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Abstract 

During the encoding process of traditional video coding standards, the motion 

estimation consumes most of the computational effort. For the wavelet video coding, 

this problem becomes more serious since motion estimation in the wavelet domain 

involves floating-point computation. Hence, it is necessary to develop some fast motion 

estimation algorithms in wavelet domain in order to reduce the computational burden of 

the wavelet video encoder during encoding procedure. 

 One of the traditional motion estimation algorithms in wavelet domain is to 

make use of the correlations among the corresponding subbands in the wavelet pyramid 

to enhance the speed of motion estimation. This algorithm is entitled as Multi-resolution 

Motion Estimation (MRME) algorithm which is based on the fact that an object in a 

subband of the lowest resolution level actually specifies the same object in the subbands 

of the higher resolution levels. Thus, the computational complexity of motion 

estimation in the wavelet domain can be reduced significantly by exploiting the 

relationships between the subbands of different resolution levels. On the other hand, the 

pixels with similar matching error tend to group in a cluster in both spatial and wavelet 

domains. Besides, a cluster which appears in a certain position of a subband at the 

lowest resolution level and there also exists a cluster in the similar position of the 

corresponding subbands at the remaining higher resolution levels. Thus, the Clustered 

Pixel Matching Error for Partial Distortion Search (CPME-PDS) algorithm can be 

applied in the MRME scheme to further improve the speed of motion estimation in the 

wavelet domain. The CPME-PDS involves the sorting procedure in order to obtain the 

coefficients with large matching errors and the sorting is required to perform in every 
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subband at each decomposition level. As we found that the clustering property is in a 

hierarchical nature in the wavelet pyramid, the sorting order in the subband of the 

highest-resolution level can be re-used to predict the sorting order of the subbands in the 

lower-resolution levels. Since the sorting operations are only carried out in the three 

subbands at the high-resolution level only, so the computational effort for motion 

estimation can be further reduced. From the experimental results, the proposed 

algorithm (Backward CPME-PDS) can achieve speed-up factors from 2 to 5 and from 

1.1 to 1.2 as compared to the Full Search Algorithm (FSA) and Partial Distortion Search 

(PDS) algorithm respectively. 

 Recently, the three dimensional discrete wavelet transform (3D-DWT) video 

coder becomes more popular since it can attain both spatial and temporal scalabilities. It 

involves motion estimation in the wavelet decomposition, so the computational burden 

for motion estimation is still a major concern. Due to the fact that there exists high 

spatial and temporal correlations between the motion vectors in the neighbouring blocks 

in a frame and between the motion vector fields of the low frequency frames at 

successive temporal levels, the computational complexity of motion estimation can be 

reduced considerably. By making use of these correlations, an accurate motion 

estimation predictor can be obtained and a refinement process is performed within the 

reduced search area based on the accurate motion predictor. From the experimental 

results, the proposed algorithm can achieve a speed-up factor of 3 to 5 as compared with 

the FSA using the Haar and Bi-orthogonal 5/3 kernels during temporal decomposition. 

Besides, quality of the reconstructed video sequence using the proposed algorithm is 

comparable to that of the FSA. 

The Embedded Zerotree Wavelet (EZW) coding algorithm is often used to 

encode the wavelet coefficients.  We proposed a modified EZW algorithm to 
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improve the coding gain of the wavelet video coder by discarding some less 

important wavelet coefficients using a new criterion. Experimental results show that 

the proposed EZW algorithm can improve 0.2 to 0.5 bit per pixel (bpp) as compared 

with the original EZW algorithm for the same PSNR value in lossy coding and its 

reconstructed quality is comparable to that of the conventional EZW algorithm. 

Furthermore, the proposed algorithm can apply in the Set Partition Embedded Block 

Coding (SPECK) algorithm to further enhance the compression efficiency from 0.1 

to 0.5 bit per pixel (bpp) as compared with the minimum subband approach applied 

in the SPECK algorithm for the same PSNR value in lossy coding and its visual 

quality of the reconstructed image using the proposed algorithm can be preserved. 
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Statements of Originality 

The following points are claimed to be original in this work. 

1. During performing motion estimation in the spatial domain, the pixels with 

similar absolute matching errors tend to cluster together.  This clustering 

property also exists in the wavelet domain. Furthermore, the clustering property 

in the wavelet domain is highly correlated among the corresponding subbands in 

the wavelet pyramid. According to this observation, the backward Clustered 

Pixel Matching Error for Partial Distortion Search (CPME-PDS) is proposed to 

enhance the speed of motion estimation in the wavelet domain. This is achieved 

by using the sorting order for performing the partial Sum of Absolute Difference 

(SAD) calculation in the subbands at the highest resolution level to predict the 

corresponding subbands at the lower resolution levels. Therefore, the number of 

operations used for sorting at each low-resolution subband can be reduced. 

Experimental results show that the proposed algorithm can outperform the Full 

Search Algorithm (FSA) by the speed-up factors of 1.97 and 5.58 in terms of 

actual implementation time and average number of operations respectively, 

without making use of other fast algorithms. More details can be found in 

section 3.2. 

2. The Successive Elimination Algorithm (SEA) is employed in the backward 

CPME-PDS in order to further reduce the number of operations for motion 

estimation in the wavelet domain. Experimental results show that the proposed 

algorithm can achieve the speed-up factors of 2.16 and 10.30 in terms of total 

execution time and average number of operations respectively as compared with 
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the backward CPME-PDS. However, this improvement only exists in slow video 

sequence. For other video sequences, although the average number of operations 

can be reduced, the execution time is enlarged due to the increasing number of 

operations for comparison of floating point numbers. More details can be found 

in section 3.4. 

3. Usually, the motion estimation is absorbed into the lifting steps of the one 

dimensional Discrete Wavelet Transform (1D-DWT) along the temporal 

direction in the conventional three dimensional Discrete Wavelet Transform 

(3D-DWT) video coder in order to improve the visual quality of the low 

frequency frames  and the compression efficiency. In the traditional 3D-DWT 

video coder, the motion vectors are obtained by performing motion estimation in 

each temporal level independently. However, there exists a large correlation 

between the low frequency frames in the successive temporal levels. By 

exploiting of this redundancy, the motion vectors in the previous temporal level 

are used as initial search position and the motion vectors in the current temporal 

level are refined in the reduced search range so that the speed of motion 

estimation can be enhanced due to the reduction of number of operations in the 

condensed search window. Besides, the median motion vector approach is also 

employed in the first temporal level, i.e. the spatial domain, to perform motion 

estimation, so the execution time used for motion estimation can be further 

decreased. Experimental results show that the proposed scheme can achieve the 

speed-up factors of 5.53 and 5.59 using the Haar and Bi-orthogonal 5/3 kernels 

respectively as compared with FSA. More details can be found in section 4.2. 

4. The Embedded Zerotree Wavelet (EZW) is usually used to encode the wavelet 

coefficients to achieve excellent compression performance by exploiting the 
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correlation among subbands across different decomposition levels. The modified 

EZW algorithm with minimum weight and difference subband approach is 

proposed to discard less important wavelet coefficients and retain similar visual 

quality as compared with the conventional EZW algorithm. Since some 

insignificant wavelet coefficients are eliminated, the coding gain can be 

improved. Experimental results show that the proposed algorithm can attain 0.5 

bpp and near 1 bpp improvements as compared with the conventional EZW 

algorithm at the same reconstructed PSNR value using the Haar and D4 kernels 

respectively. The proposed algorithm also outperforms the modified EZW 

algorithm with minimum subband approach around 0.1 bpp at the same PSNR 

value using both Haar and D4 kernels. More details can be found in section 5.2. 
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Chapter 1  

Introduction 

1.1 Introduction of video compression 

Nowadays, the usage of multimedia technologies increases exponentially, so more 

and more imagery and video data are manipulated. Image and video compression 

become a necessary procedure in the image processing and video technology for storage 

and transmission over network. For example, a spatial resolution of CIF (Common 

Intermediate Format) video sequence is 352 by 288 pixels. Each pixel is composed of 

three colour components, i.e., red, green and blue, for each frame and each colour 

component for a pixel is sampled with 8-bit precision. The storage capacity of each 

frame requires around 300 KBytes. The storage of a 90-minute uncoded video sequence 

with 30 frames per second needs approximately 50 Gbytes of digital memory. If this 

video sequence is transmitted at 30 frames per second without compression, the raw 

data rate for that video signal is greater than 13 Gbits per second. Hence, the file size of 

video sequence is extremely large and it is inconvenient for storage. Also, it is 

impossible to transmit the video signal over the network under the desirable bandwidth 

requirement. As a result, it is necessary to develop some video compression standards in 

order to achieve efficient compression for video applications. 

Furthermore, the compressed video is transmitted through the communication 

network to great diversity of end-user requirements such as various display resolutions 

and decoder complexities.  For example, the mobile handheld device contains the low-

resolution display and low processing power, the laptop computer gives the medium-
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resolution display and the high performance desktop computer attains the highest 

display resolution. The traditional video coding standards are difficult to achieve the 

multi-resolution representation for the video sequence due to the predict feedback loop 

used to exploit the temporal redundancy among successive video frames in the hybrid 

video coding model. One possible solution is to transmit more than one encoded video 

sequences and each compressed video sequence corresponds to a certain decoder 

constraint and display resolution. However, this approach consumes an erroneous 

amount of memory space, network bandwidth and computational effort of the video 

encoder since there exists lots of redundancy between encoded video streams so that it 

is a waste of resource to implement this approach.  As a result, the scalable video 

compression is a new solution to solve this problem. A scalable compressed video 

sequence can be reconstructed by various network constraints and end-user 

requirements efficiently so that the encoding procedure can only be performed once and 

the compressed video needs not to be considered the requirements of the end-user. Only 

a compressed video sequence is conveyed to different end-users. In other words, the 

decoders with different constraints access the same encoded video sequence such that 

the decoder can reconstruct only a portion of the compressed video sequence according 

to diverse end-user requirements such as decoder complexity and resolution of display 

device.  

In order to achieve efficient compression performance and scalability, the wavelet 

transform is used. Recently, the wavelet transform is used to replace the Discrete Cosine 

Transform (DCT), which will be mentioned in chapter two, as the transform kernel in 

the image processing applications. In low bit-rate applications, the DCT suffers from 

the blocking artifacts but the wavelet transform does not suffer from this problem 

according to its global decomposition in the entire image or video frame such that the 
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error can be distributed to the whole image or frame. Furthermore, it can provide 

excellent compression performance as compared with DCT. Besides, the wavelet 

transform is scalable in nature so that it can offer the multi-resolution representation of 

the image in order to fulfill the requirements of great diversity of end-users. The latest 

image compression standard, JPEG2000, makes use of the wavelet transform as the 

transform kernel in order to achieve both superior compression efficiency and 

scalability as compared with the conventional image-coding standard, JPEG. However, 

the wavelet transform employed in the video coding is still an open research area.  

Many researchers are still putting effort in this field to achieve full scalability, such as 

temporal and spatial scalabilities, in the video sequence. 

 

1.2 Organization of Thesis 

This thesis is organized in six chapters. Chapter two reviews some basic 

concepts of the conventional video-coding standards, the traditional algorithms of 

motion estimation in the spatial and wavelet domains, the fundamental idea of 

wavelet transform, a classical approach to encode the wavelet coefficients 

(Embedded Zerotree Wavelet algorithm) and the framework of motion compensated 

temporal filtering (MCTF) used in the three dimensional discrete wavelet transform 

(3D-DWT) video coder. In chapter three, a new motion estimation algorithm in the 

wavelet domain in order to improve the speed of motion estimation in the wavelet 

domain by making use of the correlation among corresponding subbands at different 

decomposition levels in the wavelet pyramid will be discussed in detail. Chapter four 

presents a fast motion estimation scheme used in the 3D-DWT video coder by 

exploiting the relationship of the wavelet-transformed frames at different temporal 

decomposition levels. In chapter five, a modified EZW algorithm will be proposed to 



Chapter 1 INTRODUCTION 

4 

improve the compression performance by removing less important information while 

retaining the same visual quality as the conventional EZW algorithm. Finally, a 

conclusion of this thesis will be drawn and some possible future directions of this 

study will be given in chapter six. 
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Chapter 2  

Technical Review 

2.1 Hybrid video coding model 
Modern video coding standards, such as the MPEG-1 [1], MPEG-2 [2], MPEG-

4 [3] and H.263 [4], can achieve high compression efficiency with different applications 

by using the hybrid video coding model as depicted in Figure 2.1 to remove both spatial 

and temporal redundancies between successive frames. Figures 2.1 (a) and (b) illustrate 

a simplified block diagram of the conventional hybrid video encoder and decoder 

respectively. The functional blocks are the tasks that are usually used by various video 

coding standards.  
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Figure 2.1 Simplified block diagram of the hybrid video (a) encoder and (b) decoder 

Motion estimation is used to reduce the temporal redundancy between 

consecutive video frames. The input video frame, i.e. the current frame, is divided into 

many non-overlapping blocks and each block finds its best match location in the 

reference frame, which is the previously encoded frame. According to many 

experimental results, most motion activities in the natural video sequence is purely 

translational, i.e. an object is moving in translational motion across a nearly stationary 

background without rotation, expansion or dilation, so this is an important assumption 

that there only exists the purely translational motion in the motion model used in the 

motion estimation. After finding the best match position in the reference frame, the 

motion information or motion vector, is encoded instead of coding the pixels in the 

current input frame. After that, the predicted frame or motion-compensated frame is 

constructed by taking relevant blocks from the reference frame according to the motion 

vector information found by motion estimation, and this process refers to as motion 

compensation. The motion-compensated frame is only a prediction of the current frame 

so that there may exist some differences between the current and motion-compensated 

frames. Therefore, a residual frame is formed by subtracting the current frame from the 

motion-compensated frame, and it is also encoded. As a result, the interframe 
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redundancy can be removed by motion estimation and motion compensation. 

Furthermore, there may exist some correlations between the neighbouring pixels in the 

residual frame so that the Discrete Cosine Transform (DCT) is used to remove the 

remaining spatial correlation inside the residual frame during interframe mode coding.  

The DCT is responsible for removing the intraframe redundancy, i.e. the spatial 

correlation, within a frame. It can be used in both interframe and intraframe modes 

coding. The intraframe mode coding refers to the coding of still image just similar to 

current image coding standards, such as JPEG, in order to achieve compression. An 

intraframe refers to the case without using any reference to the previously encoded 

frame and it can only exploit to the spatial correlation. On the contrary, the DCT can 

also be used to remove the relationship between the pixels inside the motion-

compensated frame, i.e. prediction error in the motion-compensated prediction, during 

interframe mode coding. An interframe refers to using the previously encoded frame, 

which can be the previous or future frames or both, to achieve compression and it can 

make use of both properties of spatial and temporal correlations. The DCT is just a 

mapping from the time domain to the frequency domain such that most energy is 

concentrated to a few portions of the transform coefficients and the transform 

coefficients are entropy encoded in order to achieve good compression performance. 

Since this codec is designed for eliminating both spatial and temporal redundancies, so 

it is called hybrid video coding.  

 Quantization is the next step of the Discrete Cosine Transform. It is used to 

remove the less important transform coefficients by reducing the precision of the 

coefficients such that the bit rate can be reduced and the acceptable visual quality is 

preserved. After that, the quantized DCT coefficients and motion information obtained 

by motion estimation are entropy encoded by variable length coding such as the 
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Huffman coding which assigns a shorter codeword to frequently appeared data or vice 

versa such that the compressed bitstream can be formed. During decoding, the bitstream 

is received and decoded by the look-up table which is the same table as the encoder side 

in order to preserve the original information.  

 The motion estimation and compensation using the traditional block-based 

model will be discussed in section 2.2. The classic motion estimation algorithm, Full 

Search Algorithm (FSA), and fast motion estimation algorithms will be mentioned in 

sections 2.2.1 and 2.2.2 respectively. In recent years, the wavelet transform is widely 

used in image processing and video technology in order to improve the coding gain. The 

wavelet transform will be reviewed in section 2.3. The Embedded Zerotree Wavelet 

(EZW) algorithm is one of the typical methods for coding the wavelet coefficients and it 

will be studied in section 2.4. Some researchers enhanced the coding efficiency of the 

EZW algorithm and the modifications of EZW algorithm will be mentioned in section 

2.5. Besides the EZW algorithm, the Set-Partition Embedded Block Coder (SPECK) 

algorithm receives much attention due to its superior coding performance as compared 

with the EZW algorithm. It will be discussed in section 2.6. The two dimensional 

discrete wavelet transform is applied in video technology and some motion estimation 

and compensation algorithms in wavelet domain are developed. They will be analyzed 

in sections 2.7 and 2.8 respectively. In recent years, the three dimensional discrete 

wavelet transform is developed to further enhance the coding efficiency in video coder 

and it will be discussed in sections 2.9, 2.10 and 2.11 respectively. Finally, a concluding 

remark of this chapter will be briefly drawn in section 2.12. 
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2.2 Block-based motion estimation and compensation 

The block-based motion estimation and compensation are widely used in modern 

video coding system for compression and the block-based model is effective to deal 

with the video sequence with translational motion as discussed in the previous section. 

The objective of motion estimation and compensation is to eliminate the temporal 

redundancy among successive video frames since there exists a huge correlation 

between consecutive frames in order to achieve compression. During motion estimation, 

the current frame is divided into many non-overlapping regions which are called blocks 

as depicted in Figure 2.2. The values of pixels in this current frame are predicted from 

the pixels of another block in the reference frame, which is previously encoded, in a 

certain search range. The reference block is the best-matched block of the current block 

to give the minimum difference between reference and current blocks. As illustrated in 

Figure 2.2, the motion vector represents the displacement between these two blocks and 

is only encoded instead of the pixel value of the block in the current frame. As a result, 

the motion estimation is carried out to obtain the motion vectors. After finding the 

motion vector, the reference frame is to work with it to produce the predicted frame, i.e. 

the motion-compensated frame, which is the prediction of the current frame from the 

motion compensation process. The residual frame, i.e. the current frame subtracting to 

the motion-compensated frame, and the motion vectors are sent to the decoder for 

reconstruction of the current frame.  
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Figure 2.2 The illustration of finding a motion vector 

The motion estimation finds the best matched location of the current frame within a 

certain search range of the reference frame by minimizing the distortion between the 

target block in the current frame and a candidate block inside the search window of the 

reference frame. There are two criteria, which are the Sum of the Absolute Difference 

(SAD) and the Mean Squared Error (MSE), that are most frequently used in the motion 

estimation process. The SAD between a target block at position (x, y) in the current 

frame, It, and a candidate block at position (x+u, y+v), in the reference frame, It-1, is 

shown in equation 2.1. 

( ) ( ) ( )∑∑
−

=

−

=
− ++++−++=
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1

0
1
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j

N

i
tt vjyuixIjyixIvuyxSAD ,,,;,  (2.1) 

where N ×N is the size of the block, It(x, y) and It-1(x, y) represent the pixel 

intensities at the initial position (x, y) of the target block of the current frame and 

candidate block of the reference frame respectively, (i, j) is used to locate the position of 

a pixel inside a block and (u, v) is the location of a possible motion vector. The SAD 

indicates the absolute difference between the target block in the current frame and the 

candidate block in the reference frame by pixel-by-pixel computation. The MSE is 

another distortion measure between the target block in the current frame and the 

candidate block in the reference as shown in equation 2.2. 
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 The MSE is similar to the SAD but it involves the multiplication and division so 

that the computation complexity is higher than that of the SAD and its performance is 

comparable to that of the SAD. As a result, the SAD is widely used for the distortion 

measure during motion estimation. After finding the SAD values of all possible 

locations within the search window of the reference frame, the location with the 

minimum error indicates the desired motion vector which represents the location of the 

best match block in the reference frame giving the minimum error. The motion vector is 

defined in equation 2.3. 

( )
( )

( )vuyxSADvu
Wvuyx ,;,minarg,

, ∈
=  (2.3) 

where ( ){ }1−≤≤−= MvuMvuW ,,  is a set of all possible locations in the search 

window as depicted in Figure 2.2 and M is the possible maximum displacement of the 

motion vector, (u, v). The motion vector specifies the location that a block in the 

reference frame is copied to reconstruct the current frame during decoding. Thus, it is 

also encoded and transmitted to the decoder in order to reconstruct the current frame. If 

the motion vector can accurately represent the motion in the video sequence, the number 

of bits used to encode the residual frame (error frame) will become smaller due to small 

errors in the residual frame or vice versa. 

A classic searching algorithm, full search algorithm (FSA), is discussed in the 

section 2.2.1. However, its computational complexity is extremely high, so some fast 

searching algorithms for lossless approach in order to improve searching speed are 

reviewed in section 2.2.2.  
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2.2.1 Full Search Algorithm (FSA) 

The full search algorithm (FSA) or exhaustive search algorithm (ESA) is used to 

find out the optimal motion vector by testing all possible locations inside the search 

window. Since all possible search locations have been checked, the global minimum 

matching error of the obtained motion vector pointing to the candidate block in the 

reference frame can be guaranteed. Although the global minimum can be assured, its 

computational complexity is extremely high owing to testing all possible locations 

within the search window of the reference frame. It consumes most of the computational 

effort of the hybrid video coding during encoding of a video sequence. Consequently, 

there are some fast algorithms that can reduce the computational burden of the motion 

estimation in a lossless way introduced in section 2.2.2. The lossless approach refers to 

that the obtained motion vectors of a fast searching algorithm are exactly the same as 

those to be obtained from the FSA. 

 

2.2.2 Fast Searching Algorithms for lossless approach 

 The computational effort of FSA for motion estimation is enormously huge so 

that some fast algorithms are developed to reduce the number of operations used in 

motion estimation.  In this section, the lossless and fast motion estimation algorithms 

are reviewed such that the motion vectors obtained by these fast lossless methods are 

the same as that of the FSA. 

 

2.2.2.1 Partial Distortion Search (PDS) 

 The partial distortion search (PDS) algorithm [12] can be characterized as the 

fast full search algorithm (FSA) since it can attain the same set of motion vector fields 
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as that of FSA but its computational complexity is much fewer than that of the FSA. 

The philosophy behind the PDS is that after the SAD value of first block in the 

reference frame and the target block in the current frame is calculated, this value is 

stored. It is then considered as the temporary minimum SAD error. After that, the SAD 

value of the first row in other location is calculated, its partial SAD compared to the 

temporary minimum error. If this accumulated error is already greater than temporary 

minimum error, the SAD calculation of the remaining rows is terminated since the 

partial SAD value of this candidate block is already greater than the temporary 

minimum error. Otherwise, if the SAD value of this candidate block is smaller than the 

temporary minimum error, this new minimum error will become the temporary 

minimum error to be used comparing the remaining locations within the search window. 

Then, this procedure is repeated again until all possible locations inside the search 

window are tested. The partial SAD value is given as below. 

( ) ( ) ( )∑∑
=

−

=
− ++++−++=
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ttyxp jvyiuxIjyixIvuyuSAD

0

1

0
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where p is the number of row for which the accumulation of errors is terminated and p 

= 0, 1, 2, …, N-1, N is the size of a block, (x, y) is the location of a block in the current 

frame, (i, j) represents the pixel inside a block, (u, v) indicates the possible motion 

vector and It and It-1 identify the pixel intensities at certain position within the current 

and reference frames respectively. The second summation stands for the sum of 

absolute difference between the target block in the current frame and the candidate 

block in the reference frame while the first summation denotes the number of rows to 

terminate the SAD calculation inside a candidate block. The SAD calculation is 

terminated with a value of p which is equal to any integer value between 0 and N-1. If 

( ) ( )temptemppp vuyxSADvuyxSAD ,,,,,, ≥ , the calculation of SAD value of the whole 
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block is terminated as this position cannot give the lowest error, where ( )temptemp vu ,  

specifies the motion vector that accounts for the lowest SAD value. When the value of p 

is small, the process of SAD calculation can be terminated early.  

 For most video sequences, their frame rate is between 15 to 30 frames per 

second and 30 to 60 frames per second for low and high quality applications 

respectively so that the time interval between each frame is very small. As a result, the 

movement of a block in the video sequence usually varies slowly leading to the 

magnitudes of the motion vectors are also very small especially for low bit-rate video 

applications. Consequently, the magnitudes of most motion vectors are very close to 

zero. Usually, about 80% of the blocks can be regarded as stationary or quasi-stationary 

(enclosed in the central 3×3 area) and most of the motion vectors are enclosed in the 

central 5×5 area. According to this observation [38], the motion vector distribution of 

the natural video sequence is highly centre-biased. Due to this particular form of 

distribution, the searching pattern within the search window should be centre-biased as 

illustrated in Figure 2.3. The outward spiral searching strategy is usually adopted in the 

PDS in order to terminate the SAD calculation as soon as possible so that the optimal 

motion vectors can be found quickly. 
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Figure 2.3 Spiral searching path within a search window with the size of ±7 

 

2.2.2.2 Clustered Pixel Matching Error - Partial Distortion 

Search (CPME-PDS) 

 The previous section described a fast and lossless algorithm, the PDS, to get the 

motion vectors. The partial SAD is calculated by adding the absolute difference 

between the target block in the current frame and the candidate block in the current 

frame in a row by row and from top to bottom computation. If the partial SAD value of 

the first row is just greater than the temporary minimum error, then the SAD calculation 

of that candidate block is stopped. Otherwise, the accumulation of error calculation 

continues. However, the pixels, which give the greatest error, may not be located in the 

first row. They may be in the last row and any one of the rows inside the candidate and 

target blocks. Therefore, if we find out the pixels that provide the largest error and use 

them to calculate the partial SAD value, the speed of motion estimation can be further 

enhanced. Hence, it is necessary to investigate the spatial distributions of pixel 

matching error inside a block. A phenomenon reported in the literature says that the 
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pixels with similar matching errors in magnitude tend to appear together in clusters [18].  

According to this observation, the Clustered Pixel Matching Error for Partial Distortion 

Search (CPME-PDS) [18] has been suggested to improve the speed of motion 

estimation. The problem is how to find the pixel that provides the largest matching error 

in order to terminate a partial SAD calculation. 

 For a target block, the positions of its pixels are represented by an index set, 

( ){ }1,...,0|, −== NnlkS nn  , where k and l are the coordinates of a pixel and N is the 

number of pixels in a block. For a single pixel at ( ) Sslks nnnn ∈= ,, , its matching error 

is ( ) ( ) ( )nntn sRsIse −= , where R(sn) is a random variable which represents the pixel 

value at sn of a candidate block. For the sake of simplicity, in the following discussion, 

sn is replaced by n, and both block location (x, y) and motion vector (u, v) are dropped. 

To improve the saving in computation of a PDS, pixel matching errors with an ideal 

index set much follow this rule, ( ) ( ) ( ) ( )2222 1......10 −≥≥≥≥≥ Neneee . The predicted 

pixel matching errors, p(n), is defined as, ( ) ( ) mnInp t −= , where m is a reference value 

to be used to obtain the prediction. The value of m is obtained by minimizing the 

expected value of the sum of squares of the difference between e(n)2 and p(n)2,  

i.e.                                    ( ) ( )[ ]
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 In order to find m, the above equation is differentiated respect to m, then we can 

obtain 
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 By substituting ( ) ( ) ( )nenInR t −=  into the above equation, it becomes 
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 Finally, the following cubic equation can be obtained,  
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 Due to the assumption that the natural image is dominated by low frequency 

components, three approximate real roots m of the above cubic equation can be obtained,  

2 or                 eImIm tt ±≈≈  

 The first approximated root is the mean of pixel values in the target block. For 

the second root, e(n) often consists of two components, em(n) and ew(n), where ew(n) 

denotes zero-mean white noise with negligible magnitudes and em(n) represents errors 
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due to irregular motions, light variation, etc. They tend to have the same sign in a block. 

Hence, the expected value of the random variable representing the pixel value at n of a 

candidate block is, 2eIeIR tt ±≈±≈ , which is the approximation of m . Therefore, 

the first approximated real root, the mean of pixel values in a candidate block, is 

determined as the root of the above cubic equation. 

The objective of the CPME-PDS is that the PDS can terminate a partial SAD 

calculation to reject the candidate block earlier when the location of global minimum 

matching error is met in a search earlier. To achieve this purpose, two strategies are 

used as shown below. 

1. The outward spiral scanning is used to exploit the center-biased motion vector 

distribution characteristics of the real world video sequence [38]. 

2. The correlation in the motion field is exploited by using a median predictor of 

three adjacent blocks, left, top and top right blocks to the current position as the 

initial searching point of the spiral scanning as illustrated in Figure 2.4. The 

median predictor has been used as described in [3]. 

According to the above considerations and analytical results, the mean of pixel 

values in the candidate block of the initial searching point is used to compute the 

reference value, m, because we can assume that 

1( , ) ( , )t med med tI i u j v I i j− + + ≈  

where ( , )med medu v = the median predictor which is illustrated in Figure 2.4. The 

expected pixel matching error, pexp(n), of each pixel in the target block is calculated 

with m. The required adaptive index set, S, is given by sorting ( )expp n  in descending 

order. The partial SAD value is calculated with S during the searching in an outward 

spiral scanning. The CPME-PDS approach can be summarized as follows: 
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Step 1) Determine the median predictor, (umed, vmed), of the three adjacent blocks. 

Step 2) Calculate the reference value, m, with the median predictor, (umed, vmed), where 

the block size is 15×15. 

15 15

1
0 0

1 ( , )
256 t med med

j i
m I x u i y v j−

= =

= + + + +∑∑  

Step 3) Initialize an index set, ( ){ }' ' , ' 0,..., 1n nS k l n N= = − , which represents all 

pixels of the target block, where k’ and l’ are the coordinates of a pixel and N is 

the number of pixels in a block. 

Step 4) Calculate the expected absolute pixel matching error, ( )expp n , of each pixel in 

the target block. 

( ) ( )' , 'exp t n np n I k l m= −  

Step 5) Rearrange the order of set 'S  to obtain an adaptive index set S by sorting the 

expected absolute pixel matching error, ( )expp n , in descending order, such 

that, ( ){ }, 0,..., 1n nS k l n N= = − . The pexp(n) corresponding to the order of the 

sorted index set, S, has the following feature,  

( ) ( ) ( )10 expexpexp −≥≥≥≥ Npnpp KK  

Step 6) Apply the adaptive index set, S, to calculate the partial SAD value during the 

searching in an outward spiral scanning. 

Note that the adaptive index set is established on a pixel-based approach, so this 

algorithm is entitled as the pixel-based CPME-PDS. According to the pipeline structure 

of the Central Processing Unit (CPU), the time used to access the memory of the pixel 

values in random location is much longer than that used to access the memory in a row 

of pixel values within a block. Although the number of operations is reduced 

dramatically, the execution time is longer as compared with the PDS due to the memory 
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access problem in CPU. In order to overcome this difficulty, the row-based CPME-PDS 

can be used. The pixels are sorted row by row in a block for SADp accumulation in order 

to make use of the advantage of clustering characteristic. By using an identical reference 

value, m, the expected absolute pixel error of a row of 16 pixels is calculated as follows, 

which is used to determine the accumulating order.  

∑
=

−′=
15

0
exp ),(

x
nt mlxIp  

Even though the number of operations used in row-based CPME-PDS is higher than 

that of the pixel-based CPME-PDS, its execution time is shorter than that of pixel-based 

approach during implementation. Also, both number of operations and execution time 

of the row-based approach are reduced as compared with the PDS by making use of the 

clustering characteristics of pixels. 

MV0 MV1

MV2 MVmed

MVmed(x) = median (MV0(x), MV1(x), MV2(x))
MVmed(y) = median (MV0(y), MV1(y), MV2(y)) 

Figure 2.4 Median predictor of three adjacent blocks, top right, top and left blocks to the current block 

 

2.2.2.3 Successive Elimination Algorithm 

 The previous two sections discussed the PDS algorithm to reject the impossible 

candidate blocks earlier by terminating the partial SAD calculation as soon as possible 

in all possible searching locations within the search window of the reference frame. If 

only a part of the searching position is tested, the computational burden of motion 

estimation can be further reduced. A fast searching technique called Successive 
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Elimination Algorithm (SEA) makes use of this method to find out the motion vectors 

and the accuracy of the motion vectors is the same as that of FSA. The concept of SEA 

is that if a candidate block in the reference frame can meet certain requirement, then a 

further checking of this candidate block is performed. Otherwise, it is rejected and 

another candidate block along the spiral-scanning path is tested until all possible 

locations inside the search window are exhausted. The idea of SEA comes from this 

inequality,  

baba −≤−  (2.4) 

where a and b are real numbers. This inequality means that the absolute value of the 

difference between two real numbers is always larger than or equal to the absolute value 

of the difference between the absolute values of the individual numbers. For example, if 

a and b are the +ve and –ve real numbers respectively, the right hand side (RHS) must 

be greater than the left hand side (LHS) of the above inequality. Let us examine the 

inequality 2.4 carefully, it implies the inequality equivalent to the inequalities 2.5 

because the absolute difference of two absolute numbers, a  and b , say for example 

can be formed either by subtracting a  from b  or b  form a . 

⎭
⎬
⎫

−≤−
−≤−

                                    
baab
baba

 (2.5) 

The temporary SAD value, ( )temptemptemp vuyxSAD ,;, , in the PDS algorithm is defined 

in equation 2.6.  

( ) ( ) ( )∑∑
−

=

−

=
− ++++−++=

1

0

1

0
1

N

j

N

i
temptemptttemptemptemp vjyuixIjyixIvuyxSAD ,,,;,  (2.6) 

where (utemp, vtemp) is the temporary motion vector, N ×N is the size of block, It(x, y) and 

It-1(x, y) represent the pixel intensities at the initial position (x, y) of the target block of 

the current frame and candidate block of the reference frame respectively and (i, j) is 

used to locate the position of a pixel inside a block. The objective of motion estimation 
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is to find out a better candidate block such that 

( ) ( )temptemptemp vuyxSADvuyxSAD ,;,,;, ≤ , where ( )vuyxSAD ,;,  is the possible 

minimum SAD value and (u, v) is the possible optimal motion vector. The difference 

term of the SAD value, ( ) ( )vjyuixIjyixI tt ++++−++ − ,, 1 , is substituted 

into the inequalities 2.5 and then we have, 

( ) ( ) ( ) ( )vjyuixIjyixIvjyuixIjyixI tttt ++++−++≤++++−++ −− ,,,, 11
 (2.7) 

( ) ( ) ( ) ( )vjyuixIjyixIjyixIvjyuixI tttt ++++−++≤++−++++ −− ,,,, 11
 (2.8) 

If the inequalities 2.7 and 2.8 perform summation in both sides for all pixels in a block, 

they will become the inequalities 2.9 and 2.10 as shown below. 

( ) ( ) ( ) ( )∑∑∑∑∑∑
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The first summation in the LHS of inequality 2.7 represents the sum norm of the target 

block in the current frame denoted by R(x, y) and the second one indicates the sum norm 

of any matching candidate block in the reference frame with motion vector (u, v) and is 

denoted by M(x, y; u, v). The summation in the RHS of inequality 2.7 specifies the SAD 

value corresponding to the motion vector (u, v) denoted by SAD(x, y; u, v). Thus, the 

inequalities 2.7 and 2.8 can be rewritten as follows. 

( ) ( ) ( )vuyxSADvuyxMyxR ,;,,;,, ≤−  (2.11) 

( ) ( ) ( )vuyxSADyxRvuyxM ,;,,,;, ≤−  (2.12) 

Say for example, the temporary SAD value, SADtemp(x, y; utemp, vtemp), of a candidate 

block with motion vector (utemp, vtemp) is already a good matching block corresponding 

to the target block with the temporary minimum SAD value. Then, we are looking for a 

better matching candidate block with motion vector (u, v) such that, 

( ) ( )temptemptemp vuyxSADvuyxSAD ,;,,;, ≤  (2.13) 



Chapter 2 Technical Review 

______________________________________________________________________________ 

23 

After that, we relate the inequality 2.13 with inequalities 2.11 and 2.12 which become, 

( ) ( ) ( ) ( )temptemptemp vuyxSADvuyxSADvuyxMyxR ,;,,;,,;,, ≤≤−  (2.14) 

( ) ( ) ( ) ( )temptemptemp vuyxSADvuyxSADyxRvuyxM ,;,,;,,,;, ≤≤−  (2.15) 

The inequalities 2.14 and 2.15 can be written as, 

( ) ( ) ( )temptemptemp vuyxSADvuyxMyxR ,;,,;,, ≤−  (2.14) 

( ) ( ) ( )temptemptemp vuyxSADyxRvuyxM ,;,,,;, ≤−  (2.15) 

which implies, 

( ) ( ) ( ) ( ) ( )temptemptemptemptemptemp vuyxSADyxRvuyxMvuyxSADyxR ,;,,,;,,;,, +≤≤−  (2.16) 

The inequality 2.16 is the major result of SEA. If the range of the value of sum norm of 

any candidate block in the reference frame can meet the requirement of the above 

inequality, then a further checking using PDS, say for example, is performed. Otherwise, 

no further checking is required since the SAD value of this candidate block must be 

greater than the temporary SAD value, SADtemp(x, y; utemp, vtemp), which has already 

obtained before. Furthermore, since some impossible candidate blocks are rejected and 

not required to perform searching, so the computational complexity can be reduced 

significantly without excluding the optimum block because the blocks that can satisfy 

the inequality 2.16 must be fewer than all blocks in the search window. 

During the implementation of inequality 2.16, the sum norm of each block 

inside the search window has to be known before. A fast method is used to calculate the 

sum norm. Suppose that the frame size is H×W. The whole image is divided into (H-

N+1) row strips and each row strip contains N rows as depicted in Figure 2.5.  
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(W-N+1)th block2nd block1st block

1st row strip

2nd row strip

(H-N+1)th 
row strip

 

Figure 2.5 Geometry for the calculation of the sum norm 

 Firstly, we calculate the sum of each column and save them as C11, C12, …, C1W 

for the first row strip. For the second row strip, ( ) ( )11111121 ,, ++−= NIICC , 

( ) ( )21211222 ,, ++−= NIICC , …, ( ) ( )WNIWICC WW ,, 1112 ++−= . Similarly, 

the sum of each column for other row strips is calculated in this way.  

 Secondly, the sum norm of the first block denoted by SN11 is calculated by 

adding C11, C12, …, C1N. As the block is shifted by one pixel horizontally, so the sum 

norm of the second block denoted by SN12 is ( )111111 ++− NCCSN . Similarly, the other 

sum norms, SN13, SN14, …, SN1(W-N) can be found and the sum norm of each block in the 

following row strips can be obtained in the same way. 

 The computation of getting the sum norm can be considered as the search 

overhead but this computational effort is very small. With this small overhead, the total 

number of operations for motion estimation can be considerably reduced.  
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2.3 The Wavelet Transform 

Recently, the wavelet transform receives much attention as an alternative of the 

Discrete Cosine Transform (DCT). Similar to the DCT, it transforms the signal into 

another domain such that both time and frequency information can be preserved. Due to 

its superior performance in compression efficiency as compared with the DCT and 

scalability in nature, it is widely used in various applications such as image and video 

compression, image retrieval and de-noising.  For the image coding, the latest image 

coding standard, JPEG 2000 [47], [48], makes use of the Discrete Wavelet Transform 

(DWT) as the transform kernel instead of the DCT which is used in previous image 

coding standard, JPEG. In the following, the basic knowledge of wavelet transform and 

the lifting realization of the wavelet transform will be reviewed. 

 

2.3.1 Brief introduction of the wavelet transform 

The wavelet transform is widely used in various applications such as image 

processing and video technology. It acts as a transform kernel to map the pixels of an 

image or video frame in the spatial domain to the wavelet coefficients in the wavelet 

domain and can preserve both time and frequency information. The decomposition and 

reconstruction of two-band structure of one-dimensional wavelet transform with one 

decomposition level is illustrated in Figure 2.6. The input signal is carried out low-pass 

and high-pass filtering in the analysis stage. Then, both filtered signals are 

downsampled by a factor of two in order to maintain the same size of samples before 

decomposition in order to extract the low and high frequency parts of original signal. In 

the synthesis stage, the reverse operations are executed in order to obtain back the 

reconstructed signal. If the reconstructed signal is exactly the same as the original signal, 
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this system is said to be “perfect reconstruction (PR)”. For images, the two-dimensional 

Discrete Wavelet Transform (2D-DWT) is applied. Figure 2.7 shows the decomposition 

of the 2D-DWT with three decomposition levels. After decomposing the image into 

four subbands, LL, LH, HL and HH, in the first level, only the LL subband is further 

decomposited in the remaining decomposition levels. For example, if three levels are 

decomposited, then ten subbands are generated as shown in Figure 2.8(a). The 

transformed version of “Fruit” image in three decomposition levels using the 

Daubechies-4 kernel is depicted in Figure 2.8(b).  

Unlike the DCT, the wavelet transform does not suffer from the blocking artifacts in 

low bit-rate applications. Besides, it can provide a multiresolution representation of the 

original image. For example, the low-resolution image is obtained by discarding the 

high frequency subbands. The LL subband in Figure 2.8(b) yields a high quality of the 

low-resolution version of the original image. 

Low-
pass 

filtering

High-
pass 

filtering

  2

  2

  2

  2

Low-
pass 

filtering

High-
pass 

filtering

+Input 
signal

Reconstructed 
signal

Analysis Synthesis

2 : down-sampled by 2        2: up-sampled by 2  

Figure 2.6 The block diagram of analysis and synthesis of one-dimensional wavelet transform with one 

decomposition level 
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Figure 2.7 The block diagram of decomposition of two-dimensional wavelet transform with three 

decomposition levels 
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HL1

LH1

HL2

LH2

LL HL3

LH3 HH3

HH2

HH1

(a) (b)  

Figure 2.8 (a) The subband structure of two-dimensional DWT with three levels and (b) the wavelet 

transformed version of the “Fruit” image with three decomposition levels using the Daubechies-4 kernel 
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2.3.2 Lifting implementation of the wavelet transform 

 The wavelet transform can be implemented by the lifting realization [49], [50]. 

The lifting implementation is widely used in image processing [44], [47], [48] and video 

technology [52], [53], [54], [55], [56]. It can save a large number of operations as 

compared with the filtering approach and guarantee perfect reconstruction. Figure 2.9 

shows the realization diagram of lifting implementation for analysis and synthesis 

stages of the wavelet transform. During decomposition, it consists of three phases. The 

first phase is to split the input signal into odd and even samples. The second stage is that 

the even samples are used to predict the odd ones and the predicted samples are 

subtracted from the original odd samples to form the high frequency signal which is the 

prediction error. The final stage is the update process which is to add back the error 

signals to the even samples to form the low frequency signal. These can be considered 

as the averages of the input signal. The reconstruction performs the reverse procedure to 

find out the reconstructed signal. 

High 
frequency 

signal

Low 
frequency 

signal

Even 
Sample

Odd 
Sample

Split -P

+

+

U

+

-U P

+

MergeInput 
Signal

Reconstructed 
Signal

Analysis Synthesis

P: Predict
U: Update  

Figure 2.9 Block diagram of lifting implementation for decomposition and reconstruction of the 

wavelet transform 

 Figure 2.10 shows an example of lifting implementation of forward and 

backward wavelet transform for the Haar kernel. The forward lowpass and highpass 

filters can be written as, 
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( ) 1

2
1

2
1 −+= zzL  (2.17) 

( ) 1

2
1

2
1 −−= zzH  (2.18) 

where L and H are the lowpass and highpass filter respectively. The decomposition 

process of Haar kernel is,  
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and the reconstruction operation of Haar kernel is, 
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where sj[2n] and sj[2n+1] are the even and odd samples respectively and sj+1[n] and 

dj+1[n] are the low and high frequency signals respectively.  
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Figure 2.10 The realization diagram of lifting implement of the forward and backward wavelet transform for 

the Haar kernel 
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2.4 Literature review of the Embedded Zerotree Wavelet 

(EZW) 

The motion estimation algorithms in the wavelet domain will be mentioned in 

chapters 3 and 4 and the Embedded Zerotree Wavelet (EZW) [57] is used in the wavelet 

video coder to get the experimental results. Besides, a modified approach of the EZW 

will be discussed in chapter 5. So, the algorithm of the EZW is reviewed in section 2.5.1 

and an example is given in section 2.5.2. 

Figure 2.11 (a) and (b) illustrate the block diagrams of the wavelet zerotree 

image encoder and decoder respectively. During encoding, the EZW [57] applies on the 

wavelet coefficients after carrying out wavelet decomposition. It converts the 

transformed coefficients into symbols and the definitions of the symbols will be 

explained in the following section. After that, the symbols will be entropy coded by 

arithmetic coding or Huffman coding. The decoder performs the reverse procedure to 

obtain the reconstructed image. The EZW can generate the encoded bit-stream in the 

order of significance. In order words, it can send the coefficients with large magnitude 

in prior of the coefficients with small magnitude to the decoder. It is embedded in 

nature and can achieve progressive transmission. Furthermore, the encoder can 

terminate the encoding procedures when the target bit rate is met. Also, the decoder can 

also stop the decoding procedures at any point of the truncated bitstream. Although the 

decoder cannot decode the intact bitstream, the quality of the reconstructed image is not 

considerably affected.  
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Forward 2D 
Discrete Wavelet 

Transform
EZW Encoding Entropy EncodingOriginal

Image
Encodeded 
Bitstream

Backward 2D 
Discrete Wavelet 

Transform
EZW Decoding Entropy DecodingReconstructed

Image
Encodeded 
Bitstream

(a)

(b)
 

Figure 2.11 Block diagrams of the zerotree wavelet image (a) encoder and (b) decoder 

 

EZW coding is commonly used in wavelet image or wavelet coder due to its 

superior compression performance. It is based on two major ideas which are the 

exploitation of the self-similarity inherent in the wavelet domain to predict the location 

of the significant information between different levels in the wavelet pyramid and 

successive approximation quantization (SAQ) of the wavelet coefficients. These two 

points refer to the dominant pass and subordinate pass respectively and they will be 

discussed into detail in the coming section. 

 

2.4.1 EZW coding algorithm 

 The EZW algorithm re-allocates the wavelet coefficients by sending the 

significant coefficients before those coefficients with smaller magnitude. It uses the 

zerotree structure as depicted in Figure 2.12 to build up the parent and children 

relationship of the wavelet coefficients across different scales. In the wavelet pyramid, 

every coefficient at a certain level can be related to a set of coefficients of similar 

orientation at the next finer level. The zerotree can exploit the correlation of the wavelet 

coefficients among different levels in the wavelet pyramid. The coefficient at the coarse 

level is called the parent and all coefficients at the same spatial locations and of similar 

orientation at the next finer level are called children. For the lowest frequency subband, 
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LL subband, each parent node has three children, one in each subband at the same level 

and spatial location but a different orientation.  

LL 3HL

3LH 3HH

2HL

1HL

2LH

1LH

2HH

1HH

 
Figure 2.12 Parent and children relationship of the Zerotree 

 

 In order to achieve progressive transmission, the EZW coding progressively 

quantizes the wavelet coefficients by bit plane coding such that the most significant bit 

plane is transmitted to the decoder first. A bit plane is referred to a pass in the following. 

During the coding of EZW, the coefficients are scanned in zigzag order as shown in 

Figure 2.13. Furthermore, a threshold value, T, is used to determine the significant 
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coefficients in each pass. If the magnitude of coefficient is greater than the threshold, 

then it is defined as significant. Otherwise, it is categorized as insignificant. After 

processing a pass, the threshold is decreased by half. The iteration stops when the 

threshold value is equal to 0 or the target bit rate is achieved. The initial threshold, T0, is 

usually set at ( )⎣ ⎦ixT maxlog220 = , where xi is the largest coefficient of the transformed 

image in magnitude. Due to the progressive transmission, it consists of many passes. 

For each pass, it conveys the location of the significant and insignificant coefficients 

and the most significant bit of each significant coefficient by the Dominant Pass and 

Subordinate Pass respectively.  

 
Figure 2.13 Zig-zag scanning of the wavelet coefficients 

 

The Dominant Pass classifies the significant coefficients. Each coefficient is 

compared with the threshold value. If the coefficient is larger than the predefined 

threshold in magnitude, it will be identified as significant coefficient. Otherwise, it will 

be arranged as the insignificant coefficient. If the significant coefficient is larger than 

zero, the symbol “P” (Positive) will be assigned to that significant coefficient. If not, the 

symbol “N” (Negative) will be assigned to that coefficient. If the coefficient and all of 

its child nodes are smaller than the threshold value, the symbol “T” (Zerotree root) is 

consigned to that insignificant coefficient. If the coefficient is smaller than the threshold 

but one or more than one of its child nodes are larger than the threshold, the symbol “Z” 

(Isolated Zero) will be allocated to that coefficient. Once the coefficient is determined to 
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be significant, it is set to zero in order to prevent from coding again in the next pass. 

The magnitudes of the significant coefficients are put to the Subordinate List to perform 

Subordinate Pass. All child nodes of a zerotree root are not encoded. Therefore, the 

zerotree can encode the location of zero coefficients. Figure 2.14 illustrates the flow 

diagram of the Dominant Pass of the EZW coding. 

 
Figure 2.14 Flow chart of the dominant pass of the EZW encoding 
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 The Subordinate Pass or the Refinement Pass provides one more bit on the 

magnitudes of the significant coefficients in the Subordinate List. The binary symbols 

“0” and “1” are given to the significant coefficients in the Subordinate List for the lower 

and upper half of the quantization intervals respectively. The limits of these 

quantization intervals are found by multiplying the current threshold by an integer k, 

where k = 2, 3, 4, … and these quantization intervals must be smaller than 2×T0. When 

the current threshold is equal to 1, the Subordinate Pass is skipped because it is not 

possible to categorize the significant coefficients into the lower or upper half of the 

quantization intervals. Figure 2.15 illustrates the flow chart of Subordinate Pass. An 

example will be mentioned below to explain the encoding and decoding procedures. 
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Start

The significant coefficient in the 
Subordinate List is located in the 

upper half of the quantization 
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Output 
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Yes No

End

 

Figure 2.15 Flow chart of the subordinate pass of the EZW encoding 

 

 

2.4.2 Encoding and decoding examples of EZW 

 A wavelet-transformed matrix will be shown as below which is an 8×8 matrix. 

The scanning pattern is in zigzag order. Three decomposition levels are performed.  
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118 22 7 20 -8 12 9 0 
-12 18 -11 72 8 6 2 3 
-59 11 19 9 7 -1 -2 8 
12 -8 7 -8 -6 -4 -9 7 
38 11 12 16 3 -2 2 1 
-3 7 4 -5 4 2 -3 1 
7 -2 0 7 2 5 0 2 
8 8 -6 7 0 0 7 0 

 

For the first pass, the initial threshold, T0, is 64 calculated by the equation 

mentioned above. In the Dominant Pass, the first coefficient is 118 which is larger than 

T0 and a symbol “P” is assigned to the Dominant List. The second coefficient is 22 

which is smaller than T0 but one of its descendants (72) is also greater than T0 so that a 

symbol “Z” is assigned to the Dominant List. For the third coefficient (-12), itself and 

all of its descendants are smaller than T0 so that a symbol “T” is assigned to the 

Dominant List to signify it as a zerotree node and all its descendants will not be 

encoded. After all coefficients are scanned in this way, the Dominant List of the first 

pass becomes P Z T T T T T P T T T T. When a coefficient is defined as significant, 

the absolute value of this significant coefficient is put into the Subordinate List to 

perform the Subordinate Pass. After the Dominant Pass, the Subordinate List becomes 

(118, 72). Then, the coefficients put into the Subordinate List are carried out the 

Subordinate Pass in order to quantize the significant coefficients. The current threshold 

is 64, the Subordinate Threshold is 32 which is equal to the current threshold, 64, 

reduced by half and the interval used in the quantization is [64, 128]. When the 

significant coefficient is located in the upper half of the interval which is [64, 96], a “0” 

is allocated to the bitstream. When the significant coefficient is located in the lower half 

of the interval which is [96, 128], a “1” is assigned to the bitstream. Therefore, the 

bitstream after the first Subordinate Pass is 1 0.The results after the first pass are 
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Pass 1: 
Threshold = 64 
Dominant List: P Z T T T T T P T T T T 
Subordinate List: 1 0  

For the second pass, the current threshold, T1, is decreased by half which is 32. The 

significant coefficients defined in the previous pass are not scanned in this pass. 

Therefore, the matrix becomes 

 

* 22 7 20 -8 12 9 0 
-12 18 -11 * 8 6 2 3 
-59 11 19 9 7 -1 -2 8 
12 -8 7 -8 -6 -4 -9 7 
38 11 12 16 3 -2 2 1 
-3 7 4 -5 4 2 -3 1 
7 -2 0 7 2 5 0 2 
8 8 -6 7 0 0 7 0 

 

In the Dominant Pass, it repeats the same procedures in the first pass. The first 

scanned coefficient (22) is smaller T1 and all of its descendants are also smaller than T1 

so that a symbol “T” is assigned to the Dominant List. After the second Dominant Pass, 

the Dominant List is T Z T N T T T P T T T. The significant coefficients of the 

previous pass are also included in the Subordinate List. Thus, the Subordinate List 

becomes (118, 72, 59, 38). In the Subordinate Pass, the current threshold is 32, the 

Subordinate Threshold is 16 and the quantization intervals are [32, 64), [64, 96) and [96, 

128). The limits of these quantization intervals are found by multiplying the current 

threshold, T1, by an integer k, where k = 2, 3, 4, … and these quantization intervals are 

smaller than 2×T0. For the first significant coefficient in the Subordinate List (118), it is 

located in the upper half [112, 128) of the quantizer [96, 128) so that a “1” is assigned 

to the bitstream. For the second significant coefficient (72), it is located in the lower 

half [64, 80) of the quantizer [64, 96) so that a “0” is assigned to the bitstream. The 
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remaining coefficients are repeated in this step to obtain the bitstream which is 1 0 1 0. 

The results of the second pass are 

 

Pass 2: 
Threshold = 32 
Dominant List: T Z T N T T T P T T T 
Subordinate List: 1 0 1 0  
 

The process is repeated until the current threshold is equal to 0 or the desired 

bitrate is obtained. The results of the remaining pass are 

 

Pass 3: 
Threshold = 16 
Dominant List:  
P Z P T P T Z T T P T T T T T T T T T T T T T T T P T T T T T T 
Subordinate List: 0 1 1 0 0 0 0 0 0 

 

Pass 4: 
Threshold = 8 
Dominant List: 
N Z N P P N P T N N P P T P T T T T T T T T P N T P T T P T T T T P P T T T T 
T T T T T T T T T T T T 
Subordinate List: 1 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0  
 

Pass 5: 
Threshold = 4 
Dominant List: 
P P P T T T P T N N T P T P P N P T T P N P T T P T T T T T T P T T T T P T 
Subordinate List: 
1 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 1 
 

Pass 6: 
Threshold = 2 
Dominant List: 
T P P T N N N T P N P P T N T P T T T P T 
Subordinate List: 
0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 1 
0 1 0 0 0 1 0 0  
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Pass 7: 
Threshold = 1 
Dominant List: T N T P P T T T T 
No subordinate pass!! 
 

In the seventh pass, the Subordinate Threshold is equal to 0.5 which is not an 

integer so that the Subordinate Pass cannot not be performed in this pass. The encoder 

stops in this stage and the output bitstream is shown as Header - DP1 - SP1 - DP2 - 

SP2 - DP3 - SP3 - DP4 - SP4 - DP5 - SP5 - DP6 - SP6 - DP7, where Header is the 

initial threshold, T0, DP1 and SP1 are the Dominant List and the bitstream of the 

Subordinate Pass in the first pass respectively. 

 At the decoder, it receives the header which contains the initial threshold, T0, 64, 

then the DP1 and SP1. The quantization interval is [64, 128) in the encoder. It starts to 

reconstruct the image. In the first pass, the first symbol is “P” and the first bit is “1” so 

that the first reconstructed coefficient is 112 which is the mean value of the upper half 

of the quantizer [64, 128). The second symbol is “Z” so that the reconstructed 

coefficient is zero and all of its child nodes are scanned later because there is one or 

more than one of its child nodes are significant. The third symbol is “T” so that the 

reconstructed coefficient is zero and all of its descendants are not scanned and marked 

as “x” in the following matrix. The sixth symbol is also “P” and the second subordinate 

bit is “0” so that the reconstructed coefficient is 80 which is the mean value of the lower 

half of the quantizer [64, 128). After the first pass of decoding, the reconstructed matrix 

becomes 
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Pass 1: 

112 0 0 0 x x x x 
0 0 0 80 x x x x 
x x x x x x 0 0 
x x x x x x 0 0 
x x x x x x x x 
x x x x x x x x 
x x x x x x x x 
x x x x x x x x 

 

In the second pass, the current threshold, T1, is cut by half which is 32 and the 

decoder receives the DP2 and SP2 to reconstruct the matrix again. The decoder refines 

firstly the significant coefficients defined in the previous pass. The quantization 

intervals at this pass in the encoder are [32, 64), [64, 96) and [96, 128). As the first 

reconstructed coefficient in the previous pass is 112 which lies inside the interval [96, 

128), so it refines to 120 which is the mean value of the upper half of the interval [96, 

128) because the first subordinate bit in the bitstream is “1”. For the second 

reconstructed coefficient in the previous pass (80), it refines to 72 which is the mean 

value of the lower half of the interval [64, 96) as 80 lies in the interval [64, 96) and the 

second bit of the bitstream is “0”. After refining all significant coefficients defined in 

the previous pass, the remaining coefficients can be reconstructed by the DP2 and SP2. 

The first symbol inside DP2 is “T” so that the first reconstructed coefficient is zero and 

all of its descendants are not significant and not to be scanned. The fifth symbol is “N” 

and the third bit is “1” so that the fifth reconstructed coefficient is –56 because the 

decoder reconstructs the coefficients which is not decoded in the previous pass so that 

the interval should be [T1, 2×T1] which is [32, 64). After decoding all symbols in the 

DP2, the reconstructed matrix becomes 
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Pass 2: 

120 0 x x x x x x 
0 0 x 72 x x x x 

-56 0 x x x x x x 
0 0 x x x x x x 
40 0 x x x x x x 
0 0 x x x x x x 
x x x x x x x x 
x x x x x x x x 

 

The decoder continues decoding the bitstream until the current threshold is zero or 

the desired bitrate is achieved. The results of decoding are shown as follows. 

 

Pass 3: 

116 20 0 20 x x 0 0 
0 20 0 76 x x 0 0 

-60 0 20 0 x x 0 0 
0 0 0 0 x x 0 0 
36 0 0 20 0 0 x x 
0 0 0 0 0 0 x x 
x x x x x x x x 
x x x x x x x x 

 

Pass 4: 

118 22 0 22 -10 14 10 0 
-14 18 -10 74 10 0 0 0 
-58 10 18 10 0 0 0 10 
14 -10 0 -10 0 0 -10 0 
38 10 14 18 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 x x 0 0 
10 10 0 0 x x 0 0 
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Pass 5: 

119 23 7 21 -9 13 9 0 
-13 19 -11 73 9 7 0 0 
-59 11 19 9 7 0 0 9 
13 -9 7 -9 -7 -5 -9 7 
39 11 13 17 0 0 0 0 
0 7 5 -5 5 0 0 0 
7 0 0 7 0 5 0 0 
9 9 -7 7 0 0 7 0 

 

Pass 6: 

118 22 7 20 -8 12 9 0 
-12 18 -11 72 8 6 2 3 
-59 11 19 9 7 0 -2 8 
12 -8 7 -8 -6 -4 -9 7 
38 11 12 16 3 -2 2 0 
-3 7 4 -5 4 2 -3 0 
7 -2 0 7 2 5 0 2 
8 8 -6 7 0 0 7 0 

 

Pass 7: 

118 22 7 20 -8 12 9 0 
-12 18 -11 72 8 6 2 3 
-59 11 19 9 7 -1 -2 8 
12 -8 7 -8 -6 -4 -9 7 
38 11 12 16 3 -2 2 1 
-3 7 4 -5 4 2 -3 1 
7 -2 0 7 2 5 0 2 
8 8 -6 7 0 0 7 0 

 

The reconstructed matrix after decoding the encoded bitstream is exactly the same 

as the original matrix. Therefore, the EZW attains lossless coding if the encoder 

continues to encode until the current threshold is equal to one and the decoder refines 

the whole bitstream. Besides, it also realizes the progressive property since the most 

significant bit is transmitted to the decoder first. 
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2.5 Modifications of EZW 

The conventional EZW algorithm was reviewed in the previous section. Three 

modified methods are discussed in this section. The objectives of them are to improve 

the compression efficiency and reduce the computational complexity. 

 

2.5.1 Multi-threshold approach 

 For the conventional EZW algorithm, if the parent node is significant, i.e. 

greater than the threshold value in the current pass, then its child nodes will be scanned 

later. Similarly, when the parent node is insignificant, its child nodes will also be 

scanned in order to determine whether one or more than one of its child nodes are 

significant or not. If there are significant child nodes, then isolated zero (IZ) is assigned 

to that parent node and all of its child nodes will be scanned later no matter they are 

significant or insignificant. Otherwise, the zerotree root (ZTR) is assigned to that parent 

node. For example, if a parent node in LH subband at level two as depicted in Figure 

2.16(b) is significant and all coefficients in the subband LH1 are insignificant, then the 

subband LH1 will still be scanned later in the conventional approach and the symbols 

generated in the subband LH1 are encoded and conveyed to the decoder for 

reconstruction. Since all coefficients in the subband LH1 are insignificant, so it needs 

not to be scanned and encoded.  

 According to this observation [58], a multi-threshold approach can be used to 

reduce the redundancy in the high frequency subbands leading to increase the 

compression efficiency. The multi-threshold is a set of coefficients with a maximum 

magnitude in each subband. As shown in Figure 2.16, the multi-threshold is {10, 15, … , 

50, 70}. The coefficient with the maximum magnitude, i.e. the threshold, in each 
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subband can indicate whether all coefficients in that subband are insignificant or not. If 

that maximum coefficient is smaller than the current threshold, then all coefficients in 

that subband can be skipped without scanning again and this subband is defined as 

insignificant subband such as the HL2 subband in Figure 2.16(b). Otherwise, it is 

classified as the significant subband, i.e. the LL subband in Figure 2.16(b). For the 

significant subband which is adjacent to the insignificant subband, it is determined as 

the marginal subband such as the HL3 subband in Figure 2.16(b).  Table 2.1(a) shows 

the codeword assignment to the symbols generated by the EZW coding for the 

significant subband. For the insignificant parent node in the significant subband, one 

more bit is used to determine whether its child nodes are significant or not. However, 

only one bit is enough to represent the insignificant parent node in the marginal subband 

as illustrated in Table 2.1(b) since all of its child nodes must be insignificant as 

indicated by the multi-threshold. Given that the redundancy in the high frequency 

subband is reduced, so the number of bits used to encode the coefficients in the high 

frequency subband can be saved. In this approach, the value of the multi-threshold is 

also transmitted to the decoder as side information for reconstruction and it is regarded 

as overhead. 
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Figure 2.16 An example of the multi-threshold and significant subbands, where the shaded subbands and the 

subbands with think lines represent the insignificant subbands and marginal subbands respectively 
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Table 2.1 Codewords of the symbols generated by the multi-threshold EZW algorithm for (a) significant 

subbands and (b) marginal subbands 

Symbols Codewords  Symbols Codewords 
 POS 11   POS 11 
NEG 10  NEG 10 

IZ 01  ZTR 0 
ZTR 00  IZ -- 

(a)                                                                                                   (b) 

 

2.5.2 Fixed length residual value method 

As mentioned in the section 2.4, the standard EZW algorithm uses four symbols to 

encode the wavelet coefficients. If a parent node is significant, then a symbol “P” or 

“N” is assigned to that coefficient depending on its sign and all of its child nodes will 

scanned later no matter they are insignificant or not. If all of its child nodes are 

insignificant, each coefficient will be given to a symbol (ZTR). Therefore, redundancy 

is introduced. The modified EZW algorithm with fixed length residual value [59] can be 

used to eliminate the redundant information. 

For the modified scheme, eight symbols instead of four are used, which are 

described in Table 2.2. Figure 2.17 shows an example to illustrate the concept of the 

modified scheme. The first coefficient is 28 which is larger than the threshold, 16, and it 

is also greater than 1.5×threshold, 24, so a symbol “PP” is allocated to that coefficient. 

Besides, the residual value, 4 (28 – 24), is also encoded and transmitted to the decoder 

for reconstruction. For the second coefficient, 19, it is greater than the threshold and all 

of its child nodes are insignificant so that a symbol “PZR” is assigned to the second 

coefficient. Compared to the original EZW algorithm, only four symbols are used to 

encode the example in Figure 2.17 by using the modified scheme. The subordinate pass 

is eliminated in the modified algorithm. Instead, the residual value of the significant 
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coefficient is encoded and sent to the decoder. For each pass, the number of bits used to 

encode each residual value is log2 (threshold/2). In the example, it uses three bits to 

encode the residual value, 4, of the first coefficient, 28. Since the redundancy in the 

high frequency subband is removed, so the coding efficiency can be improved. 

Furthermore, the transmission of residual value can enhance the speed of encoding 

process. 

 

28 19

-22 5

3

4 1

4

2 7

3

5 9

2

0 1

P P

N ZTR

ZTR

ZTR ZTR

ZTR

ZTR ZTR

ZTR

ZTR ZTR

ZTR

ZTR ZTR

Threshold = 16
- original EZW: P, P, N, 
ZTR, ZTR, ZTR, ZTR, 
ZTR, ZTR, ZTR, ZTR, 
ZTR
- modified EZW: PP, 
PZR, NZR, ZTR

 

Figure 2.17 An example of the modified EZW algorithm using eight symbols in the dominant pass 

 

Table 2.2 The descriptions of the eight symbols used in the modified EZW algorithm with fixed length residual 

value 

Symbols Description 
IZ The parent node is insignificant and one or more than one of its child nodes are significant 

ZTR The parent node and all of its child nodes are insignificant 
PZR The parent node is significant and positive valued and all of its child nodes are insignificant 
NZR The parent node is significant and negative valued and all of its child nodes are insignificant 
PP The parent node is significant, positive valued and greater than 1.5×threshold 
PN The parent node is significant, positive valued and smaller than 1.5×threshold 
NP The parent node is significant, negative valued and less than -1.5×threshold 

NN The parent node is significant, negative valued and the value of coefficient lies between –
threshold and -1.5×threshold 

 

2.5.3 Subband threshold scheme 

 The conventional EZW algorithm can losslessly encode the wavelet-transformed 

image when encoding all passes. The minimum weight subband method [60] can 

increase the coding gain with minimum loss during reconstruction. Figure 2.18(a) and 
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(b) depict the block diagrams of encoder and decoder using the minimum weight 

subband method respectively. The major difference to the conventional approach is that 

there is a pre-processing stage in the encoder. During pre-processing, some less 

important coefficients in the wavelet-transformed image are removed and these 

discarded coefficients cannot be recovered during reconstruction. The human visual 

system (HVS) cannot be aware of the degradation of the reconstructed image. However, 

these eliminated coefficients require more bits during compression. This method 

reduces some less important coefficients to attain further compression with slight 

quality degradation in the reconstructed image. 

 Usually, the HVS is more sensitive to the low frequency components than the 

high frequency components. According to this fact, the coefficients with small 

magnitude in the high frequency subband are removed. In the pre-processing stage, the 

weight of each subband is calculated, where the weight is the sum of the magnitudes of 

all coefficients in a subband, and the subband with minimum weight in each level is 

selected. After that, if a coefficient inside this minimum weight subband is smaller than 

a pre-defined threshold, it is set to zero. If the threshold is large, more coefficients will 

be set to zero and the reconstruction quality will become worse but the coding gain will 

be improved and vice versa. Therefore, the threshold should not be set too large and it 

usually lies between two to five. Since important information of the high frequency 

components, which contributes to the edge information, can still be preserved, so the 

visual quality of the minimum weight subband method can be comparable to that of the 

conventional EZW algorithm but the compression efficiency is improved due to the 

elimination of the less important coefficients in the high frequency subband. 
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Figure 2.18 Block diagrams of the zerotree wavelet image (a) encoder and (b) decoder with minimum weight 

subband method 

 

2.6 Literature review of Set-Partitioning Embedded Block 

Coder (SPECK)  

One of the typical algorithms to encode the wavelet coefficients is the 

Embedded Zerotree Coding (EZW) algorithm which is mentioned in section 2.4. The 

EZW algorithm makes use of the parent and children relationships of subbands among 

different decomposition levels but the same orientation in the zerotree structure to 

achieve compression. The latest coding algorithm, Set-Partition Embedded Block Coder 

(SPECK) algorithm [107], does not use the tree structure which exploits the similarity 

across different subbands in the wavelet pyramid to encode the wavelet coefficients. 

The SPECK algorithm can achieve superior compression performance as compared with 

that of the EZW algorithm and preserve the wavelet coefficients in a lossless way. Also, 

it can attain progressive transmission such that the important wavelet coefficients are 

sent to the decoder first. Sections 2.6.1 mentions the coding methodology of SPECK 

algorithm and section 2.6.2 gives a numerical example to explain the encoding and 

decoding procedures of SPECK algorithm. 
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2.6.1 Coding methodology of SPECK algorithm 

After applying Discrete Wavelet Transform (DWT) to an image W, the 

transformed image exhibits a pyramid structure defined by the levels of decomposition, 

the top most level of the wavelet pyramid becomes the root. The transformed 

coefficients, {ci,j}, is located at (i, j) in the wavelet transformed image X. Like the EZW 

algorithm, the threshold value of first pass, T0, is defined as, T0 = 2n, where 

( )⎣ ⎦jicn ,2 maxlog= .  Actually, n is the total number of passes performed in the SPECK 

algorithm. A set T of coefficients is significant in the first pass if  

( )
{ } 0,,

max Tc jiTji
≥

∈
 

Otherwise, it is insignificant. Hence, the significance test of a set is defined as  

( ) ( )
⎪⎩

⎪
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⎧ <≤

=Γ
+

∈

otherwise

cif
T

n
jiTji

n

n
,0
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 The SPECK algorithm contains two types of set which are type S and type I. 

These two sets come from the wavelet transformed image X as illustrated in Figure 2.19. 

A set I is decomposed into set S from coarser to finer resolution subbands through the 

transformed image. During the significance test, the EZW algorithm exploits the 

correlations among different subbands in the wavelet pyramid by making use of the 

zerotree structure. However, the SPECK algorithm does not use the tree structure. 

Instead, only the set S is performed the significance test. The objective of this approach 

is to utilize the clustering of energy found in the transformed image and concentrate on 

those areas of set which contain high energy. Thus, coefficients with high energy can be 

encoded first in order to achieve progressive transmission. Besides the sets S and I, the 

SPECK algorithm also keeps two lists which are the list of insignificant sets (LIS) and 

the list of significant pixels (LSP). LIS contains the sets S with different sizes which are 
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determined as insignificant to the threshold value in the current pass while LSP holds 

the significant coefficients which are defined to be significant in current or previous 

passes. 

X I

S

 

Figure 2.19 Partitioning of image X into sets S and I 

 After defining the symbols used in the SPECK algorithm, the main body of 

SPECK algorithm will be discussed. It consists of four major steps which are the 

initialization, sorting pass, refinement pass and quantization step. The first step is 

initialization which partitions the transformed image X into sets S and I. The set S 

represents the LL subband while the set I is the transformed image X excluding the set S. 

Then, the set S is added to the LIS and the LSP is set to empty set. Before going to 

sorting pass, the initial threshold, T0, is calculated by this equation, T0 = 2n, where 

( )⎣ ⎦jicn ,2 maxlog= .  In the sorting pass, each set S in the LIS is tested for significance. 

If a set S is significant with respect to the threshold value in current pass and is a 

coefficient, it is removed from the LIS and added to the LSP. A ‘1’ together with the 

sign of that significant coefficient are output to the bitstream. If a set S is significant and 

is a set of coefficients, it is divided into four equal subsets, O(S), as depicted in Figure 

2.20. Each subset with size one-fourth of its parent set S is tested for significance again. 

This process is recursively performed until the significant coefficient is found. The 

insignificant sets S are put to the LIS and tested for significance with respect to the 

lower threshold value in the next passes and a ‘0’ is allocated to the bitstream for each 
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insignificant set S. The aims to perform this process are that the coefficients with high 

energy can be determined and encoded first and the sets of insignificant coefficients can 

be classified such that the number of bits required to encode them can be limited. In 

other words, only a few number of bits are used to encode a large number of 

insignificant coefficients. 

S

S0 S1

S2 S3

O(S) = {S0, S1, S2, S3}

 

Figure 2.20 Partition of set S 

After testing all sets S, the remainder set I is tested for significance against the 

threshold value in the current pass. If it is insignificant, then a ‘0’ is assigned to the 

bitstream. Otherwise, it will be separated in four sets which are three new sets S and a 

new set I as shown in Figure 2.21 and a ‘1’ is output to the bitstream. The size of each 

new set S is the same as the chopped part of transformed image X. Each new set S is 

tested for significance as described before. The new remainder set I is also tested for 

significance again until it is insignificant or it becomes an empty set. The philosophy of 

this scheme is to make use of the hierarchical structure in the wavelet pyramid which 

tells us that the energy is concentrated at the lower resolution subbands and decreases 

slowly when going down the wavelet pyramid. If a remainder set I is significant to the 

threshold value in the current pass, the significant coefficient is likely located in the top 

left region of I. Then, this region is split into new sets S which are tested for 

significance. As a result, the regions containing significant coefficients are grouped into 
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small sets and processed first while the regions have insignificant coefficients are 

formed into large sets which are only encoded by a few number of bits. 

S1

S2 S3

S1

S3S2

I
I

 

Figure 2.21 Partition of set I 

The third step is refinement pass which is the same as the subordinate pass of 

EZW algorithm. Since section 2.4.1 discusses the subordinate pass of EZW algorithm in 

detail, so the refinement pass will not be mentioned in here. Finally, the threshold value 

of current pass is reduced by half and the LIS and LSP are passed to the next pass for 

further processing until the threshold value is equal to 1 or the desired bit rate is 

achieved. A detail example will be given in the coming section to explain the SPECK 

algorithm clearly. 

 

2.6.2 Numerical example of encoding and decoding procedures 

of SPECK algorithm 

 Before discussing a coding example of SPECK algorithm, we define some 

symbols first. Sk(i, j) and (i, j)k denotes the point or set with the size of 2k×2k and with 

(i,j) upper left corner coordinate. (i, j) are the coordinates of a single coefficient and (i, j) 

in LSP is always a single point. We use an 8×8 matrix which is the same as that in 

section 2.4 to illustrate the operations of SPECK algorithm. The elements of matrix are 

the wavelet-transformed coefficients. The scanning pattern is in zigzag order. Three 

decomposition levels are performed.  
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118 22 7 20 -8 12 9 0 
-12 18 -11 72 8 6 2 3 
-59 11 19 9 7 -1 -2 8 
12 -8 7 -8 -6 -4 -9 7 
38 11 12 16 3 -2 2 1 
-3 7 4 -5 4 2 -3 1 
7 -2 0 7 2 5 0 2 
8 8 -6 7 0 0 7 0 

 

 The maximum magnitude of coefficients is 118, so seven passes are carried out 

in total. For the first pass, the threshold value, T0, is 64. The initial S set is the top left 

coefficient which is 118, so S=S0(0, 0) and (0, 0)0 initializes the List of Insignificant Set 

(LIS) and the List of Significant Pixels (LSP) is initially empty. The first coefficient (0, 

0) is tested for significance. Its magnitude is 118, so it is significant. Hence, a ‘1’ 

representing ‘significant’ and a ‘+’ indicating its sign are sent to the bitstream and it is 

moved to the LSP. Then, the remainder set I is tested for significance, so a ‘1’ is 

allocated to the bitstream and the remainder set I is partitioned into three new sets S, 

which are (0, 1), (1, 0) and (1, 1), and a new remainder set I. The three new sets S are 

insignificant, so a ‘0’ is assigned to the bitstream for each insignificant set S and these 

three insignificant sets S are added to the LIS. Next, the remainder set I is tested for 

significance and it is significant. Thus, a ‘1’ is sent to the bitstream and the remainder 

set I is divided into three new sets S, which are S1(0, 2), S1(2, 0) and S1(2, 2), and a new 

remainder set I. The set S1(0, 2) is tested for significance first. It is significant, so it is 

quadrisected into four singleton sets, which are (0, 2), (0, 3), (1, 2) and (1, 3), added to 

LIS and a ‘1’ is output to the bitstream. Among these four coefficients, the first three 

coefficients, (0, 2), (0, 3) and (1, 2), are insignificant, so they are added to LIS and a ‘0’ 

is assigned to each insignificant coefficient in the bitstream. Only the last one, (1, 3), is 

significant since its magnitude is 72, so it is put into the LSP and a ‘1+’ is allocated to 



Chapter 2 Technical Review 

______________________________________________________________________________ 

56 

the bitstream. The remaining two sets, S1(2, 0) and S1(2, 2), are insignificant, so they are 

appended in the LIS and a ‘0’ is output to the bitstream for each insignificant set S. 

Finally, the remainder set I is insignificant, so a ‘0’ is assigned in the bitstream. The 

following table shows the output bits of the sorting pass of first pass. Like the EZW 

algorithm, the significant coefficients are put to refinement pass and the refinement bits 

are 1 0. 

Comment Point or Set Output Bits Action Control Lists 

S = (0, 0) 

I = rest 

   LIS = {(0, 0)0} 

LSP = Ø 

 (0, 0) 1+ (0, 0) to LSP LIS = Ø 

LSP = {(0, 0)} 

Test I S(I) 1 Split to 3’S, new I  

 (0, 1) 0 Add to LIS(0) LIS = {(0, 1)0} 

 (1, 0) 0 Add to LIS(0) LIS = {(0, 1)0, (1, 0)0} 

 (1, 1) 0 Add to LIS(0) LIS = {(0, 1)0, (1, 0)0, (1, 1)0} 

Test I S(I) 1 Split to 3’S, new I  

 S1(0, 2) 1 Quad split, add to LIS(0) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (1, 3)0} 

 (0, 2) 0   

 (0, 3) 0   

 (1, 2) 0   

 (1, 3) 1+ (1, 3) to LSP LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0} 

LSP = {(0, 0), (1, 3)} 

 S1(2, 0) 0 Add to LIS(1) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 0)1} 

 S1(2, 2) 0 Add to LIS(1) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 0)1, (2, 2)1} 

Test I S(I) 0   

Pass 1 

   LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 0)1, (2, 2)1} 

LSP = {(0, 0), (1, 3)} 

 

 The LIS at the end of the first pass is the initial list for second pass. The 

threshold value is this pass is halved, i.e. 32. The first six coefficients in the LIS, which 

are (0, 1), (1, 0), (1, 1), (0, 2), (0, 3) and (1, 2) are insignificant to the threshold value in 

this pass. So, a ‘0’ is put to the bitstream for each insignificant coefficient. Then, the set 

S1(2, 0) is tested for significance and a ‘1’ is assigned to the bitstream. Since it is 
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significant, so it is separated into four coefficients, (2, 0), (2, 1), (3, 0) and (3, 1), which 

are put to the LIS. The first coefficient, (2, 0), is greater than the threshold value in the 

current pass and is negative. Hence, it is removed in the LIS, put to the LSP and a ‘1-’ is 

assigned to the bitstream. The last set in the LIS, S1(2, 2), is tested for significance. It is 

insignificant and a ‘0’ is put to the bitstream. Next, the remainder set I is tested for 

significance and it is significant. Thus, it is broken up into three new sets S, S2(0, 4), 

S2(4, 0), S2(4, 4),  which are added to the LIS, and a ‘1’ is set to the bitstream. The first 

set, S2(0, 4), is tested and is insignificant. The second set, S2(4, 0), is significant, so it is 

further partitioned into four new sets, S1(4, 0), S1(4, 2), S1(6, 0) and S1(6, 2), which are 

put to the LIS and a ‘1’ becomes the output bit. For the set S1(4, 0), it is significant and 

split into four coefficients, (4, 0), (4, 1), (5, 0) and (5, 1), which are put to the LIS. The 

first coefficient, (4, 0), is significant and positive, so it is added to the LSP and a ‘1+’ is 

allocated to the bitstream. For the other three coefficients, (4, 1), (5, 0) and (5, 1), are 

insignificant. Thus, a ‘0’ is appended to the bitstream for each insignificant coefficient. 

Next, the three sets, S1(4, 2), S1(6, 0) and S1(6, 2), are insignificant. Hence, a ‘0’ is 

assigned to the bitstream for each insignificant set. Finally, the set, S2(4, 4) is also 

insignificant. Therefore, a ‘0’ is also added to the bitstream. The output bits for the 

sorting pass of pass 2 are shown in the following table. Four coefficients are determined 

as significant coefficients and the refinement bits of refinement pass are 1 0 1 0.  
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Comment Point or Set Output Bits Action Control Lists 

    LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 0)1, (2, 2)1} 

LSP = {(0, 0), (1, 3)} 

Test LIS(0) (0, 1) 0   

 (1, 0) 0   

 (1, 1) 0   

 (0, 2) 0   

 (0, 3) 0   

 (1, 2) 0   

Test LIS(1) S1(2, 0) 1 Quad split, add to LIS(0) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 0)0, (2, 1)0, (3, 0)0, (3, 1)0, (2, 2)1} 

 (2, 0) 1- (2, 0) to LSP LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (2, 2)1} 

LSP = {(0, 0), (1, 3), (2, 0)} 

 (2, 1) 0   

 (3, 0) 0   

 (3, 1) 0   

 S1(2, 2) 0   

Test I S(I) 1 Quad split, add to LIS(2) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (2, 2)1, (0, 4)2, (4, 

0)2, (4, 4)2} 

 S2(0, 4) 0   

 S2(4, 0) 1 Quad split, add to LIS(1) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (2, 2)1, (4, 0)1, (4, 

2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4, 4)2} 

 S1(4, 0) 1 Quad split, add to LIS(0) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (4, 0)0, (4, 1)0, (5, 

0)0, (5, 1)0, (2, 2)1, (4, 2)1, (6, 0)1, (6, 2)1, (0, 

4)2, (4, 4)2} 

 (4, 0) 1+ (4, 0) to LSP LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (4, 1)0, (5, 0)0, (5, 

1)0, (2, 2)1, (4, 2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4, 

4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0)} 

 (4, 1) 0   

 (5, 0) 0   

 (5, 1) 0   

 S1(4, 2) 0   

 S1(6, 0) 0   

 S1(6, 2) 0   

 S2(4, 4) 0   

Pass 2 

   LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (4, 1)0, (5, 0)0, (5, 

1)0, (2, 2)1, (4, 2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4, 

4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0)} 
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 The process is repeated until the current threshold is equal to 1 or the desired 

bitrate is obtained. The results of the remaining passes are shown in the following tables.  

 

Pass 3  
Comment Point or Set Output Bits Action Control Lists 

    LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (4, 1)0, (5, 0)0, (5, 

1)0, (2, 2)1, (4, 2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4, 

4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0)} 

Test LIS(0) (0, 1) 1+ (0, 1) to LSP LIS = {(1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 2)0, (2, 

1)0, (3, 0)0, (3, 1)0, (4, 1)0, (5, 0)0, (5, 1)0, (2, 

2)1, (4, 2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1)} 

 (1, 0) 0   

 (1, 1) 1+ (0, 1) to LSP LIS = {(1, 0)0, (0, 2)0, (0, 3)0, (1, 2)0, (2, 1)0, (3, 

0)0, (3, 1)0, (4, 1)0, (5, 0)0, (5, 1)0, (2, 2)1, (4, 

2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1)} 

 (0, 2) 0   

 (0, 3) 1+ (0, 3) to LSP LIS = {(1, 0)0, (0, 2)0, (1, 2)0, (2, 1)0, (3, 0)0, (3, 

1)0, (4, 1)0, (5, 0)0, (5, 1)0, (2, 2)1, (4, 2)1, (6, 

0)1, (6, 2)1, (0, 4)2, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3)} 

 (1, 2) 0   

 (2, 1) 0   

 (3, 0) 0   

 (3, 1) 0   

 (4, 1) 0   

 (5, 0) 0   

 (5, 2) 0   

Test LIS(1) S1(2, 2) 1 Quad split, add to LIS(0) LIS = {(1, 0)0, (0, 2)0, (1, 2)0, (2, 1)0, (3, 0)0, (3, 

1)0, (4, 1)0, (5, 0)0, (5, 1)0, (2, 2)0, (2, 3)0, (3, 

2)0, (3, 3)0, (4, 2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4, 

4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3)} 

 (2, 2) 1+ (2, 2) to LSP LIS = {(1, 0)0, (0, 2)0, (1, 2)0, (2, 1)0, (3, 0)0, (3, 

1)0, (4, 1)0, (5, 0)0, (5, 1)0, (2, 3)0, (3, 2)0, (3, 

3)0, (4, 2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2)} 

 (2, 3) 0   

 (3, 2) 0   

 (3, 3) 0   

 S1(4, 2) 1 Quad split, add to LIS(0) LIS = {(1, 0)0, (0, 2)0, (1, 2)0, (2, 1)0, (3, 0)0, (3, 
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1)0, (4, 1)0, (5, 0)0, (5, 1)0, (2, 3)0, (3, 2)0, (3, 

3)0, (4, 2)0, (4, 3)0, (5, 2)0, (5, 3)0, (6, 0)1, (6, 

2)1, (0, 4)2, (4, 4)2} 

 (4, 2) 0   

 (4, 3) 1+ (4, 3) to LSP LIS = {(1, 0)0, (0, 2)0, (1, 2)0, (2, 1)0, (3, 0)0, (3, 

1)0, (4, 1)0, (5, 0)0, (5, 1)0, (2, 3)0, (3, 2)0, (3, 

3)0, (4, 2)0, (5, 2)0, (5, 3)0, (6, 0)1, (6, 2)1, (0, 

4)2, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3)} 

 (5, 2) 0   

 (5, 3) 0   

 S1(6, 0) 0   

 S1(6, 2) 0   

Test LIS(2) S2(0, 4) 0   

 S2(4, 4) 0   

Pass 3 

   LIS = {(1, 0)0, (0, 2)0, (1, 2)0, (2, 1)0, (3, 0)0, (3, 

1)0, (4, 1)0, (5, 0)0, (5, 1)0, (2, 3)0, (3, 2)0, (3, 

3)0, (4, 2)0, (5, 2)0, (5, 3)0, (6, 0)1, (6, 2)1, (0, 

4)2, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3)} 

Refinement Bits = 0 1 1 0 0 0 0 0 0 

 

Pass 4 
Comment Point or Set Output Bits Action Control Lists 

    LIS = {(1, 0)0, (0, 2)0, (1, 2)0, (2, 1)0, (3, 0)0, (3, 

1)0, (4, 1)0, (5, 0)0, (5, 1)0, (2, 3)0, (3, 2)0, (3, 

3)0, (4, 2)0, (5, 2)0, (5, 3)0, (6, 0)1, (6, 2)1, (0, 

4)2, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3)} 

Test LIS(0) (1, 0) 1- (1, 0) to LSP LIS = {(0, 2)0, (1, 2)0, (2, 1)0, (3, 0)0, (3, 1)0, (4, 

1)0, (5, 0)0, (5, 1)0, (2, 3)0, (3, 2)0, (3, 3)0, (4, 

2)0, (5, 2)0, (5, 3)0, (6, 0)1, (6, 2)1, (0, 4)2, (4, 

4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0)} 

 (0, 2) 0   

 (1, 2) 1- (1, 2) to LSP LIS = {(0, 2)0, (2, 1)0, (3, 0)0, (3, 1)0, (4, 1)0, (5, 

0)0, (5, 1)0, (2, 3)0, (3, 2)0, (3, 3)0, (4, 2)0, (5, 

2)0, (5, 3)0, (6, 0)1, (6, 2)1, (0, 4)2, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2)} 

 (2, 1) 1+ (2, 1) to LSP LIS = {(0, 2)0, (3, 0)0, (3, 1)0, (4, 1)0, (5, 0)0, (5, 

1)0, (2, 3)0, (3, 2)0, (3, 3)0, (4, 2)0, (5, 2)0, (5, 

3)0, (6, 0)1, (6, 2)1 , (0, 4)2, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 
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(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1)} 

 (3, 0) 1+ (3, 0) to LSP LIS = {(0, 2)0, (3, 1)0, (4, 1)0, (5, 0)0, (5, 1)0, (2, 

3)0, (3, 2)0, (3, 3)0, (4, 2)0, (5, 2)0, (5, 3)0, (6, 

0)1, (6, 2)1, (0, 4)2, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0)} 

 (3, 1) 1- (3, 1) to LSP LIS = {(0, 2)0, (4, 1)0, (5, 0)0, (5, 1)0, (2, 3)0, (3, 

2)0, (3, 3)0, (4, 2)0, (5, 2)0, (5, 3)0, (6, 0)1, (6, 

2)1, (0, 4)2, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1)} 

 (4, 1) 1+ (4, 1) to LSP LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (2, 3)0, (3, 2)0, (3, 

3)0, (4, 2)0, (5, 2)0, (5, 3)0, (6, 0)1, (6, 2)1, (0, 

4)2, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1)} 

 (5, 0) 0   

 (5, 1) 0   

 (2, 3) 1+ (2, 3) to LSP LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (3, 3)0, (4, 

2)0, (5, 2)0, (5, 3)0, (6, 0)1, (6, 2)1, (0, 4)2, (4, 

4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3)} 

 (3, 2) 0   

 (3, 3) 1- (3, 3) to LSP LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (4, 2)0, (5, 

2)0, (5, 3)0, (6, 0)1, (6, 2)1, (0, 4)2, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3)} 

 (4, 2) 1+ (4, 2) to LSP LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5, 

3)0, (6, 0)1, (6, 2)1, (0, 4)2, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2)} 

 (5, 2) 0   

 (5, 3) 0   

Test LIS(1) S1(6, 0) 1 Quad split, add to LIS(0) LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5, 

3)0, (6, 0)0, (6, 1)0, (7, 0)0, (7, 1)0, (6, 2)1, (0, 

4)2, (4, 4)2} 

 (6, 0) 0   

 (6, 1) 0   

 (7, 0) 1+ (7, 0) to LSP LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5, 

3)0, (6, 0)0, (6, 1)0, (7, 1)0, (6, 2)1, (0, 4)2, (4, 

4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 
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1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0)} 

 (7, 1) 1+ (7, 1) to LSP LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5, 

3)0, (6, 0)0, (6, 1)0, (6, 2)1, (0, 4)2, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1)} 

 S1(6, 2) 0   

Test LIS(2) S2(0, 4) 1 Quad split, add to LIS(1) LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5, 

3)0, (6, 0)0, (6, 1)0, (6, 2)1, (0, 4)1, (0, 6)1, (2, 

4)1, (2, 6)1, (4, 4)2} 

 S1(0, 4) 1 Quad split, add to LIS(0) LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5, 

3)0, (6, 0)0, (6, 1)0, (0, 4)0, (0, 5)0, (1, 4)0, (1, 

5)0, (6, 2)1, (0, 6)1, (2, 4)1, (2, 6)1, (4, 4)2} 

 (0, 4) 1- (0, 4) to LSP LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5, 

3)0, (6, 0)0, (6, 1)0, (0, 5)0, (1, 4)0, (1, 5)0, (6, 

2)1, (0, 6)1, (2, 4)1, (2, 6)1, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4)} 

 (0, 5) 1+ (0, 5) to LSP LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5, 

3)0, (6, 0)0, (6, 1)0, (1, 4)0, (1, 5)0, (6, 2)1, (0, 

6)1, (2, 4)1, (2, 6)1, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5)} 

 (1, 4) 1+ (1, 4) to LSP LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5, 

3)0, (6, 0)0, (6, 1)0, (1, 5)0, (6, 2)1, (0, 6)1, (2, 

4)1, (2, 6)1, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4)} 

 (1, 5) 0   

 S1(0, 6) 1 Quad split, add to LIS(0) LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5, 

3)0, (6, 0)0, (6, 1)0, (1, 5)0, (0, 6)0, (0, 7)0, (1, 

6)0, (1, 7)0, (6, 2)1, (2, 4)1, (2, 6)1, (4, 4)2} 

 (0, 6) 1+ (0, 6) to LSP LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5, 

3)0, (6, 0)0, (6, 1)0, (1, 5)0, (0, 7)0, (1, 6)0, (1, 

7)0, (6, 2)1, (2, 4)1, (2, 6)1, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6)} 

 (0, 7) 0   

 (1, 6) 0   

 (1, 7) 0   

 S1(2, 4) 0   

 S1(2, 6) 0 Quad split, add to LIS(0) LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5, 
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3)0, (6, 0)0, (6, 1)0, (1, 5)0, (0, 7)0, (1, 6)0, (1, 

7)0, (2, 6)0, (2, 7)0, (3, 6)0, (3, 7)0, (6, 2)1, (2, 

4)1, (4, 4)2} 

 (2, 6) 0   

 (2, 7) 1+  LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5, 

3)0, (6, 0)0, (6, 1)0, (1, 5)0, (0, 7)0, (1, 6)0, (1, 

7)0, (2, 6)0, (3, 6)0, (3, 7)0, (6, 2)1, (2, 4)1, (4, 

4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7)} 

 (3, 6) 1-  LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5, 

3)0, (6, 0)0, (6, 1)0, (1, 5)0, (0, 7)0, (1, 6)0, (1, 

7)0, (2, 6)0, (3, 7)0, (6, 2)1, (2, 4)1, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6)} 

 (3, 7) 0   

 S2(4, 4) 0   

Pass 4 

   LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5, 

3)0, (6, 0)0, (6, 1)0, (1, 5)0, (0, 7)0, (1, 6)0, (1, 

7)0, (2, 6)0, (3, 7)0, (6, 2)1, (2, 4)1, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6)} 

Refinement Bits = 1 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 

 

Pass 5 
Comment Point or Set Output Bits Action Control Lists 

    LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5, 

3)0, (6, 0)0, (6, 1)0, (1, 5)0, (0, 7)0, (1, 6)0, (1, 

7)0, (2, 6)0, (3, 7)0, (6, 2)1, (2, 4)1, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6)} 

Test LIS(0) (0, 2) 1+ (0, 2) to LSP LIS = {(5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5, 3)0, (6, 

0)0, (6, 1)0, (1, 5)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 

6)0, (3, 7)0, (6, 2)1, (2, 4)1, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2)} 

 (5, 0) 0   

 (5, 1) 1+ (5, 1) to LSP LIS = {(5, 0)0, (3, 2)0, (5, 2)0, (5, 3)0, (6, 0)0, (6, 

1)0, (1, 5)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 6)0, (3, 
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7)0, (6, 2)1, (2, 4)1, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1)} 

 (3, 2) 1+ (3, 2) to LSP LIS = {(5, 0)0, (5, 2)0, (5, 3)0, (6, 0)0, (6, 1)0, (1, 

5)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 6)0, (3, 7)0, (6, 

2)1, (2, 4)1, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2)} 

 (5, 2) 1+ (5, 2) to LSP LIS = {(5, 0)0, (5, 3)0, (6, 0)0, (6, 1)0, (1, 5)0, (0, 

7)0, (1, 6)0, (1, 7)0, (2, 6)0, (3, 7)0, (6, 2)1, (2, 

4)1, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2)} 

 (5, 3) 1- (5, 3) to LSP LIS = {(5, 0)0, (6, 0)0, (6, 1)0, (1, 5)0, (0, 7)0, (1, 

6)0, (1, 7)0, (2, 6)0, (3, 7)0, (6, 2)1, (2, 4)1, (4, 

4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3)} 

 (6, 0) 1+ (6, 0) to LSP LIS = {(5, 0)0, (6, 1)0, (1, 5)0, (0, 7)0, (1, 6)0, (1, 

7)0, (2, 6)0, (3, 7)0, (6, 2)1, (2, 4)1, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0)} 

 (6, 1) 0   

 (1, 5) 1+ (1, 5) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 

6)0, (3, 7)0, (6, 2)1, (2, 4)1, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5)} 

 (0, 7) 0   

 (1, 6) 0   

 (1, 7) 0   

 (2, 6) 0   

 (3, 7) 1+ (3, 7) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 

6)0, (6, 2)1, (2, 4)1, (4, 4)2} 
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LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7)} 

Test LIS(1) S1(6, 2) 1 Quad split, add to LIS(0) LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 

6)0, (6, 2)0, (6, 3)0, (7, 2)0, (7, 3)0, (2, 4)1, (4, 

4)2} 

 (6, 2) 0   

 (6, 3) 1+ (6, 3) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 

6)0, (6, 2)0, (7, 2)0, (7, 3)0, (2, 4)1, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3)} 

 (7, 2) 1- (7, 2) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 

6)0, (6, 2)0, (7, 3)0, (2, 4)1, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2)} 

 (7, 3) 1+ (7, 3) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 

6)0, (6, 2)0, (2, 4)1, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3)} 

 S1(2, 4) 1 Quad split, add to LIS(0) LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 

6)0, (6, 2)0, (2, 4)0, (2, 5)0, (3, 4)0, (3, 5)0, (4, 

4)2} 

 (2, 4) 1+ (2, 4) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 

6)0, (6, 2)0, (2, 5)0, (3, 4)0, (3, 5)0, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4)} 

 (2, 5) 0   

 (3, 4) 1- (3, 4) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 

6)0, (6, 2)0, (2, 5)0, (3, 5)0, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 
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(7, 3), (2, 4), (3, 4)} 

 (3, 5) 1- (3, 5) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 

6)0, (6, 2)0, (2, 5)0, (4, 4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5)} 

Test LIS(2) S2(4, 4) 1 Quad split, add to LIS(1) LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 

6)0, (6, 2)0, (2, 5)0, (4, 4)1, (4, 6)1, (6, 4)1, (6, 

6)1} 

 S1(4, 4) 1 Quad split, add to LIS(0) LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 

6)0, (6, 2)0, (2, 5)0, (4, 4)0, (4, 5)0, (5, 4)0, (5, 

5)0, (4, 6)1, (6, 4)1, (6, 6)1} 

 (4, 4) 0   

 (4, 5) 0   

 

(5, 4) 1+ (5, 4) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 

6)0, (6, 2)0, (2, 5)0, (4, 4)0, (4, 5)0, (5, 5)0, (4, 

6)1, (6, 4)1, (6, 6)1} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4)} 

 (5, 5) 0   

 S1(4, 6) 0   

 

S1(6, 4) 1 Quad split, add to LIS(0) LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 

6)0, (6, 2)0, (2, 5)0, (4, 4)0, (4, 5)0, (5, 5)0, (6,  

4)0, (6, 5)0, (7, 4)0, (7, 5)0, (4, 6)1, (6, 6)1} 

 (6, 4) 0   

 

(6, 5) 1+ (6, 5) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 

6)0, (6, 2)0, (2, 5)0, (4, 4)0, (4, 5)0, (5, 5)0, (6, 

4)0, (7, 4)0, (7, 5)0, (4, 6)1, (6, 6)1} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5)} 

 (7, 4) 0   

 (7, 5) 0   

 

S1(6, 6) 1 Quad split, add to LIS(0) LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 

6)0, (6, 2)0, (2, 5)0, (4, 4)0, (4, 5)0, (5, 5)0, (6, 

4)0, (7, 4)0, (7, 5)0, (6, 6)0, (6, 7)0, (7, 6)0, (7, 

7)0, (4, 6)1} 

 (6, 6) 0   

 (6, 7) 0   
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(7, 6) 1+ (7, 6) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 

6)0, (6, 2)0, (2, 5)0, (4, 4)0, (4, 5)0, (5, 5)0, (6, 

4)0, (7, 4)0, (7, 5)0, (6, 6)0, (6, 7)0, (7, 7)0, (4, 

6)1} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6)} 

 (7, 7) 0   

Pass 5 

   LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 

6)0, (6, 2)0, (2, 5)0, (4, 4)0, (4, 5)0, (5, 5)0, (6, 

4)0, (7, 4)0, (7, 5)0, (6, 6)0, (6, 7)0, (7, 7)0, (4, 

6)1} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6)} 

Refinement Bits = 1 0 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 

 

 

Pass 6 
Comment Point or Set Output Bits Action Control Lists 

    LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 

6)0, (6, 2)0, (2, 5)0, (4, 4)0, (4, 5)0, (5, 5)0, (6, 

4)0, (7, 4)0, (7, 5)0, (6, 6)0, (6, 7)0, (7, 7)0, (4, 

6)1} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6)} 

Test LIS(0) (5, 0) 1- (5, 0) to LSP LIS = {(6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 6)0, (6, 

2)0, (2, 5)0, (4, 4)0, (4, 5)0, (5, 5)0, (6, 4)0, (7, 

4)0, (7, 5)0, (6, 6)0, (6, 7)0, (7, 7)0, (4, 6)1} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5, 

0)} 

 (6, 1) 1- (6, 1) to LSP LIS = {(0, 7)0, (1, 6)0, (1, 7)0, (2, 6)0, (6, 2)0, (2, 

5)0, (4, 4)0, (4, 5)0, (5, 5)0, (6, 4)0, (7, 4)0, (7, 

5)0, (6, 6)0, (6, 7)0, (7, 7)0, (4, 6)1} 
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LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5, 

0), (6, 1)} 

 (0, 7) 0   

 (1, 6) 1+ (1, 6) to LSP LIS = {(0, 7)0, (1, 7)0, (2, 6)0, (6, 2)0, (2, 5)0, (4, 

4)0, (4, 5)0, (5, 5)0, (6, 4)0, (7, 4)0, (7, 5)0, (6, 

6)0, (6, 7)0, (7, 7)0, (4, 6)1} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5, 

0), (6, 1), (1, 6)} 

 (1, 7) 1+ (1, 7) to LSP LIS = {(0, 7)0, (2, 6)0, (6, 2)0, (2, 5)0, (4, 4)0, (4, 

5)0, (5, 5)0, (6, 4)0, (7, 4)0, (7, 5)0, (6, 6)0, (6, 

7)0, (7, 7)0, (4, 6)1} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5, 

0), (6, 1), (1, 6), (1, 7)} 

 (2, 6) 1- (2, 6) to LSP LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (4, 4)0, (4, 5)0, (5, 

5)0, (6, 4)0, (7, 4)0, (7, 5)0, (6, 6)0, (6, 7)0, (7, 

7)0, (4, 6)1} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5, 

0), (6, 1), (1, 6), (1, 7), (2, 6)} 

 (6, 2) 0   

 (2, 5) 0   

 (4, 4) 1+ (4, 4) to LSP LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (4, 5)0, (5, 5)0, (6, 

4)0, (7, 4)0, (7, 5)0, (6, 6)0, (6, 7)0, (7, 7)0, (4, 

6)1} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5, 

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4)} 
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 (4, 5) 1- (4, 5) to LSP LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (5, 5)0, (6, 4)0, (7, 

4)0, (7, 5)0, (6, 6)0, (6, 7)0, (7, 7)0, (4, 6)1} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5, 

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5)} 

 (5, 5) 1+ (5, 5) to LSP LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (6, 4)0, (7, 4)0, (7, 

5)0, (6, 6)0, (6, 7)0, (7, 7)0, (4, 6)1} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5, 

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5), (5, 5)} 

 (6, 4) 1+ (6, 4) to LSP LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (7, 4)0, (7, 5)0, (6, 

6)0, (6, 7)0, (7, 7)0, (4, 6)1} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5, 

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5), (5, 5), 

(6, 4)} 

 (7, 4) 0   

 (7, 5) 0   

 (6, 6) 0   

 (6, 7) 1+ (6, 7) to LSP LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (7, 4)0, (7, 5)0, (6, 

6)0, (7, 7)0, (4, 6)1} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5, 

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5), (5, 5), 

(6, 4), (6, 7)} 

 (7, 7) 0   

Test LIS(1) S1(4, 6) 1 Quad split, add to LIS(0) LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (7, 4)0, (7, 5)0, (6, 

6)0, (7, 7)0, (4, 6)0, (4, 7)0, (5, 6)0, (5, 7)0} 

 (4, 6) 1+ (4, 6) to LSP LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (7, 4)0, (7, 5)0, (6, 

6)0, (7, 7)0, (4, 7)0, (5, 6)0, (5, 7)0} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 
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2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5, 

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5), (5, 5), 

(6, 4), (6, 7), (4, 6)} 

 (4, 7) 0   

 (5, 6) 1- (5, 6) to LSP LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (7, 4)0, (7, 5)0, (6, 

6)0, (7, 7)0, (4, 7)0, (5, 7)0} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5, 

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5), (5, 5), 

(6, 4), (6, 7), (4, 6), (5, 6)} 

 (5, 7) 0   

Pass 6 

   LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (7, 4)0, (7, 5)0, (6, 

6)0, (7, 7)0, (4, 7)0, (5, 7)0} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5, 

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5), (5, 5), 

(6, 4), (6, 7), (4, 6), (5, 6)} 

Refinement Bits = 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 0 0 

1 0 1 0 0 0 0 0 1 
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Pass 7 
Comment Point or Set Output Bits Action Control Lists 

    LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (7, 4)0, (7, 5)0, (6, 

6)0, (7, 7)0, (4, 7)0, (5, 7)0} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5, 

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5), (5, 5), 

(6, 4), (6, 7), (4, 6), (5, 6)} 

Test LIS(0) (0, 7) 0   

 (6, 2) 0   

 (2, 5) 1- (2, 5) to LSP LIS = {(0, 7)0, (6, 2)0, (7, 4)0, (7, 5)0, (6, 6)0, (7, 

7)0, (4, 7)0, (5, 7)0} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5, 

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5), (5, 5), 

(6, 4), (6, 7), (4, 6), (5, 6), (2, 5)} 

 (7, 4) 0   

 (7, 5) 0   

 (6, 6) 0   

 (7, 7) 0   

 (4, 7) 1+ (4, 7) to LSP LIS = {(0, 7)0, (6, 2)0, (7, 4)0, (7, 5)0, (6, 6)0, (7, 

7)0, (5, 7)0} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5, 

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5), (5, 5), 

(6, 4), (6, 7), (4, 6), (5, 6), (2, 5), (4, 7)} 

 (5, 7) 1+ (5, 7) to LSP LIS = {(0, 7)0, (6, 2)0, (7, 4)0, (7, 5)0, (6, 6)0, (7, 

7)0} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1), 

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3, 

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4), 

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3, 

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2), 

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5, 

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5), (5, 5), 

(6, 4), (6, 7), (4, 6), (5, 6), (2, 5), (4, 7), (5, 7)} 

No refinement pass 
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 In the seventh pass, the refinement pass cannot not be performed since the 

threshold value is one in this pass. The encoder stops in this pass and the output 

bitstream is shown as Header - SB1 - RB1 - SB2 - RB2 - SB3 - RB3 - SB4 - RB4 - 

SB5 - RB5 - SB6 - RB6 - SB7, where Header is the initial threshold, T0, SB1 and RB1 

are the output bits of sorting pass and refinement bits of refinement pass in the first pass 

respectively. The structure of bitstream is the same as that of EZW algorithm.  

 The decoder just duplicates the procedure of the encoder after received the 

encoded bitstream. If the word of the column “Output Bits” is replaced by “Input Bits” 

in the result tables of sorting pass in the encoder, the same table, as shown in the 

follows, can be constructed by the received bitstream. At the decoder, it receives the 

header which contains the initial threshold, T0, 64, then the SB1 and RB1. The 

quantization interval is )128,64[  in the decoder. The first input bit is ‘1+’ and the first 

refinement bit is ‘1’, so the first reconstructed coefficient, (0, 0), is a positive coefficient 

and lies in the upper half, )128,96[ , of the quantization interval, )128,64[ . Hence, the 

first reconstructed coefficient is 112 which is the mean value of the upper half, )128,96[ , 

of the quantization interval, )128,64[ . The second significant coefficient in this pass is 

located at (1, 3) and its input bits of sorting pass and refinement bit is ‘1+’ and ‘0’ 

respectively. Thus, it lies on the lower half, )96,80[ , of the quantization interval, 

)128,64[ . The reconstructed coefficient, (1, 3), is 80 which is the average value of the 

lower half, )128,96[ , of the quantization interval, )128,64[ . The remaining coefficients 

are reconstructed in the same way as the encoding process and the reconstructed matrix 

of the first pass is shown as follows. 
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Comment Point or Set Input Bits Action Control Lists 

S = (0, 0) 

I = rest 

   LIS = {(0, 0)0} 

LSP = Ø 

 (0, 0) 1+ (0, 0) to LSP LIS = Ø 

LSP = {(0, 0)} 

Test I S(I) 1 Split to 3’S, new I  

 (0, 1) 0 Add to LIS(0) LIS = {(0, 1)0} 

 (1, 0) 0 Add to LIS(0) LIS = {(0, 1)0, (1, 0)0} 

 (1, 1) 0 Add to LIS(0) LIS = {(0, 1)0, (1, 0)0, (1, 1)0} 

Test I S(I) 1 Split to 3’S, new I  

 S1(0, 2) 1 Quad split, add to LIS(0) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (1, 3)0} 

 (0, 2) 0   

 (0, 3) 0   

 (1, 2) 0   

 (1, 3) 1+ (1, 3) to LSP LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0} 

LSP = {(0, 0), (1, 3)} 

 S1(2, 0) 0 Add to LIS(1) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 0)1} 

 S1(2, 2) 0 Add to LIS(1) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 0)1, (2, 2)1} 

Test I S(I) 0   

Pass 1 

   LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 0)1, (2, 2)1} 

LSP = {(0, 0), (1, 3)} 

Refinement Bits = 1 0 

 

Reconstructed Matrix of Pass 1 
112 0 0 0 0 0 0 0 
0 0 0 80 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

 

 For the second pass, the threshold value is halved, i.e. 32, and the significant 

coefficients determined in the previous pass are refined first. The first significant 

coefficient is located at (0, 0). Its value is 112 and the first refinement bit in this pass is 

‘1’, so it lies in the upper half, )128,112[ , of the quantization interval, )128,96[ . Thus, 
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its reconstructed value in this pass is 120 which is the mean value of the interval, 

)128,112[ . The remaining coefficients are reconstructed in this way. The reconstructed 

matrix of pass 2 is shown as follows. 

 

Pass 2 
Comment Point or Set Input Bits Action Control Lists 

    LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 0)1, (2, 2)1} 

LSP = {(0, 0), (1, 3)} 

Test LIS(0) (0, 1) 0   

 (1, 0) 0   

 (1, 1) 0   

 (0, 2) 0   

 (0, 3) 0   

 (1, 2) 0   

Test LIS(1) S1(2, 0) 1 Quad split, add to LIS(0) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 0)0, (2, 1)0, (3, 0)0, (3, 1)0, (2, 2)1} 

 (2, 0) 1- (2, 0) to LSP LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (2, 2)1} 

LSP = {(0, 0), (1, 3), (2, 0)} 

 (2, 1) 0   

 (3, 0) 0   

 (3, 1) 0   

 S1(2, 2) 0   

Test I S(I) 1 Quad split, add to LIS(2) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (2, 2)1, (0, 4)2, (4, 

0)2, (4, 4)2} 

 S2(0, 4) 0   

 S2(4, 0) 1 Quad split, add to LIS(1) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (2, 2)1, (4, 0)1, (4, 

2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4, 4)2} 

 S1(4, 0) 1 Quad split, add to LIS(0) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (4, 0)0, (4, 1)0, (5, 

0)0, (5, 1)0, (2, 2)1, (4, 2)1, (6, 0)1, (6, 2)1, (0, 

4)2, (4, 4)2} 

 (4, 0) 1+ (4, 0) to LSP LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (4, 1)0, (5, 0)0, (5, 

1)0, (2, 2)1, (4, 2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4, 

4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0)} 

 (4, 1) 0   

 (5, 0) 0   

 (5, 1) 0   

 S1(4, 2) 0   
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 S1(6, 0) 0   

 S1(6, 2) 0   

 S2(4, 4) 0   

Pass 2 

   LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (4, 1)0, (5, 0)0, (5, 

1)0, (2, 2)1, (4, 2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4, 

4)2} 

LSP = {(0, 0), (1, 3), (2, 0), (4, 0)} 

Refinement Bits = 1 0 1 0 

 

Reconstructed Matrix of Pass 2 
120 0 0 0 0 0 0 0 
0 0 0 72 0 0 0 0 

-56 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
40 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

  

 The remaining passes perform the similar procedure to reconstruct the matrix 

and the reconstructed matrixes in each pass are shown as follows. 

 

Reconstructed Matrix of Pass 3 
116 20 0 20 0 0 0 0 
0 20 0 76 0 0 0 0 

-60 0 20 0 0 0 0 0 
0 0 0 0 0 0 0 0 
36 0 0 20 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
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Reconstructed Matrix of Pass 4 
118 22 0 22 -10 14 10 0 
-14 18 -10 74 10 0 0 0 
-58 10 18 10 0 0 0 10 
14 -10 0 -10 0 0 -10 0 
38 10 14 18 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
10 10 0 0 0 0 0 0 

 

Reconstructed Matrix of Pass 5 
119 23 7 21 -9 13 9 0 
-13 19 -11 73 9 7 0 0 
-59 11 19 9 7 0 0 9 
13 -9 7 -9 -7 -5 -9 7 
39 11 13 17 0 0 0 0 
0 7 5 -5 5 0 0 0 
7 0 0 7 0 5 0 0 
9 9 -7 7 0 0 7 0 

 
Reconstructed Matrix of Pass 6 

118 22 7 20 -8 12 9 0 
-12 18 -11 72 8 6 2 3 
-59 11 19 9 7 0 -2 8 
12 -8 7 -8 -6 -4 -9 7 
38 11 12 16 3 -2 2 0 
-3 7 4 -5 4 2 -3 0 
7 -2 0 7 2 5 0 2 
8 8 -6 7 0 0 7 0 

 

Reconstructed Matrix of Pass 7 
118 22 7 20 -8 12 9 0 
-12 18 -11 72 8 6 2 3 
-59 11 19 9 7 -1 -2 8 
12 -8 7 -8 -6 -4 -9 7 
38 11 12 16 3 -2 2 1 
-3 7 4 -5 4 2 -3 1 
7 -2 0 7 2 5 0 2 
8 8 -6 7 0 0 7 0 

 

The number of bits used in this example using the SPECK algorithm is 440 bits 

if only one bit is used to identify the sign of significant coefficient in each pass. The 
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EZW algorithm uses 467 bits to encode the same matrix as that of the SPECK algorithm 

if the Huffman coding is employed to encode the dominant symbols generated in the 

dominant pass. As a result, the SPECK algorithm can achieve superior compression 

performance than the EZW algorithm and attains the reversible (lossless) coding. In 

addition, subsequent entropy coding, such as arithmetic coding, can achieve further 

compression after applied in the SPECK algorithm. Besides, it can achieve progressive 

transmission since the important information is sent to the decoder first. 

 

2.7 Overview of the framework of the 2D wavelet video 

coder 

 As the Discrete Cosine Transform (DCT) suffers from “blocking effect” in low 

bit-rate applications, the Discrete Wavelet Transform (DWT) is used to eliminate the 

blocking artifacts due to its global decomposition of the entire image or video frame. 

Therefore, the DWT is widely used in image processing and video technology. The 2-

dimensional (2D) wavelet video coder makes use of the concept of the traditional hybrid 

video-coding to remove both spatial and temporal redundancies. Figure 2.22 depicts the 

block diagram of the 2D wavelet video encoder.  Firstly, the original video frames are 

performed DWT to remove the spatial redundancy. Then, the block-based motion 

estimation is carried out in the wavelet domain for the wavelet-transformed frames in 

order to remove the temporal redundancy of consecutive video frames. The motion 

vectors obtained are entropy encoded and transmitted to the decoder. During motion 

compensation, the predicted frame is obtained by the motion vectors and the decoded 

frame which is stored in the frame memory. After that, the original frame is subtracted 

by the predicted frame to form the residual frame. Finally, the residual frame is 

quantized, entropy encoded to form the encoded bitstream. Besides, the quantized 
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residual frame is inversely quantized to store in the frame memory for encoding next 

frame. 

DWT

MC

ME

Q

IQ

+

FM

Entropy
Coding

+

-

Original 
Frame

Compressed 
Bitstream

Motion
Vector

Residual
Frame

Predicted
Frame

ME: Motion Estimation
MC: Motion Compensation
DWT: Discrete Wavelet Transform
Q: Quantization
IQ: Inverse Quantization
FM: Frame Memory  

Figure 2.22 Block diagram of the framework of the 2D wavelet video encoder 

The advantages of the DWT are that it is free from blocking artifacts, provides 

superior compression performance as compared to that of the DCT which is always 

used in traditional image and video coding systems. The DWT is also scalable in nature 

which can meet to different low-end display requirements and adapt different network 

conditions.  Therefore, it is possible that the DWT will be used in the next generation 

image and video coding standards.  

 Besides, the motion estimation and compensation in the wavelet domain bear 

some similarity and difference as compared with the conventional video coding 

standards. Let us exploit some properties in the wavelet domain, such as the correlation 

between subbands across different levels inside the wavelet pyramid in order to enhance 

the speed of the motion estimation. In the following section, a classic wavelet-domain 
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motion estimation algorithm will be discussed and some modifications of this 

conventional algorithm will also be included. 

 

 

2.8 Literature review of the wavelet-domain motion 
estimation and compensation in the 2D wavelet video 
coder 

 In this section, the typical motion estimation algorithm in wavelet domain will 

be mentioned in section 2.8.1. Some improvements of this conventional algorithm will 

be discussed in sections 2.8.2 and 2.8.3. The framework of the wavelet video coding 

system that will be discussed in the following sections is shown in Figure 2.22. 

 

2.8.1 Multi-resolution Motion Estimation and Compensation 

(MRME) 

A conventional motion estimation algorithm in the wavelet domain, Multi-

resolution Motion Estimation (MRME) [74], is discussed in this section. The objectives 

of this approach are to reduce the searching time for motion estimation and provide a 

smooth motion vector field. As shown in Figure 2.23, a video frame is decomposed into 

many levels with different resolutions by the DWT with three levels. Although the 

motion activities inside a frame at different levels of the pyramid are different, they are 

highly correlated because they specify the same motion activity with different scales. 

According to this observation, the motion vectors of the LL, LH, HL and HH subbands 

at the lowest resolution level are calculated first. Then, the motion vectors obtained in 

the previous resolution level are used as an initial searching position of the current level 
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and the refinement is performed within a reduced search window in order to reduce the 

operations used in motion estimation. Figure 2.24 depicts the MRME scheme. Vi(x, y) 

represents the motion vector with the centre (x, y) at level i. The motion vector of a LH 

subband, Vi(x, y), which can be written as Vi(x, y) = 2 × Vi+1(x, y) + Δ(x, y), for i = 1 or 

2, where Δ(x, y) is the refinement motion vector. As an accurate initial searching 

position can be obtained, the search window for the refinement can be reduced in each 

level. For example, the search window in level 3 is ±15, it will be ±7 in level 2 and ±3 

in level 1 (see Figure 2.23). As a result, the searching time and operations used in 

motion estimation can be reduced significantly. 

LH1

LH2

HL1 HH1

HL2 HH2

LH3 HH3

LL

HL3Level 3

Level 2

Level 1

 

Figure 2.23 The pyramid structure of wavelet decomposition and reconstruction 
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2*V3(x, y) a(x, y)

V1(x, y)

 

Figure 2.24 Variable block-size multiresolution motion estimation 

The human visual system is more sensitive to the degradation in the low 

frequency components than that of the high frequency components. In other words, the 

human eye is more susceptible to the error in detail regions than that near the edges. 

Therefore, the block size is varied across different resolution levels. For example, the 

block size is 2 × 2 in level 3, 4 × 4 in level 2 and 8 × 8 in level 1. As a result, the 

number of blocks is kept constant at different resolutions. Under this situation, the 

motion of small objects in the lowest resolution level can be detected. If the block size 

remains unchanged for every level, two objects moving in different directions may be 

grouped into a block in the lowest resolution level. But only one direction can be kept 

tracked. Therefore, an inaccurate motion vector may be obtained leading to reduce the 

compression efficiency. The variable block-size approach is adopted in the MRME 

scheme in order to overcome this difficulty.   
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2.8.2 Adaptive MRME (AMRME), Bi-directional MRME (BMRME) 

and Fast MRME (FMRME) 

 The conventional MRME algorithm [74] is mentioned in the previous section. In 

this section, three modified algorithms [75] will be discussed. They can be combined 

together in order to improve the reconstructed quality and reduce the searching time.  

 

2.8.2.1 Adaptive Thresholding Technique (AMRME) 

 The original MRME scheme [74] performs searching in all subbands at 

all levels but the correlation between the high frequency subbands of two 

consecutive video frames is not very high, so the prediction in high frequency 

subbands may be inaccurate. The uncorrelated high frequency subbands of 

successive frames are due to two reasons. The first one is that the DWT is 

translational invariant. That means, if the object in spatial domain moves to right by 

a pixel, it may not shift to right by one pixel in wavelet domain. Actually, it will shift 

to right by two pixels due to the dyadic decomposition. The other reason is that the 

high frequency frame is mainly composed by the edge information, so it will be 

changed rapidly even though the video sequence contains small motion.  

According to this fact, if the absolute difference between the current block 

and the best match block is greater than a threshold value, the block will be discarded 

and a zero block will be initialized in the decoder. From the experimental result, the 

threshold value should be smaller than the energy of the current block. The threshold 

factor is defined as the ratio of the threshold value and the energy of the current 
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block. It should be between 0.6 and 0.9 in order to provide superior compression 

performance.  

The AMRME [75] can reduce the bits used to encode the motion vectors 

because the motion vectors of the mismatch block will not be encoded. However, the 

computational complexity is higher than the conventional approach as the energy of 

the current block is required to calculate in order to find the threshold value. 

 

2.8.2.2 Bi-directional Motion Estimation (BMRME) 

 In the traditional MRME scheme [74], the previous frame is always used as the 

reference frame but the best matched block may not be in the previous frame. Instead, it 

may be located in the future frame. So, the bi-directional prediction is employed in the 

MRME scheme [75] in order to improve the reconstruction quality. If the bi-directional 

motion estimation is performed in all subbands, the computational complexity will be 

increased significantly. Therefore, it is only performed in the subbands at the lowest 

resolution level, i.e. LL, LH3, HL3 and HH3 subbands as shown in Figure 2.23, because 

the motion vectors are obtained hierarchically from low to high resolution levels. As a 

result, the quality of the reconstructed sequence can be improved and the computational 

complexity is only slightly increased. 

 

2.8.2.3 Fast MRME (FMRME) 

 After decomposing the video frames by the DWT, motion estimation is 

performed to obtain the motion vectors in all subbands at all levels in the standard 

MRME approach [74]. The high frequency subbands at the same level are highly 

correlated to each other because they represent the same motion activities at the same 
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resolution. The wavelet coefficients of the high frequency subbands at the same level 

can be combined together to form a new subband, entitled as all-orientation subband 

[75], as depicted in Figure 2.25 and the motion estimation is performed in the all-

orientation subband only in order to save the operations in motion estimation.  

LH3

LH2 HL2 HH2

LH1 HL1 HH1

+ +

+ +

+ +

=

=

=

A3

A2

A1

HL3 HH3 All orientation subband in level 3

All orientation subband in level 2

All orientation subband in level 1 

Figure 2.25 All orientation subbands in FMRME scheme 

Although the FMRME scheme can reduce the searching time for motion 

estimation, it degrades the reconstruction quality. Therefore, the Adaptive 

Multiresolution Motion Estimation (AMRME), Bi-directional Multiresolution Motion 

Estimation (BMRME) and Fast Multiresolution Motion Estimation (FMRME) [75] are 

combined to each other in order to provide better quality and reduce the computational 

complexity for motion estimation. 

 

2.8.3 Enhanced MRME (EMRME) 

 One more modified approach of the MRME scheme is discussed in this section. 

For the conventional MRME approach [74], all subbands at all levels are performed 

searching, so it is very computationally intensive. Due to the fact that a large portion of 

two consecutive frames is very similar to each other according to the large temporal 
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correlation between two successive frames, if we only carry out motion estimation in 

the potential motion area (PMA), in which the motion will be likely occurred, instead of 

all locations inside a subband, the operations for the searching can be reduced 

dramatically [76]. A binary mask, Mi
j(x, y), (i = 1, 2, 3 and j = 2, 4, 8), is used to define 

whether a pixel located at (x, y) of a frame of subband i at level j is inside the PMA or 

not, where x and y are the horizontal and vertical positions of a frame respectively. If the 

absolute difference of the LL subbands of the reference block and the current block is 

greater than a threshold, T0, M8(x, y), corresponds to the pixels inside LL subband is set 

to one. Otherwise, it is set to zero. As depicted in Figure 2.26, the corresponding 

positions in Mi
8 (i = 1, 2, 3) and that at the two higher resolution levels, i.e. Mi

4 and Mi
2 

(i = 1, 2, 3), are also set to one. Besides, for point (x, y) at subband i at level j, where Mi
j 

is set to zero, if the absolute difference of the corresponding subband at two consecutive 

frames are greater than another threshold value, T1, Mi
j is marked as one and propagate 

to the highest resolution level as described above if Mi
j is not located at the highest 

resolution level as illustrated in Figure 2.26.  
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Figure 2.26 Mask propagation for the enhanced MRME (EMRME) 

Actually, the Enhanced Multiresolution Motion Estimation (EMRME) [76] 

makes use of the zerotree structure to indicate the PMA in order to exploit the 

correlation between the subbands across different levels. Since motion estimation is 

only performed at PMA, which is usually a small part of the whole frame, the 

computational complexity can be reduced considerably. 
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2.9 Overview of the framework of the 3D wavelet video 

coder 

As mentioned in section 2.8, the 2D wavelet video coder can achieve spatial 

scalability in order to adapt to different display devices such as the high-resolution 

display in desktop computer, middle-resolution display in laptop computer and low-

resolution display in PDA device. However, it cannot attain the temporal scalability. 

Instead of using 2D wavelet transform, the 3 dimensional (3D) wavelet transform is 

performed to achieve both spatial and temporal scalabilities. The compressed bitstream 

of 3D wavelet video coder can be more robust to fluctuation of the network condition. If 

the network is very busy, only a portion of the bitstream will be transmitted to the 

decoder. Then, the decoder can reconstruct the video sequence in low frame rate such as 

half or a quarter of the original frame rate. On the contrary, if the bandwidth of the 

network is large enough to convey the whole encoded bitstream to the decoder, the 

decoder can work out the reconstructed sequence in full frame rate in order to achieve a 

high quality and resolution video. 

Figures 2.27 (a) and (b) depict the block diagrams of the 3D wavelet video 

encoder and decoder respectively. The 3D wavelet transform is separated into two parts 

which are the 1D temporal DWT and 2D spatial DWT and they are carried out 

independently. At the encoder, the original video frames are partitioned into different 

Groups of Frames (GOF). Firstly, each GOF is performed the temporal wavelet 

transform which applies the 1D-DWT in temporal dimension in order to reduce the 

temporal redundancy in the consecutive video frames. Usually, the motion estimation is 

involved in the temporal wavelet transform in order to improve the compression 

efficiency and visual quality of the low frequency frames and this part will be discussed 

in section 2.10 in details. The temporal transformed frames are then carried out the 2D-
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DWT in order to reduce the spatial redundancy in each frame. Then, quantization is 

applied on each wavelet-transformed frame to reduce the precision of the wavelet 

coefficients. Finally, the quantized transformed frames are carried out the entropy 

encoding in order to convert it into a bitstream and send it to the decoder. At the 

decoder, it receives the encoded bitstream and performs the reverse operations in the 

encoder to reconstruct the video sequence as illustrated in Figure 2.27(b).  
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Temporal Discrete 
Wavelet Transform 

(MCTF)

Forward 2D Spatial 
Discrete Wavelet 

Transform
Entropy EncodingForward 

Quantization
Compressed 

Bitstream
Original Group of 
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Inverse 2D Spatial 
Discrete Wavelet 
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Entropy DecodingInverse Quantization Compressed 

Bitstream
Reconstructed Group 

of Frame (GOF)

(b)

 

Figure 2.27 The block diagram of the 3D wavelet video codec 

 

2.10 Literature review of the Motion Compensated 

Temporal Filtering (MCTF) 

The 3D-DWT [52] is used in wavelet video codec instead of the 2D-DWT in 

order to achieve additional compression performance and both spatial and temporal 

scalabilities. Usually, the 3D-DWT is executed in separate.  The 1D temporal DWT is 

carried out before the 2D spatial DWT. The temporal 1D-DWT decomposes the video 

frames in temporal dimension. If the temporal filtering without involving the motion 

compensation, it will produce the ghosting artifacts in the low frequency frame leading 

to reduce the visual quality of the low frequency frame. It is because the low frequency 

frame is obtained by the high frequency frame. If the high frequency frame contains 

error, the error will be added into the low frequency frame to introduce the ghosting 
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artifacts. For the reduced frame rate application, i.e. half or a quarter of the original 

frame rate, only low frequency frames are reconstructed and displayed in the decoder. 

The ghosting artifacts will degrade the visual quality of the low frequency frame. 

Therefore, the motion estimation and compensation is usually adopted in the temporal 

filtering, i.e. motion compensated temporal filtering (MCTF) [52]. After involving the 

motion estimation inside both predict and update steps, the high frequency frame 

represents the error of prediction. If the motion model can accurately capture the motion 

of the video sequence, the prediction error will be small so that the coding efficiency 

can be improved. Besides, the ghosting artifacts in the low frequency frame can be 

eliminated because it represents the high quality reduced frame-rate video after 

performing the temporal decomposition. The transform does not introduce the ghosting 

artifacts into the low frequency frame. As a result, its visual quality is comparable to the 

temporally down-sampled original video frame. In sections 2.10.1 and 2.10.2, two 

kernels, which are the Haar and Bi-orthogonal 5/3 kernels respectively, are used as the 

examples to illustrate the concept of the MCTF [52]. 

 

2.10.1 Haar kernel 

When Haar kernel is used, the low frequency frame, l[m, n], and high frequency 

frame, h[m, n], are achieved by the following equations without motion compensation 

where x1[m, n] and x2[m, n] are two frames from the video sequence. 
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 When motion compensation is included before carrying out temporal 

decomposition, the lifting steps are modified as follows. 
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W1-2 represents the motion compensated mapping of the first frame onto the 

coordinate system of the second frame, so that (W1-2(x1))[m, n] ≈ x2[m, n], ∀(m, n). W2-1   

represents the motion compensated mapping of the second frame onto the coordinate 

system of the first. When there is no motion, W1-2 and W2-1 are both the identity 

operators. W1-2 and W2-1 are not generally inverses of one another. The former 

represents the backward motion field while the latter represents the forward motion field. 

When the scene motion is neither expansive nor contractive, i.e. pure translation, 

skewing or rotation, W1-2 and W2-1 are indeed inverses of one another. After performing 

the temporal decomposition, the coefficients of the high frequency frame are close to 

zero because the high frequency frame represents the residual frame and its energy has a 

direct impact on the coding gain. The low frequency frame represents the original frame 

in the video sequence and it is free from ghosting artifacts. Besides, most energy is 

concentrated on it. 

 

2.10.2 Bi-orthogonal 5/3 kernel 

In the Haar kernel, we always use the previous frame as the reference frame. 

However, the best match of the current block may not be located in the previous frame 

only. Instead, one of the best predictions is to make use of both the previous and future 

frames. For the Bi-orthogonal 5/3 kernel, two reference frames, which are the previous 

and future frames, are used.  
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 The above equations show the case without motion compensation while the 

following equations show the case with motion compensation.  

[ ] [ ] ( )[ ] ( )[ ]( )
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Wk1,k2 denotes the motion compensated mapping from frame k1 onto the coordinate 

system of frame k2. Similar to the Haar kernel, the high frequency frame represents the 

residual from a bi-directional motion compensated prediction of the relevant odd 

indexed original video frame. If the motion model can capture the motion of the video 

sequence accurately, the coefficients in the high frequency frame tend to zero.  

The bi-orthogonal 5/3 kernel yields better performance than the Haar kernel due 

to the bi-directional prediction in both predict and update steps. As the motion 

compensation is introduced into the lifting steps, so the coding efficiency is improved 

for both kernels. Due to the absence of ghosting artifacts in the low frequency frame, 

the visual quality of the low frequency frame can be increased. As a result, the temporal 

scalability can be achieved by partial reconstruction of the temporal filtering, i.e. by 

dropping the high frequency frame. 

 

2.11 Modifications of the MCTF 

In the previous section, the conventional MCTF scheme [52] was mentioned. 

According to this classical approach, some modifications will be discussed in the 

following sections. Due to the dyadic decomposition of the wavelet transform used in 

both 1D temporal DWT and 2D spatial DWT, the spatial and temporal scalabilities can 

only achieve a factor of two. Some variations of the MCTF approach in dyadic scheme 

are described in section 2.11.1. Besides the dyadic scheme, the MCTF scheme with the 
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temporal scalability of a power of three will be stated in section 2.11.2. This three-band 

scheme can make the encoded bitstream adapt to different network conditions. 

 

2.11.1 Dyadic Scheme 

 In this section, the dyadic decomposition is used in the temporal filtering and 

some modifications of the MCTF are revealed. 

 

2.11.1.1 Optimization of predict operator 

Section 2.10.2 mentions the conventional MCTF scheme [57] using the bi-

orthogonal 5/3 kernel which uses the previous and future frames as the reference frames 

in order to reduce the bi-directional prediction error in the high frequency frame leading 

to an increase in coding gain. Figure 2.28 illustrates the formation of the high frequency 

frame graphically. The following equation demonstrates the calculation of the high 

frequency frame, where ( )nx t 12 +  is the pixel at spatial location n in frame 2t+1, 

( )nv t
+
+12  is the forward motion vector to predict the frame 2t+1 from the frame 2t, 

( )nv t
−
+12  is the backward motion vector to predict the frame 2t+1 from the frame 2t+2 

and ( )nht  is the high frequency frame. 

( ) ( ) ( )[ ] ( )[ ]{ }nvnxnvnxnxnh tttttt
−
++

+
++ −+−−= 122212212 2

1
 

This equation represents that the pixel n finds the best match locations in frames 2t and 

2t+1, i.e. p and q respectively, where p and q are denoted by ( )nvn t
+
+− 12  and 

( )nvn t
−
+− 12  in frames 2t and 2t+2 respectively. As the prediction does not have any 

preference on the reference frames, so the weighting factor is a half. According to the 
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above equation, the high frequency frame corresponds to the residual signal of the bi-

directional prediction and it contributes to a deep impact on the compression 

performance. Therefore, two motion vectors, ( )−+
optopt vv )) , , are obtained by minimization 

the distortion function, d, as shown below, where W+ and W- are the search windows in 

the frames 2t and 2t+2 respectively.  

( ) ( ) ( )[ ] ( )[ ]{ }∑ ⎥⎦
⎤

⎢⎣
⎡ −+−−= −

++
+
++

∈
∈

−+

−−

++
n

ttttt

Wv
Wvoptopt nvnxnvnxnxdvv 122212212 2
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As two motion vectors, +v̂  and −v̂ , are involved in the high frequency frame, the 

forward and backward motion estimations are carried out separately in conventional 

approach as depicted in the following equations.  
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The conventional approach can only minimize the distortion for the forward and 

backward motion estimations independently but not for the high frequency frame. In 

order to optimize the predict operator, the procedures of the modified predict operator 

[103] are summarized as follows. 

Step 1) Find the forward motion vector, +
1v̂ . 
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Step 2) Calculate the backward motion vector, −
2v̂ , by using the forward motion vector, 

+
1v̂ , found in the previous step. 
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Step 3) Update the forward motion vector, +
3v̂ , by using the backward motion vector, 

−
2v̂ , obtained in step 2. Then, the optimum forward and backward motion vector 

fields are the +
3v̂  and −

2v̂  respectively. 
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As the error of the bi-directional prediction can be reduced by obtaining the optimum 

forward and backward motion vectors, so the coding efficiency can be improved. 
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Figure 2.28 Predict operator of the MCTF scheme using the Bi-orthogonal 5/3 kernel 

 

2.11.1.2 Skipping of update operator 

The previous section discusses an improved method to obtain the high frequency 

frame in order to reduce the prediction error. Therefore, the coding efficiency can be 

increased. The high and low frequency frames are calculated by the following equations, 

where ht and lt denote the high and low frequency frames respectively. After finding the 

high frequency frame, the current and previous high frequency frames are used to obtain 

the low frequency frame as depicted in Figure 2.29 and Figure 2.30.  
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 If the motion model can capture the motion of the video sequence accurately, the 

wavelet coefficients of the high frequency frame will tend to zero according to the 

above equations. Since the high frequency frame is used to obtain the low frequency 

frame, so the terms, x2t(p), is much greater than the prediction error. Therefore, the low 

frequency frame, lt, is similar to frame 2t, x2t. On the contrary, if the model fails to keep 

track the motion of the video, the compression efficiency will be adversely affected. 

Besides, as the high frequency frames are used to attain the low frequency frame, so 

some errors will be added into the low frequency frame leading to the introduction of 

the ghosting artifacts. As a result, the visual quality of the low frequency frame will be 

degraded. In order to reduce the ghosting effect in the low frequency frame, the update 

operator of the low frequency frame is modified as follows [104]. 

( ) ( )pxpl tt 2=  

 According to the above equation, the low frequency frame is the even frames in 

the original video sequence. Therefore, the visual quality of the low frequency frame 

can be assured. In addition, this operation is used instead of the low-pass filtering and 

downsampling so that the computational complexity can be reduced.  
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Figure 2.29 Predict and update operators of the Bi-orthogonal 5/3 kernel 
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Figure 2.30 Temporal decomposition using the Bi-orthogonal 5/3 kernel 

 

2.11.1.3 Temporal prediction and differential coding of 

motion vectors 

 The conventional MCTF framework [52] obtains the forward and backward 

motion vector fields in each temporal level independently in order to remove the 

temporal correlation between consecutive video frames in the same temporal level. 

Then, the obtained motion vectors are entropy encoded and transmitted as side 

information to the decoder. Besides of the temporal correlation between video frames, 

there exists a large correlation of the low frequency frames among different temporal 

levels. If such relationship is used, the number of bits used to encode the motion 

information can be reduced [56]. The bi-orthogonal 5/3 kernel involves two reference 

frames for bi-directional prediction so that the number of motion vectors needs to be 

encoded is larger as compared with that of the Haar kernel which uses only one 

reference frame for prediction. Thus, the motion vector prediction method for bi-

orthogonal 5/3 kernel is discussed in the following section.  

 Figure 2.31 depicts the one level temporal decomposition for the bi-orthogonal 

5/3 kernel which involves bi-directional prediction in both predict and update operators. 

For finding the high frequency frame, motion estimation is performed between the 
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frame 1 and frame 0, and frame 1 and frame 2, where frames 0 and 2 are the reference 

frames to obtain the motion vector fields, MV1 and MV2 respectively. After obtaining 

the high frequency frame, it is used to calculate the low frequency frame. If further 

temporal decomposition is performed, motion estimation is performed between the 

consecutive low frequency frames in order to attain the motion vector field, MV3. 

Traditionally, these motion vector fields are found independently. However, the low 

frequency frames among different temporal levels are highly correlated. Therefore, 

MV1 and MV2 can be used to obtain MV3 as shown in Figure 2.32. Firstly, the initial 

searching position is estimated by subtracting MV1 from the MV2, i.e. MV1 – MV2. 

Then, the search window is shifted by the initial searching point to obtain the 

refinement motion vector. Finally, the resultant motion vector, MV3, is found by adding 

the initial predicted motion vector, i.e. MV1 – MV2, and the refinement motion vector. 

As the motion vector fields, MV1 and MV2, have already been entropy encoded, so 

only the small refinement motion vector requires to be encoded and sent to the decoder 

in order to save the number of bits used to encode the motion vectors. 
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Figure 2.31 One level MCTF with bi-directional 5/3 kernel using lifting structure 
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Figure 2.32 Motion vector prediction for the estimation of MV3 

 

2.11.2 Three-Band Scheme 

 The section 2.11.1 describes the MCTF framework under the dyadic wavelet 

decomposition in the temporal direction. The major disadvantage of the dyadic scheme 

is that it can only achieve a temporal scalability of a power of two. In this section, the 

modified MCTF framework, three-band scheme, with the temporal scalability of a 
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power of three is mentioned in order to make the encoded bitstream adapt to the 

fluctuation of the network condition. Sections 2.10.2.1 and 2.10.2.2 discuss the three-

band scheme for the Haar and Bi-orthogonal 5/3 kernels respectively. 

 

2.11.2.1 Haar kernel 

The three-band scheme using Haar kernel [99] is mentioned in this section. As it 

only uses one reference frame to obtain the high frequency frame, so it is considered to 

be the Haar kernel. The conventional MCTF framework [52] uses the previous frame as 

the reference frame to calculate the high frequency frame in the predict operation. The 

three-band scheme finds two high frequency frames, which are forward and backward 

high frequency frames, by using the previous and future frames as reference frames in 

the forward and backward predict operators respectively as depicted in Figure 2.33 and 

Figure 2.34. Since motion estimation is involved in the lifting steps, so the forward and 

backward motion vectors, i.e. +
+13tv  and −

−13tv , are obtained in order to perform motion 

compensation before the temporal filtering. After that, these two high frequency frames 

are used to compute the low frequency frame by the following equations. 
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 Similar to the traditional MCTF scheme, the high frequency frame in the three-

band scheme still represents the error of prediction. Two high frequency frames are 

discarded in order to achieve the temporal scalability of a power of three. Since the low 

frequency frame is found by the bi-directional update step, i.e. using two high frequency 

frames, so its visual quality is less affected by the ghosting artifacts as compared with 

that of the standard MCTF scheme with Haar kernel.  
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Figure 2.33 Predict and update steps of the three-band scheme for Haar kernel 
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Figure 2.34 Predict operator of the three-band scheme for Haar kernel 

 

2.11.2.2 Bi-orthogonal 5/3 kernel 

 The three-band scheme can further be extended to a more complex kernel such 

as the bi-orthogonal 5/3 kernel [100] in order to attain higher compression efficiency 

due to the longer filter length. Similar to the conventional MCTF framework, the predict 

operator makes use of the two reference frames, which are the previous and future 

frames, for motion estimation as illustrated in Figure 2.35. The forward and backward 

motion estimations are performed to obtain the forward and backward motion vector 

fields, +
+13tv  and −

+13tv , respectively. Then, the forward high frequency frame, +
th , is 

calculated by the previous and future frames, tx3  and 23 +tx , as reference frames by the 
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following equations, where β is the weighting factor of the reference frames. Similarly, 

the backward high frequency frame, −
th , is attained in the same way. Subsequently, the 

low frequency frame is found by these two high frequency frames in the bi-directional 

update operator. 
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Figure 2.35 Predict and update operators of the three-band scheme for Bi-orthogonal 5/3 kernel 

 

2.12 Conclusion Remarks 

For wavelet video coding, the 2D-DWT is applied to each video frame to exploit 

the spatial redundancy. The motion estimation is adopted in the wavelet video encoder 

to remove the temporal redundancy in the successive frames and is usually performed in 

the wavelet domain by making use of the correlation of corresponding subbands among 

different decomposition levels. Thus, the computational complexity of motion 

estimation can be reduced significantly. However, it still consumes most of the 

execution time during encoding process. According to the observation that the wavelet 

coefficients having similar matching errors tend to be clustered to each other and this 
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correlation exists among different levels in the wavelet pyramid, the backward row-

based Clustered Pixel Matching Error for Partial Distortion Search (backward CPME-

PDS) is proposed to further reduce the number of operations for the motion estimation 

in the wavelet domain by exploiting the cross-correlation between corresponding 

subbands in the wavelet pyramid (more details can be found in chapter three).  

 Nevertheless, the 2D-DWT can only achieve the spatial scalability but not 

temporal scalability. Hence, the 3D-DWT is employed in the wavelet video coder to 

attain both temporal and spatial scalabilities. The 3D-DWT is carried out individually. 

First, the 1D-DWT is performed in the temporal direction to eliminate the relationship 

between consecutive video frames. Second, the 2D-DWT is executed in each frame to 

remove the spatial correlation in the frame. Usually, the motion estimation and 

compensation are applied in the temporal 1D-DWT in order to enhance the coding 

efficiency and improve the visual quality of the low frequency frames. Also, the 

computational effort of motion estimation is a major problem in the 3D wavelet video 

encoder. Due to the fact that there exists a large correlation among the successive 

frames and the wavelet transformed frames between different temporal levels, the 

median and cross-level motion vector prediction algorithm is proposed to improve the 

speed of motion estimation by exploiting such correlation (more details can be found in 

chapter four).  

 The Embedded Zerotree Wavelet (EZW) algorithm is commonly used to 

encode the wavelet coefficients in the wavelet image and video coder. A modified 

EZW algorithm with minimum weight and difference subband approach is proposed 

to improve the compression efficiency by discarding less important information and 

retaining the same visual quality as the conventional EZW algorithm (more details 

can be found in chapter five). The proposed algorithm can be extended to the Set-
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Partition Embedded Block Coder (SPECK) algorithm and can be used in both 2D 

and 3D wavelet video coders. 
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Chapter 3  

Motion estimation algorithm in the wavelet domain of the 2D 

wavelet video coder 

3.1 Introduction 

The Discrete Wavelet Transform (DWT) has received much attention recently 

due to its superior performance by comparing to the conventional block-based hybrid 

video coding such as Discrete Cosine Transform (DCT). It is well-known that the DCT 

produces the “blocking effect” in the low bit-rate applications. However, DWT is free 

from blocking artifacts by distributing the errors over the whole frame due to its nature 

of global decomposition. Besides, according to its multi-resolution nature in the wavelet 

pyramid, it can represent an image or video sequence flexibly and adapt to different bit-

rates across the networks with different traffic situations. 

The multiresolution nature in DWT is suitable for multi-resolution applications 

such as DTV / HDTV. Besides, when a video sequence is transmitted to the low-end 

display units such as mobile phone and PDA, the images of required resolution should 

be derived before displaying. 

In this chapter, we propose a wavelet-based CPME-PDS algorithm by using the 

characteristic of clustered pixel matching errors in the hierarchical structure of the 

wavelet pyramid. The multiresolution / multifrequency nature of the DWT is an 

efficient tool to represent images and video signals for compression and transmission. 

The DWT decomposes a video frame into a set of subframes with different resolutions 

in subbands. This multiresolution nature provides a hierarchical representation of a 
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video frame. It provides useful information for us to develop efficient motion estimation 

algorithms.  Hui, Siu and Chan [108] showed that pixel matching errors with similar 

magnitude tend to appear in a cluster in natural video sequences in the spatial domain. 

According to our observation, this clustering property is also found in the wavelet 

domain. We use this property and the hierarchical structure of the wavelet pyramid to 

develop an adaptive PDS applying in the MRME scheme. We create an adaptive index 

set based on this clustering characteristic in the highest resolution subband. Due to the 

hierarchical architecture of the wavelet pyramid, the index set can be down-sampled and 

re-numbered in other lower resolutions subbands. Hence, the required operations of 

finding the index set in each subband can be reduced. When the SEA is applied in the 

proposed algorithm, the speed of the motion estimation can further be improved by 

rejecting the searching positions in the search window for very slow motion video 

sequences. 

Experimental results (Table 3.4) show that our proposed algorithm has a speed-

up in motion estimation comparing to Full Search Algorithm (FSA) and conventional 

PDS using the MRME scheme. The proposed method can be used to enhance the 

efficiency of the motion estimation in the wavelet domain for the working schemes [74] 

- [78]. Furthermore, the high quality video conferencing and high quality documentary 

applications can benefit from the proposed method due to its superior performance in 

the slow motion video sequences. Besides, the encoding time is decreased by comparing 

to the conventional approach. Hence, the time delay for video conferencing and video 

surveillance applications can also be reduced, say for example. For the video 

surveillance application, as the encoding delay is reduced, the follow-up actions can be 

taken place for emergency events. 
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The organization of this chapter is shown as follows. The characteristic of the 

clustered pixel matching error in wavelet domain is analysed in Section 3.2. Details of 

the proposed algorithm is introduced in Section 3.3. Some experimental results are 

discussed in Section 3.4 and a brief conclusion is drawn in Section 3.5. 

 

3.2 The characteristic of clustered pixel matching error in the 

wavelet domain 

 Ref. [108] shows that pixel matching errors tend to cluster together during 

motion estimation. Because the LL subband is a lower resolution version of an original 

image, the CPME-PDS in [108] can be applied directly.  

It is found that the same property also exists in wavelet domain. Figure 3.1 gives 

an example of a real case which is used to explain this property. Figure 3.1 (a) depicts 

the matching of a one dimensional (1-D) block in LH subband (thick continuous line) 

within a 1-D searching window (thin dotted line). The corresponding pixel absolute 

matching errors also appear in a cluster form as shown in Figure 3.1 (b). The clustered 

pixel matching error characteristic can be used to improve the motion estimation 

efficiency in wavelet domain. 
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Figure 3.1 Matching of a one dimensional (1-D) block in LH subband within a 1-D searching window. (b) 

Corresponding pixel absolute matching errors of the target block at the current position 

 

This clustering phenomenon in wavelet domain is demonstrated in Figure 3.2. 

Figure 3.2 (a) depicts the DWT hierarchical structure in wavelet pyramid. Figure 3.2 (b) 

illustrates the error blocks between a reference block and a current block in the LH3, 

LH2 and LH1 subbands at the 9th and 10th frames of the video sequence “Akiyo” 

respectively. The error block of subband LH1 clearly shows the clustering property in 

wavelet domain. Comparing the similarity between the error blocks of the subbands, we 

also find that this clustering property is highly correlated in each subband. 

LL HL3

LH3 HH3

HL2

LH2 HH2

HL1

LH1 HH1
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(a)    

       
(b) 

Figure 3.2 (a) DWT hierarchical structure in wavelet pyramid (b) Error blocks between a reference block 

and a current block in the LH3, LH2 and LH1 subbands at the 9th and 10th frames of the video sequence 

“Akiyo” respectively 

  

According to this analysis, we can determine that the CPME-PDS can be applied 

in the MRME scheme. Furthermore, an adaptive index set found in a subband at the 

highest resolution can be utilized in the corresponding lower resolution subbands. 

Hence, the redundant calculations can be avoided. 

 

3.3 Proposed fast motion estimation algorithm in the wavelet 

domain of the 2D wavelet video coder 

The row-based CPME-PDS is used to improve motion estimation in the MRME 

scheme. From the above simple analysis, the counting sort is not required to perform at 

each level. In our algorithm, we use the zero motion vector as the motion predictor to 

determine the adaptive index set for the highest resolution level. The index set result 

obtained in the previous operations is used to predict the sorting order of other levels. 

The proposed algorithm is summarized as follows.  

 

Motion estimation of a block in the LL subband 
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Step 1)Use the zero motion vector as the motion predictor to calculate a reference value, 

m 
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where N and M are the height and width of the block respectively 

It-1 is the intensity level of frame t-1 

(x, y) is the coordinates of current block 

Note that for the CIF format, M = N = 4 for level 3 and M = N = 16 for level 1 

and for the QCIF format,  M = N = 2 for level 3 and M = N = 8 for level 1 in our 

experiments 

 

Step 2) Calculate the expected absolute pixel matching error in a row, ( )npexp , in the 

targeted block 

( ) ( )∑
−

=

−=
1

0

M

i
nt mkiInp ,exp , where kn is the index of each row in the targeted 

block and n =0, …, N-1. 

Note that It(i, kn) and m are floating point numbers and pexp(n) is truncated to 

integer for the sake of lower complexity. 

 

Step 3) Use counting sort to obtain an adaptive index set, S, by sorting the expected 

absolute pixel matching error in a row, ( )npexp , in descending order, i.e. 

( ) ( ) ( )10 −≥≥≥≥ Npnpp expexpexp KK  with { }10 −== NnkS n ,..., . 
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Step 4) Apply the adaptive index set, S, to calculate the partial Sum of Absolute 

Difference (SAD) in following equation during the searching of an outward spiral 

scanning. 

( ) ( ) ( )∑∑
=

−

=
− ++++−++=

p

j

M

i
ntntp vkyuixIkyixIvuyxSAD

0

1

0
1 ,,,;, , where 

{ }pnkn ,...,0= , (u, v) is the motion vector and p=0,…, N-1 which specifies the number 

of elements for producing the sum of errors for a partial SAD. 

The resulting motion vector, ( )vu ˆ,ˆ , of a block is obtained by the following 

equation. 

( ) ( )vuyxSADvu pvu
,;,minargˆ,ˆ

),(
≡  

 

For each block in other higher frequency subbands, the procedure is summarized 

as follows. (We use the LH subband as an example) 

 

Step 5) Use Step 1 to Step 4 to obtain the adaptive index set in the highest resolution 

level LH subband.  

 

Step 6) To obtain the adaptive index set for the lower resolution level, we down-sample 

the original set by discarding the index of the odd-sampled rows. 

 

Step 7) Re-number the remaining index set to 1
2

0 −=
Nn ,...,   such that the row with 

larger expected absolute error will accumulate to the SADp as soon as possible. 
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Step 8) Repeat Step 4 by using the re-numbered index set to obtain the motion vectors in 

the next lower resolution level. 

 

Step 9) Repeat Step 6 to Step 8 for remaining resolution levels. 

 

3.4 Experimental results 

In this experiment, we use eight test video sequences to evaluate the 

performance of the proposed algorithm. The information of the test sequences is shown 

in Table 3.1. Three levels of wavelet transformation are performed and the D4 kernel is 

used. The block sizes for the QCIF and CIF sequences are 2×2 and 4×4 respectively in 

the highest level and the block size will be doubled in each lower level. The search 

ranges for the QCIF and CIF sequences are ±8 and ±16 in the highest level respectively 

and it will be divided by two in each lower level.  

Table 3.2 and Table 3.3 show the execution time and the average number of 

operations per block of not using the MRME scheme in wavelet domain respectively. 

All searching points are exhaustively searched by the searching algorithms. The full 

search for all subbands to obtain the motion vectors is very time consuming during 

encoding. It occupies more than 70% for the CIF video sequences and about 50% for 

the QCIF video sequences of encoding time. Therefore, there is a necessity to reduce the 

time required for motion estimation in wavelet domain. Actually, the pixel-based 

CPME-PDS can reduce the number of operations for a speed-up factor of 2.34 to 8.07 

and 1.27 to 1.76 as compared with the FSA and PDS respectively for motion estimation 

as shown in Table 3.3. But its execution time is longer than that of the PDS as it suffers 

from random memory access problem in the CPU. Therefore, the row based CPME-
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PDS can complement the deficiency of CPME-PDS by using a row of pixels as a unit 

for matching. During implementation, it can achieve a speed-up factor up to 1.12 as 

compared with the PDS. However, this scheme alone cannot fully make use of the 

wavelet property. 

Table 3.1 The information of the test video sequence 

Sequence Frame Size Total Frames 
Trevor 176 × 144 120 
Suzie 176 × 144 120 

Salesman 176 × 144 300 
Grandmother 176 × 144 300 

Foreman 352 × 288 300 
Coastguard 352 × 288 300 

Akiyo 352 × 288 300 
Vectra Colour 352 × 288 142 

 

Table 3.2 Execution Time for motion estimation in searching all subbands by different search algorithms for 
video sequences in wavelet domain 

Execution time for motion estimation in wavelet domain (ms) 

Sequence 
FSA 

Speed-
up 

factor 
PDS 

Speed-
up 

factor 

Pixel-
based 

CPME-
PDS 

Speed-
up 

factor 

Row-
based 

CPME-
PDS 

Speed-
up 

factor 

Trevor 15179 1.00 11278 1.35 11653 1.30 10584 1.43 
Suzie 15357 1.00 13157 1.17 14898 1.03 12825 1.19 

Salesman 37580 1.00 21992 1.71 22240 1.69 21149 1.78 
Grandmother 36512 1.00 23859 1.53 26420 1.38 23792 1.53 

Foreman 463636 1.00 288014 1.61 431311 1.07 276676 1.68 
Coastguard 465801 1.00 254703 1.83 379112 1.23 248045 1.88 

Akiyo 464424 1.00 144460 3.21 159772 2.91 129546 3.59 
Vectra 220422 1.00 126515 1.74 180450 1.22 119345 1.85 

 

Table 3.3 Average number of operations per block for motion estimation in searching all subbands by 
different search algorithms for video sequences in wavelet domain 

Average number of operations per block for motion estimation in wavelet domain 

Sequence 
FSA 

Speed-
up 

factor 
PDS 

Speed-
up 

factor 

Pixel-
based 

CPME-
PDS 

Speed-
up 

factor 

Row-
based 

CPME-
PDS 

Speed-
up 

factor 

Trevor 97982 1.00 36873 2.66 26763 3.66 32175 3.05 
Suzie 97982 1.00 50659 1.93 39957 2.45 47109 2.08 

Salesman 97982 1.00 23493 4.17 17945 5.46 20685 4.74 
Grandmother 97982 1.00 32735 2.99 24790 3.95 28957 3.38 

Foreman 1533432 1.00 870525 1.76 654901 2.34 786480 1.95 
Coastguard 1533432 1.00 741483 2.07 563793 2.72 673885 2.28 

Akiyo 1533432 1.00 333742 4.59 190081 8.07 257495 5.96 
Vectra 1521726 1.00 785792 1.94 565156 2.69 683723 2.23 
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 The MRME (Multiresolution Motion Estimation) exploits the relationship 

between subbands by using the motion vectors found in the previous level as an initial 

estimate and refining in each level. In this experiment, the block size is still remained 

the same as the previous experiment. The search window of QCIF and CIF sequences 

are ±31 and ±63 respectively in the highest level and it is reduced by half in each lower 

level. The search window is set to be so large in the highest level because the MRME 

scheme makes use of the motion vectors obtained in the previous level to be an initial 

searching position, so the motion vectors in the top level must be accurate. Otherwise, 

the lower level subband will use the incorrect initial searching point and the inaccurate 

motion vector will be obtained.  

Table 3.4 and Table 3.6 illustrate the execution time and the average number of 

operations per block of using the MRME scheme respectively in wavelet domain. 

According to Table 3.6, the row-based CPME-PDS reduces the number of operations in 

the encoder by rejecting the impossible candidates sooner especially for the refinement 

stage. Actually, the pixel-based CPME-PDS can reduce the operations in refinement but 

it also suffers from the random memory access problem in CPU. Due to the pipeline 

structure of CPU, the time used to access the pixels in a row is much shorter than that 

used to access the pixels in random location inside a block. Therefore, the pixel-based 

CPME-PDS can outperform other search algorithms theoretically. However, its 

execution time is longer than that of PDS due to the random memory access problem 

during implementation. The row-based CPME-PDS can achieve a speed-up factor of 

1.01 to 1.97 and 1.01 to 1.04 as compared with FSA and conventional PDS respectively. 

Therefore, the row-based CPME-PDS will be used in the proposed algorithm.  
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Table 3.4 Execution Time for motion estimation using MRME scheme by different search algorithms for video 

sequences in wavelet domain 

Sequence Execution Time for 
motion estimation in 
wavelet domain (ms) Trevor Suzie Salesman Grand-

mother Foreman Coast-
guard Akiyo Vectra

Time 4580 4574 10857 11150 90922 91421 88471 43277 

FSA Speed-
up 

factor 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Time 4421 4680 9768 10440 71847 73391 46570 34333 

PDS Speed-
up 

factor 
1.04 0.98 1.11 1.07 1.27 1.25 1.90 1.26 

Time 5053 5181 10955 11538 95095 100467 51870 45404 
Pixel-based 
CPME-PDS Speed-

up 
factor 

0.91 0.88 0.99 0.97 0.96 0.91 1.71 0.95 

Time 4750 4819 10598 10803 73000 75548 46664 34861 
Row-based 
CPME-PDS Speed-

up 
factor 

0.96 0.95 1.02 1.03 1.25 1.21 1.90 1.24 

Time 8108 8535 18994 19665 121849 126264 83985 58623 
Forward 

CPME-PDS Speed-
up 

factor 
0.56 0.54 0.57 0.57 0.75 0.72 1.05 0.74 

Time 4289 4541 9935 10301 71454 73921 44902 33900 
Backward 

CPME-PDS Speed-
up 

factor 
1.07 1.01 1.09 1.08 1.27 1.24 1.97 1.28 

 

 



Chapter 3 Motion estimation algorithm in the wavelet domain of the 2D wavelet video coder 

__________________________________________________________________________________ 

115 

Table 3.5 Average number of operations per block for motion estimation using MRME scheme by different 

search algorithms for video sequences in wavelet domain 

Sequence Average number of 
operations per block 
for motion estimation 

in wavelet domain 
Trevor Suzie Salesman Grand-

mother Foreman Coast-
guard Akiyo Vectra 

Operations 13629 13681 13582 13552 228807 228990 224318 228369
FSA 

Speed-up 
factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Operations 6455 8330 4341 5637 138186 142598 49089 137684
PDS 

Speed-up 
factor 2.11 1.64 3.12 2.40 1.66 1.67 4.57 1.66 

Operations 5317 6970 3936 4921 105083 115335 33123 104614Pixel-
based 

CPME-
PDS 

Speed-up 
factor 2.56 1.96 3.44 2.75 2.18 1.99 6.77 2.18 

Operations 5835 7643 4136 5203 122452 129773 39217 120511Row-
based 

CPME-
PDS 

Speed-up 
factor 2.34 1.79 3.27 2.60 1.87 1.76 5.72 1.90 

Operations 6296 8151 4352 5569 130307 137698 43393 129719Forward 
CPME-

PDS Speed-up 
factor 2.16 1.68 3.11 2.43 1.76 1.66 5.17 1.76 

Operations 5885 7759 4100 5211 125679 132880 40171 123877Backward 
CPME-

PDS Speed-up 
factor 2.32 1.76 3.30 2.60 1.82 1.72 5.58 1.84 

 

Besides the above proposed scheme (entitled as Backward CPME-PDS in this 

section), we propose one more variation to compare the efficiency of the proposed 

method. It is the Forward CPEM-PDS which carries out the counting sort in the 

subbands of the highest level only and the results are up-sampled in the remaining 

subbands of the lower level. For the Backward CPME-PDS, i.e. the proposed scheme, 

the counting sort will be executed in the LL subband and the subbands at the lowest 

level only. Then, the sorting results obtained in the subbands of the lowest level are up-

sampled to predict the adaptive index set in the higher levels. 

The Forward CPME-PDS carries out counting sort in the subbands of the 

highest level and the results are re-numbered to predict the error distribution of the 

subbands in the remaining lower levels. However, the prediction is inaccurate leading to 
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a decrease in the speed of motion estimation. In our experimental work, the block size 

used in the 3rd level was 4×4, 8×8 in 2nd level and 16×16 in 1st level for the CIF format 

video sequence. After performing counting sort of the subbands in the 3rd level, the 

result was applied to the corresponding subbands in the 2nd level directly. The first two 

rows were grouped into one unit and the third and fourth rows were grouped into 

another unit, etc. Some information in the subbands at the 3rd level is invalid in the 

corresponding subbands at the 2nd level resulting in some inaccurate predictions. Hence, 

the impossible candidate is not rejected as soon as expected. As a result, the efficiency 

of the Forward CPME-PDS is degraded as a comparison with the Row-based CPME-

PDS. According to Table 3.4 and Table 3.6, the execution time and the average number 

of operations per block of the Forward CPME-PDS are both greater than that of the 

Row-based CPME-PDS. During Discrete Wavelet Transformation, the higher resolution 

level subbands are downsampled to obtain the subbands in the next lower resolution 

level. Hence, the information in the subbands in higher resolution level can be used to 

predict that of the lower one due to the hierarchical architecture in wavelet pyramid. As 

a result, the Backward CPME-PDS outperforms the Row-based CPME-PDS in terms of 

execution time by a speed-up factor of 1.02 to 1.11 due to an accurate prediction of the 

adaptive index set by exploiting the hierarchical clustering property in wavelet domain. 

The impossible candidates can be rejected earlier.  

As mentioned in chapter 2, the Successive Elimination Algorithm (SEA) can 

successively reduce the search positions inside the search area and the motion vectors 

obtained are the same as that of the FSA. Therefore, we apply the SEA into the 

Backward CPME-PDS, entitled as “SEA & Backward CPME-PDS”, in order to further 

enhance the speed of the motion estimation. Table 3.7 and Table 3.8 show the execution 

time and the average number of operations per block of the proposed algorithm 
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respectively. For the average number of operations per block, the proposed algorithm 

(SEA & Backward CPME-PDS) can achieve a speed-up factor of 1.86 to 10.30, 1.05 to 

1.80 and 1.01 to 1.08 as compared with FSA, Backward CPME-PDS and SEA&PDS 

respectively.  

 

Table 3.6 Execution Time for motion estimation using MRME scheme by different search algorithms for video 
sequences in wavelet domain 

Sequence Execution Time for 
motion estimation in 
wavelet domain (ms) Trevor Suzie Salesman Grand-

mother Foreman Coast-
guard Akiyo Vectra

Time 4580 4574 10857 11150 90922 91421 88471 43277 

FSA Speed-
up 

factor 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Time 4421 4680 9768 10440 71847 73391 46570 34333 

PDS Speed-
up 

factor 
1.04 0.98 1.11 1.07 1.27 1.25 1.90 1.26 

Time 4289 4541 9935 10301 71454 73921 44902 33900 
Backward 

CPME-PDS Speed-
up 

factor 
1.07 1.01 1.09 1.08 1.27 1.24 1.97 1.28 

Time 4372 4639 10196 10530 85964 84993 47276 39291 

SEA & FSA Speed-
up 

factor 
1.05 0.99 1.06 1.06 1.06 1.08 1.87 1.10 

Time 4307 4665 9850 10218 75584 78811 42267 36065 

SEA & PDS Speed-
up 

factor 
1.06 0.98 1.10 1.09 1.20 1.16 2.09 1.20 

Time 4315 4648 9877 10266 72463 75957 41004 34630 SEA & 
Backward 

CPME-PDS 
Speed-

up 
factor 

1.06 0.98 1.10 1.09 1.25 1.20 2.16 1.25 
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Table 3.7 Average number of operations per block for motion estimation using MRME scheme by different 
search algorithms for video sequences in wavelet domain 

Sequence Average number of 
operations per block 
for motion estimation 

in wavelet domain 
Trevor Suzie Salesman Grand-

mother Foreman Coast-
guard Akiyo Vectra 

Operations 13629 13681 13528 13552 228807 228990 224318 228369
FSA 

Speed-up 
factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Operations 6455 8330 4341 5637 138186 142598 49089 137684
PDS 

Speed-up 
factor 2.11 1.64 3.12 2.40 1.66 1.61 4.57 1.66 

Operations 5885 7759 4100 5211 125679 132880 40171 123877Backward 
CPME-

PDS Speed-up 
factor 2.32 1.76 3.30 2.60 1.82 1.72 5.58 1.84 

Operations 6830 8981 4789 6023 172022 178729 46625 170912SEA & 
FSA Speed-up 

factor 2.00 1.52 2.82 2.25 1.33 1.28 4.81 1.34 

Operations 4608 6838 2555 3830 121542 129372 23460 120857SEA & 
PDS Speed-up 

factor 2.96 2.00 5.29 3.54 1.88 1.77 9.56 1.89 

Operations 4558 6683 2721 3888 113595 123144 21784 112591SEA & 
Backward 

CPME-
PDS 

Speed-up 
factor 2.99 2.05 4.97 3.49 2.01 1.86 10.30 2.03 

 

Table 3.9 shows the average number of search positions per block for the 

exhaustively searching algorithm, MRME scheme and SEA applied in the MRME 

scheme. When SEA is applied in the MRME scheme, the speed-up factor can be from 

4.64 to 26.69 and 1.75 to 10.31 as compared with the exhaustively search algorithm and 

MRME scheme respectively. As the SEA can remove the searching position in the 

search range, so the number of operations can be reduced. For execution time, the 

performance of the SEA & Backward CPME-PDS is degraded as compared with the 

Backward CPME-PDS for some video sequences. It is because the number of 

operations is the summation of the number of additions or subtraction and the number 

of comparisons. When the SEA is used, the number of comparisons is increased but the 

number of additions or subtractions is reduced significantly. However, the time used to 
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perform comparison is longer than that of the additions or subtractions in CPU. 

Therefore, the execution time for the SEA & Backward CPME-PDS algorithm is 

increased as compared with that of the Backward CPME-PDS even though the number 

of operations is reduced.  The “Akiyo” sequence contains very slow motion, so the SEA 

can quickly reject most searching positions in the search window. Therefore, when the 

SEA is combined with the Backward CPME-PDS, the execution time and the average 

number of operations per block are both reduced for a speed-up factor of 1.10 and 1.84 

respectively as compared with the Backward CPME-PDS for “Akiyo” sequence. The 

SEA & Backward CPME-PDS algorithm can enhance the speed of motion estimation 

for the very slow video sequence.  

Table 3.8 Average number of search points per block for motion estimation in wavelet domain 

Sequence Average number 
of search points 

per block for 
motion 

estimation in 
wavelet domain 

Trevor Suzie Salesman Grand-
mother Foreman Coast-

guard Akiyo Vectra 

Search 
pts. 967 967 967 967 3763 3763 3763 3763 

FSA Speed-
up 

factor 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Search 
pts. 366 366 364 364 1466 1470 1454 1460 

MRME Speed-
up 

factor 
2.64 2.64 2.66 2.66 2.57 2.56 2.59 2.58 

Search 
pts. 88 120 53 65 742 838 141 811 

SEA & 
MRME Speed-

up 
factor 

10.99 8.06 18.25 14.88 5.07 4.49 26.69 4.64 
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3.5 Conclusion 

Wavelet-based motion estimation algorithm is proposed in this chapter. The 

pixel cluster property is available in both spatial and wavelet domains. Besides, this 

clustering property is appeared in the hierarchical nature of the wavelet pyramid. By 

applying the hierarchical property of the wavelet domain into the row-based CPME-

PDS, the impossible candidate blocks can be rejected as early as possible. Only the LL 

subband and the subbands in the lowest level have to carry out counting sort to find 

their error distributions. The results can then be down-sampled and re-numbered in the 

higher level subbands in the hierarchical pyramid. Experimental results show that the 

proposed scheme has a speed-up factor of 1.09 to 2.16 and 1.86 to 10.30 in the 

execution time and the average number of operations per block respectively for motion 

estimation comparing to FSA in MRME scheme. It performs well for the slow motion 

video sequences. Hence, it is suitable for video conferencing and video surveillance. 

Due to the scalability nature of the DWT, the proposed method can be applied to multi-

resolution applications such as DTV, HDTV and mobile phone applications.
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Chapter 4  

Motion estimation algorithm in the wavelet domain of the 
3D wavelet video coder 

4.1 Introduction 

The Discrete Wavelet Transform (DWT) has received much attention recently 

due to its superior performance by comparing to the conventional block-based hybrid 

video coding such as Discrete Cosine Transform (DCT). It is well-known that the DCT 

produces the “blocking effect” in the low bit-rate applications. However, DWT is free 

from blocking artifacts by distributing the errors over the whole frame due to its nature 

of global decomposition. Besides, according to its multi-resolution nature in the wavelet 

pyramid, it can represent an image or video sequence flexibly and adapt to different bit-

rates across the networks with different traffic situations. Recently, the scalable video 

coder based on the motion compensation spatiotemporal (t+2D) scheme becomes much 

more popular. It can achieve superior compression performance as compared with the 

state-of-the-art DCT based hybrid video-coding scheme. Its excellent compression 

performance comes from the efficient energy concentration of the low frequency frame 

by applying motion compensation along the motion trajectories of the video sequence. 

Besides, the separable three-dimensional (3D) wavelet transform can realize the 

temporal and spatial scalabilities in the subband structure. 

Low encoding delay is a necessity in the video conferencing and video 

surveillance applications. For example, in the video surveillance application, it is 

possible to take actions to follow up the emergency events if the video sequence can be 
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encoded and transmitted in a short period of time. On the other hand, the 

multiresolution nature of the DWT is suitable for multi-resolution applications such as 

DTV / HDTV. Besides, when a video sequence is transmitted to the low-end display 

units such as mobile phone and PDA, the required resolution should be achieved before 

displaying.  

In this chapter, we exploit the spatial and temporal correlations of the 

neighbouring motion vectors and the successive video frames respectively to find out 

the initial estimated motion vector. Then, the refinement process is performed in the 

reduced search window. The resultant motion vector is obtained by adding the initial 

estimated motion vector and the small refinement motion vector. Since the size of the 

search window is decreased, the computational complexity of motion estimation can 

also be reduced. From the experimental results, the proposed algorithm can achieve a 

speed-up factor of 3 to 5 times as compared to that of the conventional approach [52]. 

Besides, the reconstructed quality of the proposed algorithm is comparable to the FSA. 

The organization of this chapter is shown as follows. Details of the proposed algorithm 

is introduced in Section 4.2. Some experimental results are discussed in Section 4.3 and 

a brief conclusion is drawn in Section 4.4. 

 

4.2 Proposed wavelet-domain motion estimation 

algorithm in the 3D wavelet video coder 

Figure 4.1 shows the architecture of the 3D wavelet video codec using Haar 

kernel during 1D temporal wavelet transformation. Before performing temporal 

decomposition, motion estimation is carried out so that the ghosting artifacts occurred in 

the low frequency frame can be reduced and most energy concentrates on the low 
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frequency frame which can improve the compression efficiency [52]. The temporal 

decomposition is then performed on the motion compensated frames. Then, the 2D 

spatial wavelet transform is applied on the temporally filtered frames. Finally, the 3D 

SPIHT [109] or MC-EZBC [110] are used to convert the wavelet coefficients into 

bitstream. Traditionally, the motion vectors in each temporal level are obtained 

independently. As shown in Figure 4.1, the first low frequency frame in temporal level 

1 is the average frame of frames 0 and 1 in temporal level 0. Therefore, there are large 

correlations existing between them. If these temporal correlations can be exploited, the 

speed of motion estimation will be enhanced. 
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Level 0

Level 1

Frame 0 Frame 1 Frame 2 Frame 3

MV 1

MV 3

Temporal high-
pass filtering

Temporal high-
pass filtering

L L H H

LL LH

Level 2

LL LH H H

Spatial decomposition after 
temporal filtering

MV 2

 

Figure 4.1 Architecture of the 3D wavelet video coder 

 

 4.2.1 Cross-level prediction of motion vector  

 For the sake of simplicity, the Haar kernel is used as an example to illustrate the 

idea of the proposed algorithm. In Figure 4.1, four frames are formed as a Group Of 

Frames (GOF) and two levels of the temporal decomposition is performed. Firstly, the 

forward motion vectors, MV1 and MV2, are obtained by motion estimation performing 

on the frames 0 and 1 and frames 2 and 3 respectively where frames 0 and 2 are the 
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reference frames. Then, the temporal wavelet transformation is applied on the motion 

compensated frames and the low and high frequency frames are calculated by the lifting 

equations.  Before carrying out temporal decomposition in the temporal level 1, motion 

estimation is performed in order to find the forward motion vector, MV3, in temporal 

level 1. At this stage, the temporal correlation between different temporal levels can be 

exploited. As depicted in Figure 4.2, the average of the MV1 and MV2 is used as the 

initial estimated position of MV3 (think arrow). Then, the refinement process is 

performed in the reduced search window (dotted square). This is to find the refined 

motion vector as indicated by the dotted arrow in the Figure 4.3. This resultant motion 

vector, MV3, is obtained by adding the initial estimated motion vector to the refinement 

motion vector. As the size of the search window is reduced, so the computational 

complexity can be decreased. Similarly, the backward motion vector is calculated in the 

same way. This concept can be extended to the kernel with long filter length such as the 

Bi-orthogonal 5/3 kernel. 

Prediction for MV3 
= (MV1 + MV2) / 2

Search range after 
MV prediction

Current block

Resultant motion 
vector MV3

Refinement 
motion 
vector 

 

Figure 4.2 Cross-level motion vector prediction 
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Initial estimation position 
= median of a, b and c

a b

c
 

Figure 4.3 Median prediction 

 

4.2.2 Median prediction of motion vector 

From our experimental work, the time spent on motion estimation in the 

temporal level 0, i.e. the original video sequence, is around half of the total time for 

motion estimation. Thus, the time consumed in the motion estimation of temporal level 

0 is the most consuming part in the whole motion estimation procedure. There exists a 

large correlation between neighbouring motion vectors, so differential coding is used to 

encode the motion vectors. If such correlation can be exploited, the motion estimation 

operation can be further reduced.  The median of the motion vectors located in the top-

left, top and left of the current block is considered as the initial estimated position as 

depicted in Figure 4.3. Similar to the algorithm mentioned in Section 4.1, the refinement 

process is performed in the reduced search area. The resultant motion vector of the 

current block is the sum of the initial estimated motion vector and the small refined 

motion vector. Since the size of the search area is decreased, the number of operations 

for motion estimation can be reduced. As a result, the speed of the motion estimation 

can be further improved. 
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4.3 Experimental Results 

A substantial amount of experimental work has been done on our approach. 

Consider the results for the block-based motion model with the block size of 16×16 and 

integer pixel accuracy in motion estimation. The search window in the refinement 

process is reduced by half in each temporal level. For example, if the search window in 

the temporal level 0 is ±8, the size of the search window in the temporal level 1 will be 

±4, etc. In our experiments, as the median prediction was used in temporal level 0, so a 

reduced search window with the size of ±4 is used. The search windows in temporal 

levels 1 and 2 are ±4 and ±2 respectively. The motion vectors are encoded by Variable 

Length Coding (VLC). Three levels of temporal and spatial decompositions are 

performed and the Bi-orthogonal 9/7 kernel is used during the spatial decomposition. 

After temporal and spatial decompositions, the spatio-temporal wavelet coefficients 

were encoded by Embedded Zerotree Wavelet (EZW) [57] coding and the Huffman 

coding to convert into bitstream.  

Eight video sequences were tested. They are the “Trevor”, “Suzie”, “Salesman” 

and “Grandmother” with QCIF format (120 frames), and the “Foreman”, “Akiyo” and 

“Coastguard” with CIF format and the “Stefan” with SIF format (296 frames) at 30 fps.  

Table 4.1 and Table 4.2 illustrate the execution time used in motion estimation 

by using the cross-level motion vector prediction and row-based CPME-PDS to find the 

motion vectors in different temporal levels for the Haar and Bi-orthogonal 5/3 kernels 

respectively. The cross-level motion vector prediction makes use of the consecutive 

motion vectors in the previous temporal level for initial searching points and performs 

the refinement in a reduced search window in order to reduce the number of operations 

used in searching. This scheme can achieve the speed up factor of 2.83 to 5.80 and 3.94 

to 7.25 in temporal levels 1 and 2 respectively for Haar kernel and 2.76 to 5.69 and 3.59 
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to 7.42 in temporal levels 1 and 2 respectively for Bi-orthogonal 5/3 kernel. The 

improvement in speed up for the total execution time for motion estimation in MCTF is 

from 2.05 to 4.18 and 1.99 to 4.13 for Haar and Bi-orthogonal 5/3 kernels respectively 

as compared with the FSA. During encoding, the MCTF can attain the speed-up factor 

of 1.89 to 3.33 and 1.86 to 3.40 for Haar and Bi-orthogonal 5/3 kernels respectively in 

terms of processing time. Figure 4.4, Figure 4.5 and Figure 4.6 depicts the rate-

distortion performance of the cross-level motion vector prediction scheme in finding the 

motion vectors at different temporal levels for the “Foreman”, “Coastguard” and 

“Stefan” sequences respectively. As there exists large correlation between temporal 

levels, this prediction scheme is accurate to find the initial searching position. Therefore, 

the reconstructed quality is comparable to that of the FSA. 
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(a)                                                                  (b)  

Figure 4.4 Rate distortion performance of “Foreman” sequence for median prediction using (a) Haar kernel 
and (b) Bi-orthogonal 5/3 kernel during temporal decomposition 
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Rate Distortion Performance of "Coastguard" sequence using Haar
kernel
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orthogonal 5/3 kernel

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Bit per pixel (bpp)

P
S

N
R

 (
dB

)

Original Median Prediction
 

(a)                                                                  (b) 

Figure 4.5 Rate distortion performance of “Coastguard” sequence for median prediction using (a) Haar kernel 
and (b) Bi-orthogonal 5/3 kernel during temporal decomposition 

Rate Distortion Performance of "Stefan" sequence using Haar
kernel

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Bit per pixel (bpp)

P
S

N
R

 (
dB

)

Original Median Prediction
    

Rate Distortion Performance of "Stefan" sequence using Bi-
orthogonal 5/3 kernel
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(a)                                                                  (b) 

Figure 4.6 Rate distortion performance of “Stefan” sequence for median prediction using (a) Haar kernel and 
(b) Bi-orthogonal 5/3 kernel during temporal decomposition 
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Table 4.1 Total execution time used in motion estimation (ms) for cross-level motion vector prediction using 
Haar kernel during temporal decomposition 

Execution Time used for motion estimation (ms) Execution Time used for 
temporal decomposition (ms) 

Video 
sequence 

level 1 
(no 

med. + 
no mv 
pred. 

+ 
FSA) 

level 1 
(mv 
pred. 

+ 
CPME
-PDS) 

speed-
up 

factor 

level 2 
(no 

med. + 
no mv 
pred. 

+ 
FSA) 

Level 
2 (mv 
pred. 

+ 
CPME
-PDS) 

speed-
up 

factor 

total 
(no 

med. + 
no mv 
pred. 

+ 
FSA) 

total 
(mv 
pred. 

+ 
CPME
-PDS) 

speed-
up 

factor 

no 
med. + 
no mv 
pred. 

+ FSA 

mv 
pred. 

+ 
CPME
-PDS 

speed-
up 

factor 

Trevor 814 211 3.86 421 91 4.63 2751 982 2.80 2923 1222 2.39 
Suzie 829 237 3.50 372 93 4.00 2715 1092 2.49 2982 1327 2.25 

Salesman 1889 434 4.35 921 179 5.15 6623 1959 3.38 7171 2538 2.83 
Grandmother 1873 508 3.69 1031 191 5.40 6651 2428 2.74 7188 3001 2.40 

Foreman 9170 2760 3.32 4545 996 4.56 31950 13491 2.37 34469 15983 2.16 
Akiyo 8736 1505 5.80 4374 603 7.25 30462 7296 4.18 32717 9811 3.33 

Coastguard 8939 2681 3.33 4470 1004 4.45 31426 12543 2.51 33420 15051 2.22 
Stefan 7387 2607 2.83 3755 954 3.94 25975 12644 2.05 27769 14723 1.89 

 

Table 4.2 Total execution time used in motion estimation (ms) for cross-level motion vector prediction using 
Bi-orthogonal 5/3 kernel during temporal decomposition 

Execution Time used for motion estimation (ms) Execution Time used for 
temporal decomposition (ms) 

Video 
sequence 

level 1 
(no 

med. + 
no mv 
pred. 

+ 
FSA) 

level 1 
(mv 
pred. 

+ 
CPME
-PDS) 

speed-
up 

factor 

level 2 
(no 

med. + 
no mv 
pred. 

+ 
FSA) 

Level 
2 (mv 
pred. 

+ 
CPME
-PDS) 

speed-
up 

factor 

total 
(no 

med. + 
no mv 
pred. 

+ 
FSA) 

total 
(mv 
pred. 

+ 
CPME
-PDS) 

speed-
up 

factor 

no 
med. + 
no mv 
pred. 

+ FSA 

mv 
pred. 

+ 
CPME
-PDS 

speed-up 
factor 

Trevor 1203 367 3.28 406 107 3.79 4345 1714 2.54 4705 2042 2.30 
Suzie 1201 349 3.44 345 96 3.59 4312 1772 2.43 4687 2120 2.21 

Salesman 2891 664 4.35 788 184 4.28 10155 3165 3.21 11029 3988 2.77 
Grandmother 2845 776 3.67 890 203 4.38 10533 4008 2.63 11221 4812 2.33 

Foreman 13750 4205 3.27 4577 1043 4.39 50201 22348 2.25 53690 25928 2.07 
Akiyo 13314 2340 5.69 4461 601 7.42 48809 11821 4.13 52242 15348 3.40 

Coastguard 13536 4122 3.28 4538 1058 4.29 50126 20477 2.45 53574 24001 2.23 
Stefan 11262 4075 2.76 3778 983 3.84 41385 20801 1.99 44297 23761 1.86 

 

 

The execution time for motion estimation using the row-based CPME-PDS and 

median prediction scheme using Haar and Bi-orthogonal 5/3 kernels are shown in Table 

4.3 and Table 4.4 respectively. This scheme can achieve a speed-up factor of 2.94 to 

4.50 and 3.31 to 5.55 for Haar and Bi-orthogonal 5/3 kernels respectively in temporal 

level 0 as compared with FSA. As the Bi-orthogonal 5/3 kernel involves bi-directional 

prediction in both predict and update steps, the number of motion vector fields is more 

than that of the Haar kernel. Therefore, the speed-up factor is higher as compared with 
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Haar kernel. The PSNR values of reconstructed sequences at different bitrates are 

shown in Figure 4.7, Figure 4.8 and Figure 4.9 for “Foreman”, “Coastguard” and 

“Stefan” respectively. As the correlation of the motion vectors among neighbouring 

blocks is very high, so the median prediction scheme can provide an accurate prediction 

of initial searching point. As a result, this scheme can attain similar rate-distortion 

performance as compared with the FSA.  

Rate Distortion Performance of "Foreman" sequence using Haar
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Rate Distortion Performance of "Foreman" sequence using Bi-
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(a)                                                                  (b) 

Figure 4.7 Rate distortion performance of “Foreman” sequence for cross-level motion vector prediction using 
(a) Haar kernel and (b) Bi-orthogonal 5/3 kernel during temporal decomposition 
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Rate Distortion Performance of "Coastguard" sequence using Haar
kernel
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Rate Distortion Performance of "Coastguard" sequence using Bi-
orthogonal 5/3 kernel
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(a)                                                                  (b) 

Figure 4.8 Rate distortion performance of “Coastguard” sequence for cross-level motion vector prediction 

using (a) Haar kernel and (b) Bi-orthogonal 5/3 kernel during temporal decomposition 

Rate Distortion Performance of "Stefan" sequence using Haar
kernel
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Rate Distortion Performance of "Stefan" sequence using Bi-
orthogonal 5/3 kernel
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(a)                                                                  (b) 

Figure 4.9 Rate distortion performance of “Stefan” sequence for cross-level motion vector prediction using (a) 
Haar kernel and (b) Bi-orthogonal 5/3 kernel during temporal decomposition 
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Table 4.3 Total execution time used in motion estimation (ms) for median prediction using Haar kernel during 

temporal decomposition 

Execution Time used for motion estimation (ms) Execution Time used for 
temporal decomposition (ms) 

Video 
sequence 

level 0 
(no 

med. + 
no mv 
pred. 

+ 
FSA) 

level 0 
(med. 

+ 
CPME
-PDS) 

speed-
up 

factor 

total 
(no 

med. + 
no mv 
pred. 

+ 
FSA) 

total 
(med. 

+ 
CPME
-PDS) 

speed-
up 

factor 

no 
med. + 
no mv 
pred. 

+ FSA 

med. + 
CPME
-PDS 

speed-up 
factor 

Trevor 1516 455 3.33 2751 1080 2.55 2923 1468 1.99 
Suzie 1514 517 2.93 2715 1249 2.17 2982 1471 2.03 

Salesman 3813 1052 3.62 6623 2285 2.90 7171 2847 2.52 
Grandmother 3747 1171 3.20 6651 2701 2.46 7188 3188 2.25 

Foreman 18235 5716 3.19 31950 14900 2.14 34469 17484 1.97 
Akiyo 17352 3855 4.50 30462 8432 3.61 32717 10674 3.07 

Coastguard 18017 5223 3.45 31426 14458 2.17 33420 17188 1.94 
Stefan 14833 5046 2.94 25975 14125 1.84 27769 16199 1.71 

 

 

 

Table 4.4 Total execution time used in motion estimation (ms) for median prediction using Bi-orthogonal 5/3 
kernel during temporal decomposition 

Execution Time used for motion estimation (ms) Execution Time used for 
temporal decomposition (ms) 

Video 
sequence 

level 0 
(no 

med. + 
no mv 
pred. 

+ 
FSA) 

level 0 
(med. 

+ 
CPME
-PDS) 

speed-
up 

factor 

total 
(no 

med. + 
no mv 
pred. 

+ 
FSA) 

total 
(med. 

+ 
CPME
-PDS) 

speed-
up 

factor 

no 
med. + 
no mv 
pred. 

+ FSA 

med. + 
CPME
-PDS 

speed-up 
factor 

Trevor 2736 763 3.59 4345 1671 2.60 4705 2063 2.28 
Suzie 2766 731 3.78 4312 1478 2.92 4687 1858 2.52 

Salesman 6476 1531 4.23 10155 2997 3.39 11029 3857 2.86 
Grandmother 6798 1799 3.78 10533 3658 2.88 11221 4532 2.48 

Foreman 31874 8594 3.71 50201 20157 2.49 53690 24281 2.21 
Akiyo 31034 5593 5.55 48809 11076 4.41 52242 14488 3.61 

Coastguard 32052 8572 3.74 50126 20482 2.45 53574 24160 2.22 
Stefan 26345 7958 3.31 41385 19455 2.13 44297 22512 1.97 

 

 

Table 4.5 and Table 4.6 show the results using the row-based CPME-PDS, 

median prediction and cross-level motion vector prediction in obtaining the motion 

vectors of different temporal levels for the Haar and Bi-orthogonal 5/3 kernels in 

temporal decomposition respectively. At temporal levels 0 and 1, the proposed 

algorithm can achieve a speed-up factor from 3 to 5 times as compared with the FSA 

without using median and cross-level motion vector predictions. Since the search range 

at these two temporal levels is the same, i.e. ±4, the proposed algorithm can obtain 
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similar speed-up factor in these two temporal levels.  At temporal level 2, the speed-up 

factor can be further increased. As the search window is  ±8 at all temporal levels in the 

original algorithm and the reduced search window, i.e. ±2, is used in the proposed 

algorithm, so the speed-up factor is about 4 to 6 times at temporal level 2 which is 

higher than that of the temporal levels 0 and 1. Because the time for motion estimation 

used in temporal level 0 still occupies the largest portion in the whole motion estimation 

procedure, the speed-up factor of the motion estimation using the proposed algorithm is 

about 3 to 5 times as compared to the original algorithm. The initial estimated position 

is the approximation of the motion vector. Therefore, the resultant motion vector may 

be different from the motion vector found by the FSA leading to a slight degradation of 

the reconstructed PSNR quality. Figure 4.10, Figure 4.11 and Figure 4.12 depict the 

PSNR performance of the proposed algorithm for the “Coastguard”, “Foreman” and 

“Stefan” sequences respectively. The reconstructed PSNR values using the proposed 

algorithm are comparable to the original algorithm which does not use the median and 

motion vector predictions. The proposed algorithm can achieve a similar PSNR 

performance as compared with the FSA. 
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Rate Distortion Performance of "Foreman" sequence using Haar
kernel
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Rate Distortion Performance of "Foreman" sequence using Bi-
orthogonal 5/3 kernel
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(a)                                                                  (b) 

Figure 4.10 Rate distortion performance of “Foreman” sequence for median prediction and cross-level motion 

vector prediction using (a) Haar kernel and (b) Bi-orthogonal 5/3 kernel during temporal decomposition 

Rate Distortion Performance of "Coastguard" sequence using Haar
kernel
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Rate Distortion Performance of "Coastguard" sequence using Bi-
orthogonal 5/3 kernel
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(a)                                                                   (b) 

Figure 4.11 Rate distortion performance of “Coastguard” sequence for median prediction and cross-level 
motion vector prediction using (a) Haar kernel and (b) Bi-orthogonal 5/3 kernel during temporal 

decomposition 
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Rate Distortion Performance of "Stefan" sequence using Haar
kernel
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Rate Distortion Performance of "Stefan" sequence using Bi-
orthogonal 5/3 kernel
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(a)                                                                   (b) 

Figure 4.12 Rate distortion performance of “Stefan” sequence for median prediction and cross-level motion 
vector prediction using (a) Haar kernel and (b) Bi-orthogonal 5/3 kernel during temporal decomposition 
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Table 4.5 Total execution time used in motion estimation (ms) for median prediction and cross-level motion 
vector prediction using Haar kernel during temporal decomposition 

Video sequence Execution 
Time used for 

motion 
estimation 

(ms) 
Trevor Suzie Salesman Grandmother Foreman Akiyo Coastguard Stefan 

level 0 
(no med. + no 

mv pred.  + 
FSA) 

1516 1514 3813 3747 18235 17352 18017 14833 

level 0 
(no med. + no 

mv pred.  + 
CPME-PDS) 

475 442 926 1090 5145 3241 5012 4704 

speed- 
up factor 3.19 3.43 4.12 3.44 3.54 5.35 3.59 3.15 
level 1 

(no med. + no 
mv pred.  + 

FSA) 

814 829 1889 1873 9170 8736 8939 7387 

level 1 
(no med. + no 

mv pred.  + 
CPME-PDS) 

250 239 468 541 2938 1622 2808 2886 

speed- 
up factor 3.26 3.47 4.04 3.46 3.12 5.39 3.18 2.56 
level 2 

(no med. + no 
mv pred.  + 

FSA) 

421 372 921 1031 4545 4374 4470 3755 

level 2 
(no med. + no 

mv pred.  + 
CPME-PDS) 

106 92 202 205 1074 644 1078 1072 

speed- 
up factor 3.97 4.04 4.56 5.03 4.23 6.79 4.15 3.57 

Total 
(no med. + no 

mv pred.  + 
FSA) 

2751 2715 6623 6651 31950 30462 31426 41385 

Total 
(no med. + no 

mv pred.  + 
CPME-PDS) 

831 773 1596 1836 9157 5507 8898 13549 

speed- 
up factor 3.31 3.51 4.15 3.62 3.49 5.53 3.53 3.05 

Execution 
Time used for 

temporal 
decomposition 

(ms) 

        

no med. + no 
mv pred. + 

FSA 
2923 2982 7171 7188 34469 32717 33420 44297 

med. + mv 
pred. + CPME-

PDS 
1093 1031 2202 2452 11811 8124 11515 16638 

speed-up 
factor 2.67 2.89 3.26 2.93 2.92 4.03 2.90 2.66 

 



Chapter 4 Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder 

 

138 

Table 4.6 Total execution time used in motion estimation (ms) for median prediction and cross-level motion 
vector prediction using Bi-orthogonal 5/3 kernel during temporal decomposition 

Video sequence Execution 
Time used for 

motion 
estimation 

(ms) 
Trevor Suzie Salesman Grandmother Foreman Akiyo Coastguard Stefan 

level 0 
(no med. + no 

mv pred.  + 
FSA) 

2736 2766 6476 6798 31874 31034 32052 26345 

level 0 
(no med. + no 

mv pred.  + 
CPME-PDS) 

793 765 1640 1905 9025 5627 8721 8176 

speed- 
up factor 3.45 3.62 3.95 3.57 3.53 5.52 3.68 3.22 
level 1 

(no med. + no 
mv pred.  + 

FSA) 

1203 1201 2891 2845 13750 13314 13536 11262 

level 1 
(no med. + no 

mv pred.  + 
CPME-PDS) 

374 363 701 843 4493 2458 4361 4314 

speed- 
up factor 3.22 3.31 4.12 3.37 3.06 5.42 3.10 2.61 

level 2 
(no med. + no 

mv pred.  + 
FSA) 

406 345 788 890 4577 4461 4538 3778 

level 2 
(no med. + no 

mv pred.  + 
CPME-PDS) 

99 102 192 211 1105 643 1100 1059 

speed- 
up factor 4.10 3.38 4.10 4.22 4.14 6.94 4.13 3.57 

Total 
(no med. + no 

mv pred.  + 
FSA) 

4345 4312 10155 10533 50201 48809 50126 41385 

Total 
(no med. + no 

mv pred.  + 
CPME-PDS) 

1266 1230 2533 2959 14623 8728 14182 13549 

speed- 
up factor 3.43 3.51 4.01 3.56 3.43 5.59 3.53 3.05 

Execution 
Time used for 

temporal 
decomposition 

(ms) 

        

no med. + no 
mv pred. + 

FSA 
4705 4687 11029 11221 53690 52242 53574 44297 

med. + mv 
pred. + CPME-

PDS 
1620 1596 3409 3824 18339 12389 17879 16638 

speed-up 
factor 2.90 2.94 3.24 2.93 2.93 4.22 3.00 2.66 
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4.4 Conclusion 

In this chapter, we propose a new motion estimation algorithm to reduce the 

computational complexity in the MCTF scheme. Since there exists large temporal 

correlation between successive video frames, so the average of two motion vectors in 

the previous temporal level can be used as an initial estimated position of the motion 

vector in the current temporal level. Then, the refinement process is performed in the 

reduced search window. Finally, the resultant motion vector is the vector sum of the 

initially estimated motion vector and a small refinement motion vector. Due to 

simplicity, we used the Haar kernel as an example to illustrate the concept of the 

proposed algorithm. The proposed idea can be applied to the kernel with longer filter 

length, such as Bi-orthogonal 5/3 kernel, in order to improve the compression efficiency. 

Besides, high spatial correlation exists in a video frame. Therefore, the median value of 

the motion vectors in the neighbouring blocks can be used as an initial estimated motion 

vector of the current block. Due to that initially estimated motion vector and the reduced 

search window, the computational complexity for motion estimation can be reduced 

significantly. The experimental results show that the time for motion estimation using 

the proposed algorithm is reduced by 3 to 5 times as compared with the FSA and the 

PSNR performance of the proposed algorithm is comparable to that of the FSA. 
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Chapter 5  

Embedded Zerotree Wavelet (EZW) 

5.1 Introduction 

 The Embedded Zerotree Wavelet (EZW) coding [57] is popular to be used to 

encode the wavelet coefficients due to its embedded nature and progressive 

transmission. It is an embedded coder because the encoded bitstream can achieve the 

target bit-rate by terminating the encoding procedure. Also, it can locate the coefficients 

with large magnitude so that they can be transmitted before the coefficients with small 

magnitude in order to achieve progressive transmission. Some modified EZW 

algorithms [58], [59], [60] are available to improve the coding gain by eliminating some 

less important wavelet coefficients in the high frequency subbands, such that the 

Human Visual System (HVS) cannot be aware of the degradation of the reconstructed 

image. This is because the HVS is more sensitive to the degradation of the low 

frequency components which correspond to the detail information, than that of the high 

frequency components which correspond to the edge information, in the natural image.  

 In this chapter, an algorithm is proposed to further improve the compression 

performance by discarding the wavelet coefficients in the high frequency subbands. The 

organization of this chapter is shown as follows. Some analysis of the EZW algorithm is 

discussed in section 5.2. The proposed algorithm is presented in section 5.3. Some 

experimental results are stated in section 5.4 to evaluate the performance of the 

proposed algorithm. Finally, a conclusion is drawn in the section 5.5. 
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5.2 Analysis of Embedded Zerotree Wavelet (EZW) 

algorithm 

Some analysis of the conventional [57] and modified EZW algorithms using the 

minimum subband approach [60] are discussed in the sections 5.2.1 and 5.2.2 

respectively. 

 

5.2.1 Analysis of the conventional EZW algorithm 

 The EZW coding makes use of the bit-plane coding such that the most 

significant bit is firstly transmitted to the decoder in order to achieve progressive 

transmission. Each bit-plane refers to a pass. It can attain lossless coding by sending all 

passes to the decoder. If the information in last few passes is discarded, the 

reconstructed quality and bit per pixel (bpp) are both reduced. Although the distortion is 

introduced in the reconstructed image due to missing data in the last few passes, the 

human visual system cannot be aware by such distortion and the visual quality is not 

affected significantly. However, the compression efficiency is improved since the last 

few passes are not encoded. 

Figure 5.1 and Figure 5.2 depict the reconstructed PSNR and bit per pixel of the 

conventional EZW algorithm for one, two and three decomposition levels stopping 

decoding at different passes using the D4 kernel and “Lena” image respectively. For 

using one decomposition level, the quality is the best but it requires more bits to encode 

the coefficients since the zerotree structure cannot be utilized efficiently. In the zerotree 

structure, one symbol, zerotree node, can represent a large portion of wavelet 

coefficients that are insignificant in the current pass. However, this structure cannot be 

used for using one decomposition level only. Figure 5.3 shows the rate distortion 
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performance of the EZW coding with different decomposition levels. The performance 

of three decomposition levels can outperform that of the two or one decomposition 

level(s) according to the efficient energy concentration to the low frequency subband. 

Furthermore, the zerotree only works efficiently for more than two decomposition 

levels since most energy can be concentrated to only a few number of wavelet 

coefficients for three or more decomposition levels. As a result, only a small number of 

symbols can represent many wavelet coefficients leading to increase the coding 

efficiency. Besides, the reconstructed “Lena” image using one, two and three 

decomposition levels for D4 kernel are illustrated in Figure 5.4, Figure 5.5 and Figure 

5.6 respectively. When the last few passes are not decoded, the visual quality is not 

affected significantly. Since the data in the last few passes are insignificant, so the 

human visual system (HVS) cannot be aware of the degradation of omitting the 

information in these few passes. However, since some information in the last few passes 

are not encoded, it only attains the lossy coding. On the contrary, if all passes are 

encoded, it can achieve the lossless coding. 
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Reconstructed PSNR (dB) stopping at different passes for different

decomposition levels using "Lena" image
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Figure 5.1 Reconstructed PSNR (dB) stopping at different passes for different decomposition levels using D4 
kernel and “Lena” image 

 

Bit per pixel (bpp) stopping at different passes for different decomposition levels using

"Lena" image
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Figure 5.2 Bit per pixel (bpp) stopping at different passes for different decomposition levels using D4 kernel 
and “Lena” image 



Chapter 5 Embedded Zerotree Wavelet (EZW) 

 

144 

 

Rate distortion performance of the conventional EZW algorithm at different

decomposition levels and passes for the "Lena" image
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Figure 5.3 Rate distortion performance of the EZW coding with different decomposition levels using the D4 
kernel for the Lena image 
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(a) (b) 

  

  
(c) (d) 

  

  
(e) (f) 

Figure 5.4 Reconstructed images of the EZW algorithm with one decomposition level for (a) original image, 
decoding at (b) seven passes, (c) eight passes, (d) nine passes, (e) ten passes and (f) eleven passes (all passes) 

respectively 
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(a) (b) 

  

  
(c) (d) 

  

  
(e) (f) 

Figure 5.5 Reconstructed images of the EZW algorithm with two decomposition levels for (a) original image, 
decoding at (b) six passes, (c) seven passes, (d) eight passes, (e) nine passes and (f) ten passes (all passes) 

respectively 
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(a) (b) 

  

  
(c) (d) 

  

  
(e) (f) 

Figure 5.6 Reconstructed images of the EZW algorithm with three decomposition levels for (a) original image, 
decoding at (b) six passes, (c) seven passes, (d) eight passes, (e) nine passes and (f) ten passes (all passes) 

respectively 
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5.2.2 Analysis of the modified EZW algorithm using subband 

threshold approach 

 The information in the last few passes of the standard EZW algorithm is 

discarded in order to improve the coding gain and the HVS cannot be aware of the 

degradation by eliminating these less important data. However, this coding method is 

lossy such that the original information cannot be reconstructed. A modified EZW 

algorithm using the minimum weight subband approach [60] can further improve the 

compression efficiency by removing the wavelet coefficients in the high frequency 

subband if these coefficients are smaller than a pre-defined threshold. For this approach, 

the weight of a subband refers to the summation of all coefficients in that subband in 

magnitude. Then, a subband with the minimum weight in each decomposition level is 

selected. If the coefficients inside this minimum weight subband are smaller than a pre-

determined threshold, these coefficients will be set to zero, i.e. eliminating these 

coefficients. However, there exists a problem that if there exists many coefficients with 

small magnitude and the large magnitude coefficients only occupy a small portion as 

compared with the small magnitude coefficients in a high frequency subband, there will 

be a probability that the subband with coefficients of small magnitudes will be selected 

as the minimum weight subband although a subband with large magnitude coefficient is 

available. Although the large magnitude coefficients can still be retained after 

performing thresholding in that subband, the compression efficiency is reduced as 

compared to perform thresholding in another subband which does not contain 

significantly high frequency coefficients. Therefore, we may add one more criterion to 

select the subband to perform thresholding. The extra criterion is the difference between 

the largest and smallest magnitude coefficients in each subband. This criterion can 

reflect the situation as described above. Table 5.1 and Table 5.3 show the minimum 
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weight and minimum difference subbands at each decomposition level using D4 and 

Daubechies 9/7 kernels respectively. For the “Lena” image, the minimum weight 

subband is the HH subband while the minimum difference subband is the LH subband 

in the level three as depicted in Table 5.1. For the “Fruit” image, the minimum weight 

subband is the LH subband while the minimum difference subband is the HH subband 

in levels one and three as illustrated in Table 5.3. These two Tables introduce a problem 

that these two criterion may indicate different subbands to perform thresholding and this 

problem will be solved in the section 5.4. Table 5.2 and Table 5.4 show the number of 

wavelet coefficients with zero magnitude for the conventional EZW algorithm and the 

modified EZW algorithm with minimum weight subband approach using D4 and 

Daubechies 9/7 kernels respectively. As expected, there exist coefficients with zero 

magnitude after performing the thresholding process. Also, when the threshold becomes 

larger, more coefficients are set to zero leading to an increase in coding gain but a 

reduction in reconstructed quality. As a result, there is a trade-off between the 

compression ratio and the reconstructed quality. However, the visual quality of the 

reconstructed image is not notably affected as shown in Figure 5.7 and Figure 5.9. The 

HVS is not sensitive to the threshold values between two and five. 
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(a) (b) 

  

  
(c) (d) 

Figure 5.7 Reconstructed images of the (a) original image, (b) conventional EZW algorithm, (c) modified EZW 
algorithm with pre-processing of the value of threshold of two and (d) modified EZW algorithm with pre-

processing of the value of threshold of five respectively with three decomposition levels using D4 kernel 

 

 

 

 

 

 

 

 
(a)  (b)  (c)  (d) 

Figure 5.8  (a) Original image, (b) wavelet-transformed image, (c) pre-processed image with a threshold of five 
and (d) reconstructed image with three decomposition levels using a threshold of five 
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(a) (b) 

  

  
(c) (d) 

Figure 5.9 Reconstructed images of the (a) original image, (b) conventional EZW algorithm, (c) modified EZW 
algorithm with pre-processing of the value of threshold of two and  (d) modified EZW algorithm with pre-

processing of the value of threshold of five respectively with three decomposition levels using Daubechies 9/7 
kernel 

 

 

 

 

 

 

 

 
(a)  (b)  (c)  (d) 

Figure 5.10 (a) Original image, (b) wavelet-transformed image, (c) pre-processed image with a threshold of 
five and (d) reconstructed image with three decomposition levels using a threshold of five 
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Table 5.1 Reconstructed quality (dB) and the minimum weight subband and minimum difference subband in 
each level for the conventional EZW algorithm and the modified EZW algorithm with pre-processing stage 

using the three decomposition levels and D4 kernel 

Min. Weight / Min. Different Modified EZW algorithm with pre-
processing Image Conventional EZW 

algorithm 
Level 1 Level 2 Level 3 Threshold = 2 Threshold = 5 

Lena 53.1866 dB HH / HH HH / HH HH / LH 52.841 dB 50.434 dB 
Fruit 53.1473 dB HH / HH HH / HH HH /HH 51.8463 dB 45.5136 dB 

 

Table 5.2 The number of wavelet coefficients with zero magnitude for the conventional EZW algorithm and 
the modified EZW algorithm with pre-processing stage using the three decomposition levels and D4 kernel 

Number of zero coefficients for modified 
EZW algorithm with pre-processing Image Number of zero coefficients for 

conventional EZW algorithm 
Threshold = 2 Threshold = 5 

Lena  0 7451 13412 
Fruit  0 30627 62010 

 

Table 5.3 Reconstructed quality (dB) and the minimum weight subband and minimum difference subband in 
each level for the conventional EZW algorithm and the modified EZW algorithm with pre-processing stage 

using the three decomposition levels and Daubechies 9/7 kernel 

Min. Weight / Min. Different Modified EZW algorithm with pre-
processing Image Conventional EZW 

algorithm 
Level 1 Level 2 Level 3 Threshold = 2 Threshold = 5 

Lena 24.5371 dB LH / LH LH / LH LH / LH 24.5404 dB 24.577 dB 
Fruit 24.948 dB LH / HH LH / LH LH / HH 24.9494 dB 24.9617 dB 

 

Table 5.4 The number of wavelet coefficients with zero magnitude for the conventional EZW algorithm and 
the modified EZW algorithm with pre-processing stage using the three decomposition levels and Daubechies 

9/7 kernel 

Number of zero coefficients for modified 
EZW algorithm with pre-processing Image Number of zero coefficients for 

conventional EZW algorithm 
Threshold = 2 Threshold = 5 

Lena 0 46387 72935 
Fruit 0 8767 13428 

 

 

5.3 Proposed algorithm of the modified EZW algorithm 

 The key idea of the proposed algorithm is to eliminate the insignificant 

coefficients in the high frequency subbands, i.e. HL, LH and HH subbands. According 

to the observation in the previous section, one more criterion, which is the minimum 

difference, is used to choose the subband to discard the unimportant coefficients, where 

the minimum difference is the absolute difference between the coefficients with the 
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greatest and smallest magnitudes. If the minimum weight subband [60] is the same as 

the minimum difference subband, we can perform further quantization in that subband 

because that subband must contain insignificant information such that the human visual 

system cannot be aware by discarding such insignificant data. Otherwise, we perform 

thresholding in the minimum weight subband such that the significant information can 

still be retained. The procedure of the proposed algorithm is summarized as follows. 

1. Find the minimum weight subband in each decomposition level, where the 

weight of each subband is the sum of all coefficients in magnitude. 

2. Find the minimum difference subband in each decomposition level, where the 

difference of each subband is the difference between the largest and smallest 

magnitude of the coefficients. 

3. At each decomposition level, if the minimum weight subband is the same as the 

minimum difference subband, all coefficients in that subband are quantized by a 

specified quantizer. Otherwise, for each coefficient in the minimum weight 

subband, if the magnitude of coefficient is less than a pre-determined threshold 

value, it will be set to zero. 

The processed wavelet coefficients are then put forward to entropy encoding 

process. The compressed bitstream is conveyed to the decoder for reconstruction. As the 

insignificant wavelet coefficients in the high frequency subband are discarded, the 

compression efficiency can be further enhanced. Besides, the visual quality of the 

reconstructed image is not considerably affected. The proposed algorithm is a lossy 

coding scheme since some unimportant information in the high frequency subbands is 

eliminated and they cannot be recovered during reconstruction. 

 As mentioned in section 2.6, the Set-Partition Embedded Block Coder (SPECK) 

algorithm [107] is the latest coding algorithm to encode the wavelet coefficients. The 
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proposed approach can also be applied in the SPECK algorithm. The major difference 

between the EZW algorithm and the SPECK algorithm is that the SPECK algorithm 

scans the wavelet coefficients in depth-first scanning path while the EZW algorithm 

uses the transversal scanning path. For the SPECK algorithm, if a set of coefficients are 

tested to be significant, then it is split into four equal subsets. Each subset is carried 

significant test until the significant coefficients can be found out. Therefore, the 

scanning path of SPECK algorithm refers to the depth-first searching path. For the EZW 

algorithm, if a coefficient including all of its descendents are tested to be significant, 

then a symbol, IZ, isolated zero is put to the dominant list. Then, the coefficients in the 

same subband and the same decomposition levels are scanned. After that, the 

descendents of significant coefficient are scanned. As a result, the EZW algorithm 

makes use of the transversal searching path. Due to this major difference, the procedure 

of proposed algorithm is modified in the follows so that it can take the advantage of the 

SPECK algorithm.  

1. Find the minimum weight subband in each decomposition level, where the 

weight of each subband is the sum of all coefficients in magnitude. 

2. Find the minimum difference subband in each decomposition level, where the 

difference of each subband is the absolute difference between the largest and 

smallest magnitude of the coefficients. 

3. At each decomposition level, if the minimum weight subband is the same as the 

minimum difference subband, the magnitude of coefficient smaller than a pre-

defined threshold value in that subband are quantized by a specified quantizer. 

Otherwise, for each coefficient in the minimum weight subband, if the 

magnitude of coefficient is less than a pre-determined threshold value, it will be 

set to zero. 
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The processed wavelet coefficients are then put forward to SPECK and 

arithmetic encoding procedures. The compressed bitstream is sent to the decoder for 

reconstruction. As the insignificant wavelet coefficients in the high frequency subband 

are removed, the compression efficiency can be further enhanced. Besides, the visual 

quality of the reconstructed image is considerably affected. The proposed algorithm is a 

lossy coding scheme since some less important information in the high frequency 

subbands is removed and they cannot be recovered during reconstruction. 

 

5.4 Experimental Results 

 The “Lena” image was used to evaluate the performance of the proposed 

algorithm. The D4 kernel with three decomposition levels was performed during the 

encoding and decoding processes. After carrying out the EZW coding, the Huffman 

coding is implemented to convert the symbols of the EZW coding into compressed 

bitstream which were sent to the decoder for reconstruction. 

 The rate distortion performance of the conventional EZW algorithm, modified 

EZW method using the minimum subband approach and proposed algorithm using the 

“Lena” and “Fruit” images are depicted in Figure 5.12 and Figure 5.13 respectively. 

The proposed algorithm can both outperform the conventional EZW algorithm and the 

minimum subband approach due to discarding the unimportant wavelet coefficients in 

the high frequency subband at each decomposition level. Therefore, the number of bits 

used to encode the coeffcieints can be reduced leading to decreasing the number of bits 

per pixel (bpp) at the same reconstructed quality. There exists a probability that the 

minimum subband approach may select the significant subband to perform thresholding. 

As a result, one more criterion, which is the minimum difference subband, is used to 
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choose the most insignificant subband. If both the minimum subband and minimum 

difference subbands indicate the same high frequency subband, this subband must be 

the most insignificant in certain decomposition level. So, we can remove these 

insignificant coefficients in that unimportant subband to improve the coding efficiency, 

and there is insignificant effect on the visual quality. Figures 5.11 (c) and (d) show the 

visual quality of the reconstructed image using the minimum subband approach and the 

proposed algorithm respectively. Since only insignificant wavelet coefficients are 

eliminated in the high frequency subband and our human eyes are not sensitive to the 

distortion of these insignificant information, the visual quality of the reconstructed 

image are essentially not affected.  
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(a) (b) 

  

  
(c) (d) 

Figure 5.11 Reconstructed images of the (a) original image, (b) conventional EZW algorithm, (c) modified 
EZW algorithm with pre-processing of the value of threshold of two and  (d) proposed EZW algorithm with 

pre-processing of the value of threshold of two and the quantization factor of two respectively with three 
decomposition levels using D4 kernel 
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Rate distortion performance of "Lena" image using D4 kernel with three decomposition

levels
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Figure 5.12 Rate distortion performance of the conventional EZW algorithm, modified EZW algorithm using 
the minimum weight subband approach and the proposed EZW algorithm using the D4 kernel with three 

decomposition levels for the “Lena” image 
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Figure 5.13 Rate distortion performance of the conventional EZW algorithm, modified EZW algorithm using 
the minimum weight subband approach and the proposed EZW algorithm using the D4 kernel with three 

decomposition levels for the “Fruit” image 
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 The rate distortion performance of the conventional SPECK algorithm [107], 

modified SPECK method using the minimum subband approach and proposed approach 

employed in the SPECK algorithm using D4 kernel with three decomposition levels for 

the “Lena” and “Fruit” images are depicted in Figure 5.15 and Figure 5.16 respectively. 

According to the experimental results, the proposed approach can outperform the 

minimum subband approach. It can select and remove some unimportant coefficients in 

the high frequency subbands at each decomposition level. After eliminating the 

insignificant coefficients, the number of bits used to encode the coefficients are reduced 

and the coding efficiency can be improved as compared to the minimum subband 

approach.  
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(a) (b) 

  

  
(c) (d) 

Figure 5.14 Reconstructed images of the (a) original image, (b) conventional SPECK algorithm, (c) modified 
EZW algorithm with pre-processing of the value of threshold of five and  (d) proposed SPECK algorithm with 

pre-processing of the value of threshold of five and the quantization factor of two respectively with three 
decomposition levels using D4 kernel 
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Rate distortion performance of Lena image using three 

decomposition levels and D4 kernel
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Figure 5.15 Rate distortion performance of the conventional SPECK algorithm, modified SPECK algorithm 
using the minimum weight subband approach and the proposed SPECK algorithm using the D4 kernel with 

three decomposition levels for the “Lena” image 
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Figure 5.16 Rate distortion performance of the conventional SPECK algorithm, modified SPECK algorithm 
using the minimum weight subband approach and the proposed SPECK algorithm using the D4 kernel with 

three decomposition levels for the “Fruit” image 
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5.5 Conclusion 

 In this chapter, we propose a modified EZW algorithm to improve the 

compression efficiency in image compression. Since there exist a large amount of 

insignificant wavelet coefficients in the high frequency subband and this information 

consumes bits to encode, these less important coefficients should be systematically 

discarded in order to improve the coding efficiency. Furthermore, the HVS is not 

sensitive to the degradation introduced from this unimportant information. Therefore, 

the visual quality is not considerably affected by eliminating such insignificant wavelet 

coefficients. Two criteria, which are the minimum weight and minimum difference, are 

used to select the insignificant high frequency subband in each decomposition level. 

The weight of each subband is the summation of all wavelet coefficients in magnitude 

while the difference of each subband is the absolute difference between the greatest and 

smallest wavelet coefficients. If the minimum weight subband is the same as the 

minimum difference subband, all wavelet coefficients in this high frequency subband 

perform the quantization using a pre-defined quantization step-size. Otherwise, the less 

important wavelet coefficients, which are smaller than a specified threshold, in the 

minimum weight subband are discarded. As the number of bits used to encode the 

wavelet coefficients is reduced, the coding gain can be increased.  

From the experimental results, the average number of bits used to encode each 

pixel of the proposed algorithm is reduced by 0.1 bit per pixel (bpp) and 1 bpp as 

compared with the minimum subband approach [60] and conventional EZW algorithm 

[57] respectively with similar PSNR values. Besides, the visual quality of the 

reconstructed image using the proposed algorithm is comparable to that of the 
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conventional EZW algorithm. In addition, the proposed algorithm can also be applied to 

the latest coding scheme, the SPECK algorithm [107], and can outperform the minimum 

subband approach [60] by 0.1 bit per pixel (bpp) with the same PSNR value. The visual 

quality can still be maintained as compared to the original SPECK algorithm and 

minimum subband approach. 
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Chapter 6  

Conclusion 

6.1 Conclusion on the current works 

In this work, the typical wavelet video coder is studied. Some fast algorithms of 

motion estimation in the wavelet domain are proposed and some conclusions are drawn 

in this chapter. 

The fundamental concept of the hybrid video coding model is reviewed in 

Chapter 2 and this model is employed in the traditional video coding standards such as 

MPEG-1, MPEG-2, MPEG-4 and H.264. The classic wavelet video coding system also 

makes use of the hybrid video coding model to reduce both spatial and temporal 

redundancies in the video sequences. There are two major differences between the 

wavelet video coding system and conventional hybrid video coding model. The first one 

is the transform kernel. The wavelet transform is used in order to achieve superior 

compression performance and eliminate the blocking artefacts as compared with the 

conventional transform kernel, i.e. the Discrete Cosine Transform (DCT). Also, the 

wavelet transform is scalable in nature so that it can be used in the multi-resolution 

applications such as Digital TV (DTV) and High-Definition TV (HDTV). The other 

difference is that the motion estimation is performed in the wavelet domain. As there 

exist high correlations between the corresponding subbands across different 

decomposition levels in the wavelet pyramid, so the speed of motion estimation can be 

enhanced by exploiting such property. Several typical wavelet-domain motion 
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estimation algorithms are also studied in the chapter 2. Since the two dimensional 

Discrete Wavelet Transform (2D-DWT) is used in the standard wavelet video coder, so 

the spatial scalability can only be achieved but not the temporal scalability. Hence, the 

three dimensional Discrete Wavelet Transform (3D-DWT) is performed in the novel 

wavelet video coder in order to achieve both temporal and spatial scalabilities by 

decomposing the video frames in the temporal direction along the motion trajectories. 

Thus, the visual quality of the low frequency frame is improved by reducing the 

ghosting artifacts. Besides, the compression efficiency can be improved as compared 

with the 2D-DWT video coder. And the architecture of 3D-DWT video coder is revised 

in the chapter 2. After carrying out the wavelet transform, the wavelet coefficients are 

encoded by the Embedded Zerotree Wavelet (EZW) algorithm by exploiting the 

redundancy existing among different subbands. The EZW algorithm is also investigated 

in the chapter 2.    

A fast motion estimation algorithm in the wavelet domain in the 2D-DWT video 

encoder is proposed in the chapter 3. The pixel error with similar magnitude tends to 

group in clusters in the spatial domain. The Clustered Pixel Matching Error for Partial 

Distortion Search (CPME-PDS) is investigated to exploit such clustering property in the 

spatial domain in order to improve the speed of the motion estimation. According to our 

observation, this pixel cluster property is also available in the wavelet domain. Besides, 

this clustering property is appeared in the hierarchical nature of the wavelet pyramid. 

By applying the hierarchical property of the wavelet domain into the row-based CPME-

PDS, the impossible candidate blocks can be rejected as early as possible. Only the LL 

subband and the subbands in the lowest resolution level have to carry out the counting 

sort to find their error distributions. The results can then be down-sampled and re-

numbered in the subband at higher resolution level of the hierarchical pyramid. 
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Experimental results show that the proposed scheme, i.e. the backward CPME-PDS 

algorithm, can improve the speed of motion estimation in terms of total execution time 

and the average number of operations per block comparing to Full Search Algorithm 

(FSA) in Multi-Resolution Motion Estimation (MRME) scheme. By applying the 

Successive Elimination Algorithm (SEA) into the backward CPME-PDS, the average 

number of operations per block can be further reduced. However, its implementation 

time is longer than that of the backward CPME-PDS due to greater number of 

comparisons of the floating-point numbers (wavelet coefficients) and the structure of 

CPU is not favour to floating-point number comparison. But the performance of 

proposed algorithm in the slow motion video sequences is extremely well. Hence, it is 

suitable for video conferencing and video surveillance. Due to the scalability nature of 

the Discrete Wavelet Transform (DWT), the proposed scheme can be applied to multi-

resolution applications such as Digital TV (DTV), High Definition TV (HDTV) and 

mobile phone applications. 

 In chapter 4, we propose a new motion estimation algorithm to reduce the 

computational complexity in the 3D-DWT video encoder. Since there exists large 

temporal correlation between successive video frames, so the average of two motion 

vectors in the previous temporal level can be used as an initial estimated position of the 

motion vector in the current temporal level. Then, the refinement procedure is carried 

out in the reduced search window. Finally, the resultant motion vector is the vector sum 

of the initially estimated motion vector and a small refinement motion vector. The 

proposed idea can be applied to the kernel with longer filter length, such as Bi-

orthogonal 5/3 kernel, in order to improve the compression efficiency. Besides, high 

spatial correlation exists in a video frame. Therefore, the median value of the motion 

vectors in the neighbouring blocks can be used as an initial estimated motion vector of 
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the current block in the first temporal level, i.e. the spatial domain. Due to that initially 

estimated motion vector and the reduced search window, the computational complexity 

for motion estimation can be reduced significantly. The experimental results show that 

the execution time and average number of operations per block for motion estimation 

using the proposed algorithm are both reduced as compared with the FSA. But the 

PSNR performance of the proposed algorithm can be retained and it is comparable to 

PSNR performance of the FSA. 

 In chapter 5, we propose a modified EZW algorithm to improve the compression 

efficiency in image compression. Since there exist a large amount of insignificant 

wavelet coefficients in the high frequency subband and this information requires lots of 

bits to encode, so these less important coefficients can be discarded in order to improve 

the coding efficiency. Furthermore, the Human Visual System (HVS) is not sensitive to 

the degradation introduced from this unimportant information. Therefore, the visual 

quality is not considerably affected by discarding such insignificant wavelet coefficients. 

Two criteria, which are the minimum weight and minimum difference, are used to 

select the insignificant high frequency subband in each decomposition level. The weight 

of each subband is the summation of all wavelet coefficients in magnitude while the 

difference of each subband is the absolute difference between the greatest and smallest 

wavelet coefficients. If the minimum weight subband is the same as the minimum 

difference subband, all wavelet coefficients in this high frequency subband performs the 

quantization using a pre-defined quantization step-size. Otherwise, the less important 

wavelet coefficients, which are smaller than a specified threshold, in the minimum 

weight subband are discarded. As the number of bits used to encode the wavelet 

coefficients is reduced, so the coding gain can be increased. From the experimental 

results, the average number of bits used to encode each pixel of the proposed algorithm 



Chapter 6 Conclusion 

 

168 

is reduced as compared with the modified EZW algorithm with minimum subband 

approach and the conventional EZW algorithm for similar PSNR performance. Besides, 

the visual quality of the reconstructed image using the proposed algorithm can be 

preserved and it is comparable to reconstructed quality of the conventional EZW 

algorithm. 

 

6.2 Future research directions 

There are some future research directions for the motion estimation in both 2D-

DWT and 3D-DWT video encoders. 

For the motion estimation algorithm in the 2D wavelet domain, the proposed 

algorithm (backward CPME-PDS) makes use of the row-based computation to obtain 

the partial Sum of Absolute Difference (SAD) row by row. The HL subband can take 

advantage of this row-based computation strategy as the horizontal edge exists in the 

HL subband. On the other hand, the partial SAD calculation in the LH subband can be 

performed in column-by-column strategy since the vertical edge is located in this 

subband. By exploiting the edge property of the wavelet subband, the speed of the 

motion estimation can be further enhanced. 

 The latest video coding standard, H.264, makes use of the variable block size 

motion estimation with rate-distortion optimization scheme to further enhance the 

compression efficiency at the expense of computational complexity for motion 

estimation. This approach can be applied to the 3D-DWT video coder to improve the 

coding gain. However, the computational burden for motion estimation is increased 

significantly. Thus, some fast variable block size motion estimation algorithms for the 

wavelet video encoder can be investigated to optimize the tradeoff between the 

compression efficiency and the computational load. 
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 Furthermore, the current Motion Compensated Temporal Filtering (MCTF) 

scheme in the 3D-DWT video coder requires decoding the motion vectors in all 

temporal levels even though only half temporal resolution of video sequence is decoded, 

say for example. Thus, the scalable motion vector coding approach should be 

investigated. If a quarter of the original temporal resolution is decoded, then the motion 

vectors of the quarter temporal resolution are decoded in order to avoid full decoding of 

motion vectors in all temporal resolution levels. 
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