” is the addition of two numbers). 
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“  ” is a linguistic equality, which means “is linguistically equal to”, whilst “=” can be 

used for either numerical equality or for the assignment of terms for a variable. 

To investigate the formulation of hdV


, the syntactic function 

 : ,
hd

h d hdV
G V V V

  
  , where  ,  ,hd hd hd hdV V V V

  
  

   
  is proposed. The following 

proposition is to illustrate 
hdV

G . 

  

Proposition 4.1 (  ,
hd

hd h dV
V G V V 
  

): If  
1

=
ih h

i
V v




 
 


 and d d d= , ,dV v v v  

 


, then 

 

       1 1

1
,

      ,  , ,  , ,  ,

ihd

m

hd h d hdV i

h d h d d h d h d

V G V V v

v v v v v v v v v
 





   

  
 

     
  


  

 
 (4.6) 

Proof:  

As    1
, ,hd h d h dV v v v v



     
  


  ( Eq(2)) , 

hd hd h d dV v v v v
           

     


 ( Eq(3) ), and    1 1

, ,hd h d h dV v v v v


     
  


  

(from Eq(4)) , then , ,hd hd d hdV V v V  
  

  
.       

 □ 

For example, hdV 


[“Much Below”, “Quite Below”, “Little Below”, “Absolutely”, 

“Little Above”, “Quite Above”, “Much Above”]. 

hdv  can be used with av  to form a new meaning. The concept of a compound 

linguistic term is given. 
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Definition 4.8 ( ): A compound linguistic term   can be formed by a syntactic 

equation, and is the form:      , , ,h d a h d a hd a hd aG v v v v v v G v v v v         , 

where , ,h d av v v  are any members from , ,d h aV V V
  

 respectively. To extend the notation, 

i jij hd av v  , 
1i i j

n

i hd a hd a
j

v V v v


   
  


 , 

1j i j

m
j

hd a hd a
i

V v v v


   
  


 , for all 

 1, ,i m  ,  1, ,j n   where cardinal numbers hdm V


 and an V


. 

 

For example, 3  [“Much Below Fair”, “Quite Below Fair”, “Little Below Fair”, 

“Absolutely Fair”, “Little Above Fair”, “Quite Above Fair”, “Much Above Fair”]. 

However, there are some unusual cases. if “Absolutely Excellent” is defined as the 

maximum value, there is no need for “Much Above Excellent” in the semantic view. 

Thus an exceptional case of the syntactic form hd av v  is defined as follows. 

 

Definition 4.9 ( ): dv  cannot modify 
1av  whereas the dv   cannot modify 

nav . 

Thus, the syntactic forms are: 

1 1h d a hd av v v v v        ,where hd hdv V



 (4.7) 

n nh d a hd av v v v v        ,where hd hdv V
 


 (4.8) 

For all h hv V


, and   is the null element. 

There are sufficient conditions to derive a piecewise formula to calculate 

 ,hd aG v v : 



Chapter 4 CLOS 

 

140 
 

Proposition 4.2: In the semantic aspect, the Normalized Syntactic Function is: 

 
   

   

1  & 1, , 1 / 2

,   1,   &  

  & 1 / 2 , ,

ij i j i jhd a hd a

j i m

G v v v v j n i

j n i m m



   


  


  







 (4.9) 

Proof:  definition 4.8 gives 
i jij hd av v   with the constraints (4.7) and (4.8) in 

definition 4.9 which imply that  

         : 1  & 1, , 1 / 2     & 1 / 2 , ,ij j i m or j n i m m         are null elements. 

Then the form is held. □ 

To extend proposition 2, the following theorem is satisfied. 

Theorem 4.1 (CLV): The Linguistic Cartesian Product G  of aV


 and hdV


 forms a 

term set  T   of CLV as follows: 

 

1 2 1 1 1

2 1

1 2 1

2 1 2 2 2 1

1

1 2 1

1

1

2

                       

,

n n

n n

n n

n

m m

n n

hd a hd a hd a

hd a hd a hd a

mn hd a

a a a a

hd a hd a hd a

m
hd a hd

v v v v v v

v v v v v v

G V V
v v v v

v v v v v

v v v

  

  



   




   

















   








   

   

  

   







    
 






    

2 1m na hd av v v


 
 
 
 
 
 
 
 
 
 
 
   
 



 

 (4.10) 

,which can be briefly represented by 

 
1

1

,
i j

m
n

mn hd a hd a
j

i

G V V v v




    
  

    
 
  

  (4.11) 

, where double bracket    
T

   and T is the transposition.  
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Proof:  

The Cartesian product of two linguistic sets hdV


 and aV


 is defined as hd aV V
 

, which 

 ,
i jhd av v  is its order pair. Linguistic Cartesian product hd aV V

 
 is defined as  

   
1

1

,
i j

m
n

hd a hd a hd a
j

i

V V G V V G v v 




    
  

      
 
  

 (4.12) 

, where  ,
i jhd aG v v  is from Eq(4.9) is proposition 4.2. Next Calculate each entry 

 ,hd aG v v  to get  ,hd aG V V

 
. □ 

Theorem 4.1 extends two Corollaries. 

 

Corollary 4.1 (Cardinal number of mn ):  

As 2mn m n      and 2 1m    where hdm V


 and an V


, then 

 1 1mn m n    . 

 

Corollary 2 (Relationship of i and j): 

1              , 1, ,

2, , -1  , 1, ,

               , , ,

i

j n i m

n i m








 
 



 



  or 

1, ,    ,   j 1              

1, ,   ,   j 2, , -1

2, , -1   ,  j                 

i m n

n n

 


 
 



 



 

 

Algorithm 4.1 is to conclude this section. 
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Algorithm 4.1 ( Syntactic Rule Algorithm  , ,mn h d aG V V V 
  

 ): 

Step 1: Input: Linguistic term sets ( hV


, dV


, aV


)    //definitions 4.2-4.6 

Step 2: Proceed  ,
hd

h d hdV
G V V V

  
     // proposition 4.1 

Step 3: Proceed  ,hd aG V V

 
   //proposition 4.2 and theorem 4.1 

Step 4: Return:  ,mn hd aG V V 
 

        //End 

 

Example 4.1: 

Provided that  Excellent,Good,Fair,Weak,PooraV  ,  Below,Absolutely,AbovedV  , and 

 Little,Quite,MuchhV  . Find the CLV. 

 

 , , ,h d aCLV V V V G
  

 where hV , dV , and aV  are vectorized as hV


, dV


, aV


. From 

 ,
hd

hd h dV
V G V V 
  

, thus, 

1 7
= , ,

"Much Below","Quite Below","Little Below","Absolutely"  ~ 
    

"Little Above","Quite Above","Much Above"

hd hd hdV v v 
 

 
  
 




 

where ~  denotes a line break as one line cannot contain all the members. 

 

 Poor, Weak, Fair, Good, ExcellentaV 


 where  5
1 jj av . As  mn ,hd aG V V 

 
, 

then  
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1 2 3 4 5

1

2

3
7,5

4

5

6

7

        

0 - - - -

0 - - - -

0 - - - -

- - - - -

- - - - 0

- - - - 0

- - - - 0

MB W MB F MB G MB E

QB W QB F QB G QB E

LB W LB F LB G LB E

A P A W A F A G A E

LA P LA W LA F LA G

QA P QA W QA F QA G

MA P MA W MA F MA G

    















 
 
 
 

   
 
 
 
 
 
 

 

 

Example 4.1 shows that three vectors of linguistic terms can produce a large scale 

of linguistic terms. These linguistic terms can be used for describing the attribute of an 

object in a more precise form. However, when several variables are combined, the 

matrix structure cannot be formed by Linguistic Cartesian Product in view of human 

understanding. Thus the syntactic form needs verification with experts. Experts should 

firstly determine an attribute of an object which should be measured, and then justify 

appropriate ( hV


, dV


, aV


) to form CLV which can be used for describing the attribute. 

However, the next question that is how the semantic forms can be represented for 

computational intelligence. This paper proposes Fuzzy Normal Distribution in next 

section to address the semantic issues for CLV. 

 

4.3. Fuzzy normal distribution (FND) 

The syntactic rules of CLV are investigated in chapter 4.2. The semantic rules M  

are discussed in this section. Firstly Fuzzy Normal Distribution is defined, and then the 
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properties of the fuzzy set are introduced. 

Fuzzy Normal Distribution    1, , 1, ,
1, , , , ,j n j n

X MFI FI
 
  

  
 

 


 is the semantic 

rule M which converts  T   to X, i.e. :M X  . 


-Design Procedure 

 1, ,, , j nX

  


 is an atomic term 

jav  (or 1, ,j n   
 , which is different from 

ij  ) associated with its Single Core Symmetric fuzzy set j  of the membership 

function j
  in the universal of discourse X. Equivalently, the name of the fuzzy set 

j  can be used for the name of the linguistic label 
jav  and vice versa. On the basis of 

j  Design Procedure ,  1, ,
1, ,
j n

MFI FI






  of 


 is Fuzzy Interval Distribution FID 

which Membership Fuzzy Intervals MFI of hV


 in  0,1  are converted to Fuzzy 

Intervals FI of ij  in X by inverse membership functions 
1, ,

1
j n





 , i.e. 

   1 :j ij ijMFI FI

     where 1, ,j n   and 1, ,i m  . 

A Single Core Symmetric fuzzy set j  is a 3-tuple fuzzy set  j j jd
  
 , ,  

that is convex, consisting of only a single core j
  in the middle point of the fuzzy 

boundary of j in X, the tolerance distance jd


 from j
  to the boundary, and 

membership j
  which symmetrically, continuously and gradually decreases from 1 to 

0, along from j
  to j j

jl d
 

     or/and j j
ju d

 
    . 

Regarding the shapes of the SCS fuzzy sets (Fig. 4.1), the Whole Shape (WS) of a 

SCS fuzzy set consists of a Left Half Portion (LHP) and a Right Half Portion (RHP) 

segmented by a singleton line. A singleton line exits where the membership is equal to 
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one, as there is only one in a fuzzy variable (or a fuzzy set) x in X. A Half Portion (HP) 

means either LHP or RHP, i.e.  HP LHP RHP , . 

 

 

 

a. Left Half Portion 

 

 

 

b. Right Half Portion 

 
  

 

c. Singleton Line 

 

 

d. Whole Shape 

Figure 4.1: Membership shape description  

 

The shape of 1  is the LHP in the most left hand side in the universal of 

discourse X while n  is the RHP in the most right hand side. 2 1j n  , ,  is the whole 

shape distributed in X. Regarding the shape of the membership function, for a SCS 

Fuzzy Set  j j jd
  
 , , , if the membership is linear based, a triangular-based 

membership function is of the form: 

, 

             1                 , 

, 

j

j j

j j j

j

j j j

j

j j

j j j

j

x d
x d

d

TbMF x

x d
x d

d







 

  



  



 

  



    
         
 

    

     

        
 

,

,

 , j
  is tuning level. (4.13) 

This follows the triangular-based inversed membership function 1
j

TbMF 


 for the 
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base element x , where     ' ',' ',' ' , which represent LHP, singleton, and RHP 

respectively. 

 
 

 

1

1

1 1

   , 

                                             , 

   , 

j
j j j j

j jj j

j
j j j j

d d

x TbMF

d d









   
  

  

   


      



        


      

' '

' '

' '

 (4.14) 

 

Similarly, if the shape function is the Parabola-based Membership function, then 

2 2
2

2 2 2

21
 ,   

j
j j j

j j j j
j j j

l u

d
PbMF x x x

d d d




  

 
  

             
     

 

, . 

 (4.15) 

Then the Parabola-based Membership Inversed Function 1
j

PbMF 


 for the base 

element x  is the form: 

   
 

 

1

1 1

1

1    , 

                                            , 

1     , 

jj j j

j j jj j

jj j j

d

x PbMF

d

 

 

 


  

  
   


  



      




         


      


' '

' '

' '

 (4.16) 

 

In selection of the membership functions, three criteria should be satisfied 

(Bargiela and Pedrycz, 2003): available domain knowledge, simplicity of the 

membership function, and possible parametric optimization of the fuzzy sets (calibration 
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of the membership function). More approaches of elicitation of the membership can be 

found in Chapter 2.3.2. 

 

4.3.1 Membership fuzziness distribution 

Membership Fuzziness Distribution is of the form,  

, , , , , , , , , , , ,
T

h d NormV V dis MCI invp revp MFI      
 
 

 
. The membership  =[0, 1] can be 

fuzzily classified by hV


. The membership utility measurement function  hV


 is the 

numerical judgments for hV


. The distance of 
ih hv V


, i.e.  ihdis v , is characterized by 

the proportion of  ihv  in  ih
hV

v .  On the basis of  hdis V


, Membership Crisp 

Interval MCI determines the close interval of hV


 (e.g.  ' , 'l u  ). And the Membership 

Fuzziness Factor  , which is with the constraints by a membership normalization 

function Norm , fuzzifies the  hMCI V


 into values of  hMFI V


. 
' ',' ',' '

hV
   

 is 

determined by dV


. hMFI V
 

 
 


 is determined by the Inverse Position Function invp of 

 hMFI V


 while hMFI V
 

 
 


 is determined by Reversed Position Function revp of 

 hMFI V


. Finally,  MFI   is determined by hMFI V
 

 
 


. For a clear presentation, 

T
hV


 or hV
 
   , transposition of hV


, is preferred. Fig. 4.2 graphically summarizes the 

MFD method. 

Let  hMFI V


 be discussed initially. If fuzzy boundaries from the classes needs to 

be justified, the crisp boundaries can be assumed first and then adjusted the interval into 
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fuzzy boundaries. Conversely, if crisp boundaries among the classes need to be justified, 

the fuzzy boundaries initially can be assumed first, and then the intervals can be adjusted 

to derive the values. Therefore, MFI is determined by  ,MCI  . 

 

Definition 4.10 (  hMFI V
 
   ): The MFI of hV

 
    is determined by the lower boundary 

( L ) and upper boundary ( U ) of the membership, and has the form: 

 
 

 

1

1 1

h

1
h

     

,
j j

L U

L U
l u

h
l u

j
l u

MFI v

MFI V

MFI v
  



 
 

 

 

 


 
   
     
   
   
     

           
 (4.17) 

,where is hV 


,  
1iL l

i


 


  
   , and 

1iU u
i


 


  
   .  

 

The next question is how to justify 
jl  and 

ju . This follows the concept of 

Membership Crisp Interval MCI, which is determined by membership distance function 

dis  and Membership Utility Measurement function   initially. 

 

Definition 4.11 (dis()): The membership distance function is of the form 

  
 

 
i

i

ih

h

h

hV

v
dis v

v







,   1,2, ,i   . (4.18) 

The Membership Utility Measurement function of hV


 is of the form 

      1
, ,h h hV v v


   

  


 . 
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On the basis of definitions 4.10 and 4.11, then  hMCI V  is formed as follows: 

 

Proposition 4.3 (  hMCI V ): Let   iu'   '
i ih lMCI v   

 
. For  hMCI V


 which a 

parameter hV


 is in matrix form, 

  1

1

1

' '      

' , '
j j

L U

h h
l u

j

MCI V MCI v 


 

 


 
  

 

   
          

  (4.19) 

, which is determined by: 

   
1

1 1

'         '      
' '      

' , ' ,  
j j i i

L U
L U

l u h h
j

i j i j j

dis v dis v


 

 
 

 


   


 

 
           

 (4.20) 

where ' 0l
  and 

1
' 1u  ,  1,2, ,i   . 

Proof: The membership   is [0,1]. 'l
  is the floor boundary, and thus ' 0l

   

whilst 
1

'u  is the ceiling boundary, and thus 
1

' 1u  .   is separated to 
ihv  by crisp 

points. For 
ihv and

1ihv


,  1,2, ,i   , '
iu  of 

ihv  is equal to the lower boundary 

1
'
il




 of 
1ihv


 , i.e.
1

' '
i il u 

 , as they are at the same point in the continuous curve. 

As  ' '
i i iu l hdis v   , then (4.20).   □ 

 

The next step is to define a Membership Fuzziness Factor to fuzzify MCI to MFI. 

 

Definition 4.12 ( ): The Membership Fuzziness Factors  ’s of '
iu  and '

il
 , i.e. 

ui
  and 

li
 , are used for fuzzifying the MCI to MFI . Thus, they have the forms: 
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0

2u li i
 


   , where  , 0,1

u li i
     (i.e.  0 0,2  ) (4.21) 

 

' 1                 , 1         

' , 2, ,

i

i
i u ii

u

u
u h

i

dis v i




  

 


 
 


 (4.22) 

 ' , 1, , 1

' 0                ,              

i l ii
i

i

l h
l

l

dis v i

i

  


 

   
 

 


 (4.23) 

(4.21) is the default definition. It can be changed in order to adjust the membership 

fuzziness with other functions for 
li

  or 
ui

 . In addition, if
ui

  or 
li

  is 

excessively large, 
iu  or 

il
 may be larger than 1 and less than 0. This makes the 

membership fuzziness process unstable. Thus, this situation follows lemma 4.1 as the 

constraints: 

 

Lemma 4.1 (  Norm  ): The Membership Normalization Function Norm  for 

validating the validity of 
li

  or 
ui

 , is the forms 

   
,0 1          

  , 2, ,
"Error" , 1 or 0

u ii

ui
i i

u

Norm
u l

i




 
  

 

 
  

 

  (4.24) 

   
,0 1           

  , 1, , 1
"Error" , 1 or 0 

l ii

li
i i

l

Norm
l l

i




 
  

 

 
   

 

  (4.25) 

If there is an “error”,   function has to be justified again. 

Proof:  

As    0,1 : 1, 2, ,
u ii

u i         and    0,1 : 0, 1, , 1
l ii

l i       , On the 

basis of definition 4.12. This proposition is held.        □ 
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Proposition 4.4 (  hMFI V
 
   ): The membership [0,1] is fuzzified by hV


. The 

Membership Fuzzy Intervals of hV


, i.e.  hMFI V


 are determined by L  and U .   

fuzzifies the MCI. Thus, 

 

 

   

 

1
1

1

2

' ,         1         

' ,  '

         0        ,        '       

i l ii

i l i i li i

i li

l h
i

h

h l h u i
i

h

u i
i

dis v

v

MFI V MFI dis v dis

v
dis







 




 

    

  









  
      

   
       

         
  

          




 (4.26) 

, where 
li

  or 
ui

  is confined to (4.24) and (4.25) in lemma 4.1. 

Proof:  

     
,

1, ,

1 1

' '           

' , ' ,

u li i

j j j j

L U L U

h hi
l u l u

j j

MCI V MFI V
 

 


   

   

 

  


    
               

 with  li
Norm    

and  ui
Norm    (lemma 4.1). □ 

 

4.3.2 Fuzzy interval distribution (FID) 

A fuzzy interval FI  of ij , i.e.  ijFI  , is in the portion ,
i il ux x 

 
 of j  in X 

that is 

  ,
i i

j
ij l uFI x x   

 
 (4.27) 

A variable name before an interval specifies that a super set guides the diminution of the 

fuzzy set. It may ignore the variable name, but the levels continuously expand, the 

traceability becomes the problem. For listing the fuzzy intervals with the set of members, 

then 
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
1 1

,
i i

mmj j
ij l uj i

FI FI x x  
 

   
    

   

          (4.28) 

Similarly, to extend the notations 


1

n
j

j




 
   


 ,


1

mj
ij i

 


  
   , 


1

j
ij i


 




  
   , 


2

mj
ij i 

 


 
  
   . The “^” on a linguistic variable (i.e.   or 

j ) means the list of all 

variable members of the variable.  

 

A Fuzzy Interval Distribution  1, , , ,
j

MFI FI P


  is the process to map   to 

the fuzzy interval  FI   in X by the corresponding Position function P of the 

corresponding inversed membership function 1
j

  of  MFI  . P=vip,hrp is 

described in propositions 5, 6. In short,      1
j

FI P MFI


   . 

 

,MFI  and 1
j

  have been discussed in previous sections. Fig. 2 graphically 

summarizes the method for designing  hMFI V
 
    where 3  . In addition, FI is 

defined. P is not defined. To Investigate P, Fig. 3 shows the mapping from  hMFI V
 
    

to 
1

m

ij i
FI 



 
 
 

 
   . Consider a single  ihMFI v , there are two  ijFI  ’s in av   and av   

respectively. This leads to two relationships for the discussion: 

1.  h hMFI V MFI V
   

 

 
, where hV


 is related to av   (4.29) 

2.  h hMFI V MFI V
   

 

 
, where hV


 is related to av  . (4.30) 
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Figure 4.2: Calculation process for  hMFI V
 
     

 

 

Figure 4.3: 
1

j
MFI FI



   

 

   0,1 : RHPx x x

  , where RHPx  is the set of the base variables of RHP, or in 

av  . Similarly,    0,1 : LHPx x x

  . Therefore,  

for  h hMFI V MFI V
   

 

 
,    , :  , 

i i i il u l u hMFI V   
     

 


.  

For  h hMFI V MFI V
   

 

 
,    , :  , 

i i i il u l u hMFI V   
     

 


.  

To look better, the following forms are defined. 
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1 1 1 1

1

      

,
j j

L U L U

L U
l u l u

h
l u

j

l ul u

MFI V

  



   

 
   

 

  

   

 
 




 

 
                  
 

     

 
 
      

 (4.31) 

1 1 1 1

1

      

,
j j

L U L U

L U
l u l u

h
l u

j

l ul u

MFI V

  



   

 
   

 

  

   

 
 




 

 
                  
 

     

 
 
      

 (4.32) 

   
1

1

,

, ,

,

j j

j j

j j

h l u

m

hd l u d l u
j

l uh
j

MFI V

MFI V MFI v

MFI V

 





 

   

 









              
            
    
          

 
 
  

         
 
 
  

 (4.33) 

 

Propositions 4.5 and 4.6 are satisfied for answering (4.29) and (4.30). To have 

(4.31)-(4.33), lemma 4.2 is developed. 

 

Lemma 4.2: For RHP, av  , or ' '   , iif 
i il ux x , then 

i il u  , or 
i il u   . For 

LHP, av  , or ' '   , iif 
i il ux x , then 

i il u  , or 
i il u   . 

Proof:  

For ' '   , or RHP, the larger j
 , the larger RHPx  is, and vice versa. Therefore, iif 

i il ux x , then 
i il u  . Similarly, for ' '   , or LHP, the larger j

 , the less RHPx .      

 □ 
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Proposition 4.5 ( vip ): hMFI V
 

 
 

 
 
  

 is vertically inversed, vip, of  hMFI V
 
   , 

   1

1

           

,, j jj j

L UL U

h h
l ul u

jj

MFI V vip MFI V 



  

  

 





 
      

  

               
 (4.34) 

Proof:  

1 1

1
h l u l uMFI V

  





                   

           
, , , , , then 

1 1l u l u 

       
    

, ,  .  

To have 
1 1l u l u 

       
    

, , ,  vip .  is applied □ 

 

Proposition 4.6 ( hrp ): hMFI V
 

 
 

 
 
  

 is horizontally reversed, revp, of  hMFI V
 
   ,  

  
11

           

,, j jj j

U LL U

h h
U ll u

jj

MFI V hrp MFI V 

  

  

 





 
      

  

               
 (4.35) 

Proof:  

From lemma 4.2, iif 
i il ux x , then

i il u   . There is horizontal reverse relationship 

between L  and U  of hMFI V
 

 
 

 
 
  

 and  hMFI V
 
   .           □ 

 

Proposition 4.7: (
jMFI 

 
 
 

): 

  
1

 ,  2     

    ,                  

 , 1 1

h

mj
ij di

h

MFI V j n

MFI MFI MFI v j

MFI V j n

 







  
  

 
   

    
   

 
     

 
 
  

         
 
 
  

 (4.36) 

Proof:  

Firstly,  ijMFI   can be represented by  ihdMFI v  in j  as 
i jij hd av v  . 
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Secondly, hMFI V
 

 
 

 
 
  

 and hMFI V
 

 
 

 
 
  

 can be determined by propositions 4.5 and 

4.6. Thirdly 1  is RHP Fuzzy set only, and n  is LHP set only. 1,j n   is the whole 

set.  □ 

 

Theorem 4.2 is satisfied. 

 

Theorem 4.2 (Fuzzy interval distribution): 

From    1 :j ij ijMFI FI
    , i.e. 1 : , ,j i i i i

j j
l u l ux x
   


        

   
, 

 1
ji il lx 

 


    and  1

ji iu ux 
 


   , ' ', ' ', ' '    , then 

 1

1 1
j

m mj
ij iji i

FI FI P MFI
   

 

       
        

       

               
, P=vip,hrp; (4.37) 

Explicitly,  

 

   
1

1 1

1

1

1

 ,   ,j
j ji i

j

j

h
l l

i

j
h

h

vip MFI V

FI MFI V

vip MFI V




 








   

 




 






   







    
      

       
 

               
 

    
    

     

 
 
  

           

 
 
  

 

   

     

1 1

i= 1

1 1

2

 2,...,  &  ' '    

 ,        ,   &   ' '                 

 ,  , 1,..., 1 &  ' '

j j

j ji i

l l

m

l l
i

j n

j

j n

   

  



     

     

 



   

 


   


    


        

 (4.38) 

Proof :  

Firstly, hMFI V
 

 
 

 
 
  

,  hMFI v   and hMFI V
 

 
 

 
 
  

 are determined in proposition 4.7. 

Secondly, 

If  2, ,j m  , and ' '   , then 
 
 


1

1 1

j li

j ui

j
h ij i

MFI V FI FI



  

 
 

 


 







    
            

         
; 
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If j , and ' '  , then   0

0

l j

u j

x

h ijx
MFI v FI












     ; 

If  1, , 1j m   and ' '   , then 

 
 


1

1 2

j li

j ui

mj
h ij i

MFI V FI FI



 

 
 

 


 





 

    
            

         
. 

These three conditions can form the piecewise equation in (4.38) which means (4.37). 

Examples of the inverse membership functions can be referred to (4.14) and (4.16). □ 

Theorem 4.2 returns interval representation values of a matrix of linguistic terms. 

The crisp representation values from the intervals are defined as follows. 

Definition 4.13 (    X
f M    in Crisp number): From   :X

f X  , if X  is a 

matrix of crisp numbers, then       X
X f M mean FI     


 where  M   is the 

semantic rules for  . Similarly, for each entry in  ,     ij ij ijX
X f mean FI    . 

 

Definition 4.13 returns a crisp number. A fuzzy number is presented by a model 

value and a pair of interval values. Thus on the basis of the theorem 4.2 and definition 

4.13, definition 4.14 defines CLV represented by fuzzy numbers. 

Definition 4.14 (    X
f M   in Fuzzy Number): For  ' : '

X
f X  , if 'X  is a 

matrix of representation values in fuzzy number, then 

     
1

1

' ' , ,
ij ij ij

n
m

l uX
i

j

X f M x x x




 
      

 

 
 
  

, where the interval values 

 ,
ij ijl ux x FI  

  


 is from theorem 4.2, and the model value   ij

x mean FI  


 is 
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from definition 4.13. 

Some may regard , jj hd av v
  ,  1, ,j n    should not be singleton. Thus  

 

 

 

,1 ,1 ,2

1, , 1,

, 1 , 11 ,

, ,        , 1

' , ,    , 1,

, ,   , 1,

j j jj

n n n

X X X j

X X X X j n

X X X j n

  

  

  

  

  

  

 

 

 



 

 


,  1, ,j n    (4.39) 

,where     ij ij ijX
X f mean FI     in definition 4.13. 

Finally, algorithm 4.2 is to conclude this section. 

 

Algorithm 4.2 (Semantic Rule Algorithm / Fuzzy Normal Distribution: 

   X
X f M    ): 

1. Get valid j
 , jd


, j

 , X  for j , j ;        

2. Construct  1
j

  ; //e.g. eq(4.13) –eq(4.14) 

3. Input valid  hV


, 0 ; //Definitions 4.11-4.12 

4. Calculate  hMCI V
 
    and  hMFI V

 
    //Propositions 4.3 and 4.4 

5. Calculate hMFI V
 

 
 

 
 
  

 and hMFI V
 

 
 

 
 
  

;  // Propositions 4.5 and 4.6 

6. Calculate  


1
j

mj
ij i

FI P MFI
  



     
      

     

         
, j ; // Theorem 4.2 

7. If X  is a matrix of crisp numbers, calculate  X
X f   by definition 

4.13; 

8. If X  is a matrix of fuzzy numbers, calculate  '
X

X f  by definitions 

4.13-4.14, and/or Eq.4.39; 

9. Return X ;                 //END. 
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4.4. Compound linguistic ordinal scale 

Due to different interpretations of the term set by different experts, most 

researchers agree that an expert can handle the ranking with limited alternatives. Miller 

(1956) has indicated that an expert could manage a set with  7 2  terms while 

Bonissine and Decker (1986) has suggested that one could manage up to 11 or 13 terms. 

This is open to discussion, especially the rating problem from the experts as there are an 

excessive number of options. In (Herrera and Martinez, 2001; Herrera-Viedma and 

Martinez 2005),  a sound model of “computing with words” for managing 15 terms for 

a Basic Linguistic Term Set (BLTS) is used. However, the term set does not illustrate 

the linguistic label for each term, and it is unreasonable for the expert to rate using 

mathematical symbols only. In this case, it seems incredible that an expert can handle 

 7 2,7 2 21,73    (corollary 4.1) linguistic terms although CLV can produce a large 

scale of compound linguistic terms on the basis of their views. This incredibility can be 

addressed by the Compound Linguistic Ordinal Scale Model defined as follows: 

Definition 4.15 (CLOS): A Compound Linguistic Ordinal Scale Model is 3-tuple 

       hd aj X
DRS HDA LRM V V Rs X f     

 
, , , , , , , , , which is the Deductive Rating 

Strategy  , ,hd aj
V V Rs
 

 of a Hedge Direction Atom Linguistic Representation Model 

  , ,
X

X f   with a cross reference relationship  .   is used by a measurement 

function using DRS and HDA-LRM. 
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Definition 4.16( DRS ): In the Deductive Rating Strategy  , ,hd aj
V V Rs
 

, aV


 is the set 

of first rating categories with atomic descriptors 
1j

n

a
j

v


 
  

, then hd j
V


 is the set of 

second rating categories derived from the Second Rating Alternatives Transformation 

Function Rs  of 
ja av V


.  

 

On the basis of above definition, proposition 4.8 is satisfied. 

 

Proposition 4.8 (  jhd aj
V Rs v


): 

 
1

1

2

    if 1

  if 1,  

 if 

i

j i

i

hd
i

m

hd a hdj i

m

hd
i

v j

V Rs v v j n

v j n









 

     

      

  
 


 (4.40) 

Proof:  

The result can be derived from proposition 4.2, theorem 4.1 and definition 4.16. □ 

 

There may be a possible suggestion to have more than two dimension spaces in the 

rating process. However, the question is whether they are necessary and practical. One 

concern is how to use linguistic terms to form such rich dimension spaces in a 

meaningful way. Another concern is how many times for a rater need to rate in a single 

survey. Classical approach is one time. It may be unclear to express the quantity and 

finally influence the accuracy of the research result. Thus the CLOS model suggests two 

times which are sufficient. However, if three times or more, raters may lose their temper 

to finish the survey, especially the marketing surveys. Thus two step rating process, 
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which is the middle way, is applied for CLOS to maintain the consistence and accuracy 

of the approximate rating results. 

Algorithm 4.3 concludes this section.  

 

Algorithm 4.3: (Deductive Rating Strategy :  V V Rshd aj

 
, ,  

1. Observe external information; 

2. Understand the problem which needs to be classified; 

3. Understand the CLOS model      hd aj X
V V Rs X f  
 

, , , , , , ; 

4. First rating step: choose 
jav  in 

1j

n

a a
j

V v


 
  


; 

5. Computer shows second options:  jhd aj
V Rs v


; 

6. Second rating step: Select the second option with revision of first option; 

6.1. if first option is confirmed, then the rater chooses  
ihdv  in hd j

V


 as the 

second option; 

6.2. Else go to Step 3 

7. Return  i jij hd av v  ,         //End 

 

Example 4.2: 

Assume the   , ,
X

X f   is applied with a cross reference relationship . In the 

double categories  ,hd aj
V V
 

 the rater initially chooses a 
jav  from the first Category 

aV


 (fig. 4.4-1) , then hd j
V


 is a second option from the second Rating Category 

function, i.e.  jaRs v  (fig. 4.4-2 to 4.4-6), next the rater chooses a hdv  from hd j
V


. 

Thus the decision  ,hd av v  is made. Therefore, instead of selecting one from 
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7,5 29  , which is difficult to achieve,  the rater just selects one from 5aV 


, and 

then selects one from 
1 5

4hd hd j n
V V

 
 

 
 or 

1,
7hd j n

V





 only. 

 

Figure 4.4: Deductive Strategy  , ,hd aj
V V Rs
 

 of CLOS  

 

Before rating, the rater refers to   from   , ,
X

X f   as table 4.1 or table 4.2 is 

derived from algorithm 4.2 with parameters  1,5X  ,  1,2,3,4,5 


, 1, ,5 1d


 , 

1, ,5 2

  , 1 1

j PbMF
   ,    1,2,3hV 


, 0 0.5  . The operation of algorithm 4.2 

is as follows: 

As steps 1 to 3 are given, the calculation of step 4 is as follows: 

       
1 1 1

    
6 3 2

hdis V dis little dis quite dis much
 

     
 


" " " " " "   

and the cardinal number   of hV


 is  3 ,  

then,  

1

2

3

      

0 8333 1

0 5000 0 8333

0 0 5000

L U
h

T

h h

h

v

MCI V MCI v

v

   
            
      
        



' '

.

. .

.

. 
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As membership fuzziness factor 0 0 5  . , then 0 0 25
2u li i

 


     . , thus the 

membership fuzziness is 

 

      

0 7917 1

0 4167 0 9167

0 0 6250

L U

T
hMFI V

 

  
    

   
  

 .
,

. .

.

.  

For step 5, 

  

      

1 0 7917

0 9167 0 4167

0 6250 0

L U

h hMFI V rep MFI V


 

  
    

   
  

           

.

. .

.

 , and 

      

0 0 6250

0 4167 0 9167

0 7917 0

L U

hMFI V


 

  
   

   
  

 
 
  

.

. .

.

.  

For step 6,  3FI 
 
   

 is taken as an example, then 

     73
3 1

2 2 5 4 2 4

2 4 0 4 6 2 7 9 3 7

2 6 6 8 0 3 0 0 0 0

j

h

i hi

h

MFI V

FI MFI FI MFI V

MFI V







 



                 
                       

  
   

       

 
 
  

                

 
 
  

,

.

. .

. .

 3 0000 3 0000

3 0000 3 332

3 2063 3 5954

3 4576 4 0000

 
 
 
 
 
 
 
  
  
  
    

. .

. .

. .

. .

.  

Finally, 


    3

3 3 2 27 2 60 2 84 3 00 3 16 3 40 3 73
T

X
X f mean FI


   
      

  

 
   

. . . . . . . . 

The similar calculations for  1FI 
 
   

,…,  5FI 
 
   

 are performed. Table 4.1 

shows the final results in crisp number for  X
f  . If the representation values are in 

fuzzy number, then table 4.2 is applied. Some may regard , jj hd av v
  , 

 1, ,j n    should not be singleton, thus '
j

X


,  1, ,j n    can be [(1,1,1.17) , 

(1.83,2,2.17), (2.83,3,3.17), (3.8,4,4.17) ,(4.83,5,5)] using Eq. 4.39. 
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Table 4.1:   from   , ,
X

X f   if X  is a matrix of crisp numbers  

   Bad Weak Fair Good Excellent 

Much Below null  1.2712  2.2712  3.2712  4.2712  

Quite Below null  1.5991  2.5991  3.5991  4.5991  

Little Below null 1.8340  2.8340  3.8340  4.8340  

Absolutely 1  2  3  4  5  

Little Above 1.1660  2.1660  3.1660  4.1660  null  

Quite Above 1.4009  2.4009  3.4009  4.4009  null  

Much Above 1.7288  2.7288  3.7288  4.7288  null 

 

Table 4.2:   from   , ',
X

X f   if 'X  is a matrix of fuzzy numbers  

   Bad Weak Fair Good Excellent 

Much Below null  (1.00,1.27,1.54)  (2.00,2.27,2.54)  (3.00,3.27,3.54)  (4.00,4.27,4.54)  

Quite Below null  (1.40, 1.60, 1.79)  (2.40,2.60,2.79)  (3.40,3.60,3.79)  (4.40, 4.60,4.79)  

Little Below null (1.67,1.83,2.00)  (2.67,2.83,3.00)  (3.67,3.83,4.00)  (4.67,4.83,5.00)  

Absolutely (1,1,1)  (2,2,2)  (3,3,3)  (4,4,4)  (5,5,5)  

Little Above (1.00, 1.17, 1.33)  (2.00,2.17,2.33)  (3.00,3.17,3.33) (4.00,4.17,4.33)  null 

Quite Above (1.20, 1.40, 1,59)  (2.20,2.40,2.59)  (3.20,3.40,3.59) (4.20,4.40,4.59) null 

Much Above (1.46,1.73,2.00)  (2.46,2.73,3.00) (3.45,3.73,4.00) (4.45,4.73,5.00) null 

 

In this example,  1,2,3,4,5 


 is assumed on the basis of rank order which is 

widely used by the quantitative researchers. It is possible to use Fuzzy Normal 

Distribution to produce the vector representation numbers for 


 and then make further 

calculation by FND. This case is beyond the scope of this paper. The next section 

discusses the patterns of using different values of other parameters. 
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4.5. Numerical analyses and discussion 

In algorithm 4.2, it can be observed that ( 0 ,  hV


, j
 , 1

j
  , j

 , jd


, X) are 

the parameters to develop the representation values. In examples 4.1 and 4.2, ( j
 , jd


, 

X) can be directly defined for the case scenario. Other parameters may need a scaling 

procedure to find the most suitable values. In order to support the scaling procedure, 

cases 4.1 to 4.4 examine the influences of the four parameters ( 0 ,  hV


, j
 , 1

j
  ) 

for X  respectively. In addition, case 4.5 investigates how this CLOS model is superior 

to the classical rating scales, e.g. the Likert Scale. In these cases, the default parameters 

apply to those specified in examples 4.1 and 4.2, except 1, ,5 1

  . The data for plotting 

the figures are generated by a Mathematica Program on the basis of Algorithm 4.2. 

Figures are plotted from the data in Appendix I. 

 

Case 4.1: Relationship of 0  and ijX  

0  is defined in definition 4.12. Its availability range is tested in this case. From 

fig. 4.5, if 0 1   (or 0.5
l ui i

    ), the relationship of 0  and ijX  can be 

described by the linear regression function 0ij ij ij
X a b    . If 

li
  or 

ui
 is 

excessively large, the overlap of the fuzzy interval is excessively large and “Error” is 

given according to lemma 4.1 , i.e. the upper boundary is not more than 1, and the lower 

boundary is not less than 0. The appropriate 0  depends on various situations. From the 
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above analysis,  0 0,1   is recommended. By Default, 0 0.5   is chosen.  

 

 

Figure 4.5: The relationship of , 3i jX   and 0   

 

Case 4.2: Comparison of kX  on the basis of  3
1 ii hv ,  3

1 ii hv , and  3
1 ii hv  

 hV


 is defined in definition 4.11. Some of its properties are tested in this case. 

Assume the set         1,2,3 , 1,1,1 , 3,2,1hV 


. For this comparison, consider a plot of an 

ordinal number of , 3i j  , 1, ,7i   , versus the representation real number X  for each 

measure function    h h
k

V V 
 

, i.e. kX  in fig. 4.6. To conclude, 

if    1 1:  
i ih hiv v

  
  
 

,    2 1:  
i ih hiv v

  
  
 

, and    3 1:  
i ih hiv v

  
  
 

, 

then 3 1 2X X X     in 
j



, and conversely, 3 1 2X X X     in 
j



. This 

implies that a horizontal tendency of the slope means the representation numbers of 
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7

, 3 1i j i
  
 
   are closer while a vertical one means the representation numbers are more 

dispersed.  

 

 

Figure 4.6: The relationship of kX  and i  

 

Case 4.3: Comparison of different j
  

 hV


 is defined in Eqs. (4.13)-(4.16). Its numerical sensitivities are tested in this 

case. Assume the two sets:  3 0.1,0.2, ,1j    , which is used to smooth the shape, and 

 3' 1,2, ,10   , which is used to sharpen the shape , and 3
3 3,
k


 
   , and 

3
3 3' , '
k


 

   . Fig. 4.7 shows the relationship between 3 and , 3i jX  , which can be 

presented by the regression lines 3, 3 , 3 , 3ji j i j i j
k

X a b  

   

  , and i=1,…,7 . Fig. 4.7 

shows that the larger j
k

  leads to the larger convergence of ijX . This is due to the 
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fact that the smaller j
k

  ,i.e. 
1

0.1j
k



 , which leads to the shape of the membership 

approximating to a rounded rectangular shape, and the larger j
k

 ,i.e. 
10

1j
  , results 

in less smoothing in the parabola shape.  

 

Figure 4.7: The relationship of ,3iX  and 3
k

 , where 1 1
j PbMF

   , 0.1 1j
    

 

Figure 4.8: The relationship of ,3iX  and 3
k

 , where 1 1
j PbMF

   , 1 10j
    
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The result of comparison of 3'  and X  is presented in fig. 4.8. The larger 

' j
k

  leads to convergence to a constant but abnormal value. This abnormal situation is 

due to the fact that the larger ' j
k

  produces greater sharpness of the shape which is 

finally approximated to a singleton line and never contains fuzzy overlap with adjacent 

fuzzy sets. In other words, the meaning of fuzziness loss if ' j
k

  is excessively large. 

The convergent abnormal values are concluded as: 

for j
  , , 1,

0.5     , 1             
1              , 1, ,

   , 2, , 1 , 2, , -1  , 1, ,

               , , ,0.5     ,               

j j

ji j j

j j

d i
i

X X i m j n i m

n i md i m



 

 


 










  
 

  
       

      



  



,    

In this scenario, 1,3X =2.5, 2,3X = 3,3X = 4,3X = 5,3X = 6,3X =3.0, = 7,3X =3.5. 

These abnormal results are explained by each representation value not being the 

same. If some of them are the same, this means that some linguistic terms are redundant. 

Thus, each linguistic term should contain a suitable distance between two adjacent 

linguistic terms. In the above two analyses, 0.5 4j
   may meet the requirement of 

the suitable distance by observation. By default, 1j
  . 

 

Case 4.4: Comparison with Triangular-based MF with different j
   

1
j

   is defined in Eqs (4.13)-(4.16). Its numerical sensitivities by using 

different j
  and the shapes of the membership are tested in this case. If the triangular 

membership function is applied, the result is different from case 3. As shown in fig. 4.9 
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and fig. 4.10, the lines of ,3

7

1i i
X


 
 

 also converge when 3  increases. The group of 

the lines converges more rapidly than the lines of PbMF. This can be explained by the 

sharpness of TbMF, which is larger than the one of PbMF giving the same value of 

j
 .It can be concluded that the different membership functions applied contribute to 

the different speeds of convergent patterns of the group of lines. The speeds of 

convergence of the group of lines can be affected by the shape whether is concave or 

convex with different levels from the basic curves (e.g. triangular or parabola) after the 

different power indices  ’s are applied. 

 

 

Figure 4.9: The relationship of ,3iX  and 3
k

 , where 1 1
j TbMF

   , 0.1 1j
    
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Figure 4.10: The relationship of ,3iX  and 3
k

 , where 1 1
j TbMF

   , 1 10j
    

 

Case 4.5: Comparison with Likert-like Scales 

This case is to compare CLOS and Likert-like Scales. Assumption 1 is that two 

raters face a rating dilemma to choose one between “fair” ,i.e. 3 , and “good” ,i.e. 4, in 

the Likert-like rating scales. Assumption 2 is that two raters have similar views. Due to 

this rating dilemma, one chooses “fair” and another one chooses “good”. Bias of this 

scale is induced and is measured by the standard deviation 

    2 21
3 3.5 4 3.5 0.5

2
      . If both rate “fair”, the result is underestimated while 

it is overestimated if they both choose “good”. The reason for these cases is that the true 

value should be located between 3 and 4 on the basis of the first assumption. As there is 

no extra option in the middle, neither a linguistic term nor a numerical value for the 
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raters, CLOS can help to solve this problem of the extra option. 

To discuss this problem, the linguistic inputs and their represented value matrix of 

CLOS is applied in table 4.1 in example 4.2. The rater has a rating dilemma in choosing 

either j  and 1j  , j=3,4 , initially. If j  is chosen firstly, then  
ihdv , i=1,…,7 , is 

chosen from  j
hd j

V Rs 


. If 1j   is chosen first, then  
'ihdv  is chosen from 

1hd j
V




. If one rater does this in the first case, and the other does it in the second cases, 

the combination of ,i j  and ', 1i j   is   1
49

j j
 


  , j=3. The bias of ,i j  and 

', 1i j   is measured by the standard deviation  , ', '

1

2
i j i jabs X X     ( abs(.) returns 

the absolute value). Fig. 4.11 exhibits the distribution of   of all possible combinations 

of ,i jX  and ', 1i jX  .  

If 0.5  , it means that the raters have similar views. If the raters have similar 

views, there will be a rating tendency. For example, if one rater starts from 3j  , it is 

reasonable that 5, ,7 , 3i j    is a possible option whilst 1, ,3 , 4i j    is a possible 

options if the other rater starts from 4j  . Thus, by observing the lines 5,3X , 6,3X  

7,3X  in the region of X-axis from 1,4X  to 3,4X  , there is 0.42 0.5    (Region 

A in fig. 4.11). It can be concluded that CLOS helps to reduce the bias from the raters, 

and is superior to the classical Likert-like scales as the new rating interface provides 

extra options for giving a value to a rating tendency. 

If the raters choose 4 , 3i j    and 4 , 4i j    respectively, it means that their 
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opinions are different since the probability of this combination is quite small i.e. 

1
0.0204

49
 . Although the bias is the same as those from Likert-like Scales with 3j   

and 4j  , Likert-like Scales cannot reflect that raters’ opinions are different while the 

probability of this combination is high, i.e. 3 4 1j j    . In other words, Likert-like 

Scales force raters to have bias opinions where there is the value in the middle due to no 

extra suitable choices for raters. Similarly, if the choices are 1, ,3 , 3i j    and 

5, ,7 , 4i j    respectively, this certainly means that the raters have an obvious bias as the 

tendency is opposite. This violates the assumption 1- the rating dilemma. Thus, the 

CLOS Model can reflect and assert the bias from raters due to this tendency measure. 

 

 

Figure 4.11: The bias of ,i j  and ', 1i j    
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Example 4.3 

This example is the continuation of example 4.2. This example shows the 

improvement of a simple statistical application using CLOS. The early research by 

Stevens (1946) appeared in Science has indicated that means and standard deviations 

computed on an (classical) ordinal scale are in error to the extent that the successive 

intervals on the scale are unequal in size. This example attempts to interpret his idea 

using classical ordinal scales and improve his idea using CLOS. In this example, five 

raters, raters 1,2,…,5, evaluate scores for an object individually. Let the real scores of 

their perception be (3.3, 2.7, 2.8, 1.7, 3.8). Assume that the most appropriate scales are 

assigned to the object. Thus, the linguistic terms of Likert-like Scales are approximated 

to (F, F, F, W, G) whilst Compound Linguistic Ordinal Scale is approximated to (QA-F, 

MA-W, LB-F, MA-B, LB-G). The representation values, the notations, the conventional 

statistical results and the improvement are shown in table 4.3. “Improvement” means the 

level of improvements in the approximated values to the “real values” by using CLOS 

instead of using Likert scales. 

This example shows how CLOS model improves the weakness of classical ordinal 

model. For individual rating improvement, the average improvement is 83.3% (Average 

(0.667, 0.9,0.85,0.9,0.85)) as an individual improvement is calculated by 

 ' ' ' , 1, ,8k k k k k k kP s s s s s s k       . For statistical measurement improvements, 
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values of the operators, sum, mean and standard deviation, improve 68.6%, 68.6%, and 

86.3% respectively by , 1, ,8kP k   . For the error reduction, the difference of SD, 

average of obsolete errors, and root mean square errors reduce more than 80% by 

  , 9,10,11k k k kP s s s k   . 

 

Table 4.3: Improvements of using Compound Linguistic Ordinal Scale  

Performance 

Index k 

Raters  

(i) 

Real values 

 ( 'ks ) 

Likert Scales  

( ks ) 

CLOS  

( ks ) 

Improvement  

( kP ) 

1 1 3.3 3 3.40 0.667 

2 2 2.7 3 2.73 0.900 

3 3 2.8 3 2.83 0.850 

4 4 1.7 2 1.73 0.900 

5 5 3.8 4 3.83 0.850 

6 Sum 14.3 15 14.52 0.686 

7 Mean 2.86 3 2.904 0.686 

8 Standard Deviation 0.783 0.707 0.793 0.863 

9 Difference of SD 0.076 0.010 0.863 

10 Average of Obsolete Errors 0.260 0.044 0.831 

11 Root Mean Square Errors 0.118 0.023 0.803 

 

This simulated analysis provides a better understanding of the causality 

improvement of using CLOS with comparison of classical Likert-Like scales. In real 

world applications, some applications may be related to thousands of raters for 

measuring several objects with a collection of criteria for each object. This is usually 

conducted in the research of business management and social sciences. Some may be 
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related to many criteria with a single rater, e.g. psychological tests. Using classical 

ordinal scales possibly increases the measurement errors and statistical errors due to its 

limited approximation capability of the sufficiency of the representation values. This 

example shows how the measurement values and statistical values can be improved by 

CLOS. For more application of CLOS, (Yuen 2009e, 2009f; Yuen and Lau, 2009) have 

applied the concept in the development of the decision making systems.  

 

4.6. Summary and remarks 

CLOS is a Deductive Rating Strategy  , ,hd aj
V V Rs
 

 of the 

Hedge-Direction-Atom Linguistic Representation Model   , ,
X

X f   with a cross 

reference relationship  . In the HDA-LRM, Compound Linguistic Variable   is 

produced by syntactic rule, i.e.  , ,mn h d aG V V V 
  

, which produces a large number of 

linguistic descriptors. The semantic rule of “Computing with CLV”  M   maps CLV 

into representation numbers in matrix X  by Fuzzy Normal Distribution  X
f  , and 

produces the numerical results meeting the different requirements of different scenario 

using few scalable descriptable user-defined parameters:     0 j j jhV X d



 
  


, , , , , . 

The Deductive Rating Strategy is the ideal rating interface for HDA-LRM as the cardinal 

number of   is large. Three algorithms are developed for CLOS model. Three 

examples are exhibited for this usability. 
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The Compound Linguistic Ordinal Scale Model, which is an ordinal in ordinal 

Scale Model, is a promising alternative for the classic rating scale models such as Likert 

scale and those minor variations of Likert scales (named Likert-Like Scales). Miller 

(1956) has indicated that an expert could manage a set with  7 2  terms. And many 

rating scales including Likert-like scales and the choice of the fuzzy linguistic terms use 

this principle. By breakthrough of this principle, HDA-LRM can provide 

      7 2 7 2 1 1 21,73      options which seem incredible for an expert being able to 

handle. Unlike the classical rating model which is the single step rating process, CLOS 

uses a DRS in which a rater chooses a 2-tuple option  ,hd av v  in two steps with a 

rethink process. The advantage of CLOS is that CLOS is an ideal rating interface for 

addressing the problem of the rating dilemma. 

The numerical analyses include comparisons of various scenarios with different 

parameters, and the comparison with classical models. One of the simulation results 

shows that the proposed model helps to reduce the bias of rating dilemma for a single 

rater, and rater bias among experts who hold similar opinions; The proposed model also 

accurately reflects raters’ consistency and inconsistency, thus to improve the quality of 

the assessment due to high validity and reliability of the subjective measurement results. 

The significance of the model is that it can be used as the measurement instrument 

applied to large scale systems, surveys and questionnaire designs, psychometrics, rater 
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statistics and multicriteria multiexpert decision problems in various fields using the 

deductive rating strategy of the breakthrough number of linguistic choices. 
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Chapter 5  Cognitive Pairwise Comparison 

5.1 Introduction 

This research investigates the appropriateness of the fundamental assumption 

ij i ja w w  to represent the pairwise comparison, and proposed the better one with the 

axiom ij i jb v v  . To do this, the structure of this chapter is as follows. Chapter 5.2 states 

the cognitive representation problem of reciprocal comparison. Chapter 5.3 proposes the 

interval rating scale schema for pairwise opposite comparison whilst Chapter 5.4 proposes 

the pairwise opposite matrix (or cognitive matrix) applied to the interval rating scale schema. 

Chapter 5.5 proposes the various cognitive prioritization operators (CPOs) to derive the in-

dividual utility vector from the cognitive matrix. Chapter 6.6 proposes six Cognitive Priori-

tization Operator Measurement (CPOM) models to measure the properties of the CPOs.  

Chapter 6.7 shows the graph theory interpretations in 2D and 3D views for the CPOs. Chap-

ter 6.8 performs and discusses the numerical analyses of CPOs on the basis of CPOM mod-

els, and finally chapter 6.9 concludes this chapter. 

 

5.2  Cognitive representation problem of Saaty’s reciprocal comparison  

Consider some simple comparison cases using Saaty’s ratio scale to represent the lin-

guistic scales. In this case, the height of two persons, e.g. Peter and Jason, are compared.  If 

Peter is 1.4 m, and Jason is 1.5 m, we may say that Jason is slightly taller than Peter by our 

observation.  However, if Saaty’s ratio scale is applied, this becomes another story. The fact 

that Jason is slightly taller than Peter will be interpreted as the statement that Jason is 2 

times taller than Peter. It is ridiculous to change the original meaning to the exaggerated ex-
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pression. If Peter is 1.4 m, and Jason is 1.7 m, by our perception, Jason is much taller than 

Peter. For numerical representation of Saaty’s theory, Jason is 5 times or 7 times taller than 

Peter.  

Another misleading case is to compare their weights. If Peter is 45 kg, Jason will be 

90 kg if Jason is slightly heavier than Peter (Jason is 48kg in fact). Similarly, to compare 

their ages, providing that Peter is 10 years old, Jason will be 20 years old if Jason is a little 

older than Peter (Jason is 13 in fact). To illustrate one more example, providing that Peter’s 

IQ is 120, Jason’s will be 240 if Jason is slightly more intelligent than Peter (Jason’s IQ is 

123 in fact). 

It can be concluded that Saaty’s ratio scales for pairwise comparison do not represent the 

reality of the cognition, and usually produce exaggerated results beyond our common sense, 

although mathematically the operation of the reciprocal matrix seems to be useful. 

Interval scales are more appropriate in above cases. For example, in the case of Peter and 

Jason who are 1.4 m and 1.5 m respectively, the statement “Jason is 0.1m taller than Peter” 

is matched with the statement “Jason slightly taller than Peter by our observation.” Similarly, 

“Jason is 3kg heavier than Peter” can be represented by “Jason is moderately heavier than 

Peter”. 

The perception of interval (or difference) of two objects is relatively much simpler than 

the perception of the ratio of both.  The reasons are that operations of addition and subtrac-

tion are easier than the operations of multiplication and division, which are based on addi-

tion and subtraction respectively. In primary school, we learn addition and subtraction prior 

to multiplication and division. If we do not know addition and subtraction, it is impossible 

to know multiplication and division. Also if we do not know the simple multiplication table, 
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we do not know how to perform multiplication and division quickly. Due to the invention of 

the calculator, many adults may forget the multiplication table. In fact, we do not call the 

multiplication table, linking with linguistic labels, for making comparison. Thus, addition 

and subtraction are straightforward for the comparison of two objects. 

The next section discusses the rating scale schema using interval scales. 

 

5.3 Rating scale schema for pairwise opposite comparison 

“How many times is the size of an adult to that of a baby?”  Regarding subjective 

measurement, it is difficult to guess the right answer, as multiplication is needed. However, 

it is easier to judge on addition concept, for example, “what is the difference between the 

size of an adult and a baby?” We may answer “the size of an adult is much larger than a ba-

by.” Regarding the numerical representation of the intuitive cognition, it is questionable to 

use division (or ratio) to represent “much larger”. In fact, in our perception, the most appro-

priate method is the straightforward method which uses the difference (or interval) between 

two objects. 

 

Table 5.1: Terminology of categories of pairwise comparisons   

  Analytic Network Process Cognitive Network Process 

Rating scales 
Date type ratio scales interval scales 

Model type analytic scales cognitive scales 

Pairwise matrix 

Scale type pairwise ratio matrix pairwise interval matrix 

Comparison 

type 
reciprocal comparison matrix opposite comparison matrix 

Structure type  pairwise reciprocal matrix pairwise opposite matrix 

Model type analytic pairwise matrix cognitive pairwise matrix 

Prioritization opera-

tor 

Scale type 
multiple prioritization opera-

tor 

differential prioritization opera-

tor 

Model type analytic prioritization operator cognitive prioritization operator 
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Table 5.1 clarifies different terminologies for the categories of the Analytic Network 

Process (Saaty, 1980) and the Cognitive Network Process. The Cognitive Hierarchy Process 

(CHP)  is the special case of CNP, whilst the Analytic Hierarchy Process is special to ANP. 

Rating scales are used for constructing a pairwise matrix, which is derived as a priori-

ty vector or utility vector by the prioritization operator, which is also referred to as the pri-

oritization method or prioritization model.  Since different scales are applied, ANP and CNP 

have different meanings, and thus the related terminologies are associated with their pair-

wise matrices and prioritization operators. In the rating scale of CNP, the interval scale or 

cognitive scale serves the same meanings, and do other categories.  

The rating scale can be a single rating process or a double rating process (Chapter 4). 

To compare interval and ratio scales, the double rating process is beyond the topic of this 

paper although CNP uses double rating process. The interval scales are defined as follows. 

 

Definition 5.1 (Interval Scale): Let   be the set of linguistic labels of the interval scales 

such as {equally, …, Extremely} and the opposite of the set. The numerical representation 

of the interval scales for differential comparison is in the form: 

   | , , 1,0,1, , , 0i
iX i   


         (5.1) 

, where   (read kappa) is the normal utility, which is the mean of the individual utility val-

ues of the comparison objects, and 0  ; 2 1   is the number of the intervals of the scale 

schema. 1   is usually 7 2  in a single rating process. 

 

An example of definition 5.1 is shown in table 5.2.  On the basis of the concept of inter-

val scales, the next section further develops the concept of the Pairwise Opposite Matrix. 
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Table 5.2: Scale schemas: pairwise reciprocal comparison and pairwise opposite compari-

son   

i 
Verbal scales 

  

Numerical representation of 

PRC 

(Ratio Scales) 

 ' 1, 0, ,X i i      

Numerical representation of 

POC 

(Interval Scales) 

 , 0, ,iX i 


    

0 Equally  1 0 

1 Weakly  2 
8

  

2 Moderately  3 
4

  

3 Moderately plus 4 3
8

  

4 Strongly  5 
2

  

5 Strong Plus 6 5
8

  

6 Very Strongly 7 3
4

  

7 Very, very strongly 8 7
8

  

8 Extremely 9   

{-i} 
Reciprocals / opposites 

of Above 

( from 1/2 to 1/9 ) 
( from    to 0) 

 

5.4 Pairwise opposite matrix (POM) 

A list of the comparisons using interval scales can form the Opposite Comparison Ma-

trix, which is defined as follows. 

 

Definition 5.2 (POM): The Pairwise Opposite Matrix (or Opposite Comparison Matrix) is 

used to interpret the individual utilities of the candidates. Let an ideal utility set be 

 1, , nV v v  , and the comparison score is ij i jb v v  . The ideal pairwise opposite matrix 

is i jB v v   
 . A subjective judgmental pairwise opposite matrix using interval scales is 

ijB b    .  B  is determined by B   as follows: 
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1 1 1 2 1 11 12 1

2 1 2 2 2 21 22 2

1 2 1 2

n n

n n

ij ij

n n n n n n nn

v v v v v v b b b

v v v v v v b b b
B b b B

v v v v v v b b b

     
   

  
                
   

     

 

 
       

 

 (5.2) 

If i j , then 0ij i jb v v   . Thus the above matrix is in the form: 

1 2 1 12 1

2 1 2 21 2

1 2 1 2

0 0

0 0

0 0

n n

n n

ij ij

n n n n

v v v v b b

v v v v b b
B b b B

v v v v b b

    
   

 
                
   

    

 

 
       

 

 (5.3) 

 

Usually, 
ijb    is given through the rating process of an assessment expert, using a rat-

ing category from   which is numerically represented by X . The decision maker only fills 

an upper triangular matrix of the form: 

         

0    otherwise

ijb i j
B


 


  , written explicitly, 

12 1

2

0

0 0

0 0 0

n

n

b b

b
B

 
 
 
 
 
 





   



 (5.4) 

The lower triangular matrix is given by the opposite of an upper triangular matrix of 

the form: 

           

0    Otherwise

ijb i j
B


 


  , written explicitly, 
21

1 2

0 0 0

0 0

0n n

b
B

b b



 
 
 
 
 
 





   



 (5.5) 
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ijb    is achieved by B B B   .  For a complete comparison of a set of candidates, 

POM needs  
 1

2
n n

 ratings.  Some properties of B are shown in the following proposi-

tions. 

 

Proposition 5.1 (summation to zero property): 

The summation of the elements in B is equal to 0. That is 

0ij

i j

b  , ijb B  (5.6) 

Proof: 

  0 0ij ij ji

i j i j i

b b b I


      , where I is the identity matrix and 0ij jib b  . 

 □ 

The next issue is to discuss the Accordant Index of B. There are three propositions are 

developed as follows. 

 

Proposition 5.2 (perfect accordant by transitivity): 

An pairwise opposite matrix   : , 1, ,ijB b i j n    is perfect accordant if  

ik kj ijb b b  ,   1, ,k n   or (5.7) 

ik jk ijb b b  ,   1, ,k n  . (5.8) 

Proof: 

The proof is trivial. Let ij i jb v v  , ik i kb v v  , jk j kb v v  , then 

   ik jk i k j k i j ijb b v v v v v v b        ,  1, ,k n   . □ 
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On the basis of proposition 5.2, the Accordant Index is formed in the proposition 5.3. 

 

Proposition 5.3: (Accordant Index):   

Let   : , 1, ,ijB b i j n   be the pairwise opposite matrix and   : , 1, ,ijD d i j n    be 

the contradiction matrix.  The Accordant Index is in the form: 

1 1

2

n n

ij

i j

d

AI
n

 



,  

 
2

1 T

ij i j ijd Mean B B b


  
       

,  , 1, ,i j n  . (5.9) 

where 0AI  ,  is the normal utility, and then n  is the population utility. If 0AI  , then 

B is perfectly accordant;  If 0 0.1AI  , then B is satisfactory, then. If 0.1AI  , then B is 

unsatisfactory .  

Proof: 

For  1 , ,
T

j j njB b b  , then  1 , ,T

j j njB b b  . 

Since  1, ,i i inB b b   and  1 , ,T

j j njB b b  ,  then  1 1 , ,T

i j i j in njB B b b b b    . 

Case 1: B is perfectly accordant: 

As ik kj ijb b b  ,   1, ,k n  , then  1 1 , ,ij i j in njb b b b b   . 

Thus 0T n

i j ijB B b e    , where n-identity row ne  is the row of n identity elements, e.g, 

 1, ,1

n
 . Thus    0ijd  . AI=0. 

Case 2: B is not accordant: 
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Let    1 1 1, , ' , , 'T

i j i j in nj nB B b b b b b b      , and then 

 1' , , 'T

i j ij n ijB B b b b b    .   

To normalize the above form, then      1

1 1
' , , 'T

i j ij n ijB B b b b b
 

    . 

Next, 

  
2

1

1
' , , 'ij ij n ijd Mean b b b b



  
       

 , 

 
 

2

2
1

1
' 0

n

ij k ij

k

d b b
n  

   .  

Thus, 
2

1 1

1
0

n n

ij

i j

AI d
n  

  .  

Under this condition, if 0.1AI  , B is defined to be unsatisfactory . If 0.1AI  , B is de-

fined to be unsatisfactory . □ 

 

AI is directly derived from the POM. Thus the advantages of AI include avoiding the 

use of the random index and in calculating the utility weights in advance. 

 

For a 3x3 pairwise opposite matrix, if 12 0.6b   and 23 0.5b  , then   13 12 23b b b  =1.1, 

which is larger than   1Max    . In this situation, discordance is induced due to the 

limited boundary of the rating scale. This issue is called an out-boundary problem which is 

illustrated as follows: 
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Proposition 5.4 (Out-boundary property): 

A pairwise opposite matrix   : , 1, ,ijB b i j n    is associated with an out-boundary error 

if  

 ik kjb b Max X     or  ik kjb b Min X     ,   1, ,k n   . (5.10) 

Otherwise, the pairwise opposite matrix is within-boundary. If this happens, then  

   ,ik kjb b X      . (5.11) 

Proof: 

Let a scale item of the rating scale be the form 'i X  , and 

'
'

i
i 


 , ' , , 1,0,1, ,i      . If  ik sb   and jk tb  , then  

 
s t

s t 
 




  . 

Since  , , , 1,0,1, ,s t       and s t ,  then 
 

s t

s t 
 




  . 

This follows     2Min s t     and     2Max s t   . 

In other words,     2 , 2 1, , 0, , , ,2 1,2s t                . 

If  s t    or  s t   , then    ik jk s tb b        or    ik jk s tb b       . 

As  Max X 
 


    and  Min X 
 


    , i.e.  , ,X      and 

   ik jk s tb b        or    ik jk s tb b        , then an outbound error exists.  

Otherwise, i.e.  s t     , the pairwise opposite matrix is within boundary. 

If this happens, then 

 
 

   
1

: , , 1,0,1, , , , ,ik kj s t

s t
b b s t X

 
     

 

    
             

  
   . □ 
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The next section discusses how to derive the individual utility vector of the Opposite 

Comparison Matrix. 

 

5.5 Cognitive prioritization operators 

To interpret the utility weights of the pairwise opposite matrix, this research proposes 

five cognitive prioritization operators as follows. 

 

5.5.1 Row Average plus normal Utility (RAU)  

The Row Average plus the normal Utility (RAU) is the simplest method to derive the 

individual utility, which is derived in theorem 5.1. 

 

Theorem 5.1 (RAU):  

The vector of individual utilities can be derived by 

 V Avg B    (5.12) 

,where  Avg B  returns the average of each row of B, i.e.  

   
1

1
: 1, ,  

n

ij

j

Avg B b i n
n 

 
   
 
  . 

For the entry of V,  the individual utility is of the form: 

1

1 n

i ij

j

v b
n




 
  
 
 ,  1, ,  i n    (5.13) 

Proof: 

            B B   

B V B V n V     , which is written explicitly, 
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 

11 12 1

21 22 2

1

1 2

  , ,

n

n

n

n n nn

b b b

b b b
v v

b b b

 
 
  
 
 
 






   



 

 

1 1 1 2 1

2 1 2 2 2

1

1 2

, ,

n

n

n

n n n n

v v v v v v

v v v v v v
v v

v v v v v v

   
 

  
  
 
 

   






   



 

 1, , nn v v   . Thus,  

1 1

n n

i ij j

j j

nv b v
 

    

1

n

i ij

j

nv b n


   

1

n

ij

j

i

b n

v
n









,  1, ,  i n   . Thus the solution is found. □ 

 

5.5.2 Aggregation of Solutions of Linear Systems 

For each ij i jb v v   in  row  i of B, the linear systems of B  are of the form: 

 

1

: 1, , ,   

  ,           

i j ij

i n

kk

v v b j n i j
L

v n i j


    
 

  


,  1, ,  i n    (5.14) 

, which is written explicitly by 

1

1 2 12

1 1 3 13

1 1

n

kk

n n

v n

v v b

L v v b

v v b




 
 
   
 

   
 
 
   





, 

2 1 21

1

2 2 3 23

2 2

,

n

kk

n n

v v b

v n

L v v b

v v b




  
 

 
 

   
 
 
   






, 

1 1

2 2

1 , 1

1

n n

n n

n

n n n n

n

kk

v v b

v v b

L

v v b

v n

 



  
 

 
 
 

  
  
 
  

  
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If 
1

n

kk
v n


  is removed, 

iL  has at least one solution. Thus  
1

n

kk
v n


  has to be 

added to have a unique solution set. To solve the above equation systems, they are formed 

as augmented matrices  i iE b , i ,  written explicitly,  

 

12

13

1 1

1, 1

1

1 1 1 1

1 1 0 0

1 0 1 0
, ,

1 0 1 0

1 0 1

n

n

n

b

b
E b

b

b





 
 


 
 

  
 
 
 

  








     

 

 

  

1

2

3

, 1

1 0 0 0 1

0 1 0 0 1

0 0 1 0 0 1

0 0 1 1

1 1 1 1

n

n

n

n n

n n

b

b

b
E b

b

n



 
 


 
 

  
 
 
 
 







     

 

 

 

 

The above matrix can be solved by Gaussian elimination. Then the individual utility 

vector for each row of B is found by using the reduced row echelon form of i iE b , i.e. 

 iI  , which is written explicitly by 

 

1

2

1 0 0

0 1

0 1

i

i

i

in

I








 
 
 
 
 
 



 

    

 

 , 1, ,i n   (5.15) 

 

 1, ,i i in     is the set of constants which is the individual utility vector on  the 

vector of ith row of B.  (Another method to solve iL  is the Inverse Matrix method: 

i i iE b  , 1

i i ib E   , which is not discussed in this study.) 

 

The following theorem shows the solution of  1, ,i i in     by the Gaussian elimi-

nation method. 
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Theorem 5.2 ( ij ): 

 

 
 

1, ,

 & 1, ,

1
                              

1
1    

ik

k n

ij

ij ik

k i k n

b j i
n

n b b j i
n









 


 


 

       
 









,   1, ,  i n   . (5.16) 

Proof: 

This theorem can be proved by the Gaussian elimination method in which the augmented 

matrix  i iE b  is transformed to the reduced row echelon form  iI  . Explicitly,  

 
 

 

11 1

12 12 1

21

1 1 1

1
1 0 0

1
0 1 1

1
0 1 1

k

k

k

k

n n k

k n

b
n

n b b
nI

n b b
n

 

 


 





 
  

 
  

     
   
 
 

  
       









 

    

 

,   

 

 

 

21 21 2

1

22 2

2

2 2 2

1
1 0 0 1

1
0 1

1
0 1 1

k

k

k

k

n n k

k n

n b b
n

b
I n

n b b
n

 

 


 





  
     

  
 

  
  
 
 

  
       









 

    

 

, ,  

 

 

 

1 1

1

2 2

2

1
1 0 0 1

1
0 1 1

1
0 1

n n nk

k

n nn k
n k

nn nk

k

n b b
n

n b b
I n

b
n

 

 


 





  
     

  
  

        
 
 
 

  
 









 

    

 

 

Thus, the general form is as shown in eq.5.16. □ 
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The  i  is represented by following matrix: 

 

11 12 1

21 22 2

1 2

n

n

i

n n nn

  

  
 

  

 
 
  
 
 
 





   



 (5.17) 

, where the row weight ij  is the weight of criteria j in row i of B. Row i of B  means that 

criterion i is compared with other criteria in B. 

 

From theorem 5.2,   is the form: 

   

   

   

1 12 1 1 1

2

21 2 2 2 2

1

1 2

1 2

1 1 1
1 1

1 1 1
1 1

1 1 1
1 1

k k n k

k k k n

k k n k

k k k n

n nk n nk nk

k k k

b n b b n b b
n n n

n b b b n b b
n n n

n b b n b b b
n n n

  

  


  

 

 

 

    
          

    
    

               
 
 
    

          
    

  

  

  





   





 (5.18) 

 

The accordant matrix is determined by following proposition. 

Proposition 5.5:  Let  1, ,i i in    , 1, ,i n  . For each row vector in B , if 

1 2 n     , B is accordant. If i j  , for any , 1, ,i j n  , then B is discordant. 

Proof: 

For an accordant matrix, there should be a solution set in the linear systems set 

 1, , nL L L  , which can be represented by the augmented matrices. The row reduction of 

L returns a row echelon form. If the row echelon form contains a vector  0 0 c  
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where c is a constant, this means the matrix has no solution. Otherwise, L has a unique solu-

tion. 

It can be proved that when i j  , , 1, ,i j n   , the row echelon form must contain a 

vector  0 0 c . This means that L has no unique solution and the matrix is discor-

dant.  Otherwise, L has unique solution set and A is the accordant matrix. 

 □ 

 

If B is accordant, then 1 2i i in     , for any 1, ,i n  . If B is accordant, any 

row in B can be computed as the individual utility vector. This means 

1 2i i i inv       , 1, ,i n   , which is  represented in the form: 

11 12 1 1 2

21 22 2 1 2

1 2 1 2

n n

n n

n n nn n

v v v

v v v
n

v v v

  

  

  

   
   
    

   
      

 

 

       

 

 (5.19) 

 

Table 5.3: Examples of non-weighted mean  

1. generalized mean 

 

1

1

1
p

n
p

i ij
i

gm
n



 
   
 
 


/

, 1, ,j n   

2. Harmonic mean 

 

1

i n
iji

n
hm



 


, 1, ,j n   

3. Geometric mean 

 
1

n

ni ij

i

geo



   , 1, ,j n   

4. Arithmetic mean  

 
1

1 n

i ij

i

am
n

 


  , 1, ,j n   

 

If A is discordant,  then ,ij i k j   ,  for any , 1, ,i j n  . Then in this new model, iv  

can be computed by the aggregation operator :AO V . Some AO alternatives are 
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shown in table 5.3. More options are suggested in chapter 2.3.5. The scope of the aggrega-

tion operators is beyond the topic in this paper. By default setting, the arithmetic mean is 

taken as it produces the same result as RAU, which is shown in theorem 5.3. 

 

Theorem 5.3: 

The closed form solution of  the Arithmetic Mean of Solutions of Linear Systems (AMSLS) 

(or Arithmetic Mean in short) is in the form of the row average plus the normal utility 

(RAU). 

Proof: 

Let  1, ,i i in    , 1, ,i n  . Then 

 
1

1 n

j ij

i

v am V
n




   , 1, ,j n   

   1 2 2

1 1

1 1 1 1
1 1j k j k nj nk

k k k

v b n b b n b b
n n n n

  
 

         
                    

         
    

 

 
 1, ,  & 1, ,

1 1 1
1  j jk ij ik

k n i j k j k n

v b n b b
n n n

 
   

   
           

   
  
 

 

 

 
 1, ,  & 1, ,

1 1 1
1  jk ij ik

k n i j k j k n

b n b b
n n n

 
   

   
           

   
  
 

 

 

  
 1, ,  & 1, ,

1 1 1 1
1  jk ij ik

k n i j i j k j k n

n b n b b
n n n n


    

    
                  

   
 

 

 

  
 

2
1, ,  & 1, ,

1
1  jk ij ik

k n i j i j k j k n

b n b b
n


    

  
        

  
   
 

 

, which is divided into two cases: 
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Case 1: 

As 
ik kib b  , then  

 

 
 & 1, ,  & 

0ik ik ki

i j k j k n i j k j k i

b b b
     

   
      

  
   



. 

Case 2: 

 

   

 

   

 
 

 

1, ,

1, ,

1, ,

1, ,

    1

1

1 1

jk ij

k n i j

jk ji

k n i j

jk

k n

jk

k n

b n b

b n b

n b

n b

 

 





 

  

  



 

 













 

To combine both cases,  

   
2

1, , 1, ,

1 1
 +0  i ik ik

k n k n

v n b b
n n

 
 

   
         

   
 
 

. 

 □ 

The Aggregation of the Solutions of Linear Systems is summarized in algorithm 5.1. 

 

Algorithm 5.1 (Aggregation of Solutions of Linear Systems): 

Input: AO, B,   

Step 1:  Form the augmented  Matrix  i iE b ,  1, ,  i n    

Step 2: Find the reduced row echelon form  iI  ,  1, ,  i n    

Step 3:  Form   

Step 4:   i iv AO  ,  1, ,i i in     , 1, ,i n  . 

Output:  iV v                //END 
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5.5.3 Primitive least squares (PLS) optimization 

The utility linear system (or the system of utility equations) of the upper triangular 

matrix B  has a matrix of equations, i.e. TE V b   where E is an l by n coefficient matrix, 

TV  is the column vector with n entries, and b is a column vector with l entries. A system of 

equations is formed as  : 1, ,  &  1, ,i j ijL v v b i n i j n       , which is written expli-

citly by 

1 2 12

1 1

2 3 23

2 2

1 1,

n n

n n

n n n n

v v b

v v b

v v b
L

v v b

v v b 

  
 
 
  
 

  
  
 
  
 
 
   







 (5.20) 

The above form has at least one solution. To have a unique solution set, the function 

of the summation of the individual utilities 
1

n

kk
v n


  is added to L. Finally, the system 

of matrix equations, TE W b  , is of the form: 

12

1

13

2

,

1 1 0 0

1 0 1 0

1 0 1

0 1 1 0
1

0 1 0 1

0 0 0 1 1

1 1 1 1

n

n n

n

b
v

b
v

l

b
v

n

 
 


 
 

  
     

            
     
            

 
 
 
  






   






   



    





 (5.21) 
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, where n is the number of the criteria to be measured,  l is the number of the equations, i.e., 

 1
1

2

n n
l


  . 

There are several methods to solve such systems of linear equations. Gaussian elimi-

nation is a typical method using an augmented matrix  E b , which is written explicitly by  

1

12

13

1

23

2

1,

1 1 0 0

1 0 1 0

1 0 1

0 1 1 0

0 1 0 1

0

0 0 0 1 1

1 1 1 1

n

n

n

n n

b

b

b

b
l

b

b

n





  
 

  
 
 

  
  

 
 
 
 
 
 
 
  






    





     



    





 (5.22) 

If the pairwise opposite matrix is accordant, the system of linear equations has a solu-

tion which can be represented by a row echelon form of the augmented matrices. Otherwise, 

if the opposite matrix is discordant, the row echelon form contains a vector  0 0 c  

where c is a constant, and means the matrix has no solution.  

To handle the case of the discordant matrix, the system of equations L can be changed 

to the form: 

 : 1, ,  &  1, ,ij ij i jb v v i n i j n           (5.23) 

ij  is the difference (or error) between the reality ijb  and the ideality  i jv v .     is writ-

ten explicitly by 
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12 1 2 12

1 1 1

23 2 3 23

2 2 2

1, 1 1,

n n n

n n n

n n n n n n

b v v

b v v

b v v

b v v

b v v  

    
 
 
    
 

    
   

 
    
 
 
     







 (5.24) 

To obtain the solution of  V ,    ij  is minimized. When minimization is performed, 

the elements of V  have negative values.  To prevent this,  2

ij  is minimized. Prior to form-

ing the optimization  model, following proposition  holds. 

 

Proposition 5.6 ( B  for objective function): 

To reduce the computation workload, the elements of the upper triangle opposite matrix B  

(or the lower one) is sufficient for constructing the objective function. 

Proof: 

The objective function  minimizes  the sum of  2

ij  , i.e. 2

1
 

n n

iji j i
Min

 
  . This gives 

2 2

1 1 1 1

n n n j

ij iji j i i j    
      , i.e. 

   
2 2

1 1 1 1

n n n j

ij i j ij i ji j i i j
b v v b v v

    
          . Thus,  

     
2 2 2

1 1 1 1 1
2

n n n n n j

ij i j ij i j ij i ji j i i j i i j
b v v b v v b v v

      
               . Hence, 

this proposition holds. 

 □ 
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On the basis of (5.24), the Primitive Least Squares Optimization model is of the form: 

 PLS , =B   

 
2

1 1
Min     =

n n

ij i ji j i
b v v

  
     (5.25) 

1
s.t.      

n

ii
v n


 ,  

where  in v , and    is the normal utility. 

The solution of the closed form can be solved manually. This interesting finding is 

shown in the following theorem. 

 

Theorem 5.4  (Closed form of PLS):  

The closed form solution of the Primitive Least Squares Optimization model is the row av-

erage plus the normal utility (RAU), which is of the form: 

1

1 n

i ij

j

v b
n




 
  
 
 ,  1, ,  i n    (5.26) 

Proof: 

To have the closed form solution, the partial differentiation of    with respective to all 

kv V  is derived and is of the form: 

0k

k

L
v






  , 1,2, ,k n  . 

Then the linear system   iL  is solved for V. Therefore, 

 
2

1 1
=

n n

ij i ji j i
b v v

  
     

, , , , ,

= ij kj ik

i k j i j k i k j i j k i k j i j k        

         , 
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,

= ij kj ik

i k j i j k n j k i k     

          

Let 1

,

ij

i k j i j k  

    , 2 kj

n j k 

   , and 3 ik

i k

   . Thus 

1 2 3=     

31 2=
k k k kv v v v

 

   

 
  . 

Case 1: 1

kv






 

,1 0

ij

i k j i j k

k kv v




 

  

 
 

   

 
 

Case 2: 2

kj

n j k

k kv v




 

 

 
 

  


 

 
2

kj k j

n j k

k

b v v

v





 

 
  

 


 

 2 kj k j

n j k

b v v
 

     

Case 3: 3

ik

i k

k kv v




 



 
 

  


 

 
2

ik i k

i k

k

b v v

v







 
  

 


 

 2 ik i k

i k

b v v


    
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To combine the three cases,  

31 2=
k k k kv v v v

 

   

 
   

   2 2kj k j ik i k

n j i i k

b v v b v v
  

         

           2 2 1kj k j ik i k

n j k n j k i k i k

b n k v v b v k v
     

   
           

  
     

           2 2 1kj k j ik i k

n j k n j k i k i k

b n k v v b v k v
     

   
           

  
     

          
1 1

2 1 k j i ik kj

n j k i k i k n j k

n v v v b b
       

    
          

    
     

          2 1 k j i ki kj

n j k i k i k n j k

n v v v b b
     

    
           

    
     

      2 1 k i kj

i k j

n v v b


   
           

   

 

Since  
2

2 1 0
k

n
v

 
  


,   is convex. 

As 0k

k

L
v






  , 1,2, ,k n  , there exists a minimal kv , 1,2, ,k n  . 

 

The values can be solved by a linear system. Thus the augmented matrix  E b  is of the 

form: 
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 

 

 

 

 

1

2

3

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1

1 1 1

i

i

i

i

i

i

ni

i

n b

n b

n b
E b

n b

n

    
 
    
 
 
    

 
 
 
   

 
  















    

 

 

  

V is solved by Gaussian elimination of  E b , in which the final row is added to other 

rows.  Thus, 

 

 

 

 

1

2

3

0 0 0

0 0 0

0 0 0

0 0

i

i

i

i

i

i

ni

i

n n b

n n b

n n b

n n b









 
 
 
 
 

 
 
 
 

 
 















    

 

 

To divide the above system by n, the reduced row echelon form is  

 

 

 

 

 

1

2

3

1
1 0 0 0

1
0 1 0 0

1
0 0 1 0

1
0 0 1

i

i

i

i

i

i

ni

i

b
n

b
n

I V
b

n

b
n









 
 

 
 

 
 

  
 

 
 
 
 
  















    

 

  

Interestingly, the result is the same as the row average plus the normal utility. 

 □ 
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From sections 5.1 to 5.3, it seems the Row Average plus the normal Utility (RAU) is en-

couraging. The value of   is critical for the solutions of RAU, PLS, and AMSLS. To res-

cale , following proposition holds. 

 

Proposition 5.7 ( ): 

If  Max    or  Max     , then 0iv  ,  and vice versa. 

Proof: 

For  1, ,  i n   , if 0iv  , then 
1

1 n

ij

j

b
n




 
 

 
 . If  

1

1 n

ij

j

b
n




 
 

 
 , then  Max    since 

ijb  . 

 □ 

If  Max X  , it is possible that some negative individual utilities exist, i.e. 0iv  .  

One method is to increase the normal utility   such that  Max X  . Another method is 

to decrease  Max X  such that  Max X  , and rescale the numerical scale X  for  . If 

these two methods are not allowed, another method is to modify the operator. This is shown 

as follows. 

 

5.5.4 Bounded least squares (BLS) optimization 

If  Max X   (i.e.   is too small or  Max X  is too large), PLS will produce a 

negative individual utility.  To avoid the negative issue, the conditions v 0, 1,2, ,i i n    

are added in the primitive form. The new form is called Bounded Least Squares Optimiza-

tion as below. 
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 BLS , =B   

 
2

1 1
Min   =

n n

ij i ji j i
b v v

  
     (5.27) 

1
s.t.    ,   

         0, 1,2, ,

n

ii

i

v n

v i n






  


,  

where  in v , and   is the normal utility. 

 

The above problem can be solved by Karush-Kuhn-Tucker (KKT) method  ( Karush, 

1939; Araora,2004), which is built on the Lagrange theorem.  The algorithm of ALS is as 

follows: 

 

Algorithm 5.2 (KKT Solution OF BLS): 

Input: (B,  ) 

Step 1. Get the Lagrange Function: 

     
2

2

11 1
1 1

, , ,
n n

n n

ij i j i i i n ii j i
i i

Lg V U S b v v u v s u v n   
 

  
         

  
    ,  

, Where  1 1, , nU u u    and  1, , ns s s  . 

Step 2.  Get differential equations: 

   22
1

11 1 1 0

nn

n n
n ii i i

ij i j ii j i i

i i i i

u v nu v sb v vLg

v v v v

 

   



   

  
           

 
,

1, ,i n  ; 

 2 0i i

i

Lg
v s

u




    ,  1, ,i n  ; 
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11

0
n

i

in

Lg
v n

u




 

 
   
 
 , 1, ,i n  ; 

2 0i i

i

Lg
s u

s




  , 1, ,i n  ; 

Step 3. Solve the above equations. There are multiple solutions for  1 , ,sol V U S . 

Explicitly, 

 

11 1 11 1 11 1, 1

21 2 21 2 21 1, 1

1

1 1 1 , 1

' '

' '
' ' '

' '

n n n

n n n

m nn m nn m m n

v v s s u u

v v s s u u
Sol V S U

v v s s u u







 
 
 
 
 
 

  

  

        

  

 

, where the local variable m is the number of  solutions. 

Step 4. Filter  1Sol  such that  
1

: 0, 0, 1,2, ,
n

i i i

i

v v n v i n


  
      

  
 , and find  

2 1sol sol  . 

Step 5. Filter 2Sol  with the condition of the Non-negativity of Lagrange Multipliers 

for Inequalities, i.e. 0iu  , 1, , 1i n  ,  and   3 2sol sol  is formed. 

Step 6. Filter 3sol  by the Feasibility Check for Inequalities, i.e.  2 0i iv s    and 

2 0i is u  ,  1, ,i n  , and 4 3sol sol  is formed. 

Step 7. If the individual utility vector  *v  in each row  of 4sol  is the same, return 

*

4v sol . 

Return: *v  //END 
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If  Max X  , Bounded Least Squares (NLS) optimization is one of the methods to 

return the approximate value without a negative value, however this method is not recom-

mended. The most efficient way is to change the value of the normal utility  . However, 

there are infinite values for  . In this case,   is defined subject to   0Min V  . 

 

5.5.5 Least penalty squares (LPS or DLS) optimization 

The individual utility vector  1, , nV v v   is determined by the Least Penalty 

Squares (LPS), which is also called Discrete Least Squares (DLS),  and apply a set of penal-

ties  ij  in the Least Squares, and in the form: 

     1 2 3 1 2 3DLS , , , , =LPS , , , ,B B          

 
2

1 1
Min        =

n n

ij ij i ji j i
b v v

  
    


 

, 

1

2

3

,    v  &  b 0

    or v  &  b 0

,    v  &  b 0

    or  &  b 0

 ,               

i j ij

i j ij

i j ijij

i j ij

v

v

v

v v

otherwise







 


 

   
  



, 1 2 31       (5.28) 

1
s.t.      ,

           v 0, 1,2, ,

n

ii

i

v n

i n






 




,  

where  in v , and   is the normal utility. 

 

The closed form solution of LPS (or DLS) is very difficult to  solve since ij  is the 

conditioned discrete variable and cannot be derived by partial differentiation. Thus the La-

grange theorem and the KKT theorem cannot be applied. One method is to use the Exhaus-
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tive Computing method, where all combinations of   ' 0, : 1, ,iv n i n    are computed, 

and then return to the individual utility V with respect to the minimized penalty weighted 

error sum *


.  The limitation of this algorithm is the computational workload, which how-

ever is trivial with today’s powerful computers, and hence the exhaustive computing me-

thod deserves be utilized. In addition, the solution can be easily solved by powerful software 

tools such as Excel, Mathlab, Lingo, as well as Mathematica, which is used in this research. 

Chapter 5.7 further illustrates the concepts of PLS and LPS using graph theory. 

 

5.6 Cognitive prioritization operator measurement (CPOM) models 

When a problem is introduced, some possible solutions are proposed. This leads to the 

question as to which solution model is the best one, thus a study of the measurement models 

is introduced. This also leads to various measurement models. The next question is taken 

asking which measurement model is the most appropriate. The fittest measurement model 

must be supported by convincing evidence that it performs better than other models.  

The Cognitive Prioritization Operator Measurement (CPOM) models evaluate the fit-

ness of the prioritization operators. Thus they can be used for selecting the fittest CPO by 

comparing different CPOs. This research proposes six  CPOM models as follows.  

 

5.6.1 Worst absolute distance variance (WADV) 

The Worst Absolute Distance Variance is to measure the greatest variance of B and V, 

and has the form: 

    
,

, ij i j
i j

WADV B V Max abs b v v    (5.29) 
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,  .abs  is the function to return obsolete value. 

 

5.6.2   Mean absolute distance variance (MADV) 

The Mean Absolute Square Variance is of the form: 

 

 
 

 
1 1

1
,

1

n n

ij i j

i j

MADV B V abs b v v
n n  

  
 

 . (5.30) 

 

5.6.3 Mean penalty weighted absolute distance variance (MPWADV) 

The Mean Penalty Weighted Absolute Distance Variance is of the form: 

 

 
 

1
,

1
ij

i j

MPWADV B V Y
n n


 

   

, where  

 

 

1

2

  ,  &  b 0    

                          v  &  b 0

                          v  & 0 

  ,  &  b 0

                               or v  &  b 0

ij i j i j ij

i j ij

i j ij

ij

ij i j i j ij

i j ij

Abs b v v v v

or v

or v b
Y

Abs b v v v v

v







   

 

 


   

 





 3         ,         ij i jAbs b v v otherwise










  




, 1 2 31       (5.31) 

 

As it is more difficult than PMPWSV, which is introduced in chapter 6.6., to solve, 

when the above form is converted into an optimization model, this model is not selected as 

the Cognitive Distortion Index. 
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5.6.4  Root mean square variance (RMSV) 

Euclidean Distance (ED) is the square root of the sum of the square deviations be-

tween the difference of two individual utilities and their corresponding entry in the matrix. 

It has the form: 

   
2

1 1

,
n n

ij i j

i j

ED B V b v v
 

    (5.32) 

 

As ED depends on the size, i.e. nx(n-1), of the opposite matrix B, for the effective in-

terpretation of the result, it is more appropriate to use the mean of the value. The Root Mean 

Square Variance which takes the root of the average of the sum of  the square deviations is 

as follows: 

 
 

 
2

1 1

1
,

1

n n

ij i j

i j

RMSV B V b v v
n n  

  
 

  (5.33) 

However, a limitation of ED/RMSV is that the penalty weights are not justified. For 

example, the penalty of the condition   &  b 0i j ijv v True    is not the same as the penalty 

of the condition   &  b 0i j ijv v True   .  In short, the penalty weights of these two condi-

tions should not be equal. This issue introduces the measurement of the mean contradiction. 

 

5.6.5  Mean contradiction (MC) 

The Mean Contradiction is of the form: 

 
 

1
,

1
ij

i j

MC A V I
n n

 
  

  
  
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,where 

 

 
1

1

2

2

3

 ,  &  b 0    

 &  b 0

,  &  b 0

,  &  b 0

,

i j ij

i j ij

ij
i j ij

i j ij

v vI

I v v

I I v v
I v v
I Otherwise

 


 
   


 


, 1 2 3 0I I I   ; (5.34) 

In the default setting of  MC,  
1 1I  , 2 0.5I  , 

3 0I  .  A limitation of MC is that it 

counts the sum of penalty scores only, and ignores the actual variance values. 

 

5.6.6  Root mean penalty weighted square variance (RMPWSV) 

To combine the advantages of RMSV and MC, and offset their shortcomings, this pa-

per proposes the Root Mean Penalty Weighted Square Variance  , as follows: 

 
 

1
,

1
ij

i j

RMPWSV B V Y
n n

  
 

  

, where  

 

 

2

1

2

2

3

  ,  &  b 0    

                          v  &  b 0

                          v  & 0 

       ,  &  b 0

                               or v  &  b 0

ij i j i j ij

i j ij

i j ij

ij

ij i j i j ij

i j ij

b v v v v

or v

or v b
Y

b v v v v

v







   

 

 


   

 

 
2

        ,         ij i jb v v otherwise












 

, 1 2 31       (5.35) 

,  1 2 3, ,     is the vector of penalty weights. RMSV is a special case of RMPWSV if 

1 2 3 1     .  

In RMPWSV, 1 0   can cancel the variance. By default settings of  , 1 1   is de-

fined, and also 2 33, 10   . This research regards RMPWSV  as more significant than 

other measurement models which are used for reference only. PMPWSV is selected to be 
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defined as the Cognitive Distortion Index (CDI) as its value is more appropriate in reflecting 

the error between B and V. The details of the relations of RMPWSV  (or CDI) and other 

measurement models are given in the numerical analysis section. 

 

5.7. Graph theory interpretation 

Conventional graph theory can show the prioritization of only three criteria. If there 

are more than three criteria, graphical representation is impossible as it is a complex hyper 

dimensional problem. In fact, this visualization is beyond the human perception. Thus, this 

section applies 2D and 3D representations for the prioritization of three criteria, since the 

pairwise opposite matrix of two criteria is always accordant. 

 

5.7.1 Two dimensional representation 

Consider a 3x3 prioritization problem with a individual utility set  1 2 3, ,V v v v , 

which is of the form: 

12 13

12 23

13 23

0

0

0

b b

B b b

b b

 
 

  
   

 (5.36) 

As the axiom of the ratio scale is  ij i jb v v  ,  a system of three linear equations is 

formed: 

1 2 12

1 3 13

2 3 23

v v b

v v b

v v b

 


 
  

 (5.37) 
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Another axiom of the population utility is the form 
1

n

ii
v n


 , thus 

1 2 3v v v n   . To eliminate 3v  and plot a plane of 1v  and 2v , the new form of the linear 

system is : 

 

2 1 12

2 13 1

2 23 1

2

1
2

v v b

v b n v

v b n v





  


  


  

 (5.38) 

 

To illustrate the above linear system, the next step is to plot the lines in the 2D plane.  

Let 12 0.1b   , 13 0.1b   , 23 0b  , and  =1. The opposite matrix is perfectly accordant. In 

fig. 5.1, the three linear equations form an intercept point (0.933, 1.033), which is the 

unique solution of the individual utility vector. 

 

0.933333, 1.03333

v2  v1  b12

v2  2v1  b13  n

v2 
1

2
v1  b23  n 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
w1

0.5

1.0

1.5

2.0

2.5

3.0

w2

 

Figure 5.1: The feasible points of perfectly accordant opposite matrix  
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1., 1.11., 1.1

0.933333, 1.033330.933333, 1.03333
1.06667 , 0.966667 

1122

Feasible Solution Region

1: Primitive Least Sqaures

2: Discrete Least Squares

0.0 0.5 1.0 1.5 2.0 2.5 3.0
w1

0.5

1.0

1.5

2.0

2.5

3.0

w2

 

Figure 5.2: The feasible solution region of CPOs  

 

1., 1.11., 1.1

0.933333, 1.033330.933333, 1.03333

1.06667, 0.9666671.06667, 0.966667

11

22

Feasible Solution Region

Feasible Solution Region

1: Primitive Least Sqaures

2: Discrete Least Squares

0.95 1.00 1.05 1.10
w1

1.00

1.05

1.10

1.15

w2

 

Figure 5.3: The feasible solution region of CPOs in focus view  

 

Consider the matrix in example 5.1, i.e. 12 0.1b   , 13 0.1b  , 23 0b  . In fig. 5.2, the 

Feasible Solution Region is constituted by the three lines. Fig 5.3 shows the focus view of 

the region.  It can be observed that the solutions of two prioritization operators proposed in 

this paper are located within this region. The index numbers indicate the indices of the 

CPOs: 1 is the PLS/RAU/AMSLS, and 2 is the DLS/LPS.  
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It might be suggested to draw some lines for the proposed Cognitive Prioritization 

Operator Measurement functions, e.g. RMSV  or  RMPWSV, to elaborate on the best approx-

imate solution points. However, they are graphically impossible to show in this plane, and 

the reason is in the following proposition. 

 

Proposition 5.8: 

For an opposite matrix with three variables and  1 0,v n , 2v  is a complex number except 

for one case after the algebraic operation of RMSV=0  or RMPWSV =0,  and vice versa.  

Thus the measurement functions cannot be shown in the plane. For this exceptional case, 

there exists one real solution point   1 2,v v ,  when the opposite matrix is perfectly accordant. 

Proof: 

 
 

 
2

1 1

1
, 0

1

n n

ij i j

i j

RMSV B V b v v
n n  

   
 

  

For n=3, then 

     
2 2 2

12 1 2 13 1 3 23 2 3+ 0b v v b v v b v v         

To eliminate 3v  by using 1 2 3v v v n   , then  

     
2 2 2

12 1 2 13 1 2 23 2 12 2 0b v v b n v v b n v v             

Solving the above equation,  then 

 

   

2 2 2 2

12 13 23 12 13 23 1

2 12 13 23 1 2

12 13 1 1 13 23 1

3 5 5 2 2 4 91
3 2 3

6 6 3 27 2 2 9

n b b b b b b v
v n b b b v

n b b v v b b v






       
      
      
 

. 

Let  
 

   

2 2 2 2

12 13 23 12 13 23 1

2

12 13 1 1 13 23 1

3 5 5 2 2 4 9
= "

6 3 27 2 2 9

n b b b b b b v

n b b v v b b v





      


     
 . 
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For  1 0,v n , " 0  . Hence 2v  is a complex number except when "=0 . If "=0 , 

1v  is a real number  and so is 2v . In addition, if  1 0,v n  when "=0 , then the matrix 

must be perfectly accordant. 

 □ 

 

As a complex number cannot be drawn in the plane, in this case, a third dimension is 

needed to be created for measurement functions.  

 

5.7.2 Three dimensional representation 

In the 2D plane of 1w  and 2w , a dimension z is created for exploring the evaluation 

value by a measurement function. Two measurement functions are explored and compared 

in this section: Root Mean Square Variance (RMSV) and Root Mean Penalty Weighted 

Square Variance (RMPWSV).  

Fig 5.4 shows the RMSV and RMPWSV for all  1 2, 0,v v n , in the top view. It can 

be observed that there are three white lines to separate the regions in the RMPWSV graph 

whilst this does not happen in RMSV. The reason can be found in fig. 5.5 which shows the 

same content of fig. 5.4 but in a side view. It can be observed that some areas are leveled up 

accordingly. This is due to the penalty weights (  ) increasing in 3 or 10 times. This is ana-

logue to an earthquake. If the intensity of the earthquake increases, the degree of the ground 

level is raised. For instance,  1 2 3, ,    is from  1,3,10  to  1,10,100 ( fig. 5.6).  
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Graph of Root Mean Square Variance 

Gap

 
Graph of Root Mean Penalty Weighted 

Square Variance 

 

Figure 5.4:  Top View of the measurement values of CPOs on plane ( 1w , 2w ) 

 

 
Root Mean Square Variance 

 

Gap

 
Root Mean Penalty Weighted Square Variance 

 

Figure 5.5: Bottom View of the measurement values of CPOs on plane ( 1w , 2w )  

 

Fig.5.7 compares these  two  CPOs, PLS/RAU/AMSLS and LPS/DLS,  by two 3D 

graphs. The least value of z , i.e. minz , indicates the most appropriate of the combination of 

the individual utilities. Thus minz  is in the lowest plane, which is called the Most Feasible 

Solution Region (MFSR). The MFSR in fig. 5.6 is also within the Feasible Solution Region 
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(FSR), as shown in figs. 5.2 and 5.3. The value of 
minz  can be found by the optimization 

model with respect to the measurement function.  

 

 

The Most Feasible Region

 
RMPWSV with penalty set 

   1 2 3, , 1,3,10     

 

The Most Feasible Region

 
RMPWSV with penalty set  

   1 2 3, , 1,10,100     

Figure 5.6:  The most feasible solution region of CPOs with two   values  

 

PLS DLS

 
Solution points of CPOs using RMSV 

PLS

DLS

 
Solution points of CPOs using RMPWSV 

 

Figure 5.7: Focus views of solution points of CPOs in the 3D graph   
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5.8. Numerical analyses and discussion 

Two major analyses are performed and discussed, as follows. 

 

5.8.1 Stability and validity analysis 

The analyses show the comparisons of the results of two prioritization operators, RAU 

(or PLS or AMSLS) and LPS (or DLS), on the basis of the CPOM models. The simulation 

includes 168 (21 x8) cases from eight template matrices of different dimensions. The rating 

scale is defined as       1,1 : 1 0.1 ,  0, ,20X i i         , and r is chosen from X , 

i.e. r X .  The template matrices are shown as follows. 

 

0 0.2

3 0.2 0 0

0 0

r

T r

r

 
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. 
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The results are illustrated Appendix II and the essential results are further plotted in 

figures 5.8- 5.12, in which each figure includes eight sub-figures representing for the eight 

template matrices respectively. The impacts are as follows: 

Fig. 5.8 shows the results of the RMPWSV of the template matrices. Fig. 5.9 shows 

the results of the mean contradiction of the template matrices.  It indicates that 

   PMPWSV RAU PMPWSV LPS , especially 0MC  .  Fig. 5.10 shows the results of 

the RMSV of the template matrices. It indicates that    RMSV RAU RMSV LPS , and  

also the fact  that    RMSV RAU RMSV LPS  does not necessarily follow 

   PMPWSV RAU PMPWSV LPS . This issue is due to the existence of the contraction.  

Fig. 5.11 shows the results of the WADV of the eight template matrices. It indicates 

that the least of PMPWSV  or RMSV between RAU and LPS does not follow the least of  

WADV  between RAU and LPS. Fig. 5.12 shows MPWADV of the template matrices. 

Theoretically, if    PMPWSV RAU PMPWSV LPS , then 

   MPWADV RAU MPWADV LPS , as both PMPWSV and MPWADV show the dis-

tances with penalties, and LPS  minimizes the distance with penalty . However, sometimes 

   MPWADV RAU MPWADV LPS  happens, due to the rounding error of an individual 

utility which produces this abnormality. The reason is also applicable in the minor case  

   RMPWSV RAU RMPWSV LPS , shown in Fig. 5.8. However, this abnormal situation 

is not shown in the dash frames of figures 5.8 and 5.12. 

If 0MC  , then  

   PMPWSV RAU PMPWSV LPS ,  
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   WADV RAU WADV LPS ,  

   MPWADV RAU MPWADV LPS   .  

The main reason is that each penalty weight of LPS is equal to one if 0MC  . In this 

case, LPS is PLS, which produces the same result of RAU. 

If 0.1AI  , then  

   PMPWSV RAU PMPWSV LPS ,  

   WADV RAU WADV LPS ,  

   RMSV RAU RMSV LPS ,  and    MPWADV RAU MPWADV LPS .  

They are framed with dash lines in the figures.  

On the basis of the above findings, the best practice for choosing the cognitive priori-

tization operators is as follows. 

If 0.1AI  , especially 0MC  , RAU is recommended. For one thing, interestingly, it 

produces the same result as AMSLS and PLS. If no out-boundary problem exists, RAU also 

produces the same result as BLS and LPS. For another, its computational effort is the least. 

Therefore, when a pairwise opposite matrix is perfect accordant, or satisfactory without vi-

olation, RAU is more preferable. 

If 0MC  , LPS is suggested . PLS is the basic form for developing BLS, which is 

further developed as LPS (or DLS). In view of the approximate accuracy of the discordant 

matrix with contradiction, LPS (or DLS) is more preferable as it minimizes the summation 

of the multiples of contradiction and distance errors. 

If 0.1AI   and 0MC  , and  only the rank of the single matrix is considered, then 

RAU is suggested. If the individual utility values are significant, LPS is suggested. 
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Figure 5.8: RMPWSV of the CPOs of the template matrices  
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Figure 5.9: Mean contradiction index of the CPOs of template matrices  
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Figure 5.10:  RMSV of the CPOs of template matrices  
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Figure 5.11: WADV of the CPOs of template matrices  
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Figure 5.12: MPWADV of the CPOs of template matrices  
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5.8.2 Comparison with pairwise reciprocal matrix 

To fairly compare the pairwise reciprocal matrix (PRM) and the pairwise opposite 

matrix (POM), PRM is perfectly consistent whilst POM is perfectly accordant. The rating 

scale schemas of POM and PRM are defined in table 5.4.   

 

Table 5.4: Match references between ratio and interval scales  

  iEx iVVS iVS iSP iS iMP iM iW E W M MP S SP VS VVS Ex 

 1X    -1 -7/8 -6/8 -5/8 -4/8 -3/8 -2/8 -1/8 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1 

 1 3X    -1/3 -7/24 -6/24 -5/24 -4/24 -3/24 -2/24 -1/24 0 1/24 2/24 3/14 4/24 5/24 6/24 7/24 1/3 

'X  1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7 8 9 

 

In PRM, summation of the priority vector  1, , nW w w   is equal to one, i.e. 

1
1

n

ii
w


 . W is said to be a normalized priority vector (or a priority vector in short). In 

order for comparison, the individual utility from POM is rescaled (or normalized) as a nor-

malized priority vector by the rescale function of the normalization function, and has the 

following form: 

 : , 1, ,i
i i

v
W w w i n

n

 
    
 

 , which
 1, ,

i

i n

v n





 (5.39) 

For the comparisons, four issues are discussed as follows. 

 

a)  Dependence issues 

The accordant POM does not match the consistent PRM by directly switching the nu-

merical reference values in table 5.4, and vice versa. The main reason is the axioms 



Chapter 5 CPC 

 

229 

 

ij i ja w w  and  ij i jb v v  . To explain further, consider the linguistic representation of an 

accordant POM , 

1

E W SP

LM iW E S

iSP iS E

 
 

  
 
 

, which is numerically represented by 

 1

510
8 8

1 40
8 8

5 4 0
8 8

POM

 
 
  
 
   
 

.  

The individual utility vector is   1 1.25,1.042,0.708V  , and the priority vector is 

 1' 0.417,0.375,0.208W  . 

 

Regarding PRM, the linguistic matrix is numerically represented by 

1

1 2 6

1 1 5
2

1 1 1
6 5

PRM

 
 
 
 
  
 

,  

and its priority vector is  1 0.577,0.342,0.081W  .  

To preserve the consistency, it is changed to 

2

1 2 6

1 1 3
2

1 1 1
6 3

PRM

 
 
 
 
  
 

 ,  

and its priority vector is  2 0.6,0.3,0.1W  .  

Converting 2PRM  to the linguistic matrix  
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2

E W SP

LM iW E M

iSP iM E

 
 

  
 
 

 

, which maps to POM numerically, follows 

2

510
8 8

1 20
8 8

5 2 0
8 8

POM

 
 
  
 
   
 

 

, and its priority vector is  2' 0.417,0.347,0.236W  . 

 

It can be observed that for the same linguistic matrix, both PRM and POM have dif-

ferent results. To compare with 1'W  and 1W , as well as 2'W  and 2W , the distance between 

the least and the highest priorities of PRMs are larger than the one of the POMs.  

It also can be observed that the change of one entry of a single element of POM does 

not influence other unrelated elements. In this case, only 23b  of the POMs are changed, 1'w  

is kept to 0.417  and only 2'w  and 3'w  are changed accordantly. This issue can be proved 

by the RAU formula. 

3

1

1

3
i ij

j

v b 


 
  
 
 ,  1, ,3i    

Substitute the values into the above formula. Change of 23b  means change of 32b  as 

they have the opposite relationship. Thus 1v  is unchanged, and 2v  and 3v  are changed due to 

23 2 3b v v  . As the population utility is constant, thus only 2'w  and 3'w  are changed accor-

dantly. 
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However, PRM does otherwise. Change of any one element will finally influence the 

population of the priorities, which is less reasonable as a subjective issue, especially in the 

PRM with little inconsistency. 

 Thus the cognition representation of PRM is problematic and produces exaggerate re-

sults, which are also mentioned in chapter 5.2.  

 

b)  Out-boundary problem 

It is unavoidable that both PRM and POM have boundary problems. Regarding POM, 

for all  1, ,k n  , if   ik kjb b Max X    or  ik kjb b Min X  , then ik kj ijb b b   (propo-

sition 5.4).  Regarding PRM, for all  1, ,k n  , if  'ik kja a Max X  or  'ik kja a Min X , 

then ik kj ija a a . In other words, POM is not accordant, and PRM is not consistent, due to a 

lack of suitable linguistic scales in the out-boundary cases.  

However, the range of the out-boundary of PRM is much higher than POM. If 

9ik kja a  , then 81ik kja a   and the reciprocal is 1 81 . The range of the out-boundary is 

81 9 9  times that of  'Max X . However, in POM, 1ik kjb b  , then 2ik kjb b  . The 

range of the out-boundary is about 2 1 2  times that of  Max X  no matter what the values 

of   are. 

To conclude, although POM has an out-boundary problem, it is much more trivial 

than PRM. 
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c) Scale capability 

Assume both POM and PRM are within-boundary, and regarding PRM, if 2ika   and 

1

3
kja  , no item in the rating scales satisfies ik kj ija a a , i.e.    2 '

3ik kja a X   where 

'ija  .  However, this issue never happens in POM as      ik kjMin X b b Max X    

and   ik kjb b X   , which are proved in proposition 5.4. In this within-boundary situation, 

it is concluded that POM associated with interval scales can guarantee accordant compari-

son with the sufficient scale capability, but PRM do as otherwise. (Of course, the logic 

problem inducing the discordant comparison is another story.) 

 

d)  Representation Comparisons 

Consider a simple case in which the real utility is  1.1,1,0.9V  , which 

3
i

i

v V

n v


  , and thus  0.3667,0.3333,0.3W  .  The consistent PRM and accordant 

POM are   

3

1 1.1 1.222

0.9091 1 1.111

0.8181 0.9 1

PRM

 
 

  
 
 

 and 3

0 0.1 0.2

0.1 0 0.1

0.2 0.1 0

POM

 
 

  
   

 respectively. 

The judgment matrices using linguistic scales should be 

3

E E E

LM E E E

E E E

 
 

  
 
 

 and 4

E W M

LM iW E W

iM iW E

 
 

  
 
 

 respectively. 

Their numerical presentation for the judgment matrices should be 
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4

1 1 1

1 1 1

1 1 1

PRM

 
 

  
 
 

 and 4

1 20
8 8

1 10
8 8

2 1 0
8 8

POM

 
 
  
 
   
 

 respectively. 

Then the priority vector of 4PRM  is    4 0.3333,0.3333,0.3333W PRM   and its 

root mean square error (rmse) is 0.0272. The individual utility and the priority vectors of 

POM are    4 1.125,1,0.875V POM   and    4 0.375,0.3333,0.2917W POM  . Its root 

mean square error is 0.0064 . 

The alternative approach is to calculate the population utility equal to one, i.e. 

1
i

i

v V

n v


  . Then the normal utility is  = 1/3 for a 3x3 matrix. According to table 5.4, 

the new scale values of the linguistic judgment matrix should be: 

5

1 20
24 24

1 10
24 24

2 1 0
24 24

POM

 
 
  
 
  
 

 

In this case, the individual utility and priority vectors have the same re-

sult  0.375,0.3333,0.2917 . 

In this case, 1 2 3w w w   is the real rank. POM produces a rank exactly the same as 

the real rank. However, PRM produces equal rank, 1 2 3w w w  . The approximate error 

(root mean square error) of PRM is 4 times more than POM (0.0272/0.0064). It can be con-

cluded that representation of the ratio scales of the PRM is not appropriate as it produces a 

misleading rank and higher errors. This often happens when the differences among priorities 

are small (e.g. 0.05), especially the high dimensions of matrices (e.g. n>9). POM is more 

appropriate for handling small difference comparisons. 
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e)  Zero utility/priority 

Consider the case that one of the priorities is equal to zero, i.e.  0,0.2,0.8W  .  

However, PRM does not produce zero priority since the PRM cannot be constructed due to 

0iw  . 

Regarding POM, the individual utility can produce a zero value if  ik kjb b   , neg-

ative numbers if   ik kjb b    and positive numbers if  ik kjb b   . It  is subject to the 

settings of the normal utility  , in which the default setting is  the maximum value of the 

interval scale schema, i.e.  Max X , and the scale range, in which the default setting is [-

 Max X ,  Max X ]. 

Thus the POM is not subject to comparing the positive values. The priority vector is 

one of the special cases of the conversion of the utility vector. 

 

5.9 Summary and remarks 

It is questionable that the cognitive comparison of two objects can be represented by 

their ratio as humans do not tend to calculate multiplication or division by subjective mea-

surement.  This research proposes a straightforward novel approach where the cognitive 

comparison of two objects is represented by the difference between them. The main reason 

is that the perception of the linguistic terms should be a difference concept rather than a ra-

tio concept, as in our natural language. 

The cognitive comparison can be represented by the pairwise opposite matrix filled by 

verbal judgment represented by numerical values from decision makers. The cognitive pri-

oritization operator is the function to derive the individual utility vector from the POM. Al-
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though it is not necessary, the priority vector is the normalization of the individual utility 

vector. The priority vector can serve as weights for some decision models in which the 

weights of the criteria are not determined. 

This study proposes five CPOs: Row Average plus normal Utility (RAU) ,  Aggrega-

tion of Solutions of Linear Systems (ASLS) which includes Arithmetic Mean of Solutions 

of Linear Systems (AMSLS), Primitive Least Squares (PLS) optimization, Bounded Least 

Squares (BLS) Optimization and Least Penalty Squares (LPS) Optimization. The closed 

form solution of AMSLS and PLS is RAU. BLS deals with the case which converts the 

negative utility into a non-negative one without change of the normal utility value and inter-

val scale definition. LPS is suggested when the accordant index (AI) is less than one and the 

mean contradiction (MC) is not equal to zero. If MC is equal to zero and AI is less than 0.1, 

RAU should be used due to the computational effort of RAU being much less than the LPS.  

For the modern powerful computer, the computational effort becomes trivial. Thus LPS is 

recommended for CPO default setting. 

Six Cognitive Prioritization Operator Measurement Models are proposed: Worst Ab-

solute Distance Variance (WADV), Mean Absolute Distance Variance (MADV), Mean Pe-

nalty Weighted Absolute Distance Variance (MPWADV), Root Mean Square Variance 

(RMSV), Mean Contradiction (MC) and Root Mean Penalty Weighted Square Variance 

(PMPWSV). The PMPWSV, which combines the advantages and offsets the disadvantages 

of the improved MC and RMSV, is selected as the Cognitive Distortion Index (CDI) since 

its value is more appropriate in reflecting the error between B and V. 

The graphical representation for a 3x3 pairwise matrix shows the advantages of 

RMPWSV over RMSV, as RMSV ignores the contradiction errors. In the 2D graph, three 
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linear equations from the discordant pairwise opposite matrix can formulate the 3 lines and 

form the Feasible Solution Region. All values of the POs are located in this region. In the 

3D graph, adding the RMPWSV as an extra dimension can formulate the Most Feasible So-

lution Region (MFSR) within the FSR. The solution point of LPS is always located in the 

lowest point in the MFSR (Example 5.2). 

In numerical analyses, eight template matrices from 3x3 to 10x10 respectively formu-

late 168 cases to show the validity of RAU and LPS. The numerical result suggests the best 

practice of the CPOs. Various comparisons demonstrate how the proposed pairwise opposite 

matrix is superior to Saaty’s pairwise reciprocal matrix. 

The impact of PRM and its CPOs stresses the high motivation for various aspects. 

They also can be used for the parametric inputs of decision models in which the weights of 

the criteria are not determined. In addition, as they can also deal with the problems of selec-

tion, sorting, and ranking, they may be used in many domains such as such as material 

sciences, transportation sciences, psychometrics, social sciences, business research, decision 

sciences, computer sciences and engineering management. 
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Chapter 6 Cognitive Style and Aggregation Operator 

6.1 Introduction 

There are many aggregation operators, AOs, as seen in the literature review 

(chapter 2.3.5). Each aggregation operator can be regarded as an individual, however 

they produce different results, so they have individual differences. Thus it is possible to 

use cognitive style, which is a study of individual information processing (chapter 2.7.4), 

to describe the style of the aggregation operator. A style is considered to be a fairly fixed 

characteristic of an individual (Rading and Cheema, 1991).  

Although the discussions of AOs are very broad, there is a lack of research for the 

best practice in choosing aggregation operators. The selection of the AOs can make use 

of the theory of cognitive style. However, no research has been found to investigate the 

relationship between aggregation operators and the cognitive styles. Cognitive styles can 

be used to select the best individual for the decision making. 

Most researchers narrowed a set of uni-dimensional labels for research into 

cognitive style. As there is no universal rule applying which labels the cognitive style 

(chapter 2.7.4), in this research the cognitive style is a construct measured by a variable 

decision attitude which includes three basic members: pessimistic, neural, and optimistic. 

The proposed Cognitive Style and Aggregation Operator (CSAO) is extensively revised 

from (yuen, 2009d). 
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The remainder of this chapter is organized as follows. Chapter 6.2 defines the 

properties of aggregation operators. Chapter 6.3 proposes a CSAO I model, which is an 

algorithm. Chapter 6.4 proposes a CSAO I model which uses the compound linguistic 

ordinal scale. The numerical analyses are performed and discussed in Chapter 6.5. The 

conclusion is drawn in chapter 6.6. 

 

6.2 Fundamental definitions of aggregation operators 

There is much research on the techniques of aggregation operators, and details are 

in literature review (Chapter 2.7.4). The formal definitions of aggregation operators are 

as follows. 

 

Definition 6.1: A generic aggregation operator Agg is a function which aggregates a set 

of granules  1, , , ,i nX x x x    into an Aggregated Value y. It has the form: 

    ( ) ( )

( ) 1 ( ); , , , , ;t t

n i n ny Agg x x x Agg X     (6.1) 

t is the length of tuple(s) of ix  and n is the number of the granules.   is a construct 

parameter or a bag of construct parameters to scale Agg.  

 

Sometimes,   is not shown if the information of   is not important for 

discussion in some scenarios. Likewise, AO can be simplified as the notations such as 
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Agg ,  ;Agg X ,  ( ) ;tAgg X  or  ( )

( ) ;t

nAgg X . This research is only interested in 

 1,2t . To extend definition 6.1, the following definition is proposed. 

 

Definition 6.2: Agg is a non-weighted AO such that i ix c  where ic  is a single 

element, or 1-tuple, and ic C . Thus,  

      (1) (1) (1)

1; ; , , , , ;i nAgg X Agg c c c Agg C       (6.2) 

 

Definition 6.3: A is a weighted AO such that  ,i i ix c v  where  1, ,i nv V v v    is 

a utility weight. Thus ix  is a pair (or 2-tuple).  The weighted AO is of the form: 

          (2) (2)

1 1; ; , , , , , , ,i i n nAgg X Agg c v c v c v     (6.3) 

 

Definition 6.4: If 

1

i
i n

ii

v
w

v





 , then  1, ,i nw W w w    is the probability weight 

such that  
 1, ,

1i

i n

w





. Thus A is a normalized weighted AO of the form: 

         (2) (2)

1 1; ; , , , , , , ,i i n nAgg X Agg c w c w c w     (6.4) 

 

This chapter focuses on the discussion of the normalized weighted AO. 

 

Let y  be the output of the AO of X. Usually y and ic  have a fix interval 

   ' , ,I a b    . Many studies used the fix interval  0,1I   for discussion. This is 
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a only mathematical matter of scaling or normalizing the 'I  into I . To merge the 

discussion with other studies, and to associate membership theory to the aggregation 

problems (as the membership value also belongs to  0,1 ), this research uses a fix 

interval  0,1I  . The scaling functions of 'I  into I  are beyond the research topic 

here. Now let X  and y be scaled, and the extension of definition 6.2 is as follows. 

 

Definition 6.5: Let  0,1I  , ,ic y I . A non-weighted aggregation operator is the 

function : nAgg I I . A weighted aggregation operator is the function 

: T nAgg V I I  ,  and a normalized weighted aggregation operator is the function 

: T nAgg W I I  . 

 

The next section discusses the categories of the information fusion on the basis of 

the usability of aggregation operators. 

 

6.3 Decision attitude and aggregation operator 1 (DAAO-1, or CSAO-1) 

Under uncertainty, different decision makers would have different decision 

attitudes since they have characteristics of cognitive style or individual difference. The 

decision attitudes (DAs) can be described by a collection of linguistic terms represented 

by a collection of DA atomic fuzzy sets,  1, , , ,j pD d d d   , (or the 1
st
 degree DA 
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fuzzy variable) which is further classified as a collection of compound fuzzy sets 

 : 1, , ; 1, ,ijHD d i p j r     with added directional hedge fuzzy sets 

 1, , rH h h  , (The 2
nd

 degree DA fuzzy variable). The details of compound fuzzy 

variable are in chapter 4. 

The range of the membership of a decision attitude fuzzy set is in [0,1] and the 

aggregated value also belongs to [0,1]. The aggregated value of the membership (or the 

likelihood) of a decision attitude has the relationship, shown in the following definition. 

 

Definition 6.7: A aggregated value y  from a normalized aggregation operator Agg of 

the set of input parameters X belongs to a decision attitude fuzzy set jd , with the 

membership value    0,1jd y   by the membership function :jd y I ,  0,1I  .  

 

As the fuzzy set is characterized by this membership function, the same notation 

jd  is used for a fuzzy set of membership. Usually, the membership function applies a 

triangular function  , ,j a b c  which is defined by three points. 

Different input parameter sets, X ’s, result in different Effective Aggregation 

Ranges  (EAR) from a collection of the aggregation operators. The effective 

aggregation range 
*
, *y y 

 
 is defined as follows. 
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Definition 6.8: Let the set of the aggregated values from the set Agg of the aggregation 

operators be  1, , , ,k mY y y y   . The permutation of Y is  (1) ( ) ( ), , , ,k mY y y y


  , 

where (1) (2) ( )my y y  . Thus, the Effective Aggregation Range is 
*
, *y y 

 
, where 

 (1)
*

miny y Y   is the low-boundary,  ( )* maxmy y Y   is the up-boundary.  

 

The above definition follows two lemmas. 

 

0 1

Effective Aggregation Range

 * maxy Y 
*

miny Y

 (1) ( ), , mY y y




 

Figure 6.1: Effective Aggregation Range of AOs  

 

Lemma 6.1: The EAR is the proper subset of I, i.e.  
*
, * 0,1y y  

 
 (see fig. 6.1).  

Proof: 

As    ( )

( ) ; 0,1t

ny A X I   ,  
*

min 0y Y  , and  * max 1y Y  , the lemma 

holds. □ 

 

Lemma 6.2: The collection of AOs is the form 
*

: , *
m

Agg X y y 
 

, where m is the 

dimension ( the number) of the output set.  

Proof:   
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This lemma is directly derived from definition 6.8. □ 

 

The CSAO model describes how the cognitive styles of the aggregation operators 

can be reflected by the decision attitudes.  The CSAO can be represented by a 

collection of the DA fuzzy sets. Thus, following proposition holds. 

Proposition 6.2 ( AggD ): The collection of decision attitude fuzzy sets for an aggregation 

operator A is          1, , , , , , ,Agg j pD y d y y d y y d y   , where 
*
, *y y y 

 
.  

Proof: 

Let the collection of decision attitude fuzzy sets be  1, , , ,j pD d d d   , and the 

discourse universal of D is the interval  
*

, * 0,1y y  
 

 (lemma 6.1).  Thus the 

collection of the memberships of the set of decision attitudes D for a aggregation 

operator is 
*

: , * p
AD y y I  

 
. As the fuzzy set is generally defined as a collection of 

pairs, the form is given above.  □ 

Proposition 6.3 ( Agg
D ): A collection of the 1

st
 degree DA fuzzy sets Agg

D  for a 

collection of aggregation operators   1, , , ,k mAgg Agg Agg Agg   is of the form: 



     

     

     

(1) 1 (1) (1)

( ) 1 ( ) ( )

( ) 1 ( ) ( )

, , , , , , ,

, , , , , , ,

, , , , , , ,

j p

k k j k pAgg

m m j m p

y d y d y d

D y d y d y d

y d y d y d

 
 
 
 
 
 
 
 
 
 

 

    

 

    

 

 (6.5) 

, where     ( ) ( ) ( ), , , ,k j k j ky d y d y k j   , and (1) (2) ( )my y y  .  
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Proof:  

By using proposition 6.1 and lemma 6.2, then above proposition is formed. □ 

Definition of Information Fusion Process, proposed in Chapter 3, is recalled as 

follows: 

Definition 6.9: The Information Fusion Process   , , *, ,IFP X Y AO AO SAO  is the 

function to aggregate multiple sources of data granules X  as a meaningful value Y  to 

represent an object by selection of the most appropriate aggregation operator (AO*) 

among a set of the AO candidates   AO AO , i.e.   *:SAO AO AO , and 

* :AO X Y .  

 

The CSAO model is the ideal function for SAO. On the basis of the above 

definition, two definitions are proposed for the selection of AO in Agg
D . 

 

Definition 6.10: If an aggregation operator has more than one membership of DAs, the 

selection of DAs for the AO is of the form: 

        *

( ) 1 ( ) ( ), , , , , , ,k k j k pd k ArgMax y d y d y d    (6.6) 

 

Definition 6.11: If a DA linguistic term includes more than one aggregation operator, 

the selection of AOs in a DA linguistic term is of the form: 
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      *

(1) ( ) ( ), , , , , , ,j j k j m jd ArgMax y d y d y d    (6.7) 

The DAAO-1for CSAO is concluded in following algorithm. 

 

Algorithm 6.1:  1 1 , ,DAAO CSAO D Agg X   

Input:  

a. A collection of the membership functions of DA fuzzy sets 

 1, , , ,j pD d d d   ; 

b. A collection of AOs:   1, , , ,k mAgg Agg Agg Agg   ; 

c. A collection of information granules:  1, , , ,i nX x x x   ; 

Process: 

Step 1. Compute   Agg X , and then  1, , , ,k mY y y y    is achieved; 

Step 2. Get the permutation of Y:  (1) ( ) ( ), , , ,k mY y y y


  ; 

Step 3. Get *

(1) ( )
*
, , my y y y      

; 

Step 4. Calculate intervals and modal values for  D  by equally dividing 

*

*
,y y 

 
; 

i. 
*

*
1 * * *, ,

1

y y
d y y y

p

 
  

 
 

ii. 
* * *

* * *
1, * * *( 2), ( 1), ( )

1 1 1
j p

y y y y y y
d y j y j y j

p p p


   
      

   
 

iii. 
*

* * ** , ,
1

p

y y
d y y y

p

 
  

 
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Step 5. Elicit memberships for D by interpolation of the three points (a,b,c): 

Step 6. Calculate  D Y


, Agg
D  and  *d k , k . 

Step 7. Get *,jd j . 

Output:.  *jd .                          //END 

 

This study focuses on discussion of the weighted aggregation operators of which 

 ,i i ix w c X  is the input.  

 

0 1

pessimistic neutral optimistic
1


Y
0 1

pessimistic neutral optimistic
1


0 1

pessimistic neutral optimistic
1


0 1

pessimistic neutral optimistic
1


Y

Y Y

*
y

*
y

*
y

*
y

(1) Central Aggregation / Narrower range 

(3) Upward Aggregation (4) Downward Aggregation

(2) Central Aggregation / Wider range 

*y *y

*y *y  

Figure 6.2:  Properties of Effective Aggregation Range  

 

To conclude, the CSAO description model is the function  :  g X I  or 

     g Agg D D Agg X  . It means that the function g maps the collection of 

information granules X  with the set of the aggregators Agg , to the membership 
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interval [0,1] corresponding to the collection of decision attitude fuzzy sets D .  

In most practice, the decision attitudes can be described by three linguistic terms: 

pessimistic, neutral and optimistic. Fig. 6.2 shows some properties of the DA fuzzy sets.  

 

The properties of EAR can be summarized as followings.  

 

Proposition 6.4: Let    
* *

1
' , * *

2
y mean y y y y   , and then  

1. Effective aggregation range (EAR) is of downward aggregation if ' 0.5y  ;. 

2. EAR is of upward aggregation if ' 0.5y  ; 

3. EAR is of central aggregation if ' 0.5y  ; 

4. EAR 2 is more upward than EAR 1 if 1 2' 'y y . Or EAR 1 is more downward 

than the EAR 2. 

5. EAR 2 is wider than EAR 1 if 
1 21 2* *

* *y y y y   . Or EAR 1 is narrower than  

EAR 2. 

 

 

Example 6.1 

A numerical example analysis of the algorithm of the CSAO description model is 

illustrated as follows. 
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Input 

a)  Define the collection of decision attitude fuzzy sets: 

Let  1 2 3, ,D d d d  represent the set of pessimistic, neural, and optimistic decision 

attitudes.  1
* *
, , 'd y y y ,  2

*
, ', *d y y y ,  2 ', ', *d y y y , where   is the 

triangular membership function. 

 

b)  Define a collection of the Aggregation Operators:  

  1 17, , , ,kAgg Agg Agg Agg  

, , , , ,owmax,owmin,

Lexmin, , , , ,

, , , ,

l mm

dp y f ws ss

wrp whm wgm wam owa

wgo wmed wmed wmed

wmed wmed wmed wmed wmed

 
 

  
 
 

 

The aggregation operator can be found in the literature review (chapter 2.3.5). For 

the notation, lwmed  is wmed with Lukasiewicz T-norm and T-connorm. This naming 

convention is also applied to other wmed s taking different T-norms and T-connorms. 

In addition, as   affects the aggregation result, then a different value of   can be 

regarded as a different operator. This example takes 0.2   for all parametric 

operators. 

c) Get the collection of information granules:  

Let  1 5, ,X x x   be weighted criteria;  0.4,0.5,0.6,0.7,0.9C  , 

   0.6,5 0.3801,0.1964,0.1589,0.1387,0.1253W owaW  , and thus 

    0.4,0.1978 , , 0.9,0.6250X   . 
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Process: 

Step 1: Compute Y by  A X : 

 
0.5375,0.5137,0.5332,0.5557,0.6949,0.3807,0.4,0.6939,

0.5019,0.4619,0.5127,0.5,0.5,0.5,0.1193,0.5199,0.4868
Y A X

 
   

 

  

 

Step 2: Get the Y


, and 
*
, *y y 

 
: 

Get    Ordering 14,11,13,15,16,2,3,16,9,4,10,6,6,6,1,12,5Y  , then 

0.1193,0.3807,0.4,0.4619,0.4868,0.5,0.5,0.5,0.5019,0.5127,

0.5137,0.5199,0.5332,0.5375,0.5557,0.6939,0.6949
Y

 
  
 


. 

 

Step 3:  (1) ( )
*
, * , 0.1193,0.6949my y y y      

. 

 

Steps 4 and 5: Assign intervals and interpolate memberships for D . 

Let    
*
, ', * 0.1193,0.4071,0.6949y y y   be substituted to  , ,a b c  in D , 

and then the CSAO-1 pattern is shown in fig.6.3. It can be observed that the proposed 

numerical integration is downward integration as ' 0.4071 0.5y   . 

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

 
 

Figure 6.3: Fuzzy sets in CSAO-1 pattern  
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Table 6.1: The results for Agg
D  of 17 AOs  

(k) Agg ( )ky   ( )kD y   *d k  

1 fwmed  0.1193 {1,0,0} Pess 

2 owmax  0.3807 {0.0917,0.9083,0} Pess 

3 owmin  0.4 {0.0247,0.9753,0} Ntl 

4 wmed  0.4619 {0,0.8095,0.1905} Ntl 

5 sswmed  0.4868 {0,0.7231,0.2769} Ntl 

6 mmwmed  0.5 {0,0.6773,0.3227} Ntl 

7 dpwmed  0.5 {0,0.6773,0.3227} Ntl 

8 ywmed  0.5 {0,0.6773,0.3227} Ntl 

9 wgo  0.5019 {0,0.6707,0.3293} Ntl 

10 lwmed  0.5127 {0,0.6333,0.3667} Ntl 

11 whm  0.5137 {0,0.6298,0.3703} Ntl 

12 wswmed  0.5199 {0,0.6080,0.3920} Ntl 

13 wgm  0.5332 {0,0.5618,0.4382} Ntl 

14 wrp  0.5375 {0,0.5470,0.4530} Ntl 

15 wam  0.5557 {0,0.4838,0.5162} Opt 

16 owa  0.6949 {0,0,1} Opt 

17 Leximin  0.6949 {0,0,1} Opt 

 

Step 6: Calculate  D Y


, Agg
D  and  *d k . 

Table 6.1 summarizes the results for Agg
D ,    ( ) ( ),k Agg k Agg

y D y D , 

 1, ,17k   . 

Step 7 and Output:  

   * 1,3,17jd  , which means { fwmed , owmin , owa / Leximin } 

owa / Leximin  produce the same result. 
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The interpretations of the above example are as follows.  

The weighted median with other t-connorms and t-norms (Yager 1994; Smolikova 

and Wachowiak, 2002) is likely to produce questionable results. Firstly, t-conform and 

t-norm are initially designed for aggregation of two fuzzy sets, and are not suitable for 

the weighted criteria since  ,wmed W C  has different meanings to  ,wmed C W . 

Secondly, the definition of the tuning parameter   is infinitive since each   

represents a new aggregation operator due to different output values. Thirdly, the more 

the criteria is to be aggregated, the lesser values in W as 1

i

i

w W

w



  are followed. As 

t-norms or t-conorms are mainly based on Min and Max of two sets, a misleading result 

will result.   

owmax  and owmin  are not the effective AOs for the decision matrix. The third 

reason of the above description explains this issue. Lexmin  and owa  produce the 

same result as the weights used by them, and are not defined by their intrinsic functions. 

If these aggregation operators are removed, the new result is shown in example 6.2. 

Further investigation for owa  is concluded after illustration of example 6.2. 

 

Example 6.2 

Let be   1 7, , , ,kAgg Agg Agg Agg    , , , , , ,wrp whm wgm wam owa wgo wmed . 

Others remain unchanged. The new results for Agg
D  are shown in table 6.4, and finally, 
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   * 1,6,7jd  , which is { wmed , wam , owa }. 

 

Table 6.2: The results for Agg
D  of seven AOs  

(k) Agg ( )ky    ( )kAgg
D y   *d k  

1 wmed  0.4619 {1,0,0} Pess 

2 wgo  0.5019 {0.6570,0.343,0} Pess 

3 whm  0.5137 {0.5558,0.4442,0} Pess 

4 wgm  0.5332 {0.3880,0.6120,0} Ntl 

5 wrp  0.5375 {0.3513,0.6487,0} Ntl 

6 wam  0.5557 {0.1953,0.8047,0} Ntl 

7 owa  0.6949 {0,0,1} Opt 

 

Examples 6.1 and 6.2 imply that not all AOs can be applied in DSAO (DAAO). It 

is similar to not all people being suitable for a single job, an interest, or a subject domain 

as they have different cognitive styles. People who are suitable for a job are pooled and 

selected accordingly with respect to the decision maker. Thus only the suitable AOs can 

be taken in DSAO, and then classified. The one which mostly reflects the decision 

maker’s cognitive style is selected.  

In addition, owa  seems to produce exaggerate results in the above example. The 

main reason is that the order of the values of the criteria is sorted in descending order. 

This action is unnecessary. For one reason, the weight and the criterion are matched; for 

another reason, the different initial settings of the criteria order are very likely to produce 
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different results. For the third reason, there is no point to mismatch the weight and the 

criterion pair. 

The next section discusses DSAO-2 in detail. 

 

6.4 Decision attitude and aggregation operator 2 (DAAO-2, or CSAO-2) 

Usually a fuzzy set consists of several AOs. If a decision maker chooses a 

linguistic term for the decision attitudes, although the choices are narrowed, he still 

needs to choose the right one representing his cognitive style. Thus the DA atomic fuzzy 

set is further classified, defined as follows. 

Definition 6.12: The membership of DA jd  can be described by the set of directional 

hedges of DA  1, , , , rH h h h    and  1 1
r
i rh h h    . DA is formed by a 

vector of hedge terms 
1

=
ih h

i
V v




 
 


 with  1 ihi v


  and a vector of directional terms 

3

d d d
1

= , , 
id d

i
V v v v v 


   

   


 with  3

1 ii dv . The formation of directional hedges can 

be referred to proposition 4.1. For example, H={“much below”, “quite below”, “little 

below”, “absolutely”, “little below”, quite above”, “much above”}.  

 

Thus the following proposition holds. 

Proposition 6.5 ( HD ): The Linguistic Cartesian Product G  of D and H forms a 

collection of compound fuzzy sets  : 1, , ; 1, ,i jHD h d i r j p     , which is of 
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the form. 

 

1 2 1

2

1 2

2 1 2 2

1 2

,

p

p

p

r r

h d h d

h d h d

HD G H D d d d

h d h d

h d h d

 

  

 



 

   
 
 
   
 
  
 
   
 
 
 

   



   







   



 (6.8) 

Proof: 

It is derived from theorem 4.1 and algorithm 4.1.  □ 

 

The compound linguistic terms for the decision attitude are used by a deductive 

rating strategy which is the double step rating process (see chapter 4.4).  The next issue 

discusses the patterns for the second degree decision attitudes which use the semantic 

rule algorithm (algorithm 4.2) to build up a matrix of fuzzy sets. 

Definition 6.13 (   ij X
d f HD ): Let  ijd  be the matrix of the fuzzy numbers of 

HD .  ijd  is determined by the semantic rule algorithm  X
f HD  (algorithm 4.2), 

which is of the form: 

   : 1, , ; 1, ,ij X
d i r j p f HD     

    1 *
, , 0*

, , , , ,j j j jd hX d d d
f y y V


                  


 (6.9) 

,where  1,, ,j j j jdd d d 


     

  
  

 is the 1
st
 degree DA fuzzy sets which are the 

symmetric fuzzy set: jd
  is the modal value, jd

  is symmetric distance (by default, 
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1 2 , , pd d d
      ), jd

  is the tuning parameter of the membership function, jd
  

is the membership function of  jd  or jd  , and 1
jd    is the inverse membership 

function.  The collection of the 1
st
 degree DA fuzzy sets is called the 1

st
 degree DA 

fuzzy variable. The parameters of the membership fuzziness process   0,hV 


 

determine the distribution of the 2
nd

 degree DA fuzzy variable with respect to the 

corresponding 1
st
 degree DA fuzzy sets. 

With the above definition, the following proposition holds. 

Proposition 6.6 ( "Agg
D ): A collection of the 2

nd
 degree DA fuzzy sets "Agg

D  for a 

collection of aggregation operators   1, , , ,k mAgg Agg Agg Agg   is of the form: 

  

 

 

 

 

 

 

 

 

 

 

 

(1) 1,2 (1) 1,

( ) 1,2 ( ) 1,

(1) ,2 (1) ,

( ) ,2 ( ) ,

(1) 1,1 (1) 1,2

( ) 1,1 (

, ,

, ,

, ,

, ,

, ,

"

,

p

m m p

p

m m p

Agg

m m

y d y d

y d y d

y d y d

y d y d

y d y d

D Y

y d y

 

 

 



 



   
      

    
   
      

   
      

    
   
      

 
  

  
 
  

  

   

  


 

 

 

 

 

 

 

 

 

 

 

 

(1) 1,

) 1,2 ( ) 1,

(1) 2,1 (1) 2,2

( ) 2,1 ( ) 2,2

(1) ,1 (1) ,2

( ) ,1 ( ) ,2

,

, ,

, ,

, ,

, ,

, ,

p

m p

m m

r r

m r m r

y d

d y d

y d y d

y d y d

y d y d

y d y d



 

 

 



 

 

 

   
      
   
   
      

   
      

   
   
      

   
    
  
  
    

 

  

   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
  



 (6.10) 
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Proof: 

Proposition 6.2 indicates AggD , which further extends to Agg
D  in proposition 6.3. 

Proposition 6.5 develops HD  in which its fuzzy number set 

 : 1, , ; 1, ,ijd i r j p   is defined in definition 6.10. The AggD  can be applied in HD . 

Thus, the form of "Agg
D  is derived.   □ 

 

Regarding the final selection of the representation of the 2
nd

 degree DA fuzzy sets 

and AOs, two definitions are formed. 

 

Definition 6.14: If an aggregation operator has more than one of the 2
nd

 degree DA 

fuzzy sets, the selection of DAs for the dedicated AO is of the form: 

     *

( ) , ," , :k i j i jd k ArgMax y d d   (6.11) 

 *"d k  returns the index of the linguistic label to describe the AO. 

 

Definition 6.15: If the 2
nd

 degree DA fuzzy set ijd  includes more than one aggregation 

operator, the selection of AOs of ijd  is of the form: 

      *

(1) ( ) ( ), , , , , , ,ij ij k ij m ijd ArgMax y d y d y d    (6.12) 

*

ijd  returns the index in Y


 to represent the linguistic label ijd . 

 



Chapter 6 CSAO 

 

257 
 

Algorithm 6.2:       02 2 , , , , , ,h d hDAAO CSAO D Agg X V V V  
  

. 

Input:  

a. A collection of the 1
st
 degree DA linguistic variable:  1, , , ,j pD d d d    is 

comprised of the membership set  jd
  and the corresponding inverse 

membership set   , ' ',' ',' '
1

jd     
  with the tuning factor set  jd

 ; 

b. A vector of hedge terms hV


 and A vector of directional terms dV


; 

c. A collection of AOs:   1, , , ,k mAgg Agg Agg Agg   ; 

d. A collection of information granules:  1, , , ,i nX x x x   ; 

e. A collection of the parameters of the member fuzziness process:   0,hV 


; 

Process: 

Step 1. Compute   Agg X , and then  1, , , ,k mY y y y    is achieved; 

Step 2. Get the permutation of Y:  (1) ( ) ( ), , , ,k mY y y y


  ; 

Step 3. Get *

(1) ( )
*
, , my y y y      

; 

Step 4. Calculate intervals and   
1

,j j

p

d d j



  for  D by equally diving 

*

*
,y y 

 
; 

i. 
*

*
1 * * *, ,

1

y y
d y y y

p

 
  

 
 1 1 1 1, ,

d d d d
      

ii. 
* * *

* * *
1, * * *( 2), ( 1), ( )

1 1 1
j p

y y y y y y
d y j y j y j

p p p


   
      

   
   

 , ,j j j j jd d d d d
        
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iii. 
*

* * ** , ,
1

p

y y
d y y y

p

 
  

 
 , ,p p p pd d d d
      

Step 5. Elicit memberships jd
  for D by interpolation of (a,b,c). 

Step 6. Calculate  D Y


, Agg
D  and  *d k , k . 

Step 7. Form HD  by algorithm 4.2. 

Step 8. Calculate  : 1, , ; 1, ,ijd i r j p    of HD  by 

      1 *
, , 0*

, , , , ,j j j jd hX d d d
f y y V      

 


  (algorithm 4.2) 

Step 9. Calculate   "
Agg

D Y


 

Step 10. Calculate  *"d k , k  in   "
Agg

D Y


. 

Step 11. Calculate *

ijd , 1, , ; 1, ,i r j p    

Output:.  *

ijd                           //END 

 

Example 6.3 

This example is a continuation of example 6.1. DAAO-2 is illustrated as follows. 

Input:  

a.  1 2 3, ,D d d d ={P,N,O}; 

jd
  is the symmetric triangular membership,  1,2,3j  ; 

, ' ',' ',' '
1

jd     
  is the inversed triangular membership set,  1,2,3j  ; 

1jd
  ,  1,2,3j  ; 

b.  Little,Quite,MuchhV 


, and  Below,Absolutely,AbovedV 

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c. A collection of AOs:   1 17, , , ,kAgg Agg Agg Agg   ; 

d. A collection of information granules: 

 0.4,0.5,0.6,0.7,0.9C  , 

   0.6,5 0.3801,0.1964,0.1589,0.1387,0.1253W owaW  , and thus 

    0.4,0.1978 , , 0.9,0.6250X   ; 

e. A collection of the parameters of the member fuzziness process: 

     0, 1,2,3 ,0.5hV  


; 

Process: 

Steps 1-3:  

  
0.5375,0.5137,0.5332,0.5557,0.6949,0.3807,0.4,0.6939,

0.5019,0.4619,0.5127,0.5,0.5,0.5,0.1193,0.5199,0.4868
Y Agg X

 
   

 
; 

0.1193,0.3807,0.4,0.4619,0.4868,0.5,0.5,0.5,0.5019,0.5127,

0.5137,0.5199,0.5332,0.5375,0.5557,0.6939,0.6949
Y

 
  
 


; 

 (1) ( )
*
, * , 0.1193,0.6949my y y y      

; 

 

Step 4: Calculate intervals and   
3

1
,j jd d j




  for  D: 

i.  ` 0.1193,0.1193,0.4071d  ; 

ii.  2 0.1193,0.4071,0.6949d  ; 

iii.  3 0.4071,0.6949,0.6949d  ; 

iv.    0.1193,0.4071,0.6949jd
   and  1, 1,2,3jd

j    ; 
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Step 5: Elicit memberships jd
  for D . The results are shown in fig.6.3. 

Step 6: Calculate      k
D Y D y


, Agg

D  and  *d k , k . The results are shown 

in table 6.3. 

Step 7: Form HD  by algorithm 4.2. 

1 7
= , ,

"Much Below","Quite Below","Little Below","Absolutely"  ~ 
    

"Little Above","Quite Above","Much Above"

hd hd hdV v v 
 

 
  
 




 

, thus 

 

- -

- -

- -

, - - -

- -

- -

- -

MB N MB O

QB N QB O

LB N LB O

HD G H D A P A N A O

LA P LA N

QA P QA N

MA P MA N



 
 


 
 
 

   
 
 

 
  

. 

 

Step 8: Calculate  ijd  of HD  by  

      1 *
, , 0*

, , , , ,j j j jd hX d d d
f y y V      

 


  (algorithm 4.2): 

 

   

(0.1193,0.2092,0.2992) (0.4071,0.4971,0.5870)

(0.2392,0.3112,0.3831) (0.5270,0.5990,0.6709)

(0.3472,0.3771,0.4071) (0.6350,0.6649,0.6949)

0.1193,0.1193,0.1193 (0.4071,0.4071,0.4071) (0.6949,0.6949,0.69ijd









 

 

 

49)

0.1193,0.1493,0.1793 (0.4071,0.4371,0.4671)

0.1433,0.2152,0.2872 (0.4310,0.5030,0.5750)

0.2272,0.3172,0.4071 (0.5150,0.6050,0.6950)

 
 
 
 
 
 
 
 

 
  

 

 



Chapter 6 CSAO 

 

261 
 

Step 9: Calculate   "
Agg

D Y


 

 

   

   

     

 

3

17

2

1 16 12 2

1 14 17

16 17 16

17 3 1

0 ,0.6095,0.8860,0.9672,0.9672,

0 0.9672,0.9463,0.8265,0.8152,

0.7455,0.5978,0.5503,0.3482,0

0 ,0.0332,0 0 ,0.0860,0.1455,0.3981,0

0 ,0.8799,0.2372,0 0

1,0 0 0 ,1,1

0 0 ,0.1716,0

 
 

  
  
 





 

 

 

3

3

17

2

11
1 14

2

0 ,0.4285,0.7742,0.9576,

0.9576,0.9576,0.9838,
0

0.8665,0.8523,0.7652,

0.5806,0.5212,0.2686,0

0 ,0.0545,0.2022,0.2497,
0 ,0.2933,0.0791,0

0.4518,0

 












 

  
  
  

  
  
  

 


 
   
  

  
























  

“0” means that the membership of AO is equal to zero in this compound linguistic term. 

The index of “0” means the number of zeros. 

 

Step 10: Calculate  *"d k , k  in   "
Agg

D Y


. The results are shown in table 6.3. 

 

Step 11 and Return: Calculate *

ijd , 1, , ; 1, ,i r j p    

 * *

- - 0 6,7,8

- - 2 15

- - 2 0

- - - 1 0 16,17

- - 0 4

- - 0 9

- - 2 15

ij ij

MB N MB O

QB N QB O

LB N LB O

d d A P A N A O

LA P LA N

QA P QA N

MA P MA N

     
    

     
     
    

     
     
    

     
         

 

“0” means no AO is available in this compound linguistic term. Another number means 
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the index in Y


. 

If a linguistic term (e.g. MB-O, A-O) includes more than one AOs (e.g. (6,7,8) or 

(16,17)), either of the AOs can be used since the AOs produce the same result with 

respect to a compound fuzzy set. 

 

Table 6.3: The results for  "D Y


 and  *"d k  of 17 AOs  

(k) Agg ( )ky   ( )" kD y   *"d k  

1 fwmed  0.1193 {A-P(1)} A-P 

2 owmax  0.3807 {MA-P(0.293),QB-N(0.033),LB-N(0.880)} LB-N 

3 owmin  0.4 {MA-P(0.079),QB-N(0.237)} QB-N 

4 wmed  0.4619 {LA-N(0.172),QA-N(0.428),MB-P(0.609)} MB-P 

5 sswmed  0.4868 {QA-N(0.774),MB-O(0.886)} MB-O 

6 mmwmed  0.5 {QA-N(0.958),MB-O(0.967)} MB-O 

7 dpwmed  0.5 {QA-N(0.958),MB-O(0.967)} MB-O 

8 ywmed  0.5 {QA-N(0.958),MB-O(0.967)} MB-O 

9 wgo  0.5019 {QA-N(0.984),MB-O(0.946)} QA-N 

10 lwmed  0.5127 {QA-N(0.866),MB-O(0.827)} QA-N 

11 whm  0.5137 {QA-N(0.852),MB-O(0.815)} QA-N 

12 wswmed  0.5199 {QA-N(0.765),MA-N(0.054),MB-O(0.745)} QA-N 

13 wgm  0.5332 {QA-N(0.581),MA-N(0.202),MB-O(0.598),QB-O(0.086)} MB-O 

14 wrp  0.5375 {QA-N(0.521),MA-N(0.250),MB-O(0.550),QB-O(0.145)} MB-O 

15 wam  0.5557 {QA-N(0.269),MA-N(0.452),MB-O(0.348),QB-O(0.398)} MA-N 

16 owa  0.6949 {A-O(1)} A-O 

17 Leximin  0.6949 {A-O(1)} A-O 
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Example 6.4 

Using DAAO-2, this example considers only seven AOs used in example 6.2. Steps 1 

and 7 are skipped. The remains of the steps are illustrated as follows: 

 

Step 8: Calculate  ijd  

   

(0.4619,0.4983,0.5347) (0.5784,0.6148,0.6512)

(0.5105,0.5396,0.5687) (0.6270,0.6561,0.6852)

(0.5542,0.5663,0.5784) (0.6707,0.6828,0.6949)

0.4619,0.4619,0.4619 (0.5784,0.5784,0.5784) (0.6949,0.6949,0.69ijd









 

 

 

49)

0.4619,0.4741,0.4862 (0.5784,0.5906,0.6027)

0.4716,0.5008,0.5299 (0.5881,0.6173,0.6464)

0.5056,0.5402,0.5784 (0.6221,0.6585,0.6949)

 
 
 
 
 
 
 
 

 
  

 

Step 9: Calculate   "
Agg

D Y


. 

  

 

 

   

     

   

   

 

1
7

3

2
7

1

5 1 7

6 7 7

7 7

2 4 7

2
7

1

0 ,0.9025,0.5786,
0

0.0415,0

0 ,0.1101,0.7813,
0

0.9282,0.4477,0

0 ,0.1255,0 0

"
1,0 0 0 ,1

0 0

0 ,0.9615,0.5566,0 0

0 ,0.2214,0.7584,
0

0.8759,0.6248,0

Agg
D Y

  
  

 
 

  
  

 
 


 


 


 



 
  
 
 


















 
 
 
 
 
 
 



 

“0” means that the membership of AO is equal to zero in this compound linguistic term. 

The index of “0” means the number of zeros. 
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Step 10: Calculate  *"d k , k  in   "
Agg

D Y


. 

 *d k  is shown in table 6.4. 

 

Table 6.4: The results for  "D Y


 and  *"d k  of seven AOs  

(k) Agg ( )ky   ( )kD y   *d k  

1 wmed  0.4619 {A-P(1)} A-P 

2 wgo  0.5019 {QA-P(0.962),MB-N(0.903)} QA-P 

3 whm  0.5137 {QA-P(0.557),MA-P(0.221),MB-N(0.579),QB-N(0.110)} MB-N 

4 wgm  0.5332 {MA-P(0.758),MB-N(0.042),QB-N(0.781)} QB-N 

5 wrp  0.5375 {MA-P(0.876),QB-N(0.928)} QB-N 

6 wam  0.5557 {MA-P(0.625),QB-N(0.448),LB-N(0.126)} MA-P 

7 owa  0.6949 {A-O(1)} A-O 

 

Step 11 and Return :  *
ijd  is shown as follows. 

 * *

- - 2 0

- - 5 0

- - 6 0

- - - 1 0 7

- - 0 0

- - 2 0

- - 5 0

ij ij

MB N MB O

QB N QB O

LB N LB O

d d A P A N A O

LA P LA N

QA P QA N

MA P MA N

     
    

     
     
    

     
     
    

     
         

 

“0” means no AO is available in this compound linguistic term. Another number means 

the index in Y


. 

One can purely use DAAO-1, or DAAO-2. However, the selection function by 

ArgMax  is excessively straightforward in DAAO-1 in many AO candidates for one DA 

linguistic term jd  , whilst  DAAO-2 contains no AOs for some linguistic terms if 
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insufficient AO candidates for the relatively large scale of the compound linguistic terms. 

Regarding the number of AO candidates, the selection strategy to combine DAAO-1 and 

DAAO-2 is of the following algorithm. 

 

Algorithm 6.3 (Selection Strategy,       *, , , "j i Agg
SAO d h D d k ) 

Input: Agg
D  of  DAAO-1, and   *"d k  of DAAO-2. 

Selection Process: 

Step 1: Select an atomic term of  DA jd . 

Step 2: Check if no AO return for the jd  in Agg
D , 

True: Return Empty message and go to Step 1. 

False: Go to Step 3. 

Step 3: Check if only one AO return for the jd  in Agg
D  ,  

True: Return ( )kAgg . 

False: Go to Step 4. 

Step 4: Select the directional hedge term ih . 

Step 5: Check if no AO return for the ij i jd h d   in  *"d k , 

True: Return Empty message and go to Step 4 or 1. 

False: Return  *

( ) "kAgg d k . 

Return: ( )kAgg .                    //End 
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Example 6.5: 

Consider Examples 6.1 and 6.4. Three cases are illustrated. 

Case 1: 3d =”Opt”. 

Input: Agg
D  of  DAAO-1 in table 6.2 and  *"d k  of DAAO-2 in table 6.4. 

Selection Process: 

Step 1: Select an atomic term of DA: 3d =”Opt”. 

Step 2: owa  return for the jd  in Agg
D , 

Step 3: Only one AO return for the jd  in Agg
D  ,  

Return: (7)Agg owa                    

 

Case 2: 2d =”Ntl”. 

Input: Agg
D  of  DAAO-1 in table 6.2 and  *"d k  of DAAO-2 in table 6.4. 

Selection Process: 

Step 1: Select an atomic term of DA: 2d =”Ntl”. 

Steps 2 and 3: wgm , wrp , and wam  return for the jd . 

Step 4: Select the directional hedge term ih . 

Step 5: Check if no AO return for the ij i jd h d   in  *"d k , 

True: Return Empty message and go to Step 4 (As jd =”Ntl” is assumed, Step 

1 is skipped). 
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False: Return  *

( ) "kAgg d k . 

Return: ( ) , ,kAgg wgo wrp wam  depends on which valid ih  is firstly selected. 

 

Case 3, which 1d =”Pes”, is similar to Case 2. ( ) , ,kAgg wmed wgo wrp . depends on 

which valid ih  is firstly selected. 

 

6.5 CSAO in decision matrix 

In a decision matrix, more than one alternative is considered. This means different 

input value sets X ’s possibly produce different   *d k ,  *
jd , and  *

ijd .  To address 

this issue, three definitions are created as follows: 

 

Definition 6.14: In the decision matrix, the linguistic presentation of the style of the 

decision attitude for the AOs is computed by the form: 

       
*

* *d k Max Mode Join d k 
   
 

 (6.13) 

,where   is the index of the alternative of the decision matrix. Join  is the function to 

combine the matrices, and Mode  is the value that occurs the most frequently in an entry 

of  *
ijJoin d



  
  
  

. 

 

Definition 6.15: In a decision matrix, the AO of the style of the decision attitude for the 
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linguistic terms is computed as: 

   
*

* *
j jd Max Mode Join d
 

      
               

 (6.14) 

Definition 6.16: let  *
ijd


 be the DAAO-2 pattern of the alternative  . Then, the 

pattern of the decision matrix is of the form: 

   
*

* *
ij ijd Max Mode Join d

 

      
               

 (6.15) 

If more than one AO index is returned in the entry, the index number with the 

highest value is chosen since it is likely to produce higher value for each alternative of 

the decision matrix. Thus the Max  is taken. Also Max  can eliminate “0” values. The 

Selection Strategy in Decision matrix is illustrated in algorithm 6.4. 

 

Algorithm 6.4 (           ( ) 0, , , , , , , ,k i j h d hAgg CSAO h d X Agg D V V V 
  

) 

Input:        0, , , , , , , ,i j h d hh d D Agg X V V V 
  

 

Process: 

Step 1: Calculated  *d k  in  1 , ,CSAO D Agg X    1, , X     

 (Algorithm 6.1) 

Step 2:    * 1 , ,jd CSAO D Agg X 
 ,   1, , X         (Algorithm 6.1) 

Step 3:         *

02 , , , , , ,ij h d hd CSAO D Agg X V V V
 

  
,   1, , X    

(Algorithm 6.2) 
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Step 4:        
*

* *d k Max Mode Join d k 
   
 

 

Step 5:    
*

* *
j jd Max Mode Join d
 

      
               

 

Step 6:    
*

* *
ij ijd Max Mode Join d

 

      
               

 

Step 7: Check if no AO return for the jd  in   
*

*d k , 

True: Return Empty message and go to Input to request another jd . 

False: Go to Step 4. 

Step 8: Check the numbers of AO’s return for the jd  in   
*

*d k  ,  

1:  Return   
*

*

( )kAgg d k  without considering ih . 

2-3: Return  
*

*
( )k jAgg d



 
  
 

 without considering ih . 

4 : Go to Step 9. 

Step 9: Check if no AO return for the ij i jd h d   in   
*

*

ijd


, 

True: Return Empty message and go to Input for new  ,i jh d . 

False: Return   
*

*

( )k ijAgg d


 . 

Return: ( )kAgg .                    //End 

The use of this algorithm is shown in the chapter 6.5.2. The next section performs 

the numerical analysis for the proposed DSAO model to validate its usability and 

validity. 
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6.6 Numerical analyses and discussion 

Three major analyses are performed and discussed as follows. 

 

6.6.1 Scenario 

Consider a decision Matrix as follows, 

 1 2 3 4 5

1 2 3 4 5

1

2

3

4

5

0.5 0.5 0.6 0.7 0.9

0.5 0.7 0.9 0.8 0.5

0.6 0.9 0.5 0.7 0.5

0.4 0.5 0.6 0.8 0.9

0.5 0.9 0.5 0.7 0.5

w w w w wW

c c c c cC

T

O T

T

T

T

 
 
 
 
 
 
 
 

 

,where    , 0.1,0.2, ,1W owaW     , which is shown in table 6.5.  

 

Table 6.5:  W generated by    , 0.1,0.2, ,1owaW        

  w1 w2 w3 w4 w5 

0.1 0.851 0.061 0.038 0.028 0.022 

0.2 0.725 0.108 0.070 0.053 0.044 

0.3 0.617 0.143 0.098 0.077 0.065 

0.4 0.525 0.168 0.122 0.099 0.085 

0.5 0.447 0.185 0.142 0.120 0.106 

0.6 0.381 0.196 0.159 0.139 0.125 

0.7 0.324 0.202 0.173 0.156 0.145 

0.8 0.276 0.205 0.184 0.172 0.163 

0.9 0.235 0.203 0.193 0.187 0.182 

1 0.200 0.200 0.200 0.200 0.200 
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In this section, firstly, ten different decision matrices of the above form are created 

with 10 weight sets (table 6.5). The matrices are further aggregated by 10 aggregation 

operators defined as follows: 

Agg =(whm,wgm,wam,wmed,wrp01,wrp05,wrp20,wgo01,wgo05,wgo09). 

, where 01 means 0.1   , and so on, and the next results are produced. 

Secondly, regarding the research values for discussion, the decision matrix with 

0.9   is selected for the application of DSAO-2. 

 

6.6.2 Properties of individual AOs 

Ten decision matrices of the variation of weight sets are used for ten AOs. The 

weight sets are generated by    , 0.1,0.2, ,1owaW      and are shown in table 6.5. 

The larger   means the less gap among the individual weights. When 1  , all 

weights are of equal values. The numerical results are presented in Appendix III. The 

data are plotted in figures 6.4a-b.  

 

Figures 6.4a and 6.4b show that different AOs behave differently for different 

decision matrices. This means that each AO has a different style. wrp and wgo with 

different   produce different results and likely different ranks. This means that a 

different AO with different   can have its own style. 
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Figure 6.4a: Results of individual aggregation operators (part I)  

 

Although  1 2 5w w w    except for 1  , the distribution among the 

weights are narrowed whilst   increases. The sensitivity of each AO for the changes of 
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weight is different. When the difference among the weights get less (e.g. increase of  ), 

the outputs of wgo05 and wgo09 decrease while the output of others AOs increase. In 

addition, wmed has relative sensitivity of the change of the values of weights. 
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Figure 6.4b: Results of individual aggregation operators (part II)  

 

Regarding the patterns of the AO population in the figures, the figures show that 

the lines of AOs are closer while   is less. When   increases, which means the gap 

of the weights of the criteria is reduced, the lines get farther apart. The main reason is 
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that the criteria in a high index become more significant, and the values of the criteria in 

a higher index are more than the values of the criteria in a lower index. 

Regarding the patterns of CSAO, the number of the AOs in Opt should be more 

than the number of the AOs in Pes. The main reason is that more lines are located in 

upper position of the y-axis. This issue is investigated in depth in the next sub-section. 

 

6.6.3 Selection of AO by CSAO 

What a decision maker finally feels of interest is not the properties of the 

aggregation operators, but which AO is the most suitable. In fact, there is likely no 

absolute answer. In the real world, no decision maker can always guarantee an 

absolutely accurate answer (except for those who are arrogant), but the best and the most 

appropriate answer which he thinks is correct (but others may not agree). Similarly, why 

do they make different decisions when the objective situation and background are the 

same? One of the explanations is that they have different cognitive styles or individual 

differences. Some make clever decisions whilst some do not. In the mathematician’s 

view, how they make decision can be modeled by equations. In the CSAO model, each 

AO reflects a different cognitive style. CSAO is used to classify the cognitive styles. 

This research proposes that CSAO is represented by DAAO-1 and DAAO-2. 

Table 6.6 shows the  *d k  of DAAO-1 of the proposed decision matrix where 
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 0.9W owaW . Interestingly, no matter which alternative input set of the decision 

matrix is used, the order of the AOs (k) is preserved to be the same. 

If the decision maker chooses Opt, there are seven options to represent the 

Optimistic AO. It is too subjective to use ArgMax in eq.6.7, thus DAAO-2 is needed. 

From DAAO-2 (algorithm 6.2),  *

1
ijd ,  *

2
ijd , *

3
ijd , *

4
ijd , *

5
ijd  are respectively:  

0 3

2 5

0 9

1 0 10

0 3

0 3

2 5

 
 

 
 
 
 
 
 

 
  

, 

0 3

2 5

0 9

1 0 10

0 3

0 3

2 5

 
 

 
 
 
 
 
 

 
  

, 

0 3

2 5

0 9

1 0 10

0 0

0 3

2 5

 
 

 
 
 
 
 
 

 
  

, 

2 4

2 7

0 9

1 0 10

0 3

0 4

2 7

 
 

 
 
 
 
 
 

 
  

, 

0 3

2 5

0 9

1 0 10

0 0

0 3

2 6

 
 

 
 
 
 
 
 

 
  

 

 

From eq. (6. 15), then  

   
*

* *

0 3

2 5

0 9

1 0 10

0 3

0 3

2 5

ij ijd Max Mode Join d


 
 

 
 

      
               

 
 

  

 

 

If a decision maker chooses “Pes” for the AO in the decision system, in the first 

rating step, there is only one choice, 01wrp , as it is indicated in table 6.6. The second 

rating category in hdV  is unnecessary. 

If “Ntl” is chosen, for the representation of AO, 05wrp  and 05wgo  are the 

candidates, by using eq. 6.7, where 05wgo  is for “Ntl”. 
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Table 6.6: The linguistic presentation of the style of the decision attitude for the AOs of 

the decision matrix   
*

*d k    

(k) Agg  *
1d k   *

2d k   *
3d k   *

4d k   *
5d k    

*
*d k  

1 01wrp  Pes Pes Pes Pes Pes Pes 

2 05wrp  Ntl Ntl Ntl Ntl Ntl Ntl 

3 05wgo  Ntl Ntl Ntl Ntl Ntl Ntl 

4 wam  Opt Opt Opt Ntl Ntl Opt 

5 20wrp  Opt Opt Opt Ntl Opt Opt 

6 01wgo  Opt Opt Opt Opt Opt Opt 

7 09wgo  Opt Opt Opt Opt Opt Opt 

8 wmed  Opt Opt Opt Opt Opt Opt 

9 wgm  Opt Opt Opt Opt Opt Opt 

10 whm  Opt Opt Opt Opt Opt Opt 

 

 

Table 6.7: The AO of the style of the decision attitude for the linguistic terms of the 

decision matrix  
*

*
jd


 
 
 

  

j d  *
1jd   *

2jd   *
3jd   *

4jd   *
5jd   

*
*
jd


 
 
 

 

1 Pes 1 1 1 1 1 1 

2 Ntl 3 3 3 3 3 3 

3 Opt 10 10 10 10 10 10 

 

When “Opt” is chosen, there are seven candidates. It is too straightforward to use 

E.q. 6.7.  Thus the second rating category in hdV  is needed. The index of the AO can 
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be found in  
*

*
ijd . 05wgo , 20wrp , 09wgo  and wgm  are the options with respect to 

the choice of the second rating linguistic term. 

 

6.7 Summary and remarks 

As different aggregation operators produce different results, these results can be 

described by the possibility likelihoods of the decision attitudes. The selection of the 

aggregation operators is related to the likelihoods of the decision attitudes of the 

operators. To achieve the proposal, the Cognitive Style and Aggregation Operator 

(CSAO) model is proposed to analyze the mapping relationship between aggregation 

operators and decision attitudes on the basis of fuzzy set theory.  The CSAO model has 

two types of Decision Attitude and Aggregation Operator (DAAO) model: DAAO-1, 

DAAO-2. The difference is that DAAO-1 applies classical single dimension linguistic 

terms whilst DAAO-2 applies the compound linguistic terms proposed in chapter 4. 

Three Algorithms for AO selection are developed in this chapter. 

The appropriate operators will be chosen according to the linguistic terms of the 

decision attitudes in the CSAO model. The cognitive style is characterized by the 

decision attitude. The CSAO model is useful for measuring the distribution of the AOs.  

Examples 6.1 and 6.3 test 17 AOs. On the basis of the result pattern, examples 6.2 

and 6.4 select only 7 AOs. From the numerical examples, it can be concluded that the 
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weighted median with other t-connorms and t-norms, owmax , owmin , and owa  in 

the literature review (Chapter 2.3.5) (Yager ijufks 1994, Renata Smolikova and 

Wachowiak, 2002) is not appropriate for the Cognitive Network Process. The reasons 

are stated after the numerical examples 6.1-6.2. 

In the detailed numerical analyses section, 10 AOs are tested for 10 decision 

matrices. The best practices of AO selection are illustrated using the combination of 

DAAO-1 and DAAO-2. The results can be found in chapter 6.5. 

Limitation of the CSAO model is that the CSAO relies on the definitions of the 

candidates. If some candidates are abnormal, the CSAO pattern will be abnormal too. 

Usually the abnormal operators produce excessively optimistic or excessively positive 

results. In this case, the expert can remove the abnormal AO by his perception, and then 

recalculate the patterns again. After several refinements of the patterns, the appropriate 

CSAO model can be developed. 

The CSAO is devoted to a proposal as how to map a collection of aggregation 

operators into a collection of decision attitudes by the CSAO model. This model is 

typically useful for those unsolved issues in the selection of aggregation operators. The 

OA candidates are determined by the decision maker with respect to cognitive style, 

which is characterized by decision attitudes. Thus the CSAO model is useful for the 

decision making applications with consideration of the cognitive styles (or decision 
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attitudes) of the decision makers. If there is no specification of the selection of AO from 

experts, the weighted average is the default setting for the CNP model due to its 

computation efficiency, easy understanding, and wide acceptance. 
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Chapter 7 Fuzzy Collective Cognitive Network Process 

7.1 Introduction 

In chapter 3, the concept of the Cognitive Network Process is presented. Chapters 

4, 5, and 6 develop the models of the compound linguistic ordinal scales, cognitive 

pairwise matrix and cognitive prioritization operator, as well as the cognitive style and 

aggregation operator (CSAO) respectively. 

The narrow definition of the CNP is of the Structural Assessment Network (SAN) 

of a single decision maker, and the crisp value represented for the compound linguistic 

variable. This chapter extends the concept of CNP, and proposes a boarder definition of 

CNP, which is named Fuzzy Collective Cognitive Network Process (FCCNP). The 

FCCNP is of multiple decision makers with fuzzy inputs. FCCNP can be divided into 

Collective CNP (CCNP) and fuzzy CNP (FCNP). CCNP is of the SAN of multiple 

decision makers with crisp inputs, whilst FCNP is of the SAN of a single decision maker 

with fuzzy inputs. 

The structure of this chapter is organized as follows. Chapter 7.2 discusses the 

concept of the collective cognitive network process. Chapter 7.3 discusses the concept of 

the fuzzy cognitive network process. To merge the concepts of CCNP and FCNP, chapter 

7.4 discusses the concept of the fuzzy collective network process. The numerical 

analysis is performed in chapter 7.5 whilst chapter 7.6 concludes this chapter. 



Chapter 7 FCCNP 

 

281 
 

7.2 Collective cognitive network process (CCNP) 

The collective cognitive network process (CCNP), which is also named as the 

group cognitive network process, is the CNP involved by a collection of experts  e . 

Thus CCNP has the form: 

   , ,CCNP CNP e we  (7.1) 

, where  ,e we  is a 2-tuple in which an expert e  has authority weight we . 

The following shows the variation between CNP and CCNP in views of rating 

scales, pairwise opposite matrix, cognitive prioritization operator and information 

fusion. 

 

7.2.1 Cognitive rating scales 

CNP applies the Compound Linguistic Ordinal Scale (CLOS) model, which is 

proposed in chapter 4, for the pairwise opposite comparison. For the pairwise opposite 

comparison, the scales of object A to object B, which is denoted by X 
  is the opposite 

relationship of the scales of object B to object A, which is denoted by X 
 . 

Regarding the syntactic form, CLOS is established on a compound linguistic 

variable mn  which is comprised of the element from the linguistic term vectors 

respectively: hedge vector hV


, directional vector dV


, and atomic vector aV


. A matrix 
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of compound linguistic variable mn  is built on the syntactic rule algorithm (algorithm 

4.1)  , ,mn h d aG V V V 
  

, has the following form: 

1 2 1 1 1

2 1

1 2 1

2 1 2 2 12

1 2 1

1 2 1

1

1

2

                       

n n

n n

n n

hd n

m m m n

n n

hd a hd a hd a

hd a hd a hd a

mn
a a a a

hd a hd a a

m
hd a hd a hd a

v v v v v v

v v v v v v

v v v v

v v v v vv

v v v v v v

  

  



   




   

















  









   

   

 

   

  





    







    



 
 
 
 
 
 
 
 
 
 
 
 
 

 (7.2) 

, where hdv  is the element of the combination of hV


 and dV


. 

 

The numerical representation is derived by the semantic rule algorithm or fuzzy 

normal distribution (algorithm 4.2) in chapter 4.  

   X
X f M
      

      1
, , min max 0, , , , ,j j j j hX d

f d X X V



 
       

     
   


 

      1
, , 0, , 0, , ,j j j j hX d

f d V



 
        

     
   


 (7.3) 

X 
  is the crisp numerical representation of  .   is the normal utility, which is the 

mean of the individual utility values of the comparison objects, and 0  . j
  is the 

modal value, jd


 is symmetric distance (by default, 1 2 , , nd d d
  

   ), j
  is 

tuning parameter of the membership function, jd
  is the membership function of  j , 
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and 1
jd    is the inverse membership function.  The parameters of membership 

fuzziness process   0,hV 


 determine the distribution of the hdV


 with respect to the 

corresponding atomic fuzzy sets. 

 

Table 7.1: Pairwise comparison interval scale schema using the CLOS   

Numerical 

Representation 

X  

Atomic verbal Scale 

aV


 
Explanations 

0 Equally Two activities contribute equally to the 

objective. 

2 Slightly Experience and judgment slightly favour one 

activity over another. 

4 Moderately Experience and judgment moderately favour 

one activity over another. 

6 Strongly An activity is favored very strongly over 

another; its dominance demonstrated in 

practice. 

8 Essentially The evidence favoring one activity over 

another is of the highest possible order of 

affirmation 

(0-2) 

(2-4) 

(4-6) 

(6-8) 

hdV


= 

[“much below”, 

“quite below”, “little 

below”, 

“absolutely”, 

“little below”, 

“ quite above”, 

“much above”] 

Intermediate values between adjacent scale 

values using hdV


. The detailed values are 

shown in the matrix X 

  which is calculated 

by 

      1
, , 0, , 0, , ,j j j j hX d

f d V



 
        

    
   


. 

(-8,0) 
Opposite of the 

above 

If object i is compared with object j with 

assignment of a value, then object j compared 

with object i has the opposite of the value. 

The details values are shown in X 

 . 
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In addition, X 
  is the opposite linguistic representation of X 

 , and X X 
    

where  0,X 
   and  ,0X 

   . Thus    , ,X X X   
     . 

 

Example 7.1 

Let the comparison interval scale schema of the Hedge-Direction-Atom Linguistic 

Representation Model be     , , ,
X

X X X f 

     . To construct the labels of the 

comparison interval scale  , let  Equal,Slight,Moderate,Strong,EssentialaV 


, 

 Little,Quite,MuchhV 


 and   Below,Absolutely,AbovedV 


. By algorithm 4.1, then 

- - - -

- - - -

- - - -

- - - - -

- - -

- - - -

- - -

MB Sl MB Mo MB St MB Es

QB Sl QB Mo QB St QB Es

LB Sl LB Mo LB St LB Es

A Eq A Sl A Mo A St A Es

LA Eq LA Sl LA Mo LA St

QA Eq QA Sl QA Mo QA St

MA Eq MA Sl MA Mo MA St

 
 


 
 
 

  
  
 

 
   

. 

Regarding the representation values, let    0, 0,8  , 1, ,5 2d


 , 

 0,2,4,6,8 


, 1, ,5 2

  ,  1 1

j PbMF
   ,    1,1,1hV 


, 0 0.5  . By using 

algorithm 4.2, X 

  is of the form: 

0 0.645 2.645 4.645 6.645

0 1.366 3.366 5.366 7.366

0 1.764 3.764 5.764 7.764

0 2.000 4.000 6.000 8.000

0.236 2.236 4.236 6.236 0

0.634 2.634 4.634 6.634 0

1.355 3.355 5.355 7.355 0

X 



 
 
 
 
 

  
 
 
 
 
 

, 

 and the opposite of  X 

  is  
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0 0.645 2.645 4.645 6.645

0 1.366 3.366 5.366 7.366

0 1.764 3.764 5.764 7.764

0 2.000 4.000 6.000 8.000

0.236 2.236 4.236 6.236 0

0.634 2.634 4.634 6.634 0

1.355 3.355 5.355 7.355 0

X 



    
 

   
 
    
 

     
    
 
    
    



 

 

The result is summarized in table 7.1. As there are many options, a Deducted 

Rating Strategy is needed. Fig. 7.1 illustrates the steps to show how the rating process is 

performed. The details are summarized in algorithm 4.3. 

 

1:Options for Initial Selection 2: Second Options for “Equally” 3: Second Options for “Slightly”

4: Second Options for “Moderately” 5: Second Options for “Strongly” 6: Second Options for “Essentially”

 

Figure 7.1: Deducted rating strategy for the compound interval scale  

 

The atomic variable can be added to 9 terms. When a compound rating scale is 

used, more options are created. This issue is illustrated in following example. 
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Example 7.2: 

Let the comparison interval scale schema of the Hedge-Direction-Atom Linguistic 

Representation Model be     , , ,
X

X X X f 

     . To construct the labels of the 

comparison interval scale  , aV


 and hdV


 are shown in table 7.2. By algorithm 4.1, 

  is of the form: 

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - - -

- - - - - -

MB Wk MB Mo MB Mp MB St MB Sp MB VS MB VSp MB Es

QB Wk QB Mo QB Mp QB St QB Sp QB VS QB VSp QB Es

LB Wk LB Mo LB Mp LB St LB Sp LB VS LB VSp LB Es

A Eq A Wk A Mo A Mp A St A Sp A VS A VSp A Es

LA Eq LA Wk LA Mo LA Mp LA St LA Sp LA VS LA







 -

- - - - - - - -

- - - - - - -

VSp

QA Eq QA Wk QA Mo QA Mp QA St QA Sp QA VS QA VSp

MA Eq MA Wk MA Mo MA Mp MA St MA Sp MA VS MA VSp

 
 
 
 
 
 
 
 

 
   

. 

Regarding the representation values X , let    0, 0,8  , 1, ,9 1d


 , 

 0,1,2,3,4,5,6,7,8 


, 1, ,5 2

  ,  1 1

j PbMF
   ,    1,1,1hV 


, 0 0.5  . By  

algorithm 4.2, X 

  is of the form: 

0 0.323 1.323 2.323 3.323 4.323 5.323 6.323 7.323

0 0.683 1.683 2.683 3.683 4.683 5.683 6.683 7.683

0 0.882 1.882 2.882 3.882 4.882 5.882 6.882 7.882

0 1 2 3 4 5 6 7 8

0.118 1.118 2.118 3.118 4.118 5.118 6.118 7.118 0

0.317 1.317 2.317 3.317 4.3

X 

 

17 5.317 6.317 7.317 0

0.677 1.677 2.677 3.677 4.677 5.677 6.677 7.677 0

 
 
 
 
 
 
 
 
 
 
 

 

, and the opposite of  X 

  is of the form: 

-

0 -0.323 -1.323 -2.323 -3.323 -4.323 -5.323 -6.323 -7.323

0 -0.683 -1.683 -2.683 -3.683 -4.683 -5.683 -6.683 -7.683

0 -0.882 -1.882 -2.882 -3.882 -4.882 -5.882 -6.882 -7.882

= 0 -1 -2 -3 -4 -5 -6 -7 -8

-0.118 -1.118 -2.118 -3.118 -4.118 -5

X

.118 -6.118 -7.118 0

-0.317 -1.317 -2.317 -3.317 -4.317 -5.317 -6.317 -7.317 0

-0.677 -1.677 -2.677 -3.677 -4.677 -5.677 -6.677 -7.677 0

 
 
 
 
 
 
 
 
 
 
 
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Table 7.2: Scale schema: pairwise opposite comparison   

Index 

i 

Atomic verbal scale 

aV


 

Numerical scales 

 , 0, ,iX i n
n



     

0 Equally  0 

1 Weakly  8
  

2 Moderately  4
  

3 Moderately plus 3
8

  

4 Strongly  2
  

5 Strong Plus 5
8

  

6 Very Strongly 3
4

  

7 Very strongly Plus 7
8

  

8 Extremely   

{(i,j)} 

hdV


=       [“much below”,  

“quite below”, “little below”, 

“absolutely”, “little below”, 

“quite above”, “much above”] 

Intermediate values between adjacent scale 

values using the directional hedge variable 

hdV


. The details are shown in X 

  which is 

calculated by the form: 

      1
, , 0, , 0, , ,j j j j hX d

f d V



 
        

    
   


. 

{-i} opposites of Above X 

   in ( from  -  to 0) 

 

The results are summarized in table 7.2 (In this example, =1 ) . As there are 

many options, the deducted rating strategy (algorithm 4.3) is needed. Fig. 7.2 illustrates 

the steps to show how the rating process is performed.  
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The single rating process is only a special case of this double step rating process as 

the directional hedge terms are ignored. Thus for the atomic linguistic terms and the 

representation values, one can refer to tables 7.1-7.2. This paper uses compound rating 

scales rather than single rating scales due to the computational accuracy. 

 

1:Options for Initial Selection 2: Second Options for “Equally” 3: Second Options for “Weakly”

6: Second Options for “Strongly”5: Second Options for “Moderately Plus”4: Second Options for “Moderately”

10: Second Options 

for “Extremely”

8: Second Options 

for “Very Strongly ”

7: Second Options for 

“Strongly Plus”

9: Second Options for 

“Very Strongly Plus ”

 

Figure 7.2: Deducted rating strategy for the compound interval scale of 9 point atomic 

terms  
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7.2.2 Pairwise opposite matrix (POM) 

The Pairwise Opposite Matrix is used to interpret the individual utilities of the 

candidates. Let an ideal utility set be  1, , nV v v  , and the comparison score be 

ij i jb v v  . The ideal pairwise opposite matrix is 
i jB v v   

 . A subjective 

judgmental pairwise opposite matrix using interval scales is 
ijB b    .  B  is 

determined by B   as follows: 

1 1 1 2 1 11 12 1

2 1 2 2 2 21 22 2

1 2 1 2

n n

n n

ij ij

n n n n n n nn

v v v v v v b b b

v v v v v v b b b
B b b B

v v v v v v b b b

     
   

  
                
   

     

 

 
       

 

 (7.4) 

If i j , then 0ij i jb v v   . Thus the above matrix is in the form: 

1 2 1 12 1

2 1 2 21 2

1 2 1 2

0 0

0 0

0 0

n n

n n

ij ij

n n n n

v v v v b b

v v v v b b
B b b B

v v v v b b

    
   

 
                
   

    

 

 
       

 

 (7.5) 

Usually, ijb    is given through the rating process of the expert, and  

   , ,ijb X X X   
      . The expert only fills an upper triangular matrix of the 

form: 

         

0    otherwise

ijb i j
B


 


  , or written explicitly, 

12 1

2

0

0 0

0 0 0

n

n

b b

b
B

 
 
 
 
 
 





   



 (7.6) 

The lower triangular matrix is given by the opposite of an upper triangular matrix of 

the form: 
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0    Otherwise

ijb i j
B


 


  , or written explicitly, 
21

1 2

0 0 0

0 0

0n n

b
B

b b



 
 
 
 
 
 





   



 (7.7) 

ijb    is achieved by B B B   .  For a complete comparison of a set of 

candidates, POM needs  
 1

2
n n

 ratings.  B  is validated by the Accordant Index  

of the form: 

2
1 1

1 n n

ij

i j

AI d
n  

  ,  
2

1 T

ij i j ijd Mean B B b


  
       

,  , 1, ,i j n   

, where 0AI  , and   is the normal utility. (7.8) 

If 0AI  , then B is perfectly accordant;  If 0 0.1AI  , then B is satisfactory, then. 

If 0.1AI  , then B is unsatisfactory .  

After the set of POM’s is assessed, they are converted into utility vectors by a 

cognitive prioritization operation is as the following section. 

 

7.2.3 Cognitive prioritization operator (CPO) 

Two methods are recommended in chapter 5: Primitive Least Squares (PLS)  (or 

Row Average plus the normal Utility (RAU))  and Least Penalty Squares (LPS), as 

follows. 

The vector of individual utilities can be derived by the Primitive Least Squares 

Optimization model which is of the form: 



Chapter 7 FCCNP 

 

291 
 

 PLS , =B   

 
2

1 1
Min     =

n n

ij i ji j i
b v v

  
     (7.9) 

1
s.t.      

n

ii
v n


 ,  

where  in v , and    is the normal utility. 

The solution of the closed form can be solved manually and is RAU, given by: 

   
1

1
, : , 1, ,  

n

i i ij

j

RAU B v v b i n
n

 


  
      
   

   (7.10) 

 

Regarding LPS, the individual utility vector can be derived by 

 LPS ,B    

 
2

1 1
Min        =

n n

ij ij i ji j i
b v v

  
    


 

, 

1

2

3

,    v  &  b 0

    or v  &  b 0

,    v  &  b 0

    or  &  b 0

 ,               

i j ij

i j ij

i j ijij

i j ij

v

v

v

v v

otherwise







 


 

   
  



, 1 2 31       (7.11) 

1
s.t.      ,

           v 0, 1,2, ,

n

ii

i

v n

i n






 




,  

where  in v , and   is the normal utility. 

 

For the most decision problems, summation of the priority vector  1, , nW w w   

is equal to one, i.e. 
1

1
n

ii
w


 . W is said to be a normalized priority vector (or a priority 

vector in short). In order to use the proposed methods, the individual utility from POM is 
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rescaled (or normalized) as a normalized priority vector by the rescale function of the 

normalization function, and has the following form. 

 : , 1, ,i
i i

v
W w w i n

n

 
    
 

 , which
 1, ,

i

i n

v n





 (7.12) 

 

7.2.4 Crisp multi-experts multi-criteria aggregation model 

There are three types of aggregation: aggregation of the structural criteria, 

aggregation of the structural experts, and aggregation of both, i.e. multi-experts 

multi-criteria aggregation (MEMC). The primitive CNP typically applies the first type 

whilst the Collective CNP applies the third.  

Consider a cluster  ,Clst nd gn . The aggression function for a node nd is to 

combine the set of its data granules  ing  and the set of the corresponding weights of 

the granules  iwng  into a meaningful or representative value for nd. The function has 

the form: 

  1
,

ing

i i i
nd Agg ng wng


     (7.13) 

, where ing  is the cardinal number of the nodes. 

Consider a typical CNP structure comprising of the structural criteria of two layers 

and one expert layer:  Objective cluster   , : 1, ,iClst O c i q  , ic  Cluster 

  ,, : 1, ,i i j iClst c c j q   , and expert cluster,   ,i kClst c e


. On the basis of a 

template clusters, following forms are defined. 
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The aggression function for a criterion c   is to combine its sub-criteria ic  and 

weights of the sub-criteria iw  into a meaningful or representative value for O. The 

function has the form: 

  1
,

q

i i i
O Oagg c w


     (7.14) 

, where q is the cardinal number of the criteria. 

 

Likewise, aggregation of ic  has the form: 

   
1

,
jq

i i ij ij
j

c Cagg c w


 
 

  (7.15) 

, where jq  is the cardinal number of the sub-criteria of criteria j. 

Note that the cardinal number iq may not be equal to the cardinal number 'i iq   . 

Thus, C  is a non-rectangular matrix or a jagged array, i.e. 

    
11,1 1, ,1 ,, , , , , ,

nq n n qC c c c c    . 

The aggregation of the collective experts  ije  evaluating a measurable criterion i  

ic


  with the weights of experts  ijwe  is of the form:  

   
 

1
,

ijwe

i i ij ij
j

c Eagg e we


 
    
 


 (7.16) 

For a measurable criterion i of the collection of experts   ,i kClst c e


, ijwe   can 

be derived by the cognitive prioritization (CP) of a pairwise opposite matrix, and has the 

form: 
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 

 

 1

1

'
',

,      

ij

ij

j we

j

we

ij

j j

e e e

e

we CP i
e a

e

 
 
  

  
   
  
  
  
  
  

 





. (7.17) 

On the other hand, in the structural criteria of two layers, ijc  is the measurable 

criterion. The collective experts   ,i kClst c e


can be regarded as the sub-layer of ,i jc  

Cluster, i.e.   , , ,,i j i j kClst c c , and has the form: 

  ,

1
,

i jq

ij i ijk ijk
k

c Eagg c w


 
 

 (7.18) 

,where the cardinal number of experts for ijc  is ,i jq . ijkc  is the value of attribute j of 

criteria i evaluated by expert k, and ijkw  is the corresponding weight. In this model, 

each attribute may not be evaluated by the same expert, and the same cardinal number of 

experts, i.e. ,i jr  may not be equal to , 'i j jr  . Thus, ic


 is a non-rectangular matrix ( or 

jagged array). 

 

On the basis of above definitions, proposition 7.1 holds. 

 

Proposition 7.1 (Multiple positive Aggregations): In a typical CCNP structure 

comprising the positive structural criteria of two layers and one layer of expert, the 

aggregations for an objective O are of the form: 
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  1
,

q

i i i
O Oagg c w


     

  ,

1
1

1

, , ,
j

i j

q
q

q

i i ijk ijk ij i
k

j
i

Cagg Cagg Eagg c w w w





                         

 (7.19) 

Proof: 

For   ,i kClst c e


, 

  ,

1
,

i jq

ij i ijk ijk
k

c Eagg c w


 
 

; 

For   ,,i i jClst c c ,  

  
1

,
jq

i i ij ij
j

c Cagg c w


 
 

 

  ,

1
1

, ,
j

i j

q
q

i ij ijk ijk ij
k

j

Cagg Eagg c w w




             

; 

For   , iClst O c ,  

  1
,

q

i i i
O Cagg c w


     

  
1

1

, ,
j

q
q

i ij ij i
j

i

Cagg Cagg c w w




             

 

  ,

1
1

1

, , ,
j

i j

q
q

q

i i ijk ijk ij i
k

j
i

Cagg Cagg Eagg c w w w





                         

. 

 □ 

Likewise, this follows proposition 7.2. 

 

Proposition 7.2(Multiple positive and negative Aggregations): In a typical CCNP 

structure comprising the structural criteria of two layers, which are positive and negative,  
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and one layer of expert, the aggregations for an objective including 

  , : 1, , 'iClst O c i q    and   , : ' 1, ,iClst O c i q q     are of the forms 

  ,

'

1
1

1

, , ,
j

i j

q
q

q

i i ijk ijk ij i
k

j
i

O Cagg Cagg Eagg c w w w






                         

 (7.20) 

  ,

1
1

' 1

, , ,
j

i j

q
q

q

i i ijk ijk ij i
k

j
i q

O Cagg Cagg Eagg c w w w




 

                         

 (7.21) 

  1
,

q

i i i
O Oagg c w O O 


      (7.22) 

Proof: 

The proof is trivial. It further develops proposition 7.2.  □ 

 

In the above CCNP model, at least three kinds of aggregation operators are needed: 

iEagg , iCagg , and Cagg . The choice of the aggregation operators can apply to the 

cognitive style and aggregation operator (CSAO) model, which is comprised of 

DAAO-1 and DAAO-2 (Chapter 6). The weighted average operator is the default setting 

for the CNP model due to its computation efficiency, easy understanding, and wide 

acceptance. 

 

7.2.5 Crisp multi-experts multi-criteria decision matrix 

The multi-criteria decision matrix of  ,Clst nd gn  with respect to T  of a single 

expert has the following form:  
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  

 1

1

1

,

, ,

j n

j n

k k j

m

wgn wgn wgn

xgn xgn xgn

T

dm T Clst nd gn

T v

T

 
 
 
 
 
 
 
 

 

 





 (7.23) 

 The aggregation problem of   , ,dm T Clst nd gn  is as follows: 

 1

1

1

,

( )

j n

j n

nd

k k j

m

wgn wgn wgn

xgn xgn xgn

T

T Agg

T v

T

 
 
 
 
 
 
 
 

 

 





 (7.24) 

, where  1, , , ,j ngn gn gn gn   ,  ,j j jgn xgn wgn ;  1, , , ,nd k mT T T T    ; Agg  

is a aggregation operator,    , ,k k j jT Agg v wgn , 1, ,k m  , ,k jv  is the utility 

value with respect to kT  and jgn . Thus Eq. 7.24 is also of the form: 

    ,: , , 1, ,nd k k k j jT T T Agg v wgn k m     (7.25) 

 

On the basis of the above definitions, the multi-experts multi-criteria decision 

matrix of   , jClst nd gn  of the multi-experts   ' ',j je we  with respect to kT  is of 

the following form:  
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      

 1

1

1 1 1,1 1, 1,

' '

' ' ',1 ', ',

,1 , ,

, , , ,

nd nd nd nd nd

j n

j n

j n

j j k j

j j j j j j n

q q q q j q n

wgn wgn wgn

xgn xgn xgn

e we v v v

dm e we T Clst nd gn

e we v v v

e we v v v

 
 


 
 
 
 
 
 

 

 

 

      

 

      

 

 (7.26) 

, where 'jwe  is the relative weight of the expert 'je ; ',j jv  is the utility value with 

respect to  ' ',j je we  and jxgn . 

The aggregation problem of       ' ', , , ,j j k jdm e we T Clst nd gn  is of the form: 

 1

1

1 1 1,1 1, 1,

' ' ',1 ',

,1 , ,

( ( ))
k

nd nd nd nd nd

j n

j n

j n

T

j j j j j

q q q q j q n

wgn wgn wgn

xgn xgn xgn

e we v v v

nd Cagg Eagg

e we v v

e we v v v

 
 


 
 
 
 
 
 

 

 

 

      

  

      

 

 (7.27) 

,where Eagg  is the aggregation function of the expert judgments for jxgn , and has  

the form: 

  ', '
' 1

,
ndq

j j j j
j

xgn Eagg v we


 
 

,   1, ,j n    (7.28) 

Cagg  is the function to aggregate the set of the criteria pairs   ,j jxgn wgn  in a node 

of alternative k , i.e. 
kTnd , of the form: 

  
1

,
k

n

T j j
j

nd Cagg xgn wgn


 
 

,  1, ,k m    (7.29) 

  ', '
1

1

, ,
nd

k

n
q

T j j j j
k

j

nd Cagg Eagg v we wgn




             

 ,  1, ,k m    (7.30) 
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Propositions 7.2 and 7.3 are an application of 
kTnd , which is the usual case in 

CNP. 

The set of the multi-experts multi-criteria decision matrix of all alternatives is of 

the form 

              ' ' ' ', , , , , , , ,j j j j j k jdm e we T Clst nd gn dm e we T Clst nd gn  (7.31) 

and the set of the alternative for a node is  

    ', '
1

1

: , , , 1, ,
nd

k k

n
q

T T T j j j j
k

j

nd nd nd Cagg Eagg v we wgn k m




                     

  

 (7.32) 

In this case, which is for the discussion of the propositions 7.2 and 7.3, the output 

value is for an alternative only. The calculation process is repeated for other alternatives 

with different assessment values. And finally the volition decision process (chapter 3) is 

applied. 

 

7.3 Fuzzy cognitive network process (FCNP) 

The fuzzy cognitive network process (FCNP), is the CNP with fuzzy input. The 

extension of CNP is shown as follows with respect to the rating scales, pairwise opposite 

matrix, cognitive prioritization operator and information fusion. 
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7.3.1 Fuzzy cognitive rating scales 

Let the comparison interval scale schema of the Hedge-Direction-Atom Linguistic 

Representation Model be     '
, ' ' , ' ,

X
X X X f 

     . FCNP applies the same 

compound linguistic variable   for the rating scales as the CNP does. However, the 

representation numbers 'X   of   are fuzzy numbers which are generated by the 

Semantic Rule Algorithm with fuzzy output  
'X

f   (algorithm 4.2). 

 

Let the fuzzy number of a compound linguistic term have the form 

 ' ' ' ' ' ' '' ' ' , ,
i j i j i j i ji j hd a l uv v x x x     (7.33) 

,where 'i  is the index of directional hedge term, and 'j  is the index of the atomic 

term. 

Thus, 'X 
  is the fuzzy numerical representation of  , which is shown in (7.34), 

and has the form. 

   

   

     

   

1,2 ,2 ,2 1, 1, 1,

,2 ,2 ,2 , , ,

1,1 1,1 1,1 1,2 1,2 1,2 1, 1, 1,

2,1 2,1 2,1 2,2 2,2 2,2

, , , ,

, , , ,

' , , , , , ,

, , , ,

n n n

n n n

n n n

l u l u

l u l u

l u l u l u

l u l u

x x x x x x

x x x x x x

X x x x x x x x x x

x x x x x x

 

     

        

     

 

 

  

 

        

     














   









   ,1 ,1 ,1 ,2 ,2 ,2
, , , ,

m m m m m ml u l ux x x x x x 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
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  



 

 (7.34) 
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The opposite matrix of the above form is of the following form: 

   

   

     

 

,2 ,2 1,2 1, 1, 1,

,2 ,2 ,2 , , ,

1,1 1,1 1,1 1,2 1,2 1,2 1, 1, 1,

2,1 2,1 2,1

, , , ,

, , , ,

' , , , , , ,

, ,

n n n

n n n

n n n

u l u l

u l u l

u l u l u l

u l

x x x x x x

x x x x x x

X x x x x x x x x x

x x x x

 

     

        

  

 

 

  


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      
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   
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   





 
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 
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 
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 
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 
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 
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 (7.35) 

 

Table 7.3: The result of 'X 
  with five atomic terms  

 
Equally Slightly Moderately Strongly Essentially 

Much Below Null (0, 0.645, 1.291) (2., 2.645, 3.291) (4., 4.645, 5.291) (6., 6.645, 7.291) 

Quite Below Nul (1., 1.366, 1.732) (3., 3.366, 3.732) (5., 5.366, 5.732) (7., 7.366, 7.732) 

Little Below Null (1.528, 1.764, 2.) (3.528, 3.764, 4.) (5.528, 5.764, 6.) (7.528, 7.764, 8.) 

Absolutely (0, 0, 0) (1.764, 2., 2.236) (3.764, 4., 4.236) (5.764, 6., 6.236) (7.764, 8., 8.) 

Little Above (0, 0.236, 0.472) (2., 2.236, 2.472) (4., 4.236, 4.472) (6., 6.236, 6.472) Null 

Quite Above (0.268, 0.634, 1.) (2.268, 2.634, 3.) (4.268, 4.634, 5.) (6.268, 6.634, 7.) Null 

Much Above (0.709, 1.355, 2.) (2.709, 3.355, 4.) (4.709, 5.355, 6.) (6.709, 7.355, 8.) Null 

 

Table 7.4: The result of 'X 
  with five atomic terms  

 

Equally Slightly Moderately Strongly Essentially 

Much Below Null (-1.291,- 0.645, 0) (2., 2.645, 3.291) (-5.291, -4.645, -4.) (-7.291, -6.645, -6.) 

Quite Below Null (-1.732, -1.366, -1) (3., 3.366, 3.732) (-5.732, -5.366, -5.) (-7.732, -7.366, -7.) 

Little Below Null (-2., -1.764, -1.528) (-3.528,- 3.764,- 4.) (-6.,- 5.764, -5.528) (-8., -7.764, -7.528) 

Absolutely (-0.236, 0, 0) (-2.236.,- 2., -1.764.) (-4.236, -4., -3.764) (-6.236,- 6.,- 5.764) (-8.,- 8.,- 7.764) 

Little Above (- 0.472, -0.236, 0) (- 2.472,- 2.236, -2.) (-4.472, -4.236, -4.) (-6.472, -6.236, -6.) Null 

Quite Above (-1., -0.634, -0.268) (-3., -2.634, -2.268) (-5., -4.634, -4.268) (-7., -6.634, -6.268) Null 

Much Above (-2., -1.355, -0.709) (-4., -3.355, -2.709) (-6., -5.355, -4.709) (-8., -7.355, -6.709) Null 
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Example 7.2 

This example is a continuation of example 7.1. Assume other settings remain unchanged, 

except for the output of algorithm 4.2, which is a fuzzy output. 'X 
  is shown in table 

7.3 whilst 'X 
  is shown in table 7.4. However, “A-Eq” is (0,0,0), always. 

 

Table 7.5: The results of 'X 
  with nine atomic terms  

 
MB QB LB A LA QA MA 

Eq Null Null Null (0, 0, 0) (0, 0.12, 0.24) (0.13, 0.32, 0.5) (0.35, 0.68, 1.) 

Wk (0, 0.32, 0.65) (0.5, 0.68, 0.87) (0.76, 0.88, 1.) (0.88, 1., 1.12) (1., 1.12, 1.24) (1.13, 1.32, 1.5) (1.35, 1.68, 2.) 

Mo (1., 1.32, 1.65) (1.5, 1.68, 1.87) (1.76, 1.88, 2.) (1.88, 2., 2.12) (2., 2.12, 2.24) (2.13, 2.32, 2.5) (2.35, 2.68, 3.) 

Mp (2., 2.32, 2.65) (2.5, 2.68, 2.87) (2.76, 2.88, 3.) (2.88, 3., 3.12) (3., 3.12, 3.24) (3.13, 3.32, 3.5) (3.35, 3.68, 4.) 

St (3., 3.32, 3.65) (3.5, 3.68, 3.87) (3.76, 3.88, 4.) (3.88, 4., 4.12) (4., 4.12, 4.24) (4.13, 4.32, 4.5) (4.35, 4.68, 5.) 

Sp (4., 4.32, 4.65) (4.5, 4.68, 4.87) (4.76, 4.88, 5.) (4.88, 5., 5.12) (5., 5.12, 5.24) (5.13, 5.32, 5.5) (5.35, 5.68, 6.) 

VS (5., 5.32, 5.65) (5.5, 5.68, 5.87) (5.76, 5.88, 6.) (5.88, 6., 6.12) (6., 6.12, 6.24) (6.13, 6.32, 6.5) (6.35, 6.68, 7.) 

VVS (6., 6.32, 6.65) (6.5, 6.68, 6.87) (6.76, 6.88, 7.) (6.88, 7., 7.12) (7., 7.12, 7.24) (7.13, 7.32, 7.5) (7.35, 7.68, 8.) 

Es (7., 7.32, 7.65) (7.5, 7.68, 7.87) (7.76, 7.88, 8.) (7.88, 8., 8.) Null Null Null 

 

Table 7.6: The results of 'X 
  with nine atomic terms  

 

MB QB LB A LA QA MA 

Eq Null Null Null (0, 0, 0) (-0.24, -0.12, 0) (-0.5, -0.32, -0.13) (-1., -0.68, -0.35) 

Wk (-0.65, -0.32, 0) (-0.87, -0.68, -0.5) (-1, -0.88, -0.76.) (-1.12, -1., -0.88.) (-1.24, -1.12, -1.) (,-1.5 -1.32, -1.13) (-2., -1.68, -1.35) 

Mo (-1.65, -1.32, -1.) (-1.87, -1.68, -1.5) (-2, -1.88, -1.76.) (-2.12, -2., -1.88) (-2.24,-2.12, -2.) (-2.5, -2.32, -2.13) (-3., -2.68, -2.35) 

Mp (-2.65, -2.32, -2.) (-2.87, -2.68, -2.5) (-3., -2.88, -2.76) (-3.12, -3., -2.88) (-3.24, -3.12, -3.) (-3.5, -3.32, -3.13) (-4., -3.68, -3.35) 

St (-3.65, -3.32, -3.) (-3.87, -3.68, -3.5) (-4, -3.88, -3.76.) (-412., -4., -3.88) (-4.24, -4.12, -4.) (-4.5, -4.32, -4.13) (-5., -4.68, -4.35) 

Sp (-4.65, -4.32, -4.) (-4.87, -4.68, -4.5) (-5., -4.88, -4.76) (-5.12, -5., -4.88) (-5.24, -5.12, -5.) (-5.5, -5.32, -5.13) (-6., -5.68, -5.35) 

VS (-5.65, -5.32, -5.) (-5.87, -5.68, -5.5) (-6., -5.88, -5.76) (-6.12, -6., -5.88) (-6.24, -6.12, -6.) (-6.5, -6.32, -6.13) (-7., -6.68, -6.35) 

VVS (-6.65, -6.32, -6.) (-6.87, -6.68, -6.5) (-7., -6.88, -6.76) (-7.12, -7., -6.88) (-7.24, -7.12, -7.) (-7.5, -7.32, -7.13) (-8., -7.68, -7.35) 

Es (-7.65, -7.32, -7.) (-7.87, -7.68, -7.5) (-8., -7.88, -7.76) (-8., -8., -7.88) Null Null Null 
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Example 7.3 

This example is a continuation of example 7.2. Assume other settings remain unchanged, 

except for the output of algorithm 4.2, which is a fuzzy output. 'X 
  is shown in table 

7.3 whilst 'X 
  is shown in table 7.4. However, A-Eq is (0,0,0), always. 

 

7.3.2 Fuzzy pairwise opposite matrix 

The fuzzy pairwise opposite matrix (FPOM) is used to interpret the individual 

utilities of the candidates in fuzzy numbers. Let an ideal fuzzy utility set be 

 1, , nV v v
  

 , where the fuzzy utility is of the form  , ,l u

i i i iv v v v


, and the 

comparison score in fuzzy number is ij i jb v v 
  

. The ideal fuzzy pairwise opposite 

matrix is i jB v v   

  
. A subjective judgmental fuzzy pairwise opposite matrix using 

interval scales is ijB b   


.  B


 is determined by B


  as follows: 

11 12 11 1 1 2 1

2 1 2 2 2 21 22 2

1 2 1 2

nn

n n

ij ij

n n n n n n nn

b b bv v v v v v

v v v v v v b b b
B b b B

v v v v v v b b b

    
  

                   
  

       

        
          

       
        

 

 (7.36) 

, where    l u u l
ij ij ij ij ji ji ji jib b b b b b b b       
 

, , , , , and for 1i j n , , ,  and i j . If i j , 

then  0,0,0ij i jb v v  
  

. Thus the above matrix has the form: 

 

 

 

1 2 1

2 1 2

1 2

0,0,0

0,0,0

0,0,0

n

n

n n

v v v v

v v v v
B

v v v v

  
 

  
 
 

   

   


    
   

   

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     

     

     

12 12 12 1 1 1

12 12 12 2 2 2

1 1 1 2 2 2

0,0,0 , , , ,

, , 0,0,0 , ,

, , , , 0,0,0

l u l u

n n n

u l l u

n n n

u l u l

n n n n n n

b b b b b b

b b b b b b
B

b b b b b b

 

 

 

 
 
   

  
 
 
       





   



 (7.37) 

B


 can be decomposed as three matrices as follows: 

12 1 12 1

21 2 12 2

1 2 1 2

0 0

0 0

0 0

l l l l

n n

u l l l

l n n

u u l l

n n n n

b b b b

b b b b
B

b b b b

   
   

    
   
   

       

 

 

       

 

 (7.38) 

12 1 12 1

21 2 12 2

1 2 1 2

0 0

0 0

0 0

n n

n n

n n n n

b b b b

b b b b
B

b b b b

   

   


   

   
   

    
   
   

       

 

 

       

 

 (7.39) 

12 1 12 1

21 2 12 2

1 2 1 2

0 0

0 0

0 0

u u u u

n n

l u u u

u n n

l l u u

n n n n

b b b b

b b b b
B

b b b b

   
   

    
   
   

       

 

 

       

 

 (7.40) 

Usually, ijb B
 

is given through the rating process of the expert in the compound 

scale in fuzzy number, i.e.  ' ' , 'ijb X X X 
   


. The expert only fills a fuzzy upper 

triangular matrix of the form: 

 

         

0,0,0     otherwise

ijb i j
B

 
 





  , written explicitly,  

 

   

     

     

     

     

12 12 12 1 1 112 1

2 2 2 2

0,0,0 , , , ,0,0,0

0,0,0 0,0,0 0,0,0 0,0,0 , ,

0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0

l u l u

n n nn

l u

n n n n

b b b b b bb b

b b b b
B

 




  
  
  

    
  
     

 



  

       
 

 (7.41) 
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The lower triangular matrix is given by the opposite of an upper triangular matrix 

of the form: 

 

           

0,0,0     Otherwise

ijb i j
B

 
 





  , written explicitly,  

     

   

 

     

     

     

12 12 1221

1 2 1 1 1 2 2 2

0,0,0 0,0,0 0,0,00,0,0 0,0,0 0,0,0

, , 0,0,0 0,0,00,0,0 0,0,0

0,0,0 , , , , 0,0,0

u l

u l u l
n n n n n n n n

b b bb
B

b b b b b b b b



 



  
  
    

    
  
           




 

       
 

 

 (7.42) 

ijb 
 


 is achieved by B B B  

  
.  For a complete comparison of a set of 

candidates, FPOM needs  
 1

2
n n

 ratings.  B


  is validated by the Fuzzy 

Accordant Index AI  or FAI is of the form: 

      
0.25 0.5 0.25

l uAI AI AI AI   , where 

2
1 1

1 n n
l l

ij

i j

AI
n


 

  ,   
2

1 T
l l l l

ij i j ijl
Mean B B b



  
       

,  , 1, ,i j n    ; 

2
1 1

1 n n

ij

i j

AI
n

 
 

  ,   
2

1 T

ij i j ijMean B B b   






  
       

,  , 1, ,i j n    ; 

2
1 1

1 n n
u u

ij

i j

AI
n


 

  ,   
2

1 T
u u u

ij i j ijMean B B b






  
       

,  , 1, ,i j n    ; 

 (7.43) 

 , ,l u   


  is the fuzzy normal utility. By default, 

        , , , ,l u Max X Max X Max X          


, and   is the average of 

the modal values of two adjacent atomic terms. 
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AI  is the normalized weighted geometric of  , ,l uAI AI AI , and  0AI  .  If 

 0AI  , then B


 is perfectly accordant;  If 0 0.1AI  , B


 is then satisfactory. If 

 0.1AI  , B


 is then unsatisfactory . 

In a fuzzy POM   : , , ; , 1, ,l u

ij ij ij ij ijB b b b b b i j n  
 

  with the fuzzy utilities 

 , ,l u

i i i iv v v v


, 1, ,i n   ,  if  iv  is derived from accordant POM  ijb , then  liv  

and  u

iv  are not derived from the accordant matrices since  lijb  and  u

ijb  are not 

accordant when  ijb  is accordant. This problem is invertible due to the rating scale in 

fuzzy number. To discuss this issue, assume ik kj ijb b b     be preserved, and 2ik kjb b   . 

Thus 4ijb  .  To apply in fuzzy case, let  1,2,3ik kjb b 
 

. Although ik kj ijb b b     is 

still valid, 
l l l

ik kj ijb b b   and 
u u u

ik kj ijb b b   are not valid. Thus it follows ik kj ijb b b 
  

 

as    3,4,5 2,4,6ij ik kjb b b   
  

. Thus  liv  and  u

iv  are not derived from the 

accordant matrices. 

The weighted geometric mean in FAI cancels the effect of this discordance. Any 

one of  lijb ,  u

ijb  and  ijb  is accordant and will produce a fuzzy accordant matrix, 

i.e. FAI=0 since       
0.25 0.5 0.25

l uAI AI AI AI   . 

 

7.3.3 Fuzzy cognitive prioritization operator (FCPO) 

Regarding crisp cognitive prioritization, two methods are proposed (chapter 5): 

Primitive Least Squares (PLS)  (or Row Average plus the normal Utility (RAU))  and 
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Least Penalty Squares (LPS). The development of the fuzzy cognitive prioritization 

operators is on the basis of the above two operators. 

The vector of fuzzy individual utilities  1, , nV v v
  

 ,  , ,l u

i i i iv v v v


 can be 

derived by the fuzzy Primitive Least Squares (FPLS) optimization model which is of the 

form: 

     
2 2 2

1 1
Min     =

n n l l l u u u

ij i j ij i j ij i ji j i
b v v b v v b v v  

  

         
   


 

1
s.t.      

n l l

ii
v n


  

1
          

n

ii
v n 


  

1
          

n u u

ii
v n


  (7.44) 

,where  in v


 is the cardinal number of the fuzzy utility vector,  , ,l u

ij ij ijb b b B 


 is 

the fuzzy entry of B


,  , ,l un n n n   


 is the fuzzy population utility, and  

 , ,l u   


  is the fuzzy normal utility. By default, 

        , , , ,l u Max X Max X Max X          


, and   is the average of 

the modal values of two adjacent atomic terms. 

The solution of the closed form of FPLS can be solved manually as follows. 

 

Theorem 7.1: The solution of the closed form of FPLS is the Fuzzy Row Average plus 

the normal Utility (FRAU), as follows: 
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 ,FRAU B  
 

 

   

1 1

1

1 1

1

1
, , | , 1, ,  

1

i n
l u l l

i ij ij

j j i

n
l u

i i i i ij

j

i n
u l u u

i ij ij

j j i

v b b
n

v v v v b i n
n

v b b
n

   







  



  

    
           
  

   
      
   

    
             

 



 

  (7.45) 

 

Proof: 

As l


, 


, and u


are independent, FPLS can be transformed into multiple objective 

programming, 

 

 MPLS ,B 
 

= 

 
2

1 1
Min     =

n nl l l l

ij i ji j i
b v v

  
   


 

 
2

1 1
Min     =

n n

ij i ji j i
b v v   

  
   


 

 
2

1 1
Min     =

n nu u u u

ij i ji j i
b v v

  
   


 

1
s.t.      

n l l

ii
v n


 , 

1
          

n

ii
v n 


 , 

1
          

n u u

ii
v n


 . 

 

The multiple objective programming can be transformed into three optimization models, 

which are as follows: 



Chapter 7 FCCNP 

 

309 
 

   FPLS , FPLS ,FPLS ,FPLSl uB  
 

, where 

 FPLS , l

l lB  


 

 
2

1 1
Min     =

n nl l l l

ij i ji j i
b v v

  
   


 

1
s.t.      

n l l

ii
v n


 ; 

 FPLS ,B 

   


 

 
2

1 1
Min     =

n n

ij i ji j i
b v v   

  
   


 

1
s.t.      

n

ii
v n 


 ; 

 FPLS , u

u uB  


 

 
2

1 1
Min     =

n nu u u u

ij i ji j i
b v v

  
   


  

1
s.t.      

n u u

ii
v n


 ; 

The solution is derived by solving the above three optimization models using 

theorem 5.4. □ 

 

Similarly, regarding the Fuzzy Least Penalty Squares (FLPS) operator, the vector 

of the individual utilities can be derived as follows: 

 

 FLPS ,B  
 

 

     
2 2 2

1 1
Min     =

n n l l l l u u u u

ij ij i j ij ij i j ij ij i ji j i
b v v b v v b v v     

  

            
   



where,  
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1

2

3

,    v  &  b 0

    or v  &  b 0

,    v  &  b 0

    or  &  b 0

 ,               

l l l

i j ij

l l l

i j ij

l l ll
i j ijij

l l l

i j ij

v

v

v

v v

otherwise







  


 


  


 



 , 1 2 31      ; 

1

2

3

,    v  &  b 0

    or v  &  b 0

,    v  &  b 0

    or  &  b 0

 ,               

i j ij

i j ij

i j ijij

i j ij

v

v

v

v v

otherwise

  

  

  

  







  


 


  


 



, 1 2 31      ; 

1

2

3

,     &  0

    or  &  0

,     &  0

    or  &  0

 ,               

u u u

i j ij

u u u

i j ij

u u uu
i j ijij

u u u

i j ij

v v b

v v b

v v b

v v b

otherwise







  


 


  


 



, 1 2 31      ; 

1
s.t.      

n l l

ii
v n


 ;

1
          

n

ii
v n 


 ;

1
          

n u u

ii
v n


  ; 

, , 0, 1,2, ,l u

i i iv v v i n    ; 

where  in v , and   is the normal utility. (7.46) 

 

Regarding some fuzzy decision problems, the fuzzy priority vector (or fuzzy 

normalized utility weighting vector) is denoted by  1, , , ,i nW w w w
   

  , where 

 , ,l u

i i i iw w w w


, and the summation of the modal values, iw , of W


 is equal to one, 

i.e. 
1

1
n

ii
w


 . Thus W


 is said to be a fuzzy normalized priority vector (or a fuzzy 

priority vector in short). In order to use the proposed utility weighting vector, the fuzzy 

individual utility from the FPOM is rescaled (or normalized) as a fuzzy normalized 



Chapter 7 FCCNP 

 

311 
 

priority vector by the rescale function of the normalization function, as follows. 

     , , : , , , , , 1, ,
l u

l u l u i i i
i i i i i i i

v v v
W w w w w w w w i n

n n n


 

    

   
      
   


  

,in which
 1, ,

i

i n

v n 





 and  Max X   (7.47) 

 

7.3.4 Fuzzy cognitive prioritization operator measurement (FCPOM) 

B


 can be decomposed as three matrices: lB , B and uB . Thus the crisp 

Cognitive Prioritization Operator Measurement (C-CPOM) Models can be reused. The 

Fuzzy Cognitive Prioritization Operator Measurement (F-CPOM) model extends 

C-CPOM (chapter 5.6) by considering a modal value and two interval values. Thus the 

general form of the value of the Fuzzy Cognitive Prioritization Operator Measurement 

(F-CPOM) model is 

 

  

  

  

,

, , : ,

,

l l l

i

l u

i

u u u

i

fm B v

fm B v

fm B v

   



    



  
  
     
  

  
  

.  (7.48) 

  is the fuzzy reference value of F-CPOM. fm  is a function of C-CPOM which can 

be found in chapter 5.6. The crisp reference value of F-CPOM ̂  is the weighted 

average of  , ,l u     and is of the form: 

ˆ l l u u             (7.49) 
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, where the coefficients of the conditions: u l    , and 1l u     . By 

default 0.5m   and 0.25l u   . 

The Fuzzy Cognitive Distortion Index, CDI , applies the Root Mean Penalty 

Weighted Square Variance (chapter 5.6.7) ,i.e. fm RMPWSV , to the above equations. 

The next issue discusses the aggregation of the fuzzy utility sets. 

 

7.3.5 Fuzzy aggregation operators (FPOs) 

Let     , ,dm T Clst nd gn


 be the fuzzy decision matrix of cluster   ,Clst nd gn  

with respect to a vector of alternatives  kT T
 

. The form is shown in tables 7.7-7.8. 

Regarding a cluster   ,Clst nd gn ,  1, , ,j nW w w w
   

  ,  , ,l u

j j j jw w w w


 is 

the space of the normalized fuzzy weights with respect to a fuzzy node  j
gn , 

1, ,j m  , and is of the form: 

    1 1
, , , : , , , , 1, 1, ,

nl u l u

j n j j j j j j j jj
W w w w w w w w w w w w j n  


     

    
    

 (7.50) 

 , ,l u

kj kj kjv v v  is the fuzzy individual utility of an alternative kT , 1, ,k m   with 

respect to the fuzzy node  j
gn , 1, ,j m  .  

 , ,l u

kj kj kjv v v  can be the normalized fuzzy relative utility (or fuzzy relative weight) 

 , ,L M U

kj kj kjw w w  on the basis of  Eq. 7.34. However, FCNP is not based on the relative 

values of the decision as the relative values do not give the absolute scores. If the 
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alternatives have low scores, the choice only reflects the highest one from the set of the 

alternatives with low performance. The highest one may not be suitable. Thus, the 

normalized fuzzy relative utility is only fit for the problem with the only alternatives 

identified. 

 

Table 7.7: Aggregation of    , ,T Clst nd gn with fuzzy priority utility vector  

Alternatives 


1gn   

j
gn   

ngn  Fuzzy node 

utilities 

nd   1 1 1, ,l uw w w    , ,l u

j j jw w w    , ,l u

n n nw w w  

1T   11 11 11, ,l uv v v    1 1 1, ,l u

j j jv v v    1 1 1, ,l u

n n nv v v   
1 1 1
, ,l u

T T Tv v v  

           

kT   1 1 1, ,l u

k k kv v v    , ,l u

kj kj kjv v v    , ,l u

kn kn knv v v   , ,
k k k

l u

T T Tv v v  

           

mT   1 1 1, ,l u

n n nv v v    , ,l u

nj nj njv v v    , ,l u

mn mn mnv v v   , ,
m m m

l u

T T Tv v v  

 

As FCNP does not use the relative utility since the relative utility is a special case 

of absolute utility, table 7.8 can be ignored in this research. In table 7.7, for each 

decision alternative, the fuzzy utility value of  j
gn , i.e.   , ,l u

kj kj kjkjxgn v v v ,  and  

fuzzy weights of  j
gn , i.e.   , ,l u

j j jkjwgn w w w , are obtained from the Cognitive 

Assessment Process. Next the fuzzy node scores of kT , i.e.   , ,
k

k k k

l u
T T T Tnd v v v ,  are 

aggregated, as follows: 
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  

  

  

  

,

, , : ,

,

k

k
k k k k

k

l l u

T kj j

l u
T T T T T kj j

u u u

T kj j

v Agg v w

nd v v v v Agg v w

v Agg v w

   

  
  
     
  

  
  

, 1, ,k n  . (7.51) 

 

Table 7.8: Aggregation of    , ,T Clst nd gn  with normalized priority vector  

Alternatives 


1gn   

j
gn   

ngn  Fuzzy node 

normalized 

priorities  1 1 1, ,l uw w w    , ,l u

j j jw w w    , ,l u

n n nw w w  

1T   11 11 11, ,l uw w w    1 1 1, ,l u

j j jw w w    1 1 1, ,l u

n n nw w w   
1 1 1
, ,l u

T T Tw w w  

           

kT   1 1 1, ,l u

k k kw w w    , ,l u

kj kj kjw w w    , ,l u

kn kn knw w w   , ,
k k k

l u

T T Tw w w  

           

mT   1 1 1, ,l u

n n nw w w    , ,l u

nj nj njw w w    , ,l u

mn mn mnw w w   , ,
m m m

l u

T T Tw w w  

 

The next question is which aggregation operator should be applied. In FCNP, there 

are three alternatives for aggregating the results. 

Each aggregation operator can be analogous to the cognitive style, or individual 

difference in thinking style. Different decision makers make different decisions as they 

have different cognitive styles. This issue is investigated in chapter 6.  

  

  

  

  

,

, , : ,

,

k

k
k k k k

k

l l u

T kj j

l u
T T T T T kj j

u u u

T kj j

v SAO v w

nd v v v v SAO v w

v SAO v w

   

  
  
     
  

  
  

, 1, ,k n   (7.52) 

The selection of the most appropriate AOs ( SAO ) of    , ,T Clst nd gn  can be 
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determined by the selection strategy of the cognitive style and aggregation operator  

model CSAO  (in Algorithm 6.4). SAO is given by 

 

               0, , , , , , , , , ,i j i j h d hSAO h d X CSAO h d X Agg D V V V 
  

 

 (7.53) 

, where  X  is the set of data granules of the    , ,T Clst nd gn ,  ,i jda h d  is the 

preferred compound decision attitude of atomic decision attitude jd  and the directional 

hedge term ,i jh d .  SAO X  is the delegate function which means that the CSAO  

applies the same parameters:       0, , , , ,h d hAgg D V V V 
  

. DA is the vector of the 

atomic decision attitude with membership input in DAAO-1, Agg  is a vector of 

aggregation operators,  ,h dV V
 

 is the parameters to construct a directional hedge vector, 

and   0,hV 


 is the parameters to control the distribution of the a directional hedge 

vector.  

However, CSAO  is quite complicated in view of the algorithms. In fact, the 

patterns of cognitive styles are complicated in the real world too. If CSAO  is not 

applied, the weighted average operator is applied in default settings due to its 

computational efficiency, and most decision models apply this straightforward method, 

where 
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  

1

1

1

1

1
, , :

1

k

k
k k k k

k

m
l l l

T kj j

j

n
l u

T T T T T kj j

j

m
u u u

T kj j

j

v v w
n

nd v v v v v w
n

v v w
n

   







  
  

  
   

   
  
  
   

   







, 1, ,k n  . (7.54) 

On the other hand, if the decision makers feel that the weighted average operator 

may be excessively straightforward, CSAO  is recommended. CNP applied CSAO  

whilst FCNP applies fuzzy CSAO  which is in Eqs. 7.39-7.40. 

 

7.4 Fuzzy collective cognitive network process (FCCNP) 

The fuzzy collective cognitive network process (FCCNP), which is also named as 

the fuzzy group cognitive network process, is the CNP involved by a collection of 

experts  e


 using linguistic terms which are represented by fuzzy numbers. Thus 

FCCNP has the form: 

    , ,FCCNP CNP e we


 (7.55) 

, where  ,e we


 is a 2-tuple fuzzy input in which an expert e


, with fuzzy authority 

weight we  provides. 

The fuzzy collective cognitive network process (FCCNP), is the CCNP with fuzzy 

input parameters. Thus it is the combination of FCNP and CCNP. The FCCNP applies 

the concepts of fuzzy rating scales, fuzzy pairwise opposite matrix, fuzzy cognitive 

prioritization operator, and fuzzy aggregation in FCNP, as well as the fuzzy 
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multi-experts multi-criteria aggregation (f-MEMC) operator, which is and extension of 

the crisp multi-experts multi-criteria aggregation (c-MEMC) operator in CCNP. Thus 

this section only discusses f-MEMC regarding its fuzzy decision matrix, as other issues 

are discussed in previous sections. 

The fuzzy multi-experts multi-criteria (f-MEMC) decision matrix of the fuzzy 

cluster    , jClst nd gn , measured by the set of the fuzzy inputs of the multi-experts 

  '', kke we


 with respect to the fuzzy alternative kT


, is of the following forms:  

   
     







   
  

1

1

11
1,1 1, 1,

''

' '
',1 ', ',

,1 , ,

, , , ,

nd
nd

nd nd nd

j n

j n

j n

kkk j

k j
k k j k n

q
q

q q j q n

wgn wgn wgn

xgn xgn xgn
wee

v v v
dm e we T Clst nd gn

e we v v v

e
we v v v

 
  

 
 
 
 
 
 

 

 


  
  

    
  

 
      

  
 

 (7.56) 

, where  'kwe  is the fuzzy relative weight of the expert 'ke


;  ', ', ', ',, ,l u

k j k j k j k jv v v v


 is 

the fuzzy utility value with respect to  '', kke we


 and  jxgn .  

The aggregation problem of    
     '', , , ,kjj jdm e we T Clst nd gn


 is of the form: 

 







   
  

1

1

11
1,1 1, 1,

' '
',1 ', ,

,1 , ,

( ( ))
k

nd
nd

nd nd nd

j n

j n

j n

T

j j
j j j j n

q
q

q q j q n

wgn wgn wgn

xgn xgn xgn
wee

v v v
nd Cagg Eagg

e we v v v

e
we v v v

 
  

 
 
 
 
 
 

 

 


  
 


    
  

 
      

  
 

 (7.57) 
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Table 7.9: Aggregation of    
     '', , , ,kkk jdm e we T Clst nd gn


 

 


1gn  … 

j
gn  … 

ngn  

 1 1 1, ,l uw w w  …  , ,l u

j j jw w w  …  , ,l u

n n nw w w  

1e   1 1 1, ,l uwe we we   11 11 11, ,l uv v v  …  1 1 1, ,l u

j j jv v v  …  1 1 1, ,l u

n n nv v v  

  
  

 
  …  …   

'ke   ' ' ', ,l u

k k kwe we we   1 1 1, ,l u

k k kv v v  …  ', ', ',, ,l u

k j k j k jv v v  …  , ,l u

kn kn knv v v  

      …  …   

ndqe   , ,
nd nd nd

l u

q q qwe we we   ,1 ,1 ,1, ,
nd nd nd

l u

q q qv v v  …  , , ,, ,
nd nd nd

l u

q j q j q jv v v  …  , , ,, ,
nd nd nd

l u

q n q n q nv v v  

   , ,l uwe we we   1 1 1, ,l uv v v  …  , ,l u

j j jv v v  …  , ,l u

n n nv v v  

   , ,
k

l u
T nd nd ndnd v v v  

 

The tabular form of the above aggregation is explicitly shown in table 7.9. The 

details are as follows: 

Eagg  is the fuzzy aggregation function of the expert judgments for  jxgn , and 

has  the form: 

   '',
' 1

,
ndq

kk jj
k

xgn Eagg v we


      


,   1, ,j n    (7.58) 

Explicitly,  

        ', ', ', ' ' '
' 1

, , , , , , ,
ndq

l u l u l u

j j j k j k j k j k k kj
k

xgn v v v Eagg v v v we we we  



       
 (7.59) 
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Cagg  is the fuzzy aggregation function of the set of the criteria pairs 

   ,j jxgn wgn   in a fuzzy node of alternative k , i.e. 
kTnd , and has the form: 

    
1

,
k

n

T j j
j

nd Cagg xgn wgn


      
,  1, ,k m    (7.60) 

Explicitly, 

        
1

, , , , , , ,
k

n
l u l u l u

T nd nd nd j j j j j j
j

nd v v v Cagg v v v w w w  



       
 (7.61) 

Alternatively by substitution of  Eq 7.58 or Eq. 7.59, then 

     
', '

' 1
1

, ,
nd

k

n
q

T k j k j
k

j

nd Cagg Eagg v we wgn




                


 ,  1, ,k m    (7.62) 

Explicitly,  

         ', ', ', ' ' '
' 1

1

, , , , , , , ,
nd

k

n
q

l u l u l u
T k j k j k j k k k j j j

k
j

nd Cagg Eagg v v v we we we w w w  




                

 

 (7.63) 

 

Propositions 7.2 and 7.3 are an application of 
kTnd , which is the usual case (2 

layers of structural criteria and one layer of expert) in CNP. 

The set of the multi-experts multi-criteria decision matrix of all alternatives is of 

the form: 

   
         

      ' '' ', , , , , , , ,kj jj jj j
dm dm e we T Clst nd gn dm e we T Clst nd gn   

 

 

 (7.64) 

And the set of the alternative for a nodeTnd  is the form: 
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         '',
' 1

1

: , , , 1, ,
nd

k k

n
q

T T T kk j j
k

j

nd nd nd Cagg Eagg v we wgn k m




                       


  

 (7.65) 

Finally the volition decision process is used. The process is similar to the crisp one 

stated in chapter 3. 

 

7.5 Numerical analyses and discussion 

The analyses show the comparisons of the results of two fuzzy prioritization 

operators, FRAU (or FPLS or FAMSLS) and FLPS (or FDLS), on the basis of the 

FCPOM models. The simulation includes 68 (17 x4) cases from eight template matrices 

of different dimensions. The rating scale, which r


 chooses from, is defined in table 

7.10.  The template matrices are shown as follows. 

  

   

   

   

0,0,0 1,2,3

3 ( 3, 2, 1) 0,0,0 0,0,0

0,0,0 0,0,0

r

T r

r

 
 

    
  






 

 

  

     

       

       

     

0,0,0 1,2,3 2,3,4

3, 2, 1 0,0,0 0,1,2 0,0,0
4

4, 3, 2 2, 1,0 0,0,0 2, 1,0

0,0,0 0,1,2 0,0,0

r

T r

r

 
 
   

       
   






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  

       

         

         

         

       

0,0,0 1,2,3 2,3,4 0,1,2

3, 2, 1 0,0,0 0,1,2 2, 1,0 0,0,0

5 4, 3, 2 2, 1,0 0,0,0 3, 2, 1 2, 1,0

2, 1,0 0,1,2 1,2,3 0,0,0 0,1,2

0,0,0 0,1,2 2, 1,0 0,0,0

r

T r

r

 
 
     

           
 

  
    







 

 

  

         

           

           

           

           

   

6

0,0,0 1,2,3 2,3,4 3,4,5 4, 3, 2

3, 2, 1 0,0,0 0,1,2 1,2,3 6, 5, 4 0,1,2

4, 3, 2 2, 1,0 0,0,0 0,1,2 7, 6, 5 0,0,0

5, 4, 3 3, 2, 1 2, 1,0 0,0,0 8, 7, 6 2, 1,0

2,3,4 4,5,6 5,6,7 6,7,8 0,0,0 5,6,7

2, 1,0 0,0,0 0,1

T r

r

r



  

     

       

            

  






     ,2 7, 6, 5 0,0,0

 
 
 
 
 
 
 
 
    

 

 

Table 7.10 : Fuzzy cognitive comparison scale  

Atomic verbal scale 

aV


 

Fuzzy scale 

'X 

  

Equally  (0,0,0) 

Weakly  (0,1,2) 

Moderately  (1,2,3) 

Moderately plus (2,3,4) 

Strongly  (3,4,5) 

Strong Plus (4,5,6) 

Very Strongly (5,6,7) 

Very strongly Plus (6,7,8) 

Extremely (7,8,8) 

opposites of Above X 

    
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Table 7.11: FAI, FRMSV, FMC and FRMPWSV of FRAU and FLPS for 3T  and 4T   

  

3T  FRMSV FMC FRMPWSV 
 

4T  FRMSV FMC FRMPWSV 

Index r


 FAI FRAU FLPS FRAU FLPS FRAU FLPS 
 
FAI FRAU FLPS FRAU FLPS FRAU FLPS 

1 (-8,-8,-7) 0.47 3.25 4.79 0.50 0.46 5.93 8.63 
 
0.42 2.84 3.04 0.29 0.17 4.87 4.97 

2 (-8,-7,-6) 0.44 3.00 4.03 0.46 0.38 5.64 7.27 
 
0.39 2.62 2.76 0.29 0.17 4.50 4.50 

3 (-7,-6,-5) 0.39 2.67 3.10 0.42 0.17 4.87 5.33 
 
0.35 2.33 2.46 0.23 0.17 4.18 4.03 

4 (-6,-5,-4) 0.34 2.33 2.57 0.42 0.33 4.26 4.41 
 
0.31 2.05 2.12 0.17 0.17 3.54 3.69 

5 (-5,-4,-3) 0.29 2.00 2.33 0.33 0.17 3.87 3.75 
 
0.27 1.77 1.84 0.21 0.13 3.06 3.02 

6 (-4,-3,-2) 0.24 1.67 1.77 0.25 0.29 3.04 3.26 
 
0.22 1.48 1.58 0.19 0.13 2.60 2.61 

7 (-3,-2,-1) 0.19 1.33 1.42 0.33 0.17 2.43 2.50 
 
0.18 1.20 1.42 0.21 0.13 2.30 2.31 

8 (-2,-1,0) 0.15 1.00 1.08 0.33 0.29 2.04 1.98 
 
0.14 0.93 1.04 0.23 0.15 1.72 1.75 

9 (0,0,0) 0.10 0.67 0.77 0.33 0.33 1.36 1.32 
 
0.10 0.69 0.79 0.21 0.21 1.43 1.39 

10 (0,1,2) 0.05 0.33 0.37 0.21 0.21 0.63 0.60 
 
0.06 0.43 0.47 0.15 0.15 0.81 0.80 

11 (1,2,3) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 
0.00 0.25 0.28 0.08 0.13 0.49 0.48 

12 (2,3,4) 0.05 0.33 0.36 0.17 0.17 0.61 0.58 
 
0.06 0.43 0.46 0.13 0.13 0.77 0.76 

13 (3,4,5) 0.10 0.67 0.72 0.17 0.17 1.22 1.17 
 
0.10 0.67 0.70 0.10 0.13 1.15 1.13 

14 (4,5,6) 0.15 1.00 1.08 0.17 0.17 1.83 1.75 
 
0.14 0.93 0.97 0.10 0.13 1.58 1.56 

15 (5,6,7) 0.19 1.33 1.44 0.17 0.17 2.43 2.33 
 
0.18 1.20 1.25 0.17 0.13 2.09 2.00 

16 (6,7,8) 0.24 1.67 1.80 0.17 0.17 3.04 2.92 
 
0.22 1.48 1.53 0.23 0.13 2.58 2.46 

17 (7,8,8) 0.28 1.92 2.07 0.17 0.17 3.50 3.35 
 
0.26 1.70 1.76 0.25 0.13 2.87 2.82 

 

 

The detailed results are illustrated in appendix IV. The simulation results include 

the Fuzzy Accordant Index (FAI), Fuzzy Root Mean Square Variance (FRMSV), Fuzzy 

Mean Contradiction (FMC) and Fuzzy Root Mean Penalty Weighted Square Variance 

(FRMPWSV), for two boundary values, one modal value and the aggregation, as well as 

the fuzzy utility vectors of the 68 cases. The essential data are extracted and summarized 

in tables 7.11 and 7.12. In order to efficiently present the data, figures 7.3 and 7.5 are 
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plotted.  Each figure includes four sub-figures representing the four template matrices 

respectively. The impacts are as follows: 

 

Table 7.12: FAI, FRMSV, FMC and FRMPWSV of FRAU and FLPS for 5T  and 6T   

  

5T  FRMSV FMC FRMPWSV 
 

6T  FRMSV FMC FRMPWSV 

Index r


 FAI FRAU FLPS FRAU FLPS FRAU FLPS 
 
FAI FRAU FLPS FRAU FLPS FRAU FLPS 

1 (-8,-8,-7) 0.36 2.42 2.53 0.29 0.24 4.11 4.08 
 
0.33 2.29 2.34 0.13 0.12 3.77 3.77 

2 (-8,-7,-6) 0.33 2.24 2.30 0.26 0.25 3.75 3.97 
 
0.31 2.14 2.20 0.13 0.15 3.51 3.54 

3 (-7,-6,-5) 0.30 1.99 2.05 0.29 0.25 3.35 3.52 
 
0.28 1.93 1.99 0.13 0.15 3.60 3.23 

4 (-6,-5,-4) 0.26 1.75 1.82 0.28 0.24 2.96 2.94 
 
0.25 1.72 1.80 0.15 0.13 2.83 3.30 

5 (-5,-4,-3) 0.23 1.52 1.65 0.25 0.19 2.60 2.71 
 
0.22 1.52 1.78 0.15 0.13 2.50 2.98 

6 (-4,-3,-2) 0.19 1.28 1.35 0.21 0.21 2.46 2.45 
 
0.19 1.31 1.46 0.13 0.12 2.19 2.43 

7 (-3,-2,-1) 0.16 1.05 1.18 0.16 0.19 1.78 1.95 
 
0.16 1.11 1.45 0.12 0.13 1.84 2.34 

8 (-2,-1,0) 0.13 0.82 0.93 0.18 0.20 1.49 1.61 
 
0.14 0.91 1.13 0.12 0.11 1.62 1.91 

9 (0,0,0) 0.09 0.64 0.71 0.16 0.16 1.29 1.27 
 
0.11 0.74 0.82 0.09 0.10 1.49 1.47 

10 (0,1,2) 0.06 0.42 0.44 0.13 0.13 0.77 0.76 
 
0.08 0.54 0.56 0.08 0.08 0.94 0.93 

11 (1,2,3) 0.00 0.27 0.29 0.09 0.09 0.53 0.52 
 
0.05 0.38 0.40 0.07 0.07 0.67 0.66 

12 (2,3,4) 0.06 0.42 0.44 0.10 0.11 0.77 0.76 
 
0.00 0.26 0.27 0.05 0.05 0.46 0.46 

13 (3,4,5) 0.09 0.61 0.63 0.10 0.11 1.07 1.06 
 
0.05 0.38 0.40 0.06 0.06 0.65 0.65 

14 (4,5,6) 0.13 0.82 0.85 0.11 0.11 1.42 1.40 
 
0.08 0.54 0.55 0.07 0.07 0.90 0.90 

15 (5,6,7) 0.16 1.05 1.08 0.10 0.11 1.79 1.77 
 
0.11 0.72 0.73 0.06 0.07 1.19 1.18 

16 (6,7,8) 0.19 1.28 1.32 0.14 0.11 2.20 2.15 
 
0.14 0.91 0.93 0.06 0.07 1.50 1.49 

17 (7,8,8) 0.22 1.46 1.50 0.16 0.11 2.47 2.44 
 
0.16 1.07 1.08 0.07 0.07 1.74 1.73 

 

Fig. 7.3 shows the results of the RMSV of the template matrices. The fact that the 

lines of FRAU just touch or are below the FLPS ones indicates 

that    FRMSV FRAU FRMSV FLPS . This is the normal case as the objective 
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function of FPLS is FRMSV, and FRAU=FPLS, which has been proved in theorem 7.1. 

Also the fact that    FRMSV FRAU FRMSV FLPS  does not necessarily 

follow    FPMPWSV FRAU FPMPWSV FLPS  when compared with fig. 7.4. This 

issue is related to the existence of the contraction which is shown in fig. 7.5.  
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Figure 7.3 FRMSV of FRAU and FLPS for   3T r


,   4T r


,  5T r


, and   6T r


  

 

Fig. 7.4 shows the FRMPWSV of the four template matrices. The fact that the 

lines of FLPS just touch or are below the FRAU ones in the low FAI region indicates 

that    FPMPWSV FRAU FPMPWSV FLPS . This is the normal case as the 
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objective function of FLPS is FPMPWSV.  The abnormal cases of   

   FPMPWSV FRAU FPMPWSV FLPS  are due to the fact that the rounding results 

of FLPS are evaluated in FPMPWSV. 
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Figure 7.4: FRMPWSV of FRAU and FLPS for   3T r


,   4T r


,  5T r


, and   6T r


  

 

Fig. 7.5 shows the results of the fuzzy mean contradiction (FMC) of the four 

template matrices.  In most cases,    FMC FLPS FMC FRAU . The reasons for the 

exceptions are that, for one thing, FRAU produces a more accurate result of many digits 

in the computer program, however it is rounded to fewer digits, thus producing abnormal 



Chapter 7 FCCNP 

 

326 
 

results. This issue can be seen in index 11 of fig. 7.5f. For another, the higher FMC can 

produce a lower FPMPWSV, but in rare cases, e.g indices 13 and 14 of 4T , as seen in 

table 7.11. 
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Figure 7.5: FMC of FRAU and FLPS for   3T r

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If 0FAI  , it is not necessary that FRAU FLPS . Thus it does not follow that 

   FPMPWSV FRAU PMPWSV FLPS and    FRMSV FRAU RMSV FLPS  , 

since FAI  implies that only one of the modal or boundary values is accordant and 
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others are not (chapter 7.3.2). The related data in detail can be referred to in appendix IV. 

If 0.1FAI  , then    FPMPWSV FRAU FPMPWSV FLPS , 

   FRMSV FRAU FRMSV FLPS , and    FMC FRAU FMC FLPS  since 

FRAU FLPS . 

With the above findings, the best practice for choosing the fuzzy cognitive 

prioritization operators is in the following orders. 

1. If 0.1FAI  , especially 0FMC  , FRAU is recommended. For one thing, 

interestingly, it produces the same result as FAMSLS and FPLS. For another, its 

computational effort is the least. Thus, when a fuzzy pairwise opposite matrix is 

fuzzy accordant, or satisfactory without violation, this method is more preferable. 

2. If 0.1AI   and 0FMC  , and  only the rank of the FPOM is considered, then 

FRAU is suggested. If the individual utility values are significant, FLPS is 

suggested. 

3. If 0FMC  , FLPS is suggested . FPLS is the basic form for developing FLPS. In 

view of the approximate accuracy of the discordant matrix with contradiction, 

FLPS is more preferable as it minimizes the summation of the multiples of the 

contradiction and distance errors. 
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7.6 Summary and remarks 

To conclude this chapter, the FCCNP from calculation viewpoint is briefly 

illustrated in algorithm 7.1. 

 

Algorithm 7.1 (FCCNP): 

1. Define the project profile such as structural criteria,  experts profiles for the 

domain; 

2. Define the syntactic form and semantic form of the Compound Linguistic Ordinal 

Scales for cognitive  comparison scale by algorithms 4.1 and 4.2; 

3. Define the cognitive prioritization CP  operator; 

4. Define Eagg  and Cagg ; 

5. Evaluate all clusters,   ,Clst nd gn , by algorithm 4.3; 

6. Use cognitive prioritization operator 

7. Convert the relative fuzzy weight vector for a collection of experts. 

8. Convert the relative fuzzy weight vectors for all clusters. 

9. Form a set of decision matrices    
     '', , , ,jj j

dm dm e we T Clst nd gn 
 
 


. 

10. Unify    
     '', , , ,jj j

dm dm e we T Clst nd gn 
 
 


 by Eagg  and Cagg ; 

11. Return O;                                        //End 
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CNP, CCNP, and FCNP are the special cases of the above algorithms. If the 

number of experts is a single one with crisp inputs, the above algorithm is for CNP. If 

the number of experts is collective with crisp inputs, the above algorithm is for CCNP. If 

the number of experts is a single one with fuzzy inputs, the above algorithm is for FCNP. 

The implication of CCNP is that it allows multiple expert decision making with 

different weights, and thus the decision is more convincible by group effort. The 

implication of FCNP is that it allows fuzzy inputs and produces fuzzy outputs. Thus 

imprecise inputs using fuzzy linguistic terms reduce the difficulty of the rating decision, 

as it is easier than the crisp input. The fuzzy output gives the fuzzy numbers for the 

decision makers to make the optimistic, neutral and pessimistic decisions, as a fuzzy 

number shows the range with membership. FCCNP takes all the advantages of CCNP 

and FCNP. Compared with the primitive CNP, FCCNP is of a more human workload in 

the administration process in handling the assessment, and a more computational 

workload in the prioritization and aggregation processes. However it has an efficient 

input for the comparison matrix, and more information from the fuzzy output.  
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Chapter 8 Applications 

8.1 Introduction 

In this chapter, five cases are illustrated and discussed with respect to various types 

of the CNP models. Each case comprises the case problem, ANP approach, CNP 

approach, and the discussion of the comparison. 

Case 1 presents the high school selection problem (Saaty, 1980, p26-28) with 

comparisons of the primitive CNP model and the AHP model. This is one of the 

well-known examples in (Saaty, 1980). 

Case 2 presents the transportation company selection problem (Kulak and 

Kahramna, 2005) with comparisons of the primitive CNP model and the AHP model 

with both prioritization measurement models being used. This case has analyzed by 

Yuen (2009b) using different AHP prioritization methods, and further revised by the 

primitive CNP. 

Case 3 compares the CNP model and the improved ANP models for the R&D 

project selection problem (Yuen and Lau, 2009). The rating scales of ANP have been 

improved by CLOS in (Yuen and Lau, 2009). Thus the problem is further investigated by 

the CNP. 

Case 4 compares the fuzzy CNP and Fuzzy AHP models for the software product 

selection problem which is studied by Yuen and Lau (2008c). The CNP solution is 



Chapter8 Applications 

 

331 
 

proposed for a local electronic company with comparison with the conventional method 

which is proposed previously. 

Case 5 illustrates the use of the fuzzy collective CNP model as the evaluation tool 

for the problem of supplier number optimization (Berger et al, 2004). This case 

demonstrates how FCCNP functions as the parametric settings for the decision function. 

Table 8.1 shows the default settings of the rating scales for AHP and CNP used in 

this chapter. 

 

Table 8.1: Scale schemas conversion table for AHP and CNP  

Verbal scale 

Crisp number Fuzzy Number 

Ratio Scale 

(AHP) 

Interval Scale 

(CNP, 8  ) 

Ratio Scale 

(FAHP) 

Interval Scale 

(FCNP, (7,8,9)  ) 

Equally 1 0 (1,1,1) (0,0,0) 

Weakly 2 1 (1,2,3) (0,1,2) 

Moderately 3 2 (2,3,4) (1,2,3) 

Moderately plus 4 3 (3,4,5) (2,3,4) 

Strongly 5 4 (4,5,6) (3,4,5) 

Strong Plus 6 5 (5,6,7) (4,5,6) 

Very Strongly 7 6 (6,7,8) (5,6,7) 

Very, very strongly 8 7 (7,8,9) (6,7,8) 

Extremely 9 8 (8,9,9) (7,8,8) 

Reciprocals (AHP) / opposites (CNP) of the Above 

 

8.2 Case 1: High school selection  

The case background, solutions using the AHP approach and the CNP approach 

respectively, and the discussion of the comparison are presented as follows. 
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8.2.1 Case 1 background 

The intention of this case is to compare the results of AHP and CNP. The decision 

problem in the high school selection using AHP has been discussed by Saaty (1980, pp. 

26-28). The definitions of the five criteria, and four alternatives are shown in table 8.2.1 

and seven pairwise matrices are illustrated in table 8.2.2.  

8.2.2 The AHP approach to case 1 

The local priorities are derived by ten analytic prioritization operators (APOs), 

denoted by 

 P= 1 10, ,p p =[EV,NRS,NRCS,AMNC,NGMR,DLS,WLS,FP,EGP, LPPDS] 

,where definitions of the analytic POs are illustrated in chapter 2.3.5. 

The results of the prioritization and aggregation of the above APOs are illustrated 

in table 8.2.3. It can be observed that different analytic prioritization operators produce 

different priorities which likely lead to different preference orders or ranks. In this 

research, a higher score means a higher preference order.  

8.2.3 The CNP approach to case 1 

To apply CNP, the linguistic terms are assumed to be the same. Regarding the 

numerical representation, the Pairwise Reciprocal Matrices (PRMs) are changed to the 

Pairwise Opposite Matrices (POMs) with reference to table 8.1. The result of the POMs 

is shown in table 8.2.4. In order to compare with AHP, the results of the utility sets are 
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normalized. The results of the normalized utility sets and their aggregation values using 

weighted average aggregation operator, which is set by default, is shown in table 8.2.5.  

Two cognitive prioritization operators, RAU (or PLS) and LPS, are used. It can be 

observed that their results are very close and the order is preserved. 

 

8.2.4 Discussion of case 1 

In table 8.2.2, the pairwise reciprocal matrices include three consistent matrices, 

i.e. 3 4 6, ,A A A ,  and four non-consistent matrices, e.g. 1 2 5 7, , ,A A A A . For the consistent 

matrices, any prioritization operator can be used as the value of the priority vector is the 

same. However, when the PRMs are converted to POMs in table 8.2.4, the pairwise 

opposite matrices include four accordant matrices, i.e. 3 4 6 7, , ,B B B B ,  and three 

discordant matrices, e.g. 1 2 5, ,B B B . In other words, after conversion, one more 

accordant matrix is established and one discordant matrix is removed, since 7B  is 

accordant and 7A  is inconsistent.   

Regarding 7A  of table 8.2.2, if 12 6a   and 13 4a   are unchanged, there is no 

suitable rating scale for 23a  to make 7A  consistent, since none of linguistic labels in 

table 8.1 represents 2
3

  due to the condition of 13
23

12

4 2
6 3

a
a

a
   . Thus this 

rating scale issue is a huge barrier in producing a consistent or satisfied matrix for 

human judgment. In fact, the ratio scale is ill-defined for pairwise comparisons, and is 

discussed in chapter 5. 
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1A  is inconsistent and 1B  is discordant. Table 8.2.3 shows that W of 1A  has 

various results with respect to different APOs. On the other hand, table 8.2.5 shows that 

W of 1B  of the two CPOs are very close although 1B  is discordant. This implies that 

the choices of APOs remain unsettled as there are no widely accepted measurement 

methods. However, discordant matrices have relatively much less impact in CPOs. Since 

there are many APOs, the final result using a suitable APO for AHP is still uncertain. In 

table 8.2.2, some APOs support alternative 1 while some support alternative 2. The 

decision makers may become confused by the choice of APOs. 

On the other hand, the CPOs of CNP are straightforward. Although there are only 

two recommended CPO candidates, they do not produce contract rankings. Particularly, 

their (normalized) utility values are very close, especially in low values of the accordant 

index. Thus, their final aggregation results are much close. 

The CNP is more appropriate as the cognitive perception is more straightforward. 

The result of this model shows that Saaty’s AHP method very likely produces misleading 

results as the ranks and priority vector variy very much from the CNP. Particularly, 

chapter 5 indicates that POM performs much better than PRM, as well as interval scale 

being more appropriate than ratio scale for cognitive comparisons. 

 

Table 8.2.1: The criteria and alternatives of case 1 (Saaty 1980, p26-28) 

Criteria   Alternatives 

C1: Learning   t1: School A 

C2: Friends 

 

t2: School B 

C3: School Life 

 

t3: School C 

C4: Import substitution 

  C5: Regional gains     
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Table 8.2.2: The Pairwise Reciprocal Matrices of the AHP of case 1 (Saaty 1980, 

p26-28)   

A1: Criteria 

 
C1 C2 C3 C4 C5 C6 

C1 1 4 3 1 3 4 

C2 
1

4
 1 7 3 1

5
 1 

C3 
1

3
 1

7
 1 1 1 1

6
 

C4 1 1
3

 5 1 1 1
3

 

C5 
1

3
 5 5 1 1 3 

C6 
1

4
 1 6 3 1

3
 1 

C.I.=0.3, C.R.=0.24 

 

Learning (A2) 
 

A3:Friends 
 

A4: School Life 

 
t1 t2 t3 

  
t1 t2 t3 

  
t1 t2 t3 

t1 1 1
3

 1
2

 
 

A1 1 1 1 
 

t1 1 5 1 

t2 3 1 3 
 

A2 1 1 1 
 

t2 
1

5
 1 1

5
 

t3 2 1
3

 1 
 

A3 1 1 1 
 

t3 1 5 1 

C.I.=0.025, C.R.=0.04 
 

C.I.=C.R.=0 
 

C.I,=C.R.=0 

 

A5: Vocational Training 
 

A6: College preparation 
 

A7: Music classes 

 
t1 t2 t3 

  
t1 t2 t3 

  
t1 t2 t3 

t1 1 9 7 
 

t1 1 1
2

 1 
 

t1 1 6 4 

t2 
1

9
 1 1

5
 

 
t2 2 1 2 

 
t2 

1
6

 1 1
3

 

t3 
1

7
 5 1 

 
t3 1 1

2
 1 

 
t3 

1
4

 3 1 

C.I.=0.105, C.R.=0.18 
 

C.I.=C.R.=0 
 

C.I.=C.R.=0.04 
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Table 8.2.3: Priority vectors and synthesis results with various prioritization operators 

using AHP for case 1  

  

 

  P1               

 

   P2           

 

C1 C2 C3 C4 C5 C6 W  

 

C1 C2 C3 C4 C5 C6 W  

 W 0.321 0.140 0.035 0.128 0.237 0.139 

   

0.242 0.188 0.031 0.131 0.232 0.175 

  t1 0.157 0.333 0.455 0.772 0.250 0.691 0.367 2 

 

0.151 0.333 0.455 0.695 0.250 0.657 0.378 3 

t2 0.594 0.333 0.091 0.055 0.500 0.091 0.378 3 

 

0.575 0.333 0.091 0.054 0.500 0.090 0.344 2 

t3 0.249 0.333 0.455 0.173 0.250 0.218 0.254 1 

 

0.274 0.333 0.455 0.251 0.250 0.254 0.279 1 

                                    

   

P3 

        

P4 

     W 0.381 0.105 0.045 0.131 0.211 0.127 

   

0.305 0.149 0.038 0.141 0.221 0.146 

  t1 0.169 0.333 0.455 0.809 0.250 0.711 0.369 2 

 

0.159 0.333 0.455 0.750 0.250 0.685 0.377 3 

t2 0.607 0.333 0.091 0.068 0.500 0.101 0.397 3 

 

0.589 0.333 0.091 0.060 0.500 0.093 0.365 2 

t3 0.225 0.333 0.455 0.124 0.250 0.189 0.234 1 

 

0.252 0.333 0.455 0.190 0.250 0.221 0.258 1 

                                    

   

P5 

        

P6 

     W 0.316 0.139 0.036 0.125 0.236 0.148 

   

0.184 0.220 0.037 0.150 0.210 0.197 

  t1 0.157 0.333 0.455 0.772 0.250 0.691 0.370 2 

 

0.178 0.333 0.455 0.788 0.250 0.687 0.430 3 

t2 0.594 0.333 0.091 0.055 0.500 0.091 0.376 3 

 

0.592 0.333 0.091 0.082 0.500 0.108 0.325 2 

t3 0.249 0.333 0.455 0.173 0.250 0.218 0.254 1 

 

0.230 0.333 0.455 0.130 0.250 0.205 0.245 1 

                                    

   

P7 

        

P8 

     W 0.415 0.094 0.035 0.112 0.219 0.125 

   

0.349 0.144 0.053 0.123 0.192 0.139 

  t1 0.174 0.333 0.455 0.804 0.250 0.707 0.353 2 

 

0.159 0.333 0.455 0.796 0.250 0.703 0.371 2 

t2 0.606 0.333 0.091 0.074 0.500 0.107 0.417 3 

 

0.619 0.333 0.091 0.082 0.500 0.109 0.390 3 

t3 0.221 0.333 0.455 0.122 0.250 0.187 0.230 1 

 

0.222 0.333 0.455 0.122 0.250 0.188 0.239 1 

                  

   

P9 

         

P10 

    W 0.431 0.131 0.027 0.137 0.144 0.131 

   

0.203  0.203  0.037  0.157  0.203  0.198  

  t1 0.157 0.333 0.455 0.772 0.250 0.691 0.355 2 

 

0.178  0.333  0.455  0.788  0.250  0.687  0.431  3 

t2 0.594 0.333 0.091 0.055 0.500 0.091 0.393 3 

 

0.592  0.333  0.091  0.082  0.500  0.108  0.327  2 

t3 0.249 0.333 0.455 0.173 0.250 0.218 0.251 1   0.230  0.333  0.455  0.130  0.250  0.205  0.243  1 
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Table 8.2.4: The Pairwise Opposite Matrices of case 1 with reference to table 8.2.2 

B1: Criteria 

 
C1 C2 C3 C4 C5 C6 

C1 0 3 2 0 2 3 

C2 -3 0 6 2 4 0 

C3 -2 -6 0 0 0 -5 

C4 0 -2 4 0 0 -2 

C5 -2 4 4 0 0 2 

C6 -3 0 5 2 -2 0 

AI=0.36 

Learning (B2) 
 

B3:Friends 
 

B4: School Life 

 
t1 t2 t3 

  
t1 t2 t3 

  
t1 t2 t3 

t1 0 -2 -1 
 

t1 0 0 0 
 

t1 0 4 0 

t2 2 0 2 
 

t2 0 0 0 
 

t2 -4 0 -4 

t3 1 -2 0 
 

t3 0 0 0 
 

t3 0 4 0 

AI=0.048 
 

AI=0 
 

AI=0 

B5: Vocational Training 
 

B6: College preparation 
 

B7: Music classes 

 
t1 t2 t3 

  
t1 t2 t3 

  
t1 t2 t3 

t1 0 8 6 
 

t1 0 -1 0 
 

t1 0 5 3 

t2 -8 0 -4 
 

t2 1 0 1 
 

t2 -5 0 -2 

t3 -6 4 0 
 

t3 0 -1 0 
 

t3 -3 2 0 

AI=0.096 
 

AI=0 
 

AI=0 
 

 

Table 8.2.5: Cognitive prioritization and aggregation results of RAU and LPS (case 1)  

 
C1 C2 C3 C4 C5 C6 Result Rank 

RAU/PLS 
      

W 0.191 0.188 0.115 0.158 0.184 0.164 
  

t1 0.292 0.333 0.389 0.528 0.319 0.444 0.378 3 

t2 0.389 0.333 0.222 0.167 0.361 0.236 0.294 1 

t3 0.319 0.333 0.389 0.306 0.319 0.319 0.328 2 

LPS 
      

W 0.191 0.189 0.137 0.158 0.163 0.163 
  

t1 0.292 0.333 0.389 0.528 0.319 0.444 0.380 3 

t2 0.389 0.333 0.222 0.167 0.361 0.236 0.291 1 

t3 0.319 0.333 0.389 0.306 0.319 0.319 0.329 2 
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8.3 Case 2: Transportation project selection 

The case background, solutions using the AHP approach and the CNP approach 

respectively, and the discussion of the comparison are presented as follows. 

 

8.3.1. Case 2 background 

In this case, the transportation company selection problem using AHP, from Kulak 

and Kahramna (2005), is revised by the proposed CNP. One transportation company is 

selected from four candidates using five criteria: cost, defect rate, tardiness rate, 

flexibility and documentation ability. The notations of the problem are shown in the 

table 8.3.1. To further discuss the comparison of AHP and CNP, the measurement 

models for their POs are used for both approaches. 

Remarks: CPO measurement models such as RMPWSV and RMSV for CNP are 

different from those for AHP, although some functions have the same names. To 

distinguish them, c-RMPWSV and c-RMSV are for CNP whilst a-RMPWSV and 

a-RMSV are for AHP. As this possible confusion only occurs when their PO 

measurement models are used for comparison, but seldom in application, thus the new 

name is not necessary as the name implies the structure of the functions. 

In this case, only RMPWSV is discussed for the measurement model as it is more 

appropriate to the other models which are discussed in chapter 2.5 for AHP, and chapter 

5 for CNP. The penalty weight vector of RMPWSV is  1,1.5,2   in both cases. 
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Table 8.3.1: Criteria and alternatives of case 2 (Kulak and Kahramna, 2005)  

Criteria Description Labels  Alternatives Labels 

TC Transportation Cost C1  Transport Company 1 T1 

DR Defective rate C2  Transport Company 2 T2 

TR Tardiness Rate C3  Transport Company 3 T3 

F Flexibility C4  Transport Company 4 T4 

DA Documentation Ability C5    

 

Table 8.3.2: Pairwise reciprocal matrices of case 2 (Kulak and Kahramna, 2005)  

B TC DR TR F DA  A1 T1 T2 T3 T4 

TC 1.00 5.00 3.00 5.00 9.00  T1 1.00 0.33 1.00 0.20 

DR 0.20 1.00 0.50 0.50 7.00  T2 3.00 1.00 3.00 0.50 

TR 0.33 2.00 1.00 0.50 7.00  T3 1.00 0.33 1.00 0.20 

F 0.20 2.00 2.00 1.00 8.00  T4 5.00 2.00 5.00 1.00 

DA 0.11 0.14 0.14 0.13 1.00       

CR=0.078  CR=0.002 

A2 T1 T2 T3 T4   A3 T1 T2 T3 T4 

T1 1.00 7.00 3.00 5.00   T1 1.00 0.20 0.20 2.00 

T2 0.14 1.00 0.20 0.33   T2 5.00 1.00 0.33 7.00 

T3 0.33 5.00 1.00 3.00   T3 5.00 3.00 1.00 7.00 

T4 0.20 3.00 0.33 1.00   T4 0.50 0.14 0.14 1.00 

CR=0.043   CR=0.063 

A4 T1 T2 T3 T4   A5 T1 T2 T3 T4 

T1 1.00 5.00 0.33 3.00   T1 1.00 0.20 0.33 0.33 

T2 0.20 1.00 0.14 0.33   T2 5.00 1.00 3.00 3.00 

T3 3.00 7.00 1.00 7.00   T3 3.00 0.33 1.00 1.00 

T4 0.33 3.00 0.14 1.00   T4 3.00 0.33 1.00 1.00 

CR=0.052   CR=0.016 

 



Chapter8 Applications 

 

340 
 

8.3.2. The AHP Approach to case 2 

Six pairwise reciprocal matrices are shown in the table 8.3.2. All matrices are not 

perfect consistent, but satisfied.  Regarding prioritization, a set of ten APOs are used as 

follows: 

 

 1 10, ,P p p  {EV, NRS, NRCS, AMNC, NGNR/LLS, WLS, FP, GP, LPPDS, 

LPPWS }.  

 

To define the best analytic prioritization operator, the best APO is defined as the 

one of the least values of the Root Mean Penalty Weighted Square Variance a  

(a-RMPWSV) which is illustrated chapter 2.5. Table 8.3.3 shows the priorities and 

a-RMPWSV for six pairwise matrices using ten prioritization operators. The results 

using the method proposed by Kulak and Kahramna (2005) are the same as the results 

obtained when using P4 (AMNC), although they used a different form of APO. The 

Saaty’s Eigenvector method is P1.  

It can be observed that neither of these two APOs, in the six matrices, is selected 

as the best APO for the high values of a-RMPWSV. The best APO is always LPPDS 

with respect to taking a-RMPWSV as the measurement criterion.  
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Table 8.3.3: Priorities and WRMSV for six pairwise matrices of case 2 by using ten 

APOs  

W1 C1 C2 C3 C4 C5 a   C1 T1 T2 T3 T4 a  

P1 0.513 0.108 0.156 0.195 0.027 2.129  P1 0.099 0.284 0.099 0.518 0.107 

P2 0.398 0.159 0.188 0.229 0.026 1.529  P2 0.099 0.293 0.099 0.508 0.085 

P3 0.563 0.102 0.156 0.146 0.032 2.070  P3 0.100 0.273 0.100 0.527 0.136 

P4 0.494 0.114 0.163 0.199 0.029 1.851  P4 0.099 0.284 0.099 0.518 0.104 

P5 0.503 0.111 0.162 0.198 0.027 2.133  P5 0.099 0.284 0.099 0.518 0.105 

P6 0.553 0.110 0.167 0.136 0.034 1.949  P6 0.101 0.275 0.101 0.523 0.120 

P7 0.488 0.130 0.216 0.130 0.036 1.605  P7 0.102 0.275 0.095 0.528 0.172 

P8 0.504 0.101 0.168 0.202 0.025 2.343  P8 0.100 0.300 0.100 0.500 0.087 

P9 0.333 0.177 0.213 0.245 0.032 1.130  P9 0.100 0.292 0.100 0.507 0.078 

P10 0.558 0.120 0.145 0.145 0.032 2.022  P10 0.101 0.275 0.101 0.523 0.120 

C2 T1 T2 T3 T4  a   C3 T1 T2 T3 T4 a  

P1 0.565 0.055 0.262 0.118  0.887  P1 0.087 0.311 0.549 0.053 1.073 

P2 0.507 0.053 0.296 0.144  0.855  P2 0.098 0.386 0.464 0.052 0.742 

P3 0.605 0.063 0.224 0.109  0.855  P3 0.089 0.237 0.613 0.060 1.344 

P4 0.558 0.057 0.263 0.122  0.809  P4 0.092 0.319 0.533 0.055 0.922 

P5 0.564 0.055 0.263 0.118  0.893  P5 0.090 0.313 0.543 0.054 1.000 

P6 0.593 0.068 0.227 0.111  0.745  P6 0.089 0.252 0.597 0.061 1.231 

P7 0.583 0.095 0.221 0.101  0.917  P7 0.167 0.278 0.500 0.056 1.270 

P8 0.521 0.063 0.313 0.104  0.585  P8 0.085 0.427 0.427 0.061 0.665 

P9 0.511 0.068 0.311 0.111  0.531  P9 0.087 0.411 0.441 0.060 0.538 

P10 0.593 0.068 0.227 0.111  0.745  P10 0.089 0.252 0.597 0.061 1.231 

C4 T1 T2 T3 T4  a   C5 T1 T2 T3 T4 a  

P1 0.249 0.054 0.592 0.105  1.111  P1 0.078 0.522 0.200 0.200 0.471 

P2 0.279 0.050 0.538 0.134  1.258  P2 0.076 0.489 0.217 0.217 0.450 

P3 0.223 0.063 0.625 0.089  0.916  P3 0.084 0.539 0.189 0.189 0.450 

P4 0.251 0.056 0.584 0.109  1.024  P4 0.079 0.519 0.201 0.201 0.453 

P5 0.253 0.053 0.590 0.104  1.143  P5 0.078 0.520 0.201 0.201 0.475 

P6 0.227 0.069 0.615 0.089  0.792  P6 0.088 0.534 0.189 0.189 0.409 

P7 0.239 0.054 0.616 0.091  1.150  P7 0.085 0.540 0.188 0.188 0.441 

P8 0.216 0.043 0.648 0.093  2.019  P8 0.063 0.563 0.188 0.188 1.000 

P9 0.293 0.071 0.550 0.086  0.642  P9 0.089 0.493 0.209 0.209 0.353 

P10 0.227 0.069 0.615 0.089  0.792  P10 0.088 0.534 0.189 0.189 0.409 



Chapter8 Applications 

 

342 
 

 

Table 8.3.4: Synthesis and measurement results of eight APOs (case 2)  

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

T1 0.176 0.204 0.167 0.18 0.179 0.17 0.162 0.196 0.217 0.176 

T2 0.225 0.222 0.224 0.225 0.224 0.229 0.252 0.233 0.230 0.225 

T3 0.286 0.302* 0.272 0.288 0.289 0.271 0.289 0.27 0.324* 0.265 

T4 0.313* 0.271 0.336* 0.306* 0.308* 0.33* 0.296* 0.301* 0.229 0.333* 

 a  5.777 4.919* 5.770 5.163 5.749 5.247 5.555 6.699 3.272* 5.319 

 

Table 8.3.4 shows the results of a synthesis of eight APO methods. The result 

shows that 1 3 8 10, , , ,p p p p  support the result that transportation company 4 is the best 

candidate, whilst 2p  and 10p  show that company 3 is the best. To measure the results, 

the a-RMPWSVs of all pairwise matrices for all methods are summed up. It can be 

found that 2p  and 10p , which support company 3, have the least two summations of 

a-RMPWSVs, which are less than five. In this case, the APOs of the summation of 

a-RMPWSV, more than five may produce an inaccurate result, i.e. company 4.  

 

8.3.3. The CNP Approach 

To apply CNP, the linguistic terms are assumed to be the same. Regarding the 

numerical representation, the Pairwise Reciprocal Matrices (PRMs) are changed to the 

Pairwise Opposite Matrices (POMs) with reference to table 8.1. The result of the POMs 

is shown in table 8.3.5. In order to compare with AHP, the results of the utility sets are 
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normalized.  

The results of the normalized utility sets, c-RMPWSVs, and their aggregation 

values using a weighted average aggregation operator are shown in table 8.3.6.  Two 

cognitive prioritization operators, RAU (or PLS) and LPS, are used. Interestingly, both 

CPOs produce the same result for the same matrix. 

 

Table 8.3.5: Pairwise opposite matrices of case 2   

B TC DR TR F DA  B1 T1 T2 T3 T4 

TC 0 4 2 4 8  T1 0 -2 0 -4 

DR -4 0 -1 -1 6  T2 2 0 2 -1 

TR -2 1 0 -1 6  T3 0 -2 0 -4 

F -4 1 1 0 7  T4 4 1 4 0 

DA -8 -6 -6 -7 0       

AI=0.117  AI=0.042 

B2 T1 T2 T3 T4   B3 T1 T2 T3 T4 

T1 0 6 2 4   T1 0 -4 -4 1 

T2 -6 0 -4 -2   T2 4 0 -2 6 

T3 -2 4 0 2   T3 4 2 0 6 

T4 -4 2 -2 0   T4 -1 -6 -6 0 

AI=0   AI=0.103 

B4 T1 T2 T3 T4   B5 T1 T2 T3 T4 

T1 0 4 -2 2   T1 0 -4 -2 -2 

T2 -4 0 -6 -2   T2 4 0 2 2 

T3 2 6 0 6   T3 2 -2 0 0 

T4 -2 2 -6 0   T4 2 -2 0 0 

AI=0.085   AI=0 
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Table 8.3.6: Cognitive prioritization and aggregation results of RAU and LPS (case 2)  

 
 C1 C2 C3 C4 C5 Result Rank 

 
W 0.29 0.2 0.22 0.225 0.065 

  
T1  0.203 0.344 0.195 0.281 0.188 0.246 3 

T2  0.273 0.156 0.313 0.156 0.313 0.235 2 

T3  0.203 0.281 0.344 0.359 0.250 0.288 4 

T4  0.320 0.219 0.148 0.203 0.250 0.231 1 

C  0.721 0.289 0 0.645 0.577 0  C =2.233 

 

8.2.4. Discussion of case 2 

As AI and CR use different functions constructed from different perspectives, the 

levels of their values cannot be used for comparison of POM and PRM. However, if both 

are equal to zero, the PRM is consistent while the POM is accordant perfectly. The 

interesting finding is that the Accordant Indices of B2 and B5 are equal to zero, i.e. 

perfectly accordant, from conversions of inconsistent A2 and A5 respectively. This means 

that the accordant or consistent cognition for pairwise comparison in a matrix can be 

distorted as discordant or inconsistent by Saaty’s PRM. On the other hand, POM is much 

more appropriate to reflect the accordant cognition for pairwise comparison in a matrix. 

Regarding AHP, different APOs have different results which likely lead to the 

different ranks. On the other hand, regarding CNP, two CPOs interestingly produce the 

same results which are shown in table 8.3.6. Unlike the unsettled issues of APOs, while 
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the result is the same for these two CPOs, the CNP reduces the hesitation of the decision 

maker, or increases the usability for the decision maker. 

Regarding the rank, the best one using AHP, which most APOs support, is the 

worse one of using CNP. In addition, the rank of CNP is totally different from all 

possible cases of AHP. The finding of this case is worrying since so many applications 

apply the AHP method. The main reason, which also is illustrated in chapter 5, is that the 

PRM has misrepresentation of the cognitive paired comparisons, and the priority vector 

derived from PRM is questionable. If PRM is used in the hierarchical model, of course 

the result is misleading too. On the other hand, to solve the misrepresentation problem of 

PRM, POM is proposed as the ideal solution. The CNP is based on POMs in view of 

hierarchical clusters. More details are in chapter 5. 

 

8.4. Case 3: R&D Project selection 

The case background, solutions using the AHP approach and the CNP approach 

respectively, and the discussion of the comparison are presented as follows. 

 

8.4.1. Case 3 background 

This case discusses the comparisons of the primitive Cognitive Network Process 

(CNP) model and the improved Analytic Network Process (ANP) (Saaty 2005; Yuen and 
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Lau, 2009) model using recent research in the R&D project selection problem discussed 

by Yuen and Lau (2009). 

 

In this case, the most preferable R&D project iT *  is selected from 

1 2 3T T T T   , ,  measured by 13 attributes, i.e., 13i jc , , belonging to four criteria 

1 2 3 4C c c c c   , , ,  (table 8.4.1). Each attribute i jc ,  is evaluated by two experts 1i je , , , 

2i je , ,  (table 8.4.2), who may be the same person but is irrelevant for the mathematical 

model.  1i je , ,  is from the R&D department, and 2i je , ,  is from the Marketing 

Department. The weights of these two experts are measured by the management board. 

In this case, the weights of these two experts are aggregated to be equal. The calculated 

method is based on the Linguistic Possibility-Probability Aggregation Model (LPPAM) 

proposed by Yuen and Lau (2009). LPPAM used multiple aggregation operators. 

However, to simplify the comparison, only the weighted arithmetic mean, wam, is 

applied in this case. 

 

A valuation function V = f (Benefit, Opportunity, Cost, Risk), i.e.  1 2 3 4V f c c c c , , ,  

is used in the volitional decision process. The set of positive factors  1 2C c c  ,  , and 

a set of deductive (or negative) factors  3 4C c c  ,  are assigned by the sets of the 

normalized weights  1 2W w w  ,  and  3 4W w w  ,  respectively.  
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Table 8.4.1: Numerical rating scores of case 3 by two experts (Yuen and Lau, 2009)  

Criteria Attributes 

Weight 

 wij  

Project 1 

 1A  

Project 2 

 2A  

Project 3 

 3A  

1e   2e  1e   2e  1e   2e  1e   2e  

Benefits 

 1c  

Technology Merit  11c  10 10 9.58 10 7.92 5.42 5.42 5.42 

Market Size  12c  7.08 9.58 8.5 7.92 6 5.42 6 4.58 

Potential Return  13c  7.5 10 9.58 8.5 6.82 7.08 6 4.58 

Market Growth  14c  7.08 9.58 9 7.5 6 5.42 6 5.42 

Opportunities 

 2c  

Technology Leadership  21c  10 10 10 7.92 7.5 5 7.08 5 

Sustain Development  22c  7.92 10 8.5 7.92 5.42 5 5.42 5 

Costs  

 3c  

R&D Cost  31c  10 9.58 9.58 8.5 7.08 6 8.5 7.92 

Implementation cost  32c  10 9.58 9.58 7.08 7.08 5.42 9.58 7.92 

Risks 

 4c  

Marketing success  41c  9.58 10 7.5 9.58 5 4.58 7.5 7.08 

R&D Success  42c  9.58 9.58 7.5 9 5.42 6.5 7.5 9 

Competitors  43c  9.58 10 7.5 10 5 6.5 7.5 7.08 

Financial Overrun  44c  9.32 10 8.5 7.5 6 7.08 8.5 7.92 

Duration overrun  45c  7.92 10 7.5 7.5 5.42 7.08 7.5 7.08 

 

The valuation function for each project iT  is 
T T

i i i i iV C w C w       
      
   (T in 

this function is the transposition). C is determined by wam in table 8.4.3, and the set of 
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relative weights are subject to 1 2 3 4 1        . The results of the aggregation and 

valuation are shown in tables 8.4.4 and 8.4.5. Project 1 ( 1T ) is preferable as the value of 

the valuation function is profitable and maximized.  

 

 

Table 8.4.2: Numerical representation and the relative weights (case 3)  

 1d  2d  3d  4d  Utility weight 
kew  

Relative Weight 

k"  for ke  

Weight  W id  10.00 7.92 5.42 5.42 - - 

Relative Weight for W  0.35 0.28 0.19 0.19 - - 

Expert 1  1e  10.00 7.92 9.32 9.58 9.22 0.50 

Expert 2  2e  7.92 10.00 9.58 9.32 9.07 0.50 

 

 

Table 8.4.3: Criteria weights (case 3)  

  1c  2c  3c  4c  

 by 1e  IB-E A-Ma QA-Ma IB-Ma 

  by 2e  A-E LA-Ma LB-E A-Ma 

 f   by 1e  9.58 7.5 7.92 7.08 

 f   by 2e  10 7.92 9.58 7.5 

i  0.56  0.44  0.54  0.46  
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Table 8.4.4: Aggregation values by weighted arithmetic mean (case 3) 

Criteria 
1T  2T  3T  Aggregated Values 

1e   2e  1e  2e  1e  2e  1T  2T  3T  

1c  9.21  8.50  6.80  5.84  5.82  5.00  8.85  6.32  5.41  

2c  9.34  7.92  6.58  5.00  6.35  5.00  8.63  5.79  5.67  

3c  9.58  7.79  7.08  5.71  9.04  7.92  8.69  6.40  8.48  

4c  7.70  8.71  5.36  6.35  7.70  7.62  8.21  5.85  7.66  

 

Table 8.4.5: Valuation values (case 3)  

Criteria Criteria Weight Project 1 Project 2 Project 3 

1c  0.56 8.85 6.32 5.41 

2c  0.44 8.63 5.79 5.67 

3c  0.54 8.69 6.40 8.48 

4c  0.46 8.21 5.85 7.66 

wam  0.29 -0.06 -2.58 

 

Objective

Experts

Structural 

Criteria

e1 e2

c1 c2 c4

c11

c12

c13

c14

c21

c22

c41

c42

c43

c44

c45

c3

c21

c22

O

Projects 1,2,3Alternatives

Negative FactorsPositive Factors

 

Figure 8.1: Network structures for the CNP and the ANP of the R&D Project 

selection problem  
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8.4.2. The improved ANP approach to case 3 

Now the R&D project selection problem of direct rating structure (Yuen and Lau, 

2009) is converted to the ANP selection structure, which is shown in Fig. 8.1. The 

classical AHP problem (Saaty 1980) does not deal with positive and negative factors. 

Saaty (2005) proposed ANP to address this problem. ANP is related to BOCR, which 

stands for Benefits, Opportunities, Costs and Risks denoted by 1 2 3 4, , ,c c c c  respectively. 

It is assumed that tables 8.4.1-8.4.5 reflect the real world situation, and the results 

have been collected. In order to convert the absolute rating scale to the comparison ratio 

scale, tables 8.4.6-8.4.8 have been prepared. These tables show that the relative weights 

between any two candidates are in the range [0.647, 2.092]. The conventional 

comparison scales for AHP are nine points. This means that the labels of the intensity of 

importance, which are more than or equal to 3, are redundant. Only three scales are 

useful: 0.5,1, and 2. 

One limitation of ANP is that its nine point scale cannot produce certain patterns 

of priority distributions. This may finally lead to reversal of rank. For example, in Table 

9.4.6, the “real” relative weights for B, O, C, and R ( 1c , 2c , 3c , 4c ) from expert 1 should 

be (0.561, 0.439, 0.558, 0.442). To achieve this weight vector, the pairwise matrix is the 

one shown in the 1e  column. However, in real practice, the numbers of the nine scales 

are all integers. The most approximate pairwise matrix should round the decimal digits 
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to integers. Thus all elements of this new matrix are 1, and then the weights should be 

(0.5, 0.5, 0.5, 0.5). This produces errors corresponding to the “real” results. Such errors 

produce rank reversal in this situation. 

 

Table 8.4.6: “Real” Pairwise Reciprocal Matrices of criterion comparisons (case 3)  

 
1e   2e  1e  2e  

   
1c  2c  3c  4c  1c  2c  3c  4c  

1c  9.58 10 1.000 1.277 
  

1.000 1.263 
  

2c  7.5 7.92 
 

1.000 
   

1.000 
  

3c  7.92 9.58 
  

1.000 1.119 
  

1.000 1.277 

4c  7.08 7.5 
   

1.000 
   

1.000 

 

Table 8.4.7: “Real” Pairwise Reciprocal Matrices of attribute comparisons (case 3)  

  1e   2e  1e  2e  

   
1ic  2ic  3ic  4ic  5ic  1ic  2ic  3ic  4ic  5ic  

11c  10.00 10.00 1.000 1.412 1.333 1.412 
 

1.000 1.044 1.000 1.044 
 

12c  7.080 9.580 
 

1.000 0.944 1.000 
  

1.000 0.958 1.000 
 

13c  7.500 10.000 
  

1.000 1.059 
   

1.000 1.044 
 

14c  7.080 9.580 
   

1.000 
    

1.000 
 

21c  10.00 10.000 1.000 1.263 
   

1.000 1.000 
   

22c  7.920 10.000 
 

1.000 
    

1.000 
   

31c  10.00 9.580 1.000 1.000 
   

1.000 1.000 
   

32c  10.00 9.580 
 

1.000 
    

1.000 
   

41c  9.580 10.000 1.000 1.000 1.000 1.028 1.210 1.000 1.044 1.000 1.000 1.000 

42c  9.580 9.580 
 

1.000 1.000 1.028 1.210 
 

1.000 0.958 0.958 0.958 

43c  9.580 10.000 
  

1.000 1.028 1.210 
  

1.000 1.000 1.000 

44c  9.320 10.000 
   

1.000 1.177 
   

1.000 1.000 

45c  7.920 10.000 
    

1.000 
    

1.000 
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Table 8.4.8: “Real” pairwise reciprocal matrices of alternative comparisons (case 3)  

ijc  1A  2A  3A  1E  2E  

1e  2e  1e  2e  1e  2e  1 2T T  1 3T T  2 3T T  1 2T T  1 3T T  2 3T T  

11c  9.58 10 7.92 5.42 5.42 5.42 1.210 1.768 1.461 1.845 1.845 1.000 

12c  8.5 7.92 6 5.42 6 4.58 1.417 1.417 1.000 1.461 1.729 1.183 

13c  9.58 8.5 6.82 7.08 6 4.58 1.405 1.597 1.137 1.201 1.856 1.546 

14c  9 7.5 6 5.42 6 5.42 1.500 1.500 1.000 1.384 1.384 1.000 

21c  10 7.92 7.5 5 7.08 5 1.333 1.412 1.059 1.584 1.584 1.000 

22c  8.5 7.92 5.42 5 5.42 5 1.568 1.568 1.000 1.584 1.584 1.000 

31c  9.58 8.5 7.08 6 8.5 7.92 1.353 1.127 0.833 1.417 1.073 0.758 

32c  9.58 7.08 7.08 5.42 9.58 7.92 1.353 1.000 0.739 1.306 0.894 0.684 

41c  7.5 9.58 5 4.58 7.5 7.08 1.500 1.000 0.667 2.092 1.353 0.647 

42c  7.5 9 5.42 6.5 7.5 9 1.384 1.000 0.723 1.385 1.000 0.722 

43c  7.5 10 5 6.5 7.5 7.08 1.500 1.000 0.667 1.538 1.412 0.918 

44c  8.5 7.5 6 7.08 8.5 7.92 1.417 1.000 0.706 1.059 0.947 0.894 

45c  7.5 7.5 5.42 7.08 7.5 7.08 1.384 1.000 0.723 1.059 1.059 1.000 

 

To improve this situation by using the compound linguistic ordinal scale (CLOS), 

let HAD-LRM of the comparison scale schema be   
1

, ,
X

X f  . To construct the 

labels of the comparison scale 1 , let  
1

Equal,Weak,Moderate,Strong,EssentialaV 


. 

 Little,Quite,MuchhV 


,  Below,Absolutely,AbovedV 


, and thus 

 "MB","QB","LB","A","LA","QA","MA"hdV 


. Using algorithm 4.1, then 

1

0 - - - -

0 - - - -

0 - - - -

- - - - -

- - - 0

- - - - 0

- - - 0

MB W MB M MB S MB Es

QB W QB M QB S QB Es

LB W LB M LB S LB Es

A E A W A M A S A Es

LA E LA W LA M LA S

QA E QA W QA M QA S

MA E MA W MA M MA S

 
 
 
 
 

   
 
 
 
  

. 
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For the calculation of  the representation values 
1

X , let  1,9X  , 1, ,5 2d


 , 

 1,3,5,7,9 


, 1, ,5 2


  , 1 1
j PbMF

   ,    1,2,3hV 


, 0 0.5   for  

algorithm 4.3, this follows 

 
1 1

0 1.542 3.542 5.542 7.542

0 2.198 4.198 6.198 8.198

0 2.668 4.668 6.668 8.668

1.000 3.000 5.000 7.000 9.000

1.332 3.332 5.332 7.332 0

1.802 3.802 5.802 7.802 0

2.458 4.448 6.458 8.458 0

X
X f

 
 
 
 
 

    
 
 
 
 
 

 

, and its reciprocal matrix is: 

1

1

0 0.648 0.282 0.180 0.133

0 0.455 0.238 0.161 0.122

0 0.375 0.214 0.150 0.115

1.000 0.335 0.200 0.143 0.111

0.751 0.300 0.188 0.136 0

0.555 0.263 0.172 0.128 0

0.407 0.224 0.155 0.118 0

X




 
 
 
 
 

  
 
 
 
 
 

. 

We now return to the problem of the nine point scale in table 8.4.6. The labels and 

approximate numbers of the new pairwise matrix for expert 1 are shown in table 8.4.9. 

The new relative weights are (0.571, 0.429, 0.571, 0.429). The ranks are shown correctly 

as the same as the “real one”. The sum of the absolute errors is reduced from 0.178 to 

0.106. The error reduction is more than 40%. Thus it can be seen that the Compound 

Linguistic Ordinal Scales increase the chance of rank preservation of the ANP.  

The real values of 1e  judgments are  0.561,0.439i     , 

 0.528,0.472i      whilst the real one of 2e  judgments,  0.558,0.442i     , 
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 0.561,0.439i     . On the other hand, both experts of the improved ANP with 

CLOS are of the weight set:  0.571,0.429i i          . The ranks are preserved. 

 

Table 8.4.9: Approximate PRMs of criterion comparison (case 3)  

 

 

1e  2e  1e  2e  

1c  2c  3c  4c  1c  2c  3c  4c  1c  2c  3c  4c  1c  2c  3c  4c  

1c  E LA-E 
  

E LA-E 
  

1.000 1.332 
  

1.000 1.332 
  

2c  

 
E 

   
E 

   
1.000 

   
1.000 

  

3c  
  

E LA-E 
  

E LA-E 
  

1.000 1.332 
  

1.000 1.332 

4c  

   
E 

   
E 

   
1.000 

   
1.000 

 

Table 8.4.10: Approximate PRMs of attribute comparisons (case 3)  

 ijc  
1e  2e  1e  2e  

1ic  2ic  3ic  4ic  5ic  1ic  2ic  3ic  4ic  5ic  1ic  2ic  3ic  4ic  5ic  1ic  2ic  3ic  4ic  5ic  

11c  E MB-W LA-E MB-W   E E E E   1.000 1.542 1.332 1.542   1.000 1.000 1.000 1.000   

12c    E E E     E E E 

 

  1.000 1.000 1.000     1.000 1.000 1.000 

 

13c    

 

E E     

 

E E 

 

  

 

1.000 1.000     

 

1.000 1.000 

 

14c        E         E         1.000         1.000   

21c  E LA-E       E E       1.000 1.332       1.000 1.000       

22c    E         E         1.000         1.000       

31c  E E       E E       1.000 1.000       1.000 1.000       

32c    E         E         1.000         1.000       

41c  E E E E LA-E E E E E E 1.000 1.000 1.000 1.000 1.332 1.000 1.000 1.000 1.000 1.000 

42c    E E E LA-E   E E E E   1.000 1.000 1.000 1.332   1.000 1.000 1.000 1.000 

43c    

 

E E LA-E   

 

E E E   

 

1.000 1.000 1.332   

 

1.000 1.000 1.000 

44c    

  

E LA-E   

  

E E   

  

1.000 1.332   

  

1.000 1.000 

45c          E         E         1.000         1.000 
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Table 8.4.11: Approximate PRMs from Projects (case 3)  

ijc  
1E  2E  1E  2E  

1 2T T  1 3T T  2 3T T  1 2T T  1 3T T  2 3T T  1 2T T  1 3T T  2 3T T  1 2T T  1 3T T  2 3T T  

11c  LA-E QA-E MB-W QA-E QA-E E 1.332 1.802 1.542 1.802 1.802 1 

12c  MB-W MB-W E MB-W QA-E LA-E 1.542 1.542 1 1.542 1.802 1.332 

13c  MB-W MB-W LA-E QA-E QA-E MB-W 1.542 1.542 1.332 1.802 1.802 1.542 

14c  MB-W MB-W E QA-E LA-E E 1.542 1.542 1 1.802 1.332 1 

21c  LA-E MB-W E MB-W MB-W E 1.332 1.542 1 1.542 1.542 1 

22c  MB-W MB-W E MB-W MB-W E 1.542 1.542 1 1.542 1.542 1 

31c  LA-E LA-E I-LA-E LA-E LA-E I-LA-E 1.332 1.332 0.751 1.332 1.332 0.751 

32c  LA-E E I-LA-E LA-E I-LA-E I-LA-E 1.332 1 0.751 1.332 0.751 0.751 

41c  MB-W E I-LA-E QB-W E I-LA-E 1.542 1 0.751 2.198 1 0.751 

42c  LA-E E I-LA-E LA-E E I-LA-E 1.332 1 0.751 1.332 1 0.751 

43c  MB-W E I-LA-E MB-W E I-LA-E 1.542 1 0.751 1.542 1 0.751 

44c  MB-W E I-LA-E E I-LA-E I-LA-E 1.542 1 0.751 1 0.751 0.751 

45c  LA-E E I-LA-E E E E 1.332 1 0.751 1 1 1 

 

The next issue is the improvement of the synthesis function. Analytical 

prioritization means converting the pairwise matrices to local priorities. Synthesis means 

aggregation of these local priorities to global priorities. Summation of the priorities is 

equal to one. In ANP, the aggregation results for the priorities are obtained by using two 

formulae 1'V bB oO cC rR    , b+o+c+r=1 and 2'V BO CR . As to which one is 

used in any particular case, this depends on which one is more appropriate to use for the 

interpretation of the outcome (Saaty, 2005). However, Yuen and Lau (2009) have 

indicated that both are not appropriate. The valuation function suggested is 

T T

i i i i iV C C             , where 1i i           .   
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The “real” weights are shown in tables 8.4.6-8.4.8, and the approximate pairwise 

matrices based on this data are shown in tables 8.4.9-8.4.11. Table 8.4.12 shows the 

priorities from pairwise matrices from tables 8.4.9 to 8.4.11, and the final results by 

using the valuation function, which is also used by CNP.  

 

 

Table 8.4.12: Synthesis results of the improved ANP with respect to “real” reference 

values (case 3)   

Criteria 
 

B (c1) O (c2) C (c3) R (c4) Val 

Experts 
 

1e  2e  1e  2e  1e  2e  1e  2e  1e  2e  
Final 

score 

Reference 

Values 

w 0.561 0.558 0.439 0.442 0.528 0.561 0.472 0.439 
   

T1 0.422 0.439 0.419 0.442 0.373 0.364 0.371 0.384 0.049 0.068 0.058 

T2 0.312 0.302 0.296 0.279 0.275 0.267 0.258 0.280 0.037 0.020 0.028 

T3 0.267 0.259 0.285 0.279 0.352 0.370 0.371 0.336 -0.086 -0.087 -0.087 

Improved 

ANP 

w 0.571 0.571 0.429 0.429 0.571 0.571 0.429 0.429 
   

T1 0.433 0.459 0.425 0.435 0.381 0.364 0.374 0.359 0.052 0.087 0.069 

T2 0.307 0.285 0.292 0.282 0.273 0.272 0.264 0.278 0.031 0.009 0.020 

T3 0.259 0.257 0.283 0.282 0.346 0.364 0.362 0.363 -0.084 -0.096 -0.090 
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8.4.3. The CNP approach to case 3 

Now the R&D project selection problem is converted to the CNP selection 

structure, which is also shown in Fig. 8.1. The CNP addresses the positive and negative 

factors. The calculation processes are similar to ANP, but CNP uses the reciprocal 

opposite matrices.  

It is assumed that tables 8.4.1-8.4.5 (Yuen and Lau, 2009) reflect the real world 

situation. In order to approximate the real scales, tables 9.4.12-9.4.14 have been 

prepared.  

The compound linguistic ordinal scale (CLOS) is used in CNP. Let HAD-LRM of 

the comparison interval scale schema be   
2

, ,
X

X f  . To construct the labels of the 

comparison interval scale 2 , the linguistic representation labels are the same as 1  

 

Table 8.4.13: “Real” pairwise opposite matrices of criterion comparisons (case 3)  

 
1e   2e  1e  2e  

   
1c  2c  3c  4c  1c  2c  3c  4c  

1c  9.58 10 0 2.08 
  

0 2.08 
  

2c  7.5 7.92 
 

0 
  

  0 
  

3c  7.92 9.58 
  

0 0.84   
 

0 2.08 

4c  7.08 7.5       0       0 
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Table 8.4.14: “Real” pairwise opposite matrices of attribute comparisons (case 3)  

  1e   2e  1e  2e  

   
1ic  2ic  3ic  4ic  5ic  1ic  2ic  3ic  4ic  5ic  

11c  10.00 10.00 0 2.92 2.5 2.92   0 0.42 0 0.42   

12c  7.080 9.580 
 

0 -0.42 0   
 

0 -0.42 0 
 

13c  7.500 10.00 
  

0 0.42   
  

0 0.42 
 

14c  7.080 9.580       0         0   

21c  10.00 10.00 0 2.08 
  

  0 0 
   

22c  7.920 10.00   0         0       

31c  10.00 9.580 0 0 
  

  0 0 
   

32c  10.00 9.580   0         0       

41c  9.580 10.00 0 0 0 0.26 1.66 0 0.42 0 0 0 

42c  9.580 9.580 
 

0 0 0.26 1.66 
 

0 -0.42 -0.42 -0.42 

43c  9.580 10.00 
  

0 0.26 1.66 
  

0 0 0 

44c  9.320 10.00 
   

0 1.4 
   

0 0 

45c  7.920 10.00         0         0 

 

Table 8.4.15: “Real” pairwise opposite matrices from alternative comparisons (case 3)  

ijc  1T  2T  3T  1e  2e  

1e  2e  1e  2e  1e  2e  1 2T T  1 3T T  2 3T T  1 2T T  1 3T T  2 3T T  

11c  9.58 10 7.92 5.42 5.42 5.42 1.66 4.16 2.5 4.58 4.58 0 

12c  8.5 7.92 6 5.42 6 4.58 2.5 2.5 0 2.5 3.34 0.84 

13c  9.58 8.5 6.82 7.08 6 4.58 2.76 3.58 0.82 1.42 3.92 2.5 

14c  9 7.5 6 5.42 6 5.42 3 3 0 2.08 2.08 0 

21c  10 7.92 7.5 5 7.08 5 2.5 2.92 0.42 2.92 2.92 0 

22c  8.5 7.92 5.42 5 5.42 5 3.08 3.08 0 2.92 2.92 0 

31c  9.58 8.5 7.08 6 8.5 7.92 2.5 1.08 -1.42 2.5 0.58 -1.92 

32c  9.58 7.08 7.08 5.42 9.58 7.92 2.5 0 -2.5 1.66 -0.84 -2.5 

41c  7.5 9.58 5 4.58 7.5 7.08 2.5 0 -2.5 5 2.5 -2.5 

42c  7.5 9 5.42 6.5 7.5 9 2.08 0 -2.08 2.5 0 -2.5 

43c  7.5 10 5 6.5 7.5 7.08 2.5 0 -2.5 3.5 2.92 -0.58 

44c  8.5 7.5 6 7.08 8.5 7.92 2.5 0 -2.5 0.42 -0.42 -0.84 

45c  7.5 7.5 5.42 7.08 7.5 7.08 2.08 0 -2.08 0.42 0.42 0 
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For the calculation of  the representation values 
2

X , let  0,10X  , 

1, ,5 2.5d


 ,  0,2.5,5,7.5,10 


, 1, ,5 2


  , 1 1
j PbMF

   ,    1,2,3hV 


, 

0 0.5  . By using algorithm 4.2, then 

 
2 2

0 0.678 3.178 5.678 8.178

0 1.500 4.000 6.500 9.000

0 2.085 4.585 7.085 9.585

0.000 2.500 5.000 7.500 10.00

0.415 2.915 5.415 7.915 0

1.002 3.502 6.002 8.502 0

1.822 4.322 6.822 9.322 0

X
X f

 
 
 
 
 

    
 
 
 
 
 

 

, and 

 
2 2

0 0.678 3.178 5.678 8.178

0 1.500 4.000 6.500 9.000

0 2.085 4.585 7.085 9.585

0.000 2.500 5.000 7.500 10.00

0.415 2.915 5.415 7.915 0

1.002 3.502 6.002 8.502 0

1.822 4.322 6.822 9.322 0

X
X f

   


   

    


        
   

   

   











 


 

,where 
2

X  is the matrix of the values of the opposite of compound comparison 

scales, 
2

X . 

 

Table 8.4.16: Approximate POMs of criterion comparisons (case 3)  

 

 

1e  2e  1e  2e  

1c  2c  3c  4c  1c  2c  3c  4c  1c  2c  3c  4c  1c  2c  3c  4c  

1c  AE LBW 
  

AE LBW 
  

0 2.085 
  

0 2.085 
  

2c  
 

AE 
  

  AE 
   

0 
  

  0 
  

3c  
  

AE QAE   
 

AE LBW 
  

0 1.002   
 

0 2.085 

4c        AE       AE       0       0 
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Table 8.4.17: Approximate POMs of attribute comparisons (case 3)  

ijc  
1e  

2e  
1e  

2e  

1ic  
2ic  

3ic  
4ic  

5ic  
1ic  

2ic  
3ic  

4ic  
5ic  

1ic  
2ic  

3ic  
4ic  

5ic  
1ic  

2ic  
3ic  

4ic  
5ic  

11c  AE LAW AW LAW 
 

AE LAE AE LAE 
 

0 2.915 2.5 2.915 
 

0 0.415 0 0.415 
 

12c  
 

AE iLAE AE 
  

AE iLAE AE 
  

0 -0.42 0 
  

0 -0.415 0 
 

13c  
  

AE LAE 
   

AE LAE 
   

0 0.415 
   

0 0.415 
 

14c  
   

AE 
    

AE 
    

0 
    

0 
 

21c  AE LBW 
   

AE AE 
   

0 2.085 
   

0 0 
   

22c  
 

AE 
    

AE 
    

0 
    

0 
   

31c  AE AE 
   

AE AE 
   

0 0 
   

0 0 
   

32c  
 

AE 
    

AE 
    

0 
    

0 
   

41c  AE AE AE LAE MAE AE LAE AE AE AE 0 0 0 0.415 1.822 0 0.415 0 0 0 

42c  
 

AE AE LAE MAE 
 

AE iLAE iLAE iLAE 
 

0 0 0.415 1.822 
 

0 -0.415 -0.415 -0.415 

43c  
  

AE LAE MAE 
  

AE AE AE 
  

0 0.415 1.822 
  

0 0 0 

44c  
   

AE QBW 
   

AE AE 
   

0 1.5 
   

0 0 

45c  
    

AE 
    

AE 
    

0 
    

0 

 

Table 8.4.18: Approximate POMs from alternative comparisons (case 3)  

ijc  
1E  

2E  
1E  

2E  

1 2T T  1 3T T  2 3T T  1 2T T  1 3T T  2 3T T  1 2T T  1 3T T  2 3T T  1 2T T  1 3T T  2 3T T  

11c  MAE QAW AW LBM LBM AE 1.822 3.502 2.5 4.585 4.585 0 

12c  AW AW AE AW QAW QAE 2.5 2.5 0 2.5 3.502 1.002 

13c  LAW QAW QAE QBW QBW AW 2.915 3.502 1.002 1.5 1.5 2.5 

14c  LAW LAW AE LBW LBW AE 2.915 2.915 0 2.085 2.085 0 

21c  AW LAW LAE LAW LAW AE 2.5 2.915 0.415 2.915 2.915 0 

22c  LAW LAW AE LAW LAW AE 2.915 2.915 0 2.915 2.915 0 

31c  AW QAE iQBW AW LAE iLBW 2.5 0 -1.5 2.5 0.415 -2.085 

32c  AW AE iAW MAE iQAE iAW 2.5 0 -2.5 1.822 -1.002 -2.5 

41c  AW AE iAW AM AW iAW 2.5 0 -2.5 5 2.5 -2.5 

42c  LBW AE iLBW AW AE iAW 2.085 0 -2.085 2.5 0 -2.5 

43c  AW AE iAW QAW LAW iLAE 2.5 0 -2.5 3.502 2.915 -0.415 

44c  AW AE iAW LAE iLAE iQAE 2.5 0 -2.5 0.415 -0.415 -1.002 

45c  LBW AE iLBW LAE LAE AE 2.085 0 -2.085 0.415 0.415 0 
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Table 8.4.19: Valuation results of the normalized CNP with respect to real reference 

values (case 3)  

Criteria 
 

B (c1) O (c2) C (c3) R (c4) Val 

Experts 
 

1e  2e  1e  2e  1e  2e  1e  2e  1e  2e  Final 

Real 

Reference 

Values 

w 0.561 0.558 0.439 0.442 0.528 0.561 0.472 0.439 
   

T1 0.422 0.439 0.419 0.442 0.373 0.364 0.371 0.384 0.049 0.068 0.058 

T2 0.312 0.302 0.296 0.279 0.275 0.267 0.258 0.280 0.037 0.020 0.028 

T3 0.267 0.259 0.285 0.279 0.352 0.370 0.371 0.336 -0.086 -0.087 -0.087 

CNP 

w 0.552  0.552  0.448  0.448  0.525  0.552  0.475  0.448  
   

T1 0.396  0.396  0.382  0.398  0.361  0.354  0.359  0.372  0.030  0.035  0.032  

T2 0.317  0.313  0.296  0.301  0.283  0.284  0.281  0.293  0.025  0.020  0.022  

T3 0.287  0.291  0.322  0.301  0.356  0.362  0.359  0.335  -0.054  -0.055  -0.055  

 

Table 8.4.20: Valuation results of the unnormalized CNP with respect to real reference 

values (case 3)  

Criteria 
 

B (c1) O (c2) C (c3) R (c4) Val 

Experts 
 

1e  2e  1e  2e  1e  2e  1e  2e  1e  2e  Final 

Reference 

Values 

w 0.561 0.558 0.439 0.442 0.528 0.561 0.472 0.439 
   

T1 12.657  13.179  12.581  13.259  11.183  10.910  11.127  11.526  1.468  2.034  1.751  

T2 9.347  9.065  8.867  8.371  8.265  7.997  7.746  8.395  1.117  0.586  0.851  

T3 7.995  7.756  8.551  8.371  10.553  11.092  11.127  10.080  -2.584  -2.620  -2.602  

CNP 

w 0.552  0.552  0.448  0.448  0.525  0.552  0.475  0.448  
   

T1 11.875  11.865  11.867  11.943  10.833  10.623  10.781  11.152  1.063  1.040  1.052  

T2 9.501  9.403  9.181  9.028  8.500  8.516  8.439  8.787  0.887  0.598  0.742  

T3 8.624  8.732  10.025  9.028  10.667  10.862  10.781  10.060  -1.470  -1.638  -1.554  

The valuation function of CNP is 
T T

i i i i iV C C              where 

1i i           . In this case, from 1e ’s judgments,  0.552,0.448i     , 

 0.525,0.475i     ; From 2e ’s judgments,  0.552,0.448i     , 

 0.552,0.448i     . 

The “real” weights are shown from tables 8.4.13-8.4.15, and the approximate 



Chapter8 Applications 

 

362 
 

POMs based on this data are shown in tables 8.4.16-8.4.18. Tables 8.4.19- 8.4.20 show 

the priority weights and the utilities derived from POMs from tables 8.4.16 to 8.4.18, as 

well the results by the valuation function. Table 8.4.19 shows the normalized results 

whilst table 8.4.20 shows the unnormalized results. 

 

8.4.4. Discussion of case 3 

In the conventional assessment method, the rating scores are based on an 

individual single rating with the ordinal scales, such as Likert-like scales. Although this 

rating method may be too subjective, it is still popular in quantitative research and in 

industrial applications. Saaty (1980) proposed pairwise comparison ratio scale which 

attempts to reduce this subjectiveness. However, there are some significant problems. 

Firstly, extra effort is needed, as the number of ratings increase from n to n(n-1)/2. 

Secondly, the approximate methods, i.e. analytic prioritization methods, are still 

uncertain although many applications apply Saaty’s Eigenvector method. Thirdly, it is 

not convenient to “make up” a judgmental matrix with a consistency ratio of less than 

0.1, especially when there are five of more candidates to be compared. The “make up” is 

due to the two reasons: For one thing, nine-point scale has a mathematical limitation in 

forming a consistent PRM; for the other, ratio scales do not reflect the cognitive 

comparison of human judgment. The details are indicated in chapter 5.  
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To address the third problem, in the proposed improved ANP model, the 

Compound Linguistic Ordinal Scale is proposed in ANP. Thus more choices of rating 

scale lead to more chance to form a consistent matrix. 

Secondly, the classical ANP model uses the synthesis function 

1'V bB oO cC rR    , b+o+c+r=1. Mathematically, this definition implies that the 

lower sum of the negative weights (e.g. c+r) follows the higher sum of the positive 

weights (e.g. b+o). However, this is not necessarily true. In the real-world, it makes 

more sense that high risk is followed by high returns, no risk is followed by no return, 

and no pain is followed by no gain. Thus the improved ANP model refines the synthesis 

function, i.e. b+o=c+r=1 , which is also used by CNP. This means that the coefficients 

are only distributed in positive factors or negative factors.  

In CNP, extra effort is also needed. However, if the extra effort can produce the better 

approximate value, this effort is worthwhile. However, PRM seems not to produce the 

approximate value as the cognitive interpretation of the numerical representation is 

questionable (chapter 5), although mathematically it can produce the approximate value 

which is shown in chapter 8.4.2 by the improved ANP, but not the classical ANP. 

In CNP, no cognitive operator problems exist. The main reason is that the pairwise 

opposite matrix (POM) uses the interval scale, which is much more straightforward to 

derive. 
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Regarding the results of the comparisons of the improved ANP and the primitive 

CNP (table 8.4.12 vs. table 8.4.19), mathematically both methods produce very 

acceptable approximate results. Although it seems that the improved ANP is much closer 

to the reference values than CNP, the differences between the approximate values to 

reference values are also subject to the scaling of CLOS. Their judgment matrices are of 

different labels and different cognitive perceptions of comparisons in numerical concept 

e.g. tables 8.4.6-8.4.11 vs. tables 8.4.13-8.4.18. Better representation of CLOS produces 

better results (i.e. much closer to the reference values). 

As the expert uses straightforward comparison, i.e. interval scale rather than ratio 

scale, it is likely the labels are shown as tables 8.4.16-8.4.18. If matrix labels are 

converted by PRMs, which is derived by the analytic prioritization operator, the final 

result is likely misleading. In fact, POMs are appropriate for the pared comparison as 

they are straightforward, and easy to be understood.  

This issue has been investigated in chapter 5. POMs using CLOS produce much 

more accurate results as there are more choices for an expert with rating in the deductive 

rating process (algorithm 4.3) of CLOS, which reduces the subjective rating dilemma 

problem (chapter 4).
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8.5 Case 4: Software product selection 

The case background, solutions using the AHP approach and the CNP approach 

respectively, and the discussion of the comparison are presented as follows. 

 

8.5.1 Case 4 background 

The case compares the results of Fuzzy CNP and Fuzzy AHP for software product 

selection considering the software quality model. The case is chosen from Yuen and Lau 

(2008). A company designing and manufacturing Smartphones includes software and 

hardware development. Recently the company would like to develop a new model of 

Smartphone. The company would like to add one accessory application into its product 

among three candidates 1T , 2T , 3T  with respect to the ISO six criteria of 27 

sub-criteria (ISO/IEC9126-1: 2001) in fig. 8.2. The fuzzy rating scale, using triangular fuzzy 

numbers, is defined in table 8.5.1. 

Software Vendor Selection

Functionality

 C1

Reliability

 C2

Usability

 C3

Efficiency 

C4

Maintainability 

C5

Portability

 C6

· Suitability: C11

· Accuracy: C12

· Interoperability: 

C13

· Security: C14

· Functionality 

compliance: C15

· Maturity: C21

· Recoverability: 

C22

· Fault Tolerance: 

C23

· Reliability 

compliance: C24

· Understandability: 

C31

· Learnability : C32

· Operability: C33

· Attractiveness: C34

· Usability 

compliance: C35

· Time behavior: C41

· Resource behavior: 

C42

· Efficiency 

compliance: C43

· Analyzability : C51

· Changeability : C52

· Stability: C53

· Testability: C54

· Maintainability 

compliance: C55

· Adaptability : C61

· Installability : C62

· Co-existence: C63

· Replaceability: C64

· Portability 

compliance: C65

Level 1: 

Goal

Level 2;

Criteria

Level 3:

Subcriteria

Level 4: 

Alternatives
Candidate 1 Candidate n

 

Figure 8.2: The network structure for software vendor section with 27 ISO sub-criteria  
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Table 8.5.1: References of fuzzy ratio scale of FAHP and fuzzy interval scale of FCNP 

(case 4)  

Labels Fuzzy AHP 
Fuzzy CNP 

 3 5 4 4 5 


. , , .  

Equal (1,1,1) (0,0,0) 

Low (1.5, 2, 2.5) (0.5,1,1.5) 

Moderate (2.5,3,3.5) (1.5,2,2.5) 

High (3.5,4,4.5) (2.5,3,3.5) 

Low’ (0.4,0.5,0.67) (-1.5,-1,-0.5) 

Moderate' (0.29,0.33,0.4) (-2.5,-2,-1.5) 

High’ (0.22,0.25,0.29) (-3.5,-3,-2.5) 

 

8.5.2 The Fuzzy AHP approach to case 4 

Three steps are used in the fuzzy AHP approach to give the selection result. 

Firstly, the fuzzy relative importance of the six quality attributes, with 27 

subcriteria, is determined by using the fuzzy analytic prioritization operator, which is the 

modified Fuzzy LLSM (chapter 2.6.3). The input values and the results are shown in 

table 8.5.2. Fuzzy importance of the sub-criteria of 1C  to 6C  and the local fuzzy 

weights are shown in tables 8.5.3 to 8.5.8. 

Secondly, the experts compare the three candidates: 1T , 2T , 3T  under each of six 

criteria separately. Tables 8.5.9-8.5.14 show the comparisons among candidates under 

each sub-criterion, and the prioritization results (or local fuzzy weights). 

Thirdly, the prioritization results of six criteria and their fuzzy relative importance are 

aggregated by Eqs. (2.6.12)-(2.6.14) (Chapter 2.6.3), and the global fuzzy weights of the 
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three candidates are determined. The details are shown in table 8.5.15. The result is also 

illustrated in Fig. 8.3 graphically. It is clear that 2T  is the best alternative, followed by 

1T  and 3T . 
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Figure 8.3: Global fuzzy weights of the three candidates by using FAHP  

 

8.5.3 The Fuzzy CNP approach to case 4 

To calculate the selection result by using the fuzzy CNP approach, three steps are 

used, as follows. 

Firstly, the fuzzy relative importance of the six quality attributes, with 27 

subcriteria, is determined by using the fuzzy cognitive prioritization operator, which is 

the Fuzzy Least Penalty Squares (FLPS) (Chapter 7). The choice of FLPS is due to the 

high value of the fuzzy accordant index, which means high discordance. Thus the Fuzzy 
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Row Average plus the normal Utility (FRAU) is not recommended for fuzzy cognitive 

prioritization. The fuzzy pairwise opposite matrices and the normalized fuzzy weights 

are shown in table 8.5.16. The POMs of the fuzzy importance (or normalized fuzzy 

weight) of the sub-criteria of 1C  to 6C  and the results of the fuzzy weights are shown 

in tables 8.5.17 to 8.5.22. 

Secondly, the experts compare the three candidates: 1T , 2T , 3T  under each of six 

criteria separately. Tables 8.5.23-8.5.28 show the comparisons among the three 

candidates under each sub-criterion, and the prioritization results (or fuzzy weights). 
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Figure 8.4: Aggregated fuzzy weights of the three candidates by using FCNP  

 

Thirdly, the prioritization results of six criteria and their fuzzy relative importance 

are aggregated by the fuzzy weighted average or fuzzy weighted arithmetic mean 

(Chapter 7), and the final fuzzy weights of the three candidates are determined. The 
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details are shown in table 8.5.29. The result is illustrated in Fig. 8.4 graphically. 

However, the result is interesting. The interval of 1T  embraces the intervals of 2T  and 

3T . By comparing the modal values of the output fuzzy sets, it can be observed that 2T  

is the best alternative, followed by 1T  and 3T . By comparing the up-boundary values, 

the order is 1T > 2T > 3T . By comparing the low-boundary values, the order is 2T > 3T > 1T . 

Usually, 2T > 1T > 3T  is selected as the modal value of the fuzzy set is relatively more 

important than the interval values. However, in this case, the confidence level is very 

low. 

 

9.5.4 Discussion of case 4 

This research proposes a fuzzy ANP model for software quality evaluation and 

software vendor selection under uncertainty, with comparison of the fuzzy AHP model 

of the modified fuzzy Logarithmic Least Squares Method (Wang et al., 2008). Six 

criteria of 27 subcriteria for the software quality measurement are adopted from 

ISO/IEC9126 (ISO, 2001). Two numerical examples illustrate the usability of the FANP 

and the FAHP. 

In this comparison, both methods use the same scale labels, but different fuzzy 

representation values, due to the different axioms of pairwise comparisons, which are 

shown in table 8.5.1. 



Chapter8 Applications 

 

370 
 

The result of FAHP is clear, i.e. 2T > 1T > 3T  in respect to comparing their intervals 

and modal values. However, regarding FCNP, the result is on a case-by-case basis. It can 

be observed that the interval of 1T  embraces the intervals of 2T  and 3T  in figure 8.4.  

The fuzzy CNP can be used for the decision attitudes. If the decision maker is 

pessimist, low-boundary values are applied, and then the rank is 2T > 3T > 1T . If the 

decision maker is optimist, up-boundary values are applied, and then the rank is 

1T > 2T > 3T . If the decision maker is neutral, modal values are applied, and then the rank 

is 2T > 1T > 3T . By default, neutral is applied. In FCNP, it is a special case of CNP. The 

advantage of judgment in using fuzzy numbers is for investigating the ranges of the final 

results, and applying the decision attitudes. 

The original research of Yuen and Lau (2009) did not pay attention to fuzzy 

consistency ratio (FCR), as no previous research discussed the consistency issue in 

FAHP. FCR is defined in chapter 2.6. In this case, some fuzzy PRMs in FAHP are of 

FCR >0.1, which is unacceptable in the default setting. For improvement, those fuzzy 

PRMs of FCR >0.1 are required to be revised in the project. 

The values of fuzzy accordant indices of the most of fuzzy POMs are high in this 

case. The main issue is that the fuzzy POMs are directly converted from fuzzy PRMs, 

using table 9.5.1, and assuming that they use the same labels. Thus the data in this case 

are only for discussion of the proposal. In real applications, the fuzzy accordant index 
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(FAI) is critical for the validity of the FCNP model. This discussion result is crucial to 

future applications and development using CNP. 

Regarding the interval of the final output, the interval of the fuzzy weights of 

FCNP is larger than FAHP. This issue is related to the design of a fuzzy individual utility 




. If the interval of 


 is reduced, i.e.  3.75,4,4.25 


 in this case, the final result is 

narrowed, and is shown in fig 8.5. However, if 


 is excessively small, for example, its 

modal value is less than the modal value of the maximum of fuzzy scale, the fuzzy 

utility vector is likely to give negative results. This situation is also applied in the 

interval values. On the other hand, if 


 is excessively large, the interval of the final 

fuzzy outputs become large too.  

By default,         , , , ,l u Max X Max X Max X          


, and   

is the average of the modal values of two adjacent atomic terms (chapter 7). 

 

Figure 8.5: Aggregated fuzzy weights using FCNP with  3.75,4,4.25 

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Table 8.5.2: Fuzzy PRM (FCR=0.172) for the importance of six criteria and their fuzzy weights (case 4)  

Criteria 1C  2C  3C  4C  5C  6C  FW 

1C  (1, 1, 1) (1.5, 2, 2.5) (2.5, 3, 3.5) (1.5, 2, 2.5) (2.5, 3, 3.5) (2.5, 3, 3.5) (0.27,0.29,0.31) 

2C  (0.4, 0.5, 0.67) (1, 1, 1) (1.5, 2, 2.5) (1.5, 2, 2.5) (1.5, 2, 2.5) (1.5, 2, 2.5) (0.18,0.21,0.24) 

3C  (0.29, 0.33, 0.4) (0.4, 0.5, 0.67) (1, 1, 1) (2.5, 3, 3.5) (1.5, 2, 2.5) (1.5, 2, 2.5) (0.15,0.17,0.19) 

4C  (1.5, 2, 2.5) (0.4, 0.5, 0.67) (0.29, 0.33, 0.4) (1, 1, 1) (1.5, 2, 2.5) (1.5, 2, 2.5) (0.12,0.14,0.16) 

5C  (0.29, 0.33, 0.4) (0.4, 0.5, 0.67) (0.4, 0.5, 0.67) (0.4, 0.5, 0.67) (1, 1, 1) (0.22, 0.25, 0.29) (0.07,0.07,0.08) 

6C  (0.29, 0.33, 0.4) (0.4, 0.5, 0.67) (0.4, 0.5, 0.67) (0.4, 0.5, 0.67) (3.5, 4, 4.5) (1, 1, 1) (0.1,0.11,0.13) 

 

 

Table 8.5.3: Fuzzy PRM (FCR=0.04) for the fuzzy importance of five subcriteria of functionality and their fuzzy weights (case 4)  

Criteria 11C  12C  13C  14C  15C  FW 

11C  (1, 1, 1) (1.5, 2, 2.5) (0.29, 0.33, 0.4) (0.4, 0.5, 0.67) (0.22, 0.25, 0.29) (0.09,0.1,0.11) 

12C  (0.4, 0.5, 0.67) (1, 1, 1) (0.22, 0.25, 0.29) (0.29, 0.33, 0.4) (0.22, 0.25, 0.29) (0.06,0.07,0.07) 

13C  (2.5, 3, 3.5) (3.5, 4, 4.5) (1, 1, 1) (0.4, 0.5, 0.67) (0.4, 0.5, 0.67) (0.19,0.21,0.23) 

14C  (1.5, 2, 2.5) (2.5, 3, 3.5) (1.5, 2, 2.5) (1, 1, 1) (0.4, 0.5, 0.67) (0.2,0.24,0.27) 

15C  (3.5, 4, 4.5) (3.5, 4, 4.5) (1.5, 2, 2.5) (1.5, 2, 2.5) (1, 1, 1) (0.34,0.38,0.41) 
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Table 8.5.4: Fuzzy PRM (FCR=0.027) for the fuzzy importance of four subcriteria of reliability and their fuzzy weights (case 4)  

Criteria 21C  22C  23C  24C  FW 

21C  (1, 1, 1) (2.5, 3, 3.5) (2.5, 3, 3.5) (0.4, 0.5, 0.67) (0.27,0.3,0.33) 

22C  (0.29, 0.33, 0.4) (1, 1, 1) (1.5, 2, 2.5) (0.22, 0.25, 0.29) (0.12,0.13,0.14) 

23C  (0.29, 0.33, 0.4) (0.4, 0.5, 0.67) (1, 1, 1) (0.22, 0.25, 0.29) (0.09,0.09,0.1) 

24C  (1.5, 2, 2.5) (3.5, 4, 4.5) (3.5, 4, 4.5) (1, 1, 1) (0.44,0.48,0.51) 

 

Table 8.5.5: Fuzzy PRM (FCR=0.044) for the fuzzy importance of five subcriteria of usability and their fuzzy weights (case 4)  

Criteria 31C  32C  33C  34C  35C  FW 

31C  (1, 1, 1) (1.5, 2, 2.5) (2.5, 3, 3.5) (1.5, 2, 2.5) (0.22, 0.25, 0.29) (0.18,0.2,0.22) 

32C  (0.4, 0.5, 0.67) (1, 1, 1) (1.5, 2, 2.5) (0.4, 0.5, 0.67) (0.22, 0.25, 0.29) (0.09,0.11,0.12) 

33C  (0.29, 0.33, 0.4) (0.4, 0.5, 0.67) (1, 1, 1) (0.4, 0.5, 0.67) (0.22, 0.25, 0.29) (0.07,0.07,0.08) 

34C  (0.4, 0.5, 0.67) (1.5, 2, 2.5) (1.5, 2, 2.5) (1, 1, 1) (0.22, 0.25, 0.29) (0.12,0.14,0.16) 

35C  (3.5, 4, 4.5) (3.5, 4, 4.5) (3.5, 4, 4.5) (3.5, 4, 4.5) (1, 1, 1) (0.48,0.48,0.49) 

 

Table 8.5.6: Fuzzy PRM (FCR=0.008) for the fuzzy importance of three subcriteria of efficiency and their fuzzy weights (case 4)  

Criteria 41C  42C  43C  FW 

41C  (1, 1, 1) (1.5, 2, 2.5) (0.4, 0.5, 0.67) (0.25,0.3,0.35) 

42C  (0.4, 0.5, 0.67) (1, 1, 1) (0.29, 0.33, 0.4) (0.15,0.16,0.18) 

43C  (1.5, 2, 2.5) (2.5, 3, 3.5) (1, 1, 1) (0.49,0.54,0.58) 
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Table 8.5.7: Fuzzy PRM (FCR=0.033) for the fuzzy importance of five subcriteria of maintainability and their fuzzy weights (case 4)  

Criteria 51C  52C  53C  54C  55C  FW 

51C  (1, 1, 1) (1.5, 2, 2.5) (0.4, 0.5, 0.67) (0.4, 0.5, 0.67) (0.22, 0.25, 0.29) (0.1,0.11,0.12) 

52C  (0.4, 0.5, 0.67) (1, 1, 1) (0.22, 0.25, 0.29) (0.22, 0.25, 0.29) (0.22, 0.25, 0.29) (0.06,0.06,0.07) 

53C  (1.5, 2, 2.5) (3.5, 4, 4.5) (1, 1, 1) (0.4, 0.5, 0.67) (0.29, 0.33, 0.4) (0.16,0.17,0.19) 

54C  (1.5, 2, 2.5) (3.5, 4, 4.5) (1.5, 2, 2.5) (1, 1, 1) (0.4, 0.5, 0.67) (0.21,0.25,0.28) 

55C  (3.5, 4, 4.5) (3.5, 4, 4.5) (2.5, 3, 3.5) (1.5, 2, 2.5) (1, 1, 1) (0.38,0.41,0.43) 

 

 

Table 8.5.8: Fuzzy PRM (FCR=0.028) for the fuzzy importance of five subcriteria of portability and their fuzzy weights (case 4)  

Criteria 61C  62C  63C  64C  65C  FW 

61C  (1, 1, 1) (1.5, 2, 2.5) (0.4, 0.5, 0.67) (0.4, 0.5, 0.67) (0.22, 0.25, 0.29) (0.1,0.11,0.13) 

62C  (0.4, 0.5, 0.67) (1, 1, 1) (0.22, 0.25, 0.29) (0.22, 0.25, 0.29) (0.22, 0.25, 0.29) (0.06,0.06,0.07) 

63C  (1.5, 2, 2.5) (3.5, 4, 4.5) (1, 1, 1) (0.4, 0.5, 0.67) (0.4, 0.5, 0.67) (0.17,0.19,0.22) 

64C  (1.5, 2, 2.5) (3.5, 4, 4.5) (1.5, 2, 2.5) (1, 1, 1) (0.4, 0.5, 0.67) (0.22,0.25,0.28) 

65C  (3.5, 4, 4.5) (3.5, 4, 4.5) (1.5, 2, 2.5) (1.5, 2, 2.5) (1, 1, 1) (0.35,0.38,0.41) 
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Table 8.5.9: Fuzzy PRMs of three candidates with respect to functionality 
1C  and their fuzzy weights (case 4)  

11C  (FCR=0.018)  12C  (FCR=0.046) 

 1T  2T  3T  FW  1T  2T  3T  FW 

1T  (1, 1, 1) (1, 1, 1) (0.4, 0.5, 0.67) (0.22,0.24,0.28)  (1, 1, 1) (0.4, 0.5, 0.67) (1, 1, 1) (0.24,0.26,0.29) 

2T  (1, 1, 1) (1, 1, 1) (0.29, 0.33, 0.4) (0.21,0.21,0.22)  (1.5, 2, 2.5) (1, 1, 1) (1, 1, 1) (0.38,0.41,0.44) 

3T  (1.5, 2, 2.5) (2.5, 3, 3.5) (1, 1, 1) (0.51,0.55,0.58)  (1, 1, 1) (1, 1, 1) (1, 1, 1) (0.33,0.33,0.33) 

13C  (FCR=0)  14C  (FCR=0) 

1T  (1, 1, 1) (0.4, 0.5, 0.67) (1, 1, 1) (0.22,0.24,0.28)  (1, 1, 1) (0.4, 0.5, 0.67) (1, 1, 1) (0.23,0.25,0.28) 

2T  (1.5, 2, 2.5) (1, 1, 1) (2.5, 3, 3.5) (0.51,0.55,0.58)  (1.5, 2, 2.5) (1, 1, 1) (1.5, 2, 2.5) (0.45,0.5,0.53) 

3T  (1, 1, 1) (0.29, 0.33, 0.4) (1, 1, 1) (0.21,0.21,0.22)  (1, 1, 1) (0.4, 0.5, 0.67) (1, 1, 1) (0.23,0.25,0.28) 

15C  (FCR=0)   

1T  (1, 1, 1) (1.5, 2, 2.5) (1, 1, 1) (0.38,0.4,0.42)      

2T  (0.4, 0.5, 0.67) (1, 1, 1) (0.4, 0.5, 0.67) (0.17,0.2,0.25)      

3T  (1, 1, 1) (1.5, 2, 2.5) (1, 1, 1) (0.38,0.4,0.42)      

 

 

 

 



Chapter8 Applications 

 

376 
 

 

 

 

Table 8.5.10: Fuzzy PRMs of three candidates with respect to reliability 2C  and their fuzzy weights (case 4)  

21C  (FCR=0.823) 22C  (FCR=0.464) 

 1T  2T  3T  FW 1T  2T  3T  FW 

1T  (1, 1, 1) (1, 1, 1) (1.5, 2, 2.5) (0.29,0.32,0.35) (1, 1, 1) (1.5, 2, 2.5) (1, 1, 1) (0.35,0.4,0.44) 

2T  (1, 1, 1) (1, 1, 1) (2.5, 3, 3.5) (0.45,0.46,0.46) (0.4, 0.5, 0.67) (1, 1, 1) (3.5, 4, 4.5) (0.36,0.4,0.45) 

3T  (1.5, 2, 2.5) 
(0.29, 0.33, 

0.4) 
(1, 1, 1) (0.19,0.22,0.26) (1, 1, 1) 

(0.22, 0.25, 

0.29) 
(1, 1, 1) (0.2,0.2,0.2) 

23C  (FCR=0.018) 24C  (FCR=0.455) 

1T  (1, 1, 1) (2.5, 3, 3.5) (1.5, 2, 2.5) (0.51,0.55,0.58) (1, 1, 1) (0.4, 0.5, 0.67) (1.5, 2, 2.5) (0.29,0.33,0.38) 

2T  
(0.29, 0.33, 

0.4) 
(1, 1, 1) (1, 1, 1) (0.21,0.21,0.22) (1.5, 2, 2.5) (1, 1, 1) (0.4, 0.5, 0.67) (0.29,0.33,0.38) 

3T  (0.4, 0.5, 0.67) (1, 1, 1) (1, 1, 1) (0.22,0.24,0.28) (0.4, 0.5, 0.67) (1.5, 2, 2.5) (1, 1, 1) (0.29,0.33,0.38) 
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Table 8.5.11: Fuzzy PRMs of three candidates with respect to usability 3C  and their fuzzy weights (case 4)  

31C  (FCR=0) 32C  (FCR=0.048) 

 1T  2T  3T  FW 1T  2T  3T  FW 

1T  (1, 1, 1) (2.5, 3, 3.5) (1, 1, 1) (0.44,0.44,0.44) (1, 1, 1) (1.5, 2, 2.5) (1.5, 2, 2.5) (0.42,0.49,0.55) 

2T  (0.29, 0.33, 0.4) (1, 1, 1) (0.4, 0.5, 0.67) (0.15,0.17,0.20) (0.4, 0.5, 0.67) (1, 1, 1) (1.5, 2, 2.5) (0.27,0.31,0.35) 

3T  (1, 1, 1) (1.5, 2, 2.5) (1, 1, 1) (0.36,0.39,0.41) (0.4, 0.5, 0.67) (0.4, 0.5, 0.67) (1, 1, 1) (0.18,0.2,0.23) 

33C  (FCR=0.016) 34C  (FCR=0.127) 

1T  (1, 1, 1) (1.5, 2, 2.5) (3.5, 4, 4.5) (0.5,0.56,0.61) (1, 1, 1) (2.5, 3, 3.5) (1, 1, 1) (0.44,0.46,0.47) 

2T  (0.4, 0.5, 0.67) (1, 1, 1) (2.5, 3, 3.5) (0.27,0.32,0.37) 
(0.29, 0.33, 

0.4) 
(1, 1, 1) (1, 1, 1) (0.21,0.22,0.24) 

3T  
(0.22, 0.25, 

0.29) 

(0.29, 0.33, 

0.4) 
(1, 1, 1) (0.12,0.12,0.13) (1, 1, 1) (1, 1, 1) (1, 1, 1) (0.32,0.32,0.32) 

35C  (FCR=0.047)  

1T  (1, 1, 1) (0.4, 0.5, 0.67) (0.4, 0.5, 0.67) (0.18,0.2,0.23)     

2T  (1.5, 2, 2.5) (1, 1, 1) (1.5, 2, 2.5) (0.42,0.49,0.55)     

3T  (1.5, 2, 2.5) (0.4, 0.5, 0.67) (1, 1, 1) (0.27,0.31,0.35)     
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Table 8.5.12: Fuzzy PRMs of three candidates with respect to efficiency 4C  and their fuzzy weights (case 4)  

41C  (FCR=0.047)  42C  (FCR=0) 

 1T  2T  3T  FW  1T  2T  3T  FW 

1T  (1, 1, 1) (1.5, 2, 2.5) (1.5, 2, 2.5) (0.42,0.49,0.55)  (1, 1, 1) (1, 1, 1) (1, 1, 1) (0.33,0.33,0.33) 

2T  (0.4, 0.5, 0.67) (1, 1, 1) (0.4, 0.5, 0.67) (0.18,0.2,0.23)  (1, 1, 1) (1, 1, 1) (1, 1, 1) (0.33,0.33,0.33) 

3T  (0.4, 0.5, 0.67) (1.5, 2, 2.5) (1, 1, 1) (0.27,0.31,0.35)  (1, 1, 1) (1, 1, 1) (1, 1, 1) (0.33,0.33,0.33) 

43C  (FCR=0.018)   

1T  (1, 1, 1) (1, 1, 1) (0.4, 0.5, 0.67) (0.22,0.24,0.28)      

2T  (1, 1, 1) (1, 1, 1) (0.29, 0.33, 0.4) (0.21,0.21,0.22)      

3T  (1.5, 2, 2.5) (2.5, 3, 3.5) (1, 1, 1) (0.51,0.55,0.58)      
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Table 8.5.13: Fuzzy PRMs of three candidates with respect to maintainability 5C  and their fuzzy weights (case 4)  

51C  (FCR=0.046)  52C  (FCR=0) 

 1T  2T  3T  FW  1T  2T  3T  FW 

1T  (1, 1, 1) (1.5, 2, 2.5) (1, 1, 1) (0.38,0.41,0.44)  (1, 1, 1) (1, 1, 1) (1, 1, 1) (0.33,0.33,0.33) 

2T  (0.4, 0.5, 0.67) (1, 1, 1) (1, 1, 1) (0.24,0.26,0.29)  (1, 1, 1) (1, 1, 1) (1, 1, 1) (0.33,0.33,0.33) 

3T  (1, 1, 1) (1, 1, 1) (1, 1, 1) (0.33,0.33,0.33)  (1, 1, 1) (1, 1, 1) (1, 1, 1) (0.33,0.33,0.33) 

53C  (FCR=0)  54C  (FCR=0.049) 

3T  (1, 1, 1) (0.4, 0.5, 0.67) (1, 1, 1) (0.22,0.24,0.28)  (1, 1, 1) (0.4, 0.5, 0.67) (1, 1, 1) (0.21,0.23,0.27) 

2T  (1.5, 2, 2.5) (1, 1, 1) (2.5, 3, 3.5) (0.51,0.55,0.58)  (1.5, 2, 2.5) (1, 1, 1) (3.5, 4, 4.5) (0.55,0.58,0.61) 

3T  (1, 1, 1) (0.29, 0.33, 0.4) (1, 1, 1) (0.21,0.21,0.22)  (1, 1, 1) (0.22, 0.25, 0.29) (1, 1, 1) (0.18,0.18,0.18) 

55C  (FCR=0)   

3T  (1, 1, 1) (1, 1, 1) (1, 1, 1) (0.33,0.33,0.33)      

2T  (1, 1, 1) (1, 1, 1) (1, 1, 1) (0.33,0.33,0.33)      

3T  (1, 1, 1) (1, 1, 1) (1, 1, 1) (0.33,0.33,0.33)      
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Table 8.5.14: Fuzzy PRMs of three candidates with respect to portability 6C  and their fuzzy weights (case 4)  

61C  (FCR=0)  62C  (FCR=0.455) 

 1T  2T  3T  FW  1T  2T  3T  FW 

1T  (1, 1, 1) (0.29, 0.33, 0.4) (1, 1, 1) (0.21,0.21,0.22)  (1, 1, 1) (0.4, 0.5, 0.67) (1.5, 2, 2.5) (0.29,0.33,0.38) 

2T  (2.5, 3, 3.5) (1, 1, 1) (1.5, 2, 2.5) (0.51,0.55,0.58)  (1.5, 2, 2.5) (1, 1, 1) (0.4, 0.5, 0.67) (0.29,0.33,0.38) 

3T  (1, 1, 1) (0.4, 0.5, 0.67) (1, 1, 1) (0.22,0.24,0.28)  (0.4, 0.5, 0.67) (1.5, 2, 2.5) (1, 1, 1) (0.29,0.33,0.38) 

63C  (FCR=0.046)  64C  (FCR=0.334) 

1T  (1, 1, 1) (1, 1, 1) (1, 1, 1) (0.33,0.33,0.33)  (1, 1, 1) (2.5, 3, 3.5) (1, 1, 1) (0.45,0.46,0.48) 

2T  (1, 1, 1) (1, 1, 1) (1.5, 2, 2.5) (0.38,0.41,0.44)  (0.29, 0.33, 0.4) (1, 1, 1) (1.5, 2, 2.5) (0.25,0.28,0.32) 

3T  (1, 1, 1) (0.4, 0.5, 0.67) (1, 1, 1) (0.24,0.26,0.29)  (1, 1, 1) (0.4, 0.5, 0.67) (1, 1, 1) (0.24,0.26,0.28) 

65C  (FCR=0.049)   

1T  (1, 1, 1) (0.4, 0.5, 0.67) (1, 1, 1) (0.21,0.23,0.27)      

2T  (1.5, 2, 2.5) (1, 1, 1) (3.5, 4, 4.5) (0.55,0.58,0.61)      

3T  (1, 1, 1) (0.22, 0.25, 0.29) (1, 1, 1) (0.18,0.18,0.18)      
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Table 8.5.15: Aggregation Results for the fuzzy weights of the objectives (case 4)  

 
Fuzzy Importance 1T  

2T  
3T  

Criterion 1 (0.27,0.29,0.31) (0.28,0.31,0.33) (0.31,0.36,0.41) (0.31,0.33,0.36) 

Criterion 2 (0.18,0.21,0.24) (0.32,0.36,0.4) (0.33,0.37,0.4) (0.24,0.27,0.31) 

Criterion 3 (0.15,0.17,0.19) (0.31,0.34,0.38) (0.31,0.36,0.41) (0.27,0.30,0.33) 

Criterion 4 (0.12,0.14,0.16) (0.29,0.33,0.38) (0.22,0.23,0.24) (0.4,0.44,0.48) 

Criterion 5 (0.07,0.07,0.08) (0.28,0.3,0.32) (0.4,0.43,0.45) (0.27,0.27,0.28) 

Criterion6 (0.1,0.11,0.13) (0.29,0.31,0.34) (0.41,0.45,0.49) (0.22,0.23,0.26) 

Global fuzzy weights 
 

(0.29,0.33,0.36) (0.31,0.36,0.4) (0.28,0.32,0.35) 

 

(FCNP) 

Table 8.5.16: Fuzzy POM (FAI=0.427) for the importance of six criteria and their fuzzy weights (case 4)  

Criteria 1C  2C  3C  4C  5C  6C  FW 

1C  (0, 0, 0) (0.5, 1, 1.5) (1.5, 2, 2.5) (0.5, 1, 1.5) (1.5, 2, 2.5) (1.5, 2, 2.5) (0.19,0.24,0.29) 

2C  (-1.5, -1, -0.5) (0, 0, 0) (0.5, 1, 1.5) (0.5, 1, 1.5) (0.5, 1, 1.5) (0.5, 1, 1.5) (0.15,0.19,0.24) 

3C  (-2.5, -2, -1.5) (-1.5, -1, -0.5) (0, 0, 0) (1.5, 2, 2.5) (0.5, 1, 1.5) (0.5, 1, 1.5) (0.14,0.18,0.21) 

4C  (0.5, 1, 1.5) (-1.5, -1, -0.5) (-2.5, -2, -1.5) (0, 0, 0) (0.5, 1, 1.5) (0.5, 1, 1.5) (0.13,0.15,0.17) 

5C  (-2.5, -2, -1.5) (-1.5, -1, -0.5) (-1.5, -1, -0.5) (-1.5, -1, -0.5) (0, 0, 0) (-3.5, -3, -2.5) (0.08,0.09,0.11) 

6C  (-2.5, -2, -1.5) (-1.5, -1, -0.5) (-1.5, -1, -0.5) (-1.5, -1, -0.5) (2.5, 3, 3.5) (0, 0, 0) (0.13,0.15,0.15) 
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Table 8.5.17: Fuzzy POM (FAI=0.226) for the fuzzy importance of five subcriteria of functionality and their fuzzy weights (case 4)  

Criteria 11C  12C  13C  14C  15C  FW 

11C  (0, 0, 0) (0.5, 1, 1.5) (-2.5, -2, -1.5) (-1.5, -1, -0.5) (-3.5, -3, -2.5) (0.07,0.13,0.19) 

12C  (-1.5, -1, -0.5) (0, 0, 0) (-3.5, -3, -2.5) (-2.5, -2, -1.5) (-3.5, -3, -2.5) (0.03,0.08,0.13) 

13C  (1.5, 2, 2.5) (2.5, 3, 3.5) (0, 0, 0) (-1.5, -1, -0.5) (-1.5, -1, -0.5) (0.21,0.24,0.27) 

14C  (0.5, 1, 1.5) (1.5, 2, 2.5) (0.5, 1, 1.5) (0, 0, 0) (-1.5, -1, -0.5) (0.22,0.24,0.27) 

15C  (2.5, 3, 3.5) (2.5, 3, 3.5) (0.5, 1, 1.5) (0.5, 1, 1.5) (0, 0, 0) (0.3,0.31,0.31) 

 

Table 8.5.18: Fuzzy POM (FAI=0.112) for the fuzzy importance of four subcriteria of reliability and their fuzzy weights (case 4)  

Criteria 21C  22C  23C  24C  FW 

21C  (0, 0, 0) (1.5, 2, 2.5) (1.5, 2, 2.5) (-1.5, -1, -0.5) (0.24,0.31,0.39) 

22C  (-2.5, -2, -1.5) (0, 0, 0) (0.5, 1, 1.5) (-3.5, -3, -2.5) (0.11,0.17,0.22) 

23C  (-2.5, -2, -1.5) (-1.5, -1, -0.5) (0, 0, 0) (-3.5, -3, -2.5) (0.09,0.13,0.16) 

24C  (0.5, 1, 1.5) (2.5, 3, 3.5) (2.5, 3, 3.5) (0, 0, 0) (0.39,0.4,0.41) 

 

Table 8.5.19: Fuzzy POM (FAI=0.222) for the fuzzy importance of five subcriteria of usability and their fuzzy weights (case 4)  

Criteria 31C  32C  33C  34C  35C  FW 

31C  (0, 0, 0) (0.5, 1, 1.5) (1.5, 2, 2.5) (0.5, 1, 1.5) (-3.5, -3, -2.5) (0.15,0.21,0.27) 

32C  (-1.5, -1, -0.5) (0, 0, 0) (0.5, 1, 1.5) (-1.5, -1, -0.5) (-3.5, -3, -2.5) (0.1,0.15,0.19) 

33C  (-2.5, -2, -1.5) (-1.5, -1, -0.5) (0, 0, 0) (-1.5, -1, -0.5) (-3.5, -3, -2.5) (0.07,0.11,0.14) 

34C  (-1.5, -1, -0.5) (0.5, 1, 1.5) (0.5, 1, 1.5) (0, 0, 0) (-3.5, -3, -2.5) (0.15,0.17,0.19) 

35C  (2.5, 3, 3.5) (2.5, 3, 3.5) (2.5, 3, 3.5) (2.5, 3, 3.5) (0, 0, 0) (0.35,0.36,0.37) 
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Table 8.5.20: Fuzzy POM (FAI=0) for the fuzzy importance of three subcriteria of efficiency and their fuzzy weights (case 4)  

Criteria 41C  42C  43C  FW 

41C  (0, 0, 0) (0.5, 1, 1.5) (-1.5, -1, -0.5) (0.24,0.33,0.43) 

42C  (-1.5, -1, -0.5) (0, 0, 0) (-2.5, -2, -1.5) (0.17,0.22,0.28) 

43C  (0.5, 1, 1.5) (1.5, 2, 2.5) (0, 0, 0) (0.43,0.44,0.46) 

 

Table 8.5.21: Fuzzy POM (FAI=0.218) for the fuzzy importance of five subcriteria of maintainability and their fuzzy weights (case 4)  

Criteria 51C  52C  53C  54C  55C  FW 

51C  (0, 0, 0) (0.5, 1, 1.5) (-1.5, -1, -0.5) (-1.5, -1, -0.5) (-3.5, -3, -2.5) (0.09,0.15,0.21) 

52C  (-1.5, -1, -0.5) (0, 0, 0) (-3.5, -3, -2.5) (-3.5, -3, -2.5) (-3.5, -3, -2.5) (0.02,0.07,0.11) 

53C  (0.5, 1, 1.5) (2.5, 3, 3.5) (0, 0, 0) (-1.5, -1, -0.5) (-2.5, -2, -1.5) (0.18,0.21,0.25) 

54C  (0.5, 1, 1.5) (2.5, 3, 3.5) (0.5, 1, 1.5) (0, 0, 0) (-1.5, -1, -0.5) (0.23,0.25,0.27) 

55C  (2.5, 3, 3.5) (2.5, 3, 3.5) (1.5, 2, 2.5) (0.5, 1, 1.5) (0, 0, 0) (0.31,0.32,0.33) 

 

Table 8.5.22: Fuzzy POM (FAI=0.213) for the fuzzy importance of five subcriteria of portability and their fuzzy weights (case 4)  

Criteria 61C  62C  63C  64C  65C  FW 

61C  (0, 0, 0) (0.5, 1, 1.5) (-1.5, -1, -0.5) (-1.5, -1, -0.5) (-3.5, -3, -2.5) (0.09,0.15,0.21) 

62C  (-1.5, -1, -0.5) (0, 0, 0) (-3.5, -3, -2.5) (-3.5, -3, -2.5) (-3.5, -3, -2.5) (0.02,0.07,0.11) 

63C  (0.5, 1, 1.5) (2.5, 3, 3.5) (0, 0, 0) (-1.5, -1, -0.5) (-1.5, -1, -0.5) (0.19,0.23,0.26) 

64C  (0.5, 1, 1.5) (2.5, 3, 3.5) (0.5, 1, 1.5) (0, 0, 0) (-1.5, -1, -0.5) (0.23,0.25,0.27) 

65C  (2.5, 3, 3.5) (2.5, 3, 3.5) (0.5, 1, 1.5) (0.5, 1, 1.5) (0, 0, 0) (0.3,0.31,0.31) 
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Table 8.5.23: Fuzzy POMs of the three candidates with respect to functionality 1C  and their fuzzy weights (case 4)  

11C  (FAI=0.129)  12C  (FAI=0.12) 

 1T  2T  3T  FW  1T  2T  3T  FW 

1T  (0, 0, 0) (0, 0, 0) (-1.5, -1, -0.5) (0.21,0.29,0.36)  (0, 0, 0) (-1.5, -1, -0.5) (0, 0, 0) (0.24,0.31,0.38) 

2T  (0, 0, 0) (0, 0, 0) (-2.5, -2, -1.5) (0.2,0.27,0.34)  (0.5, 1, 1.5) (0, 0, 0) (0, 0, 0) (0.31,0.36,0.4) 

3T  (0.5, 1, 1.5) (1.5, 2, 2.5) (0, 0, 0) (0.43,0.44,0.46)  (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.28,0.33,0.39) 

13C  (FAI=0)  14C  (FAI=0) 

1T  (0, 0, 0) (-1.5, -1, -0.5) (0, 0, 0) (0.22,0.29,0.35)  (0, 0, 0) (-1.5, -1, -0.5) (0, 0, 0) (0.23,0.3,0.36) 

2T  (0.5, 1, 1.5) (0, 0, 0) (1.5, 2, 2.5) (0.39,0.44,0.5)  (0.5, 1, 1.5) (0, 0, 0) (0.5, 1, 1.5) (0.35,0.41,0.46) 

3T  (0, 0, 0) (-2.5, -2, -1.5) (0, 0, 0) (0.22,0.27,0.32)  (0, 0, 0) (-1.5, -1, -0.5) (0, 0, 0) (0.25,0.3,0.34) 

15C  (FAI=0)   

1T  (0, 0, 0) (0.5, 1, 1.5) (0, 0, 0) (0.31,0.37,0.43)      

2T  (-1.5, -1, -0.5) (0, 0, 0) (-1.5, -1, -0.5) (0.2,0.26,0.31)      

3T  (0, 0, 0) (0.5, 1, 1.5) (0, 0, 0) (0.32,0.37,0.42)      
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Table 8.5.24: Fuzzy POMs of the three candidates with respect to reliability 2C  and their fuzzy weights (case 4)  

21C  (FAI=0.211) 22C (FAI=0.509) 

 1T  2T  3T  FW 1T  2T  3T  FW 

1T  (0, 0, 0) (0, 0, 0) (0.5, 1, 1.5) (0.31,0.38,0.46) (0, 0, 0) (0.5, 1, 1.5) (0, 0, 0) (0.3,0.37,0.42) 

2T  (0, 0, 0) (0, 0, 0) (1.5, 2, 2.5) (0.32,0.4,0.47) (-1.5, -1, -0.5) (0, 0, 0) (2.5, 3, 3.5) (0.29,0.37,0.41) 

3T  (0.5, 1, 1.5) (-2.5, -2, -1.5) (0, 0, 0) (0.2,0.22,0.24) (0, 0, 0) (-3.5, -3, -2.5) (0, 0, 0) (0.24,0.26,0.33) 

23C  (FAI=0.129) 24C  (FAI=0.385) 

1T  (0, 0, 0) (1.5, 2, 2.5) (0.5, 1, 1.5) (0.35,0.44,0.54) (0, 0, 0) (-1.5, -1, -0.5) (0.5, 1, 1.5) (0.28,0.34,0.41) 

2T  (-2.5, -2, -1.5) (0, 0, 0) (0, 0, 0) (0.23,0.27,0.31) (0.5, 1, 1.5) (0, 0, 0) (-1.5, -1, -0.5) (0.28,0.34,0.38) 

3T  (-1.5, -1, -0.5) (0, 0, 0) (0, 0, 0) (0.25,0.29,0.32) (-1.5, -1, -0.5) (0.5, 1, 1.5) (0, 0, 0) (0.28,0.33,0.38) 
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Table 8.5.25: Fuzzy POMs of the three candidates with respect to usability 3C  and their fuzzy weights (case 4)  

31C  (FAI=0) 32C  (FAI=0.12) 

 1T  2T  3T  FW 1T  2T  3T  FW 

1T  (0, 0, 0) (1.5, 2, 2.5) (0, 0, 0) (0.33,0.40,0.46) (0, 0, 0) (0.5, 1, 1.5) (0.5, 1, 1.5) (0.31,0.41,0.5) 

2T  (-2.5, -2, -1.5) (0, 0, 0) (-1.5, -1, -0.5) (0.17,0.22,0.28) (-1.5, -1, -0.5) (0, 0, 0) (0.5, 1, 1.5) (0.28,0.33,0.39) 

3T  (0, 0, 0) (0.5, 1, 1.5) (0, 0, 0) (0.33,0.38,0.43) (-1.5, -1, -0.5) (-1.5, -1, -0.5) (0, 0, 0) (0.24,0.26,0.28) 

33C  (FAI=0) 34C  (FAI=0.254) 

1T  (0, 0, 0) (0.5, 1, 1.5) (2.5, 3, 3.5) (0.39,0.48,0.57) (0, 0, 0) (1.5, 2, 2.5) (0, 0, 0) (0.31,0.38,0.44) 

2T  (-1.5, -1, -0.5) (0, 0, 0) (1.5, 2, 2.5) (0.31,0.37,0.43) (-2.5, -2, -1.5) (0, 0, 0) (0, 0, 0) (0.24,0.29,0.33) 

3T  (-3.5, -3, -2.5) (-2.5, -2, -1.5) (0, 0, 0) (0.13,0.15,0.17) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.28,0.33,0.39) 

35C  (FAI=0.12)  

1T  (0, 0, 0) (-1.5, -1, -0.5) (-1.5, -1, -0.5) (0.17,0.26,0.35)     

2T  (0.5, 1, 1.5) (0, 0, 0) (0.5, 1, 1.5) (0.35,0.41,0.46)     

3T  (0.5, 1, 1.5) (-1.5, -1, -0.5) (0, 0, 0) (0.31,0.33,0.35)     
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Table 8.5.26: Fuzzy POMs of the three candidates with respect to efficiency 4C  and their fuzzy weights (case 4)  

41C  (FAI=0.12)  42C  (FAI=0) 

 1T  2T  3T  FW  1T  2T  3T  FW 

1T  (0, 0, 0) (0.5, 1, 1.5) (0.5, 1, 1.5) (0.31,0.41,0.5)  (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.28,0.33,0.39) 

2T  (-1.5, -1, -0.5) (0, 0, 0) (-1.5, -1, -0.5) (0.2,0.26,0.31)  (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.28,0.33,0.39) 

3T  (-1.5, -1, -0.5) (0.5, 1, 1.5) (0, 0, 0) (0.31,0.33,0.35)  (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.28,0.33,0.39) 

43C  (FAI=0.129)   

1T  (0, 0, 0) (0, 0, 0) (-1.5, -1, -0.5) (0.21,0.29,0.36)      

2T  (0, 0, 0) (0, 0, 0) (-2.5, -2, -1.5) (0.2,0.27,0.34)      

3T  (0.5, 1, 1.5) (1.5, 2, 2.5) (0, 0, 0) (0.43,0.44,0.46)      
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Table 8.5.27: Fuzzy POMs of the three candidates with respect to maintainability 5C  and their fuzzy weights (case 4)  

51C  (FAI=0.12)  52C  (FAI=0) 

 1T  2T  3T  FW  1T  2T  3T  FW 

1T  (0, 0, 0) (0.5, 1, 1.5) (0, 0, 0) (0.29,0.36,0.42)  (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.28,0.33,0.39) 

2T  (-1.5, -1, -0.5) (0, 0, 0) (0, 0, 0) (0.27,0.31,0.36)  (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.28,0.33,0.39) 

3T  (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.28,0.33,0.39)  (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.28,0.33,0.39) 

53C  (FAI=0)  54C  (FAI=0.24) 

1T  (0, 0, 0) (-1.5, -1, -0.5) (0, 0, 0) (0.22,0.29,0.35)  (0, 0, 0) (-1.5, -1, -0.5) (0, 0, 0) (0.21,0.28,0.34) 

2T  (0.5, 1, 1.5) (0, 0, 0) (1.5, 2, 2.5) (0.39,0.44,0.5)  (0.5, 1, 1.5) (0, 0, 0) (2.5, 3, 3.5) (0.43,0.48,0.54) 

3T  (0, 0, 0) (-2.5, -2, -1.5) (0, 0, 0) (0.22,0.27,0.32)  (0, 0, 0) (-3.5, -3, -2.5) (0, 0, 0) (0.2,0.24,0.29) 

55C  (FAI=0)   

1T  (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.28,0.33,0.39)      

2T  (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.28,0.33,0.39)      

3T  (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.28,0.33,0.39)      
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Table 8.5.28: Fuzzy POMs of the three candidates with respect to portability 6C  and their fuzzy weights (case 4)  

61C  (FAI=0.385)  62C  (FAI=0.385) 

 1T  2T  3T  FW  1T  2T  3T  FW 

1T  (0, 0, 0) (-2.5, -2, -1.5) (0, 0, 0) (0.21,0.27,0.33)  (0, 0, 0) (-1.5, -1, -0.5) (0.5, 1, 1.5) (0.28,0.34,0.41) 

2T  (1.5, 2, 2.5) (0, 0, 0) (0.5, 1, 1.5) (0.39,0.44,0.5)  (0.5, 1, 1.5) (0, 0, 0) (-1.5, -1, -0.5) (0.28,0.34,0.38) 

3T  (0, 0, 0) (-1.5, -1, -0.5) (0, 0, 0) (0.24,0.29,0.33)  (-1.5, -1, -0.5) (0.5, 1, 1.5) (0, 0, 0) (0.28,0.33,0.38) 

63C  (FAI=0.12)  64C  (FAI=0.376) 

1T  (0, 0, 0) (0, 0, 0) (0, 0, 0) (0.28,0.33,0.39)  (0, 0, 0) (1.5, 2, 2.5) (0, 0, 0) (0.3,0.37,0.44) 

2T  (0, 0, 0) (0, 0, 0) (0.5, 1, 1.5) (0.29,0.36,0.42)  (-2.5, -2, -1.5) (0, 0, 0) (0.5, 1, 1.5) (0.27,0.32,0.37) 

3T  (0, 0, 0) (-1.5, -1, -0.5) (0, 0, 0) (0.27,0.31,0.36)  (0, 0, 0) (-1.5, -1, -0.5) (0, 0, 0) (0.26,0.31,0.37) 

65C  (FAI=0.24)   

1T  (0, 0, 0) (-1.5, -1, -0.5) (0, 0, 0) (0.21,0.28,0.34)      

2T  (0.5, 1, 1.5) (0, 0, 0) (2.5, 3, 3.5) (0.43,0.48,0.54)      

3T  (0, 0, 0) (-3.5, -3, -2.5) (0, 0, 0) (0.2,0.24,0.29)      
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Table 8.5.29: Aggregation results for fuzzy weight of the final objective using FCNP (case 4)  

 
Fuzzy Importance 1T  2T  3T  

Criterion 1 (0.19,0.24,0.29) (0.21,0.32,0.44) (0.24,0.35,0.47) (0.24,0.34,0.45) 

Criterion 2 (0.15,0.19,0.24) (0.25,0.37,0.52) (0.24,0.35,0.47) (0.21,0.28,0.37) 

Criterion 3 (0.14,0.18,0.21) (0.22,0.35,0.52) (0.24,0.33,0.44) (0.24,0.31,0.4) 

Criterion 4 (0.13,0.15,0.17) (0.21,0.34,0.49) (0.18,0.28,0.4) (0.3,0.38,0.47) 

Criterion 5 (0.08,0.09,0.11) (0.21,0.31,0.44) (0.29,0.39,0.51) (0.2,0.3,0.41) 

Criterion 6 (0.13,0.15,0.15) (0.21,0.32,0.44) (0.29,0.4,0.52) (0.2,0.29,0.4) 

Final fuzzy weights 
 

(0.18,0.34,0.56) (0.2,0.35,0.55) (0.19,0.32,0.49) 
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8.6 Case 5: Supplier optimization number- the FCCNP approach 

The case background, solutions using the AHP approach and the CNP approach 

respectively, and discussion of the comparison are presented as follows. 

 

8.6.1 Background of case 5 

This case presents FCCNP as the evaluation solution to the problem of supplier 

number optimization. Berger et al (2004) proposed a supplier optimization model, which 

is the probability model, to select a suitable number N of suppliers, as follows: 

 

  

 

ln
1 1

1
ln

B

F P S
N

S

 
       (8.1) 

 

P is “super-events,” which cause many/all suppliers to be down; S is “unique events” 

that cause only a single supplier to be down, or an event uniquely associated with a 

particular supplier that puts it down during the supply cycle. F is the financial loss 

caused by disasters; B is the operating cost of working with multiple suppliers. 

The problem with this model is that parameters (F, B, P, S) of Eq. 8.1 need to be 

evaluated, and it needs a complex administration process, including accounting activities 

and management group decision judgments, to achieve the knowledge. The following 
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discusses how to use the Fuzzy Collective Network Process Approach (FCCNP) to 

address this parametric input problem. 

 

8.6.2 The fuzzy collective cognitive network process (FCCNP) approach to case 5 

The steps of the FCCNP are illustrated as follows. 

 

a) Define Rating Scale Process 

To evaluate the description of “Cost” for F and B, and the description of 

“probability” for P and S, the same schema of linguistic terms are applied. Thus 

dV


=[Below, Absolutely, Above], =hV


[Little, Quite, Much], and aV


=[Low, Middle , 

High]. The fuzzy linguistic terms of F, B, P, and U are represented by a matrix as 

follows: 

MB M MB H

QB M QB H

LB M LB H

A L A M A H

LA L LA M

QA L QA M

MA L MA M

   
 

  
 
   
 

   
   
 

   
    

 

 

The matrices of the fuzzy representation number of the compound linguistic terms 

of F, B, P, and S, are denoted as FX , BX , PX , SX . To find the fuzzy representation 

numbers, the settings of the parameters for algorithm 4.2 is shown in table 8.6.1. By 
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using algorithm 4.2, the representation matrices in fuzzy numbers are shown in tables 

8.6.2 to 8.6.4. 

 

Table 8.6.1: Parameters for FX , BX , PX , SX , and wX  using algorithm 4.2 (case 5) 

 FX  BX  PX  SX  wX  

Min 1000 10 0 0 0 

Max 10000 100 1 1 8 

n 3 3 3 3 5 

  1 1 1 1 2 

  [1000,5500,10000] [10,55,100] [0,0.5,1] [0,0.5,1] [0,2,4,6,8] 

d  4500 45 0.5 0.5 2 

1  1PbMF  

( )hV


, 0     ( )  ( )  ( ) 1 2 3little quite much    , 0 0.5   

 

Table 8.6.2: The representation values for S and P, i.e. SX  and PX  (case 5)  

,S PX X  L A H 

MB (0, 0, 0) (0, 0.097, 0.194) (0.5, 0.597, 0.694) 

QB (0, 0, 0) (0.118, 0.237, 0.356) (0.618, 0.737, 0.856) 

LB (0, 0, 0) (0.272, 0.386, 0.5) (0.772, 0.886, 1.) 

A (0, 0, 0) (0.5, 0.5, 0.5) (1., 1., 1.) 

LA (0, 0.114, 0.228) (0.5, 0.614, 0.728) (0, 0, 0) 

QA (0.144, 0.263, 0.382) (0.644, 0.763, 0.882) (0, 0, 0) 

MA (0.306, 0.403, 0.5) (0.806, 0.903, 1.) (0, 0, 0) 
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Table 8.6.3: The representation values for B, i.e. BX  (case 5)  

BX  L A H 

MB (0, 0, 0) (10., 18.7, 27.4) (55., 63.7, 72.4) 

QB (0, 0, 0) (20.6, 31.3, 42.) (65.6, 76.3, 87.) 

LB (0, 0, 0) (34.5, 44.7, 55.) (79.5, 89.7, 100.) 

A (10., 10., 10.) (55., 55., 55.) (100., 100., 100.) 

LA (10., 20.3, 30.5) (55., 65.3, 75.5) (0, 0, 0) 

QA (23., 33.7, 44.4) (68., 78.7, 89.4) (0, 0, 0) 

MA (37.6, 46.3, 55.) (82.6, 91.3, 100.) (0, 0, 0) 

 

Table 8.6.4: The matrix of the representation values for F, i.e. FX  (case 5) 

FX  L A H 

MB (0, 0, 0) (1000, 1872, 2744) (5500, 6372, 7244) 

QB (0, 0, 0) (2063, 3132, 4201) (6563, 7632, 8701) 

LB (0, 0, 0) (3446, 4473, 5500) (7946, 8973, 10000) 

A (1000, 1000, 1000) (5500, 5500, 5500) (10000, 10000, 10000) 

LA (1000, 2027, 3054) (5500, 6527, 7554) (0, 0, 0) 

QA (2299, 3368, 4437) (6799, 7868, 8937) (0, 0, 0) 

MA (3756, 4628, 5500) (8256, 9128, 10000) (0, 0, 0) 

 

For the weight measuring the criteria, the pairwise opposite matrix and cognitive 

prioritization operator are applied. The matrices of the representation values for the 

comparison interval scales  ,w w wX X X    are shown in tables 8.6.5-8.6.6. 

 

 



Chapter8 Applications 

 

395 
 

b) Assessment Process 

The structural criteria are illustrated in Table 8.6.7. The structural criteria include 

four criteria of twelve sub-criteria. The fuzzy weights of the four criteria do not need to 

be determined as they do not fit the supplier optimization number function. 

Three experts are involved in this evaluation project: 1e  is the product manager, 

2e  is the supplier relationship manager, and 3e  is the marketing manager. Their fuzzy 

importance is   derived by the matrix, which is determined by their senior, as follows: 

  

1 2 3

1

2

3

              

k

e e e

e AE iLAMd iLASl
e

e LAMd AE LASl

e LASl iLASl AE


 

  
 
  

 

Tables 8.6.8-8.6.9 show the cognitive pairwise comparisons of    , ,k i ijcls e c c , 

 1,2,3k   and  1,2,3,4i  , which means a expert cluster k to evaluate a criterion 

i of sub-criterion j  using cognitive pairwise comparisons. Table 8.6.10 includes the 

direct rating using CLOS. The details are discussed in the next step. 

 

C) Information fusion process 

Table 8.6.10 summarizes the results in evaluating F, B, P, S for a specific material. 

It shows the fuzzy weights of the experts  kwe , fuzzy weights of the criteria with 

respect to the experts  ijkwc ,and the rating scores for the criteria by the experts  ijkc


. 

The fuzzy weighted arithmetic mean is taken for this aggregation. Finally the 
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aggregation evaluation results of the four criteria are given. The results are further used 

in the decisional volition process. 

 

d) Decisional volition Process 

The parametric supplier number optimization function (Eq. 8.1) can be regarded as 

the decision volition function, stead of the typical aggregation operators such as the 

fuzzy weighted arithmetic mean. To calculate the optimum supplier number, the results 

of iC


’s in table 8.6.10 are substituted by the parametric supplier number optimization 

function (Eq. 8.1). The fuzzy result is calculated as follows: 

 

  

 

31.79
ln

2036 1 0.185 1 0.259
1 2.71

ln 0.259
lN

 
        

  

 

52.27
ln

3742 1 0.342 1 0.443
1 4.02

ln 0.443
mN

 
        

  

 

79.65
ln

6103 1 0.558 1 0.693
1 6.38

ln 0.693

uN

 
        

 

From the above calculations, it is suggested that (2,4,6) vendors be kept for this 

material A. If the up-boundary value 6 is taken as the result, someone may think 6 
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vendors is an excessive number. However, Chaudhry et al. (1993) have indicated that 

there are usually a maximum of 12 vendors for most practical cases. In this simulated 

case, when considering that the operation cost is (31.79,52.27,79.65), the disaster lost is 

(2036,3742,610), the super event is (0.185,0.342,0.558), and the risk/probability that the 

unique supplier will go to “down” is (0.259,0.443,0.693), so it is reasonable to use 

(2,4,6). Usually a modal value 4 is taken. Although this case is based solely on 

numerical data, with assumptions, the evaluation method definitely can describe and 

explain a real world situation in the similar way. 

 

9.6.3 Discussion of case 5 

This case illustrates how fuzzy collective cognitive network process functions as 

an evaluation platform for giving subjective data for group expert judgment to a 

parametric developed parametric function to estimate the number of suppliers. 

In the previous four cases, the methods of relative measurement are shown. The 

limitation is that they only reflects the comparison score values, which usually belong to 

or are rescaled to [0,1]. For example, all candidates either have low scores or have 

equally high scores, but the sum of the relative scores is always one. If all candidates are 

below average performance, either the ANP or the CNP can only identify the best of the 

low performance candidates, but not how good the best one is.  
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This case illustrates the fuzzy weighted absolute measurement, which is fuzzy 

direct rating measurement associated with relative weights using fuzzy POMs and the 

fuzzy cognitive prioritization operator. In the selection problem, the evaluation values 

not only illustrate the best performance among candidates, but also the individual 

performance of each candidate. This can avoid selection from the low-performance 

candidates. In this case, the evaluation values from FCCNP are used for the operational 

parametric settings of the decision functions in the decisional volition process. 
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Table 8.6.5: The matrix of the representation values for the comparison interval scales 
wX   (case 5)  

wX   Equally (E) Slightly (Sl) Moderately (Md) Strongly (St) Essentially (Es) 

Much Below (MB) Null (0, 0.54, 1.08) (2., 2.54, 3.08) (4., 4.54, 5.08) (6., 6.54, 7.08) 

Quite Below (QB) Null (0.81, 1.2, 1.59) (2.81, 3.2, 3.59) (4.81, 5.2, 5.59) (6.81, 7.2, 7.59) 

Little Below (LB) Null (1.34, 1.67, 2.) (3.34, 3.67, 4.) (5.34, 5.67, 6.) (7.34, 7.67, 8.) 

Absolutely (A) (0, 0, 0) (1.67, 2., 2.33) (3.67, 4., 4.33) (5.67, 6., 6.33) (7.67, 8., 8.) 

Little Above (LA) (0, 0.33, 0.66) (2., 2.33, 2.66) (4., 4.33, 4.66) (6., 6.33, 6.66) Null 

Quite Above (QA) (0.41, 0.8, 1.19) (2.41, 2.80, 3.19) (4.41, 4.8, 5.19) (6.41, 6.8, 7.19) Null 

Much Above (MA) (0.92, 1.46, 2.) (2.92, 3.46, 4.) (4.92, 5.46, 6.) (6.92, 7.46, 8.) Null 
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Table 8.6.6: The opposite of 
wX  , i.e. wX   (case 5)  

wX   Equally (E) Slightly (Sl) Moderately (Md) Strongly (St) Essentially (Es) 

Much Below (MB) Null (1.08, -0.54, 0) (-3.08, -2.54, -2.) (-5.08, -4.54, -4.) (-7.08, -6.54,-6) 

Quite Below (QB) Null (-1.59, -1.2, -0.81) (-3.59, -3.2, -2.81) (-5.59, -5.2, -4.81) (-7.59, -7.2,-6.81) 

Little Below (LB) Null (-2., -1.67, -1.34) (-4., -3.67, -3.34) (-6., -5.67, -5.34) (-8., -7.67,-7.34) 

Absolutely (A) (0, 0, 0) (-2.33, -2., -1.67) (-4.33, -4., -3.67) (-6.33, -6., -5.67) (-7.67, -8., -8.) 

Little Above (LA) (-0.66,-0.33,0) (-2.66, -2.33,-2) (-4.66, -4.33,-4.) (-6.66, -6.33,-6.) Null 

Quite Above (QA) (-1.19, -0.8, -0.41) (-3.19, -2.80,-2.41) (-5.19, -4.8, -4.41) (-7.19, -6.8, -6.41) (Null 

Much Above (MA) (-2., -1.46, -0.92) (-4., -3.46,-2.92) (-6., -5.46, -4.92) (-8., -7.46, -6.92) Null 
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Table 8.6.7: Structural criteria of case 5  

Criteria Sub-criteria  Criteria Sub-criteria 

F ( 1C
) 

Impact on BOM? ( 1,1C
)  

P( 3C
) 

Barriers to the Market? ( 3,1C
) 

Impact on business process? ( 1,2C
)  Market instability? ( 3,2C

) 

Impact on production Process? ( 1,3C
)  Uncertainty of General Economic? ( 3,3C

) 

Difficult to find alternatives? ( 1,4C
)  Policy Barrier? ( 3,4C

) 

   

B( 2C
) 

Cost of monitoring the material market? ( 2,1C
)  

S( 4C
) 

Competitive Relationship to Partner? ( 4,1C
) 

Cost of internal process? ( 2,2C
)  Unreliability of Partner's Financial Status? ( 4,2C

) 

Cost of relationship development? ( 2,3C
)  Unknown of the Brand Name? ( 4,3C

) 

Cost of external transaction process? ( 2,4C
)  Short period of Company History ( 4,3C

) 
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Table 8.6.8:    , ,k i ijcls e c c ,  1,2,3k   and  1,2i   (case 5)  

 
1e  2e  3e  

 
11c  12c  13c  14c  11c  12c  13c  14c  11c  12c  13c  14c  

11c  AE LASl iLAMd iLBSl AE iLAE AE iLBSt AE iLAMd AE iQASl 

12c  iLASl AE iQBSt iLBMd LAE AE LBSl iLASt LAMd AE LBMd LBSl 

13c  LAMd QBSt AE LASl AE iLBSl AE iQASt AE iLBMd AE iLBMd 

14c  LBSl LBMd iLASl AE LBst LASt QASt AE QASl iLBSl LBMd AE 

 
FAI=0.054 FAI=0.079 FAI=0.064 

 
21c  22c  23c  24c  21c  22c  23c  24c  21c  22c  23c  24c  

21c  AE iMASl LASl LAE AE QAE iMBMd LASl AE QAE iQASl LASl 

22c  MASl AE LAMd LBMd iQAE AE iQASl LBSl iQAE AE iQASl LBSl 

23c  iLASl iLAMd AE iLBSl iMBMd QASl AE QBSt iQASl QASl AE QBSt 

24c  iLAE iLBMd LBSl AE iLASl iLBSl iQBSt AE iLASl iLBSl iQBSt AE 

 
FAI=0.058 FAI=0.073 FAI=0.080 
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Table 8.6.9:    , ,k i ijcls e c c ,  1,2,3k   and  3,4i   (case 5)  

 
1e  2e  3e  

 
31c  32c  33c  34c  31c  32c  33c  34c  31c  32c  33c  34c  

31c  AE AE AE iLAE AE LAE LAE LAE AE AE LAE LAE 

22c  AE AE AE iLAE iLAE AE AE AE AE AE LAE LAE 

23c  AE AE AE iLAE iLAE AE AE AE iLAE iLAE AE AE 

24c  LAE LAE LAE AE iLAE AE AE AE iLAE iLAE AE AE 

 
FAI=0 FAI=0 FAI=0 

 
41c  42c  43c  44c  41c  42c  43c  44c  41c  42c  43c  44c  

41c  AE AE QASl MASl AE AE ASl QASl AE ASl AMd ASl 

42c  AE AE QASl MASl AE AE ASl QASl iASl AE LASl LAE 

43c  iQASl iQASl AE iQAE iASl iASl AE iLAE iAMd iLASl AE iMAE 

44c  iMASl iMASl QAE AE iQASl iQASl LAE AE iASl iLAE MAE AE 

 
FAI=0.062 FAI=0.047 FAI=0 
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Table 8.6.10: Evaluation result in fuzzy numbers for parameters of supplier number optimization function (case 5)  

Criteria 


1= (0.190,0.241,0.291)we

 


2 (0.384,0.426,0.468)we 
 


3 (0.300,0.333,0.366)we 

 
iC


 
1ijwc

 
1ijc



 


2ijwc
 

2ijc


 


3ijwc
 

3ijc


 

F 

1,1C
 

(0.182, 0.221, 0.26) (6799, 7868, 8937) (0.163, 0.198, 0.237) (3446, 4473, 5500) (0.158, 0.194, 0.229) (5500, 6527, 7554) 

(2036,3742,6102) 

1,2C
 

(0.204, 0.244, 0.284) (2063, 3132, 4201) (0.214, 0.255, 0.296) (2299, 3368, 4437) (0.213, 0.253, 0.292) (3446, 4473, 5500) 

1,3C
 

(0.214, 0.247, 0.281) (1000, 2027, 3054) (0.219, 0.258, 0.297) (2063, 3132, 4201) (0.219, 0.255, 0.292) (2063, 3132, 4201) 

1,4C
 

(0.259, 0.299, 0.337) (1000, 2027, 3054) (0.251, 0.288, 0.324) (2063, 3132, 4201) (0.274, 0.312, 0.351) (2299, 3368, 4437) 

B 

2,1C
 

(0.128, 0.162, 0.197) (55., 65.3, 75.5) (0.182, 0.216, 0.246) (65.6, 76.3, 87.) (0.292, 0.326, 0.359) (68., 78.7, 89.4) 

(31.79,52.27,79.65) 

2,2C
 

(0.307, 0.34, 0.372) (34.5, 44.7, 55.) (0.201, 0.235, 0.269) (23., 33.7, 44.4) (0.201, 0.235, 0.269) (20.6, 31.3, 42.) 

2,3C
 

(0.214, 0.247, 0.281) (23., 33.7, 44.4) (0.219, 0.247, 0.276) (20.6, 31.3, 42.) (0.219, 0.255, 0.292) (34.5, 44.7, 55.) 

2,4C
 

(0.258, 0.299, 0.332) (55., 65.3, 75.5) (0.251, 0.288, 0.324) (55., 63.7, 72.4) (0.221, 0.255, 0.289) (68., 78.7, 89.4) 

P 

3,1C
 

(0.314, 0.343, 0.371) (0.5, 0.614, 0.728) (0.156, 0.189, 0.223) (0.272, 0.386, 0.5) (0.16, 0.193, 0.226) (0.5, 0.5, 0.5) 

(0.185,0.342,0.558) 

3,2C
 

(0.156, 0.185, 0.214) (0.118, 0.237, 0.356) (0.305, 0.332, 0.359) (0.272, 0.386, 0.5) (0.306, 0.334, 0.363) (0.5, 0.614, 0.728) 

3,3C
 

(0.214, 0.247, 0.281) (0.5, 0.5, 0.5) (0.219, 0.247, 0.276) (0.144, 0.263, 0.382) (0.219, 0.245, 0.271) (0.118, 0.237, 0.356) 

3,4C
 

(0.172, 0.2, 0.228) (0, 0.114, 0.228) (0.183, 0.212, 0.241) (0, 0.097, 0.194) (0.159, 0.189, 0.219) (0.118, 0.237, 0.356) 

S 

4,1C
 

(0.25, 0.274, 0.297) (0.5, 0.614, 0.728) (0.374, 0.397, 0.42) (0.272, 0.386, 0.5) (0.264, 0.288, 0.311) (0.5, 0.5, 0.5) 

(0.259,0.443,0.693) 

4,2C
 

(0.207, 0.232, 0.255) (0.618, 0.737, 0.856) (0.155, 0.178, 0.201) (0.644, 0.763, 0.882) (0.155, 0.178, 0.201) (0.618, 0.737, 0.856) 

4,3C
 

(0.234, 0.258, 0.281) (0.272, 0.386, 0.5) (0.219, 0.247, 0.276) (0.118, 0.237, 0.356) (0.219, 0.245, 0.271) (0.272, 0.386, 0.5) 

4,4C
 

(0.187, 0.202, 0.228) (0.118, 0.237, 0.356) (0.19, 0.213, 0.235) (0.272, 0.386, 0.5) (0.221, 0.243, 0.265) (0.5, 0.614, 0.728) 
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Chapter 9 Conclusions 

9.1 Summary of research work 

Multi-criteria decision aiding models have been increasingly studied. Among these 

models, the Analytic Hierarchy Process is a popular model which has been widely 

studied and applied for thirty years. However, there is a misrepresentation in using the 

pairwise reciprocal matrix to derive the priority, as the ratio scale for cognition of the 

linguistic term is ill-defined (chapter 5.2). In addition, the numerical representation of 

the linguistic rating scale is insufficient, and the prioritization methods are still 

uncertain. 

To address the above problems, the Cognitive Network Process, which is the 

symbolic mathematical system using process algebra representation, is proposed in 

Chapter 3. The CNP is the architecture for the interaction between the system and man. 

The cognitive architecture of the CNP comprises five processes: the Problem Cognition 

Process (PGP), the Cognitive Assessment Process (CAP), the Cognitive Prioritization 

Process (CPP), the Multiple Information Fusion Process (MIP), and the Decisional 

Volition Process (DVP). Each process is represented by a set of algorithms. Perception is 

performed by humans in the Human Cognition Process, including PGP and CAP. 

Computation is performed in CPP, MIP and DVP. 

In the PGP, the decision problem is constructed as the measurable Structural 
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Assessment Network (SAN) model. The graphical representation of the SAN is similar 

to ANP. However, the algebraic representation is different. The CNP is based on clusters 

which are summed to the SAN. A cluster is defined as a node which contains a set of 

granular data. The node can be a criterion whilst the granular data can be the sub-criteria 

or attributes. The node could also be an expert, whilst granular data can be the attributes 

of the expert. Although the syntactic forms of the measurement scale schema are the 

same or similar, the semantic forms are different. CNP is based on the interval scale 

while ANP is based on the ratio scale. The cognitive scale uses the Compound Linguistic 

Ordinal Scale (CLOS) (chapter 4). In fact, the analytic scale (or ratio scale) of AHP/ANP 

also applies CLOS. CLOS are applied for the comparison of CNP and ANP in case 3 of 

chapter 8. One of the conclusions of this comparison is that CLOS can help both CNP 

and the improved ANP to approximate the real results. 

In the CAP, the clusters of SAN are assessed by experts using pairwise opposite 

matrices. The expert can be regarded as a cognitive assessment function in the system. In 

this research, the expert is a human. Maybe in the future, the cognitive assessment 

function can be performed by a machine or through algorithms. The results of the 

evaluated clusters are measured by the accordance check function. If the accordance 

index (AI) is larger than 0.1, the cluster need to be re-assessed again. 

In the CPP, the evaluated clusters of SAN, or the POMs, are derived for the 
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individual utility set (or priority set) by the cognitive prioritization operator (chapter 5). 

The individual utility set can be either normalized or un-normalized. For the 

determination of the weights or relative measurement of CNP, normalization of the 

individual utility set is recommended. Five CPOs are proposed: Row Average plus 

normal Utility (RAU), Aggregation of Solutions of Linear Systems (ASLS) which 

includes Arithmetic Mean of Solutions of Linear Systems (AMSLS), Primitive Least 

Squares (PLS) optimization, Bounded Least Squares (BLS) Optimization and Least 

Penalty Squares (LPS) Optimization. The closed form solution of AMSLS and PLS is 

RAU. Six Cognitive Prioritization Operator Measurement (CPOMs) Models are also 

proposed to compare the CPOs: Worst Absolute Distance Variance (WADV), Mean 

Absolute Distance Variance (MADV), Mean Penalty Weighted Absolute Distance 

Variance (MPWADV), Root Mean Square Variance (RMSV), Mean Contradiction (MC) 

and Root Mean Penalty Weighted Square Variance (PMPWSV). The LPS is 

recommended when the mean contraction value is larger than one. If the contraction 

value is zero and the AI is not larger than 0.1, RAU is recommended as LPS and RAU 

also produce the same result, but the computation of RAU is much simpler than LPS. 

In the MIP, the utility values of the evaluated clusters of the SAN are aggregated to 

an overall result set of the decision objective by the most appropriate aggregation 

operator. By default, the aggregation operator is the weighted arithmetic mean. If the 
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cognitive style of the decision attitude is considered, the Cognitive Style and 

Aggregation Operator (CSAO) model (chapter 6) is applied. The CSAO model analyzes 

the mapping relationship between aggregation operators and decision attitudes. The POs 

are reviewed in chapter 2.3.5 whilst the cognitive style is reviewed in chapter 2.7.4. 

In the DVP, the overall result set from the MIP is evaluated by the volition 

function. Usually, the function is used for selection though ranking (or ordering). Cases 

1 to 4 of chapter 8 present the problems of selection in different areas. One can use a 

parametric function as the volition function to produce a result from a continuous scale. 

Case 5 of Chapter 8 shows the application of this usability. 

The CNP family embraces the primitive CNP (or CNP in short), and the extent 

CNPs including Collective CNP, Fuzzy CNP, and Fuzzy CCNP. The primitive CNP is of 

the SAN of decision makers with crisp inputs. The CCNP is of the SAN of multiple 

decision makers with crisp inputs, whilst the FCNP is of the SAN of a single decision 

maker with fuzzy inputs. The FCCNP is of the SAN of multiple decision makers with 

fuzzy inputs. The Fuzzy Cognitive Prioritization Operator (FCPO) and its measurement 

models are also proposed and evaluated in chapter 7. 

For the numerical evaluation of the components of CNP, the CLOS is tested and 

discussed in chapter 4.5, the CPOs and CPOMs are tested and discussed in chapter 5.8, 

the CSAO is tested and discussed in chapter 6.5, and the FCPOs and FCPOMs are tested 
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and discussed in chapter 7.6.  

For the evaluations of the applications of CNP, five cases are presented in chapter 

8 with comparisons or complementation. Case 1 presents the high school selection 

(Saaty, 1980, p26-28) with comparisons of primitive CNP and AHP models. Case 2 

presents the transportation company selection problem (Kulak and Kahramna, 2005) 

with comparisons of primitive CNP and AHP, and both prioritization measurement 

models are also used. Case 3 compares the CNP and the improved ANP models for the 

R&D project selection problem (Yuen and Lau, 2009). Case 4 compares the fuzzy CNP 

and Fuzzy AHP models for the software product selection problem (Yuen and Lau, 

2008c). Case 5 illustrates the use of the fuzzy collective CNP model as the evaluation 

model for the problem of supplier number optimization (Berger et al, 2004). The 

significances of the comparisons and complementation are also discussed in chapter 8. 

 

9.2 Contributions of this research 

The contributions of this research can be classified in five categories. 

 

9.2.1 The specific contributions of the primitive CNP 

If a decision maker would like to compare at least two alternatives using at least 

two criteria without sufficient operational data on hand, the CNP is the ideal method. At 
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least it is shown that the CNP performs better than the ANP in various aspects: such as 

rating scale, pairwise comparison method, aggregation method, and cognitive process. 

The cognitive architecture of CNP, which consists of a list of algorithms, is 

developed. The presentation of the cognitive architecture can be implemented by various 

programming languages, and finally can be developed as commercial products like 

Expert Choice, which is based on ANP. The new programs may have marketing values 

as this research shows various advantages of CNP over ANP. 

The cognitive decision process of CNP streamlines the business decision making 

activities. Each process of CNP is well-defined. The criteria can be organized as 

structural criteria which are decomposed as criterion clusters. The criterion clusters can 

be devaluated by cognitive pairwise comparison. The next step is to let the computer to 

do the analysis with well-developed and well-tested algorithms. 

 

9.2.2 The specific contributions of the extent CNPs 

The contributions of extent CNPs includes the contributions of the primitive CNP, 

and pluses one advantage, which supports decision attitudes of decision makers: e.g. 

optimists, neutralists, or pessimists. Decision attitudes can be determined by either 

CSAO, fuzzy inputs, or the both.  

If only CSAO is considered, a list of aggregation operators from the decision 
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makers’ preferences is needed. CSAO-1 supports the one dimensional space of decision 

attitudes. CSAO-2 supports two dimensional spaces of decision attitudes, which are 

described by CLOS. 

If only fuzzy inputs are defined, the CLOS for the cognitive scale should be 

fuzzy-type. The low-bound of the fuzzy output represents the pessimist, the modal value 

of the fuzzy output represents the neutralist, and the up-bound of the fuzzy output 

represents the optimist. It is potential to use CLOS to further the attitudes in two 

dimensional spaces. However, this is for future research. 

If both CSAO and fuzzy inputs are considered, the cognitive scale should be fuzzy 

numbers and a list of the aggregation operators is needed. 

 

9.2.3 The specific contributions of the CLOS 

The Compound Linguistic Ordinal Scale (CLOS) model is a promising alternative 

for the classic rating scale models, such as Likert-like scales. Miller (1956) has indicated 

that an expert could manage a set with  7 2  terms. Many rating scales include 

Likert-like scales and the choice of the fuzzy linguistic terms use this principle. By a 

breakthrough of this principle, CLOS can provide       7 2 7 2 1 1 21,73      

options which seem incredible for an expert to handle. Unlike the classical rating model 

which is a single step rating process, CLOS uses a Deductive Rating Strategy (algorithm 
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4.3) in which a rater chooses a 2-tuple option  ,hd av v  in two steps with a rethink 

process. The CLOS is an ideal rating interface for addressing the problem of the rating 

dilemma. 

The proposed model also accurately reflects the raters’ consistency and 

inconsistency, thus improving the quality of the assessment due to high validity and 

reliability of the subjective measurement results.  

The output of CLOS can be fuzzy or crisp. As the crisp number is only the modal 

value of the fuzzy number, thus it can be used for both fuzzy and crisp decision making 

models. 

 

9.2.4 The specific contributions of the POM and CPO 

The Pairwise Opposite Matrix (POM) of CNP is the ideal alternative of the 

Pairwise Reciprocal Matrix (PRM) of AHP, as the solution of the PRM’s problem is 

tested and presented in chapter 5. The Cognitive Prioritization Operator (CPO) is the 

function to derive the individual utility set from the POM.  

The CPO is of high validity with various reasons. Firstly, the CPOs are 

well-developed. A number of definitions, propositions and theorems with proofs are 

presented in chapter 5. Secondly, the CPOs are well-tested. Six Cognitive Prioritization 

Operator Measurement (CPOM) Models are proposed for the potential improvement 
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development of CPOs. In AHP, there are several APOs proposed after Saaty’s 

EigenValue method. Many authors claimed their methods were superior to the Saaty’s, 

and the details are reviewed in chapter 2.5. The author keeps an open mind, and 

proposes five CPOs evaluated by CPOMs (Chapter 5). And finally, the Row Average 

plus normal Utility (RAU) and the Least Penalty Squares (LPS) are suggested. In the 

numerical analysis and applications, it can be observed that their values are very close or  

the same, if the accordance index is not larger than 0.1.  

 

9.2.5 The specific contributions of the CSAO 

Although the discussions of AOs are very broad, there is a lack of research on the 

best practice in choosing the aggregation operators. The selection of the AOs can apply 

the theory of cognitive style. However, no research has yet investigated the relationship 

between aggregation operators and the cognitive styles. The cognitive styles can be used 

to select the best PO for decision making. 

The CSAO is devoted to a proposal on how to map a collection of aggregation 

operators into a collection of cognitive styles (or decision attitudes) by the CSAO model. 

This model is typically useful for those unsolved issues in the selection of aggregation 

operators. The OA candidates are determined by the decision maker with respect to 

cognitive style, which is characterized by decision attitudes.  
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9.3 Future work 

The future motivations of this research can be classified in four categories. 

 

9.3.1 The specific motivations of the CNP 

The CNP can handle all the problems which the AHP/ANP can handle. For the 

future applications of this model, the CNP can be applied in many domains such as 

transportation management, psychometrics, social sciences, business research, decision 

analyses, computer sciences, material management, and engineering management. For 

example, Chapter 8 shows five cases of the applications. In addition, the extent functions 

of the CNP including collective aspect and fuzzy soft-computing aspect can apply to the 

decision application models. 

 

9.3.2 The specific motivations of the CLOS 

The future applications of the Compound Linguistic Ordinal Scale model are that 

CLOS can be used as the measurement instrument applied to large scale systems, 

surveys and questionnaire designs, psychometrics, rater statistics, quantitative research 

(e.g. example 4.3), decision attitudes (e.g. CSAO), and multi-criteria multi-expert 

decision problems (e.g. AHP/ANP in case 4 of chapter 8) in various fields such as 

engineering sciences and social sciences, by using the deductive rating strategy of the 



Chapter 9 Conclusions 

 

415 
 

breakthrough number of linguistic choices. 

In addition, the Fuzzy normal distribution (FND) (algorithm 4.2) is the most 

significant for the cognitive computation of CLOS. FND addresses the high motivations 

for future development for classifying the interval and modal value of either the fuzzy 

set, compound fuzzy set, or even the type-II fuzzy set.  

 

9.3.3 The specific motivations of the POM and CPO 

One limitation of the cognitive pairwise comparison is the out-boundary problem, 

which nevertheless is less trivial than the out-boundary problem of analytic pairwise 

comparison. Some algorithms will be proposed for the improvement of the judgment of 

the POM. The value of normal utility   will be studied in details for various scenarios 

due to the different perception of the paired difference. 

The mathematical transformation between analytic pairwise comparison and 

cognitive pairwise comparison will be investigated. Thus the applications with analytic 

pairwise comparisons can be revised without further re-evaluations.  

Apart from the five CPOs proposed in chapter 5, some better POs, which the 

author has not yet observed, may be proposed in the future research. Thus the CPOMs 

are the foundation to test the new comers’ validity. If the new comers produce a better 

result than LPS using the proposed CPOMs, they would also be recommended, although 
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the author cannot find any at the moment. 

The other future implication is the usability of an individual utility set derived 

from POM by the dedicated CPO. The utility set can be normalized as normalized 

weights, which can be used for the operational parameter settings of other decision 

models such as SMART, generalized means, ELECTRE, PROMETHEE, DEA and 

TOPSIS (chapter 2.2). For example, Yuen (2009e) shows the case applying the POMs 

and CPO to TOPSIS whilst Yuen (2009f) demonstrates the case applying to ELECTRE I. 

In the future study, more decision models can be enhanced using the POMs and CPO. 

 

9.3.4 The specific motivations of the CSAO 

For future implications, the Cognitive Style and Aggregation Operator (CSAO) 

model is useful for the selection of the aggregation operator in the decision making 

models, such as AHP, CNP, ELECTRE, PROMETHEE, DEA and TOPSIS, with 

consideration of the cognitive styles (or decision attitudes) of the decision makers. Thus 

the CSAO model can apply to many decision applications. 

 

9.3.5 Implementation Plan of the CNP 

In view of the managerial implementation, the roadmap for using the CNP will be 

developed in the future study. With respect to the implementations of the existing cases, 

more cases to apply the CNP to a wider variety of situations will be studied. 



References 

 

417 
 

References 

Allport, G.W. (1937), “Personality: A Psychological Interpretation”, New York. 

 

Andersen, P. and Petersen, N. C. (1993), "A Procedure for Ranking Efficient Units in 

Data Envelopment Analysis", Management Science, 39, 10, pp. 1261-1264. 

 

Araora, J.S. (2004), “Introduction to Optimum Design (2nd ed.)”, Elsevier Academic 

Press. 

 

Ayton, P. (2005), “Judgement and decision making”, in Braisby N. and Gellatly A. (eds), 

Cognitive Psychology, Oxford University Press Inc., chapter 11, pp. 382-417. 

 

Banker, R. D., Charnes, A. and Cooper, W. W. (1984), “Some Models for Estimating 

Technical and Scale Inefficiencies in Data Envelopment Analysis”, Management Science, 

0, 9, pp. 1078-1092. 

 

Bargiela, A. and Pedrycz, W. (2003), “Granular Computing: An Introduction”, Kluwer 

Academic Publishers, Boston, Dordrecht, London. 

 

Barzilai, J. (1997), “Deriving weights from pairwise comparison matrices”, Journal of 

the Operational Research Society, 48, pp. 1226-1232.  

 

Belton, V. and Gear. T. (1983), “On a shortcoming of Saaty’s method of analytic 

hierarchies”, Omega, 11, 3, pp. 228-230. 

 

Ben-Arieh, D. and Chen, Z. (2006), “Linguistic-Labels aggregation and consensus 

measure for autocratic decision making using group recommendations,” IEEE 

Transactions on Systems, Man, and Cybernetics-Part A: system and Humans, 36, 3, pp. 

558-568. 

 

Berger, P. D., Gerstenfeld, A., and Zeng, A. Z. (2004), “How many suppliers are best? A 

Decision-analysis approach”, Omega: International Journal of Management Science, 32, 

pp. 9-15. 



References 

 

418 
 

Bilgic, T., and Türksen, I.B. (2000), “Measurement of Membership Functions: 

Theoretical and Empirical Work”, in: Dubois D., and Prade H. (eds.),  Handbook of 

Fuzzy Theory , Kluwer, Massachusetts, pp. 195-232. 

 

Blaikie, N. (2003), “Analyzing Quantitative Data”, Sage, London. 

 

Blankmeyer, E. (1987), “Approaches to consistency adjustment”, Journal of 

Optimization Theory and Applications, 54, pp. 479-488. 

 

Boender, C.G.E., de Graan, J.G., and Lootsma, F.A. (1989), “Multi-criteria decision 

analysis with fuzzy pairwise comparisons”, Fuzzy Sets and Systems, 29, pp. 133- 143. 

 

Bonissine, P.P., and Decker, K.S.,(1986), “Selecting Uncertainty, Calculi and Granularity: 

An Experiment in Trading-Off Precision and Complexity”, in Kanal, L.H. and Lemmer, 

J.F. (eds.), Uncertainty In Artificial Intelligence, North-Holland, pp. 217-247. 

 

Bouyssou, D., Marchant, T., Pirlot, M., Tsoukias, A., and Vincke, P. (2006), “Evaluation 

and decision models with multiple criteria: Stepping stones for the analyst”, Springer 

Science+Business Media, Inc. 

 

Braisby, N and Gellatly, A. (2005), “Foundations of cognitive psychology”, in Braisby, 

N. and Gellatly, A. (eds.), Cognitive Psychology, Oxford University Press Inc., chapter 1, 

pp. 1-32. 

 

Brans, J.-P., and Mareschal, B. (2005), “PROMETHEE Methods”, in Figueira, J., Greco 

S., and Ehrgott, M. (eds.), Multiple Criteria Decision Analysis: State of the Art Surveys, 

volume 78 of International Series in Operations Research & Management Science, 

chapter 5, pp. 163-195. 

 

Bryson, N. (1995), “A goal programming method for generating priorities vectors”, 

Journal of the Operational Research Society, 46, pp. 641-648. 

 

 



References 

 

419 
 

Budescu, D.V., Zwick, R., and Rapoport, A. (1986), “A comparison of the eigenvalue 

method and the geometric mean procedure for ratio scaling”, Applied Psychological 

Measurement, 10, pp. 69-78. 

 

Bullen, P.S., Mitrinovic, D.S., and Vasic, O.M. (1988), “Means and their inequalities”, D. 

Reidel Publishing Company, Dordrecht. 

 

Calvo, T., and Mesiar, R.(2003), “Weighted triangular norms-based aggregation 

operators”, Fuzzy Sets and Systems, 137, pp. 3-10. 

 

Chang, D.Y. (1996), “Applications of extent analysis method on fuzzy AHP”, European 

J. Oper. Res. 95, pp. 649-655. 

 

Chang, P., and Chen, Y. (1994), “A Fuzzy MCDM Method for Technology Transfer 

Strategy Selection in Biotechnology”, Fuzzy Sets and Systems, 63, pp. 131-139. 

 

Charnes, A., Cooper, W. W., and Rhodes, E. (1978), "Measuring the efficiency of 

decision-making units", European Journal of Operational Research, 2, 6, pp. 429–444. 

 

Chaudhry, S.S., Forst, F.G., and Zydiak, J.L. (1993), “Vendor selection with price 

breaks”, European Journal of Operational Research, 70, 1, pp.52-66. 

 

Chu, A.T.W., Kalaba, R.E., and Springarn, K. (1979), “A comparison of two methods for 

determining the weights of belonging to fuzzy sets”, Journal of Optimization Theory and 

Applications, 27, pp. 531-541. 

 

Crawford, G., and Williams, C. (1985), “A note on the analysis of subjective judgement 

matrices”, Journal of Mathematical Psychology, 29, pp. 387-405. 

 

De Morgan (1864), “On the symbols of logic I”, Transactions of the Cambridge 

Philosophical Society, 9, pp.78–127. 

 

 



References 

 

420 
 

Degani , R., and Bortolan, G. (1988), “The problem of Linguistic Approximation in 

Clinical Decision Making”, Int. Journal of Approximate Reasoning, 2, pp. 143-162 

 

Deschrijver, G., and Kerre, E.E. (2007), “On the position of intuitionist fuzzy set theory 

in the framework of theories modelling imprecision”, Information Sciences, 177, 6, pp. 

1860-1866. 

 

Detyniecki, M. (2000), “Mathematical Aggregation Operators and their Application to 

Video Querying”,Ph.D. Thesis, University Paris VI.. 

 

DeVellis, R.F. (1991), “Scale development: theory and applications”, Sage. 

 

Dubois, D., Fargier, H., and Prade, H.(1996), “Refinements of the maximin approach to 

decision-making in a fuzzy environment”, Fuzzy Sets and Systems, 81, pp. 103-122. 

 

Dubois, D., Prade, H., and Testemale, C. (1988), “Weighted fuzzy pattern-matching”, 

Fuzzy Sets and Systems, 28, pp. 313-331. 

 

Dushnik, B., and Miller, E.W. (1941), “Partially ordered sets”, American Journal of 

Mathematics, 63, pp. 600–610. 

 

Dyer, J.S., (1990a), “A clarification of remarks on the analytic hierarchy process”, 

Management Science, 36, 3, pp. 274-275. 

 

Dyer, J.S., (1990b), “Remarks on the analytic hierarchy process”, Management Science 

36,3,1990b, pp. 249-258. 

 

Engelbrecht, A.P. (2007), “Computational intelligence: an introduction (2nd ed.)”, Wiley. 

 

Ferber, J. (1999), “Multi-agent systems: an introduction to distributed artificial 

intelligence”, Addison-Wesley, Reading, MA. 

 

 



References 

 

421 
 

Figueira, J., Greco, S., and Ehrgott, M. (2005a), editors in “Multiple Criteria Decision 

Analysis: State of the Art Surveys”, volume 78 of International Series in Operations 

Research & Management Science. Springer, New York. 

 

Figueira, J., Mousseau, V., and Roy, B.. (2005b), “ELECTRE methods”. in Figueira, J., 

Greco, S., and Ehrgott, M., Multiple Criteria Decision Analysis: State of the Art Surveys, 

volume 78 of International Series in Operations Research & Management Science, 

chapter 4, pp. 133-162.  

 

Finkelstein, L., and Leaning, M.S. (1984), “A review of the fundamental concepts of 

measurement”, measurement, 2,1, pp. 25-34. 

 

Fodor, J., and Roubens, M. (1994), “Fuzzy Preference Modeling and Multicriteria 

Decision Support”, Kluwer Academic Publisher, Dordrecht. 

 

Forman, E. H., and Gass, S. I. (2001), “The analytic hierarchy process: An Exposition”, 

Operations Research, 49, 4, pp. 469-486. 

 

Friedenber, J., and Silverman, G. (2006), “Cognitive Science: an introduction to the 

study of Mind”, Sage publication. 

 

Fulop, J. (2005), “Introduction to Decision Making Methods”, Laboratory of Operations 

Research and Decision Systems, Computer and Automation Institute, Hungarian 

Academy of Sciences. 

 

Golany, B., and Kress, M. (1993), “A multicriteria evaluation of methods for obtaining 

weights from ratio-scale matrices”, Eur J Opl Res 69, pp. 210-220. 

 

Grabisch, M., Nguyen H.T., and Walker E.A. (1995), “Fundamentals of Uncertainty 

Calculi with Applications to Fuzzy Inference,” Kluwer Academics Publishers,  

Dordrecht. 

 

 



References 

 

422 
 

Hadamard, J., (1996), “The mathematician’s Mind: The Psychology of Invention in the 

Mathematical Field”, Princeton Univ. Press, New Jersey. 

 

Hakel, M. D. (1968), “How often is often?”, American Psychologist, 23, pp. 533-534.  

 

Hastie, R., and Pennington, N. (1995), “Cognitive approaches to judgement and decision 

making”, in Busemeryer et al. (eds), Decision making from a cognitive perspective  

(Psychology of Learning and Motivation: Advances in Research and Theory, Volume 32), 

pp. 1-31. 

 

Haynes, S., Richard, D.C., and Kubany, E.S. (1999), “Psychometric issues in assessment 

research”, In Kendall, P.C., Butcher, J.N., and Holmbeck, G. (eds.), Handbook of 

research methods in clinical psychology, New York: John Wiley & Sons, pp.125-154. 

He, M.H., and Leung, H.-f. (2002) “Agents in E-commerce: State of the Art”, 

Knowledge and information system, 4, pp. 257-282. 

 

Herrera, F., and Martinez, L. (2001), “The 2-tuple Linguistic Computational Model. 

Advantages of Its Linguistic Description, Accuracy and Consistency”, International 

Journal of uncertainty, Fuzziness and knowledge-based Systems, 9, pp. 33-48. 

 

Herrera-Viedma, E., Martinez, L., Mata, F., and Chiclana, F. (2005), “A consensus 

supporting system model for group decision-making problems with multigranular 

linguistic preference relations”, IEEE Transactions on Fuzzy Systems, 13, 5, pp.644-658. 

 

Ho, W. (2008), “Integrated analytic hierarchy process and its applications: A literature 

review”, European Journal of Operational Research, 186, pp. 211-228. 

 

Hoyt, J. (1972), “Do Quantifying Adjectives Mean the Same Thing to All People?” , 

Minneapolis,  University of Minnesota Agricultural Extension Service. 

 

Hwang, C.L. , and Yoon, K.P. (1981), “Multiple Attribute Decision Making: Methods 

and Applications”, Springer-Verlag, Berlin. 

 



References 

 

423 
 

International Society on Multiple Criteria Decision Making. (2009), “Multiple Criteria 

Decision Aid Bibliography”, http://www.lamsade.dauphine.fr/mcda/biblio. 

 

Karush, W. (1939), “Minima of Functions of Several Variables with Inequalities as Side 

Constraints”, M.Sc. Dissertation, Dept. of Mathematics, Univ. of Chicago, Chicago, 

Illinois. 

 

Kulak, O., and  Kahraman, C. (2005), “Fuzzy multi-attribute selection among 

transportation companies using axiomatic design and analytic hierarchy process”, 

Information Sciences, 170, pp. 191-210. 

 

Mikehailov, L., and Sing, M.G. (1999), “Comparison analysis of methods for deriving 

priorities in the analytic hierarchy process”, Proceedings of the IEEE International 

conference on Systems, Man and Cybernetics, pp. 1037-1042. 

 

Levine, J. (1983), “Materialism and qualia: The explanatory gap”, Pacific Philosophical 

Quarterly, 64, pp. 354-361. 

 

Levine, J. (1999), “Explanatory Gap”, In Wilson, R.A., and Keil, F. C. (eds), The MIT 

Encyclopedia of the Cognitive Sciences, Cambridge, MA: MIT Press. 

 

Likert, R. (1932), “A Technique for the Measurement of Attitudes”, Archives of 

Psychology 140, pp. 1-55. 

 

Lin, C.-C. (2006), “An enhanced goal programming method for generating priority 

vectors”, journal of Operation Research Society, 57, pp. 1491-1496. 

 

Liou, T.-S., and Wang, M.-J. J. (1994), “Subjective assessment of mental workload-A 

fuzzy linguistic multi-criteria approach”, Fuzzy sets and systems, 62, pp. 155-165. 

 

Lootsma, F.A. (1996), “Model for the relative importance of the criteria in the 

multiplicative AHP and SMART”, European Journal of Operational Research, 94, pp. 

467-476. 

http://www.lamsade.dauphine.fr/mcda/biblio


References 

 

424 
 

Marichal, J.L. (1998), “Aggregation operators for multicriteria decision aid”, Ph.D. 

Thesis, University of Liège, Belgium. 

 

Mather, G. (2006), “Foundations of Perception”, Psychology Press, Hove and New York. 

 

Mcdonnell, J. D. (1969) “An Application of measurement methods to improve the 

quantitative Nature of Pilot Rating Scales”, IEEE Transactions on MAN-MACHINE 

systems, 10, 3, pp.81-92. 

 

Mikehailov, L. (2000), “A Fuzzy Programming Method for Deriving Priorities in the 

Analytic Hierarchy”, The Journal of the Operational Research Society, 51, 3, pp. 

341-349. 

 

Miller, G. A. (1956), “The magical number seven plus or minus two: Some limits on our 

capacity of processing information”, Psychol. Rev., 63, pp.81–97. 

 

Mulholland, P., and Watt, S., “Cognitive modeling and cognitive architecture”, in 

Braisby, N., and Gellatly, A. (eds), Cognitive Psychology, Oxford University Press Inc., 

chapter 16, pp. 579-616. 

 

Muravyov , S.V., and Savolainen, V. (1997),  “Representation theory of measurement 

semantics for ratio, ordinal, and nominal scales”, Measurement, 22,  pp. 37-46. 

 

Murphy, C. K. (1993), “Limits on the analytic hierarchy process from its consistency 

index”, European Journal of Operational Research, 65, pp. 138 -139. 

 

Netemeyer, R. G., Bearden, W. O., and Sharma, S. (2003), “Scaling Procedures: Issues 

and Applications”, Sage Publications, Thousand Oaks. 

 

Newell, A., and Simon, H.A. (1972), “Human Problem Solving”, Englewood Cliffs, NJ: 

Prentice Hall. 

 

 



References 

 

425 
 

Newwell,  A. (1973), “You can’t play 20 questions with Nature and win: projective 

comments on the papers of this symposium”, in Chase, W.G. (ed.), Visual information 

processing, New York, Academic Press, pp 283-308. 

 

Nunnally, J. C., and Bernstein, I. H. (1994), “Psychometric Theory (3rd ed.)”, 

McGraw-Hill, New York. 

 

Osgood, C.E., Suci, G. J., and Tannenbaum, P. H. (1957), “The measurement of 

meaning”, University of Illinois Press, Urbana. 

 

Ö ztürk, M., Tsoukiàs, A., and Vincke, P. (2005), “Preference Modelling”. in Figueira, J., 

Greco, S., and Ehrgott, M. (eds.), Multiple Criteria Decision Analysis: State of the Art 

Surveys, volume 78 of International Series in Operations Research and Management 

Science, chapter 2, pp. 27-72. 

 

Pedrycz, W. (1997), “Computational intelligence: an introduction”, CRC Press. 

 

Pedrycz, W., and Gomide, F. (2007), “Fuzzy system engineering: toward human-centric 

computing”, wiley-interscience. 

 

Peirce, C.S. (1880), “On the algebra of logic”, American Journal of Mathematics, 3, pp. 

15–57. 

 

Peirce, C.S. (1881), “On the logic of number”, American Journal of Mathematics, 4, pp. 

85–95. 

 

Peirce, C.S. (1883), “A theory of probable inference”, John Hopkins University, 

Baltimore, pp. 187–203. 

 

Perez, J. (1995), “Some comments on Saaty’s AHP”, Management Science 41, pp. 

1091-1095. 

 

 



References 

 

426 
 

Pomerol, J.-C., and Barba-Romero, S. (2000), “Multicriterion decision in management: 

principles and practice”, Kluwer Academic Publishers. 

 

Riding, R.J., and Cheema, I. (1991), “Cognitive styles - An overview and integration.”, 

Educational Psychology, 11, 3/4, pp. 193-215. 

 

Roubens, M. and Vincke, Ph. (1985). “Preference Modelling”. LNEMS 250, Springer 

Verlag, Berlin. 

 

Roy, B. (1968), "Classement et choix en présence de points de vue multiples (la méthode 

ELECTRE)", la Revue d'Informatique et de Recherche Opérationelle, 8, pp. 57–75. 

Rust, J., and Golombok, S. (1999), “Modern Psychometrics: the science of 

psychological assessment (2nd ed.)”, Routledge, London and New York. 

 

Saaty, T.L. (1980), “Analytic Hierarchy Process: Planning, Priority, Setting, Resource 

Allocation”, McGraw-Hill, New York. 

 

Saaty, T.L. (1990), “How to make a decision: The Analytic Hierarchy Process”, 

European Journal of Operational Research, 48, pp. 9-26. 

 

Saaty, T.L. (1994), “Fundamentals of Decision Making”, RSW Publications. 

 

Saaty, T.L. (2000), “Fundamentals of Decision Making and Priority Theory with the 

Analytic Hierarchy Process”, RWS Publications. 

 

Saaty, T.L. (2001), “Decision Making for Leaders: The Analytic Hierarchy Process for 

Decisions in Complex World (3rd Ed.)”, RWS Publications, Pittsburgh, (1st Ed. In 

1982). 

 

Saaty, T.L. (2005), “Theory and Applications of the Analytic Network Process: Decision 

Making with Benefits, Opportunities, Costs, and Risks”, RWS Publications. 

 

 



References 

 

427 
 

Saaty, T.L., and Vagas, L.G. (1984), “Comparison of eigenvalue, logarithmic least 

squares and least squares methods in estimating ratios”, Math. Modeling, 5, pp. 309-324. 

 

Scott, D., and Suppes, P. (1958), “Foundational aspects of theories of measurement”, 

Journal of Symbolic Logic, 23, pp. 113–128. 

 

Shoham, Y. (1999), “What we talk about when talk about software agents”, IEEE 

Intelligent Systems, 14, 2, pp. 28-31. 

 

Simpson, R. (1944), “The specific meaning of certain terms indicating different degrees 

of frequency”, The Quarterly Journal of Speech, 30, pp.328-330. 

 

Smolikava, R., and Wachowiak, M.P. (2002), “Aggregation operators for selection 

problems”, Fuzzy Sets and Systems, 131, pp. 23-34. 

 

Srdjevic, B. (2005), “Combining different prioritization methods in the analytic 

hierarchy process synthesis”, Computers and Operations Research, 32, pp. 1897-1919. 

 

Stevens, S.S. (1946), “On the theory of scales of measurement”. Science, 103, pp. 

677-680. 

 

Tarski, A. (1954), “Contributions to the theory of models i, ii”, Indagationes 

Mathematicae, 16,  pp. 572–588. 

 

Tarski, A. (1955). “Contributions to the theory of models iii”, Indagationes 

Mathematicae, 17, pp. 56–64. 

 

Thurstone, L.L. (1927), “A law of comparative judgements”, Psychological Review, 34, 

pp.  273-286. 

 

Türksen, I.B. (1991), “Measurement of Membership Functions and Their Acquisitions”, 

Fuzzy Sets and Systems, Special Memorial Issue 40, pp. 5-38. 

 



References 

 

428 
 

Urso, P.D., and Gastaldi, T. (2002), “An “orderwise” Polynomial regression procedure 

for fuzzy data”, Fuzzy Sets and Systems, 130, pp. 1-19. 

 

van Laarhoven, P.J.M., and Pedrycz, W. (1983), “A fuzzy extension of Saaty’s Priority 

theory”, Fuzzy Sets and Systems, 11, pp. 229-24. 

 

Von Neumann, J., and Kahneman, D. (1947), “Theory of games and economic behavior 

(2nd ed.)”, Princeton, NJ, Prince University Press. 

 

Wang, Y.M., and Elhag, T.M.S. (2006), “An Approach to avoiding rank reversal in AHP”, 

Decision Support Systems, 42, pp. 1474-1480. 

 

Wang, Y. M. , Elhag, T. M.S., and Hua, Z. (2006), “A modified fuzzy logarithmic least 

squares method of fuzzy analytic hierarchy process”, Fuzzy Sets and Systems, 157, pp.  

3055-3071. 

 

Wang, Y. M., Luo, Y., and Hua, Z. (2008), “On the extent analysis method for fuzzy AHP 

and its application”, European Journal of Operational Research, 186, pp. 735-747. 

 

Wewers, M.E., and Lowem, N.K. (1990), “A critical review of visual analogue scales in 

the measurement of clinical phenomena”, Research in Nursing and Health, 13, pp. 

227-236 

 

Rozann, W. (2007), “Criticism of the Analytic Hierarchy Process: Why they often make 

no sense”, Mathematical and Computer Modelling, 46, pp. 948-961. 

 

Yager, R.R. (1988), “On ordered weighted averaging aggregation operators in 

multi-criteria decision making”, IEEE trans. Systems, Man Cybernet., 18, pp. 183-190.  

 

Yager, R.R. (1994), “On weighted median aggregation”, Int. J. Uncertainty, Fuzziness 

Knowledge-based Systems, 2, pp. 101-113. 

 

 



References 

 

429 
 

Yager, R.R. (1995), “An Approach to Ordinal Decision Making”, Int. J. of Approximate 

Reasoning, 12, pp. 237-261. 

 

Yager, R.R. (1997), “On the analytic representation of Leximin ordering and its 

application to flexible constraint propagation”, European J. Oper. Res, 102, pp. 176-192. 

 

Yager, R.R., and Rybalov, A. (1998), “Full reinforcement operators in aggregation 

techniques,” IEEE Trans. On Systems, Man, and Cybernetics Part B, 28, 6, pp. 757-769. 

 

Yager, R.R. (2004), “OWA aggregation over a continuous interval argument with 

applications to decision making”, IEEE Trans. On Systems, Man and Cybernetics- Part 

B, 34, 5, pp. 1952-1963. 

 

Yeh, Y., and Wickens, C. (1988), “Dissociation of Performance and Subjective measures 

of workload”, Human Factors, 30, pp.111-120. 

 

Yoon, K.P., and Hwang, C.L. (1995), “multiple attribute decision making: an 

introduction”, Sage Publications. 

 

Yuen, K.K.F (2008), “Toward A Measurement Model of Fuzzy Prioritization Operators”, 

Advances in Intelligent Systems Research, 13
th

 international conference on fuzzy theory 

and technology, in 11
th

 joint conference on Information Science, 

doi:10.2991/jcis.2008.10.  

 

Yuen, K.K.F. (2009a), “Development of an enterprise decision platform: service oriented 

architecture approach”, International Journal of Intelligent Information and Database 

Systems, In press. 

 

Yuen, K.K.F, (2009b), “On Limitations of the Prioritization methods in Analytic 

Hierarchy Process: A study of Transportation Selection Problems”, IAENG International 

Conference on Operations Research, in International MultiConference of Engineers and 

Computer Scientists, pp.2064-2069.  

 



References 

 

430 
 

Yuen, K.K.F (2009c), “A Mixed Prioritization Operators Strategy Using A Single 

Measurement Criterion For AHP Application Development”, IAENG Transactions on 

Engineering Technologies Volume 3 - Special Edition of the International 

MultiConference of Engineers and Computer Scientists 2009, American Institute of 

Physics, In Press. 

 

Yuen, K.K.F. (2009d). “Selection of aggregation operators with decision attitudes”,  in 

J. Mehnen, A. Tiwari, M. Köppen, A. Saad (Eds.), Applications of Soft Computing: 

From Theory to Praxis, Advances in Intelligent and Soft Computing, pp. 255-264. 

 

Yuen K.K.F. (2009e), “Enhancement of TOPSIS using the Compound Linguistic 

Ordinal Scale and Cognitive Pairwise Comparison”, Proceedings of IEEE International 

Conference on Fuzzy Systems, pp. 649-654. (IEEE CIS 2009 outstanding student paper 

travel grant) 

 

Yuen K.K.F (2009f), “Enhancement of ELECTRE I using Compound Linguistic Ordinal 

Scale and the Cognitive Pairwise Comparison”, Proceedings of IEEE International 

Conference on Systems, Man, and Cybernetics, pp.5009-5014. 

 

Yuen K.K.F. (2009g), “Analytic hierarchy prioritization process in the AHP applications 

development: A prioritization operator selection approach”, submitted to journal. 

 

Yuen K.K.F. (2009h), “The least penalty optimization prioritization operators: derive the 

fittest priority vector from a reciprocal matrix”, submitted to journal. 

 

Yuen K.K.F. (2009i), “A compound linguistic ordinal scales model: extension of using 

magical number seven, plus or minus two”, submitted to journal. (contribution to 

Chapter 4). 

 

Yuen K.K.F. (2009j), “The pairwise opposite matrix and its cognitive prioritization 

operators: the ideal alternatives of the pairwise reciprocal matrix and analytic 

prioritization operators”, submitted to journal. (contribution to Chapter 5). 

 



References 

 

431 
 

Yuen, K.K.F., and Lau, H.C.W.  (2006a), “Fuzzy Linguistic Variable Matrix and 

Parabola-Based Fuzzy Normal Distribution: A method for designing fuzzy linguistic 

Variable”, in IFIP International Federation for Information Processing, V.228, Intelligent 

Information Processing III, eds. Shi Z., Shimohara K., Feng D.,( Boston: Springer), pp.  

205-215.  

 

Yuen, K.K.F., and Lau, H.C.W.  (2006b), “A Distributed Fuzzy Qualitative Evaluation 

System”, Proceedings of the IEEE/WIC/ACM International Conference on Intelligent 

Agent Technology, pp. 560-563. 

 

Yuen, K.K.F., and Lau, H.C.W.  (2008a), “Towards A Distributed Fuzzy Decision 

Making System”, N.T. Nguyen (Eds.): KES-AMSTA 2008, Lecture Notes in Artificial 

Intelligence, 4953, pp. 103–112.  

 

Yuen, K.K.F., and Lau, H.C.W.  (2008b), “Evaluating Software Quality of Vendors 

using  Fuzzy Analytic Hierarchy Process”, Lecture Notes in Engineering and Computer 

Science, IMECS, Volume I, pp. 126-130.  (Best Student Paper Award) 

 

Yuen, K.K.F., and Lau, H.C.W.  (2008c), “Software Vendor Selection using Fuzzy 

Analytic Hierarchy Process with ISO/IEC 9126”, IAENG International Journal of 

Computer Science, 35, 3, pp. 267-274. 

 

Yuen, K.K.F., and Lau, H.C.W. (2009), “A Linguistic-Possibility-Probability 

Aggregation Model for Decision Analysis with Imperfect Knowledge”, Applied Soft 

Computing, 9, 575–589.  

 

Zadeh, L A. (1965), “Fuzzy sets”, Information Control, 8, pp. 338–353. 

 

Zadeh, L.A. (1975), “The concept of a Linguistic Variable and its Application to 

Approximate Reasoning,” Information Sciences part I, 8 , pp. 199-249; part II, 8 , pp. 

301-357; part III, 9, pp. 43-86. 

 

 



References 

 

432 
 

Zadeh, L A. (1996), “Fuzzy Logic = Computing with Words”, IEEE trans. on fuzzy 

systems. 4, 2, pp. 103-111. 

 

Zedah, L.A. (2001), “Applied Soft Computing- Foreword”, Applied Soft Computing, 1, 

1, pp. 1-2. 

 

Zadeh, L. A. (2005), “Toward a generalized theory of uncertainty (GTU): an online”, 

Information Sciences, 172, 1-40 

 

Zadeh, L.A. (2008), “Is there a need for fuzzy logic”, Information Sciences, 178, pp.  

2751-2779. 

 

Zahedi F. (1986), “A simulation study of estimation methods in the analytic hierarchy 

process”, Socio Econ Plan Sci, 20, pp. 347-354. 

 

Zimmermann, H.J., and Zysno, P. (1980), “Latent connectives in human decision 

making”, Fuzzy Sets and Systems, 4, pp. 37-51. 

 

Zorzi, M., Priftis, K., and Umilta, C. (2002), “Brain damage: Neglect disrupts the mental 

number line”, Nature, 417, 09, pp. 138-139. 

 



Appendices 

 

A1 
 

Appendices 

 

Appendix I A2-A6 

Tables for figures 4.5-4.11 of chapter 4 

 

Appendix II 

Tables for plotting the figures 5.8-5.12 of chapter 5.8.1 A7-A23 

 

Appendix III 

Tables for figures 6.3a-6.3b of chapter 6 A24-A28 

 

Appendix IV A29-A51 

Tables for figures 7.3-7.5 of chapter 7 



Appendix I 

 

A2 
 

Appendix I  Tables for figures 4.5-4.11 of chapter 4 

 

Table A4.1: Computational results for fig. 4.5 

Parameters:  1 5X  , , 3 3

  , 3 1d


 , 3 1


  , 1 1

j PbMF
 


  , 

   1 2 3hV 


, , , 00 1   . 

 0  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1 3
X  ,

 2.1464  2.1554  2.1646  2.1740  2.1838  2.1938  2.2042  2.2150  2.2261  2.2378  2.2500  

2 3
X  ,

 2.4423  2.4470  2.4523  2.4584  2.4655  2.4738  2.4836  2.4956  2.5108  2.5323  2.5918  

3 3
X  ,

 2.7959  2.7908  2.7859  2.7811  2.7764  2.7718  2.7673  2.7628  2.7585  2.7542  2.7500  

4 3
X  ,

 3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  

5 3
X  ,

 3.2041  3.2092  3.2141  3.2189  3.2236  3.2282  3.2327  3.2372  3.2415  3.2458  3.2500  

6 3
X  ,

 3.5577  3.5530  3.5477  3.5416  3.5345  3.5262  3.5164  3.5044  3.4892  3.4677  3.4082  

7 3
X  ,

 3.8536  3.8446  3.8354  3.8260  3.8162  3.8062  3.7958  3.7850  3.7739  3.7622  3.7500  

 

 

 

 

Table A4.2: Computational results for fig. 4.6. 

Parameters:  1 5X  , , 3 3

  , 3 1d


 , 3 1


  , 1 1

j PbMF
 


  , 

        1 2 3 1 1 1 3 2 1hV 


, , , , , , , , , 0 0 5  . . 

   
13  23  33  43  53  63  73  

1 :1,2,3 2.1938  2.4738  2.7718  3.0000  3.2282  3.5262  3.8062  

2 :1,1,1 2.1181  2.3170  2.6773  3.0000  3.3227  3.6830  3.8819  

3 :3,2,1 2.0551  2.1985  2.6047  3.0000  3.3953  3.8015  3.9449  
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Table A4.3: Computational results for fig. 4.7. 

Parameters:  1 5X  , , 3 3

  , 3 1d


 , 3 0 1 1


  . , , , 1 1

j PbMF
 


  , 

   1 2 3hV 


, , , 0 0 5  . . 

3
  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1 3
X  ,

 2.0023  2.0244  2.0552  2.0843  2.1097  2.1315  2.1503  2.1667  2.1811  2.1938  

2 3
X  ,

 2.1189  2.2062  2.2628  2.3078  2.3456  2.3782  2.4067  2.4317  2.4539  2.4738  

3 3
X  ,

 2.5248  2.5850  2.6322  2.6675  2.6945  2.7161  2.7337  2.7484  2.7609  2.7718  

4 3
X  ,

 3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  

5 3
X  ,

 3.4752  3.4150  3.3678  3.3325  3.3055  3.2839  3.2663  3.2516  3.2391  3.2282  

6 3
X  ,

 3.8811  3.7938  3.7372  3.6922  3.6544  3.6218  3.5933  3.5683  3.5461  3.5262  

7 3
X  ,

 3.9977  3.9756  3.9448  3.9157  3.8903  3.8685  3.8497  3.8333  3.8189  3.8062  

 

 

 

 

 

Table A4: Computational Results for fig. 4.8. 

Parameters:  1 5X  , , 3 3

  , 3 1d


 , 3 1 10


  , , , 1 1

j PbMF
 


  , 

   1 2 3hV 


, , , 0 0 5  . . 

3
  1  2  3  4  5  6  7  8  9  10  10000  

1 3
X  ,

 2.1938  2.2712  2.3096  2.3335  2.3502  2.3628  2.3726  2.3806  2.3872  2.3929  2.4966  

2 3
X  ,

 2.4738  2.5991  2.6639  2.7050  2.7339  2.7558  2.7730  2.7870  2.7987  2.8087  2.9938  

3 3
X  ,

 2.7718  2.8340  2.8631  2.8809  2.8932  2.9023  2.9094  2.9152  2.9200  2.9240  2.9976  

4 3
X  ,

 3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  

5 3
X  ,

 3.2282  3.1660  3.1369  3.1191  3.1068  3.0977  3.0906  3.0848  3.0800  3.0760  3.0024  

6 3
X  ,

 3.5262  3.4009  3.3361  3.2950  3.2661  3.2442  3.2270  3.2130  3.2013  3.1913  3.0062  

7 3
X  ,

 3.8062  3.7288  3.6904  3.6665  3.6498  3.6372  3.6274  3.6194  3.6128  3.6071  3.5034  
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Table A4.5: Computational results for fig. 4.9. 

Parameters:  1 5X  , , 3 3

  , 3 1d


 , 3 0 1 1


  . , , , 1 1

j TbMF
 


  , 

   1 2 3hV 


, , , 0 0 5  . . 

3
  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1.0  

1 3
X  ,

 2.0045  2.0477  2.1044  2.1544  2.1953  2.2284  2.2555  2.2779  2.2966  2.3125  

2 3
X  ,

 2.2095  2.3299  2.4011  2.4583  2.5069  2.5487  2.5847  2.6159  2.6429  2.6667  

3 3
X  ,

 2.5483  2.6555  2.7295  2.7788  2.8134  2.8387  2.8581  2.8734  2.8857  2.8958  

4 3
X  ,

 3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  

5 3
X  ,

 3.4517  3.3445  3.2705  3.2212  3.1866  3.1613  3.1419  3.1266  3.1143  3.1042  

6 3
X  ,

 3.7905  3.6701  3.5989  3.5417  3.4931  3.4513  3.4153  3.3841  3.3571  3.3333  

7 3
X  ,

 3.9955  3.9523  3.8956  3.8456  3.8047  3.7716  3.7445  3.7221  3.7034  3.6875  

 

 

 

Table A4.6: Computational Results for fig. 4.10. 

Parameters :  1 5X  , , 3 3

  , 3 1d


 , 3 1 10


  , , , 1 1

j TbMF
 


  , 

   1 2 3hV 


, , , 0 0 5  . . 

3
  1  2  3  4  5  6  7  8  9  10  10000  

1 3
X  ,

 2.3125  2.3953  2.4275  2.4446  2.4551  2.4623  2.4675  2.4715  2.4746  2.4770  2.5000  

2 3
X  ,

 2.6667  2.8015  2.8592  2.8910  2.9111  2.9249  2.9350  2.9428  2.9488  2.9538  3.0000  

3 3
X  ,

 2.8958  2.9449  2.9625  2.9716  2.9772  2.9809  2.9836  2.9856  2.9872  2.9885  3.0000  

4 3
X  ,

 3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  3.0000  

5 3
X  ,

 3.1042  3.0551  3.0375  3.0284  3.0228  3.0191  3.0164  3.0144  3.0128  3.0115  3.0000  

6 3
X  ,

 3.3333  3.1985  3.1408  3.1090  3.0889  3.0751  3.0650  3.0572  3.0512  3.0462  3.0000  

7 3
X  ,

 3.6875  3.6047  3.5725  3.5554  3.5449  3.5377  3.5325  3.5285  3.5254  3.5230  3.5000  
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Table A7: Computational Results for fig.11. 

Parameters:  1 5X  , , 3 3 4

  , , 3 1d


 , 3 2


  , 1 1

j PbMF
 


  , 

   1 2 3hV 


, , , 0 0 5  .  for calculation of  . 

 1 4
X  ,

 
2 4

X  ,
 

3 4
X  ,

 
4 4

X  ,
 

5 4
X  ,

 
6 4

X  ,
 

7 4
X  ,

 

1 3
X  ,

 0.5000  0.6640  0.7814  0.8644  0.9474  1.0648  1.2288  

2 3
X  ,

 0.3360  0.5000  0.6174  0.7004  0.7834  0.9009  1.0648  

3 3
X  ,

 0.2186  0.3826  0.5000  0.5830  0.6660  0.7834  0.9474  

4 3
X  ,

 0.1356  0.2996  0.4170  0.5000  0.5830  0.7004  0.8644  

5 3
X  ,

 0.0526  0.2166  0.3340  0.4170  0.5000  0.6174  0.7814  

6 3
X  ,

 0.0648  0.0991  0.2166  0.2996  0.3826  0.5000  0.6640  

7 3
X  ,

 0.2288  0.0648  0.0526  0.1356  0.2186  0.3360  0.5000  
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Tables for plotting the figures 5.8-5.12 of chapter 5.8.1 
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Table A5.1: The priority vectors of RAU and LPS for T3(r). 

B13 AI V (RAU) V(LPS) 

-1 0.462 (0.733, 0.933, 1.333) (0.917, 0.917, 1.167) 

-0.9 0.423 (0.767, 0.933, 1.3) (0.925, 0.925, 1.150) 

-0.8 0.385 (0.8, 0.933, 1.267) (0.933, 0.933, 1.133) 

-0.7 0.346 (0.833, 0.933, 1.233) (0.942, 0.942, 1.117) 

-0.6 0.308 (0.867, 0.933, 1.2) (0.950, 0.950, 1.1) 

-0.5 0.269 (0.9, 0.933, 1.167) (0.958, 0.958, 1.083) 

-0.4 0.231 (0.933, 0.933, 1.133) (0.967, 0.967, 1.067) 

-0.3 0.192 (0.967, 0.933, 1.1) (0.975, 0.975, 1.05) 

-0.2 0.154 (1., 0.933, 1.067) (1., 0.971, 1.029) 

-0.1 0.115 (1.033, 0.933, 1.033) (1.017, 0.967, 1.017) 

0 0.077 (1.067, 0.933, 1.) (1.04, 0.96, 1.) 

0.1 0.038 (1.1, 0.933, 0.967) (1.1, 0.943, 0.957) 

0.2 0 (1.133, 0.933, 0.933) (1.133, 0.933, 0.933) 

0.3 0.038 (1.167, 0.933, 0.9) (1.167, 0.924, 0.91) 

0.4 0.077 (1.2, 0.933, 0.867) (1.2, 0.914, 0.886) 

0.5 0.115 (1.233, 0.933, 0.833) (1.233, 0.905, 0.862) 

0.6 0.154 (1.267, 0.933, 0.8) (1.267, 0.895, 0.838) 

0.7 0.192 (1.3, 0.933, 0.767) (1.3, 0.886, 0.814) 

0.8 0.231 (1.333, 0.933, 0.733) (1.333, 0.876, 0.791) 

0.9 0.269 (1.367, 0.933, 0.700) (1.367, 0.867, 0.767) 

1 0.308 (1.400, 0.933, 0.667) (1.400, 0.857, 0.743) 
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Table A5.2: The priority vectors of RAU and LPS for T4(r).  

B14 AI V (RAU) V(LPS) 

-1 0.406 (0.875, 0.975, 0.875, 1.275) (0.975, 0.975, 0.875, 1.175) 

-0.9 0.372 (0.9, 0.975, 0.875, 1.25) (0.982, 0.982, 0.875, 1.161) 

-0.8 0.338 (0.925, 0.975, 0.875, 1.225) (0.989, 0.989, 0.875, 1.146) 

-0.7 0.305 (0.950, 0.975, 0.875, 1.2) (0.996, 0.996, 0.875, 1.132) 

-0.6 0.271 (0.975, 0.975, 0.875, 1.175) (1.003, 1.003, 0.875, 1.118) 

-0.5 0.237 (1., 0.975, 0.875, 1.150) (1.011, 1.011, 0.875, 1.104) 

-0.4 0.203 (1.025, 0.975, 0.875, 1.125) (1.025, 1.012, 0.875, 1.088) 

-0.3 0.169 (1.05, 0.975, 0.875, 1.1) (1.05, 1.006, 0.875, 1.069) 

-0.2 0.135 (1.075, 0.975, 0.875, 1.075) (1.061, 1.004, 0.875, 1.061) 

-0.1 0.102 (1.1, 0.975, 0.875, 1.05) (1.061, 1.004, 0.875, 1.061) 

0 0.068 (1.125, 0.975, 0.875, 1.025) (1.095, 0.995, 0.875, 1.035) 

0.1 0.034 (1.150, 0.975, 0.875, 1.) (1.150, 0.981, 0.875, 0.994) 

0.2 0 (1.175, 0.975, 0.875, 0.975) (1.175, 0.975, 0.875, 0.975) 

0.3 0.034 (1.2, 0.975, 0.875, 0.950) (1.2, 0.969, 0.875, 0.956) 

0.4 0.068 (1.225, 0.975, 0.875, 0.925) (1.225, 0.962, 0.875, 0.938) 

0.5 0.102 (1.25, 0.975, 0.875, 0.9) (1.25, 0.956, 0.875, 0.919) 

0.6 0.135 (1.275, 0.975, 0.875, 0.875) (1.275, 0.950, 0.875, 0.9) 

0.7 0.169 (1.3, 0.975, 0.875, 0.85) (1.3, 0.944, 0.875, 0.881) 

0.8 0.203 (1.325, 0.975, 0.875, 0.825) (1.325, 0.941, 0.867, 0.867) 

0.9 0.237 (1.35, 0.975, 0.875, 0.8) (1.35, 0.936, 0.857, 0.857) 

1 0.271 (1.375, 0.975, 0.875, 0.775) (1.375, 0.932, 0.846, 0.846) 
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Table A5.3: The priority vectors of RAU and LPS for T5(r)  

B15 AI V (RAU) V(LPS) 

-1 0.332 (0.92, 0.96, 0.86, 1.06, 1.2) (1.107, 0.979, 0.692, 1.111, 1.111) 

-0.9 0.304 (0.940, 0.96, 0.86, 1.06, 1.18) (1.073, 1.025, 0.754, 1.075, 1.073) 

-0.8 0.277 (0.96, 0.96, 0.86, 1.06, 1.16) (1.045, 1.039, 0.824, 1.045, 1.046) 

-0.7 0.249 (0.98, 0.96, 0.86, 1.06, 1.140) (1.109, 1., 0.662, 1.119, 1.109) 

-0.6 0.221 (1., 0.96, 0.86, 1.06, 1.12) (1.081, 0.985, 0.77, 1.081, 1.082) 

-0.5 0.194 (1.02, 0.96, 0.86, 1.06, 1.1) (1.112, 0.977, 0.684, 1.115, 1.112) 

-0.4 0.166 (1.04, 0.96, 0.86, 1.06, 1.08) (1.126, 0.994, 0.585, 1.167, 1.126) 

-0.3 0.138 (1.06, 0.96, 0.86, 1.06, 1.06) (1.049, 0.988, 0.86, 1.047, 1.056) 

-0.2 0.111 (1.08, 0.96, 0.86, 1.06, 1.04) (1.044, 1.001, 0.866, 1.045, 1.044) 

-0.1 0.083 (1.1, 0.96, 0.86, 1.06, 1.02) (1.05, 0.996, 0.854, 1.05, 1.05) 

0 0.055 (1.12, 0.96, 0.86, 1.06, 1.) (1.09, 0.976, 0.86, 1.06, 1.014) 

0.1 0.028 (1.140, 0.96, 0.86, 1.06, 0.98) (1.140, 0.964, 0.86, 1.06, 0.976) 

0.2 0 (1.16, 0.96, 0.86, 1.06, 0.96) (1.16, 0.96, 0.86, 1.06, 0.96) 

0.3 0.028 (1.18, 0.96, 0.86, 1.06, 0.940) (1.18, 0.956, 0.86, 1.06, 0.944) 

0.4 0.055 (1.2, 0.96, 0.86, 1.06, 0.92) (1.2, 0.951, 0.86, 1.06, 0.929) 

0.5 0.083 (1.22, 0.96, 0.86, 1.06, 0.9) (1.22, 0.947, 0.86, 1.06, 0.913) 

0.6 0.111 (1.24, 0.96, 0.86, 1.06, 0.88) (1.24, 0.942, 0.86, 1.06, 0.898) 

0.7 0.138 (1.26, 0.96, 0.86, 1.06, 0.86) (1.26, 0.938, 0.86, 1.06, 0.882) 

0.8 0.166 (1.28, 0.96, 0.86, 1.06, 0.84) (1.28, 0.933, 0.86, 1.06, 0.867) 

0.9 0.194 (1.3, 0.96, 0.86, 1.06, 0.820) (1.3, 0.93, 0.855, 1.06, 0.855) 

1 0.221 (1.32, 0.96, 0.86, 1.06, 0.8) (1.32, 0.928, 0.846, 1.06, 0.846) 
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Table A5.4: The priority vectors of RAU and LPS for T6(r).  

B16 AI V (RAU) V(LPS) 

-1 0.295 (0.933, 0.950, 0.85, 0.65, 1.55, 1.067) (1.003, 1.003, 0.968, 0.594, 1.317, 1.116) 

-0.9 0.272 (0.950, 0.950, 0.85, 0.65, 1.55, 1.05) (0.974, 0.974, 0.872, 0.652, 1.554, 0.974) 

-0.8 0.249 (0.967, 0.950, 0.85, 0.65, 1.55, 1.033) (0.99, 0.99, 0.917, 0.646, 1.41, 1.046) 

-0.7 0.227 (0.983, 0.950, 0.85, 0.65, 1.55, 1.017) (0.986, 0.986, 0.913, 0.652, 1.414, 1.049) 

-0.6 0.204 (1., 0.950, 0.85, 0.65, 1.55, 1.) (0.977, 0.977, 0.869, 0.65, 1.55, 0.977) 

-0.5 0.181 (1.017, 0.950, 0.85, 0.65, 1.55, 0.983) (0.932, 0.932, 0.903, 0.683, 1.618, 0.932) 

-0.4 0.159 (1.033, 0.950, 0.85, 0.65, 1.55, 0.967) (0.937, 0.934, 0.918, 0.639, 1.635, 0.937) 

-0.3 0.136 (1.05, 0.950, 0.85, 0.65, 1.55, 0.950) (0.986, 0.972, 0.923, 0.769, 1.364, 0.986) 

-0.2 0.113 (1.067, 0.950, 0.85, 0.65, 1.55, 0.933) (1.015, 0.98, 0.93, 0.774, 1.287, 1.015) 

-0.1 0.091 (1.083, 0.950, 0.85, 0.65, 1.55, 0.917) (0.989, 0.988, 0.903, 0.698, 1.433, 0.988) 

0 0.068 (1.1, 0.950, 0.85, 0.65, 1.55, 0.9) (1.056, 0.950, 0.869, 0.65, 1.55, 0.925) 

0.1 0.045 (1.117, 0.950, 0.85, 0.65, 1.55, 0.883) (1.117, 0.950, 0.857, 0.65, 1.55, 0.877) 

0.2 0.023 (1.133, 0.950, 0.85, 0.65, 1.55, 0.867) (1.133, 0.950, 0.853, 0.65, 1.55, 0.863) 

0.3 0 (1.150, 0.950, 0.85, 0.65, 1.55, 0.85) (1.150, 0.950, 0.85, 0.65, 1.55, 0.85) 

0.4 0.023 (1.167, 0.950, 0.85, 0.65, 1.55, 0.833) (1.167, 0.950, 0.847, 0.65, 1.55, 0.837) 

0.5 0.045 (1.183, 0.950, 0.85, 0.65, 1.55, 0.817) (1.183, 0.950, 0.843, 0.65, 1.55, 0.823) 

0.6 0.068 (1.2, 0.950, 0.85, 0.65, 1.55, 0.8) (1.2, 0.950, 0.84, 0.65, 1.55, 0.81) 

0.7 0.091 (1.217, 0.950, 0.85, 0.65, 1.55, 0.783) (1.217, 0.950, 0.837, 0.65, 1.55, 0.797) 

0.8 0.113 (1.233, 0.950, 0.85, 0.65, 1.55, 0.767) (1.233, 0.950, 0.833, 0.65, 1.55, 0.783) 

0.9 0.136 (1.25, 0.950, 0.85, 0.65, 1.55, 0.75) (1.25, 0.950, 0.830, 0.65, 1.55, 0.77) 

1 0.159 (1.267, 0.950, 0.85, 0.65, 1.55, 0.733) (1.267, 0.950, 0.827, 0.65, 1.55, 0.757) 



Appendix II 

 

A12 

 

Table A5.5: The priority vectors of RAU and LPS for T7(r).  

B17 AI V (RAU) V(LPS) 

-1 0.264 (0.857, 1.357, 0.857, 0.657, 1.657, 0.757, 0.857) (0.922, 1.052, 0.923, 0.919, 1.558, 0.704, 0.922) 

-0.9 0.245 (0.871, 1.357, 0.857, 0.657, 1.657, 0.757, 0.843) (0.904, 0.988, 0.895, 0.837, 1.788, 0.684, 0.904) 

-0.8 0.227 (0.886, 1.357, 0.857, 0.657, 1.657, 0.757, 0.829) (0.836, 1.357, 0.815, 0.695, 1.657, 0.805, 0.836) 

-0.7 0.208 (0.9, 1.357, 0.857, 0.657, 1.657, 0.757, 0.814) (0.903, 1.07, 0.91, 0.854, 1.502, 0.859, 0.903) 

-0.6 0.189 (0.914, 1.357, 0.857, 0.657, 1.657, 0.757, 0.8) (0.838, 1.357, 0.815, 0.699, 1.657, 0.795, 0.838) 

-0.5 0.17 (0.929, 1.357, 0.857, 0.657, 1.657, 0.757, 0.786) (0.830, 1.355, 0.804, 0.698, 1.656, 0.827, 0.830) 

-0.4 0.151 (0.943, 1.357, 0.857, 0.657, 1.657, 0.757, 0.771) (0.873, 1.1521, 0.882, 0.839, 1.576, 0.805, 0.873) 

-0.3 0.132 (0.957, 1.357, 0.857, 0.657, 1.657, 0.757, 0.757) (0.882, 1.144, 0.882, 0.847, 1.553, 0.822, 0.871) 

-0.2 0.113 (0.971, 1.357, 0.857, 0.657, 1.657, 0.757, 0.743) (0.886, 1.19, 0.886, 0.771, 1.563, 0.836, 0.868) 

-0.1 0.094 (0.986, 1.357, 0.857, 0.657, 1.657, 0.757, 0.729) (0.86, 1.249, 0.859, 0.754, 1.626, 0.826, 0.826) 

0 0.076 (1., 1.357, 0.857, 0.657, 1.657, 0.757, 0.714) (0.944, 1.357, 0.857, 0.678, 1.657, 0.757, 0.75) 

0.1 0.057 (1.014, 1.357, 0.857, 0.657, 1.657, 0.757, 0.700) (1.014, 1.357, 0.857, 0.665, 1.657, 0.757, 0.692) 

0.2 0.038 (1.029, 1.357, 0.857, 0.657, 1.657, 0.757, 0.686) (1.029, 1.357, 0.857, 0.662, 1.657, 0.757, 0.68) 

0.3 0.019 (1.043, 1.357, 0.857, 0.657, 1.657, 0.757, 0.671) (1.043, 1.357, 0.857, 0.66, 1.657, 0.757, 0.669) 

0.4 0 (1.057, 1.357, 0.857, 0.657, 1.657, 0.757, 0.657) (1.057, 1.357, 0.857, 0.657, 1.657, 0.757, 0.657) 

0.5 0.019 (1.071, 1.357, 0.857, 0.657, 1.657, 0.757, 0.643) (1.071, 1.357, 0.857, 0.655, 1.657, 0.757, 0.646) 

0.6 0.038 (1.086, 1.357, 0.857, 0.657, 1.657, 0.757, 0.629) (1.086, 1.357, 0.857, 0.652, 1.657, 0.757, 0.634) 

0.7 0.057 (1.1, 1.357, 0.857, 0.657, 1.657, 0.757, 0.614) (1.1, 1.357, 0.857, 0.649, 1.657, 0.757, 0.622) 

0.8 0.076 (1.114, 1.357, 0.857, 0.657, 1.657, 0.757, 0.6) (1.114, 1.357, 0.857, 0.647, 1.657, 0.757, 0.61) 

0.9 0.094 (1.129, 1.357, 0.857, 0.657, 1.657, 0.757, 0.586) (1.129, 1.357, 0.857, 0.644, 1.657, 0.757, 0.599) 

1 0.113 (1.143, 1.357, 0.857, 0.657, 1.657, 0.757, 0.571) (1.143, 1.357, 0.857, 0.642, 1.657, 0.757, 0.587) 
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Table A5.6: The priority vectors of RAU and LPS for T8(r).  

B18 AI V (RAU) V(LPS) 

-1 0.128 (0.838, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.238) (0.838, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.238) 

-0.9 0.112 (0.85, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.225) (0.85, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.225) 

-0.8 0.096 (0.862, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.212) (0.862, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.212) 

-0.7 0.08 (0.875, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.2) (0.875, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.2) 

-0.6 0.064 (0.888, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.188) (0.888, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.188) 

-0.5 0.048 (0.9, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.175) (0.9, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.175) 

-0.4 0.032 (0.913, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.162) (0.913, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.162) 

-0.3 0.016 (0.925, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.150) (0.925, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.150) 

-0.2 0 (0.938, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.138) (0.938, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.138) 

-0.1 0.016 (0.950, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.125) (0.950, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.125) 

0 0.032 (0.962, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.112) (0.988, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.088) 

0.1 0.048 (0.975, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.1) (1.026, 0.54, 1.444, 0.629, 1.534, 1.26, 0.54, 1.026) 

0.2 0.064 (0.988, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.088) (1.038, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.038) 

0.3 0.08 (1., 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.075) (1.038, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.038) 

0.4 0.096 (1.012, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.062) (1.038, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.038) 

0.5 0.112 (1.025, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.05) (1.038, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.038) 

0.6 0.128 (1.038, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.038) (1.038, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.038) 

0.7 0.144 (1.05, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.025) (1.05, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.025) 

0.8 0.16 (1.062, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.012) (1.062, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.012) 

0.9 0.176 (1.075, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.) (1.075, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 1.) 

1 0.192 (1.088, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 0.988) (1.088, 0.538, 1.438, 0.638, 1.538, 1.238, 0.538, 0.988) 
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Table A5.7: The priority vectors of RAU and LPS for T9(r).  

B19 AI V (RAU) V(LPS) 

-1 0.178 (0.767, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.756) (0.761, 0.725, 1.311, 1.411, 1.511, 1.211, 0.511, 0.797, 0.761) 

-0.9 0.164 (0.778, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.744) (0.733, 0.667, 1.380, 1.416, 1.464, 1.346, 0.527, 0.734, 0.733) 

-0.8 0.151 (0.789, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.733) (0.761, 0.709, 1.311, 1.411, 1.511, 1.211, 0.511, 0.814, 0.761) 

-0.7 0.137 (0.8, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.722) (0.761, 0.748, 1.311, 1.411, 1.511, 1.211, 0.511, 0.774, 0.761) 

-0.6 0.123 (0.811, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.711) (0.76, 0.748, 1.311, 1.411, 1.511, 1.211, 0.511, 0.776, 0.76) 

-0.5 0.11 (0.822, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.700) (0.776, 0.708, 1.311, 1.411, 1.511, 1.211, 0.511, 0.785, 0.776) 

-0.4 0.096 (0.833, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.689) (0.723, 0.72, 1.342, 1.389, 1.446, 1.302, 0.576, 0.778, 0.723) 

-0.3 0.082 (0.844, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.678) (0.775, 0.748, 1.296, 1.368, 1.463, 1.239, 0.553, 0.781, 0.775) 

-0.2 0.069 (0.856, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.667) (0.761, 0.759, 1.311, 1.411, 1.511, 1.211, 0.511, 0.764, 0.761) 

-0.1 0.055 (0.867, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.656) (0.775, 0.747, 1.311, 1.411, 1.511, 1.211, 0.511, 0.775, 0.747) 

0 0.041 (0.878, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.644) (0.842, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.68) 

0.1 0.027 (0.889, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.633) (0.889, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.633) 

0.2 0.014 (0.9, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.622) (0.9, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.622) 

0.3 0 (0.911, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.611) (0.911, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.611) 

0.4 0.014 (0.922, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.6) (0.922, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.6) 

0.5 0.027 (0.933, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.589) (0.933, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.589) 

0.6 0.041 (0.944, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.578) (0.944, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.578) 

0.7 0.055 (0.956, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.567) (0.956, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.567) 

0.8 0.069 (0.967, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.556) (0.967, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.556) 

0.9 0.082 (0.978, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.544) (0.978, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.544) 

1 0.096 (0.989, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.533) (0.989, 0.711, 1.311, 1.411, 1.511, 1.211, 0.511, 0.811, 0.533) 
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Table A5.8: The priority vectors of RAU and LPS for T10(r)  

B1,10 AI V (RAU) V(LPS) 

-1 0.107 (0.820, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.1) (0.820, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.1) 

-0.9 0.095 (0.830, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.09) (0.830, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.09) 

-0.8 0.083 (0.84, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.08) (0.84, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.08) 

-0.7 0.071 (0.85, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.07) (0.85, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.07) 

-0.6 0.06 (0.86, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.06) (0.86, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.06) 

-0.5 0.048 (0.87, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.05) (0.87, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.05) 

-0.4 0.036 (0.88, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.04) (0.88, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.04) 

-0.3 0.024 (0.89, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.03) (0.89, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.03) 

-0.2 0.012 (0.9, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.02) (0.9, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.02) 

-0.1 0 (0.91, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.01) (0.91, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.01) 

0 0.012 (0.92, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 1.) (0.931, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 0.989) 

0.1 0.024 (0.93, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 0.99) (0.96, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 0.96) 

0.2 0.036 (0.940, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 0.98) (0.96, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 0.96) 

0.3 0.048 (0.950, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 0.97) (0.959, 0.711, 1.31, 1.411, 1.513, 1.208, 0.513, 0.808, 0.609, 0.959) 

0.4 0.06 (0.96, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 0.96) (0.96, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 0.96) 

0.5 0.071 (0.97, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 0.950) (0.97, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 0.950) 

0.6 0.083 (0.98, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 0.940 (0.98, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 0.940) 

0.7 0.095 (0.99, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 0.93) (0.99, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 0.93) 

0.8 0.107 (1., 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 0.92) (1., 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 0.92) 

0.9 0.119 (1.01, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 0.91) (1.01, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 0.91) 

1 0.131 (1.02, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 0.9) (1.02, 0.71, 1.31, 1.41, 1.51, 1.21, 0.51, 0.81, 0.61, 0.9) 
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Table A5.9: Measurements of RAU and LPS for  3T r  

b13 AI 
RMPWSV 

(RAU) 

RMPWSV 

(LPS) 

MPWADV 

(RAU) 

MPWADV 

(LPS) 

MC 

(RAU) 

MC 

(LPS) 

WADV 

(RAU) 

WADV 

(LPS) 

RMSV 

(RAU) 

RMSV 

(LPS) 

-1 0.462 0.864 0.539 1.867 0.7 0.5 0.333 0.4 0.75 0.4 0.471 

-0.9 0.423 0.792 0.492 1.711 0.65 0.5 0.333 0.367 0.675 0.367 0.427 

-0.8 0.385 0.72 0.447 1.556 0.6 0.5 0.333 0.333 0.6 0.333 0.383 

-0.7 0.346 0.648 0.403 1.4 0.55 0.5 0.333 0.3 0.525 0.3 0.34 

-0.6 0.308 0.576 0.361 1.244 0.5 0.5 0.333 0.267 0.45 0.267 0.297 

-0.5 0.269 0.504 0.32 1.089 0.45 0.5 0.333 0.233 0.375 0.233 0.256 

-0.4 0.231 0.306 0.283 0.467 0.4 0.333 0.333 0.2 0.3 0.2 0.216 

-0.3 0.192 0.215 0.25 0.278 0.35 0.167 0.333 0.167 0.225 0.167 0.179 

-0.2 0.154 0.172 0.151 0.222 0.171 0.167 0.167 0.133 0.171 0.133 0.144 

-0.1 0.115 0.153 0.141 0.233 0.2 0.333 0.333 0.1 0.15 0.1 0.108 

0 0.077 0.102 0.089 0.156 0.12 0.333 0.333 0.067 0.12 0.067 0.077 

0.1 0.038 0.043 0.038 0.056 0.043 0.167 0.167 0.033 0.043 0.033 0.036 

0.2 0 0 0 0 0 0 0 0 0 0 0 

0.3 0.038 0.043 0.038 0.056 0.043 0.167 0.167 0.033 0.043 0.033 0.036 

0.4 0.077 0.086 0.076 0.111 0.086 0.167 0.167 0.067 0.086 0.067 0.072 

0.5 0.115 0.129 0.113 0.167 0.129 0.167 0.167 0.1 0.129 0.1 0.108 

0.6 0.154 0.172 0.151 0.222 0.171 0.167 0.167 0.133 0.172 0.133 0.144 

0.7 0.192 0.215 0.189 0.278 0.214 0.167 0.167 0.167 0.214 0.167 0.18 

0.8 0.231 0.258 0.227 0.333 0.257 0.167 0.167 0.2 0.257 0.2 0.216 

0.9 0.269 0.301 0.265 0.389 0.3 0.167 0.167 0.233 0.3 0.233 0.252 

1 0.308 0.344 0.302 0.444 0.343 0.167 0.167 0.267 0.343 0.267 0.288 
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Table A5.10: Measurements of RAU and LPS for  4T r  

b14 AI 
RMPWSV 

(RAU) 

RMPWSV 

(LPS) 

MPWADV 

(RAU) 

MPWADV 

(LPS) 

MC 

(RAU) 

MC 

(LPS) 

WADV 

(RAU) 

WADV 

(LPS) 

RMSV 

(RAU) 

RMSV 

(LPS) 

-1 0.406 0.561 0.4 0.95 0.4 0.333 0.167 0.6 0.8 0.346 0.365 

-0.9 0.372 0.489 0.367 0.779 0.374 0.25 0.167 0.55 0.721 0.318 0.333 

-0.8 0.338 0.445 0.335 0.708 0.348 0.25 0.167 0.5 0.643 0.289 0.301 

-0.7 0.305 0.4 0.303 0.637 0.321 0.25 0.167 0.45 0.564 0.26 0.269 

-0.6 0.271 0.283 0.273 0.333 0.295 0.167 0.167 0.4 0.486 0.231 0.238 

-0.5 0.237 0.226 0.244 0.233 0.269 0.083 0.167 0.35 0.407 0.202 0.208 

-0.4 0.203 0.194 0.184 0.2 0.175 0.083 0.083 0.3 0.337 0.173 0.179 

-0.3 0.169 0.161 0.153 0.167 0.146 0.083 0.083 0.25 0.281 0.144 0.149 

-0.2 0.135 0.173 0.169 0.2 0.191 0.167 0.167 0.2 0.2 0.115 0.119 

-0.1 0.102 0.208 0.116 0.325 0.14 0.25 0.167 0.15 0.143 0.087 0.096 

0 0.068 0.087 0.077 0.1 0.093 0.167 0.167 0.1 0.1 0.058 0.065 

0.1 0.034 0.032 0.031 0.033 0.029 0.083 0.083 0.05 0.056 0.029 0.03 

0.2 0 0 0 0 0 0 0 0 0 0 0 

0.3 0.034 0.032 0.031 0.033 0.029 0.083 0.083 0.05 0.056 0.029 0.03 

0.4 0.068 0.065 0.061 0.067 0.058 0.083 0.083 0.1 0.113 0.058 0.06 

0.5 0.102 0.097 0.092 0.1 0.087 0.083 0.083 0.15 0.169 0.087 0.089 

0.6 0.135 0.141 0.122 0.167 0.117 0.167 0.083 0.2 0.225 0.115 0.119 

0.7 0.169 0.222 0.153 0.354 0.146 0.25 0.083 0.25 0.281 0.144 0.149 

0.8 0.203 0.267 0.193 0.425 0.205 0.25 0.167 0.3 0.342 0.173 0.179 

0.9 0.237 0.311 0.223 0.496 0.229 0.25 0.167 0.35 0.407 0.202 0.21 

1 0.271 0.356 0.254 0.567 0.252 0.25 0.167 0.4 0.471 0.231 0.242 
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Table A5.11: Measurements of RAU and LPS for  5T r  

b15 AI 
RMPWSV 

(RAU) 

RMPWSV 

(LPS) 

MPWADV 

(RAU) 

MPWADV 

(LPS) 

MC 

(RAU) 

MC 

(LPS) 

WADV 

(RAU) 

WADV 

(LPS) 

RMSV 

(RAU) 

RMSV 

(LPS) 

-1 0.332 0.503 0.372 0.912 0.367 0.35 0.2 0.72 0.997 0.294 0.351 

-0.9 0.304 0.461 0.517 0.836 0.47 0.35 0.2 0.66 0.9 0.269 0.308 

-0.8 0.277 0.385 0.292 0.62 0.275 0.3 0.2 0.6 0.799 0.245 0.272 

-0.7 0.249 0.337 0.437 0.522 0.472 0.25 0.2 0.54 0.7 0.22 0.282 

-0.6 0.221 0.299 0.245 0.464 0.275 0.25 0.2 0.48 0.6 0.196 0.217 

-0.5 0.194 0.262 0.338 0.406 0.402 0.25 0.2 0.42 0.5 0.171 0.226 

-0.4 0.166 0.224 0.352 0.348 0.458 0.25 0.2 0.36 0.441 0.147 0.266 

-0.3 0.138 0.197 0.165 0.21 0.211 0.2 0.15 0.3 0.293 0.122 0.125 

-0.2 0.111 0.25 0.169 0.304 0.23 0.15 0.2 0.24 0.2 0.098 0.106 

-0.1 0.083 0.188 0.139 0.228 0.2 0.15 0.2 0.18 0.146 0.073 0.088 

0 0.055 0.075 0.067 0.068 0.071 0.1 0.1 0.12 0.086 0.049 0.055 

0.1 0.028 0.026 0.025 0.022 0.02 0.05 0.05 0.06 0.064 0.024 0.025 

0.2 0 0 0 0 0 0 0 0 0 0 0 

0.3 0.028 0.026 0.025 0.022 0.02 0.05 0.05 0.06 0.064 0.024 0.025 

0.4 0.055 0.052 0.051 0.044 0.04 0.05 0.05 0.12 0.129 0.049 0.05 

0.5 0.083 0.078 0.076 0.066 0.061 0.05 0.05 0.18 0.193 0.073 0.075 

0.6 0.111 0.104 0.102 0.088 0.081 0.05 0.05 0.24 0.258 0.098 0.1 

0.7 0.138 0.138 0.127 0.13 0.101 0.1 0.05 0.3 0.322 0.122 0.124 

0.8 0.166 0.193 0.152 0.24 0.121 0.15 0.05 0.36 0.387 0.147 0.149 

0.9 0.194 0.226 0.183 0.28 0.16 0.15 0.1 0.42 0.455 0.171 0.175 

1 0.221 0.258 0.204 0.32 0.157 0.15 0.05 0.48 0.526 0.196 0.2 
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Table A5.12: Measurements of RAU and LPS for  6T r  

b16 AI 
RMPWSV 

(RAU) 

RMPWSV 

(LPS) 

MPWADV 

(RAU) 

MPWADV 

(LPS) 

MC 

(RAU) 

MC 

(LPS) 

WADV 

(RAU) 

WADV 

(LPS) 

RMSV 

(RAU) 

RMSV 

(LPS) 

-1 0.295 0.371 0.378 0.462 0.432 0.167 0.133 0.867 0.887 0.274 0.328 

-0.9 0.272 0.314 0.428 0.333 0.319 0.133 0.133 0.8 0.9 0.253 0.259 

-0.8 0.249 0.28 0.294 0.281 0.327 0.1 0.133 0.733 0.744 0.232 0.254 

-0.7 0.227 0.255 0.279 0.256 0.324 0.1 0.133 0.667 0.637 0.211 0.233 

-0.6 0.204 0.317 0.304 0.31 0.281 0.133 0.133 0.6 0.6 0.19 0.192 

-0.5 0.181 0.461 0.275 0.524 0.263 0.167 0.133 0.533 0.5 0.169 0.19 

-0.4 0.159 0.403 0.242 0.459 0.25 0.167 0.133 0.467 0.4 0.148 0.175 

-0.3 0.136 0.339 0.246 0.347 0.284 0.133 0.133 0.4 0.322 0.126 0.2 

-0.2 0.113 0.281 0.262 0.278 0.31 0.1 0.133 0.333 0.428 0.105 0.227 

-0.1 0.091 0.224 0.171 0.222 0.206 0.1 0.133 0.267 0.255 0.084 0.144 

0 0.068 0.098 0.089 0.073 0.083 0.067 0.067 0.2 0.131 0.063 0.072 

0.1 0.045 0.044 0.043 0.031 0.029 0.033 0.033 0.133 0.14 0.042 0.043 

0.2 0.023 0.022 0.022 0.016 0.015 0.033 0.033 0.067 0.07 0.021 0.021 

0.3 0 0 0 0 0 0 0 0 0 0 0 

0.4 0.023 0.022 0.022 0.016 0.015 0.033 0.033 0.067 0.07 0.021 0.021 

0.5 0.045 0.044 0.043 0.031 0.029 0.033 0.033 0.133 0.14 0.042 0.043 

0.6 0.068 0.066 0.065 0.047 0.044 0.033 0.033 0.2 0.21 0.063 0.064 

0.7 0.091 0.088 0.086 0.062 0.059 0.033 0.033 0.267 0.28 0.084 0.085 

0.8 0.113 0.11 0.108 0.078 0.073 0.033 0.033 0.333 0.35 0.105 0.106 

0.9 0.136 0.132 0.13 0.093 0.088 0.033 0.033 0.4 0.42 0.126 0.128 

1 0.159 0.154 0.151 0.109 0.103 0.033 0.033 0.467 0.49 0.148 0.149 
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Table A5.13: Measurements of RAU and LPS for  7T r  

b17 AI 
RMPWSV 

(RAU) 

RMPWSV 

(LPS) 

MPWADV 

(RAU) 

MPWADV 

(LPS) 

MC 

(RAU) 

MC 

(LPS) 

WADV 

(RAU) 

WADV 

(LPS) 

RMSV 

(RAU) 

RMSV 

(LPS) 

-1 0.264 0.436 0.572 0.381 0.736 0.143 0.19 1 1 0.258 0.359 

-0.9 0.245 0.667 0.54 0.628 0.71 0.119 0.19 0.928 0.9 0.24 0.351 

-0.8 0.227 0.616 0.378 0.58 0.394 0.119 0.143 0.857 0.8 0.221 0.227 

-0.7 0.208 0.565 0.413 0.531 0.48 0.119 0.143 0.786 0.7 0.203 0.311 

-0.6 0.189 0.513 0.323 0.483 0.371 0.119 0.143 0.714 0.6 0.184 0.195 

-0.5 0.17 0.462 0.305 0.435 0.401 0.119 0.19 0.643 0.5 0.166 0.186 

-0.4 0.151 0.411 0.33 0.386 0.463 0.119 0.19 0.571 0.421 0.148 0.234 

-0.3 0.132 0.355 0.342 0.305 0.476 0.095 0.19 0.5 0.427 0.129 0.235 

-0.2 0.113 0.303 0.267 0.253 0.349 0.071 0.143 0.428 0.377 0.111 0.197 

-0.1 0.094 0.252 0.187 0.211 0.216 0.071 0.095 0.357 0.294 0.092 0.161 

0 0.076 0.116 0.106 0.073 0.087 0.048 0.048 0.286 0.195 0.074 0.084 

0.1 0.057 0.057 0.056 0.035 0.033 0.024 0.024 0.214 0.222 0.055 0.056 

0.2 0.038 0.038 0.038 0.023 0.022 0.024 0.024 0.143 0.148 0.037 0.037 

0.3 0.019 0.019 0.019 0.012 0.011 0.024 0.024 0.072 0.074 0.018 0.019 

0.4 0 0 0 0 0 0 0 0 0 0 0 

0.5 0.019 0.019 0.019 0.012 0.011 0.024 0.024 0.071 0.074 0.018 0.019 

0.6 0.038 0.038 0.038 0.023 0.022 0.024 0.024 0.143 0.148 0.037 0.037 

0.7 0.057 0.057 0.056 0.035 0.033 0.024 0.024 0.214 0.222 0.055 0.056 

0.8 0.076 0.076 0.075 0.046 0.044 0.024 0.024 0.286 0.296 0.074 0.074 

0.9 0.094 0.095 0.094 0.058 0.055 0.024 0.024 0.357 0.37 0.092 0.093 

1 0.113 0.114 0.113 0.069 0.066 0.024 0.024 0.428 0.444 0.111 0.111 
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Table A5.14: Measurements of RAU and LPS for  8T r  

b18 AI 
RMPWSV 

(RAU) 

RMPWSV 

(LPS) 

MPWADV 

(RAU) 

MPWADV 

(LPS) 

MC 

(RAU) 

MC 

(LPS) 

WADV 

(RAU) 

WADV 

(LPS) 

RMSV 

(RAU) 

RMSV 

(LPS) 

-1 0.128 0.134 0.134 0.071 0.071 0.018 0.018 0.6 0.6 0.131 0.131 

-0.9 0.112 0.115 0.115 0.056 0.056 0 0 0.525 0.525 0.115 0.115 

-0.8 0.096 0.098 0.098 0.048 0.048 0 0 0.45 0.45 0.098 0.098 

-0.7 0.08 0.082 0.082 0.04 0.04 0 0 0.375 0.375 0.082 0.082 

-0.6 0.064 0.065 0.065 0.032 0.032 0 0 0.3 0.3 0.065 0.065 

-0.5 0.048 0.049 0.049 0.024 0.024 0 0 0.225 0.225 0.049 0.049 

-0.4 0.032 0.033 0.033 0.016 0.016 0 0 0.15 0.15 0.033 0.033 

-0.3 0.016 0.016 0.016 0.008 0.008 0 0 0.075 0.075 0.016 0.016 

-0.2 0 0 0 0 0 0 0 0 0 0 0 

-0.1 0.016 0.016 0.016 0.008 0.008 0 0 0.075 0.075 0.016 0.016 

0 0.032 0.052 0.046 0.027 0.032 0.018 0.018 0.15 0.1 0.033 0.038 

0.1 0.048 0.137 0.075 0.096 0.06 0.036 0.036 0.225 0.134 0.049 0.07 

0.2 0.064 0.182 0.093 0.129 0.064 0.036 0.018 0.3 0.2 0.065 0.076 

0.3 0.08 0.228 0.118 0.161 0.075 0.036 0.018 0.375 0.3 0.082 0.087 

0.4 0.096 0.273 0.146 0.193 0.086 0.036 0.018 0.45 0.4 0.098 0.1 

0.5 0.112 0.319 0.176 0.225 0.096 0.036 0.018 0.525 0.5 0.115 0.115 

0.6 0.128 0.207 0.207 0.107 0.107 0.018 0.018 0.6 0.6 0.131 0.131 

0.7 0.144 0.147 0.147 0.072 0.072 0 0 0.675 0.675 0.147 0.147 

0.8 0.16 0.164 0.164 0.08 0.08 0 0 0.75 0.75 0.164 0.164 

0.9 0.176 0.18 0.18 0.088 0.088 0 0 0.825 0.825 0.18 0.18 

1 0.192 0.196 0.196 0.096 0.096 0 0 0.9 0.9 0.196 0.196 
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Table A5.15: Measurements of RAU and LPS for  9T r  

b19 AI 
RMPWSV 

(RAU) 

RMPWSV 

(LPS) 

MPWADV 

(RAU) 

MPWADV 

(LPS) 

MC 

(RAU) 

MC 

(LPS) 

WADV 

(RAU) 

WADV 

(LPS) 

RMSV 

(RAU) 

RMSV 

(LPS) 

-1 0.178 0.55 0.319 0.409 0.214 0.083 0.069 1.011 1 0.191 0.191 

-0.9 0.164 0.508 0.307 0.378 0.252 0.083 0.069 0.933 0.9 0.176 0.2 

-0.8 0.151 0.465 0.271 0.346 0.202 0.083 0.069 0.856 0.8 0.162 0.163 

-0.7 0.137 0.423 0.238 0.315 0.186 0.083 0.069 0.778 0.7 0.147 0.152 

-0.6 0.123 0.376 0.214 0.244 0.177 0.056 0.069 0.7 0.6 0.132 0.139 

-0.5 0.11 0.333 0.2 0.207 0.174 0.028 0.069 0.622 0.5 0.118 0.126 

-0.4 0.096 0.291 0.19 0.181 0.196 0.028 0.069 0.544 0.4 0.103 0.137 

-0.3 0.082 0.249 0.16 0.156 0.169 0.028 0.069 0.467 0.3 0.088 0.117 

-0.2 0.069 0.208 0.136 0.13 0.142 0.028 0.069 0.389 0.2 0.073 0.105 

-0.1 0.055 0.166 0.116 0.104 0.112 0.028 0.056 0.311 0.172 0.059 0.091 

0 0.041 0.071 0.064 0.032 0.04 0.014 0.014 0.233 0.162 0.044 0.051 

0.1 0.027 0.029 0.029 0.013 0.013 0 0 0.156 0.156 0.029 0.029 

0.2 0.014 0.015 0.015 0.006 0.006 0 0 0.078 0.078 0.015 0.015 

0.3 0 0 0 0 0 0 0 0 0 0 0 

0.4 0.014 0.015 0.015 0.006 0.006 0 0 0.078 0.078 0.015 0.015 

0.5 0.027 0.029 0.029 0.013 0.013 0 0 0.156 0.156 0.029 0.029 

0.6 0.041 0.044 0.044 0.019 0.019 0 0 0.233 0.233 0.044 0.044 

0.7 0.055 0.059 0.059 0.026 0.026 0 0 0.311 0.311 0.059 0.059 

0.8 0.069 0.073 0.073 0.032 0.032 0 0 0.389 0.389 0.073 0.073 

0.9 0.082 0.088 0.088 0.039 0.039 0 0 0.467 0.467 0.088 0.088 

1 0.096 0.103 0.103 0.045 0.045 0 0 0.544 0.544 0.103 0.103 
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Table A5.16: Measurements of RAU and LPS for  10T r  

b1,10 AI 
RMPWSV 

(RAU) 

RMPWSV 

(LPS) 

MPWADV 

(RAU) 

MPWADV 

(LPS) 

MC 

(RAU) 

MC 

(LPS) 

WADV 

(RAU) 

WADV 

(LPS) 

RMSV 

(RAU) 

RMSV 

(LPS) 

-1 0.107 0.12 0.12 0.048 0.048 0 0 0.72 0.72 0.12 0.12 

-0.9 0.095 0.107 0.107 0.043 0.043 0 0 0.64 0.64 0.107 0.107 

-0.8 0.083 0.093 0.093 0.037 0.037 0 0 0.56 0.56 0.093 0.093 

-0.7 0.071 0.08 0.08 0.032 0.032 0 0 0.48 0.48 0.08 0.08 

-0.6 0.06 0.067 0.067 0.027 0.027 0 0 0.4 0.4 0.067 0.067 

-0.5 0.048 0.053 0.053 0.021 0.021 0 0 0.32 0.32 0.053 0.053 

-0.4 0.036 0.04 0.04 0.016 0.016 0 0 0.24 0.24 0.04 0.04 

-0.3 0.024 0.027 0.027 0.011 0.011 0 0 0.16 0.16 0.027 0.027 

-0.2 0.012 0.013 0.013 0.005 0.005 0 0 0.08 0.08 0.013 0.013 

-0.1 0 0 0 0 0 0 0 0 0 0 0 

0 0.012 0.021 0.02 0.009 0.011 0.011 0.011 0.08 0.057 0.013 0.015 

0.1 0.024 0.076 0.039 0.043 0.024 0.022 0.011 0.16 0.1 0.027 0.033 

0.2 0.036 0.115 0.06 0.064 0.031 0.022 0.011 0.24 0.2 0.04 0.042 

0.3 0.048 0.153 0.083 0.085 0.039 0.022 0.011 0.32 0.3 0.053 0.054 

0.4 0.06 0.107 0.107 0.044 0.044 0.011 0.011 0.4 0.4 0.067 0.067 

0.5 0.071 0.08 0.08 0.032 0.032 0 0 0.48 0.48 0.08 0.08 

0.6 0.083 0.093 0.093 0.037 0.037 0 0 0.56 0.56 0.093 0.093 

0.7 0.095 0.107 0.107 0.043 0.043 0 0 0.64 0.64 0.107 0.107 

0.8 0.107 0.12 0.12 0.048 0.048 0 0 0.72 0.72 0.12 0.12 

0.9 0.119 0.133 0.133 0.053 0.053 0 0 0.8 0.8 0.133 0.133 

1 0.131 0.147 0.147 0.059 0.059 0 0 0.88 0.88 0.147 0.147 
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Tables for figures 6.3a-6.3b of chapter 6 

 

Table A6.1: Aggregation values of each AO with respect to owaW(0.1) 

 
T1 T2 T3 T4 T5 

 Rank 
W 0.851 0.061 0.038 0.028 0.022 

 
Agg1 0.512 0.523 0.608 0.421 0.518 

 
2 4 5 1 3 

Agg2 0.515 0.529 0.611 0.427 0.523 
 

2 4 5 1 3 

Agg3 0.518 0.536 0.615 0.436 0.530 
 

2 4 5 1 3 

Agg4 0.500 0.500 0.585 0.415 0.500 
 

2 2 5 1 2 

Agg5 0.515 0.529 0.611 0.428 0.524 
 

2 4 5 1 3 

Agg6 0.516 0.532 0.613 0.431 0.526 
 

2 4 5 1 3 

Agg7 0.523 0.545 0.620 0.448 0.539 
 

2 4 5 1 3 

Agg8 0.510 0.520 0.581 0.438 0.515 
 

2 4 5 1 3 

Agg9 0.493 0.485 0.475 0.483 0.483 
 

5 4 1 2 3 

Agg10 0.476 0.452 0.389 0.532 0.454 
 

4 2 1 5 3 

 

 

Table A6.2: Aggregation values of each AO with respect to owaW(0.2) 

 
T1 T2 T3 T4 T5 

 Rank 
W 0.725  0.108  0.070  0.053  0.044  

 
Agg1 0.524  0.545  0.613  0.442  0.534  

 

2 4 5 1 3 

Agg2 0.529  0.554  0.619  0.453  0.542  

 

2 4 5 1 3 

Agg3 0.535  0.566  0.626  0.468  0.554  

 

2 4 5 1 3 

Agg4 0.500  0.500  0.572  0.428  0.500  

 

2 2 5 1 2 

Agg5 0.530  0.555  0.620  0.455  0.543  

 

2 4 5 1 3 

Agg6 0.532  0.560  0.622  0.460  0.548  

 

2 4 5 1 3 

Agg7 0.543  0.580  0.635  0.488  0.568  

 

2 4 5 1 3 

Agg8 0.520  0.537  0.584  0.458  0.527  

 

2 4 5 1 3 

Agg9 0.486  0.472  0.464  0.475  0.471  

 

5 3 1 4 2 

Agg10 0.454  0.415  0.369  0.494  0.421  

 

4 2 1 5 3 
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Table A6.3: Aggregation values of each AO with respect to owaW(0.3) 

 
T1 T2 T3 T4 T5 

 Rank 
W 0.617  0.143  0.098  0.077  0.065  

 
Agg1 0.536  0.564  0.616  0.463  0.547  

 

2 4 5 1 3 

Agg2 0.543  0.576  0.625  0.478  0.558  

 

2 4 5 1 3 

Agg3 0.551  0.591  0.634  0.497  0.573  

 

2 4 5 1 3 

Agg4 0.500  0.500  0.562  0.438  0.500  

 

2 2 5 1 2 

Agg5 0.543  0.578  0.625  0.480  0.559  

 

2 4 5 1 3 

Agg6 0.547  0.583  0.629  0.487  0.565  

 

2 4 5 1 3 

Agg7 0.562  0.608  0.645  0.521  0.590  

 

2 4 5 1 3 

Agg8 0.529  0.551  0.586  0.476  0.537  

 

2 4 5 1 3 

Agg9 0.480  0.462  0.456  0.469  0.462  

 

5 2 1 4 3 

Agg10 0.434  0.387  0.355  0.461  0.397  

 

4 2 1 5 3 

 

 

 

Table A6.4: Aggregation values of each AO with respect to owaW(0.4) 

 
T1 T2 T3 T4 T5 

 Rank 
W 0.525  0.168  0.122  0.099  0.085  

 
Agg1 0.547  0.581  0.618  0.483  0.557  

 

2 4 5 1 3 

Agg2 0.556  0.596  0.628  0.501  0.571  

 

2 4 5 1 3 

Agg3 0.566  0.612  0.640  0.524  0.587  

 

2 4 5 1 3 

Agg4 0.500  0.500  0.553  0.447  0.500  

 

2 2 5 1 2 

Agg5 0.557  0.597  0.629  0.503  0.572  

 

2 4 5 1 3 

Agg6 0.561  0.604  0.634  0.512  0.578  

 

2 4 5 1 3 

Agg7 0.579  0.630  0.652  0.550  0.607  

 

2 4 5 1 3 

Agg8 0.538  0.564  0.588  0.493  0.545  

 

2 4 5 1 3 

Agg9 0.473  0.453  0.450  0.462  0.455  

 

5 2 1 4 3 

Agg10 0.416  0.364  0.345  0.433  0.380  

 

4 2 1 5 3 
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Table A6.5: Aggregation values of each AO with respect to owaW(0.5) 

 
T1 T2 T3 T4 T5 

 Rank 
W 0.447  0.185  0.142  0.120  0.106  

 
Agg1 0.559  0.596  0.618  0.502  0.566  

 

2 4 5 1 3 

Agg2 0.568  0.612  0.630  0.523  0.580  

 

2 4 5 1 3 

Agg3 0.580  0.630  0.643  0.548  0.598  

 

2 4 5 1 3 

Agg4 0.500  0.500  0.545  0.455  0.500  

 

2 2 5 1 2 

Agg5 0.570  0.614  0.631  0.525  0.582  

 

2 4 5 1 3 

Agg6 0.574  0.621  0.636  0.535  0.589  

 

2 4 5 1 3 

Agg7 0.595  0.649  0.657  0.576  0.618  

 

2 4 5 1 3 

Agg8 0.547  0.574  0.588  0.509  0.552  

 

2 4 5 1 3 

Agg9 0.467  0.445  0.446  0.456  0.450  

 

5 1 2 4 3 

Agg10 0.400  0.345  0.338  0.408  0.367  

 

4 2 1 5 3 

 

 

 

Table A6.6: Aggregation values of each AO with respect to owaW(0.6) 

 
T1 T2 T3 T4 T5 

 Rank 
W 0.381  0.196  0.159  0.139  0.125  

 
Agg1 0.569  0.609  0.618  0.520  0.573  

 

2 4 5 1 3 

Agg2 0.581  0.626  0.630  0.543  0.588  

 

2 4 5 1 3 

Agg3 0.594  0.644  0.644  0.570  0.606  

 

2 5 4 1 3 

Agg4 0.500  0.500  0.538  0.462  0.500  

 

2 2 5 1 2 

Agg5 0.582  0.628  0.632  0.546  0.590  

 

2 4 5 1 3 

Agg6 0.587  0.635  0.637  0.556  0.597  

 

2 4 5 1 3 

Agg7 0.609  0.663  0.660  0.598  0.627  

 

2 5 4 1 3 

Agg8 0.555  0.583  0.587  0.523  0.557  

 

2 4 5 1 3 

Agg9 0.462  0.439  0.443  0.450  0.447  

 

5 1 2 4 3 

Agg10 0.385  0.331  0.335  0.387  0.359  

 

4 1 2 5 3 
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Table A6.7: Aggregation values of each AO with respect to owaW(0.7) 

 
T1 T2 T3 T4 T5 

 Rank 
W 0.324  0.202  0.173  0.156  0.145  

 
Agg1 0.580  0.620  0.616  0.538  0.578  

 

3 5 4 1 2 

Agg2 0.592  0.638  0.630  0.562  0.594  

 

2 5 4 1 3 

Agg3 0.606  0.656  0.645  0.590  0.612  

 

2 5 4 1 3 

Agg4 0.500  0.500  0.532  0.468  0.510  

 

2 2 5 1 4 

Agg5 0.593  0.639  0.631  0.565  0.595  

 

2 5 4 1 3 

Agg6 0.599  0.647  0.637  0.576  0.603  

 

2 5 4 1 3 

Agg7 0.622  0.675  0.661  0.618  0.633  

 

2 5 4 1 3 

Agg8 0.562  0.590  0.587  0.536  0.560  

 

3 5 4 1 2 

Agg9 0.457  0.434  0.442  0.444  0.445  

 

5 1 2 3 4 

Agg10 0.371  0.320  0.333  0.367  0.353  

 

5 1 2 4 3 

 

 

 

Table A6.8: Aggregation values of each AO with respect to owaW(0.8) 

 
T1 T2 T3 T4 T5 

 Rank 
W 0.276  0.205  0.184  0.172  0.163  

 
Agg1 0.590  0.629  0.614  0.555  0.581  

 

3 5 4 1 2 

Agg2 0.603  0.647  0.628  0.580  0.597  

 

3 5 4 1 2 

Agg3 0.618  0.666  0.644  0.608  0.616  

 

3 5 4 1 2 

Agg4 0.505  0.514  0.537  0.491  0.523  

 

2 3 5 1 4 

Agg5 0.605  0.649  0.630  0.583  0.599  

 

3 5 4 1 2 

Agg6 0.610  0.657  0.636  0.594  0.607  

 

3 5 4 1 2 

Agg7 0.635  0.685  0.660  0.636  0.637  

 

1 5 4 2 3 

Agg8 0.569  0.596  0.585  0.549  0.563  

 

3 5 4 1 2 

Agg9 0.451  0.430  0.441  0.438  0.444  

 

5 1 3 2 4 

Agg10 0.358  0.310  0.333  0.350  0.350  

 

5 1 2 4 3 
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Table A6.9: Aggregation values of each AO with respect to owaW(0.9) 

 
T1 T2 T3 T4 T5 

 Rank 
W 0.235  0.203  0.193  0.187  0.182  

 
Agg1 0.600  0.636  0.612  0.571  0.584  

 

3 5 4 1 2 

Agg2 0.614  0.655  0.626  0.597  0.600  

 

3 5 4 1 2 

Agg3 0.629  0.674  0.642  0.625  0.619  

 

3 5 4 2 1 

Agg4 0.523  0.528  0.543  0.511  0.533  

 

2 3 5 1 4 

Agg5 0.615  0.657  0.628  0.600  0.602  

 

3 5 4 1 2 

Agg6 0.621  0.664  0.634  0.611  0.609  

 

3 5 4 2 1 

Agg7 0.646  0.693  0.659  0.652  0.639  

 

2 5 4 3 1 

Agg8 0.576  0.601  0.584  0.560  0.565  

 

3 5 4 1 2 

Agg9 0.447  0.427  0.441  0.433  0.443  

 

5 1 3 2 4 

Agg10 0.346  0.303  0.333  0.335  0.348  

 

4 1 2 3 5 

 

 

 

Table A6.10: Aggregation values of each AO with respect to owaW(1.0) 

 
T1 T2 T3 T4 T5 

 Rank 
W 0.200  0.200  0.200  0.200  0.200  

 
Agg1 0.609  0.642  0.609  0.586  0.586  

 

3 5 3 2 1 

Agg2 0.624  0.661  0.624  0.613  0.602  

 

3 5 3 2 1 

Agg3 0.640  0.680  0.640  0.640  0.620  

 

2 5 2 2 1 

Agg4 0.540  0.540  0.540  0.530  0.540  

 

2 2 2 1 2 

Agg5 0.625  0.663  0.625  0.615  0.603  

 

3 5 3 2 1 

Agg6 0.632  0.670  0.632  0.626  0.610  

 

3 5 3 2 1 

Agg7 0.657  0.699  0.657  0.666  0.640  

 

2 5 2 4 1 

Agg8 0.582  0.605  0.582  0.570  0.566  

 

3 5 3 2 1 

Agg9 0.442  0.424  0.442  0.428  0.444  

 

3 1 3 2 5 

Agg10 0.335  0.298  0.335  0.321  0.348  

 

3 1 3 2 5 
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Tables for figures 7.3-7.5 of chapter 7 
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Table A7.1a:  Fuzzy Accordant Index of   3T r


 

Index r


 FAI  , ,l uAI AI AI  

1 (-8,-8,-7) 0.47 (0.495, 0.481, 0.428) 

2 (-8,-7,-6) 0.435 (0.495, 0.433, 0.385) 

3 (-7,-6,-5) 0.386 (0.44, 0.385, 0.342) 

4 (-6,-5,-4) 0.338 (0.385, 0.337, 0.299) 

5 (-5,-4,-3) 0.29 (0.33, 0.289, 0.257) 

6 (-4,-3,-2) 0.242 (0.275, 0.241, 0.214) 

7 (-3,-2,-1) 0.193 (0.22, 0.192, 0.171) 

8 (-2,-1,0) 0.145 (0.165, 0.144, 0.128) 

9 (0,0,0) 0.097 (0.055, 0.096, 0.128) 

10 (0,1,2) 0.048 (0.055, 0.048, 0.043) 

11 (1,2,3) 0 (0, 0, 0) 

12 (2,3,4) 0.048 (0.055, 0.048, 0.043) 

13 (3,4,5) 0.097 (0.11, 0.096, 0.086) 

14 (4,5,6) 0.145 (0.165, 0.144, 0.128) 

15 (5,6,7) 0.193 (0.22, 0.192, 0.171) 

16 (6,7,8) 0.242 (0.275, 0.241, 0.214) 

17 (7,8,8) 0.277 (0.33, 0.289, 0.214) 
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Table A7.2a:  Fuzzy Accordant Index of   4T r


 

Index r


 FAI  , ,l uAI AI AI  

1 (-8,-8,-7) 0.424 (0.436, 0.423, 0.414) 

2 (-8,-7,-6) 0.393 (0.436, 0.381, 0.376) 

3 (-7,-6,-5) 0.351 (0.389, 0.338, 0.339) 

4 (-6,-5,-4) 0.308 (0.341, 0.296, 0.302) 

5 (-5,-4,-3) 0.266 (0.294, 0.254, 0.265) 

6 (-4,-3,-2) 0.224 (0.247, 0.211, 0.229) 

7 (-3,-2,-1) 0.183 (0.202, 0.169, 0.192) 

8 (-2,-1,0) 0.141 (0.158, 0.127, 0.157) 

9 (0,0,0) 0.1 (0.088, 0.085, 0.157) 

10 (0,1,2) 0.062 (0.088, 0.042, 0.092) 

11 (1,2,3) 0 (0.088, 0, 0.069) 

12 (2,3,4) 0.062 (0.118, 0.042, 0.069) 

13 (3,4,5) 0.1 (0.158, 0.085, 0.092) 

14 (4,5,6) 0.141 (0.202, 0.127, 0.123) 

15 (5,6,7) 0.183 (0.247, 0.169, 0.157) 

16 (6,7,8) 0.224 (0.294, 0.211, 0.192) 

17 (7,8,8) 0.255 (0.341, 0.254, 0.192) 
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Table A7.3a:  Fuzzy Accordant Index of   5T r


 

Index r


 FAI  , ,l uAI AI AI  

1 (-8,-8,-7) 0.355 (0.371, 0.346, 0.359) 

2 (-8,-7,-6) 0.329 (0.371, 0.311, 0.328) 

3 (-7,-6,-5) 0.295 (0.332, 0.277, 0.298) 

4 (-6,-5,-4) 0.261 (0.294, 0.242, 0.268) 

5 (-5,-4,-3) 0.226 (0.256, 0.207, 0.238) 

6 (-4,-3,-2) 0.192 (0.219, 0.173, 0.209) 

7 (-3,-2,-1) 0.158 (0.183, 0.138, 0.18) 

8 (-2,-1,0) 0.125 (0.149, 0.104, 0.152) 

9 (0,0,0) 0.092 (0.101, 0.069, 0.152) 

10 (0,1,2) 0.059 (0.101, 0.035, 0.1) 

11 (1,2,3) 0 (0.106, 0, 0.082) 

12 (2,3,4) 0.059 (0.129, 0.035, 0.078) 

13 (3,4,5) 0.092 (0.16, 0.069, 0.093) 

14 (4,5,6) 0.125 (0.195, 0.104, 0.116) 

15 (5,6,7) 0.158 (0.231, 0.138, 0.142) 

16 (6,7,8) 0.192 (0.269, 0.173, 0.17) 

17 (7,8,8) 0.218 (0.307, 0.207, 0.17) 
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Table A7.4a: Fuzzy Accordant Index of   6T r


 

Index r


 FAI  , ,l uAI AI AI  

1 (-8,-8,-7) 0.326 (0.348, 0.312, 0.333) 

2 (-8,-7,-6) 0.305 (0.348, 0.284, 0.308) 

3 (-7,-6,-5) 0.276 (0.316, 0.255, 0.283) 

4 (-6,-5,-4) 0.248 (0.285, 0.227, 0.258) 

5 (-5,-4,-3) 0.22 (0.253, 0.198, 0.234) 

6 (-4,-3,-2) 0.192 (0.222, 0.17, 0.209) 

7 (-3,-2,-1) 0.164 (0.192, 0.142, 0.185) 

8 (-2,-1,0) 0.136 (0.163, 0.113, 0.161) 

9 (0,0,0) 0.107 (0.113, 0.085, 0.161) 

10 (0,1,2) 0.081 (0.113, 0.057, 0.116) 

11 (1,2,3) 0.053 (0.099, 0.028, 0.097) 

12 (2,3,4) 0 (0.105, 0, 0.081) 

13 (3,4,5) 0.053 (0.124, 0.028, 0.077) 

14 (4,5,6) 0.081 (0.15, 0.057, 0.088) 

15 (5,6,7) 0.107 (0.178, 0.085, 0.106) 

16 (6,7,8) 0.136 (0.207, 0.113, 0.127) 

17 (7,8,8) 0.157 (0.238, 0.142, 0.127) 
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Table A7.1b:  Fuzzy utility of FRAU and FLPS for   3T r


 

Index FAI FRAU FLPS 

1 0.47 ((4.667, 6., 7.667), (6.667, 7.333, 8.), (9.667, 10.667, 11.333)) ((3.688, 7.822, 8.758), (3.736, 8.08, 8.758), (13.576, 8.098, 9.484)) 

2 0.435 ((4.667, 6.333, 8.), (6.667, 7.333, 8.), (9.667, 10.333, 11.)) ((4.857, 7.824, 8.676), (4.244, 8.098, 8.676), (11.899, 8.078, 9.648)) 

3 0.386 ((5., 6.667, 8.333), (6.667, 7.333, 8.), (9.333, 10., 10.667)) ((5.560, 7.733, 8.689), (5.505, 7.733, 8.478), (9.935, 8.533, 9.833)) 

4 0.338 ((5.333, 7., 8.667), (6.667, 7.333, 8.), (9., 9.667, 10.333)) ((6.215, 7.583, 8.790), (6.703, 7.583, 8.578), (8.081, 8.833, 9.631)) 

5 0.29 ((5.667, 7.333, 9.), (6.667, 7.333, 8.), (8.667, 9.333, 10.)) ((6.729, 7.826, 9.01), (6.602, 7.826, 8.576), (7.669, 8.349, 9.414)) 

6 0.242 ((6., 7.667, 9.333), (6.667, 7.333, 8.), (8.333, 9., 9.667)) ((6.464, 7.745, 9.235), (6.464, 7.745, 8.446), (8.073, 8.511, 9.319)) 

7 0.193 ((6.333, 8., 9.667), (6.667, 7.333, 8.), (8., 8.667, 9.333)) ((6.338, 7.991, 9.404), (6.338, 7.737, 8.192), (8.324, 8.272, 9.404)) 

8 0.145 ((6.667, 8.333, 10.), (6.667, 7.333, 8.), (7.667, 8.333, 9.)) ((6.667, 8.167, 9.6), (6.544, 7.667, 8.4), (7.789, 8.167, 9.)) 

9 0.097 ((7.333, 8.667, 10.), (6.667, 7.333, 8.), (7., 8., 9.)) ((7.2, 8.4, 9.6), (6.8, 7.60, 8.4), (7., 8., 9.)) 

10 0.048 ((7.333, 9., 10.667), (6.667, 7.333, 8.), (7., 7.667, 8.333)) ((7.2, 9., 10.667), (6.8, 7.429, 8.095), (7., 7.571, 8.238)) 

11 0 ((7.667, 9.333, 11.), (6.667, 7.333, 8.), (6.667, 7.333, 8.)) ((7.667, 9.333, 11.), (6.667, 7.333, 8.), (6.667, 7.333, 8.)) 

12 0.048 ((8., 9.667, 11.333), (6.667, 7.333, 8.), (6.333, 7., 7.667)) ((8., 9.667, 11.333), (6.571, 7.238, 7.905), (6.429, 7.095, 7.762)) 

13 0.097 ((8.333, 10., 11.667), (6.667, 7.333, 8.), (6., 6.667, 7.333)) ((8.333, 10., 11.667), (6.476, 7.143, 7.810), (6.19, 6.857, 7.524)) 

14 0.145 ((8.667, 10.333, 12.), (6.667, 7.333, 8.), (5.667, 6.333, 7.)) ((8.667, 10.333, 12.), (6.381, 7.048, 7.714), (5.952, 6.619, 7.286)) 

15 0.193 ((9., 10.667, 12.333), (6.667, 7.333, 8.), (5.333, 6., 6.667)) ((9., 10.667, 12.333), (6.286, 6.952, 7.619), (5.714, 6.381, 7.048)) 

16 0.242 ((9.333, 11., 12.667), (6.667, 7.333, 8.), (5., 5.667, 6.333)) ((9.333, 11., 12.667), (6.19, 6.857, 7.524), (5.476, 6.143, 6.810)) 

17 0.277 ((9.667, 11.333, 12.667), (6.667, 7.333, 8.), (4.667, 5.333, 6.333)) ((9.667, 11.333, 12.667), (6.095, 6.762, 7.524), (5.238, 5.905, 6.810)) 
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Table A7.2b:  Fuzzy utility vector of FRAU and FLPS for   4T r


 

 FAI FRAU FLPS 

1 0.424 
((5.75, 7.25, 9.), (6.75, 7.75, 8.75), 

(6., 6.75, 7.5), (9.5, 10.25, 10.75)) 

((6.764, 8.398, 9.532), (6.764, 7.785, 8.734), 

(5.884, 6.388, 7.834), (8.588, 9.428, 9.9)) 

2 0.393 
((5.75, 7.5, 9.25), (6.75, 7.75, 8.75), 

 (6., 6.75, 7.5), (9.5, 10., 10.5)) 

((6.715, 8.169, 9.248), (6.715, 7.968, 8.887), 

 (5.998, 6.539, 8.01), (8.572, 9.323, 9.855)) 

3 0.351 
((6., 7.75, 9.5), (6.75, 7.75, 8.75), 

 (6., 6.75, 7.5), (9.25, 9.75, 10.25)) 

((6.802, 8.418, 9.498), (6.802, 7.92, 8.809), 

(5.961, 6.522, 7.916), (8.434, 9.14, 9.776)) 

4 0.308 
((6.25, 8., 9.75), (6.75, 7.75, 8.75),  

(6., 6.75, 7.5), (9., 9.5, 10.)) 

((6.810, 8.153, 9.555), (6.810, 8.042, 8.879), 

(6.11, 6.622, 8.012), (8.27, 9.183, 9.555)) 

5 0.266 
((6.5, 8.25, 10.), (6.75, 7.75, 8.75),  

(6., 6.75, 7.5), (8.75, 9.25, 9.75)) 

((6.813, 8.429, 9.506), (6.812, 7.964, 8.771), 

 (6.271, 6.612, 8.181), (8.104, 8.995, 9.542)) 

6 0.224 
((6.75, 8.5, 10.25), (6.75, 7.75, 8.75),  

(6., 6.75, 7.5), (8.5, 9., 9.5)) 

((7.012, 8.19, 9.504), (6.793, 8.009, 8.825), 

 (6.264, 6.75, 8.168), (7.931, 9.051, 9.504)) 

7 0.183 
((7., 8.75, 10.5), (6.75, 7.75, 8.75),  

(6., 6.75, 7.5), (8.25, 8.75, 9.25)) 

((6.978, 8.553, 9.403), (6.907, 8.335, 8.945), 

 (6.447, 6.278, 8.248), (7.667, 8.834, 9.403)) 

8 0.141 
((7.25, 9., 10.75), (6.75, 7.75, 8.75), 

 (6., 6.75, 7.5), (8., 8.5, 9.)) 

((7.25, 8.607, 10.167), (6.850, 8.036, 8.833), 

 (6.283, 6.75, 8.), (7.617, 8.607, 9.)) 

9 0.1 
((7.75, 9.25, 10.75), (6.75, 7.75, 8.75), 

 (6., 6.75, 7.5), (7.5, 8.25, 9.)) 

((7.616, 8.95, 10.167), (6.777, 7.95, 8.833), 

 (6.259, 6.75, 8.), (7.348, 8.35, 9.)) 

10 0.062 
((7.75, 9.5, 11.25), (6.75, 7.75, 8.75),  

(6., 6.75, 7.5), (7.5, 8., 8.5)) 

((7.616, 9.5, 11.25), (6.777, 7.813, 8.617), 

 (6.259, 6.75, 7.783), (7.348, 7.937, 8.35)) 

11 0 
((8., 9.75, 11.5), (6.75, 7.75, 8.75), 

 (6., 6.75, 7.5), (7.25, 7.75, 8.25)) 

((8., 9.75, 11.5), (6.7, 7.75, 8.567), 

 (6.233, 6.75, 7.733), (7.067, 7.75, 8.2)) 

12 0.062 
((8.25, 10., 11.75), (6.75, 7.75, 8.75),  

(6., 6.75, 7.5), (7., 7.5, 8.)) 

((8.25, 10., 11.75), (6.65, 7.688, 8.517), 

 (6.217, 6.75, 7.683), (6.883, 7.562, 8.05)) 

13 0.1 
((8.5, 10.25, 12.), (6.75, 7.75, 8.75), 

 (6., 6.75, 7.5), (6.75, 7.25, 7.75)) 

((8.5, 10.25, 12.), (6.600, 7.625, 8.467), 

 (6.2, 6.75, 7.633), (6.7, 7.375, 7.9)) 

14 0.141 
((8.75, 10.5, 12.25), (6.75, 7.75, 8.75), 

 (6., 6.75, 7.5), (6.5, 7., 7.5)) 

((8.75, 10.5, 12.25), (6.55, 7.563, 8.417), 

 (6.183, 6.75, 7.583), (6.517, 7.187, 7.75)) 

15 0.183 
((9., 10.75, 12.5), (6.75, 7.75, 8.75), 

 (6., 6.75, 7.5), (6.25, 6.75, 7.25)) 

((9., 10.75, 12.5), (6.5, 7.5, 8.367), 

 (6.167, 6.75, 7.533), (6.333, 7., 7.60)) 

16 0.224 
((9.25, 11., 12.75), (6.75, 7.75, 8.75), 

 (6., 6.75, 7.5), (6., 6.5, 7.)) 

((9.25, 11., 12.75), (6.45, 7.438, 8.317), 

 (6.15, 6.75, 7.483), (6.15, 6.812, 7.45)) 

17 0.255 
((9.5, 11.25, 12.75), (6.75, 7.75, 8.75), 

 (6., 6.75, 7.5), (5.75, 6.25, 7.)) 

((9.524, 11.248, 12.748), (6.384, 7.411, 8.363), 

 (6.046, 6.614, 7.438), (6.046, 6.726, 7.451)) 
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Table A7.3b1:  Fuzzy utility vector of FRAU and FLPS for   5T r


 Part 1 

Index FAI FRAU FLPS 

1 0.355 

((6., 7.6, 9.4), (6.4, 7.6, 8.8),  

(5.6, 6.6, 7.6), (8., 8.6, 9.2), 

(9., 9.6, 10.)) 

((6.818, 8.302, 9.386), (6.536, 7.743, 8.895), 

 (5.688, 6.6, 7.939), (7.777, 8.61, 9.386), 

(8.181, 8.745, 9.394)) 

2 0.329 

((6., 7.8, 9.6), (6.4, 7.6, 8.8),  

(5.6, 6.6, 7.6), (8., 8.6, 9.2), 

(9., 9.4, 9.8)) 

((6.685, 8.043, 9.385), (6.599, 7.792, 8.943),  

(5.778, 6.545, 8.015), (7.75, 8.639, 9.273), 

 (8.189, 8.981, 9.385)) 

3 0.295 

((6.2, 8., 9.8), (6.4, 7.6, 8.8),  

(5.6, 6.6, 7.6), (8., 8.6, 9.2), 

 (8.8, 9.2, 9.6)) 

((6.732, 8.177, 9.359), (6.583, 7.822, 8.953), 

 (5.881, 6.551, 8.016), (7.734, 8.621, 9.312), 

 (8.07, 8.829, 9.359)) 

4 0.261 

((6.4, 8.2, 10.), (6.4, 7.6, 8.8),  

(5.6, 6.6, 7.6), (8., 8.6, 9.2),  

(8.6, 9., 9.4)) 

((6.874, 8.357, 9.366), (6.557, 7.808, 8.956),  

(5.874, 6.558, 8.028), (7.74, 8.613, 9.283),  

(7.955, 8.664, 9.366)) 

5 0.226 

((6.6, 8.4, 10.2), (6.4, 7.6, 8.8), 

 (5.6, 6.6, 7.6), (8., 8.6, 9.2),  

(8.4, 8.8, 9.2)) 

((7.588, 8.629, 9.286), (6.007, 7.799, 9.042), 

 (5.222, 6.054, 8.237), (8.079, 8.629, 9.149), 

 (8.104, 8.889, 9.286)) 

6 0.192 

((6.8, 8.6, 10.4), (6.4, 7.6, 8.8), 

 (5.6, 6.6, 7.6), (8., 8.6, 9.2),  

(8.2, 8.6, 9.)) 

((7.168, 8.516, 9.575), (6.559, 7.852, 8.904), 

 (5.78, 6.613, 8.056), (7.757, 8.504, 9.271), 

 (7.737, 8.516, 9.195)) 

7 0.158 

((7., 8.8, 10.6), (6.4, 7.6, 8.8), 

 (5.6, 6.6, 7.6), (8., 8.6, 9.2), 

 (8., 8.4, 8.8)) 

((7.265, 8.533, 9.303), (6.61, 7.856, 9.036), 

 (5.598, 6.488, 8.162), (7.919, 8.584, 9.25), 

 (7.607, 8.539, 9.25)) 

8 0.125 

((7.2, 9., 10.8), (6.4, 7.6, 8.8), 

 (5.6, 6.6, 7.6), (8., 8.6, 9.2), 

 (7.8, 8.2, 8.6)) 

((7.356, 8.54, 10.237), (6.527, 7.849, 8.875), 

 (5.865, 6.6, 7.951), (7.747, 8.54, 9.107), 

 (7.505, 8.472, 8.83)) 
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Table A7.3b2:  Fuzzy utility vector of FRAU and FLPS for   5T r


 Part 2 

Index FAI FRAU FLPS 

9 0.092 

((7.6, 9.2, 10.8), (6.4, 7.6, 8.8),  

(5.6, 6.6, 7.6), (8., 8.6, 9.2), 

 (7.4, 8., 8.6)) 

((7.575, 8.899, 10.237), (6.485, 7.756, 8.875), 

 (5.853, 6.6, 7.951), (7.757, 8.6, 9.107), 

 (7.33, 8.145, 8.83)) 

10 0.059 

((7.6, 9.4, 11.2), (6.4, 7.6, 8.8), 

 (5.6, 6.6, 7.6), (8., 8.6, 9.2), 

 (7.4, 7.8, 8.2)) 

((7.575, 9.4, 11.2), (6.485, 7.644, 8.731), 

 (5.853, 6.6, 7.778), (7.757, 8.6, 9.066), 

 (7.33, 7.756, 8.224)) 

11 0 

((7.8, 9.6, 11.4), (6.4, 7.6, 8.8), 

 (5.6, 6.6, 7.6), (8., 8.6, 9.2), 

 (7.2, 7.6, 8.)) 

((7.79, 9.6, 11.4), (6.444, 7.6, 8.701), 

 (5.841, 6.6, 7.742), (7.766, 8.6, 9.058), 

 (7.158, 7.6, 8.099)) 

12 0.059 

((8., 9.8, 11.6), (6.4, 7.6, 8.8), 

 (5.6, 6.6, 7.6), (8., 8.6, 9.2), 

 (7., 7.4, 7.8)) 

((7.935, 9.8, 11.6), (6.417, 7.556, 8.672), 

 (5.833, 6.6, 7.707), (7.773, 8.6, 9.049), 

 (7.042, 7.444, 7.973)) 

13 0.092 

((8.2, 10., 11.8), (6.4, 7.6, 8.8), 

 (5.6, 6.6, 7.6), (8., 8.6, 9.2),  

(6.8, 7.2, 7.6)) 

((8.08, 10., 11.8), (6.389, 7.511, 8.642), 

 (5.826, 6.6, 7.671), (7.779, 8.6, 9.04), 

 (6.926, 7.289, 7.847)) 

14 0.125 

((8.4, 10.2, 12.), (6.4, 7.6, 8.8), 

 (5.6, 6.6, 7.6), (8., 8.6, 9.2), 

 (6.6, 7., 7.4)) 

((8.224, 10.2, 12.), (6.362, 7.467, 8.612), 

 (5.818, 6.6, 7.635), (7.786, 8.6, 9.032), 

 (6.811, 7.133, 7.721)) 

15 0.158 

((8.6, 10.4, 12.2), (6.4, 7.6, 8.8), 

 (5.6, 6.6, 7.6), (8., 8.6, 9.2),  

(6.4, 6.8, 7.2)) 

((8.369, 10.4, 12.2), (6.334, 7.422, 8.582), 

 (5.81, 6.6, 7.599), (7.792, 8.6, 9.023), 

 (6.695, 6.978, 7.596)) 

16 0.192 

((8.8, 10.6, 12.4), (6.4, 7.6, 8.8), 

 (5.6, 6.6, 7.6), (8., 8.6, 9.2),  

(6.2, 6.6, 7.)) 

((8.514, 10.6, 12.4), (6.307, 7.378, 8.552), 

 (5.802, 6.6, 7.563), (7.798, 8.6, 9.015), 

 (6.579, 6.822, 7.47)) 

17 0.218 

((9., 10.8, 12.4), (6.4, 7.6, 8.8), 

 (5.6, 6.6, 7.6), (8., 8.6, 9.2),  

(6., 6.4, 7.)) 

((8.659, 10.8, 12.4), (6.279, 7.333, 8.552), 

 (5.794, 6.6, 7.563), (7.805, 8.6, 9.015), 

 (6.463, 6.667, 7.47)) 

 

 

 

 

 



Appendix IV 

 

A38 
 

 

 

 

Table A7.4b1:  Fuzzy utility vector of FRAU and FLPS for   6T r


 Part 1 

Ind. FAI FRAU FLPS 

1 0.326 

((6., 7.667, 9.5), (6., 7.5, 9.), 

 (5.5, 6.5, 7.5), (4.667, 5.5, 6.333), 

(12., 12.5, 13.), (7.833, 8.333, 8.667)) 

((6.529, 7.558, 8.741), (6.062, 7.537, 8.877), 

 (5.459, 6.783, 7.72), (4.865, 5.5, 6.935), 

 (12.045, 12.5, 12.986), (7.04, 8.121, 8.741)) 

2 0.305 

((6., 7.833, 9.667), (6., 7.5, 9.), 

(5.5, 6.5, 7.5), (4.667, 5.5, 6.333), 

(12., 12.5, 13.), (7.833, 8.167, 8.5)) 

((6.378, 7.704, 8.811), (6.09, 7.805, 8.664), 

 (5.599, 6.61, 7.767), (4.9, 5.5, 6.953), 

 (11.992, 12.5, 12.995), (7.041, 7.881, 8.811)) 

3 0.276 

((6.167, 8., 9.833), (6., 7.5, 9.), 

(5.5, 6.5, 7.5), (4.667, 5.5, 6.333), 

(12., 12.5, 13.), (7.667, 8., 8.333)) 

((6.11, 7.716, 8.787), (6.095, 7.818, 8.624), 

 (5.63, 6.642, 7.856), (4.908, 5.5, 6.947), 

 (11.998, 12.5, 13.), (7.259, 7.823, 8.787)) 

4 0.248 

((6.333, 8.167, 10.), (6., 7.5, 9.), 

(5.5, 6.5, 7.5), (4.667, 5.5, 6.333), 

(12., 12.5, 13.), (7.5, 7.833, 8.167)) 

((6.034, 7.786, 8.843), (5.914, 7.671, 8.783), 

 (5.373, 6.757, 7.833), (4.843, 5.5, 6.907), 

 (11.938, 12.5, 13.006), (7.898, 7.786, 8.628)) 

5 0.22 

((6.5, 8.333, 10.167), (6., 7.5, 9.), 

(5.5, 6.5, 7.5), (4.667, 5.5, 6.333), 

(12., 12.5, 13.), (7.333, 7.667, 8.)) 

((6.483, 7.746, 8.77), (6.083, 7.724, 8.748), 

 (5.695, 6.814, 7.813), (4.924, 5.5, 6.934), 

 (12., 12.47, 13.001), (6.815, 7.746, 8.735)) 

6 0.192 

((6.667, 8.5, 10.333), (6., 7.5, 9.), 

(5.5, 6.5, 7.5), (4.667, 5.5, 6.333), 

(12., 12.5, 13.), (7.167, 7.5, 7.833)) 

((6.397, 7.777, 8.975), (5.932, 7.769, 8.667), 

 (5.374, 6.677, 7.855), (4.843, 5.5, 6.898), 

 (11.979, 12.5, 13.013), (7.475, 7.777, 8.592)) 

7 0.164 

((6.833, 8.667, 10.5), (6., 7.5, 9.), 

(5.5, 6.5, 7.5), (4.667, 5.5, 6.333), 

(12., 12.5, 13.), (7., 7.333, 7.667)) 

((6.54, 7.747, 8.897), (6.067, 7.733, 8.897), 

 (5.656, 6.788, 7.765), (4.914, 5.5, 6.887), 

 (12.001, 12.5, 13.004), (6.823, 7.733, 8.55)) 

8 0.136 

((7., 8.833, 10.667), (6., 7.5, 9.), 

 (5.5, 6.5, 7.5), (4.667, 5.5, 6.333), 

 (12., 12.5, 13.), (6.833, 7.167, 7.5)) 

((6.57, 7.829, 9.991), (5.828, 7.77, 9.128), 

 (5.74, 6.704, 7.539), (5.097, 5.258, 6.733), 

 (12.194, 12.608, 13.105), (6.57, 7.831, 7.504)) 
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Table A7.4b2:  Fuzzy utility vector of FRAU and FLPS for   6T r


 Part 2 

Index FAI FRAU FLPS 

9 0.107 

((7.333, 9., 10.667), (6., 7.5, 9.), 

 (5.5, 6.5, 7.5), (4.667, 5.5, 6.333), 

 (12., 12.5, 13.), (6.5, 7., 7.5)) 

((7.093, 8.562, 9.946), (6., 7.5, 9.), 

 (5.63, 6.688, 7.571), (4.907, 5.5, 6.696), 

 (12., 12.5, 13.), (6.37, 7.25, 7.786)) 

10 0.081 

((7.333, 9.167, 11.), (6., 7.5, 9.), 

 (5.5, 6.5, 7.5), (4.667, 5.5, 6.333), 

 (12., 12.5, 13.), (6.5, 6.833, 7.167)) 

((7.093, 9.167, 11.), (6., 7.5, 9.), 

 (5.63, 6.567, 7.396), (4.907, 5.5, 6.521), 

 (12., 12.5, 13.), (6.37, 6.767, 7.083)) 

11 0.053 

((7.5, 9.333, 11.167), (6., 7.5, 9.), 

 (5.5, 6.5, 7.5), (4.667, 5.5, 6.333), 

 (12., 12.5, 13.), (6.333, 6.667, 7.)) 

((7.5, 9.333, 11.167), (5.935, 7.5, 9.), 

 (5.571, 6.533, 7.368), (4.893, 5.5, 6.493), 

 (12., 12.5, 13.), (6.101, 6.633, 6.972)) 

12 0 

((7.667, 9.5, 11.333), (6., 7.5, 9.), 

 (5.5, 6.5, 7.5), (4.667, 5.5, 6.333), 

 (12., 12.5, 13.), (6.167, 6.5, 6.833)) 

((7.667, 9.5, 11.333), (5.908, 7.5, 9.), 

 (5.548, 6.5, 7.34), (4.887, 5.5, 6.465), 

 (12., 12.5, 13.), (5.991, 6.5, 6.861)) 

13 0.053 

((7.833, 9.667, 11.5), (6., 7.5, 9.), 

 (5.5, 6.5, 7.5), (4.667, 5.5, 6.333), 

 (12., 12.5, 13.), (6., 6.333, 6.667)) 

((7.833, 9.667, 11.5), (5.881, 7.5, 9.), 

 (5.524, 6.467, 7.312), (4.881, 5.5, 6.438), 

 (12., 12.5, 13.), (5.881, 6.367, 6.75)) 

14 0.081 

((8., 9.833, 11.667), (6., 7.5, 9.), 

 (5.5, 6.5, 7.5), (4.667, 5.5, 6.333), 

 (12., 12.5, 13.), (5.833, 6.167, 6.5)) 

((8., 9.833, 11.667), (5.854, 7.5, 9.), 

 (5.5, 6.433, 7.285), (4.875, 5.5, 6.41), 

 (12., 12.5, 13.), (5.771, 6.233, 6.639)) 

15 0.107 

((8.167, 10., 11.833), (6., 7.5, 9.), 

 (5.5, 6.5, 7.5), (4.667, 5.5, 6.333), 

 (12., 12.5, 13.), (5.667, 6., 6.333)) 

((8.167, 10., 11.833), (5.827, 7.5, 9.), 

 (5.476, 6.4, 7.257), (4.869, 5.5, 6.382), 

 (12., 12.5, 13.), (5.661, 6.1, 6.528)) 

16 0.136 

((8.333, 10.167, 12.), (6., 7.5, 9.), 

 (5.5, 6.5, 7.5), (4.667, 5.5, 6.333), 

 (12., 12.5, 13.), (5.5, 5.833, 6.167)) 

((8.333, 10.167, 12.), (5.801, 7.5, 9.), 

 (5.452, 6.367, 7.229), (4.863, 5.5, 6.354), 

 (12., 12.5, 13.), (5.551, 5.967, 6.417)) 

17 0.157 

((8.5, 10.333, 12.), (6., 7.5, 9.), 

 (5.5, 6.5, 7.5), (4.667, 5.5, 6.333), 

 (12., 12.5, 13.), (5.333, 5.667, 6.167)) 

((8.5, 10.333, 12.), (5.774, 7.5, 9.), 

 (5.429, 6.333, 7.229), (4.857, 5.5, 6.354), 

 (12., 12.5, 13.), (5.44, 5.833, 6.417)) 
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Table A7.1c:  Fuzzy Root Mean Square Variances of FRAU and FLPS for   3T r


 

Index FAI 

FRMSV(FRAU) 

  ˆ , , ,l u     

FRMSV(FLPS) 

  ˆ , , ,l u     

1 0.47 (3.25, (3., 3.333, 3.333)) (4.787, (5.817, 4.646, 4.037)) 

2 0.435 (3., (3., 3., 3.)) (4.027, (4.46, 4.11, 3.427)) 

3 0.386 (2.667, (2.667, 2.667, 2.667)) (3.095, (3.023, 3.25, 2.857)) 

4 0.338 (2.333, (2.333, 2.333, 2.333)) (2.57, (2.658, 2.558, 2.507)) 

5 0.29 (2., (2., 2., 2.)) (2.327, (2.475, 2.335, 2.162)) 

6 0.242 (1.667, (1.667, 1.667, 1.667)) (1.774, (1.761, 1.787, 1.763)) 

7 0.193 (1.333, (1.333, 1.333, 1.333)) (1.42, (1.411, 1.448, 1.374)) 

8 0.145 (1., (1., 1., 1.)) (1.081, (1.015, 1.08, 1.149)) 

9 0.097 (0.667, (0.333, 0.667, 1.)) (0.766, (0.383, 0.766, 1.149)) 

10 0.048 (0.333, (0.333, 0.333, 0.333)) (0.365, (0.383, 0.36, 0.36)) 

11 0 (0, (0, 0, 0)) (0, (0, 0, 0)) 

12 0.048 (0.333, (0.333, 0.333, 0.333)) (0.36, (0.36, 0.36, 0.36)) 

13 0.097 (0.667, (0.667, 0.667, 0.667)) (0.719, (0.719, 0.719, 0.719)) 

14 0.145 (1., (1., 1., 1.)) (1.079, (1.079, 1.079, 1.079)) 

15 0.193 (1.333, (1.333, 1.333, 1.333)) (1.438, (1.438, 1.438, 1.438)) 

16 0.242 (1.667, (1.667, 1.667, 1.667)) (1.798, (1.798, 1.798, 1.798)) 

17 0.277 (1.917, (2., 2., 1.667)) (2.067, (2.157, 2.157, 1.798)) 
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Table A7.2c:  Fuzzy Root Mean Square Variances of FRAU and FLPS for   4T r


 

Index FAI 

FRMSV(FRAU) 

  ˆ , , ,l u     

FRMSV(FLPS) 

  ˆ , , ,l u     

1 0.424 (2.836, (2.5, 2.887, 3.069)) (3.043, (2.738, 3.123, 3.188)) 

2 0.393 (2.62, (2.5, 2.598, 2.784)) (2.76, (2.729, 2.723, 2.866)) 

3 0.351 (2.334, (2.217, 2.309, 2.5)) (2.458, (2.407, 2.436, 2.553)) 

4 0.308 (2.049, (1.936, 2.021, 2.217)) (2.122, (2.08, 2.058, 2.293)) 

5 0.266 (1.765, (1.658, 1.732, 1.936)) (1.84, (1.773, 1.763, 2.062)) 

6 0.224 (1.482, (1.384, 1.443, 1.658)) (1.576, (1.492, 1.481, 1.85)) 

7 0.183 (1.203, (1.118, 1.155, 1.384)) (1.421, (1.275, 1.319, 1.77)) 

8 0.141 (0.929, (0.866, 0.866, 1.118)) (1.037, (0.953, 0.957, 1.284)) 

9 0.1 (0.693, (0.5, 0.577, 1.118)) (0.79, (0.568, 0.653, 1.284)) 

10 0.062 (0.431, (0.5, 0.289, 0.645)) (0.467, (0.568, 0.298, 0.705)) 

11 0 (0.25, (0.5, 0, 0.5)) (0.279, (0.557, 0, 0.557)) 

12 0.062 (0.431, (0.645, 0.289, 0.5)) (0.458, (0.681, 0.298, 0.557)) 

13 0.1 (0.667, (0.866, 0.577, 0.645)) (0.696, (0.891, 0.595, 0.705)) 

14 0.141 (0.929, (1.118, 0.866, 0.866)) (0.965, (1.14, 0.893, 0.933)) 

15 0.183 (1.203, (1.384, 1.155, 1.118)) (1.246, (1.408, 1.19, 1.196)) 

16 0.224 (1.482, (1.658, 1.443, 1.384)) (1.534, (1.685, 1.488, 1.475)) 

17 0.255 (1.696, (1.936, 1.732, 1.384)) (1.761, (1.975, 1.8, 1.468)) 
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Table A7.3c:  Fuzzy Root Mean Square Variances of FRAU and FLPS for   5T r


 

Index FAI 

FRMSV(FRAU) 

  ˆ , , ,l u     

FRMSV(FLPS) 

  ˆ , , ,l u     

1 0.355 (2.418, (2.107, 2.449, 2.665)) (2.532, (2.269, 2.573, 2.713)) 

2 0.329 (2.235, (2.107, 2.205, 2.425)) (2.298, (2.252, 2.236, 2.467)) 

3 0.295 (1.994, (1.871, 1.96, 2.186)) (2.053, (2., 1.988, 2.238)) 

4 0.261 (1.754, (1.637, 1.715, 1.949)) (1.816, (1.756, 1.741, 2.027)) 

5 0.226 (1.515, (1.407, 1.47, 1.715)) (1.65, (1.632, 1.536, 1.896)) 

6 0.192 (1.279, (1.183, 1.225, 1.483)) (1.349, (1.278, 1.242, 1.634)) 

7 0.158 (1.047, (0.97, 0.98, 1.257)) (1.182, (1.038, 1.022, 1.646)) 

8 0.125 (0.821, (0.775, 0.735, 1.039)) (0.925, (0.855, 0.846, 1.155)) 

9 0.092 (0.637, (0.529, 0.49, 1.039)) (0.714, (0.59, 0.555, 1.155)) 

10 0.059 (0.421, (0.529, 0.245, 0.663)) (0.443, (0.59, 0.249, 0.684)) 

11 0 (0.274, (0.548, 0, 0.548)) (0.293, (0.599, 0, 0.574)) 

12 0.059 (0.421, (0.663, 0.245, 0.529)) (0.442, (0.704, 0.249, 0.566)) 

13 0.092 (0.608, (0.837, 0.49, 0.616)) (0.633, (0.875, 0.498, 0.662)) 

14 0.125 (0.821, (1.039, 0.735, 0.775)) (0.85, (1.079, 0.747, 0.827)) 

15 0.158 (1.047, (1.257, 0.98, 0.97)) (1.081, (1.302, 0.996, 1.028)) 

16 0.192 (1.279, (1.483, 1.225, 1.183)) (1.318, (1.536, 1.245, 1.249)) 

17 0.218 (1.459, (1.715, 1.47, 1.183)) (1.503, (1.775, 1.494, 1.249)) 
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Table A7.4c: Fuzzy Root Mean Square Variances of FRAU and FLPS for   6T r


 

Index FAI 

FRMSV(FRAU) 

  ˆ , , ,l u     

FRMSV(FLPS) 

  ˆ , , ,l u     

1 0.326 (2.294, (2.011, 2.319, 2.525)) (2.342, (2.104, 2.331, 2.604)) 

2 0.305 (2.137, (2.011, 2.108, 2.319)) (2.196, (2.093, 2.127, 2.437)) 

3 0.276 (1.929, (1.807, 1.897, 2.113)) (1.992, (1.835, 1.922, 2.29)) 

4 0.248 (1.722, (1.606, 1.687, 1.909)) (1.796, (1.643, 1.715, 2.112)) 

5 0.22 (1.516, (1.406, 1.476, 1.706)) (1.777, (1.499, 1.777, 2.056)) 

6 0.192 (1.312, (1.211, 1.265, 1.506)) (1.462, (1.247, 1.372, 1.859)) 

7 0.164 (1.11, (1.022, 1.054, 1.308)) (1.451, (1.258, 1.351, 1.846)) 

8 0.136 (0.911, (0.843, 0.843, 1.116)) (1.133, (0.968, 1.168, 1.226)) 

9 0.107 (0.735, (0.558, 0.632, 1.116)) (0.821, (0.609, 0.718, 1.241)) 

10 0.081 (0.54, (0.558, 0.422, 0.76)) (0.559, (0.609, 0.426, 0.774)) 

11 0.053 (0.383, (0.494, 0.211, 0.615)) (0.398, (0.539, 0.213, 0.629)) 

12 0 (0.258, (0.516, 0, 0.516)) (0.271, (0.55, 0, 0.533)) 

13 0.053 (0.383, (0.615, 0.211, 0.494)) (0.395, (0.639, 0.213, 0.515)) 

14 0.081 (0.54, (0.76, 0.422, 0.558)) (0.553, (0.778, 0.426, 0.583)) 

15 0.107 (0.72, (0.931, 0.632, 0.683)) (0.734, (0.946, 0.639, 0.712)) 

16 0.136 (0.911, (1.116, 0.843, 0.843)) (0.927, (1.13, 0.852, 0.875)) 

17 0.157 (1.065, (1.308, 1.054, 0.843)) (1.082, (1.324, 1.065, 0.875)) 
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Table A7.1d:  Fuzzy Root Mean Penalty Weighted Square Variances of FRAU and FLPS for   3T r


 

Index FAI FRMPWSV(FRAU)   ˆ , , ,l u     FRMPWSV(FLPS)   ˆ , , ,l u     

1 0.47 (5.934, (5.477, 6.086, 6.086)) (8.632, (12.856, 7.346, 6.977)) 

2 0.435 (5.639, (5.477, 5.477, 6.124)) (7.265, (9.928, 6.499, 6.135)) 

3 0.386 (4.869, (4.869, 4.869, 4.869)) (5.331, (6.26, 5.19, 4.683)) 

4 0.338 (4.26, (4.26, 4.26, 4.26)) (4.407, (4.387, 4.581, 4.079)) 

5 0.29 (3.867, (3.651, 4.082, 3.651)) (3.746, (4.033, 3.723, 3.503)) 

6 0.242 (3.043, (3.043, 3.043, 3.043)) (3.262, (3.278, 3.436, 2.899)) 

7 0.193 (2.434, (2.434, 2.434, 2.434)) (2.499, (2.875, 2.341, 2.438)) 

8 0.145 (2.041, (2.041, 2.041, 2.041)) (1.98, (1.966, 1.99, 1.975)) 

9 0.097 (1.361, (0.68, 1.361, 2.041)) (1.317, (0.658, 1.317, 1.975)) 

10 0.048 (0.627, (0.68, 0.609, 0.609)) (0.602, (0.658, 0.583, 0.583)) 

11 0 (0, (0, 0, 0)) (0, (0, 0, 0)) 

12 0.048 (0.609, (0.609, 0.609, 0.609)) (0.583, (0.583, 0.583, 0.583)) 

13 0.097 (1.217, (1.217, 1.217, 1.217)) (1.166, (1.166, 1.166, 1.166)) 

14 0.145 (1.826, (1.826, 1.826, 1.826)) (1.75, (1.75, 1.75, 1.75)) 

15 0.193 (2.434, (2.434, 2.434, 2.434)) (2.333, (2.333, 2.333, 2.333)) 

16 0.242 (3.043, (3.043, 3.043, 3.043)) (2.916, (2.916, 2.916, 2.916)) 

17 0.277 (3.499, (3.651, 3.651, 3.043)) (3.353, (3.499, 3.499, 2.916)) 
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Table A7.2d:  Fuzzy Root Mean Penalty Weighted Square Variance s of FRAU and FLPS for   4T r


 

Index FAI FRMPWSV(FRAU)   ˆ , , ,l u     FRMPWSV(FLPS)   ˆ , , ,l u     

1 0.424 (4.871, (4.36, 4.841, 5.441)) (4.973, (4.523, 5.05, 5.268)) 

2 0.393 (4.504, (4.36, 4.357, 4.94)) (4.504, (4.502, 4.394, 4.727)) 

3 0.351 (4.176, (4.098, 4.082, 4.44)) (4.026, (3.986, 3.931, 4.257)) 

4 0.308 (3.536, (3.423, 3.389, 3.943)) (3.691, (3.51, 3.336, 4.582)) 

5 0.266 (3.055, (2.962, 2.905, 3.45)) (3.023, (2.946, 2.866, 3.413)) 

6 0.224 (2.599, (2.592, 2.421, 2.962)) (2.612, (2.494, 2.437, 3.081)) 

7 0.183 (2.303, (2.073, 2.327, 2.484)) (2.307, (2.096, 2.111, 2.911)) 

8 0.141 (1.721, (1.661, 1.452, 2.316)) (1.751, (1.628, 1.557, 2.262)) 

9 0.1 (1.425, (1.058, 1.164, 2.316)) (1.392, (1.041, 1.133, 2.262)) 

10 0.062 (0.811, (1.058, 0.484, 1.218)) (0.795, (1.041, 0.477, 1.186)) 

11 0 (0.491, (0.982, 0, 0.982)) (0.48, (0.961, 0, 0.961)) 

12 0.062 (0.773, (1.141, 0.484, 0.982)) (0.759, (1.123, 0.477, 0.961)) 

13 0.1 (1.152, (1.452, 0.968, 1.218)) (1.132, (1.433, 0.955, 1.186)) 

14 0.141 (1.584, (1.84, 1.452, 1.589)) (1.556, (1.818, 1.432, 1.54)) 

15 0.183 (2.092, (2.265, 2.041, 2.022)) (2.003, (2.239, 1.909, 1.955)) 

16 0.224 (2.582, (3.002, 2.421, 2.484)) (2.463, (2.679, 2.387, 2.399)) 

17 0.255 (2.865, (3.166, 2.905, 2.484)) (2.823, (3.138, 2.88, 2.395)) 
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Table A7.3d:  Fuzzy Root Mean Penalty Weighted Square Variances of FRAU and FLPS for   5T r


 

Index FAI FRMPWSV(FRAU)   ˆ , , ,l u     FRMPWSV(FLPS)   ˆ , , ,l u     

1 0.355 (4.11, (3.768, 4.123, 4.426)) (4.076, (3.741, 4.099, 4.366)) 

2 0.329 (3.748, (3.768, 3.6, 4.025)) (3.965, (3.716, 3.584, 4.977)) 

3 0.295 (3.348, (3.365, 3.2, 3.626)) (3.517, (3.31, 3.183, 4.393)) 

4 0.261 (2.96, (3.008, 2.8, 3.231)) (2.944, (2.918, 2.786, 3.285)) 

5 0.226 (2.597, (2.577, 2.4, 3.012)) (2.712, (2.824, 2.489, 3.047)) 

6 0.192 (2.463, (2.2, 2.598, 2.458)) (2.451, (2.161, 2.494, 2.657)) 

7 0.158 (1.782, (1.844, 1.6, 2.086)) (1.948, (1.825, 1.651, 2.663)) 

8 0.125 (1.494, (1.523, 1.2, 2.052)) (1.606, (1.493, 1.462, 2.009)) 

9 0.092 (1.292, (1.118, 1., 2.052)) (1.265, (1.103, 0.975, 2.009)) 

10 0.059 (0.767, (1.118, 0.4, 1.149)) (0.761, (1.103, 0.398, 1.145)) 

11 0 (0.527, (1.114, 0, 0.995)) (0.522, (1.099, 0, 0.99)) 

12 0.059 (0.766, (1.265, 0.4, 1.)) (0.758, (1.25, 0.398, 0.988)) 

13 0.092 (1.071, (1.523, 0.8, 1.162)) (1.059, (1.506, 0.795, 1.141)) 

14 0.125 (1.418, (1.844, 1.2, 1.428)) (1.401, (1.823, 1.193, 1.398)) 

15 0.158 (1.788, (2.2, 1.6, 1.752)) (1.767, (2.174, 1.59, 1.713)) 

16 0.192 (2.202, (2.577, 2.062, 2.107)) (2.145, (2.545, 1.988, 2.061)) 

17 0.218 (2.468, (2.966, 2.4, 2.107)) (2.44, (2.929, 2.385, 2.061)) 
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Table A7.4d: Fuzzy Root Mean Penalty Weighted Square Variances of FRAU and FLPS for   6T r


 

Index FAI FRMPWSV(FRAU)   ˆ , , ,l u     FRMPWSV(FLPS)   ˆ , , ,l u     

1 0.326 (3.767, (3.45, 3.742, 4.133)) (3.771, (3.43, 3.726, 4.203)) 

2 0.305 (3.512, (3.45, 3.402, 3.794)) (3.54, (3.402, 3.403, 3.95)) 

3 0.276 (3.598, (3.093, 3.921, 3.457)) (3.226, (3.035, 3.077, 3.718)) 

4 0.248 (2.832, (2.765, 2.722, 3.122)) (3.299, (2.927, 3.42, 3.428)) 

5 0.22 (2.498, (2.441, 2.381, 2.79)) (2.977, (2.774, 2.888, 3.355)) 

6 0.192 (2.187, (2.125, 2.082, 2.462)) (2.427, (2.089, 2.216, 3.186)) 

7 0.164 (1.84, (1.819, 1.701, 2.14)) (2.341, (2.069, 2.153, 2.988)) 

8 0.136 (1.623, (1.532, 1.361, 2.238)) (1.909, (1.618, 1.904, 2.21)) 

9 0.107 (1.494, (1.122, 1.307, 2.238)) (1.466, (1.113, 1.276, 2.198)) 

10 0.081 (0.935, (1.122, 0.68, 1.256)) (0.93, (1.113, 0.678, 1.252)) 

11 0.053 (0.665, (0.95, 0.34, 1.03)) (0.66, (0.936, 0.339, 1.026)) 

12 0 (0.459, (0.95, 0, 0.885)) (0.455, (0.941, 0, 0.88)) 

13 0.053 (0.653, (1.069, 0.34, 0.863)) (0.649, (1.063, 0.339, 0.856)) 

14 0.081 (0.902, (1.275, 0.68, 0.974)) (0.897, (1.27, 0.678, 0.963)) 

15 0.107 (1.188, (1.532, 1.021, 1.18)) (1.182, (1.527, 1.017, 1.165)) 

16 0.136 (1.496, (1.819, 1.361, 1.442)) (1.487, (1.812, 1.356, 1.423)) 

17 0.157 (1.742, (2.125, 1.701, 1.442)) (1.732, (2.115, 1.696, 1.423)) 
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Table A7.1e:  Fuzzy Mean Contradiction of FRAU and FLPS for   3T r


 

Index FAI 

FMC(FRAU) 

  ˆ , , ,l u     

FMC(FLPS) 

  ˆ , , ,l u     

1 0.47 (0.5, (0.5, 0.5, 0.5)) (0.458, (0.5, 0.5, 0.333)) 

2 0.435 (0.458, (0.5, 0.5, 0.333)) (0.375, (0.167, 0.5, 0.333)) 

3 0.386 (0.417, (0.5, 0.5, 0.167)) (0.167, (0.167, 0.167, 0.167)) 

4 0.338 (0.417, (0.5, 0.5, 0.167)) (0.333, (0.5, 0.333, 0.167)) 

5 0.29 (0.333, (0.5, 0.333, 0.167)) (0.167, (0.167, 0.167, 0.167)) 

6 0.242 (0.25, (0.5, 0.167, 0.167)) (0.292, (0.333, 0.333, 0.167)) 

7 0.193 (0.333, (0.5, 0.167, 0.5)) (0.167, (0.167, 0.167, 0.167)) 

8 0.145 (0.333, (0.333, 0.333, 0.333)) (0.292, (0.167, 0.333, 0.333)) 

9 0.097 (0.333, (0.333, 0.333, 0.333)) (0.333, (0.333, 0.333, 0.333)) 

10 0.048 (0.208, (0.333, 0.167, 0.167)) (0.208, (0.333, 0.167, 0.167)) 

11 0 (0, (0, 0, 0)) (0, (0, 0, 0)) 

12 0.048 (0.167, (0.167, 0.167, 0.167)) (0.167, (0.167, 0.167, 0.167)) 

13 0.097 (0.167, (0.167, 0.167, 0.167)) (0.167, (0.167, 0.167, 0.167)) 

14 0.145 (0.167, (0.167, 0.167, 0.167)) (0.167, (0.167, 0.167, 0.167)) 

15 0.193 (0.167, (0.167, 0.167, 0.167)) (0.167, (0.167, 0.167, 0.167)) 

16 0.242 (0.167, (0.167, 0.167, 0.167)) (0.167, (0.167, 0.167, 0.167)) 

17 0.277 (0.167, (0.167, 0.167, 0.167)) (0.167, (0.167, 0.167, 0.167)) 
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Table A7.2e:  Fuzzy Mean Contradiction of FRAU and FLPS for   4T r


 

Index FAI 

FMC(FRAU) 

  ˆ , , ,l u     

FMC(FLPS) 

  ˆ , , ,l u     

1 0.424 (0.292, (0.5, 0.25, 0.167)) (0.167, (0.333, 0.083, 0.167)) 

2 0.393 (0.292, (0.5, 0.25, 0.167)) (0.167, (0.333, 0.083, 0.167)) 

3 0.351 (0.229, (0.417, 0.167, 0.167)) (0.167, (0.333, 0.083, 0.167)) 

4 0.308 (0.167, (0.333, 0.083, 0.167)) (0.167, (0.25, 0.083, 0.25)) 

5 0.266 (0.208, (0.333, 0.083, 0.333)) (0.125, (0.167, 0.083, 0.167)) 

6 0.224 (0.188, (0.25, 0.083, 0.333)) (0.125, (0.167, 0.083, 0.167)) 

7 0.183 (0.208, (0.167, 0.167, 0.333)) (0.125, (0.167, 0.083, 0.167)) 

8 0.141 (0.229, (0.167, 0.25, 0.25)) (0.146, (0.167, 0.083, 0.25)) 

9 0.1 (0.208, (0.25, 0.167, 0.25)) (0.208, (0.25, 0.167, 0.25)) 

10 0.062 (0.146, (0.25, 0.083, 0.167)) (0.146, (0.25, 0.083, 0.167)) 

11 0 (0.083, (0.167, 0, 0.167)) (0.125, (0.167, 0.083, 0.167)) 

12 0.062 (0.125, (0.167, 0.083, 0.167)) (0.125, (0.167, 0.083, 0.167)) 

13 0.1 (0.104, (0.083, 0.083, 0.167)) (0.125, (0.167, 0.083, 0.167)) 

14 0.141 (0.104, (0.167, 0.083, 0.083)) (0.125, (0.167, 0.083, 0.167)) 

15 0.183 (0.167, (0.167, 0.167, 0.167)) (0.125, (0.167, 0.083, 0.167)) 

16 0.224 (0.229, (0.25, 0.25, 0.167)) (0.125, (0.167, 0.083, 0.167)) 

17 0.255 (0.25, (0.333, 0.25, 0.167)) (0.125, (0.167, 0.083, 0.167)) 
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Table A7.3e:  Fuzzy Mean Contradiction of FRAU and FLPS for   5T r


 

Index FAI FMC(FRAU)   ˆ , , ,l u     FMC(FLPS)   ˆ , , ,l u     

1 0.355 (0.288, (0.3, 0.3, 0.25)) (0.237, (0.2, 0.25, 0.25)) 

2 0.329 (0.262, (0.3, 0.25, 0.25)) (0.25, (0.2, 0.25, 0.3)) 

3 0.295 (0.288, (0.3, 0.25, 0.35)) (0.25, (0.2, 0.25, 0.3)) 

4 0.261 (0.275, (0.25, 0.25, 0.35)) (0.237, (0.2, 0.25, 0.25)) 

5 0.226 (0.25, (0.2, 0.25, 0.3)) (0.188, (0.2, 0.15, 0.25)) 

6 0.192 (0.213, (0.2, 0.2, 0.25)) (0.213, (0.2, 0.2, 0.25)) 

7 0.158 (0.162, (0.15, 0.15, 0.2)) (0.188, (0.2, 0.15, 0.25)) 

8 0.125 (0.175, (0.2, 0.15, 0.2)) (0.2, (0.2, 0.2, 0.2)) 

9 0.092 (0.162, (0.25, 0.1, 0.2)) (0.162, (0.25, 0.1, 0.2)) 

10 0.059 (0.125, (0.25, 0.05, 0.15)) (0.125, (0.25, 0.05, 0.15)) 

11 0 (0.088, (0.2, 0, 0.15)) (0.088, (0.2, 0, 0.15)) 

12 0.059 (0.1, (0.15, 0.05, 0.15)) (0.112, (0.2, 0.05, 0.15)) 

13 0.092 (0.1, (0.2, 0.05, 0.1)) (0.112, (0.2, 0.05, 0.15)) 

14 0.125 (0.112, (0.2, 0.05, 0.15)) (0.112, (0.2, 0.05, 0.15)) 

15 0.158 (0.1, (0.15, 0.05, 0.15)) (0.112, (0.2, 0.05, 0.15)) 

16 0.192 (0.138, (0.2, 0.1, 0.15)) (0.112, (0.2, 0.05, 0.15)) 

17 0.218 (0.163, (0.2, 0.15, 0.15)) (0.112, (0.2, 0.05, 0.15)) 
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Table A7.4e: Fuzzy Mean Contradiction of FRAU and FLPS for   6T r


 

Index FAI FMC(FRAU)   ˆ , , ,l u     FMC(FLPS)   ˆ , , ,l u     

1 0.326 (0.125, (0.167, 0.1, 0.133)) (0.117, (0.133, 0.1, 0.133)) 

2 0.305 (0.125, (0.167, 0.1, 0.133)) (0.15, (0.133, 0.167, 0.133)) 

3 0.276 (0.133, (0.133, 0.133, 0.133)) (0.15, (0.133, 0.167, 0.133)) 

4 0.248 (0.15, (0.133, 0.167, 0.133)) (0.133, (0.133, 0.133, 0.133)) 

5 0.22 (0.15, (0.133, 0.167, 0.133)) (0.133, (0.133, 0.1, 0.2)) 

6 0.192 (0.133, (0.133, 0.133, 0.133)) (0.117, (0.133, 0.1, 0.133)) 

7 0.164 (0.117, (0.133, 0.1, 0.133)) (0.133, (0.2, 0.1, 0.133)) 

8 0.136 (0.117, (0.2, 0.1, 0.067)) (0.108, (0.133, 0.1, 0.1)) 

9 0.107 (0.092, (0.167, 0.067, 0.067)) (0.1, (0.167, 0.067, 0.1)) 

10 0.081 (0.075, (0.167, 0.033, 0.067)) (0.075, (0.167, 0.033, 0.067)) 

11 0.053 (0.067, (0.133, 0.033, 0.067)) (0.067, (0.133, 0.033, 0.067)) 

12 0 (0.05, (0.133, 0, 0.067)) (0.05, (0.133, 0, 0.067)) 

13 0.053 (0.058, (0.1, 0.033, 0.067)) (0.058, (0.1, 0.033, 0.067)) 

14 0.081 (0.067, (0.133, 0.033, 0.067)) (0.067, (0.133, 0.033, 0.067)) 

15 0.107 (0.058, (0.133, 0.033, 0.033)) (0.067, (0.133, 0.033, 0.067)) 

16 0.136 (0.058, (0.1, 0.033, 0.067)) (0.067, (0.133, 0.033, 0.067)) 

17 0.157 (0.067, (0.133, 0.033, 0.067)) (0.067, (0.133, 0.033, 0.067)) 

 




