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Abstract

The structural damage assessment strategy adopted in this thesis is to localize
the damage sites first using incomplete measured mode shapes, and to quantify the
structural damage extent later using measured frequencies which are less

contaminated by measurement noise and with better accuracy than mode shapes.

Modal strain energy change (MSEC) has been proved to be more sensitive to
structural damage than natural frequencies and mode shapes. The parameter MSEC is
used in the correlation matching of the Multiple Damage Location Assurance
Criterion (MDLAC) to localize the damage. The sensitivity of MSEC is a function of
the analytical property matrices, natural frequencies and mode shapes of the original
structure. The incomplete measured mode shapes before and after damage and the
analytical stiffness matrix are required to calculate the experimental MSEC which are
then normalized. The potential damage sites are identified as those elements with
higher MDLAC values. The MDLAC values on the different combinations of the
potential damage sites are further computed. The final damage sites are located
corresponding to.the combination with the largest MDLAC value. Simulation studies

of the damage localization method are based on a three-storey plane frame.

After localization of the damage sites, the damage extent of the final damage
sites can be determined using the measured natural frequencies. A structural damage
quantification method is developed using only the first order sensitivity terms in
which a linear sequential filtering technique is used to relate the analytical and
experimental sets of eigenvalues including the measurement noise matrix. An
unbiased minimum variance error estimation method is used for an optimal solution.

Weight linear least squares method is used to solve the identification equation.



Abstract

Simulation studies on the damage quantification method are conducted on the same

three-storey plane frame.

The accuracy of identification using only the first order terms will be reduced
when dealing with large damage, and the damage quantification method including the
second order terms in the Taylor’s expansion is proposed. Simulation studies on the

three-storey plane frame are again performed.

In these two damage quantification methods, the formulation has the
capability to estimate a larger set of eigenvalues from a smaller set of measured
eigenvalues. The effectiveness of the eigenvalue expansion is also studied using the

three-storey plane frame.

After simulation studies, a dynamic test is carned out in the laboratory on a
five-storey steel plane frame to further verify the damage localization method and the
damage quantification methods using first order and second order analysis. A method

to select the modes for the 1dentification 1s proposed.
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Chapter 1 Introduction

Chapter 1

Il_ltroduction.

1.1 Importance of Structural Damage Assessment

Damage in a structure can be defined as a change in the physical properties of
its structural components. When an element of the structure contains a damage, the
stiffness of the damage element as well as the load-carrying capacity of that element
will change. If the loading on the damage element is greater than that it can resist, the
element will fail and the internal forces of the structure will be redistributed. As the
internal force distribution is different from what is planned at the design stage, there 1s
no safety guarantee in the structure. Also when the damage s at the connection of the
structure, the assumed rigid connection may become semi-rigid or even pin in nature.

It will also lead to redistribution of internal forces.

All load-carrying structures such as buildings, bridges and offshore platforms
continuously accumulate damage during their service life. Then structures may be
damaged if the actual loads exceed the design load. Bridges may be subjected to
remarkably heavy traffic loading due to heavy trucks. Short-duration excess in
loading may also cause damage, and the effective life of a bridge may be shortened.
Offshore platforms are continuously exposed to the wave action, chemical corrosion

and fatigue effect. In general, the occurrence of damage during the service life of a



Chapter | Introduction

structure is unavoidable. The only way to ensure the safety of human life and to
reduce the loss of wealth is to detect the existence, location and extent of damage in

the structure and to carry out remedial work.

A sound structural damage assessment method, which can detect the existence
of damage, its location and extent, is important in the maintenance of a structural
system. Many researchers have invested their effort in this area and a number of
methods have been developed based on different approaches. However, all available
methods are only applicable to some specified types of structure and under some
specified assumptions, and the development of damage assessment method is still a

very attractive research area.

1.2 Objective of the Thesis

Damage assessment process comprises of three stages including the
identification of damage occurrence, location and extent. The detection of damage
occurrence based on vibration measurement approach is not a difficult task and many
techniques have been developed. The damage localization and extent assessment is
more important and difficult. In the past, many damage assessment methods require
the complete measured information to detect the damage. When the measured mode
shapes are incomplete, the measured information is projected onto the unmeasured
degrees-of-freedom to reconstruct the complete mode shapes. However, this mode

shape expansion process introduces errors in the expanded mode shapes and increases
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the difficulty in damage assessment. Also, few works have been done on the use of
incompiete natural frequencies in damage assessment. Hence, this project focuses on
the development of a method for the damage localization and quantification using

incomplete measured information.

1.3 Scope of the Thesis

A Multiple Damage Assurance Criterion (MDLAC) method using incomplete
Elemental Modal Strain Energy Change is proposed to localize the damage in Chapter
3. The measured information is applied directly in the proposed method without any
expansion of the measured data or reduction of the rﬁodcl. The Multiple Damage
Assurance Criterion (MDLAC) developed by Shi er al. (2000) originally makes use of
incomplete measured mode shapes. The parameter Elemental Modal Strain Energy
Change is applied instead of mode shapes in the correlation matching of the Multiple
Damage Assurance Criterion (MDLAC) to localize the damage. The experimental
Modal Strain Energy Change is calculated from the incomplete measured mode
shapes before and after damage and the analytical stiffness matrix. The analytical
sensitivity of the Modal Strain Energy Change is a function of the analytical stiffness
matrix, mass matﬁx, eigenvalues and mode shapes of the undamaged structure. One
element of the structure is assumed to be damaged and the MDLAC value of each
element is calculated. The potential damage sites are identified in those elements with
higher MDLAC values. Then the MDLAC values on the different combinations of the

potential damage sites are re-calculated. The final damage sites correspond to the
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combination with the highest MDLAC value. The effectiveness and robustness of this
method is judged from the identification results on a three-storey plane frame. The
Multiple Damage Assurance Criterion (MDLAC) method using incomplete mode

shape 1s also studied for comparison with the proposed method.

After the estimation of the final damage sites, the damage extent in terms of
the change of the stiffness matrix can be quantified using the measured eigenvalues
which are less contaminated by measurement noise and have better accuracy than
mode shapes. In the damage assessment problem, the change in vibration parameter is
usually represented in a Taylor's expansion in terms of a change in the design
vanable. In general, the formulation of the identification equation includes only the
first order terms 1n the Taylor's expansion. Hence, a damage quantification method
using the first order sensitivity is developed in Chapter 4 in which a linear sequential
filtering technique is used to relate the analytical and experimental sets of eigenvalues
including the measurement noise matrix. An unbiased minimum variance error
estimation method is applied to obtain the optimum solution of the damage extent,
Weight linear least squares method is used to solve the identification equation.
Numerical examples on the three-storey plane frame are studied for different

scenarios of damage.

In practice, the accuracy of identification using the above technique reduces
when dealing with large damage, and higher order terms in the Taylor's expansion are
required. However, terms above second order are numerically small and their
inclusive in the computation would increase the computational cost. Therefore, a

damage quantification method using the second order terms in the Taylor's expansion



Chapter 1 Introduction

is proposed in Chapter 5. The same linear sequential filtering technique and the
unbiased minimum variance error estimation method are used to generate the
identification equation, and weight linear least squares method is used to solve the
identification equation. Two necessary conditions for the optimal solution are
generated from the formulation. The identification of both small and large damages

using the first condition or both conditions are studied with a three-storey plane

frame.

In these two damage quantification methods, the formulation has the
capability to estimate a larger set of eigenvalues from a small number of measured
eigenvalues. The accuracy of this eigenvalue expansion method is also studied for the

plane frame with small and large damages in Chapter 6.

Finally, a dynamic test is carried out in the laboratory on a five-storey steel
plane frame. The damage localization method and the two damage quantification

methods are verified with the experimental data in Chapter 7.

The conclusions drawn on the work in this thesis and further recommendations

are given in Chapter 8.
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Chapter 2

Literature Review

2.1 Development of Structural Damage Assessment

A sound structural damage assessment method is very important for all load-
carrying structures. A structure loses its function and even collapses without warning
when it 1s continuously accumulating damage. The risk to human life would be a
serious problem. A practice of damage assessment would guarantee an acceptable
level of service condition of the structure. Hencle, structural damage assessment for all

load-carrying structures during their service life is advisable.

Many researchers have invested their effort on damage assessment and a
number of methods have been developed based on different approaches. The existing
approaches may be categorized into three classes, which are, modal analysis, system

identification and neural network.

2.1.1 Modal Analysis

The modal parameters are usually used as damage indicators in structural
damage assessment. The most common ones are natural frequencies, mode shapes and

frequency respond function.
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2.1.1.1 Natural frequency approaches

In general, natural frequencies can be obtained more accurately and reliably
than mode shapes because they are less contaminated by measurement noise. Besides,
the collection of the natural frequencies is easy and simple. Hence, many approaches

are based on natural frequencies only for damage assessment.

Cawley and Adams (1979) proved that the ratio of the natural frequency
change between any two modes is a function of the damage location only. Ju and
Mimovich (1986,1987) used changes in natural frequencies to locate structural
damage of a beam. Hearn and testa (1991) proposed a similar damage localization
approach for welded steel frames and wire ropes. Later, Friswell et al. (1994) used a
statistical tool to reduce the effect of the measurement errors and to improve the
method proposed by Cawley and Adams. Messina et al. (1996) developed a Damage
Location Assurance Criterion (DLAC), which is derived in a sensitivity and statistical
approach to locate a single damage in the structure. Then they extended this method
to detect multiple damages (Messina et al., 1998). This criterion is based on the
correlation between the measured and the analytical frequency changes. A new
parameter called the Multiple Damage Location Assurance Criterion (MDLAC) is

developed and 1s formulated as :

Hary - Brdsohir 2.1)
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where {Af} is the measured frequency change vector before and after the occurrence

of damage in the structure, and its size is equal to the number of measured modes.

{Sf } is the analytical frequency change vector for a damage of a known size {5p},
which is an arbitrary pattern of damage at one or more sites. The size of {§f} is equal
to the number of modes used, while the size of D} is equal to the number of

potential damage sites.

2.1.1.2 Mode shape approaches

In practice, natural frequency is not very sensitive to local damage. And the
information it contains is insufficient to localize the structural damage. Mode shapes

contain information distributed over the structure, and they are very attractive for

structural damage assessment.

Allermang and Brown (1982) developed the Modal Assurance Criterion
(MAC) which is traditionally used to quantify the comparison of experimental-based
and analytical-based mode shapes. Lieven and Ewins (1988) localized the damage site
by the Co-ordinate Modal Assurance Criterion (COMAC), which is correlating two

sets of mode shapes before and after the occurrence of damage in the structure.

Moreover, some researchers found that modal strain energy is very sensitive to
damage. Lim and Kashangake (1994) and Doebling et al. (1997) studied the
performance of the modal strain energy in the identification of structural behaviour

and in damage localization. Stubbs and Kim (1996) suggested using modal strain
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energy to localize the damage and using analytical and post-damage measured mode
shapes to quantify the damage. Shi er al. (1998} extendéd the work on Elemental
Modal Strain Energy (EMSE) and proposed the Elemental Modal Strain Energy
Change Ratio {(EMSECR) as a damage indicator to localize the damage sites in the
structure. An algorithm for quantifying the damage extent based on this energy

change was also proposed.

2.1.1.3 Natural frequency and mode shape approaches

Many researchers have developed the damage assessment methods using both
natural frequencies and mode shapes. Yuen (1985) proposed using measured
frequencies and mode shapes to detect the damage by establishing the relationship
between the eigenparameters, damage location and damage extent. Lin (1990) -
presented a flexibility matrix, which is determined using experimental data to detect
the damage location. Approximate Parameter Change and Measured Damage
Signature developed by Paul (1994) make use of the sensitivity techmique based on
the natural frequencies and mode shapes to detect the damage location. Topole and
Stubbs (1995) localized and quantified the structural damage using mode shape

orthogonality by a pseudo-inverse solution of a system.

2.1.2 System Identification

The main objective of system identification 1s to seek a refined finite element

model (FEM) of the structure such that the measured and analytical modal properties

are in agreement. Damage assessment algorithms can then be developed based on the
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general framework of FEM refinement. The major algorithms used to solve the finite
element model (FEM) refinement problem and structural damage assessment can be

broadly classified into three different categories. They are optimal matrix update

algorithms, sensitivity methods and control-based eigenstructure assignment

techniques.

2.1.2.1 Optimal matrix update algorithms

In optimal matrix update formulation, perturbation matrices for the mass,
stiffness, and/or damping matrices (property matrices) are determined based on the
optimization of functions. Rodden (1967) is a prior researcher in optimal matrix
updates using measured test data and he determined the structural influence
coefficients of a structure using ground vibration test data. Brock (1968) examined the
problem of determining a matrix that satisfied a set of measurements as well as
enforcing symmetry and positive definiteness. Berman and Flannelly (1971) discussed
the computation of the property matrices when the number of modes is not equal to
the number of degrees-of-freedom of the model. Baruch and Bar ltzhack (1978) based
on the minimal Frobenius-norm matrix adjustment to modify the structural stiffness
matrix using measured frequencies and mode shapes. Berman and Nagy (1983)
proposed a similar formulation to improve both the stiffness and mass matrices. In all
the previous works, the zero/nonzero (sparsity) pattern of the original stiffness matrix
may be destroyed. Kabe (1985), Kammer (1988) and Smith and Bcattic (1991)
developed algorithms that preserve the original stiffness matrix sparsity paitern and
the original load paths of the structural model. Kaouk and Zimmerman (1992)

developed the Minimum Rank Perturbation Theory (MRPT) for damagc dcteclion,

10
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The update to each property matrix is of a minimum rank and is equal to the number
of measured modes. The minimum rank constraint is consistent with the matrix
changes in FEM to represent the situations of the structural damage. They also
verified this method with experimental results (Kaouk and Zimmerman, 1993). Koh et
al. {1995) proposed an improved-condensation method to detect local structural

damage of multistory frame buildings in terms of changes in story stiffness.

2.1.2.2 Sensitivity methods

Sensitivity derivatives of the modal parameters with respect to physical design
variables are widely used for the practical applicatioﬁ in model refinement and
damage assessment {Adelman and Haftka, 1986). The updated models remain
consistent within the original finite element program framework when physical
parameters are varying. Chen and Garba (1980) presented a method to refine the FEM
using Jacobian sensitivity matrix. Hajela and Soeiro (1990) applied the nonlinear
optimization to the damage assessment problem directly. Ricles and Kosmatke (1992)
proposed an eigenvector sensitivily approach for damage assessment in elastic
structures. The damage location is predicted using the residual modal force vectors
and the damage extent is then estimated using the weight eigenvector sensitivity
approach. Farhat and Hemez (1993) developed a sensitivity-based method that
computes the sensitivity of the global structural mass and stiffness matrices at the

structural element level. Later, this method is applied to a truss structure by Doebling

et al. (1993).
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2.1.2.3 Control-based eigenstructure assignment technigues

Control-based eigenstructure assignment techniques determine a pseudo-
control that re-produces the measured modal properties with the initial structural
model. Then, the pseudo-control is translated into matrix adjustments and applied to
the initial FEM. Inman and Minas (1990) presented two techniques for FEM
refinement. The first technique used both eigenvalue and eigenvector to produce the
updated stiffness and damping matrices. An unconstrained numerical nonlinear
optimization problem is proposed to enforce symmetry of the resulting model. The
second technique used a state-space formulation from eigenvalue only to determine
the state matnix which has the measured eigenvalues and which is closest to the
original state matrix. Zimmerman and Widengren (1990) proposed a symmetric
eigenstructure assignment techniqpe to incorporate the eigenvalue and eigenvector
into the FEM. Later, Zimmerman and Kaouk (1992) extended the eigenstructure.
assignment technique, called "subspace rotation algorithm", to localize and quantify
the structural damage. Lim and Kashangaki (1994) proposed using best achievable

eigenvectors to localize the structural damage.

2.1.3 Neural Network

Neural networks are viewed as alternative computation methods, which can be
trained to process and correlate huge quantities of data. Wu et al. (1992) developed a
three-layer neural network to localize the structural damage in a shear type frame
model. The network was trained to detect the damage location and extent from

Fourier spectra. However, this method is only effective to localize the damage in the

12
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top floor members. Kudva et al. (1992) used the neural network to monitor aircraft
structures and to detect the damage location and extent from stress data. Worden er al.
(1993) proposed a multi-layer network to recognize the missing member in a
cantilever latticework from stresses in horizonfal and vertical members. Ceravolo et
af. (1995) presented the "feedforward" neural networks to determine the damage

location in an FEM truss model based on the modal analysis carried out on the

structure in its undamaged and damaged conditions.

2.2 Approaches with Incomplete Measurements

The problem of incomplete measurements is pervasive across many areas of
structural dynamics. Many researchers used experimental data and an analytical
model to perform damage assessment and they faced a great problem. There is an
inherent mismatch between the experimental and the analytical degrees-of-freedom.
There are two categories of methods to deal with this problem, i.e., model reduction

and/or mode shape expansion techniques and direct applicatton of incomplete

measurements.

2.2.1 Model Reduction and/or Mode Shape Expansion Technigues

Model reduction and/or mode shape expansion are critical techniques that
bridge the gap in the mismatch between the experimental data and the analytical

model. Guyan (1965) developed a condensation technique to reduce the stiffness and
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mass matrices. Berman and Nagy (1983) and He and Ewins (1991) proved that all
reduction techniques yield matrices where the connectivity of the original FEM is
destroyed. This difficult is resolved by augmentation technique such that the
experimental mode shapes are expanded to the dimension of the analytical model.
Berger et al. (1984) presented an expansion scheme based on a Component Mode
Synthesis (CMS) approaqh where forces and displacements are obtained by
condensing the dynamic behaviour of the structure on a subset of "master” degrees-of-
freedom. Smith and Beattie {(1990) proposed an expansion algorithm by solving the
orthogonal Procrustes problem. The experimental/analytical cross-orthogonality
matrix is factored using the Singular Value Decomposition (SVD). Imregun and
Ewins (1993) applied the mode shape expansion technique to the case of a large
flexible space structure. Law ef al. (1998) presented the Elemental Energy Quotient
(EEQ) with mode shape expansion for damage localization. Moreover, Shi ef al.
(1995) presented a model reduction and expansion method using cross-orthogonal
condition on relating the analytical data and incomplete experimental data. The cross
orthogonality between the analytical and experimental eigenvectors has two
advantages. Both the modal reduction and expansion can be considered

simultaneously, and the computation of the method s simplified.

2.2.2 Direct Application of Incomplete Measurements

Unfortunately, the model reduction techniques destroy the connectivity of the
original FEM and the mode shape expansion techniques induce errors in the expanded
fult mode shapes. The errors from these two techniques are inherent and they affect

the accuracy of the damage assessment. The best solution is using the incomplete

t4 .
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measurements directly into the damage assessment method. Shi et a/. (2000) proposed -
an approach correlating the incomplete sets of analytical and measured mode shapes
to localize the structure damage. It is an extension of the Multiple Damage Location
Assurance Criterion (MDLAC) method developed by Messina ef al. (1998) by using

incomplete mode shapes instead of natural frequencies. The formulation is given

below.

o] ooy |
WPLACEDD= (asT aoh (oeoD) GOEDD)

where {A®} is the measured mode shape change vector before and after the
occurrence of damage in the structure, and its size is the product of the number of
measured modes and the number of sensor locations. {5(1)} is the analytical mode
shape change vector at the same degrees-of-freedom for a damage of a known size
{80}, which ts an arbitrary pattern of damage at one or more sites. The size of o} is
equal to the product of number of modes used and the number of sensor locations,

while the size of 5D} 1s equal to the number of potential damage sites.
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2.3 Sensor Placement Methods

For an incomplete measurements problem, the accuracy of a damage
assessment method depends on whether or not the measurement points are associated
with components of the structure that exhibit significant and important information.

Hence, the selection of sensor placement is also ‘a part of the damage assessment

method with incomplete measurements.

Chen and Graba (1985) developed an optimal sensor placement approach by
minimizing the covariance of a location estimator. The required solution is the set of
sensor locations with the "best" parameter estimation. However, the optimal sensor
locations are estimator dependent and an exhaustive search is executed for each
specific estimator. Kammer (1991) presented an effective independence algorithm
basing on a backward elimination to minimize the covariance of the Fisher
Information matrix. The initial candidate set of sensor locations was quickly reduced
to the number of available sensors. Hemez and Farhat (1994) extended the effective
independence algorithm to select the sensor locations in terms of the strain energy
contribution of the structure. Cobb and Liebst (1997) proposed an optimal sensor
placement mecthod for the purpose of determining the structure damage. However, the
previous mentioned sensor placement methods do not suggest how to select target
modes to make the analysis more effective. Kashangaki (1992) developed a sensitivity
parameler as a quantitative measurc of eigenvalue and cigenvector derivatives for
damage assessment and, he suggested which modes should be selected 1o benefit the

subscquent damage assessment.

g
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2.4 Discussions

Many researchers have invested their effort in damage assessment problem
and a number of methods have been developed based on different approaches. The
approaches can be broadly classified as modal analysis, system identification and

neural networks.

In optimal matrix update algorithms, minimization of the matrix norm of the
difference between the original and refined stiffness matrices is justified in an
engineering sense. However, damage typically results in the local stiffness reduction
at one or a few location, whereas the matrix n01;m minimization would tend to
disperse the changes throughout the entire stiffness matrix. This difference may affect

its applicability for damage assessment.

Sensitivity methods can preserve the structural load path automatically
through the model assembly using physical parameters. Moreover, elements in a
property matrix away from the damage remain unaffected by using a localized set of
physical parameters. However, the physical parameters must be chosen before a
sensitivity analysis such that the properties of the damage component can be varied.
This introduces a practical difficulty that the number of physical parameters becomes
quite large. Besides, most sensitivity approaches are restricted to detect small
parameter changes because higher order terms in the formulation are truncated.
Hence, the lineanzing formulation is not applicable in assessment of large parameter

changes.
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Many approaches for system identification, either optimal matrix update
algorithms, sensitivity methods or control-based eigenstructure assignment

techniques, become practical for damage assessment when the damage locations are

known.

Neural networks can be trained to process and correlate huge quantities of
data. The main drawback of a large-sized network is that an inconceivable amount of

data is required to train it. Moreover, there are many difficulties in its management.

Several damage indicators for damage assessment were developed by
correlating the measured modal parameters with the corresponding parameters of the
finite o.;:lement model. The damage assessment methods were developed based on
natural frequencies, mode shapes or both natural frequencies and mode shapes.
Measured frequencies are commonly used to detect the existence of the damage. They
are easy to measure and less contaminated by measurement noise. However, natural
frequency is not sensitive to damage because it is a global parameter of a structure. In
practice, only a truncated set of natural frequencies is measured in the test structure.

Hence, the measured frequencies are usually insufficient to localize the damage.

Many damage assessment approaches have been proposed using measured
mode shapes. Later, some rescarchers suggested that modal strain energy is more
sensitive than natural frequencies and mode shapes in damage assessment. In practice,
the number of measured degrees-of-freedom in the test structure is much less than the
number of total degrees-of-freedom in the finite element model. This introduces a

great problem in correlating the experimental and analytical model. Model reduction

18



Chapter 2 Literature Review

and mode shape expansion are the two common techniques to overcome this problem.
However, model reduction techniques destroy the connectivity of the original FEM
and the mode shape expansion techniques induce errors in the expanded full mode
shapes. The errors from these two techniques are inherent and they affect the accuracy

of the damage assessment. Therefore, using the incomplete measurements directly is

an optimal approach for damage assessment.

A strategy is proposed in this dissertation to localize the damage using
incomplete Elemental Modal Strain Energy Change. The measured information is
applied directly in the proposed method without any expansion of the measured data
or reduction of the model. The parameter Elemental Modal Strain Energy Change is

applied instead of mode shapes in the correlation matching of the Multiple Damage

Assurance Criterion (MDLAC) for damage localization.

Generally, damage causes the change of stiffness matrix only. And natural
frequencies can be easily measured and are less contaminated by measurement noise.
Sensitivity approach is direct and simple. Hence, two damage quantification methods
are proposed using the derivatives for the natural frequency and mode shape with
respect to a physical parameter. The first proposed method is based on the first order

terms in the Taylor's expansion. And the other proposed method includes the second

order terms in the Taylor's expansion.
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Chapter 3

Damage Localization Method

3.1 Introduction

Damage often occurs in single or multiple local sites in a structure during its
design life. The structure will lose its function and even collapse without waming
when the damage continuously accumulates. The only way to ensure the safety of
human life and to reduce the loss of wealth is to evaluate the integrity of the structure
and to carry out the remedial work. The main objective in the damage detection
process is to localize the damage sites as early as possible for structural maintenance.
In this chapter, a damage localization method using incomplete Elemental Modal
Strain Energy Change is proposed, and the Multiple Damage Location Assurance
Criterion (MDLAC) developed by Shi et al. (2000) is used. Incomplete measured
information is applied directly in the proposed method without expansion of the

measured data or reduction of the model.

In this thesis, the parameter Elemental Modal Strain Energy Change (EMSEC)
is used instead of mode shapes in the correlation matching of the Multiple Damage
Location Assurance Criterion (MDLAC) to localize the damage. The sensitivity of
Elemental Modal Strain Energy (EMSFE) to localize the damage has been derived by

Shi et al. (1998), and an improved sensittvity formulation (Shi ef al., submitted) on
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the EMSE is also developed. One element of the structure is assumed to be damaged
and the MDLAC value of each element is calculated. The potential damage sites are
preliminarily identified in those elements with higher MDLAC values. The final
damage sites are then determined by finding those combined sites among the potential
damage sites with the highest MDLAC values. Damage in the structure is assumed to
change the stiffness of in_div_idual elements only. Numerical examples in this chapter
show that the MDLAC method performs better with the EMSEC in the correlation

comparison than that from mode shapes in damage localization with or without noise

effect.
3.2 Damage Localization Method using Incomplete Measurements

For the convenience of comparison, the damage localization approach by the
Muitiple Damage Location Assurance Criterion (Shi et al., 2000) using incomplete

mode shapes is briefly reviewed before the presentation of the new method.

3.2.1 Damage Localization Method using Incomplete Mode Shapes

The Modal Assurance Criterion (MAC) developed by Allermang and Brown
(1982) 1s traditionally used to quantify the comparison of experimental-based and
analytical-based mode shapes. Messina et al. (1996 and 1998) presented a sensitivity
and statistical-based method called the Multiple Damage Location Assurance

Criterion (MDLAC) using natural frequencies to localize structural damage. It is
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formulated on the same basis as MAC for quantifying consistence correspondence
between related vectors. However, mode shapes are more sensitive to the local
structural damage than natural frequencies, and the MDLAC approach is further
modified (Shi et al., 2000) making use of incomplete mode shapes to localize the
damage sites. The basic algorithm of MDLAC using natural frequencies or incomplete

mode shapes is similar:

The incomplete mode shapes can be directly combined with the analytical
counterparts at the same measured degrees-of-freedom to localize the damage sites

using the correlation parameter MDLAC.
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where m is the number of selected modes to be monitored, and L. is the number of the

potential damage sites. {A®} is the measured mode shape change vector before and
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after the occurrence of damage in the structure, and its dimension is the product of the

number of measured modes and the number of sensor locations. {3(1)} is the analytical

mode shape change vector at the same degrees-of-freedom for the same structure with

a damage of a known size {51)}, which is an arbitrary pattern of damage at one or
more sites. The size of {5(1)} is equal to the product of the number of modes used and
the number of sensor locations, while the size of {sp} is equal to the number of

potential damage sites.

The sensitivity of the k-th mode shape to the j-th elemental damage is given

below (Shi et al., submitted).
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in which,
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where |K | is the j-th elemental stiffness matrix; {@, } and A, are the k-th analytical

mode shape and eigenvalue respectively; W is the weight factor and is equal to one in

this study; and n~ is the number of analytical modes used in the calculation (n’
should be equal to the total number of degrees-of-freedom. But in practice only a

limited number of modes of the system are used).
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3.2.2 Damage Localization Method using Incomplete EMSEC

Modal strain energy has been studied previously by Lim and Kashangake
(1994) and Doebling et al. (1997) in the identification of structural behaviour and the
damage location. Stubbs and Kim (1996) also used it as a damage indicator. Previous
works compared the modal strain energy in the finite elements before and after the
occurrence of damage. .Th'e proposed method is a modification of the MDLAC method
(Shi et al, 2000) by using incomplete Elemental Modal Strain Energy Change
(EMSEC) instead of incomplete mode shapes. The Elemental Modal Strain Energy
Change (EMSEC) for a damage scenario is computed using measured data. The
sensitivity of the Elemental Modal Strain Energy (EMSE) is also computed using
analytical data. Then the two sets of EMSEC from the analytical and the experimental

modeis are compared in the form of the Multiple Damage Location Assurance

(MDLAC) to determine the damage sites.

| {AMSE} - BMSE({8D )}

MDLAC({8D}) = . &
(#0) ({AMSE} - {AMSEY) - (BMSE(8DY)}' - {8MSE(8DD))
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where m is the number of selected modes to be monitored, and L is the number of
potential damage sites. {AMSE} 1s the measured MSEC vector before and after the
occurrence of damage n the structure; {SMSE} is the analytical MSEC vector at the
same selected elements with damage of a known size {60}. The dimension of vectors
{AMSE} and {SMSE} is equal to the product of the number of modes used and the
number of selected elements, while the dimension of {SD} 1s equal to the number of

potential damage sites. The MDLAC value of each element is calculated when only
one element is assumed damaged at one time. That is, every element in the vector
{80} equals to 0.0 except the element relating to the assumed damage site in
calculating each set of MDLAC value, which can be set to any value in calculating
each set of MDLAC. This is possible because this value will be canceiled out in the
subsequent normalization by the highest MDLAC value of the group of elements of
the structure. Then, those elements with a higher MDLAC value are preliminary
identified to be the potential damage sites. The final damage sites can be localized as

those combined sites with the largest MDLAC value.

The sensitivity of MSE of the &-th mode to damage at element j is given by

equation (3.9) below (Shi et al., submitted).
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where [ij is the j-th elemental stiffness matrix; [K] and [Af ] are the system

stiffness and mass matrices respectively; {(1)'} and A, are the k-th analytical mode

shape and eigenvalue respectively; ¥ is the weight factor and is equal to one in this
study. The number of potential damage site, L, is taken equal to the total number of
elements in the system; and »' is the number of analytical modes used in the
calculation. (n~ should be equal to the total number of degrees-of-freedom of the

system. But in practice only a limited number of modes of the system are used).

3.3 Numerical Examples

3.3.1 The Simulated Structure and Its Properties

A symmetric three-storey plane frame shown in Figure 3.1 is used to
demonstrate the damage localization method. Only vibration in the x-z plane is
considered. It is 0.59 metre wide and 1.2 metres high divided into three storeys of 0.4

metre each. It consists of two columns and three horizontal interconnection beams.
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The finite element model of the frame consists of 45 two-dimensional elements, 44
nodes and 126 degrees-of-freedom. The material properties of the frame are shown in
Figure 3.1 and the physical properties are summarized in Table 3.1. There are 42
unconstrained nodes and two constrained nodes at the supports. Each unconstrained
node has two translational (x-direction and z-direction) and one rotational (about y-
axis) degrees—of-ﬁ*eedom_in the plane under consideration. All degrees-of-freedom of
each node are calcuilated using the FORTRAN programs. And there is no restriction
on the elongation of the elements in the calculation. However, the z-direction
displacement of the column nodes has very small contribution to vibration modes and
they are not considered such that incomplete information on the mode shapes for the
damage localization method is used. Besides, the interconnecting beams are assumed
to vibrate without deformation in x-direction. Then, the translation in the x-direction
of each beam node is equal to that of the corresponding column-beam connection
node. And the rotational degrees-of-freedom of all the nodes are ignored because they
are difficult to measure. Thus, all rotational degrees-of-freedom are not chosen to
have incomplete information of the mode shapes for the damage localization method.

Therefore, each node has only one degree-of-freedom significant motion during free

vibration.

3.3.2 Vibration Properties of the Simulated Structure

The three-storey plane frame is studied for its free vibration properties without
damping effect. The first fifteen modes are studied. The first three modes are global
modes and the rests are local modes. The natural frequencies of the frame are listed in

Table 3.2. The mode shépes of each mode are shown in Figure 3.2.
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3.3.3 Damage Cases of the Simulated Structure

Damage in the structure is assumed to change the stiffness of individual
elements only (a change in the elastic modulus) and the other properties are
unchanged. There are three damage scenarios with small or large damage. The first
scenario has a single damage in element 45. Element 45 is located at the edge of the
third-level interconnecting beam. The second scenario contains damage in elements
17 and 32. Element 17 is located at the column in-between the base and the first level.
Element 32 is located at the first-level interconnecting beam. The third scenario is
with damage in elements 9, 13 and 39. Element 9 is located at the column in-between
the first and second levels. Element 13 is located at the middle of the column in-
between the second and third levels. Element 39 is located at the second-level
interconnecting beam. The details of the three damage scenarios with small and large

damages are listed in Tables 3.3 and 3.4 respectively.

3.3.4 Damage Localization without Noise Effect

The incomplete mode shapes from 18 translation degrees-of-freedom at the
two ends of 9 finite elements are used. They are the horizontal translation degrees-of-
freedom at nodes 3, 4, 8, 9, 13, 14, 19, 20, 24, 25, 29 and 30, and the vertical
translation degrees-of-freedom at nodes 34, 35, 38, 39, 42 and 43. The elements
selected for monitoring in the different states are elements 3, 8, 13, 18, 23, 28, 33, 38
and 43. They are at the middle of each length of the column and beam members, and
are selected from engineering sense. Modes 1, 2, 3, 10, 11 and 12 are selected in the

analysis because the first three modes are global modes with large column vibrations
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and the last three modes are the first three local modes dommated with large beam

vibration.

3.3.4.1 Results from MDLAC method using incomplete mode shapes

The damage localization results using the selected mcomplete mode shapes for
the three damage scenarios with small and large damages are shown in Figures 3.3(a)
to 3.5(a) and Figures 3.6(a) to 3.8(a) respectively. For single damage (see Figures
3.3(a) and 3.6(a)), it is found that the damage site can be determined when the damage
is small or large. For two damages (see Figures 3.4(a) and 3.7(a)), the damage on the
column 1s localized but the damage on the interconnecting beam is not detected in
both the small and large damage scenarios. For the case with three small damages (see
Figure 3.5 (a)), element 9 is localized successfully but elements 13 and 39 are not
located as damage sites. For the case with three large damages (see Figure 3.8(a)),
elements 9 and 39 are localized but element 13 is not classified as potential damage

site.

3.3.4.2 Results from MDLAC method using incomplete EMSEC

Figures 3.3(b) to 3.5(b) and Figures 3.6(b) to 3.8(b) give the damage
localization results for the three damage scenarios with small and large damages
respectively. The results from EMSEC can identify the actual damage elements as the
potential damage sites with their numerical MDLAC values higher than 0.5 (except
damage scenario_S3, the threshold value is 0.4) within the group of all elements.

However when incomplete mode shapes are used, the MDLAC method cannot localize
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the actual damage elements in the potential damage sites for multiple damage

scenarios as seen in Figures 3.4(a), 3.5(a), 3.7(a) and 3.8(a).

The MDLAC values on the different combinations of the potential damage
sites are further computed. The final damage sites are located corresponding to the
combination with the largest MDLAC value. The results obtained from using
incomplete EMSEC without noise effect are shown in Table 3.5. The final damage

sites are found to be the same as the actual damage elements for both small and large

damages when noise effect is not included.

For the single damage scenarios S1 and L1 (see Figures 3.3(b} and 3.6(b)), the
damage element 45 has the largest MDLAC value. However, some undamaged
elements (elements 30 and 44), which are adjacent to the damage, contain a larger
MDLAC value. The reason is that these adjacent elements share the same measured
mode shapes of the damage element and have some damage characteristic. Moreover,
some undamaged elements (elemcn;s 41 to 43), which are near the structural damage,
also have a larger MDLAC value because their measured mode shapes are affected by

the damage. The undamaged element 15 poses a larger MDLAC value, This is due o
that the structure is symmetrical. Then the analytical EMSEC of elements 15 and 30

are similar and give a mistake in the damage localization. Element 14 also has a

higher MDLAC value but this error cannot be explained.

For the two damage scenarios S2 and L2 (see Figures 3.4(b) and 3.7(b)), the

damage clement on column (element 17) has the largest MDLAC valuc and the

damage clement on beam (clement 32) has a larger MDLAC value. Some undamaged
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elements (elements 6, 16, 18, 31 é.nd 33), which are adjacent or near the structural
damages, also contain a larger MDLAC value due to the reason mentioned above. The
undamaged element 21 has a larger MDLAC value because its analytical EMSEC is
similar to that of element 6 which is symmetrically located on the other side of the
frame and 1s near the damage. For identifying the potential damage sites, only one
element of the structure is assumed to be damaged in the analytical EMSEC. Then,
this analytical EMSEC is correlated to the experimental EMSEC and obtained a
MDLAC value. However, the experimental EMSEC includes the effect from two
damages. Therefore, the MDLAC value in some undamaged elements (elements 3, 15,

41 to 45) may have errors due to the coupling effects from several damage sites.

For the three damage scenarios $3 and L3 (see Figures 3.5(b) and 3.8(b)), one
damage element on column (element 9) has the largest MDLAC value. The other
damage element on column (element 13) and on beam (element 39) has a larger
MDLAC value. This observation shows that the damage effect on the measured mode
shapes by element 9 1s more dominant than that by element 13 or element 39. Some
undamaged elements (elements 7, 8 and 40), which are adjacent to or near the

damages, also contain a larger MDLAC value with the same reason mentioned above.

3.3.5 Damage Localization with Noise Effect

Measured frequencies and mode shapes are always contaminated with the
measurement noise. The ability of a damage localization method to localize damages

using incomplete noisy information is very important. The noisy "measured"
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eigenvalues and mode shapes (with superscript ~} are calculated according to the

following equations.

A=A -(+yie™) G.11)
=4 o O
O, =0, (I+y;p") (3.12)

where A, is the i-th eigenvalue and @, is the j-th component of the i-th mode shape

~

at any damage scenario. A, and @ i are the corresponding noisy eigenvalue and

I

mode shape. y; and y§; are random numbers with a mean equal to zero and a

variance equal to one. p* and p® are the noise level for the eigenvalue and mode

shape. Messian et al. (1996) suggested a standard error of +0.15% as a benchmark
figure for natural frequencies measured in the laboratory with the impulse hammer
technique. In contrast, the mode shape estimate have an error level as much as 20

times worse (Farrar and Cone, 1995) than those in the corresponding natural

frequencies estimate. Therefore, the noise levels for the eigenvalue (p*) and mode

-shape ( p® ) are assumed to be 0.15% and 3% respectively.

The incomplete and noisy mode shapes are then used to localize the structural
damage sites by the MDLAC methods using mode shapes and using EMSEC in turn.
Figures 3.9 to 3.11 give the damage localization results for the three damage scenarios
with small damage. The results show that the noise has a large adverse effect in the
MDLAC method using incomplete mode shapes or using incomplete EMSEC when
the damage is small. Figures 3.12 to 3.14 give the damage localization results for the

three damage scenarios with large damage. The results show that the MDLAC
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methods using mode shape or EMSEC with noise effect have similar results to that

without noise when the damage 1s large.

The potential damage sites and the final damage sites for the small and large
damage scenarios using incomplete and noisy EMSEC are listed in Table 3.6. The
threshold value of the elements identified as potential damage sites is 0.5 for damage
scenarios S1, 82, L1 and L2. The threshold value is 0.3 and 0.45 for damage scenarios
$3 and L3 respectively. It is found that the actual damage elements are grouped in the
final set of damage sites. Hence, the MDLAC method using incomplete EMSEC with
noise effect, though not able to match the actual damage sites, can significantly
reduce the number of final damage sites for further examination in the subsequent

stage of damage quantification.

By comparing Figures 3.3(b) to 3.5(b) and 3.9(b) to 3.11(b), it was reported
that the localization results are greatly affected by the noise effect for small damages.
The damage element does not contain the largest MDLAC value. The undamaged
elements, which are adjacent to or near the damage, have a larger MDLAC value.
However, some undamaged elements, which are far away from the structural damage,
also have a larger MDLAC value due to the noise effect and the assumption of a single

damage in the computation of the analytical EMSEC for identifying the potential

damage sites.

For the case of large damages, the damage element has the largest MDLAC
value for scenarios L1 and L3. However, the adjacent element (element 31) has the

largest MDLAC value for scenario L2. The undamaged elements, which are adjacent
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to or near the damage, also contain a larger MDLAC value because they exhibit some
damage characteristic derived from the mode shape of the adjacent connecting node.
The undamaged elements at the same position of the adjacent elements on the other

column have a larger MDLAC value due to the symmetry of the structure.

3.3.6 Damage Localization with Larger Noise Level

For further investigating the noise effect on this proposed damage localization
method, a higher noise level on the eigenvalue and mode shape are used. Two more
noise levels are further investigated. Noise level A is 0.25% and 5% for the
eigenvalue and mode shape respectively. And Noise level B is 0.5% and 10% for the
eigenvalue and mode shape respectively. The noisy eigenvalue and mode shape are
calculated using the equations in Section 3.3.5. The larger noise effect on the

localization results is further studied with damage scenario L3.

The damage localization results from the MDLAC method using EMSEC for
damage scenario L3 are shown in Figures 3.15 and 3.16 with noise level A and noise
level B respectively. For damage scenario L3 with noise level A or noise level B, the
threshold value is 0.3. The potential damage sites are elements 7, 8, 9, 13, 36, 38, 39,
40 and the final damage sites are elements 7, 13, 36, 40 for both cases. Unfortunately,
only the actual damage element 13 is grouped in the final damage sites and the other

two damage elements (elements 9 and 39) are not.
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3.4 Conclusions

The Multiple Damage Location Assurance Criterion (MDLAC) dernived
directly from incomplete mode shapes is studied for its effectiveness to localize the
damage in a structure. The elemental modal strain energy change (EMSEC) 1s used
instead of mode shapes. The potential damage sites are identified by grouping those
elements with their MDLAC values larger than a prescribed threshold value. The final
damage sites can be determined by further calculating the MDLAC values for different
combinations of the potential damage sites. The combination that gives the highest
MDLAC value is the final damage state. A three-storey plane frame is used to
demonstrate the damage localization methods using incomplete mode shape and using
incomplete EMSEC. The effect of the measurement noise in the damage assessment
methods is also studied. From Section 3.3.6, we found that the damage localization
method using incomplete noisy EMSEC cannot localize the actual damage elements
when a high noise level is used. Results show that the MDLAC method using
incomplete FMSEC is more accurate and effective to localize the structural damages
than that using incomplete mode shapes. For the proposed method, the damage
element usually has the largest MDLAC value. The undamaged elements, which are
adjacent to or near the damage, or at the same position of the adjacent elements on the
other column, also contain a larger MDLAC value due to symmetry. However, some
undamaged elements, which are far away from the structural damage, are also

identified as potential sites due to noise effect.
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Table 3.1 - Physical properties of column and beam elements

Column Element

Beam Element

Axial Area, A (m?) 142.40 x 10 230.03 x 10°°
Poison Ratio, v 0.30 0.30
Moment of Inertia, T (m?) 2.350 x 10710 1.976 x 10°®

Table 3.2 - Natural frequencies of three-storey plane frame

Mode No.

Natural Frequency (Hz)

© ¥ ® N v oL W o e

LY Ny

7.067
20.75
31.159
127.056
134.379
137.096
138.261
151.668
166.477
192.787
203.584
210.749
374.523
377.771
379.413
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Table 3.3 - Damage scenarios with small damages for three-storey plane frame

Scenario S1 Scenario S2 Scenario S3
Element No.  Damage | ElementNo. Damage | ElementNo. Damage
45 5% 17 5% 9 2%
32 3% 13 3%
39 3%

Table 3.4 - Damage scenarios with large damages for three-storey plane frame

Scenario L1 Scenaro L2 Scenario L3
Element No.  Damage | ElementNo. Damage | ElementNo. Damage
45 30% 17 30% 9 15%
32 20% 13 20%
39 20%

Table 3.5 - Potential and final damage sites by using incomplete EMSEC

Potential Damage Sites Final Damage Sites | MDLAC

value
Scenario S1 14,15, 30, 41-45 45 0.536
Scenario 82 | 3, 6, 15-18, 21, 31-33, 41-45 17,32 0.480
Scenario S3 7-9, 13, 39 9,13, 39 0.637
Scenario L1 14, 15, 30, 41-45 45 0.532
Scenario L2 | 3,6, 15-18, 21, 31-33, 41-45 17, 32 0.495
Scenario L3 7,9, 13,39, 40 9,13, 39 0.741
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Table 3.6 - Potential and final damage sites by using incomplete and noisy EMSEC

Potential Damage Sites Final Damage Sites | MDLAC

value
Scenario S1 2,4,10, 18, 25, 42-45 25,44, 45 0.215
Scenario S2 6, 12-14, 16, 17, 21, 28, 29, 17,31,32 0.407

31-33,35,42,43
Scenario 83 7,9-11, 13, 24, 25, 36-40 9,13,25,39,40 0.342
Scenario L1 30, 41-45 45 0.386
Scenario L2 | 3,6, 13,16, 17, 21, 31-33, 35, 17,31, 32 0.494
42-44

Scenario L3 7,9, 13, 34, 36, 38-40 7, 9,13,39,40 0.583

41 42 43 44 41,42, 43, 44 45
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Figure 3.1 - Evaluation view of three-storey planc frame
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Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
(7.067Hz) (20.750H2) (31.159Hz) (127.056Hz) (134.379Hz)

Mode 6 Mode 7 Mode 8 : Mode 9 Mode 10
{137.096Hz) (138.261Hz) {151.668Hz) (166.477Hz) (192.787Hz)

Mode 11 Mode 12 Mode 13 Mode 14 Mode 15
(203.584Hz) {(210.749Hz) (374.523Hz}) {(377.771Hz) (379.413Hz)

Figure 3.2 - Mode shapes of three-storey plane frame

39



Damage Localization Method

Chapter 3

(a) MDLAC method using Incomplete Mode Shapes
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Figure 3.3 - Damage localization charts for scenario S1 without noise
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(a) MDLAC method using Incomplete Modle Shapes
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(b} MDLAC method using Incomplete BMSEC
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Figure 3.4 - Damage localization charts for scenario S2 without noise
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(a) MDLAC method using Incomplete Mode Shapes
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(b) MDLAC method using Incomplete EMSEC

o
SNjBA DYIQW PazZIEWION

Blerment No.

Figure 3.5 - Damage localization charts for scenario $3 without noise
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(a} MDLAC method using Incomplete Mode Shapes
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SN[BA DY TGN PBZIBULION

Herrent No.

Figure 3.6 - Damage localization charts for scenario L1 without noise
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{a) MDLAC method using incomplete Mode Shapes
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Figure 3.7 - Damage localization charts for scenario L2 without noise
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Figure 3.8 - Damage localization charts for scenario L3 without noise
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(a) MDLAC method using Incomplete Mode Shapes

Normalized MDLAC value

Normalized MDLAC value

Figure 3.9 - Damage localization charts for scenario S1 with noise
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(a) MDLAC method using Incommplete Mode Shapes
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Figure 3.10 - Damage localization charts for scenario S2 with noise
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{a) MDLAC method using Incomplete Mode Shapes
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Figure 3.11 - Damage localization charts for scenario S3 with noise
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{a) MDLAC method using Incomplete Mode Shapes
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Figure 3.12 - Damage localization charts for scenario L1 with noise
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(a) MDLAC method using incamplete Mode Shapes
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Figure 3.13 - Damage localization charts for scenario L2 with noise
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(a) MDLAC method using Incomplete Mode Shapes
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Figure 3.14 - Damage localization charts for scenario L3 with noise
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MDLCA method using Incomplete BMSEC

Normalized MDLAC value

Figure 3.15 - Damage localization chart for scenario L3 with noise level A
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Figure 3.16 - Damage localization chart for scenario L3 with noise level B
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Chapter 4

Damage Quantification Method using First Order Analysis

4.1 Introduction

After localization of the damage sites, the damage extent of the final damage
sites can be quantified by using the measured eigenvalues. In this chapter, a structural
damage quantification method is proposed using only the first order sensitivity terms
in the Taylor's expansion. A linear sequential filtering technique is used to relate the
analytical and experimental sets of eigenvalues including the measurement noise
matrix. Optimum solution of the damage extent is obtained from an unbiased
minimum variance error estimation method (Law and Li, 1993). The formulation has
the capability to estimate a larger set of eigenvalues from a smailer set of measured
eigenvalues. Weight linear least squares method is used to solve the identification
equation. Numerical examples on the damage quantification method using first order

analysis are conducted on the same three-storey plane frame described in Chapter 3.

4.2 Theory

The cquation of motion of an undamped n-degrees-of-freedom structural dynamic

system can be expressed as
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K® = MDA 4.1)

where K and M are the system stiffness and mass matrices and A is the diagonal
eigenvalue matrix of Ay @ is the matrix of eigenvector of the system. For a small
perturbation in the stiffness and mass matrices of the system, the dynamic system in

Eqt.(4.1) becomes
[(K + AK)~ (A, + A%, XM + AM )@, + A, )=0 (4.2)

where the A terms represent the perturbations. When the structural perturbations and
the corresponding characteristic changes are small, the higher order terms can be
neglected, and the first-order perturbation gives the usual sensitivity of the

eigenvalues as

(DkT(AK _?\‘kAM)(Dk | (43)

Al =
f D, MO,

which relates the change of eigenvalue with the change in the stiffness and mass of

the system.

Considering the orthogonal condition @,’M®, = 7, and for the most general case
where a damage in a structural system only involves a change in the stiffness,

Eqt.(4.3) becomes

Ak, =D, AK®D, (4.4)
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Structural faults will cause changes to several elemental stiffness matrices K; in

general. In the present study, the fractional change of the stiffness matrix is

represented by a damage coefficient C,

AK =) CK, (4.5)

where 02 C; > -1.0 and N is the total number of damage elements in the structural

system.

Expanding the change in eigenvalue as a Taylor’s series and neglecting the higher

order terms, we have

Ak, = iﬁm. (4.6)
i=1 aK‘ ' .
where
N, r 0K
—t -0, —0 4.7
ok, ' ook, " (“7)

i

4.2.1 Identification Equation

Substituting Eqt.(4.7) into Eqt.(4.6) and rewriting in a matrix form for L number of

etgenvalues, we have
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(ar} [0k, @ o'k © .. .. oK, ]|C
AL, | |®,K, @, @K, D, .. .. &,K, D, |l
§ = 0 (4.8)
ar ) oK 0, oK, 0, .. .. ® K, |C,

Rearranging in a matrix form, we have the identification equation on the damage

coefficient vector C.

Ak = AC (4.9)
This 1s the most general equation used by many researchers to relate the change in
eigenvalues with respect to the damage coefficients with an analytical model.
Considering the practical case of having incomplete measured eigenvalues and the

existence of measurement noise, the measurement state of the problem can be

expressed in terms of the analytical change of eigenvalues as

AL = DAM +w (4.10)

where D is the measurement matrix; w is a random noise vector; AA and AA are the

vectors of measured and analytical eigenvalues respectively.

4.2.2 Optimal Solution of the Identification Equation

A linear unbiased minimum variance estimation method is used for an optimal

solution on Eqts.(4.9) and (4.10). The measurement matrix £ is assumed available.
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A linear sequential filter of the following form (Sage and White, 1977) is used for the

estimation.
AL = QC + PAR _ (4.11)

where C is the estimated vector on C, A% and AX are the last estimated value and
the measured value of AM respectively; and P is the gain matrix. It is noted that

Eqt.(4.11) enables the use of a smaller number of measured AL to estimate a larger
number of AX which can then be used to estimate the vector C.
The optimal estimation requires

E)=cC, E(AX) = AL (4.12)

Substituting Eqts.(4.9), (4.10) and (4.12) into Eqt.(4.11), the expected value of AN

becomes

E(ar)=(0+ PDAYC (4.13)

with £(w) equals to zero for an assumed white noise distribution. Comparing Eqt.(4.9)
with Eqt.(4.13) shows that the necessary condition for Eqt.(4.9) to have an optimal

unbiased solution is

A=Q+ PDA (4.14)
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4.2.3 The Gain Matrix P

Substituting Eqt.(4.14) into Eqt.{4.11) gives the unbiased estimated A4 as

Al =AC+P(AT -DAC) (4.15)

The errors in the eigenvalue change and coefficient C are defined as

AL = Ad~AA, C=Cc-¢C : (4.16)

Substituting Eqts.(4.9), (4.10) and (4.15) into Eqt.(4.16), we have

Al =(A- PDA)C - Pw (4.17)

The variance of error A4 can be derived as

E(AMAA)=A - AD P - PDA + PDP' + PE(ww" )P’ (4.18)
where
A=AE(CCT)AT, D=DAD' (4.19)

which are symmetrical matrices

The minimum variance in the error A4 corresponds to the smallest value in

tr[E(AIAZT )] , where tr{ #] denotes the trace operation, i.e.

TaqT
d vlE@Asd] (4.20)
dP

58



Chapter 4 Damage Quantification Method using First Order Analysis

Substituting Eqt.(4.18) into Eqt.(4.20)

d tr|E(aRART)]

— n _aanT

=0
we have
P=(AD"YD +R)" (4.22)

where R equals to E(ww”) and is the variance matrix of the noise. Eqt.(4.22) gives the

optimal gain matrix P, which when substituting into Eqt.(4.15) gives an unbiased

estimate of A,

4.2.4 Estimation of Coefficient C

The estimated vector AX is then used to estimate the coefficient vector ¢ using the

weight linear least squares method from Eqt.(4.9).
C=(ATWA)" ATWAK (4.23)

where ¥ is the weight matrix on the measured data.

The variance of error in the coefficient C is then given by

E(CCTy=(C-C)C-C) (4.24)
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4.3 Procedure of Implementation

The linear sequential filter is implemented as follows in the identification problem.

Step 1:

Step 2 :

Step 3 :

Step 4 :

Step 5 :

Step 6 :

Step 7 :

Step 8 :

Step 9:

Perform the dynamic analysis of the structure to obtain the system matrices

and the eigen-parameters.

Calculate the sensitivity matrix 4 from Eqt.(4.8)

Calculate the matrices A and D from Eqt.(4.19) with an initial variance
matrix E(E:‘Ef).

Calculate the gain matrix P from Eqt.{4.22) with an assumed variance
matrix R.

Calculate the variance of A% , E(AXART), from Eqt.(4.18).

Calculate AX from Eqt.(4.15) using the measured AXA and an initial vector
C.

Calculate the coefficient vector C ; for the i-th iteration from Eqt.(4.23) with
an assumed weight matrix ¥ .

Calculate the variance matrix E(E&" T) from Eqt.(4.24).

Compare C and é'f. |

If the difference is larger than a prescribed value, set C = C‘,. and go to Step

3 until the difference converges.
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4.4 Numerical Examples

A symmetric three-storeyl plane frame described in Section 3.3 is used to
illustrate the damage quantification method using first order analysis. The damage
scenarios with small or large damages are the same for the damage localization
method mentioned in Section 3.3.3. The ei genvalﬁes are obtained from the analytical
finite element model with and without damages for each damage scenario. The ratio
of the eigenvalue change to the eigenvalue for each mode is computed and the mode
numbers are re-arranged with this ratio in descending order. The variance matrix R,

the weight matrix & and the variance matrix on the error in the damage coefficient

' C, E(@ET), have been set equal to the identity matrix 7 and the criteria of

~

convergence in C; is set equal to 0.1% of the last computed value. The noise levels

for the eigenvalue and mode shape are assumed to be 0.15% and 3% respectively. The

eigenvalues and mode shapes with noise effect are calculated by the method described

in Section 3.3.5.

The formulation has the capability to expand the eigenvalue from a smaller

measured set to a larger set.

4.4.1 Damage Quantification without Eigenvalue Expansion

The first eight modes with the largest eigenvalue change ratio are shown in

Table 4.1 and 4.2 for the small and large damage scenarios respectively.
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4.4.1.1 For small damages

The identified results with the actual damage elements in the suspected
element group only are shown in Table 4.3. The results show that the damage extent
can be quantified correctly whether the results are contaminated by noise or not.
Besides, the estimated ciarriage extent without noise effect is more accurate than that

with noise effect. Fortunately, the error without and with noise is less than 5% and 6%

respectively.

In practice, the number of the suspected damage elements may be greater than
the number of the actual damage elements. Then, the suspected element group is
expanded to include other undamaged elements as identified in Chapter 3 and the true

C value of the undamaged element is zero. The results for different damage scenarios

are shown in Tables 4.4 to 4.6.

From Tables 4.4 and 4.5, the results show that the damage extent of the
suspected group of elements can be estimated accurately for damage scenarios S1 and
S2. Their errors are less than 4% and 7% respectively. The damage extent of the
elements in scenario S3 can be estimated with a maximum error of 9%. However, the
undamaged element 40 is incorrectly identified to have a damage. The damage extent
of this element is just smaller than that of the damage element 39. This is because the
undamaged element 40 is just adjacent to the damage element 39, and adjacent
clements would naturally exhibit some damage characteristics as they are sharing the

same measured mode shapes at the adjacent connecting nodes. From Tables 4.4 to
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4.6, the estimated results without noise effect are more accurate than those with noise

effect.

4.4.1.2 For large damages

Table 4.7 shows the damage quantification results for large damages with the
actual damage elements in the suspected element group only. The resuits show that
the damage extent cannot be estimated clorrectly for both single or multiple damages
when only the actual damage element is included in the suspected element group. This
is because the behaviour of the structure is no longer linear with damage when the
damage is large, and this method only includes the linear part of the Taylor's
expansion. Therefore, this damage quantification method using first order analysis is

not suitable for large damage identification.

4.4.2 Damage Quantification with Eigenvalue Expansion

There is an advantage in this damage quantification method where a smaller
set of measured eigenvalues can be expanded to a larger set of cigenvalues. In this
section, the first five modes with the largest eigenvalue change ratio are expanded into
eight modes. The re-arranged mode numbers used are the same as that in Section

4.4.1 and shown in Tables 4.1 and 4.2 for small and large damage scenarios

respectively.
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4.4.2.1 For small damages

Table 4.8 shows the identified results with the actual damage elements in the
set of the suspected elements. From this table, it is found that the damage extent of the
actual damage elements can be determined correctly with less than 7% error. The
estimated damage extent without noise effect has better performance than that with
noise effect. By comparing Tables 4.3 and 4.8, the results from the case without
eigenvalue expansion are more accurate than those with eigenvalue expansion when
the information is contaminated by measurement noise or not. This is due to the more

commonly known errors in the expansion process.

The damage quantification results with inclusion of some additional
undamaged elements in the suspected element group are shown in Tables 4.9 to 4.11
for different small damage scenarios. For damage scenarios S1 and S2, the damage
extent of the suspected element group can be determined accurately with or without
noise effect. From Tables 4.9 and 4.10, the errors in damage scenarios S1 and S2 are
less than 5% and 8% respectively. For damage scenario S3, the damage extent of the
suspected element group can be estimated, and the error is less than 11% (see Table
4.11). However, the undamaged clement 40 is estimated to have a stiffness damage
and its extent is similar to that of the damage element 39. Reason of this has been
explained in Section 4.4.1.1. From Tables 4.9 to 4.11, it is noted that the identified
results without noise effect are more accurate than those with noise effect. By
comparing Tables 4.4 to 4.6 and 4.9 to 4.11, the estimation without eigenvalue

expansion is better than that with eigenvalue expansion.
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4.4.3 Stability Analysis

In the above studies, the initial vector C has been set to the true values.

However, the true damage coefficient C of each element is unknown. In this study,

the initial vector C is an arbitrary vector and its components are assumed to be equal
in this study. Since the estimation without eigenvalue expansion gives more accurate

results than that with eigenvalue expansion, the method without eigenvalue expansion

is used for this stability study. The importance of the initial value of C to the damage

assessment is further studied in damage scenario $3 with five suspected elements. The
estimation is performed using different initial vector C with its components all equal.
The initial vector C ranges from -0.01 to -0.1 with 0.01 increments. The same final

vector C is obtained from different initial vector ¢ with less than 9% error, and the

results with noise effect are shown in Table 4.12. This indicates that the proposed

method is independent of the initial vector C.
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4.5 Conclusions

A structural damage quantification method based on the first order terms of
the Taylor's expansion is proposed. A linear sequential filtering technique and an
unbiased minimum error estimation method is used in the formulation. A weight
linear least squares method is used to solve the identification equation. An eigenvalue
expansion is allowed for this method. The effectiveness and accuracy in the
identification for small and large damages are studied. Numerical simulations on
damage assessment with a three-storey plane frame show that this method is effective
and gives an accurate result for small damages. The damage extent of the suspected
element group can be estimated correctly with or without noise effect. However, the
estimation is not suitable for large damages. In general, the method without
eigenvalue expansion has better performance than that with eigenvalue expansion due

to the error in the expansion process. And the final results from this method are

checked independent of the initial vector C.
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Table 4.1 - The first eight re-arranged mode numbers for small damage scenarios

Damage Scenario

Re-arranged Mode Numbers

S1
S2
S3

10,11,7,5,9,12,3,8
13,11,15,14,5,12,6,1
12,9,7,10, 14, 8,5, 13

Table 4.2 - The first eight re-arranged mode numbers for large damage scenarios

Damage Scenario

Re-arranged Mode Numbers

L1
L2
L3

10,11,7,5,9,12,3,8
13,11,5,4,6, 1,12 ,10
12,13,10,9,7,5,4,8

Table 4.3 - Damage quantification results for small damages with actual damage
elements in the suspected element group only (without eigenvalue expansion)

Damage S1 S2 S3
Scenario
Element No. 45 17 32 9 13 39
True Damage -0.05 -0.05 -0.03 -0.02 -0.03 -0.03
Extent, C
Estimated C -0.0506 | -0.0487 -0.0311 | -0.0210 -0.0309 -0.0303
Error 1.2% 2.6% 3.7% 5.0% 3.0% 1.0%
Estimated C ,pi5e | -0.0511 | -0.0478 -0.0315 | -0.0212 -0.0310 -0.0305
Error ngise 2.2% 4.4% 5.0% 6.0% 33% 1.7%

Subscript neise denotes results from polluted measurements
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Table 4.4 - Damage quantification results for damage scenario S1

{without eigenvalue expansion)

Element No. 25 44 45
True Damage 0 0 -0.05
Extent, C
Estimated C 0.0001 0.0002 -0.0513
Error i o 2.6%
Estimated C 545 0.0001 0.0002 -0.0520
Error ,0ise - - 4.0%

Table 4.5 - Damage quantification results for damage scenario S2

(without eigenvalue expansion)

Element No. 17 31 32
True Damage -0.05 ' 0 -0.03
Extent, C
Estimated C -0.0482 0.0103 -0.0313
Error 3.6% - 4.3%
Estimated C ,ise -0.0474 0.0107 -0.0320
Error »pise 5.2% - 6.7%

Table 4.6 - Damage quantification results for damage scenario S3

(without eigenvalue expansion)

Element No. 9 13 25 39 40
True Damage -0.02 -0.03 0 -0.03 0
Extent, C
Estimated C -0.0215 -0.0316 0.0082 -0.0278 -0.0227
Error 7.5% 5.3% - 7.3% -
Estimated C 5. | -0.0218 -0.0321 0.0093 -0.0275 -0.0238
Error i 9.0% 7.0% .- 8.3% -
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Table 4.7 - Damage quantification results for large damages with actual damage
elements in the suspected element group only (without eigenvalue expansion)

Damage Ll L2 L3
Scenario
Element No. 45 17 32 9 13 39
True Damage -0.3 -0.3 -0.2 -0.15 ‘ -0.2 -0.2
Extent, C
Estimated C -0.4178 | -0.9308 -0.2144 | -0.3473 -0.1807 -0.2064
Error 39.3% | 210.3% 7.2% 131.5% 9.7% 3.2%
Estimated C o | -0.4275 | -0.9349 -0.2145 | -0.3497 -0.1810 -0.2072
Error e 42.5% | 211.6% 7.3% 133.1% 9.5% 3.6%

Table 4.8 - Damage quantification results for small damages with actual damage
elements in the suspected element group only (with eigenvalue expansion)

Damage S1 S2 S3
Scenario
Element No. 45 17 32 9 13 39
True Damage -0.05 -0.05 -0.03 -0.02 -0.03 -0.03
Extent, C
Estimated C -0.0510 | -0.0486 -0.0314 | -0.0212 -0.0311 -0.0304
Error 2.0% 2.8% 4.7% 6.0% 3.7% 1.3%
Estimated C noise | -0.0516 | -0.0477 -0.0319 | -0.0213 -0.0317 -0.0308
Error ,pise 3.2% 4.6% 6.3% 6.5% 5.7% 2. 7%
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Table 4.9 - Damage quantification results for damage scenario S1

(with eigenvalue expansion)

Element No. 25 44 45
True Damage 0 0 -0.05
Extent, C
Estimated C 0.0002 0.0004 -0.0516
Error - - 3.2%
Estimated C o 0.0002 0.0004 -0.0525
EITor noise - - 5.0%

Table 4.10 - Damage quantification results for damage scenario S2

(with eigenvalue expansion)

Element No. 17 31 32
True Damage -0.05 0 -0.03
Extent, C
Estimated C -0.0479 0.0121 -0.0318
Error 4.2% - 6.0%
Estimated C i -0.0472 0.0129 -0.0322
Error noise 5.6% - 7.3%

Table 4.11 - Damage quantification results for damage scenario S3
(with eigenvalue expansion)

Element No. 9 13 25 39 40
True Damage -0.02 -0.03 0 -0.03 0
Extent, C
Estimated C -0.0182 -0.0323 0.0086 -0.0276 -0.0228
Error 9.0% 7.7% - 8.0% -
Estimated C o5 | -0.0179 -0.0328 0.0099 -0.0272 -0.0240
Error i 10.5% 9.3% - 9.3% -
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Table 4.12 - Damage quantification results for damage scenario S3 in stability
analysis (without eigenvalue expansion)

Element No. 9 13 A 25 39 40
True Damage -0.02 -0.03 0 -0.03 0
Extent, C
Estimated C .55 | -0.0218 -0.0321 0.0093 -0.0275 -0.0238
Error noise 9.0% 7.0% - 8.3% -
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Chapter 5

Damage Quantification Method using
Second Order Analysis

5.1 Introduction

The damage quantification method using first order analysis has been shown
not suitable for large damages in Chapter 4. The higher order terms in the Taylor’s
expansion are required to take into account of the non-linear changes. Terms above
second order are numerically small and it is computational expensive if they are
included in the formulation. Therefore, a damage quantification method using the
second order terms in the Taylor's expansion is proposed. The same linear sequential
filtering technique and unbiased mimimum variance error estimation method (Law and
Li, 1993) are use to formulate the identification equation, and weight linear least
squares method is used to solve the identification equation. The formulation generates
two necessary conditions for the optimal solution. The solution procedure would be
similar to that presented in Chapter 4. Numerical examples on the damage
quantification method using second order analysis would also be based on the same

three-storey plane frame described in Chapter 3.
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5.2 Theory

For the sake of clarity in the development of the theory, some of the steps given in

Section 4.2 are repeated below.

The equation of motion of an undamped n-degrees-of-freedom structural dynamic

system can be expressed as
K® = MOA (5.1)

where K and M are the system stiffness and mass matrices and A is the diagonal
eigenvalue matrix of A4 @ is the matrix of eigenvector of the system. For a small
perturbation in the stiffness and mass matrices of the system, the dynamic system in

Eqt.(5.1) becomes
[(K +AK)- (A, + A% XM + AM)[@, + 4D, )=0 (5.2)

where the A terms represent the perturbations. When the structural perturbations and

the corresponding characteristic changes are small, the higher order terms can be

neglected, and the first-order perturbation gives the usual sensitivity of the

eigenvalues as

- chT(AK _}"kAM)(Dk (5.3)

AL _
®, MD,

k

which relates the change of eigenvalue with the change in the stiffness and mass of

the system.
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Considering the orthogonal condition O, M, = 1, and for the most general case
where a damage in a structural system only involves a change in the stiffness,

Eqt.(5.3) becomes

AL, = O, AKD, (5.4)

Structural faults will cause changes to several elemental stiffness matrices K; in

general. In the present study, the fractional change of the stiffness matrix is

represented by a damage coefficient C,

AK =Y CK, : (5.5)

where 0> C; > -1.0 and N is the total number of damage elements in the structural

system.

Expanding the change in eigenvalue as a Taylor’s series and neglecting the terms

above second order, we have

- O, L& 1 9%,
Ak, = ) —AK, + - AK AK . 5.6
¢ §a1<‘. : ;Z,:zaKaK A (5.6)
where
oA, r 0K
k' 5.7
oK, ¢ oK, * 3.7
2
a°k, =‘Dkr oK Hax,,M oD, +(Dkr K _63\,( M od, (5.8)
oK . 0K oK, 9K, oK ; oK, oK, K,
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The derivative of eigenvector with respect to the stiffness of the i-th element has been

_ obtained from Rudisill (1974) as

oD
—t-H, Elf——cbfﬁcbkwf @, (5.9)
oK, oK, oK,
where
H, =-J ' [K-2\M] (5.10)

(5.11)

[K -,kajl
J, =[K-AaM 2MD,]

20, M

5.2.1 Identification Equation

Substituting Eqts.(5.7) to (5.11) into Eqt.(5.6), the change in eigenvalue becomes

iic{%@k’"(&. —o, KoMK, (K, -0, KoM, +

%(DJ(KJ'“(DkTqu),{M)Hk(K,-—q)kTK,.(DkM)EDkJCj (5.12)

and rewriting in a matrix form, we have the identification equation on the damage

coefficient vector C.

A\, =AC+C'GC (5.13)
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where
A=K D oK - OK,0) (5.14)
(C, ]
G
c=d: (5.15)
Cy )

~ and G is an N x N symmetrical matrix with

[Ggf ]k - %CD*T[(K:‘ - (D,‘TK,LD,;M)H,C (Kf —(DkTKJ.(D,(M)+

(k, -0, k,0MH, (K -0, K 0M)b, (5.16)
Eqt.(5.13) is the identification equation but it is non-linear in C. To overcome this

problem, the quadratic term C'GC is expanded in a series about Cp, and the first two

terms are taken to become
C’'GC=2C,"GC-C, GC, (517

where Cp is the initial value of C.

Substituting Eqt.(5.17) into Eqt.(5.13), we have the identification equation linearized

in C as
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m, =(4+2¢76)c-c G,

(5.18)

which is valid for every eigenvalue of the system. For L number of eigenvalues, we

have
(an) (4
AA, A,
< : - :
N‘M"LJ _A,_

J
1
)
'

+2 C

(5.19)

Rearranging in a matrix form, the identification equation on the damage coefficient

vector C becomes

Ax =(A+2B)C - BC,

= FC - BC,
where
F=A+28
(AN, ) (C, ]
AM, c,
Ah=¢ : ; C=<: ¢
-AA'LJ 4 u JVJ 2
(OTK,®, 'K,
d)gKI(DZ (DgKZG)Z
A = < . P
\q)ZKI(DL (DIKZ(I)L

(DIKN(I)L) LxN
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B={ : | (5.24)

r
CG, ) L

Considering the practical case of having incomplete measured eigenvalues and the
existence of measurement noise, the measurement state of the problem can be

expressed in terms of the analytical change of eigenvalues as

AN = DAL +w (5.25)

where D is the measurement matrix; w is a random noise vector; AA and AA are the

vectors of measured and analytical eigenvalues respectively.

5.2.2 Optimal Solution of the Identification Equation

A linear unbiased minimum variance estimation method is used for an optimum

solution on Eqts (5.20) and (5.25). The measurement matrix D and matrices F and B

are assumed available.

A linear sequential filter of the following form (Sage and White, 1977) is used for the

estimation.

A% = QC + PAX _ (5.26)
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where C is the estimated vector on C; AXx and AX are the last estimated value and

the measured value of AL respectively; and P is the gain matrix. It is noted that
Eqt.(5.26) enables the use of a smaller number of measured A to estimate a larger

number of AL which can then be used to estimate the vector C.

The optimal estimation requires

E(C)=C, E(ALN) — M (5.27)

Substituting Eqts.(5.20), (5.25) and (5.27) into Eqt.(5.26), the expected value of AN

becomes
E(AX)= (0 + PDF)C - PDBC, (5.28)

with E(w) equals to zero for an assumed white noise distribution. Comparing
Eqt.(5.20) with Eqt.{5.28) shows that the necessary conditions for Eqt.(5.20) to have

an optimal unbiased solution are

F=Q+PDF and
(5.29)

B=PDB or PD=1

5.2.3 The Gain Matrix P from the First Condition Only

The gain matrix P takes up different form with the use of either the first condition or

both conditions in Eqt.(5.29). Substituting the first condition in Eqt.(5.29) into

Eqt.(5.26) gives the unbiased estimated AX as follow
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AX = FC + P(AX. - DFC) (5.30)
The errors in the eigenvalue change and coefficient C are defined as

AN = AL - AX, cC=C-C (5.31)

Substituting Eqts.(5.20), (5.25) and (5.30) into Eqt.(5.31), we have

AX =(F - PDF)C - BC, + PDBC, — Pw (5.32)

The variance of error AA can be derived aS

E(AMAX )= F - FD"PT — PDF + PDP" +

B-BD'P" - PDE + PDBD”P" + PE(ww™ )PT (5.33)

where

B=BC,C,'B", F=FE(CC)F' and D =DFD' (5.34)

which are symmetrical matrices

The minimum variance in the error AA corresponds to the smallest value in

tr[E (A?:'Aiur)] , where trfe] denotes the trace operation, 1.e.

d zr[E(Ai‘A?TT)] _o (5.35)
dpP '

80



Chapter 5 Damage Quantification Method using Second Order Analysis

Substituting Eqt.(5.33) into Eqt.(5.35)

d tr[EARART)]

_ ¥atd 2% _annf _ nT
5 =2P(DBD" + D+R)-2BD" -2FD (5.36)
=0
we have
P=(BD" + FD"YDBD” +D +R)™ (5.37)

where R equals to E(ww”) and is the variance matrix of the noise. Eqt.(5.37) gives the

optimal gain matrix P, which when substituting into Eqt.(5.30) gives an unbiased

estimate of AA.

5.2.4 The Gain Matrix P from both the First and Second Conditions

Note that Eqt.(5.37) gives the optimal gain matrix P for the first condition in

Eqt.(5.29). When the second condition in Eqt.{5.29) is also included into Eqt.(5.32),

we get another eigenvalue change error Ak as

AX = (F - PDF)C - Pw (5.38)

The variance of error Ak and the gain matrix P are simplified as
E(AMAN )=F — FD"PT = PDF + PDP” + PE(ww" )P" (5.39)

P=FD(D+R)" (5.40)
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5.2.5 Estimation of Coefficient C

The estimated vector AX is then used to estimate the coefficient vector € using the

weight linear least squares method from Eqt.(5.20).
C=(F'WF)Y"'FTW (AX + BC,) (5.41)

where W is the weight matrix on the measured data.

The variance of error in the coefficient C is then given by

E(CCTY=(C-CYC-0)" (5.42)

5.3 Procedure of Implementation

The linear sequential filter is implemented as follows in the identification problem.
Step 1 : Perform the dynamic analysis of the structure to obtain the system matrices

and the eigen-parameters.

Step 2 : Calculate the sensitivity matrix 4 and the matrix G from Eqt.(5.23) and
Eqt.(5.16) respectively.

Step 3: Calculate the matrices B and F from Eqt.(5.24) and Eqt.(5.21) respectively

with an initial vector C,.

Step 4 : Calculate the matrix B from Eqt.(5.34) with an initial vector C, .
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Step S: Calculate the matrices F and D from Eqt.(5.34) with an initial variance
matrix E (55 T).

Step 6 : Calculate the gain matrix P from Eqt.(5.37) and Eqt.(5.40) for using the
first condition only and using both conditions respectively with an assumed

variance matrix R.

Step7: Calculate the variance of A%, E(ALAR"), from Eqt.(5.33) and Eqt.(5.39)
for using the first condition only and using both conditions respectively.

Step 8 : Calculate the vector AX from Eqt.(5.30) using the measured AL and an
initial vector C. |

Step 9 : Calculate the coefficient vector C"‘t. for the i-th iteration from Eqt.(5.41) with
an assumed weight matrix # .

Step 10 : Calculate the variance matrix £ (55 T) from Eqt.(5.42).

Step 11 : Compare C and C..
If the difference is larger than a prescribed value, set C= CA',',. and go to Step

5 until the difference converges.

Otherwise, go to Step 12.
Step 12 : Compare C, and C;.

If the difference is larger than a prescribed value, set C, = C, and go to

Step 3 until the difference converges.
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5.4 Numerical Examples

The damage quantification method using second order analysis is studied
using the symmetric three-storey plane frame described in Section 3.3. The small and
large damage scenarios studied in this method are those described in Section 3.3.3,

and the mode number is re-arranged with the eigenvalue change ratio in descending
order as described in Section 4.4. The variance matrix R, the weight matrix W, and

the variance matrix on the error in the damage coefficient C, E(g C T), have been set

equal to the identify matrix /. The criteria of convergence in (AZ‘,. is set equal to 0.1% of

the last estimated value. The noise levels for the eigenvalue and mode shape are
assumed to be 0.15% and 3% respectively. The noisy "measured" eigenvalues and

mode shapes are calculated by the method described in Section 3.3.5.

5.4.1 Damage Quantification of Large Damages

The formulation has the capability to expand the eigenvalue from a smaller
measured set to a larger set. The first eight modes with the largest eigenvalue change
ratio are used when eigenvalue expansion is not applied in this method. When the
expansion process is included, the first five modes with the largest eigenvalue change
ratio are expanded into eight modes. The re-arranged mode numbers for large damage

scenarios are the same as shown in Table 4.2 in Chapter 4.
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5.4.1. 1 Without eigenvalue expansion

The damage quantification results with the actual damage elements in the set
of suspected element only from using the first condition and both conditions are
shown in Tables 5.1 and 5.2 respectively. By comparing Tables 5.1 and 5.2, it is
found that the results obtained in both cases are equal for different large damage

scenarios, and the errors are all less than 5%.

In practice, some undamaged elements are included in the suspected element
group and the true C value of the undamaged element is zero. The identification
results using the first condition for different large damage scenarios with undamaged
elements included in the identification are shown in Tables 5.3 to 5.5. These three
tables show that the damage extent of different damage scenarios can be estimated
correctly. The errors for damage scenarios L1, L2 and L3 are 2%, 1% and 7%
respectively. However from Table 5.5, it is reported that the undamaged element 40 is
estimated to have about 11% stiffness damage. Element 40 is adjacent to the damage

element 39 and the reason of this mistake is given in Section 4.4.1.1.
Whether the undamaged elements are included in the suspected element group

or not, the results without noise effect are more accurate than those with noise effect

for all large damage scenarios (see Tables 5.1 to 5.5).
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5.4.1.2 With eigenvalue expansion

The results with the actual damage elements in the suspected element group
only from using the first condition or 5oth conditions are shown in Tables 5.6 and 5.7
respectively. It is reported that the estimation results using the first condition are
slightly better than those using both conditions for different large damage scenarios.
The errors using the first condition are less than 6% but the errors using both
conditions are less than 7%, The reason is that the inclusion of the second condition in
the formulation simplifies the gain matrix P as shown in Eqt.(5.40) as compared to
that in Eqt.(5.37) using only the first condition. Hence, the method using'the first

condition only is used in the subsequent studies.

The identified results with additional undamaged elements in the suspected
element group from using the first condition are shown in Tables 5.8 to 5.10. Similar
to the case without eigenvalue expansion, the damage extent can be quantified
correctly for different large damage scenarios except that the undamaged element 40

is identified as damage element in damage scenario L3.

From Tables 5.6 to 5.10, the identified results without noise effect have better
performance than those with noise effect. By comparing Tables 5.1 to 5.5 and Tables
5.6 to 5.10, the quantified results without eigenvalue expansion are more accurate
than those with expansion. Therefore, the damage quantification method without

eigenvalue expansion from using the first condition is more suitable for the estimation

of large damages.
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5.4.2 Damage Quantification of Small Damages

After illustrating the damage quantification method with the large damages,
the robustness and the accuracy of this method when applied to the identification of
small damages are studied. Only the algorithm using the first condition is used. The
first eight modes with the largest eigenvalue change ratio are used when eigenvalue
expansion Is not included.l When the expansion process is included, the first five
modes with the largest eigenvalue change ratio are expanded into eight modes. The

re-arranged mode numbers for small damage scenarios are the same as in Table 4.1 in

Chapter 4.

For the cases with actual damage elements only in the suspected element
group, the damage quantification results using the first condition without and with
eigenvalue expansion are shown in Tables 5.11 to 5.12 respectively. The estimation
on the damage extent is accurate and the errors without expansion and with expansion
are less than 1% and 2% respectively. From these two tables, the same observations as
before are made, i.e. the identified results without noise effect are better than those

with noise effect, and the estimation without eigenvalue expansion is more accurate

than that with expansion.

The damage extent of the suspected eclements, where some additional
undamaged elements are included in the identification, is estimated. Tables 5.13 to
5.15 show the damage extent results without eigenvalue expansion and Tables 5.16 to
5.18 show the quantified results with eigenvalue expansion. Tables 5.13 to 5.18 show

that the 1dentified results are estimated accurately for all small damage scenarios
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whether eigenvalue expansion is included or not. The errors without and with
expansion process are less than 5% and 7% respectively. From these six tables, it is
also found that the existence of noise makes the results less accurate. By comparing
the same damage scenarios with and without eigenvalue expansion, the results

indicate that the damage extent without expansion is more accurate. This is due to that

errors incurred in the expansion process.

Both the damage quantification method using first order analysis and the
method using second order analysis are suitable for the small damage estimation. By
comparing Tables 4.3 to 4.11 and Tables 5.11 to 5.18, it is found that the damage
extent using second order analysis is more accurate than that using first order analysis
whether eigenvalue expansion is included or not. Moreover, the undamaged element
40 in damage scenario S3 using second order analysis is estimated correctly as seen in
Table 5.18, but this element 1;s quantified to contain damage under the method using
first order analysis. Hence, the method using second order analysis could improve the

accuracy of quantification for small damages.

5.4.3 Stability Analysis

In the above studies, the initial vectors C and C, have been set to the true
values. However, the true damage extent of each element is unknown. In this study,
the initial vectors € and C, are arbitrary vectors and their components are laken to
be equal. The initial vector C, is set equal to the initial vector C. A study is made on

damage scenarios L3 and S3 with five suspected elements and without eigenvalue
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expansion. The estimation makes use of different initial vector C with its components

all equal. For damage scenario L3, the range of the initial vector C ranges from -0.05

to -0.4 with 0.05 increments. The same results are obtained from using these different
initial vector C and the resutls with noise effect are shown in Table 5.19 with less

than 7% error. For damage scenario S3, the initial vector C is ranging from -0.01 to -

0.1 with 0.01 increments. .Th‘e same damage extent is estimated from these different
initial vector € and the results are shown in Table 5.20 with less than 5% error. This

indicates that the proposed method is independent of the initial vectors C and C, for

both small and large damages.

5.4.4 Damage Quantification with Larger Noise Effect

The noise effect on this proposed damage quantification method is further
studied with the inclusion of two more noise levels described in Section 3.3.6 in
Chapter 3. Noisc level A is 0.25% and 5% for the eigenvalue and mode shape
respectively. And Noise level B is 0.5% and 10% for the eigenvalue and mode shape
respectively. The noisy eigenvalue and mode shape are calculated using the equations
in Section 3.3.5. Damage scenario L3 is used to investigate the effect of larger noise
level in this method, and only the algorithm using the first condition is used. The first
eight modes with the largest eigenvalue change ratio are used and there is no
eigenvalue expansion. When eigenvalue expansion is included, the first five modes
with the largest eigenvalue change ratio are expanded into eight modes. The re-

arrange mode numbers are the same as shown in Table 4.2 in Chapter 4.

89



Chapter 5 Damage Quantification Method using Second Order Analysis

The damage quantification results with the actual damage elements in the
suspected element group using noise level A and noise level B are shown in Table
5.21. The error in the identified damage is less than.15.6% and 18.7% for noise level
A and noise level B respectively with or without eigenvalue expansion. Besides, the
identified results without eigenvalue expansion is more accurate than that with
eigenvalue expansion for both noise levels. By comparing Tables 5.1, 5.6 and 5.21,

the error of identification is increased when the noise level is increased.

In practice, some undamaged elements are included in the suspected element
group. For the damage localization method with larger noise level, the actual damage
elements cannot be localized. Hence, the suspected elements in Table 3.6 in Chapter 3
using the noise level 0.15% and 3% for eigenvalue and mode shape are used. The
identification results are shown in Tables 5.22 and 5.23 for the case without
eigenvalue expansion and with eigenvalue expansion respectively. When there 1s no
eigenvalue expansion (see Table 5.22), we found that the maximum error is 22.7%
and 30.7% for noise level A and noise level B respectively. By comparing Tables 5.5
and 5.22, the results indicated that the error is increased with the noise level. When
eigenvalue expansion is included, the damage extent of the computation on the
suspected damage element does not converge for noise level A. For noise level B, the
quantification results converge but the error is larger than 100%. Hence, the proposed
damage quantification method with eigenvalue expansion is not effective when the

noise level is too high.
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5.5 Conclusions

A structural damage quantification method using the second order terms in the
Taylor's expansion is developed. A linear sequential filtering technique and an
unbiased minimum error estimation metho.d is used in the formulation. A weight
linear least squares method is used to solve the identification equation. Tﬁe robustness
and effectiveness of this method to quantify small and large damages are studied. This
method permits an eigenvalue expansion in the formulation. Numerical simulations
are studied on a three-storey plane frame. The results show that the method using the
first necessary condition only and the method using both necessary conditions give
the same estimation results when there is no eigenvalue expansion. However, the
method using the first necessary condition is more accurate than that using both
necessary conditions when eigenvalue expansion is included. The reason is that the
accuracy of the estimation is reduced when the gain matrix P is simplified by the
second condition in the formulation. The simulation results also show that the method
using the first necessary condition only is effective and give an accurate result for
assessing small and large damages. Whether noise effect is included or not, most
damage extent of elements in the suspected element group with actual damage
elements only can be estimated correctly. However, the error increases when the noise

level is increased. The method using second order analysis is independent of the
initial vectors C and C, . Also, the method using second order analysis has higher

accuracy in the estimation of small damages than that using first order analysis.
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Table 5.1 - Damage quantification results for large damages with actual damage
elements in the suspected element group only from using the first condition
(without eigenvalue expansion)

Damage L1 L2 L3
Scenario
Element No. 45 17 32 9 13 39
True Damage -0.3 -0.3 -0.2 -0.15 -0.2 -0.2
Extent, C
Estimated C -0.3042 | -0.3021 -0.1993 | -0.1561 -0.1927 -0.2004
Error 1.4% 0.7% 0.4% 4.1% 3.7% 0.2%
Estimated C noie | -0.3046 | -0.3025 -0.1990 | -0.1570 -0.1925 -0.2006
Error noise 1.5% 0.8% 0.5% 4.7% 3.8% 0.3%

Subscript yoise denotes results from polluted measurements

Table 5.2 - Damage quantification results for large damages with actual damage
elements in the suspected element group only from using both conditions
(without eigenvalue expansion)

Damage L1 L2 L3
Scenario
Element No. 45 17 32 9 13 39
True Damage -0.3 -0.3 -0.2 -0.15 -0.2 -0.2
Extent, C
Estimated C -0.3042 | -0.3021 -0.1993 | -0.1561 -0.1927 -0.2004
Error 1.4% 0.7% 0.4% 4.1% 3.7% 0.2%
Estimated C .o | -0.3046 | -0.3025 -0.1990 | -0.1570 -0.1925 -0.2006
Error oise 1.5% 0.8% 0.5% 4.7% 3.8% 0.3%

92



Chapter 5

Damage Quantification Method using Second Order Analysis

Table 5.3 - Damage quantification results for damage scenario L1

{without eigenvalue expansion}

Element No. 25 44 45
True Damage 0 0 -0.3
Extent, C '
Estimated C 0.0013 0.0034 -0.3051
Error - - 1.7%
Estimated C ,,i5e 0.0015 0.0038 -0.3058
Error noise - - 1.9%
Table 5.4 - Damage quantification results for damage scenario L2
(without eigenvalue expansion)
Element No. 17 31 32
True Damage -0.3 0 -0.2
Extent, C
Estimated C -0.3021 -0.0054 -0.1988
Error 0.7% - 0.6%
Estimated C ,pise -0.3027 0.0092 -0.2015
Error i 0.9% - 0.8%
Table 5.5 - Damage quantification results for damage scenario L3
(without eigenvalue expansion)
Element No. 9 13 39 40
True Damage 0 -0.15 -0.2 -0.2 0
Extent, C
Estimated C 0.0063 -0.1579 -0.1907 -0.1888 -0.1061
Error - 3.3% 4.7% 5.6% -
Estimated C ,5i5e | 0.0071 -0.1596 -0.1899 -0.1871 -0.1144
Error ppise - 6.4% 5.1% 6.5% -

93



Chapter 5 Damage Quantification Method using Second Order Analysis

Table 5.6 - Damage quantification results for large damages with actual damage
elements in the suspected element group only from using the first condition
(with eigenvalue expansion)

Damage L1 L2 L3
Scenario
Element No. 45 17 32 9 13 39
True Damage -0.3 -0.3 -0.2 -0.15 -0.2 -0.2
Extent, C
Estimated C -0.3074 | -0.3071  -0.1979 | -0.1563 -0.1909 -0.2005
Error 2.5% 2.4% 1.1% 4.2% 4.6% 0.3%
Estimated C 05 | -0.3082 | -0.3076 -0.1976 | -0.1576 -0.1894 -0.2010
Error »pise 2.7% 2.5% 1.2% 5.1% 5.3% 0.5%

Table 5.7 - Damage quantification results for large damages with actual damage
elements in the suspected element group only from using both conditions
(with eigenvalue expansion)

Damage L1 L2 L3
Scenario
Element No. 45 17 32 9 13 39
True Damage -0.3 -0.3 -0.2 -0.15 -0.2 -0.2
Extent, C
Estimated C -0.3076 | -0.3077 -0.1945 | -0.1572 -0.1895 -0.2023
Error 2.5% 2.6% 2.8% 4.8% 5.3% 1.2%
Estimated C ;5. { -0.3086 | -0.3077 -0.1942 | -0.1583 -0.1877 -0.2036
Error ,pise 2.9% 2.6% 2.9% 5.5% 6.2% 1.8%
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Table 5.8 - Damage quantification results for damage scenario L1

(with eigenvalue expansion)

Element No. 25 44 : 45
True Damage 0 0 -0.3
Extent, C
Estimated C 0.0018 0.0042 -0.3085
Error - - 2.8%
Estimated C 5 0.0021 0.0048 -0.3092
Error qpise - - 3.1%

Table 5.9 - Damage quantification results for damage scenario L2

(with eigenvalue expansion)

Element No. 17 31 32
True Damage 03 0 -0.2
Extent, C
Estimated C -0.3077 -0.0109 -0.1972
Error 2.6% - 1.4%
Estimated C i -0.3081 0.0189 -0.2028
Error jigise 2.7% - 1.4%

Tabie 5.10 - Damage quantification results for damage scenario L3

(with eigenvalue expansion)

Element No. 7 9 13 39 40
True Damage 0 -0.15 -0.2 -0.2 0
Extent, C
Estimated C 0.0065 -0.1583 -0.1892 -0.1880 -0.1084
Error - 5.5% 5.4% 6.0% -
Estimated C i | 0.0078 -0.1606 -0.1885 -0.1852 -0.1191
Error ,pise - 7.1% 5.8% 7.4% -
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Table 5.11 - Damage quantification results for small damages with actual damage
elements in the suspected element group only from using the first condition
(without eigenvalue expansion)

Damage S1 S2 S3
Scenario
Element No. 45 17 32 9 13 39
True Damage -0.05 -0.05 -0.03 -0.02 -0.03 -0.03
Extent, C
Estimated C -0.0501 | -0.0503 -0.0301 | -0.0198 -0.0301 -0.0300
Error 0.2% 0.6% 0.3% 1.0% 0.3% 0%
Estimated C o1, | -0.0505 | -0.0505 -0.0302 | -0.0198 -0.0302 -0.0301
Error ,pise 1.0% 1.0% 0.7% 1.0% 0.7% 0.3%

Table 5.12 - Damage quantification results for small damages with actual damage
elements in the suspected element group only from using the first condition
(with eigenvalue expansion)

Damage S1 S2 S3
Scenario
Element No. 45 17 32 9 13 39

True Damage -0.05 -0.05 -0.03 -0.02 -0.03 -0.03
Extent, C

Estimated C -0.0501 | -0.0504 -0.0302 | -0.0197 -0.0302 -0.0301

Error 0.2% 0.8% 0.7% 1.5% 0.7% 0.3%
Estimated C yoise | -0.0506 | -0.0506 -0.0302 | -0.0196 -0.0303  -0.030]
Error e 1.2% 1.2% 0.7% 2.0% 1.0% 0.3%
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Table 5.13 - Damage quantification results for damage scenario S1

(without eigenvalue expansion)

Element No. 25 44 45
True Damage 0 0 -0.05
Extent, C .
Estimated C 0 0 0.0502
Error - - 0.4%
Estimated C ,pise 0 0 0.0508
- - 1.6%

Error noise

Table 5.14 - Damage quantification results for damage scenario S2

(without eigenvalue expansion)

Element No. 17 31 32
True Damage -0.05 0 -0.03
Extent, C
Estimated C -0.0504 -0.0021 -0.0303
Error 0.8% - 1.0%
Estimated C ,pise -0.0510 -0.0035 -0.0308
Error neise 2% - 2.7%

Table 5.15 - Damage quantification results for damage scenario S3

(without eigenvalue expanston)

Element No. 9 13 25 39 40
True Damage -0.02 -0.03 0 -0.03 0
Extent, C
Estimated C -0.0207 -0.0306 0.0013 -0.0302 0.0002
Error 3.5% 2.0% - 0.7% -
Estimated C o5 | -0.0209 -0.0307 0.0016 -0.0303 0.0005
Error poise 4.5% 2.3% - 1.0% -
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Table 5.16 - Damage quantification results for damage scenario S1

(with eigenvalue expansion)

Element No. 25 44 45
True Damage 0 0 -0.05
Extent, C
Estimated C 0 0.0001 -0.0504
Error - - 0.8%
Estimated C ,jse 0 0.0001 -0.0511
- - 2.2%

Error noise

Table 5.17 - Damage quantification results for damage scenario $2

(with eigenvalue expansion)

Element No. 17 31 32
True Damage -0.05 0 -0.03
Extent, C
Estimated C -0.0509 -0.0037 -0.0305
Error 1.8% - 1.7%
Estimated C ;s -0.0515 -0.0046 -0.0311
Error poise 3.0% - 3.7%

Table 5.18 - Damage quantification results for damage scenario S3

(with eigenvalue expansion)

Element No. 9 13 25 39 40
True Damage -0.02 -0.03 0 -0.03 0
Extent, C
Estimated C -0.0189 -0.0293 -0.0025 -0.0290 -0.0018
Emror 5.5% 2.3% - 3.3% -
Estimated C pp5. | -0.0186 -0.0292 -0.0032 -0.0288 -0.0026
EITOF poise 7.0% 2.7% - 4.0% .
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Table 5.19 - Damage quantification results for damage scenario L3 in stability
analysis (without eigenvalue expansion)

Element No. 7 9 13 39 40
True Damage 0 -0.15 -0.2 -0.2 0
Extent, C
Estimated C ppise | 0.0071 -0.1596 -0.1899 -0.1871 -0.1144
ELTOT npise - 6.4% 5.1% 6.5% -

Table 5.20 - Damage quantification results for damage scenario S3 in stability
analysis (without eigenvalue expansion)

Element No. 9 13 25 39 40
True Damage -0.02 -0.03 0 -0.03 0
Extent, C
Estimated C n5. | -0.0209 -0.0307 0.0016 -0.0303 0.0005
Error ,pise 4.5% 2.3% - 1.0% -

Table 5.21 - Damage quantification results for damage scenario L3 with actual
damage elements in the suspected element group only from using the first condition

Without Eigenvalue Expansion

With Eigenvalue Expansion

Element No. 9 13 39 9 13 39
True Damage -0.15 -0.2 -0.2 -0.15 -0.2 -0.2
Extent, C
Estimated C noiseq | -0.1733  -0.1921  -0.2002 | -0.1734  -0.1869 -0.2001
ErTor npise 4 15.5% 4.0% 0.1% 15.6% 6.6% 0.1%
Estimated C pie s | -0.1778  -0.1923  -0.1999 | -0.1780 -0.1874 -0.1998
Error npise 8 18.5% 3.9% 0.04% 18.7% 6.3% 0.1%

Subscript noise o denotes results from polluted measurements of noise level A and
noise b denotes results from polluted measurements of noise level B
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Table 5.22 - Damage quantification results for damage scenario L3

(without eigenvalue expansion)

Element No. 7 9 13 39 40
True Damage 0 -0.15 -0.2 -0.2 0
Extent, C o
Estimated C o504 | -0.0118 -0.1841 -0.1875 -0.1775 -0.1880
Error ,pise 4 - 22.7% 6.3% 11.3% -
Estimated C ,pe5 |  0.0192 -0.1960 -0.1881 -0.1787 -0.1769
Error noise - 30.7% 6.0% 10.7% -

Table 5.23 - Damage quantification results for damage scenario L3

(with eigenvalue expansion)

Element No.

9 13 39 40

True Damage
Extent, C

0 -0.15 -0.2 -0.2 0

Estimated C ,o/5e 4

Does not converge

Error ,oise 4 as above
Estimated C npise 5 0.3913 -0.4290 -(0.1986 0.1557 -1.1250
Error neise B - 186% 0.7% 177.9% -
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Chapter 6

Study on Eigenvalue Expansion

6.1 Introduction

From the theory on the damage quantification methods presented in Chapters
4 and 5, the formulation has the capability to estimate a larger set of eigenvalues from
a smaller set of measured eigenvalues. In this chapter, the effectiveness and accuracy
of the eigenvalue expansion is studied. By comparing the identified results from
Chapters 4 and 5, it is found that the damage quantification method using second
order analysis is more robust and accurate than that using first order analysis for both
small and large damages. Hence, the following simulations are performed by the
method using second order analysis. Numerical examples are studies to demonstrate

the accuracy of the expanded eigenvalue.

6.2 Numerical Examples

The symmetric three-storey plane frame mentioned in Section 3.3 is used to
study the eigenvalue expansion. The damage scenarios with small or large damages
are the same as for the damage localization described in Section 3.3.3. The first five

modes with the largest eigenvalue change ratio are expanded into eight modes. The
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estimated and the true natural frequencies are compared. The noise levels for the
eigenvalue and mode shape are assumed to be 0.15% and 3% respectively. The
eigenvalues and mode shapes with noise effect are calculated by the method described
in Section 3.3.5. The subscript ;s in the Tables denotes the results obtained from the

eigenvalues and mode shapes with noise effect.

6.2.1 For Small Damages

The first eight re-arranged mode numbers for the small damage scenarios S1,
S2 and S3 are the same as those used in Section 4.4.1 and they are shown in Table 4.1
in Chapter 4. The estimated damage frequencies for scenartos with different small
damages are shown in Tables 6.1 to 6.6. Tables 6.1, 6.3 and 6.5 are the results without
undamaged elements in the suspected group and Tables 6.2, 6.4 and 6.6 are the results
with some undamaged elements in the suspected group. The group of suspected
elements for each scenario are listed in Tables 3.5 and 3.6 in Chapter 3 for the case
without and with noise effect respectively. In all these six cases, the estimated
frequencies are very closed to the true frequencies with the errors less than 0.015%.
Besides, the estimated frequencies without noise effect are more accurate than those
with noise effect. Furthermore, the results with undamaged elements in the suspected

group give larger error than those without undamaged eiements in the suspected

group.
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6.2.2 For Large Damages

Table 4.2 in Chapter 4 shows the first eight re-arranged mode numbers for the
large damage scenarios L1, L2 and L3. In this section, the same re-arranged modes
are used. The set of suspected elements for each scenario are listed in Tables 3.5 and
3.6 in Chapter 3 for the case without and with noise effect respectively. Tables 6.7 to
6.12 contain the estimated frequencies for all scenarios with or without undamaged
elements in the suspected group. The estimated frequencies have a very high
accuracy. The errors are less than 0.5%. The obseryations are similar to those with
small damages, i.e. the estimated frequencies without noise effect are more closed to
the true frequencies than those with noise, and the estimated results without
undamaged elements in the suspected group are more accurate than those with

undamaged elements in the suspected group.
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6.3 Conclusions

In the proposed damage quantification method presented in Chapters 4 and 5,
the eigenvalues can be expanded from a smaller set of measured eigenvalues to a
larger set. In this chapter, the accuracy of the expanded eigenvalues has been studied.
Numerical simulations show that the expanded frequencies are estimated with very
high accuracy whether the structure contains multiple small or large damages.
Moreover, the estimated frequencies with actual damage elements in the suspected

group have better accuracy than those with undamaged elements in the suspected

group.

104



Chapter 6 Study on Eigenvalue Expansion

Table 6.1 - Eigenvalue expansion results for damage scenario S1
{without undamaged elements in the suspected group)

Mode No. 12 3 8
True Frequency 210.733 - 31.157 151.662
(Hz)
Estimated _ 210.733 31.157 151.662
Frequency (Hz) ‘
Error 0% 0% 0%
True Frequency poise 210.745 31.156 151.747
(Hz)
Estimated 210.745 31.156 151.747
Frequency noise (Hz) '
EITOI' noise 0% 0% 0%

Table 6.2 - Eigenvalue expansion results for damage scenario S1
(with undamaged elements in the suspected group)

Mode No. 12 3 8
True Frequency 210.733 31.157 151.662
(Hz)
Estimated 210.734 31.157 151.662
Frequency (Hz)
Error -4.75%x10™% 0% 0%
True Frequency neise 210.745 31.156 151.747
(Hz)
Estimated 210.746 31.156 ' 151.748
Frequency pnoisc (Hz)
EITOT poise -4.75%x10™% 0% -6.59x107%
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Table 6.3 - Eigenvalue expansion results for damage scenario S2
(without undamaged elements in the suspected group)

Mode No. 12 6 1
True Frequency 210.554 136.984 7.062
(Hz)
Estimated 210.553 136.981 7.061
Frequency (Hz)
Error 4.75x10%% 0.00219% 0.0142%
True Frequency noise 210.567 137.034 7.057
(Hz)
Estimated 210.569 137.031 7.056
Frequency peise (Hz)
Error oise -9.50x10™% 0.00219% 0.0142%

Table 6.4 - Eigenvalue expansion results for damage scenario S2
(with undamaged elements in the suspected group)

Mode No. 12 ' 6 1
True Frequency 210.554 136.984 7.062
(Hz)
Estimated 210.557 136.969 7.061
Frequency (Hz)
Error -0.00142% 0.011% 0.0142%
True Frequency noise 210.567 137.034 7.057
(Hz)
Estimated 210.569 137.047 7.056
Frequeﬂcy noise (HZ)
Error poise -9.50x107% -0.00949% 0.0142%
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Table 6.5 - Eigenvalue expansion results for damage scenario S3
(without undamaged elements in the suspected group)

Mode No. 8 5 13
True Frequency 151.545 134.279 374.255
(Hz)
Estimated 151.545 134.279 374.262
Frequency (Hz)
Error 0% 0% -0.00187%
True Frequency pnoise 151.630 134.416 373.991
{(Hz)
Estimated 151.631 134,416 374.000
Frequency ngise (Hz)
EITOT noise -6.60x107% 0% -0.00241%

Table 6.6 - Eigenvalue expansion results for damage scenario S3
(with undamaged elements in the suspected group)

Mode No. 8 5 13
True Frequency 151.545 134.279 374.255
(Hz)
Estimated 151.540 134.280 374.275
Frequency (Hz)
Error 0.0033% -7.45x107% -0.00534%
True Frequency neise 151.630 134.416 373.991
(Hz)
Estimated 151.624 134.417 374.015
Frequency neise (HZ)
Error joise 0.00396% -7.44x107% -0.00642%
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Table 6.7 - Eigenvalue expansion results for damage scenario L1
(without undamaged elements in the suspected group)

Mode No. 12 3 8
True Frequency 210.630 31.147 151.618
(Hz)
Estimated 210.627 31.147 151.618
Frequency (Hz)
Error 0.00142% 0% 0%
True Frequency noise 210.643 31.146 151.704
(Hz)
Estimated 210.638 31.146 151.704
Frequency noise (Hz)
Error poise 0.00237% 0% 0%

Table 6.8 - Eigenvalue expansion results for damage scenario L1
(with undamaged elements in the suspected group)

Mode No. 12 3 8

True Frequency 210.630 31.147 151.618
(Hz)
Estimated 210.633 31.149 151.621
Frequency (Hz)
Error -0.00142% -0.00642% -0.00198%
True Frequency poise 210.643 31.146 151.704
(Hz)
Estimated 210.646 31.148 151.707
Frequency noise (HZ)
ETI'O]' noise ‘0.00142% '0400642% '0-00264%
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Table 6.9 - Eigenvalue expansion results for damage scenario L2
(without undamaged elements in the suspected group)

Mode No. 1 12 10
True Frequency 7.062 210.554 192.706
(Hz)
Estimated ' 7.030 210.467 192.537
Frequency (Hz) ‘
Error 0.453% 0.0413% 0.0877%
True Frequency neise 7.024 209,732 191.787
(Hz)
Estimated 6.990 209.819 191.958
Frequency noise (HZ)
Error poise 0.484% -0.0415% -0.0892%

Table 6.10 - Eigenvalue expansion results for damage scenario L2
(with undamaged elements in the suspected group)

Mode No. 1 12 10
True Frequency 7.062 210.554 192.706
(Hz)
Estimated 7.030 210.463 192.524
Frequency (Hz)
Error 0.453% 0.0432% 0.0944%
True Frequency noise 7.024 209.732 191.787
(Hz)
Estimated 6.994 209.837 191.600
Frequency poise (Hz)
Error qoise 0.427% -0.0501% 0.0975%
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Table 6.11 - Eigenvalue expansion results for damage scenario L3
(without undamaged elements in the suspected group)

Mode No. 5 | 4 8
True Frequency 133.399 126.253 150.754
(Hz)
Estimated 133.505 126.287 150.775
Frequency (Hz) |
Error -0.0795% -0.0269% -0.0139%
True Frequency noise 133.532 126.263 150.839
(Hz)
Estimated 133.687 126.303 150.875
Frequency poise (H2z) _
Error qoise -0.116% -0.0317% -0.0239%

Table 6.12 - Eigenvalue expansion results for damage scenario L3
(with undamaged elements in the suspected group)

Mode No. 5 4 8
True Frequency 133.399 126.253 150.754
(Hz) :
Estimated 133.603 126.327 150.590
Frequency (Hz)
Error -0.153% -0.0586% 0.109%
True Frequency noise 133.532 126.263 150.839
(Hz)
Estimated 133.764 126.355 150.658
Frequency noise (HZ)
EITor poise -0.174% -0.0729% 0.120%
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Chapter 7

Experimental-Results

7.1 Introduction

The damage loF:alization method and the damage quantification methods using
first order and second order analysis have been described previously and their
effectiveness and accuracy are investigated using numerical simulations in Chapters
3, 4 and 5. The simulation results show that the damage localization method and the
damage quantification method using second order analysis are robust and effective for
both small and large damages, and the damage quantification method using first order
analysis is effective only for small damages. A dynamic test is carried out in the
laboratory on a five-storey steel plane frame to further verify the damage localization

method and the damage quantification methods.

7.2 Descriptions of the Structure

The test structure is a five-storey steel plane frame as shown in Figure 7.1. It
consists of two columns and five horizontal interconnecting beams. The beam to
column connections and the column to base plate connections are rigidly connected.

The overall height of the frame is 2 metres and the height of each storey is 0.4 metre.
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The length of each horizontal interconnecting beam ié 0.59 metre. The columns are
flat steel bars with a cross-sectional dimension of 4.45mm thick x 32.2mm width. The
horizontal beams are Tee-beams with an overall height of 30.3mm. The flange of the
Tee-beams is 30.55mm width x 4.15mm thick and the web is 3.75mm thick. The Tee-
beams are connected to the flat steel column at the mass center of the Tee-beams. The
material properties of frame are shown in Figure 7.1, and the physical properties are

summarized in Table 7.1.

The finite element model of this structure consists of seventy-five Euler-
Bernoulli elements and seventy-two nodes. Theré are seventy unconstrained nodes
and two constrained nodes at the supports. The motion of the frame in the x-z plane is
considered. Each unconstrained node has three degrees-of-freedom. They are the
displacement in x-direction, z-direction and the rotation about y-axis. Besides, there is
no restriction on the elongation of the elements. However, the rotation of each node is
difficult to measure. Then, all rotational degrees-of-freedom are not chosen to have
incomplete information on the mode shapes for the damage localization method.
Moreover, the z-direction displacement of each column node is too small and is not
considered to have incomplete information for the damage localization method.
Besides, the beams are assumed to vibrate without elongation, and the x-direction
displacement of each beam node is taken equal to that at the corresponding column-
beam connection node. Therefore, only one degree-of-freedom is measured at each
unconstrained node. The displacement in x-direction is measured for the column
nodes and the displacement in z-direction is measured for the beam nodes. There are

totally seventy measurable degrees-of-freedom.
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7.3 Experimental Setup

The setup of the experiment is illustrated in Figure 7.2. A B&K Model 1049
signal generator generates a random force through an exciter. This force is applied to
the supporting base plate of the steel frame as shown in Figure 7.3 such that this
| random force is transmitted to the frame indirectly. The frequency bandwidth of the
random excitation force ranges from 2Hz to 100Hz for identifying the lower five
modes that are the global modes, and from 30Hz to 316Hz for identifying the
remaining higher modes which are the local modes. The force is 100N and 94N for
detecting the global modes and the local modes respectively, These two forces are the
highest output from the signal generator such that a large and steady vibrational

displacement at the monitored degrees-of-freedom is obtained.

Seven B&K Model 8201 accelerometers and seven B&K Model 2635 charge
amplifiers are used in this experiment. The number of accelerometers is much less
than the number of degrees-of-freedom to be measured. Therefore, eleven sets of
measurement are required to measure all the degrees-of-freedom. In each set of
measurement, one accelerometer is fixed on a "reference” degree-of-freedom, and the
other six accelerometers are arranged on the remaining degrees-of-freedom to
measure the acceleration responses until all seventy degrees-of-freedom are measured.

The spectrum results from each accelerometer are then normalized to form the full

mode shapes.
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Small pieces of lump mas;s are placed at all the unconstrained nodes of the
structure during each measurement. The weight of each mass is equal to the weight of
the "moving" accelerometers. The lump mass counteracts the mass vanation of the
system due to the change in location of the moving accelerometers in the different sets

of measurement. Hence, the distribution of the mass of the system is the same for

different sets of measurement.

Signals from the accelerometers are sampled with the software package
GLOBAL LAB through a Data Translation Model DT2829 A/D Card. The sampling
frequencies are 249.75025Hz and 2012.0724Hz for the measurement of global and
local modes respectively. The frequency resolution of the global mode measurements
is 0.061Hz when a length of 4096 data block is used in the subsequent Fast Fourier
Analysis. Data of the local mode measurements is re-sampled at a ratio of 1 to 4, and
the resulting frequency resolution is 0.0614Hz from the Fast Fourier Analysis. A
spectral analysis and a modal analysis are then performed on these digitized signals.

Finally, the mode shapes and the corresponding natural frequencies of the frame are

obtained.

After the data collection on the undamaged state of the frame 1s completed, the
procedures described in the last few paragraphs are repeated for the three different

damage scenarios described below.
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7.4 Damage Scenarios

Three damage scenarios on the test structure are studied. The location and the
extent of the damages are listed in Table 7.2. Element 59 is located at the second-level
interconnecting beam. Element 9 is located at the column in-between the first and
second levels. Damage is created by reducing the physical dimensions of a finite
element. The beam height of finite element 59 is reduced from 30.3mm to 29.45mm
throughout its length in damage scenarios A and B, and it is further reduced to
27.85mm in damage scenario C. The width of finite element 9 is decreased fr;)m
32.2mm to 28.95mm throughout its length in damage scenarios B and C. These
scenarios are such selected to have both small and large damages in the structure. The

damages in elements 59 and 9 are shown in Figure 7.4.

Damage in an element is defined in this study as a scalar reduction in the
stiffness of the element. The mass matrix is assumed to be unchanged with the
existence of damage. The stiffness of a damage element is expressed as a fraction of

its original elemental stiffness matrix. That is,
K! =ak! (7.1)

where K/ is the stiffness matrix of element / with a damage; K . is the stiffness

matrix of element / without damage; o is the stiffness reduction factor ranging from

zero to one. The damage extent C in Chapters 4 and 5 can be related to the stiffness

reduction factor o as
C=0—1 (7.2)
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7.4.1 Damage at Element 59

The stiffness matrix of element 59 without damage is

26292572.03  1564408.03 —26292572.03 1564408.03
1564408.03 124109.7 —1564408.03 62054.85

u

- 7.3
¥ 1 -26292572.03 -1564408.03 26292572.03 —1564408.03 (73)
1564408.03 62054.85 —1564408.03 124109.7
7.4.1.1 For damage scenarios A and B
The stiffness matrix of element 59 with damage is
24224116.78  1441334.95 —24224116.78 1441334.95
. | 1441334.95 11434591  -1441334.95 57172.95 (7.4

® 7 =24224116.78 -1441334.95 2422411678 —1441334.95
1441334.95 57172.95 —-1441334.95  114345.91

By comparing the stiffness matrices K% and K, in Eqts.(7.3) and (7.4), the stiffness

reduction factor o, and the damage extent, C, of element 59 are 0.9213 and -0.0787

respectively for all the components of the matrices.
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7.4.1.2 For damage scenario C

The stiffness matrix of element 59 with damage is

20612796.28  1226461.38 -20612796.28 1226461.38

« | 1226461.38 97299.27 —-1226461.38 48649.63 75)
¥ 71-20612796.28 -1226461.38 2061279628 —1226461.38 '

122646138 48649.63 ~1226461.38 97299.27

By comparing the stiffness matrices K and K in Eqts.(7.3) and (7.5), the stiffness
reduction factor o, and the damage extent, C, of element 59 are 0.784 and -0.216

respectively for all the components of the matrices.

7.4.2 Damage at Element 9

The stiffness matrix of element 9 without damage is

1108398.53 4433594 —1108398.53 44335.94

.| 4433594 2364.58 -44335.94 1182.29 (7.6)
7 [-1108398.53 —44335.94 1108398.53 - 44335.94 '
44335.94 1182.29 —44335.94 2364.58

The stiffness matrix of element 9 with damage is

996526  39861.04 -996526  39861.04

. |39861.04 212592 -39861.04 1062.96

> ~996526 -39861.04 996526  -39861.04 7.7
39861.04 106296 -39861.04 212592
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By comparing the stiffness matrices X! and K in Eqts.(7.6) and (7.7), the stiffness

reduction factor o, and the damage extent, C, of element 9 are 0.8991 and -0.1009

respectively for all the components of the matrices.

7.4.3 Mass Reduction

There is a small change in mass matrix with the small cut made in the
structure in the experiment. The mass reduction in element 59 for damage scenarios A
and B and damage scenario C is 1.4% and 4.3% respectively. The mass reduction of

element 9 for damage scenarios B and C is 6.2%.

For a higher accuracy of damage extent estimation, the change in mass of the
system should not be neglected in Eqts.(4.3) and (5.3). And the change in eigenvalue
(Eqts.(4.4) and (5.4)) will involve a change in the stiffness and in the mass, The
change in eigenvalue should be expanded as a Taylor's series with respect to the
stiffness matrix and mass matrix. The identification equation wiil become much more
complicated than the proposed one. Therefore this project limits the study with no
change in the mass of the structure with the damages created, and there is no effect on

the change in eigenvalue in this experimental study.
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7.5 Modal Properties

The experimental natural frequencies for the four different states of the
structure and the analytical natural frequencies are listed in Table 7.3. Modes 1 to 5
are the global modes (only four global modes can be identified for the system) and
modes 6 to 14 are the local modes. The frequency of mode 4 varies in the different
measurements in each scenario and this mode will not be used in this study. The
experimental mode shapes for the four different states are shown in Figures 7.5 to 7.8.
The analytical mode shapes are shown in Figure 7.9. The spectrum of the structure in

the four different states is shown in Figure 7.10.

Figure 7.10 shows the spectrum of signals from nodes 26 and 14 for the global
modes, and from nodes 58 and 66 for the local modes. Those from nodes 51 and 14
are presented instead in scenario A for the global modes because the peaks from
nodes 51 and 14 are more prominent than those from nodes 26 and 14 in scenario A.
The spectrum is obtained from the Fast Fournier Transformation on the measured
responses, and the input excitation force is different in the four different states.
Therefore the spectral power is different in the different states and they cannot be
compared directly. The spectral magnitudes of global modes are not sensitive to
structural changes in the different scenarios while the magnitudes of the local beam
modes change relatively in the different scenarios. Since nodes 58 and 66 are located

on the beams, the spectral peaks should be from those modes dominated by beam

vibrations.
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The mode shapes in Figures 7.5 to 7.9 show that modes 6 to 9 are local modes
dominated by column vibrations, while modes 11 to 14 are local modes dominated by
beam vibrations. Mode 10 has both large vibrations in the beam and column
mémbers, and 1t has an adjacent strongly coupling mode as seen from the spectrum
for the original state and scenario A (see Figure 7.10). Due to this strongly coupling
effect, experimental mode 10 does not look symmetrical or anti-symmetrical in

Figures 7.5 to 7.8 and is not similar to the analytical mode 10 in Figure 7.9.

The correlation of the experimental and analytical modes is obtained by
matching the natural frequency and the mode shape, and by inspection of the Modal
Assurance Criterion (MAC). The MAC values for the four different states of the
structure comparing with the analytical mode shapes are shown in Table 7.4. The
MAC values of the global modes for the four different states are all greater than 0.99.
For the local modes, the MAC values are all above 0.75. These show that the

correlation between the analytical and experimental mode shapes of the four different

states 1s fairly good.

7.6 Damage Localization

In Chapter 3, the damage localization method using incomplete mode shapes
and the method using incomplete Elemental Modal Strain Energy Change (EMSEC)
are compared. And in the simulation study, tt is found that the MDLAC method using

incomplete FMSEC has better performance than the MDLAC method using
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incomplete mode shapes. Therefore, the proposed damage localization method using

incomplete EMSEC is verified with the experimental data.

A set of incomplete mode shapes is selected with engineering sense from the
middle of each length of the column and beam members, and a total of fifteen

elements are monitored. The selected elements are elements 3, 8, 13, 18, 23, 28, 33,

38, 43, 48, 53, 58, 63, 68 and 73.

7.6.1 Selection of Modes

Three global modes and three local modes dominated with beam vibrations are
used for the damage localization. They are selected with information from both the
beam and column members. Modes 6 to 9 are dominated by column vibrations. Mode
10 has both large vibrations in columns and beams, but it is strongly coupled with an
adjacent mode, and is therefore not selected. Modes 11 to 14 are dominated by beam
vibrations. A careful inspection shows that modes 11 and 14 are similar with
vibrations in all beam members, while modes 12 and 13 has the second level and third
level beam member respectively not in motion. Modes 1, 3, 5, 11, 12 and 14 for

scenarios A and B, and modes 1, 3, 5, 11, 13 and 14 for scenario C are finally selected

after a few trials.

Damage element 59 is at the second level beam, and mode 13 should be
sensitive to the damage in this element. Inspection of the spectrum also shows that
mode 12 is stronger than mode 13 in scenario B but mode 13 shows a farge surge in

the amplitude in scenario C. Al these observations contribute to the above selection
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of modes. But the inclusion of global mode 2 would produce errors in the
identification, and the reason of this behaviour cannot be explained from available
information. However, the combination of global modes dominated by column
vibrations and local modes dominated by beam vibrations should be appropriated for
the detection of damages in both beam and column members. Other combinations of

modes should be exist for a similar or better damage assessment of the structure.

7.6.2 The MDLAC Approach

The MDLAC values of each element are shown in Figures 7.11, 7.12 and 7.13
for damage scenarios A, B and C respectively. The potenfial damage sites are found
with a threshold MDLAC value of 0.5 for all damage scenartos. It is seen that the
actual damage elements are included in the group of potential damage sites as shown
in Table 7.5. The MDLAC values on the different combinations of the potential
damage sites are further computed. The final damage sites are located corresponding
to the combination with the largest MDLAC value, and they are shown in Table 7.5. It
is reported that the actual damage elements are included in the final damage sites
although an undamaged element is also included in each final group of suspected
elements. Hence, the proposed MDLAC method using incomplete EMSEC is found
robust and effective to localize the damage experimentally and to significantly reduce
the number of suspected damage elements. The final dhmage sites are limited in

number and they are used in the subsequent damage quantification.

From Figures 7.11 to 7.13, it is reported that the damage clement has the

largest MDLAC value for all different scenarios. The undamaged elements, which are
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adjacent to or near the damage, also contain a larger MDLAC value because they
exhibit some damage characteristic derived from the mode shape of the adjacent
connecting node. The undamaged elements at the same position of the adjacent
elements on the other column have a larger MDLAC value due to the symmetry of the
structure. However, some undamaged elements, which are far away from the damage,
contain a larger MDLAC value due to the measurement noise and the assumption of a

single damage in the computation of the analytical EMSEC for finding the potential

damage sites.

7.7 Damage Quantification from First Order Analysis

The damage quantification method using first order analysis is suitable for
small damages and its effectiveness has been discussed in Chapter 4. The

experimental verification of this method is studied in this section.

7.7.1 Damage Quantification without Eigenvalue Expansion

The first six modes with the largest eigenvalue change ratio are used for
damage scenario A and the first eight modes with the largest ratio are used for
damage scenarios B and C. The re-arranged mode numbers in descending order of the

eigenvalue change ratio for the different damage scenarios are shown in Table 7.6.
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The quantification results with actual damage elements in the suspected
element group are shown in Table 7.7 for different damage scenarios. It is reported
that the damage extent of the actual damage element for single damage (damage
scenario A) is estimated correctly and the error is 6%. However for multiple damages

(damage scenarios B and C), the damage extent of the actual damage elements cannot

be quantified and contains a large error.

When an undamaged element is included in the suspected element group, the
estimated damage extent is shown in Tables 7.8 to 7.10 for the three damage
scenarios. The damage extent of the elements in the suspected group can be estimated
for single damage and its error is less than 10% (see Table 7.8). When one large
damage occurs in the structure as scenarios B and C, the estimated results are poor
(see Tables 7.9 and 7.10). Hence, the damage quantification method using first order

analysts is again confirmed to be suitable for small damages only.

7.7.2 Damage Quantification with Eigenvalue Expansion

When eigenvalue expansion is included, the first four modes with the largest
eigenvalue change ratio are expanded into six modes for damage scenario A. For
damage scenarios B and C, the first five modes with the largest ratio are expanded in
eight modes. The re-arranged mode numbers including order of the eigenvalue change

ratio are as shown in Table 7.6.

Tabie 7.11 shows the identified results with the actual damage elements occur

in the set of the suspected elements. It is found that the damage extent of the actual
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damage element can be determined correctly with 6.1% error for single damage
scenario. The accuracy is similar to that obtained from without expansion. However,

the quantified results contain large error for the multiple damage scenarios.

Tables 7.12 to 7.14 show the identiﬁéd results with an undamaged element in
the suspected element group. Similar to the cases without eigenvalue expansion, the
damage extent can be estimated for single damage scenario but the damage extent
cannot be quantified for multiple damage scenarios. The error is 9.9% for the single

damage scenario and is similar to that obtained from without expansion.

By comparing Tables 7.7 to 7.10 and 7.11 to 7.14, it is noted that the resuits
without eigenvalue expansion are more accurate than those with eigenvalue

expansion. This is due to an error generated in the expansion process.

7.8 Damage Quantification from Second Order Analysis

The proposed damage quantification method using second order analysis has
been proved to be robust in determining the damage extent for both small and large
damages in the simulation studies. Results in Chapter 5 show that this method could
give an accurate estimation of the damage extent. In this section, the proposed method

is further verified with the experimental data.
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7.8.1 Damage Quantification without Eigenvalue Expansion

The same vibration modes for the quantification basing on the first order

analysis are used for each of the three damage scenarios. The re-arranged mode

numbers can be referred to Table 7.6.

The identified results with only the actual damage elements in the suspected
element group are shown in Table 7.15. The results show that the damage extent is

estimated with a high accuracy for all damage scenarios. The error is less than 7%.

The estimated damage extent with an undamaged element in the suspected
element group is listed in Tables 7.16 to 7.18 for the three damage scenarios. From
these three tables, it is found that the method using second order analysis is effective

for both small and large damages with a maximum error of 10%.

7.8.2 Damage Quantification with Eigenvalue Expansion

The first four modes with the largest eigenvalue change ratio are expanded to
six modes for damage scenario A when eigenvalue expansion is included. The first

five modes with the largest ratio are expanded to eight modes for damage scenarios B

and C. The mode numbers used are referred to Table 7.6.

The damage quantification resulis without undamaged element in the
suspected clement group are shown in Table 7.19. The damage extent of the actual

damage elements is determined correctly and the error is less than 8.5%.

126



Chapter 7 Experimental Results

Tables 7.20 to 7.22 show the estimation results with an undamaged element in
the suspected element group for different damage scenarios. For single damage, the
damage extent can be estimated with a high accuracy and its error is 2% (see Table
7.20). For muitiple damages, the damage extent of element 59 can also be quantified

with less than 5% error but the damage extent of element 9 is identified with a larger

error of 12.8% (see Tables 7.21 and 7.22).

The idéntiﬁed results with or without eigenvalue expansion are acceptable in
all damage scenarios. By comparing Tables 7.15 to 7.18 and 7.19 to 7.22, the
estimation without eigenvalue expansion gives more accurate results than that with
eigenvalue expansion. This observation shows that error from the eigenvalue

expansion has been passed onto the damage quantification.

By comparing the results using first order analysis and using second order
analysis, it is found that the damage quantification method using second order

analysis is more effective than that using first order analysis for both small and large

damages.

7.9 Study on Eigenvalue Expansion
In the damage quantification methods, the eigenvalues can be expanded from a

smaller set of measured eigenvalues to a larger set. And the accuracy of such

expansion is studied in this section. The first four modes with the largest eigenvalue
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change ratio are expanded to six modes for damage scenario A and the first five
modes with the largest ratio are expanded to eight modes for damage scenarios B and

C. The mode numbers used are referred to Table 7.6.

7.9.1 From Damage Quantification Method using First Order Analysis

This method can only estimate the damage extent for damage scenarioc A
correctly. Hence, the eigenvalue expansion for damage scenario A is studied. The
estimated frequencies using first order analysis for damage scenario A are shown in
Table 7.23. The estimated frequencies, which are the 5th and 6th frequencies listed in
Table 7.6, are very closed to the measured frequencies and the error is less than
0.01%. Moreover, the results without undamaged element in the suspected element

group are more accurate than those with undamaged element in the group.

7.9.2 From Damage Quantification Method using Second Order Analysis

The estimated frequencies for different damage scenarios are shown in Tables
7.24 to 7.26. For each damage scenario, the frequencies are estimated without or with
an undamaged element in the suspected element group. In these six cases, the
estimated frequencies are very closed to the measured frequencies. The errors are less
than 0.04%. The estimated frequencies without undamaged element in the set of

suspected elements have higher accuracy than those with undamaged element.
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7.10 Conclusions

The proposed damage localization method and damage quantification methods
are verified experimentally in this chapter. Three damage scenarios are investigated

on the test structure. They following conclusions are drawn.

For the proposed damage localization method, the experimental results show
that the MDLAC method using incomplete Elemental Modal Strain Energy Change
(EMSEC) can successfully localize the single or multiple damages in the test
structure. The actual damage elements are included in the final damage sites although
an undamaged element is also grouped together. This method has the advantage that
only a limited number of sensor information is required to calculate the change of the
elemental modal strain energy between the undamaged and damaged states. This is an
attractive method for structural damage assessment. From the experimental results,
the damage element has the largest MDLAC value. The undamaged elements, which
are adjacent to or near the damage, or at the same position of the adjacent elements on
the other column, also contain a larger MDLAC value due to symmetry. However,
some undamaged elements, which are far away from the damage, are identified as

potential damage sites due to measurement noise.

For the proposed damage quantification method using first order analysis, the
experimental results show that the estimated results are correctly identified for small
damages only. When the damage is increased, this method fails in determining the

damage extent. The reason is that this method only includes the linear part of the
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Taylor's expansion while the effect of a larger damage on the vibration mode shapes is

non-linear. Hence, this quantification method using first order analysis is suitable for

small damages only.

For the proposed damage quantification method using second order analysis,
the experimental results show that this method can estimate the damage extent for
both small and large damages. This is because the second-order terms of the Taylor's
expansion are included in the formulation. Under the experimental conditions, it is
noted that the estimated damage extent using second order analysis is more accurate

than that using first order analysis for both small and large damages.

There is a special feature in the damage quantification methods. The
formulation on the identification equation has the capability to estimate a larger set of
eigenvalues from a smaller set of measured eigenvalues. For the method using first
order analysis, the frequencies can be estimated for damage scenario A with a single
damage. For the method using second order analysis, the expanded frequencies are
identified with a high accuracy for all the damage scenarios. And this method can be
used for eigenvalue expansion in practice since the error involved is far below the

resolution error due to measurements.

All experimental results show that the estimated frequencies without
undamaged element in the suspected element group are more accurate than those with

undamaged element under the two proposed damage quantification methods with

eigenvalue expansion.
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Table 7.1 - Physical properties of column and beam elements

Column Element Beam Element
Axial Area, A (m?) 143.29 x 10°® 224.85 x 10°®
Poison Ratio, v 0.3 0.3
Moment of Inertia, I (m*) 2.365x 10°° 1.846 x 10

Table 7.2 - Damage scenarios for five-storey steel plane frame

Scenario A Scenario B Scenario C
Element No. Damage | ElementNo. Damage | Element No. Damage
59 7.87% 9 10.09% 9 10.09%
59 7.87% 59 21.6%

Table 7.3 - Natural frequencies for the four different states of the structure

Mode | Analytical | Undamaged | Scenario A | Scenario B | Scenario C
No. (Hz) (Hz) (Hz) (Hz) (Hz)
1 4.286 4.146 4.146 4.146 4.146
5.;’ 2 12.73 12.5 12.5 12.5 12.5
= 3 20.752 20.304 20.304 20.304 20.304 .
Eg 4 27.573 26.707- | 26.829- | 26829- | 26.829-
& 27.377 27.012 26.951 27.012
5 32.442 31.524 31.524 31.524 31.524
6 120.038 117.588 117.526 117.465 117.219
7 122.014 120.412 120.351 120.29 120.167
8 145.365 145.649 145.649 145.588 145.588
8 9 154.582 154.369 154.369 154.307 154.246
Z 10 | 162853 161 161 160.939 160.939
g 1 186.199 183.228 182.614 182.553 180.956
12 191.614 190.658 190.597 190.597 190.412
13 196.284 196.491 196.123 196.123 195.386
14 199.76 200974 | 200544 | 200.544 199.991
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Table 7.4 - Modal Assurance Criterion (MAC) values for the four different states

Mode No. | Undamaged | Scenario A Scenario B Scenario C
" 1 1.000 0.998 0.998 0.999
'qu 2 0.998 0.997 0.995 0.999
% 3 0.999 0.998 0.998 0.998
S 4 i i . -
O
5 - 0.998 0.998 0.998 0.999
6 0.882 0.850 0.931 0.755
7 0.938 0.896 0.874 0.892
8 0.966 0.908 0.921 0.925
é 9 0.937 0.897 0.853 0.899
> 10 0.949 0.881 0.951 0.942
g I 0.939 0.868 0.903 0.845
12 0.976 0.942 0.980 0.952
13 0.955 0.948 0.945 0.854
14 0.959 0.879 0.828 0.777
Table 7.5 - Potential and final damage sites by using incomplete EMSEC
Potential Damage Sites | Final Damage Sites | MDLAC value
Scenario A 13, 16, 36, 59, 60 13, 59 0.321
Scenario B 8,9,19, 59, 60 8,9,59 0.342
Scenario C 9, 10, 34-36, 56-60 9, 59, 60 0.382

Table 7.6 - The re-arranged mode numbers for different damage scenarios

Damage Scenario Re-arranged Mode Numbers
A 10,13,12,5,6, 11
B 10,13,12,5,6,7,8,9, 11
C 10,12, 13,5,6,11,8,7,9
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Table 7.7 - Damage quantification results using first order analysis
(without eigenvalue expansion)

Damage Scenario A B C
Element No. 59 9 59 g 59
True Damage Extent, C | -00787 | 0.1009 -0.0787 -0.1009  -0.2160
Estimated C -0.0834 ( -0.1183  -0.0823 | -0.2412  -0.2468
Error 6.0% 17.2% 4.6% 139.0% 14.3%

Table 7.8 - Damage quantification results using first order analysis
for damage scenario A (without eigenvalue expansion)

Element No. 13 59
True Damage Extent, C 0 -0.0787
Estimated C 0.0379 -0.0864
Error - 9.8%

Table 7.9 - Damage quantification results using first order analysis
for damage scenario B (without eigenvalue expansion)

Element No. 8 9 59
True Damage Extent, C 0 -0.1009 -0.0787
Estimated C 0.0568 -0.2079 -0.0807
Error - 106.0% 2.5%
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Table 7.10 - Damage quantification results using first order analysis
for damage scenario C (without eigenvalue expansion)

Element No. 9 59 60
True Damage Extent, C -0.1009 -0.2160 0
Estimated C -0.3781 -0.2802 0.4091
Error 274.7% 29.7% -

Table 7.11 - Damage quantification results using first order analysis
(with eigenvalue expansion)

Damage Scenario A B C
Element No. 59 9 59 9 59
True Damage Extent, C | -0.0787 | -0.1009  -0.0787 | -0.1009 -0.2160
Estimated C -0.0835 | -0.1769  -0.0896 | -0.6081 -0.2597
Error 6.1% 75.3% 13.9% | 502.7%  202%

Table 7.12 - Damage quantification results using first order analysis
for damage scenario A (with eigenvalue expansion)

Element No. 13 59
True Damage Extent, C 0 -0.0787
Estimated C 0.0403 -0.0865
Error - 9.9%
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Table 7.13 - Damage quantification results using first order analysis
for damage scenario B (with eigenvalue expansion)

Element No. 8 9 59
True Damage Extent, C 0 -0.1009 -0.0787
Estimated C -0.0932 -0.3508 -0.0511
Error - 247.7% 76.3%

Table 7.14 - Damage quantification results using first order analysis
for damage scenario C (with eigenvalue expansion)

Element No. 9 59 60
True Damage Extent, C -0.1009 -0.2160 0
Estimated C -0.6796 -0.3064 0.8614
Error 573.5% 41.9% -

Table 7.15 - Damage quantification results using second order analysis
(without eigenvalue expansion)

Damage Scenario A B C
Element No. 59 9 59 9 59
True Damage Extent, C | -0.0787 | -0.1009  -0.0787 | -0.1009  -0.2160
Estimated C -0.0797 | -0.0971  -0.0796 | -0.1077 -0.2254
Error 1.3% 3.8% 1.1% 6.7% 4.4%
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Table 7.16 - Damage quantification results using second order analysis
for damage scenario A (without eigenvalue expansion)

Element No. 13 59
True Damage Extent, C 0 -0.0787
Estimated C 0.0102 -0.0803
Error - 2.0%

Table 7.17 - Damage quantification results using second order analysis
for damage scenario B (without eigenvalue expansion)

Element No. 8 9 59
True Damage Extent, C 0 -0.1009 -0.0787
Estimated C -0.0044 -0.0914 -0.0797
Error - 94% 1.3%

Table 7.18 - Damage quantification results using second order analysis
for damage scenario C (without eigenvalue expansion)

Element No. 9 59 60
True Damage Extent, C -0.1009 -0.2160 0
Estimated C -0.1110 -0.2257 0.0125
Error 10.0% 4.5% -
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Table 7.19 - Damage quantification results using second order analysis
(with eigenvalue expansion)

Damage Scenario A B C
Element No. 59 9 59 9 59
True Damage Extent, C | -0.0787 | -0.1009  -0.0787 | -0.1009  -0.2160
Estimated C -0.0797 { -0.1052 -0.0798 | -0.1092 -0.2261
Error 1.3% 4.3% 1.4% 8.2% 4.7%

Table 7.20 - Damage quantification results using second order analysis
for damage scenario A (with eigenvalue expansion})

Element No. 13
True Damage Extent, C 0 -0.0787
Estimated C 0.0096 -0.0803
Error - 2.0%

Table 7.21 - Damage quantification results using second order analysis
for damage scenario B (with eigenvalue expansion)

Element No. 8 9 59
True Damage Extent, C 0 -0.1009 -0.0787
Estimated C -0.0092 -0.0901 -0.0816
Error - 10.7% 3.7%
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Table 7.22 - Damage quantification results using second order analysis
for damage scenario C (with eigenvalue expansion)

Element No. 9 59 60
True Damage Extent, C -0.1009 -0.2160 0
Estimated C -0.1138 -0.2268 0.0241
Error 12.8% 5.0% -

Table 7.23 - Eigenvalue expansion results using first order analysis

for damage scenario A

Mode No. 6 11
Measured 120.351 190.597
Frequency (Hz)
(a) Without undamaged elements in suspected group
Estimated 120.354 190.592
Frequency (Hz)
Error -0.00249% 0.00262%
(b) With undamaged elements in suspected group
Estimated 120.360 190.607
Frequency (Hz)
Error -0.00748% -0.00525%

Table 7.24 - Eigenvalue expansion results using second order analysis

for damage scenario A

Mode No. 6 11
Measured 120.351 190.597
Frequency (Hz)
(a) Without undamaged elements in suspected group
Estimated 120.353 190.594
Frequency (Hz)
Error -0.00166% 0.00157%
(b) With undamaged elements in suspected group
Estimated 120.355 190.594
Frequency (Hz)
Error -0.00332% 0.060157%
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Table 7.25 - Eigenvalue expansion results using second order analysis
for damage scenario B

Mode No. 7 8 9
Measured 145.588 154.307 160.939
Frequency (Hz)
(a) Without undamaged elements in suspected group
Estimated 145.592 154.284 160.951
Frequency (Hz)
Error -0.00275% 0.0149% -0.00746%
(b) With undamaged elements in suspected group
Estimated 145.612 : 154.251 160.976
Frequency (Hz)
Error -0.0165% 0.0363 -0.0230%

Table 7.26 - Eigenvalue expansion results using second order analysis
for damage scenario C

Mode No. 11 8 7
Measured : 190.415 154.246 145.588
Frequency (Hz)
(a) Without undamaged elements in suspected group
Estimated 190.418 154.271 145.569
Frequency (Hz)
Error -0.00315% -0.0162% 0.0131%
(b) With undamaged elements in suspected group
Estimated 160.440 154.276 145.566
Frequency (Hz)
Error -0.0147% -0.0194% 0.0151%
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Figure 7.3 - Photograph of experimental setup
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Figure 7.5 - Experimental mode shapes of undamaged five-storey steel plane frame
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Figure 7.6 - Experimental mode shapes for damage scenario A
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Figure 7.7 - Experimental mode shapes for damage scenario B
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Figure 7.8 - Experimental mode shapes for damage scenario C
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Figure 7.9 - Analytical mode shapes of five-storey steel plane frame
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions on the Proposed Damage Localization Method

A damage localization method using incomplete Elemental Modal Strain
Energy Change (EMSEC) is proposed to localize the structural damage. It is an
extension of the Multiple Damage Location Assurance Criterion (MDLAC) method.
The damage indicator MDLAC is used to check the correlation between the analytical
EMSEC for various damage scenarios and the true measured EMSEC. At first, only
one element of the structure is assumed to be damaged so that the number of damage
scenarios is equal to the number of total element of the structure. The potential
damage sites are identified as those elements with higher MDLAC values. The final
damage sites are then determined by finding those combined sites among the potential
damage sites with the highest MDLAC values. The advantage of this MDLAC method
is that only limited information (incomplete EMSEC) is used to localize the damage.
Simulation results on a three-storey plane frame show that the proposed MDLAC
method using incomplete EMSEC is effective to localize both small and large
damages even if the eigenvalues and mode shapes are contaminated with
measurement noise up to 0.15% and 3% respectively. The proposed damage

localization method is verified on a five-storey steel plane frame experimentally. The
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experimental results show that this method can be successfully used to localize single

and multiple damages in the test structure.

Comparison with the MDLAC method using incomplete mode shape in the
simulated three-storey plane frame is also studied. Numerical examples show that the
MDLAC method using incomplete EMSEC has better accuracy than the MDLAC

method using incomplete mode shapes in damage localization.

Simulation and experimental results show that the damage element usually has
the largest MDLAC value. The undamaged elements, which are adjacent to or near the
damage, have a larger MDLAC value because they share the same measured mode
shapes of the damage element and have some damage characteristic. The undamaged
elements, which symmetrically locate on the other side of the adjacent elements, are
identified as potential damage sites due to symmetry of the structure. The undamaged
elements, which are far away from the damage, also contain a large MDLAC value
due to the measurement noise and the assumption of a single damage in the
calculation of the analytical EMSEC for identifying the potential damage sites.
Although some undamaged elements are included in the group of final damage sites,
the actual damage elements can be localized after the estimation of the damage extent

in the final damage sites by the damage quantification method using second order

analysis.
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8.2 Conclusions on the Two Proposed Damage Quantification Methods

After damage localization, the damage extent of the damage sites can be
determined using the measured eigenvalues that are less contaminated by

measurement noise and with better accuracy than mode shapes.

At first, the damage quantification method using first order analysis is
developed. The formulation of this method includes the first order terms of the
Taylor's expansion of the eigenvalue change. Numerical results on the three-storey
plane frame show that this method can estimate the damage extent with a high
accuracy for small damage only. When the eigenvalues and mode shapes are
contaminated by measurement noise, the damage extent can also be correctly
estimated for small damage. The accuracy of identification will be reduced

substantially for large damage. Therefore, the method using first order analysis is only

suitable for small damage.

There is a special feature in this method, that a smaller set of measured
eigenvalues can be expanded into a larger set of eigenvalues. The damage extent can
also be correctly estimated for small damage when eigenvalue expansion is allowed.
However, the method without eigenvalue expansion has better accuracy than that with
eigenvalue expansion because this expansion introduces error in the expanded
cigenvalues and decreases the accuracy of the estimation. Another feature in this

method is that the final identification result is independent of the initial estimate of the

-

damage extent C. Experimental results on the five-storey steel plane frame indicate
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that the damage quantification method using first order analysis is effective for small

damage only.

In order to increase the accuracy in identification for large damage, the second
order terms in the Taylor's expansion are included in the formulation of the second

order analysis. Two necessary conditions are developed in this method for the optimal

solution.

This method also has two features. (1) Eigenvalue expansion is permitted in

the formulation; and (2) This method is independent of the initial estimate of damage
extent C and the value of C, around which the Taylor's expansion is taken.

Simulations on the three-storey plane frame are studied. The simulated results show
that the method using the first necessary condition only or using both necessary
conditions can obtain the same results when there is no eigenvalue expansion. When
the expansion is included, the method using the first necessary condition is more
accurate than that using both necessary conditions. This is because the gain matrix P
is simplified when both conditions are included in the formulation so that the
accuracy of the damage extent is decreased. The identified results also indicate that
the method using the first necessary condition only is robust and effective to detect
the damage extent for small and large damages. The damage extent of the suspected
elements can be determined correctly even when the modal information is affected by
measurement noise. The estimation results without eigenvalue expansion are more
accurate than those with eigenvalue expansion. This method is verified by the

experimental results of the five-storey steel plane frame. The experimental results
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indicate that the damage quantification method using second order analysis and the
first necessary condition can estimate correctly the damage extent for small and large

damages. The method using both conditions give less accurate identification results in

the different cases studied.

By comparing the two proposed damage quantification methods for small
damége, the simulation results show that the method using second order analysis

gives more accurate estimation than the method using first order analysis. The

experimental results also support this conclusion.

8.3 Conclusions on the Eigenvalue Expansion Study

Two damage quantification methods studied in this thesis enable eigenvalue
expansion from a small set of measured eigenvalues. The simulation results on the
three-storey plane frame show that the estimated frequencies are very close to the true
frequencies for both small and large damages. Moreover, the estimation without
undamaged elements in the suspected element group has better performance than that
with undamaged elements in the suspected group. The expanded frequencies from the
eigenvalue expansion process are verified with the experimental data of the five-

storey steel plane frame. The experimental results show that the expanded frequencies

are estimated correctly.
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8.4 Recommendations

Following are some recommendations for further research

1.

In practice, incomplete information is used directly without any expansion or
reduction to localize the structure damages. Many sensor placement methods
(Chen and Graba, 1985; Kammer, 1991; Hemez and Farhat, 1994; Cobb and
Liebst, 1997 and Kashangaki, 1992) have been proposed to select the sensor
locations such that the useful degrees-of-freedom are selected. However in this
dissertation, the sensor locations are selected with the engineering sense. Hence,
the effectiveness of the MDLAC method using incomplete EMSEC can be further

investigated by using different sensor placement methods.

In the damage localization method, three global modes and three local modes are
used to detect the structure damages in the three-storey plane frame. However, the
number of modes and which of them are most suitable modes are not known, and
this information varies for different structure. Some criteria or methods should be

developed to select the optimum modes and number of modes.

In the damage quantification methods, the first five modes with the largest
eigenvalue change ratio are expanded into eight modes in the three-storey plane
frame. However, the requirement of the minimum number of measured

eigenvalues and the maximum number of the expanded eigenvalues can be further

studied.
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4. A practical structure is large and complex. It consists of different structural
components made of different materials. In this dissertation, the test structure only
consists of two structural components and is made of steel. Structures with more
structural components made of concrete or composite materials can be used to

further investigate the three proposed methods in this thesis.

5. In reality, structures are much larger and complex. The number of unknowns may
be much larger, and the least-squares method cannot handle the ill-conditioned
problem. Under this situation, different regularization techniques can be used to

solve this problem.
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