

Abstract – New Hybrid Coding for Video Sequences

i

Abstract

During the encoding process of traditional video coding standards, the motion

estimation consumes most of the computational effort. For the wavelet video coding,

this problem becomes more serious since motion estimation in the wavelet domain

involves floating-point computation. Hence, it is necessary to develop some fast motion

estimation algorithms in wavelet domain in order to reduce the computational burden of

the wavelet video encoder during encoding procedure.

 One of the traditional motion estimation algorithms in wavelet domain is to

make use of the correlations among the corresponding subbands in the wavelet pyramid

to enhance the speed of motion estimation. This algorithm is entitled as Multi-resolution

Motion Estimation (MRME) algorithm which is based on the fact that an object in a

subband of the lowest resolution level actually specifies the same object in the subbands

of the higher resolution levels. Thus, the computational complexity of motion

estimation in the wavelet domain can be reduced significantly by exploiting the

relationships between the subbands of different resolution levels. On the other hand, the

pixels with similar matching error tend to group in a cluster in both spatial and wavelet

domains. Besides, a cluster which appears in a certain position of a subband at the

lowest resolution level and there also exists a cluster in the similar position of the

corresponding subbands at the remaining higher resolution levels. Thus, the Clustered

Pixel Matching Error for Partial Distortion Search (CPME-PDS) algorithm can be

applied in the MRME scheme to further improve the speed of motion estimation in the

wavelet domain. The CPME-PDS involves the sorting procedure in order to obtain the

coefficients with large matching errors and the sorting is required to perform in every

Abstract – New Hybrid Coding for Video Sequences

ii

subband at each decomposition level. As we found that the clustering property is in a

hierarchical nature in the wavelet pyramid, the sorting order in the subband of the

highest-resolution level can be re-used to predict the sorting order of the subbands in the

lower-resolution levels. Since the sorting operations are only carried out in the three

subbands at the high-resolution level only, so the computational effort for motion

estimation can be further reduced. From the experimental results, the proposed

algorithm (Backward CPME-PDS) can achieve speed-up factors from 2 to 5 and from

1.1 to 1.2 as compared to the Full Search Algorithm (FSA) and Partial Distortion Search

(PDS) algorithm respectively.

 Recently, the three dimensional discrete wavelet transform (3D-DWT) video

coder becomes more popular since it can attain both spatial and temporal scalabilities. It

involves motion estimation in the wavelet decomposition, so the computational burden

for motion estimation is still a major concern. Due to the fact that there exists high

spatial and temporal correlations between the motion vectors in the neighbouring blocks

in a frame and between the motion vector fields of the low frequency frames at

successive temporal levels, the computational complexity of motion estimation can be

reduced considerably. By making use of these correlations, an accurate motion

estimation predictor can be obtained and a refinement process is performed within the

reduced search area based on the accurate motion predictor. From the experimental

results, the proposed algorithm can achieve a speed-up factor of 3 to 5 as compared with

the FSA using the Haar and Bi-orthogonal 5/3 kernels during temporal decomposition.

Besides, quality of the reconstructed video sequence using the proposed algorithm is

comparable to that of the FSA.

The Embedded Zerotree Wavelet (EZW) coding algorithm is often used to

encode the wavelet coefficients. We proposed a modified EZW algorithm to

Abstract – New Hybrid Coding for Video Sequences

iii

improve the coding gain of the wavelet video coder by discarding some less

important wavelet coefficients using a new criterion. Experimental results show that

the proposed EZW algorithm can improve 0.2 to 0.5 bit per pixel (bpp) as compared

with the original EZW algorithm for the same PSNR value in lossy coding and its

reconstructed quality is comparable to that of the conventional EZW algorithm.

Furthermore, the proposed algorithm can apply in the Set Partition Embedded Block

Coding (SPECK) algorithm to further enhance the compression efficiency from 0.1

to 0.5 bit per pixel (bpp) as compared with the minimum subband approach applied

in the SPECK algorithm for the same PSNR value in lossy coding and its visual

quality of the reconstructed image using the proposed algorithm can be preserved.

Acknowledgements

iv

Acknowledgments

I would like to take this opportunity to express my sincere gratitude to my

Supervisor, Professor W.C. Siu, for his continuous encouragement, guidance and

care during the period that I worked on this thesis. He gave me informative

suggestions and valuable advice contributing to every success of my research. More

importantly, I am deeply impressed with his hard working style and his willingness

to devote to the advancement of science and research. This gives me a clear image of

a great researcher should be and have inspired me to work hard on the thesis. It is

beyond doubt that this will continuously influence my future research and career.

I would again like to express my sincere thank to Dr. Kenneth Lam, Dr. Y. L.

Chan, Dr. Bonnie Law, Dr. K. T. Fung, Dr. K. C. Hui, Mr. W. L. Hui, Mr. H. K.

Cheung, Mr. H. K. Cheung, Miss K. M. Au, Mr. W. P. Choi, Mr. K. C. Lui, Mr. K. H.

Chung, Mr. Y. H. Kam, Mr. W. H. Wong, Mr. J. Xie, Mr. H. Pong, Mr. K. O. Cheng

and Mr. C. W. Hui. The sharing of ideas and experience with them has greatly

contributed to make every success of my work. It has been a wonderful time to me in

these years to work with them.

Meanwhile, I am glad to express my gratitude to the Department of Electronic

and Information Engineering and the Center of Multimedia Signal Processing for

providing me a comfortable working environment, and the Hong Kong Polytechnic

University for their generous financial support to carry out my research work.

Above all, I am deeply grateful to my family for their constant love,

encouragement and support. Without their understanding and patience, it is

impossible for me to complete this research study.

Statements of Originality

v

Statements of Originality

The following points are claimed to be original in this work.

1. During performing motion estimation in the spatial domain, the pixels with

similar absolute matching errors tend to cluster together. This clustering

property also exists in the wavelet domain. Furthermore, the clustering property

in the wavelet domain is highly correlated among the corresponding subbands in

the wavelet pyramid. According to this observation, the backward Clustered

Pixel Matching Error for Partial Distortion Search (CPME-PDS) is proposed to

enhance the speed of motion estimation in the wavelet domain. This is achieved

by using the sorting order for performing the partial Sum of Absolute Difference

(SAD) calculation in the subbands at the highest resolution level to predict the

corresponding subbands at the lower resolution levels. Therefore, the number of

operations used for sorting at each low-resolution subband can be reduced.

Experimental results show that the proposed algorithm can outperform the Full

Search Algorithm (FSA) by the speed-up factors of 1.97 and 5.58 in terms of

actual implementation time and average number of operations respectively,

without making use of other fast algorithms. More details can be found in

section 3.2.

2. The Successive Elimination Algorithm (SEA) is employed in the backward

CPME-PDS in order to further reduce the number of operations for motion

estimation in the wavelet domain. Experimental results show that the proposed

algorithm can achieve the speed-up factors of 2.16 and 10.30 in terms of total

execution time and average number of operations respectively as compared with

Statements of Originality

vi

the backward CPME-PDS. However, this improvement only exists in slow video

sequence. For other video sequences, although the average number of operations

can be reduced, the execution time is enlarged due to the increasing number of

operations for comparison of floating point numbers. More details can be found

in section 3.4.

3. Usually, the motion estimation is absorbed into the lifting steps of the one

dimensional Discrete Wavelet Transform (1D-DWT) along the temporal

direction in the conventional three dimensional Discrete Wavelet Transform

(3D-DWT) video coder in order to improve the visual quality of the low

frequency frames and the compression efficiency. In the traditional 3D-DWT

video coder, the motion vectors are obtained by performing motion estimation in

each temporal level independently. However, there exists a large correlation

between the low frequency frames in the successive temporal levels. By

exploiting of this redundancy, the motion vectors in the previous temporal level

are used as initial search position and the motion vectors in the current temporal

level are refined in the reduced search range so that the speed of motion

estimation can be enhanced due to the reduction of number of operations in the

condensed search window. Besides, the median motion vector approach is also

employed in the first temporal level, i.e. the spatial domain, to perform motion

estimation, so the execution time used for motion estimation can be further

decreased. Experimental results show that the proposed scheme can achieve the

speed-up factors of 5.53 and 5.59 using the Haar and Bi-orthogonal 5/3 kernels

respectively as compared with FSA. More details can be found in section 4.2.

4. The Embedded Zerotree Wavelet (EZW) is usually used to encode the wavelet

coefficients to achieve excellent compression performance by exploiting the

Statements of Originality

vii

correlation among subbands across different decomposition levels. The modified

EZW algorithm with minimum weight and difference subband approach is

proposed to discard less important wavelet coefficients and retain similar visual

quality as compared with the conventional EZW algorithm. Since some

insignificant wavelet coefficients are eliminated, the coding gain can be

improved. Experimental results show that the proposed algorithm can attain 0.5

bpp and near 1 bpp improvements as compared with the conventional EZW

algorithm at the same reconstructed PSNR value using the Haar and D4 kernels

respectively. The proposed algorithm also outperforms the modified EZW

algorithm with minimum subband approach around 0.1 bpp at the same PSNR

value using both Haar and D4 kernels. More details can be found in section 5.2.

Table of Contents

viii

Table of Contents

Abstract ... i

Acknowledgments .. iv

Statements of Originality.. v

Table of Contents ...viii

Table of Abbreviations .. xi

List of Figures...xiii

List of Tables ...xvii

List of Publications... xix

Chapter 1.. 1

Introduction.. 1
1.1 Introduction of video compression... 1
1.2 Organization of Thesis ... 3

Chapter 2.. 5

Technical Review... 5
2.1 Hybrid video coding model.. 5
2.2 Block-based motion estimation and compensation .. 9

2.2.1 Full Search Algorithm (FSA) ... 12
2.2.2 Fast Searching Algorithms for lossless approach... 12
2.2.2.1 Partial Distortion Search (PDS).. 12
2.2.2.2 Clustered Pixel Matching Error - Partial Distortion Search (CPME-PDS) 15
2.2.2.3 Successive Elimination Algorithm ... 20

2.3 The Wavelet Transform ... 25
2.3.1 Brief introduction of the wavelet transform ... 25
2.3.2 Lifting implementation of the wavelet transform... 29

2.4 Literature review of the Embedded Zerotree Wavelet (EZW) ... 31
2.4.1 EZW coding algorithm... 32
2.4.2 Encoding and decoding examples of EZW .. 37

2.5 Modifications of EZW ... 45
2.5.1 Multi-threshold approach ... 45
2.5.2 Fixed length residual value method.. 47
2.5.3 Subband threshold scheme ... 48

Table of Contents

ix

2.6 Literature review of Set-Partitioning Embedded Block Coder (SPECK)................................... 50
2.6.1 Coding methodology of SPECK algorithm.. 51
2.6.2 Numerical example of encoding and decoding procedures of SPECK algorithm.............. 54

2.7 Overview of the framework of the 2D wavelet video coder... 77
2.8 Literature review of the wavelet-domain motion estimation and compensation in the 2D wavelet

video coder ... 79
2.8.1 Multi-resolution Motion Estimation and Compensation (MRME) 79
2.8.2 Adaptive MRME (AMRME), Bi-directional MRME (BMRME) and Fast MRME

(FMRME)... 82
2.8.2.1 Adaptive Thresholding Technique (AMRME)... 82
2.8.2.2 Bi-directional Motion Estimation (BMRME) .. 83
2.8.2.3 Fast MRME (FMRME) .. 83
2.8.3 Enhanced MRME (EMRME)... 84

2.9 Overview of the framework of the 3D wavelet video coder... 87
2.10 Literature review of the Motion Compensated Temporal Filtering (MCTF) 88

2.10.1 Haar kernel ... 89
2.10.2 Bi-orthogonal 5/3 kernel .. 90

2.11 Modifications of the MCTF ... 91
2.11.1 Dyadic Scheme... 92
2.11.1.1 Optimization of predict operator .. 92
2.11.1.2 Skipping of update operator ... 94
2.11.1.3 Temporal prediction and differential coding of motion vectors 96
2.11.2 Three-Band Scheme ... 98
2.11.2.1 Haar kernel ... 99
2.11.2.2 Bi-orthogonal 5/3 kernel .. 100

2.12 Conclusion Remarks .. 101

Chapter 3.. 104

Motion estimation algorithm in the wavelet domain of the 2D wavelet video coder........................... 104
3.1 Introduction .. 104
3.2 The characteristic of clustered pixel matching error in the wavelet domain 106
3.3 Proposed fast motion estimation algorithm in the wavelet domain of the 2D wavelet video coder

 108
3.4 Experimental results ... 111
3.5 Conclusion.. 120

Chapter 4.. 121

Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder........................... 121
4.1 Introduction .. 121
4.2 Proposed wavelet-domain motion estimation algorithm in the 3D wavelet video coder 122

4.2.1 Cross-level prediction of motion vector ... 124

Table of Contents

x

4.2.2 Median prediction of motion vector ... 126
4.3 Experimental Results.. 127
4.4 Conclusion.. 139

Chapter 5.. 140

Embedded Zerotree Wavelet (EZW).. 140
5.1 Introduction .. 140
5.2 Analysis of Embedded Zerotree Wavelet (EZW) algorithm .. 141

5.2.1 Analysis of the conventional EZW algorithm .. 141
5.2.2 Analysis of the modified EZW algorithm using subband threshold approach 148

5.3 Proposed algorithm of the modified EZW algorithm... 152
5.4 Experimental Results.. 155
5.5 Conclusion.. 162

Chapter 6.. 164

Conclusion ... 164
6.1 Conclusion on the current works.. 164
6.2 Future research directions .. 168

References .. 170

Table of Abbreviations

xi

Table of Abbreviations

1-D One Dimensional

2-D Two Dimensional

2D-DWT Two Dimensional – Discrete Wavelet Transform

3-D Three Dimensional

3D-DWT Three Dimensional – Discrete Wavelet Transform

AMRME Adaptive Multi-resolution Motion Estimation

BMRME Bi-directional Multi-resolution Motion Estimation

BPP Bit Per Pixel

CIF Common Intermediate Format

CPME-PDS Clustered Pixel Matching Error – Partial Distortion Search

CPU Central Processing Unit

D4 Daubechies Four

DCT Discrete Cosine Transform

DP Dominant Pass

DTV Digital Television

DWT Discrete Wavelet Transform

EMRME Enhanced Multi-resolution Motion Estimation

FM Frame Memory

FMRME Fast Multi-resolution Motion Estimation

FSA Full Search Algorithm

EZW Embedded Zerotree Wavelet

ESA Exhaustive Search Algorithm

GOF Group Of Frames

HDTV High Definition Television

HVS Human Visual System

IZ Isolated Zero

JPEG Joint Photographic Experts Group

HH High High

HL High Low

Table of Abbreviations

xii

IQ Inverse Quantization

LH Low High

LIS List of Insignificant Sets

LL Low Low

LSP List of Significant Pixels

MC Motion Compensation

MC-EZBC Motion Compensated Embedded Zero Block Coding

MCTF Motion Compensated Temporal Filtering

ME Motion Estimation

MPEG Motion Picture Experts Group

MRME Multi-resolution Motion Estimation

MSE Mean Squared Error

MV Motion Vector

N Negative

P Positive

PDA Personal Digital Assistant

PDS Partial Distortion Search

PMA Potential Motion Area

PSNR Peak Signal to Noise Ratio

Q Quantization

QCIF Quarter Common Intermediate Format

SAD Sum of Absolute Difference

SAQ Successive Approximation Quantization

SEA Successive Elimination Algorithm

SIF Source Input Format

SP Subordinate Pass

SPECK Set Partition Embedded Block Coder

SPIHT Set Partition In Hierarchical Tree

T Zerotree Root

VLC Variable Length Coding

ZTR Zerotree Root

List of Figures

xiii

List of Figures

Figure 2.1 Simplified block diagram of the hybrid video (a) encoder and (b) decoder.... 6
Figure 2.2 The illustration of finding a motion vector.. 10
Figure 2.3 Spiral searching path within a search window with the size of ±7................ 15
Figure 2.4 Median predictor of three adjacent blocks, top right, top and left blocks to the

current block... 20
Figure 2.5 Geometry for the calculation of the sum norm.. 24
Figure 2.6 The block diagram of analysis and synthesis of one-dimensional wavelet

transform with one decomposition level .. 26
Figure 2.7 The block diagram of decomposition of two-dimensional wavelet transform

with three decomposition levels ... 27
Figure 2.8 (a) The subband structure of two-dimensional DWT with three levels and (b)

the wavelet transformed version of the “Fruit” image with three decomposition
levels using the Daubechies-4 kernel ... 28

Figure 2.9 Block diagram of lifting implementation for decomposition and
reconstruction of the wavelet transform... 29

Figure 2.10 The realization diagram of lifting implement of the forward and backward
wavelet transform for the Haar kernel.. 30

Figure 2.11 Block diagrams of the zerotree wavelet image (a) encoder and (b) decoder32
Figure 2.12 Parent and children relationship of the Zerotree ... 33
Figure 2.13 Zig-zag scanning of the wavelet coefficients .. 34
Figure 2.14 Flow chart of the dominant pass of the EZW encoding 35
Figure 2.15 Flow chart of the subordinate pass of the EZW encoding........................... 37
Figure 2.16 An example of the multi-threshold and significant subbands, where the

shaded subbands and the subbands with think lines represent the insignificant
subbands and marginal subbands respectively... 46

Figure 2.17 An example of the modified EZW algorithm using eight symbols in the
dominant pass ... 48

Figure 2.18 Block diagrams of the zerotree wavelet image (a) encoder and (b) decoder
with minimum weight subband method ... 50

Figure 2.19 Partitioning of image X into sets S and I... 52
Figure 2.20 Partition of set S .. 53
Figure 2.21 Partition of set I ... 54
Figure 2.22 Block diagram of the framework of the 2D wavelet video encoder............ 78
Figure 2.23 The pyramid structure of wavelet decomposition and reconstruction......... 80
Figure 2.24 Variable block-size multiresolution motion estimation 81
Figure 2.25 All orientation subbands in FMRME scheme ... 84
Figure 2.26 Mask propagation for the enhanced MRME (EMRME)............................. 86
Figure 2.27 The block diagram of the 3D wavelet video codec 88
Figure 2.28 Predict operator of the MCTF scheme using the Bi-orthogonal 5/3 kernel 94
Figure 2.29 Predict and update operators of the Bi-orthogonal 5/3 kernel..................... 95
Figure 2.30 Temporal decomposition using the Bi-orthogonal 5/3 kernel 96
Figure 2.31 One level MCTF with bi-directional 5/3 kernel using lifting structure....... 98

List of Figures

xiv

Figure 2.32 Motion vector prediction for the estimation of MV3 98
Figure 2.33 Predict and update steps of the three-band scheme for Haar kernel.......... 100
Figure 2.34 Predict operator of the three-band scheme for Haar kernel....................... 100
Figure 2.35 Predict and update operators of the three-band scheme for Bi-orthogonal

5/3 kernel.. 101

Figure 3.1 Matching of a one dimensional (1-D) block in LH subband within a 1-D
searching window. (b) Corresponding pixel absolute matching errors of the target
block at the current position ... 107

Figure 3.2 (a) DWT hierarchical structure in wavelet pyramid (b) Error blocks
between a reference block and a current block in the LH3, LH2 and LH1 subbands at
the 9th and 10th frames of the video sequence “Akiyo” respectively...................... 108

Figure 4.1 Architecture of the 3D wavelet video coder.. 124
Figure 4.2 Cross-level motion vector prediction .. 125
Figure 4.3 Median prediction.. 126
Figure 4.4 Rate distortion performance of “Foreman” sequence for median prediction

using (a) Haar kernel and (b) Bi-orthogonal 5/3 kernel during temporal
decomposition .. 128

Figure 4.5 Rate distortion performance of “Coastguard” sequence for median prediction
using (a) Haar kernel and (b) Bi-orthogonal 5/3 kernel during temporal
decomposition .. 129

Figure 4.6 Rate distortion performance of “Stefan” sequence for median prediction
using (a) Haar kernel and (b) Bi-orthogonal 5/3 kernel during temporal
decomposition .. 129

Figure 4.7 Rate distortion performance of “Foreman” sequence for cross-level motion
vector prediction using (a) Haar kernel and (b) Bi-orthogonal 5/3 kernel during
temporal decomposition ... 131

Figure 4.8 Rate distortion performance of “Coastguard” sequence for cross-level motion
vector prediction using (a) Haar kernel and (b) Bi-orthogonal 5/3 kernel during
temporal decomposition ... 132

Figure 4.9 Rate distortion performance of “Stefan” sequence for cross-level motion
vector prediction using (a) Haar kernel and (b) Bi-orthogonal 5/3 kernel during
temporal decomposition ... 132

Figure 4.10 Rate distortion performance of “Foreman” sequence for median prediction
and cross-level motion vector prediction using (a) Haar kernel and (b) Bi-
orthogonal 5/3 kernel during temporal decomposition .. 135

Figure 4.11 Rate distortion performance of “Coastguard” sequence for median
prediction and cross-level motion vector prediction using (a) Haar kernel and (b)
Bi-orthogonal 5/3 kernel during temporal decomposition 135

Figure 4.12 Rate distortion performance of “Stefan” sequence for median prediction and
cross-level motion vector prediction using (a) Haar kernel and (b) Bi-orthogonal 5/3
kernel during temporal decomposition... 136

Figure 5.1 Reconstructed PSNR (dB) stopping at different passes for different
decomposition levels using D4 kernel and “Lena” image 143

Figure 5.2 Bit per pixel (bpp) stopping at different passes for different decomposition
levels using D4 kernel and “Lena” image .. 143

List of Figures

xv

Figure 5.3 Rate distortion performance of the EZW coding with different decomposition
levels using the D4 kernel for the Lena image... 144

Figure 5.4 Reconstructed images of the EZW algorithm with three decomposition levels
for (a) original image, decoding at (b) seven passes, (c) eight passes, (d) nine passes,
(e) ten passes and (f) eleven passes (all passes) respectively.................................145

Figure 5.5 Reconstructed images of the EZW algorithm with two decomposition levels
for (a) original image, decoding at (b) six passes, (c) seven passes, (d) eight passes,
(e) nine passes and (f) ten passes (all passes) respectively 146

Figure 5.6 Reconstructed images of the EZW algorithm with two decomposition levels
for (a) original image, decoding at (b) six passes, (c) seven passes, (d) eight passes,
(e) nine passes and (f) ten passes (all passes) respectively 147

Figure 5.7 Reconstructed images of the (a) original image, (b) conventional EZW
algorithm, (c) modified EZW algorithm with pre-processing of the value of
threshold of two and (d) modified EZW algorithm with pre-processing of the value
of threshold of five respectively with three decomposition levels using D4 kernel150

Figure 5.8 (a) Original image, (b) wavelet-transformed image, (c) pre-processed image
with a threshold of five and (d) reconstructed image with three decomposition
levels using a threshold of five... 150

Figure 5.9 Reconstructed images of the (a) original image, (b) conventional EZW
algorithm, (c) modified EZW algorithm with pre-processing of the value of
threshold of two and (d) modified EZW algorithm with pre-processing of the value
of threshold of five respectively with three decomposition levels using Daubechies
9/7 kernel.. 151

Figure 5.10 (a) Original image, (b) wavelet-transformed image, (c) pre-processed image
with a threshold of five and (d) reconstructed image with three decomposition
levels using a threshold of five... 151

Figure 5.11 Reconstructed images of the (a) original image, (b) conventional EZW
algorithm, (c) modified EZW algorithm with pre-processing of the value of
threshold of two and (d) proposed EZW algorithm with pre-processing of the value
of threshold of two and the quantization factor of two respectively with three
decomposition levels using D4 kernel ... 157

Figure 5.12 Rate distortion performance of the conventional EZW algorithm, modified
EZW algorithm using the minimum weight subband approach and the proposed
EZW algorithm using the D4 kernel with three decomposition levels for the “Lena”
image .. 158

Figure 5.13 Rate distortion performance of the conventional EZW algorithm, modified
EZW algorithm using the minimum weight subband approach and the proposed
EZW algorithm using the D4 kernel with three decomposition levels for the “Fruit”
image .. 158

Figure 5.14 Reconstructed images of the (a) original image, (b) conventional SPECK
algorithm, (c) modified EZW algorithm with pre-processing of the value of
threshold of five and (d) proposed SPECK algorithm with pre-processing of the
value of threshold of five and the quantization factor of two respectively with three
decomposition levels using D4 kernel ... 160

Figure 5.15 Rate distortion performance of the conventional SPECK algorithm,
modified SPECK algorithm using the minimum weight subband approach and the
proposed SPECK algorithm using the D4 kernel with three decomposition levels for
the “Lena” image.. 161

Figure 5.16 Rate distortion performance of the conventional SPECK algorithm,
modified SPECK algorithm using the minimum weight subband approach and the

List of Figures

xvi

proposed SPECK algorithm using the D4 kernel with three decomposition levels for
the “Fruit” image .. 161

List of Tables

xvii

List of Tables

Table 2.1 Codewords of the symbols generated by the multi-threshold EZW algorithm
for (a) significant subbands and (b) marginal subbands...47

Table 2.2 The descriptions of the eight symbols used in the modified EZW algorithm
with fixed length residual value ...48

Table 3.1 The information of the test video sequence ..112
Table 3.2 Execution Time for motion estimation in searching all subbands by different

search algorithms for video sequences in wavelet domain112
Table 3.3 Average number of operations per block for motion estimation in searching

all subbands by different search algorithms for video sequences in wavelet domain
..112

Table 3.4 Execution Time for motion estimation using MRME scheme by different
search algorithms for video sequences in wavelet domain114

Table 3.5 Average number of operations per block for motion estimation using MRME
scheme by different search algorithms for video sequences in wavelet domain....115

Table 3.6 Execution Time for motion estimation using MRME scheme by different
search algorithms for video sequences in wavelet domain117

Table 3.7 Average number of operations per block for motion estimation using MRME
scheme by different search algorithms for video sequences in wavelet domain....118

Table 3.8 Average number of search points per block for motion estimation in wavelet
domain ..119

Table 4.1 Total execution time used in motion estimation (ms) for cross-level motion
vector prediction using Haar kernel during temporal decomposition130

Table 4.2 Total execution time used in motion estimation (ms) for cross-level motion
vector prediction using Bi-orthogonal 5/3 kernel during temporal decomposition130

Table 4.3 Total execution time used in motion estimation (ms) for median prediction
using Haar kernel during temporal decomposition ..133

Table 4.4 Total execution time used in motion estimation (ms) for median prediction
using Bi-orthogonal 5/3 kernel during temporal decomposition............................133

Table 4.5 Total execution time used in motion estimation (ms) for median prediction
and cross-level motion vector prediction using Haar kernel during temporal
decomposition ..137

Table 4.6 Total execution time used in motion estimation (ms) for median prediction
and cross-level motion vector prediction using Bi-orthogonal 5/3 kernel during
temporal decomposition ...138

Table 5.1 Reconstructed quality (dB) and the minimum weight subband and minimum
difference subband in each level for the conventional EZW algorithm and the
modified EZW algorithm with pre-processing stage using the three decomposition
levels and D4 kernel ...152

List of Tables

xviii

Table 5.2 The number of wavelet coefficients with zero magnitude for the conventional
EZW algorithm and the modified EZW algorithm with pre-processing stage using
the three decomposition levels and D4 kernel..152

Table 5.3 Reconstructed quality (dB) and the minimum weight subband and minimum
difference subband in each level for the conventional EZW algorithm and the
modified EZW algorithm with pre-processing stage using the three decomposition
levels and Daubechies 9/7 kernel ...152

Table 5.4 The number of wavelet coefficients with zero magnitude for the conventional
EZW algorithm and the modified EZW algorithm with pre-processing stage using
the three decomposition levels and Daubechies 9/7 kernel....................................152

List of Publications

xix

List of Publications

International Conference Papers

1. K. Y. Wong, W. C. Siu and K. C. Hui, “Fast motion estimation for wavelet-based

video coding”, Proceedings of International Symposium on Intelligent Multimedia,

Video and Speech Processing (ISIMP), pp. 398 – 401, Oct 2004.

Chapter 1 INTRODUCTION

1

Chapter 1

Introduction

1.1 Introduction of video compression

Nowadays, the usage of multimedia technologies increases exponentially, so more

and more imagery and video data are manipulated. Image and video compression

become a necessary procedure in the image processing and video technology for storage

and transmission over network. For example, a spatial resolution of CIF (Common

Intermediate Format) video sequence is 352 by 288 pixels. Each pixel is composed of

three colour components, i.e., red, green and blue, for each frame and each colour

component for a pixel is sampled with 8-bit precision. The storage capacity of each

frame requires around 300 KBytes. The storage of a 90-minute uncoded video sequence

with 30 frames per second needs approximately 50 Gbytes of digital memory. If this

video sequence is transmitted at 30 frames per second without compression, the raw

data rate for that video signal is greater than 13 Gbits per second. Hence, the file size of

video sequence is extremely large and it is inconvenient for storage. Also, it is

impossible to transmit the video signal over the network under the desirable bandwidth

requirement. As a result, it is necessary to develop some video compression standards in

order to achieve efficient compression for video applications.

Furthermore, the compressed video is transmitted through the communication

network to great diversity of end-user requirements such as various display resolutions

and decoder complexities. For example, the mobile handheld device contains the low-

resolution display and low processing power, the laptop computer gives the medium-

Chapter 1 INTRODUCTION

2

resolution display and the high performance desktop computer attains the highest

display resolution. The traditional video coding standards are difficult to achieve the

multi-resolution representation for the video sequence due to the predict feedback loop

used to exploit the temporal redundancy among successive video frames in the hybrid

video coding model. One possible solution is to transmit more than one encoded video

sequences and each compressed video sequence corresponds to a certain decoder

constraint and display resolution. However, this approach consumes an erroneous

amount of memory space, network bandwidth and computational effort of the video

encoder since there exists lots of redundancy between encoded video streams so that it

is a waste of resource to implement this approach. As a result, the scalable video

compression is a new solution to solve this problem. A scalable compressed video

sequence can be reconstructed by various network constraints and end-user

requirements efficiently so that the encoding procedure can only be performed once and

the compressed video needs not to be considered the requirements of the end-user. Only

a compressed video sequence is conveyed to different end-users. In other words, the

decoders with different constraints access the same encoded video sequence such that

the decoder can reconstruct only a portion of the compressed video sequence according

to diverse end-user requirements such as decoder complexity and resolution of display

device.

In order to achieve efficient compression performance and scalability, the wavelet

transform is used. Recently, the wavelet transform is used to replace the Discrete Cosine

Transform (DCT), which will be mentioned in chapter two, as the transform kernel in

the image processing applications. In low bit-rate applications, the DCT suffers from

the blocking artifacts but the wavelet transform does not suffer from this problem

according to its global decomposition in the entire image or video frame such that the

Chapter 1 INTRODUCTION

3

error can be distributed to the whole image or frame. Furthermore, it can provide

excellent compression performance as compared with DCT. Besides, the wavelet

transform is scalable in nature so that it can offer the multi-resolution representation of

the image in order to fulfill the requirements of great diversity of end-users. The latest

image compression standard, JPEG2000, makes use of the wavelet transform as the

transform kernel in order to achieve both superior compression efficiency and

scalability as compared with the conventional image-coding standard, JPEG. However,

the wavelet transform employed in the video coding is still an open research area.

Many researchers are still putting effort in this field to achieve full scalability, such as

temporal and spatial scalabilities, in the video sequence.

1.2 Organization of Thesis

This thesis is organized in six chapters. Chapter two reviews some basic

concepts of the conventional video-coding standards, the traditional algorithms of

motion estimation in the spatial and wavelet domains, the fundamental idea of

wavelet transform, a classical approach to encode the wavelet coefficients

(Embedded Zerotree Wavelet algorithm) and the framework of motion compensated

temporal filtering (MCTF) used in the three dimensional discrete wavelet transform

(3D-DWT) video coder. In chapter three, a new motion estimation algorithm in the

wavelet domain in order to improve the speed of motion estimation in the wavelet

domain by making use of the correlation among corresponding subbands at different

decomposition levels in the wavelet pyramid will be discussed in detail. Chapter four

presents a fast motion estimation scheme used in the 3D-DWT video coder by

exploiting the relationship of the wavelet-transformed frames at different temporal

decomposition levels. In chapter five, a modified EZW algorithm will be proposed to

Chapter 1 INTRODUCTION

4

improve the compression performance by removing less important information while

retaining the same visual quality as the conventional EZW algorithm. Finally, a

conclusion of this thesis will be drawn and some possible future directions of this

study will be given in chapter six.

Chapter 2 Technical Review

__

5

Chapter 2

Technical Review

2.1 Hybrid video coding model
Modern video coding standards, such as the MPEG-1 [1], MPEG-2 [2], MPEG-

4 [3] and H.263 [4], can achieve high compression efficiency with different applications

by using the hybrid video coding model as depicted in Figure 2.1 to remove both spatial

and temporal redundancies between successive frames. Figures 2.1 (a) and (b) illustrate

a simplified block diagram of the conventional hybrid video encoder and decoder

respectively. The functional blocks are the tasks that are usually used by various video

coding standards.

Discrete
Cosine

Transform
Quantization Entropy

Coding

Inverse
Quantization

Frame
Memory

Motion
Estimation

Motion
Compensation

+

+

Original
Frame

Compressed
Bitstream

+

-

Motion
Vector

Motion
Compensated

Frame

Residual
Frame

Reference
Frame

(a)

Chapter 2 Technical Review

__

6

Entropy
Decoding

Inverse
Quantization

Inverse
Discrete
Cosine

Transform

+

Frame
Memory

Motion
Compensation

Compressed
Bitstream

Reconstructed
Frame

Decoded
Motion
Vector

Residual
Frame

Previous
Decoded
Frame

Motion
Compensated

Farme

(b)

Figure 2.1 Simplified block diagram of the hybrid video (a) encoder and (b) decoder

Motion estimation is used to reduce the temporal redundancy between

consecutive video frames. The input video frame, i.e. the current frame, is divided into

many non-overlapping blocks and each block finds its best match location in the

reference frame, which is the previously encoded frame. According to many

experimental results, most motion activities in the natural video sequence is purely

translational, i.e. an object is moving in translational motion across a nearly stationary

background without rotation, expansion or dilation, so this is an important assumption

that there only exists the purely translational motion in the motion model used in the

motion estimation. After finding the best match position in the reference frame, the

motion information or motion vector, is encoded instead of coding the pixels in the

current input frame. After that, the predicted frame or motion-compensated frame is

constructed by taking relevant blocks from the reference frame according to the motion

vector information found by motion estimation, and this process refers to as motion

compensation. The motion-compensated frame is only a prediction of the current frame

so that there may exist some differences between the current and motion-compensated

frames. Therefore, a residual frame is formed by subtracting the current frame from the

motion-compensated frame, and it is also encoded. As a result, the interframe

Chapter 2 Technical Review

__

7

redundancy can be removed by motion estimation and motion compensation.

Furthermore, there may exist some correlations between the neighbouring pixels in the

residual frame so that the Discrete Cosine Transform (DCT) is used to remove the

remaining spatial correlation inside the residual frame during interframe mode coding.

The DCT is responsible for removing the intraframe redundancy, i.e. the spatial

correlation, within a frame. It can be used in both interframe and intraframe modes

coding. The intraframe mode coding refers to the coding of still image just similar to

current image coding standards, such as JPEG, in order to achieve compression. An

intraframe refers to the case without using any reference to the previously encoded

frame and it can only exploit to the spatial correlation. On the contrary, the DCT can

also be used to remove the relationship between the pixels inside the motion-

compensated frame, i.e. prediction error in the motion-compensated prediction, during

interframe mode coding. An interframe refers to using the previously encoded frame,

which can be the previous or future frames or both, to achieve compression and it can

make use of both properties of spatial and temporal correlations. The DCT is just a

mapping from the time domain to the frequency domain such that most energy is

concentrated to a few portions of the transform coefficients and the transform

coefficients are entropy encoded in order to achieve good compression performance.

Since this codec is designed for eliminating both spatial and temporal redundancies, so

it is called hybrid video coding.

 Quantization is the next step of the Discrete Cosine Transform. It is used to

remove the less important transform coefficients by reducing the precision of the

coefficients such that the bit rate can be reduced and the acceptable visual quality is

preserved. After that, the quantized DCT coefficients and motion information obtained

by motion estimation are entropy encoded by variable length coding such as the

Chapter 2 Technical Review

__

8

Huffman coding which assigns a shorter codeword to frequently appeared data or vice

versa such that the compressed bitstream can be formed. During decoding, the bitstream

is received and decoded by the look-up table which is the same table as the encoder side

in order to preserve the original information.

 The motion estimation and compensation using the traditional block-based

model will be discussed in section 2.2. The classic motion estimation algorithm, Full

Search Algorithm (FSA), and fast motion estimation algorithms will be mentioned in

sections 2.2.1 and 2.2.2 respectively. In recent years, the wavelet transform is widely

used in image processing and video technology in order to improve the coding gain. The

wavelet transform will be reviewed in section 2.3. The Embedded Zerotree Wavelet

(EZW) algorithm is one of the typical methods for coding the wavelet coefficients and it

will be studied in section 2.4. Some researchers enhanced the coding efficiency of the

EZW algorithm and the modifications of EZW algorithm will be mentioned in section

2.5. Besides the EZW algorithm, the Set-Partition Embedded Block Coder (SPECK)

algorithm receives much attention due to its superior coding performance as compared

with the EZW algorithm. It will be discussed in section 2.6. The two dimensional

discrete wavelet transform is applied in video technology and some motion estimation

and compensation algorithms in wavelet domain are developed. They will be analyzed

in sections 2.7 and 2.8 respectively. In recent years, the three dimensional discrete

wavelet transform is developed to further enhance the coding efficiency in video coder

and it will be discussed in sections 2.9, 2.10 and 2.11 respectively. Finally, a concluding

remark of this chapter will be briefly drawn in section 2.12.

Chapter 2 Technical Review

__

9

2.2 Block-based motion estimation and compensation

The block-based motion estimation and compensation are widely used in modern

video coding system for compression and the block-based model is effective to deal

with the video sequence with translational motion as discussed in the previous section.

The objective of motion estimation and compensation is to eliminate the temporal

redundancy among successive video frames since there exists a huge correlation

between consecutive frames in order to achieve compression. During motion estimation,

the current frame is divided into many non-overlapping regions which are called blocks

as depicted in Figure 2.2. The values of pixels in this current frame are predicted from

the pixels of another block in the reference frame, which is previously encoded, in a

certain search range. The reference block is the best-matched block of the current block

to give the minimum difference between reference and current blocks. As illustrated in

Figure 2.2, the motion vector represents the displacement between these two blocks and

is only encoded instead of the pixel value of the block in the current frame. As a result,

the motion estimation is carried out to obtain the motion vectors. After finding the

motion vector, the reference frame is to work with it to produce the predicted frame, i.e.

the motion-compensated frame, which is the prediction of the current frame from the

motion compensation process. The residual frame, i.e. the current frame subtracting to

the motion-compensated frame, and the motion vectors are sent to the decoder for

reconstruction of the current frame.

Chapter 2 Technical Review

__

10

Motion
Vector

Reference Frame Current Frame

Current
Block

Search
Window

Figure 2.2 The illustration of finding a motion vector

The motion estimation finds the best matched location of the current frame within a

certain search range of the reference frame by minimizing the distortion between the

target block in the current frame and a candidate block inside the search window of the

reference frame. There are two criteria, which are the Sum of the Absolute Difference

(SAD) and the Mean Squared Error (MSE), that are most frequently used in the motion

estimation process. The SAD between a target block at position (x, y) in the current

frame, It, and a candidate block at position (x+u, y+v), in the reference frame, It-1, is

shown in equation 2.1.

() () ()∑∑
−

=

−

=
− ++++−++=

1

0

1

0
1

N

j

N

i
tt vjyuixIjyixIvuyxSAD ,,,;, (2.1)

where N ×N is the size of the block, It(x, y) and It-1(x, y) represent the pixel

intensities at the initial position (x, y) of the target block of the current frame and

candidate block of the reference frame respectively, (i, j) is used to locate the position of

a pixel inside a block and (u, v) is the location of a possible motion vector. The SAD

indicates the absolute difference between the target block in the current frame and the

candidate block in the reference frame by pixel-by-pixel computation. The MSE is

another distortion measure between the target block in the current frame and the

candidate block in the reference as shown in equation 2.2.

Chapter 2 Technical Review

__

11

() () ()[]
21

0

1

0
12

1 ∑∑
−

=

−

=
− ++++−++=

N

j

N

i
tt vjyuixIjyixI

N
vuyxMSE ,,,;, (2.2)

 The MSE is similar to the SAD but it involves the multiplication and division so

that the computation complexity is higher than that of the SAD and its performance is

comparable to that of the SAD. As a result, the SAD is widely used for the distortion

measure during motion estimation. After finding the SAD values of all possible

locations within the search window of the reference frame, the location with the

minimum error indicates the desired motion vector which represents the location of the

best match block in the reference frame giving the minimum error. The motion vector is

defined in equation 2.3.

()
()

()vuyxSADvu
Wvuyx ,;,minarg,

, ∈
= (2.3)

where (){ }1−≤≤−= MvuMvuW ,, is a set of all possible locations in the search

window as depicted in Figure 2.2 and M is the possible maximum displacement of the

motion vector, (u, v). The motion vector specifies the location that a block in the

reference frame is copied to reconstruct the current frame during decoding. Thus, it is

also encoded and transmitted to the decoder in order to reconstruct the current frame. If

the motion vector can accurately represent the motion in the video sequence, the number

of bits used to encode the residual frame (error frame) will become smaller due to small

errors in the residual frame or vice versa.

A classic searching algorithm, full search algorithm (FSA), is discussed in the

section 2.2.1. However, its computational complexity is extremely high, so some fast

searching algorithms for lossless approach in order to improve searching speed are

reviewed in section 2.2.2.

Chapter 2 Technical Review

__

12

2.2.1 Full Search Algorithm (FSA)

The full search algorithm (FSA) or exhaustive search algorithm (ESA) is used to

find out the optimal motion vector by testing all possible locations inside the search

window. Since all possible search locations have been checked, the global minimum

matching error of the obtained motion vector pointing to the candidate block in the

reference frame can be guaranteed. Although the global minimum can be assured, its

computational complexity is extremely high owing to testing all possible locations

within the search window of the reference frame. It consumes most of the computational

effort of the hybrid video coding during encoding of a video sequence. Consequently,

there are some fast algorithms that can reduce the computational burden of the motion

estimation in a lossless way introduced in section 2.2.2. The lossless approach refers to

that the obtained motion vectors of a fast searching algorithm are exactly the same as

those to be obtained from the FSA.

2.2.2 Fast Searching Algorithms for lossless approach

 The computational effort of FSA for motion estimation is enormously huge so

that some fast algorithms are developed to reduce the number of operations used in

motion estimation. In this section, the lossless and fast motion estimation algorithms

are reviewed such that the motion vectors obtained by these fast lossless methods are

the same as that of the FSA.

2.2.2.1 Partial Distortion Search (PDS)

 The partial distortion search (PDS) algorithm [12] can be characterized as the

fast full search algorithm (FSA) since it can attain the same set of motion vector fields

Chapter 2 Technical Review

__

13

as that of FSA but its computational complexity is much fewer than that of the FSA.

The philosophy behind the PDS is that after the SAD value of first block in the

reference frame and the target block in the current frame is calculated, this value is

stored. It is then considered as the temporary minimum SAD error. After that, the SAD

value of the first row in other location is calculated, its partial SAD compared to the

temporary minimum error. If this accumulated error is already greater than temporary

minimum error, the SAD calculation of the remaining rows is terminated since the

partial SAD value of this candidate block is already greater than the temporary

minimum error. Otherwise, if the SAD value of this candidate block is smaller than the

temporary minimum error, this new minimum error will become the temporary

minimum error to be used comparing the remaining locations within the search window.

Then, this procedure is repeated again until all possible locations inside the search

window are tested. The partial SAD value is given as below.

() () ()∑∑
=

−

=
− ++++−++=

p

i

N

j
ttyxp jvyiuxIjyixIvuyuSAD

0

1

0
1 ,,,,, (2.4)

where p is the number of row for which the accumulation of errors is terminated and p

= 0, 1, 2, …, N-1, N is the size of a block, (x, y) is the location of a block in the current

frame, (i, j) represents the pixel inside a block, (u, v) indicates the possible motion

vector and It and It-1 identify the pixel intensities at certain position within the current

and reference frames respectively. The second summation stands for the sum of

absolute difference between the target block in the current frame and the candidate

block in the reference frame while the first summation denotes the number of rows to

terminate the SAD calculation inside a candidate block. The SAD calculation is

terminated with a value of p which is equal to any integer value between 0 and N-1. If

() ()temptemppp vuyxSADvuyxSAD ,,,,,, ≥ , the calculation of SAD value of the whole

Chapter 2 Technical Review

__

14

block is terminated as this position cannot give the lowest error, where ()temptemp vu ,

specifies the motion vector that accounts for the lowest SAD value. When the value of p

is small, the process of SAD calculation can be terminated early.

 For most video sequences, their frame rate is between 15 to 30 frames per

second and 30 to 60 frames per second for low and high quality applications

respectively so that the time interval between each frame is very small. As a result, the

movement of a block in the video sequence usually varies slowly leading to the

magnitudes of the motion vectors are also very small especially for low bit-rate video

applications. Consequently, the magnitudes of most motion vectors are very close to

zero. Usually, about 80% of the blocks can be regarded as stationary or quasi-stationary

(enclosed in the central 3×3 area) and most of the motion vectors are enclosed in the

central 5×5 area. According to this observation [38], the motion vector distribution of

the natural video sequence is highly centre-biased. Due to this particular form of

distribution, the searching pattern within the search window should be centre-biased as

illustrated in Figure 2.3. The outward spiral searching strategy is usually adopted in the

PDS in order to terminate the SAD calculation as soon as possible so that the optimal

motion vectors can be found quickly.

Chapter 2 Technical Review

__

15

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

Figure 2.3 Spiral searching path within a search window with the size of ±7

2.2.2.2 Clustered Pixel Matching Error - Partial Distortion

Search (CPME-PDS)

 The previous section described a fast and lossless algorithm, the PDS, to get the

motion vectors. The partial SAD is calculated by adding the absolute difference

between the target block in the current frame and the candidate block in the current

frame in a row by row and from top to bottom computation. If the partial SAD value of

the first row is just greater than the temporary minimum error, then the SAD calculation

of that candidate block is stopped. Otherwise, the accumulation of error calculation

continues. However, the pixels, which give the greatest error, may not be located in the

first row. They may be in the last row and any one of the rows inside the candidate and

target blocks. Therefore, if we find out the pixels that provide the largest error and use

them to calculate the partial SAD value, the speed of motion estimation can be further

enhanced. Hence, it is necessary to investigate the spatial distributions of pixel

matching error inside a block. A phenomenon reported in the literature says that the

Chapter 2 Technical Review

__

16

pixels with similar matching errors in magnitude tend to appear together in clusters [18].

According to this observation, the Clustered Pixel Matching Error for Partial Distortion

Search (CPME-PDS) [18] has been suggested to improve the speed of motion

estimation. The problem is how to find the pixel that provides the largest matching error

in order to terminate a partial SAD calculation.

 For a target block, the positions of its pixels are represented by an index set,

(){ }1,...,0|, −== NnlkS nn , where k and l are the coordinates of a pixel and N is the

number of pixels in a block. For a single pixel at () Sslks nnnn ∈= ,, , its matching error

is () () ()nntn sRsIse −= , where R(sn) is a random variable which represents the pixel

value at sn of a candidate block. For the sake of simplicity, in the following discussion,

sn is replaced by n, and both block location (x, y) and motion vector (u, v) are dropped.

To improve the saving in computation of a PDS, pixel matching errors with an ideal

index set much follow this rule, () () () ()2222 1......10 −≥≥≥≥≥ Neneee . The predicted

pixel matching errors, p(n), is defined as, () () mnInp t −= , where m is a reference value

to be used to obtain the prediction. The value of m is obtained by minimizing the

expected value of the sum of squares of the difference between e(n)2 and p(n)2,

i.e. () ()[]
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

−

=

1

0

222minarg
N

nmopt npneEm

() ()[] ()[][]
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−−−= ∑

−

=

1

0

222minarg
N

n
ttmopt mnInRnIEm

 In order to find m, the above equation is differentiated respect to m, then we can

obtain

() ()[] ()[][] 0
1

0

222 =
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−−−∑

−

=

N

n
tt mnInRnIE

dm
d

 By substituting () () ()nenInR t −= into the above equation, it becomes

Chapter 2 Technical Review

__

17

() ()[][] 0
1

0

222 =
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−−∑

−

=

N

n
t mnIneE

dm
d

() ()[][] ()[] 04
1

0

22 =⎥
⎦

⎤
⎢
⎣

⎡
−−−−∑

−

=

mnImnIneE t

N

n
t

() () () ()[][] 0
1

0

322 =⎥
⎦

⎤
⎢
⎣

⎡
−−−−∑

−

=

N

n
tt mnImnenIneE

() () () ()[][] 0
1

0

322 =⎥
⎦

⎤
⎢
⎣

⎡
−−−−∑

−

=

N

n
tt mnImnenIneE

() () () () () () () ()[][] 022
1

0

32222322 =⎥
⎦

⎤
⎢
⎣

⎡
−++−−−−−∑

−

=

N

n
tttttt mnImnImnmInmInImnenIneE

() () () () () ()[] 033
1

0

322322 =⎥
⎦

⎤
⎢
⎣

⎡
+−+−−−∑

−

=

N

n
tttt mnImnmInImnenIneE

() () ()() () () ()[] 033
1

0

322223 =⎥
⎦

⎤
⎢
⎣

⎡
−+−+−−∑

−

=

N

n
tttt nInenImnenImnImE

 Finally, the following cubic equation can be obtained,

() ,033 322223 =−+−+−∴ tttt IeImeImIm

() () () () ,1 ,1 ,1 where
1

0

1

0

22
1

0

22
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
= ∑∑∑

−

=

−

=

−

=

N

n
tt

N

n
tt

N

n
nIE

N
InenIE

N
eIneE

N
e

() () ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
= ∑∑

−

=

−

=

1

0

33
1

0

22 1 1 N

n
tt

N

n
tt nIE

N
IandnIE

N
I

 Due to the assumption that the natural image is dominated by low frequency

components, three approximate real roots m of the above cubic equation can be obtained,

2 or eImIm tt ±≈≈

 The first approximated root is the mean of pixel values in the target block. For

the second root, e(n) often consists of two components, em(n) and ew(n), where ew(n)

denotes zero-mean white noise with negligible magnitudes and em(n) represents errors

Chapter 2 Technical Review

__

18

due to irregular motions, light variation, etc. They tend to have the same sign in a block.

Hence, the expected value of the random variable representing the pixel value at n of a

candidate block is, 2eIeIR tt ±≈±≈ , which is the approximation of m . Therefore,

the first approximated real root, the mean of pixel values in a candidate block, is

determined as the root of the above cubic equation.

The objective of the CPME-PDS is that the PDS can terminate a partial SAD

calculation to reject the candidate block earlier when the location of global minimum

matching error is met in a search earlier. To achieve this purpose, two strategies are

used as shown below.

1. The outward spiral scanning is used to exploit the center-biased motion vector

distribution characteristics of the real world video sequence [38].

2. The correlation in the motion field is exploited by using a median predictor of

three adjacent blocks, left, top and top right blocks to the current position as the

initial searching point of the spiral scanning as illustrated in Figure 2.4. The

median predictor has been used as described in [3].

According to the above considerations and analytical results, the mean of pixel

values in the candidate block of the initial searching point is used to compute the

reference value, m, because we can assume that

1(,) (,)t med med tI i u j v I i j− + + ≈

where (,)med medu v = the median predictor which is illustrated in Figure 2.4. The

expected pixel matching error, pexp(n), of each pixel in the target block is calculated

with m. The required adaptive index set, S, is given by sorting ()expp n in descending

order. The partial SAD value is calculated with S during the searching in an outward

spiral scanning. The CPME-PDS approach can be summarized as follows:

Chapter 2 Technical Review

__

19

Step 1) Determine the median predictor, (umed, vmed), of the three adjacent blocks.

Step 2) Calculate the reference value, m, with the median predictor, (umed, vmed), where

the block size is 15×15.

15 15

1
0 0

1 (,)
256 t med med

j i
m I x u i y v j−

= =

= + + + +∑∑

Step 3) Initialize an index set, (){ }' ' , ' 0,..., 1n nS k l n N= = − , which represents all

pixels of the target block, where k’ and l’ are the coordinates of a pixel and N is

the number of pixels in a block.

Step 4) Calculate the expected absolute pixel matching error, ()expp n , of each pixel in

the target block.

() ()' , 'exp t n np n I k l m= −

Step 5) Rearrange the order of set 'S to obtain an adaptive index set S by sorting the

expected absolute pixel matching error, ()expp n , in descending order, such

that, (){ }, 0,..., 1n nS k l n N= = − . The pexp(n) corresponding to the order of the

sorted index set, S, has the following feature,

() () ()10 expexpexp −≥≥≥≥ Npnpp KK

Step 6) Apply the adaptive index set, S, to calculate the partial SAD value during the

searching in an outward spiral scanning.

Note that the adaptive index set is established on a pixel-based approach, so this

algorithm is entitled as the pixel-based CPME-PDS. According to the pipeline structure

of the Central Processing Unit (CPU), the time used to access the memory of the pixel

values in random location is much longer than that used to access the memory in a row

of pixel values within a block. Although the number of operations is reduced

dramatically, the execution time is longer as compared with the PDS due to the memory

Chapter 2 Technical Review

__

20

access problem in CPU. In order to overcome this difficulty, the row-based CPME-PDS

can be used. The pixels are sorted row by row in a block for SADp accumulation in order

to make use of the advantage of clustering characteristic. By using an identical reference

value, m, the expected absolute pixel error of a row of 16 pixels is calculated as follows,

which is used to determine the accumulating order.

∑
=

−′=
15

0
exp),(

x
nt mlxIp

Even though the number of operations used in row-based CPME-PDS is higher than

that of the pixel-based CPME-PDS, its execution time is shorter than that of pixel-based

approach during implementation. Also, both number of operations and execution time

of the row-based approach are reduced as compared with the PDS by making use of the

clustering characteristics of pixels.

MV0 MV1

MV2 MVmed

MVmed(x) = median (MV0(x), MV1(x), MV2(x))
MVmed(y) = median (MV0(y), MV1(y), MV2(y))

Figure 2.4 Median predictor of three adjacent blocks, top right, top and left blocks to the current block

2.2.2.3 Successive Elimination Algorithm

 The previous two sections discussed the PDS algorithm to reject the impossible

candidate blocks earlier by terminating the partial SAD calculation as soon as possible

in all possible searching locations within the search window of the reference frame. If

only a part of the searching position is tested, the computational burden of motion

estimation can be further reduced. A fast searching technique called Successive

Chapter 2 Technical Review

__

21

Elimination Algorithm (SEA) makes use of this method to find out the motion vectors

and the accuracy of the motion vectors is the same as that of FSA. The concept of SEA

is that if a candidate block in the reference frame can meet certain requirement, then a

further checking of this candidate block is performed. Otherwise, it is rejected and

another candidate block along the spiral-scanning path is tested until all possible

locations inside the search window are exhausted. The idea of SEA comes from this

inequality,

baba −≤− (2.4)

where a and b are real numbers. This inequality means that the absolute value of the

difference between two real numbers is always larger than or equal to the absolute value

of the difference between the absolute values of the individual numbers. For example, if

a and b are the +ve and –ve real numbers respectively, the right hand side (RHS) must

be greater than the left hand side (LHS) of the above inequality. Let us examine the

inequality 2.4 carefully, it implies the inequality equivalent to the inequalities 2.5

because the absolute difference of two absolute numbers, a and b , say for example

can be formed either by subtracting a from b or b form a .

⎭
⎬
⎫

−≤−
−≤−

baab
baba

 (2.5)

The temporary SAD value, ()temptemptemp vuyxSAD ,;, , in the PDS algorithm is defined

in equation 2.6.

() () ()∑∑
−

=

−

=
− ++++−++=

1

0

1

0
1

N

j

N

i
temptemptttemptemptemp vjyuixIjyixIvuyxSAD ,,,;, (2.6)

where (utemp, vtemp) is the temporary motion vector, N ×N is the size of block, It(x, y) and

It-1(x, y) represent the pixel intensities at the initial position (x, y) of the target block of

the current frame and candidate block of the reference frame respectively and (i, j) is

used to locate the position of a pixel inside a block. The objective of motion estimation

Chapter 2 Technical Review

__

22

is to find out a better candidate block such that

() ()temptemptemp vuyxSADvuyxSAD ,;,,;, ≤ , where ()vuyxSAD ,;, is the possible

minimum SAD value and (u, v) is the possible optimal motion vector. The difference

term of the SAD value, () ()vjyuixIjyixI tt ++++−++ − ,, 1 , is substituted

into the inequalities 2.5 and then we have,

() () () ()vjyuixIjyixIvjyuixIjyixI tttt ++++−++≤++++−++ −− ,,,, 11
 (2.7)

() () () ()vjyuixIjyixIjyixIvjyuixI tttt ++++−++≤++−++++ −− ,,,, 11
 (2.8)

If the inequalities 2.7 and 2.8 perform summation in both sides for all pixels in a block,

they will become the inequalities 2.9 and 2.10 as shown below.

() () () ()∑∑∑∑∑∑
−

=

−

=
−

−

=

−

=
−

−

=

−

=

++++−++≤++++−++
1

0

1

0
1

1

0

1

0
1

1

0

1

0

N

i

N

j
tt

N

i

N

j
t

N

i

N

j
t vjyuixIjyixIvjyuixIjyixI ,,,, (2.9)

() () () ()∑∑∑∑∑∑
−

=

−

=
−

−

=

−

=

−

=

−

=
− ++++−++≤++−++++

1

0

1

0
1

1

0

1

0

1

0

1

0
1

N

i

N

j
tt

N

i

N

j
t

N

i

N

j
t vjyuixIjyixIjyixIvjyuixI ,,,, (2.10)

The first summation in the LHS of inequality 2.7 represents the sum norm of the target

block in the current frame denoted by R(x, y) and the second one indicates the sum norm

of any matching candidate block in the reference frame with motion vector (u, v) and is

denoted by M(x, y; u, v). The summation in the RHS of inequality 2.7 specifies the SAD

value corresponding to the motion vector (u, v) denoted by SAD(x, y; u, v). Thus, the

inequalities 2.7 and 2.8 can be rewritten as follows.

() () ()vuyxSADvuyxMyxR ,;,,;,, ≤− (2.11)

() () ()vuyxSADyxRvuyxM ,;,,,;, ≤− (2.12)

Say for example, the temporary SAD value, SADtemp(x, y; utemp, vtemp), of a candidate

block with motion vector (utemp, vtemp) is already a good matching block corresponding

to the target block with the temporary minimum SAD value. Then, we are looking for a

better matching candidate block with motion vector (u, v) such that,

() ()temptemptemp vuyxSADvuyxSAD ,;,,;, ≤ (2.13)

Chapter 2 Technical Review

__

23

After that, we relate the inequality 2.13 with inequalities 2.11 and 2.12 which become,

() () () ()temptemptemp vuyxSADvuyxSADvuyxMyxR ,;,,;,,;,, ≤≤− (2.14)

() () () ()temptemptemp vuyxSADvuyxSADyxRvuyxM ,;,,;,,,;, ≤≤− (2.15)

The inequalities 2.14 and 2.15 can be written as,

() () ()temptemptemp vuyxSADvuyxMyxR ,;,,;,, ≤− (2.14)

() () ()temptemptemp vuyxSADyxRvuyxM ,;,,,;, ≤− (2.15)

which implies,

() () () () ()temptemptemptemptemptemp vuyxSADyxRvuyxMvuyxSADyxR ,;,,,;,,;,, +≤≤− (2.16)

The inequality 2.16 is the major result of SEA. If the range of the value of sum norm of

any candidate block in the reference frame can meet the requirement of the above

inequality, then a further checking using PDS, say for example, is performed. Otherwise,

no further checking is required since the SAD value of this candidate block must be

greater than the temporary SAD value, SADtemp(x, y; utemp, vtemp), which has already

obtained before. Furthermore, since some impossible candidate blocks are rejected and

not required to perform searching, so the computational complexity can be reduced

significantly without excluding the optimum block because the blocks that can satisfy

the inequality 2.16 must be fewer than all blocks in the search window.

During the implementation of inequality 2.16, the sum norm of each block

inside the search window has to be known before. A fast method is used to calculate the

sum norm. Suppose that the frame size is H×W. The whole image is divided into (H-

N+1) row strips and each row strip contains N rows as depicted in Figure 2.5.

Chapter 2 Technical Review

__

24

(W-N+1)th block2nd block1st block

1st row strip

2nd row strip

(H-N+1)th
row strip

Figure 2.5 Geometry for the calculation of the sum norm

 Firstly, we calculate the sum of each column and save them as C11, C12, …, C1W

for the first row strip. For the second row strip, () ()11111121 ,, ++−= NIICC ,

() ()21211222 ,, ++−= NIICC , …, () ()WNIWICC WW ,, 1112 ++−= . Similarly,

the sum of each column for other row strips is calculated in this way.

 Secondly, the sum norm of the first block denoted by SN11 is calculated by

adding C11, C12, …, C1N. As the block is shifted by one pixel horizontally, so the sum

norm of the second block denoted by SN12 is ()111111 ++− NCCSN . Similarly, the other

sum norms, SN13, SN14, …, SN1(W-N) can be found and the sum norm of each block in the

following row strips can be obtained in the same way.

 The computation of getting the sum norm can be considered as the search

overhead but this computational effort is very small. With this small overhead, the total

number of operations for motion estimation can be considerably reduced.

Chapter 2 Technical Review

__

25

2.3 The Wavelet Transform

Recently, the wavelet transform receives much attention as an alternative of the

Discrete Cosine Transform (DCT). Similar to the DCT, it transforms the signal into

another domain such that both time and frequency information can be preserved. Due to

its superior performance in compression efficiency as compared with the DCT and

scalability in nature, it is widely used in various applications such as image and video

compression, image retrieval and de-noising. For the image coding, the latest image

coding standard, JPEG 2000 [47], [48], makes use of the Discrete Wavelet Transform

(DWT) as the transform kernel instead of the DCT which is used in previous image

coding standard, JPEG. In the following, the basic knowledge of wavelet transform and

the lifting realization of the wavelet transform will be reviewed.

2.3.1 Brief introduction of the wavelet transform

The wavelet transform is widely used in various applications such as image

processing and video technology. It acts as a transform kernel to map the pixels of an

image or video frame in the spatial domain to the wavelet coefficients in the wavelet

domain and can preserve both time and frequency information. The decomposition and

reconstruction of two-band structure of one-dimensional wavelet transform with one

decomposition level is illustrated in Figure 2.6. The input signal is carried out low-pass

and high-pass filtering in the analysis stage. Then, both filtered signals are

downsampled by a factor of two in order to maintain the same size of samples before

decomposition in order to extract the low and high frequency parts of original signal. In

the synthesis stage, the reverse operations are executed in order to obtain back the

reconstructed signal. If the reconstructed signal is exactly the same as the original signal,

Chapter 2 Technical Review

__

26

this system is said to be “perfect reconstruction (PR)”. For images, the two-dimensional

Discrete Wavelet Transform (2D-DWT) is applied. Figure 2.7 shows the decomposition

of the 2D-DWT with three decomposition levels. After decomposing the image into

four subbands, LL, LH, HL and HH, in the first level, only the LL subband is further

decomposited in the remaining decomposition levels. For example, if three levels are

decomposited, then ten subbands are generated as shown in Figure 2.8(a). The

transformed version of “Fruit” image in three decomposition levels using the

Daubechies-4 kernel is depicted in Figure 2.8(b).

Unlike the DCT, the wavelet transform does not suffer from the blocking artifacts in

low bit-rate applications. Besides, it can provide a multiresolution representation of the

original image. For example, the low-resolution image is obtained by discarding the

high frequency subbands. The LL subband in Figure 2.8(b) yields a high quality of the

low-resolution version of the original image.

Low-
pass

filtering

High-
pass

filtering

 2

 2

 2

 2

Low-
pass

filtering

High-
pass

filtering

+Input
signal

Reconstructed
signal

Analysis Synthesis

2 : down-sampled by 2 2: up-sampled by 2

Figure 2.6 The block diagram of analysis and synthesis of one-dimensional wavelet transform with one

decomposition level

Chapter 2 Technical Review

__

27

H

L

L

H

H

L

HH1

HL1

LH1

H

L

L

H

H

L

HH2

HL2

LH2

H

L

L

H

H

L

HH3

HL3

LH3

LL

Input
Signal

L: Low-pass filtering and down-sampled by two
H: High-pass filtering and down-sampled by two

1st level decomposition

2nd level decomposition

3rd level decomposition

Figure 2.7 The block diagram of decomposition of two-dimensional wavelet transform with three

decomposition levels

Chapter 2 Technical Review

__

28

HL1

LH1

HL2

LH2

LL HL3

LH3 HH3

HH2

HH1

(a) (b)

Figure 2.8 (a) The subband structure of two-dimensional DWT with three levels and (b) the wavelet

transformed version of the “Fruit” image with three decomposition levels using the Daubechies-4 kernel

Chapter 2 Technical Review

__

29

2.3.2 Lifting implementation of the wavelet transform

 The wavelet transform can be implemented by the lifting realization [49], [50].

The lifting implementation is widely used in image processing [44], [47], [48] and video

technology [52], [53], [54], [55], [56]. It can save a large number of operations as

compared with the filtering approach and guarantee perfect reconstruction. Figure 2.9

shows the realization diagram of lifting implementation for analysis and synthesis

stages of the wavelet transform. During decomposition, it consists of three phases. The

first phase is to split the input signal into odd and even samples. The second stage is that

the even samples are used to predict the odd ones and the predicted samples are

subtracted from the original odd samples to form the high frequency signal which is the

prediction error. The final stage is the update process which is to add back the error

signals to the even samples to form the low frequency signal. These can be considered

as the averages of the input signal. The reconstruction performs the reverse procedure to

find out the reconstructed signal.

High
frequency

signal

Low
frequency

signal

Even
Sample

Odd
Sample

Split -P

+

+

U

+

-U P

+

MergeInput
Signal

Reconstructed
Signal

Analysis Synthesis

P: Predict
U: Update

Figure 2.9 Block diagram of lifting implementation for decomposition and reconstruction of the

wavelet transform

 Figure 2.10 shows an example of lifting implementation of forward and

backward wavelet transform for the Haar kernel. The forward lowpass and highpass

filters can be written as,

Chapter 2 Technical Review

__

30

() 1

2
1

2
1 −+= zzL (2.17)

() 1

2
1

2
1 −−= zzH (2.18)

where L and H are the lowpass and highpass filter respectively. The decomposition

process of Haar kernel is,

[] []
[] []
[] [] []()
[] [] []ndnsns

nsndnd

nsnd
nsns

update
predict

split

jjj

jjj

jj

jj

1
0

11

0
1

0
11

0
1

0
1

2
1

12
2

+++

+++

+

+

+=

−=

+=
=

:
:

:

and the reconstruction operation of Haar kernel is,

[] [] []
[] [] []

[] []
[] []ndns

nsns
nsndnd

ndnsns

merge
predict
update

jj

jj

jjj

jjj

0
1

0
1

0
11

0
1

11
0

1

12
2

2

+

+

+++

+++

=+
=

+=
−=

:
:
:

where sj[2n] and sj[2n+1] are the even and odd samples respectively and sj+1[n] and

dj+1[n] are the low and high frequency signals respectively.

Analysis

High
frequency

signal

Low
frequency

signal

Even
sample

Odd
sample

-

-

Split

+ 0.5

1

+ +

1 0.5

+

MergeInput
Signal

Reconstructed
Signal

Synthesis

Figure 2.10 The realization diagram of lifting implement of the forward and backward wavelet transform for

the Haar kernel

Chapter 2 Technical Review

__

31

2.4 Literature review of the Embedded Zerotree Wavelet

(EZW)

The motion estimation algorithms in the wavelet domain will be mentioned in

chapters 3 and 4 and the Embedded Zerotree Wavelet (EZW) [57] is used in the wavelet

video coder to get the experimental results. Besides, a modified approach of the EZW

will be discussed in chapter 5. So, the algorithm of the EZW is reviewed in section 2.5.1

and an example is given in section 2.5.2.

Figure 2.11 (a) and (b) illustrate the block diagrams of the wavelet zerotree

image encoder and decoder respectively. During encoding, the EZW [57] applies on the

wavelet coefficients after carrying out wavelet decomposition. It converts the

transformed coefficients into symbols and the definitions of the symbols will be

explained in the following section. After that, the symbols will be entropy coded by

arithmetic coding or Huffman coding. The decoder performs the reverse procedure to

obtain the reconstructed image. The EZW can generate the encoded bit-stream in the

order of significance. In order words, it can send the coefficients with large magnitude

in prior of the coefficients with small magnitude to the decoder. It is embedded in

nature and can achieve progressive transmission. Furthermore, the encoder can

terminate the encoding procedures when the target bit rate is met. Also, the decoder can

also stop the decoding procedures at any point of the truncated bitstream. Although the

decoder cannot decode the intact bitstream, the quality of the reconstructed image is not

considerably affected.

Chapter 2 Technical Review

__

32

Forward 2D
Discrete Wavelet

Transform
EZW Encoding Entropy EncodingOriginal

Image
Encodeded
Bitstream

Backward 2D
Discrete Wavelet

Transform
EZW Decoding Entropy DecodingReconstructed

Image
Encodeded
Bitstream

(a)

(b)

Figure 2.11 Block diagrams of the zerotree wavelet image (a) encoder and (b) decoder

EZW coding is commonly used in wavelet image or wavelet coder due to its

superior compression performance. It is based on two major ideas which are the

exploitation of the self-similarity inherent in the wavelet domain to predict the location

of the significant information between different levels in the wavelet pyramid and

successive approximation quantization (SAQ) of the wavelet coefficients. These two

points refer to the dominant pass and subordinate pass respectively and they will be

discussed into detail in the coming section.

2.4.1 EZW coding algorithm

 The EZW algorithm re-allocates the wavelet coefficients by sending the

significant coefficients before those coefficients with smaller magnitude. It uses the

zerotree structure as depicted in Figure 2.12 to build up the parent and children

relationship of the wavelet coefficients across different scales. In the wavelet pyramid,

every coefficient at a certain level can be related to a set of coefficients of similar

orientation at the next finer level. The zerotree can exploit the correlation of the wavelet

coefficients among different levels in the wavelet pyramid. The coefficient at the coarse

level is called the parent and all coefficients at the same spatial locations and of similar

orientation at the next finer level are called children. For the lowest frequency subband,

Chapter 2 Technical Review

__

33

LL subband, each parent node has three children, one in each subband at the same level

and spatial location but a different orientation.

LL 3HL

3LH 3HH

2HL

1HL

2LH

1LH

2HH

1HH

Figure 2.12 Parent and children relationship of the Zerotree

 In order to achieve progressive transmission, the EZW coding progressively

quantizes the wavelet coefficients by bit plane coding such that the most significant bit

plane is transmitted to the decoder first. A bit plane is referred to a pass in the following.

During the coding of EZW, the coefficients are scanned in zigzag order as shown in

Figure 2.13. Furthermore, a threshold value, T, is used to determine the significant

Chapter 2 Technical Review

__

34

coefficients in each pass. If the magnitude of coefficient is greater than the threshold,

then it is defined as significant. Otherwise, it is categorized as insignificant. After

processing a pass, the threshold is decreased by half. The iteration stops when the

threshold value is equal to 0 or the target bit rate is achieved. The initial threshold, T0, is

usually set at ()⎣ ⎦ixT maxlog220 = , where xi is the largest coefficient of the transformed

image in magnitude. Due to the progressive transmission, it consists of many passes.

For each pass, it conveys the location of the significant and insignificant coefficients

and the most significant bit of each significant coefficient by the Dominant Pass and

Subordinate Pass respectively.

Figure 2.13 Zig-zag scanning of the wavelet coefficients

The Dominant Pass classifies the significant coefficients. Each coefficient is

compared with the threshold value. If the coefficient is larger than the predefined

threshold in magnitude, it will be identified as significant coefficient. Otherwise, it will

be arranged as the insignificant coefficient. If the significant coefficient is larger than

zero, the symbol “P” (Positive) will be assigned to that significant coefficient. If not, the

symbol “N” (Negative) will be assigned to that coefficient. If the coefficient and all of

its child nodes are smaller than the threshold value, the symbol “T” (Zerotree root) is

consigned to that insignificant coefficient. If the coefficient is smaller than the threshold

but one or more than one of its child nodes are larger than the threshold, the symbol “Z”

(Isolated Zero) will be allocated to that coefficient. Once the coefficient is determined to

Chapter 2 Technical Review

__

35

be significant, it is set to zero in order to prevent from coding again in the next pass.

The magnitudes of the significant coefficients are put to the Subordinate List to perform

Subordinate Pass. All child nodes of a zerotree root are not encoded. Therefore, the

zerotree can encode the location of zero coefficients. Figure 2.14 illustrates the flow

diagram of the Dominant Pass of the EZW coding.

Figure 2.14 Flow chart of the dominant pass of the EZW encoding

The coefficient
is greater than

the current
threshold

Y e s

T h e c o e f f i c i e n t
i s g r e a t e r t h a n

z e r o

Y e s

O u t p u t
s y m b o l

" P "

Output
symbol

"N"

No

The coefficient
is a descendant

of a zerotree
root

No

Yes

Do not
code it

N o

T h e c o e f f i c i e n t
h a s o n e o r m o r e

s i g n i f i c a n t
d e s c e n d a n t s

Yes

Output
symbol

"Z"

No

Output
symbol

"T"

Start

End

Put t h e a b s o l u t e
v a l u e o f t h e

coe f f i c i e n t i n t o
S u b o r d i n a t e

L i s t

S e t t h e
s i g n i f i c a n t

co e f f i c i e n t t o
z e r o i n t h e

i m a g e

Chapter 2 Technical Review

__

36

 The Subordinate Pass or the Refinement Pass provides one more bit on the

magnitudes of the significant coefficients in the Subordinate List. The binary symbols

“0” and “1” are given to the significant coefficients in the Subordinate List for the lower

and upper half of the quantization intervals respectively. The limits of these

quantization intervals are found by multiplying the current threshold by an integer k,

where k = 2, 3, 4, … and these quantization intervals must be smaller than 2×T0. When

the current threshold is equal to 1, the Subordinate Pass is skipped because it is not

possible to categorize the significant coefficients into the lower or upper half of the

quantization intervals. Figure 2.15 illustrates the flow chart of Subordinate Pass. An

example will be mentioned below to explain the encoding and decoding procedures.

Chapter 2 Technical Review

__

37

Start

The significant coefficient in the
Subordinate List is located in the

upper half of the quantization
interval

Output
symbol (1)

Output
symbol (0)

Yes No

End

Figure 2.15 Flow chart of the subordinate pass of the EZW encoding

2.4.2 Encoding and decoding examples of EZW

 A wavelet-transformed matrix will be shown as below which is an 8×8 matrix.

The scanning pattern is in zigzag order. Three decomposition levels are performed.

Chapter 2 Technical Review

__

38

118 22 7 20 -8 12 9 0
-12 18 -11 72 8 6 2 3
-59 11 19 9 7 -1 -2 8
12 -8 7 -8 -6 -4 -9 7
38 11 12 16 3 -2 2 1
-3 7 4 -5 4 2 -3 1
7 -2 0 7 2 5 0 2
8 8 -6 7 0 0 7 0

For the first pass, the initial threshold, T0, is 64 calculated by the equation

mentioned above. In the Dominant Pass, the first coefficient is 118 which is larger than

T0 and a symbol “P” is assigned to the Dominant List. The second coefficient is 22

which is smaller than T0 but one of its descendants (72) is also greater than T0 so that a

symbol “Z” is assigned to the Dominant List. For the third coefficient (-12), itself and

all of its descendants are smaller than T0 so that a symbol “T” is assigned to the

Dominant List to signify it as a zerotree node and all its descendants will not be

encoded. After all coefficients are scanned in this way, the Dominant List of the first

pass becomes P Z T T T T T P T T T T. When a coefficient is defined as significant,

the absolute value of this significant coefficient is put into the Subordinate List to

perform the Subordinate Pass. After the Dominant Pass, the Subordinate List becomes

(118, 72). Then, the coefficients put into the Subordinate List are carried out the

Subordinate Pass in order to quantize the significant coefficients. The current threshold

is 64, the Subordinate Threshold is 32 which is equal to the current threshold, 64,

reduced by half and the interval used in the quantization is [64, 128]. When the

significant coefficient is located in the upper half of the interval which is [64, 96], a “0”

is allocated to the bitstream. When the significant coefficient is located in the lower half

of the interval which is [96, 128], a “1” is assigned to the bitstream. Therefore, the

bitstream after the first Subordinate Pass is 1 0.The results after the first pass are

Chapter 2 Technical Review

__

39

Pass 1:
Threshold = 64
Dominant List: P Z T T T T T P T T T T
Subordinate List: 1 0

For the second pass, the current threshold, T1, is decreased by half which is 32. The

significant coefficients defined in the previous pass are not scanned in this pass.

Therefore, the matrix becomes

* 22 7 20 -8 12 9 0
-12 18 -11 * 8 6 2 3
-59 11 19 9 7 -1 -2 8
12 -8 7 -8 -6 -4 -9 7
38 11 12 16 3 -2 2 1
-3 7 4 -5 4 2 -3 1
7 -2 0 7 2 5 0 2
8 8 -6 7 0 0 7 0

In the Dominant Pass, it repeats the same procedures in the first pass. The first

scanned coefficient (22) is smaller T1 and all of its descendants are also smaller than T1

so that a symbol “T” is assigned to the Dominant List. After the second Dominant Pass,

the Dominant List is T Z T N T T T P T T T. The significant coefficients of the

previous pass are also included in the Subordinate List. Thus, the Subordinate List

becomes (118, 72, 59, 38). In the Subordinate Pass, the current threshold is 32, the

Subordinate Threshold is 16 and the quantization intervals are [32, 64), [64, 96) and [96,

128). The limits of these quantization intervals are found by multiplying the current

threshold, T1, by an integer k, where k = 2, 3, 4, … and these quantization intervals are

smaller than 2×T0. For the first significant coefficient in the Subordinate List (118), it is

located in the upper half [112, 128) of the quantizer [96, 128) so that a “1” is assigned

to the bitstream. For the second significant coefficient (72), it is located in the lower

half [64, 80) of the quantizer [64, 96) so that a “0” is assigned to the bitstream. The

Chapter 2 Technical Review

__

40

remaining coefficients are repeated in this step to obtain the bitstream which is 1 0 1 0.

The results of the second pass are

Pass 2:
Threshold = 32
Dominant List: T Z T N T T T P T T T
Subordinate List: 1 0 1 0

The process is repeated until the current threshold is equal to 0 or the desired

bitrate is obtained. The results of the remaining pass are

Pass 3:
Threshold = 16
Dominant List:
P Z P T P T Z T T P T T T T T T T T T T T T T T T P T T T T T T
Subordinate List: 0 1 1 0 0 0 0 0 0

Pass 4:
Threshold = 8
Dominant List:
N Z N P P N P T N N P P T P T T T T T T T T P N T P T T P T T T T P P T T T T
T T T T T T T T T T T T
Subordinate List: 1 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0

Pass 5:
Threshold = 4
Dominant List:
P P P T T T P T N N T P T P P N P T T P N P T T P T T T T T T P T T T T P T
Subordinate List:
1 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 1

Pass 6:
Threshold = 2
Dominant List:
T P P T N N N T P N P P T N T P T T T P T
Subordinate List:
0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 1
0 1 0 0 0 1 0 0

Chapter 2 Technical Review

__

41

Pass 7:
Threshold = 1
Dominant List: T N T P P T T T T
No subordinate pass!!

In the seventh pass, the Subordinate Threshold is equal to 0.5 which is not an

integer so that the Subordinate Pass cannot not be performed in this pass. The encoder

stops in this stage and the output bitstream is shown as Header - DP1 - SP1 - DP2 -

SP2 - DP3 - SP3 - DP4 - SP4 - DP5 - SP5 - DP6 - SP6 - DP7, where Header is the

initial threshold, T0, DP1 and SP1 are the Dominant List and the bitstream of the

Subordinate Pass in the first pass respectively.

 At the decoder, it receives the header which contains the initial threshold, T0, 64,

then the DP1 and SP1. The quantization interval is [64, 128) in the encoder. It starts to

reconstruct the image. In the first pass, the first symbol is “P” and the first bit is “1” so

that the first reconstructed coefficient is 112 which is the mean value of the upper half

of the quantizer [64, 128). The second symbol is “Z” so that the reconstructed

coefficient is zero and all of its child nodes are scanned later because there is one or

more than one of its child nodes are significant. The third symbol is “T” so that the

reconstructed coefficient is zero and all of its descendants are not scanned and marked

as “x” in the following matrix. The sixth symbol is also “P” and the second subordinate

bit is “0” so that the reconstructed coefficient is 80 which is the mean value of the lower

half of the quantizer [64, 128). After the first pass of decoding, the reconstructed matrix

becomes

Chapter 2 Technical Review

__

42

Pass 1:

112 0 0 0 x x x x
0 0 0 80 x x x x
x x x x x x 0 0
x x x x x x 0 0
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

In the second pass, the current threshold, T1, is cut by half which is 32 and the

decoder receives the DP2 and SP2 to reconstruct the matrix again. The decoder refines

firstly the significant coefficients defined in the previous pass. The quantization

intervals at this pass in the encoder are [32, 64), [64, 96) and [96, 128). As the first

reconstructed coefficient in the previous pass is 112 which lies inside the interval [96,

128), so it refines to 120 which is the mean value of the upper half of the interval [96,

128) because the first subordinate bit in the bitstream is “1”. For the second

reconstructed coefficient in the previous pass (80), it refines to 72 which is the mean

value of the lower half of the interval [64, 96) as 80 lies in the interval [64, 96) and the

second bit of the bitstream is “0”. After refining all significant coefficients defined in

the previous pass, the remaining coefficients can be reconstructed by the DP2 and SP2.

The first symbol inside DP2 is “T” so that the first reconstructed coefficient is zero and

all of its descendants are not significant and not to be scanned. The fifth symbol is “N”

and the third bit is “1” so that the fifth reconstructed coefficient is –56 because the

decoder reconstructs the coefficients which is not decoded in the previous pass so that

the interval should be [T1, 2×T1] which is [32, 64). After decoding all symbols in the

DP2, the reconstructed matrix becomes

Chapter 2 Technical Review

__

43

Pass 2:

120 0 x x x x x x
0 0 x 72 x x x x

-56 0 x x x x x x
0 0 x x x x x x
40 0 x x x x x x
0 0 x x x x x x
x x x x x x x x
x x x x x x x x

The decoder continues decoding the bitstream until the current threshold is zero or

the desired bitrate is achieved. The results of decoding are shown as follows.

Pass 3:

116 20 0 20 x x 0 0
0 20 0 76 x x 0 0

-60 0 20 0 x x 0 0
0 0 0 0 x x 0 0
36 0 0 20 0 0 x x
0 0 0 0 0 0 x x
x x x x x x x x
x x x x x x x x

Pass 4:

118 22 0 22 -10 14 10 0
-14 18 -10 74 10 0 0 0
-58 10 18 10 0 0 0 10
14 -10 0 -10 0 0 -10 0
38 10 14 18 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 x x 0 0
10 10 0 0 x x 0 0

Chapter 2 Technical Review

__

44

Pass 5:

119 23 7 21 -9 13 9 0
-13 19 -11 73 9 7 0 0
-59 11 19 9 7 0 0 9
13 -9 7 -9 -7 -5 -9 7
39 11 13 17 0 0 0 0
0 7 5 -5 5 0 0 0
7 0 0 7 0 5 0 0
9 9 -7 7 0 0 7 0

Pass 6:

118 22 7 20 -8 12 9 0
-12 18 -11 72 8 6 2 3
-59 11 19 9 7 0 -2 8
12 -8 7 -8 -6 -4 -9 7
38 11 12 16 3 -2 2 0
-3 7 4 -5 4 2 -3 0
7 -2 0 7 2 5 0 2
8 8 -6 7 0 0 7 0

Pass 7:

118 22 7 20 -8 12 9 0
-12 18 -11 72 8 6 2 3
-59 11 19 9 7 -1 -2 8
12 -8 7 -8 -6 -4 -9 7
38 11 12 16 3 -2 2 1
-3 7 4 -5 4 2 -3 1
7 -2 0 7 2 5 0 2
8 8 -6 7 0 0 7 0

The reconstructed matrix after decoding the encoded bitstream is exactly the same

as the original matrix. Therefore, the EZW attains lossless coding if the encoder

continues to encode until the current threshold is equal to one and the decoder refines

the whole bitstream. Besides, it also realizes the progressive property since the most

significant bit is transmitted to the decoder first.

Chapter 2 Technical Review

__

45

2.5 Modifications of EZW

The conventional EZW algorithm was reviewed in the previous section. Three

modified methods are discussed in this section. The objectives of them are to improve

the compression efficiency and reduce the computational complexity.

2.5.1 Multi-threshold approach

 For the conventional EZW algorithm, if the parent node is significant, i.e.

greater than the threshold value in the current pass, then its child nodes will be scanned

later. Similarly, when the parent node is insignificant, its child nodes will also be

scanned in order to determine whether one or more than one of its child nodes are

significant or not. If there are significant child nodes, then isolated zero (IZ) is assigned

to that parent node and all of its child nodes will be scanned later no matter they are

significant or insignificant. Otherwise, the zerotree root (ZTR) is assigned to that parent

node. For example, if a parent node in LH subband at level two as depicted in Figure

2.16(b) is significant and all coefficients in the subband LH1 are insignificant, then the

subband LH1 will still be scanned later in the conventional approach and the symbols

generated in the subband LH1 are encoded and conveyed to the decoder for

reconstruction. Since all coefficients in the subband LH1 are insignificant, so it needs

not to be scanned and encoded.

 According to this observation [58], a multi-threshold approach can be used to

reduce the redundancy in the high frequency subbands leading to increase the

compression efficiency. The multi-threshold is a set of coefficients with a maximum

magnitude in each subband. As shown in Figure 2.16, the multi-threshold is {10, 15, … ,

50, 70}. The coefficient with the maximum magnitude, i.e. the threshold, in each

Chapter 2 Technical Review

__

46

subband can indicate whether all coefficients in that subband are insignificant or not. If

that maximum coefficient is smaller than the current threshold, then all coefficients in

that subband can be skipped without scanning again and this subband is defined as

insignificant subband such as the HL2 subband in Figure 2.16(b). Otherwise, it is

classified as the significant subband, i.e. the LL subband in Figure 2.16(b). For the

significant subband which is adjacent to the insignificant subband, it is determined as

the marginal subband such as the HL3 subband in Figure 2.16(b). Table 2.1(a) shows

the codeword assignment to the symbols generated by the EZW coding for the

significant subband. For the insignificant parent node in the significant subband, one

more bit is used to determine whether its child nodes are significant or not. However,

only one bit is enough to represent the insignificant parent node in the marginal subband

as illustrated in Table 2.1(b) since all of its child nodes must be insignificant as

indicated by the multi-threshold. Given that the redundancy in the high frequency

subband is reduced, so the number of bits used to encode the coefficients in the high

frequency subband can be saved. In this approach, the value of the multi-threshold is

also transmitted to the decoder as side information for reconstruction and it is regarded

as overhead.

HL3
t9 = 50

LH3

t8 = 47

HH3

t7 = 43

HL2
t6 = 30

LH2
t5 = 33

HH2
t4 = 23

HL1
t3 = 18

LH1
t2 = 15

HH1
t1 = 10

LL
t10 = 70

LH3

t8 = 47

HL2
t6 = 30

HH2
t4 = 23

HL1
t3 = 18

LH1
t2 = 15

HH1
t1 = 10

LL
t10 = 70

HL3
t9 = 50

LH3

t8 = 47

HH3

t7 = 43

HL2
t6 = 30

LH1
t2 = 15

HH1
t1 = 10

(a) T0 = 64 (b) T1 = 32 (c) T2 = 16

LL
t10 = 70

HL3
t9 = 50

HH3

t7 = 43

LH2
t5 = 33

LH2
t5 = 33

HH2
t4 = 23

HL1
t3 = 18

Figure 2.16 An example of the multi-threshold and significant subbands, where the shaded subbands and the

subbands with think lines represent the insignificant subbands and marginal subbands respectively

Chapter 2 Technical Review

__

47

Table 2.1 Codewords of the symbols generated by the multi-threshold EZW algorithm for (a) significant

subbands and (b) marginal subbands

Symbols Codewords Symbols Codewords
 POS 11 POS 11
NEG 10 NEG 10

IZ 01 ZTR 0
ZTR 00 IZ --

(a) (b)

2.5.2 Fixed length residual value method

As mentioned in the section 2.4, the standard EZW algorithm uses four symbols to

encode the wavelet coefficients. If a parent node is significant, then a symbol “P” or

“N” is assigned to that coefficient depending on its sign and all of its child nodes will

scanned later no matter they are insignificant or not. If all of its child nodes are

insignificant, each coefficient will be given to a symbol (ZTR). Therefore, redundancy

is introduced. The modified EZW algorithm with fixed length residual value [59] can be

used to eliminate the redundant information.

For the modified scheme, eight symbols instead of four are used, which are

described in Table 2.2. Figure 2.17 shows an example to illustrate the concept of the

modified scheme. The first coefficient is 28 which is larger than the threshold, 16, and it

is also greater than 1.5×threshold, 24, so a symbol “PP” is allocated to that coefficient.

Besides, the residual value, 4 (28 – 24), is also encoded and transmitted to the decoder

for reconstruction. For the second coefficient, 19, it is greater than the threshold and all

of its child nodes are insignificant so that a symbol “PZR” is assigned to the second

coefficient. Compared to the original EZW algorithm, only four symbols are used to

encode the example in Figure 2.17 by using the modified scheme. The subordinate pass

is eliminated in the modified algorithm. Instead, the residual value of the significant

Chapter 2 Technical Review

__

48

coefficient is encoded and sent to the decoder. For each pass, the number of bits used to

encode each residual value is log2 (threshold/2). In the example, it uses three bits to

encode the residual value, 4, of the first coefficient, 28. Since the redundancy in the

high frequency subband is removed, so the coding efficiency can be improved.

Furthermore, the transmission of residual value can enhance the speed of encoding

process.

28 19

-22 5

3

4 1

4

2 7

3

5 9

2

0 1

P P

N ZTR

ZTR

ZTR ZTR

ZTR

ZTR ZTR

ZTR

ZTR ZTR

ZTR

ZTR ZTR

Threshold = 16
- original EZW: P, P, N,
ZTR, ZTR, ZTR, ZTR,
ZTR, ZTR, ZTR, ZTR,
ZTR
- modified EZW: PP,
PZR, NZR, ZTR

Figure 2.17 An example of the modified EZW algorithm using eight symbols in the dominant pass

Table 2.2 The descriptions of the eight symbols used in the modified EZW algorithm with fixed length residual

value

Symbols Description
IZ The parent node is insignificant and one or more than one of its child nodes are significant

ZTR The parent node and all of its child nodes are insignificant
PZR The parent node is significant and positive valued and all of its child nodes are insignificant
NZR The parent node is significant and negative valued and all of its child nodes are insignificant
PP The parent node is significant, positive valued and greater than 1.5×threshold
PN The parent node is significant, positive valued and smaller than 1.5×threshold
NP The parent node is significant, negative valued and less than -1.5×threshold

NN The parent node is significant, negative valued and the value of coefficient lies between –
threshold and -1.5×threshold

2.5.3 Subband threshold scheme

 The conventional EZW algorithm can losslessly encode the wavelet-transformed

image when encoding all passes. The minimum weight subband method [60] can

increase the coding gain with minimum loss during reconstruction. Figure 2.18(a) and

Chapter 2 Technical Review

__

49

(b) depict the block diagrams of encoder and decoder using the minimum weight

subband method respectively. The major difference to the conventional approach is that

there is a pre-processing stage in the encoder. During pre-processing, some less

important coefficients in the wavelet-transformed image are removed and these

discarded coefficients cannot be recovered during reconstruction. The human visual

system (HVS) cannot be aware of the degradation of the reconstructed image. However,

these eliminated coefficients require more bits during compression. This method

reduces some less important coefficients to attain further compression with slight

quality degradation in the reconstructed image.

 Usually, the HVS is more sensitive to the low frequency components than the

high frequency components. According to this fact, the coefficients with small

magnitude in the high frequency subband are removed. In the pre-processing stage, the

weight of each subband is calculated, where the weight is the sum of the magnitudes of

all coefficients in a subband, and the subband with minimum weight in each level is

selected. After that, if a coefficient inside this minimum weight subband is smaller than

a pre-defined threshold, it is set to zero. If the threshold is large, more coefficients will

be set to zero and the reconstruction quality will become worse but the coding gain will

be improved and vice versa. Therefore, the threshold should not be set too large and it

usually lies between two to five. Since important information of the high frequency

components, which contributes to the edge information, can still be preserved, so the

visual quality of the minimum weight subband method can be comparable to that of the

conventional EZW algorithm but the compression efficiency is improved due to the

elimination of the less important coefficients in the high frequency subband.

Chapter 2 Technical Review

__

50

Forward 2D
Discrete Wavelet

Transform
EZW Encoding Entropy EncodingOriginal

Image
Encodeded
Bitstream

Backward 2D
Discrete Wavelet

Transform
EZW Decoding Entropy DecodingReconstructed

Image
Encodeded
Bitstream

(a)

(b)

Preprocessing

Figure 2.18 Block diagrams of the zerotree wavelet image (a) encoder and (b) decoder with minimum weight

subband method

2.6 Literature review of Set-Partitioning Embedded Block

Coder (SPECK)

One of the typical algorithms to encode the wavelet coefficients is the

Embedded Zerotree Coding (EZW) algorithm which is mentioned in section 2.4. The

EZW algorithm makes use of the parent and children relationships of subbands among

different decomposition levels but the same orientation in the zerotree structure to

achieve compression. The latest coding algorithm, Set-Partition Embedded Block Coder

(SPECK) algorithm [107], does not use the tree structure which exploits the similarity

across different subbands in the wavelet pyramid to encode the wavelet coefficients.

The SPECK algorithm can achieve superior compression performance as compared with

that of the EZW algorithm and preserve the wavelet coefficients in a lossless way. Also,

it can attain progressive transmission such that the important wavelet coefficients are

sent to the decoder first. Sections 2.6.1 mentions the coding methodology of SPECK

algorithm and section 2.6.2 gives a numerical example to explain the encoding and

decoding procedures of SPECK algorithm.

Chapter 2 Technical Review

__

51

2.6.1 Coding methodology of SPECK algorithm

After applying Discrete Wavelet Transform (DWT) to an image W, the

transformed image exhibits a pyramid structure defined by the levels of decomposition,

the top most level of the wavelet pyramid becomes the root. The transformed

coefficients, {ci,j}, is located at (i, j) in the wavelet transformed image X. Like the EZW

algorithm, the threshold value of first pass, T0, is defined as, T0 = 2n, where

()⎣ ⎦jicn ,2 maxlog= . Actually, n is the total number of passes performed in the SPECK

algorithm. A set T of coefficients is significant in the first pass if

()
{ } 0,,

max Tc jiTji
≥

∈

Otherwise, it is insignificant. Hence, the significance test of a set is defined as

() ()
⎪⎩

⎪
⎨
⎧ <≤

=Γ
+

∈

otherwise

cif
T

n
jiTji

n

n
,0

2max2 ,1 1
,,

 The SPECK algorithm contains two types of set which are type S and type I.

These two sets come from the wavelet transformed image X as illustrated in Figure 2.19.

A set I is decomposed into set S from coarser to finer resolution subbands through the

transformed image. During the significance test, the EZW algorithm exploits the

correlations among different subbands in the wavelet pyramid by making use of the

zerotree structure. However, the SPECK algorithm does not use the tree structure.

Instead, only the set S is performed the significance test. The objective of this approach

is to utilize the clustering of energy found in the transformed image and concentrate on

those areas of set which contain high energy. Thus, coefficients with high energy can be

encoded first in order to achieve progressive transmission. Besides the sets S and I, the

SPECK algorithm also keeps two lists which are the list of insignificant sets (LIS) and

the list of significant pixels (LSP). LIS contains the sets S with different sizes which are

Chapter 2 Technical Review

__

52

determined as insignificant to the threshold value in the current pass while LSP holds

the significant coefficients which are defined to be significant in current or previous

passes.

X I

S

Figure 2.19 Partitioning of image X into sets S and I

 After defining the symbols used in the SPECK algorithm, the main body of

SPECK algorithm will be discussed. It consists of four major steps which are the

initialization, sorting pass, refinement pass and quantization step. The first step is

initialization which partitions the transformed image X into sets S and I. The set S

represents the LL subband while the set I is the transformed image X excluding the set S.

Then, the set S is added to the LIS and the LSP is set to empty set. Before going to

sorting pass, the initial threshold, T0, is calculated by this equation, T0 = 2n, where

()⎣ ⎦jicn ,2 maxlog= . In the sorting pass, each set S in the LIS is tested for significance.

If a set S is significant with respect to the threshold value in current pass and is a

coefficient, it is removed from the LIS and added to the LSP. A ‘1’ together with the

sign of that significant coefficient are output to the bitstream. If a set S is significant and

is a set of coefficients, it is divided into four equal subsets, O(S), as depicted in Figure

2.20. Each subset with size one-fourth of its parent set S is tested for significance again.

This process is recursively performed until the significant coefficient is found. The

insignificant sets S are put to the LIS and tested for significance with respect to the

lower threshold value in the next passes and a ‘0’ is allocated to the bitstream for each

Chapter 2 Technical Review

__

53

insignificant set S. The aims to perform this process are that the coefficients with high

energy can be determined and encoded first and the sets of insignificant coefficients can

be classified such that the number of bits required to encode them can be limited. In

other words, only a few number of bits are used to encode a large number of

insignificant coefficients.

S

S0 S1

S2 S3

O(S) = {S0, S1, S2, S3}

Figure 2.20 Partition of set S

After testing all sets S, the remainder set I is tested for significance against the

threshold value in the current pass. If it is insignificant, then a ‘0’ is assigned to the

bitstream. Otherwise, it will be separated in four sets which are three new sets S and a

new set I as shown in Figure 2.21 and a ‘1’ is output to the bitstream. The size of each

new set S is the same as the chopped part of transformed image X. Each new set S is

tested for significance as described before. The new remainder set I is also tested for

significance again until it is insignificant or it becomes an empty set. The philosophy of

this scheme is to make use of the hierarchical structure in the wavelet pyramid which

tells us that the energy is concentrated at the lower resolution subbands and decreases

slowly when going down the wavelet pyramid. If a remainder set I is significant to the

threshold value in the current pass, the significant coefficient is likely located in the top

left region of I. Then, this region is split into new sets S which are tested for

significance. As a result, the regions containing significant coefficients are grouped into

Chapter 2 Technical Review

__

54

small sets and processed first while the regions have insignificant coefficients are

formed into large sets which are only encoded by a few number of bits.

S1

S2 S3

S1

S3S2

I
I

Figure 2.21 Partition of set I

The third step is refinement pass which is the same as the subordinate pass of

EZW algorithm. Since section 2.4.1 discusses the subordinate pass of EZW algorithm in

detail, so the refinement pass will not be mentioned in here. Finally, the threshold value

of current pass is reduced by half and the LIS and LSP are passed to the next pass for

further processing until the threshold value is equal to 1 or the desired bit rate is

achieved. A detail example will be given in the coming section to explain the SPECK

algorithm clearly.

2.6.2 Numerical example of encoding and decoding procedures

of SPECK algorithm

 Before discussing a coding example of SPECK algorithm, we define some

symbols first. Sk(i, j) and (i, j)k denotes the point or set with the size of 2k×2k and with

(i,j) upper left corner coordinate. (i, j) are the coordinates of a single coefficient and (i, j)

in LSP is always a single point. We use an 8×8 matrix which is the same as that in

section 2.4 to illustrate the operations of SPECK algorithm. The elements of matrix are

the wavelet-transformed coefficients. The scanning pattern is in zigzag order. Three

decomposition levels are performed.

Chapter 2 Technical Review

__

55

118 22 7 20 -8 12 9 0
-12 18 -11 72 8 6 2 3
-59 11 19 9 7 -1 -2 8
12 -8 7 -8 -6 -4 -9 7
38 11 12 16 3 -2 2 1
-3 7 4 -5 4 2 -3 1
7 -2 0 7 2 5 0 2
8 8 -6 7 0 0 7 0

 The maximum magnitude of coefficients is 118, so seven passes are carried out

in total. For the first pass, the threshold value, T0, is 64. The initial S set is the top left

coefficient which is 118, so S=S0(0, 0) and (0, 0)0 initializes the List of Insignificant Set

(LIS) and the List of Significant Pixels (LSP) is initially empty. The first coefficient (0,

0) is tested for significance. Its magnitude is 118, so it is significant. Hence, a ‘1’

representing ‘significant’ and a ‘+’ indicating its sign are sent to the bitstream and it is

moved to the LSP. Then, the remainder set I is tested for significance, so a ‘1’ is

allocated to the bitstream and the remainder set I is partitioned into three new sets S,

which are (0, 1), (1, 0) and (1, 1), and a new remainder set I. The three new sets S are

insignificant, so a ‘0’ is assigned to the bitstream for each insignificant set S and these

three insignificant sets S are added to the LIS. Next, the remainder set I is tested for

significance and it is significant. Thus, a ‘1’ is sent to the bitstream and the remainder

set I is divided into three new sets S, which are S1(0, 2), S1(2, 0) and S1(2, 2), and a new

remainder set I. The set S1(0, 2) is tested for significance first. It is significant, so it is

quadrisected into four singleton sets, which are (0, 2), (0, 3), (1, 2) and (1, 3), added to

LIS and a ‘1’ is output to the bitstream. Among these four coefficients, the first three

coefficients, (0, 2), (0, 3) and (1, 2), are insignificant, so they are added to LIS and a ‘0’

is assigned to each insignificant coefficient in the bitstream. Only the last one, (1, 3), is

significant since its magnitude is 72, so it is put into the LSP and a ‘1+’ is allocated to

Chapter 2 Technical Review

__

56

the bitstream. The remaining two sets, S1(2, 0) and S1(2, 2), are insignificant, so they are

appended in the LIS and a ‘0’ is output to the bitstream for each insignificant set S.

Finally, the remainder set I is insignificant, so a ‘0’ is assigned in the bitstream. The

following table shows the output bits of the sorting pass of first pass. Like the EZW

algorithm, the significant coefficients are put to refinement pass and the refinement bits

are 1 0.

Comment Point or Set Output Bits Action Control Lists

S = (0, 0)

I = rest

 LIS = {(0, 0)0}

LSP = Ø

 (0, 0) 1+ (0, 0) to LSP LIS = Ø

LSP = {(0, 0)}

Test I S(I) 1 Split to 3’S, new I

 (0, 1) 0 Add to LIS(0) LIS = {(0, 1)0}

 (1, 0) 0 Add to LIS(0) LIS = {(0, 1)0, (1, 0)0}

 (1, 1) 0 Add to LIS(0) LIS = {(0, 1)0, (1, 0)0, (1, 1)0}

Test I S(I) 1 Split to 3’S, new I

 S1(0, 2) 1 Quad split, add to LIS(0) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (1, 3)0}

 (0, 2) 0

 (0, 3) 0

 (1, 2) 0

 (1, 3) 1+ (1, 3) to LSP LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0}

LSP = {(0, 0), (1, 3)}

 S1(2, 0) 0 Add to LIS(1) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 0)1}

 S1(2, 2) 0 Add to LIS(1) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 0)1, (2, 2)1}

Test I S(I) 0

Pass 1

 LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 0)1, (2, 2)1}

LSP = {(0, 0), (1, 3)}

 The LIS at the end of the first pass is the initial list for second pass. The

threshold value is this pass is halved, i.e. 32. The first six coefficients in the LIS, which

are (0, 1), (1, 0), (1, 1), (0, 2), (0, 3) and (1, 2) are insignificant to the threshold value in

this pass. So, a ‘0’ is put to the bitstream for each insignificant coefficient. Then, the set

S1(2, 0) is tested for significance and a ‘1’ is assigned to the bitstream. Since it is

Chapter 2 Technical Review

__

57

significant, so it is separated into four coefficients, (2, 0), (2, 1), (3, 0) and (3, 1), which

are put to the LIS. The first coefficient, (2, 0), is greater than the threshold value in the

current pass and is negative. Hence, it is removed in the LIS, put to the LSP and a ‘1-’ is

assigned to the bitstream. The last set in the LIS, S1(2, 2), is tested for significance. It is

insignificant and a ‘0’ is put to the bitstream. Next, the remainder set I is tested for

significance and it is significant. Thus, it is broken up into three new sets S, S2(0, 4),

S2(4, 0), S2(4, 4), which are added to the LIS, and a ‘1’ is set to the bitstream. The first

set, S2(0, 4), is tested and is insignificant. The second set, S2(4, 0), is significant, so it is

further partitioned into four new sets, S1(4, 0), S1(4, 2), S1(6, 0) and S1(6, 2), which are

put to the LIS and a ‘1’ becomes the output bit. For the set S1(4, 0), it is significant and

split into four coefficients, (4, 0), (4, 1), (5, 0) and (5, 1), which are put to the LIS. The

first coefficient, (4, 0), is significant and positive, so it is added to the LSP and a ‘1+’ is

allocated to the bitstream. For the other three coefficients, (4, 1), (5, 0) and (5, 1), are

insignificant. Thus, a ‘0’ is appended to the bitstream for each insignificant coefficient.

Next, the three sets, S1(4, 2), S1(6, 0) and S1(6, 2), are insignificant. Hence, a ‘0’ is

assigned to the bitstream for each insignificant set. Finally, the set, S2(4, 4) is also

insignificant. Therefore, a ‘0’ is also added to the bitstream. The output bits for the

sorting pass of pass 2 are shown in the following table. Four coefficients are determined

as significant coefficients and the refinement bits of refinement pass are 1 0 1 0.

Chapter 2 Technical Review

__

58

Comment Point or Set Output Bits Action Control Lists

 LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 0)1, (2, 2)1}

LSP = {(0, 0), (1, 3)}

Test LIS(0) (0, 1) 0

 (1, 0) 0

 (1, 1) 0

 (0, 2) 0

 (0, 3) 0

 (1, 2) 0

Test LIS(1) S1(2, 0) 1 Quad split, add to LIS(0) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 0)0, (2, 1)0, (3, 0)0, (3, 1)0, (2, 2)1}

 (2, 0) 1- (2, 0) to LSP LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (2, 2)1}

LSP = {(0, 0), (1, 3), (2, 0)}

 (2, 1) 0

 (3, 0) 0

 (3, 1) 0

 S1(2, 2) 0

Test I S(I) 1 Quad split, add to LIS(2) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (2, 2)1, (0, 4)2, (4,

0)2, (4, 4)2}

 S2(0, 4) 0

 S2(4, 0) 1 Quad split, add to LIS(1) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (2, 2)1, (4, 0)1, (4,

2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4, 4)2}

 S1(4, 0) 1 Quad split, add to LIS(0) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (4, 0)0, (4, 1)0, (5,

0)0, (5, 1)0, (2, 2)1, (4, 2)1, (6, 0)1, (6, 2)1, (0,

4)2, (4, 4)2}

 (4, 0) 1+ (4, 0) to LSP LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (4, 1)0, (5, 0)0, (5,

1)0, (2, 2)1, (4, 2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4,

4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0)}

 (4, 1) 0

 (5, 0) 0

 (5, 1) 0

 S1(4, 2) 0

 S1(6, 0) 0

 S1(6, 2) 0

 S2(4, 4) 0

Pass 2

 LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (4, 1)0, (5, 0)0, (5,

1)0, (2, 2)1, (4, 2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4,

4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0)}

Chapter 2 Technical Review

__

59

 The process is repeated until the current threshold is equal to 1 or the desired

bitrate is obtained. The results of the remaining passes are shown in the following tables.

Pass 3
Comment Point or Set Output Bits Action Control Lists

 LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (4, 1)0, (5, 0)0, (5,

1)0, (2, 2)1, (4, 2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4,

4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0)}

Test LIS(0) (0, 1) 1+ (0, 1) to LSP LIS = {(1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1, 2)0, (2,

1)0, (3, 0)0, (3, 1)0, (4, 1)0, (5, 0)0, (5, 1)0, (2,

2)1, (4, 2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1)}

 (1, 0) 0

 (1, 1) 1+ (0, 1) to LSP LIS = {(1, 0)0, (0, 2)0, (0, 3)0, (1, 2)0, (2, 1)0, (3,

0)0, (3, 1)0, (4, 1)0, (5, 0)0, (5, 1)0, (2, 2)1, (4,

2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1)}

 (0, 2) 0

 (0, 3) 1+ (0, 3) to LSP LIS = {(1, 0)0, (0, 2)0, (1, 2)0, (2, 1)0, (3, 0)0, (3,

1)0, (4, 1)0, (5, 0)0, (5, 1)0, (2, 2)1, (4, 2)1, (6,

0)1, (6, 2)1, (0, 4)2, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3)}

 (1, 2) 0

 (2, 1) 0

 (3, 0) 0

 (3, 1) 0

 (4, 1) 0

 (5, 0) 0

 (5, 2) 0

Test LIS(1) S1(2, 2) 1 Quad split, add to LIS(0) LIS = {(1, 0)0, (0, 2)0, (1, 2)0, (2, 1)0, (3, 0)0, (3,

1)0, (4, 1)0, (5, 0)0, (5, 1)0, (2, 2)0, (2, 3)0, (3,

2)0, (3, 3)0, (4, 2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4,

4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3)}

 (2, 2) 1+ (2, 2) to LSP LIS = {(1, 0)0, (0, 2)0, (1, 2)0, (2, 1)0, (3, 0)0, (3,

1)0, (4, 1)0, (5, 0)0, (5, 1)0, (2, 3)0, (3, 2)0, (3,

3)0, (4, 2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2)}

 (2, 3) 0

 (3, 2) 0

 (3, 3) 0

 S1(4, 2) 1 Quad split, add to LIS(0) LIS = {(1, 0)0, (0, 2)0, (1, 2)0, (2, 1)0, (3, 0)0, (3,

Chapter 2 Technical Review

__

60

1)0, (4, 1)0, (5, 0)0, (5, 1)0, (2, 3)0, (3, 2)0, (3,

3)0, (4, 2)0, (4, 3)0, (5, 2)0, (5, 3)0, (6, 0)1, (6,

2)1, (0, 4)2, (4, 4)2}

 (4, 2) 0

 (4, 3) 1+ (4, 3) to LSP LIS = {(1, 0)0, (0, 2)0, (1, 2)0, (2, 1)0, (3, 0)0, (3,

1)0, (4, 1)0, (5, 0)0, (5, 1)0, (2, 3)0, (3, 2)0, (3,

3)0, (4, 2)0, (5, 2)0, (5, 3)0, (6, 0)1, (6, 2)1, (0,

4)2, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3)}

 (5, 2) 0

 (5, 3) 0

 S1(6, 0) 0

 S1(6, 2) 0

Test LIS(2) S2(0, 4) 0

 S2(4, 4) 0

Pass 3

 LIS = {(1, 0)0, (0, 2)0, (1, 2)0, (2, 1)0, (3, 0)0, (3,

1)0, (4, 1)0, (5, 0)0, (5, 1)0, (2, 3)0, (3, 2)0, (3,

3)0, (4, 2)0, (5, 2)0, (5, 3)0, (6, 0)1, (6, 2)1, (0,

4)2, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3)}

Refinement Bits = 0 1 1 0 0 0 0 0 0

Pass 4
Comment Point or Set Output Bits Action Control Lists

 LIS = {(1, 0)0, (0, 2)0, (1, 2)0, (2, 1)0, (3, 0)0, (3,

1)0, (4, 1)0, (5, 0)0, (5, 1)0, (2, 3)0, (3, 2)0, (3,

3)0, (4, 2)0, (5, 2)0, (5, 3)0, (6, 0)1, (6, 2)1, (0,

4)2, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3)}

Test LIS(0) (1, 0) 1- (1, 0) to LSP LIS = {(0, 2)0, (1, 2)0, (2, 1)0, (3, 0)0, (3, 1)0, (4,

1)0, (5, 0)0, (5, 1)0, (2, 3)0, (3, 2)0, (3, 3)0, (4,

2)0, (5, 2)0, (5, 3)0, (6, 0)1, (6, 2)1, (0, 4)2, (4,

4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0)}

 (0, 2) 0

 (1, 2) 1- (1, 2) to LSP LIS = {(0, 2)0, (2, 1)0, (3, 0)0, (3, 1)0, (4, 1)0, (5,

0)0, (5, 1)0, (2, 3)0, (3, 2)0, (3, 3)0, (4, 2)0, (5,

2)0, (5, 3)0, (6, 0)1, (6, 2)1, (0, 4)2, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2)}

 (2, 1) 1+ (2, 1) to LSP LIS = {(0, 2)0, (3, 0)0, (3, 1)0, (4, 1)0, (5, 0)0, (5,

1)0, (2, 3)0, (3, 2)0, (3, 3)0, (4, 2)0, (5, 2)0, (5,

3)0, (6, 0)1, (6, 2)1 , (0, 4)2, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

Chapter 2 Technical Review

__

61

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1)}

 (3, 0) 1+ (3, 0) to LSP LIS = {(0, 2)0, (3, 1)0, (4, 1)0, (5, 0)0, (5, 1)0, (2,

3)0, (3, 2)0, (3, 3)0, (4, 2)0, (5, 2)0, (5, 3)0, (6,

0)1, (6, 2)1, (0, 4)2, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0)}

 (3, 1) 1- (3, 1) to LSP LIS = {(0, 2)0, (4, 1)0, (5, 0)0, (5, 1)0, (2, 3)0, (3,

2)0, (3, 3)0, (4, 2)0, (5, 2)0, (5, 3)0, (6, 0)1, (6,

2)1, (0, 4)2, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1)}

 (4, 1) 1+ (4, 1) to LSP LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (2, 3)0, (3, 2)0, (3,

3)0, (4, 2)0, (5, 2)0, (5, 3)0, (6, 0)1, (6, 2)1, (0,

4)2, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1)}

 (5, 0) 0

 (5, 1) 0

 (2, 3) 1+ (2, 3) to LSP LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (3, 3)0, (4,

2)0, (5, 2)0, (5, 3)0, (6, 0)1, (6, 2)1, (0, 4)2, (4,

4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3)}

 (3, 2) 0

 (3, 3) 1- (3, 3) to LSP LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (4, 2)0, (5,

2)0, (5, 3)0, (6, 0)1, (6, 2)1, (0, 4)2, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3)}

 (4, 2) 1+ (4, 2) to LSP LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5,

3)0, (6, 0)1, (6, 2)1, (0, 4)2, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2)}

 (5, 2) 0

 (5, 3) 0

Test LIS(1) S1(6, 0) 1 Quad split, add to LIS(0) LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5,

3)0, (6, 0)0, (6, 1)0, (7, 0)0, (7, 1)0, (6, 2)1, (0,

4)2, (4, 4)2}

 (6, 0) 0

 (6, 1) 0

 (7, 0) 1+ (7, 0) to LSP LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5,

3)0, (6, 0)0, (6, 1)0, (7, 1)0, (6, 2)1, (0, 4)2, (4,

4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

Chapter 2 Technical Review

__

62

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0)}

 (7, 1) 1+ (7, 1) to LSP LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5,

3)0, (6, 0)0, (6, 1)0, (6, 2)1, (0, 4)2, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1)}

 S1(6, 2) 0

Test LIS(2) S2(0, 4) 1 Quad split, add to LIS(1) LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5,

3)0, (6, 0)0, (6, 1)0, (6, 2)1, (0, 4)1, (0, 6)1, (2,

4)1, (2, 6)1, (4, 4)2}

 S1(0, 4) 1 Quad split, add to LIS(0) LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5,

3)0, (6, 0)0, (6, 1)0, (0, 4)0, (0, 5)0, (1, 4)0, (1,

5)0, (6, 2)1, (0, 6)1, (2, 4)1, (2, 6)1, (4, 4)2}

 (0, 4) 1- (0, 4) to LSP LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5,

3)0, (6, 0)0, (6, 1)0, (0, 5)0, (1, 4)0, (1, 5)0, (6,

2)1, (0, 6)1, (2, 4)1, (2, 6)1, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4)}

 (0, 5) 1+ (0, 5) to LSP LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5,

3)0, (6, 0)0, (6, 1)0, (1, 4)0, (1, 5)0, (6, 2)1, (0,

6)1, (2, 4)1, (2, 6)1, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5)}

 (1, 4) 1+ (1, 4) to LSP LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5,

3)0, (6, 0)0, (6, 1)0, (1, 5)0, (6, 2)1, (0, 6)1, (2,

4)1, (2, 6)1, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4)}

 (1, 5) 0

 S1(0, 6) 1 Quad split, add to LIS(0) LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5,

3)0, (6, 0)0, (6, 1)0, (1, 5)0, (0, 6)0, (0, 7)0, (1,

6)0, (1, 7)0, (6, 2)1, (2, 4)1, (2, 6)1, (4, 4)2}

 (0, 6) 1+ (0, 6) to LSP LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5,

3)0, (6, 0)0, (6, 1)0, (1, 5)0, (0, 7)0, (1, 6)0, (1,

7)0, (6, 2)1, (2, 4)1, (2, 6)1, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6)}

 (0, 7) 0

 (1, 6) 0

 (1, 7) 0

 S1(2, 4) 0

 S1(2, 6) 0 Quad split, add to LIS(0) LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5,

Chapter 2 Technical Review

__

63

3)0, (6, 0)0, (6, 1)0, (1, 5)0, (0, 7)0, (1, 6)0, (1,

7)0, (2, 6)0, (2, 7)0, (3, 6)0, (3, 7)0, (6, 2)1, (2,

4)1, (4, 4)2}

 (2, 6) 0

 (2, 7) 1+ LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5,

3)0, (6, 0)0, (6, 1)0, (1, 5)0, (0, 7)0, (1, 6)0, (1,

7)0, (2, 6)0, (3, 6)0, (3, 7)0, (6, 2)1, (2, 4)1, (4,

4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7)}

 (3, 6) 1- LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5,

3)0, (6, 0)0, (6, 1)0, (1, 5)0, (0, 7)0, (1, 6)0, (1,

7)0, (2, 6)0, (3, 7)0, (6, 2)1, (2, 4)1, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6)}

 (3, 7) 0

 S2(4, 4) 0

Pass 4

 LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5,

3)0, (6, 0)0, (6, 1)0, (1, 5)0, (0, 7)0, (1, 6)0, (1,

7)0, (2, 6)0, (3, 7)0, (6, 2)1, (2, 4)1, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6)}

Refinement Bits = 1 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0

Pass 5
Comment Point or Set Output Bits Action Control Lists

 LIS = {(0, 2)0, (5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5,

3)0, (6, 0)0, (6, 1)0, (1, 5)0, (0, 7)0, (1, 6)0, (1,

7)0, (2, 6)0, (3, 7)0, (6, 2)1, (2, 4)1, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6)}

Test LIS(0) (0, 2) 1+ (0, 2) to LSP LIS = {(5, 0)0, (5, 1)0, (3, 2)0, (5, 2)0, (5, 3)0, (6,

0)0, (6, 1)0, (1, 5)0, (0, 7)0, (1, 6)0, (1, 7)0, (2,

6)0, (3, 7)0, (6, 2)1, (2, 4)1, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2)}

 (5, 0) 0

 (5, 1) 1+ (5, 1) to LSP LIS = {(5, 0)0, (3, 2)0, (5, 2)0, (5, 3)0, (6, 0)0, (6,

1)0, (1, 5)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 6)0, (3,

Chapter 2 Technical Review

__

64

7)0, (6, 2)1, (2, 4)1, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1)}

 (3, 2) 1+ (3, 2) to LSP LIS = {(5, 0)0, (5, 2)0, (5, 3)0, (6, 0)0, (6, 1)0, (1,

5)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 6)0, (3, 7)0, (6,

2)1, (2, 4)1, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2)}

 (5, 2) 1+ (5, 2) to LSP LIS = {(5, 0)0, (5, 3)0, (6, 0)0, (6, 1)0, (1, 5)0, (0,

7)0, (1, 6)0, (1, 7)0, (2, 6)0, (3, 7)0, (6, 2)1, (2,

4)1, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2)}

 (5, 3) 1- (5, 3) to LSP LIS = {(5, 0)0, (6, 0)0, (6, 1)0, (1, 5)0, (0, 7)0, (1,

6)0, (1, 7)0, (2, 6)0, (3, 7)0, (6, 2)1, (2, 4)1, (4,

4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3)}

 (6, 0) 1+ (6, 0) to LSP LIS = {(5, 0)0, (6, 1)0, (1, 5)0, (0, 7)0, (1, 6)0, (1,

7)0, (2, 6)0, (3, 7)0, (6, 2)1, (2, 4)1, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0)}

 (6, 1) 0

 (1, 5) 1+ (1, 5) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2,

6)0, (3, 7)0, (6, 2)1, (2, 4)1, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5)}

 (0, 7) 0

 (1, 6) 0

 (1, 7) 0

 (2, 6) 0

 (3, 7) 1+ (3, 7) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2,

6)0, (6, 2)1, (2, 4)1, (4, 4)2}

Chapter 2 Technical Review

__

65

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7)}

Test LIS(1) S1(6, 2) 1 Quad split, add to LIS(0) LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2,

6)0, (6, 2)0, (6, 3)0, (7, 2)0, (7, 3)0, (2, 4)1, (4,

4)2}

 (6, 2) 0

 (6, 3) 1+ (6, 3) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2,

6)0, (6, 2)0, (7, 2)0, (7, 3)0, (2, 4)1, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3)}

 (7, 2) 1- (7, 2) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2,

6)0, (6, 2)0, (7, 3)0, (2, 4)1, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2)}

 (7, 3) 1+ (7, 3) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2,

6)0, (6, 2)0, (2, 4)1, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3)}

 S1(2, 4) 1 Quad split, add to LIS(0) LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2,

6)0, (6, 2)0, (2, 4)0, (2, 5)0, (3, 4)0, (3, 5)0, (4,

4)2}

 (2, 4) 1+ (2, 4) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2,

6)0, (6, 2)0, (2, 5)0, (3, 4)0, (3, 5)0, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4)}

 (2, 5) 0

 (3, 4) 1- (3, 4) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2,

6)0, (6, 2)0, (2, 5)0, (3, 5)0, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

Chapter 2 Technical Review

__

66

(7, 3), (2, 4), (3, 4)}

 (3, 5) 1- (3, 5) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2,

6)0, (6, 2)0, (2, 5)0, (4, 4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5)}

Test LIS(2) S2(4, 4) 1 Quad split, add to LIS(1) LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2,

6)0, (6, 2)0, (2, 5)0, (4, 4)1, (4, 6)1, (6, 4)1, (6,

6)1}

 S1(4, 4) 1 Quad split, add to LIS(0) LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2,

6)0, (6, 2)0, (2, 5)0, (4, 4)0, (4, 5)0, (5, 4)0, (5,

5)0, (4, 6)1, (6, 4)1, (6, 6)1}

 (4, 4) 0

 (4, 5) 0

(5, 4) 1+ (5, 4) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2,

6)0, (6, 2)0, (2, 5)0, (4, 4)0, (4, 5)0, (5, 5)0, (4,

6)1, (6, 4)1, (6, 6)1}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4)}

 (5, 5) 0

 S1(4, 6) 0

S1(6, 4) 1 Quad split, add to LIS(0) LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2,

6)0, (6, 2)0, (2, 5)0, (4, 4)0, (4, 5)0, (5, 5)0, (6,

4)0, (6, 5)0, (7, 4)0, (7, 5)0, (4, 6)1, (6, 6)1}

 (6, 4) 0

(6, 5) 1+ (6, 5) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2,

6)0, (6, 2)0, (2, 5)0, (4, 4)0, (4, 5)0, (5, 5)0, (6,

4)0, (7, 4)0, (7, 5)0, (4, 6)1, (6, 6)1}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5)}

 (7, 4) 0

 (7, 5) 0

S1(6, 6) 1 Quad split, add to LIS(0) LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2,

6)0, (6, 2)0, (2, 5)0, (4, 4)0, (4, 5)0, (5, 5)0, (6,

4)0, (7, 4)0, (7, 5)0, (6, 6)0, (6, 7)0, (7, 6)0, (7,

7)0, (4, 6)1}

 (6, 6) 0

 (6, 7) 0

Chapter 2 Technical Review

__

67

(7, 6) 1+ (7, 6) to LSP LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2,

6)0, (6, 2)0, (2, 5)0, (4, 4)0, (4, 5)0, (5, 5)0, (6,

4)0, (7, 4)0, (7, 5)0, (6, 6)0, (6, 7)0, (7, 7)0, (4,

6)1}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6)}

 (7, 7) 0

Pass 5

 LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2,

6)0, (6, 2)0, (2, 5)0, (4, 4)0, (4, 5)0, (5, 5)0, (6,

4)0, (7, 4)0, (7, 5)0, (6, 6)0, (6, 7)0, (7, 7)0, (4,

6)1}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6)}

Refinement Bits = 1 0 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1

Pass 6
Comment Point or Set Output Bits Action Control Lists

 LIS = {(5, 0)0, (6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2,

6)0, (6, 2)0, (2, 5)0, (4, 4)0, (4, 5)0, (5, 5)0, (6,

4)0, (7, 4)0, (7, 5)0, (6, 6)0, (6, 7)0, (7, 7)0, (4,

6)1}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6)}

Test LIS(0) (5, 0) 1- (5, 0) to LSP LIS = {(6, 1)0, (0, 7)0, (1, 6)0, (1, 7)0, (2, 6)0, (6,

2)0, (2, 5)0, (4, 4)0, (4, 5)0, (5, 5)0, (6, 4)0, (7,

4)0, (7, 5)0, (6, 6)0, (6, 7)0, (7, 7)0, (4, 6)1}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5,

0)}

 (6, 1) 1- (6, 1) to LSP LIS = {(0, 7)0, (1, 6)0, (1, 7)0, (2, 6)0, (6, 2)0, (2,

5)0, (4, 4)0, (4, 5)0, (5, 5)0, (6, 4)0, (7, 4)0, (7,

5)0, (6, 6)0, (6, 7)0, (7, 7)0, (4, 6)1}

Chapter 2 Technical Review

__

68

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5,

0), (6, 1)}

 (0, 7) 0

 (1, 6) 1+ (1, 6) to LSP LIS = {(0, 7)0, (1, 7)0, (2, 6)0, (6, 2)0, (2, 5)0, (4,

4)0, (4, 5)0, (5, 5)0, (6, 4)0, (7, 4)0, (7, 5)0, (6,

6)0, (6, 7)0, (7, 7)0, (4, 6)1}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5,

0), (6, 1), (1, 6)}

 (1, 7) 1+ (1, 7) to LSP LIS = {(0, 7)0, (2, 6)0, (6, 2)0, (2, 5)0, (4, 4)0, (4,

5)0, (5, 5)0, (6, 4)0, (7, 4)0, (7, 5)0, (6, 6)0, (6,

7)0, (7, 7)0, (4, 6)1}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5,

0), (6, 1), (1, 6), (1, 7)}

 (2, 6) 1- (2, 6) to LSP LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (4, 4)0, (4, 5)0, (5,

5)0, (6, 4)0, (7, 4)0, (7, 5)0, (6, 6)0, (6, 7)0, (7,

7)0, (4, 6)1}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5,

0), (6, 1), (1, 6), (1, 7), (2, 6)}

 (6, 2) 0

 (2, 5) 0

 (4, 4) 1+ (4, 4) to LSP LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (4, 5)0, (5, 5)0, (6,

4)0, (7, 4)0, (7, 5)0, (6, 6)0, (6, 7)0, (7, 7)0, (4,

6)1}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5,

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4)}

Chapter 2 Technical Review

__

69

 (4, 5) 1- (4, 5) to LSP LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (5, 5)0, (6, 4)0, (7,

4)0, (7, 5)0, (6, 6)0, (6, 7)0, (7, 7)0, (4, 6)1}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5,

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5)}

 (5, 5) 1+ (5, 5) to LSP LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (6, 4)0, (7, 4)0, (7,

5)0, (6, 6)0, (6, 7)0, (7, 7)0, (4, 6)1}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5,

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5), (5, 5)}

 (6, 4) 1+ (6, 4) to LSP LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (7, 4)0, (7, 5)0, (6,

6)0, (6, 7)0, (7, 7)0, (4, 6)1}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5,

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5), (5, 5),

(6, 4)}

 (7, 4) 0

 (7, 5) 0

 (6, 6) 0

 (6, 7) 1+ (6, 7) to LSP LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (7, 4)0, (7, 5)0, (6,

6)0, (7, 7)0, (4, 6)1}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5,

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5), (5, 5),

(6, 4), (6, 7)}

 (7, 7) 0

Test LIS(1) S1(4, 6) 1 Quad split, add to LIS(0) LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (7, 4)0, (7, 5)0, (6,

6)0, (7, 7)0, (4, 6)0, (4, 7)0, (5, 6)0, (5, 7)0}

 (4, 6) 1+ (4, 6) to LSP LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (7, 4)0, (7, 5)0, (6,

6)0, (7, 7)0, (4, 7)0, (5, 6)0, (5, 7)0}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

Chapter 2 Technical Review

__

70

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5,

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5), (5, 5),

(6, 4), (6, 7), (4, 6)}

 (4, 7) 0

 (5, 6) 1- (5, 6) to LSP LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (7, 4)0, (7, 5)0, (6,

6)0, (7, 7)0, (4, 7)0, (5, 7)0}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5,

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5), (5, 5),

(6, 4), (6, 7), (4, 6), (5, 6)}

 (5, 7) 0

Pass 6

 LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (7, 4)0, (7, 5)0, (6,

6)0, (7, 7)0, (4, 7)0, (5, 7)0}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5,

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5), (5, 5),

(6, 4), (6, 7), (4, 6), (5, 6)}

Refinement Bits = 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 0 0

1 0 1 0 0 0 0 0 1

Chapter 2 Technical Review

__

71

Pass 7
Comment Point or Set Output Bits Action Control Lists

 LIS = {(0, 7)0, (6, 2)0, (2, 5)0, (7, 4)0, (7, 5)0, (6,

6)0, (7, 7)0, (4, 7)0, (5, 7)0}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5,

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5), (5, 5),

(6, 4), (6, 7), (4, 6), (5, 6)}

Test LIS(0) (0, 7) 0

 (6, 2) 0

 (2, 5) 1- (2, 5) to LSP LIS = {(0, 7)0, (6, 2)0, (7, 4)0, (7, 5)0, (6, 6)0, (7,

7)0, (4, 7)0, (5, 7)0}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5,

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5), (5, 5),

(6, 4), (6, 7), (4, 6), (5, 6), (2, 5)}

 (7, 4) 0

 (7, 5) 0

 (6, 6) 0

 (7, 7) 0

 (4, 7) 1+ (4, 7) to LSP LIS = {(0, 7)0, (6, 2)0, (7, 4)0, (7, 5)0, (6, 6)0, (7,

7)0, (5, 7)0}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5,

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5), (5, 5),

(6, 4), (6, 7), (4, 6), (5, 6), (2, 5), (4, 7)}

 (5, 7) 1+ (5, 7) to LSP LIS = {(0, 7)0, (6, 2)0, (7, 4)0, (7, 5)0, (6, 6)0, (7,

7)0}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0), (0, 1), (1, 1),

(0, 3), (2, 2), (4, 3), (1, 0), (1, 2), (2, 1), (3, 0), (3,

1), (4, 1), (2, 3), (3, 3), (4, 2), (7, 0), (7, 1), (0, 4),

(0, 5), (1, 4), (0, 6), (2, 7), (3, 6), (0, 2), (5, 1), (3,

2), (5, 2), (5, 3), (6, 0), (1, 5), (3, 7), (6, 3), (7, 2),

(7, 3), (2, 4), (3, 4), (3, 5), (5, 4), (6, 5), (7, 6), (5,

0), (6, 1), (1, 6), (1, 7), (2, 6), (4, 4), (4, 5), (5, 5),

(6, 4), (6, 7), (4, 6), (5, 6), (2, 5), (4, 7), (5, 7)}

No refinement pass

Chapter 2 Technical Review

__

72

 In the seventh pass, the refinement pass cannot not be performed since the

threshold value is one in this pass. The encoder stops in this pass and the output

bitstream is shown as Header - SB1 - RB1 - SB2 - RB2 - SB3 - RB3 - SB4 - RB4 -

SB5 - RB5 - SB6 - RB6 - SB7, where Header is the initial threshold, T0, SB1 and RB1

are the output bits of sorting pass and refinement bits of refinement pass in the first pass

respectively. The structure of bitstream is the same as that of EZW algorithm.

 The decoder just duplicates the procedure of the encoder after received the

encoded bitstream. If the word of the column “Output Bits” is replaced by “Input Bits”

in the result tables of sorting pass in the encoder, the same table, as shown in the

follows, can be constructed by the received bitstream. At the decoder, it receives the

header which contains the initial threshold, T0, 64, then the SB1 and RB1. The

quantization interval is)128,64[in the decoder. The first input bit is ‘1+’ and the first

refinement bit is ‘1’, so the first reconstructed coefficient, (0, 0), is a positive coefficient

and lies in the upper half,)128,96[, of the quantization interval,)128,64[. Hence, the

first reconstructed coefficient is 112 which is the mean value of the upper half,)128,96[,

of the quantization interval,)128,64[. The second significant coefficient in this pass is

located at (1, 3) and its input bits of sorting pass and refinement bit is ‘1+’ and ‘0’

respectively. Thus, it lies on the lower half,)96,80[, of the quantization interval,

)128,64[. The reconstructed coefficient, (1, 3), is 80 which is the average value of the

lower half,)128,96[, of the quantization interval,)128,64[. The remaining coefficients

are reconstructed in the same way as the encoding process and the reconstructed matrix

of the first pass is shown as follows.

Chapter 2 Technical Review

__

73

Comment Point or Set Input Bits Action Control Lists

S = (0, 0)

I = rest

 LIS = {(0, 0)0}

LSP = Ø

 (0, 0) 1+ (0, 0) to LSP LIS = Ø

LSP = {(0, 0)}

Test I S(I) 1 Split to 3’S, new I

 (0, 1) 0 Add to LIS(0) LIS = {(0, 1)0}

 (1, 0) 0 Add to LIS(0) LIS = {(0, 1)0, (1, 0)0}

 (1, 1) 0 Add to LIS(0) LIS = {(0, 1)0, (1, 0)0, (1, 1)0}

Test I S(I) 1 Split to 3’S, new I

 S1(0, 2) 1 Quad split, add to LIS(0) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (1, 3)0}

 (0, 2) 0

 (0, 3) 0

 (1, 2) 0

 (1, 3) 1+ (1, 3) to LSP LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0}

LSP = {(0, 0), (1, 3)}

 S1(2, 0) 0 Add to LIS(1) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 0)1}

 S1(2, 2) 0 Add to LIS(1) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 0)1, (2, 2)1}

Test I S(I) 0

Pass 1

 LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 0)1, (2, 2)1}

LSP = {(0, 0), (1, 3)}

Refinement Bits = 1 0

Reconstructed Matrix of Pass 1
112 0 0 0 0 0 0 0
0 0 0 80 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 For the second pass, the threshold value is halved, i.e. 32, and the significant

coefficients determined in the previous pass are refined first. The first significant

coefficient is located at (0, 0). Its value is 112 and the first refinement bit in this pass is

‘1’, so it lies in the upper half,)128,112[, of the quantization interval,)128,96[. Thus,

Chapter 2 Technical Review

__

74

its reconstructed value in this pass is 120 which is the mean value of the interval,

)128,112[. The remaining coefficients are reconstructed in this way. The reconstructed

matrix of pass 2 is shown as follows.

Pass 2
Comment Point or Set Input Bits Action Control Lists

 LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 0)1, (2, 2)1}

LSP = {(0, 0), (1, 3)}

Test LIS(0) (0, 1) 0

 (1, 0) 0

 (1, 1) 0

 (0, 2) 0

 (0, 3) 0

 (1, 2) 0

Test LIS(1) S1(2, 0) 1 Quad split, add to LIS(0) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 0)0, (2, 1)0, (3, 0)0, (3, 1)0, (2, 2)1}

 (2, 0) 1- (2, 0) to LSP LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (2, 2)1}

LSP = {(0, 0), (1, 3), (2, 0)}

 (2, 1) 0

 (3, 0) 0

 (3, 1) 0

 S1(2, 2) 0

Test I S(I) 1 Quad split, add to LIS(2) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (2, 2)1, (0, 4)2, (4,

0)2, (4, 4)2}

 S2(0, 4) 0

 S2(4, 0) 1 Quad split, add to LIS(1) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (2, 2)1, (4, 0)1, (4,

2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4, 4)2}

 S1(4, 0) 1 Quad split, add to LIS(0) LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (4, 0)0, (4, 1)0, (5,

0)0, (5, 1)0, (2, 2)1, (4, 2)1, (6, 0)1, (6, 2)1, (0,

4)2, (4, 4)2}

 (4, 0) 1+ (4, 0) to LSP LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (4, 1)0, (5, 0)0, (5,

1)0, (2, 2)1, (4, 2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4,

4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0)}

 (4, 1) 0

 (5, 0) 0

 (5, 1) 0

 S1(4, 2) 0

Chapter 2 Technical Review

__

75

 S1(6, 0) 0

 S1(6, 2) 0

 S2(4, 4) 0

Pass 2

 LIS = {(0, 1)0, (1, 0)0, (1, 1)0, (0, 2)0, (0, 3)0, (1,

2)0, (2, 1)0, (3, 0)0, (3, 1)0, (4, 1)0, (5, 0)0, (5,

1)0, (2, 2)1, (4, 2)1, (6, 0)1, (6, 2)1, (0, 4)2, (4,

4)2}

LSP = {(0, 0), (1, 3), (2, 0), (4, 0)}

Refinement Bits = 1 0 1 0

Reconstructed Matrix of Pass 2
120 0 0 0 0 0 0 0
0 0 0 72 0 0 0 0

-56 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

 The remaining passes perform the similar procedure to reconstruct the matrix

and the reconstructed matrixes in each pass are shown as follows.

Reconstructed Matrix of Pass 3
116 20 0 20 0 0 0 0
0 20 0 76 0 0 0 0

-60 0 20 0 0 0 0 0
0 0 0 0 0 0 0 0
36 0 0 20 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Chapter 2 Technical Review

__

76

Reconstructed Matrix of Pass 4
118 22 0 22 -10 14 10 0
-14 18 -10 74 10 0 0 0
-58 10 18 10 0 0 0 10
14 -10 0 -10 0 0 -10 0
38 10 14 18 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
10 10 0 0 0 0 0 0

Reconstructed Matrix of Pass 5
119 23 7 21 -9 13 9 0
-13 19 -11 73 9 7 0 0
-59 11 19 9 7 0 0 9
13 -9 7 -9 -7 -5 -9 7
39 11 13 17 0 0 0 0
0 7 5 -5 5 0 0 0
7 0 0 7 0 5 0 0
9 9 -7 7 0 0 7 0

Reconstructed Matrix of Pass 6

118 22 7 20 -8 12 9 0
-12 18 -11 72 8 6 2 3
-59 11 19 9 7 0 -2 8
12 -8 7 -8 -6 -4 -9 7
38 11 12 16 3 -2 2 0
-3 7 4 -5 4 2 -3 0
7 -2 0 7 2 5 0 2
8 8 -6 7 0 0 7 0

Reconstructed Matrix of Pass 7
118 22 7 20 -8 12 9 0
-12 18 -11 72 8 6 2 3
-59 11 19 9 7 -1 -2 8
12 -8 7 -8 -6 -4 -9 7
38 11 12 16 3 -2 2 1
-3 7 4 -5 4 2 -3 1
7 -2 0 7 2 5 0 2
8 8 -6 7 0 0 7 0

The number of bits used in this example using the SPECK algorithm is 440 bits

if only one bit is used to identify the sign of significant coefficient in each pass. The

Chapter 2 Technical Review

__

77

EZW algorithm uses 467 bits to encode the same matrix as that of the SPECK algorithm

if the Huffman coding is employed to encode the dominant symbols generated in the

dominant pass. As a result, the SPECK algorithm can achieve superior compression

performance than the EZW algorithm and attains the reversible (lossless) coding. In

addition, subsequent entropy coding, such as arithmetic coding, can achieve further

compression after applied in the SPECK algorithm. Besides, it can achieve progressive

transmission since the important information is sent to the decoder first.

2.7 Overview of the framework of the 2D wavelet video

coder

 As the Discrete Cosine Transform (DCT) suffers from “blocking effect” in low

bit-rate applications, the Discrete Wavelet Transform (DWT) is used to eliminate the

blocking artifacts due to its global decomposition of the entire image or video frame.

Therefore, the DWT is widely used in image processing and video technology. The 2-

dimensional (2D) wavelet video coder makes use of the concept of the traditional hybrid

video-coding to remove both spatial and temporal redundancies. Figure 2.22 depicts the

block diagram of the 2D wavelet video encoder. Firstly, the original video frames are

performed DWT to remove the spatial redundancy. Then, the block-based motion

estimation is carried out in the wavelet domain for the wavelet-transformed frames in

order to remove the temporal redundancy of consecutive video frames. The motion

vectors obtained are entropy encoded and transmitted to the decoder. During motion

compensation, the predicted frame is obtained by the motion vectors and the decoded

frame which is stored in the frame memory. After that, the original frame is subtracted

by the predicted frame to form the residual frame. Finally, the residual frame is

quantized, entropy encoded to form the encoded bitstream. Besides, the quantized

Chapter 2 Technical Review

__

78

residual frame is inversely quantized to store in the frame memory for encoding next

frame.

DWT

MC

ME

Q

IQ

+

FM

Entropy
Coding

+

-

Original
Frame

Compressed
Bitstream

Motion
Vector

Residual
Frame

Predicted
Frame

ME: Motion Estimation
MC: Motion Compensation
DWT: Discrete Wavelet Transform
Q: Quantization
IQ: Inverse Quantization
FM: Frame Memory

Figure 2.22 Block diagram of the framework of the 2D wavelet video encoder

The advantages of the DWT are that it is free from blocking artifacts, provides

superior compression performance as compared to that of the DCT which is always

used in traditional image and video coding systems. The DWT is also scalable in nature

which can meet to different low-end display requirements and adapt different network

conditions. Therefore, it is possible that the DWT will be used in the next generation

image and video coding standards.

 Besides, the motion estimation and compensation in the wavelet domain bear

some similarity and difference as compared with the conventional video coding

standards. Let us exploit some properties in the wavelet domain, such as the correlation

between subbands across different levels inside the wavelet pyramid in order to enhance

the speed of the motion estimation. In the following section, a classic wavelet-domain

Chapter 2 Technical Review

__

79

motion estimation algorithm will be discussed and some modifications of this

conventional algorithm will also be included.

2.8 Literature review of the wavelet-domain motion
estimation and compensation in the 2D wavelet video
coder

 In this section, the typical motion estimation algorithm in wavelet domain will

be mentioned in section 2.8.1. Some improvements of this conventional algorithm will

be discussed in sections 2.8.2 and 2.8.3. The framework of the wavelet video coding

system that will be discussed in the following sections is shown in Figure 2.22.

2.8.1 Multi-resolution Motion Estimation and Compensation

(MRME)

A conventional motion estimation algorithm in the wavelet domain, Multi-

resolution Motion Estimation (MRME) [74], is discussed in this section. The objectives

of this approach are to reduce the searching time for motion estimation and provide a

smooth motion vector field. As shown in Figure 2.23, a video frame is decomposed into

many levels with different resolutions by the DWT with three levels. Although the

motion activities inside a frame at different levels of the pyramid are different, they are

highly correlated because they specify the same motion activity with different scales.

According to this observation, the motion vectors of the LL, LH, HL and HH subbands

at the lowest resolution level are calculated first. Then, the motion vectors obtained in

the previous resolution level are used as an initial searching position of the current level

Chapter 2 Technical Review

__

80

and the refinement is performed within a reduced search window in order to reduce the

operations used in motion estimation. Figure 2.24 depicts the MRME scheme. Vi(x, y)

represents the motion vector with the centre (x, y) at level i. The motion vector of a LH

subband, Vi(x, y), which can be written as Vi(x, y) = 2 × Vi+1(x, y) + Δ(x, y), for i = 1 or

2, where Δ(x, y) is the refinement motion vector. As an accurate initial searching

position can be obtained, the search window for the refinement can be reduced in each

level. For example, the search window in level 3 is ±15, it will be ±7 in level 2 and ±3

in level 1 (see Figure 2.23). As a result, the searching time and operations used in

motion estimation can be reduced significantly.

LH1

LH2

HL1 HH1

HL2 HH2

LH3 HH3

LL

HL3Level 3

Level 2

Level 1

Figure 2.23 The pyramid structure of wavelet decomposition and reconstruction

Chapter 2 Technical Review

__

81

b(x, y)

V2(x, y)

2*V2(x, y)

V3(x, y)

2*V3(x, y) a(x, y)

V1(x, y)

Figure 2.24 Variable block-size multiresolution motion estimation

The human visual system is more sensitive to the degradation in the low

frequency components than that of the high frequency components. In other words, the

human eye is more susceptible to the error in detail regions than that near the edges.

Therefore, the block size is varied across different resolution levels. For example, the

block size is 2 × 2 in level 3, 4 × 4 in level 2 and 8 × 8 in level 1. As a result, the

number of blocks is kept constant at different resolutions. Under this situation, the

motion of small objects in the lowest resolution level can be detected. If the block size

remains unchanged for every level, two objects moving in different directions may be

grouped into a block in the lowest resolution level. But only one direction can be kept

tracked. Therefore, an inaccurate motion vector may be obtained leading to reduce the

compression efficiency. The variable block-size approach is adopted in the MRME

scheme in order to overcome this difficulty.

Chapter 2 Technical Review

__

82

2.8.2 Adaptive MRME (AMRME), Bi-directional MRME (BMRME)

and Fast MRME (FMRME)

 The conventional MRME algorithm [74] is mentioned in the previous section. In

this section, three modified algorithms [75] will be discussed. They can be combined

together in order to improve the reconstructed quality and reduce the searching time.

2.8.2.1 Adaptive Thresholding Technique (AMRME)

 The original MRME scheme [74] performs searching in all subbands at

all levels but the correlation between the high frequency subbands of two

consecutive video frames is not very high, so the prediction in high frequency

subbands may be inaccurate. The uncorrelated high frequency subbands of

successive frames are due to two reasons. The first one is that the DWT is

translational invariant. That means, if the object in spatial domain moves to right by

a pixel, it may not shift to right by one pixel in wavelet domain. Actually, it will shift

to right by two pixels due to the dyadic decomposition. The other reason is that the

high frequency frame is mainly composed by the edge information, so it will be

changed rapidly even though the video sequence contains small motion.

According to this fact, if the absolute difference between the current block

and the best match block is greater than a threshold value, the block will be discarded

and a zero block will be initialized in the decoder. From the experimental result, the

threshold value should be smaller than the energy of the current block. The threshold

factor is defined as the ratio of the threshold value and the energy of the current

Chapter 2 Technical Review

__

83

block. It should be between 0.6 and 0.9 in order to provide superior compression

performance.

The AMRME [75] can reduce the bits used to encode the motion vectors

because the motion vectors of the mismatch block will not be encoded. However, the

computational complexity is higher than the conventional approach as the energy of

the current block is required to calculate in order to find the threshold value.

2.8.2.2 Bi-directional Motion Estimation (BMRME)

 In the traditional MRME scheme [74], the previous frame is always used as the

reference frame but the best matched block may not be in the previous frame. Instead, it

may be located in the future frame. So, the bi-directional prediction is employed in the

MRME scheme [75] in order to improve the reconstruction quality. If the bi-directional

motion estimation is performed in all subbands, the computational complexity will be

increased significantly. Therefore, it is only performed in the subbands at the lowest

resolution level, i.e. LL, LH3, HL3 and HH3 subbands as shown in Figure 2.23, because

the motion vectors are obtained hierarchically from low to high resolution levels. As a

result, the quality of the reconstructed sequence can be improved and the computational

complexity is only slightly increased.

2.8.2.3 Fast MRME (FMRME)

 After decomposing the video frames by the DWT, motion estimation is

performed to obtain the motion vectors in all subbands at all levels in the standard

MRME approach [74]. The high frequency subbands at the same level are highly

correlated to each other because they represent the same motion activities at the same

Chapter 2 Technical Review

__

84

resolution. The wavelet coefficients of the high frequency subbands at the same level

can be combined together to form a new subband, entitled as all-orientation subband

[75], as depicted in Figure 2.25 and the motion estimation is performed in the all-

orientation subband only in order to save the operations in motion estimation.

LH3

LH2 HL2 HH2

LH1 HL1 HH1

+ +

+ +

+ +

=

=

=

A3

A2

A1

HL3 HH3 All orientation subband in level 3

All orientation subband in level 2

All orientation subband in level 1

Figure 2.25 All orientation subbands in FMRME scheme

Although the FMRME scheme can reduce the searching time for motion

estimation, it degrades the reconstruction quality. Therefore, the Adaptive

Multiresolution Motion Estimation (AMRME), Bi-directional Multiresolution Motion

Estimation (BMRME) and Fast Multiresolution Motion Estimation (FMRME) [75] are

combined to each other in order to provide better quality and reduce the computational

complexity for motion estimation.

2.8.3 Enhanced MRME (EMRME)

 One more modified approach of the MRME scheme is discussed in this section.

For the conventional MRME approach [74], all subbands at all levels are performed

searching, so it is very computationally intensive. Due to the fact that a large portion of

two consecutive frames is very similar to each other according to the large temporal

Chapter 2 Technical Review

__

85

correlation between two successive frames, if we only carry out motion estimation in

the potential motion area (PMA), in which the motion will be likely occurred, instead of

all locations inside a subband, the operations for the searching can be reduced

dramatically [76]. A binary mask, Mi
j(x, y), (i = 1, 2, 3 and j = 2, 4, 8), is used to define

whether a pixel located at (x, y) of a frame of subband i at level j is inside the PMA or

not, where x and y are the horizontal and vertical positions of a frame respectively. If the

absolute difference of the LL subbands of the reference block and the current block is

greater than a threshold, T0, M8(x, y), corresponds to the pixels inside LL subband is set

to one. Otherwise, it is set to zero. As depicted in Figure 2.26, the corresponding

positions in Mi
8 (i = 1, 2, 3) and that at the two higher resolution levels, i.e. Mi

4 and Mi
2

(i = 1, 2, 3), are also set to one. Besides, for point (x, y) at subband i at level j, where Mi
j

is set to zero, if the absolute difference of the corresponding subband at two consecutive

frames are greater than another threshold value, T1, Mi
j is marked as one and propagate

to the highest resolution level as described above if Mi
j is not located at the highest

resolution level as illustrated in Figure 2.26.

Chapter 2 Technical Review

__

86

8M

2
8M

1
8M

3
8M

1
4M

3
4M2

4M

3
2M2

2M

1
2M

Figure 2.26 Mask propagation for the enhanced MRME (EMRME)

Actually, the Enhanced Multiresolution Motion Estimation (EMRME) [76]

makes use of the zerotree structure to indicate the PMA in order to exploit the

correlation between the subbands across different levels. Since motion estimation is

only performed at PMA, which is usually a small part of the whole frame, the

computational complexity can be reduced considerably.

Chapter 2 Technical Review

__

87

2.9 Overview of the framework of the 3D wavelet video

coder

As mentioned in section 2.8, the 2D wavelet video coder can achieve spatial

scalability in order to adapt to different display devices such as the high-resolution

display in desktop computer, middle-resolution display in laptop computer and low-

resolution display in PDA device. However, it cannot attain the temporal scalability.

Instead of using 2D wavelet transform, the 3 dimensional (3D) wavelet transform is

performed to achieve both spatial and temporal scalabilities. The compressed bitstream

of 3D wavelet video coder can be more robust to fluctuation of the network condition. If

the network is very busy, only a portion of the bitstream will be transmitted to the

decoder. Then, the decoder can reconstruct the video sequence in low frame rate such as

half or a quarter of the original frame rate. On the contrary, if the bandwidth of the

network is large enough to convey the whole encoded bitstream to the decoder, the

decoder can work out the reconstructed sequence in full frame rate in order to achieve a

high quality and resolution video.

Figures 2.27 (a) and (b) depict the block diagrams of the 3D wavelet video

encoder and decoder respectively. The 3D wavelet transform is separated into two parts

which are the 1D temporal DWT and 2D spatial DWT and they are carried out

independently. At the encoder, the original video frames are partitioned into different

Groups of Frames (GOF). Firstly, each GOF is performed the temporal wavelet

transform which applies the 1D-DWT in temporal dimension in order to reduce the

temporal redundancy in the consecutive video frames. Usually, the motion estimation is

involved in the temporal wavelet transform in order to improve the compression

efficiency and visual quality of the low frequency frames and this part will be discussed

in section 2.10 in details. The temporal transformed frames are then carried out the 2D-

Chapter 2 Technical Review

__

88

DWT in order to reduce the spatial redundancy in each frame. Then, quantization is

applied on each wavelet-transformed frame to reduce the precision of the wavelet

coefficients. Finally, the quantized transformed frames are carried out the entropy

encoding in order to convert it into a bitstream and send it to the decoder. At the

decoder, it receives the encoded bitstream and performs the reverse operations in the

encoder to reconstruct the video sequence as illustrated in Figure 2.27(b).

Forward 1D
Temporal Discrete
Wavelet Transform

(MCTF)

Forward 2D Spatial
Discrete Wavelet

Transform
Entropy EncodingForward

Quantization
Compressed

Bitstream
Original Group of

Frames (GOF)

(a)

Inverse 1D Temporal
Discrete Wavelet

Transform (MCTF)

Inverse 2D Spatial
Discrete Wavelet

Transform
Entropy DecodingInverse Quantization Compressed

Bitstream
Reconstructed Group

of Frame (GOF)

(b)

Figure 2.27 The block diagram of the 3D wavelet video codec

2.10 Literature review of the Motion Compensated

Temporal Filtering (MCTF)

The 3D-DWT [52] is used in wavelet video codec instead of the 2D-DWT in

order to achieve additional compression performance and both spatial and temporal

scalabilities. Usually, the 3D-DWT is executed in separate. The 1D temporal DWT is

carried out before the 2D spatial DWT. The temporal 1D-DWT decomposes the video

frames in temporal dimension. If the temporal filtering without involving the motion

compensation, it will produce the ghosting artifacts in the low frequency frame leading

to reduce the visual quality of the low frequency frame. It is because the low frequency

frame is obtained by the high frequency frame. If the high frequency frame contains

error, the error will be added into the low frequency frame to introduce the ghosting

Chapter 2 Technical Review

__

89

artifacts. For the reduced frame rate application, i.e. half or a quarter of the original

frame rate, only low frequency frames are reconstructed and displayed in the decoder.

The ghosting artifacts will degrade the visual quality of the low frequency frame.

Therefore, the motion estimation and compensation is usually adopted in the temporal

filtering, i.e. motion compensated temporal filtering (MCTF) [52]. After involving the

motion estimation inside both predict and update steps, the high frequency frame

represents the error of prediction. If the motion model can accurately capture the motion

of the video sequence, the prediction error will be small so that the coding efficiency

can be improved. Besides, the ghosting artifacts in the low frequency frame can be

eliminated because it represents the high quality reduced frame-rate video after

performing the temporal decomposition. The transform does not introduce the ghosting

artifacts into the low frequency frame. As a result, its visual quality is comparable to the

temporally down-sampled original video frame. In sections 2.10.1 and 2.10.2, two

kernels, which are the Haar and Bi-orthogonal 5/3 kernels respectively, are used as the

examples to illustrate the concept of the MCTF [52].

2.10.1 Haar kernel

When Haar kernel is used, the low frequency frame, l[m, n], and high frequency

frame, h[m, n], are achieved by the following equations without motion compensation

where x1[m, n] and x2[m, n] are two frames from the video sequence.

[] []()
[]],[,],[

,,],[
nmhnmxnml

nmxnmxnmh
+=

−=

1

122
1

 When motion compensation is included before carrying out temporal

decomposition, the lifting steps are modified as follows.

Chapter 2 Technical Review

__

90

[] ()()[]()
[] ()()],[,],[

,,],[
nmhWnmxnml

nmxWnmxnmh

121

12122
1

−

−

+=

−=

W1-2 represents the motion compensated mapping of the first frame onto the

coordinate system of the second frame, so that (W1-2(x1))[m, n] ≈ x2[m, n], ∀(m, n). W2-1

represents the motion compensated mapping of the second frame onto the coordinate

system of the first. When there is no motion, W1-2 and W2-1 are both the identity

operators. W1-2 and W2-1 are not generally inverses of one another. The former

represents the backward motion field while the latter represents the forward motion field.

When the scene motion is neither expansive nor contractive, i.e. pure translation,

skewing or rotation, W1-2 and W2-1 are indeed inverses of one another. After performing

the temporal decomposition, the coefficients of the high frequency frame are close to

zero because the high frequency frame represents the residual frame and its energy has a

direct impact on the coding gain. The low frequency frame represents the original frame

in the video sequence and it is free from ghosting artifacts. Besides, most energy is

concentrated on it.

2.10.2 Bi-orthogonal 5/3 kernel

In the Haar kernel, we always use the previous frame as the reference frame.

However, the best match of the current block may not be located in the previous frame

only. Instead, one of the best predictions is to make use of both the previous and future

frames. For the Bi-orthogonal 5/3 kernel, two reference frames, which are the previous

and future frames, are used.

[] [] [] []()

[] [] [] []()nmhnmhnmxnml

nmxnmxnmxnmh

kkkk

kkkk

,,,,

,,,,

++=

+−=

−

++

12

22212

4
1

2
1

Chapter 2 Technical Review

__

91

 The above equations show the case without motion compensation while the

following equations show the case with motion compensation.

[] [] ()[] ()[]()
[] [] ()[] ()[]()nmhWnmhWnmxnml

nmxWnmxWnmxnmh

kkkkkkkk

kkkkkkkk

,,,,

,,,,

,,

,,

21212122

221222212212

4
1

2
1

+−−

+++++

++=

+−=

Wk1,k2 denotes the motion compensated mapping from frame k1 onto the coordinate

system of frame k2. Similar to the Haar kernel, the high frequency frame represents the

residual from a bi-directional motion compensated prediction of the relevant odd

indexed original video frame. If the motion model can capture the motion of the video

sequence accurately, the coefficients in the high frequency frame tend to zero.

The bi-orthogonal 5/3 kernel yields better performance than the Haar kernel due

to the bi-directional prediction in both predict and update steps. As the motion

compensation is introduced into the lifting steps, so the coding efficiency is improved

for both kernels. Due to the absence of ghosting artifacts in the low frequency frame,

the visual quality of the low frequency frame can be increased. As a result, the temporal

scalability can be achieved by partial reconstruction of the temporal filtering, i.e. by

dropping the high frequency frame.

2.11 Modifications of the MCTF

In the previous section, the conventional MCTF scheme [52] was mentioned.

According to this classical approach, some modifications will be discussed in the

following sections. Due to the dyadic decomposition of the wavelet transform used in

both 1D temporal DWT and 2D spatial DWT, the spatial and temporal scalabilities can

only achieve a factor of two. Some variations of the MCTF approach in dyadic scheme

are described in section 2.11.1. Besides the dyadic scheme, the MCTF scheme with the

Chapter 2 Technical Review

__

92

temporal scalability of a power of three will be stated in section 2.11.2. This three-band

scheme can make the encoded bitstream adapt to different network conditions.

2.11.1 Dyadic Scheme

 In this section, the dyadic decomposition is used in the temporal filtering and

some modifications of the MCTF are revealed.

2.11.1.1 Optimization of predict operator

Section 2.10.2 mentions the conventional MCTF scheme [57] using the bi-

orthogonal 5/3 kernel which uses the previous and future frames as the reference frames

in order to reduce the bi-directional prediction error in the high frequency frame leading

to an increase in coding gain. Figure 2.28 illustrates the formation of the high frequency

frame graphically. The following equation demonstrates the calculation of the high

frequency frame, where ()nx t 12 + is the pixel at spatial location n in frame 2t+1,

()nv t
+
+12 is the forward motion vector to predict the frame 2t+1 from the frame 2t,

()nv t
−
+12 is the backward motion vector to predict the frame 2t+1 from the frame 2t+2

and ()nht is the high frequency frame.

() () ()[] ()[]{ }nvnxnvnxnxnh tttttt
−
++

+
++ −+−−= 122212212 2

1

This equation represents that the pixel n finds the best match locations in frames 2t and

2t+1, i.e. p and q respectively, where p and q are denoted by ()nvn t
+
+− 12 and

()nvn t
−
+− 12 in frames 2t and 2t+2 respectively. As the prediction does not have any

preference on the reference frames, so the weighting factor is a half. According to the

Chapter 2 Technical Review

__

93

above equation, the high frequency frame corresponds to the residual signal of the bi-

directional prediction and it contributes to a deep impact on the compression

performance. Therefore, two motion vectors, ()−+
optopt vv)) , , are obtained by minimization

the distortion function, d, as shown below, where W+ and W- are the search windows in

the frames 2t and 2t+2 respectively.

() () ()[] ()[]{ }∑ ⎥⎦
⎤

⎢⎣
⎡ −+−−= −

++
+
++

∈
∈

−+

−−

++
n

ttttt

Wv
Wvoptopt nvnxnvnxnxdvv 122212212 2

1minarg,))

As two motion vectors, +v̂ and −v̂ , are involved in the high frequency frame, the

forward and backward motion estimations are carried out separately in conventional

approach as depicted in the following equations.

() ()()()[]
() ()()()[]⎪⎩

⎪
⎨
⎧

−−=

−−=

∑
∑

−
+++

∈

−

+
++

∈

+

−−

++

n
tttWv

n
tttWv

nvnxnxdv

nvnxnxdv

122212

12212

minargˆ

minargˆ

The conventional approach can only minimize the distortion for the forward and

backward motion estimations independently but not for the high frequency frame. In

order to optimize the predict operator, the procedures of the modified predict operator

[103] are summarized as follows.

Step 1) Find the forward motion vector, +
1v̂ .

() ()()()[]∑ +
++

∈

+ −−=
++

n
tttWv

nvnxnxdv 122121 minargˆ

Step 2) Calculate the backward motion vector, −
2v̂ , by using the forward motion vector,

+
1v̂ , found in the previous step.

() ()() ()()
∑ ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −+−
−=

−
++

+

+
∈

−

−−
n

ttt
tWv

nvnxnvnxnxdv
2

122212
122

ˆ
minargˆ

Chapter 2 Technical Review

__

94

Step 3) Update the forward motion vector, +
3v̂ , by using the backward motion vector,

−
2v̂ , obtained in step 2. Then, the optimum forward and backward motion vector

fields are the +
3v̂ and −

2v̂ respectively.

() ()() ()()
∑ ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −+−
−=

−
+

+
+

+
∈

+

++
n

ttt
tWv

nvnxnvnxnxdv
2

222122
123

ˆ
minargˆ

As the error of the bi-directional prediction can be reduced by obtaining the optimum

forward and backward motion vectors, so the coding efficiency can be improved.

x2t x2t+1 x2t+2

n

0.5
0.5

()nv t
+
+12

()nv t
−
+12

ht

p

q

Figure 2.28 Predict operator of the MCTF scheme using the Bi-orthogonal 5/3 kernel

2.11.1.2 Skipping of update operator

The previous section discusses an improved method to obtain the high frequency

frame in order to reduce the prediction error. Therefore, the coding efficiency can be

increased. The high and low frequency frames are calculated by the following equations,

where ht and lt denote the high and low frequency frames respectively. After finding the

high frequency frame, the current and previous high frequency frames are used to obtain

the low frequency frame as depicted in Figure 2.29 and Figure 2.30.

() () ()[] ()[]{ }

() () ()[] ()[]{ }nvphmvphpxpl

nvnxnvnxnxnh

tttttt

tttttt

+
+

−
−−

−
++

+
++

+++−=

−+−−=

121212

122212212

4
1
2
1

Chapter 2 Technical Review

__

95

 If the motion model can capture the motion of the video sequence accurately, the

wavelet coefficients of the high frequency frame will tend to zero according to the

above equations. Since the high frequency frame is used to obtain the low frequency

frame, so the terms, x2t(p), is much greater than the prediction error. Therefore, the low

frequency frame, lt, is similar to frame 2t, x2t. On the contrary, if the model fails to keep

track the motion of the video, the compression efficiency will be adversely affected.

Besides, as the high frequency frames are used to attain the low frequency frame, so

some errors will be added into the low frequency frame leading to the introduction of

the ghosting artifacts. As a result, the visual quality of the low frequency frame will be

degraded. In order to reduce the ghosting effect in the low frequency frame, the update

operator of the low frequency frame is modified as follows [104].

() ()pxpl tt 2=

 According to the above equation, the low frequency frame is the even frames in

the original video sequence. Therefore, the visual quality of the low frequency frame

can be assured. In addition, this operation is used instead of the low-pass filtering and

downsampling so that the computational complexity can be reduced.

x2t x2t+1 x2t+2

n

0.5
0.5

()nv t
+
+12

()nv t
−
+12

ht

p

q

x2t-1x2t-2

m

ht-1 lt

()mv t
−
−12

()mv t
+
−12

0.5
0.5

PredictPredict Update

Figure 2.29 Predict and update operators of the Bi-orthogonal 5/3 kernel

Chapter 2 Technical Review

__

96

2t-1 2t2t-2 2t+1

Ht-1

2t+2

HtHt-2

LtLt-1

Figure 2.30 Temporal decomposition using the Bi-orthogonal 5/3 kernel

2.11.1.3 Temporal prediction and differential coding of

motion vectors

 The conventional MCTF framework [52] obtains the forward and backward

motion vector fields in each temporal level independently in order to remove the

temporal correlation between consecutive video frames in the same temporal level.

Then, the obtained motion vectors are entropy encoded and transmitted as side

information to the decoder. Besides of the temporal correlation between video frames,

there exists a large correlation of the low frequency frames among different temporal

levels. If such relationship is used, the number of bits used to encode the motion

information can be reduced [56]. The bi-orthogonal 5/3 kernel involves two reference

frames for bi-directional prediction so that the number of motion vectors needs to be

encoded is larger as compared with that of the Haar kernel which uses only one

reference frame for prediction. Thus, the motion vector prediction method for bi-

orthogonal 5/3 kernel is discussed in the following section.

 Figure 2.31 depicts the one level temporal decomposition for the bi-orthogonal

5/3 kernel which involves bi-directional prediction in both predict and update operators.

For finding the high frequency frame, motion estimation is performed between the

Chapter 2 Technical Review

__

97

frame 1 and frame 0, and frame 1 and frame 2, where frames 0 and 2 are the reference

frames to obtain the motion vector fields, MV1 and MV2 respectively. After obtaining

the high frequency frame, it is used to calculate the low frequency frame. If further

temporal decomposition is performed, motion estimation is performed between the

consecutive low frequency frames in order to attain the motion vector field, MV3.

Traditionally, these motion vector fields are found independently. However, the low

frequency frames among different temporal levels are highly correlated. Therefore,

MV1 and MV2 can be used to obtain MV3 as shown in Figure 2.32. Firstly, the initial

searching position is estimated by subtracting MV1 from the MV2, i.e. MV1 – MV2.

Then, the search window is shifted by the initial searching point to obtain the

refinement motion vector. Finally, the resultant motion vector, MV3, is found by adding

the initial predicted motion vector, i.e. MV1 – MV2, and the refinement motion vector.

As the motion vector fields, MV1 and MV2, have already been entropy encoded, so

only the small refinement motion vector requires to be encoded and sent to the decoder

in order to save the number of bits used to encode the motion vectors.

Chapter 2 Technical Review

__

98

Frame 0 Frame 1 Frame 2 Frame 3

MV 1

MV 3

L L

H H

MV 2

-0.5 -0.5 -0.5 -0.5

0.250.250.25
0.25

Figure 2.31 One level MCTF with bi-directional 5/3 kernel using lifting structure

Prediction for MV3
= MV1 - MV2

Search range after
MV prediction

Current
block

Resultant motion
vector, MV3

Refinement
motion vector

Figure 2.32 Motion vector prediction for the estimation of MV3

2.11.2 Three-Band Scheme

 The section 2.11.1 describes the MCTF framework under the dyadic wavelet

decomposition in the temporal direction. The major disadvantage of the dyadic scheme

is that it can only achieve a temporal scalability of a power of two. In this section, the

modified MCTF framework, three-band scheme, with the temporal scalability of a

Chapter 2 Technical Review

__

99

power of three is mentioned in order to make the encoded bitstream adapt to the

fluctuation of the network condition. Sections 2.10.2.1 and 2.10.2.2 discuss the three-

band scheme for the Haar and Bi-orthogonal 5/3 kernels respectively.

2.11.2.1 Haar kernel

The three-band scheme using Haar kernel [99] is mentioned in this section. As it

only uses one reference frame to obtain the high frequency frame, so it is considered to

be the Haar kernel. The conventional MCTF framework [52] uses the previous frame as

the reference frame to calculate the high frequency frame in the predict operation. The

three-band scheme finds two high frequency frames, which are forward and backward

high frequency frames, by using the previous and future frames as reference frames in

the forward and backward predict operators respectively as depicted in Figure 2.33 and

Figure 2.34. Since motion estimation is involved in the lifting steps, so the forward and

backward motion vectors, i.e. +
+13tv and −

−13tv , are obtained in order to perform motion

compensation before the temporal filtering. After that, these two high frequency frames

are used to compute the low frequency frame by the following equations.

() () ()
() () ()
() () () ()[]+

−
−−

+
+

−
−−

−

+
++

+

++++=

−−=

−−=

13133

13313

13313

4
1

tttttt

tttt

tttt

vphvphpxpl

vmxmxmh

vnxnxnh

 Similar to the traditional MCTF scheme, the high frequency frame in the three-

band scheme still represents the error of prediction. Two high frequency frames are

discarded in order to achieve the temporal scalability of a power of three. Since the low

frequency frame is found by the bi-directional update step, i.e. using two high frequency

frames, so its visual quality is less affected by the ghosting artifacts as compared with

that of the standard MCTF scheme with Haar kernel.

Chapter 2 Technical Review

__

100

-P-

-P+

+

+

+

U-

U+

−
th

+
th

tl

13 −tx

tx 3

13 +tx

Figure 2.33 Predict and update steps of the three-band scheme for Haar kernel

−
th +

thtl

p

n
m ()pv t

−
−13 ()pv t

+
+13

tx313 −tx 13 +tx

Figure 2.34 Predict operator of the three-band scheme for Haar kernel

2.11.2.2 Bi-orthogonal 5/3 kernel

 The three-band scheme can further be extended to a more complex kernel such

as the bi-orthogonal 5/3 kernel [100] in order to attain higher compression efficiency

due to the longer filter length. Similar to the conventional MCTF framework, the predict

operator makes use of the two reference frames, which are the previous and future

frames, for motion estimation as illustrated in Figure 2.35. The forward and backward

motion estimations are performed to obtain the forward and backward motion vector

fields, +
+13tv and −

+13tv , respectively. Then, the forward high frequency frame, +
th , is

calculated by the previous and future frames, tx3 and 23 +tx , as reference frames by the

Chapter 2 Technical Review

__

101

following equations, where β is the weighting factor of the reference frames. Similarly,

the backward high frequency frame, −
th , is attained in the same way. Subsequently, the

low frequency frame is found by these two high frequency frames in the bi-directional

update operator.

() () () () ()
() () () () ()
() () () ()[]−

−
−+

+
+

−
−

+
−−−

−

+
+

−
+++

+

++++=

−−−−−=
−−−−−=

13133

133132313

133132313

4
1

1
1

tttttt

tttttt

tttttt

vphvphpxpl

vmxvmxmxmh
vnxvnxnxnh

ββ
ββ

p

n

q
m

o

−
+13tv

+
+13tv

−
−13tv

+
−13tv

+
−1th −

th tl
+
th −

+1th

23 +tx23 −tx 13 −tx tx 3 13 +tx

Figure 2.35 Predict and update operators of the three-band scheme for Bi-orthogonal 5/3 kernel

2.12 Conclusion Remarks

For wavelet video coding, the 2D-DWT is applied to each video frame to exploit

the spatial redundancy. The motion estimation is adopted in the wavelet video encoder

to remove the temporal redundancy in the successive frames and is usually performed in

the wavelet domain by making use of the correlation of corresponding subbands among

different decomposition levels. Thus, the computational complexity of motion

estimation can be reduced significantly. However, it still consumes most of the

execution time during encoding process. According to the observation that the wavelet

coefficients having similar matching errors tend to be clustered to each other and this

Chapter 2 Technical Review

__

102

correlation exists among different levels in the wavelet pyramid, the backward row-

based Clustered Pixel Matching Error for Partial Distortion Search (backward CPME-

PDS) is proposed to further reduce the number of operations for the motion estimation

in the wavelet domain by exploiting the cross-correlation between corresponding

subbands in the wavelet pyramid (more details can be found in chapter three).

 Nevertheless, the 2D-DWT can only achieve the spatial scalability but not

temporal scalability. Hence, the 3D-DWT is employed in the wavelet video coder to

attain both temporal and spatial scalabilities. The 3D-DWT is carried out individually.

First, the 1D-DWT is performed in the temporal direction to eliminate the relationship

between consecutive video frames. Second, the 2D-DWT is executed in each frame to

remove the spatial correlation in the frame. Usually, the motion estimation and

compensation are applied in the temporal 1D-DWT in order to enhance the coding

efficiency and improve the visual quality of the low frequency frames. Also, the

computational effort of motion estimation is a major problem in the 3D wavelet video

encoder. Due to the fact that there exists a large correlation among the successive

frames and the wavelet transformed frames between different temporal levels, the

median and cross-level motion vector prediction algorithm is proposed to improve the

speed of motion estimation by exploiting such correlation (more details can be found in

chapter four).

 The Embedded Zerotree Wavelet (EZW) algorithm is commonly used to

encode the wavelet coefficients in the wavelet image and video coder. A modified

EZW algorithm with minimum weight and difference subband approach is proposed

to improve the compression efficiency by discarding less important information and

retaining the same visual quality as the conventional EZW algorithm (more details

can be found in chapter five). The proposed algorithm can be extended to the Set-

Chapter 2 Technical Review

__

103

Partition Embedded Block Coder (SPECK) algorithm and can be used in both 2D

and 3D wavelet video coders.

Chapter 3 Motion estimation algorithm in the wavelet domain of the 2D wavelet video coder

__

104

Chapter 3

Motion estimation algorithm in the wavelet domain of the 2D

wavelet video coder

3.1 Introduction

The Discrete Wavelet Transform (DWT) has received much attention recently

due to its superior performance by comparing to the conventional block-based hybrid

video coding such as Discrete Cosine Transform (DCT). It is well-known that the DCT

produces the “blocking effect” in the low bit-rate applications. However, DWT is free

from blocking artifacts by distributing the errors over the whole frame due to its nature

of global decomposition. Besides, according to its multi-resolution nature in the wavelet

pyramid, it can represent an image or video sequence flexibly and adapt to different bit-

rates across the networks with different traffic situations.

The multiresolution nature in DWT is suitable for multi-resolution applications

such as DTV / HDTV. Besides, when a video sequence is transmitted to the low-end

display units such as mobile phone and PDA, the images of required resolution should

be derived before displaying.

In this chapter, we propose a wavelet-based CPME-PDS algorithm by using the

characteristic of clustered pixel matching errors in the hierarchical structure of the

wavelet pyramid. The multiresolution / multifrequency nature of the DWT is an

efficient tool to represent images and video signals for compression and transmission.

The DWT decomposes a video frame into a set of subframes with different resolutions

in subbands. This multiresolution nature provides a hierarchical representation of a

Chapter 3 Motion estimation algorithm in the wavelet domain of the 2D wavelet video coder

__

105

video frame. It provides useful information for us to develop efficient motion estimation

algorithms. Hui, Siu and Chan [108] showed that pixel matching errors with similar

magnitude tend to appear in a cluster in natural video sequences in the spatial domain.

According to our observation, this clustering property is also found in the wavelet

domain. We use this property and the hierarchical structure of the wavelet pyramid to

develop an adaptive PDS applying in the MRME scheme. We create an adaptive index

set based on this clustering characteristic in the highest resolution subband. Due to the

hierarchical architecture of the wavelet pyramid, the index set can be down-sampled and

re-numbered in other lower resolutions subbands. Hence, the required operations of

finding the index set in each subband can be reduced. When the SEA is applied in the

proposed algorithm, the speed of the motion estimation can further be improved by

rejecting the searching positions in the search window for very slow motion video

sequences.

Experimental results (Table 3.4) show that our proposed algorithm has a speed-

up in motion estimation comparing to Full Search Algorithm (FSA) and conventional

PDS using the MRME scheme. The proposed method can be used to enhance the

efficiency of the motion estimation in the wavelet domain for the working schemes [74]

- [78]. Furthermore, the high quality video conferencing and high quality documentary

applications can benefit from the proposed method due to its superior performance in

the slow motion video sequences. Besides, the encoding time is decreased by comparing

to the conventional approach. Hence, the time delay for video conferencing and video

surveillance applications can also be reduced, say for example. For the video

surveillance application, as the encoding delay is reduced, the follow-up actions can be

taken place for emergency events.

Chapter 3 Motion estimation algorithm in the wavelet domain of the 2D wavelet video coder

__

106

The organization of this chapter is shown as follows. The characteristic of the

clustered pixel matching error in wavelet domain is analysed in Section 3.2. Details of

the proposed algorithm is introduced in Section 3.3. Some experimental results are

discussed in Section 3.4 and a brief conclusion is drawn in Section 3.5.

3.2 The characteristic of clustered pixel matching error in the

wavelet domain

 Ref. [108] shows that pixel matching errors tend to cluster together during

motion estimation. Because the LL subband is a lower resolution version of an original

image, the CPME-PDS in [108] can be applied directly.

It is found that the same property also exists in wavelet domain. Figure 3.1 gives

an example of a real case which is used to explain this property. Figure 3.1 (a) depicts

the matching of a one dimensional (1-D) block in LH subband (thick continuous line)

within a 1-D searching window (thin dotted line). The corresponding pixel absolute

matching errors also appear in a cluster form as shown in Figure 3.1 (b). The clustered

pixel matching error characteristic can be used to improve the motion estimation

efficiency in wavelet domain.

Chapter 3 Motion estimation algorithm in the wavelet domain of the 2D wavelet video coder

__

107

D
W

T
co

ef
fic

ie
nt

s

DWT Coefficients of a
current block

DWT Coeffocoents of a
search window

Region of coefficients that
predicted have large
matching errors

(a)

x

A
bs

ol
ut

e
di

ffe
re

nc
e

x
(b)

Figure 3.1 Matching of a one dimensional (1-D) block in LH subband within a 1-D searching window. (b)

Corresponding pixel absolute matching errors of the target block at the current position

This clustering phenomenon in wavelet domain is demonstrated in Figure 3.2.

Figure 3.2 (a) depicts the DWT hierarchical structure in wavelet pyramid. Figure 3.2 (b)

illustrates the error blocks between a reference block and a current block in the LH3,

LH2 and LH1 subbands at the 9th and 10th frames of the video sequence “Akiyo”

respectively. The error block of subband LH1 clearly shows the clustering property in

wavelet domain. Comparing the similarity between the error blocks of the subbands, we

also find that this clustering property is highly correlated in each subband.

LL HL3

LH3 HH3

HL2

LH2 HH2

HL1

LH1 HH1

Chapter 3 Motion estimation algorithm in the wavelet domain of the 2D wavelet video coder

__

108

(a)

(b)

Figure 3.2 (a) DWT hierarchical structure in wavelet pyramid (b) Error blocks between a reference block

and a current block in the LH3, LH2 and LH1 subbands at the 9th and 10th frames of the video sequence

“Akiyo” respectively

According to this analysis, we can determine that the CPME-PDS can be applied

in the MRME scheme. Furthermore, an adaptive index set found in a subband at the

highest resolution can be utilized in the corresponding lower resolution subbands.

Hence, the redundant calculations can be avoided.

3.3 Proposed fast motion estimation algorithm in the wavelet

domain of the 2D wavelet video coder

The row-based CPME-PDS is used to improve motion estimation in the MRME

scheme. From the above simple analysis, the counting sort is not required to perform at

each level. In our algorithm, we use the zero motion vector as the motion predictor to

determine the adaptive index set for the highest resolution level. The index set result

obtained in the previous operations is used to predict the sorting order of other levels.

The proposed algorithm is summarized as follows.

Motion estimation of a block in the LL subband

Chapter 3 Motion estimation algorithm in the wavelet domain of the 2D wavelet video coder

__

109

Step 1)Use the zero motion vector as the motion predictor to calculate a reference value,

m

()∑∑
−

=

−

=
− ++

×
=

1

0

1

0
1

1 N

j

M

i
t jyixI

NM
m , ,

where N and M are the height and width of the block respectively

It-1 is the intensity level of frame t-1

(x, y) is the coordinates of current block

Note that for the CIF format, M = N = 4 for level 3 and M = N = 16 for level 1

and for the QCIF format, M = N = 2 for level 3 and M = N = 8 for level 1 in our

experiments

Step 2) Calculate the expected absolute pixel matching error in a row, ()npexp , in the

targeted block

() ()∑
−

=

−=
1

0

M

i
nt mkiInp ,exp , where kn is the index of each row in the targeted

block and n =0, …, N-1.

Note that It(i, kn) and m are floating point numbers and pexp(n) is truncated to

integer for the sake of lower complexity.

Step 3) Use counting sort to obtain an adaptive index set, S, by sorting the expected

absolute pixel matching error in a row, ()npexp , in descending order, i.e.

() () ()10 −≥≥≥≥ Npnpp expexpexp KK with { }10 −== NnkS n ,..., .

Chapter 3 Motion estimation algorithm in the wavelet domain of the 2D wavelet video coder

__

110

Step 4) Apply the adaptive index set, S, to calculate the partial Sum of Absolute

Difference (SAD) in following equation during the searching of an outward spiral

scanning.

() () ()∑∑
=

−

=
− ++++−++=

p

j

M

i
ntntp vkyuixIkyixIvuyxSAD

0

1

0
1 ,,,;, , where

{ }pnkn ,...,0= , (u, v) is the motion vector and p=0,…, N-1 which specifies the number

of elements for producing the sum of errors for a partial SAD.

The resulting motion vector, ()vu ˆ,ˆ , of a block is obtained by the following

equation.

() ()vuyxSADvu pvu
,;,minargˆ,ˆ

),(
≡

For each block in other higher frequency subbands, the procedure is summarized

as follows. (We use the LH subband as an example)

Step 5) Use Step 1 to Step 4 to obtain the adaptive index set in the highest resolution

level LH subband.

Step 6) To obtain the adaptive index set for the lower resolution level, we down-sample

the original set by discarding the index of the odd-sampled rows.

Step 7) Re-number the remaining index set to 1
2

0 −=
Nn ,..., such that the row with

larger expected absolute error will accumulate to the SADp as soon as possible.

Chapter 3 Motion estimation algorithm in the wavelet domain of the 2D wavelet video coder

__

111

Step 8) Repeat Step 4 by using the re-numbered index set to obtain the motion vectors in

the next lower resolution level.

Step 9) Repeat Step 6 to Step 8 for remaining resolution levels.

3.4 Experimental results

In this experiment, we use eight test video sequences to evaluate the

performance of the proposed algorithm. The information of the test sequences is shown

in Table 3.1. Three levels of wavelet transformation are performed and the D4 kernel is

used. The block sizes for the QCIF and CIF sequences are 2×2 and 4×4 respectively in

the highest level and the block size will be doubled in each lower level. The search

ranges for the QCIF and CIF sequences are ±8 and ±16 in the highest level respectively

and it will be divided by two in each lower level.

Table 3.2 and Table 3.3 show the execution time and the average number of

operations per block of not using the MRME scheme in wavelet domain respectively.

All searching points are exhaustively searched by the searching algorithms. The full

search for all subbands to obtain the motion vectors is very time consuming during

encoding. It occupies more than 70% for the CIF video sequences and about 50% for

the QCIF video sequences of encoding time. Therefore, there is a necessity to reduce the

time required for motion estimation in wavelet domain. Actually, the pixel-based

CPME-PDS can reduce the number of operations for a speed-up factor of 2.34 to 8.07

and 1.27 to 1.76 as compared with the FSA and PDS respectively for motion estimation

as shown in Table 3.3. But its execution time is longer than that of the PDS as it suffers

from random memory access problem in the CPU. Therefore, the row based CPME-

Chapter 3 Motion estimation algorithm in the wavelet domain of the 2D wavelet video coder

__

112

PDS can complement the deficiency of CPME-PDS by using a row of pixels as a unit

for matching. During implementation, it can achieve a speed-up factor up to 1.12 as

compared with the PDS. However, this scheme alone cannot fully make use of the

wavelet property.

Table 3.1 The information of the test video sequence

Sequence Frame Size Total Frames
Trevor 176 × 144 120
Suzie 176 × 144 120

Salesman 176 × 144 300
Grandmother 176 × 144 300

Foreman 352 × 288 300
Coastguard 352 × 288 300

Akiyo 352 × 288 300
Vectra Colour 352 × 288 142

Table 3.2 Execution Time for motion estimation in searching all subbands by different search algorithms for
video sequences in wavelet domain

Execution time for motion estimation in wavelet domain (ms)

Sequence
FSA

Speed-
up

factor
PDS

Speed-
up

factor

Pixel-
based

CPME-
PDS

Speed-
up

factor

Row-
based

CPME-
PDS

Speed-
up

factor

Trevor 15179 1.00 11278 1.35 11653 1.30 10584 1.43
Suzie 15357 1.00 13157 1.17 14898 1.03 12825 1.19

Salesman 37580 1.00 21992 1.71 22240 1.69 21149 1.78
Grandmother 36512 1.00 23859 1.53 26420 1.38 23792 1.53

Foreman 463636 1.00 288014 1.61 431311 1.07 276676 1.68
Coastguard 465801 1.00 254703 1.83 379112 1.23 248045 1.88

Akiyo 464424 1.00 144460 3.21 159772 2.91 129546 3.59
Vectra 220422 1.00 126515 1.74 180450 1.22 119345 1.85

Table 3.3 Average number of operations per block for motion estimation in searching all subbands by
different search algorithms for video sequences in wavelet domain

Average number of operations per block for motion estimation in wavelet domain

Sequence
FSA

Speed-
up

factor
PDS

Speed-
up

factor

Pixel-
based

CPME-
PDS

Speed-
up

factor

Row-
based

CPME-
PDS

Speed-
up

factor

Trevor 97982 1.00 36873 2.66 26763 3.66 32175 3.05
Suzie 97982 1.00 50659 1.93 39957 2.45 47109 2.08

Salesman 97982 1.00 23493 4.17 17945 5.46 20685 4.74
Grandmother 97982 1.00 32735 2.99 24790 3.95 28957 3.38

Foreman 1533432 1.00 870525 1.76 654901 2.34 786480 1.95
Coastguard 1533432 1.00 741483 2.07 563793 2.72 673885 2.28

Akiyo 1533432 1.00 333742 4.59 190081 8.07 257495 5.96
Vectra 1521726 1.00 785792 1.94 565156 2.69 683723 2.23

Chapter 3 Motion estimation algorithm in the wavelet domain of the 2D wavelet video coder

__

113

 The MRME (Multiresolution Motion Estimation) exploits the relationship

between subbands by using the motion vectors found in the previous level as an initial

estimate and refining in each level. In this experiment, the block size is still remained

the same as the previous experiment. The search window of QCIF and CIF sequences

are ±31 and ±63 respectively in the highest level and it is reduced by half in each lower

level. The search window is set to be so large in the highest level because the MRME

scheme makes use of the motion vectors obtained in the previous level to be an initial

searching position, so the motion vectors in the top level must be accurate. Otherwise,

the lower level subband will use the incorrect initial searching point and the inaccurate

motion vector will be obtained.

Table 3.4 and Table 3.6 illustrate the execution time and the average number of

operations per block of using the MRME scheme respectively in wavelet domain.

According to Table 3.6, the row-based CPME-PDS reduces the number of operations in

the encoder by rejecting the impossible candidates sooner especially for the refinement

stage. Actually, the pixel-based CPME-PDS can reduce the operations in refinement but

it also suffers from the random memory access problem in CPU. Due to the pipeline

structure of CPU, the time used to access the pixels in a row is much shorter than that

used to access the pixels in random location inside a block. Therefore, the pixel-based

CPME-PDS can outperform other search algorithms theoretically. However, its

execution time is longer than that of PDS due to the random memory access problem

during implementation. The row-based CPME-PDS can achieve a speed-up factor of

1.01 to 1.97 and 1.01 to 1.04 as compared with FSA and conventional PDS respectively.

Therefore, the row-based CPME-PDS will be used in the proposed algorithm.

Chapter 3 Motion estimation algorithm in the wavelet domain of the 2D wavelet video coder

__

114

Table 3.4 Execution Time for motion estimation using MRME scheme by different search algorithms for video

sequences in wavelet domain

Sequence Execution Time for
motion estimation in
wavelet domain (ms) Trevor Suzie Salesman Grand-

mother Foreman Coast-
guard Akiyo Vectra

Time 4580 4574 10857 11150 90922 91421 88471 43277

FSA Speed-
up

factor
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Time 4421 4680 9768 10440 71847 73391 46570 34333

PDS Speed-
up

factor
1.04 0.98 1.11 1.07 1.27 1.25 1.90 1.26

Time 5053 5181 10955 11538 95095 100467 51870 45404
Pixel-based
CPME-PDS Speed-

up
factor

0.91 0.88 0.99 0.97 0.96 0.91 1.71 0.95

Time 4750 4819 10598 10803 73000 75548 46664 34861
Row-based
CPME-PDS Speed-

up
factor

0.96 0.95 1.02 1.03 1.25 1.21 1.90 1.24

Time 8108 8535 18994 19665 121849 126264 83985 58623
Forward

CPME-PDS Speed-
up

factor
0.56 0.54 0.57 0.57 0.75 0.72 1.05 0.74

Time 4289 4541 9935 10301 71454 73921 44902 33900
Backward

CPME-PDS Speed-
up

factor
1.07 1.01 1.09 1.08 1.27 1.24 1.97 1.28

Chapter 3 Motion estimation algorithm in the wavelet domain of the 2D wavelet video coder

__

115

Table 3.5 Average number of operations per block for motion estimation using MRME scheme by different

search algorithms for video sequences in wavelet domain

Sequence Average number of
operations per block
for motion estimation

in wavelet domain
Trevor Suzie Salesman Grand-

mother Foreman Coast-
guard Akiyo Vectra

Operations 13629 13681 13582 13552 228807 228990 224318 228369
FSA

Speed-up
factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Operations 6455 8330 4341 5637 138186 142598 49089 137684
PDS

Speed-up
factor 2.11 1.64 3.12 2.40 1.66 1.67 4.57 1.66

Operations 5317 6970 3936 4921 105083 115335 33123 104614Pixel-
based

CPME-
PDS

Speed-up
factor 2.56 1.96 3.44 2.75 2.18 1.99 6.77 2.18

Operations 5835 7643 4136 5203 122452 129773 39217 120511Row-
based

CPME-
PDS

Speed-up
factor 2.34 1.79 3.27 2.60 1.87 1.76 5.72 1.90

Operations 6296 8151 4352 5569 130307 137698 43393 129719Forward
CPME-

PDS Speed-up
factor 2.16 1.68 3.11 2.43 1.76 1.66 5.17 1.76

Operations 5885 7759 4100 5211 125679 132880 40171 123877Backward
CPME-

PDS Speed-up
factor 2.32 1.76 3.30 2.60 1.82 1.72 5.58 1.84

Besides the above proposed scheme (entitled as Backward CPME-PDS in this

section), we propose one more variation to compare the efficiency of the proposed

method. It is the Forward CPEM-PDS which carries out the counting sort in the

subbands of the highest level only and the results are up-sampled in the remaining

subbands of the lower level. For the Backward CPME-PDS, i.e. the proposed scheme,

the counting sort will be executed in the LL subband and the subbands at the lowest

level only. Then, the sorting results obtained in the subbands of the lowest level are up-

sampled to predict the adaptive index set in the higher levels.

The Forward CPME-PDS carries out counting sort in the subbands of the

highest level and the results are re-numbered to predict the error distribution of the

subbands in the remaining lower levels. However, the prediction is inaccurate leading to

Chapter 3 Motion estimation algorithm in the wavelet domain of the 2D wavelet video coder

__

116

a decrease in the speed of motion estimation. In our experimental work, the block size

used in the 3rd level was 4×4, 8×8 in 2nd level and 16×16 in 1st level for the CIF format

video sequence. After performing counting sort of the subbands in the 3rd level, the

result was applied to the corresponding subbands in the 2nd level directly. The first two

rows were grouped into one unit and the third and fourth rows were grouped into

another unit, etc. Some information in the subbands at the 3rd level is invalid in the

corresponding subbands at the 2nd level resulting in some inaccurate predictions. Hence,

the impossible candidate is not rejected as soon as expected. As a result, the efficiency

of the Forward CPME-PDS is degraded as a comparison with the Row-based CPME-

PDS. According to Table 3.4 and Table 3.6, the execution time and the average number

of operations per block of the Forward CPME-PDS are both greater than that of the

Row-based CPME-PDS. During Discrete Wavelet Transformation, the higher resolution

level subbands are downsampled to obtain the subbands in the next lower resolution

level. Hence, the information in the subbands in higher resolution level can be used to

predict that of the lower one due to the hierarchical architecture in wavelet pyramid. As

a result, the Backward CPME-PDS outperforms the Row-based CPME-PDS in terms of

execution time by a speed-up factor of 1.02 to 1.11 due to an accurate prediction of the

adaptive index set by exploiting the hierarchical clustering property in wavelet domain.

The impossible candidates can be rejected earlier.

As mentioned in chapter 2, the Successive Elimination Algorithm (SEA) can

successively reduce the search positions inside the search area and the motion vectors

obtained are the same as that of the FSA. Therefore, we apply the SEA into the

Backward CPME-PDS, entitled as “SEA & Backward CPME-PDS”, in order to further

enhance the speed of the motion estimation. Table 3.7 and Table 3.8 show the execution

time and the average number of operations per block of the proposed algorithm

Chapter 3 Motion estimation algorithm in the wavelet domain of the 2D wavelet video coder

__

117

respectively. For the average number of operations per block, the proposed algorithm

(SEA & Backward CPME-PDS) can achieve a speed-up factor of 1.86 to 10.30, 1.05 to

1.80 and 1.01 to 1.08 as compared with FSA, Backward CPME-PDS and SEA&PDS

respectively.

Table 3.6 Execution Time for motion estimation using MRME scheme by different search algorithms for video
sequences in wavelet domain

Sequence Execution Time for
motion estimation in
wavelet domain (ms) Trevor Suzie Salesman Grand-

mother Foreman Coast-
guard Akiyo Vectra

Time 4580 4574 10857 11150 90922 91421 88471 43277

FSA Speed-
up

factor
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Time 4421 4680 9768 10440 71847 73391 46570 34333

PDS Speed-
up

factor
1.04 0.98 1.11 1.07 1.27 1.25 1.90 1.26

Time 4289 4541 9935 10301 71454 73921 44902 33900
Backward

CPME-PDS Speed-
up

factor
1.07 1.01 1.09 1.08 1.27 1.24 1.97 1.28

Time 4372 4639 10196 10530 85964 84993 47276 39291

SEA & FSA Speed-
up

factor
1.05 0.99 1.06 1.06 1.06 1.08 1.87 1.10

Time 4307 4665 9850 10218 75584 78811 42267 36065

SEA & PDS Speed-
up

factor
1.06 0.98 1.10 1.09 1.20 1.16 2.09 1.20

Time 4315 4648 9877 10266 72463 75957 41004 34630 SEA &
Backward

CPME-PDS
Speed-

up
factor

1.06 0.98 1.10 1.09 1.25 1.20 2.16 1.25

Chapter 3 Motion estimation algorithm in the wavelet domain of the 2D wavelet video coder

__

118

Table 3.7 Average number of operations per block for motion estimation using MRME scheme by different
search algorithms for video sequences in wavelet domain

Sequence Average number of
operations per block
for motion estimation

in wavelet domain
Trevor Suzie Salesman Grand-

mother Foreman Coast-
guard Akiyo Vectra

Operations 13629 13681 13528 13552 228807 228990 224318 228369
FSA

Speed-up
factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Operations 6455 8330 4341 5637 138186 142598 49089 137684
PDS

Speed-up
factor 2.11 1.64 3.12 2.40 1.66 1.61 4.57 1.66

Operations 5885 7759 4100 5211 125679 132880 40171 123877Backward
CPME-

PDS Speed-up
factor 2.32 1.76 3.30 2.60 1.82 1.72 5.58 1.84

Operations 6830 8981 4789 6023 172022 178729 46625 170912SEA &
FSA Speed-up

factor 2.00 1.52 2.82 2.25 1.33 1.28 4.81 1.34

Operations 4608 6838 2555 3830 121542 129372 23460 120857SEA &
PDS Speed-up

factor 2.96 2.00 5.29 3.54 1.88 1.77 9.56 1.89

Operations 4558 6683 2721 3888 113595 123144 21784 112591SEA &
Backward

CPME-
PDS

Speed-up
factor 2.99 2.05 4.97 3.49 2.01 1.86 10.30 2.03

Table 3.9 shows the average number of search positions per block for the

exhaustively searching algorithm, MRME scheme and SEA applied in the MRME

scheme. When SEA is applied in the MRME scheme, the speed-up factor can be from

4.64 to 26.69 and 1.75 to 10.31 as compared with the exhaustively search algorithm and

MRME scheme respectively. As the SEA can remove the searching position in the

search range, so the number of operations can be reduced. For execution time, the

performance of the SEA & Backward CPME-PDS is degraded as compared with the

Backward CPME-PDS for some video sequences. It is because the number of

operations is the summation of the number of additions or subtraction and the number

of comparisons. When the SEA is used, the number of comparisons is increased but the

number of additions or subtractions is reduced significantly. However, the time used to

Chapter 3 Motion estimation algorithm in the wavelet domain of the 2D wavelet video coder

__

119

perform comparison is longer than that of the additions or subtractions in CPU.

Therefore, the execution time for the SEA & Backward CPME-PDS algorithm is

increased as compared with that of the Backward CPME-PDS even though the number

of operations is reduced. The “Akiyo” sequence contains very slow motion, so the SEA

can quickly reject most searching positions in the search window. Therefore, when the

SEA is combined with the Backward CPME-PDS, the execution time and the average

number of operations per block are both reduced for a speed-up factor of 1.10 and 1.84

respectively as compared with the Backward CPME-PDS for “Akiyo” sequence. The

SEA & Backward CPME-PDS algorithm can enhance the speed of motion estimation

for the very slow video sequence.

Table 3.8 Average number of search points per block for motion estimation in wavelet domain

Sequence Average number
of search points

per block for
motion

estimation in
wavelet domain

Trevor Suzie Salesman Grand-
mother Foreman Coast-

guard Akiyo Vectra

Search
pts. 967 967 967 967 3763 3763 3763 3763

FSA Speed-
up

factor
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Search
pts. 366 366 364 364 1466 1470 1454 1460

MRME Speed-
up

factor
2.64 2.64 2.66 2.66 2.57 2.56 2.59 2.58

Search
pts. 88 120 53 65 742 838 141 811

SEA &
MRME Speed-

up
factor

10.99 8.06 18.25 14.88 5.07 4.49 26.69 4.64

Chapter 3 Motion estimation algorithm in the wavelet domain of the 2D wavelet video coder

__

120

3.5 Conclusion

Wavelet-based motion estimation algorithm is proposed in this chapter. The

pixel cluster property is available in both spatial and wavelet domains. Besides, this

clustering property is appeared in the hierarchical nature of the wavelet pyramid. By

applying the hierarchical property of the wavelet domain into the row-based CPME-

PDS, the impossible candidate blocks can be rejected as early as possible. Only the LL

subband and the subbands in the lowest level have to carry out counting sort to find

their error distributions. The results can then be down-sampled and re-numbered in the

higher level subbands in the hierarchical pyramid. Experimental results show that the

proposed scheme has a speed-up factor of 1.09 to 2.16 and 1.86 to 10.30 in the

execution time and the average number of operations per block respectively for motion

estimation comparing to FSA in MRME scheme. It performs well for the slow motion

video sequences. Hence, it is suitable for video conferencing and video surveillance.

Due to the scalability nature of the DWT, the proposed method can be applied to multi-

resolution applications such as DTV, HDTV and mobile phone applications.

Chapter 4 Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder

121

Chapter 4

Motion estimation algorithm in the wavelet domain of the
3D wavelet video coder

4.1 Introduction

The Discrete Wavelet Transform (DWT) has received much attention recently

due to its superior performance by comparing to the conventional block-based hybrid

video coding such as Discrete Cosine Transform (DCT). It is well-known that the DCT

produces the “blocking effect” in the low bit-rate applications. However, DWT is free

from blocking artifacts by distributing the errors over the whole frame due to its nature

of global decomposition. Besides, according to its multi-resolution nature in the wavelet

pyramid, it can represent an image or video sequence flexibly and adapt to different bit-

rates across the networks with different traffic situations. Recently, the scalable video

coder based on the motion compensation spatiotemporal (t+2D) scheme becomes much

more popular. It can achieve superior compression performance as compared with the

state-of-the-art DCT based hybrid video-coding scheme. Its excellent compression

performance comes from the efficient energy concentration of the low frequency frame

by applying motion compensation along the motion trajectories of the video sequence.

Besides, the separable three-dimensional (3D) wavelet transform can realize the

temporal and spatial scalabilities in the subband structure.

Low encoding delay is a necessity in the video conferencing and video

surveillance applications. For example, in the video surveillance application, it is

possible to take actions to follow up the emergency events if the video sequence can be

Chapter 4 Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder

122

encoded and transmitted in a short period of time. On the other hand, the

multiresolution nature of the DWT is suitable for multi-resolution applications such as

DTV / HDTV. Besides, when a video sequence is transmitted to the low-end display

units such as mobile phone and PDA, the required resolution should be achieved before

displaying.

In this chapter, we exploit the spatial and temporal correlations of the

neighbouring motion vectors and the successive video frames respectively to find out

the initial estimated motion vector. Then, the refinement process is performed in the

reduced search window. The resultant motion vector is obtained by adding the initial

estimated motion vector and the small refinement motion vector. Since the size of the

search window is decreased, the computational complexity of motion estimation can

also be reduced. From the experimental results, the proposed algorithm can achieve a

speed-up factor of 3 to 5 times as compared to that of the conventional approach [52].

Besides, the reconstructed quality of the proposed algorithm is comparable to the FSA.

The organization of this chapter is shown as follows. Details of the proposed algorithm

is introduced in Section 4.2. Some experimental results are discussed in Section 4.3 and

a brief conclusion is drawn in Section 4.4.

4.2 Proposed wavelet-domain motion estimation

algorithm in the 3D wavelet video coder

Figure 4.1 shows the architecture of the 3D wavelet video codec using Haar

kernel during 1D temporal wavelet transformation. Before performing temporal

decomposition, motion estimation is carried out so that the ghosting artifacts occurred in

the low frequency frame can be reduced and most energy concentrates on the low

Chapter 4 Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder

123

frequency frame which can improve the compression efficiency [52]. The temporal

decomposition is then performed on the motion compensated frames. Then, the 2D

spatial wavelet transform is applied on the temporally filtered frames. Finally, the 3D

SPIHT [109] or MC-EZBC [110] are used to convert the wavelet coefficients into

bitstream. Traditionally, the motion vectors in each temporal level are obtained

independently. As shown in Figure 4.1, the first low frequency frame in temporal level

1 is the average frame of frames 0 and 1 in temporal level 0. Therefore, there are large

correlations existing between them. If these temporal correlations can be exploited, the

speed of motion estimation will be enhanced.

Chapter 4 Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder

124

Level 0

Level 1

Frame 0 Frame 1 Frame 2 Frame 3

MV 1

MV 3

Temporal high-
pass filtering

Temporal high-
pass filtering

L L H H

LL LH

Level 2

LL LH H H

Spatial decomposition after
temporal filtering

MV 2

Figure 4.1 Architecture of the 3D wavelet video coder

 4.2.1 Cross-level prediction of motion vector

 For the sake of simplicity, the Haar kernel is used as an example to illustrate the

idea of the proposed algorithm. In Figure 4.1, four frames are formed as a Group Of

Frames (GOF) and two levels of the temporal decomposition is performed. Firstly, the

forward motion vectors, MV1 and MV2, are obtained by motion estimation performing

on the frames 0 and 1 and frames 2 and 3 respectively where frames 0 and 2 are the

Chapter 4 Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder

125

reference frames. Then, the temporal wavelet transformation is applied on the motion

compensated frames and the low and high frequency frames are calculated by the lifting

equations. Before carrying out temporal decomposition in the temporal level 1, motion

estimation is performed in order to find the forward motion vector, MV3, in temporal

level 1. At this stage, the temporal correlation between different temporal levels can be

exploited. As depicted in Figure 4.2, the average of the MV1 and MV2 is used as the

initial estimated position of MV3 (think arrow). Then, the refinement process is

performed in the reduced search window (dotted square). This is to find the refined

motion vector as indicated by the dotted arrow in the Figure 4.3. This resultant motion

vector, MV3, is obtained by adding the initial estimated motion vector to the refinement

motion vector. As the size of the search window is reduced, so the computational

complexity can be decreased. Similarly, the backward motion vector is calculated in the

same way. This concept can be extended to the kernel with long filter length such as the

Bi-orthogonal 5/3 kernel.

Prediction for MV3
= (MV1 + MV2) / 2

Search range after
MV prediction

Current block

Resultant motion
vector MV3

Refinement
motion
vector

Figure 4.2 Cross-level motion vector prediction

Chapter 4 Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder

126

Initial estimation position
= median of a, b and c

a b

c

Figure 4.3 Median prediction

4.2.2 Median prediction of motion vector

From our experimental work, the time spent on motion estimation in the

temporal level 0, i.e. the original video sequence, is around half of the total time for

motion estimation. Thus, the time consumed in the motion estimation of temporal level

0 is the most consuming part in the whole motion estimation procedure. There exists a

large correlation between neighbouring motion vectors, so differential coding is used to

encode the motion vectors. If such correlation can be exploited, the motion estimation

operation can be further reduced. The median of the motion vectors located in the top-

left, top and left of the current block is considered as the initial estimated position as

depicted in Figure 4.3. Similar to the algorithm mentioned in Section 4.1, the refinement

process is performed in the reduced search area. The resultant motion vector of the

current block is the sum of the initial estimated motion vector and the small refined

motion vector. Since the size of the search area is decreased, the number of operations

for motion estimation can be reduced. As a result, the speed of the motion estimation

can be further improved.

Chapter 4 Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder

127

4.3 Experimental Results

A substantial amount of experimental work has been done on our approach.

Consider the results for the block-based motion model with the block size of 16×16 and

integer pixel accuracy in motion estimation. The search window in the refinement

process is reduced by half in each temporal level. For example, if the search window in

the temporal level 0 is ±8, the size of the search window in the temporal level 1 will be

±4, etc. In our experiments, as the median prediction was used in temporal level 0, so a

reduced search window with the size of ±4 is used. The search windows in temporal

levels 1 and 2 are ±4 and ±2 respectively. The motion vectors are encoded by Variable

Length Coding (VLC). Three levels of temporal and spatial decompositions are

performed and the Bi-orthogonal 9/7 kernel is used during the spatial decomposition.

After temporal and spatial decompositions, the spatio-temporal wavelet coefficients

were encoded by Embedded Zerotree Wavelet (EZW) [57] coding and the Huffman

coding to convert into bitstream.

Eight video sequences were tested. They are the “Trevor”, “Suzie”, “Salesman”

and “Grandmother” with QCIF format (120 frames), and the “Foreman”, “Akiyo” and

“Coastguard” with CIF format and the “Stefan” with SIF format (296 frames) at 30 fps.

Table 4.1 and Table 4.2 illustrate the execution time used in motion estimation

by using the cross-level motion vector prediction and row-based CPME-PDS to find the

motion vectors in different temporal levels for the Haar and Bi-orthogonal 5/3 kernels

respectively. The cross-level motion vector prediction makes use of the consecutive

motion vectors in the previous temporal level for initial searching points and performs

the refinement in a reduced search window in order to reduce the number of operations

used in searching. This scheme can achieve the speed up factor of 2.83 to 5.80 and 3.94

to 7.25 in temporal levels 1 and 2 respectively for Haar kernel and 2.76 to 5.69 and 3.59

Chapter 4 Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder

128

to 7.42 in temporal levels 1 and 2 respectively for Bi-orthogonal 5/3 kernel. The

improvement in speed up for the total execution time for motion estimation in MCTF is

from 2.05 to 4.18 and 1.99 to 4.13 for Haar and Bi-orthogonal 5/3 kernels respectively

as compared with the FSA. During encoding, the MCTF can attain the speed-up factor

of 1.89 to 3.33 and 1.86 to 3.40 for Haar and Bi-orthogonal 5/3 kernels respectively in

terms of processing time. Figure 4.4, Figure 4.5 and Figure 4.6 depicts the rate-

distortion performance of the cross-level motion vector prediction scheme in finding the

motion vectors at different temporal levels for the “Foreman”, “Coastguard” and

“Stefan” sequences respectively. As there exists large correlation between temporal

levels, this prediction scheme is accurate to find the initial searching position. Therefore,

the reconstructed quality is comparable to that of the FSA.

Rate Distortion Performance of "Foreman" sequence using Haar
kernel

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6
Bit per pixel (bpp)

P
S

N
R

 (
dB

)

Original Median Prediction

Rate Distortion Performance of "Foreman" sequence using Bi-
orthogonal 5/3 kernel

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6
Bit per pixel (bpp)

P
S

N
R

 (
dB

)

Original Median Prediction

(a) (b)

Figure 4.4 Rate distortion performance of “Foreman” sequence for median prediction using (a) Haar kernel
and (b) Bi-orthogonal 5/3 kernel during temporal decomposition

Chapter 4 Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder

129

Rate Distortion Performance of "Coastguard" sequence using Haar
kernel

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Bit per pixel (bpp)

P
S

N
R

 (
dB

)

Original Median Prediction

Rate Distortion Performance of "Coastguard" sequence using Bi-
orthogonal 5/3 kernel

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Bit per pixel (bpp)

P
S

N
R

 (
dB

)

Original Median Prediction

(a) (b)

Figure 4.5 Rate distortion performance of “Coastguard” sequence for median prediction using (a) Haar kernel
and (b) Bi-orthogonal 5/3 kernel during temporal decomposition

Rate Distortion Performance of "Stefan" sequence using Haar
kernel

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Bit per pixel (bpp)

P
S

N
R

 (
dB

)

Original Median Prediction

Rate Distortion Performance of "Stefan" sequence using Bi-
orthogonal 5/3 kernel

0

5

10

15

20

25

30

35

40

45

0 0.2 0.4 0.6 0.8 1

Bit per pixel (bpp)

P
S

N
R

 (
dB

)

Original Median Prediction

(a) (b)

Figure 4.6 Rate distortion performance of “Stefan” sequence for median prediction using (a) Haar kernel and
(b) Bi-orthogonal 5/3 kernel during temporal decomposition

Chapter 4 Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder

130

Table 4.1 Total execution time used in motion estimation (ms) for cross-level motion vector prediction using
Haar kernel during temporal decomposition

Execution Time used for motion estimation (ms) Execution Time used for
temporal decomposition (ms)

Video
sequence

level 1
(no

med. +
no mv
pred.

+
FSA)

level 1
(mv
pred.

+
CPME
-PDS)

speed-
up

factor

level 2
(no

med. +
no mv
pred.

+
FSA)

Level
2 (mv
pred.

+
CPME
-PDS)

speed-
up

factor

total
(no

med. +
no mv
pred.

+
FSA)

total
(mv
pred.

+
CPME
-PDS)

speed-
up

factor

no
med. +
no mv
pred.

+ FSA

mv
pred.

+
CPME
-PDS

speed-
up

factor

Trevor 814 211 3.86 421 91 4.63 2751 982 2.80 2923 1222 2.39
Suzie 829 237 3.50 372 93 4.00 2715 1092 2.49 2982 1327 2.25

Salesman 1889 434 4.35 921 179 5.15 6623 1959 3.38 7171 2538 2.83
Grandmother 1873 508 3.69 1031 191 5.40 6651 2428 2.74 7188 3001 2.40

Foreman 9170 2760 3.32 4545 996 4.56 31950 13491 2.37 34469 15983 2.16
Akiyo 8736 1505 5.80 4374 603 7.25 30462 7296 4.18 32717 9811 3.33

Coastguard 8939 2681 3.33 4470 1004 4.45 31426 12543 2.51 33420 15051 2.22
Stefan 7387 2607 2.83 3755 954 3.94 25975 12644 2.05 27769 14723 1.89

Table 4.2 Total execution time used in motion estimation (ms) for cross-level motion vector prediction using
Bi-orthogonal 5/3 kernel during temporal decomposition

Execution Time used for motion estimation (ms) Execution Time used for
temporal decomposition (ms)

Video
sequence

level 1
(no

med. +
no mv
pred.

+
FSA)

level 1
(mv
pred.

+
CPME
-PDS)

speed-
up

factor

level 2
(no

med. +
no mv
pred.

+
FSA)

Level
2 (mv
pred.

+
CPME
-PDS)

speed-
up

factor

total
(no

med. +
no mv
pred.

+
FSA)

total
(mv
pred.

+
CPME
-PDS)

speed-
up

factor

no
med. +
no mv
pred.

+ FSA

mv
pred.

+
CPME
-PDS

speed-up
factor

Trevor 1203 367 3.28 406 107 3.79 4345 1714 2.54 4705 2042 2.30
Suzie 1201 349 3.44 345 96 3.59 4312 1772 2.43 4687 2120 2.21

Salesman 2891 664 4.35 788 184 4.28 10155 3165 3.21 11029 3988 2.77
Grandmother 2845 776 3.67 890 203 4.38 10533 4008 2.63 11221 4812 2.33

Foreman 13750 4205 3.27 4577 1043 4.39 50201 22348 2.25 53690 25928 2.07
Akiyo 13314 2340 5.69 4461 601 7.42 48809 11821 4.13 52242 15348 3.40

Coastguard 13536 4122 3.28 4538 1058 4.29 50126 20477 2.45 53574 24001 2.23
Stefan 11262 4075 2.76 3778 983 3.84 41385 20801 1.99 44297 23761 1.86

The execution time for motion estimation using the row-based CPME-PDS and

median prediction scheme using Haar and Bi-orthogonal 5/3 kernels are shown in Table

4.3 and Table 4.4 respectively. This scheme can achieve a speed-up factor of 2.94 to

4.50 and 3.31 to 5.55 for Haar and Bi-orthogonal 5/3 kernels respectively in temporal

level 0 as compared with FSA. As the Bi-orthogonal 5/3 kernel involves bi-directional

prediction in both predict and update steps, the number of motion vector fields is more

than that of the Haar kernel. Therefore, the speed-up factor is higher as compared with

Chapter 4 Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder

131

Haar kernel. The PSNR values of reconstructed sequences at different bitrates are

shown in Figure 4.7, Figure 4.8 and Figure 4.9 for “Foreman”, “Coastguard” and

“Stefan” respectively. As the correlation of the motion vectors among neighbouring

blocks is very high, so the median prediction scheme can provide an accurate prediction

of initial searching point. As a result, this scheme can attain similar rate-distortion

performance as compared with the FSA.

Rate Distortion Performance of "Foreman" sequence using Haar
kernel

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6
Bit per pixel (bpp)

P
S

N
R

 (
dB

)

Original MV Prediction

Rate Distortion Performance of "Foreman" sequence using Bi-
orthogonal 5/3 kernel

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6
Bit per pixel (bpp)

P
S

N
R

 (
dB

)

Original MV Prediction

(a) (b)

Figure 4.7 Rate distortion performance of “Foreman” sequence for cross-level motion vector prediction using
(a) Haar kernel and (b) Bi-orthogonal 5/3 kernel during temporal decomposition

Chapter 4 Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder

132

Rate Distortion Performance of "Coastguard" sequence using Haar
kernel

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Bit per pixel (bpp)

P
S

N
R

 (
dB

)

Original MV Prediction

Rate Distortion Performance of "Coastguard" sequence using Bi-
orthogonal 5/3 kernel

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Bit per pixel (bpp)

P
S

N
R

 (
dB

)

Original
MV Prediction

(a) (b)

Figure 4.8 Rate distortion performance of “Coastguard” sequence for cross-level motion vector prediction

using (a) Haar kernel and (b) Bi-orthogonal 5/3 kernel during temporal decomposition

Rate Distortion Performance of "Stefan" sequence using Haar
kernel

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Bit per pixel (bpp)

P
S

N
R

 (
dB

)

Original MV Prediction

Rate Distortion Performance of "Stefan" sequence using Bi-
orthogonal 5/3 kernel

0

5

10

15

20

25

30

35

40

45

0 0.2 0.4 0.6 0.8 1

Bit per pixel (bpp)

P
S

N
R

 (
dB

)

Original MV Prediction

(a) (b)

Figure 4.9 Rate distortion performance of “Stefan” sequence for cross-level motion vector prediction using (a)
Haar kernel and (b) Bi-orthogonal 5/3 kernel during temporal decomposition

Chapter 4 Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder

133

Table 4.3 Total execution time used in motion estimation (ms) for median prediction using Haar kernel during

temporal decomposition

Execution Time used for motion estimation (ms) Execution Time used for
temporal decomposition (ms)

Video
sequence

level 0
(no

med. +
no mv
pred.

+
FSA)

level 0
(med.

+
CPME
-PDS)

speed-
up

factor

total
(no

med. +
no mv
pred.

+
FSA)

total
(med.

+
CPME
-PDS)

speed-
up

factor

no
med. +
no mv
pred.

+ FSA

med. +
CPME
-PDS

speed-up
factor

Trevor 1516 455 3.33 2751 1080 2.55 2923 1468 1.99
Suzie 1514 517 2.93 2715 1249 2.17 2982 1471 2.03

Salesman 3813 1052 3.62 6623 2285 2.90 7171 2847 2.52
Grandmother 3747 1171 3.20 6651 2701 2.46 7188 3188 2.25

Foreman 18235 5716 3.19 31950 14900 2.14 34469 17484 1.97
Akiyo 17352 3855 4.50 30462 8432 3.61 32717 10674 3.07

Coastguard 18017 5223 3.45 31426 14458 2.17 33420 17188 1.94
Stefan 14833 5046 2.94 25975 14125 1.84 27769 16199 1.71

Table 4.4 Total execution time used in motion estimation (ms) for median prediction using Bi-orthogonal 5/3
kernel during temporal decomposition

Execution Time used for motion estimation (ms) Execution Time used for
temporal decomposition (ms)

Video
sequence

level 0
(no

med. +
no mv
pred.

+
FSA)

level 0
(med.

+
CPME
-PDS)

speed-
up

factor

total
(no

med. +
no mv
pred.

+
FSA)

total
(med.

+
CPME
-PDS)

speed-
up

factor

no
med. +
no mv
pred.

+ FSA

med. +
CPME
-PDS

speed-up
factor

Trevor 2736 763 3.59 4345 1671 2.60 4705 2063 2.28
Suzie 2766 731 3.78 4312 1478 2.92 4687 1858 2.52

Salesman 6476 1531 4.23 10155 2997 3.39 11029 3857 2.86
Grandmother 6798 1799 3.78 10533 3658 2.88 11221 4532 2.48

Foreman 31874 8594 3.71 50201 20157 2.49 53690 24281 2.21
Akiyo 31034 5593 5.55 48809 11076 4.41 52242 14488 3.61

Coastguard 32052 8572 3.74 50126 20482 2.45 53574 24160 2.22
Stefan 26345 7958 3.31 41385 19455 2.13 44297 22512 1.97

Table 4.5 and Table 4.6 show the results using the row-based CPME-PDS,

median prediction and cross-level motion vector prediction in obtaining the motion

vectors of different temporal levels for the Haar and Bi-orthogonal 5/3 kernels in

temporal decomposition respectively. At temporal levels 0 and 1, the proposed

algorithm can achieve a speed-up factor from 3 to 5 times as compared with the FSA

without using median and cross-level motion vector predictions. Since the search range

at these two temporal levels is the same, i.e. ±4, the proposed algorithm can obtain

Chapter 4 Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder

134

similar speed-up factor in these two temporal levels. At temporal level 2, the speed-up

factor can be further increased. As the search window is ±8 at all temporal levels in the

original algorithm and the reduced search window, i.e. ±2, is used in the proposed

algorithm, so the speed-up factor is about 4 to 6 times at temporal level 2 which is

higher than that of the temporal levels 0 and 1. Because the time for motion estimation

used in temporal level 0 still occupies the largest portion in the whole motion estimation

procedure, the speed-up factor of the motion estimation using the proposed algorithm is

about 3 to 5 times as compared to the original algorithm. The initial estimated position

is the approximation of the motion vector. Therefore, the resultant motion vector may

be different from the motion vector found by the FSA leading to a slight degradation of

the reconstructed PSNR quality. Figure 4.10, Figure 4.11 and Figure 4.12 depict the

PSNR performance of the proposed algorithm for the “Coastguard”, “Foreman” and

“Stefan” sequences respectively. The reconstructed PSNR values using the proposed

algorithm are comparable to the original algorithm which does not use the median and

motion vector predictions. The proposed algorithm can achieve a similar PSNR

performance as compared with the FSA.

Chapter 4 Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder

135

Rate Distortion Performance of "Foreman" sequence using Haar
kernel

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6
Bit per pixel (bpp)

P
S

N
R

 (
dB

)

Original Median + MV Prediction

Rate Distortion Performance of "Foreman" sequence using Bi-
orthogonal 5/3 kernel

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6
Bit per pixel (bpp)

P
S

N
R

 (
dB

)

Original Median + MV Prediction

(a) (b)

Figure 4.10 Rate distortion performance of “Foreman” sequence for median prediction and cross-level motion

vector prediction using (a) Haar kernel and (b) Bi-orthogonal 5/3 kernel during temporal decomposition

Rate Distortion Performance of "Coastguard" sequence using Haar
kernel

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Bit per pixel (bpp)

P
S

N
R

 (
dB

)

Original Median + MV Prediction

Rate Distortion Performance of "Coastguard" sequence using Bi-
orthogonal 5/3 kernel

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Bit per pixel (bpp)

P
S

N
R

 (
dB

)

Original Median + MV Prediction

(a) (b)

Figure 4.11 Rate distortion performance of “Coastguard” sequence for median prediction and cross-level
motion vector prediction using (a) Haar kernel and (b) Bi-orthogonal 5/3 kernel during temporal

decomposition

Chapter 4 Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder

136

Rate Distortion Performance of "Stefan" sequence using Haar
kernel

0

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Bit per pixel (bpp)

P
S

N
R

 (
dB

)

Original Median + MV Prediction

Rate Distortion Performance of "Stefan" sequence using Bi-
orthogonal 5/3 kernel

0

5

10

15

20

25

30

35

40

45

0 0.2 0.4 0.6 0.8 1
Bit per pixel (bpp)

P
S

N
R

 (
dB

)

Original
Median + MV Prediction

(a) (b)

Figure 4.12 Rate distortion performance of “Stefan” sequence for median prediction and cross-level motion
vector prediction using (a) Haar kernel and (b) Bi-orthogonal 5/3 kernel during temporal decomposition

Chapter 4 Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder

137

Table 4.5 Total execution time used in motion estimation (ms) for median prediction and cross-level motion
vector prediction using Haar kernel during temporal decomposition

Video sequence Execution
Time used for

motion
estimation

(ms)
Trevor Suzie Salesman Grandmother Foreman Akiyo Coastguard Stefan

level 0
(no med. + no

mv pred. +
FSA)

1516 1514 3813 3747 18235 17352 18017 14833

level 0
(no med. + no

mv pred. +
CPME-PDS)

475 442 926 1090 5145 3241 5012 4704

speed-
up factor 3.19 3.43 4.12 3.44 3.54 5.35 3.59 3.15
level 1

(no med. + no
mv pred. +

FSA)

814 829 1889 1873 9170 8736 8939 7387

level 1
(no med. + no

mv pred. +
CPME-PDS)

250 239 468 541 2938 1622 2808 2886

speed-
up factor 3.26 3.47 4.04 3.46 3.12 5.39 3.18 2.56
level 2

(no med. + no
mv pred. +

FSA)

421 372 921 1031 4545 4374 4470 3755

level 2
(no med. + no

mv pred. +
CPME-PDS)

106 92 202 205 1074 644 1078 1072

speed-
up factor 3.97 4.04 4.56 5.03 4.23 6.79 4.15 3.57

Total
(no med. + no

mv pred. +
FSA)

2751 2715 6623 6651 31950 30462 31426 41385

Total
(no med. + no

mv pred. +
CPME-PDS)

831 773 1596 1836 9157 5507 8898 13549

speed-
up factor 3.31 3.51 4.15 3.62 3.49 5.53 3.53 3.05

Execution
Time used for

temporal
decomposition

(ms)

no med. + no
mv pred. +

FSA
2923 2982 7171 7188 34469 32717 33420 44297

med. + mv
pred. + CPME-

PDS
1093 1031 2202 2452 11811 8124 11515 16638

speed-up
factor 2.67 2.89 3.26 2.93 2.92 4.03 2.90 2.66

Chapter 4 Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder

138

Table 4.6 Total execution time used in motion estimation (ms) for median prediction and cross-level motion
vector prediction using Bi-orthogonal 5/3 kernel during temporal decomposition

Video sequence Execution
Time used for

motion
estimation

(ms)
Trevor Suzie Salesman Grandmother Foreman Akiyo Coastguard Stefan

level 0
(no med. + no

mv pred. +
FSA)

2736 2766 6476 6798 31874 31034 32052 26345

level 0
(no med. + no

mv pred. +
CPME-PDS)

793 765 1640 1905 9025 5627 8721 8176

speed-
up factor 3.45 3.62 3.95 3.57 3.53 5.52 3.68 3.22
level 1

(no med. + no
mv pred. +

FSA)

1203 1201 2891 2845 13750 13314 13536 11262

level 1
(no med. + no

mv pred. +
CPME-PDS)

374 363 701 843 4493 2458 4361 4314

speed-
up factor 3.22 3.31 4.12 3.37 3.06 5.42 3.10 2.61

level 2
(no med. + no

mv pred. +
FSA)

406 345 788 890 4577 4461 4538 3778

level 2
(no med. + no

mv pred. +
CPME-PDS)

99 102 192 211 1105 643 1100 1059

speed-
up factor 4.10 3.38 4.10 4.22 4.14 6.94 4.13 3.57

Total
(no med. + no

mv pred. +
FSA)

4345 4312 10155 10533 50201 48809 50126 41385

Total
(no med. + no

mv pred. +
CPME-PDS)

1266 1230 2533 2959 14623 8728 14182 13549

speed-
up factor 3.43 3.51 4.01 3.56 3.43 5.59 3.53 3.05

Execution
Time used for

temporal
decomposition

(ms)

no med. + no
mv pred. +

FSA
4705 4687 11029 11221 53690 52242 53574 44297

med. + mv
pred. + CPME-

PDS
1620 1596 3409 3824 18339 12389 17879 16638

speed-up
factor 2.90 2.94 3.24 2.93 2.93 4.22 3.00 2.66

Chapter 4 Motion estimation algorithm in the wavelet domain of the 3D wavelet video coder

139

4.4 Conclusion

In this chapter, we propose a new motion estimation algorithm to reduce the

computational complexity in the MCTF scheme. Since there exists large temporal

correlation between successive video frames, so the average of two motion vectors in

the previous temporal level can be used as an initial estimated position of the motion

vector in the current temporal level. Then, the refinement process is performed in the

reduced search window. Finally, the resultant motion vector is the vector sum of the

initially estimated motion vector and a small refinement motion vector. Due to

simplicity, we used the Haar kernel as an example to illustrate the concept of the

proposed algorithm. The proposed idea can be applied to the kernel with longer filter

length, such as Bi-orthogonal 5/3 kernel, in order to improve the compression efficiency.

Besides, high spatial correlation exists in a video frame. Therefore, the median value of

the motion vectors in the neighbouring blocks can be used as an initial estimated motion

vector of the current block. Due to that initially estimated motion vector and the reduced

search window, the computational complexity for motion estimation can be reduced

significantly. The experimental results show that the time for motion estimation using

the proposed algorithm is reduced by 3 to 5 times as compared with the FSA and the

PSNR performance of the proposed algorithm is comparable to that of the FSA.

Chapter 5 Embedded Zerotree Wavelet (EZW)

 140

Chapter 5

Embedded Zerotree Wavelet (EZW)

5.1 Introduction

 The Embedded Zerotree Wavelet (EZW) coding [57] is popular to be used to

encode the wavelet coefficients due to its embedded nature and progressive

transmission. It is an embedded coder because the encoded bitstream can achieve the

target bit-rate by terminating the encoding procedure. Also, it can locate the coefficients

with large magnitude so that they can be transmitted before the coefficients with small

magnitude in order to achieve progressive transmission. Some modified EZW

algorithms [58], [59], [60] are available to improve the coding gain by eliminating some

less important wavelet coefficients in the high frequency subbands, such that the

Human Visual System (HVS) cannot be aware of the degradation of the reconstructed

image. This is because the HVS is more sensitive to the degradation of the low

frequency components which correspond to the detail information, than that of the high

frequency components which correspond to the edge information, in the natural image.

 In this chapter, an algorithm is proposed to further improve the compression

performance by discarding the wavelet coefficients in the high frequency subbands. The

organization of this chapter is shown as follows. Some analysis of the EZW algorithm is

discussed in section 5.2. The proposed algorithm is presented in section 5.3. Some

experimental results are stated in section 5.4 to evaluate the performance of the

proposed algorithm. Finally, a conclusion is drawn in the section 5.5.

Chapter 5 Embedded Zerotree Wavelet (EZW)

141

5.2 Analysis of Embedded Zerotree Wavelet (EZW)

algorithm

Some analysis of the conventional [57] and modified EZW algorithms using the

minimum subband approach [60] are discussed in the sections 5.2.1 and 5.2.2

respectively.

5.2.1 Analysis of the conventional EZW algorithm

 The EZW coding makes use of the bit-plane coding such that the most

significant bit is firstly transmitted to the decoder in order to achieve progressive

transmission. Each bit-plane refers to a pass. It can attain lossless coding by sending all

passes to the decoder. If the information in last few passes is discarded, the

reconstructed quality and bit per pixel (bpp) are both reduced. Although the distortion is

introduced in the reconstructed image due to missing data in the last few passes, the

human visual system cannot be aware by such distortion and the visual quality is not

affected significantly. However, the compression efficiency is improved since the last

few passes are not encoded.

Figure 5.1 and Figure 5.2 depict the reconstructed PSNR and bit per pixel of the

conventional EZW algorithm for one, two and three decomposition levels stopping

decoding at different passes using the D4 kernel and “Lena” image respectively. For

using one decomposition level, the quality is the best but it requires more bits to encode

the coefficients since the zerotree structure cannot be utilized efficiently. In the zerotree

structure, one symbol, zerotree node, can represent a large portion of wavelet

coefficients that are insignificant in the current pass. However, this structure cannot be

used for using one decomposition level only. Figure 5.3 shows the rate distortion

Chapter 5 Embedded Zerotree Wavelet (EZW)

142

performance of the EZW coding with different decomposition levels. The performance

of three decomposition levels can outperform that of the two or one decomposition

level(s) according to the efficient energy concentration to the low frequency subband.

Furthermore, the zerotree only works efficiently for more than two decomposition

levels since most energy can be concentrated to only a few number of wavelet

coefficients for three or more decomposition levels. As a result, only a small number of

symbols can represent many wavelet coefficients leading to increase the coding

efficiency. Besides, the reconstructed “Lena” image using one, two and three

decomposition levels for D4 kernel are illustrated in Figure 5.4, Figure 5.5 and Figure

5.6 respectively. When the last few passes are not decoded, the visual quality is not

affected significantly. Since the data in the last few passes are insignificant, so the

human visual system (HVS) cannot be aware of the degradation of omitting the

information in these few passes. However, since some information in the last few passes

are not encoded, it only attains the lossy coding. On the contrary, if all passes are

encoded, it can achieve the lossless coding.

Chapter 5 Embedded Zerotree Wavelet (EZW)

143

Reconstructed PSNR (dB) stopping at different passes for different

decomposition levels using "Lena" image

0

5

10

15

20

25

30

35

40

45

50

55

0 1 2 3 4 5 6 7 8 9 10 11 12
Number of passes

R
ec

o
ns

tr
uc

te
d
 P

SN
R

 (
d
B

One decomposition level Two decomposition levels Three decomposition levels

Figure 5.1 Reconstructed PSNR (dB) stopping at different passes for different decomposition levels using D4
kernel and “Lena” image

Bit per pixel (bpp) stopping at different passes for different decomposition levels using

"Lena" image

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10 11 12
Number of passes

B
it

pe
r

pi
xe

l (
bp

p

One decomposition level Two decomposition levels Three decomposition levels

Figure 5.2 Bit per pixel (bpp) stopping at different passes for different decomposition levels using D4 kernel
and “Lena” image

Chapter 5 Embedded Zerotree Wavelet (EZW)

144

Rate distortion performance of the conventional EZW algorithm at different

decomposition levels and passes for the "Lena" image

0

5

10

15

20

25

30

35

40

45

50

55

60

0 1 2 3 4 5 6 7 8 9 10 11
Bit per pixel (bpp)

R
ec

on
st

ru
ct

ed
 P

SN
R

 (
d

B

One decomposition level Two decomposition levels Three decomposition levels

Figure 5.3 Rate distortion performance of the EZW coding with different decomposition levels using the D4
kernel for the Lena image

Chapter 5 Embedded Zerotree Wavelet (EZW)

145

(a) (b)

(c) (d)

(e) (f)

Figure 5.4 Reconstructed images of the EZW algorithm with one decomposition level for (a) original image,
decoding at (b) seven passes, (c) eight passes, (d) nine passes, (e) ten passes and (f) eleven passes (all passes)

respectively

Chapter 5 Embedded Zerotree Wavelet (EZW)

146

(a) (b)

(c) (d)

(e) (f)

Figure 5.5 Reconstructed images of the EZW algorithm with two decomposition levels for (a) original image,
decoding at (b) six passes, (c) seven passes, (d) eight passes, (e) nine passes and (f) ten passes (all passes)

respectively

Chapter 5 Embedded Zerotree Wavelet (EZW)

147

(a) (b)

(c) (d)

(e) (f)

Figure 5.6 Reconstructed images of the EZW algorithm with three decomposition levels for (a) original image,
decoding at (b) six passes, (c) seven passes, (d) eight passes, (e) nine passes and (f) ten passes (all passes)

respectively

Chapter 5 Embedded Zerotree Wavelet (EZW)

148

5.2.2 Analysis of the modified EZW algorithm using subband

threshold approach

 The information in the last few passes of the standard EZW algorithm is

discarded in order to improve the coding gain and the HVS cannot be aware of the

degradation by eliminating these less important data. However, this coding method is

lossy such that the original information cannot be reconstructed. A modified EZW

algorithm using the minimum weight subband approach [60] can further improve the

compression efficiency by removing the wavelet coefficients in the high frequency

subband if these coefficients are smaller than a pre-defined threshold. For this approach,

the weight of a subband refers to the summation of all coefficients in that subband in

magnitude. Then, a subband with the minimum weight in each decomposition level is

selected. If the coefficients inside this minimum weight subband are smaller than a pre-

determined threshold, these coefficients will be set to zero, i.e. eliminating these

coefficients. However, there exists a problem that if there exists many coefficients with

small magnitude and the large magnitude coefficients only occupy a small portion as

compared with the small magnitude coefficients in a high frequency subband, there will

be a probability that the subband with coefficients of small magnitudes will be selected

as the minimum weight subband although a subband with large magnitude coefficient is

available. Although the large magnitude coefficients can still be retained after

performing thresholding in that subband, the compression efficiency is reduced as

compared to perform thresholding in another subband which does not contain

significantly high frequency coefficients. Therefore, we may add one more criterion to

select the subband to perform thresholding. The extra criterion is the difference between

the largest and smallest magnitude coefficients in each subband. This criterion can

reflect the situation as described above. Table 5.1 and Table 5.3 show the minimum

Chapter 5 Embedded Zerotree Wavelet (EZW)

149

weight and minimum difference subbands at each decomposition level using D4 and

Daubechies 9/7 kernels respectively. For the “Lena” image, the minimum weight

subband is the HH subband while the minimum difference subband is the LH subband

in the level three as depicted in Table 5.1. For the “Fruit” image, the minimum weight

subband is the LH subband while the minimum difference subband is the HH subband

in levels one and three as illustrated in Table 5.3. These two Tables introduce a problem

that these two criterion may indicate different subbands to perform thresholding and this

problem will be solved in the section 5.4. Table 5.2 and Table 5.4 show the number of

wavelet coefficients with zero magnitude for the conventional EZW algorithm and the

modified EZW algorithm with minimum weight subband approach using D4 and

Daubechies 9/7 kernels respectively. As expected, there exist coefficients with zero

magnitude after performing the thresholding process. Also, when the threshold becomes

larger, more coefficients are set to zero leading to an increase in coding gain but a

reduction in reconstructed quality. As a result, there is a trade-off between the

compression ratio and the reconstructed quality. However, the visual quality of the

reconstructed image is not notably affected as shown in Figure 5.7 and Figure 5.9. The

HVS is not sensitive to the threshold values between two and five.

Chapter 5 Embedded Zerotree Wavelet (EZW)

150

(a) (b)

(c) (d)

Figure 5.7 Reconstructed images of the (a) original image, (b) conventional EZW algorithm, (c) modified EZW
algorithm with pre-processing of the value of threshold of two and (d) modified EZW algorithm with pre-

processing of the value of threshold of five respectively with three decomposition levels using D4 kernel

(a) (b) (c) (d)

Figure 5.8 (a) Original image, (b) wavelet-transformed image, (c) pre-processed image with a threshold of five
and (d) reconstructed image with three decomposition levels using a threshold of five

Chapter 5 Embedded Zerotree Wavelet (EZW)

151

(a) (b)

(c) (d)

Figure 5.9 Reconstructed images of the (a) original image, (b) conventional EZW algorithm, (c) modified EZW
algorithm with pre-processing of the value of threshold of two and (d) modified EZW algorithm with pre-

processing of the value of threshold of five respectively with three decomposition levels using Daubechies 9/7
kernel

(a) (b) (c) (d)

Figure 5.10 (a) Original image, (b) wavelet-transformed image, (c) pre-processed image with a threshold of
five and (d) reconstructed image with three decomposition levels using a threshold of five

Chapter 5 Embedded Zerotree Wavelet (EZW)

152

Table 5.1 Reconstructed quality (dB) and the minimum weight subband and minimum difference subband in
each level for the conventional EZW algorithm and the modified EZW algorithm with pre-processing stage

using the three decomposition levels and D4 kernel

Min. Weight / Min. Different Modified EZW algorithm with pre-
processing Image Conventional EZW

algorithm
Level 1 Level 2 Level 3 Threshold = 2 Threshold = 5

Lena 53.1866 dB HH / HH HH / HH HH / LH 52.841 dB 50.434 dB
Fruit 53.1473 dB HH / HH HH / HH HH /HH 51.8463 dB 45.5136 dB

Table 5.2 The number of wavelet coefficients with zero magnitude for the conventional EZW algorithm and
the modified EZW algorithm with pre-processing stage using the three decomposition levels and D4 kernel

Number of zero coefficients for modified
EZW algorithm with pre-processing Image Number of zero coefficients for

conventional EZW algorithm
Threshold = 2 Threshold = 5

Lena 0 7451 13412
Fruit 0 30627 62010

Table 5.3 Reconstructed quality (dB) and the minimum weight subband and minimum difference subband in
each level for the conventional EZW algorithm and the modified EZW algorithm with pre-processing stage

using the three decomposition levels and Daubechies 9/7 kernel

Min. Weight / Min. Different Modified EZW algorithm with pre-
processing Image Conventional EZW

algorithm
Level 1 Level 2 Level 3 Threshold = 2 Threshold = 5

Lena 24.5371 dB LH / LH LH / LH LH / LH 24.5404 dB 24.577 dB
Fruit 24.948 dB LH / HH LH / LH LH / HH 24.9494 dB 24.9617 dB

Table 5.4 The number of wavelet coefficients with zero magnitude for the conventional EZW algorithm and
the modified EZW algorithm with pre-processing stage using the three decomposition levels and Daubechies

9/7 kernel

Number of zero coefficients for modified
EZW algorithm with pre-processing Image Number of zero coefficients for

conventional EZW algorithm
Threshold = 2 Threshold = 5

Lena 0 46387 72935
Fruit 0 8767 13428

5.3 Proposed algorithm of the modified EZW algorithm

 The key idea of the proposed algorithm is to eliminate the insignificant

coefficients in the high frequency subbands, i.e. HL, LH and HH subbands. According

to the observation in the previous section, one more criterion, which is the minimum

difference, is used to choose the subband to discard the unimportant coefficients, where

the minimum difference is the absolute difference between the coefficients with the

Chapter 5 Embedded Zerotree Wavelet (EZW)

153

greatest and smallest magnitudes. If the minimum weight subband [60] is the same as

the minimum difference subband, we can perform further quantization in that subband

because that subband must contain insignificant information such that the human visual

system cannot be aware by discarding such insignificant data. Otherwise, we perform

thresholding in the minimum weight subband such that the significant information can

still be retained. The procedure of the proposed algorithm is summarized as follows.

1. Find the minimum weight subband in each decomposition level, where the

weight of each subband is the sum of all coefficients in magnitude.

2. Find the minimum difference subband in each decomposition level, where the

difference of each subband is the difference between the largest and smallest

magnitude of the coefficients.

3. At each decomposition level, if the minimum weight subband is the same as the

minimum difference subband, all coefficients in that subband are quantized by a

specified quantizer. Otherwise, for each coefficient in the minimum weight

subband, if the magnitude of coefficient is less than a pre-determined threshold

value, it will be set to zero.

The processed wavelet coefficients are then put forward to entropy encoding

process. The compressed bitstream is conveyed to the decoder for reconstruction. As the

insignificant wavelet coefficients in the high frequency subband are discarded, the

compression efficiency can be further enhanced. Besides, the visual quality of the

reconstructed image is not considerably affected. The proposed algorithm is a lossy

coding scheme since some unimportant information in the high frequency subbands is

eliminated and they cannot be recovered during reconstruction.

 As mentioned in section 2.6, the Set-Partition Embedded Block Coder (SPECK)

algorithm [107] is the latest coding algorithm to encode the wavelet coefficients. The

Chapter 5 Embedded Zerotree Wavelet (EZW)

154

proposed approach can also be applied in the SPECK algorithm. The major difference

between the EZW algorithm and the SPECK algorithm is that the SPECK algorithm

scans the wavelet coefficients in depth-first scanning path while the EZW algorithm

uses the transversal scanning path. For the SPECK algorithm, if a set of coefficients are

tested to be significant, then it is split into four equal subsets. Each subset is carried

significant test until the significant coefficients can be found out. Therefore, the

scanning path of SPECK algorithm refers to the depth-first searching path. For the EZW

algorithm, if a coefficient including all of its descendents are tested to be significant,

then a symbol, IZ, isolated zero is put to the dominant list. Then, the coefficients in the

same subband and the same decomposition levels are scanned. After that, the

descendents of significant coefficient are scanned. As a result, the EZW algorithm

makes use of the transversal searching path. Due to this major difference, the procedure

of proposed algorithm is modified in the follows so that it can take the advantage of the

SPECK algorithm.

1. Find the minimum weight subband in each decomposition level, where the

weight of each subband is the sum of all coefficients in magnitude.

2. Find the minimum difference subband in each decomposition level, where the

difference of each subband is the absolute difference between the largest and

smallest magnitude of the coefficients.

3. At each decomposition level, if the minimum weight subband is the same as the

minimum difference subband, the magnitude of coefficient smaller than a pre-

defined threshold value in that subband are quantized by a specified quantizer.

Otherwise, for each coefficient in the minimum weight subband, if the

magnitude of coefficient is less than a pre-determined threshold value, it will be

set to zero.

Chapter 5 Embedded Zerotree Wavelet (EZW)

155

The processed wavelet coefficients are then put forward to SPECK and

arithmetic encoding procedures. The compressed bitstream is sent to the decoder for

reconstruction. As the insignificant wavelet coefficients in the high frequency subband

are removed, the compression efficiency can be further enhanced. Besides, the visual

quality of the reconstructed image is considerably affected. The proposed algorithm is a

lossy coding scheme since some less important information in the high frequency

subbands is removed and they cannot be recovered during reconstruction.

5.4 Experimental Results

 The “Lena” image was used to evaluate the performance of the proposed

algorithm. The D4 kernel with three decomposition levels was performed during the

encoding and decoding processes. After carrying out the EZW coding, the Huffman

coding is implemented to convert the symbols of the EZW coding into compressed

bitstream which were sent to the decoder for reconstruction.

 The rate distortion performance of the conventional EZW algorithm, modified

EZW method using the minimum subband approach and proposed algorithm using the

“Lena” and “Fruit” images are depicted in Figure 5.12 and Figure 5.13 respectively.

The proposed algorithm can both outperform the conventional EZW algorithm and the

minimum subband approach due to discarding the unimportant wavelet coefficients in

the high frequency subband at each decomposition level. Therefore, the number of bits

used to encode the coeffcieints can be reduced leading to decreasing the number of bits

per pixel (bpp) at the same reconstructed quality. There exists a probability that the

minimum subband approach may select the significant subband to perform thresholding.

As a result, one more criterion, which is the minimum difference subband, is used to

Chapter 5 Embedded Zerotree Wavelet (EZW)

156

choose the most insignificant subband. If both the minimum subband and minimum

difference subbands indicate the same high frequency subband, this subband must be

the most insignificant in certain decomposition level. So, we can remove these

insignificant coefficients in that unimportant subband to improve the coding efficiency,

and there is insignificant effect on the visual quality. Figures 5.11 (c) and (d) show the

visual quality of the reconstructed image using the minimum subband approach and the

proposed algorithm respectively. Since only insignificant wavelet coefficients are

eliminated in the high frequency subband and our human eyes are not sensitive to the

distortion of these insignificant information, the visual quality of the reconstructed

image are essentially not affected.

Chapter 5 Embedded Zerotree Wavelet (EZW)

157

(a) (b)

(c) (d)

Figure 5.11 Reconstructed images of the (a) original image, (b) conventional EZW algorithm, (c) modified
EZW algorithm with pre-processing of the value of threshold of two and (d) proposed EZW algorithm with

pre-processing of the value of threshold of two and the quantization factor of two respectively with three
decomposition levels using D4 kernel

Chapter 5 Embedded Zerotree Wavelet (EZW)

158

Rate distortion performance of "Lena" image using D4 kernel with three decomposition

levels

5

10

15

20

25

30

35

40

45

2 2.5 3 3.5 4 4.5 5 5.5

Bit per pixel (bpp)

R
ec

on
st

rc
ut

ed
 P

S
N

R
 (

dB
)

Original EZW algorithm Minimum subband approach Proposed algorithm

Figure 5.12 Rate distortion performance of the conventional EZW algorithm, modified EZW algorithm using
the minimum weight subband approach and the proposed EZW algorithm using the D4 kernel with three

decomposition levels for the “Lena” image

Rate distortion performance of "Fruit" image using D4 kernel with three decomposition

levels

5

10

15

20

25

30

35

40

45

2 2.5 3 3.5 4 4.5 5 5.5 6

Bit per pixel (bpp)

R
ec

on
st

rc
ut

ed
 P

S
N

R
 (

dB
)

Original EZW algorithm Minimum subband approach Proposed algorithm

Figure 5.13 Rate distortion performance of the conventional EZW algorithm, modified EZW algorithm using
the minimum weight subband approach and the proposed EZW algorithm using the D4 kernel with three

decomposition levels for the “Fruit” image

Chapter 5 Embedded Zerotree Wavelet (EZW)

159

 The rate distortion performance of the conventional SPECK algorithm [107],

modified SPECK method using the minimum subband approach and proposed approach

employed in the SPECK algorithm using D4 kernel with three decomposition levels for

the “Lena” and “Fruit” images are depicted in Figure 5.15 and Figure 5.16 respectively.

According to the experimental results, the proposed approach can outperform the

minimum subband approach. It can select and remove some unimportant coefficients in

the high frequency subbands at each decomposition level. After eliminating the

insignificant coefficients, the number of bits used to encode the coefficients are reduced

and the coding efficiency can be improved as compared to the minimum subband

approach.

Chapter 5 Embedded Zerotree Wavelet (EZW)

160

(a) (b)

(c) (d)

Figure 5.14 Reconstructed images of the (a) original image, (b) conventional SPECK algorithm, (c) modified
EZW algorithm with pre-processing of the value of threshold of five and (d) proposed SPECK algorithm with

pre-processing of the value of threshold of five and the quantization factor of two respectively with three
decomposition levels using D4 kernel

Chapter 5 Embedded Zerotree Wavelet (EZW)

161

Rate distortion performance of Lena image using three

decomposition levels and D4 kernel

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Bit per pixel (bpp)

P
S
N
R
 (
dB

)

Original SPECK algorithm Minimum Subband Approach Proposed Approach

Figure 5.15 Rate distortion performance of the conventional SPECK algorithm, modified SPECK algorithm
using the minimum weight subband approach and the proposed SPECK algorithm using the D4 kernel with

three decomposition levels for the “Lena” image

Rate distortion performance of Fruit image using three

decomposition levels and D4 kernel

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Bit per pixel (bpp)

P
S
N
R
 (
dB

)

Original SPECK algorithm Minimum Subband Approach Proposed Approach

Figure 5.16 Rate distortion performance of the conventional SPECK algorithm, modified SPECK algorithm
using the minimum weight subband approach and the proposed SPECK algorithm using the D4 kernel with

three decomposition levels for the “Fruit” image

Chapter 5 Embedded Zerotree Wavelet (EZW)

162

5.5 Conclusion

 In this chapter, we propose a modified EZW algorithm to improve the

compression efficiency in image compression. Since there exist a large amount of

insignificant wavelet coefficients in the high frequency subband and this information

consumes bits to encode, these less important coefficients should be systematically

discarded in order to improve the coding efficiency. Furthermore, the HVS is not

sensitive to the degradation introduced from this unimportant information. Therefore,

the visual quality is not considerably affected by eliminating such insignificant wavelet

coefficients. Two criteria, which are the minimum weight and minimum difference, are

used to select the insignificant high frequency subband in each decomposition level.

The weight of each subband is the summation of all wavelet coefficients in magnitude

while the difference of each subband is the absolute difference between the greatest and

smallest wavelet coefficients. If the minimum weight subband is the same as the

minimum difference subband, all wavelet coefficients in this high frequency subband

perform the quantization using a pre-defined quantization step-size. Otherwise, the less

important wavelet coefficients, which are smaller than a specified threshold, in the

minimum weight subband are discarded. As the number of bits used to encode the

wavelet coefficients is reduced, the coding gain can be increased.

From the experimental results, the average number of bits used to encode each

pixel of the proposed algorithm is reduced by 0.1 bit per pixel (bpp) and 1 bpp as

compared with the minimum subband approach [60] and conventional EZW algorithm

[57] respectively with similar PSNR values. Besides, the visual quality of the

reconstructed image using the proposed algorithm is comparable to that of the

Chapter 5 Embedded Zerotree Wavelet (EZW)

163

conventional EZW algorithm. In addition, the proposed algorithm can also be applied to

the latest coding scheme, the SPECK algorithm [107], and can outperform the minimum

subband approach [60] by 0.1 bit per pixel (bpp) with the same PSNR value. The visual

quality can still be maintained as compared to the original SPECK algorithm and

minimum subband approach.

Chapter 6 Conclusion

 164

Chapter 6

Conclusion

6.1 Conclusion on the current works

In this work, the typical wavelet video coder is studied. Some fast algorithms of

motion estimation in the wavelet domain are proposed and some conclusions are drawn

in this chapter.

The fundamental concept of the hybrid video coding model is reviewed in

Chapter 2 and this model is employed in the traditional video coding standards such as

MPEG-1, MPEG-2, MPEG-4 and H.264. The classic wavelet video coding system also

makes use of the hybrid video coding model to reduce both spatial and temporal

redundancies in the video sequences. There are two major differences between the

wavelet video coding system and conventional hybrid video coding model. The first one

is the transform kernel. The wavelet transform is used in order to achieve superior

compression performance and eliminate the blocking artefacts as compared with the

conventional transform kernel, i.e. the Discrete Cosine Transform (DCT). Also, the

wavelet transform is scalable in nature so that it can be used in the multi-resolution

applications such as Digital TV (DTV) and High-Definition TV (HDTV). The other

difference is that the motion estimation is performed in the wavelet domain. As there

exist high correlations between the corresponding subbands across different

decomposition levels in the wavelet pyramid, so the speed of motion estimation can be

enhanced by exploiting such property. Several typical wavelet-domain motion

Chapter 6 Conclusion

165

estimation algorithms are also studied in the chapter 2. Since the two dimensional

Discrete Wavelet Transform (2D-DWT) is used in the standard wavelet video coder, so

the spatial scalability can only be achieved but not the temporal scalability. Hence, the

three dimensional Discrete Wavelet Transform (3D-DWT) is performed in the novel

wavelet video coder in order to achieve both temporal and spatial scalabilities by

decomposing the video frames in the temporal direction along the motion trajectories.

Thus, the visual quality of the low frequency frame is improved by reducing the

ghosting artifacts. Besides, the compression efficiency can be improved as compared

with the 2D-DWT video coder. And the architecture of 3D-DWT video coder is revised

in the chapter 2. After carrying out the wavelet transform, the wavelet coefficients are

encoded by the Embedded Zerotree Wavelet (EZW) algorithm by exploiting the

redundancy existing among different subbands. The EZW algorithm is also investigated

in the chapter 2.

A fast motion estimation algorithm in the wavelet domain in the 2D-DWT video

encoder is proposed in the chapter 3. The pixel error with similar magnitude tends to

group in clusters in the spatial domain. The Clustered Pixel Matching Error for Partial

Distortion Search (CPME-PDS) is investigated to exploit such clustering property in the

spatial domain in order to improve the speed of the motion estimation. According to our

observation, this pixel cluster property is also available in the wavelet domain. Besides,

this clustering property is appeared in the hierarchical nature of the wavelet pyramid.

By applying the hierarchical property of the wavelet domain into the row-based CPME-

PDS, the impossible candidate blocks can be rejected as early as possible. Only the LL

subband and the subbands in the lowest resolution level have to carry out the counting

sort to find their error distributions. The results can then be down-sampled and re-

numbered in the subband at higher resolution level of the hierarchical pyramid.

Chapter 6 Conclusion

166

Experimental results show that the proposed scheme, i.e. the backward CPME-PDS

algorithm, can improve the speed of motion estimation in terms of total execution time

and the average number of operations per block comparing to Full Search Algorithm

(FSA) in Multi-Resolution Motion Estimation (MRME) scheme. By applying the

Successive Elimination Algorithm (SEA) into the backward CPME-PDS, the average

number of operations per block can be further reduced. However, its implementation

time is longer than that of the backward CPME-PDS due to greater number of

comparisons of the floating-point numbers (wavelet coefficients) and the structure of

CPU is not favour to floating-point number comparison. But the performance of

proposed algorithm in the slow motion video sequences is extremely well. Hence, it is

suitable for video conferencing and video surveillance. Due to the scalability nature of

the Discrete Wavelet Transform (DWT), the proposed scheme can be applied to multi-

resolution applications such as Digital TV (DTV), High Definition TV (HDTV) and

mobile phone applications.

 In chapter 4, we propose a new motion estimation algorithm to reduce the

computational complexity in the 3D-DWT video encoder. Since there exists large

temporal correlation between successive video frames, so the average of two motion

vectors in the previous temporal level can be used as an initial estimated position of the

motion vector in the current temporal level. Then, the refinement procedure is carried

out in the reduced search window. Finally, the resultant motion vector is the vector sum

of the initially estimated motion vector and a small refinement motion vector. The

proposed idea can be applied to the kernel with longer filter length, such as Bi-

orthogonal 5/3 kernel, in order to improve the compression efficiency. Besides, high

spatial correlation exists in a video frame. Therefore, the median value of the motion

vectors in the neighbouring blocks can be used as an initial estimated motion vector of

Chapter 6 Conclusion

167

the current block in the first temporal level, i.e. the spatial domain. Due to that initially

estimated motion vector and the reduced search window, the computational complexity

for motion estimation can be reduced significantly. The experimental results show that

the execution time and average number of operations per block for motion estimation

using the proposed algorithm are both reduced as compared with the FSA. But the

PSNR performance of the proposed algorithm can be retained and it is comparable to

PSNR performance of the FSA.

 In chapter 5, we propose a modified EZW algorithm to improve the compression

efficiency in image compression. Since there exist a large amount of insignificant

wavelet coefficients in the high frequency subband and this information requires lots of

bits to encode, so these less important coefficients can be discarded in order to improve

the coding efficiency. Furthermore, the Human Visual System (HVS) is not sensitive to

the degradation introduced from this unimportant information. Therefore, the visual

quality is not considerably affected by discarding such insignificant wavelet coefficients.

Two criteria, which are the minimum weight and minimum difference, are used to

select the insignificant high frequency subband in each decomposition level. The weight

of each subband is the summation of all wavelet coefficients in magnitude while the

difference of each subband is the absolute difference between the greatest and smallest

wavelet coefficients. If the minimum weight subband is the same as the minimum

difference subband, all wavelet coefficients in this high frequency subband performs the

quantization using a pre-defined quantization step-size. Otherwise, the less important

wavelet coefficients, which are smaller than a specified threshold, in the minimum

weight subband are discarded. As the number of bits used to encode the wavelet

coefficients is reduced, so the coding gain can be increased. From the experimental

results, the average number of bits used to encode each pixel of the proposed algorithm

Chapter 6 Conclusion

168

is reduced as compared with the modified EZW algorithm with minimum subband

approach and the conventional EZW algorithm for similar PSNR performance. Besides,

the visual quality of the reconstructed image using the proposed algorithm can be

preserved and it is comparable to reconstructed quality of the conventional EZW

algorithm.

6.2 Future research directions

There are some future research directions for the motion estimation in both 2D-

DWT and 3D-DWT video encoders.

For the motion estimation algorithm in the 2D wavelet domain, the proposed

algorithm (backward CPME-PDS) makes use of the row-based computation to obtain

the partial Sum of Absolute Difference (SAD) row by row. The HL subband can take

advantage of this row-based computation strategy as the horizontal edge exists in the

HL subband. On the other hand, the partial SAD calculation in the LH subband can be

performed in column-by-column strategy since the vertical edge is located in this

subband. By exploiting the edge property of the wavelet subband, the speed of the

motion estimation can be further enhanced.

 The latest video coding standard, H.264, makes use of the variable block size

motion estimation with rate-distortion optimization scheme to further enhance the

compression efficiency at the expense of computational complexity for motion

estimation. This approach can be applied to the 3D-DWT video coder to improve the

coding gain. However, the computational burden for motion estimation is increased

significantly. Thus, some fast variable block size motion estimation algorithms for the

wavelet video encoder can be investigated to optimize the tradeoff between the

compression efficiency and the computational load.

Chapter 6 Conclusion

169

 Furthermore, the current Motion Compensated Temporal Filtering (MCTF)

scheme in the 3D-DWT video coder requires decoding the motion vectors in all

temporal levels even though only half temporal resolution of video sequence is decoded,

say for example. Thus, the scalable motion vector coding approach should be

investigated. If a quarter of the original temporal resolution is decoded, then the motion

vectors of the quarter temporal resolution are decoded in order to avoid full decoding of

motion vectors in all temporal resolution levels.

References

 170

References

[1]. ISO/IEC 11172-2, “Information technology – coding of moving pictures and associated audio
for digital storage media at up to about 1.5 Mbits/s – part 2: video”, ISO/IEC 11172-2 (MPEG-
1), March 1993.

[2]. ITU-T and ISO/IEC, “Information technology – generic coding of moving pictures and
associated audio information: video”, ITU-T Recommendation H.262 – ISO/IEC 13818-2
(MPEG-2), November 1994.

[3]. ISO/IEC, “Information technology – coding of audio-visual objects: Part 2 visual”, ISO/IEC
14496-2 (MPEG-4), October 1998.

[4]. ITU-T, “Video coding for low bit rate communication”, ITU-T Recommendation H.263,
Version 1, November 1995; Version 2, January 1998.

[5]. Draft ITU-T Recommendation and Final Draft International Standard of Joint Video
Specification (ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC), July 2003.

[6]. Thomas Wiegand, Gary J. Sullivan, Gisle Bjøntegarrd and Ajay Luthra, “Overview of the
H.264/AVC Video Coding Standard”, IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 13, No. 7, July 2003.

[7]. Yuichiro Nakaya and Hiroshi Harashima, “Motion Compensation based on Spatial
Transformations”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 4, pp.
339- 356, June 1994.

[8]. M. Ghanbari, S. de Faria, I. N. Goh and K. T. Tan, “Motion Compensation for Very Low Bit-
Rate Video”, Signal Processing: Image Communication, Vol. 7, pp. 567 – 580, 1995.

[9]. Bernd Girod, “The Efficiency of Motion-Compensating Prediction for Hybrid Coding of Video
Sequences”, IEEE Journal on Selected Areas in Communications, Vol. SAC-5, No. 7, pp. 1140 –
1154, August 1987.

[10]. Bernd Girod, “Motion-Compensation Prediction with Fractional-Pel Accuracy”, IEEE
Transactions on Communications, Vol. 41, pp. 604 – 612, April 1993.

[11]. S. Nogaki and M. Ohta, “An Overlapped Block Motion Compensation for High Quality Motion
Picture Coding”, Proceedings of International Symposium on Circuits and Systems, Vol. 1, pp.
184 – 187, May 1992.

[12]. Chang-Da Bei and Robert M. Gray, “An Improvement of the Minimum Distortion Encoding
Algorithm for Vector Quantization”, IEEE Transactions on Communications, Vol. Com-33, No.
10, October 1985.

[13]. Chun-Ho Cheung and Lai-Man Po, “Adjustable Partial Distortion Search Algorithm for Fast
Block Motion Estimation”, IEEE Transactions on Circuits and Systems for Video Technology,
Vol. 13, Issue 1, pp. 100 – 110, January 2003.

[14]. Yui-Lam Chan and Wan-Chi Siu, “An Adaptive Partial Distortion Search for Block Motion
Estimation”, IEEE Proceedings of International Conference on Acoustics, Speech and Signal
Processing, Vol. 3, pp. 153 – 156, April 2003.

[15]. Chun-Ho Chung and Lai-Man Po, “Generalized Partial Distortion Search Algorithm for Block-
Matching Motion Estimation, IEEE Proceedings on International Conference on Image
Processing, Vol. 3, pp. 510 – 513, October 2001.

[16]. Zi-Yin Li and Shan-An Zhu, “A Fast and Efficient Partial Distortion Search For Block Motion
Estimation, IEEE Proceedings on International Conference on Control and Automation, Vol. 1,
pp. 234 – 238, June 2005.

References

171

[17]. Chi-Wang Ting, Chi-Wai Lam and Lai-Man Po, “A Novel Early-Accepted Partial Distortion
Search Algorithm for Block Motion Estimation, IEEE Proceedings on International Symposium
on Intelligent Multimedia, Video and Speech Processing, pp. 414 – 417, October 2004.

[18]. Ko-Cheung Hui, Wan-Chi Siu and Yui-Lam Chan, “New Adaptive Partial Distortion Search
Using Clustered Pixel Matching Error Characteristic”, IEEE Transactions on Image Processing,
Vol. 14, Issue 5, pp. 597 – 607, May 2005.

[19]. Xiaoquan Yi and Nam Ling, “Improved Partial Distortion Search Algorithm for Rapid Block
Motion Estimation via Dual-Halfway-Stop, IEEE Proceedings on Acoustics, Speech and Signal
Processing, Vol. 2 pp. 917 – 920, March 2005.

[20]. Chok-Kwan Cheung and Lai-Man Po, “Normalized Partial Distortion Search Algorithm for
Block Motion Estimation”, IEEE Transactions on Circuits and Systems for Video Technology,
Vol. 10, Issue 3, pp. 417 – 422, April 2000.

[21]. Chun-Ho Cheung and Lai-Man Po, “A Fast Block Motion Estimation Using Progressive Partial
Distortion Search”, IEEE Proceedings on Intelligent Multimedia, Video and Signal Processing,
pp. 506 – 509, May 2001.

[22]. Won-Gi Hong and Tae-Myong Oh, “Sorting-Based Partial Distortion Search Algorithm for
Motion Estimation”, Electronics Letters, Vol. 40, Issue 2, pp. 113 – 115, January 2004.

[23]. Won-Gi Hong and Tae-Myong Oh, “Enhanced Partial Distortion Search Algorithm for Block
Motion Estimation”, Electronics Letters, Vol. 39, Issue 15, pp. 1112 – 1113, July 2003.

[24]. Wenbin Jiang and Manli Zhou, “A Fast BMA Based on Combined Search Candidate
Subsampling and APDS”, IEEE International Conference on Multimedia and Expo, Vol. 2, pp.
1115 – 1118, June 2004.

[25]. Chok-Kwan Cheung and Lai-Man Po, “A Hierarchical Block Matching Algorithm using Partial
Distortion Measure”, IEEE Proceedings on Circuits and Systems, Vol. 2, pp. 1237 – 1240, June
1997.

[26]. Yui-Lam Chan and Wan-Chi Siu, “Edge Oriented Block Motion Estimation for Video Coding,
IEE Proceedings on Vision, Image and Signal Processing, Vol. 114, Issue 3, pp. 136 – 144, June
1997.

[27]. Yui-Lam Chan and Wan-Chi Siu, “An Efficient Search Strategy for Block Motion Estimation
using Image Feature”, IEEE Transactions on Image Processing, Vol. 10, Issue 8, pp. 1223 –
1238, August 2001.

[28]. Yui-Lam Chan, Ko-Cheung Hui and Wan-Chi Siu, “Fast Search Algorithm for Edge-Oriented
Block Matching Algorithm, IEEE Proceedings of International Intelligent Multimedia, Video
and Speech Processing, pp. 225 – 228, May 2001.

[29]. M. B. Ahmad, Kong Yoon Kim, Kyong Sig Roh and Taw Sun Choi, “Motion Vector Estimation
using Edge Oriented Block Matching Algorithm for Video Sequences, IEEE Proceedings on
International Conference on Image Processing, Vol. 1, pp. 860 – 863, September 2000.

[30]. W. Li and E. Salari, “Successive Elimination Algorithm for Motion Estimation”, IEEE
Transactions on Image Processing, Vol. 4, No. 1, pp.105 – 107, January 1995.

[31]. Hung-Sheng Wang, R. M. Mersereau, “Fast Algorithm for the Estimation of Motion Vectors”,
IEEE Transactions of Image Processing, Vol. 8, No. 1, pp. 435 – 438, March 1999.

[32]. Soo-Mok Jung, Sung-Chul Shin, Hyunki Baik and Myong-Soon Park, “Nobel Successive
Elimination Algorithm for the Estimation of Motion Vectors”, IEEE Proceedings of
International Symposium on Multimedia Software Engineering, pp. 332 – 335, December 2000.

[33]. Soo-Mok Jung, Sung-Chul Shin, Hyunki Baik and Myong-Soon Park, “New Fast Successive
Eliminiation Algorithm”, IEEE Proceedings of 43rd Midwest Symposium on Circuits and
Systems, Vol. 2, pp. 616 – 619, August 2000.

[34]. X. Q. Gao, C. J. Duanmu and C. R. Zou, “A Mutlilevel Successive Elimination Algorithm for
Block Matching Motion Estimation:, IEEE Transactions on Image Processing, Vol. 9, Issue 9,
pp. 501 – 504, March 2000.

References

172

[35]. Soo-Mok Jung, Sung-Chul Shin, Hyunki Baik and Myong-Soon Park, “Efficient Multilevel
Successive Eliminiation Algorithms for Block Matching Motion Estimation”, IEE Proceedings
of Vision, Image and Signal Processing, Vol. 149, Issue 2, pp. 73 – 84, April 2002.

[36]. Tae Gyoung Ahn, Yong Ho Moon and Jae Ho Kim, “Fast Full-Search Motion Estimation Based
on Multilevel Successive Elimination Algorithm”, IEEE Transactions on Circuits and Systems
for Video Technology, Vol. 14, Issue 11, pp. 1265 – 1269, November 2004.

[37]. T. Koga, K. Linuma, A. Hirano, Y. Lijima and T. Ishiguro, “Motion Compensated Interframe
Coding for Video Conferencing”, Proceedings of National Telecommunications Conference 81,
pp. C.9.6.1 – 9.6.5, November 1981.

[38]. Reoxiang Li, Bing Zeng and M. L. Liou, “A New Three-Step Search Algorithm for Block
Motion Estimation”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 4,
Issue 4, pp. 438 – 442, August 1994.

[39]. Jo Yew Tham, Surendra Ranganath, Maitreya Ranganath, Ashraf Ali Kassim, “A Novel
Unrestricted Center-Biased Diamond Search Algorithm For Block Motion Estimation”, IEEE
Transactions on Circuits and Systems for Video Technology, Vol. 8, Issue 4, pp. 369 – 377,
August 1998.

[40]. Ce Zhu, Xiao Lin and Lap-Pui Chau, “Hexagon-Based Search Pattern for Fast Block Motion
Estimtion”, Vol. 12, Issue 5, pp. 349 – 355, May 2002.

[41]. Charles K. Chui, “An Introduction to Wavelets”, Academic Press, 1992.

[42]. Martin Vetterli, “Wavelets and Subband Coding”, Englewood Cliffs, NJ: Prentice Hall PTR,
1995.

[43]. Randy K. Young, “Wavelet Theory and Its Applications”, Kluwer Academic Publishers, 1993.

[44]. M. Antonini, M. Barlaud, P. Mathieu and I. Daubechies, “Image Coding Using Wavelet
Transform”, IEEE Transactions on Image Processing, Vol. 1, No. 2, pp. 205 – 220, April 1992.

[45]. M. Vetterli and C. Herley, “Wavelets and Filter Banks: Theory and Design”, IEEE Transactions
on Signal Processing, Vol. 40, Issue 9, pp. 2207 – 2232, September 1992.

[46]. Ingrid Daubechies, “Ten Lectures on Wavelets”, Philadelphia, Pa.: Society for Industrial and
Applied Mathematics, 1992.

[47]. A. Skodras, C. Christopoulis and T. Ebrahimi, “The JPEG 2000 Still Image Compression
Standard”, IEEE Signal Processing Magazine, Vol. 18, No. 5, pp. 36 – 58, September 2001.

[48]. Bryan E. Usevitch, “A Tutorial on Modern Lossy Wavelet Image Compression: Foundations of
JPEG2000”, IEEE Signal Processing Magazine, pp. 22 – 35, September 2001.

[49]. Wim Sweldens, “The Lifting Scheme: A Construction of Second Generation Wavelets”, SIAM
Journal on Mathematical Analysis archive, Vol. 29, Issue 2, pp. 511 – 546, March 1998.

[50]. Wim Sweldens, “The Lifting Scheme: A Custom-design Construction of Biorthogonal
Wavelets”, Applied and Computational Harmonics Analysis, Vol. 3, No. 2, pp. 186 – 200, 1996.

[51]. Ingrid Daubechies and Wim Sweldens, “Factoring Wavelet Transforms into Lifting Steps”, J.
Fourier Anal. Appl., Vol. 4, Nr. 3, pp. 247 – 269, 1998.

[52]. Andrew Secker and David Taubman, “Lifting-Based Invertible Motion Adaptive Transform
(LIMAT) Framework for Highly Scalable Video Compression”, IEEE Transactions on Image
Processing, vol. 12, no. 12, pp. 1530 – 1542, Dec 2003.

[53]. Nagita Mehrseresht and David Taubman, “Adaptively Weighted Update Steps in Motion
Compensated Lifting Based Scalable Video Compression”, IEEE Proceedings of International
Conference on Image Processing, vol. 2, pp. 771 – 774, Sept. 2003.

[54]. Christophe Tillier, Béatrice Pesquet-Popescu, Yinwei Zhan and Henk Heijmans, “Scalable
Video Compression with Temporal Lifting using 5/3 Filters”, Proceedings of Picture Coding
Symposium, pp. 55 – 58, April 2003.

[55]. Grégoire Pau and Béatrice Pesquet-Popescu, “Uniform Motion-Compensated 5/3 Filterbank for
Subband Video Coding”, Proceedings of International Conference on Image Processing, vol. 5,
pp. 3117 – 3120, Oct. 2004.

References

173

[56]. Deepak S. Turaga, Mihaela van der Schaar and Béatrice Pesquet-Popescu, “Temporal Prediction
and Differential Coding of Motion Vectors in the MCTF Framework”, Proceedings of
International Conference on Image Processing, vol. 2, pp. 57 – 60, Sept. 2003.

[57]. Jerome M. Shapiro, “Embedded Images Coding Using Zerotree Of Wavelet Coefficients”, IEEE
Transactions on Signal Processing, Vol .41, No. 12, pp. 3445 – 3462, Dec. 1993.

[58]. Eui-Sung Kang, Toshihisa Tanaka, Tae-Hyung Lee and Sung-Jea Ko, “A Multi-threshold
Embedded Zerotree Wavelet Coder”, Proceedings of International Technical Conference on
Circuits / Systems, Computers and Communications (ITC – CSCC), Vol. 1, pp. 117 – 120, Jul.
1998.

[59]. Tanzeem Muzaffar and Tae-Sun Choi, “Simplified Wavelet Based Image Compression Using
Fixed Length Residual Value”, Institute of Electronics, Information and Communication
Engineers (IEICE) Transactions of Information and System, Vol. E84-D, No. 12, pp. 1828 –
1831, Dec. 2001.

[60]. Tanzeem Muzaffar and Tae-Sun Choi, “Wavelet Based Image Compression Using Subband
Threshold”, SPIE International Symposium on Optical Science, Engineering and
Instrumentation, Jul. 2002.

[61]. Stephen A. Martucci, Iraj Sodagar, Tihao Chiang and Ya-Qin Zhang, “A Zerotree Wavelet
Video Coder”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 7, No. 1,
Feb. 1997.

[62]. Carles D. Creusere, “A New Method of Roust Image Compression Based on the Embedded
Zerotree Wavelet Algorithm”, IEEE Transactions on Image Processing, Vol. 6, No. 10, Oct.
1997.

[63]. S. Patel and S. Srinivasan, “Modified Embedded Zerotree Wavelet Algorithm for Fast
Implementation of Wavelet Image Codec”, IEE Electronics Letters, Vol. 36, Issue 20, pp. 1713
– 1714, Sept. 2000.

[64]. Roberto Yusi Omaki, Gen Fujita, Takao Onoye and Isao Shirakawa, “Embedded Zerotree
Wavelet Based Algorithm for Video Compression”, Proceedings of the IEEE Region 10
Conference (TENCON), Vol. 2, pp. 1343 – 1346, September 1999.

[65]. E. S. Kang, T. Tanaka and S. J. Ko, “Improved Embedded Zerotree Wavelet Coder”, Electronics
Letters, Vol. 35, No. 9, pp. 705 - 706, April 1999.

[66]. Iraj Sodagar, Hung-Ju Lee, Paul Hatrack and Bing-Bing Chai, “Multi-Scale Zerotree Entropy
Coding”, IEEE International Symposium on Circuits and Systems, Vol. 1, pp. 311 – 314, May
2000.

[67]. Il-Kyu Eom and Yoo-Shin Kim, “Multiple Description EZW Coding Using Overlapped
Threshold”, Proceedings of International Conference on Signal Processing, Vol. 1, pp. 796 – 799,
August 2002.

[68]. Yingwei Chen and William A. Pearlman, “Three-Dimensional Subband Coding of Video Using
the Zerotree Method”, Proceedings of Symposium on Visual Communications and Image
Processing, 1996.

[69]. Amir Said and William A. Pearlman, “Image Compression Using the Spatial-Orientated Tree”,
Proceedings of International Symposium of Circuits and Systems, pp. 279 – 282, May 1993.

[70]. Amir Said and William A. Pearlman, “A New Fast and Efficient Image Codec Based on Set
Partitioning Into Hierarchical Trees”, IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 6, pp. 243 – 250, Jun. 1996.

[71]. Beong-Jo Kim and William A. Pearlman, “An Embedded Wavelet Video Coder Using Three-
Dimensional Set Partitioning in Hierarchical Trees (SPIHT)”, Proceedings of Data Compression
Conference, pp. 251 – 260, March 1997.

[72]. Christos Chrysafis, Amir Said, Alex Drukarev, Asad Islam and William A. Pearlman, “SBHP –
A Low Complexity Wavelet Coder”, IEEE International Conference on Acoustics, Speech and
Signal Processing, Vol. 4, pp. 2035 – 2038, June 2000.

References

174

[73]. William A. Pearlman, Asad Islam, Nithin Nagaraj and Amir Said, “Efficient, Low-Complexity
Image Coding With a Set-Partitioning Embedded Block Coder”, IEEE Transactions on Circuits
and Systems for Video Technology, Vol. 14, No. 11, pp. 1219 – 1235, November 2004.

[74]. Ya-Qin Zhang and Sohail Zafar, “Motion-Compensated Wavelet Transform Coding for Color
Video Compression”, IEEE Transactions on Circuits and Systems For Video Technology, Vol. 2,
No. 3, pp. 285 – 296, September 1992.

[75]. M. K. Mandal, E. Chan, X. Wang and S. Panchanathan, “Multiresolution Motion Estimation
Techniques for Video Compression”, Optical Engineering, Vol. 35, pp. 128 – 136, January 1996.

[76]. Jie Wei and Ze-Nian Li, “An Enhancement to MRMC Scheme in Video compression”, IEEE
Transactions on Circuits and Systems for Video Technology”, Vol. 7, No. 3, pp. 564 – 568, June
1997.

[77]. Sohail Zafar, Ya-Qin Zhang and Bijan Jabbari, “Multiscale Video Representation Using
Multiresolution Motion Compensated and Wavelet Decomposition”, IEEE Journal on Selected
Areas in Communications, Vol. 11, No. 1, pp. 24 – 35, January 1993.

[78]. Seongman Kim, Seunghyeon Rhee, Jun Geun Jeon and Kyu Tae Park, “Interframe Coding
Using Two-Stage Variable Block-Size Multiresolution Motion Estimation and Wavelet
Decomposition”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 8, No.
4, pp. 399 – 410, August 1998.

[79]. Jungwoo Lee and Bradley W. Dickinson, “Subband Video Coding with Scene-Adaptive
Hierarchical Motion Estimation”, IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 9, No. 3, pp. 459 – 466, April 1999.

[80]. Jinwen Zan, M. Omair Ahmad and M. N. S. Swamy, “New Techniques for Multi-resolution
Motion Estimation”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 12,
No. 9, pp. 793 – 802, September 2002.

[81]. Aria Nosratinia and Michael T. Orchard, “A Multi-resolution Framework for Backward Video
Coding”, Proceedings of International Conference on Image Processing, pp. 563 – 566, 1995.

[82]. P. Cheng, J. Li and C. J. Kuo, “Multiscale Video Compression using Wavelet Transform and
Motion Compensation”, Proceedings of IEEE International Conference on Image Processing, pp.
606 – 609, October 1995.

[83]. Hyun-Wook Park and Hyung-Sun Kim, “Motion Estimation Using Low-Band-Shift Method for
Wavelet-Based Moving-Picture Coding”, IEEE Transactions on Image Processing, Vol. 9, No. 4,
pp. 577 – 587, April 2000.

[84]. Deepak S. Turaga, Mihaela van der Schaar and Béatrice Pesquet-Popescu, “Complexity Scalable
Motion Compensated Wavelet Video Encoding”, IEEE Transactions on Circuits and Systems for
Video Technology, Vol. 15, No. 8, pp. 982 – 993, August 2005.

[85]. Georgia Feideropoulou, Béatrice Pesquet-Popescu and Jean-Clude Belfiore, “Bit Allocation
Algorithm for Joint Source-Channel Coding of T+2D Video Sequences”, Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing, Vol. 2, pp. 177 – 180,
March 2005.

[86]. Grégoire Pau and Béatrice Pesquet-Popescu, “Four-Band Linear-Phase Orthogonal Spatial Filter
Bank for Subband Video Coding”, Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing, Vol. 2, pp. 277 – 280, March 2005.

[87]. Bernd Girod and Sangeun Han, “Optimum Update for Motion-Compensated Lifting”, IEEE
Signal Processing Letters, Vol. 12, No. 2, pp. 150 – 153, February 2005.

[88]. Sang-Hee Park, Hyo-Kak Kim, Jong-Wong Jung and Sung-Jea Ko, “Improved Motion Vector
Prediction Method in Scalable Video Coding”, Proceedings of IEEE International Symposium
on Intelligent Signal Processing and Communication Systems, pp. 253 – 256, December 2005.

[89]. Jens-Rainer Ohm, Mihaela van der Schaar and John W. Woods, “Interframe Wavelet Coding –
Motion Picture Representation for Universal Scalability”, EURASIP Signal Processing: Image
Communication, Special Issue on Digital Camera, Vol. 19, No. 9, pp. 877 – 908, October 2004.

References

175

[90]. Andrew Secker and David Taubman, “Highly Scalable Video Compression with Scalable
Motion Coding”, IEEE Transactions on Image Processing, Vol. 13, No. 8, pp. 1029 - 1041,
August 2004.

[91]. Jérôme Viéron, Christine Guillemot and Stéphane Pateux, “Motion Compensated 2D+T Wavelet
Analysis for Low Rate FGS Video Compression”, Proceedings of Tyrrhenian International
Workshop on Digital Communications, September 2002.

[92]. Cchristophe Parisot, Marc Antonini and Michel Barlaud, “3D Scan Based Wavelet Transform
for Video Coding”, Proceedings of IEEE 4th Workshop on Multimedia Signal Processing, pp.
403 – 408, October 2001.

[93]. Janusz Konrad, “Transversal Versus Lifting Approach to Motion-Compensated Temporal
Discrete Wavelet Transform of Image Sequences: Equivalence and Tradeoffs”, SPIE
Symposium on Electronic Imaging, Visual Communications and Image Processing, pp. 452 –
453, January 2004.

[94]. Markus Flierl and Bernd Girod, “Investigation of Motion-Compensated Lifted Wavelet
Transforms”, Proceedings of Picture Coding Symposium, April 2003.

[95]. Jizheng Xu, Shipeng Li, Zixiang Xiong and Ya-Qin Zhang, “Memory-Constrained 3D Wavelet
Transforms for Video Coding without Boundary Effects”, IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 12, No. 9, pp. 812 – 818, September 2002.

[96]. Béatrice Pesquet-Popescu and Vincent Bottreau, “Three-Dimensional Lifting Schemes for
Motion Compensated Video Compression”, Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing, Vol. 3, pp. 1793 – 1796, May 2001.

[97]. Vincent Bottreau, Marion Bénetière, Boris Felts, Béatrice Pesquet-Popescu, “A Fully Scalable
3D Subband Video Codec”, Proceedings of IEEE International Conference of Image Processing,
Vol. 2, pp. 1017 – 1020, October 2001.

[98]. Deepak S. Turaga and Mihaela van der Schaar, “Reduced Complexity Spatio-Temporal Scalable
Motion Compensated Wavelet Video Coding”, Proceedings of IEEE International Conference
on Multimedia and Expo, Vol. 2, pp. 561 – 564, July 2003.

[99]. Christophe Tillier and Béatrice Pesquet-Popescu, “3D, 3-Band, 3-Tap Temporal Lifting for
Scalable Video Coding”, Proceedings of IEEE International Conference on Image Processing,
Vol. 3, pp. 779 – 782, September 2003.

[100]. Christophe Tillier, Béatrice Pesquet-Popescu and Mihaela van der Schaar, “Highly Scalable
Video Coding by Bidirectional Predict-Update 3-Band Schemes”, Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing, Vol. 3, pp. 125 – 128,
May 2004.

[101]. Markus Flierl, “Video Coding with Lifted Wavelet Transforms and Frame-Adaptive Motion
Compensatoin”, Proceedings of the 8th International Workshop on Very Low Bitrate Video
Coding, September 2003.

[102]. Mihaela van deer Schaar and Deepak S. Turaga, “Unconstrained Motion Compensated Temporal
Filtering (UMCTF) Framework for Wavelet Video Coding”, Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing, Vol. 3, pp. 81 – 84, April 2003.

[103]. Grégoire Pau, Christophe Tiller and Béatrice Pesquet-Popescu, “Optimization of the Predict
Operator in Lifting-Based Motion Compensated Temporal Filtering”, Proceedings of SPIE
Symposium on Visual Communications and Image Processing, January 2004.

[104]. Thomas André, Marco Cagnazzo, Marc Antonini, Michel Barlaud, Nikola Božinvoić and Janusz
Konrad, “(N, 0) Motion-Compensated Lifting-Based Wavelet Transform”, Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing, Vol. 3, pp. 121 – 124,
May 2004.

[105]. Christophe Tillier, Béatrice Pesquet-Popescu and Mihaela van der Schaar, “Weighted Average
Spatio-Temporal Update Operator for Subband Video Coding”, Proceedings of IEEE
International Conference on Image Processing, Vol. 2, pp. 1305 – 1308, October 2004.

References

176

[106]. Konstantin Hanke, Jens-Rainer Ohm and Thomas Rusert, “Adaptation of Filters and
Quantization in Spatio-Temporal Wavelet Coding with Motion Compensation”, Proceedings of
Picture Coding Symposium, pp. 49 – 54, April 2003.

[107]. William A. Pearlman, Asad Islam, Nithin Nagaraj and Amir Said, “Efficient, Low-Complexity
Image Coding with a Set-Partitioning Embedded Block Coder”, IEEE Transactions on Circuits
and Systems For Video Technology, pp. 1219 – 1235, Vol. 14, No. 11, Nov. 2004.

[108]. K. C. Hui, W. C. Siu and Y. L. Chan, “New Adaptive Partial Distortion Search Using Clustered
Pixel Matching Error Characteristic”, ISCAS, pp. 97-100, 2004.

[109]. B. J. Kim, Z. Xiong and W. A. Pearlman, “Very low bit-rate embedded video coding with 3D set
partitioning in hierarchical trees (3D-SPIHT)”, IEEE Transactions on Circuits and Systems for
Video Technology, vol. 8, pp. 1365 – 1374, 2003.

[110]. S. Hsiang and J. Woods, “Embedded image coding using zeroblocks of subband/wavelet
coefficients and context modelling”, IEEE International Symposium on Circuits and Systems, p.
589, 2000.

	theses_copyright_undertaking
	b21167862

