

The Hong Kong Polytechnic University

Department of Computing

An Ontology-based Modeling Methodology for

Service-Oriented Architecture

LIAO Li

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy

December 2008

 II

Abstract

With the rapid growth of the software industry, Service-Oriented Architecture

(SOA) has been considered as a new paradigm for system development and

integration. By using services to encapsulate functionalities of business tasks and

providing standard communication between services, SOA provides a design

framework for realizing rapid and low-cost system development and improving total

system quality. SOA modeling is the initial phase of SOA development lifecycle and

the quality of the SOA model will directly affect the quality of SOA application.

Applying ontology techniques to SOA modeling can provide accurate

descriptions for models, identify the binding information of business process and

service, increase the reusability of existing business processes and services, and

accelerate application development. In this thesis, we adopt ontology techniques to

assist SOA modeling, developing a core ontology BPO (Business Process Ontology)

for business process modeling as well as proposing an ontology-based SOA

application modeling and developing framework. BPO can provide accurate

definitions of the main components of SOA modeling. Its extension on a specific

domain can help to construct a knowledge base for business process modeling,

describing processes and services and defining their mappings. As such, we propose

four modeling methods for SOA development: TDM (Top-Down Modeling) supports

developers to directly create new process models; TDM-RP (Top-Down Modeling

based on Reusable Process) supports developers to construct new process models by

reusing similar process models already defined in the knowledge base; BUM-RS

(Bottom-Up Modeling based on Reusable Services) supports developers to construct

III

new process models by reusing identified services; and AM-RPRS (Agile Modeling

based on Reusable Process and Reusable Services) provides specific queries on both

the business process and identified services, and enables developers to efficiently

choose suitable models. The modeling methods are verified by extending BPO to the

automotive software development domain, constructing a knowledge base AutoPO

(Automotive Process Ontology), and applying AutoPO to simulate the execution of

the modeling method with a series of case studies. Based on a survey of the quality

requirements for models, we also propose a set of quality attributes for SOA models.

 IV

Publications Arising From the Thesis

1. Liao, L., Leung, H. K. N. SOA-based Process Modelling for Automotive Software

Development. Submitted to Journal of Systems and Software.

2. Liao, L., Leung, H. K. N. 2007. Testing Techniques for SOA Model. Proceedings

of the International Conference on Software Engineering and Data Engineering

(SEDE-2007), USA, 9-11 Jul. 2007

3. Liao, L., Leung, H. K. N. 2007. An Ontology-based Business Process Modeling

Methodology. Proceedings of the IASTED International Conference on Advances in

Computer Science and Technology (ACST 2007), Thailand, 02-04 Apr. 2007

4. Leung, H.K.N., Liao, L. and Qu, Y.Z. 2007. Automated Support of Quality

Improvement. Journal of Quality and Reliability Management. vol. 24, no. 3,

pp.230-243.

V

Acknowledgements

I wish to express my gratitude to everyone who contributed to making the

dissertation a reality.

First and foremost, I would like to express my deepest thanks to my supervisor

Dr. Hareton Leung, who gave his full effort to this research and supported me during

the years to bring it to fruition. And, I would like to thank all of the teammates in Dr.

Leung’s group for their continuous support and kind help.

I would like to thank Prof. Keith Chan, Prof. Francois Coallier and Dr. Yuen

Tak Yu, for their insightful comments and helpful advice to improve the quality of

my thesis. I would like to thank Dr. Yuzhong Qu for his helpful suggestions at the

beginning phase of this research. I am grateful to Ms. Yvette Lui, who corrected the

wording of this work. I am again grateful to my friends for their encouragement and

help.

Finally, I would like to express my deepest appreciation to my family for their

constant support and patience during the years to make my dream come true.

 VI

Table of Contents

CERTIFICATE OF ORIGINALITY... I

Abstract.. II

Publications Arising From the Thesis ..IV

Acknowledgements ... V

Table of Contents ...VI

List of Figures...IX

List of Tables.. X

Chapter 1 Introduction..1

1.1 Background..1

1.2 Motivation and Objectives...3

1.2.1 Motivation..3

1.2.2 Objectives and Methodology ...7

1.3 Contributions..9

1.4 Organization... 11

Chapter 2 Literature Review ..12

2.1 SOA Overview...12

2.1.1 Definitions of SOA ..14

2.1.2 SOA Development Lifecycle ...16

2.1.3 Layers of SOA ...17

2.1.4 SOA Delivery Strategies ..20

2.2 Related Works of SOA Modeling ..23

2.2.1 Standards for SOA Modeling...24

VII

2.2.2 Methods for SOA Modeling...29

2.2.3 SOA Modeling and Developing Frameworks............................35

2.3 Quality Attributes for Models ..38

2.3.1 Attributes of Engineering Models..38

2.3.2 Quality Attributes Defined in ISO 912639

2.3.3 Quality Attributes for UML-based Models41

2.3.4 Guidelines to Improve Quality of Information Models42

2.4 Related Works of Automotive Software Modeling43

2.4.1 Overview of Automotive Software ..43

2.4.2 Features of Automotive Software...47

2.4.3 Automotive Software Modeling Methods..................................49

2.5 Summary ..57

Chapter 3 Ontology-based SOA Modeling Methodology58

3.1 Ontology Definitions..59

3.2 Business Process Ontology (BPO)...67

3.2.1 Concept Set of BPO ...68

3.2.2 Relation Set of BPO...72

3.2.3 The Formal Description of BPO ..78

3.2.4 Axioms for BPO...81

3.2.5 Comparison of BPO and OWL-S...84

3.3 Ontology-based Business Process Modeling and Developing

Framework ...86

3.4 Modeling Methods ...89

3.4.1 Notations ..89

3.4.2 The Modeling Processes ..92

 VIII

3.4.3 Top-Down Modeling (TDM) ...97

3.4.4 Top-Down Modeling based on Reusable Processes (TDM-RP)

 100

3.4.5 Bottom-Up Modeling based on Reusable Services (BUM-RS)

 105

3.4.6 Agile Modeling based on Reusable Process and Reusable

Services (AM-RPRS)...106

3.5 Summary..109

Chapter 4 Validation and Verification ... 110

4.1 Validation of Modeling Methodology.. 110

4.1.1 Extension of BPO for Automotive Software Modeling........... 111

4.1.2 Case Studies ...121

4.2 Comparison of the Automotive Software Modeling Methods.........147

4.3 Verification of SOA Models...151

4.3.1 Quality Attributes for SOA Models ...151

4.3.2 Verification of Our SOA Models ...155

4.4 Summary..161

Chapter 5 Conclusion and Future Work..162

Bibliography ...169

Appendix A: Glossary..183

Appendix B: Framework of AutoPO..186

IX

List of Figures

Figure 1. SOA development lifecycle (High et al., 2005)..16

Figure 2. The layers of SOA (Arsanjani, 2004) ...18

Figure 3. Development flow of Model Driven Service-Oriented Architecture36

Figure 4. Steps of ontology based software development..37

Figure 5. Layered architecture of AUTOSAR (2006a)..53

Figure 6. Framework of BPO...68

Figure 7. Ontology-based Business Process Modeling and Developing Framework 86

Figure 8. Ontology-based modeling flow ..95

Figure 9. Extension of BPO for automotive categories ...114

Figure 10. Extension of BPO for automotive software components’ ports117

Figure 11. Wiper/washer process model ..124

Figure 12. Sequence graph of a wiping process...126

Figure 13. Business Process model: WiperWasherSystem_V1126

Figure 14. Searching for reusable processes ..130

Figure 15. A partial process model of WiperWasherSystem_V2.............................132

Figure 16. Searching with service information (I) ...133

Figure 17. Searching with service information (II)..134

Figure 18. Combined search for the processes implemented by

“RainSensingService_V1” ...135

Figure 19. Searching the processes for “Washer” ..138

Figure 20. LampWasherSystem model ..140

 X

List of Tables

Table 1. Comparison of SOA modeling methods ..34

Table 2. Quality attributes and sub-attributes in ISO 9126..40

Table 3. Comparison of automotive software modeling methods54

Table 4. Hierarchical relationships between the concepts in BPO72

Table 5. Main object properties in BPO...74

Table 6. Main data type properties in BPO..76

Table 7. Relation hierarchies between the properties in BPO76

Table 8. Definitions of abbreviations...91

Table 9. Comparison of different modeling methods ..97

Table 10. Comparison of the four modeling methods..108

Table 11. New class definitions in AutoPO ... 114

Table 12. Hierarchical relationships between the concepts in AutoPO 118

Table 13. Main object properties in AutoPO ... 119

Table 14. A partial list for properties of concrete services.......................................128

Table 15. The developed process models in Case 1-4 ...141

Table 16. Concrete process models..142

Table 17. Comparison between logical models ...146

Table 18. Comparison of automotive software modeling methods148

Table 19. The ISO 9126 Quality attributes applicable to SOA model.....................152

Table 20. Mapping of the quality attributes ...153

Table 21. Category of possible errors when developing ontologies156

 1

Chapter 1 Introduction

1.1 Background

In the past decades, different software architectures have been proposed and

practiced to deal with the growing software complexity. Using the structured system

analysis and design method, developers can solve the early problems of complexity

by choosing the right data structures, developing appropriate algorithms, and

modularizing various system functions. After the appearance of Object-Oriented

analysis and design method and Component-based development, developers can

handle more complex problems, and software can be partially reused to solve the

code redundancy problem.

In the 1990s, with the maturity of computer networks, most enterprises work

with a systemic infrastructure of multiple heterogeneous systems and may need to

integrate them. Architectures, such as CORBA (Common Object Requesting Broker

Architecture) (OMG, 2004) and DCOM (Distributed Component Object Model)

(Microsoft, 2007), can be used to handle the communication problems among

software components distributed across networked computers. They are however not

widely accepted, because they require every participant in the distributed system to

use the same technology (High et al., 2005).

From the viewpoint of system engineering, Enterprise Architecture (EA) is

defined as a coherent set of principles, methods, and models that are used in the

design and realization of an enterprise’s organizational structure, business processes,

information systems, and infrastructure (Lankhorst et al., 2005). Enterprise

 2

architecture captures the essentials of the business, IT and its evolution, and provides

a holistic view of the enterprise. The Open Group Architecture Framework (TOGAF)

(The Open Group, 2009) is one of the most popular enterprise architecture

frameworks, which provides architectural framework, architecture development

methodology and relevant resources for organizations.

Nowadays, developers begin to use web service technology and

Service-Oriented Architecture (SOA) to solve the integration problems of distributed

and heterogeneous systems. SOA is also seen as a style of architecture associated

with the application architecture of an enterprise architecture. According to W3C’s

definition (W3C, 2004a), a service is an abstract resource to represent a capability of

performing tasks that represents a coherent functionality. A service performs one or

more tasks, and the provider and consumer of the service can be different persons or

organizations. A service has a service interface and can be accessed over a network.

The communication between the services is standard-based (such as Simple

Object-based Access Protocol, SOAP). Hence, a service can be considered as a black

box that completely hides the underlying implementation and simply offers the

execution of a certain behavior.

SOA is an architectural concept for describing distributed systems (W3C,

2004a), and it can also be viewed as a paradigm for organizing and utilizing

distributed capabilities that may be provided by different owners (OASIS, 2006). In

SOA, service can be considered as a black box for business driven functional units,

and can be invoked across networks to provide flexible enterprise application

integration (Stojanovic et al., 2004). Generally, SOA considers services in the

context of business functions with specific business behaviors rather than as

technical software entities.

 3

Compared with the traditional EA (e.g. TOGAF), SOA is a discipline that spans

the entire spectrum from business architecture to IT implementation (Bercovici et al.,

2008). SOA enables agile businesses through business processes and services (Zhao,

2006). According to IBM, the primary goal of SOA is to align the business world

with the IT world in a way that makes both more effective (High et al., 2005). SOA

can be applied to the full spectrum of enterprise business and IT, which include

business service specification, IT strategic planning, enterprise architecture, solution

development, business implementation and business monitoring. SOA can also be

considered as a practical modeling approach for enterprise architecture development.

It can help to bridge EA with a solution architecture and implementation by layered

service descriptions across business modeling, application modeling, and technology

implementation; hence it can help bring EA into reality.

Compared with the traditional integration techniques (e.g. CORBA and DCOM),

SOA-based solutions can provide many benefits such as simplicity, reusability,

standard-based, flexibility, low cost, efficiency and dynamic systems (Bouras et al.,

2007).

1.2 Motivation and Objectives

1.2.1 Motivation

SOA modeling is the initial phase of the lifecycle of SOA development (High et

al., 2005). The target of SOA modeling is to capture the business requirements,

create a specification of business processes, goals and assumptions, and design an

encoded model. To support different views of business, SOA modeling includes two

 4

kinds of modeling: one is service modeling, constructing models for service

implementation; the other is business process modeling, using services as the basic

building blocks to compose an SOA system. The former considers the design of a

service from a technical view, pays more attention to the interfaces and the

communication of the services; while the latter considers the design from a higher

level viewpoint, considering the targets, strategies, and workflow of business

processes. In business process modeling, local and remote business behaviors

represented by (web) services reach a level of technical abstraction, and the software

structure and control-flow are closely related to the business goal. This introduces a

business-oriented approach to easily and flexibly designing and structuring software

systems. In our study, we focus on the business process modeling. Therefore, SOA

modeling is taken to be equivalent to business process modeling in the remainder of

the thesis, if not specified otherwise.

The business process modeling is not an invention brought about by SOA.

Traditional Business Process Modeling has been investigated for years before the

appearance of SOA. Researchers and organizations have developed business process

description languages, such as PSL (Process Specification Language) (ISO, 2004)

and BPMN (Business Process Modeling Notation) (OMG, 2008), and patterns

(Rozman et al., 2004; van Dongen et al., 2006) to describe the business workflow.

Originally, the process-oriented modeling was used for re-structuring business

applications, integrating new processes and continuously monitoring system

performance (Karagiannis et al., 1996), and was mainly used in the context of

Business Process Reengineering, Workflow Management and Supply Chain

Management (Becker et al., 2000). With the acceptance of service and SOA in

software industry, researchers began to use service concepts in new patterns for

 5

business processes (Mahleko et al., 2006; Zdun et al., 2007); however, they only

adopted the concept of service in their modeling; they continued to focus on the

vision from the business aspect and did not provide a complete view that includes

both business processes and services.

After the appearance of SOA, several Model Driven Architecture (MDA)-based

methodologies for SOA modeling have also been proposed (Gardner, 2003; Torres et

al., 2005; Wada et al., 2006; and Zhou et al., 2008). Unified Modeling Language

(UML) diagrams are used to capture business visions and model services as well as

their choreography. Applying MDA to SOA modeling can accelerate SOA’s

formalization and automation. It supports separating conceptual concerns from

implementation-specific concerns. However, MDA is not suitable for dynamic

application environment, and it cannot be queried nor reasoned about (Tetlow et al.,

2006). There is, for example, no way to ask the MDA system whether some

configuration is valid or more elements are needed. Therefore, using MDA only is

not effective for SOA modeling.

Besides using UML to model services and processes, researchers also use

service composition techniques for business processes modeling and implementation.

Several standards and languages have been developed for web service composition,

such as WSBPEL (Web Services Business Process Execution Language) (OASIS,

2007), WSCL (Web Services Conversation Language) (W3C, 2002a), WSCDL (Web

Services Choreography Description Language) (W3C, 2005a) and WSCI (Web

Service Choreography Interface) (W3C, 2002b). These standards and languages can

be used to construct the high-level specification of a complex business process and

represent the interactions between services. However, to construct business models

using these standards, developers face a steep learning curve (including these

 6

standards and other related standards, such as WSDL (Web Services Description

Language) (W3C, 2001a)). This may cause difficulties because the business process

model must be understandable by all the stakeholders, including the end users who

will probably not able to understand these standards and languages.

In recent years, Ontology has been recognized as a useful technique for

business process modeling and management by providing formal descriptions,

reasoning functions and extensible knowledge base. Ontologies can provide formal

description for the models and their relationships, and support the model information

query, sharing and reusing of this information. Researchers have proposed different

ontologies to support business process and service modeling. For example, domain

ontologies can provide knowledge supporting, which may include the concepts and

relations of the domain specific terms, for the application modeling (Kuziemsky et

al., 2003; Liu et al., 2007). Based on the Web Ontology Language (OWL), upper

ontologies have also been proposed, such as the OWL for Processes and Protocols

(OWL-P) (Mallya et al., 2005; Desai et al., 2005), Task ontology language (OWL-T)

(Tran et al., 2007) and the OWL for Services (OWL-S) (W3C, 2004e). These

ontologies can capture the general concepts and relationships in a model. OWL-P

and OWL-T can be used for business process description; OWL-S can be used for

describing the properties and capabilities of web services. However, most modeling

frameworks usually apply these ontologies separately, which may cause

inconsistency.

To build high-level and abstract models of the business goals, a modeling

methodology should be able to identify the reusable components and integrate

different parts of the business (Graham, 2006). To identify the reusable components,

the modeling methodology should be able to identify the common services and the

 7

models related to the services from the repository of an organization; to support

seamless business operations, business rules for the integration should also be

specified.

This can be considered as common functional requirements for the business

process modeling. Besides this, business process modeling should enable

non-technical domain experts to participate in the SOA model design, which means

that the business model should be understood by both the developers in business and

IT domains. Therefore, an easy-to-understand formal description language for

capturing the business design is needed.

Although most of the process modeling languages and methods are formalized

or semi-formalized, they usually can only satisfy part of the above requirements. For

example, all the modeling methods introduced previously support the integration of

different parts of the business; however, few of them provide the function to identify

common services or reusable components. These methods usually need to cooperate

with other techniques, such as service discovery techniques, to satisfy the above

requirements. Although this provides a way to solve the problem, other difficulties

emerge, such as: how to choose a service discovery method; can the modeling

method combines seamlessly with the service discovery method; how to ensure the

security of the discovered service; etc.

1.2.2 Objectives and Methodology

In view of the limitations and problems of previous business process modeling

approaches, the main objective of this research is to provide a new formal modeling

methodology to satisfy the flexible requirements of the business process modeling in

SOA development.

 8

To achieve this objective, four aspects will be considered:

1) Selecting a suitable formal modeling language for constructing business

process models in SOA development.

Capturing business design using a rigorous approach offers the potential to

gain better insight into business. Formal modeling languages can describe the

business processes precisely, and would not cause confusion to the developers. A

suitable formal language should be understandable by both the developers and

computer, so that computer-aided tools can help to speed up the system

development and provide automatic checking and management. Another

requirement for the modeling language is that it should support the maintenance of

the business process models, because the models may need to be changed during

their usage. Finally, the language should also be easy to learn and easy to use.

In our study, we use ontologies to represent business process models and

adopt OWL (W3C, 2004c) as our modeling language. The concept definition of

ontology can help to define the business processes and services accurately; the

extensibility and inheritance properties of ontology can help to reuse processes;

and the reasoning of ontology can help to identify suitable services for a business

process. If ontology can be used to represent both business processes and business

process model components, we may develop formal descriptions for them, and use

reasoning functions to assist in the SOA modeling.

OWL is an ontology language which is more expressive than other ontology

languages. Although OWL is Extensible Markup Language (XML)-based, it

provides higher machine readability than XML. There are many ontology editors

which support OWL, for example, Protégé (2008) provides a visual tool for

ontology construction, with which, developers can construct and manage their

 9

knowledge base.

2) Identifying the information and properties of the business process model to

form the basis for SOA system development.

In this part, we abstract the common features of business processes and

services to construct the business process concept and service concept of the

ontology. The relationships between the concepts are also defined. This builds up

the basic framework for the knowledge base of business process modeling.

3) Proposing relevant modeling framework and modeling methods.

In practice, an organization may have many different modeling requirements.

For new development, the developers may analyze the business targets and

processes first, create process models and then implement the system.

Alternatively, the organization may have a large asset base of existing services

available for reuse through years of development. Then, its developers may build a

new system by integrating some existing business processes, or reusing some

identified common services. To satisfy the different requirements, different

modeling strategies and methods need to be developed.

4) Validating whether the proposed modeling methods can facilitate the

requirement analysis and system design.

We will apply our methodology to a specific scenario and use several case

studies to validate the methods.

1.3 Contributions

The contributions of this study are listed as follows:

1) A core ontology (Business Process Ontology) for Business Process modeling

 10

is designed to describe business processes and their component services. On the

basis of the core ontology BPO, a knowledge base can be constructed to present and

manage the information of software modeling. These ontologies can provide

sharable and precise description of the process models and services and support the

knowledge management of the process model and service asset bases.

2) An Ontology-based Business Process Modeling and Developing Framework

(OBPMDF) is presented. This framework illustrates the modeling and assembling

phases of SOA development lifecycle. It applies the extension of BPO to work as the

knowledge base, providing accurate descriptions for business processes, services and

their relationships.

3) On the basis of the extension of BPO and OBPMDF, four modeling methods

which address different requirements of modeling are presented. TDM (Top-Down

Modeling) allows developers to create new process models directly; TDM-RP

(Top-Down Modeling based on Reusable Process) allows developers to construct

new process models by reusing similar process models already defined in the

knowledge base; BUM-RS (Bottom-Up Modeling based on Reusable Services)

allows developers to construct new process models by reusing identified services;

and AM-RPRS (Agile Modeling based on Reusable Process and Reusable Services)

provides specific queries on both the business process and identified services, and

can facilitate developers to efficiently choose suitable models.

4) The modeling methods are verified by extending BPO to the automotive

software development domain, constructing a knowledge base AutoPO, and applying

AutoPO to simulate the execution of the modeling methods with a series of case

studies. In the extension of BPO, domain specific knowledge for automotive

software development is added to the ontology, so that the knowledge can be well

 11

structured. The case studies demonstrate how the business process models can be

constructed step by step.

5) Based on a survey of different quality models, a set of key quality attributes

for SOA models are proposed. We also discuss how our methodology can support the

quality attributes for SOA models.

1.4 Organization

The remainder of the thesis is organized as follows: Chapter 2 gives details of

background information and related works, including the SOA modeling methods

and framework, model quality attributes, and modeling methods for automotive

software. Chapter 3 presents the proposed framework of BPO (Business Process

Ontology), illustrates an Ontology-based Business Process Modeling and

Developing Framework (OBPMDF) and presents four modeling methods that exploit

three well known modeling strategies, Top-Down, Bottom-Up, and Agile Modeling,

each suited to a different kind of modeling requirements. In Chapter 4, we validate

our framework and modeling methods by constructing a knowledge base AutoPO

(Automotive Process Ontology) for automotive software modeling on the basis of

BPO and using several case studies to demonstrate their usage. We also propose a set

of quality attributes for SOA models and discuss how our methodology supports the

attributes. The final chapter concludes the thesis and identifies some directions for

future research.

 12

Chapter 2 Literature Review

In this chapter, we will introduce the SOA-related concepts first; then we will

present the related works on SOA modeling methods and frameworks as well as the

quality attributes for models. Since we will validate our modeling methodology by

applying it to the automotive software development domain, this chapter also

reviews the related works for the automotive software modeling.

2.1 SOA Overview

The concept of Software Architecture as a practice in the field of software

engineering has continuously evolved to deal with the increasing complexity of

today’s software systems. The software architecture reflects the system structure,

which is comprised of software components, their externally visible properties and

their relationships (Bass et al., 2003). Software Architectures are used to describe

how these components interact on a high level and provide a structural and

behavioral view of the system (McGovern et al., 2003).

With the introduction of Object-Orientation, the real world business logic can

be represented by concept models which are described by classes, objects, attributes

and methods. Compared to the older structural programming concept,

Object-Oriented Analysis and Programming can partially solve the increasingly

complex and quality problems of software by using discrete units of programming

logic which greatly enhance software reuse. Objects can provide programming

language level abstractions.

 13

Component-based technologies have also been developed to facilitate the

creation of complex, high-quality systems, internally managing complexities and

dependencies of software components. Components are essentially larger grain

abstraction of objects, in which typically a group of objects come together to provide

a business functionality that is required by an application (Herzum et al., 2000).

However, composing software from software components still requires knowledge

about the underlying object models which are programming language dependent.

It is difficult for these technologies to support the development of complex,

distributed and heterogeneous systems because of their dependency on the platforms

and programming languages. Even architectures, such as CORBA (OMG, 2004) and

DCOM (Microsoft, 2007), which are specific for distributed systems communication

and integration, have strict syntax and semantics requirements for the participating

systems (High et al., 2005). Furthermore, the component-based technologies have

difficulty in supporting unrestricted portability and platform independence.

In a Service-Oriented approach, an SOA application consists of self-contained

business-oriented software blocks that are accessible over networks and solely need

to describe their service interface in a well-understood manner (W3C, 2004a). With

well-defined interfaces, services can be described, discovered and used by external

users and accessed via a standardized mechanism. With services representing

business functionality, SOA strives at easing the design of business processes and

provides an architectural solution that enables flexible business execution and

business partner integration.

In this section, we present detailed background information for our study, such

as SOA definitions, SOA development lifecycle, SOA layered structure and delivery

strategies for SOA development.

 14

2.1.1 Definitions of SOA

Common definitions of SOA are:

� OASIS’s definition (OASIS, 2006): SOA is a paradigm for organizing and

utilizing distributed capabilities that may be under the control of different

ownership domains.

� W3C’s definition (W3C, 2004a): SOA is a form of distributed systems

architecture that is typically characterized by the following properties:

logical view, message orientation, description orientation, granularity,

network orientation, and platform neutral.

These two definitions present the SOA from different points of view. SOA can

be a design style to guide the creation and use of business services throughout their

lifecycle (from conception to retirement), and can also be a way to define an IT

infrastructure to support different applications to exchange data and participate in

business processes, regardless of the underlying operating systems or programming

languages (Newcomer et al., 2004).

Service is an important concept for SOA. Service normally denotes the

provision of a general business activity which provides a certain value to the

customer in a business domain (Baida et al., 2004). In computer science, service is a

software component of distinctive functional meaning that typically encapsulates a

high-level business concept (Krafzig et al., 2004). In SOA, service is often used

synonymously with web service, which can be considered as a self-contained and

self-describing business driven functional unit, and can be invoked across networks

to provide flexible enterprise application integration (Stojanovic et al., 2004).

Service encapsulates the logic within a distinct context for business which could

 15

be a specific business task, a business entity, or other logical grouping (Erl, 2005).

Varying amounts of logic can be encapsulated into services and be considered as

independent artifacts accessed in a standardized way. The application developers or

system integrators can build applications by composing one or more services,

without having to know their underlying implementation.

The main features of SOA can be summarized as follows (Newcomer et al.,

2004).

� Loosely Coupled: In SOA, services are the mechanisms by which needs

and capabilities are brought together. The use of services establishes a

loosely coupled environment that runs contrary to many traditional

distributed application designs. If properly designed, loosely coupled

services can support a composition model, allowing several individual

services to be integrated into an SOA application. This introduces

continual opportunities for reuse and extensibility.

� Diversely Owned: SOA applications may be composed of services which

are owned and operated by outside organizations. Diverse ownership

implies that the published service interface will be treated as a black box

from the standpoint of the programmers since they cannot penetrate the

interface and modify its code and behavior.

� Interoperable: Standards (such as SOAP, XML, UDDI, etc) ensure that

services from differing organizations can use each other’s services. SOAP

(Simple Object-based Access Protocol) (W3C, 2007) provides the

messaging format used by service and service requester. XML (W3C, 2006)

supports the data representation of SOA. UDDI (Universal Description,

Discovery and Integration) (OASIS, 2004) provides an industry standard

 16

for service registration and discovery.

These features brought some significant benefits: With SOA, software

organizations can reuse business processes and services, facilitate the manageable

growth of large scale enterprise systems, and reduce development costs (OASIS,

2006).

2.1.2 SOA Development Lifecycle

According to IBM (High et al., 2005), the SOA lifecycle can be divided into

four phases: Model, Assemble, Deploy and Manage. The four phases are layered on

a backdrop of a set of governance and processes to ensure the compliance, and

feedback is cycled to and from phases in iterative steps of refinement in the lifecycle,

as shown in Figure 1.

Figure 1. SOA development lifecycle (High et al., 2005)

The Model phase is the process of capturing the business design of an

organization, translating that into a specification of business processes, goals and

assumptions, and finally creating an encoded model of the business (Newcomer et al.,

2004). The SOA solutions should ensure that the design can satisfy the organization’s

business requirements and objectives.

During the Assemble phase, software organizations should take actions to

 17

design and implement the modeled business processes and services. These actions

include searching the existing asset base inventories to find reusable application

components, create or purchase new services.

In the Deploy phase, after the deployment of applications, a hosting

environment for the applications will be created, which resolves the application’s

resource dependencies, operational conditions, capacity requirements, and integrity

and access constraints. In the Manage phase, software organizations need to consider

how to maintain the operational environment and the policies expressed in the

assembly of the SOA applications deployed to that environment.

The Model phase is the initial phase of the lifecycle, and forms the basis of the

latter phases. Therefore, suitable modeling methodology and qualified models are

very important for SOA development.

2.1.3 Layers of SOA

The importance of modeling in SOA development can also be reflected by the

architectural structure of an SOA. Generally, enterprise logic can be divided into two

layers from an IT perspective, business logic layer and application logic layer (Erl,

2005). Business logic layer is generally structured into business processes to express

the requirements, associated constraints, dependencies, and outside influences.

Application logic layer is the implementation of the business logic, which can be

purchased or custom-developed systems that express the business processes within

the confines of an organization’s IT infrastructure, security constraints, technical

capabilities, and vendor dependencies.

With SOA, a new layer, service interface layer, is added to the enterprise logic

(Erl, 2005). Service interface layer wedges between traditional business and

 18

application layers and establishes a higher form of abstraction which encapsulates

the physical application logic and business process logic of the applications. Three

layers of abstraction are identified in the service interface layer; they are application

service layer, business service layer and orchestration service layer. The application

service layer contains the foundation level services to express technology-specific

functionality. The business service layer expresses the business logic through

service-orientation and brings the representation of corporate business models into

the web services arena. The application service layer is platform-concerned and the

business service layer solely concerns business logic. The orchestration service layer

concerns the workflow management and composes the business services to provide

specific sets of functions.

Besides this layered architecture, IBM (Arsanjani, 2004) also proposes an

architectural template for SOA, which mainly contains five layers. The layers are

operational systems layer, enterprise components layer, services layer, business

process choreography layer and presentation layer. QoS (Quality of Service),

security and monitoring act on each of the five layers. The architecture is shown in

Figure 2.

Figure 2. The layers of SOA (Arsanjani, 2004)

 19

The operational systems layer consists of existing applications, which may

include existing CRM (Customer Relationship Management) and ERP (Enterprise

Resource Planning) packaged applications, object-oriented system implementations

and business intelligence applications. This layer can be viewed as the

implementation of application, and can map to the application logic layer of Erl’s

enterprise logic (Erl, 2005).

The enterprise components layer is responsible for realizing functionality and

maintaining the QoS of the exposed services. This layer can map to the application

service layer in Erl’s enterprise logic (Erl, 2005). The services in this layer compose

the enterprise service asset bases.

The services layer represents the services that the business chooses. In this layer,

services can be discovered or be statically bound and then invoked, and can be

choreographed into a composite service. This layer can map to the business service

layer in Erl’s enterprise logic (Erl, 2005). As a service exposure layer, it provides

service descriptions and the mechanism to discover and invoke services.

The business process choreography layer defines the compositions and

choreographies of services. This layer can map to the orchestration service layer in

Erl’s enterprise logic (Erl, 2005). In this layer, services can be bundled into a flow

through orchestration or choreography, and a single application can be generated to

finish a business task.

The presentation layer is also called the access layer in IBM’s definition, which

considers the access channel to a service and is usually outside the scope of SOA.

Among the four SOA-related layers, we can see that the operational systems

layer and enterprise components layer concern the design and implementation of the

services; the service layer concerns the description and discovery of the services; and

 20

the business process choreography layer concerns the composition and orchestration

of the services.

Service-oriented modeling provides modeling, analysis, design techniques, and

includes activities to define the foundations of an SOA application. It defines the key

elements in each of the SOA layers and makes critical architectural decisions at each

level (Arsanjani, 2004). Researchers have studied different aspects of modeling.

Some researchers focus their work on the modeling of services, which concerns the

implementation of services; others focus on business process modeling or the

workflow, which is in the business process choreography layer; and some consider

both. We will discuss these methods later in Section 2.2.

In our research, modeling is a process to capture the business design and to

create an encoded model as the solution for a specific business task. Therefore, our

SOA modeling method concerns both the business logic layer and the orchestration

service layer, which means that our SOA modeling method needs to capture the

requirements of a business task and to create a process model invoking the existing

and new services to implement the business task. The implementation and execution

of the services in SOA are outside the scope of our study.

2.1.4 SOA Delivery Strategies

The lifecycle stages identified in Section 2.1.2 represent a simple process to

build SOA applications. The success of SOA within an enterprise is generally

dependent on the extent to which it is standardized when it is phased into the

business and application domains. However, the success of a project delivering an

SOA solution generally is measured by the extent to which the solution fulfills

expected requirements within a given budget and timeline. For different projects, an

 21

organization may have different priorities for the standardization extent and timeline.

To satisfy different requirements of organizations, Erl (2005) has proposed three

strategies which can also be useful for SOA modeling.

� Top-Down strategy

The Top-Down strategy is like an “analysis first” approach that not only

requires business processes to become service-oriented, but also promotes the

creation of an organization’s overall business model. Using this strategy, the business

requirements should be collected and defined first. Then an enterprise-wide ontology

will be defined to provide a common vocabulary. After that, service-oriented analysis

and design will be conducted and the required services will be developed and

deployed.

The Top-Down strategy can generate a high quality service architecture with

well designed services, maximizing potential reusability and opportunities for

streamlined compositions. However, with this strategy, organizations may be

required to invest significantly in up-front analysis that can take a great deal of time

without showing any immediate results.

In our research, the Top-Down strategy means that the developers will analyze

the requirements first, after that a whole model for the target business approach will

be created, and then this model will be further refined into sub business processes

and service models.

� Bottom-Up strategy

The Bottom-Up strategy essentially encourages the creation of services as a

means of fulfilling application-centric requirements. Web services are built on an “as

needed” basis and modeled to encapsulate application logic to best serve the

immediate requirements of the solution. Integration is the primary motivator for

 22

Bottom-Up designs. Using this strategy, the business requirements should also be

collected and defined first. Then the developers can analyze the required services,

model them and develop them directly.

This approach supports quick realization of services. Although the Bottom-Up

design allows for the efficient creation of web services as required by applications,

this strategy may cause difficulties in later composition and orchestration because

the services developed “as needed” may not fit each other well.

We enhanced the Bottom-Up strategy in our research. After the requirement

analysis, the Bottom-Up strategy encourages searching and reusing the standardized

services in the organization’s asset base. Those services should fulfill the

requirements or partially satisfy the functions, and the services also have

standardized interfaces for integration. They can be reused and integrated with new

services to construct the final application.

The Top-Down strategy emphasizes creating a holistic model first, while the

Bottom-Up strategy emphasizes preparing the component services first.

� Agile strategy

The challenge remains to find an acceptable balance between incorporating

service-oriented design principles into business analysis environments and

integrating web services technologies into a technical environment. For many

organizations it is therefore useful to view the previous two strategies as extremes

and to find a suitable middle ground. The Agile strategy allows for the business-level

analysis to occur concurrently with service design and development. This strategy is

also known as the meet-in-the-middle approach.

In our research, the Agile strategy means that the business-level analysis will be

conducted concurrently with the service searching in the organization’s asset base.

 23

The service searching can provide potentially reusable process models, and the

business-level analysis can refine the results of the service searching during the

modeling procedure.

We will present how these definitions and strategies can be realized in the SOA

modeling methods in the next section.

2.2 Related Works of SOA Modeling

Modeling is the activity of developing a representation or simulation of a

system as the basis for understanding, planning, developing or modifying the system.

Software modeling is an essential part of the software development process that

occurs prior to software implementation.

Software models are developed for representing the software requirements.

Because the software models are generally used to translate software user’s

requirements into software developer’s specification, the models are often not

comprehensible for both sides and usually focus more on technical details.

In SOA, with the recognition of service reuse, two kinds of modeling appear:

business process modeling and service modeling. Business process modeling mainly

focuses on the business service layer and orchestration service layer, translating

business requirements of the business logic layer into the business process models in

the orchestration service layer and describing the functions and performance

requirements of the services in the business service layer. Service modeling is the

modeling for service implementation, which focuses on the application service layer

and expresses the technology-specific functionality of services. Our study focuses on

the business process modeling.

 24

In the following sub-sections, we present a broad review of the research works

relevant to business process modeling, service composition and orchestration, and

model-driven design of web applications.

2.2.1 Standards for SOA Modeling

Organizations such as W3C (the World Wide Web Consortium), OMG (the

Object Management Group) and OASIS (the Organization for the Advancement of

Structured Information Standards) have proposed several standards for software

modeling, such as UML (OMG, 2005) and WSBPEL (OASIS, 2007). Because many

research works are based on these standards, we will introduce some of them first in

this section.

2.2.1.1 Unified Modeling Language (UML)

The UML (OMG, 2005) is a standardized general-purpose modeling language.

It provides a set of graphical notation techniques to construct abstract models for

systems. It is widely used in the IT industry (Boggs et al., 2003).

The UML contains many different types of diagrams which can provide

different perspectives of a system. For example, Use Case diagrams can represent the

functional requirements of a system from the user's point of view and provide a

functional requirements view for the system; Class diagrams and Composite

Structure diagrams can represent the static structure of a system using objects,

attributes, operations as well as relationships, and provide a static structural view for

a system; Sequence diagrams, Activity diagrams and State Machine diagrams can

show the collaborations among objects and the changes to the internal states of

objects, and provide a dynamic behavior view for a system (OMG, 2005).

 25

Based on UML and related techniques, researchers have developed different

modeling methods for SOA modeling, which will be presented in detail in Section

2.2.2.

2.2.1.2 Business Process Modeling Standards

Traditionally, process-oriented modeling has been used for re-structuring

business applications, integrating new processes and continuously monitoring system

performance for years (Karagiannis et al., 1996). It is important in the context of

Lean Management, Total Quality Management, Business Process Reengineering,

Workflow Management and Supply Chain Management (Becker et al., 2000). This

kind of modeling is also called business system modeling and organizational context

modeling (Chen-Burger et al., 2005). Researchers have proposed several business

process modeling methods, such as PSL (Process Specification Language) (ISO,

2004) and IDEF3 (Integration DEFinition Language) (Mayer et al., 1995).

PSL is a language and ontology for the specification of basic manufacturing,

engineering and business processes. It was originally developed by the National

Institute of Standards and Technology (NIST), and is now an international standard,

ISO 18629. It can be used to define business processes and manufacturing

engineering processes.

The IDEF3 Process Description Capture Method (Mayer et al., 1995) provides a

mechanism for collecting and documenting processes. IDEF3 can be used to build

structured descriptions to capture information about what a system actually does or

will do, and can also provide different user views of the system. There are two

IDEF3 description modes, process flow and object state transition network. The

process flow description captures a description of a process and the network of

 26

relations that exists between processes within the context of the overall scenario in

which they occur. The object state transition network description summarizes the

allowable transitions that an object may undergo throughout a particular process.

Besides these standards, some business process modeling notations have also

been proposed in the last decade. BPMN (Business Process Modeling Notation)

(OMG, 2008) provides a graphical notation for specifying business processes in a

workflow. It was developed by Business Process Management Initiative (BPMI), and

is currently maintained by the OMG. BPMN provides a standard notation that can be

understood by all business stakeholders, who include business analysts, technical

developers and business managers. Because BPMN cannot be handled by the

computer, researchers have proposed methods for the mapping between BPMN and

WSBPEL.

These business process modeling methods are able to formally express

informally practiced business tasks, and the actions and effects of these processes

can be demonstrated by using simulation techniques. However, these traditional

business process modeling standards do not support SOA and they do not even

define and use services. As a result, the research works based on these standards

often only focus on the workflow (Yu et al., 2005).

After the appearance of service concept and SOA, researchers began to consider

how to unite the business process modeling and SOA modeling, so that the reuse of

services can accelerate the implementation of business processes. Although

mappings between BPMN graphs and WSBPEL specifications have been proposed

(Ouvans et al., 2006), we cannot say that the gaps between traditional business

process modeling and SOA modeling have been bridged.

In SOA, a business process is generally implemented by services. There may be

 27

hundreds of candidate services distributed on the net. With UDDI (OASIS, 2004)

and SOAP (W3C, 2007), developers can discover and obtain the suitable services on

the net. Then, the service composition standards can help them compose the services

into an application. We will introduce these composition standards next.

2.2.1.3 Service Composition Standards

The crux of SOA development resides in combining several services into more

complex, meaningful functions. There are several service coordination and

orchestration standards, such as WSBPEL (Web Services Business Process

Execution Language) (OASIS, 2007), WSCL (Web Services Conversation Language)

(W3C, 2002a), WSCDL (Web Services Choreography Description Language) (W3C,

2005a) and WSCI (Web Service Choreography Interface) (W3C, 2002b).

WSBPEL was originally named BPEL4WS (Business Process Execution

Language for Web Service) (Andrews et al., 2002), which is a specification proposed

by IBM, Microsoft and other organizations. It is an OASIS standard now. WSBPEL

(OASIS, 2007) provides a language to specify the workflows consisting exclusively

of web services. It extends the web services interaction model and enables it to

support business transactions. The processes in WSBPEL can be applied in one of

two ways: abstract or executable. Abstract business processes are partially specified

processes that are not intended to be executed, whereas executable business

processes model actual behavior of a participant in a business interaction. An

abstract process may hide some of the required concrete operational details.

The purpose of WSCL (W3C, 2002a) is to provide and define the minimal set

of concepts necessary to specify conversations. It can be used to define the abstract

interfaces of web services, such as the business level conversations or public

 28

processes supported by a web service. WSCL conversation definitions are XML

documents which can specify the XML documents being exchanged between web

services, and the allowed sequencing of these document exchanges. It provides a

formal specification language to separate the conversational logic from the

application logic.

WSCDL (W3C, 2005a) is an XML-based language that describes peer-to-peer

collaborations between the participating services. It can define the common and

complementary observable behavior of the participants from a global viewpoint, and

order the message exchanges to accomplish a common business goal. The WSCDL

specifications can describe the interoperable, peer-to-peer collaborations between

any type of participant regardless of the supporting platform or programming model

used by the implementation of the hosting environment.

WSCI (W3C, 2002b) is an XML-based interface description language that

describes the flow of messages exchanged between web services. It can work in

conjunction with WSDL (W3C, 2001a), and describe the observable behavior of a

web service. As it can also describe the collective message exchange among

interacting web services, it can provide a global, message-oriented view of the

interactions.

WSDL (W3C, 2001a) is a basic language for describing web services

standardized by the W3C. A WSDL document contains a service type description, as

well as a set of services conforming to this description. It provides the protocol

bindings (e.g., SOAP (W3C, 2007)) and message formats (e.g., XML Schema (W3C,

2001c)) required to interact with the web services. The WSDL standard can describe

web service properties and syntax; however, it does not directly support business

process modeling.

 29

These languages support a high-level specification of complex processes

consisting of interactions between individual web services. They do not deal with the

modeling of the implementation of services, or the automatic deployment of such

implementations (Manolescu et al., 2005). These languages can provide formal

specifications for service composition and application integration; however, they

need to cooperate with other standards and technologies, such as WSDL and web

service discovery technologies, to finish this work. Without good support for the

information management of the business process models and services, the reusability

of the business processes and services will be limited.

2.2.2 Methods for SOA Modeling

There are a number of related approaches regarding the SOA modeling. Some

approaches use UML and related techniques. Gardner (2003) defined a UML profile

to specify service orchestration with the goal to map the specification to WSBPEL

code. Torres et al. (2005) proposed a model driven method for web application

integration, in which they introduced mechanisms allowing developers to specify

and integrate external services into an application. Wada et al. (2006) proposed an

UML profile to model nonfunctional aspects of SOAs and presented a tool for

generating skeleton code from these models. On the basis of UML 2.0, Zhou et al.

(2008) provided a coding-free enablement framework to realize service modeling

and service choreography. These approaches focused on different application areas

of an SOA. They allowed separating conceptual concerns from

implementation-specific concerns. However, they usually used a Top-Down strategy

to analyze the system requirements, decomposed the system into subsystems and

components, and represented these components with static graphs. It was difficult for

 30

them to support the dynamic composition of services in an SOA.

Besides using UML to model services and processes, researchers also use

service composition techniques to assist in the implementation of the business

processes. With the web service composition standards and languages as presented in

Section 2.2.1.3, new business processes, applications or solutions can be built in a

relatively rapid and low-cost way through the composition of distributed services

even in heterogeneous environments. In this way, UML models provide requirements

analysis for the business processes, and web services composition techniques

provide a practical foundation for business process management in loosely coupled

distributed environments. However, gaps still remain between these two kinds of

methods. The developers often cannot simultaneously grasp what is needed from the

business world and what is available from the IT world. They usually need to adopt

service discovery techniques to fix the gaps; however, to seamlessly use these

methods together is also a challenge. To achieve smooth business collaboration, a

new method that can unify the business processes and services is still needed.

There are many modeling approaches for business processes. We provide a brief

overview of the main approaches here. For example, zur Muehlen et al. (2008) have

developed a subset of BPMN, which is constructed for the process modeling in

industry domain. Workflow patterns (van der Aalst et al., 2003) described concepts

of workflow languages and Yu et al. (2005) proposed a framework to reuse workflow

for business process modeling. Petri Net is another common technique for business

process modeling. Wang et al. (2007) adopted Petri Net approach for collaborative

business process modeling; Zdun et al. (2007) proposed a Petri Net-based pattern

language for process-oriented integration of services. Besides Petri Net, Finite State

Automaton has also been adopted to describe business processes (Mahleko et al.,

 31

2006). These methods are typical traditional business process modeling methods

with additional consideration of services. These methods can help to increase the

understandability and reusability of business process models; however, they do not

support reuse of services. They can only provide modeling from the business

viewpoint.

In recent years, ontology has been recognized as a useful technique to provide

precise descriptions of the objects in process modeling. Ontologies can be used for

knowledge sharing and reuse. In business process modeling domain, ontologies can

provide formal descriptions of the models and support the model information sharing

and reusing. Different ontology languages have been developed, such as RDF

(Resource Description Framework) (W3C, 2004b), DAML+OIL (DARPA Agent

Markup Language and Ontology Interchange Language) (W3C, 2001b) and OWL

(Web Ontology Language) (W3C, 2004c). Researchers have adopted these languages

as the basic languages to construct their business process modeling languages or

frameworks, as presented next.

Both domain ontologies and upper ontologies have been proposed in recent

years. Domain ontology can capture the knowledge valid for a particular type of

domain (Niles et al., 2001). It can describe the domain specific terms and knowledge

formally and precisely and can provide a knowledge base for the application

modeling. The defined domain ontologies for SOA modeling usually focus on the

e-business domain (Liu et al., 2007; Lim et al., 2007; and Osterwalder, 2002) and

healthcare domain (Kuziemsky et al., 2003). Researchers have also adopted ontology

techniques in the automotive domain (Blomqvista et al., 2008; Angele et al., 2008).

Blomqvista et al. (2008) proposed a manual method and an automatic method for

ontology construction, and applied them in developing a domain ontology for a

 32

company in the automotive supply industry. Angele et al. (2008) proposed a method

for ontology construction and created an ontology to represent and share the

knowledge for testing of cars. Although domain ontologies can provide unified

concepts and domain knowledge sharing for the software development, they cannot

directly provide specification and service reuse.

Upper ontology describes general concepts that are the same across several

domains (Niles et al., 2001). In business process modeling, it can capture the general

concepts and relationships in a model. OWL-P (Mallya et al., 2005, Desai et al.,

2005) is an upper ontology based on OWL. It captures meaningful interactions

among different roles as protocols and uses the protocols to create concrete business

processes. Researchers have also proposed task-based process ontologies: Therani

(2007) proposed a task-based process ontology for capturing process knowledge for

information systems development at different levels of abstraction; Tran et al. (2007)

also proposed an upper ontology OWL-T, which can be used to express business

processes at a high-level abstraction. Both task-based ontologies provided a

framework to represent attributes of business processes, the former focused more on

information representation, using ontology to formally and precisely show the

parameters and conditions of tasks; the latter focused more on process modeling,

using ontology to represent the composition of tasks. However, to use OWL-T in

modeling, developers need to work with four ontologies representing “Domain”,

“Task”, “Process” and “Service” respectively, which are difficult to use and may

cause inconsistency between the ontologies.

In SOA development, ontologies are also used for service modeling and service

composition. OWL-S (W3C, 2004e) provides a core set of markup language for

describing the properties and capabilities of web services. To describe a service,

 33

three concepts, “ServiceProfile”, “ServiceModel” and “ServiceGrounding”, are

defined in OWL-S. “ServiceProfile” is for service advertising and discovery on the

net. “ServiceModel” exposes how a service is composed. “ServiceGrounding”

specifies the details of how to access the service. OWL-S concerns the automatic

discovery and composition of web services. Besides OWL-S, several ontologies

representing the workflow models of services have been proposed, such as SOF

(Fang et al., 2007) and m3po (Haller et al., 2006). SOF (Slight Ontology Framework)

can be used for performing semi-automatic change management for software

development; while m3po (multi meta-model process ontology) is an intermediate

unifying workflow ontology based on workflow reference models, such as WSBPEL

and PSL. These ontologies provide meta-models for the description of the internal

workflow of (web) services; however, the granularity of the modeling components

may not be suitable for the modeling of external workflow of enterprise business

processes.

Table 1 compares the above modeling methodologies. From Table 1, we can

find that these methods are based on different standards and focus on different

aspects of SOA development. Some of the methods are developed from IT viewpoint

and deal with the service composition problems; other methods are from business

viewpoint and provide workflow design of business processes. There are also some

ontology-based methods providing meta-model for service orchestration and process

description. Although it might be possible to combine some of these methods to

provide better support to SOA development, however, gaps still remain between

these methods. Difficulty still exists for the developers to map their business needs to

the available services in the IT world.

 34

 Table 1. Comparison of SOA modeling methods

 UML-based

Methods

Service

composition

Methods

Traditional

business process

modeling methods

Ontology-based

methods

Fundamental

Standards
UML

WSBPEL,

WSCL, WSCDL,

WSCI

PSL, IDEF3,

BPMN

OWL, OWL-P,

OWL-T, OWL-S

Modeling

Focus

Separating

conceptual concerns

from

implementation

specific concerns

Service

composition and

orchestration

Workflow design

of business

processes

Providing meta

model for business

process modeling

and service

modeling

Example

Methods

UML profiles

specific for service

orchestration

WSBPEL-based

service

orchestration

methods

BPMN-based

methods; workflow

languages;

Petri-net methods

Domain ontologies

and upper ontologies

such as OWL-P

Limitation
Providing only

static graphs

Lacking a

complete view of

the business

Lacking the

concern of services

Developed

separately, difficult

to use together

To overcome the limitations and problems of previous SOA modeling

approaches, and to support the reuse of both models and services, we design a core

ontology BPO (Business Process Ontology) for Business Process modeling to

describe business processes and their relevant services. On the basis of the core

ontology BPO, a knowledge base can be constructed to present and manage the

information of SOA modeling. These ontologies can provide sharable and precise

description for the models and services and support the knowledge management of

the process model and service asset bases. With these ontologies, our modeling

methods can provide not only the application reuse (by reusing services), but also the

specification reuse (by reusing the concrete process models or the process model

templates).

 35

2.2.3 SOA Modeling and Developing Frameworks

As introduced in Section 2.1.2, the general lifecycle of SOA applications

includes four phases (High et al., 2005): Model, Assemble, Deploy and Manage,

which are layered on a backdrop of a set of governance and processes to ensure the

compliance.

An MDA-based framework has been proposed for SOA development

(Stojanovic et al., 2004; Karhunen, 2005). MDA (Model Driven Architecture) (OMG,

2003) stresses the importance of the platform-independent models (PIMs) and

platform-specific models (PSMs). Using MDA-based methodologies, organizations

can separate abstract business logics from the concrete implementation environment,

and capture the business design based on the business processes. Although there are

several different frameworks for model driven service-oriented architecture, their

modeling and developing flow generally follows the outline of MDA shown in

Figure 3. The application development naturally starts with the business domain

requirement descriptions. From the analysis of business domain, developers can

obtain models on a strategic level, which are platform-independent models. In SOA

modeling, this can be considered as business process modeling. After that,

developers can create platform-specific models to implement the business process

models, which can be considered as service modeling and service orchestration.

Organizations can construct their own Service/Business process repository to support

the modeling, or for some cases the Net can be the repository, which means the

developers can discover services on the Net. When all the services are available, a

final application can be constructed by assembling or integrating these services

together. PIM and PSM are connected by an Up-Down arrow and the same

 36

connection appears between PSM and application, which means that the developers

can reconstruct the models and applications when the requirement changes.

Figure 3. Development flow of Model Driven Service-Oriented Architecture

Using MDA for SOA modeling can accelerate SOA’s formalization and

automation. MDA allows separating conceptual concerns from

implementation-specific concerns. Although MDA can provide static models for the

implementation, it cannot represent run-time relevant attributes (Tetlow et al., 2006).

Therefore, MDA-based modeling and developing techniques may not fully support a

flexible and dynamic SOA development.

Besides MDA-based framework, some ontology-based framework has also

been proposed for SOA development (Tran et al., 2007). With the support of a

knowledge base, ontologies can be used at several stages of the software lifecycle.

Tran et al. (2007) have proposed a system framework, as shown in Figure 4, to

illustrate how different ontologies can be used in SOA application development. In

this framework, the domain ontologies provide essential concepts for the business

domains and can be referred to at different stages of the lifecycle. The task

ontologies can help the analysis of business tasks and map the task template to the

Business Domain

Strategic Level PIM

Service/
Processes
Repository

Tactical Level PSM

Application

Modeling

 37

process template. The business process ontology written in OWL-T (Tran et al., 2007)

can help to define business processes. The service ontology written in OWL-S (W3C,

2004e) or WSDL-S (W3C, 2005b) can help the service discovery and selection. The

framework introduces ontologies to the modeling and developing procedure of

software, which can provide formal and precise descriptions of business information,

process models and services. In this framework, it is assumed that the concepts and

relations in the ontologies have been created. These concepts are retrieved from the

related ontology knowledge base and customized into working products at each step

of the development. However, because of the separation of the maintenance of the

ontologies and the software development, there may be a gap between the

information in the knowledge base and the real world, which generates

inconsistency.

Figure 4. Steps of ontology based software development

In this research, we propose an Ontology-based Business Process Modeling and

Developing Framework (OBPMDF), which focuses on illustrating the modeling

procedure of SOA application development. Our framework can be used with the

core ontology BPO and its extension, which together provide consistent information

for business processes, services and their mappings.

Business

Task Design

Process Template

Design

Service

Discovery and

Selection

Task

Schedule

Task Deploy

and Execution

Domain

Onto

Task

Onto

Process

Onto

Service

Onto

ontologies

 38

2.3 Quality Attributes for Models

The importance of software product quality has been widely recognized by

most organizations and stakeholders. SOA modeling is the first stage of SOA

development and the quality of SOA models will directly impact on the quality of

the final systems. Given an inferior model, the risk of misunderstanding and

obtaining a low quality product would increase. To reduce these risks, models should

be verified and tested. This section presents the quality attributes proposed by

different researchers. Based on these attributes, a set of quality attributes for SOA

models will be proposed and analyzed in Section 4.3.

2.3.1 Attributes of Engineering Models

Selic (2003b) has proposed five attributes of engineering models for building

complex systems, which are listed below:

� Abstraction: A model is always a reduced rendering of the system that it

represents. By removing or hiding detail that is irrelevant for a given

viewpoint, it lets us understand the essence more easily.

� Understandability: Understandability is a direct function of the

expressiveness of the modeling form used (expressiveness is the capacity

to convey a complex idea with little direct information). A good model

provides a shortcut by reducing the amount of intellectual effort required

for understanding.

� Accuracy: A model must provide a true-to-life representation of the

modeled system’s features of interest.

� Predictive: Using a model, an organization can correctly predict the

 39

modeled system’s interesting but non-obvious properties, either through

experimentation (such as by executing a model on a computer) or through

some sort of formal analysis, which depends greatly on the model’s

accuracy and modeling form.

� Inexpensive: A model must be significantly cheaper to construct and

analyze than the modeled system.

These five attributes are high level requirements of an engineering model. More

specific requirements are needed for software models.

2.3.2 Quality Attributes Defined in ISO 9126

ISO 9126 standard specifies three kinds of software products quality attributes:

internal quality, external quality and quality for use. Internal quality can be used to

measure not only the quality of final products but also the quality of interim products.

The six attributes of internal quality include (ISO, 2001):

� Functionality: It ensures that the software product can provide functions

which meet stated and implied needs when the software is used under

specified conditions.

� Reliability: It ensures that the software product can maintain a specified

level of performance when used under specified conditions.

� Usability: It ensures that the software product can be understood, learned,

used and is attractive to the user.

� Efficiency: It ensures that the software product can provide appropriate

performance, relative to the amount of resources used.

� Maintainability: It ensures that the software product can be modified.

� Portability: It ensures that the software product can be transferred from

 40

one environment to another.

These attributes and their sub-attributes are associated with the final system and

the interim products of different lifecycle stages. Some of them are applicable to the

SOA model. Table 2 shows the quality attributes and sub-attributes in ISO 9126.

Table 2. Quality attributes and sub-attributes in ISO 9126

Attributes Sub-Attributes Description

Accuracy To provide the agreed results with the needed degree of

precision

Compliance To adhere to standards, conventions or regulations in laws

and similar prescriptions related to functionality

Suitability To provide an appropriate set of functions for specified

tasks and user objectives.

Interoperability To interact with one or more specified systems

Functionality

Security To protect data from unauthorized persons

Fault Tolerance To maintain a specified level of performance in cases of

software faults or of infringement of its specified interface

Recoverability To re-establish a specified level of performance and

recover the data directly affected in the case of a failure

Reliability

Maturity To avoid failure as a result of faults in the software

Understandability To enable the user to understand whether the software is

suitable, and how it can be used

Learn-ability To enable the user to learn the application of the software
Usability

Operability To enable the user to operate and control the software

Resource

Utilization

To use appropriate amounts and types of resources when

the software performs its function under stated conditions

Efficiency Time Behavior To provide appropriate response and processing times and

throughput rates when performing its function, under

stated conditions

Stability To avoid unexpected effects from modifications of the

software

Changeability To enable a specified modification to be implemented Maintainability

Testability To be diagnosed for deficiencies or causes of failures in the

software, or for the parts to be modified to be identified

Install-ability To be installed in a specified environment Portability

Adaptability To be adapted for different specified environments without

applying actions or means other than those provided for

 41

this purpose for the software considered

Compliance To adhere to standards or conventions related to portability

Replaceability To be used in place of another specified software product

for the same purpose in the same environment

Co-existence To co-exist with other independent software in a common

environment sharing common resources

2.3.3 Quality Attributes for UML-based Models

Lange et al. (2005) have proposed a quality model specific for UML-based

development. Their model identifies the following attributes for UML models:

� Complexity: It measures the effort required to understand a model.

� Traceability: It ensures that the relations between design decisions are

explicitly described.

� Completeness: It ensures that the model’s functionality covers all the

requirements.

� Consistency: It ensures that there is no conflicting information.

� Self-Descriptiveness: It ensures that the model contains enough

information for a reader to determine its objectives, assumptions,

constraints, inputs, outputs, components, and status.

� Detailedness: It ensures that the model describes relevant details of the

system.

� Balance: It ensures that the model satisfies the other nine attributes at an

equal level.

� Conciseness: It ensures that the system is described to the point and there

is no unnecessarily detail.

� Esthetics: It ensures that the graphical layout of models enables ease of

 42

understanding of the described system.

� Correspondence: It ensures that the system elements, their relations and

design decisions are the same between the model and the system.

Some of the above ten attributes can be mapped to the quality attributes of ISO

9126. The Complexity and the Esthetics attributes can be considered as different

views of Understandability, as they both consider the understandability of a model.

The Detailedness and Conciseness attributes can be considered as different aspects

of Suitability. The Traceability attribute considers the relationship between different

versions of design. As the Correspondence attribute is about the consistency of the

model and its system, this attribute can be ignored at the modeling stage.

2.3.4 Guidelines to Improve Quality of Information

Models

Becker et al. (2000) have proposed general guidelines of modeling to improve

the quality of information models, which include six quality attributes:

� Correctness: The models should be consistent and complete in both the

syntactic and the semantic facets.

� Relevance: The model developers should select a relevant object system,

use a relevant modeling technique, and develop a relevant (minimal)

model system.

� Economic Efficiency: This attribute focuses on improving efficiency by

using reference models and appropriate modeling tools, and reusing

models.

� Clarity: The model can be understood by model users.

 43

� Comparability: The models should be interoperable and comparable so

that they can be used in cross-company projects.

� Systematic Design: The relationship between different views of

information models (such as the process model and data model) should be

well-defined.

 Some of the above attributes are similar to the quality attributes discussed

earlier. Correctness considers the completeness and consistency of models. Clarity is

related to the readability and understandability of models. Systematic Design

considers the relationship between processes and resources. If the resource

utilization of a process model can be predicted, the model should have been

systematically designed.

2.4 Related Works of Automotive Software

Modeling

As we plan to apply our SOA modeling methods to the automotive software

domain for the validation of our proposed methodology, we first present some

background of automotive software in this section. Related works of automotive

software modeling will also be covered.

2.4.1 Overview of Automotive Software

Automobiles nowadays incorporate substantial amounts of software

(Dannenberg et al., 2004; Leen et al., 2002). From the viewpoint of vehicle builders

(Original Equipment Manufacturers or OEMs), this increasingly complex software is

unlike the traditional parts of mechanical vehicles in that it cannot be simply

 44

assembled but rather must be integrated as a subsystem within a system (Broy et al.,

2007b; Emaus, 2005). There are a number of difficulties associated with this. First, if

the heterogeneous subsystems sourced from different suppliers do not fit together

smoothly, the integration may fail (Broy et al., 2007b). Second, there is a lack of

precise specifications and guidelines for architecture development (Broy et al.,

2007b; Weber et al., 2003). Besides these difficulties, there are process issues such as

abstract requirement specifications, specification reuse and software reuse (Grimm,

2003; Weber et al., 2003). For example, even though 90% of the functions in two

sequential generations of a car are often the same (Broy et al., 2007b), there is

limited software reuse. This particular problem can be attributed to the close

coupling of software and hardware in traditional embedded systems (AUTOSAR,

2006a; Broy et al., 2007b). Clearly, if the interfaces of hardware and software could

be standardized, the coupling of hardware and software can be loosened. Then, it

would be possible to use more general hardware structures and implement

application-level reuse, allowing a more economical automotive software

development.

A number of software development standards have been developed for the

automotive industry, such as AUTOSAR (AUTomotive Open System ARchitecture)

(2006a) and AMI-C (Automotive Multimedia Interface Collaboration) (2003).

AUTOSAR (2006a) provides a de-facto open industry standard for electric and

electronic automotive architectures. Its particular benefit is that it facilitates the

separation of applications from infrastructure by adopting a “Virtual Functional Bus”

(VFB), which provides applications with standardized communication mechanisms.

The contribution of AMI-C (2003) has been to produce a series of technical

specifications for vehicle communication networks so as to promote the

 45

standardization of common automotive information and entertainment system

interfaces serving mobile phones, PDAs, navigation, etc. Standards such as these

make it possible to create a common service layer in automobiles, and they also

allow the reuse of common services on different hardware components without

requiring changes in the rest of the system. This can avoid software duplications and

redundant hardware.

Several kinds of automotive software development modeling methods and tools

have been proposed and applied. MATLAB®, Simulink® and Stateflow® are a

series of commercial modeling tools (MATLAB, 2008; Simulink, 2008; and

Stateflow, 2008). They provide graphical design functions for modeling and

simulating continuous and discrete event-based behavior of a dynamic system. These

tools do not however address every aspect of automotive systems development; for

example, developers still need UML models or other discrete data flow / state

machine models to model business information processing in vehicles (Broy et al.,

2007b). To unite these separating engineering cultures, UML-based modeling

methods have been developed for automotive systems. Examples of these include

AML (Automotive Modeling Language) (von der Beeck et al., 2003) and SysML

(Systems Modeling Language) (Rao et al., 2006; OMG, 2007), which tailor the

standard UML and define new notations to satisfy the specific features of real-time

and embedded systems. Yet another example is MSC-based (Message Sequence

Charts) and its related tools (Krüger et al., 2004), with which developers can use the

MSC graph to capture system requirements and specify the communications within

the system. Although these methods can satisfy the general requirements for

constructing real-time system models, only the MSC-based method recognizes the

importance of the reuse of common services and supports the modeling and

 46

configuration of services. Other methods, in contrast, focus on component-based

modeling, which may limit the reuse of functions and cause problems for

heterogeneous system integration (Krüger et al., 2004). Furthermore, none of the

methods supports the developers reuse their existing business process specifications.

A further difficulty in automotive software development has been the lack of

relevant ontologies that can be directly adapted to business process modeling. As

discussed in Section 2.2, there exists domain ontologies and upper ontologies for

business process modeling or service composition for specific domains, such as

e-business (Osterwalder, 2002; Lim et al., 2007; and Liu et al. 2007) and healthcare

(Kuziemsky et al., 2003), and there are upper ontologies that focus on resolving

modeling problems such as the description of internal workflow of services (W3C,

2004e; Haller et al., 2006; and Fang et al., 2007) and the message heterogeneities

between services (Gouvas et al., 2007). More particularly, some researchers have

proposed methods (Angele et al., 2008; Blomqvista et al., 2008) which OEM

developers and suppliers can use to construct automotive domain ontologies to

provide terminology definitions and sharable knowledge for the entire enterprise.

This can help by providing a knowledge base for software development. Nonetheless,

there still remains a need for modeling methods to maximize the usage of the

knowledge base.

In this thesis we propose to use SOA modeling for automotive software

development so that the reuse of existing automotive specifications and services can

be improved during the modeling stage. The advantage of applying SOA is that it

provides a paradigm for organizing and utilizing distributed capabilities that may be

under the control of different ownership domains (OASIS, 2006) and therefore is

suitable for solving problems associated with the integration of heterogeneous

 47

systems, in particular allowing the sharing of a knowledge base of process models

and services.

2.4.2 Features of Automotive Software

Automotive software systems are complex distributed real-time and embedded

systems. The modeling of such systems must consider not only the functional

requirements such as system operations but also specific non-functional features

inherent in the operation of distributed and real-time systems, in particular the

following four features:

� Heterogeneity

Heterogeneity is an inherent attribute of a distributed system (Broy, 2006).

Formerly, automotive software operated in stand-alone embedded systems.

Nowadays such software operates in complex distributed systems composed of

subsystems deployed by different suppliers (Broy, 2005). Such subsystems are often

heterogeneous, and developers from OEMs need to integrate the heterogeneous

software into a whole system.

� Interactivity

Today’s automotive software can support many different kinds of processes,

from chassis to infotainment functions. The software is distributed in the automobile

and is closely related and interdependent. There is frequent communication between

different subsystems and between the machine and the external world (such as the

Internet or human beings). This interaction may be supported with buses or by

wireless technology (Broy, 2005).

� Timeliness

Timeliness is a basic feature of real-time systems (Gerard et al., 2003; Selic,

 48

2003a; Krüger et al., 2004; and Tsai et al., 2006). Timing properties, such as

minimum and maximum response times and deadlines, are critical and may influence

the safety of the automobile.

� Concurrency

Many features in distributed and real-time systems are inherently concurrent;

therefore concurrency specification is an important issue in automotive software

modeling. This feature should be considered in the initial phase of software

development, not only because the real world is fundamentally concurrent (Gerard et

al., 2003), but also because the conflict of resources caused by concurrency should

be detected as early as possible.

These four non-functional features make the modeling of automotive software

systems more complex than general business software modeling. In particular, it is

not possible to directly apply traditional modeling methods because the

representation of these features may require new notations.

The reusability of automotive software is another important consideration

during modeling. As noted earlier, over two sequential generations of a car, 90% of

the functions will typically remain unchanged (Broy et al., 2007a and 2007b).

Moreover, most of the few changes between two consecutive generations of a car are

not evolutions but simple updates not affecting the structure of the system. Clearly,

there is an opportunity here to avoid or reduce the redevelopment of functions by

identifying the reusable services in the modeling stage and reusing them in the new

system. Reusing the systematic requirements and using system model templates can

offer significant gains in developmental productivity and in the quality of the

resulting software product (Cybulski et al., 2000; Lam et al., 1997). While the reuse

of model specifications is still not common today (Weber et al., 2003), the benefits

 49

of reusing existing services and business process specifications are clear:

� Reduction of costs associated with re-development.

� Reduction of errors, resulting in safer systems. One of the benefits of reuse is

that existing services have been tested by the developing team, by the

organization, and even by users.

� Provision of clear specifications for software assembling or integration. The

fact that the configuration and performance of the services are known in the

modeling stage means that it is possible both to obtain a clearer integration

specification and to make an earlier identification of potential problems in

service assembly or integration.

� Improvement in the accuracy of the model simulation. Provided with

performance information of the component services, designers can produce a

more realistic simulation of the model.

2.4.3 Automotive Software Modeling Methods

2.4.3.1 Traditional Automotive Software Modeling Methods

Three different kinds of automotive software modeling methods have been

proposed in the last decade, MATLAB®/Simulink®/Stateflow® (MATLAB, 2008;

Simulink, 2008; and Stateflow, 2008), UML-based methods (von der Beeck et al.,

2003; OMG, 2007; Rao et al., 2006; Gerard et al., 2003; Selic, 2003a; and Karsai,

2004) and MSC-based methods (Broy, 2006; Harel et al., 2003).

The MATLAB®/Simulink®/Stateflow® (MATLAB, 2008; Simulink, 2008; and

Stateflow, 2008) methods have been widely used by both OEMs and suppliers. They

are control theory-based modeling tools and even today automotive software

 50

developers continue to require an understanding of control theory because

automotive software systems are connected to sensors and actuators, and must

respond according to classical control theory (Broy et al., 2007b). The

MATLAB®/Simulink®/Stateflow® are a series of graphical design tools for the

modeling, simulation and development of system/software components. MATLAB®

provides a high-level technical computing language, Simulink® provides an

interactive graphical environment for the modeling and simulation of dynamic and

embedded systems, and Stateflow® extends Simulink® with a design environment

for state machines and flow charts development and can describe more complex

logic (MATLAB, 2008; Simulink, 2008; and Stateflow, 2008). This set of tools is

able to satisfy the requirements in event-based systems. However, when the task is

business information processing in vehicles, UML-like model is better for

representing the discrete models of data processing (Broy et al., 2007b).

2.4.3.2 UML-based Automotive Software Modeling Methods

The original use of UML was as a tool for object-oriented analysis and design;

Section 2.2 presented the researches on using UML to SOA development; here we

will review its usage in real-time and embedded system modeling. A standard UML

profile for real-time based applications has been proposed and can be used for

modeling parallelism, behavior, and communication (Gerard et al., 2003). UML has

also been adopted as a meta-language for defining specific domain modeling

languages (Neema et al., 2004). These languages have also been proposed as the

basis of MIC (Model-Integrated Computing), a model-integrated approach to

embedded software development (Neema et al., 2004; Karsai et al., 2003). Proposed

improvements to UML include AML (Automotive Modeling Language) (von der

 51

Beeck et al., 2003) and SysML (Systems Modeling Language) (OMG, 2007). AML

adopts a subset of UML to represent automotive systems and defines a meta-model

to represent modeling concepts such as functions, ports, and connectors (von der

Beeck et al., 2003). SysML is also based on a subset of UML, and improves and

extends some diagrams, providing a graphical modeling language for both hardware

and software systems. SysML was proposed as an open source specification for

system modeling in 2003, and has now been issued by OMG as an “available

specification”. A driver information system has also now been developed based on

SysML (Rao et al., 2006).

Both the MATLAB® family tools and the UML-based methods can be used to

model real-time, embedded systems but they support modeling at different levels of

abstraction: UML-based methods can support higher levels modeling such as the

structure of systems and the composition of components, and MATLAB® family

tools can support lower levels modeling such as the behavior of a component and

signal processing. UML provides formal notations and diagrams to represent models;

Simulink® also provides a block library for modeling components, for example,

“inport” identifies the links from outside a system entering into the system and

“outport” identifies the links from a system exiting to an outside destination

(MATLAB, 2008; Simulink, 2008; and Stateflow, 2008).

Although the two types of methods are based on different theories, (the

MATLAB® family is based on control theory and UML-based methods are

object-oriented), both support hierarchical modeling. They usually use a Top-Down

strategy to analyze the system requirements and decompose the system into

subsystems and components. Although these methods and tools can accelerate the

modeling and developing process, they do have some limitations. For example,

 52

because of the system’s heterogeneity and the lack of standard communication

interfaces, re-development of similar functions cannot be avoided, and the portability

and reusability of the functions are limited.

2.4.3.3 Service-based Methodology in Automotive Domain

The appearance of standard AUTOSAR (AUTomotive Open System

ARchitecture) (2006a) also makes it possible to employ a service-based

methodology in automotive software development. The AUTOSAR development

partnership was founded in 2003 by major OEMs and Tier 1 suppliers (software

suppliers). AUTOSAR aims at facilitating the reuse of software and hardware

components between different vehicle platforms, OEMs and suppliers (AUTOSAR,

2006a; Fennel et al., 2006). It uses a layered architecture to separate AUTOSAR

software (applications) and basic software (related to hardware), as shown in Figure

5. The software architecture is structured into five layers, besides the Complex

Drivers layer which cannot be mapped into a single layer. The AUTOSAR

Application Layer consists of AUTOSAR software components, which are “Atomic

Software Components” that can provide reusable pieces of functionality of the

application and each AUTOSAR software component can only be conducted on one

AUTOSAR ECU (Electronic Control Unit). The other four layers enable the

AUTOSAR software components to be independent from the specific

hardware/ECUs. Runtime Environment (RTE) is also a hardware independent layer

and can provide communication service for the AUTOSAR software components in

the Application Layer.

 53

Figure 5. Layered architecture of AUTOSAR (2006a)

Besides using this layered structure to separate the applications and hardware,

AUTOSAR provides standardized APIs (Application Programming Interfaces) for

the integration of the AUTOSAR software components. This can help the

manufacturers and suppliers to freely exchange hardware and software components.

AUTOSAR has also been the basis of a proposal to reuse common services that

uses an MSC-based method and related tools for service-oriented automotive

software (Broy, 2006; Krüger et al., 2004). Using this method, developers can define

the target services and map these services to a specific component configuration.

MSCs (ITU-T, 2004; Harel et al., 2003) are adopted to capture service requirements,

especially communication between the services (Krüger et al., 2004). Validation,

simulation, and executable specifications can be generated after the modeling.

Similar to the above two kinds of methods, the MSC-based method also applies the

Top-Down modeling strategy. Researchers have adopted the “service” concept in

their methodology and it has been shown that service-based software development

can improve the reusability of software (Krüger et al., 2004). However, how the

 54

services can be discovered in the organization’s asset base is an open problem.

Comparing these three kinds of automotive software modeling methods

(Traditional modeling methods, UML-based modeling methods and service-based

modeling methods), we can obtain the following table:

Table 3. Comparison of automotive software modeling methods

 Traditional methods UML-based

methods

Service-based

Method

Fundamental

Theory

Control theory
Object-Oriented Service-Oriented

Modeling Focus

Structural modeling;

Behavior modeling;

Event-based modeling

Component

modeling

Service

communication

modeling

Unit of Modeling Component Component Service

Reusable Unit Component Component Service

Hardware-Coherent Yes Yes No

From Table 3, we can see that the modeling methods are based on different

fundamental theories and deal with different modeling issues. Although these

methods support both the structural modeling for a new system and the detail

modeling for new components, none of them identifies how to reuse the existing

models and services during the modeling stage. Thus, to complement these methods,

our ontology-based SOA modeling methodology can be used. Our method can treat

the AUTOSAR software components as services, and focuses on business process

modeling for the automotive software development. Supported by ontologies, our

method can provide formal descriptions of the models and services and improve the

reusability of existing models and services in the construction of new models.

We are not the first one to apply an ontology-based approach. An RTSOA (Real

Time SOA) framework (Tsai et al., 2006) has been proposed which uses ontologies

to represent the concepts and relations in real-time SOA application development.

 55

Different ontologies are used to describe different aspects of real-time SOA software,

and the software construction can be represented by cross-referencing between the

ontologies. However, more investigation is needed to integrate those ontologies

within an SOA development platform and maintain the consistency of the ontologies.

Recently, a Semantically-enabled Service-Oriented Device Architecture (SeSODA)

(Gouvas et al., 2007) was proposed to extend Service-Oriented Device Architecture

(SODA) (de Deugd et al., 2006). SODA provides a way of adapting SOA to devices

(sensors and actuators) and lets programmers deal with these devices just as business

services. SeSODA introduces semantics into the SODA environment, using

ontologies to resolve data and message heterogeneities between services in runtime.

These methods can partially resolve the problems of service integration; however,

they cannot improve service reuse.

Comparing with these ontologies, our core ontology BPO can solve the problem

of reuse of both models and services. On the basis of the core ontology BPO, a

knowledge base AutoPO (Automotive Process Ontology) is constructed to present

and manage information associated with automotive software modeling. These

ontologies can provide precise, sharable descriptions for the models and services and

support the knowledge management of the process model and service asset base.

Using these ontologies, our modeling methods can provide not only the application

reuse (by reusing services) but also the specification reuse (by reusing the concrete

process models or the process model templates).

 56

2.4.3.4 Event-Driven Architecture and SOA

Automotive software, being an embedded system, also suits to be represented

by event-driven architecture. Event-driven architecture (EDA)1 is a software

architecture pattern promoting the production, detection, consumption of, and

reaction to events. Service-oriented architecture (SOA) provides methods for

systems development and integration where systems package functionality as

interoperable services. SOA can be used to design composite applications and

implement workflow. The service invocation can be driven by user requests or by

events (Michelson, 2006). With the development of SOA, researchers have been

investigating the interaction of SOA and EDA.

Laliwala et al. (2008) proposed an Event-driven SOA (EDSOA) as an extension

of SOA to model the event-driven process chains and to achieve event-driven

automation of business process. In the EDSOA, an event manager is used to control

the components of the system. The Event Manager is designed to communicate

dynamically with the distributed heterogeneous services and other components.

Komoda (2006) proposed a SOA framework for industrial systems. This framework

uses a layered architecture to separate the hardware, controller and management

system. It can support real-time and embedded system. Besides these research works,

industry organizations (such as Oracle) also propose Event-Driven SOA, which is

also called SOA 2.02. In SOA 2.0, Event-driven architecture can complement

service-oriented architecture by activating services with incoming events (Hanson

2005).

1 http://en.wikipedia.org/wiki/Event_Driven_Architecture

2 http://en.wikipedia.org/wiki/Event-driven_SOA

 57

2.5 Summary

In this chapter, we introduced the SOA-related concepts, such as SOA

development lifecycle, layers of SOA structure and SOA delivery strategies. On the

basis of this introduction, we explained the importance of SOA modeling and

different modeling strategies.

We also presented different kinds of related works for SOA modeling, such as

modeling standards, modeling methods and frameworks, and analyzed the benefits

and limitations of these methods. As we will validate our modeling methodology by

applying it to the automotive software development domain, which will be presented

in Chapter 4, this chapter also reviewed the related works for the automotive

software modeling. For the verification of SOA models, we reviewed quality

attributes for models proposed by different researchers. This would help to identify

quality attributes suitable for SOA models.

 58

Chapter 3 Ontology-based SOA Modeling

Methodology

In this study, we adopt knowledge management techniques to accelerate the

modeling process and improve the accuracy and reusability of software models. This

chapter will describe the core of our methodology.

We will first define ontology. After that we will present a core ontology for

Business Process modeling, called BPO (Business Process Ontology) (Liao et al.,

2007a), which can define business processes formally, provide information of

existing process models and services in an organization’s asset base, and record the

mapping between the processes and services. BPO can be applied to different

domains. A knowledge base AutoPO is then constructed in Chapter 4 by extending

the core ontology BPO to the automotive business process domain.

An Ontology-based Business Process Modeling and Developing Framework

(OBPMDF) is also proposed in this chapter to illustrate the main processes and

products in the Model and Assemble phases of SOA development lifecycle. The

framework applies the extension of BPO to work as the knowledge base, which can

give accurate definitions of business processes, services, and their relationships.

Based on BPO and OBPMDF, we will present relevant modeling methods at

last, which support the three strategies for SOA modeling (Top-Down, Bottom-Up

and Agile) as well as satisfy the reuse of model specifications and services.

 59

3.1 Ontology Definitions

Originally derived from philosophy, in modern computer science the concept of

ontology is defined as a formal, explicit specification of a shared conceptualization

(Gruber, 1995). Generally, ontologies can be used for knowledge sharing and reuse,

and, according to Uschold et al. (1996), are in particular useful in three areas:

communication, inter-operability and systems engineering. With regard to

communication, adopting a shared ontology allows all participants to use a

standardized terminology for all objects and relations in their domains. Ontologies

improve inter-operability because they can be used to support translation between

different languages and representations. Furthermore ontologies support the design

and development of the software systems by providing declarative specifications,

which improves reliability and reusability. In this study, we adopt ontology to help in

the construction of business process models, which is an important phase of system

engineering.

From the different ontology languages, such as RDF (W3C, 2004b), RDFS

(RDF Schema) (W3C, 2004d), DAML+OIL (W3C, 2001b), OWL (W3C, 2004c), we

choose OWL to describe our ontologies because it is a machine readable language

for defining ontologies, and provides higher machine readability than RDF and

RDFS, and has more vocabulary than RDF and DAML+OIL (Salam et al., 2007).

The main elements of OWL are classes, individuals and properties. Classes represent

the abstraction of objects and can be considered as a set containing elements.

Individuals are instances of a class or can be considered as members of a class.

Properties represent the relations between individuals (which are called object

properties) or from individuals to data values (which are called data type properties).

 60

A core ontology is one of the key building blocks necessary to enable the

scalable assimilation of information from diverse sources (Hunter, 2003). In this

study, a core ontology is considered as an initial domain ontology, a kernel that can

be extended by adding Axioms, Lexicon and Instances. For better understanding of

the mathematical definitions for these concepts, we first list the notations which will

be used in those definitions.

� Italic uppercase letters, such as C and R, represent sets.

� X≤ : a partial order over set X.

� Greek letters, such as σ and ι , represents functions.

� + : a Kleene plus on a set. For example, the Kleene plus on set X is

*
1 2 3i

i N

X X X X X+

∈

= =∪ ∪ ∪ ∪

� X : represents the size of set X.

� ×: the notation for a Cartesian product. The Cartesian product of two sets

X and Y, denoted X × Y, is the set of all possible ordered pairs whose first

component is a member of X and whose second component is a member of

Y: { }(,) |X Y x y x X and y Y× = ∈ ∈ .

� i Xπ , 1 i X≤ ≤ : the Cartesian product of an arbitrary family of sets for

set X.

� 2I: the power set (or powerset) of I, which is the set of all subsets of I.

� � �t : the values of t.

 61

According to Karlsruhe’s group (Stumme et al., 2003), a core ontology is

defined as a structure

: (, , , ,)C RO C Rσ= ≤ ≤

where

� C and R are two disjoint sets whose elements are concept identifiers

and relation identifiers respectively,

� a partial order C≤ on C represents the hierarchical relationship

between concepts,

� +→ CR:σ is a signature that describes the non-logical symbols of the

formal language,

� a partial order R≤ on R represents the hierarchical relationship

between properties. 2R1 rr ≤ implies)r()r(21 σσ = and

))r(())r((2iC1i σπσπ ≤ ,)r(i1 1σ≤≤ .

To better represent the attributes of ontologies, Cimiano (2006) proposes to refine

this definition and instead defining an ontology as a structure

),,,,,',,'(: ''' TARCO ARRC σσ ≤≤=

where

� 'C , 'R , A, and T are four disjoint sets whose elements are respectively

concept identifiers, relation identifiers, attribute identifiers and data types,

� a partial order 'C≤ on 'C represents the hierarchical relationship between

concepts,

� a function +→ '':' CRRσ is the relation signature,

 62

� a partial order 'R≤ on 'R represents the relation hierarchy. 2'1 rr R≤

implies)()(21 rr σσ = and))(())((21 rr iCi σπσπ ≤ ,)(1 1ri σ≤≤ .

� a function TCAA ×→ ':σ is the attribute signature.

In this definition, the concept set is divided into two sets: 'C represents the

concepts abstracted from the real world and T represents the data type set

specifically. This separation of concepts can better reflect the elements in ontology

languages. For example: 'C can represent the classes which reflect the abstraction

of objects and T represents the set of RDF literals and XML Schema data types in

OWL. Correspondingly, the relation set R and function σ are also separated: 'R

and 'Rσ represent the relations between concepts in 'C ; A and Aσ represent the

relations between concepts and data types. However, this definition ignores the

function TT''R:''R ×→σ , which may limit the usage of ontology. For example,

with this ontology definition users cannot use this ontology to create user-defined

data types.

Apart from ignoring the function ''Rσ , Cimiano’s definition also ignores two

other important definitions. First, it only defined hierarchical relationships for the

elements of 'R , denoted by 'R≤ . However, the elements of A also have

hierarchical relationships because attributes can be considered specific kinds of

properties whose ranges are data types. Therefore, a new partial order A≤ which

represents the hierarchical relationship between attributes is needed. Second, in both

Cimiano and Karlsruhe’s definitions, the function 'Rσ is defined as +→ '':' CRRσ .

In fact, the relations in an ontology are generally binary relations, which means that

for a relation 'Rr ∈ ,)(rσ is 2. Therefore, to be more explicit, the function 'Rσ

 63

can be defined as ''':' CCRR ×→σ .

Given the above observation, we adopt and refine Karlsruhe’s definition of core

ontology (Stumme et al., 2003) according to some of the concepts in Cimiano’s

definition (Cimiano, 2006). Our definition of core ontology is as follows:

Definition (Core Ontology): A core ontology is defined as a structure

),,R,,C(:O RC ≤≤= σ

consisting of

� two disjoint sets C and R whose elements are respectively called concept

identifiers and relation identifiers.

� Data type can be considered as a specific type of concept, which can be

represented by a set DT, CDT⊆ . In OWL, DT can represent the set of

XML Schema or RDF data types.

� A set DR can also be defined, which contains the relation identifiers

representing the relationship between a concept and a data type,

RDR⊆ .

� a partial order C≤ on C , called concept hierarchy or taxonomy, represents

the hierarchical relationship between concepts.

� If 21 cc C< , for Ccc ∈21, , then 1c is a sub-concept of 2c , and 2c is

a super-concept of 1c . In OWL, C≤ can map to the relationship between

classes and their sub-classes.

� If 21 cc C< and there is no Cc∈3 satisfying 231 ccc CC << , then 2c

is a direct super-concept of 1c and 1c is a direct sub-concept of 2c .

This can be denoted by 21 cc ≺ .

 64

� a function CCR ×→:σ , called relation signature, where for a relation

Rr ∈ ,)(),()(rranrdomr =σ ,)(rdom is the domain of relation r and

)(rran is the range of relation r .

� For the function σ , we have RDR⊆ and CDT⊆ , then we can

define DTCDR:DR ×→σ , which can represent the data type property

in OWL. For a relation DRr ∈ , the domain and range of r are limited as:

Crdom ∈)(and DTrran ∈)(.

� For a relation Rr ∈ , if Crdom ∈)(, Crran ∈)(and DTrran ∉)(,

the relation r represents the object property in OWL.

� a partial order R≤ on R, called relation hierarchy, where 21 rr R≤ implies

)()(21 rdomrdom C≤ and)()(21 rranrran C≤ .

� If 21 rr R< , for Rr,r 21 ∈ , then 1r is a sub-relation of 2r , and 2r is a

super-relation of 1r . In OWL, R≤ can map to the relationship between

properties and their sub-properties.

� If 21 rr R< and there is no Rr∈3 satisfying 231 rrr RR << , then 2r is

a direct super-relation of 1r and 1r is a direct sub-relation of 2r . This

can be denoted by 21 rr ≺ .

Axioms constrain the interpretation and well-formed use of the concepts

(Gruber, 1995). The definition of axioms in ontology is as follows:

 65

Definition (Axiom): Let L be a logical language. An L-axiom system for an

ontology),,,,(: RC RCO ≤≤= σ is a triple

),,(: LAIA α=

where

� AI is a set whose elements are called axiom identifiers,

� LAI →:α is a mapping from AI to L.

The elements of)(: AIA α= are called axioms.

An ontology with L-axioms is a pair

),(AO

where O is an ontology and A is an L-axiom system for O.

A lexicon for an ontology can provide mapping between concepts or relations

(Hirst, 2004). It can assist the communication between users who use different terms

and it can also be useful for system integration. For example, the subsidiaries of an

enterprise in different countries may use different languages to describe the same

objects, and the lexicon can provide a bridge between the languages and the

knowledge defined in the ontology so that the system definition can be unified.

Although we are not directly concerned with lexicons in this study, the lexicon is still

needed, especially for the construction of a unified ontology for a specific domain. A

lexicon is defined as follows (Stumme et al., 2003):

 Definition (Lexicon): A lexicon for an ontology),,R,,C(:O RC ≤≤= σ is a

structure

)Ref,Ref,S,S(:Lex RCRC=

consisting of

 66

� two sets CS and RS whose elements are respectively called signs for

concepts and signs for relations,

� a relation CSRef CC ×⊆ called lexical reference for concepts, where

CRef)c,c(∈ holds for all CSCc ∩∈ .

� a relation RSRef RR ×⊆ called lexical reference for relations, where

RRef)r,r(∈ holds for all RSRr ∩∈ .

� based on CRef , for CSs∈ , }Ref)c,s(Cc{:)s(Ref CC ∈∈= , and for

Cc∈ , }Ref)c,s(Ss{:)c(Ref CC
-1

C ∈∈=

� RRef and -1
RRef can be defined analogously: for RS's∈ ,

}Ref)r,'s(Rr{:)'s(Ref RR ∈∈= , and for Rr ∈ ,

}Ref)r,'s(S's{:)r(Ref RR
-1

r ∈∈=

An ontology with a lexicon is a pair

),(LexO

where O is an ontology and Lex is a lexicon for O.

A knowledge base can provide the means for the computerized collection,

organization, and retrieval of knowledge. It can provide the extensional aspects such

as assertions about instances of the concepts and relations. A knowledge base can be

defined as (Stumme et al., 2003):

 67

Definition (Knowledge Base): A Knowledge base for an ontology

),,,,(: RC RCO ≤≤= σ is a structure

),,,,(: RCIRCKB ιι=

consisting of

� two disjoint sets C and R as defined in ontology O,

� a set I whose elements are called instance identifiers, which are individuals in

OWL,

� a function I
C C 2: →ι called concept instantiation, especially

� a function � �:DT t DT
DT tι

∈
→∪ is the instantiation of the data types,

where � �t are the values of data type DTt ∈ .

� a function
+→ I

R R 2:ι with))(())(()(rranrdomr CCR ιιι ×⊆ , Rr ∈∀ . This

function is called a relation instantiation, especially

� a function [][]∪ DTtDR tIDR:
∈

×→ι with

[][])a(ran))a(dom()a(CDR ×⊆ ιι , DRa∈∀ . This function can represent

the instantiation of data type property in OWL.

3.2 Business Process Ontology (BPO)

BPO is a core ontology for business domains which can be used for modeling

business processes and for representing business processes and services information

and business process system integration. BPO is designed with OWL (W3C, 2004c)

and its framework is represented with a UML graph, as shown in Figure 6.

 68

Figure 6. Framework of BPO

3.2.1 Concept Set of BPO

As BPO is a core ontology for business domains, its main concepts are the most

abstract ones for business process modeling. These can be classified into three

categories: business process-related, service-related, and others. The business

process-related concepts represent five kinds of business processes in a business

domain or in an organization:

� BusinessProcess represents the abstraction of all kinds of business

processes of an organization.

� AtomicProcess represents the processes whose functions should be

conducted as a whole and could not be subdivided.

� CompositeProcess represents processes that are composed of one or more

 69

business processes, which can be atomic processes and other composite

processes.

� ProcessModel represents all the reusable business process models in an

organization which model a whole workflow of a business process model.

� ProcessFragment represents an encapsulated step in a composite process

model which is organized by a kind of “FlowPattern”. It is drawn in a

dashed box because it is an auxiliary concept for constructing the

workflow of a business process model.

The relationships between AtomicProcess, CompositeProcess and

BusinessProcess are AtomicProcessC< BusinessProcess and CompositeProcessC<

BusinessProcess, which means that AtomicProcess and CompositeProcess are

sub-concepts of BusinessProcess, and BusinessProcess is a super-concept of both

of them.

Because there is no Cc ∈1 satisfying AtomicProcess C1C << c BusinessProcess

or CompositeProcess C1C << c BusinessProcess, BusinessProcess is a direct

super-concept of AtomicProcess and CompositeProcess and the latter two are direct

sub-concepts of the former concept. This can be denoted as

AtomicProcess≺BusinessProcess and CompositeProcess≺BusinessProcess. In BPO,

these concepts are defined as classes. The AtomicProcess and CompositeProcess

classes are defined as sub-classes of BusinessProcess class with OWL statements.

Analogously, the ProcessModel and ProcessFragment concepts are defined as

sub-classes of the CompositeProcess class and can be denoted as

ProcessModel≺ CompositeProcess and ProcessFragment≺ CompositeProcess.

Because of the transitivity of C≤ , BusinessProcess is another super-concept of

 70

ProcessModel and ProcessFragment. The transitivity is a natural attribute of

“rdfs:subClassOf” relation in OWL.

BPO can be extended to form a knowledge base for all the business process

models in an organization. However, the organizations need to reuse not only the

business process models but also the related services. If BPO includes only

process-related information, its reusability will be limited. Therefore, BPO also

defines service related classes and identifies the relationships between business

processes and services. The service related classes are:

� Service represents the super-class of all the available services in an

organization’s asset bases.

� AtomicService represents a service that can fully implement a business

process and is considered as a black box during the modeling.

� CompositeService represents a service that is composed of several other

services, which can be atomic services and other composite services.

A service is a mechanism to enable access to one or more capabilities, where

the access is provided using a prescribed interface and is exercised consistent with

constraints and policies as specified by the service description (OASIS, 2006). For

example, in the automotive software domain, a service can represent a piece of

functionality in an automobile. The Service class and its sub-classes are used to

provide information associated with the services, such as the functional description,

the location, and performance information. These classes can be used to build the

mapping between business processes and services, models, and the implementation.

The modeling of processes also requires other concepts such as the concepts for

communication and workflow description. These additional classes include:

� TimeLimit representing the time limitation of the execution of processes

 71

and services.

� Message representing the data exchange between processes or services. If

necessary, users can define sub-classes of the Message class to represent

different kinds of messages for a specific business domain.

� FlowPattern representing the abstraction of the descriptions of control

flow dependencies between the component processes within a composite

process. Four basic patterns are defined in BPO:

� Sequence executes a list of composite or atomic processes in order.

� Branch chooses an execution path from several alternatives.

� Loop repeatedly executes a business process or a set of business

processes.

� Parallel allows the business processes to be executed concurrently by

different processors.

In summary, the concept set of BPO is

C := DomainConcept∪ DataType

DomainConcept := { AtomicProcess, AtomicService, Branch, BusinessProcess,

CompositeProcess, CompositeService, FlowPattern, Loop, Message, Parallel,

ProcessFragment, ProcessModel, Sequence, Service, TimeLimit }

where

� The elements of DomainConcept represent the main objects in business

process modeling.

� The elements of DataType are the XML Schema or RDF data types.

The hierarchical relationships C≤ between the concepts are summarized in

Table 4. “OWL: Thing” is the super-concept for all the concepts in BPO. For

simplicity, we identify this only when it is the direct super-concept of other concepts.

 72

Table 4. Hierarchical relationships between the concepts in BPO

 Direct

Super-Concept
Super-Concepts3

Direct

Sub-Concept
Sub-Concepts

AtomicProcess BusinessProcess BusinessProcess

AtomicService Service Service

Branch FlowPattern FlowPattern

BusinessProcess

OWL: Thing AtomicProcess,

CompositeProcess

AtomicProcess,

CompositeProcess,

ProcessModel,

ProcessFragment

CompositeProcess
BusinessProcess BusinessProcess ProcessModel,

ProcessFragment

ProcessModel,

ProcessFragment

CompositeService Service Service

FlowPattern
OWL: Thing Sequence, Branch,

Loop, Parallel

Sequence, Branch,

Loop, Parallel

Loop FlowPattern FlowPattern

Message OWL: Thing

Parallel FlowPattern FlowPattern

ProcessFragment
CompositeProcess CompositeProcess,

BusinessProcess

ProcessModel
CompositeProcess CompositeProcess,

BusinessProcess

Sequence FlowPattern FlowPattern

Service
OWL: Thing AtomicService,

CompositeService

AtomicService,

CompositeService

TimeLimit OWL: Thing

3.2.2 Relation Set of BPO

According to Zachman Framework (The Open Group 2006), six categories of

information are necessary to be identified in a system architecture:

� The data description — What

3 This column only shows the super-concepts other than “OWL:Thing”.

 73

� The function description — How

� The Network description — Where

� The people description — Who

� The time description — When

� The motivation description — Why

Therefore, in the framework of BPO, we should be able to describe the

functionality of the processes, the data transmission between the processes, the

performance requirements of the processes and relevant services and the actor of the

processes.

On this basis, the relation set of BPO is defined as:

R := ObjectProperty∪ DataTypeProperty

ObjectProperty := {hasSubProcess, isSubProcessOf, hasSubService,

isSubServiceOf, isPerformedBy, perform, isOrganizedBy, processIO, processInputs,

processOutputs, serviceIO, serviceInputs, serviceOutputs, processTimeLimit,

serviceResponseTime}

where

� The elements of ObjectProperty are the relation identifiers which represent

the main relations between the instances of the concepts in the

DomainConcept set.

� The elements of DataTypeProperty are the relation identifiers which

identify the relation between instances of concepts and RDF literals and

XML Schema data types.

The main object properties are represented by the connections between the

classes in Figure 6 and are illustrated in detail in Table 5. An object property is a

binary relation which is defined as a relation Rr ∈ with 2)(=rσ , representing a

 74

relation between instances of two classes. The domain of an object property r is

defined as))((:)(1 rrdom σπ= , and its range is defined as))((:)(2 rrrange σπ= . In

Table 5, the domain of an object property is the first element of Rσ and the range is

the second element of Rσ .

Table 5. Main object properties in BPO

Relation

Identifier
Rσ Explanation

hasSubProcess <CompositeProcess,

BusinessProcess>

A transitive property. States the sub-processes of a composite

business process. Its sub-processes can be both composite and

atomic business processes. This is the inverse property of

isSubProcessOf.

isSubProcessOf <BusinessProcess,

CompositeProcess>

A transitive property. Identifies a business process that is a

component of another business process. The former can be

either atomic or composite processes and the latter should be a

composite process. This is the inverse property of

hasSubProcess.

hasSubService <CompositeService,

Service>

A transitive property. States the components of a composite

service. A composite service can be constructed by both

composite and atomic services. This is the inverse property of

isSubServiceOf.

isSubServiceOf <Service,

CompositeService>

A transitive property. Identifies a service that is a component of

another service. The former can be either atomic or composite

service and the latter should be a composite service. This is the

inverse property of hasSubService.

Perform <Service,

BusinessProcess>

Identifies the binding information of services and business

processes. A service can be engaged in one or more business

processes. This property is the inverse property of

isPerformedBy.

isPerformedBy <BusinessProcess,

Service>

Identifies the binding information of business processes and

services. A business process can be implemented by one or

more services. If the process is conducted manually, no service

will support it. This property is the inverse property of perform.

isOrganizedBy <CompositeProcess,

FlowPattern>

States the flow pattern of the components in a composite

process.

 75

processIO <BusinessProcess,

Message>

Refers to the types of the information transfer between different

business processes. This has two sub-properties: processInputs

and processOutputs.

processInputs <BusinessProcess,

Message>

Specifies the type of messages that a process requires for its

execution. This is a sub-property of processIO.

processOutputs <BusinessProcess,

Message>

Specifies the type of results of a process. This is a sub-property

of processIO.

serviceIO <Service, Message> Refers to the information transfer between different services.

This has two sub-properties: serviceInputs and serviceOutputs.

serviceInputs <Service, Message> Specifies the inputs that a service requires for its execution.

This is a sub-property of serviceIO.

serviceOutputs <Service, Message> Specifies the outputs of a service. This is a sub-property of

serviceIO.

process-

TimeLimit

<BusinessProcess,

TimeLimit>
Specifies the acceptable range of execution time for a process.

service-

ResponseTime

<Service,

TimeLimit>
Specifies the actual response time of a service.

As shown in Table 5, some properties of Business Process and Service have

similar names, such as processIO and serviceIO properties and their sub-properties.

Nonetheless, they represent very different concepts. The business process ontology is

developed from the users’ perspective. In contrast, the service ontology provides

information about concrete services. Therefore, the processIO property just describes

what kind of communication occurs between the processes whereas the serviceIO

property provides the concrete constraints (such as data types) for the messages

which are transferred between services. The business process ontology can be used

in constructing process models. The service ontology provides information of the

implementation.

Data type properties are also needed to describe classes and individuals. We list

the essential data type properties of our framework in Table 6.

 76

Table 6. Main data type properties in BPO

Relation Identifier opertyDataTypePrσ

Explanation

processName <BusinessProcess,

xsd:string>
Refers to the name of the offered business process.

processDescription <BusinessProcess,

xsd:string>

Provides a brief description of business processes:

summarizing the purpose of a business process, functions of a

business process, the requirements of the business process,

the results of the business process, and the execution mode of

the business process (e.g. manual or computer aided).

preCondition <BusinessProcess,

xsd:string>

States the conditions under which a business process can be

conducted.

postCondition <BusinessProcess,

xsd:string>

States the situation after a business process is conducted. This

has two sub-properties: successGuarantee and

minimalGuarantee.

role <BusinessProcess,

xsd:string>

Describes the information of roles or actors of the business

process.

successGuarantee <BusinessProcess,

xsd:string>

States what must be satisfied after the business process is

successfully executed.

minimalGuarantee <BusinessProcess,

xsd:string>

States what must be satisfied after execution of a business

process, no matter the execution was successful or not.

serviceName <Service, xsd:string> Refers to the name of the offered service.

serviceDescription <Service,xsd:string> Provides a brief description of a service: function, resource

needed, type of inputs and outputs, and any additional

information that the users need to know.

serviceLocation <Service,xsd:string> Identifies the location of a service.

The relation hierarchies between some of the properties are summarized in

Table 7.

Table 7. Relation hierarchies between the properties in BPO

 Direct

Super-Relation
Super-Relation

Direct

Sub-Relation
Sub-Relation

processIO
 processInputs

processOutputs

processInputs

processOutputs

processInputs processIO processIO

processOutputs processIO processIO

serviceIO serviceInputs serviceInputs

 77

serviceOutputs serviceOutputs

serviceInputs serviceIO serviceIO

serviceOutputs serviceIO serviceIO

postCondition
 successGuarantee,

minimalGuarantee

successGuarantee,

minimalGuarantee

successGuarantee postCondition postCondition

minimalGuarantee postCondition postCondition

Considering the six categories of information in Zachman Framework, we can

find that most of the information is described by BPO’s classes and properties. The

class Message represents the data exchange between processes or services.

Developers can describe the motivation and function of a business process in its

property processDescription. The mapping between the business process and

services identifies which services can conduct this business process. The property

preCondiction states the conditions under which a business process can be conducted

or when the business process can start, and the role property describes the

information of roles or actors of a business process.

Additional classes and properties may be needed to describe the objects in a

specific business domain. For example, a Unit class can define the units of values,

such as “Micro-Seconds” and “Seconds” to represent the unit of time limitation.

More performance features can also be added according to the performance

requirements of a specific domain. For example, sub-properties throughput and

maxNumberOfCustomers can be added to represent the non-functional requirements

of the business processes of a web site.

Once we have these definitions of the concepts and relations, we can construct

the framework for a business process model and identify the mapping between the

process model and services. A business process can be performed by one or more

services (identified by the isPerformedBy property); a service may “perform” one or

 78

more processes. Except for the manual business processes (which would be

identified in the processDescription property), the business processes may be

mapped to existing services. Generally, atomic processes may be implemented by

atomic services and composite services are often mapped to composite processes.

Suitable services can be adopted according to the performance requirements of a

business process. By separating the business processes and services, organizations

could produce applications with more flexibility. For example, a business process

can map to several services which have different performance and cost; the

developers can choose the most suitable service according to their specific

requirements.

3.2.3 The Formal Description of BPO

To conclude the definitions for the concepts and relations, the core ontology

BPO can be defined as a structure:

: (, , , ,)C RBPO C Rσ= ≤ ≤

consisting of

� C := DomainConcept∪ DataType

� DomainConcept := { AtomicProcess, AtomicService, Branch,

BusinessProcess, CompositeProcess, CompositeService, FlowPattern,

Loop, Message, Parallel, ProcessFragment, ProcessModel, Sequence,

Service, TimeLimit }

� DataType:=The set of Data Types in XML Schema

� R := ObjectProperty∪ DataTypeProperty

 79

� ObjectProperty := { hasSubProcess, isSubProcessOf, hasSubService,

isSubServiceOf, isPerformedBy, perform, isOrganizedBy, processIO,

processInputs, processOutputs, serviceIO, serviceInputs, serviceOutputs,

processTimeLimit, serviceResponseTime }

� DataTypeProperty:= The set of Data Type Attributes in XML Schema

� The partial order C≤ over C represents the concept hierarchy in BPO. The

direct super-class relation is shown as:

� RClassHierarchy:=(<AtomicProcess, BusinessProcess>,<AtomicService,

Service>,<Branch, FlowPattern>, <CompositeProcess,

BusinessProcess>, <CompositeService, Service>, <Loop, FlowPattern>,

<Parallel, FlowPattern>, <ProcessFragment, CompositeProcess>,

<ProcessModel, CompositeProcess>, <Sequence, FlowPattern>)

� For Rr ∈ ,)(),()(rranrdomr =σ . The function ()rσ is defined as:

� For object properties:

� σ (hasSubProcess)=<CompositeProcess, BusinessProcess>

� σ (isSubProcessOf)=<BusinessProcess, CompositeProcess>

� σ (hasSubService)=<CompositeService, Service>

� σ (isSubServiceOf)=<Service, CompositeService>

� σ (Perform)=<Service, BusinessProcess>

� σ (isPerformedBy)=<BusinessProcess, Service>

� σ (isOrganizedBy)=<CompositeProcess, FlowPattern>

� σ (processIO)=<BusinessProcess, Message>

� σ (processInputs)=<BusinessProcess, Message>

� σ (processOutputs)=<BusinessProcess, Message>

 80

� σ (serviceIO)=<Service, Message>

� σ (serviceInputs)=<Service, Message>

� σ (serviceOutputs)=<Service, Message>

� σ (processTimeLimit)=<BusinessProcess, TimeLimit>

� σ (serviceResponseTime)=<Service, TimeLimit>

� For data type properties:

� σ (processName)=<BusinessProcess, xsd:string>

� σ (processDescription)=<BusinessProcess, xsd:string>

� σ (precondition)=<BusinessProcess, xsd:string>

� σ (postCondition)=<BusinessProcess, xsd:string>

� σ (role)=<BusinessProcess, xsd:string>

� σ (successGuarantee)=<BusinessProcess, xsd:string>

� σ (minimalGuarantee)=<BusinessProcess, xsd:string>

� σ (serviceName)=<Service, xsd:string>

� σ (serviceDescription)=<Service, xsd:string>

� σ (serviceLocation)=<Service, xsd:string>

� The partial order R≤ over R represents the relation hierarchy in BPO. The

direct super-relation is shown as:

� RRelationHierarchy:=(<processInputs, processIO>, <processOutputs,

processIO>, <serviceInputs, serviceIO>, <serviceOutputs, serviceIO>,

<successGuarantee, postCondition>, <minimalGuarantee,

postCondition>)

 81

3.2.4 Axioms for BPO

Different types of axioms can be stated in OWL for ontologies such as class

axioms, object property axioms, data property axioms, and fact axioms (W3C,

2008a).

Two types of class axioms are adopted in constructing BPO: SubClassOf and

DisjointClasses.

� SubClassOf axiom represents the hierarchical relationships between

concepts. SubClassOf (B A), in which B is a sub-class of A, means “B

implies A”.

� For example, SubClassOf (AtomicProcess Process) means that atomic

processes are a type of processes. More examples can be found in

Table 4.

� DisjointClasses axiom takes a set of descriptions and states that all

descriptions from the set are pair-wise disjoint.

� Five sets of disjoint classes are defined in BPO:

� DisjointClasses (BusinessProcess Service Message TimeLimit

FlowPattern)

� DisjointClasses (AtomicProcess CompositeProcess)

� DisjointClasses (AtomicService CompositeService)

� DisjointClasses (ProcessModel ProcessFragment)

� DisjointClasses (Loop Parallel Branch Sequence)

Five types of object property axioms are adopted in BPO. They are

SubObjectPropertyOf, ObjectPropertyDomain, ObjectPropertyRange,

InverseObjectProperties and TransitiveObjectProperties.

 82

� SubObjectPropertyOf axiom represents the hierarchical relationships

between object properties.

� For example, SubObjectPropertyOf (processInputs processIO) means

that processInputs are a type of processIO. More examples can be

found in Table 7.

� ObjectPropertyDomain and ObjectPropertyRange axioms define the

domain and range constrains in OWL which can be used in reasoning.

� For example, ObjectPropertyDomain (isPerformedBy

BusinessProcess) and ObjectPropertyRange (isPerformedBy Service)

define a relation r, where Serviceocess,BusinessPrσ(r) = . The

domain and range definitions for other objectProperties of BPO are

presented in Table 5.

� InverseObjectProperties axiom states that two properties are the inverse of

each other.

� Three pairs of properties are inverse properties:

� InverseObjectProperties (isPerformedBy perform), which means

isPerformedBy (A, B)↔ perform(B, A);

� InverseObjectProperties (hasSubProcess isSubProcessOf),

which means hasSubProces (A, B)↔ isSubProcessOf (B, A);

� InverseObjectProperties (hasSubService isSubServiceOf), which

means hasSubService (A, B)↔ isSubServiceOf (B, A);

� TransitiveObjectProperties axiom: If a property P is specified as transitive

object property, then for any x, y and z: P(x, y) and P(y, z) imply P(x, z).

� Four properties are defined as transitive properties:

� TransitiveObjectProperties (hasSubProcess)

 83

� TransitiveObjectProperties (isSubProcessOf)

� TransitiveObjectProperties (hasSubService)

� TransitiveObjectProperties (isSubServiceOf)

Three types of data property axioms, SubDataPropertyOf,

DataPropertyDomain and DataPropertyRange, are used in BPO.

� Similar to the SubObjectPropertyOf axiom, SubDataPropertyOf axiom

represents the hierarchical relationships between data properties.

� SubDataPropertyOf (successGuarantee postCondition) means that

successGuarantee is a kind of postCondition.

� SubDataPropertyOf (minimalGuarantee postCondition) means that

minimalGuarantee is also a kind of postCondition.

� DataPropertyDomain and DataPropertyRange axioms define the domain

and range constrains of data properties.

� For example, DataPropertyDomain (processName BusinessProcess)

and DataPropertyRange (processName xsd: string) define a data type

relation r, where string:xsd ocess,BusinessPrσ(r) = . The domain

and range definitions for other data type properties of BPO are

presented in Table 6.

OWL adopts Open World Reasoning, which treats something stated as false

only if it can be proved to contradict other information in the ontology (Rector et al.,

2004). These axioms for the concepts and relations allow us to restrict the objects

defined in the ontology and ensure the consistency of the definitions. For example, if

isPerformedBy (A, B) is defined for process A, the attribute perform (B, A) must be

defined correspondingly for service B because isPerformedBy and perform

properties are a pair of InverseObjectProperties.

 84

3.2.5 Comparison of BPO and OWL-S

As described in Section 2.2.2, OWL-S (W3C, 2004e) is an upper ontology

which concerns the automatic discovery and composition of web services. As the

service composition is closely related to business process modeling, this section will

compare OWL-S with BPO, highlight their differences, and explain their relation.

OWL-S is an ontology of service proposed by W3C. It has an OWL-based

framework which can be used for describing various aspects of web services.

OWL-S defines a top-level concept “Service” and three sub-classes: “ServiceProfile”,

“ServiceModel” and “ServiceGrounding”. “ServiceProfile” is for service advertising

and discovery on the net, while “ServiceModel” exposes how a service is composed.

“ServiceGrounding” specifies the details of how to access the service.

OWL-S also adopts “Process” to represent service model. However, this

“Process” is not the same as the BusinessProcess in BPO. The “Process” class in

OWL-S represents a process in a web service and it gives a detailed perspective on

how a client may interact with a service. In BPO, BusinessProcess represents any

actions or procedures to handle business tasks in an organization. No matter the

business processes are handled manually or automatically, they will be faithfully

described in BPO.

Although both BPO and OWL-S are upper ontologies for SOA, they focus on

different aspects.

� They are from different levels of viewpoint. BPO is from the viewpoint of

system engineering which is a higher level concerning more about the

workflow and user’s requirement specification; on the other hand, OWL-S

is more from the technical viewpoint, concerning about the automatic web

 85

service discovery and composition, which is at a lower level.

� They provide different kinds of information. BPO can provide accurate

descriptions of reusable business process models, information of available

services in an organization’s asset base and previous experiences of the

implementation of the business process models. OWL-S provides two

kinds of information for a service, a brief introduction and implementation

details. The introduction is described by “ServiceProfile” class, and the

implementation details are represented by “ServiceModel” and “Service

Grounding” classes.

� They support different users. BPO is targeted for internal use; business

people can use it to construct the business process model and technical

people can use it to maintain the information of business processes and

services. With OWL-S, service providers can advertise their services on

the net; and services users and software agents can discover, invoke,

compose, and monitor the web resources.

From this discussion, we can conclude that BPO and OWL-S can be used at

different phases of SOA application development. BPO can be used in the modeling

phase to construct a model of the whole system and OWL-S can be used in the

assemble phase to compose related services.

 86

3.3 Ontology-based Business Process Modeling

and Developing Framework

We propose an Ontology-based Business Process Modeling and Developing

Framework (OBPMDF) to illustrate the main processes and products in the Model

and Assemble phases of the SOA development lifecycle. The framework applied the

extension of BPO as the knowledge base in a specific business domain, providing

accurate definitions of business process models and the information of their relevant

services. The framework is shown in Figure 7.

Figure 7. Ontology-based Business Process Modeling and Developing Framework

Our OBPMDF begins at the modeling stage, which can be divided into four

steps:

1) Create business process specification

 87

Within OBPMDF, the first step of modeling is still requirement elicitation,

which produces an initial requirement specification. By analyzing the requirements,

the developers can divide the target business process into a set of composite

activities and atomic activities. Then the developers can access the knowledge base

to determine whether there are any reusable business process models or services that

can satisfy the target business or any of its sub-activities. Parts of the business

process may have been designed and implemented and other parts may not. By

accessing the knowledge base, developers can obtain the formal specifications of the

reusable part and its implementation information. The developers can reuse this part

directly. For the other part, they need to create new process models. After the

modeling of the sub-activities and orchestrating them, it is possible to generate a

formal business process specification for integration. The business process

specification can reflect the user needs at a high level of abstraction.

2) Obtain reusable services

Because the knowledge base contains information about the business processes

and services, especially their mutual relationships, it is easy to query the knowledge

base to discover services which can implement a specific business process model. If

the business process has been implemented, at least one service for that business

process should be found from the knowledge base. The attributes of the services can

show their functions, performance and locations. The developers can then determine

whether the services can be reused or not.

3) Create models for new services

After the business process modeling, the target business process model is

composed of two kinds of business processes: reusable business processes and new

business processes. The services for the reusable business processes can be obtained

 88

from the knowledge base. The developers need to implement the other new business

processes. Because the business processes are defined from a system viewpoint and

at a high level of abstraction, related service models should be constructed in more

detail, satisfying not only functional requirements but also technical requirements.

4) Generate specification for outsourcing

Sometimes, some of the services may be obtained by outsourcing. In such cases,

specifications for these outsourced services should be constructed and the main

performance requirements should also be defined.

The modeling methods in the Model stage, which will be illustrated in Section

3.4, focus mainly on the first step, which concerns business process modeling. After

this, the target business process can be formally described using OWL. As OWL is a

formal language for knowledge description, the process models written in OWL have

two kinds of flexibility. First, they can be translated into other process modeling

languages, such as WSBPEL. Second, they can be recognized and handled by

computer, supporting automatic simulation of the models. If any conflicts are found

in the model simulation, the model will be refined.

After the Model stage, the developers should have a complete model of the

target business process which can be used for integration, reusable services which

can satisfy part of the functions of the business, and specifications for new service

implementation and outsourcing. At the development stage, new services will be

developed first, and then all the related services will be integrated as defined in the

business process model. After testing, the application can be deployed. Information

about the new services and business processes can then be added into the knowledge

base so that they can be reused in the future.

In this framework, BPO and its extension can provide an explicit conceptual

 89

model with formal logic-based semantics and can represent properties of,

relationships between, and behaviors of business processes and services. The

inherent features of ontology bring benefits to the business process model, making

the model semantically rich and model components reusable. The business process

models are easy to maintain because of the inherent extensibility of ontology. As the

extension of BPO is created based on the organization’s asset base, which stores the

software artifact of the organization, the quality of extracted services should be

acceptable for the organization because they have been operating normally in some

existing systems.

3.4 Modeling Methods

Given the many offerings of standard services from various software suppliers,

organizations can adopt different modeling strategies to satisfy their specific

requirements. For example, they might create a new system using a Top-Down

strategy which firstly analyzes the business targets and processes, creates process

models, and then implement the system. However, some organizations may have a

large asset base of existing services available for reuse through years of development.

If these services can be fully reused in the creation of the new generation of system,

development costs will be reduced. We propose four modeling methods to improve

the reuse of specifications and services.

3.4.1 Notations

 For more accurate description of the modeling methods, some notations are

defined as follows:

 90

� Italic lowercase letters, such as p and x, are adopted to represent concrete

activities, business processes or services.

� An activity refers to a real world business task where some sort of business

function is carried out. There are two kinds of activities in a business

domain:

� Composite Activity: This represents a business task which contains a

series of activities coordinated by some workflow logic.

� Atomic Activity: This consists of the business logic of a

self-contained business task. It can be executed independently and can

also be a step in a composite activity.

� A business process is an abstraction of an activity, which can be

represented by an instance of the BusinessProcess class in the extension of

BPO. It is a building block for the business process modeling. To represent

different kinds of activities, two kinds of business processes will be

obtained from the initial requirement analysis:

� Composite Process: This consists of a collection of logically related

business processes that are coordinated according to some workflow

logic. It is the abstraction of the relevant composite activity to

represent a business task.

� Atomic Process: This refers to a basic building block for the business

process modeling. It is the abstraction of the relevant atomic activity

to represent a granular business task.

� A service is the abstraction of the software implementing an activity, which

can be represented by an instance of Service class in the extension of BPO.

It encapsulates the logic required to execute one or more self-contained

 91

business functions. There are also two kinds of services:

� Composite Service: This refers to an aggregation of services that

collectively implement a business task which is composed by a series

of activities.

� Atomic Service: This refers to a granular service that implements a

specific business function. It does not encompass other services, and

can be used independently or participate as a part of a composite

service.

� Italic capital letters or abbreviations are adopted to represent the sets of

activities, process models and services generated during the modeling

procedure. The notations are defined in detail in Table 8.

Table 8. Definitions of abbreviations

Set Name Elements

A Activity Activities abstracted from the initial specification

AACAA ∪=

RANAA ∪=

AA Atomic Activity Atomic activities abstracted from the initial specification

APT Atomic Process Template Class definitions for the atomic processes abstracted from

atomic activities, PTAPT⊆

AS Atomic Service Atomic services implementing an atomic business process

model

CA Composite Activity Composite activities abstracted from the initial

specification

CPM Concrete Process Model Individual definitions for the concrete process models

CPT Composite Process

Template

Class definitions for the composite processes abstracted

from composite activities, PTCPT⊆

CRP Class Reusable Process Process templates that can be reused

CS Composite Service Composite services implementing a composite business

process model

 92

DRP Directly Reusable

Process

Concrete process models which can be reused without

making any changes

NA New Activity Activities which have no existing process model

PT Process Template Class definitions for the business processes

RA Reusable Activity Activities which have relevant process models

RP Reusable Process Potential reusable process models (including both process

templates and concrete processes) obtained from the

knowledge base, CRPDRPRP ∪=

S Service Services for a business logic

� RA represents the hierarchical relationship between activities. The

relationship can be denoted by the function ACAR: A
AR ×→σ , which

means an activity can be a component of a composite activity. Similarly,

RP represents the hierarchical relationship between processes and the

function PTCPTR: P
PR ×→σ means that a process is a component of a

composite process; RS represents the hierarchical relationship between

services and the function SCSR: S
SR ×→σ means that a service is a

component of a composite service.

3.4.2 The Modeling Processes

A valid system model can be obtained by following three steps: requirements

elicitation, requirements analysis, and requirements validation (Sommerville, 2007).

Our methodology focuses mainly on the requirements analysis process, constructing

the system models and generating formal specifications. Formal description allows

the system models to be evaluated and validated more accurately, either manually or

automatically (Liao et al., 2007b).

When using our approach, software developers should start from the

 93

requirements elicitation phase and identify from the application domain the services

the system should provide, the required performance of the system, and hardware

constraints, etc. They then draft an initial requirement specification using natural

languages. This specification should identify the functional and non-functional

requirements of the system, organize the unstructured collection of requirements into

coherent clusters, and prioritize the requirements.

The knowledge base (the extension of BPO) can be used either by experts or

automatically. The experts can use ontology editing tools, such as Protégé (Gennari

et al., 2003; Protégé, 2008), to manually maintain the ontology and check the

consistency of the definitions. Ontology learning methodologies (Cimiano, 2006)

can construct the knowledge base by abstracting concepts and relations from text

documents, which can help to extend the knowledge base automatically or

semi-automatically. In this study, manual methods will be discussed, and we adopt

Protégé to construct the ontologies.

Protégé is a set of open-source ontology design software developed at Stanford

Medical Informatics, which can provide knowledge solutions for different areas.

Protégé provides a visualized tool for defining OWL classes, properties and

individuals, supports reasoners such as RacerPro (the commercial name for a

Renamed ABox and Concept Expression Reasoner), and executes queries of

SPARQL (Simple Protocol And RDF Query Language). By reasoning with RacerPro,

the experts can check the consistency of an OWL ontology and related data

descriptions, and identify implicit sub-class relationships induced by the declaration

of the ontology. Protégé also provides two kinds of queries. One is its own visual

query tool, which supports simple or complex queries of individuals and properties;

the other is a SPARQL query panel. As recommended by W3C (2008b), SPARQL

 94

can be used to represent the RDF graph ─ a set of triples that consists of a subject, a

predicate and an object as the basic expression of data stored in OWL-based

knowledge base. Compared with the Protégé’s visual query, SPARQL can provide

more functions to the query, such as filters, ordering results, handling duplicate

solutions, etc. (W3C, 2008b); therefore, we adopt SPARQL as the query language in

our study.

From the initial specification, activities and the hierarchical relationship

between the activities should be abstracted first. If the target process model and all

its activities are new for the organization, the software developers can directly create

classes and individuals to represent these new activities abstracted from the

requirement analysis. If the organization has developed similar processes and their

information have been defined in the extension of BPO (the knowledge base), the

software developers can first query the knowledge base to identify these reusable

processes, and then design the others as needed. The processing flow is shown in

Figure 8.

 95

Figure 8. Ontology-based modeling flow

 96

As presented in Section 2.1.4, Erl (2005) proposes three strategies for SOA

development: the Top-Down strategy, the Bottom-Up strategy, and the Agile strategy.

Based on his strategies, we defined three modeling strategies which have the same

names but different contents. The Top-Down strategy focuses on creating an overall

business model on the basis of a thorough requirements analysis. The Bottom-Up

strategy encourages creating services to best serve the immediate requirements first.

The Agile strategy allows for the business-level analysis to occur concurrently with

service design and development. After the searching or modeling for the

sub-processes, the developers can implement the new services and integrate the

reusable services and new services into the final application. Our proposed modeling

methods are summarized below:

� Top-Down Modeling (TDM): This supports the organizations in creating

new process models directly and uses the knowledge base to help to

generate the formal requirement specification.

� Top-Down Modeling based on Reusable Process (TDM-RP): This

supports the organizations in constructing new process models by reusing

similar process models already defined in the knowledge base.

� Bottom-Up Modeling based on Reusable Services (BUM-RS): This

supports the organizations in constructing new process models by reusing

some specific services.

� Agile Modeling based on Reusable Process and Reusable Services

(AM-RPRS): If the specific services are reused by many process models,

an analysis of the business target would be helpful to the process of

selecting a suitable model. AM-RPRS provides specific queries in the

knowledge base and can help the organizations efficiently choose suitable

 97

models.

These four methods can deal with different requirements of organizations, and

have their own benefits and weaknesses. Table 9 provides a comparison, with “BP”

representing Business Process.

Table 9. Comparison of different modeling methods

 TDM TDM-RP BUM-RS AM-RPRS

Situation

No reusable BP

available

Specifies the reusable

BP

Specifies the

reusable services

Specifies the

reusable BP &

services

Effort

Creates new BPs

directly

Searches for reusable

BPs; Creates new BPs

Searches for

reusable services;

Identifies reusable

BPs; Creates new

BPs

Searches for

reusable BP and

services; Identifies

reusable BPs;

Creates new BPs

Benefit

Formal steps for

creating BPs

Reuses existing BP

specifications or the

logical model of the

processes

Reuses existing

concrete services

and related BPs

More efficient

searching of

reusable BPs than

BUM-RS

Weakness

It is difficult to

construct the

hierarchy of concepts

in a reasonable way

at the beginning of

development

The organizations

need to know what

BPs are to be reuse at

the beginning of

development

The result of

searching may

involve several BPs

More information

about the reusable

things is needed

3.4.3 Top-Down Modeling (TDM)

When the goal is to construct a new Business Process Model that does not

involve any reusable processes and services, the Top-Down Modeling (TDM) can be

used. TDM involves the following steps:

1. AnalyzeRequirements: Collect system requirements, organize the

 98

unstructured collection of requirements into coherent clusters, prioritize the

requirements and produce an initial requirement specification.

2. AbstractActivities : Abstract the activities and the relationships between the

activities according to the initial specification.

1) Name the target process model p;

2) Abstract the activity set A of process p, A = {activities| the activities which

are described in the initial specification of process p};

3) Abstract the relationship between the activities in A.

� If Ax∈ , Ay∈ , and y is one of the steps in x, then ARy,x >∈< , which

means x has a sub-activity of y. The activity x is a composite activity,

CAx∈ .

� If Ax∈ and x cannot be divided from the viewpoint of business operation,

then x is an atomic activity, denoted as AAx∈ .

� AACAA ∪= .

� In TDM, ANA= , because RANAA ∪= and φ=RA .

3. CreateProcessTaxonomy: Maintain the knowledge base, which includes

defining classes to represent the activities in set NA and defining the properties of the

classes to represent the relationships between the activities.

1) Define the target process model p as a class in the knowledge base,

p C< ProcessModel;

2) Define the activities in NA as classes in the knowledge base, ensure that

� CAx∈∀ , define class x' to represent the process model template for

activity x, x' C< ProcessModel, CPT'x∈ .

� AAy∈∀ , define class y' to represent the process model template of related

 99

atomic activity y, y' C< AtomicProcess, APT'y∈ .

� APTCPTPT ∪= .

3) Define the object properties of the process model classes according to the

relationships between the activities.

� ARy,x >∈<∀ , there are PR'y,'x >∈< , where x' and y' are the process

models representing the activity x and y. The Rp relationship is defined as

hasSubProcess property in the knowledge base, which means that

PR'y,'x >∈<∀ , there are >=< 'y,'x)ocessPrhasSub(σ .

� The relationship isSubProcessOf in the knowledge base can be defined

automatically because it is the inverse property of hasSubProcess.

� If a composite process x is composed of sub-processes xi (i = 1,..,n), the

workflow of the sub-processes can be identified by constructing

ProcessFragment with one of the FlowPattern.

4) Configure the properties of all the elements of PT.

4. CreateProcessIndividuals: Maintain the knowledge base, which includes

instantiating the classes and properties for all the elements in PT; placing the

individuals into the CPM, which means that the individuals can represent the

concrete business processes models for the activities; ensuring that all the activities

in NA have been modeled and placed in CPM.

5. OrganizeProcess: Maintain the knowledge base, which includes identifying

the workflow of the concrete process models (the elements in CPM and DRP,

φ=DRP in TDM) by defining the flow pattern.

6. CheckConsistency: Check the consistency of the knowledge base.

7. EvaluateModel: Evaluate and validate the process model; ensure that all the

 100

activities in A have been modeled as process models in PT.

8. Implementation: Design or purchase services to implement the concrete

business processes models in CPM. Place the atomic services into the set AS and the

composite services into the set CS. ASCSS ∪= . The relationships between

services are defined in set RS.

9. CreateServiceTaxonomy: Maintain the knowledge base; define classes to

represent the services.

� CSs∈∀ , s C< CompositeService;

� ASs∈∀ , s C< AtomicService.

� If φ≠SR , define the relationships hasSubService and isSubServiceOf

according to the elements in RS.

� Configure the properties of all the services in S.

10. CreateServiceIndividuals: Maintain the knowledge base; instantiate the

classes and properties for all the services in S.

11. MappingProcess: Maintain the knowledge base; build up the properties

between the process models and the related services.

3.4.4 Top-Down Modeling based on Reusable Processes

(TDM-RP)

By reusing an existing business process model, the developers can create a new

business process and reuse the related services. The steps include:

1. AnalyzeRequirements;

2. AbstractActivities;

3. SearchForProcesses: Query the knowledge base for the reusable process

 101

models for the activities in A. Place the results, a group of OWL individuals

representing potential reusable processes, into the reusable process set RP, and move

the relevant activities and sub-activities from A to the reusable activity set RA.

RAANA −= . If a composite process belongs to RP, its component processes also

belong to RP.

According to the attributes of BusinessProcess and related classes (shown

earlier in Table 5 and 6), the following queries can be done with SPARQL:

� Assume that the activities and process models are named according to a

naming convention of the organization, which means that software

developers can obtain the name of the process model on the basis of the

name of the activity. Then the query can be conducted with the

processName attribute of process models. The searching with SPARQL

can be as follows:

SearchByProcessName:

select ?process

where {?process BPO:processName ?processName.

 Filter regex (?processName, “PROCESSNAME”). }

� If one of the component processes of a composite process model is known,

the query can be as follows:

SearchByComponentProcesses:

select ?process

where {?process BPO: hasSubProcess ?componentProcess.

?componentProcess BPO:processName ?componentProcessName.

 Filter regex (?componentProcessName,

“COMPONENTPROCESSNAME”). }

� The software developers can also list all the process models which are

 102

performed by a specific category of services as follows:

SearchByCategory:

select ?process

where {?process BPO:isPerformedBy ?service.

 ?service AutoPO:serviceCategory ?category.

 ?category AutoPO:categoryName ?name

 Filter regex (?name, “CATEGORYNAME”).

 }

Because SPARQL provides flexible descriptions for integrated queries, these

queries can be combined to improve the accuracy of the query results.

4. ReviewSearchingResult: Identify reusable processes by reviewing the query

results in RP, which is a group of OWL individuals representing potential reusable

concrete process models. This review will detect whether the performance (such as

time limits) of the result processes can satisfy the requirements. This step can also be

conducted by SPARQL queries. For example, the query for process time requirement

can be:

SearchByTimeLimit:

select ?process

where {?process BPO:processTimeLimit ?timelimit.

 Filter regex (?timelimit < SPECIFIC TIMELIMITVALUE).

 }

� If an element of RP (a concrete process model) can be reused without

making any changes, move that element from RP to DRP for future usage;

� If an element of RP cannot be reused directly, determine whether the class

or the super-class of the individual can be reused, then move the reusable

classes (process model template) to CRP;

 103

� If neither the element x nor its class can be reused, determine whether a

super-class can be inserted to generate a more abstract template. If it works,

move the class of the element x to CPT and move the relevant activity of

element x from RA to NA.

� If neither the class for the element x nor its super-classes can be reused,

delete it from RP and move the relevant activities of element x from RA to

NA.

� CRPDRPRP ∪= .

� RANAA ∪= .

� The processes in RP should be consistent with the activities in RA.

5. Step 3 and step 4 can be repeated to obtain all the reusable processes and

services.

6. MaintainProcessTaxonomy: Maintain the knowledge base, which includes

defining new classes to represent the logical model of the business and defining the

properties of the classes to represent their relationships and the workflow of the

business logic.

1) If φ≠CPT , which means that the current process template needs to be

modified so that it can be more common, define classes to construct the abstract

model template.

� CPTx∈∀ , define a class y as its direct super-concept to represent the kind

of activities of the element x from a more abstract level.

� y C< ProcessModel

� If zx ≺ , the new relationship between the concepts is zyx ≺≺ .

� Configure the isOrganizedBy property of the class y according to the

 104

relevant property definitions in x.

� After creating the classes, set CPT as φ so that it can be used in the next

step.

2) Define the activities in NA as classes in the knowledge base, ensure that

� CAx∈∀ , define a class x' to represent the process model template for the

activity x, x' C< ProcessModel, CPT'x∈ .

� AAy∈∀ , define a class y' to represent the process model template of

related atomic activity y, y' C< AtomicProcess, APT'y∈ .

� CRPAPTCPTPT ∪∪= .

3) According to the relationships between the activities, define new object

properties for the process model classes in PT.

� ARy,x >∈<∀ , there are PR'y,'x >∈< , where x' and y' are the process

models representing the activity x and y. The Rp relationship is defined as

hasSubProcess property in the knowledge base, which means that

PR'y,'x >∈<∀ , there are >=< 'y,'x)ocessPrhasSub(σ .

� The relationship isSubProcessOf in the knowledge base can be defined

automatically because it is the inverse property of hasSubProcess.

� If a composite process x is composed of sub-processes xi (i = 1,..,n), the

workflow of the sub-processes can be identified by using one of the

FlowPatterns to construct ProcessFragment. Some of these relationships

may be inherited from the relations of their super-concepts.

4) Configure the properties of all the elements of PT and the classes of the

elements in DRP.

7. Follow steps 4 to 11 of TDM.

 105

3.4.5 Bottom-Up Modeling based on Reusable Services

(BUM-RS)

By reusing one or more existing services, developers can identify the reusable

business process, reuse those related services, and create required new business

processes. The Bottom-Up strategy follows these steps:

1. AnalyzeRequirements;

2. AbstractActivities;

3. IdentifyReusableServices: Identify the services that need to be reused in the

new system according to the initial specification; obtain the information of the

services such as service name and service category.

4. SearchForServices: query the knowledge base for the reusable processes

which were implemented by the identified services. Place the query results, a group

of process individuals which is performed by the specific services, into the reusable

process set RP. If a composite process belongs to RP, its component process models

also belong to RP. Move the relevant activities and sub-activities of the processes in

RP from the activity set A to RA. RAANA −= . The query with SPARQL can be:

SearchByServiceName:

select ?process

where {?process BPO:isPerformedBy ?service.

?service BPO:serviceName ?serviceName.

 Filter regex (?serviceName, “SERVICENAME”).

If the name of the reusable service is known }

Then further searching can help to identify the composite processes which

indirectly use the identified services.

 106

SearchCPByServiceName:

select ?compositeProcess ?process

where {?process BPO:isPerformedBy ?service.

?service BPO:serviceName ?serviceName.

 Filter regex (?serviceName, “SERVICENAME”).

If the name of the reusable service is known

?process BPO:isSubProcessOf ?compositeProcess

 }

5. ReviewSearchingResult;

6. Step 4 and step 5 can be repeated to obtain all the reusable processes and

services.

7. MaintainProcessTaxonomy;

8. Follow steps 4 to 11 of TDM.

3.4.6 Agile Modeling based on Reusable Process and

Reusable Services (AM-RPRS)

Sometimes, a common service may be used by several business processes. For

example, “Voice” service can be used in both “Phone” and “Navigation” applications

(Krüger et al., 2004). Improvements in software reusability means there will be more

business processes sharing common services. Under this situation, the BUM-RS

method may not be as efficient as hoped. However, if the developers have more

information about the target process model, the searching process could be more

manageable and more accurate. The steps of AM-RPRS are:

1. AnalyzeRequirements;

2. AbstractActivities;

3. IdentifyReusableServices;

 107

4. SearchProcessServices: Search the knowledge base for the reusable

processes which are implemented by the identified services and the information for

the activities. Place the searching results, a group of process individuals which is

performed by the specific services, into RP, and move the relevant activities and

sub-activities from set A to reusable activity set RA. RAANA −= . If a composite

process belongs to RP, its component processes also belong to RP.

For example, if the developers know the name of the common service to be

reused and the category of the other services of the target process model, then the

searching with SPARQL can be:

SearchByServiceAndProcess:

select ?process

where {?process BPO:isPerformedBy ?service.

?service BPO:serviceName ?serviceName.

 Filter regex (?serviceName, “SERVICENAME”).

If the name of the common service is known

 [?process BPO:PROCESS-PROPERTY ?knownProcessPropery.

 Filter regex(?knowProcessPropery, “VALUE”).

]

If any of the process properties have been identified

}

5. ReviewSearchingResult;

6. Step 4 and step 5 can be conducted repeatedly to obtain the reusable

processes and services.

7. MaintainProcessTaxonomy;

8. Follow steps 4 to 11 of TDM.

This method simultaneously supports both the service searching and process

model searching. From service searching, the developers can obtain several process

 108

models that reuse the required services. From process model searching, the

developers can identify a suitable reusable process model. This method is a

meet-in-the-middle approach.

The steps of the four methods are summarized in Table 10:

Table 10. Comparison of the four modeling methods

TDM TDM-RP BUM-RS AM-RPRS

1. Analyze-

Requirements

2. AbstractActivities

3. Create-

ProcessTaxonomy

4. Create-

ProcessIndividuals

5. OrganizeProcess

6. CheckConsistency

7. EvaluateModel

8. Implementation

9. Create-

ServiceTaxonomy

10. Create-

ServiceIndividuals

11. MappingProcess

1. Analyze-

Requirements

2. AbstractActivities

3. SearchForProcesses

4. Review-

SearchingResult

5. Maintain-

ProcessTaxonomy

6. Create-

ProcessIndividuals

7. OrganizeProcess

8. CheckConsistency

9. EvaluateModel

10. Implementation

11. Create-

ServiceTaxonomy

12. Create-

ServiceIndividuals

13. MappingProcess

1. Analyze-

Requirements

2. AbstractActivities

3. Identify-

ReusableServices

4. SearchForServices

5. Review-

SearchingResult

6. Maintain-

ProcessTaxonomy

7. Create-

ProcessIndividuals

8. OrganizeProcess

9. CheckConsistency

10. EvaluateModel

11. Implementation

12. Create-

ServiceTaxonomy

13. Create-

ServiceIndividuals

14. MappingProcess

1. Analyze-

Requirements

2. AbstractActivities

3. Identify-

Reusable-Services

4. SearchProcess-

Services

5. Review-

SearchingResult

6. Maintain-

ProcessTaxonomy

7. Create-

ProcessIndividuals

8. OrganizeProcess

9. CheckConsistency

10. EvaluateModel

11. Implementation

12. Create-

ServiceTaxonomy

13. Create-

ServiceIndividuals

14. MappingProcess

From Table 10, we can see that TDM offers the basic steps for model creation,

and the other three methods apply different kinds of searching methods. The

searching methods can help to identify different reusable items from the knowledge

base, which can accelerate the modeling procedure.

 109

3.5 Summary

In this chapter, we presented the mathematical definitions for ontology and its

relevant concepts: core ontology, axiom, lexicon and knowledge base. On the basis

of these definitions, we proposed the framework of BPO (Business Process

Ontology), and the four methods for SOA modeling: TDM, TDM-RP, BUM-RS and

AM-RPRS. These four methods illustrate not only the SOA modeling process but

also the extension and usage of the knowledge base. We also proposed an

Ontology-based Business Process Modeling and Developing Framework (OBPMDF)

to illustrate the developing framework of SOA applications with BPO.

During the construction and use of the knowledge base, the developers need to

evaluate and validate it, since its contents should be consistent and satisfy real-world

applications. Different evaluation approaches can be used for different purposes.

 110

Chapter 4 Validation and Verification

In this chapter, we apply our ontology-based SOA modeling methodology to the

automotive software development to validate our framework and modeling methods.

A knowledge base AutoPO is constructed by extending the core ontology BPO, and a

series of case studies are used to simulate the implementation of the modeling

methods. After that, a comparison of our modeling method and other automotive

software modeling methods is presented. Besides the validation of our methodology,

this chapter also proposes a set of quality attributes for SOA models and shows how

our methodology can support these quality attributes.

4.1 Validation of Modeling Methodology

Validation concerns that the right product was built4. In software development,

it is the demonstration that the software implements each of the software

requirements correctly and completely. Here it is a quality process to evaluate

whether the methodology complies with our objectives. This validation will be

conducted by constructing a knowledge base for automotive software modeling and

using the knowledge base to build different SOA models.

Case study was adopted in our research for this validation. Case Study is one of

the most common methods for the research in business and SE; it is associated with

process evaluation and can satisfy the three tenets of the qualitative method:

4 http://www.critech.com/vv.htm

 111

describing, understanding, and explaining (Yin, 2003). Therefore we adopt case

studies to demonstrate the usage of our modeling methodology here. Five cases for

different requirements and modeling methods are presented in this chapter.

4.1.1 Extension of BPO for Automotive Software

Modeling

The core ontology BPO described in Section 3.2 defines the abstract concepts

and relationships in business process modeling. It can be used in different domains.

When applied to a specific domain, for example the automotive domain, the core

ontology BPO needs to be extended. This extension adds domain specific knowledge

to the ontology, making the knowledge well structured.

The automotive process modeling ontology that we constructed in this work

extends BPO based on AUTOSAR, and is therefore named “AutoPO”. AutoPO is

created by importing the core ontology BPO and adding new classes to represent

automotive software features. After importing, the concepts in BPO become the

basic concepts in AutoPO, for example:

� BusinessProcess represents the abstraction of all kinds of business

processes of an organization. In the automotive domain, it can represent

the super-class of all the processes in a car.

� AtomicProcess is the process whose functions should be conducted as a

whole and cannot be subdivided. In the automotive domain, it can

represent the super-class of a single task in a car, for example, monitoring

a specific sensor.

� CompositeProcess refers to processes that are composed of one or more

 112

business processes, which may be atomic processes or other composite

processes. In the automotive domain, it can represent the super-class of a

task, for example, wiping the window.

� Service represents the super-class of all the available services in an

organization’s asset base. If used in the automotive domain, it represents

any available service in cars.

� AtomicService is a service that can fully implement a business process

and during modeling is regarded as a black box. In the automotive domain,

it can represent an AUTOSAR Software Component, which is a service

that can use a single AUTOSAR ECU to fully implement a business

process. An AUTOSAR Software Component can be a small, reusable

function (such as a filter) or a large, encapsulated automotive function

(such as a sensor/actuator Software Component) (AUTOSAR, 2006a).

� CompositeService represents a service that is composed of several other

services, which can be atomic services and other composite services. In the

automotive domain, it can represent the automotive system and subsystems

consisting of connected AUTOSAR Software Components.

In extending BPO to the automotive domain, we have also added classes

representing service categories and service communication features. This is a matter

of some complexity because different kinds of automotive software may have totally

different requirements and features. For example, the wiper/washer system and the

multimedia control panel are different systems, with the former being a body

comfort control system and the latter being a multimedia system. This means that the

former connects to sensors and actuators and the latter connects to multimedia

drivers. Their formats for transferring messages and data format also differ. Bearing

 113

in mind that such variations are multiplied many times and in many ways throughout

an automobile, to precisely identify and describe services in terms of categories and

communication features would provide a great deal of useful information for use in

software integration.

The extension for category classification and service ports definition is defined

in the following sections.

4.1.1.1 Automotive Software Categories

There are seven domains of software in a car: safety, power train, chassis,

multimedia/telematics, body comfort, man-machine interface, and infrastructure

software (Broy et al., 2007a; Pretschner et al., 2007). Some of these domains are

vehicle-centric, such as chassis and power train, and some are passenger-centric,

such as body comfort. The safety domain is concerned with the safety features in

automobile which may include vehicle condition recognition, belt pretensioners, and

airbags (Pelz et al., 2005). The power train domain contains the motor

control-related functions, such as the brains of the gearbox or the automatic

transmission. The chassis domain is concerned with functions such as brake

assistance, distance control, and drive by wire. The multimedia/ telematics domain

contains the infotainment functions, GPS navigation, Internet connection, and

information-related functions. The body comfort domain concerns the functions of

body electronics, such as the power-adjustable external mirrors, climate control, and

keyless entry. The human-machine interface in an automobile provides a solution for

piloting the vast number of functions without a large number of buttons and controls.

Infrastructure software concerns the management of the IT systems in automobiles,

such as software for diagnostics and application updates.

 114

To classify the automotive services and business processes, new classes are

added to the core ontology for representing the categories. The AutomotiveCategory

is the root class for the category ontology, and the seven automotive software

domains are defined as the sub-classes of the AutomotiveCategory.

The hierarchy of the AutomotiveCategory and its sub-classes is shown in Figure

9. This extension is related to the classes in BPO by the property serviceCategory.

Eight classes are defined to represent the categories, as described in Table 11.

Figure 9. Extension of BPO for automotive categories

Table 11. New class definitions in AutoPO

Concepts Super-Concepts Comments

AutomotiveCategory OWL:Thing Represents the abstraction of all the

categories of the automotive software.

BodyComfort AutoPO:AutomotiveCategory Represents the category of body comfort

software

Chasis AutoPO:AutomotiveCategory Represents the category of chassis software

Infrastructure AutoPO:AutomotiveCategory Represents the category of IT system

management software

ManMachineInterface AutoPO:AutomotiveCategory Represents the category of human-machine

interfaces

Multimedia/

Telematics

AutoPO:AutomotiveCategory Represents the category of multimedia or

telematic software

PowerTrain AutoPO:AutomotiveCategory Represents the category of power train

software

Safety AutoPO:AutomotiveCategory Represents the category of safety software

 115

In this extension, a new property serviceCategory is defined in the Service class.

The domain of the property serviceCategory is BPO:Service and the range is

AutoPO:AutomotiveCategory. This property represents the category of the services.

Generally, an atomic service should belong to one of the categories because it

represents an AUTOSAR Software Component which should belong to a specific

category. A composite service may belong to a single category or a union of

categories because it may cover the functions in multiple domains. For example,

besides a lock manager (body comfort category), a central locking system may also

include a seat adjustment system (body comfort category), lighting system (body

comfort category), crash sensing system (safety category), and radio tuner

(multimedia category).

Adding the categories into the knowledge base can make the knowledge

management more efficient. For example, the developers query all the existing

body-comfort services or process models that relate to those services; they can add

new axioms to constrain the features of services in a specific category. This category

classification is an initial taxonomy of the automotive software. It can be further

extended with detailed categories (sub-classes of the seven categories) in practical

usage.

There is no property defined to relate the BusinessProcess class and the

AutomotiveCategory class. The reasons are as follow:

� A composite process model represents a workflow, which usually involves

multiple services of different categories. Therefore, it is difficult to classify

the composite process models into one specific category. If most of the

models are identified as belonging to a union of categories, the query result

for a specific category of process models would be complex.

 116

� Generally a process model and its related services should belong to the

same category. If both the Process class and the Service class have their

own category properties, inconsistencies may occur.

� Because services are the implementation of related process models, we can

obtain a process model’s category information by querying the category of

the services which perform the process model.

4.1.1.2 Ports

In this study, we adopt the AUTOSAR software components as the minimal

units of service. In BPO’s definition, the AtomicService class represents an

AUTOSAR software component and the CompositeService class represents the

composition of multiple AUTOSAR software components.

As described in Section 2.4, the AUTOSAR software components and their

compositions belong to the highest (most abstract) description level in AUTOSAR,

the application layer. This layer is also called Virtual Functional bus level and it is

here that the AUTOSAR software components are treated as independent software

units communicating with each other by ports (AUTOSAR, 2006b). Because the

service-related classes and instances in BPO are used to provide information about

the existing services for the business process modeling, the implementation of the

services will not be considered in our modeling method. Therefore, in the extension

of BPO, the AUTOSAR software components will be treated as a black box service

with ports for communication.

AUTOSAR software components’ ports are well defined interaction points

which define the possible kinds of communication between the components

(AUTOSAR, 2006b). There are two kinds of ports for the components, R-port

 117

(Require-port) and P-port (Provide-port). An R-port requires certain services or data,

while a P-port provides those services or data. There are two kinds of interfaces for

the ports and they define the information exchanged between the ports; one is

sender/receiver interface and the other is client/server interface. A sender/receiver

interface can describe data elements or model groups to be sent and received, and a

client/server interface declares operations that a client can invoke on a server.

Because ports are specific to the automotive software components, we define classes

to represent ports in AutoPO.

Classes and relations are defined to represent the ports and port interfaces. The

framework of this extension and the relation with the class in BPO is shown in

Figure 10.

Figure 10. Extension of BPO for automotive software components’ ports

The classes in this extension include:

� Port representing the abstraction of all kinds of well defined connection

points of the services. Ports can represent the dependencies between the

services.

� R-port representing the require-port, which describes what a service

requires.

� P-port representing the provide-port, which describes what a service can

provide.

 118

� PortInterface representing the abstraction of all types of content that are

required or provided by the respective ports.

� SenderReceiverInterface representing the kinds of data to be sent and

received. There are two kinds of data defined in AUTOSAR, data elements

and the mode of switches in a car, which are defined as sub-classes of

SenderReceiverInterface.

� ClientServerInterface representing the abstraction of operations that a

client can invoke on a server.

� DataElement representing the types of data elements to be sent and

received.

� ModeDeclaration representing the mode of switches that can be sent and

received.

� Operation representing the abstraction of operations.

The hierarchical relationships C≤ between the concepts are summarized in

Table 12.

Table 12. Hierarchical relationships between the concepts in AutoPO

Concepts
Direct

Super-Concept
Super-Concepts

Direct

Sub-Concept
Sub-Concepts

ClientServer-

Interface

PortInterface PortInterface Operation Operation

DataElement SenderReceiver-

Interface

PortInterface,

SenderReceiver-

Interface

Mode-

Declaration

SenderReceiver-

Interface

PortInterface,

SenderReceiver-

Interface

Operation ClientServer-

Interface

PortInterface,

ClientServer-

Interface

 119

Port OWL: Thing R-port,

P-port

R-port,

P-port

PortInterface OWL: Thing SenderReceiver-

Interface,

ClientServer-

Interface

SenderReceiver-

Interface,

ClientServer-

Interface,

DataElement,

ModeDeclaration,

Operation

P-port Port Port

R-port Port Port

SenderReceiver-

Interface

PortInterface PortInterface DataElement,

ModeDeclaration

DataElement,

ModeDeclaration

Because the ports will be defined according to the implementation of the

services, only the essential object properties are defined to represent the relationship

between the concepts in the extension of BPO. These main object properties are

presented in Table 13.

Table 13. Main object properties in AutoPO

Relation

Identifier
Rσ Explanation

hasPort < BPO:Service,

 AutoPO:Port >

States the ports of a service. This property also connects the

classes in BPO and its extension. Each service can have

ports. Some of them may be P-ports and the others are

R-ports. For composite services, the ports of inner

components will not be considered because the composite

service should be used as a whole.

portType < AutoPO:Port,

 AutoPO:PortInterface>

States the communication type of the ports. Identifies that

the communication paradigm is data driven (send/receiver)

or operation oriented (client/server).

service-

Category

< BPO:Service,

 AutoPO:Category>

Identifies the category that a service belongs to. This

property connects the classes in BPO and its extension. An

atomic service should belong to a category; a composite

service can belong to a category or a union of categories.

The extension of ports has some overlap with the property serviceIO in BPO.

 120

This is because this extension is specific to automotive software and the serviceIO

property is for all services. To resolve this overlap and to avoid any inconsistency, in

the usage of AutoPO, the developer can just use hasPort property to describe the

inputs and outputs of services, and ignore the property serviceIO.

These extensions allow the main structure of AutoPO to be developed. It then

becomes possible to add new classes and individuals for the concrete process models

and services to the AutoPO during software development and to use AutoPO as the

knowledge base for automotive process modeling. The complete framework of

AutoPO is shown in Appendix B. The properties in BPO and its extension can be

used to describe business processes and services in the automotive domain. For

example, the processTimeLimit and processIO properties and related classes can

support the description of the timeliness and communication requirements of

processes; the preCondition and postCondition properties can help to describe the

resource and features that the environment should satisfy. The properties can be

instantiated in the concrete business process individual, and this can help the

developers to identify the requirements and conflicts of the business processes in the

initial phase of development. If the isOrganizedBy property of a concrete composite

business process is defined as an individual of Parallel class, the component

processes of that business process should be conducted concurrently. The related

services should also be able to run synchronously. Applying this rule allows us to

select from all the services the most suitable service to implement a specific business

process. In practice, the developers can instantiate the properties of a business

process or service individual according to the requirements. The contents of the

properties can be identified as needed, which make the modeling procedure more

flexible.

 121

4.1.2 Case Studies

In this section we provide a series of case studies to illustrate the application of

AutoPO and explain how to reuse the logical and concrete models for the business

processes.

There are five case studies about the procedure for modeling the automobile

wiper/washer systems. The logic of the case studies is described here. In the first

case study, we assume that the developers need to design and develop an automatic

wiper/washer system to control the work of the windshield wipers and washers. The

key function of an automatic wiper/washer system is to receive driver’s commands,

sense the environment, and control the action of wipers and washers. The

environmental information can be detected with a rain sensor and analyzed with a

wiping evaluator. The sensor and evaluator constitute a rain sensing system. The rain

sensing system will pass the requirement for wiping the front windshield to the core

function of the wiper/washer system, WWManager (Wiper/Washer Manager). The

WWManager will determine whether to send a start command to the wiper service

according to the current status of the car and the wipers. We can use a service

EnableDisableWiperWasher to detect the status of the car, such as the engine hood

state. The washers of the car are connected to a Washer Fluid Tank, which contains

the washer fluid and reports the level of fluid to the WWManager. In this case study,

we will use TDM to create a “WiperWasherSystem” ontology and related ontologies.

In the automotive domain, systems are usually built in increments, rather than

from scratch. A new car series inherits most functionality from existing cars, with

various adaptations, extensions, or innovations. Therefore, in the second case study,

we will adopt TDM-RP to create a new wiper/washer system for a new generation of

 122

car by reusing the models generated in Case 1. The process model generated in Case

1 provided wiper and washer functions only for the windshield. The new system will

provide new functions for the rear window. The requirements of the windshield

wiper/washer are the same as Case 1, and the driver can start and stop the rear

window’s wiper and washer with a switch.

Cases 1 and 2 illustrate the steps that are common to all four modeling methods.

In Cases 3 and 4, we will focus on the additional steps in BUM-RS and AM-RPRS.

Case 3 will assume that the developers need to reuse service

“RainSensingService_V1” in a new type of car and will use BUM-RS to construct a

new system on the basis of the process model that relates to that particular service.

This case will raise a problem associated with using BUM-RS when a common

service may be a component service for several processes, as it is not unusual with

OEMs with large service and business process asset bases to store their existing

work. If the identified service is in fact a common service, BUM-RS may find

several candidate process models, and if there are too many potential reusable

processes, developers may find it difficult to determine which process is suitable for

reuse. In Case 4, then, we simulate this scenario by assuming that

“RainSensingService_V1” is a common service for several processes and then use

AM-RPRS to obtain a more precise search result.

Finally, in Case 5 we assume that the developers plan to design a new car which

can clean the front lamps automatically. We will use this case study to simulate how

to select a suitable modeling method to create a new model.

 123

4.1.2.1 Case 1: Creating A New Model for Wiper Washer System

with TDM

As described above, Case 1 focuses on developing an automatic wiper/washer

system. The system can start and stop the wiper/washer for the front window by

driver’s commands or sensing the environment. A rain sensor is adopted for this

target. The environment information is analyzed with a wiping evaluator and the

central of the system is a WWManager (Wiper/Washer Manager). We use a service

EnableDisableWiperWasher to detect the status of the car, which include the status of

the wiper/washer switch.

First, the activities of a wiper/washer process can be abstracted as follows:

� The target process p = WiperWasherSystem;

� The process activity set A = { AutoWipingEvaluator,

EnableDisableWiperWasher, RainSensing, RainSensor, Washer,

WasherTank, Wiper, WiperWasherSystem, WWManager }, where

� The composite activity set CA = { RainSensing,

WiperWasherSystem }, and

� The atomic activity set AA = { AutoWipingEvaluator,

EnableDisableWiperWasher, RainSensor, Washer, WasherTank, Wiper,

WWManager };

Next, we create the process taxonomy in AutoPO. The activities in CA can be

defined as the sub-classes of ProcessModel and the activities in AA can be defined as

the sub-classes of AtomicProcess. The main taxonomy of the wiper/washer ontology

is shown in Figure 11.

These classes and their relationships create a reusable template for the process

 124

models. This template can be regarded as a logical model which describes the

functionalities and components of a wiper/washer system. This logical model can be

refined with sub-classes and individuals. The sub-classes can represent a more

detailed logical model and the individuals can represent the concrete process models.

Figure 11. Wiper/washer process model

As shown in Figure 11, the logical model “WiperWasherSystem” consists of:

� WiperWasherSystem: The target model representing the general logic of

a vehicle wiper/washer system.

� RainSensing: A sensing system to monitor the environment and pass the

wiping requirement to the WWManager.

� RainSensor: A sensor to detect rain. The rain information will be

evaluated by the AutoWipingEvaluator.

� AutoWipingEvaluator: An analyzer to calculate the requirement for

windshield wiping.

� WWManager: The kernel of a WiperWasherSystem, controlling wipers or

washers according to the drivers’ demands and the environmental signals.

� EnableDisableWiperWasher: A component that monitors the vehicle

 125

status and manages the enabling of wiper/washer functionality. It will pass

a “disable” signal to the WWManager if the vehicle status is not suitable

for wiping/washing action.

� WasherTank: A component that monitors the level of the washer fluid

containers. It will pass the status of the washer fluid container to the

WWManager.

� Wiper: An actuator system representing all the functionality which is

needed for wiping.

� Washer: An actuator system representing all the functionality which is

needed for washing.

These classes are organized with the sequence and concurrent flow patterns.

Figure 12 shows the sequence graph of the workflow to start and stop the wipers

automatically. The EnableDisableWiperWasher and WasherTank processes work

concurrently with the WWManager and report the status of the devices to the

WWManager. The washer can work concurrently with wiper and the washing

process starts when the WWManager receives the drivers’ demands for washing.

The logical model of the wiper/washer system (as shown in Figure 11) is

instantiated and shown in Figure 13. This instantiation is an implementation of the

logical model for a specific environment. We call it the concrete process model.

Detailed requirements, such as the wipe speed limit and wash time-out, will be

identified in the concrete process model so that it can reflect the specific design of a

specific type of cars. The instantiation of the object properties and data type

properties of the individuals can reflect these requirements. For simplicity, Figure 13

shows only part of the individuals of the concrete wiper/washer system process

model.

 126

RainSensing WWManager

ReqFrontAutoWiping

Wiper

WiperCommand

WiperStatus

NotRain

WiperStatus

WiperCommand

WiperStatus

WiperStatus

Figure 12. Sequence graph of a wiping process

Figure 13. Business Process model: WiperWasherSystem_V1

 127

Our method focuses on the business process modeling and reuse. Using the step

CreateProcessTaxonomy, developers can create logical models, as shown in Figure

11. Using the step CreateProcessIndividuals, developers can refine the logical

models into concrete process models, as shown in Figure 13. Logical models (classes)

can serve as templates for the specifications of the business process models. The

individuals describe concrete process models in detail. One class can be instantiated

into several individuals. Each individual represents a concrete process model with

specific performance requirements. Both the logical models and the concrete models

can be reused in the future.

To design and implement the concrete atomic process models in detail,

developers can adopt MATLAB® family tools and UML-based methods. These tools

allow the implementation of the atomic process models to be described with a series

of graphs which represent the internal workflow of the models. Then, services can be

developed according to the detailed design. The implementation should be consistent

with the AUTOSAR standard. After the implementation of the process models for

“WiperWasherSystem_V1”, the information of the related services can be added into

the AutoPO. Composite services will be defined as the individuals of

CompositeService class, and the atomic services will be defined as the individuals of

AtomicService class. The category and the port information of the services should be

consistent with the AUTOSAR standards and can also be assigned in AutoPO. For

example, Table 14 shows some of the services and their properties.

 128

Table 14. A partial list for properties of concrete services

serviceName perform
has-

SubService

service-

Category
R-Port P-Port

RainSensing-

Service_V1

RainSensing_

V1

RainSensor-

Service_V1,

AutoWiping-

Evaluator-

Service_V1

Body-

Comfort

StaFront-

WiperFor-

RainSensor,

Req-

RainSensing

ReqFront-

AutoWiping,

NotRain

WiperService_

V1

Wiper_V1 NA Body-

Comfort

Command,

Positioning

Status

WWManager-

Service_V1

WWManager_

V1

NA Body-

Comfort

ReqFront-

AutoWiping,

NotRain,

FrontWiper-

Status

FrontWiper-

Command;

FrontWiper-

Positioning

4.1.2.2 Case 2: Creating A New Model by Reusing

Wiper/WasherSystem_V1 with TDM-RP

In Section 4.1.2.1, we created a logical process model WiperWasherSystem and

a concrete process model “WiperWasherSystem_V1”. Case 2 demonstrates how to

reuse it to construct a new model. In Case 2, we will create a new wiper/washer

system which provide wiper/washer functions for both the front and rear windows.

This new system will reuse the wiper/washer functions for the front window in

“WiperWasherSystem_V1” model, and provide new functions for the rear window.

We will adopt TDM-RP to create a new wiper/washer system in this section.

This new system can be considered as an update of the “WiperWasherSystem_V1”.

Thus we call the new system “WiperWasherSystem_V2”.

After analyzing the requirements for Case 2 as described at the beginning of

Section 4.1.2, we can abstract the following activities:

 129

� The target process p = WiperWasherSystem;

� The process activity set A = { AutoWipingEvaluator,

EnableDisableWiperWasher, FrontWiper, FrontWasher, RainSensing,

RainSensor, RearWiper, RearWasher, WasherTank, WiperWasherSystem,

WWManager }, where

� The composite activity set CA = { RainSensing, WiperWasherSystem },

and

� The atomic activity set AA = { AutoWipingEvaluator,

EnableDisableWiperWasher, FrontWiper, FrontWasher, RainSensor,

RearWiper, RearWasher, WasherTank, WWManager };

We use the SPARQL query shown in Figure 14 to find the process model named

“WiperWasherSystem_V1”; its sub-processes and related services are also shown in

Figure 14.

This query can be repeated to identify all the sub-processes in

“WiperWasherSystem_V1”. The results after the SearchForProcesses step consist of

� RP = { AutoWipingEvaluator_V1, EnableDisableWiperWasher_V1,

FrontWiper_V1, FrontWasher_V1, RainSensing_V1, RainSensor_V1,

WasherTank_V1, WiperWasherSystem_V1, WWManager_V1 }

� RA = { AutoWipingEvaluator, EnableDisableWiperWasher, FrontWiper,

FrontWasher, RainSensing, RainSensor, WasherTank, WiperWasherSystem,

WWManager }

� NA = { RearWiper, RearWasher }

 130

prefix j.0:<http://www.owl-ontologies.com/BPO#>

prefix auto:<http://www.owl-ontologies.com/AutoPO.owl#>

select ?process ?subProcesses ?services ?location

where {?process j.0:processName ?name.

 Filter regex (?name, "WiperWasherSystem_V1").

 ?process j.0:hasSubProcess ?subProcesses.

 ?subProcesses j.0:isPerformedBy ?services.

 ?services j.0:serviceLocation ?location.

 }

Figure 14. Searching for reusable processes

In the new system, new processes need to be added to handle the wiper and

washer for the rear window. This means updating the processes such as WWManager,

EnableDisableWiperWasher and WasherTank, so that they can control the

wiper/washer of both the front and rear windows. The wiper and washer of the rear

window are controlled with a switch. Therefore the wiper and washer for the

windshield and the rain sensing system can be reused. After the

ReviewSearchingResult step, the reusable process set RP can be defined as

� DRP = { AutoWipingEvaluator_V1, FrontWiper_V1, FrontWasher_V1,

RainSensing_V1, RainSensor_V1 }

� CRP = { EnableDisableWiperWasher_V1, WasherTank_V1,

WiperWasherSystem_V1, WWManager_V1, }

� NA = { RearWiper, RearWasher }

DRP contains reusable individuals, which are the concrete business processes

that can satisfy part of the requirements of the new system. The process models in

 131

DRP and their related services can be reused without making any changes. CRP

contains the individuals of the reusable classes. The classes are the logical business

processes which can be used as templates for the concrete business process design.

The classes of the process models in CRP can be identified and reused to create new

individuals to satisfy the new requirements.

For the new activities in NA, if no class can be reused, new taxonomy and

individuals will be created and added into AutoPO. Figure 15 shows a partial process

model of “WiperWasherSystem_V2”. We can see that a new process model

“WiperWasherSystem_V2” is defined and its sub-processes are composed of some

reused processes of V1 (such as “FrontWiper_V1” and “FrontWasher_V1”) as well

as of some new processes of V2 (such as “RearWiper_V2” and “RearWasher_V2”).

New concrete models for EnableDisableWiperWasher, WWManager and

WasherTank are constructed by reusing the classes to satisfy the new control of

wiper/washer of rear window. The new concrete models are

“EnableDisableWiperWasher_V2”, “WWManager_V2” and “WasherTank_V2”.

Thus, the construction of “WiperWasherSystem_V2” is based on the reuse of

existing business process models. The reuse of specifications and services can help

to reduce the workload of new system development and reduce the associated cost.

 132

Figure 15. A partial process model of WiperWasherSystem_V2

4.1.2.3 Case 3: Creating A New Model by Reusing A Specific

Service with BUM-RS

In Section 4.1.2.2, we constructed a model “WiperWasherSystem_V2” by

reusing the existing process model “WiperWasherSystem_V1”. Sometimes

developers may need to construct a new process by reusing specific services instead

of reusing process models. We will show how to create a new model with identified

reusable services in this section.

In Case 3, we assume that the developers need to reuse service

“RainSensingService_V1” in a new type of car. As a service is always an

implementation of a business process, we can first obtain the concrete process model,

which is performed by the service “RainSensingService_V1”, and then determine

whether this model can be reused without any modification or only part of the model

can be reused.

 133

We will use BUM-RS to construct the new system. After searching the service

“RainSensingService_V1” in AutoPO, we can obtain the information for the

processes it performs. The service searching and the results are shown in Figure 16:

prefix j.0: <http://www.owl-ontologies.com/BPO#>

prefix auto: <http://www.owl-ontologies.com/AutoPO.owl#>

select ?service ?process

where {?process j.0:isPerformedBy ?service.

 ?service j.0:serviceName ?name.

 Filter regex(?name, "RainSensingService_V1").

 }

Figure 16. Searching with service information (I)

Figure 16 shows that the service “RainSensingService_V1” was developed for

the process “RainSensing_V1”. Therefore, the results of the SearchForServices step

are:

� RP = { RainSensing_V1 }. Since “RainSensing_V1” is a composite process,

its component processes also belong to RP. This implies

RP = { RainSensing_V1, RainSensor_V1, AutoWipingEvaluator_V1 }.

� RA = { RainSensing, RainSensor, AutoWipingEvaluator }

Because the “RainSensingService_V1” is the identified reusable service, the

“RainSensing_V1” model and its sub-models can be directly put into DRP. After

identifying the reusable business process and service, developers can create new

models, accompanying the reusable one, to satisfy the business target.

Sometimes the information of the composite processes which use the identified

services indirectly is also useful for new model construction. The following query

can obtain this information. The results are shown in Figure 17.

 134

prefix j.0: <http://www.owl-ontologies.com/BPO#>

prefix auto: <http://www.owl-ontologies.com/AutoPO.owl#>

select ?service ?process ?compositeProcess

where {?process j.0:isPerformedBy ?service.

 ?service j.0:serviceName ?name.

 Filter regex(?name, "RainSensingService_V1").

 ?process j.0:isSubProcessOf ?compositeProcess.

 }

Figure 17. Searching with service information (II)

Figure 17 shows that the service “RainSensingService_V1” implements the

process “RainSensing_V1”, which is a component process of two process models

“WiperWasherSystem_V1” and “WiperWasherSystem_V2”. Therefore, the initial

results of the SearchForServices step are:

� RP = { RainSensing_V1, WiperWasherSystem_V1,

WiperWasherSystem_V2 },

� RA = { RainSensing, WiperWasherSystem }

Because “WiperWasherSystem_V1” and “WiperWasherSystem_V2” are two

concrete business models to implement a business activity, the developers need to

analyze whether they can satisfy the new requirement in the ReviewSearchingResult

step. If either of the two models can satisfy the requirements, it can also be put into

DRP. If none of the concrete processes is reusable but their template is reusable, the

related class will be put into CRP. Otherwise, if neither the concrete processes nor

the template can be reused, the developers must create a totally new model.

 135

4.1.2.4 Case 4: Creating A New Model with AM-RPRS

Assuming that the “RainSensingService_V1” is a common service, several

candidate process models may be obtained after the service searching step, as shown

in Figure 17. We can use the query SearchByServiceAndProcess to obtain more

precise results.

A prerequisite of applying AM-RPRS is that the developers should know not

only the identified services but also some detailed information about the target

process. For example, if the developers need to reuse “RainSensingService_V1” and

the target process needs to work on the rear window, the query can be as shown in

Figure 18:

prefix j.0: <http://www.owl-ontologies.com/BPO#>

prefix auto: <http://www.owl-ontologies.com/AutoPO.owl#>

select ?service ?process ?compositeProcess ?knownProcess

where {?process j.0:isPerformedBy ?service.

 ?service j.0:serviceName ?name.

 Filter regex(?name, "RainSensingService_V1").

 ?process j.0:isSubProcessOf ?compositeProcess.

 ?compositeProcess j.0:hasSubProcess ?knownProcess.

 ?knownProcess j.0:processName ?pname.

 Filter regex(?pname, "Rear").

 }

Figure 18. Combined search for the processes implemented by

“RainSensingService_V1”

Figure 18 shows the combined query on AutoPO for the identified service

together with the information about the process. Comparing the results in this figure

 136

with the results in Figure 14 and 17, we can see that the results of combined query

can eliminate the irrelevant results. Therefore we can focus on the most likely

reusable processes. Apart from names, it is possible to generate a more precise result

by using other information from the target process as the search criteria, such as the

time limitation of process models and services.

Figure 18 shows that the “WiperWasherSystem_V2” model is the process

model which adopts the service “RainSensingService_V1” and deals with the

wiper/washer of the rear window. The results of the SearchProcessService step are

� RP = { RainSensing_V1, WiperWasherSystem_V2 },

� RA = { RainSensing, WiperWasherSystem }

After the ReviewSearchingResult step, the sets DRP, CRP and RA can be

identified. If the “WiperWasherSystem_V2” belongs to DRP, the developers can

reuse it directly and need not create a new model again. If the

“WiperWasherSystem_V2” belongs to CRP, the developers can reuse the related

class WiperWasherSystem to construct a new model. If neither the

“WiperWasherSystem_V2” itself nor its class can be reused, the developers can only

reuse the “RainSensing_V1” model and need to create other parts of the new system

model as presented in Section 4.1.2.1.

4.1.2.5 Case 5: Selecting A Suitable Method to Create A New Model

In Case 5, we will demonstrate how to select a suitable modeling method by

creating a model for a front lamp cleansing system. The description of the front lamp

cleansing system is as follows: The system must monitor the transparency of the

lamp cover when the front lamp is lit up. An evaluator is used to analyze the

collected data and to pass on the requirement that the lamp be washed. The lamp

 137

washer will start to work when the transparency is below a certain value. The

washing process lasts a certain seconds. If the status of the vehicle does not allow

washing, the washing process will be suspended.

After the AbstractActivities step, the developers can obtain the following

information:

� The target process p = LampWasherSystem;

� The process activity set A = { AutoWashingEvaluator, LampWasherSystem,

LampWasher, LampWashingSensing, TransparencySensor, WasherManager,

WasherTank }.

The activity LampWashingSensing is a composite process which encapsulates

the TransparencySensor and AutoWashingEvaluator.

Then the developers need to ensure that there are reusable processes or services

available for the new system design. This can be done by several queries: first to

identify whether there is a LampWasherSystem in AutoPO; if the result is none, the

next task is to identify whether there are any washer systems in AutoPO. For

example, if the query is to find the process models which have “Washer” and the

composite processes they belong to, the results are shown in Figure 19. From this

query, the initial results include:

� RP = { EnableDisableWiperWasher_V1, EnableDisableWiperWasher_V2,

EnableDisableWiperWasher_V3, FrontWasher_V1, FrontWasher_V3,

FrontWasherTank_V1, FrontWasherTank_V3, RearWasher_V2,

RearWasher_V3, RearWasherTank_V2, RearWasherTank_V3,

WiperWasherSystem_V1, WiperWasherSystem_V2,

WiperWasherSystem_V3, }

� RA = { LampWasherSystem, LampWasher, WasherTank }

 138

� NA = { AutoWashingEvaluator, LampWashingSensing, TransparencySensor,

WasherManager }

Figure 19. Searching the processes for “Washer”

Because the three versions of WiperWasherSystem belong to RP, all their

component processes are also included in RP. In the next step,

ReviewSearchingResult, the developers need to refine RP and classify different

kinds of reusable objects.

The lamp washer and the front washer for the windshield can use the same

washer fluid tank. Therefore the washer fluid tank can be a common service for the

two systems. Assuming that this type of vehicle has adopted

“WiperWasherSystem_V3” for its windshield and rear window wiping and washing,

then “FrontWasherTank_V3” can be reused directly in this lamp washer system

design. In reviewing the search result, we may find that the general workflow of the

prefix j.0: <http://www.owl-ontologies.com/BPO#>

prefix auto: <http://www.owl-ontologies.com/AutoPO.owl#>

select ?process ?compositeProcess

where {?process j.0:processName ?name.

 Filter regex (?name, "Washer").

 ?process j.0:isSubProcessOf ?compositeProcess.

 }

 139

wiper/washer system is similar to that of the lamp washer system. The kernel of both

systems is a manager, which can control the work of the actuators (wiper or washer)

according to the sensing system’s requirements. Although none of the existing

concrete wiper/washer systems can be used for lamp washing, their logical model

can be reused for the construction of the new system. Because the RainSensing

process is a specific process to evaluate the amount of rain, it is necessary to modify

the logical model of wiper/washer system so that it can describe more abstract

processes. Therefore, after the ReviewSearchingResult step, the reusable process set

RP can be refined into

� DRP = { FrontWasherTank_V3 }

� CPT = { AutoWipingEvaluator, RainSensing, RainSensor }

� CRP = { Washer, WiperWasherSystem, WWManager }

� RA = { LampWasherSystem, Washer, WasherManager }

� NA = { AutoWashingEvaluator, LampWashingSensing,

TransparencySensor }

After identifying the reusable process models, the developers can modify the

process taxonomies, create new classes for the new activities, create individuals for

the classes, and organize the process models. The lamp washer system can be as

shown in Figure 20.

Comparing the taxonomies in Figure 20 and Figure 13, we can see that the

logical model for WiperWasherSystem has been changed. A SensingSystem class has

been added to represent the common process of all the sensing process in a vehicle

and the RainSensing and LampWashingSensing are two kinds of sensing systems for

the wiper/washer system. The general workflow of WiperWasherSystem has been

modified so that the WWManager controls the actuators according to the

 140

requirements passed by the SensingSystem. Classes for new sensors and evaluators

have also been created as the sub-classes of AtomicProcess.

◄
h

asS
u

b
P

ro
cess

 Figure 20. LampWasherSystem model

New concrete models for the lamp washer system have been constructed by

creating new individuals of the classes and reusing the “FrontWasherTank_V3”

process. The concrete system model is called “LampWasherSystem_V4”, and its

workflow is as follows: if the “LampWashingSensing_V4” passed the requirement

for lamp washing to the “LampWasherManager_V4” and the status of the vehicle

was suitable, the manager would control the “LampWasher_V4” to finish the

washing.

4.1.2.6 Discussion of the Case Studies

Assuming that a new wiper/washer system “WiperWasherSystem_V3” is

developed in Case 3 by reusing the “RainSensingService_V1” and the system

“WiperWasherSystem_V2” is reused in Case 4, we obtain the classes and individuals

for Cases 1 to 4 as shown in Table 15.

 141

Table 15. The developed process models in Case 1-4

Process Taxonomies)ocessPrhasSub(σ

Process Individuals

AutoWipingEvaluator AutoWipingEvaluator_V1

EnableDisableWiperWasher EnableDisableWiperWasher_V1;

EnableDisableWiperWasher_V3

RainSensing <RainSensing, RainSensor>;

<RainSensing,

AutoWipingEvaluator >

RainSensing_V1

RainSensor RainSensor_V1

Washer FrontWasher_V1;

FrontWasher_V3;

RearWasher_V2;

RearWasher_V3

WasherTank FrontWasherTank_V1;

FrontWasherTank_V3;

RearWasherTank_V2;

RearWasherTank_V3

Wiper FrontWiper_V1;

FrontWiper_V3;

RearWiper_V2;

RearWiper_V3

WiperWasherSystem <WiperWasherSystem,

RainSensing>;

<WiperWasherSystem, Wiper>;

<WiperWasherSystem, Washer>;

<WiperWasherSystem,

WWManager>;

<WiperWasherSystem,

EnableDisableWiperWasher>;

<WiperWasherSystem,

WasherTank>

WiperWasherSystem_V1;

WiperWasherSystem_V2;

WiperWasherSystem_V3

WWManager WWManager_V1;

WWManager_V2;

WWManager_V3

The classes and their relationships represent a logical model for the

wiper/washer system and the individuals represent the implementations of the logical

 142

model. The logical model shows that a wiper/washer system has six sub-processes:

EnableDisableWiperWasher, RainSensing, Washer, WasherTank, WWManager and

Wiper, and the RainSensing process is composed by AutoWipingEvaluator and

RainSensor. The individuals which describe different concrete process models for

Cases 1 to 4 are shown in Table 16.

Table 16. Concrete process models

Case 1 Case 2 Case 3 Case 4

WiperWasherSystem_

V1

WiperWasherSystem_

V2

WiperWasherSystem_

V3

WiperWasherSystem_

V2

RainSensing_V1 RainSensing_V1 RainSensing_V1 RainSensing_V1

RainSensor_V1 RainSensor_V1 RainSensor_V1 RainSensor_V1

AutoWipingEvaluator_

V1

AutoWipingEvaluator_

V1

AutoWipingEvaluator_

V1

AutoWipingEvaluator_

V1

EnableDisableWiper-

Washer_V1

EnableDisableWiper-

Washer_V2

EnableDisableWiper-

Washer_V3

EnableDisableWiper-

Washer_V2

WWManager_V1 WWManager_V2 WWManager_V3 WWManager_V2

FrontWiper_V1 FrontWiper_V1 FrontWiper_V3 FrontWiper_V1

 RearWiper_V2 RearWiper_V3 RearWiper_V2

FrontWasher_V1 FrontWasher_V1 FrontWasher_V3 FrontWasher_V1

 RearWasher_V2 RearWasher_V3 RearWasher_V2

FrontWasherTank_V1 FrontWasherTank_V1 FrontWasherTank_V3 FrontWasherTank_V1

 RearWasherTank_V2 RearWasherTank_V3 RearWasherTank_V2

In Case 1, we created a wiper/washer system process model,

“WiperWasherSystem_V1”, and its sub-models with TDM. TDM follows the

traditional modeling processes, analyzing the whole business task, dividing the task

into separate business activities, and constructing the process model by creating

models for each activity and integrate them into a composite model. In this case

study, classes representing the process taxonomy of the logical model for

wiper/washer systems are developed, and individuals describing the concrete process

models are also constructed. These classes and individuals form the basis for the

 143

other case studies.

In Case 2, “WiperWasherSystem_V2” was developed by reusing the process

models created in Case 1. Because the basic functions and workflows of the two

systems are similar, “WiperWasherSystem_V2” was constructed by reusing the class

WiperWasherSystem. For the same functions, “WiperWasherSystem_V2” can adopt

the existing sub-process models and services in “WiperWasherSystem_V1”. For

example, “WiperWasherSystem_V2” adopts “FrontWiper_V1” and

“FrontWasher_V1” as its sub-processes, because “WiperWasherSystem_V2” has the

same front window wiper/washer as Case 1. For the different functions, the

developers can create new models for the implementation. For example, the wiper

and washer for the rear window are the new component process models in

“WiperWasherSystem_V2”; the wiper/washer manager is reconstructed because it

needs to control both the systems for the front and rear windows.

The developers can benefit from TDM-RP if they have the information about

existing process models which have similar functions. If the name of the reusable

process model is known, the query and reuse is easy and accurate as shown in Case 2.

However, if the developers do not have the necessary information about the reusable

process model, the query results might be less valuable.

In Case 3, we created a new model “WiperWasherSystem_V3” by reusing an

existing service “RainSensingService_V1”. If a service is to be reused, its process

model can also be reused without making any changes in the new system. Reusing

the process model “RainSensing_V1” and related sub-processes permits us to obtain

the new model as shown in Table 16.

If the developers can identify which service will be reused in the new system,

BUM-RS can help them identify models related to the identified service. The model

 144

for the service can be reused in the new system without making any changes and the

developers need to consider whether the other related models of the service can also

be reused. If the identified service is a common service, it may be adopted by several

systems and the developers may identify multiple related process models. In this

case, the ReviewSearchingResult step would take up a greater workload. If the

developers cannot clearly identify the service to be reused, they can also use

BUM-RS by querying the knowledge base with the information of the service, such

as the service category and service ports. However, the results of this kind of query

would not be as accurate as Figure 16 shows.

In Case 4, it is assumed that the new system will reuse the

“RainSensingService_V1” and can deal with the rear window wiper/washer. Because

the developers have specific information for both the reusable service and processes,

AM-RPRS can be used and the result can be more accurate. After query, we can see

that the “WiperWasherSystem_V2” adopts the “RainSensingService_V1” and

provides rear window wiper/washer. Therefore, the “WiperWasherSystem_V2” can

be identified as a potential reusable process model. If it can satisfy all the

requirements of the new system, the developers can directly reuse it. Reusing the

process model does not mean that the relevant service can also be reused without

making any changes. The developers still need to check whether the service can

adapt to the new environment and whether the ports can be used.

AM-RPRS can help to identify the potential reusable process models. When the

OEMs have a large process model and service asset base, the query results of

AM-RPRS are more accurate than other methods because it considers both the

information for reusable service and process models. This also means that the

developers need to collect more information than when using other methods. Without

 145

accurate information, there may be multiple query results and analysis of the results

would take more time.

Using these four case studies, we have shown applications of the four modeling

methods. The first case shows how to create models and maintain the knowledge

base AutoPO; the other three cases show how to query the knowledge base and reuse

the process models and services. Because the four modeling methods have the same

beginning steps: AnalyzeRequirements and AbstractActivities, developers can collect

information of business target in the initial analysis, and determine which modeling

method is suitable for the development next. Case 5 shows this procedure.

In Case 5, a lamp washer system process model is created by reusing the logical

model for those wiper washer systems. Because the original logical model is too

specific for the wiping system, the related classes are modified to satisfy the new

requirements. The logical models are compared in Table 17.

From Table 17, we can see that a SensingSystem class and a

LampWashingSensing class are added into the ontology. The SensingSystem

represents the common process of all the sensing process in a vehicle and the

LampWashingSensing together with RainSensing are sub-classes of SensingSystem,

representing two kinds of sensing systems for the wiper/washer system. Two classes

for representing the sensors and evaluators for the lamp washing system,

AutoWashingEvaluator and TransparencySensor are also created as the sub-classes

of AtomicProcess. After modifying the logical models, the construction of the new

process model is similar to the other case studies.

 146

Table 17. Comparison between logical models

Process Taxonomies

(Before implementing Case 5)

Process Taxonomies

(After implementing Case 5)

ProcessModel

-WiperWasherSystem

-RainSensing

ProcessModel

-WiperWasherSystem

-SensingSystem

-RainSensing

-LampWashingSensing

AtomicProcess

-AutoWipingEvaluator

-EnableDisableWiperWasher

-RainSensor

-Washer

-WasherTank

-Wiper

-WWManager

AtomicProcess

-AutoWashingEvaluator

-AutoWipingEvaluator

-EnableDisableWiperWasher

-RainSensor

-TransparencySensor

-Washer

-WasherTank

-Wiper

-WWManager

Through these cases, we have shown that the knowledge base AutoPO can work

as the repository for storing and managing the business process models and

information about their related services. Developers can use the four modeling

methods not only to create new models directly as in traditional development but

also can reuse the existing logical and concrete models for the new system. The

knowledge base AutoPO stores the modeling knowledge in a well structured system

and can be maintained during the modeling process.

 147

4.2 Comparison of the Automotive Software

Modeling Methods

In this section, we compare some of the automotive software modeling methods

presented earlier in Section 2.4 and our ontology-based method. The main items of

comparison are shown in Table 18. In this comparison, the following features of the

modeling methods are considered.

� Fundamental Theory: Describe the basic theory or techniques of the

modeling methods.

� Modeling Focus: Identify the main modeling results.

� Unit of Modeling: Identify the basic building blocks of the models.

� Hardware-coherent: Identify whether the basic building blocks of the

modeling methods include hardware.

� Heterogeneity: Identify whether the modeling methods support the

heterogeneity of distributed systems.

� Interactivity: Identify whether the modeling methods support the

interactivity between different sub-systems.

� Timeliness: Identify whether the modeling methods support real-time

modeling.

� Concurrency: Identify whether the modeling methods support the

concurrent feature of distributed systems.

� Model reuse: Identify whether the modeling methods support the reuse of

business process specifications.

� Service reuse: Identify whether the modeling methods support the reuse of

 148

existing software systems.

� Tool Support: Identify the automatic tools that can be used for the

modeling methods.

Table 18 shows that the modeling methods are based on different fundamental

theories, deal with different modeling issues, and support the attributes of

automotive software at different degrees.

Table 18. Comparison of automotive software modeling methods

MATLAB®

Family

tools

UML-based

Methods

MSC-based

Method

AutoPO-based

method

Fundamental

Theory

Control

theory
Object-Oriented Service-Oriented Service-Oriented

Modeling Focus

Structural

modeling;

Behavior

Modeling

Component

modeling

Communication

modeling

Business process

modeling

Unit of Modeling Component Component Service Service

Hardware-Coherent Yes Yes No No

Heterogeneity Support Support Support Support

Interactivity Support Support Support Support

Timeliness Support Support Support Support

Concurrency Support Support Support Support

Model reuse Not support Not support Not support Support

Service reuse Not support Not support Support Support

Tool support
MATLAB®

tool set

General UML

editing tools

Prototypic tool

chain

General

ontology editing

tools

The fundamental theory and techniques of the modeling methods include

control theory, object oriented modeling, and service oriented modeling. Control

theory deals with the behavior of dynamic systems and can provide mathematical

models for representing the inputs, outputs and states of the systems (Kilian, 2006).

Using this theoretical base, MATLAB® family tools can provide structural modeling

 149

and behavior modeling for the automotive systems. Object-Oriented Modeling is a

modeling paradigm mainly used in computer programming (Fowler, 1997). It can

address the target problem as a set of related, interacting objects and the modeling

task is to specify the objects (or the class the objects belongs to), their properties and

methods. By applying new notations to real-time system descriptions, UML can be

used to represent the models for both the dynamical systems and information

systems in an automobile. The Object-Oriented models can be mapped onto

implementation classes and interfaces, which can be regarded as detailed

descriptions of the system’s construction. Service-oriented modeling is a software

development methodology that employs business disciplines and a universal

language to provide tactical and strategic solutions to enterprise problems (Erl, 2005).

One of the targets of service-oriented modeling is to create models that can be

understood by individuals with diverse levels of business and technical background.

Each of these three fundamental approaches supports different levels of

modeling. Some are technical and focus on the detailed design of systems while

others are business oriented and focus on the orchestration of the systems. They

support different levels of reusability. Control theory does not provide direct support

for reusability, Object-Oriented Modeling supports the reuse of object models, and

Service-Oriented Modeling supports the reuse of services and applications.

Thus, these modeling methods have different modeling focuses. MATLAB®

family tools mainly support the structural and behavioral modeling of the systems.

UML-based methods mainly support the analysis of the problem domain and show

the static structure, dynamic behavior, and run-time deployment of the collaborating

objects in the system. These methods can support the component-based system

modeling and development. Both MSC-based and our ontology-based methods are

 150

service-oriented modeling methods, however, and adopt different techniques for

model representation and deal with different modeling facets. The MSC-based

method adopts a Message Sequence Chart to represent the models. MSC provides a

graphical and textual language for the description and specification of the

interactions between system components. In this method, services are considered as

system components and MSC charts are used to represent the communication

between the services. Our ontology-based method adopts OWL to describe the

business processes and related services. The relationships between the business

processes can represent the structure of a composite process and the communication

between component processes in the composite process.

The four modeling methods support different levels of abstraction. The

MATLAB® family tools and UML-based methods can be used for detailed modeling

of a service while the MSC-based method and our ontology-based method can be

used for business process modeling, which includes service composition and

orchestration. Therefore, their basic units of modeling are different and the degrees

of hardware-coherence are different. All four methods can support most of the

specific features of automotive software (Heterogeneity, Interactivity, Timeliness,

and Concurrency), as they all have specific notations to represent those features.

However, the same features may have different representations under different

modeling methods. For example, UML-based methods provide notations to represent

the concurrency of objects; MSC-based method and our ontology method can only

declare that two or more services can run concurrently.

Different levels of abstraction also reflect on the different levels of support for

reusability. MATLAB® family tools and UML-based methods show limitations in

reusing the specification and applications because they focus more on the detailed

 151

design of the applications and the composition of the components. On the other hand,

the MSC-based method supports the reuse of services but does not support the

management of the process model asset bases and the service asset bases. Therefore,

developers using the MSC-based method cannot retrieve reusable services.

Compared with all of these methods, our ontology-based method exhibits good

levels of reusability of both specifications and services.

In summary, all four methods are based on different fundamentals, can support

modeling from different levels of abstraction, and all support the basic features of

automotive software modeling. However, only the ontology-based method can

support both specification and service reuse.

4.3 Verification of SOA Models

After the modeling phase, model testing should be conducted to ensure the

quality of the models. Researchers have developed detailed standards and guidelines

on software products quality, as described in Section 2.3. However, there is still a

lack of quality attributes specifically for SOA models. This section proposes a set of

quality attributes for SOA models based on the ISO 9126 standard and related

quality models presented in Section 2.3 and comments on how our methodology can

support these quality attributes.

4.3.1 Quality Attributes for SOA Models

Among the quality attributes in ISO 9126, four quality attributes and their eight

sub-attributes are relevant to SOA model, as shown in Table 19.

Comparing Table 19 with Table 2, we can see that SOA models should have

 152

most of the sub-attributes of Functionality. An SOA model should describe the

business processes accurately, consider the interoperability of component services,

and specify the security strategy of the software. These are relevant functional

quality attributes for an SOA model. The model should also be understandable so

that it can be used in the following phases of the development lifecycle. Generally, a

model is required to be understandable by human (users and developers); however,

the SOA model is required to be understandable by both human and computers, so

that the development can be automated. Beside these attributes, the model should be

maintainable so that it can be extended or changed to satisfy the changing user

requirements.

Table 19. The ISO 9126 Quality attributes applicable to SOA model

Attributes Sub-Attributes Description Applicable to

SOA model

Accuracy To provide the right or agreed results with the needed

degree of precision

Yes

Suitability To provide an appropriate set of functions for

specified tasks and user objectives

Yes

Interoperability To interact with one or more specified systems Yes

Functionality

Security To protect data from unauthorized persons Yes

Usability Understandability To enable the users to understand whether the

software is suitable, and how it can be used.

Yes

Resource

Utilization

To use appropriate amounts and types of resources

when the software performs its function under stated

conditions.

Yes (to be

discussed)

Efficiency

Time Behavior To provide appropriate response and processing

times and throughput rates when performing its

function, under stated conditions.

Yes (to be

discussed)

Maintainability Changeability To enable a specified modification to be

implemented

Yes

The other attributes in Table 2 are not suitable for SOA model. For example, the

reliability attribute and its sub-attributes emphasize more on the maturity of software

 153

processes and software performance in case of failure; the portability attribute is

unsuitable because the SOA application is a distributed system with both the

application and its component services available on the Net and it does not need

installation and migration.

As an SOA model also captures the workflow of the activities (which are

implemented by services), it should be predictable so that developers can predict the

resources and execution time needed and detect any conflicting resource. For this

reason, we believe the two sub-attributes, “resource utilization” and “time behavior”,

are also relevant to SOA model; however, their meaning is not exactly as defined in

ISO 9126.

As these attributes are extracted from the quality model for general software,

they do not cover all the relevant attributes for SOA model. We need some additional

complementary quality attributes. Table 20 shows the mapping of quality attributes

of various quality models presented in Section 2.3.

Table 20. Mapping of the quality attributes

ISO 9126 UML model Information Model

Accuracy

 Completeness

 Consistency

Correctness

Detailedness Suitability

Conciseness

Relevance

Interoperability

Security

Resource Utilization Systematic Design

Time Behavior

Complexity Understandability

Esthetics

Clarity

Changeability

 Traceability

 Economic Efficiency

 154

 Balance

 Correspondence

 Comparability

On the basis of these quality attributes, a set of quality attributes for SOA

models is proposed as follows.

� Accuracy: The SOA model should be accurate and unambiguous, describe

the requirements clearly, and direct to the right results.

� Completeness: All the conditions in the user requirement should be

covered in the SOA model.

� Consistency: The information in the SOA model should not be

contradictory.

� Suitability: The SOA model should provide an appropriate set of functions

for business targets. The model should be described in suitable detail and

its components should be in suitable granularity.

� Interoperability: The SOA model should ensure the interoperability of

different component services.

� Security: The SOA model should address the security concerns.

� Resource Utilization: The SOA model should enable the organization to

predict the resource requirement and detect any conflicting resource.

� Time Prediction: The SOA model should enable the organization to

predict the execution time of a business process.

� Understandability: The SOA model is required to be understandable by

human (users and developers) and computers.

� Maintainability: The SOA model should be maintainable so that the

application can be changed and extended in the future.

 155

As the changeability, traceability, and economic efficiency attributes are related

to the changes and reuses of SOA models, we use the Maintainability attribute to

synthesize them. The Correspondence attribute of Table 20 is ignored here because it

considers the consistency between the model and its system. To test Comparability,

we need a universal modeling standard. Although WSBPEL is popular, it is not

accepted by all the users. It is not practicable to compare models described in

different languages without conversions. For those reasons, Comparability is not

included in our set of quality attributes for SOA models.

4.3.2 Verification of Our SOA Models

Verification5 is the activity which ensures the work products of a given phase

fully implement the inputs to that phase. It concerns that the product was built right.

In this section, we discuss how to verify the SOA models developed with our

methodology and how the models can satisfy the proposed quality attributes.

The SOA models generated by our methods are ontologies in a knowledge base

described in OWL. The verification for the models can be divided into two parts, one

is ontology evaluation and the other is model checking.

Although a well-evaluated ontology cannot guarantee the absence of problems,

it will make its use safer (Gómez-Pérez, 2004). The quality of ontologies will affect

the modeling performance directly. Therefore, besides the quality attributes for SOA

models, the quality of ontology construction is also a verification item for the

models.

The possible errors in building ontology can be classified into three categories

5 http://www.critech.com/vv.htm

 156

and methods have been proposed to deal with some of them (Gómez-Pérez, 1996;

Gómez-Pérez, 2004; Fahad et al., 2007; and Qadir et al., 2007). The error categories

include inconsistency errors, incompleteness errors and redundancy errors and each

category has been further divided into different sub-categories, as shown in Table 21.

Table 21. Category of possible errors when developing ontologies

Category Explanation

Inconsistency The errors cause inconsistent in an ontology.

Circularity Errors A class is defined as a specialization or generalization of

itself.

Partition Errors A class is defined as sub-classes of more than one disjointed

partition classes of another class.

Or, an instance belongs to more than one sub-class of the

defined partition.

Semantic Errors A class is defined not respecting the real world.

Incompleteness The errors cause incompleteness in an ontology.

Incomplete Concept

Classification

Concepts are classified without accounting for all of them.

Omission of disjoint

knowledge

The definition of the partition between a set of classes is

omitted.

Redundancy Multiple definitions for a class or an instance in an ontology.

Grammatical More than one explicit definition of subclassOf or instanceOf

relations.

Identical formal definition of

some classes

There are two or more classes in the ontology with the same

formal definition but with different names.

Identical formal definition of

some instances

There are two or more instances in the ontology with the same

formal definition but with different names.

When extending and using BPO and the relevant knowledge base, the

developers need to evaluate the ontologies to ensure that no error listed in Table 21

occurs. Ontology editing tools (e.g. Protégé (2008)) usually provide reasoners (e.g.

RacerPro) to assist in the ontology checking, which can typically check several kinds

of errors. Generally, only the inconsistency errors can be automatically detected.

Using the function consistency checking, the reasoner will go through the whole

 157

ontology, check according to the defined axioms and issue warning of possible

inconsistent classes and individuals. Then the developers can modify the ontology

according to the checking result. For example, DisjointClasses (AtomicProcess

CompositeProcess) axiom is a basic axiom in BPO which ensures that a business

process can only be a composite process or an atomic process and it can be used to

detect partition errors in the ontology.

Protégé provides redundancy checking for users in its editing function. The

classes or individuals should have different identifications. If the identification of a

new class or individual is the same as others, the input will be denied. In this way,

grammatical redundancy problems can be avoided. For the other two redundancy

problems, techniques such as ontology alignment (Ehrig, 2007) and ontology

lexicons (Hirst, 2004) may help. Ontology alignment can be used to map two

ontologies to find similar structures and ontology lexicons can be used to solve the

problem of different terms with the same meaning.

There is no specific tool to check for incompleteness error. The successful

checking of incompleteness is determined by how much knowledge has been built-in

in the ontology. For example, if the hasSubProcess property has a restriction, “one

composite process should have one or more business processes as its sub-processes”,

the reasoner can check for the following situation: A is a composite process and A

has no sub-process. However, the following situation cannot be checked: A should

have three sub-processes in the real world and only two of them have been defined in

the ontology.

According to the above discussion, we can see that most of the ontology errors

can be avoided or tested automatically and semi-automatically. If the problem is the

inconsistency between the ontology definition and the real world, it can only be

 158

checked manually.

Comparing the quality requirements of ontology development and the quality

attributes of SOA models, we can find that the former ensure the models are well

described and the latter ensure the models are well constructed. A well-evaluated

ontology forms the basis of a high quality SOA model. Next, we will discuss how

our methodology can satisfy the quality attributes discussed in Section 4.3.1.

� Accuracy

OWL is adopted for the model description in our methodology. As

introduced in Section 3.1, OWL is an XML-based formal language for ontology

description, which provides vocabulary and axioms to clearly and accurately

describe the structure of the models and the relationship between the model

components. As discussed above, this ensures the accuracy of model description,

but cannot ensure that the model is designed right. To test whether the model is

right, developers need to use specific techniques, such as simulation and model

checking, which will be discussed at the end of this chapter.

� Completeness and Consistency

As discussed earlier, ontology techniques can only ensure the

completeness and consistency of the ontology itself. To evaluate whether the

ontology describes all the facts in the real world and whether the model can

obtain right results, developers need to use other testing methods, such as

simulation and model checking. In this study, we check these attributes

manually by using the ontology query tool SPARQL to check whether the

results are consistent with the reality.

� Suitability and Security

The verification of these two attributes is directly related to the specific

 159

strategy of the organization. In our study, we assume that the knowledge base is

constructed on the basis of an organization’s asset base. The services and

processes should be granulated according to the organization’s rules and the

security of the existing processes and services should have been tested.

� Interoperability, Resource Utilization, Time Prediction

Specific properties for processes and services are defined in our

methodology to represent their interoperability, resource and time limitation.

For example, processIO specifies the message transition between processes;

processTimeLimit can specify the time requirement for a process execution. In

simulation or model checking, these properties can be used to check the

interoperability of the processes, and predict the execution time needed for the

application. Resource related properties currently are not defined in AutoPO;

however, they can be easily added to the models in the extension of the

ontology.

� Understandability

We adopt OWL as the model description language. OWL has XML-based

syntax, with which the models can be understood by both human and computer.

Ontology editing tools (e.g. Protégé (2008)) also provide visual interface to

represent the structure of ontology.

� Maintainability

The extensibility of ontology ensures the maintainability of our models. In

our methodology, model maintenance is a procedure of knowledge base

maintenance, because the SOA models are constructed on the basis of BPO or

AutoPO. To maintain the models, developers only need to know how to

construct new sub-classes and identify their defined attributes. The developers

 160

can do this without learning all the features of OWL. However, the extension of

the basic concepts in BPO or AutoPO should be maintained by ontology

experts.

Through this discussion, we can find that some attributes, such as

understandability and maintainability, are satisfied by adopting ontology-based

techniques; other attributes such as interoperability and time prediction are satisfied

by defining specific properties or axioms in BPO and AutoPO; and attributes such as

suitability and security are dependent on the specific strategies of the organization.

However, all these can only ensure producing a good quality model. To ensure that a

model is qualified, more testing is still needed, such as simulation (An et al., 2005)

and model checking (Clarke et al., 1999).

Simulation and model checking are common methods for process analysis.

Simulation can be used to analyze the behavior of either real or imaginary systems

over time. In business process modeling, it can be used to verify the executing order

of the business activities, detect the conflicting resource and message mismatching,

and predict execution time. Nowadays, simulation is still a valuable method for

complex system testing (An et al., 2005). Model checking is a systematic way to

exhaust all possible states of a model to detect any potential violation that the model

has against its requirement (Clarke et al., 1999). Recently, it has been adopted to

verify web services (Huang et al. 2006) and assure the e-commerce transactions

(Anderson et al. 2005).

However, none of these methods and tools can support the testing of all the

quality attributes of SOA models (Liao et al., 2007b). Although some of the

simulation tools or model checking tools can support the automatic test or

 161

semi-automatic test, they only support specific modeling languages (e.g. WSBPEL).

In addition, none of those methods and tools supports OWL. If we can translate

our models into other XML-based business process languages, such as WSBPEL,

our SOA models may be assessed by more methods and tools. This can be one of the

future works of our investigation. Therefore, in this study, we check the models

manually by comparing the results of knowledge base query and the expected

results.

4.4 Summary

In this chapter, we adopted an automotive software development scenario to

validate our ontology-based SOA modeling methodology. A knowledge base AutoPO

was constructed by extending the core ontology BPO. On the basis of AutoPO, we

used a series of case studies to demonstrate the execution of the modeling methods.

After illustrating the application of our methods through these case studies, we

compared our modeling method with other automotive software modeling methods,

which shows the benefits of our ontology-based service-oriented modeling

methodology. This chapter also presented the verification of SOA models by

proposing a set of quality attributes for SOA models and discussing how our

methodology can support these quality attributes.

 162

Chapter 5 Conclusion and Future Work

This thesis has proposed an ontology-based modeling methodology for SOA

development. The methodology begins with a core ontology (Business Process

Ontology) and a modeling and developing framework (OBPMDF) using the

extension of the BPO. Based on BPO and OBPMDF, we proposed four modeling

methods to deal with different kinds of modeling requirements.

The benefits of our methodology include:

(1) Our methodology provides a generic framework BPO for SOA modeling

which bridges the business process modeling and services.

BPO provides hierarchical structure to represent business processes and

services. It provides classes and properties to represent atomic processes/services

and the construction of composite processes/services. The binding information

between the business process and services provides a bridge between business

process modeling and relevant implementation.

(2) Our methodology provides a method to create and maintain a sharable

knowledge base for organizations.

Using knowledge management techniques, BPO can be extended into a

knowledge base for the business process modeling in a specific domain, providing

the information of business processes and services the organization owns. This

knowledge base contains process model templates, concrete business processes and

their implementation (services).

To validate this, we applied BPO to the automotive domain. The initial

extension includes adding new concepts according to AUTOSAR to represent

 163

specific domain features for automotive software, such as automotive software

category and service ports. The knowledge base AutoPO is constructed on the basis

of this initial extension. AutoPO allows the adoption of knowledge management

techniques to support querying and maintenance of the knowledge base. After further

extension, AutoPO can store all the business process models and information for the

relevant services, providing a knowledge base for the processes involved in

operating a car. In AutoPO, classes can represent the logical model of the process

models and individuals can represent concrete process models and services. The

individuals can be reused directly if the process model or service exactly suits the

requirements of the new system. The classes also provide the reusable modeling

templates.

(3) Our methodology provides flexible modeling methods to satisfy different

requirements.

To support searching for the reusable objects in AutoPO and to assist in

constructing business process models, four SOA modeling methods can be used.

� Top-Down Modeling (TDM) assists the organization in creating new

process models directly and uses AutoPO to help to generate the formal

requirement specification.

� Top-Down Modeling based on Reusable Process (TDM-RP) assists the

organization in constructing new process models by reusing similar

process models already defined in AutoPO.

� Bottom-Up Modeling based on Reusable Services (BUM-RS) assists the

organization in constructing new process models by reusing some specific

services.

� Agile Modeling based on Reusable Process and Reusable Services

 164

(AM-RPRS) provides specific queries in AutoPO and can help the

organization efficiently choose suitable models. The queries are for both

service and business process information.

(4) Our methodology supports the reuse of business process templates, concrete

business processes and relevant service, which can help to improve the software

quality and reduce the development cost.

Because all the processes and services stored in the knowledge base have been

well evaluated by users, their quality can be ensured in the reuse. This can be seen as

the unit testing has been finished and the developers only need to integrate each unit

and do integration testing. Therefore our methodology can help to improve the

software quality and reduce the cost.

Based on an analysis of different quality models for software, we also proposed

a set of quality attributes for SOA models. The attributes include: accuracy,

completeness, consistency, suitability, interoperability, security, understandability,

maintainability, resource utilization and time prediction. Not all the attributes can be

tested, for example, the understandability and maintainability of a model are

dependent on the capability of model description language. The models generated by

our method should have good understandability, because our method is based on

OWL, which can provide good understandability for both humans and computer.

These models also offer good maintainability because extensibility is one of the most

important features of ontology.

Because automated tools for SOA model testing are still lacking (Liao et al.,

2007b), we only checked the ontology consistency with automatic tools provided by

Protégé (2008). We checked the other attributes manually.

Although our modeling methodology can formally describe the automotive

 165

models and improve the reusability of the automotive processes and services, a

number of issues remain to be addressed.

(1) Besides the application in automotive software development domain, more

extensive evaluation is needed.

In our study, we also applied BPO and the modeling methods to the e-banking

domain (Liao et al., 2007), and validated the usage of the modeling methodology

with a series of case studies for the loan process. This experiment demonstrates that

BPO is very generic and has wide applicability. However, more comprehensive

evaluation of the methodology is still needed.

(2) To use the queries in the methodology, the developers need the knowledge

of SPARQL.

In the thesis, we only provide some examples of the queries, such as

SearchByProcessName and SearchByTimeLimit. To query the knowledge base

effectively and efficiently, the developers need to learn the query language SPARQL

first. This may cause difficulty for the developers. To solve this problem, next we

will design a series of query templates, which can cover the functional and

performance query requirements for the processes and services.

(3) AutoPO is constructed on the basis of AUTOSAR, however, it may not be

fully comprehensive for usage in the automotive industry.

The framework of AutoPO is constructed by extending BPO with automotive

software categories and ports for services. We validate the usage of AutoPO with

case studies. However, the real industry environment is more complex, and the

current version of AutoPO may not be fully comprehensive for representing those

complex situations. Therefore, we need to further improve the framework of AutoPO

according to the requirements of industry organizations in the future.

 166

(4) The maintenance of ontologies may need automatic tools.

In the thesis, we adopted an ontology editor Protégé (2008) to build up and

maintain the ontologies. In our methodology, the ontologies are maintained manually.

The manual approach to ontology maintenance involves a lot of work for the experts,

and may generate less structured taxonomy, with few complex relations and axioms

(Blomqvista et al., 2008).

The quality of ontologies affects the modeling performance in two aspects:

� The definitions of concepts and relations in the ontologies should be

consistent. Inconsistent concepts in the ontologies may cause confusion,

and may result in invalid knowledge for the organizations. Generally, this

kind of faults can be detected automatically.

� The definitions in the ontologies should be consistent with the reality.

Incomplete definitions and inconsistency between concepts and reality may

cause wrong result in the modeling process. This kind of faults is difficult

to detect by tools. Generally, this is highly dependent on the experience of

the ontology developers.

Thus, in future work we plan to apply ontology learning and linguistic analysis

(Salam et al., 2007) to automatically or semi-automatically construct ontology

taxonomies by extracting and tagging business information from plain text or other

evidence. Such an automated modeling should be able to abstract concepts and

relationships from the initial specification written in natural languages and support

automatic query and extension of the ontology.

Besides fixing the above limitations, more investigation can be done in the

following domains:

 167

(1) To introduce more formal treatments into the methodology.

Currently, we use OWL DL (W3C, 2004c) to describe BPO and AutoPO. The

axioms we adopted include: domain, DisjointClass, inverseOf, range, subClassOf,

subPropertyOf, tansitiveProperty. These axioms can help to describe specific

attributes of the entities in BPO and AutoPO, such as hierarchical relationships

between the classes/properties and the partition of classes/properties. These axioms

can also be used for reasoning. To express more complex properties, more axioms

can be added. For example, “hasValue” can be used to restrict the property value to a

specific value resource.

(2) To apply more ontology techniques for more benefits.

For example, in automotive software modeling, we can use techniques such as

ontology alignment (Ehrig, 2007) to map and merge two ontologies and ontology

lexicons (Hirst, 2004) to map concepts from an ontology which has different terms

for the same meaning. The narrow goal of this would be to accelerate the

construction and application of AutoPO in OEMs but a broader goal would be to

construct a universal ontology as a standard business process template repository

with standardized services supporting the automotive software domain, thereby

accelerating knowledge sharing between OEMs and suppliers and further improving

the reuse of software.

(3) To develop suitable methods for verifying our SOA models.

According to our survey on verification and validation methods for models,

effective and efficient testing tools specific for SOA model are lacking (Liao et al.,

2007b). Although some of the simulation tools or model checking tools can support

the testing of SOA models, they only support specific modeling languages (e.g.

WSBPEL). Therefore, developing language translating tools and enhancing the

 168

model testing methods and tools to address more quality requirements are also

valuable works in the future.

(4) To extend the methodology to integrate with other phases of SOA

development.

Our methodology focuses on the modeling of business process models.

Modeling is only one step in the SOA application development. To further improve

the development efficiency and the software quality, our methodology should be able

to seamlessly integrate with other phases of SOA development, such as assembling

and integration testing.

In conclusion, bringing ontology techniques to SOA paradigm can improve the

reusability of business models and services and thereby reduce the costs and improve

the quality of the software. This study has sought to make a useful contribution

towards this goal.

 169

Bibliography

AMI-C, 2003. AMI-C release 2, architectural overview. Available at http://www.ami-c.org/.

An, L. and Jeng, J.J., 2005. On Developing System Dynamics Model for Business Process

Simulation. Proceedings of the 2005 Winter Simulation Conference, pages 2068-2077.

Anderson, B.B., Hansen, J.V., Lowry, P.B. and Summers, S.L., 2005. Model Checking for

E-Business Control and Assurance. IEEE Transactions on Systems, Man and

Cybernetics, Part C, 35 (3), pages 445-450.

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Leymann, J.K.F., Liu, K., Roller, D.,

Smith, D., Thatte, S., Trickovic, I., and Weerawarana, S., 2002. Business process

execution language for Web services. Available at

http://www.ibm.com/developerworks/webservices.

Angele, J., Erdmann, M. and Wenke, D., 2008. Ontology-Based Knowledge Management in

Automotive Engineering Scenarios. Ontology Management, 7, pages 245-264.

Arsanjani, A., 2004. Service-oriented modeling and architecture. Available at

http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/.

AUTOSAR, 2006a. AUTOSAR technical overview v2.0.1, Available at

http://www.autosar.org/download/r2/AUTOSAR_TechnicalOverview.pdf.

AUTOSAR, 2006b. AUTOSAR software component template v2.0.1, Available at

http://www.autosar.org/download/r2/AUTOSAR_SoftwareComponentTemplate.pdf.

Baida, Z., Gordijn, J. and Omelayenko B., 2004. A shared service terminology for online

service provisioning. Proceedings of the 6th international conference on Electronic

commerce, Delft, The Netherlands, pages 1-10.

Bass, L., Clements, P. and Kazman, R., 2003. Software Architecture in Practice, Second

Edition, Boston: Addison-Wesley.

Becker, J., Rosemann M. and von Uthmann, C., 2000. Guidelines of Business Process

Modeling. In van der Aalst, W., Desel, J. and Oberweis. A. (eds.), Business Process

 170

Management: Models, Techniques and Empirical Studies, Springer-Verlag, pages

30-49.

Bercovici A., Fournier F. and Wecker A.J., 2008. From Business Architecture to SOA

Realization Using MDD. Lecture Notes in Computer Science, Model Driven

Architecture – Foundations and Applications, pages 381-392.

Blomqvista, E. and Öhgren, A., 2008. Constructing an enterprise ontology for an automotive

supplier. Engineering Applications of Artificial Intelligence, 21(3), pages 386-397.

Boggs, W. and Boggs, M., 2003. Mastering Rational XDE, San Francisco, Calif.: SYBEX.

Bouras, A., Gouvas, P., Mentzas, G., 2007. A Semantic Service-Oriented Architecture for

Business Process Fusion. In Salam, A.F. and Stevens, J.R. (eds.), Semantic Web

Technologies and E-Business - Toward the Integrated Virtual Organization and

Business Process Automation, pages 40-76.

Broy, M., 2005. Automotive software and system engineering. Proceedings of the

ACM/IEEE International Conference on Formal Methods and Models for Co-Design

(MEMOCODE), pages 143-149.

Broy, M., 2006. The “Grand Challenge” in informatics: engineering software-intensive

systems, Computer, 39(10), pages 72-80.

Broy, M., Krüger, I.H. and Meisinger, M., 2007a. A formal model of services. ACM

Transactions on Software Engineering and Methodology (TOSEM), 16(1), pages 1-40.

Broy, M., Krüger, I.H., Pretschner, A. and Salzmann, C., 2007b. Engineering Automotive

Software. Proceedings of the IEEE 95(2), pages 356-373.

Chen-Burger, Y.H. and Robertson, D., 2005. Automating business modelling: a guide to

using logic to represent informal methods and support reasoning. Springer.

Cimiano, P., 2006. Ontology learning and population from text: algorithms, evaluation and

application. Springer.

Clarke, E., Grumberg, O. and Peled, D., 1999. Model Checking. MIT Press.

 171

Cybulski, J.L. and Reed, K., 2000. Requirements Classification and Reuse: Crossing

Domain Boundaries. Proceedings of the 6th International Conference on Software

Reuse, Lecture Notes in Computer Science 1844, Springer, Berlin, pages 190-210.

Dannenberg, J. and Kleinhans, C., 2004. The coming age of collaboration in the automotive

industry. Mercer Management Journal, 17, pages 88-94.

de Deugd, S., Carroll, R., Kelly, K.E., Millett, B. and Ricker, J., 2006. SODA:

Service-Oriented Device Architecture. In IEEE Pervasive Computing, 5(3), pages

94-96.

Desai, N., Mallya, A.U., Chopra, A.K. and Singh, M.P., 2005. OWL-P: A methodology for

business process modeling and enactment. Proceedings of the Workshop on Agent

Oriented Information Systems, pages 50-57.

Ehrig, M., 2007. Ontology Alignment-Bridging the Semantic Gap, New York, Springer

Science + Business Media, LLC.

Emaus, B., 2005. Hitchhiker’s guide to the automotive embedded software universe.

Proceedings of the SEAS’05 Workshop, Keynote Presentation. Available at

http://www.inf.ethz.ch/personal/pretscha/events/seas05/bruce_emaus_keynote_050521.

pdf.

Erl, T., 2005. Service-Oriented Architecture Concepts, Technology, and Design. Prentice

Hall PTR.

Fahad, M., Qadir, M.A. and Noshairwan, M.W., 2007. Semantic Inconsistency Errors in

Ontology. Proceedings of the IEEE International Conference on Granular Computing,

2007, GRC 2007, pages 283- 286

Fang, L.N., Tang, S.Q., Yang, Y., Xiao, R.L., Li, L., Deng, X.G., Xu, Y. and Xu, Y.W., 2007.

A User-Driven Slight Ontology Framework Based on Meta-Ontology for Change

Management. Proceedings of the 21st International Conference on Advanced

Information Networking and Applications Workshops, Volume 1, pages 1007-1014.

 172

Fennel, H. and Bunzel, S., 2006. Achievement and exploitation of the AUTOSAR

development partnership. CONVERGENCE 2006.

Fowler, M., 1997. Analysis Patterns: Reusable Object Models. Menlo Park. Calif:

Addison-Wesley.

Gardner, T., 2003. UML modeling of automated business processes with a mapping to

BPEL4WS. Proceedings of the First European Workshop on Object Orientation and

Web Services at ECOOP. Available at

http://www.cs.ucl.ac.uk/staff/g.piccinelli/eoows/documents/./study-gardner.pdf.

Gennari, J., Musen, M., Fergerson, R., Grosso, W., Crubézy, M., Eriksson, H., Noy N. and

Tu, S., 2003. The evolution of Protégé 2000: An environment for knowledge-based

systems development. International Journal of Human Computer Studies, 58(1), pages

89-123.

Gerard, S. and Terrier, F., 2003. UML for real time: Which native concepts to use?. In

Lavagno, L., Martin, G and Selic, B. (eds.), UML for real: design of embedded

real-time systems, pages 271-299.

Gómez-Pérez, A., 1996. A Framework to Verify Knowledge Sharing Technology. Expert

Systems with Application, 11(4), pages 519-529.

Gómez-Pérez, A., 2004. Ontology Evaluation. In Staab, S. and Studer, R. (eds.), Handbook

on ontologies, New York : Springer-Verlag, pages:251-274.

Gouvas, P., Bouras, T. and Mentzas, G., 2007. An OSGi-Based Semantic Service-Oriented

Device Architecture. Lecture Notes in Computer Science, On the Move to Meaningful

Internet Systems 2007: OTM 2007 Workshops, pages 773-782.

Graham, I., 2006. Business Rules Management and Service Oriented Architecture, John

Wiley and Sons, Chichester, England, pages 17-51.

Grimm, K., 2003. Software technology in an automotive company: Major challenges.

Proceedings of the 25th International Conference Software Engineering 2003, pages

498-503.

 173

Gruber, T., 1995. Toward principles for the design of ontologies used for knowledge sharing.

The International Journal of Human-Computer Studies, 43(4-5), pages 907-928.

Haller, A., Oren, E. and Kotinurmi, P., 2006. m3po: An Ontology to Relate Choreographies

to Workflow Models. Proceedings of the IEEE International Conference on Services

Computing, pages 19-27.

Hanson J., 2005. Event-driven services in SOA, Javaworld. Available at

http://www.javaworld.com/javaworld/jw-01-2005/jw-0131-soa.html.

Harel, D. and Thiagarajan, P.S., 2003. Message Sequence Charts. In Lavagno, L., Martin, G

and Selic, B. (eds.), UML for real: design of embedded real-time systems, pages

77-105.

Herzum, P. and Sims, O., 2000. Business Component Factory: A Comprehensive Overview

of Component-based Development for the Enterprise, John Wiley and Sons, Inc.

High, R.Jr., Kinder, S. and Graham, S., 2005. IBM’s SOA Foundation: An Architectural

Introduction and Overview Version 1.0, IBM white study. Available at

http://download.boulder.ibm.com/ibmdl/pub/software/dw/webservices/ws-soa-whitestu

dy.pdf

Hirst, G., 2004. Ontology and the Lexicon. In Staab, S and Studer, R. (eds.), Handbook on

Ontologies, pages 209-229.

Huang, H. and Mason, R.A., 2006. Model Checking Technologies for Web Services.

Proceedings of the 4th IEEE Workshop on Software Technologies for Future Embedded

and Ubiquitous Systems.

Hunter, J., 2003. Enhancing the Semantic Interoperability of Multimedia Through a Core

Ontology. IEEE Transactions on Circuits and Systems for Video Technology, 13(1),

pages 49-58.

ISO, 2001. International Standard, ISO/IEC 9126, Information Technology - Product Quality

- Part1: Quality Model.

 174

ISO, 2004. Industrial automation systems and integration - Process specification language-

Part 1: Overview and basic principles, ISO 18629-1.

ITU-T, 2004. ITU-T Recommendation Z.120 - Message Sequence Chart, Apr. 2004.

Available at http://www.itu.int/ITU-T/studygroups/com17/languages/Z120.pdf.

Karagiannis, D., Junginger, S. and Strobl, R., 1996. Introduction to Business Process

Management System Concepts. In Scholz-Reiter, B. and Stickel, E. (Eds.): Business

Process Modelling, Springer, pages 81-106.

Karhunen, H., 2005. Dynamic Method for Service-Oriented Software Design. Proceedings

of the 28th Information Systems Research Seminar in Scandinavia, IRIS 28,

Kristiansand, Norway. Available at http://www.hia.no/iris28/Docs/IRIS2028-1034.pdf

Karsai, G., 2004. Automotive software: a challenge and opportunity for model-based

software development. Proceedings of the First Automotive Software Workshop,

ASWSD 2004, San Diego, In Broy M., Krüger, I. H. and Meisinger, M. (eds.) Revised

Selected Studys, Lecture Notes in Computer Science 4147, pages 103-115.

Karsai, G., Sztipanovits, J., Ledeczi A. and Bapty, T., 2003. Model-integrated development

of embedded software. Proceedings of the IEEE, 91(1), pages 145-164.

Kilian, C.T., 2006. Modern control technology: components and systems. Clifton Park, N.Y. :

Delmar/Thomson Learning.

Komoda N., 2006. Service Oriented Architecture (SOA) in Industrial Systems. Proceedings

of the 2006 IEEE International Conference on Industrial Informatics, pages 1-5.

Krafzig, D., Banke, K. and Slama, D., 2004. Enterprise SOA: Service-Oriented Architecture

Best Practices. Prentice Hall PTR.

Krüger, I.H., Nelson, E.C. and Prasad, V., 2004. Service-based Software Development for

Automotive Applications. CONVERGENCE 2004.

Kuziemsky, C.E., Lau, F., Bilykh, I., Jahnke, J.H., McCallum, G., Obry, C., Onabajo, A. and

Downing, G.M., 2003. Ontology-based information integration in health care: a focus

 175

on palliative care. Proceedings of the 11th Annual International Workshop on Software

Technology and Engineering Practice, pages164-172.

Laliwala Z. and Chaudhary S., 2008. Event-driven Service-Oriented Architecture.

Proceedings of the International Conference on Service Systems and Service

Management, 2008, pages 1-6.

Lam, W., McDermid, J.A. and Vickers, A.J., 1997. Ten Steps Towards Systematic

Requirements Reuse. Requirements Engineering 2(2), pages 102–113.

Lange, C.F.J. and Chaudron, M.R.V., 2005. Managing Model Quality in UML-based

Software Development. Proceedings of the 13th IEEE International Workshop on

Software Technology and Engineering Practice, pages 7-16.

Lankhorst M., et al., 2005. Enterprise Architecture at Work: Modelling, Communication, and

Analysis, Springer Berlin Heidelberg.

Leen, G. and Heffernan, D., 2002. Expanding automotive electronic systems. IEEE

Computer 35(1), pages 88-93.

Liao, L. and Leung, H., 2007a. An Ontology-based Business Process Modeling Methodology.

Proceedings of the International Conference on Advances in Computer Science and

Technology (ACST 2007), Phuket, Thailand.

Liao, L. and Leung, H., 2007b. Testing Techniques for SOA Model. Proceedings of the

International Conference on Software Engineering and Data Engineering. (SEDE-2007),

Las Vegas, USA.

Lim, S.S., Park, D.W. and Kwon, H.C., 2007. Ontology-Based Semantic Representation of

Context in Port Supply Chain. Proceedings of the 6th International Conference on

Advanced Language Processing and Web Information Technology, Pages 446-451.

Liu, H., Ng, W.K., Song, B., Li, X. and Lu, W.F., 2007. Enabling Mass Customization

through Semantic Web Services. Proceedings of the second IEEE Asia-Pacific Service

Computing Conference, Pages 239-245.

 176

Mahleko, B. and Wombacher, A., 2006. Indexing Business Processes based on Annotated

Finite State Automata. Proceedings of the International Conference on Web Services,

2006, ICWS '06, pages 303-311.

Mallya, A.U., Desai, N., Chopra, A.K. and Singh, M.P., 2005. OWL-P: OWL for protocol

and processes. Proceedings of the 4th International Joint Conference on Autonomous

Agents and Multi Agent Systems, pages 139-140.

Manolescu, I., Brambilla, M., Ceri, S., Comai, S., and Fraternali, P., 2005. Model-driven

design and deployment of service-enabled web applications. ACM Transactions on

Internet Technology (TOIT), 5 (3), pages 439- 479.

MATLAB, 2008. Available at

http://www.mathworks.com/products/matlab/. Accessed by Sep. 2008.

Mayer, R., Menzel, C., Painter, M., Witte, P., Blinn, T., and Perakath, B., 1995. Information

Integration for Concurrent Engineering (IICE) IDEF3 Process Description Capture

Method Report. Knowledge Based Systems Inc., September 1995.

McGovern, J., et al. 2003. Java Web Services Architecture. Morgan Kaufmann.

Michelson B. M., 2006. Event-Driven Architecture Overview, Patricia Seybold Group.

Available at http://soa.omg.org/Uploaded%20Docs/EDA/bda2-2-06cc.pdf.

Microsoft, 2007. Distributed Component Object Model (DCOM) Remote Protocol

Specification. Available at

http://msdn.microsoft.com/zh-cn/library/cc201989(en-us).aspx

Neema, S. and Karsai, G., 2004. Software for Automotive Systems: Model-Integrated

Computing. Proceedings of the First Automotive Software Workshop, ASWSD 2004,

San Diego. In Broy M., Krüger, I.H. and Meisinger, M. (eds.) Revised Selected Studys,

Lecture Notes in Computer Science 4147, pages 116-136.

Newcomer, E. and Lomow, G., 2004. Understanding SOA with Web Services. Addison

Wesley Professional Pub.

 177

Niles, I. and Pease, A., 2001. Towards a Standard Upper Ontology. Proceedings of the

International Conference on Formal Ontology in Information Systems, pages 2-9.

OASIS, 2004. UDDI Version 3.0.2, UDDI Spec Technical Committee Draft 19 Oct. 2004,

Available at http://uddi.org/pubs/uddi_v3.htm.

OASIS, 2006. Reference Model for Service Oriented Architecture 1.0, OASIS Standard 12

Oct. 2006. Available at http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html.

OASIS, 2007. Web Services Business Process Execution Language Version 2.0, OASIS

Standard 11 Apr. 2007. Available at

 http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

OMG, 2003. MDA Guide Version 1.0.1. Available at

http://www.omg.org/docs/omg/03-06-01.pdf.

OMG, 2004. Common Object Requesting Broker Architecture version 3.0.3. Available

at http://www.omg.org/cgi-bin/doc?formal/2004-03-12.

OMG, 2005. Unified Modeling Language: Infrastructure version 2.0. Available at

http://www.omg.org/docs/formal/05-07-05.pdf.

OMG, 2007. OMG SysML specifications. Available at http://www.omgsysml.org/.

OMG, 2008. Business Process Modeling Notation, V1.1, OMG Available Specification 17

Jan. 2008. Available at http://www.omg.org/spec/BPMN/1.1/PDF.

Osterwalder, A., 2002. An e-Business Model Ontology for Modeling e-Business.

Proceedings of the 15th Bled Electronic Commerce Conference.

Ouvans, C., Dumas, M., ter Hofstede, A.H.M. and van der Aalst, W.M.P., 2006. From

BPMN Process Models to BPEL Web Services. Proceedings of the International

Conference on Web Services, 2006, ICWS '06, pages 285-292.

Pelz, G., Oehler, P., Fourgeau, E. and Grimm, C., 2005. Automotive system design and

AUTOSAR. In Boulet, P. (eds.), Advances in Design and Specification Languages for

SoCs, pages 293-305.

 178

Pretschner, A., Broy, M., Krüger, I.H. and Stauner, T., 2007. Software engineering for

automotive systems: a roadmap. Proceedings of the International Conference on

Software Engineering 2007, pages 55-71.

Protégé, 2008. Available at http://protege.stanford.edu/. Accessed by Mar. 2008.

Qadir, M.A., Fahad, M. and Shah, S.A.H., 2007. Incompleteness Errors in Ontology.

Proceedings of the IEEE International Conference on Granular Computing, 2007, GRC

2007, pages 279-282.

Rao, A.C., Dhadyalla, G., Jones, R.P. and McMurran, R., 2006. Systems modeling of a driver

information system - automotive industry case study. Proceedings of the IEEE/SMC

International Conference on System of Systems Engineering, Los Angeles, pages

254-259.

Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens, R., Wang, H.

and Wroe, C., 2004. OWL Pizzas: Practical Experience of Teaching OWL-DL:

Common Errors and Common Patterns. Proceedings of the 14th International

Conference on Engineering Knowledge in the Age of the Semantic Web (EKAW 2004),

UK, pages 63-81.

Rozman, T., Horvat, R.V. and Polancic, G.., 2004. Towards true process descriptions

interoperability. Proceedings of the 26th International Conference on Information

Technology Interfaces, pages 549-554.

Salam, A.F. and Stevens, J.R., 2007. Semantic Web Technologies and E-Business, Toward

the Integrated Virtual Organization and Business Process Automation, Idea Group

Publishing.

Selic, B., 2003a. Modeling quality of service with UML: How quantity changes quality. In

Lavagno, L., Martin, G and Selic, B. (eds.), UML for real: design of embedded

real-time systems, pages 189-204.

Selic, B., 2003b. The Pragmatics of Model-Driven Development. IEEE Software, 20(5),

pages 19-25.

 179

Simulink, 2008. Available at

http://www.mathworks.com/products/simulink/. Accessed by Sep. 2008.

Sommerville, I., 2007. Software Engineering 8th, Addison-Wesley.

Stateflow, 2008. Available at

http://www.mathworks.com/products/stateflow/. Accessed by Sep. 2008.

Stojanovic, Z., Dahanayake, A. and Sol, H., 2004. Modeling and design of service-oriented

architecture. Proceedings of the 2004 IEEE Conference on Systems, Man and

Cybernetics, pages 4147-4152.

Stumme, G., Ehrig, M., Handschuh, S., Hotho, A., Mädche, A., Motik, B., Oberle, D.,

Schmitz, C., Staab, S., Stojanovic, L., Stojanovic, N., Studer, R., Sure, Y., Volz, R. and

Zacharias, V., 2003. The Karlsruhe View on Ontologies, Technical report. University of

Karlsruhe, Institute AIFB.

Tetlow, P., Pan, J.Z., Oberle D., Wallace, E., Uschold, M. and Kendall, E. (eds.), 2006.

Ontology Driven Architectures and Potential Uses of the Semantic Web in Systems and

Software Engineering, W3C Editors' Draft 11 Feb. 2006. Available at

 http://www.w3.org/2001/sw/BestPractices/SE/ODA/.

Therani, M., 2007. Ontology Development for Designing and Managing Dynamic Business

Process Networks. IEEE Transactions on Industrial Informatics, 3(2), pages 173-185.

The Open Group, 2009. The Open Group Architectural Framework (TOGAF) Version 9

‘Enterprise Edition’. Available at http://www.opengroup.org/togaf/.

Torres, V., Munoz, J. and Pelechano, V., 2005. A model driven method for the integration

of Web applications. Proceedings of the Third Latin American Web Congress, LA-WEB

2005.

Tran, V.X. and Tsuji, H., 2007. OWL-T: An Ontology-based Task Template Language for

Modeling Business Processes. Proceedings of the 5th ACIS International Conference on

Software Engineering Research, Management and Applications, pages 101-108.

 180

Tsai, W.T., Lee, Y.H., Cao, Z.B., Chen, Y.N. and Xiao, B.N., 2006. RTSOA: Real-Time

Service-Oriented Architecture. Proceedings of the Second IEEE International

Symposium on Service-Oriented System Engineering (SOSE), pages 49-56.

Uschold, M. and Gruninger, M., 1996. Ontologies: Principles, methods and applications.

Knowledge Engineering Review, 11(2), pages 93-155.

van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B. and Barros A.P., 2003.

Workflow Patterns. In Distributed and Parallel Databases, Springer Netherlands, 14(1),

pages 5-51.

van Dongen, B.F., Mendling, J. and van der Aalst, W.M.P., 2006. Structural Patterns for

Soundness of Business Process Models. Proceedings of the 10th IEEE International

Enterprise Distributed Object Computing Conference, EDOC '06, pages 116-128.

von der Beeck, M., Braun, P., Rappl, M. and Schroeder, C., 2003. Automotive UML: a (meta)

model-based approach for systems development. In Lavagno, L., Martin, G and Selic,

B. (eds.), UML for real: design of embedded real-time systems, pages 271-299.

Wada, H., Suzuki, J. and Oba, K., 2006. Modeling non-functional aspects in service oriented

architecture. Proceedings of the IEEE International Conference on Service Computing,

Chicago, pages 222-229.

Wang, X., Zhang, Y.C. and Shi, H., 2007. Scenario-Based Petri Net Approach for

Collaborative Business Process Modelling. Proceedings of the 2nd IEEE Asia-Pacific

Service Computing Conference, pages 18-25.

Weber, M. and Weisbrod, J., 2003. Requirements engineering in automotive development:

Experiences and challenges. IEEE Software 20, pages 16-24.

W3C, 2001a. Web Services Description Language (WSDL) 1.1, W3C Note 15 Mar. 2001.

Available at http://www.w3.org/TR/wsdl.

W3C, 2001b. DAML+OIL (March 2001) Reference Description, W3C Note 18 Dec. 2001.

Available at http://www.w3.org/TR/daml+oil-reference.

 181

W3C, 2001c. XML Schema language, W3C Recommendation 2 May 2001. Available at

http://www.w3.org/XML/Schema.

W3C, 2002a. Web Services Conversation Language (WSCL) 1.0, W3C Note 14 Mar. 2002.

Available at http://www.w3.org/TR/wscl10/.

W3C, 2002b. Web Service Choreography Interface (WSCI) 1.0, W3C Note 8 Aug. 2002.

Available at http://www.w3.org/TR/wsci/.

W3C, 2004a. Web Services Architecture, W3C Working Group Note 11 Feb. 2004. Available

at http://www.w3.org/TR/ws-arch/.

W3C, 2004b. RDF/XML Syntax Specification (Revised), W3C Recommendation 10 Feb.

2004. Available at http://www.w3.org/TR/rdf-syntax-grammar/.

W3C, 2004c. OWL: Web Ontology Language semantics and abstract syntax, W3C

Recommendation 10 Feb. 2004. Available at http://www.w3.org/TR/owl-semantics/.

W3C, 2004d. RDF Vocabulary Description Language 1.0: RDF Schema, W3C

Recommendation 10 Feb. 2004. Available at http://www.w3.org/TR/rdf-schema/.

W3C, 2004e. OWL-S: Semantic Markup for Web Services, W3C Member Submission 22

November 2004. Available at http://www.w3.org/Submission/OWL-S/.

W3C, 2005a. Web Services Choreography Description Language Version 1.0, W3C

Candidate Recommendation 9 Nov. 2005. Available at

http://www.w3.org/TR/ws-cdl-10/.

W3C, 2005b. Web Service Semantics - WSDL-S Version 1.0, W3C Member Submission 7

Nov. 2005. Available at http://www.w3.org/Submission/WSDL-S/.

W3C, 2006. Extensible Markup Language (XML) 1.1, W3C Recommendation 16 Aug. 2006.

Available at http://www.w3.org/TR/xml11/.

W3C, 2007. SOAP Version 1.2, W3C Recommendation (Second Edition) 27 Apr. 2007.

Available at http://www.w3.org/TR/soap/.

 182

W3C, 2008a. OWL 1.1 Web Ontology Language Structural Specification and

Functional-Style Syntax, W3C Working Draft 8 Jan. 2008. Available at

http://www.w3.org/TR/owl11-syntax/.

W3C, 2008b. SPARQL Query Language for RDF, W3C Recommendation 15 Jan. 2008.

Available at http://www.w3.org/TR/rdf-sparql-query/.

Yin, R. 2003. Case Study Research: Design and Methods (3rd Edition). Newbury Park, CA:

Sage

Yu, C., Wu, G.Q. and Yuan, M.T., 2005. Business process modeling based on workflow

model reuse. Proceedings of the International Conference on Services Systems and

Services Management, 2005, ICSSSM '05, Vol. 2, pages 951-954.

Zdun, U., Hentrich, C. and Dustdar, S., 2007. Modeling process-driven and service-oriented

architectures using patterns and pattern primitives. In ACM Transactions on the Web

(TWEB) , 1(3), pages 14-43.

Zhao Y., 2006. Enterprise Service Oriented Architecture (ESOA) Adoption Reference.

Proceedings of the IEEE International Conference on Services Computing, page 512.

Zhou, N.J., Chee, Y.M. and Zhang, L.J., 2008. Coding-Free Model-Driven Enablement

Framework and Engineering Practices of a Context-Aware SOA Modeling Environment.

Proceedings of the IEEE International Conference on Web Services, 2008, ICWS '08,

pages 553-560.

zur Muehlen, M. and Ho, D.T., 2008. Service Process Innovation: A Case Study of BPMN in

Practice. Proceedings of the 41st Annual Hawaii International Conference on System

Sciences, pages 372-382

 183

Appendix A: Glossary

Activity An activity refers to a business task where some sort of business

function is carried out.

AMI-C Automotive Multimedia Interface Collaboration

AML Automotive Modeling Language

AM-RPRS Agile Modeling based on Reusable Process and Reusable Services

API Application Programming Interfaces

AutoPO Automotive Process Ontology

AUTOSAR AUTomotive Open System ARchitecture

BPMI Business Process Management Initiative

BPMN Business Process Modeling Notation

BPO Business Process Ontology

BUM-RS Bottom-Up Modeling based on Reusable Services

Business function Business function defines what a system is designed to perform.

Business logic Business logic is a non-technical term to describe the functional

algorithms of processes and services.

Business process A business process is the abstraction of an activity, which describes the

model design for an activity. It also called process in this thesis.

CORBA Common Object Requesting Broker Architecture

CRM Customer Relationship Management

DAML+OIL DARPA Agent Markup Language and Ontology Interchange Language

DCOM Distributed Component Object Model

ECU Electronic Control Unit

ERP Enterprise Resource Planning

IDEF3 Integration DEFinition Language

 184

ISO International Standards Organization

MDA Model Driven Architecture

MIC Model-Integrated Computing

MSC Message Sequence Charts

m3po multi meta-model process ontology

NIST National Institute of Standards and Technology

OASIS Organization for the Advancement of Structured Information Standards

OBPMDF Ontology-based Business Process Modeling and Developing Framework

OEM Original Equipment Manufacturer

OMG Object Management Group

OWL Web Ontology Language

OWL-P OWL for Processes and Protocols

OWL-S OWL for Services

OWL-T Task ontology language

PIM Platform-Independent Model

P-port Provide-port

Process Short for Business Process

PSM Platform-Specific model

PSL Process Specification Language

QoS Quality of Service

RDF Resource Description Framework

RDFS RDF Schema

R-port Require-port

RTE Runtime Environment

RTSOA Real Time SOA

Service In SOA, service is considered as a self-contained and self-describing

business driven functional unit and can be invoked across networks to

 185

provide flexible enterprise application integration.

In this thesis, “Service” also represents a basic class in BPO. For this

meaning, we name it as “the Service class”.

SeSODA Semantically-enabled Service-Oriented Device Architecture

SOA Service-Oriented Architecture

SOAP Simple Object-based Access Protocol

SODA Service-Oriented Device Architecture

SOF Slight Ontology Framework

SPARQL Simple Protocol And RDF Query Language

SysML Systems Modeling Language

Task Task is a piece of specific work to be performed in the real world.

TDM Top-Down Modeling

TDM-RP Top-Down Modeling based on Reusable Process

UDDI Universal Description, Discovery and Integration

UML Unified Modeling Language

VFB Virtual Functional Bus

WSBPEL Web Services Business Process Execution Language

WSCDL Web Services Choreography Description Language

WSCI Web Services Choreography Interface

WSCL Web Services Conversation Language

WSDL Web Services Description Language

W3C World Wide Web Consortium

XML Extensible Markup Language

 186

Appendix B: Framework of AutoPO

	theses_copyright_undertaking
	b23210552

