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Abstract

This thesis is concentrated on the study of global techniques to the numerical solution

of nonsmooth problems. These problems are directly relevant to the variational in-

equality problems, complementarity problems, heat transmission problems in medium,

parabolic obstacle problems within financial mathematics, and control-state constrained

optimal control problems. These global approaches are discussed deeply on conver-

gence theories and computational results.

A vital point in the implementation of the global approaches to the minimization

of a nonsmooth (merit) function, such as Newton methods based on path search, line

search, and trust region algorithms, is the calculation of a (generalized) Jacobian ma-

trix equation effectively, especially for large-scale problems. In Chapter 2, we consider

a Krylov subspace strategy for the underlying global methods to solving nonsmooth

equations. Such strategy has a main advantage of computing a generalized Jacobian

matrix equation, especially, in many applications where the (generalized) Jacobian ma-

trix is not practically computable, or is expensive to obtain. Another global strategy is

to consider avoiding the minimization of a nonsmooth (merit) function, pseudotransient

continuation in Chapter 3 may be a nice choice for this purpose.

Many practical problems have certain structures; if we could find these structures,

we may design more suitable algorithms. These algorithms have not only global conver-

gence, but also have special properties, for example: finite termination, monotonicity.

Indeed, the Newton-type methods considered to solve piece-wise systems in Chapter

4 have a remarkable monotone convergence. These piece-wise systems arise from the

discretizations of heat transmission problems in a medium, parabolic obstacle problems

in financial mathematics.

Other strategies, for example: smoothing strategy, nonmonotone strategy, etc., have

also rather good effects in most of the practical implementations, even if in the infinite

dimensional spaces. To show this, numerical solution of optimal control problems sub-

ject to mixed control-state constraints has been investigated in Chapter 5. The neces-

sary conditions of the optimal control problems are stated in terms of a local minimum
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principle. By use of the Fischer-Burmeister function, the local minimum principle is

transformed into an equivalent nonlinear and nonsmooth equation in appropriate Ba-

nach spaces. This nonlinear and nonsmooth equation is solved by inexact nonsmooth

and smoothing Newton methods. The globalized methods are developed in a very gen-

eral setting that allows for non-monotonicity of squared residual norm values at subse-

quent iterates. Numerical examples are presented to demonstrate the efficiency of these

presented approaches.
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Notation

IRn real n−dimensional Euclidean space

x ∈ IRn an n−dimensional vector

x> the transpose of a vector x

{xk} a sequence of vectors x1, x2, x3, . . .

‖x‖ norm of x (2−norm unless otherwise stated)

x>y the standard inner product of vector x and y ∈ IR

f (x) : Ω⊆ IRn → IRm a mapping from domain Ω onto range IRm

∇ f (x) gradient of f

f ′(x) derivative of f

∇2 f (x) Hessian of f

f ′(x,h) directional derivative of f at x in a direction h ∈ IRn

O(δ ) the same order quantity as the small δ ∈ IRn

o(δ ) higher order quantity than the small δ
convS convex hull of the set S⊆ IRn

For a locally Lipschitz function f : Ω⊆ IRn → IRm

∂ f (x) the generalized derivative of f in the sense of Clarke

∂B f (x) the B−subdifferential of f
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Chapter 1

Introduction

Consider the system of nonlinear equations

F(x) = 0, (1.1)

where F : IRn → IRn is a locally Lipschitzian function.

It is well known that if F is continuously differentiable (i.e., smooth) and F ′ is

locally Lipschitz and invertible at a solution x∗, then there exists a ball S(x∗,r), r > 0

such that for any x0 ∈ S(x∗,r), the Newton method

xk+1 = xk−F ′(xk)−1F(xk), k ≥ 0 (1.2)

is quadratically convergent to x∗, see [98, 40].

In the nonsmooth case, F ′(xk) may not exist. The generalized Newton method

proposes to use generalized Jacobian matrix of F to play the role of F ′ in the Newton

method (1.2) in the finite dimensional case.

The (generalized) Newton method is the prototype of many local, fast algorithms

for solving (non)smooth equations. These algorithms have excellent convergence rates

if the starting iterate point belongs to a suitably chosen neighborhood of the desired

solution. In addition, the damped Newton and the damped Gauss-Newton methods

were presented for improving the global convergence of algorithm [98, 40].

In this chapter, we mainly review the semismooth Newton method and some glob-

alization techniques of the (generalized) Newton methods.
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2 Chapter 1 Introduction

1.1 Generalized Newton-type Methods

In this section, we introduce the generalized Newton-type methods. For convenience,

we collect first concepts about nonsmooth analysis.

The notion of B(ouligand)-derivative was proposed by Robinson in [115]. A func-

tion F : IRn → IRn is said to be B-differentiable at a point x if F has a one-sided direc-

tional derivative F ′(x,d) at x (see (1.6)) and

lim
d→0

F(x+d)−F(x)−F ′(x,d)
‖d‖ = 0. (1.3)

(1.3) can be written as F(x + d) = F(x)+ F ′(x,d)+ o(‖d‖), see [109]. Shapiro [123]

showed that a locally Lipschitzian function F is B-differentiable at x if and only if it

is directionally differentiable. Therefore, there is no difference between B-derivatives

and directional derivatives in this chapter.

Suppose that F : IRn → IRn is locally Lipschitz but not necessarily smooth. Let

DF := {x ∈ IRn : F is differentiable at x} .

Then the generalized derivative of F at x in the sense of Clarke [30] is defined by

∂F(x) = conv∂BF(x),

where conv∂BF(x) denotes the convex hull of the set

∂BF(x) =



 lim

x j→x
x j∈DF

F ′(x j)



 ,

which is called the B−subdifferential of F at x ∈ IRn. The set ∂F(x) is nonempty, con-

vex and compact for any fixed point x. The function F : IRn → IRn is called semismooth

[113, 109] at x ∈ IRn if F is directionally differentiable at x and for any V ∈ ∂F(x+h),

V h− f ′(x,h) = o(‖h‖), holds as h→ 0.

The function F is called p−order semismooth at x if the term o(‖h‖) in the above
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expression is replaced by O(‖h‖1+p), and called strongly semismooth at x if the term

o(‖h‖) in the above expression is replaced by O(‖h‖2) [113, 109]. We say that F is

BD-regular at x ∈ IRn if all the elements in ∂BF(x) are n×n nonsingular matrices.

In fact, semismoothness was originally introduced by Mifflin [96] for functionals,

which plays an important role in the global convergence theory of nonsmooth opti-

mization, see Facchinei and Pang [46]. Qi and Sun [113, 109] extended the concept of

semismoothness to vector-valued functions.

We also need some lemmas for our discussion.

Lemma 1.1 (see [113, Lemma 2.2]). Suppose that F : IRn→ IRn is a locally Lipschitzian

function and F ′(x,h) exists for any h at x. Then

(i) F ′(x,h) is Lipschitzian in h,

(ii) for any h there exists a V ∈ ∂F(x) such that F ′(x,h) = V h.

Lemma 1.2 (see [102, Proposition 3]). If F is BD-regular at x ∈ IRn, then there is a

neighborhood N of x and a positive constant α such that for any y∈N and V ∈ ∂BF(y),

V is nonsingular and ‖V−1‖ ≤ α . If, furthermore, F(x) = 0 and F is semismooth at x,

then there is a neighborhood N′ of x and a positive constant β such that

‖F(y)‖ ≥ β‖y− x‖, ∀y ∈ N′.

The Newton method for nonsingular nonsmooth equations using the generalized

Jacobian matrix is defined by

xk+1 = xk− (V k)−1F(xk), V k ∈ ∂F(xk). (1.4)

A local superlinear convergence theorem is given in [113], where it is assumed that all

V ∈ ∂F(x∗) are nonsingular.

Qi [109] suggested a modified version of method (1.4) in the form

xk+1 = xk− (V k)−1F(xk), V k ∈ ∂BF(xk), (1.5)

and gave a local superlinear convergence theorem for method (1.5). His theorem re-

duced the nonsingularity requirement on all members of ∂F(x∗) to all members of
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∂BF(x∗).
Another modification is an iteration function method introduced by Han, Pang and

Rangaraj [61] using an iteration function G(·, ·) : IRn× IRn → IRn. If F has a one-sided

directional derivative

F ′(x,d) := lim
t↓0

F(x+ td)−F(x)
t

(1.6)

and G(x,d) = F ′(x,d), a variant of the iteration function method can be defined by

{
solve F(xk)+G(xk,d) = 0,

set xk+1 = xk +d.
(1.7)

This modification is actually a generalization of Pang’s B-differentiable Newton method

[101, 100].

In practice, we should note that computing the exact solution (1.7) could be expen-

sive if n is large and, for any n, may not be justified when x is far from a solution.

This difficulty motivates us to invoke another classical tool for smooth (nonsmooth)

equations: the inexact Newton method [122, 37, 101, 94, 137]. Actually, the notion of

inexact solution in algorithms for solving nonsmooth equations was suggested in [101]

and has been employed in [94, 74, 45].

Algorithm 1.3. INEXACT NEWTON METHOD

Let x0 be given. For k = 0 step 1 until convergence do:

Find some ηk ∈ [0,1) and a vector dk that satisfy

‖F(xk)+V kdk‖ ≤ ηk‖F(xk)‖. (1.8)

Set xk+1 = xk +dk.

Here V k ∈ ∂BF(xk), {ηk} is a sequence of forcing terms.

1.2 Globalization Techniques

The semismooth Newton method and its convergence results can be applied to some im-

portant mathematical programming problems such as nonlinear complementarity prob-

lems, variational inequalities and KKT conditions of optimization; see [45, 74, 94] and
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the state-of-the-art monograph [46].

Note that (1.5) is only convergent locally under semismoothness assumption. A

natural question is that whether (1.5) can be globalized similar to classic Newton’s

method for solving smooth equations or not. In general, the answer is negative because

the function Θ defined by

Θ(x) =
1
2
‖F(x)‖2 (1.9)

is not smooth. Fortunately, in some especial but important cases, Θ can be smooth

though F itself may not smooth. For example, in order to solve a nonlinear comple-

mentarity problem (NCP), i.e., find a vector x ∈ IRn such that

x≥ 0, G(x)≥ 0, xT G(x) = 0,

where G : IRn → IRn is continuously differentiable with G(x) = (G1(x), . . . ,Gn(x))T , we

usually reformulate this NCP as a system of nonlinear equations

Fi(x) = φ(xi,Gi(x)), i = 1, . . . ,n, (1.10)

via a so-called complementarity function φ : IR2 → IR defined by

φ(a,b) = 0⇐⇒ a≥ 0,b≥ 0,ab = 0.

The well-known min function (φ(a,b) = min(a,b)) and Fischer-Burmeister function

(φ(a,b) =
√

a2 +b2− (a + b)) are both complementarity functions. Furthermore, the

(1.10) reformulated by Fischer-Burmeister function [48] is not differentiable at x =

0, but Θ(x) is smooth. See Jiang and Ralph [72], Qi [110]. By assuming that Θ(x)

is smooth, various globalized semismooth Newton methods could be established, see

[72, 110, 46] for details.

As the classical Newton method, roughly speaking, there are two seminal classes of

globalization techniques

• Line search strategy

• Trust region strategy

Most globalized methods are achieved via the above two strategies. For example,
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we illustrate a global Newton method with line search strategy,

Algorithm 1.4. INEXACT SEMISMOOTH NEWTON METHOD WITH LINE SEARCH

Let x0 be given, β ∈ (0,1), ηmax ∈ [0,1) and 0 < θmin < θmax < 1 be given.

For k = 0 step 1 until convergence do:

Find some ηk ∈ [0,ηmax] and a vector dk that satisfy

‖F(xk)+V kdk‖ ≤ ηk‖F(xk)‖, (1.11)

and then choose θ ∈ [θmin,θmax], update λk ← θλk until the following inequality is

satisfied

Θ(xk +λkdk)≤Θ(xk)+βλk∇Θ(xk)T dk (1.12)

where ∇Θ(xk) = (V k)>F(xk) with V k ∈ ∂BF(xk).

Set xk+1 = xk +λkdk.

The merits of those methods based on the above globalization techniques are that

they are globally and superlinearly (quadratically) convergent, and at each iteration

only a system of linear equations needs to be solved [118].

In the practical implementations of these algorithms, some issues should be paid

exceptional attention, such as the calculation of a generalized Jacobian matrix (or gra-

dient) for large-scale problems, minimization of a nonsmooth (merit) function, struc-

tures of the problems, smoothing strategy, nonmonotone strategy, etc., because these

strategies could improve considerably the efficiency of the underlying approaches. In

order to show these asserts, a Krylov subspace strategy for solving nonsmooth equa-

tions are proposed in Chapter 2. Such strategy has a main advantage of computing a

generalized Jacobian matrix, especially, in many applications where the (generalized)

Jacobian matrix equation is not directly computable, or is expensive to obtain. Instead

of the minimization of a nonsmooth (merit) function, another global strategy, pseudo-

transient continuation, is considered in Chapter 3. Chapter 4 designs the Newton-type

methods to solve piece-wise systems arise from the discretizations of heat transmission

problems in a medium, parabolic obstacle problems within financial mathematics, due

to certain structure of these problems. Chapter 5 investigates the numerical solution

of optimal control problems subject to mixed control-state constraints. By use of the

Fischer-Burmeister function, the necessary conditions of the optimal control problems
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stated in terms of a local minimum principle is transformed into an equivalent nonlinear

and nonsmooth equation in appropriate Banach spaces. This nonlinear and nonsmooth

equation is solved by inexact nonsmooth and smoothing Newton methods. The global-

ized methods are developed in a very general setting that allows for non-monotonicity

of squared residual norm values at subsequent iterates.
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Chapter 2

Inexact

Newton-Krylov

Algorithms

In this chapter1 we consider the system of nonlinear equations

F(x) = 0, (2.1)

where F : IRn → IRn is a locally Lipschitzian function. Qi [109] suggested a modified

version of method (1.4) in the form

xk+1 = xk− (V k)−1F(xk), V k ∈ ∂BF(xk), (2.2)

and gave a local superlinear convergence theorem for method (2.2). His theorem re-

duced the nonsingularity requirement on all members of ∂F(x∗) to all members of

∂BF(x∗). Further references to the development of approaches based on this idea can

be found in [107, 112, 128, 28, 27, 29] and references therein. Among them the first

globally and superlinearly (quadratically) convergent smoothing Newton method was

proposed by Chen, Qi and Sun in [29].

Modification of an iteration function method was introduced by Han, Pang and

Rangaraj [61] using an iteration function G(·, ·) : IRn× IRn → IRn. If F(x) has a one-

sided directional derivative and G(x,d) = F ′(x,d), a variant of the iteration function

method can be defined by

Algorithm 2.1. Let x0 be given. For k = 0 step 1 until convergence do:

1This chapter is taken from [25].

9



10 Chapter 2 Inexact Newton-Krylov Algorithms

Find a vector dk that satisfies

F(xk)+G(xk,dk) = 0. (2.3)

Set xk+1 = xk +dk.

This modification is actually a generalization of Pang’s B-differentiable Newton method

[101, 100]. Other analysis of Newton methods for Lipschitz equations as well as exten-

sions and applications can be found in the monograph [46].

On the other hand, computing an exact solution of Jacobian linear system in (2.2)

or (2.3) can be expensive if n is large and, for any n, may not be justified when x is

far from a solution. This difficulty motivates us to invoke another classical tool for

smooth (nonsmooth) equations: the inexact Newton method [122, 37, 101, 94, 137].

Actually, the notion of inexact solution in algorithms for solving nonsmooth equations

was suggested in [101] and has been employed in [94, 74, 45].

In [94] iteration processes of a general form led to the following algorithm, called

inexact Newton method (when ∂BF = {F ′(xk)}, i.e. F(x) is strictly differentiable).

Algorithm 2.2. Let x0 be given. For k = 0 step 1 until convergence do:

Find some ηk ∈ [0,1) and a vector dk that satisfy

‖F(xk)+V kdk‖ ≤ ηk‖F(xk)‖. (2.4)

Set xk+1 = xk +dk.

Here V k ∈ ∂BF(xk), {ηk} is a sequence of forcing terms.

If F(x) has Fréchet differential F ′(x), the global convergence of the inexact New-

ton method is obtained by augmenting the inexact Newton condition with a sufficient

monotone decrease condition on the merit function ‖F(x)‖ introduced by Eisenstat and

Walker [122].

Algorithm 2.3. Let x0 be given. For k = 0 step 1 until convergence do:

Find some ηk ∈ [0,1) and a vector dk that satisfy

‖F(xk)+F ′(xk)dk‖ ≤ ηk‖F(xk)‖, (2.5)
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and

‖F(xk +dk)‖ ≤ (1−β (1−ηk))‖F(xk)‖, where β ∈ (0,1). (2.6)

In the kth iteration, the acceptability conditions on the trial step dk are used to the

monotone technique. Martı́nez and Qi [94] established a global convergence of the

inexact Newton method for nonsmooth equations using a sufficient monotone decrease

condition on the merit function
1
2
‖F(x)‖2.

Several authors have succeeded using Krylov subspace methods inside a Newton

iteration in the context of the systems of smooth equations and unconstrained opti-

mization. See [6, 7, 10, 12, 13, 79, 80, 84] and references therein. One of the main

advantages of Krylov subspace methods is that these solvers are often faster than direct

methods even if the Jacobian matrix is small and dense. In this chapter we attempt

to use variants of Newton’s iteration in association with Krylov subspace methods for

solving the generalized Jacobian linear systems.

This chapter is organized as follows. We review inexact Newton methods and

present a nonmonotone version of inexact Newton-Krylov methods for nonsmooth

equations in Section 2.1. In Section 2.3 we analyze the corresponding global and local

convergence. In Section 2.4, we give a smoothing variant of inexact Newton-Krylov

methods for nonsmooth problems. In Section 2.5, we give some numerical examples.

Finally, we make some concluding remarks in Section 2.6.

Notation: Throughout the chapter ‖ ·‖ will denote the Euclidean norm. However, it

is easy to verify that many results are independent of this choice.

2.1 Inexact Newton Methods

By the use of nonsmooth analysis illustrated in Chapter 1, this section will present the

basic ideas of inexact Newton methods and Newton-Krylov methods for nonsmooth

equations. The blanket assumptions made throughout this chapter are Assumptions 2.4

and 2.5.

Assumption 2.4. The function F(x) is semismooth or stronger, p-order semismooth,

0 < p≤ 1.

Assumption 2.5. Each component function Fi of F(x) is continuously differentiable on

IRn \F−1
i (0).
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Ulbrich [132] has shown that Assumptions 2.5 holds, e.g., for complementarity

problems based on Fisher-Burmeister function [48], which is used in our numerical tests

in Section 2.5. The continuous differentiability of the merit function h(x) =
1
2
‖F(x)‖2

was also established by Ulbrich (see [132, Lemma 4.2]) under the Assumption 2.5.

Lemma 2.6. Under the Assumptions 2.4 and 2.5 on F : IRn → IRn, the merit function

h(x) is continuously differentiable on IRn with gradient ∇h(x) = V>F(x), where V ∈
∂F(x) is arbitrary.

Generally, global convergence of inexact Newton method for smooth equations can

be obtained by many globalization techniques, such as: the inexact-Newton backtrack-

ing method, general inexact-Newton trust region methods and dogleg implementations

introduced by Eisenstat and Walker in [122], see also [103]. Another globalization

technique we referred here is augmenting the inexact generalized Newton condition

with some line search methods, such as: the Armijo-Goldstein rule on the merit func-

tion h(x) introduced by Brown and Saad [12, 13], wherein the step length λk of dk in

(2.4), must satisfy

h(xk +λkdk)≤ h(xk)+βλk∇h(xk)>dk (2.7)

where β ∈ (0,1).

In our algorithms of this chapter, relaxing the acceptability conditions on the trial

step dk, we suggest to use the nonmonotone technique:

h(xl(k)) = max
0≤ j≤m(k)

{h(xk− j)}

instead of h(xk) in (2.7), where m(0) = 0 and 0≤m(k)≤min{m(k−1)+1,M}, k≥ 1.

When F(x) is continuously differentiable in a neighborhood of xk, this nonmonotonic

technique can also be found in [39, 59, 137]. A nonmonotonic criterion should bring

about speeding up the convergence progress in some ill-conditioned cases. For the case

of F(x) being nonsmooth, the nonmonotonic inexact Newton algorithm can be stated

as the following general form:

Algorithm 2.7. INEXACT NEWTON METHOD FOR NONSMOOTH EQUATIONS

Let x0 be given, β ∈ (0,1), λ0 ∈ (0,1], ηmax ∈ [0,1) and 0 < θmin < θmax < 1 be

given.
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For k = 0 step 1 until convergence do:

Select an element of V k ∈ ∂BF(xk). Find some ηk ∈ [0,ηmax] and a vector dk that

satisfy

‖F(xk)+V kdk‖ ≤ ηk‖F(xk)‖, (2.8)

and then choose θ ∈ [θmin,θmax], update λk ← θλk until the following inequality is

satisfied:

h(xk +λkdk)≤ h(xl(k))+βλk∇h(xk)>dk (2.9)

where ∇h(x) = (V k)>F(xk), and h(xl(k)) = max
0≤ j≤m(k)

{h(xk− j)}, with the nonmonotone

index function m(0) = 0,0≤ m(k)≤min{m(k−1)+1,M}, k ≥ 1.

Set xk+1 = xk +λkdk.

Here the framework for reducing λk is taken from [40], which allows much flexibility

and sophistication in reducing λk. Lemma 2.12 in Section 2.3 of this chapter will ensure

that λk satisfies (2.9). For simplicity, we use the particular sequence of backtracking

parameters λk = 1,ω,ω2, . . . (ω ∈ (0,1)).

2.2 Krylov Subspace Strategy

If F(x) is Fréchet differentiable and n is large, a dk satisfying the residual condition

(2.8) is often obtained by using an iterative procedure for linear systems. In [12],

Brown and Saad considered using the Arnoldi and GMRES [117, 11] algorithms for

nonsymmetric linear systems to obtain dk’s satisfying the residual condition (2.8) and

proved the existence of such a dk.

At each iteration of the inexact Newton method, we must obtain an approximate

solution of the nonlinear system (2.8) which we rewrite as

V d =−F(x). (2.10)

If d0 is an initial guess for the true solution of (2.10), then letting d = d0 + z, we have

the equivalent system

V z = r0, (2.11)

where r0 = −F(x)−V d0 is the initial residual. For a general matrix A and a vector v,
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define the Krylov subspace K(A,v,m) by

K(A,v,m) = span{v,Av, . . . ,Am−1v}.

Let Km denote

Km ≡ K(V,r0,m).

Both Arnoldi’s method and GMRES find an approximate solution

dm = d0 + zm, with zm ∈ Km,

such that either

(−F(x)−V dm)⊥ Km (
equivalently (r0−V zm)⊥ Km)

(2.12)

for Arnoldi’s method, or

‖F(x)+V dm‖= min
d∈d0+Km

‖F(x)+V dm‖
(

= min
z∈Km

‖r0−V z‖
)

(2.13)

for GMRES. Note that condition (2.13) is equivalent to demanding that the residual

rm =−F(x)−F ′(x,dm) be orthogonal to F ′(x,Km). Combined with Algorithm 2.7, we

get the inexact Newton-Krylov methods (such as inexact Newton-GMRES) for nons-

mooth equations.

For simplicity, we have omitted details of the practical implementations of the above

linear and nonlinear methods, which are discussed at length in [6, 11, 12, 13, 10] for

smooth problems. Some other inexact Newton-Krylov methods for nonsmooth equa-

tions such as inexact Newton-CGS, inexact Newton-BiCG [10, 79, 80], and so on, can

be established similarly.

Due to the semismoothness of F at xk and Lemma 1.1, the matrix-vector multipli-

cation V kdk is not usually approximated well by a difference quotient of the form

F ′(xk,dk)≈ F(xk + tdk)−F(xk)
t

, (2.14)

compared with the smooth case.
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2.3 Convergence Theory

In this section, we develop a theoretical foundation for an inexact Newton-Krylov al-

gorithm of nonsmooth problems. Given x0 ∈ IRn, we denote a sequence generated in

our algorithm by {xk} ⊆ IRn, and the level set of ‖F(x)‖ by

L(x0) = {x ∈ IRn|‖F(x)‖ ≤ ‖F(x0)‖}. (2.15)

Throughout this section we make the following assumption.

Assumption 2.8. The sequence {xk} generated by Algorithm 2.7 is contained in a

compact set L(x0) on IRn.

In the kth iteration, to guarantee that the current iteration will make progress towards

the solution in one step of the Algorithm 2.7, we must know how the generalized inexact

Newton step dk satisfies (2.8).

Proposition 2.9. Assume that there exists dk satisfying (2.8) when ‖(V k)>F(xk)‖ = 0

where V k ∈ ∂BF(xk), then ‖F(xk)‖ = 0. Further, if F(x) is BD-regular at xk, then

dk = 0.

Proof. If dk satisfies the inequality (2.8) when ‖(V k)>F(xk)‖= 0, squaring Euclidean

norm in both sides of the inequality (2.8), we have

‖F(xk)‖2 +2[(V k)>F(xk)]>dk +‖V kdk‖2 = ‖F(xk)+V kdk‖2 ≤ η2
k ‖F(xk)‖2, (2.16)

which implies that, since ηk ∈ (0,1) and (V k)>F(xk) = 0,

0≤ ‖V kdk‖2 ≤−(1−η2
k )‖F(xk)‖2 ≤ 0.

So, ‖F(xk)‖ = 0. Furthermore, the fact that V k ∈ ∂BF(xk) are nonsingular means that

dk = 0. ¥

Proposition 2.10. Suppose that there exists a dk such that for all V k ∈ ∂BF(xk) we

have ‖F(xk) +V kdk‖ < ‖F(xk)‖. Then there exists ηmin ∈ [0,1) such that, for any

ηk ∈ [ηmin,1), there is a dk such that (2.8) holds.
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Proof. Clearly F(xk) 6= 0 and hence dk 6= 0. Set

ηmin =
‖F(xk)+V kdk‖

‖F(xk)‖ . (2.17)

For any ηk ∈ [ηmin,1), let dk =
1−ηk

1−ηmin
dk. Since the norm function is convex, we have

that

‖F(xk)+V kdk‖ ≤ ηk−ηmin

1−ηmin
‖F(xk)‖+

1−ηk

1−ηmin
‖F(xk)+V kdk‖

=
ηk−ηmin

1−ηmin
‖F(xk)‖+

1−ηk

1−ηmin
ηmin‖F(xk)‖

= ηk‖F(xk)‖. (2.18)

The proof is complete. ¥

The following proposition shows the relation between the gradient ∇h(xk)= (V k)>F(xk)

of the objective function and the step dk generated by the proposed algorithm. We can

see from Proposition 2.11 that the generalized inexact Newton step dk is a descent

direction for h(x) at the current approximation xk.

If V k ∈ ∂BF(xk) is nonsingular,

κk = cond(V k) = ‖(V k)−1‖ · ‖V k‖ (2.19)

represents the Euclidean condition number of the matrix V k ∈ ∂BF(xk).

Proposition 2.11. Suppose that dk satisfies (2.8) with all V k ∈ ∂BF(xk) being nonsin-

gular. Then dk is descent direction for h(x) at xk, i.e.,

−∇h(xk)>dk ≥ (1−ηk)‖F(xk)‖2 > 0, (2.20)

|∇h(xk)>dk|
‖dk‖ ≥ 1−ηk

(1+ηk)κk
‖∇h(xk)‖ ≥ 0, (2.21)

where κk is defined by (2.19), ηk ∈ [0,1) is given in (2.8).

Proof. Let rk be the residual associated with dk such that F(xk) +V kdk = rk, where
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V k ∈ ∂BF(xk). From

∇h(xk)>dk = F(xk)>V kdk = F(xk)>[rk−F(xk)], (2.22)

and taking the norm in the right-hand side of (2.22), we have that

∇h(xk)>dk ≤ ‖F(xk)‖ · ‖rk‖−‖F(xk)‖2 ≤−(1−ηk)‖F(xk)‖2. (2.23)

Clearly, (V k)>F(xk) 6= 0 and hence dk 6= 0. Next, V kdk = rk−F(xk). Thus, dk =

(V k)−1[rk−F(xk)], taking the norm, we have

‖dk‖= ‖(V k)−1‖(‖rk‖+‖F(xk)‖)≤ (1+ηk)‖(V k)−1‖‖F(xk)‖. (2.24)

Combining (2.23) and (2.24), we have that

|∇h(xk)>dk|
‖dk‖ ≥ (1−ηk)‖F(xk)‖2

(1+ηk)‖(V k)−1‖‖F(xk)‖ =
(1−ηk)‖F(xk)‖
(1+ηk)‖(V k)−1‖ (2.25)

and hence as a result, using the fact that ‖∇h(xk)‖ ≤ ‖F(xk)‖‖V k‖, we get

|∇h(xk)>dk|
‖∇h(xk)‖‖dk‖ ≥

(1−ηk)‖F(xk)‖
(1+ηk)‖F(xk)‖(‖V k‖‖(V k)−1‖) =

1−ηk

(1+ηk)κk
. (2.26)

So, the conclusions of the proposition are true. ¥

Lemma 2.12. Let dk satisfy (2.8) with all V k ∈ ∂BF(xk) being nonsingular. Suppose

that there exist ηmax ∈ [0,1) and κ ≥ 0 such that ηk ≤ ηmax in (2.8) and κk ≤ κ in

(2.19). If ∇h(xk) 6= 0 and β ∈ (0,1), then the proposed algorithm will produce an

iterate xk+1 = xk +λkdk satisfying (2.9) in a finite number of backtracking steps.

Proof. By Lemma 2.6, we know ∇h(x) is continuous. Since ‖∇h(xk)‖ 6= 0, by continu-

ity there exist δ > 0 and ε > 0 such that ∇h(x)≥ ε for all x with ‖xk− x‖ ≤ δ . Using

the mean value theorem, we have that with 0≤ υk ≤ 1, the following inequality holds:

h(xk +λkdk) = h(xk)+βλk∇h(xk)>dk +(1−β )λk∇h(xk)>dk

+λk[∇h(xk +υkλkdk)>dk−∇h(xk)>dk]

= h(xk)+βλk∇h(xk)>dk +λk[(1−β )∇h(xk)>dk +ζk], (2.27)
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where for convenience we have set ζk = [∇h(xk +υkλkdk)>−∇h(xk)>]dk. Since ∇h(x)

is continuous, there exists sufficiently small λk such that

‖∇h(xk +υkλkdk)−∇h(xk)‖ ≤ (1−β )
1−ηmax

(1+ηmax)κ
ε.

Note that from the assumption we have

|ζk|= |[∇h(xk +υkλkdk)>−∇h(xk)>]dk| ≤ (1−β )(1−ηmax)ε
(1+ηmax)κ

‖dk‖.

Since (2.21) means ∇h(xk)>dk ≤− 1−ηmax

(1+ηmax)κ
ε‖dk‖, we have that after a finite num-

ber of reductions, the last term in brackets in the right-hand side of (2.27) will become

negative and the corresponding λk will be acceptable, that is, we have that in a finite

number of backtracking steps, λk must satisfy

h(xk +λkdk)≤ h(xk)+βλk∇h(xk)>dk.

Since h(xk)≤ h(xl(k)), the conclusion of the lemma holds. ¥

Now we state a seminal global convergence result for smooth equations in [59].

Theorem 2.13. Let {xk} be a sequence defined by

xk+1 = xk +αkdk, dk 6= 0.

Let a > 0, γ ∈ (0,1), ω ∈ (0,1) and let M be a nonnegative integer. Assume that

(i) the level set Ω0 = {x : h(x)≤ h(x0)} is compact;

(ii) there exist positive numbers c1,c2 such that for all k,

∇h(xk)>dk ≤−c1‖∇h(xk)‖2, (2.28)

‖dk‖ ≤ c2‖∇h(xk)‖; (2.29)

(iii) αk = ωkia, where ki is the first nonnegative integer k for which

h(xk +λkdk)≤ h(xl(k))+ γωka∇h(xk)>dk (2.30)
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where h(xl(k))= max
0≤ j≤m(k)

{h(xk− j)}, with the nonmonotone index function m(0)=

0,0≤ m(k)≤min{m(k−1)+1,M}, k ≥ 1.

Then

(a) the sequence {xk} remains in Ω0 and every limit point x satisfies ∇h(x) = 0;

(b) no limit point of {xk} is a local maximum of h(x);

(c) if the number of the stationary points of h(x) in Ω0 is finite, then the sequence

{xk} converges.

From Theorem 2.13, we can get the global convergence result of Algorithm 2.7.

Theorem 2.14. Let {xk}⊂ IRn be a sequence generated by Algorithm 2.7. Let dk satisfy

(2.8) with all V k ∈ ∂BF(xk) being nonsingular. Suppose that there exist ηmax ∈ [0,1)

and κ ≥ 0 such that ηk ≤ ηmax in (2.8) and κk ≤ κ in (2.19). Assume that ∇h(xk) 6= 0

and β ∈ (0,1). Then

(a) the sequence {xk} remains in L(x0) and every limit point x∗ satisfies h(x∗) = 0,

(b) if the number of the stationary points of h(x) in L(x0) is finite, then the sequence

{xk} converges.

Proof. We will show the three conditions of the Theorem 2.13 hold. The level set L(x0)

is compact by Assumption 2.8; thus the first condition holds. Since L(x0) is compact

and {xk} ⊂ L(x0), the assumption that F(x) is locally Lipschitzian implies that it is uni-

formly Lipschitzian in L(x0) and, therefore, the V k ∈ ∂BF(xk) are uniformly bounded

in norm. Since the condition numbers κk = cond(V k) are assumed to be uniformly

bounded in the Lemma 2.12, it follows that the inverses (V k)−1 are also uniformly

bounded in norm. Then, as in (2.23), we have

∇h(xk)>dk ≤−(1−ηk)‖F(xk)‖2 ≤−(1−ηmax)
(

C
κ

)2

‖∇h(xk)‖2, (2.31)

where ηk ≤ ηmax, κk ≤ κ , and ‖(V k)−1‖ ≤C for all k. Moreover, as in (2.24),

‖dk‖ ≤ (1+ηk)‖(V k)−1‖‖F(xk)‖ ≤ (1+ηmax)C2‖∇h(xk)‖. (2.32)
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With (2.31) and (2.32), the second condition of the Theorem 2.13 holds. Finally, the

third condition holds just by (2.9) with the sequence of backtracking parameters λk =

1,ω,ω2, . . .. Thus, by Theorem 2.13, the conclusion of the theorem holds. ¥

Theorem 2.15. Under the assumptions of Theorem 2.14, let x∗ be any limit point of the

sequence {xk} generated by Algorithm 2.7 and a BD-regular point of F. If β <
1
2

and

ηk → 0, then the whole sequence {xk} converges to x∗ and the stepsize satisfies λk = 1

for large enough k.

Proof. Note that

h(xk +dk)−h(xk)−∇h(xk)>dk =
1
2
‖F(xk)+V kdk +o(‖dk‖)‖2

− 1
2
‖F(xk)‖2−∇h(xk)>dk

=
1
2
‖V kdk‖2 +o(‖dk‖2).

This gives

h(xk +dk) ≤ h(xl(k))+β∇h(xk)>dk +
(

1
2
−β

)
∇h(xk)>dk

+
1
2

(
∇h(xk)>dk +‖V kdk‖2

)
+o(‖dk‖2). (2.33)

Next, by (2.23) and (2.24), we get

∇h(xk)>dk ≤−(1−ηk)‖F(xk)‖2,

‖dk‖ ≤ (1+ηk)‖(V k)−1‖‖F(xk)‖, (2.34)

and

‖V kdk‖ ≤ ‖rk‖+‖F(xk)‖ ≤ (1+ηk)‖F(xk)‖.

So, (2.33) can be rewritten as follows

h(xk +dk) ≤ h(xl(k))+β∇h(xk)>dk +
(

1
2
−β

)
∇h(xk)>dk
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+
1
2

(
∇h(xk)>dk +‖V kdk‖2

)
+o(‖dk‖2)

≤ h(xl(k))+β∇h(xk)>dk (2.35)

−
[(

1
2
−β

)
(1−ηk)+

1
2
(1−ηk)− 1

2
(1+ηk)2

]
‖F(xk)‖2 +o(‖dk‖2)

≤ h(xl(k))+β∇h(xk)>dk

for all large enough k, the last inequality is deduced because the third term in brackets

in the right-hand side of (2.35) will become negative by

(
1
2
−β

)
(1−ηk)+

1
2
(1−ηk)− 1

2
(1+ηk)2 →

(
1
2
−β

)
, as ηk → 0,

and by (2.34), o(‖dk‖2) = o(‖F(xk)‖2) for the last term. By the above inequality and

since λk given in (2.9) is bounded away from 1 as ηk → 0, we know that the acceptance

rule (2.9) means that, for large k,

xk+1 = xk +dk, (2.36)

which implies that for large enough k, the stepsize λk = 1.

Since x∗ is a limit point of {xk}, Theorem 2.14 gives F(x∗) = 0 which means that x∗

is a BD-regular zero solution of F(x). By (2.36) and (2.38) of the following Theorem

2.16, the whole sequence {xk} converges to x∗. Hence the theorem is proved. ¥

In what follows, we will analyze the local convergence of Algorithm 2.7 which

can be taken as a supplement for those conclusions of the inexact Newton method

for nonsmooth problems by Martinez and Qi [94], Facchinei, Fischer, and Kanzow

[44, 45].

Theorem 2.16 (see [94, 44]). Assume that F(x) is semismooth in a neighborhood of x∗

and that x∗ is a BD-regular zero solution of F. There are numbers η > 0 and ε > 0

such that, if ‖x0− x∗‖ ≤ ε and ηk < η for all k, then the sequence {xk} generated by

‖F(xk)+V kdk‖ ≤ ηk‖F(xk)‖, xk+1 = xk +dk (2.37)

converges to x∗, and the convergence is linear in the sense that there exists τ ∈ (0,1)
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such that for all k,

‖xk+1− x∗‖ ≤ τ‖xk− x∗‖. (2.38)

Moreover, xk → x∗ superlinearly if and only if

‖rk‖= o(‖F(xk)‖) as k → ∞, (2.39)

where rk = F(xk)+V kdk. If F(x) is p-order semismooth at x∗, then xk → x∗ with order

at least 1+ p if and only if

‖rk‖= O(‖F(xk)‖1+p) as k → ∞. (2.40)

Since F(x) is locally Lipschitzian, by Lemma 1.2, there exist δ > 0 and ζ > ζ ′ > 0

such that

ζ ′‖xk− x∗‖ ≤ ‖F(xk)‖ ≤ ζ‖xk− x∗‖

for all ‖xk− x∗‖ ≤ δ . Therefore,

ζ
1−ρk

=
ζ‖xk− x∗‖

‖xk− x∗‖−‖xk+1− x∗‖

≥ ‖F(xk)‖
‖xk+1− xk‖

≥ ζ ′‖xk− x∗‖
‖xk− x∗‖+‖xk+1− x∗‖ =

ζ ′

1+ρk
, (2.41)

where ρk =
‖xk+1− x∗‖
‖xk− x∗‖ . Then an equivalent result in terms of the steps {dk} for (2.39)

and (2.40) is expressed that xk → x∗ superlinearly if and only if

‖rk‖= o(‖dk‖) as k → ∞,

where rk = F(xk)+V kdk. Furthermore, if F(x) is p-order semismooth at x∗, xk → x∗

with order at least 1+ p if and only if

‖rk‖= O(‖dk‖1+p) as k → ∞.
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On the other hand, if the condition

‖F(xk)+V kdk‖ ≤ ηk‖F(xk)‖

is replaced by the stronger condition with the forcing sequence {ηk} of p-order for

‖F(xk)+V kdk‖ ≤ ηk‖F(xk)‖1+p, ∀k = 0,1, . . . , (2.42)

that is, ηk = η‖F(xk)‖p, where η is any nonnegative constant, one can show 1 + p

order superlinear convergence of the iterative sequence {xk}.

Theorem 2.17. Suppose that F is BD-regular at x∗, which is a solution of (2.1). Assume

also that in a neighborhood N of x∗, for any y ∈ N and V ∈ ∂BF(y), the following

inequality holds

‖F(y)−F(x∗)−V (y− x∗)‖ ≤ γ‖y− x∗‖1+p, (2.43)

where γ is called p-order semismooth constant at x∗. Then there exists an ε ∈ (0,1]

such that if ‖x0− x∗‖ ≤ ε , β = max{‖V−1‖|V ∈ ∂BF(x)} for all x with ‖x− x∗‖ ≤ ε ,

then the sequence {xk} generated by (2.42) superlinearly converges to x∗ with order at

least 1+ p in the sense that

‖xk+1− x∗‖ ≤ β (γ +ηζ 1+p)‖xk− x∗‖1+p, ∀k = 0,1, . . . , (2.44)

where ζ is the locally Lipschitizan constant of F(x) at x∗.

Proof. The proof of theorem is similar to that of Theorem 2.16. We will omit it here.

¥

2.4 A Smoothing Variant

In this section, suppose that a smoothing function [27, 29] of problem (2.1) is available,

i.e., a function G(t,x) : [0,∞)× IRn → IRn is continuously differentiable for any t > 0

and x ∈ IRn,

lim
t↓0,y→x

G(t,y) = F(x). (2.45)
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A smoothing variant of the inexact Newton-Krylov methods for nonsmooth problems

can be obtained via replacing F(x) by (t,G(t,x))> in Algorithm 2.7. However, it is not

easy to get a smoothing function for a general problem (2.1) in practice, thus the main

aim of this section is algorithmic. We focus on the theoretical study of the smoothing

variant of the inexact Newton-Krylov methods for nonsmooth problems.

We treat the smoothing parameter t as a variable [112], denote

F(z) = F(t,x) =


 t

G(t,x)


 = 0, h(z) =

1
2
‖F(z)‖2. (2.46)

From (2.46), for any t 6= 0 a straightforward calculation yields

F ′(z) =


 1 0

G′
t(t,x) G′

x(t,x)


 . (2.47)

Choose t̄ ∈ (0,∞) and γ ∈ (0,1) such that γ t̄ < 1. Let z̄ = (t̄,0)∈ (0,∞)×IRn. Define

ζ (z) = γ min{1,h(t,x)}. Let zk = (tk,xk) ∈ (0,∞)× IRn denote the iterate at iteration k.

Then the algorithm framework of the smoothing variant of the inexact Newton-Krylov

methods is stated below.

Algorithm 2.18. SMOOTHING VARIANT OF INEXACT NEWTON-KRYLOV METHODS

Let x0 be given, β ∈ (0,1), λ0 ∈ (0,1], ηmax ∈ [0,1), t0 = t̄, and 0 < θmin < θmax < 1

be given.

For k = 0 step 1 until convergence do:

Find some ηk ∈ [0,ηmax] and a vector dk = (ζ (zk)t̄− tk,dk
x) that satisfy

‖F(zk)+F ′(zk)dk−ζ (zk)z̄‖ ≤ ηk‖F(xk)‖, (2.48)

and then choose θ ∈ [θmin,θmax], update λk ← θλk until the following inequality is

satisfied:

h(zk +λkdk)≤ h(zl(k))+βλk∇h(zk)>dk (2.49)

where h(zl(k)) = max
0≤ j≤m(k)

{h(zk− j)}, with the nonmonotone index function m(0) =

0,0≤ m(k)≤min{m(k−1)+1,M}, k ≥ 1.

Set zk+1 = zk +λkdk.
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The following assertion shows that Algorithm 2.18 is well-defined.

Proposition 2.19. Suppose zk is not a solution of h(z) in (2.46). Then

(i) ζ (zk)t̄ ≤ tk+1 ≤ tk,

(ii) dk is a descent direction of h(z) at zk, i.e., ∇h(zk)>dk < 0.

Proof. Let the residual rk = F(zk)+F ′(zk)dk. Then

∇h(zk)>dk = F(zk)>F ′(zk)dk

= F(zk)>(rk−F(zk))

≤ ‖F(zk)‖‖rk‖−‖F(zk)‖2

≤ −(1−ηk)‖F(zk)‖2 < 0, (2.50)

which implies (ii).

We show (i) by induction. For k = 1, the result is trivial. Suppose (i) holds for some

k ≥ 1, then

tk = max
{

tk,ζ (zk)t̄
}
≥ tk+1 = tk +λkdk

t (2.51)

= tk +λk(ζ (zk)t̄− tk)

= (1−λk)tk +λkζ (zk)t̄

≥min
{

tk,ζ (zk)t̄
}

= ζ (zk)t̄ > 0.

This completes the induction. ¥

Convergence theories of smoothing variant 2.18 of the inexact Newton-Krylov meth-

ods can be established following an analysis analogous to the analysis for Algorithm

2.7 in Section 2.3 with slight and technical modifications. At the end of this section,

we present some convergence conclusions for smoothing variant 2.18. These assertions

can be proved exactly as in the proofs of Theorems 2.14 and 2.15, we therefore omit

the detailed proofs here.

Theorem 2.20. Let {zk} ⊂ IRn+1 be a sequence generated by Algorithm 2.18. Let dk

satisfy (2.48) with F ′(zk) being nonsingular. Suppose that there exist ηmax ∈ [0,1) and
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κ ≥ 0 such that ηk ≤ ηmax in (2.48) and κk = ‖(F ′(zk))−1‖‖F ′(zk)‖ ≤ κ . Assume that

∇h(zk) 6= 0 and β ∈ (0,1). Then

(a) the sequence {zk} remains in L(z0) (see (2.15)) and every limit point z∗ satisfies

h(z∗) = 0,

(b) if the number of the stationary points of h(z) in L(z0) is finite, then the sequence

{zk} converges.

Theorem 2.21. Under the assumptions of Theorem 2.20, let z∗ = (t∗,x∗) be any limit

point of the sequence {zk} generated by Algorithm 2.18 and a BD-regular point of F.

If β <
1
2

and ηk → 0, then the entire sequence {zk} converges to z∗ and the stepsize

satisfies λk = 1 for large enough k.

2.5 Numerical Experiments

In our numerical experiments, a set of problems was defined using classical smooth

systems of the form f (x) = 0 with f : IRn → IRn, f = ( f1, . . . , fn)>. Associated to each

smooth system, we generated the following nonlinear complementarity problem:

xi ≥ 0, fi ≥ 0, xi fi(x) = 0, ∀i = 1,2, . . . ,n.

By the Fisher-Burmeister function [48] φFB(a,b) =
√

a2 +b2− (a + b), (a,b) ∈
IR2, solving nonlinear complementarity problem is equivalent to solving the semis-

mooth system of nonlinear equations [72, 110] below :

F(x) =




√
x2

1 + f 2
1 (x)− (x1 + f1(x))

...
√

x2
n + f 2

n (x)− (xn + fn(x))




= 0.

Herein, we consider two classes of complementarity problems:

Example 2.22. (Linear complementarity)

f (x) = Mx+q, where n = 800,1600,2400,3200,
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q = (−1, . . . ,−1)>,

Mii = 4(i−1)+1, i = 1, . . . ,n,

Mi j = M ji = Mii +1, i = 1, . . . ,n−1, j = i+1, . . . ,n

Example 2.23. (Nonlinear complementarity)

f (x) = Mx+q(x), where n = 4800,5600,

q(x) = (q1(x1),q2(x2), . . . ,qn(xn))>, qi(x) = 4exp(xi), i = 1,2, . . . ,n,

Mii = 4, i = 1, . . . ,n,

Mi j = M ji =−1.5, i = 1, . . . ,n−1, j = i+1, . . . ,n.

In this section, all numerical experiments are achieved in MATLAB 7.3. The Krylov

subspace strategies: GMRES, GMRES(m), CGS and TFQMR [79, 80] are employed in

Algorithm 2.7. The corresponding approaches derived from these Krylov subspace

strategies are denoted by Newton-GMRES, Newton-GMRES(m), Newton-CGS and

Newton-TFQMR, respectively. Here GMRES(m) employs restarted strategy [118, 58].

The forcing terms in inexact methods has been chosen as in [43, 79, 80], i.e, given

γ ∈ [0,1], α ∈ (1,2], and η0 ∈ [0,1), choose

ηk = γ
( ‖F(xk)‖
‖F(xk−1)‖

)α

, k = 1,2, . . . .

In the actual computations, the initial value x0 is taken randomly. The initial itera-

tive values of Krylov subspace methods used in Algorithm 2.7 are all zero vectors. The

approaches derived from different Krylov subspace strategies in Algorithm 2.7 termi-

nate once the current iteration attains a prescribed stopping tolerance ε

ERROR =
‖F(x)‖
‖F(x0)‖ ≤ ε

or the admissible Newton largest iteration step counter reaches Imax. We take ε = 10−6,

the largest iteration steps number Imax = 20. Inner iterative steps number, namely, the

maximal dimension of Krylov subspace kmax = 100.

With dimensions of nonlinear equations n = 800,1600,2400,3200,4800,5600, the

performance results of Newton-GMRES, Newton-GMRES(m), Newton-CGS and Newton-

TFQMR methods are shown in Table 2.1. To compare the convergence speed of algo-
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TABLE 2.1
Numerical results of algorithms

Example Method Dimension Time (Second) IT ERROR
2.22 Newton-CGS 800 2.7853 15 2.3649e-008

1600 11.951 16 2.1422e-007
2400 25.339 16 1.1245e-008
3200 56.959 18 6.2692e-008

Newton-GMRES 800 2.2164 15 2.5261e-010
1600 9.2131 16 7.7245e-010
2400 19.201 16 4.7092e-008
3200 44.961 18 4.6324e-009

Newton-GMRES(20) 800 2.2107 15 3.5883e-009
1600 9.1390 16 8.2396e-010
2400 20.047 16 4.7092e-008
3200 44.672 18 2.7380e-009

Newton-TFQMR 800 2.2340 15 3.7041e-008
1600 9.5967 17 2.1892e-009
2400 19.543 16 4.8883e-009
3200 45.577 18 4.7232e-007

2.23 Newton-CGS 4800 25.702 4 2.0013e-012
5600 46.682 5 2.1610e-012

Newton-GMRES 4800 12.494 4 4.2682e-012
5600 16.733 4 2.1588e-012

Newton-GMRES(20) 4800 12.492 4 7.8759e-013
5600 16.978 4 3.1400e-013

Newton-TFQMR 4800 53.180 8 8.8062e-014
5600 36.264 4 3.9334e-013

rithms, we also draw curves of relative error-iterative step number (log10(ERROR)−
IT) for two examples in the dimension n = 3200,5600, respectively.

Table 2.1 gives the numerical results of Examples 2.22 and 2.23 by using Newton-

Krylov subspace methods. From Table 2.1, we can see that Newton-Krylov subspace

methods perform very well for solving Examples 2.22 and 2.23 with different dimen-

sions, though the Example 2.22 is dense. There is some difference between different

dimensions. It seems that Newton-Krylov methods have better numerical behavior for

nonlinear complementarity problems, than for linear complementarity problems.

Fig. 2.1 and Fig. 2.2 give the curves of the relative residuals versus iterative

numbers of Examples 2.22 and 2.23 when n = 3200,5600, respectively. These fig-

ures, combined with Table 2.1, enhances the feasibility of Newton-Krylov methods for

solving nonsmooth equations. Especially, it seems that Newton-GMRES and Newton-

GMRES(20) has better numerical behaviors than Newton-CGS, Newton-TFQMR, for
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FIGURE 2.1 Curves of the relative residuals versus iterative numbers of Example 2.22 when
n = 3200

Examples 2.22 and 2.23.

2.6 Contributions and Future Research

This chapter has introduced some variants of the inexact Newton method for solving

systems of nonlinear equations defined by locally Lipschitzian functions. These meth-

ods combine inexact Newton iteration with Krylov subspace methods for solving the

generalized Jacobian linear systems. Convergence theorems are proved under the con-

dition of semismoothness. The preliminary numerical tests arising from the comple-

mentarity problems show that the proposed algorithms are feasible for solving large-

scale nonlinear systems for which the functions are locally Lipschitz continuous.

It should be pointed out that our implementation in Section 2.5 is still in an early

stage. Four directions in future research can be pursued to improve the current imple-

mentation:

(1) more global convergence strategies such as model trust region techniques;

(2) differences in numerical performances among the proposed inexact Newton-

Krylov methods;

(3) how to precondition the proposed inexact Newton-Krylov methods for nons-

mooth problems;
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FIGURE 2.2 Curves of the relative residuals versus computation time of Example 2.23 when
n = 5600

(4) how to choose more effective forcing terms of inexact Newton method for non-

smooth problems [94].

We would like continue our testing of the proposed inexact Newton-Krylov meth-

ods on more practical problems. One interesting task is to test these methods on safe

operations of electrical power systems, such as: the security region problems of power

systems [126, 135].



Chapter 3

Pseudotransient

Continuation

In this chapter1 we are concerned with finding a solution to the following system of

nonlinear equations with inequality constraints





f (x) = 0

g(x)≤ 0,
(3.1)

where f : IRn → IRn and g : IRn → IRm are at least semismooth functions. The feasible

set of (3.1) is defined as

Ω = {x ∈ IRn | g(x)≤ 0}. (3.2)

Here we suppose that the problem (3.1) is well-defined, i.e., f (x) has at least a solution

on Ω. When Ω = {x ∈ IRn | l ≤ x ≤ u}, li ∈ IR∪ {−∞} and ui ∈ IR∪ {−∞}, li <

ui, i = 1, . . . ,n, the problem (3.1) reduces to a bound-constrained system of nonlinear

equations or unconstrained equations,





f (x) = 0

x ∈Ω.
(3.3)

Recently, concerning the solution of the reduced problem (3.3), Bellavia et al. [4, 5]

presented a class of affine scaling trust-region interior point methods for this problem

that combined ideas from the classical trust-region Newton method solving the uncon-

strained system of equations and the recent affine scaling approach [67, 133] for the

solution of constrained optimization problems given by Coleman and Li in [33]. These

1This chapter is taken from [26].

31
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affine scaling trust region approaches have been extended to a class of semismooth

equations by Kanzow and Klug [75, 76]. Kanzow et al. [77] also proposed global pro-

jected Levenberg-Marquardt methods for the numerical solution of general nonsquare

systems of bound-constrained nonlinear equations. The method proposed in [132] by

Ulbrich is based on a Newton-like method with projection wrapped into a trust-region

technique [111, 129]. It requires the minimization of quadratic problems on a box

and achieves quadratic convergence. Sellami and Robinson [119, 120] developed the

homotopy method [1], which is fairly robust and can find a solution of (3.3).

There are also some methods concerning the solution of the general problem (3.1).

We recall extensions of the Newton method to systems of mixed equalities and inequal-

ities [35], global quadratic algorithms based on backtracking line search [18, 52], and

the recent trust-region methods [38, 50, 89], which are all based on suitable transfor-

mations of the problem (3.1) and vary widely from a computational point of view.

We note that all of the above methods are established via to solve the underlying

optimization problem

minΘ(x) =
1
2
‖F(x)‖2, x ∈Ω. (3.4)

To be more precise, these methods have been mainly concerned with finding a station-

ary point or a local minimizer of (3.4), which is not necessarily a solution of (3.3). This

means that there is a “hump” that can block progress of the above approaches applied

to the constrained equations. In other words, standard globalization strategies such as

line search or trust region methods employed in these methods often stagnate at local

minima. How to jump over this “hump” or avoid the standard globalization strategies

to get a solution of (3.3) is crucial and very difficult in practice.

Other methods often used are to find a solution u∗ of

F(u) = 0 (3.5)

by ordinary differential equation (ODE) dynamics. More precisely, suppose F : IRn →
IRn is Lipschitz continuous and

u∗ = lim
t→∞

u(t) (3.6)



33

where u(t) is the solution of the initial value problem (IVP) [3, 122]

du
dt

=−F(u), u(0) = u0. (3.7)

(3.6) is usually called as a stability condition. Solving (3.5) is equivalent to finding

the steady-state solution u∗ of the IVP (3.7). The pseudotransient continuation (Ψtc)

approach was usually used for solving the dynamic system (3.7) in the recent literature

[31, 51, 68, 82, 81]. As shown in [81], Ψtc could be taken as a predictor-corrector

method for efficient integration of the time-dependent differential equation (3.7) to

find a steady-state solution, which differs from the traditional continuation methods,

pseudo-arclength continuation method, and homotopy methods [114].

The most common form of Ψtc for the case that F is continuously differentiable is

the iteration

u+ = uc− (δ−1
c I +F ′(uc))−1F(uc), (3.8)

where I is an identity matrix, uc is the current iteration and u+ is the new iteration. One

common way to control δ is “Switched Evolution Relaxation” (SER) [97]

δ+ = min
(

δc
‖F(uc)‖
‖F(u+)‖ , δmax

)
. (3.9)

Using δmax = ∞ is common. As indicated by (3.9), through searching important tran-

sients in the early iteration, and Ψtc grows near u∗, (3.8) becomes Newton’s method.

Ψtc has succeeded in avoiding the standard globalization strategies such as line

search or trust region methods to get a solution of (3.5), via taking advantage of the un-

derlying structure of the problems [82]. Ψtc has also been successfully applied to prob-

lems in differential algebraic equation dynamics [31, 51], computational fluid dynamics

[32, 97], plasma dynamics [85], hydrology [47] and optimal control [57, 63, 64, 65, 66].

In [81], Kelley et al. investigated the Ψtc method for a class of constrained problems

in which projections onto the tangent space of the constraints are easy to compute.

These problems included the dynamic formulation of bound-constrained optimization

problems and inverse eigenvalue and singular value problems.

In this chapter we focus on how the results in [81] can be applied to a class (BD-

regular) of constrained semismooth nonlinear equations of the form (3.1). The semis-
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moothness of the problem (3.1) makes Ψtc differ from the methods in which smooth

problems are handled, such as the ODE methods of Bogges [9], Keller [78], Klopfen-

stein [83], Incerti et al. [69], Kubı́ček [87], Smale [124], and the continuation methods

mentioned by Allgower and Georg [1].

The chapter is organized as follows. In Section 3.1 and 3.2, by using slack vari-

ables, we transform (3.1) to a BD-regular nonlinear equation subject to simple bound

constraints on the variables, a situation to which the theory in [81] applies. Some il-

lustrative examples are presented in Section 3.3. Some final comments are made in the

last section.

Some words about the notation used in this chapter. For a continuously differen-

tiable function f : IRn → IRn, we denote the Jacobian matrix of f at x∈ IRn by f ′(x), and

the gradient of f by ∇ f at x ∈ IRn. Throughout our chapter, ‖ · ‖ denotes the Euclidean

norm.

3.1 Reformulation

In this section, we will reformulate problem (3.1) by adding a slack variable γ ∈ IRm

whose nonnegativity is imposed by means of simple bounds. The problem (3.1) then

becomes a square problem where u = (x,γ) and F : IRm+n → IRm+n is given by

F(u) =

(
f (x)

g(x)+ γ

)
= 0, γ ≥ 0. (3.10)

It follows from the semismoothness of f (x) and g(x) that F(u) is also semismooth, and

a generalized derivative V ∈ ∂BF(u) has the form below

V =

(
Wn×n 0

Um×n I

)
, (3.11)

where

(
Wn×n

Um×n

)
∈ ∂B

(
f (x)

g(x)

)
.

On the other hand, we may take g(x)+γ2 = 0, γ2 = (γ2
1 , . . . ,γ2

m)> and transfer (3.1)
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as an unconstrained problem

F(u) =

(
f (x)

g(x)+ γ2

)
= 0. (3.12)

Then a generalized derivative V ∈ ∂BF(u) has the form

V =

(
Wn×n 0

Um×n 2diag(γ1, . . . ,γm)

)
. (3.13)

We note that the nonsingularity of the generalized derivative of (3.12) depends on Wn×n

and vector γ , and the nonsingularity of (3.10) only relies on Wn×n. In other words, the

nonsingularity of the generalized derivative of (3.10) is easier to control. Therefore,

to get a solution of (3.1), one would like to design some algorithms by solving (3.10)

rather than (3.12). Based on the above, we only consider the problem (3.10).

3.2 Pseudotransient Continuation

Let u∗ denote a solution of F(u) = 0, and

e = u−u∗

denote the error. We will consider a Ψtc iteration of the form

u+ = P(uc− (δ−1
c I +V (uc))−1F(uc)), (3.14)

where P is the projection in the 2-norm onto Ω = {u | γ ≥ 0}, i.e., P(u)= (x, max{0,γ})
with max meant componentwise.

The theory we will develop applies equally well to the inexact formulation

u+ = P(uc + s), (3.15)

where

‖(δ−1
c I +V (uc))s+F(uc))‖ ≤ ηc‖F(uc)‖. (3.16)
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Define a neighborhood of the trajectory from u0 as

S(ε) =
⋃

t≥0

B(u(t),ε), (3.17)

where B(u,ε) is the open ball of radius ε centered at u.

Kelley et al. [81] gave a convergence conclusion of the projected pseudotransient

continuation method under the following Assumptions 3.1 and 3.2.

Assumption 3.1. P is called a Lipschitz projection onto Ω if

(i) P(u) = u for all u ∈Ω.

(ii) There are MP , εP such that for all u ∈Ω and υ such that ‖u−υ‖ ≤ εP

‖P(υ)−u‖ ≤ ‖υ−u‖+MP‖υ−u‖2. (3.18)

Assumption 3.2. Assume that H is a sufficiently good approximation to the generalized

derivative of F and satisfies the conditions below:

(i) There are MH , εH such that

‖H(u)‖ ≤MH , ∀u ∈ S(εH). (3.19)

For all ε > 0 there is ε such that if u ∈ S(εH) and ‖u−u∗‖> ε then

‖F(u)‖> ε. (3.20)

(ii) There are εL so that if ‖uc−u∗‖ ≤ εL, then H(uc) is nonsingular,

‖(I +δH(uc))−1‖ ≤ (1+βδ )−1, for some β > 0 and all δ > 0, (3.21)

and the Newton iteration

u+
N = uc−H(uc)−1F(uc) (3.22)
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reduces the error by a (small) factor r ∈ [0,1) for all uc ∈ {u | ‖u− u∗‖ ≤ εL},

i.e.,

‖e+
N‖ ≤ r‖ec‖. (3.23)

Theorem 3.3 (see [81]). Let F be locally Lipschitz continuous, and assume that the

stability condition (3.6) and Assumption 3.2 hold. Let the sequence {δk} be updated

via (3.9) and let δ ∗ > 0 such that

MPεL

β
< δ ∗ ≤ δn (3.24)

for all k. Assume that the Q-factor r in (3.23) satisfies

r <
(1+MPεL)−1− (1+βδ ∗)−1

2
, (3.25)

where β is the constant in (3.21). Then if δ0 and the sequence {ηk} are sufficiently

small, the inexact Ψtc iteration

uk+1 = P(uk + sk),

where

‖(δ−1
k I +H(uk))sk +F(uk)‖ ≤ ηk‖F(uk)‖

converges to u∗. Moreover, there is K > 0 such that for n sufficiently large

‖ek+1‖ ≤ ‖ek+1
N ‖+K‖ek‖(ηk +δ−1

k ), (3.26)

where

‖ek+1
N ‖= ‖(uk−H(uk)−1F(uk))−u∗‖.

In this chapter, P is the projection in the 2-norm onto Ω = {u | γ ≥ 0}. Thus, by

Assumption 3.1, P is a Lipschitz projection. Based on the semismoothness assumption

on F and Proposition 1.2, we can rewrite Assumption 3.2 as follows:

Assumption 3.4. Let F be semismooth with the conditions below:

(i) There are M0, ε0 such that V (u) is nonsingular for all u ∈ {u|‖u−u∗‖ ≤ ε0} (i.e.,
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F(u) is BD-regular at u∗), and

‖(δ−1I +V (u))−1‖ ≤M0, ∀δ > 0. (3.27)

(ii) There are M1, ε1 such that

‖V (u)‖ ≤M1,∀u ∈ S(ε1). (3.28)

Remark 3.5. Note that

det(V (u∗)) = det

(
W ∗

n×n 0

U∗
m×n I

)
= det(W ∗

n×n), (3.29)

where

(
W ∗

n×n

U∗
m×n

)
∈ ∂B

(
f (x∗)
g(x∗)

)
. Then F(u) is BD-regular at u∗ = (x∗,γ∗) if and

only if W ∗
n×n is nonsingular.

Now we can give the convergence of the Ψtc approach for the nonsmooth system

of nonlinear equations with inequality constraints (3.1).

Theorem 3.6. Assume that the stability condition (3.6) and Assumption 3.4 hold. Let

the sequence {δk} be updated via (3.9) and satisfy δk ≥ δ ∗ > 0. Then if δ0 and the

sequence {ηk} are sufficiently small, the inexact Ψtc iteration

uk+1 = P(uk + sk),

where

‖(δ−1
k I +V (uk))sk +F(uk)‖ ≤ ηk‖F(uk)‖ (3.30)

converges to u∗. Moreover, for k sufficiently large

‖ek+1‖ ≤M0(δ−1
k +Lηk)‖ek‖+o(‖ek‖), (3.31)

or if F is semismooth of order p,

‖ek+1‖ ≤M0(δ−1
k +Lηk)‖ek‖+O(‖ek‖1+p), (3.32)
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where L is the Lipschiz constant of F at u∗.

Proof. The outline of the proof follows those in [31, 51, 82, 81]. It is a direct application

of the convergence results [81] (i.e., Theorem 3.3), we do not repeat it here. For the

local phase, from the (i) of Assumption 3.4, we have

ek+1 = uk+1−u∗

= P(uk + sk)−u∗

= P
(

uk− (δ−1
k I +V (uk))−1F(uk)

+(δ−1
k I +V (uk))−1[(δ−1

k I +V (uk))sk +F(uk)]
)
−u∗.

Thus

‖ek+1‖ =
∥∥∥P

(
uk− (δ−1

k I +V (uk))−1F(uk)

+(δ−1
k I +V (uk))−1[(δ−1

k I +V (uk))sk +F(uk)]
)
−u∗

∥∥∥
≤

∥∥∥(δ−1
k I +V (uk))−1((δ−1

k I +V (uk))ek−F(uk)

+(δ−1
k I +V (uk))sk +F(uk)

∥∥∥
= M0

[
‖F(uk)−F(u∗)− (δ−1

k I +V (uk))ek‖

+‖(δ−1
k I +V (uk))sk +F(uk))‖

]

≤ M0(δ−1
k ‖ek‖+‖V (uk)ek−F(uk)‖+ηk‖F(uk)‖)

≤ M0(δ−1
k +Lηk)‖ek‖+o(‖ek‖),

where L is the Lipschiz constant of F at u∗. The case that F is p-order semismooth at

u∗ is similar. Hence error bounds (3.31), (3.32) hold, i.e., the Ψtc iteration converges at

least locally Q-linearly. ¥

Remark 3.7. The Newton-like iterations (3.22) and (3.23) in Assumption 3.2 of The-

orem 3.3 are not expressed explicitly in Theorem 3.6, which are involved in the high-

order error terms of (3.31) and (3.32) in Theorem 3.6.
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3.3 Numerical Tests

In this section, we discuss the feasibility of the Ψtc approach for solving nonlinear

equations with inequality constraints.

3.3.1 Application I

We consider the Karush-Kuhn-Tucker (KKT for short) system of the following nonlin-

ear programming (denoted by NP) problem:

min f (x)

s.t. g(x)≤ 0
(3.33)

where f : IRn → IR and g : IRn → IRm are continuously differentiable.

Suppose a suitable constraint qualification holds (for example the Mangasarian-

Fromovitz or the Slater constraint qualification [46]) for the constraints of NP problem

(3.33). Then we can reformulate the KKT system for the NP problem (3.33) as follows:





∇ f (x)+
m

∑
i=1

µi∇gi(x) = 0

µi ≥ 0, gi(x)≤ 0, µigi(x) = 0 i = 1, . . . ,m.

(3.34)

Let

L(x,µ) =




∇ f (x)+ µ∇g(x)

µ1g1(x)
...

µmgm(x)




(m+n)×(m+n)

, G(x,µ) =

(
g(x)

−µ

)

(m+n)×2m

,

where µ = (µ1, . . . ,µm)>. Then (3.34) is equivalent to





L(x,µ) = 0

G(x,µ) ≤ 0,
(3.35)

which is the exact expression of (3.1). Hence, we can use the Ψtc we mention to solve
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this class of NP problems.

Example 3.8. Consider the KKT system of the following NP problem:

min f (x) =
1
2

x>Ax− 1√
n

n

∑
i=1

∫ xi

−1
exp(max{0,v})dv

s.t. g(x) =
n

∑
i=1

x2
i ≤ 1, n = 100,1000,

where

A =




4 −1

−1 4 . . .
. . . . . . −1

−1 4




n×n

.

We will test the KKT system of the above example by Ψtc with (3.30). Especially,

we determine a solution of (3.30) by using a direct method (such as: Gaussian elim-

ination method) [58, 79, 80]. So the forcing term in (3.30) ηc = 0. We also test this

problem by STRSCNE solver for constrained system of nonlinear equations in [4, 5],

which combines Newton method and an elliptical trust-region procedure.

In the implementation of algorithms, we set the initial iterative value x0 =(1, . . . ,1)>,

δ0 = 0.49 for n = 100, δ0 = 2.35 for n = 1000. The algorithm terminates once the cur-

rent iteration attains a prescribed stopping tolerance ε (i.e., ‖F(x)‖ ≤ ε) or the admis-

sible largest iteration step counter reaches Imax. We take ε = 10−6, the largest iteration

steps number Imax = 100.

In Figure 3.1 we plot the residuals versus iterative step numbers of Ψtc and STRSCNE

solver for Example 3.8, respectively. Figure 3.1 shows that both Ψtc and STRSCNE

solver can solve this problem well. Also it seems that Ψtc has better numerical behav-

iors than STRSCNE solver for this problem.

3.3.2 Application II

Consider the implicit complementarity problems with the following form:

Find y ∈ IRn such that

y−m(y)≥ 0, F(y)≥ 0, F(y)>(y−m(y)) = 0, (3.36)
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FIGURE 3.1 Curves of the residuals versus iterative step numbers of Example 3.8.

where F(y) and m(y) : IRn → IRn are twice continuously differentiable.

It is clear to see that problem (3.36) can be rewritten as (3.1).

Example 3.9. Consider an implicit complementarity problem [2, 71, 99] under the

conditions:

F(y) = Ay+b =




2 −1

−1 2 . . .
. . . . . . −1

−1 2




n×n

y+




1

1
...

1




,

m(y) = ϕ(Ay+b) with ϕ : IRn → IRn being twice continuously differentiable. Function

ϕ is defined by the choices below:

(i) ϕi(x) =−1
2
− xi, i = 1,2, . . . ,n,

(ii) ϕi(x) =−1
2
− 3

2
xi +

1
4

x2
i , i = 1,2, . . . ,n,

where n = 4,40,400.

For each choice of ϕ , three starting vectors were used, namely,

(a) (0,0, . . . ,0)n×1,

(b) (−0.5,−0.5, . . . ,−0.5)n×1,
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(c) (−1,−1, . . . ,−1)n×1.

In [99], the first approach adopted to Example 3.9 is an iterative scheme to compute

fixed points of an operator S:

yk+1 = yk− (E−V k)−1(yk−S(yk)), (3.37)

where V k ∈ ∂S(yk). The second approach is a Newton variant applied to the semis-

mooth operator

H(y) = min{y−m(y),F(y)}= 0. (3.38)

Jiang et al., [71] proposed a trust-region approach to solve Example 3.9. In [2], a

software BOX-QUACAN was used to solve the problem 3.9, this software was also

based on trust-region strategy.

In the implementation of our Ψtc for Example 3.9, we use the similar termination

parameters of Example 3.8. Tables 3.1 and 3.2 show the comparison of our data and

the results of [2, 71, 99] when n = 4,40,400. “—” represents that the approach is not

convergent. The results in Table 3.1 are quite promising. The numbers of iterations and

function evaluations of Ψtc seem comparable to the results in [2, 71, 99], and less than

STRSCNE solver in [4, 5].

In Figure 3.2 we plot the residuals versus iterative step numbers for Example 3.9

when n = 400. Figure 3.2 also shows us the feasibility of pseudotransient continuation

approach for solving implicit complementarity problem, which can be taken as a system

of nonlinear equations with inequality constraints.

3.4 Verification of the Assumptions

We will now explore verification of Assumption 3.4 for Examples 3.8 and 3.9.
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TABLE 3.1
The numerical comparison: the number of iterations (IT), the number of function evaluations
(FE) and the residual norms.

Ψtc STRSCNE in [4, 5] Results in [2]

Choice n Initial Vector δ0 IT FE Residual IT FE Residual IT FE

(a) 5 6 7 5.9850e-009 14 15 1.84107e-009 4 5

4 (b) 5 5 6 1.2124e-009 5 6 2.12138e-007 4 5

(c) 0.53 14 15 8.5834e-008 — 4 5

(a) 5 6 7 4.5193e-009 14 15 1.73937e-006 7 10

(i) 40 (b) 5 5 6 7.1720e-010 16 17 3.76983e-006 6 8

(c) 0.23 23 24 6.3782e-011 — 5 7

(a) 5 6 7 4.2351e-009 21 22 1.14767e-007 8 12

400 (b) 5 5 6 6.6979e-010 13 14 4.38376e-007 7 10

(c) 0.07 38 39 7.1056e-011 — 6 8

(a) 5 5 6 2.0655e-007 9 10 1.64424e-008 5 6

4 (b) 5 4 5 7.3408e-008 4 5 2.79303e-010 6 8

(c) 0.60 14 15 3.6181e-007 — 3 4

(a) 5 5 6 1.3856e-007 7 8 1.41530e-006 7 11

(ii) 40 (b) 5 4 5 3.9909e-008 13 14 1.09028e-006 6 9

(c) 0.37 16 17 1.2930e-011 — 6 8

(a) 5 5 6 1.2657e-007 7 8 9.55374e-006 9 14

400 (b) 5 4 5 3.4260e-008 9 10 1.46470e-007 7 11

(c) 0.14 23 24 1.2202e-008 — 7 10
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FIGURE 3.2 Curves of the residuals versus iterative step numbers of Example 3.9.
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TABLE 3.2
The known results: the number of iterations (IT), the number of function evaluations (FE).

(3.37) in [99] (3.38) in [99] Results in [71]
Choice n Initial Vector IT IT IT FE

(a) 2 14 5 17
(i) 4 (b) 2 41 4 15

(c) — — 5 11
(a) 3 15 5 17

(ii) 4 (b) — 15 4 15
(c) — 56 5 11

3.4.1 Case of Example 3.8

We can rewrite the KKT system of the Example 3.8 as a constrained system of nonlinear

equations,

F(u) =


 f (x,µ)

g(x,µ)+ s




=




Ax− 1√
n

exp(max{0,x})+2µ(x1, . . . ,xn)>

µ(
n

∑
i=1

x2
i −1)

n

∑
i=1

x2
i −1+ s1

−µ + s2




= 0, s = (s1,s2)≥ 0.

Here function of vectors, exp(max{0,x}) for example, are understood to mean com-

ponentwise evaluation in the discussion. From the known result for scalar function

max{0,x},

∂B max{0,x}=





{0}, x < 0,

{0,1}, x = 0,

{1}, x > 0,

(3.39)
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we know

∂BF(u) =




An×n βn×1 0 0

µβ>n×1 α 0 0

β>n×1 0 1 0

0 −1 0 1




(n+3)×(n+3)

, (3.40)

where

An×n = A− 1√
n

exp(max{0,x})Wn×n +2µdiag(1, . . . ,1)>,

Wn×n ∈ ∂B max{0,x},

βn×1 = 2(x1, . . . ,xn)>,

α =
n

∑
i=1

x2
i −1.

Since A is positive definite, the determinant det(Wn×n)≤ 1 for all Wn×n ∈ ∂B max{0,x},

and µ ≥ 0, it follows that the minimum eigenvalue of A denoted by λmin(A ) > 0.

F is clearly semismooth and we use V (uk) ∈ ∂BF(uk). Then by taking determinant

of V (uk), we have

det(V (uk)) = det(An×n(uk))det((α−µβ>A −1
n×nβ )(uk)). (3.41)

It follows from the compactness of S(ε1) that (ii) in Assumption 3.4 holds for Example

3.8. From the positive definiteness of An×n(uk), α ≤ 0 and the strict complementarity

at u∗ (deduced from the computational results), we know the validity of the first part of

(i) in Assumption 3.4 (i.e., F is BD-regular at u∗).
From BD-regularity of F at u∗ and the known matrix perturbation lemma in [98, p.

45], for all sufficiently large δk > 0, we have

‖(δ−1
k I +V (uk))−1‖ ≤ ‖(V (uk))−1‖

1−δ−1
k ‖(V (uk))−1‖ (3.42)

which implies the (3.27) of Assumption 3.4.
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3.4.2 Case of Example 3.9

The implicit complementarity problem (3.36) is equivalent to a constrained system of

nonlinear equations,

G(u) =




F1(y)(y1−m1(y))
...

Fn(y)(yn−mn(y))

−F(y)+ s1

m(y)− y+ s2




= 0, s = (s1,s2)≥ 0. (3.43)

Since F(y) and m(y) are twice continuously differentiable, G(u) is clearly smooth and

its Jacobian matrix has the following form

JG(u) =




An×n 0 0

−F ′(y) In×n 0

m′(y)− I 0 In×n




3n×3n

, (3.44)

where

An×n =




2α1 +3β1 −α1−β1

−α2−β2 2α2 +3β2
. . .

. . . . . . −αn−1−βn−1

−αn−βn 2αn +3βn




n×n

,

(α1, . . . ,αn)> = Ay+b≥ 0,

(β1, . . . ,βn)> = (A+ I)y+b+diag
(

1
2
, . . . ,

1
2

)
≥ 0.

Here for simplify, we only consider the choice (i) of m(y). The other choice for m(y)

can be discussed similarly.

From the computational results in [2, 71, 99] and this chapter, it follows that there

exists a neighborhood of u∗ such that 2αi +3βi > 0 and αi +βi > 0 for i = 1, . . . ,n. By

the known results about tridiagonal matrix [98, p. 51], we claim that An×n is irreducibly
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FIGURE 3.3 Curves of the residuals versus iterative step numbers of problem (3.45) with differ-
ent δ0.

diagonally dominant and similar to a positive definite matrix, which implies the validity

of (i) of Assumption 3.4. Meanwhile, the compactness of S(ε1) guarantees that (ii) in

Assumption 3.4 holds for Example 3.9.

3.4.3 Choices of δ0

In Subsections 3.3.1 and 3.3.2, we tested the numerical examples without the choices of

δ0 involved. We remark in this subsection that δ0 should be chosen optimally according

to the choices of initial iterative values of Ψtc for these problems. To see this, let us

consider a simple numerical example [17]




−13+ x1− x3

2 +5x2
2−2x2 = 0

−29+ x1− x3
2 + x2

2−14x2 = 0,
(3.45)

where x = (x1,x2) ∈Ω with Ω = {x = (x1,x2) | 2.5≤ x1 ≤ 10, 2≤ x2 ≤ 8}.

Taking the similar termination parameters of Ψtc for Example 3.8 and x0 =(0.5,−2)

as an initial iterative value, we test Ψtc for problem (3.45) with δ0 = 0.005,0.05,0.1,0.5,

respectively.

In Figure 3.3 we plot the residuals versus iterative step numbers for problem (3.45).

Figure 3.3 shows us that δ0 = 0.05 should be optimal for problem (3.45) with initial

iterative value x0 = (0.5,−2), compared with the other three choices of δ0.
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3.5 Summary

The main objective of this research was to show how pseudotransient continuation can

be applied to nonlinear equations with inequality constraints. We have reported on

numerical results to illustrate the ideas.



Chapter 4

Piece-wise

System

This chapter will provide two classes of piece-wise systems, both of which have special

structures. By exploring these structures, several effective Newton-type methods will

be designed. These approaches have a remarkable finite termination property.

4.1 Piece-wise System I

Brugnano and Casulli [15] considered the numerical solution of a piecewise linear sys-

tem,

max{0,x}+T x = b, (4.1)

where

x =




x1
...

xn


 , max{0,x}=




max{0,x1}
...

max{0,xn}


 , b =




b1
...

bn


 ,

b∈ IRn is known, T ∈ IRn×n is an irreducible, symmetric, and (at least) positive semidef-

inite matrix satisfying either of the following properties:

(A1) T is a Stieltjes matrix, i.e., a symmetric M-matrix (see, e.g., [98]), or

(A2) null(T ) ≡ span(v) with v > 0 (componentwise), and T + D is a Stieltjes

matrix for all diagonal matrices D = diag(d1, . . . ,dn) with
n

∑
i=1

di > 0, di≥ 0, i =

1,2, . . . ,n.

51
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The system (4.1) arises from the semi-implicit methods for the numerical simulation of

free-surface hydrodynamics (see, e.g., [20, 127]) and the numerical solutions of large-

scale complementarity problems (see, e.g., [34, 46]). Under the assumption (A1) or

(A2), Brugnano and Casulli [15] proposed an efficient Newton-type approach with a

finite termination property for solving system (4.1).

In this section1, we first relax the assumptions (A1) and (A2), and then prove the

finite termination of the Newton-type approach under our relaxed conditions. To this

end, let us consider an extended linear system,

T x+Smax{0,x}= b, (4.2)

where S ∈ IRn×n is a nonnegative matrix, i.e., S ≥ 0 (see, e.g., [98]), and matrices

T,S ∈ IRn×n satisfy one of the following properties:

(i) T and T +S are monotone matrices, i.e., T−1 ≥ 0, (T +S)−1 ≥ 0,

(ii) T is singular, and for every x ∈ IRn there exists an entry of b− T x is positive.

T +SD is a monotone matrix for all diagonal matrices D = diag(d1, . . . ,dn) with
n

∑
i=1

di > 0, di ∈ [0,1], i = 1, . . . ,n.

System (4.1) is actually a special expression of system (4.2) with S = In×n. As

will be shown in Section 4.1.2, assumptions (A1) and (A2) are much stronger than

assumptions (i) and (ii), respectively. Due to these observations, we call system (4.2)

as an extended piecewise linear system.

The organization of this section is as follows. In Subsection 4.1.1, we discuss a

Newton-type method for solving system (4.2), and prove its finite termination property.

In Subsection 4.1.2, we establish some results on the existence of solution for system

(4.2). Subsection 4.1.3 illustrate monotonicity of iterative sequence generated by our

Newton-type method. Finally, we give our conclusion in Subsection 4.1.4.

4.1.1 Newton-type Iteration

In order to derive the Newton-type iteration for solving system (4.2), we propose some

results on matrix splitting.
1This section is taken from [23].
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Definition 4.1. Let A,B ∈ IRn×n. Then A = B−C is a regular splitting of A if B is

invertible, B−1 ≥ 0, and C ≥ 0; it is a weak regular splitting if the condition C ≥ 0 is

replaced by B−1C ≥ 0 and CB−1 ≥ 0.

Clearly, a regular splitting is a weak regular splitting, but the converse is not true,

see [98, p. 56]. The following lemma shows that there is a close connection between

weak regular splitting and nonnegative inverse, see [98, Theorem 2.4.17].

Lemma 4.2. Let A ∈ IRn×n and suppose that A = B−C is a weak regular splitting.

Then the spectral radius ρ(B−1C) < 1 if and only if A−1 ≥ 0.

From the definition of M-matrix (see [98, Definition 2.4.7]), we also have that an

M-matrix is a monotone matrix, but the converse is not true.

Example 4.3. Let A =




1 −1 1

0 1 −1

0 0 1


 , then A−1 =




1 1 0

0 1 1

0 0 1


 . Thus A is mono-

tone, but not M-matrix.

The next result gives a characterization of monotone matrices.

Proposition 4.4. A ∈ IRn×n is monotone (i.e., A−1 ≥ 0) if and only if there exist two

monotone matrices B1 and B2 such that B1 ≤ A≤ B2.

Proof. Let B1,B2 ∈ IRn×n be monotone and satisfy B1 ≤ A≤ B2. Since C2 = B2−B1 ≥
0, it follows from Definition 4.1 that B1 = B2−C2 is a regular splitting. By Lemma 4.2

and (B1)−1 ≥ 0, the spectral radius ρ((B2)−1C2) < 1.

Moreover, let C = B2−A, then A = B2−C and (B2)−1 ≥ 0, C≥ 0. From Definition

4.1, it follows that A = B2−C is a regular splitting. Since C = B2−A ≤ B2−B1 =

C2 and (B2)−1 ≥ 0, it suffices to show (B2)−1C ≤ (B2)−1C2. An application of the

general comparison theorem [98, Theorem 2.4.9] yields ρ((B2)−1C)≤ ρ((B2)−1C2) <

1, which establishes the monotonicity of A.

Conversely, suppose that A is monotone, then the conclusion follows readily if B1 =

B2 = A. ¥

Proposition 4.5. System (4.2) is equivalent to the following system

[T +SP(x)]x = b, (4.3)
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where P(x) = diag(p(x1), . . . , p(xn)), p(xi), i = 1,2, . . . ,n, are piecewise constant func-

tions defined as

p(xi) =





1 if xi > 0,

0 otherwise.
(4.4)

Proof. The equality P(x)x = max{0,x} implies the validity of conclusion. ¥

The left-hand side of system (4.3) is not everywhere differentiable but semismooth.

Therefore, Qi’s generalized Newton method [109, 113] can be used to solve system

(4.3)

xk+1 = xk−
(

T +SV k
)−1 [(

T +SPk
)

xk−b
]
,

where

V k ∈ ∂B max{0,xk}= {diag(vk
1, . . . ,v

k
n)}

with vk
i , i = 1, . . . ,n are given by:

vi =





0, xk
i < 0;

0 or 1, xk
i = 0;

1, xk
i > 0.

Here ∂B max{0,xk} is called the B-subdifferential of max{0,x} at xk ∈ IRn[109, 113].

By the convergence theory of Qi’s generalized Newton method, the above method

enjoys locally quadratic convergence if an initial vector x0 is chosen suitably. How-

ever, if further observation is given to the expression of V k, we may design some

Newton-type methods with remarkable convergence properties, such as finite termi-

nation, global monotonicity. More precisely, by taking different approximations of the

B-subdifferential of max{0,xk}, two Newton-type methods for solving system (4.3) are

established. One is

xk+1 = xk−
(

T +SPk
)−1 [(

T +SPk
)

xk−b
]
,

which simplifies to the following Picard iteration,

(
T +SPk

)
xk+1 = b, k = 0,1,2, . . . , (4.5)
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where the upper index k denotes the iteration step and Pk = P(xk). The other is

yk+1 = xk− (T +S)−1
[(

T +SP(xk)
)

xk−b
]
, (4.6)

Remark 4.6. Taking S = In×n, the Picard iteration (4.5) is the iterative approach men-

tioned in [15] for solving piecewise linear system (4.2).

In the sequel we will establish the finite termination of the Picard iteration (4.5),

and global monotone convergence of iteration (4.6) under the assumption (i) or (ii). We

first show the iteration (4.5) is well-defined for solving system (4.3).

Theorem 4.7. Let matrices T,S in system (4.3) satisfy either (i) or (ii). If T,S satisfy

(ii) assume also that P0 6= 0. Then T +SPk is a monotone matrix and the iteration (4.5)

is well defined for all k ≥ 0.

Proof. By assumption (i), we claim that T ≤ T + SPk ≤ T + S. From Proposition 4.4,

we have that T +SPk is a monotone matrix, and thus the iteration (4.5) is well defined.

On the other hand, if T,S satisfy (ii) and P0 6= 0, then T +SP0 is a monotone matrix.

Next, by induction, one assumes that for k≥ 1 one has Pk−1 6= 0. Therefore, the vector

xk, satisfying (
T +SPk−1

)
xk = b,

is well defined. Then, one has

SPk−1xk = b−T xk.

By assumption (ii), there exists at least an entry of b−T xk is positive. Consequently,

Pk 6= 0, T +SPk is a monotone matrix, and xk+1 is well defined. ¥

The iteration (4.5) allows a very simple stopping criterion as provided by the fol-

lowing lemma.

Lemma 4.8. Let matrices T,S in system (4.3) satisfy either (i) or (ii). If T,S satisfy (ii)

assume also that P0 6= 0. If for some k ≥ 0 one gets Pk+1 = Pk, then x∗ = xk+1 is an

exact solution of problem (4.3), (4.4).
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Proof. Since Pk+1 = Pk, one has

(
T +SPk

)
xk+1 =

(
T +SPk+1

)
xk+1 = b.

Then the assertion follows from Proposition 4.5. ¥

The following theorem shows that the iteration (4.5) has a remarkable finite termi-

nation property.

Theorem 4.9. Let matrices T,S in system (4.3) satisfy either (i) or (ii). If T,S satisfy

(ii) assume also that P0 6= 0. Then the iteration (4.5) is monotonically decreasing and

converges to an exact solution of problem (4.3), (4.4) in at most n+1 iterations.

Proof. The iterative scheme (4.5) implies the following equality

(
T +SPk

)
xk+1 =

(
T +SPk−1

)
xk = b, k = 1,2, . . . ,

which implies (
T +SPk

)
xk+1 =

(
T +SPk

)
xk−ξ k, (4.7)

where ξ k ≡ S
(

Pk−Pk−1
)

xk.

By denoting hereafter by pk
i the ith diagonal entry of Pk, one has

pk
i − pk−1

i 6= 0 ⇒





pk
i = 1 and pk−1

i = 0 ⇒ xk
i > 0, ⇒ ξ k

i > 0,

or

pk
i = 0 and pk−1

i = 1 ⇒ xk
i ≤ 0 ⇒ ξ k

i ≥ 0.

This implies ξ k ≥ 0. By Theorem 4.7, it follows that
(

T +SPk
)−1

≥ 0, and conse-

quently, equation (4.7) implies xk+1 ≤ xk. Hence, Pk+1 ≤ Pk for all k = 1,2, . . ..

Finally, from Lemma 4.8, it follows that if Pk+1 = Pk then xk+1 is an exact solution

of system (4.3). Conversely, one obtains Pk+1 6= Pk and, since 0 ≤ Pk+1 ≤ Pk for all

k = 1,2, . . ., this may occur at most n−m+1 times where m =
n

∑
i=1

p(x0
i ). ¥
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4.1.2 Existence Results

We now present some conclusions on the existence of the solution for problem (4.3),

(4.4). These results complete the framework under assumptions (i) and (ii).

Theorem 4.10. Let matrices T,S in system (4.3) satisfy either (i) or (ii). Then the

solution of problem (4.3), (4.4) exists and is unique.

Proof. The existence of a solution has been established constructively by Theorem 4.9.

It remains to show the uniqueness. For any two vectors x and y, it follows from (4.4)

that

P(x)x−P(y)y = Q(x,y) · (x− y) , (4.8)

where Q = diag(q1, . . . ,qn), the diagonal entries qi satisfy the inequalities 0 ≤ qi ≤ 1,

i = 1,2, . . . ,n. In fact, one of the following four cases occurs:

(a) xi,yi > 0 ⇒ p(xi) = p(yi) = 1 ⇒ qi = 1;

(b) xi,yi ≤ 0 ⇒ p(xi) = p(yi) = 0 ⇒ qi = 0;

(c) xi > 0≥ yi ⇒ p(xi) = 1, p(yi) = 0 ⇒ 0 < qi =
xi

xi− yi
≤ 1;

(d) xi ≤ 0 < yi ⇒ p(xi) = 0, p(yi) = 1 ⇒ 0 < qi =
yi

xi− yi
≤ 1.

Assume now that x and y are both solutions of system (4.3) such that

[T +SP(x)]x = b, [T +SP(y)]y = b.

Thus,

[T +SP(x)]x− [T +SP(y)]y = (T +SQ)(x− y) = 0. (4.9)

By Proposition 4.4, if T,S in system (4.3) satisfy (i), it follows that T +SQ is certainly

a monotone matrix, and thus x = y.

On the other hand, if T,S in system (4.3) satisfy (ii), one has

SP(x)x = b−T x, SP(y)y = b−Ty.
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Consequently, P(x) 6= 0, P(y) 6= 0 and hence at least one of the diagonal entries of Q is

strictly positive. Thus, T +SQ is a monotone matrix and the uniqueness (x = y) follows

readily from (4.9). This establishes the statement. ¥

Note that assumption (ii) can be rewritten as three conditions stated below:

(iii) T is singular;

(iv) T +SD is a monotone matrix for all diagonal matrices D = diag(d1, . . . ,dn) with
n

∑
i=1

di > 0, di ∈ [0,1], i = 1,2, . . . ,n;

(v) for every x ∈ IRn there exists an entry of b−T x is positive.

Consequently, some existence results for solution of the problem (4.3), (4.4) under the

partial assertions of assumption (ii) could also be established. To be more precise,

we will present an existence result for the solution of problem (4.3), (4.4) without the

assumptions (iv) and (v). To this end, we suppose that

(vi) a vector u ∈ IRn exists such that Tu = b,

(vii) a vector v > 0 exists such that v ∈ null(T ).

Then the following result is deduced.

Proposition 4.11. Let T,S of problem (4.3), (4.4) satisfy assumptions (iii) and (vii). If

v>b > 0, then T,S satisfy assumption (v).

Proof. By assumptions (iii) and (vii), we have

v>(b−T x) = v>b > 0,

which implies the validity of conclusion. ¥

Remark 4.12. Proposition 4.11 actually shows that assumption (ii) is weaker than the

condition (A2) used in [15].

Furthermore, a conclusion can be deduced if matrices T,S in system (4.3) satisfy

assumptions (iii), (vi) and (vii).
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Theorem 4.13. Let T,S of problem (4.3), (4.4) satisfy assumptions (iii), (vi) and (vii).

Assume that

(a) v>b = 0, then a solution exists but is not unique,

(b) v>b < 0, then the problem has no solution.

Proof. Let ui and vi denote the ith entries of the vectors u and v in assumptions (vi) and

(vii), respectively, then for all α ≥ max
1≤i≤n

ui

vi
the vector

x(α) = u−αv

satisfies

x(α)≤ 0, T x(α) = b.

Consequently, x(α) is a solution of problem (4.3), (4.4). The assertion (a) thus follows

from Proposition 4.14.

To prove the assertion (b), assume that a solution x exists, then from (4.3) one has

v> [T +SP(x)]x = v>SP(x)x = v>b < 0,

which is a contradiction with the assertions that v > 0 and SP(x)x≥ 0. ¥

Finally, if matrices T,S in system (4.3) satisfy neither (i) nor (ii), we have the fol-

lowing result.

Proposition 4.14. Suppose that

(a) the set {u≤ 0 | Tu = b} 6= /0, then the solution of problem (4.3), (4.4) exists and

all elements in this set are the solutions of problem (4.3), (4.4),

(b) for every x ∈ IRn, there exists an entry of b− T x is negative, then the problem

(4.3), (4.4) has no solution.

Proof. The statements follow readily from the expression of problem (4.3), (4.4). ¥
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4.1.3 Monotonicity of Iterative Sequence

Theorem 4.7 claims that there is a finite monotonically decreasing sequence {xk} con-

verges to the solution x∗ of problem (4.3), (4.4). Thus {xk} constitutes the upper bounds

for x∗. In this section we will consider the construction of an additional, monotonically

increasing sequence, which provides the lower bounds for the solution x∗.

Theorem 4.15. Let matrices T,S in system (4.3) satisfy either (i) or (ii). If T,S satisfy

(ii) assume also that P0 6= 0. Assume further that there exists an initial value y0 such

that
(
T +SP(y0)

)
y0−b≤ 0. Then the iteration (4.6), i.e.,

yk+1 = yk− (T +S)−1
[(

T +SP(yk)
)

yk−b
]
, (4.10)

is well-defined. Moreover, the iterative sequence {yk} is monotonically increasing and

converges to an exact solution of problem (4.3), (4.4).

Proof. The matrices T,S in problem (4.3), (4.4) satisfy either (i) or (ii), then (T +S)−1

exists, and thus the iteration (4.10) is well defined. Next, we show by induction that

y0 ≤ yk−1 ≤ yk,
(

T +SP(yk)
)

yk−b≤ 0.

Suppose this holds for some k ≥ 0, then (T +S)−1 ≥ 0 and
(

T +SP(yk)
)

yk− b ≤ 0

together imply that yk ≤ yk+1.

Taking x = yk+1 and y = yk in (4.8), together with (4.10), we obtain

(
T +SP(yk+1)

)
yk+1−b =

(
T +SP(yk)

)
yk−b+

(
T +SQ(yk+1,yk)

)(
yk+1− yk

)

(4.11)

≤
(

T +SP(yk)
)

yk−b+(T +S)
(

yk+1− yk
)

= 0.

This completes the induction. Suppose that x∗ is a solution of (T +SP(x∗))x∗ = b.

Taking x = yk and y = x∗ in (4.8), together with (4.11), we have

(
T +SP(yk)

)
yk− (T +SP(x∗))x∗ =

(
T +SQ(yk,x∗)

)(
yk− x∗

)
≤ 0. (4.12)
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If assumption (i) holds for problem (4.3), (4.4), then by assumption (i), we claim that

T ≤ T + SQ(yk,x∗) ≤ T + S. From Proposition 4.4, it follows that T + SQ(yk,x∗) in

(4.12) is a monotone matrix, which implies yk ≤ x∗.
Alternatively, if assumption (ii) holds for problem (4.3), (4.4) and P0 6= 0, by the

increasing monotonicity of {yk}, we have that Pk+1 ≥ Pk ≥ P0 6= 0 for all k = 1,2, . . ..

It follows from (4.8) and (4.12) that at least one of the diagonal entries of Q(yk,x∗) in

(4.12) is strictly positive. Thus, T + SQ(yk,x∗) in (4.12) is a monotone matrix, then

yk ≤ x∗ holds.

Now {yk} is an upper bounded, monotonically increasing sequence thus has a limit

y∗. By (4.10), we have

yk+1− yk =−(T +S)−1
[(

T +SP(yk)
)

yk−b
]
≥ 0. (4.13)

But lim
k→∞

(
yk+1− yk

)
= 0, so that

lim
k→∞

((
T +SP(yk)

)
yk−b

)
= 0

which implies (T +SP(y∗))y∗− b = 0. Theorem 4.10 about the unique existence for

the solution of problem (4.3), (4.4) then implies y∗ = x∗. This establishes the assertions.

¥

In practice, the determination of xk+1 from iteration (4.5) can be accomplished quite

efficiently by using a preconditioned Krylov subspace method (see, e.g., [116]). This is

particularly the case in applications where T is a sparse and very large matrix. For the

choice of a starting point for the used preconditioned Krylov subspace method in each

iteration (4.5), the following result provide a criterion.

Proposition 4.16. Let matrices T,S in system (4.3) satisfy either (i) or (ii). If T,S satisfy

(ii) assume also that P0 6= 0. Assume further that at the kth iteration (4.27), there exist

two vectors hk+1 and gk+1 such that

(
T +SPk

)
hk+1 ≤ b,

(
T +SPk

)
gk+1 ≥ b. (4.14)
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Then the exact solution xk+1 of the kth iteration (4.5) satisfies

hk+1 ≤ xk+1 ≤ gk+1. (4.15)

Proof. By Theorem 4.7, it follows that T + SPk is a monotone matrix and the it-

eration (4.5) is well defined for all k ≥ 0. From the monotonicity of T + SPk, i.e.(
T +SPk

)−1
≥ 0, we have

(
T +SPk

)−1 (
T +SPk

)
hk+1 ≤

(
T +SPk

)−1
b

= xk+1

≤
(

T +SPk
)−1 (

T +SPk
)

gk+1,

which implies (4.15) holds. ¥

Remark 4.17. By Theorem 4.9, we obtain xk+1 ≤ xk. Hence using xk as a starting point

is reasonable and convenient for the preconditioned Krylov subspace method employed

in each iteration (4.27).

4.1.4 Contributions and Future Research

This section shows that under more relaxed assumption (i) or (ii) (compared with condi-

tion (A1) or (A2) used in [15]), the Newton-type method converges to an exact solution

of the given system in a finite number of steps. The existence results of solution for the

piecewise linear system are established.

Finally, we point out that under condition (A1) or (A2), two constructive iterative

methods to solve a piecewise linear system of the form

max{l,min{u,x}}+T x = b, l,u,b ∈ IRn, l = (li)≤ u = (ui)

are analyzed with a finite termination property in [14]. Under more relaxed assump-

tion (i) or (ii), the finite termination property for these algorithms in [14] can also be

established following an analogous analysis to this chapter with slight and technical

modifications.
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4.2 Piece-wise system II

In this section2 we consider the numerical solution of another special linear systems

whose coefficient matrix is a piecewise constant function of the solution itself, i.e.,

Sx+T max{0,x}= b, (4.16)

where the operators max is to be intended componentwise, b ∈ IRn is known, S ∈ IRn×n

is a positive diagonal matrix. T ∈ IRn×n is an irreducible, symmetric, and (at least)

positive semidefinite matrix, satisfying either one of the following properties:

T1: T is a Stieltjes matrix, i.e., a symmetric M-matrix (see, e.g., [98]), or

T2: null(T ) ≡ span(v) with v > 0 (componentwise), and T + D is a Stieltjes ma-

trix for all diagonal matrices D = diag(d1, . . . ,dn) with
n

∑
i=1

di > 0, di ≥ 0, i =

1,2, . . . ,n.

Note that upon a suitable variable transformation, the following problems can be taken

back to problem (4.16):

Sx+T max{ξ ,x} = b, (4.17)

Sx+T min{ξ ,x} = b, (4.18)

where ξ is a given vector.

The efficient solution of system (4.16) is of interest in numerical optimization be-

cause this system can be cast as a linear complementarity problem (see, e.g., [34]). In

fact, by setting y = max{0,x} and z = y− x, system (4.16) can be formulated either as

a horizontal linear complementarity problem,

(S +T )y = z+b, y>z = 0, y,z≥ 0, (4.19)

or, equivalently, as a standard linear complementarity problem,

y = Mz+q, y>z = 0, y,z≥ 0, (4.20)

2This section is taken from [16].
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where q = (S +T )−1b and M = (S +T )−1 is a positive definite matrix (see [41, 8]).

When the size of a linear complementarity problem is reasonably small, it can

be solved by means of a (direct) pivoting method (see, e.g., [34, 41, 88]). For large

and sparse problems, however, these methods suffer from unacceptable roundoff er-

ror accumulation and excessive storage requirement. Iterative (indirect) methods such

as, interior-point type methods (see, e.g., [105, 106, 108, 136]), nonsmooth Newton

methods (see, e.g., [36, 109, 113, 74]), are therefore employed to solve large-scale

complementarity problems. Facchinei and Pang in their monograph [46] presented a

comprehensive, state-of-the-art treatment of the iterative solution for complementarity

problem. However, these iterative methods are characterized by having a convergence

without a global monotonicity and, moreover, generally occurring only in the limit of

an infinite number of iterations.

Another application of system (4.16) is the absolute value programming introduced

by Mangasarian and Meyer (see, e.g., [93, 91, 92]). Since |x| = 2max{0,x}− x, then

system (4.16) could be reformulated as

(2I +T )x+T |x|= 2b, (4.21)

which is an absolute value equation. It should be note that the main difference between

(4.21) and the absolute value equations mentioned in [93, 91, 92] is that the matrix T in

(4.21) satisfies assumptions T1 or T2. This crucial difference causes that the problem

(4.21) is not NP-hard. For details of the NP-hardness about a general absolute value

programming, see the above mentioned references [93, 91, 92].

More recently, Brugnano and Casulli [15] also considered the solution of large sys-

tems in the form

max{0,x}+T x = b, (4.22)

where T ∈ IRn×n satisfies either T1 or T2. System (4.22) arises from the use of semi-

implicit methods for the numerical simulation of free-surface hydrodynamics (see, e.g.,

[20, 21]). More precisely, a correct formulation of numerical methods for free-surface

hydrodynamics, that guarantees nonnegative water depths for any time step, requires

the solution of a large and sparse system in the form (4.22). Due to the piecewise

characterization of max{0,x}, Brugnano and Casulli [15] then called system (4.22) as
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a piecewise linear system. An efficient semi-iterative Newton-type approach for solving

system (4.22) was derived and its convergence within a finite number of iterations was

also established in [15]. Because of this, we call system (4.16) an extended piecewise

linear system.

The main contribution of this section is to generalize the semi-iterative Newton-type

approach employed in [15] to solve the extended piecewise linear system (4.16). In the

next subsection the semi-iterative Newton-type procedures for solving system (4.16)

will be derived. A remarkable monotone convergence of the semi-iterative Newton-

type procedures will also be established. In Subsection 4.2.2, some numerical tests are

provided to confirm the excellent convergence properties of the proposed algorithms,

also presenting the application of systems in the form (4.16) for solving real-life prob-

lems. Finally, in Subsection 4.2.3, a few concluding remarks are given.

4.2.1 The Newton-type Iteration

Some preliminary results are stated at first in order to derive the Newton-type iterative

procedure for solving system (4.16) and prove its convergence. Their proof is straight-

forward and is, therefore, omitted.

Lemma 4.18. Let T satisfy either T1 or T2. Then, for any diagonal matrix P with non-

negative diagonal entries, matrix S+T P is an M-matrix and, therefore, (S+T P)−1≥ 0.

Lemma 4.19. System (4.16) is equivalent to the following system

[S +T P(x)]x = b, (4.23)

where P(x) = diag(p(x1), . . . , p(xn)), where p(xi), i = 1,2, . . . ,n, are piecewise constant

functions defined as

p(xi) =





1 if xi ≥ 0,

0 otherwise.
(4.24)

It is to be noted that the left-hand side of system (4.23) is not everywhere differen-

tiable. Nevertheless, a Newton-type method for solving system (4.23) can be deduced,

xk+1 = xk−
(

S +T Pk
)−1 [(

S +T Pk
)

xk−b
]
, k = 0,1, . . . , (4.25)
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where the upper index k denotes the iteration step and

P0 = 0, Pk = P(xk), k = 1,2, . . . . (4.26)

This simplifies to the following Picard iteration,

P0 = 0,
(

S +T Pk
)

xk+1 = b, k = 0,1,2, . . . . (4.27)

In the sequel we will establish the convergence of the Picard iteration (4.27). We

first show that the iteration (4.27) is well-defined.

Theorem 4.20. Let matrix T in system (4.23) satisfy either T1 or T2. Then S +T Pk is

an M-matrix and the iteration (4.27) is well defined for all k ≥ 0.

Proof. Trivial, from Lemma 4.18. ¥

The iteration (4.27) allows a very simple stopping criterion, as provided by the

following lemma.

Lemma 4.21. Let matrix T in system (4.23) satisfy either T1 or T2. If, for some k≥ 0,

one gets (Pk+1−Pk)xk+1 = 0, then x∗ = xk+1 is an exact solution of problem (4.23)–

(4.24).

Proof. Since (Pk+1−Pk)xk+1 = 0, one has

(
S +T Pk

)
xk+1 =

(
S +T Pk+1

)
xk+1 = b.

Then the assertion follows from Lemma 4.19. ¥

Next result provides a monotonicity property for the iteration (4.27).

Theorem 4.22. Let matrix T in system (4.23) satisfy either T1 or T2. Then Pkxk+1 ≥
Pk−1xk.

Proof. From (4.27) one obtains that

(S +T Pk)xk+1 = b = (S +T Pk−1)xk, k ≥ 1.
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Consequently, from left multiplication by Pk, one obtains that

(S +PkT )Pkxk+1 = SPkxk +PkT Pk−1xk

= (S +PkT )Pk−1xk +S(Pk−Pk−1)xk

≥ (S +PkT )Pk−1xk,

Since one readily verifies that, because of the definition (4.26), S(Pk −Pk−1)xk ≥ 0.

Because of the result of Theorem 4.20, matrix (S+PkT ) is an M-matrix and, therefore,

(S +PkT )−1 ≥ 0. The thesis then follows immediately. ¥

As a consequence of the previous monotonicity property, convergence in a finite

number of steps is established.

Corollary 4.23. Let matrix T in system (4.23) satisfy either T1 or T2. Then iteration

(4.27) converges in at most n steps.

Proof. Indeed, from the result of Theorem 4.22, one obtains that

Pkxk+1 ≥ Pk−1xk ≥ P0x1 = 0, k = 1,2, . . . .

Consequently, from the definitions (4.24) and (4.26), one obtains, by setting, as usual

xk = (xk
i ) and xk+1 = (xk+1

i ),

xk
i ≥ 0⇒ xk+1

i ≥ 0, i.e. Pk+1 ≥ Pk ≥ 0.

By considering the stopping criterion provided by Theorem 4.21, one has that at each

step one either has Pk = Pk−1, and then the solution has been reached, or Pk 6= Pk−1.

The latter case can obviously happen at most n times, where n is the dimension of the

problem. ¥

Remark 4.24. Even though Corollary 4.23 establishes the finite convergence of iter-

ation (4.27), nevertheless the corresponding upper bound may be large, when the di-

mension of the system is large. However, convergence practically occurs in just a few

iterates, as it is also confirmed by the numerical tests in Section 4.2.2.
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Next, we present a conclusion on the existence of the solution for problem (4.23).

We need the following preliminary result.

Lemma 4.25. With reference to matrix P defined in (4.24), for any two vectors x and y,

one has

P(x)x−P(y)y = W · (x− y) , (4.28)

where

W = diag(w1, . . . ,wn), with 0≤ wi ≤ 1, i = 1,2, . . . ,n.

Proof. For each i = 1,2, . . . ,n, it follows from (4.24) that either one of the following

four cases occurs, for any two vectors x = (xi) and y = (yi):

(a) xi,yi ≥ 0 ⇒ p(xi) = p(yi) = 1 ⇒ wi = 1;

(b) xi,yi < 0 ⇒ p(xi) = p(yi) = 0 ⇒ wi = 0;

(c) xi ≥ 0 > yi ⇒ p(xi) = 1, p(yi) = 0 ⇒ 0≤ wi =
xi

xi− yi
< 1;

(d) xi < 0≤ yi ⇒ p(zi) = 0, p(yi) = 1 ⇒ 0≤ wi =
yi

yi− xi
< 1.

This shows the validity of (4.28). ¥

Theorem 4.26. Let matrix T in system (4.23) satisfy either T1 or T2. Then, the solution

of problem (4.23)–(4.24) exists and is unique.

Proof. The existence of a solution has been established constructively by Corollary 4.23.

It remains to prove its uniqueness. Assume that x and y are both solutions of system

(4.23), i.e.,

[S +T P(x)]x = b, [S +T P(y)]y = b.

From Lemma 4.25, it follows that

[S +T P(x)]x− [S +T P(y)]y = (S +TW )(x− y) = 0, (4.29)

where W is a diagonal matrix with nonnegative diagonal entries. By Lemma 4.18, if

matrix T in system (4.23) satisfies either T1 or T2, it follows that I+TW is an M-matrix

and, thus, x = y. ¥
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For completeness, we mention that, for Problem (4.17), the corresponding iteration

is:

P0 = 0, Sxk+1 +T Pk(xk+1−ξ ) = b−T ξ , k = 0,1,2, . . . , (4.30)

where ξ = (ξi) and

Pk = P(xk) = diag(p(xk
i )), p(xk

i ) =





1 if xi ≥ ξi,

0 otherwise.
(4.31)

Similarly, for Problem (4.18), the corresponding iteration is given by

Q0 = I, Sxk+1 +T Qk(xk+1−ξ ) = b−T ξ , k = 0,1,2, . . . , (4.32)

where

Qk = Q(xk) = diag(q(xk
i )), q(xk

i ) =





1 if xi < ξi,

0 otherwise.
(4.33)

4.2.2 Numerical Tests

We here consider a test problem, concerning the heat transmission in a medium which,

only for sake of simplicity, is assumed to be homogeneous.

Consider, at first, a tiny wire of length L which is heated at x = 0, at temperature u0,

and is insulated at x = L. If the wire is initially at temperature u = 0, and its thermal

diffusivity is κ , then the governing equation for u(x, t) is the well-known heat equation,

∂
∂ t

u(x, t) = κ
∂ 2

∂x2 u(x, t), 0 < x < L, t > 0, (4.34)

with boundary conditions

u(x,0)≡ 0, 0 < x < L, and u(0, t) = u0,
∂
∂x

u(L, t) = 0, t > 0. (4.35)

Let then consider a discretization for the space variable with stepsize

∆x =
L

N +1
, (4.36)
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and of the time variable with stepsize ∆t. By setting, as usual, by uk
i the numerical

approximation to u(i∆x,k∆t), one then obtains the discrete equation

uk+1
i −uk

i
∆t

=
κ

∆x2

(
uk+1

i−1 −2uk+1
i +uk+1

i+1

)
, i = 1, . . . ,N, k ≥ 0, (4.37)

with boundary conditions

u0
i = 0, i = 1, . . . ,N, uk

0 = u0, uk
N+1 = uk

N , k ≥ 1. (4.38)

Upon multiplication of (4.37) by ∆t, one may cast all the equations as a linear system

in the form

(I +T )uk+1 = uk +η , (4.39)

where

uk =




uk
1
...

uk
N


 , T =

κ∆t
∆x2




2 −1

−1 . . . . . .
. . . 2 −1

−1 2




, η =
κu0∆t

∆x2




1

0
...

0




.

(4.40)

We observe that matrix T is T1: in general this will be the case if the temperature is

prescribed in at least one point of the boundary (as in the present case); on the other

hand, matrix T will satisfy property T2 when only the heat flux is prescribed (i.e., only

Neumann conditions are specified for the problem). The solution of Problem (4.38)-

(4.35) can then be easily approximated by solving the discrete problem (4.37)-(4.38).

However, let now consider the following modification to the original problem, i.e.,

assume that the wire is plugged into a thermostat, which cools the wire as soon as its

temperature reaches a specifield theshold umax (which we assume, for simplicity, to be

constant, even though it may vary both in space and time). In such a case, the discrete

equation (4.37) is no more a correct formalization of the new problem. In order to

obtain a new, more appropriate discrete problem, let us rewrite Equation (4.37) as

(
uk+1

i −uk
i

)
∆x = κ∆t

(
uk+1

i+1 −uk+1
i

∆x
− uk+1

i −uk+1
i−1

∆x

)
, i = 1, . . . ,N, k ≥ 0,



4.2 Piece-wise system II 71

which can be read as a conservation law: namely, by considering that the heat flux is

directed in the direction of the negative gradient, the difference of heat at xi, at the next

time step, is obtained as the difference between the heat flux “entering” from the left,

−κ∆t
uk+1

i −uk+1
i−1

∆x
,

and that “exiting” from the right,

−κ∆t
uk+1

i+1 −uk+1
i

∆x
.

Consequently, by defining

φ k
i = min{uk

i ,umax}, i = 1, . . . ,N, k ≥ 0,

the generalization of the model for the new problem becomes:

(
uk+1

i −φ k
i

)
∆x = κ∆t

(
φ k+1

i+1 −φ k+1
i

∆x
− φ k+1

i −φ k+1
i−1

∆x

)
, i = 1, . . . ,N, k ≥ 0.

Evidently, the quantity

ψk+1
i ≡ uk+1

i −φ k+1
i ,

will be the temperature fall due to the action of the thermostat. Consequently, the

problem to be solved, at the k-th time step, will be

uk+1 +T min{uk+1,umax}= b≡min{uk,umax}+η , (4.41)

with the vector umax containing the given upper bound due to the introduction of the

thermostat (i.e., a constant vector, in the present example), and matrix T satisfying ei-

ther T1 or T2, depending on the specified boundary conditions (i.e., T1, for the current

example). Clearly, Problem (4.41) is in the form (4.18) and, then, the corresponding

iteration (4.32)-(4.33) has to be used. In Table 4.1 we list the number of iterations

required for convergence, when

κ = 10−3 m2/s, L = 1m, u0 = 5C umax ≡ 2, ∆t = 102 s. (4.42)
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TABLE 4.1
Number of iterations required for solving problem (4.36) and (4.40)–(4.42) for various values
of N.

k \ N 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1 3 3 3 3 3 3 3 3 3 3
2 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3
4 3 3 3 3 3 3 3 3 3 3
5 3 3 3 3 3 3 3 3 3 3
6 3 3 3 3 3 3 3 3 3 3
7 3 3 3 3 3 3 3 3 3 3
8 3 3 3 3 3 3 3 3 3 3
9 3 3 3 3 3 3 3 3 3 3
10 3 3 3 3 3 3 3 3 3 3

As one can see, the number of the required iterations is remarkably small and insensitive

of grid resolution. For completeness, in Figure 4.1 there is the plot of the computed

solution at

t = 100,200, . . . ,1000s.

The second problem is derived from the parabolic obstacle problem within finan-

cial mathematics [104, 121]. This problem is outlined as follows. Let Q be parabolic

cylinder in IRn× IR, and let φ(x, t) be parabolically C0,α in Q. Set

H(u) = F(D2u,Du,u,x, t)−Dtu (4.43)

where F is a full nonlinear uniformly elliptic operator within certain homogeneity prop-

erties for which the regularity theory of viscosity solutions applies. Let u solve the

parabolic obstacle problem





(u−φ)H(u) = 0,

u ≥ φ , in Q,

H(u) ≤ 0,

(4.44)

with boundary datum

u(x, t) = g(x, t)≥ φ(x, t) on ∂pQ, (4.45)
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FIGURE 4.1 Computed solution of problem (4.36) and (4.40)–(4.42).

TABLE 4.2
Obstacles in the applications.

Obstacle φ Applications
max{0,E− x1} 1-dimension contract, American put

min{max{0,E− x1},max{0,E− x2}} min option, American put

u(x,0) = g(x,0) = φ(x,0). (4.46)

Here ∂p denote the parabolic boundary. In fact, equations (4.44) is equivalent to a

nonsmooth system

min{u−φ ,−H(u)}= 0. (4.47)

The obstacle φ in general has singularities, usually representing a change in the

nature of the contract in applications in finance. Examples of obstacles that appear in

finance are given in Table 4.2. (here E is a constant and it denotes the exercise price).

See [104] for more details.
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In the present test H(u) in parabolic obstacle problem (4.44) is described by a

parabolic equation

H(u) =− ∂
∂ t

u(x, t)+
∂ 2u(x, t)

∂x2
1

+
∂ 2u(x, t)

∂x2
2

, Q = [−l,m]× [−l,m]× [0,T ). (4.48)

The obstacle is given by

φ(x) = max{0,min{x1,x2}}. (4.49)

Moreover, we only consider the numerical solution of (4.44) with a fixed boundary

(4.45), that is, g(x, t) = φ(x, t) in (4.45). More complicated cases involved a free bound-

ary will not be discussed herein.

Let then consider a consistent implicit discretization for the space variables with

stepsize

∆x1 = ∆x2 =
l +m
N +1

, (4.50)

and of the time variable with stepsize ∆t. By setting, as usual, by uk
i, j the numerical

approximation to u(i∆x1, j∆x2,k∆t), one then obtains the discrete equation

min
{

Hk+1
i, j ,uk+1

i, j −φ k+1
i, j

}
= 0, i, j = 1, . . . ,N, k ≥ 0, (4.51)

where

Hk+1
i, j =

uk+1
i, j −uk

i, j

∆t
−

uk+1
i−1, j−2uk+1

i, j +uk+1
i+1, j

(∆x1)2 −
uk+1

i, j−1−2uk+1
i, j +uk+1

i, j+1

(∆x2)2 , (4.52)

φ k+1
i, j = max

{
0,min

{
−l +

i
N +1

(l +m),−l +
j

N +1
(l +m)

}}
. (4.53)

The corresponding boundary conditions are

u0
i, j = φ 0

i, j, i, j = 0, . . . ,N +1. (4.54)

Then we may cast all the equations as a linear system in the form

uk+1 +max
{

Tuk+1 +
(

1
∆t
−1

)
uk+1,

1
∆t

uk−φ k+1
}

=
1
∆t

uk, (4.55)
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where

uk =




uk
1,1
...

uk
N,1
...

uk
1N
...

uk
NN




, T =
1

(∆x1)2




A −I

−I . . . . . .
. . . A −I

−I A




, φ k+1 =




φ k+1
1,1
...

φ k+1
N,1
...

φ k+1
1N
...

φ k+1
NN




.

(4.56)

Herein I is N×N identity matrix, and

A =




4 −1

−1 . . . . . .
. . . 4 −1

−1 4




N×N

(4.57)

We observe that matrix T is T1 if the time stepsize and space stepsize satisfy

1
∆t

> 1− 8sin2 (π
2 ∆x1

)

∆x2
1

. (4.58)

Generally this will be the case if the temperature is prescribed in at least one point of

the boundary (as in the present case); on the other hand, matrix T will satisfy property

T2 when only the heat flux is prescribed (i.e., Neumann conditions are specified for

the problem. However, under the assumption Dtu ≥ Dtφ in Q, which mathematically

corresponds to the Stefan problem case. It is beyond the problem considered herein).

Clearly, parabolic obstacle problem (4.44) is in the form (4.17) and, then, the corre-

sponding iteration (4.30)-(4.31) has to be used. In Table 4.3 we list the number of

iterations required for convergence, when

l = 10, m = 4, T = 5s, ∆t = 0.05s. (4.59)

As one can see, the number of the required iterations is remarkably small and insensitive
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TABLE 4.3
Number of iterations required for solving problem (4.44) and (4.45)–(4.46) for various values
of N.

k \ N 16 24 32 48 56 64
1 3 3 3 2 2 2
2 3 3 3 2 2 2
3 3 3 3 2 2 2
...

...
...

...
...

...
...

98 3 3 3 2 2 2
99 3 3 3 2 2 2

100 3 3 3 2 2 2

of grid resolution. For completeness, in Figure 4.2 there is the plot of the computed

solution at t = 5s.

4.2.3 Summary

A simple semi-iterative Newton-type procedure for solving certain extended piecewise

linear systems has been derived and investigated. It is shown that under rather gen-

eral assumptions, the iterates are well defined and monotonically converge to the exact

solution of the given system in a finite number of steps. Simple, non trivial, numeri-

cal examples prove the effectiveness of the proposed method for solving free-surface

problems derived from real-life applications.
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FIGURE 4.2 Computed solution of problem (4.44) and (4.45)–(4.46) at T = 5s.
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Chapter 5

Numerical

Solution for

Optimal Control

Problem

This chapter 1 considers the following optimal control problem (OCP for simplicity)

subject to mixed control-state constraints:

(OCP)

Minimize
∫ 1

0
f0(x(t),u(t)) dt

w.r.t. x ∈W 1,∞([0,1], IRnx),u ∈ L∞([0,1], IRnu),

s.t. x′(t) = f (x(t),u(t)) a.e. in [0,1],

ψ(x(0),x(1)) = 0,

c(x(t),u(t))≤ 0 a.e. in [0,1].

Without loss of generality, the discussion is restricted to autonomous problems on the

fixed time interval [0,1]. The functions f0 : IRnx × IRnu → IR, f : IRnx × IRnu → IRnx , ψ :

IRnx × IRnx → IRnψ , c : IRnx × IRnu → IRnc , are supposed to be at least twice continuously

differentiable (i.e., C2) w.r.t. all arguments. As usual, the Banach space L∞([0,1], IRn)

consists of all measurable functions h : [0,1]→ IRn with

‖h‖∞ = ess sup
0≤t≤1

‖h(t)‖< ∞,

1This chapter is taken from [24].
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where ‖ · ‖ denotes the Euclidean norm on IRn. For 1 ≤ q < ∞ the Banach space

Lq([0,1], IRn) consists of all measurable functions h : [0,1]→ IRn with

‖h‖q =
(∫ 1

0
‖h(t)‖q dt

) 1
q

< ∞.

For 1 ≤ q ≤ ∞ the Banach space W 1,q([0,1], IRn) consists of all absolutely continuous

functions h : [0,1]→ IRn with

‖h‖1,q = max{‖h‖q,‖h′‖q}< ∞.

Several approaches towards the numerical solution of OCP have been investigated

in the literature. The so-called direct discretization method is based on a discretization

of the infinite dimensional optimal control problem and leads to a finite dimensional

nonlinear program, cf., e.g., Gerdts [53]. The direct discretization method turns out to

be very robust in practice. Nevertheless, the computational effort grows at a nonlinear

rate with the number of grid points used for discretization. Another numerical method

for optimal control problems is the so-called indirect method, this approach attempts to

satisfy the necessary conditions that are provided by the well-known minimum princi-

ple [62] numerically. Although the indirect method usually leads to the most accurate

solutions, it suffers from the drawback that it requires a sufficiently good initial guess

of the solution in order to converge. One crucial task is to estimate the sequence of

active and inactive intervals of the control-state constraint. For more details about the

direct discretization methods and indirect methods for OCP, we refer to Büskens [19],

Gerdts [55], Grötschel et al. [60], Ioffe and Tihomirov [70] and the references therein.

Most recently, Gerdts [56] analyzed the local and global convergence properties of a

nonsmooth Newton method for the numerical solution of OCP. This method was based

on a nonsmooth reformulation of the necessary optimality conditions for the OCP, see

Gerdts [54]. More precisely, the reformulation of the necessary conditions leads to the

nonsmooth equation

F(z) = 0, F : Z → Y, (5.1)

where Z and Y are appropriate Banach spaces. Application of the globalized nonsmooth
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Newton method generates sequences {zk}, {dk} and {αk} related by the iteration

zk+1 = zk +αkdk, k = 0,1,2, . . . .

Herein, the search direction dk is the solution of the linear operator equation

V k(dk) =−F(zk) (5.2)

and the step length αk > 0 is determined by a line-search procedure of Armijo’s type

for a suitably defined merit function. The linear operator V k is chosen from an appro-

priately defined generalized Jacobian matrix ∂∗F(zk).

However, computing the exact solution via (5.2) could be expensive for large di-

mensional problems (e.g. problems originating from discretized partial differential

equations) and may not be justified when xk is far from a solution. These difficulties

motivate us to invoke another classical tool for nonsmooth equations (5.1): the inex-

act Newton method. Actually, the notion of inexact solution in algorithms for solving

nonsmooth equations in finite dimensions was suggested by Pang [101], and has been

employed by Martı́nez and Qi [94], Kanzow [74], Facchinei and Kanzow [45].

Following the general framework of Ulbrich [131, 130] which was used to solve

certain optimal control problems subject to partial differential equations, one of the

contributions of this chapter is to extend the inexact nonsmooth and smoothing Newton

method to infinite spaces. The other contribution is the application to the numerical

solution of the OCP. The application of the inexact nonsmooth and smoothing Newton

method to this problem class has not been investigated in detail by now.

The chapter is organized as follows. Section 5.1 reformulates OCP to (5.1) by ex-

ploitation of the minimum principle. Section 5.2 introduces the inexact nonsmooth

Newton method and establishes the locally superlinear convergence under compara-

tively mild assumptions. Section 5.3 analyzes the global convergence properties of the

inexact nonsmooth Newton method based on a non-monotonic backtracking strategy.

Section 5.4 proposes a smoothing approach for the numerical solution of OCP, and il-

lustrates its convergence. Numerical experiments are presented in Section 5.5. Finally,

we make some conclusions and comment on possible further work in Section 5.7.
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5.1 Reformulation

The (augmented) Hamilton function H : IRnx × IRnu × IRnx × IRnc → IR is defined by

H(x,u,λ ,η) = f0(x,u)+λ> f (x,u)+η>c(x,u).

We summarize the well-known minimum principle for OCP. Throughout the rest of

the chapter we will use the abbreviation f [t] for f (x(t),u(t)) and likewise for other

functions with time dependent arguments. Moreover, for an index set I and a vector c

with components ci we define cI = (ci)i∈I .

Let (x∗,u∗) be a (weak) local minimum of OCP and, in addition to the smoothness

assumptions made above, let the following assumptions be satisfied at (x∗,u∗):

(i) (Linear independence) There exist α > 0 and β > 0 such that

‖c′Iα (t),u[t]
>ζ‖ ≥ β‖ζ‖

for all ζ of appropriate dimension. Herein, the index set Iα is defined by

Iα(t) = {i ∈ {1, . . . ,nc} | ci[t]≥−α}.

(ii) (Controllability) For every q ∈ IRnψ there exists a solution (x,u,ρ) of the linear

system

x′(t)− f ′x[t]x(t)− f ′u[t]u(t) = 0,

ψ ′
x0

x(0)+ψ ′
x1

x(1) = q,

c′x[t]x(t)+ c′u[t]u(t)+Sα(t)ρ(t) = 0,

where Sα(t) = diag(ci,α(t)) and ci,α(t) = min{ci[t]+α,0}.

Under these assumptions, Malanowski [90, Thm. 4.3, p. 86] shows the regularity

of the Lagrange multipliers associated with OCP. In particular, the multiplier l0 as-

sociated with the objective function can be normalized to one and the linear operator

defined by the linear system in (ii) is surjective under the assumptions (i) and (ii) in
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Malanowski [90, Lem. 4.1]. Under assumptions (i) and (ii) there exist Lagrange multi-

pliers λ∗ ∈W 1,∞([0,1], IRnx), η∗ ∈ L∞([0,1], IRnc), and σ∗ ∈ IRnψ with





x′∗(t)− f (x∗(t),u∗(t)) = 0

λ ′∗(t)+H ′
x(x∗(t),u∗(t),λ∗(t),η∗(t))> = 0

ψ(x∗(0),x∗(1)) = 0

λ∗(0)+ψ ′
x0

(x∗(0),x∗(1))>σ∗ = 0

λ∗(1)−ψ ′
x1

(x∗(0),x∗(1))>σ∗ = 0

H ′
u(x∗(t),u∗(t),λ∗(t),η∗(t))> = 0.

(5.3)

Furthermore, the complementarity conditions hold a.e. in [0,1]:

η∗(t)≥ 0, c(x∗(t),u∗(t))≤ 0, η∗(t)>c(x∗(t),u∗(t)) = 0. (5.4)

The convex and locally Lipschitz continuous Fischer-Burmeister function [48, 49] ϕ :

IR2 → IR is defined by

ϕ(a,b) =
√

a2 +b2−a−b. (5.5)

The Fischer-Burmeister function has the nice property that ϕ(a,b) = 0 holds if and

only if a,b≥ 0 and ab = 0. Hence, the complementarity conditions (5.4) are equivalent

with the equality

ϕ(−ci(x∗(t),u∗(t)),ηi∗(t)) = 0, i = 1, . . . ,nc,

that has to hold almost everywhere in [0,1]. Rather than working with the derivative of

ϕ , which does not exist at the origin, we will work with Clarke’s generalized Jacobian

matrix [30] of ϕ:

∂ϕ(a,b) =





{(
a√

a2 +b2
−1,

b√
a2 +b2

−1
)}

, if (a,b) 6= (0,0),

{
(s,r) ∈ IR2 ∣∣ (s+1)2 +(r +1)2 ≤ 1

}
, if (a,b) = (0,0).

Notice, that ∂ϕ(a,b) is a non-empty, convex and compact set. For 1 ≤ q ≤ ∞ let the
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Banach spaces

Zq = W 1,q([0,1], IRnx)×Lq([0,1], IRnu)×W 1,q([0,1], IRnx)×Lq([0,1], IRnc)× IRnψ ,

Y1,q = Lq([0,1], IRnx)×Lq([0,1], IRnx)× IRnψ × IRnx × IRnx ×Lq([0,1], IRnu),

Y2,q = Lq([0,1], IRnc)

be equipped with the maximum norm for product spaces and z∗ = (x∗,u∗,λ∗,η∗,σ∗).
Then, the necessary conditions (5.3)-(5.4) are equivalent with the nonlinear equation

F(z∗) =


 F1(z∗)

F2(z∗)


 = 0, (5.6)

where F1 : Z∞ → Y1,q and F2 : Z∞ → Y2,q denote the smooth and the nonsmooth part of

F : Z∞ → Yq = Y1,q×Y2,q with 1≤ q≤ ∞, respectively:

F1(z)(·) =




x′(·)− f (x(·),u(·))
λ ′(·)+H ′

x(x(·),u(·),λ (·),η(·))>

ψ(x(0),x(1))

λ (0)+ψ ′
x0

(x(0),x(1))>σ

λ (1)−ψ ′
x1

(x(0),x(1))>σ

H ′
u(x(·),u(·),λ (·),η(·))>




, F2(z)(·) = ω(z(·)), (5.7)

where ω = (ω1, . . . ,ωnc)
> : IRnx × IRnu × IRnx × IRnc × IRnψ → IRnc and

ωi(x̄, ū, λ̄ , η̄ , σ̄) := ϕ(−ci(x̄, ū), η̄i), i = 1, . . . ,nc. (5.8)

For technical reasons, which become apparent later, we consider F as a mapping from

Z∞ into Yq. However, we note that

im(F)⊆ Y∞ ⊂ Yq for every 1≤ q < ∞.
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5.2 Inexact Nonsmooth Newton Method

By (5.8), the derivative F ′(zk) does not exist since the component F2 in (5.6) is not

differentiable. Hence, we need to find a substitute for the derivative F ′. In finite di-

mensional spaces, such a substitute for locally Lipschitz continuous functions may be

chosen from the generalized Jacobian matrix of F defined by

∂F(z) = co



V

∣∣∣ V = lim
zi∈DF
zi→z

F ′(zi)



 ,

where “co” is the shorthand for “convex hull of”, DF denotes the set of points at which

F is differentiable. However, in infinite dimensional spaces it is more difficult to define

an appropriate generalized Jacobian matrix since locally Lipschitz continuous functions

in general are not differentiable almost everywhere. Motivated by the chain rule in

finite dimensions we define the point to set mapping ∂∗F : Z∞ ⇒L (Zq,Yq) for some

1≤ q≤ ∞ according to

∂∗F(zk)(z) =






 F ′1(z

k)(z)

−S(·)(c′x[·]x+ c′u[·]u
)
+R(·)η




∣∣∣∣∣∣∣∣∣∣∣∣

S = diag(s1, . . . ,snc),

R = diag(r1, . . . ,rnc),

(si,ri) ∈ ∂ϕ [·] a.e.,

si(·),ri(·) measurable





and use this set as a generalized Jacobian matrix. The same idea was introduced earlier

in Ulbrich [131, Def. 3.35, p. 47]. Notice that the first component F1 of F in (5.7) is

continuously Fréchet-differentiable as a mapping from Z∞ to Y∞ with

F ′1(z
k)(z) =




x′(·)− f ′x[·]x(·)− f ′u[·]u(·)
λ ′(·)+H ′′

xx[·]x(·)+H ′′
xu[·]u(·)+H ′′

xλ [·]λ (·)+H ′′
xη [·]η(·)

ψ ′
x0

x(0)+ψ ′
x1

x(1)

λ (0)+ψ ′′
x0x0

(σ k,x(0))+ψ ′′
x0x1

(σ k,x(1))+
(
ψ ′

x0

)>σ

λ (1)−ψ ′′
x1x0

(σ k,x(0))−ψ ′′
x1x1

(σ k,x(1))− (
ψ ′

x1

)>σ

H ′′
ux[·]x(·)+H ′′

uu[·]u(·)+H ′′
uλ [·]λ (·)+H ′′

uη [·]η(·)




, (5.9)
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provided that the functions f0, f ,c,ψ are C2 w.r.t. all arguments. Herein, all functions

are evaluated at zk = (xk,uk,λ k,ηk,σ k)∈ Z∞. The definition of Fréchet differentiability

then implies that F1 is as well Fréchet differentiable as a mapping from Z∞ to Yq for

every 1≤ q≤ ∞.

Ulbrich [131, Def. 3.1, p. 34.] gave a definition about semismoothness and p-order

semismoothness of F in Banach space.

Definition 5.1. Let F : Z̃ ⊂ Z →Y be defined on an open subset Z̃ of the Banach space

Z with images in the Banach space Y . Further, let be given a set-valued mapping

∂∗F : Z̃ ⇒ L(Z,Y ), and let z ∈ Z̃.

(a) We say that F is ∂∗F-semismooth at z if F is continuous near z and

‖F(z)−F(z∗)−V (z− z∗)‖Y = o(‖z− z∗‖Z), ∀V ∈ ∂∗F(z),

as ‖z− z∗‖Z → 0,

(b) We say that F is p-order ∂∗F-semismooth at z, 0 < p≤ 1, if F is continuous near

z and

‖F(z)−F(z∗)−V (z− z∗)‖Y = O(‖z− z∗‖1+p
Z ), ∀V ∈ ∂∗F(z), (5.10)

as ‖z− z∗‖Z → 0.

By the above analysis on the generalized Jacobian matrix ∂∗F(zk), we can present

the following algorithm.

Algorithm 5.2. LOCAL INEXACT NONSMOOTH NEWTON METHOD

(0) Choose z0 ∈ Z∞.

(1) If some stopping criterion is satisfied, stop.

(2) Choose an arbitrary V k ∈ ∂∗F(zk) and compute the search direction dk from the

linear equation

V k(dk)+F(zk) = rk, (5.11)

where max{‖rk‖Y∞,‖rk‖Yq} ≤ ρk‖F(zk)‖Yq , 0≤ ρk ≤ ρ̄ < 1.
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(3) Set zk+1 = Sk(zk +dk), k = k +1, and goto (1).

To globalize Algorithm 5.2 conveniently in the next section, we will use q = 2.

The smoothing operator Sk : Zq → Z∞, see [131], maps zk + dk ∈ Zq back to Z∞. The

smoothing operator Sk in Step (3) is necessary if rk is in Yq, but not in Y∞. As we shall

argue later, the smoothing step can be omitted in certain situations.

The assumptions needed to prove local convergence of the method are similar to

those in Martı́nez and Qi [94], Kanzow [74], Facchinei and Kanzow [45], and Ul-

brich [131]. ∂∗F(z) is called non-singular if for every V ∈ ∂∗F(z) the inverse operator

V−1 exists and if it is linear and bounded, i.e. V−1 ∈L (Yq,Zq). In fact, it suffices if

the non-singularity assumptions are satisfied for certain elements of ∂∗F provided that

only these elements are used in the algorithm. For the upcoming computations we used

the element corresponding to the choices

si(t) =





−1, if ci[t] = 0, ηi(t) = 0,

−ci[t]√
ci[t]2 +ηi(t)2

−1, otherwise,

ri(t) =





0, if ci[t] = 0, ηi(t) = 0,

ηi(t)√
ci[t]2 +ηi(t)2

−1, otherwise.

Theorem 5.3. Let z∗ be a zero of F. Suppose that there exist constants ∆ > 0 and

C > 0 such that for every ‖z− z∗‖Z∞ < ∆ the generalized Jacobian matrix ∂∗F(z) is

non-singular and ‖V−1‖L (Yq,Zq) ≤C for every V ∈ ∂∗F(z). Moreover, let there exist a

constant CS > 0 such that

‖Sk(zk +dk)− z∗‖Z∞ ≤CS‖zk +dk− z∗‖Zq

for all k. Let ρk = O(‖F(zk)‖q̃
Yq

) for some q̃ > 0. Then the following assertions hold.

(i) If F for some 1≤ q≤ ∞ is ∂∗F-semismooth at z∗, then for z0 sufficiently close to

z∗ the inexact nonsmooth Newton method converges superlinearly to z∗.

(ii) If F for some 1 ≤ q ≤ ∞ is p-order ∂∗F-semismooth at z, then for z0 suffi-

ciently close to z∗ the inexact nonsmooth Newton method converges at order

1+min{p, q̃} to z∗.
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Furthermore, if F(zk) 6= 0 for all k and if there is a constant C̃S with ‖Sk(zk + dk)−
zk‖Z∞ ≤ C̃S‖dk‖Zq then the residual values converge superlinearly:

lim
k→∞

‖F(zk+1)‖Yq

‖F(zk)‖Yq

= 0. (5.12)

Proof. By the assumptions in theorem, the algorithm is well-defined in some neighbor-

hood of z∗. It holds

V k(zk +dk− z∗) = V k(zk− z∗)+V kdk

= V k(zk− z∗)−F(zk)+F(z∗)+V kdk +F(zk).

Since F : Z∞ →Yq is locally Lipschitzian, there exist constants L and δ > 0 such that if

‖z− z∗‖Z∞ ≤ δ , then

‖F(z)‖Yq = ‖F(z)−F(z∗)‖Yq ≤ L‖z− z∗‖Z∞. (5.13)

The assertions in (i) and (ii) follow from

‖zk+1− z∗‖Z∞ = ‖Sk(zk +dk)− z∗‖Z∞

≤ CS · ‖zk +dk− z∗‖Zq

= CS · ‖(V k)−1
(

V k(zk− z∗)−F(zk)+F(z∗)+V kdk +F(zk)
)
‖Zq

≤ CS · ‖(V k)−1‖L (Yq,Zq) ·
(
‖F(zk)−F(z∗)−V k(zk− z∗)‖Yq +‖rk‖Yq

)

≤ CS ·C ·
(
‖F(zk)−F(z∗)−V k(zk− z∗)‖Yq +‖F(zk)‖Yq ·O

(
‖F(zk)‖q̃

Yq

))

= CS ·C ·
(
‖F(zk)−F(z∗)−V k(zk− z∗)‖Yq +O

(
‖F(zk)‖1+q̃

Yq

))

=





o(‖zk− z∗‖Z∞), in case (i),

O
(
‖zk− z∗‖1+min{p,q̃}

Z∞

)
, in case (ii).

(5.14)

Herein, we exploited the local Lipschitz continuity of F in (5.13).

Let ε > 0 be arbitrary. According to Equation (5.14) there exists δ > 0 with

‖zk+1− z∗‖Z∞ ≤ ε‖zk− z∗‖Z∞ whenever ‖zk− z∗‖Z∞ ≤ δ . (5.15)
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Notice that for any δ > 0 there exists some k0(δ ) such that ‖zk − z∗‖ ≤ δ for every

k ≥ k0(δ ) since zk converges to z∗.
By the local Lipschitz continuity of F we get

‖F(zk+1)‖Yq = ‖F(zk+1)−F(z∗)‖Yq ≤ L‖zk+1− z∗‖Z∞ ≤ Lε‖zk− z∗‖Z∞

locally around z∗ and the inexact Newton iteration implies

‖zk+1− zk‖Z∞ ≤ C̃S · ‖(V k)−1‖L (Yq,Zq) · (‖F(zk)‖Yq +‖rk‖Yq)

≤ C̃S ·C ·
(
‖F(zk)‖Yq +O

(
‖F(zk)‖1+q̃

Yq

))
.

Thus,

‖zk− z∗‖Z∞ ≤ ‖zk+1− zk‖Z∞ +‖zk+1− z∗‖Z∞

≤ C̃S ·C ·
(
‖F(zk)‖Yq +O

(
‖F(zk)‖1+q̃

Yq

))
+‖zk+1− z∗‖Z∞

≤ C̃S ·C ·
(
‖F(zk)‖Yq +O

(
‖F(zk)‖1+q̃

Yq

))
+ ε‖zk− z∗‖Z∞

and

‖zk− z∗‖Z∞ ≤
C̃SC
1− ε

(
‖F(zk)‖Yq +O

(
‖F(zk)‖1+q̃

Yq

))
. (5.16)

Finally,

‖F(zk+1)‖Yq ≤ Lε‖zk− z∗‖Z∞ ≤
LεC̃SC
1− ε

(
‖F(zk)‖Yq +O

(
‖F(zk)‖1+q̃

Yq

))
. (5.17)

Since F(zk) 6= 0 and ε may be arbitrarily small, (5.12) holds. ¥

It is straightforward to show that the first component F1 is continuously Fréchet-

differentiable and that (5.10) with p = 1 holds for F1, see Gerdts [56].

The second component F2(z)(t) = ω(z(t)) of F in (5.7) is a superposition operator

as in Ulbrich [131, Sec.3.3] that maps L∞-functions to Lq-functions. It was shown in

Ulbrich [131, Thms. 3.44,3.48] that the superposition operator F2 is semismooth as a

mapping from Z∞ to Y2,q for every 1≤ q < ∞, if the following assumptions are satisfied:

• The operator G : Z∞ → Y2,q, 1≤ q < ∞, defined by G(z)(·) = (c(x(·),u(·)),η(·))
is continuously Fréchet differentiable.
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• The mapping z ∈ Z∞ 7→ G(z) ∈ Y2,∞ is locally Lipschitz continuous.

• ϕ is Lipschitz continuous and semismooth.

Please note that q = ∞ is excluded. Note that the three conditions above are satis-

fied owing to the following reasons. The Fischer-Burmeister function ϕ : IR2 → IR

is Lipschitz continuous and semismooth, see Fischer [49, Lem. 20]. The mapping

z ∈ Z∞ 7→G(z) ∈Y2,∞ is continuously Fréchet differentiable (and thus locally Lipschitz

continuous), if c is continuously differentiable. This implies that the operator G as a

mapping from Z∞ to Y2,q for every 1 ≤ q < ∞ is continuously Fréchet differentiable.

Hence, the operator F2 is semismooth as an operator from Z∞ to Y2,q with 1 ≤ q < ∞.

Summarizing, we obtain the following local convergence result.

Theorem 5.4. Let z∗ be a zero of F and let 1≤ q < ∞. Suppose that there exist constants

∆ > 0 and C > 0 such that for every ‖z− z∗‖Z∞ < ∆ the generalized Jacobian ∂∗F(z) is

non-singular and ‖V−1‖L (Yq,Zq) ≤C for every V ∈ ∂∗F(z). Moreover, let there exist a

constant CS > 0 such that

‖Sk(zk +dk)− z∗‖Z∞ ≤CS‖zk +dk− z∗‖Zq

for all k. Let ρk = O(‖F(zk)‖q̃
Yq

) for some q̃ > 0. Then the inexact nonsmooth Newton

method converges locally at a superlinear rate, if f0, f ,c,ψ are C2.

Furthermore, if F(zk) 6= 0 for all k and if there is a constant C̃S with ‖Sk(zk +dk)−
zk‖Z∞ ≤ C̃S‖dk‖Zq then the residual values converge superlinearly:

lim
k→∞

‖F(zk+1)‖Yq

‖F(zk)‖Yq

= 0.

In the sequel, we give some preliminary discussions on V ∈ ∂∗F(zk) in equation

(5.11) of Algorithm 5.2. In fact, the linear operator equation (5.11) in step (2) of Algo-
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rithm 5.2 can be stated as

 x′

λ ′


−


 f ′x 0

−H ′′
xx −H ′′

xλ





 x

λ


−


 f ′u 0

−H ′′
xu −H ′′

xη





 u

η




=−

 (xk)′− f

(λ k)′+
(
H ′

x
)>


+ rk

1;

(5.18)




ψ ′
x0

0 0

(ψ ′
x0

>σ k)′x0
I ψ ′

x0

>

−(ψ ′
x1

>σ k)′x0
0 −ψ ′

x1

>







x(0)

λ (0)

σ


+




ψ ′
x1

0 0

(ψ ′
x0

>σ k)′x1
0 0

−(ψ ′
x1

>σ k)′x1
I 0







x(1)

λ (1)

σ




=−




ψ(xk(0),xk(1))

λ k(0)+ψ ′
x0

>σ k

λ k(1)−ψ ′
x1

>σ k


+ rk

2;

(5.19)

and

A


 u

η


+


 H ′′

ux H ′′
uλ

−Sc′x 0





 x

λ


 =−


 (H ′

u)
>

ω(zk(·))


+ rk

3, (5.20)

where

A =


 H ′′

uu
(
c′u

)>

−Sc′u R


 . (5.21)

Herein, every function is evaluated at the current iterate zk. If the inverse operator A −1

exists, equation (5.20) can be solved for u and η according to


 u

η


 =−A −1





 H ′′

ux H ′′
uλ

−Sc′x 0





 x

λ


+


 (H ′

u)
>

ω(zk(·))


− rk

3


 . (5.22)

A sufficient condition for the non-singularity of A is given below in Theorem 5.5.

The constant σ in (5.19) can be viewed as a solution of the differential equation σ ′ = 0.
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Introducing (5.22) into the differential equation (5.18), augmenting this system by σ ′ =
0, and taking into account the boundary conditions (5.19), yields the linear boundary

value problem for ξ = (x,λ ,σ)>:





ξ ′ = Bξ +b,

E0ξ (0)+E1ξ (1) = q̂,
(5.23)

where

B =




f ′x 0 0

−H ′′
xx −H ′′

xλ 0

0 0 0


−




f ′u 0

−H ′′
xu −H ′′

xη

0 0


A −1


 H ′′

ux H ′′
uλ 0

−Sc′x 0 0


 ,

b = −







(xk)′− f

(λ k)′+H ′
x
>

0


− rk

1 +




f ′u 0

−H ′′
xu −H ′′

xη

0 0


A −1





 (H ′

u)
>

ω(zk(·))


− rk

3





 ,

E0 =




ψ ′
x0

0 0

(ψ ′
x0

>σ k)′x0
I ψ ′

x0

>

−(ψ ′
x1

>σ k)′x0
0 −ψ ′

x1

>


 ,

E1 =




ψ ′
x1

0 0

(ψ ′
x0

>σ k)′x1
0 0

−(ψ ′
x1

>σ k)′x1
I 0


 ,

q̂ = −




ψ(xk(0),xk(1))

λ k(0)+ψ ′
x0

>σ k

λ k(1)−ψ ′
x1

>σ k


+ rk

2.

Hence, in each iteration of Algorithm 5.2 we have to solve the linear boundary value

problem (5.23). Gerdts [56, Thm. 3.2] gives a sufficient condition for the existence and

boundedness of the inverse operator of A in (5.21).
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Proposition 5.5. Let z = (x,u,λ ,η ,σ) ∈ Z∞ be given. Define the index sets

I>(t) = {i ∈ {1, . . . ,nc} | ci[t] = 0, ηi(t) > 0},

Jγ(t) = {i ∈ {1, . . . ,nc} | |ci[t]| ≤ γηi(t), ηi(t)≥ 0}, γ > 0.

Let the following assumptions hold at z:

(i) Let there exist constants C1,C2,C3 such that a.e. in [0,1] it holds

‖H ′′
uu[t]‖ ≤C1, ‖c′u[t]

>‖ ≤C2, ‖c′u[t]‖ ≤C3.

(ii) (Coercivity) Let there exist a constant α > 0 such that a.e. in [0,1] it holds

d>H ′′
uu[t]d ≥ α‖d‖2 for all d ∈ {d ∈ IRnu | c′I>(t),u[t]d = 0}.

(iii) (Linear independence) Let there exist constants γ > 0 and β > 0 such that a.e. in

[0,1] it holds

‖c′Jγ (t),u[t]
>ζ‖ ≥ β‖ζ‖ for all ζ of appropriate dimension.

Then, a.e. in [0,1] the inverse operator A −1(t) exists and it holds ‖A −1(t)‖ ≤C for

some constant C.

For 1 ≤ q ≤ ∞ define from the boundary value problem (5.23) the linear operator

G : W 1,q([0,1], IR2nx+nψ )→ Lq([0,1], IR2nx+nψ )× IR2nx+nψ = Ω by

G(ξ )(t) =


 ξ ′(t)−B(t)ξ (t)

E0ξ (0)+E1ξ (1)


 ,

where ‖(ω1,ω2)‖Ω = max{‖ω1‖q,‖ω2‖}. Similar as in Gerdts [56, Thm. 3.3] one

can obtain the following non-singularity and boundedness result for the inverse of the

operator G.

Proposition 5.6. Let the following assumptions be satisfied.
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(i) Let there exist a constant C such that a.e. in [0,1] it holds ‖B(t)‖ ≤C.

(ii) Let there exist κ > 0 such that for all ζ ∈ IR2nx+nψ it holds

‖(E0Φ(0)+E1Φ(1))ζ‖ ≥ κ‖ζ‖,

where Φ is a fundamental solution with Φ′(t) = B(t)Φ(t), Φ(0) = I.

Then, for 1≤ q≤ ∞ the inverse operator G−1 exists and it holds ‖G−1‖ ≤ K for some

constant K.

A combination of Propositions 5.5 and 5.6 leads to the following result.

Theorem 5.7. Let z∗ be a zero of F. Suppose that there exists a constant ∆ > 0 such that

for every ‖z−z∗‖Z∞ < ∆ the assumptions of Propositions 5.5 and 5.6 hold with uniform

constants. Then, for every 1≤ q≤ ∞ the generalized Jacobian ∂∗F(z) is non-singular

and there exists a constant C > 0 such that ‖V−1‖L (Yq,Zq) ≤C for every V ∈ ∂∗F(z).

Remark 5.8. Theorem 5.7 holds for every 1 ≤ q ≤ ∞. In particular, this implies that

every element V ∈ ∂∗F(z) maps a function in Yq to a function in Zq. In particular, if

F(zk) ∈Y∞ and rk ∈Y∞ then dk = V−1
k

(
rk−F(zk)

)
∈ Z∞. F(zk) ∈Y∞ holds, if zk ∈ Z∞.

Hence, the smoothing operator Sk in step (3) of Algorithm 5.2 can be chosen to be the

identity if the initial z0 is chosen to be in Z∞ and if every rk is in Y∞.

5.3 Globalization Strategy

In this section, we globalize the local inexact nonsmooth Newton method using the

squared L2-norm (5.24) of F as a merit function. A favorable property of the merit
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function (5.24) is that it is Fréchet-differentiable in Z∞ if f0, f ,c,ψ are C2.

Θ(z) =
1
2
‖F(z)‖2

Y2
(5.24)

=
1
2

∫ 1

0

∥∥x′(t)− f (x(t),u(t))
∥∥2 dt

+
1
2

∫ 1

0

∥∥∥λ ′(t)+H ′
x(x(t),u(t),λ (t),η(t))>

∥∥∥
2

dt

+
1
2

∫ 1

0

∥∥∥H ′
u(x(t),u(t),λ (t),η(t))>

∥∥∥
2

dt +
1
2

nc

∑
i=1

∫ 1

0
ϕ(−ci(x(t),u(t)),ηi(t))2 dt

+
1
2
‖ψ(x(0),x(1))‖2 +

1
2
‖λ (0)+ψ ′

x0
(x(0),x(1))>σ‖2

+
1
2
‖λ (1)−ψ ′

x1
(x(0),x(1))>σ‖2.

From [59, 131, 130], we note that the performance of nonlinear programming al-

gorithms can be significantly improved by using non-monotone linear search or trust-

region techniques. Thus, in contrast to the traditional approach, relaxing the acceptabil-

ity conditions on the trial step dk in our algorithm, we suggest to use the non-monotone

technique:

Θ(zl(k)) = max
0≤ j≤m(k)

{Θ(zk− j)} (5.25)

instead of Θ(zk), where m(0) = 0 and 0≤ m(k)≤min{m(k−1)+1,M}, k ≥ 1.

In the following algorithm and thereafter we will make use of the norm ‖ ·‖Ẑ on the

space Ẑ := Z2, which is defined in Section 5.6.

Algorithm 5.9. GLOBAL INEXACT NONSMOOTH NEWTON METHOD

(0) Choose z0 ∈ Z∞, β ∈ (0,1), κ > 0, ρ > 1, σ ∈ (0,1/4), m and M.

(1) If some stopping criterion is satisfied, stop.

(2) Choose an arbitrary V k ∈ ∂∗F(zk) and compute the search direction dk from

(5.11). If (5.11) is not solvable or if the condition

Θ′(zk)(dk)≤−κ‖dk‖ρ
Ẑ

(5.26)
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is not satisfied, set dk =−W kF(zk), where the linear operator W k and the norm

‖ · ‖Ẑ are defined in Section 5.6.

(3) Find smallest ik ∈ IIN0 with

Θ(Sk(zk +β ikdk))≤Θ(zl(k))+σβ ikΘ′(zk)(dk) (5.27)

and set αk = β ik , where l(k) is chosen by (5.25).

(4) Set zk+1 = Sk(zk +αkdk), k = k +1, and goto (1).

It holds

Lemma 5.10. Suppose that zk is not a stationary point of (5.24). Then dk is a descent

direction of Θ at zk and

Θ′(zk)(dk)≤−min{κ‖dk‖ρ
Ẑ
,‖dk‖2

Ẑ
}< 0. (5.28)

Proof. An analysis of the derivative of Θ reveals that for dk from (5.11) it holds

Θ′(zk)(dk) =
∫ 1

0
F(zk)(t)>V k(dk)(t) dt (5.29)

=
∫ 1

0
F(zk)(t)>(rk(t)−F(zk)(t)) dt

=
∫ 1

0
F(zk)(t)>rk(t) dt−‖F(zk)‖2

Y2

≤ ‖F(zk)‖Y2 · ‖rk‖Y2 −‖F(zk)‖2
Y2

≤ (ρk−1) · ‖F(zk)‖2
Y2

≤ (ρ̄−1) · ‖F(zk)‖2
Y2

< 0.

As a consequence, dk is a direction of descent of Θ at zk.

Alternatively, for the direction dk =−W kF(zk) we find Θ′(zk)(dk) =−‖dk‖2
Ẑ

< 0.

This, together with (5.26), implies (5.28), i.e., the line-search in the Algorithm 5.9 is

well-defined unless zk is a stationary point of Θ(z). ¥

As a consequence, for some σ̂ ∈ (0,1) there exists α > 0 such that

Θ(zk +αdk)≤Θ(zk)+ σ̂αΘ′(zk)(dk). (5.30)
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Instead for zk + αdk we intend to perform a line-search using the smoothing operator

Sk(zk +αdk). The following growth condition is sufficient to prove the well-posedness

of the line-search procedure.

Assumption 5.11. For zk and dk = V−1
k

(
rk−F(zk)

)
let there be a smoothing operator

Sk and constants 0≤ L < 1, γ > 0 with

∣∣∣Θ(Sk(zk +αdk))−Θ(zk +αdk)
∣∣∣≤ 2Lα1+γΘ(zk) (5.31)

for all 0≤ α ≤ 1 and all k.

Remark 5.12. If in Algorithm 5.9 the gradient direction dk = −W kF(zk) is chosen,

then the smoothing operator Sk is obsolete and can be chosen to be the identity. The

smoothing operator only becomes relevant if the Newton direction is applied. For no-

tational simplicity the subsequent analysis will be performed with a smooting step.

Lemma 5.13. Let Assumption 5.11 be satisfied. Then there exists α > 0 such that

Θ(Sk(zk +αdk))≤Θ(zk)+σαΘ′(zk)(dk) = Θ(zk)(1−2σα)

for some σ ∈ (0,1−L). Moreover, it holds 0 < 1−2σα < 1 whenever σ ∈ (0,min{1/2,1−
L}).

Proof. Inequality (5.30) together with Assumption 5.11 and exploiting α1+γ ≤ α
for 0≤ α ≤ 1 implies

Θ(Sk(zk +αdk))≤Θ(zk)(1−2(σ̂ −L)α) .

Define σ̂ := σ +L ∈ (0,1), i.e. σ ∈ (−L,1−L). Then

Θ(Sk(zk +αdk))≤Θ(zk)(1−2σα) = Θ(zk)+σαΘ′(zk)(dk).

Armijo’s rule requires 0 < σ < 1. Since 0 ≤ L < 1 and together with σ ∈ (−L,1−L)

this implies σ ∈ (0,1− L). Because 0 < α ≤ 1 it holds 0 < 1− 2σα < 1 whenever

σ ∈ (0,min{1/2,1−L}).
Lemma 5.13 guarantees that the line-search in Algorithm 5.9 is well defined.
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Now we give a global convergence conclusion deduced from Gerdts [56, Thm. 4.2],

which extends the proof presented in [59] for finite dimensions into infinite dimensions.

Theorem 5.14. Let z∗ be an accumulation point of the sequence {zk} generated by

Algorithm 5.9. Let all first and second derivatives of the functions f0, f ,c,ψ be uni-

formly bounded. Let there be a constant CF such that ‖F(zk)‖Y∞ ≤CF for every k. Let

Assumption 5.11 hold. Moreover, let a constant C̃S exist with

‖Sk(zk +αkdk)− zk‖Ẑ ≤ C̃Sαk‖dk‖Ẑ (5.32)

for all k.

Then, z∗ is a stationary point of Θ(z), i.e., Θ′(z∗) = 0 (zero operator). More-

over, if the inverse operators (V k)−1 exist for all k, C > 0 is a constant such that

‖(V k)−1‖L (Y∞,Z∞) ≤ C holds for all k, and (5.26) is satisfied by the Newton direction

for all but finitely many k, then z∗ is a zero of F.

Proof. Let {zk}k∈K⊂IIN be a subsequence with zk → z∗ and Θ′(zk)(dk) 6= 0. Then, it

follows from Lemma 5.13 that the line-search of Algorithm 5.9 is well-defined.

Suppose k ∈ K ⊂ IIN, by (5.25) and (5.27), we have

Θ(zl(k+1)) = max
0≤ j≤m(k+1)

{Θ(zk+1− j)}

≤ max
0≤ j≤m(k)+1

{Θ(zk+1− j)}

= max{Θ(zk+1),Θ(zl(k))}= Θ(zl(k)),

which implies that the sequence {Θ(zl(k))} is non-increasing and together with the non-

negativity of Θ the sequence {Θ(zl(k))} converges. From (5.27) it follows that for

k ≥M,

Θ(zl(k))= Θ(Sk(zl(k)−1+αl(k)−1dl(k)−1))≤Θ(zl(l(k)−1))+σαl(k)−1Θ′(zl(k)−1)(dl(k)−1).

(5.33)

This, together with convergence of {Θ(zl(k))}, yields

lim
k(∈K)→∞

αl(k)−1Θ′(zl(k)−1)(dl(k)−1) = 0. (5.34)
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By Lemma 5.10, we have

lim
k(∈K)→∞

αl(k)−1‖dl(k)−1‖Ẑ = 0. (5.35)

We now prove that

lim
k(∈K)→∞

αkΘ′(zk)(dk) = 0. (5.36)

Let l̂(k) = l(k +M +2). We first show by induction that for any given j ≥ 1,

lim
k(∈K)→∞

αl̂(k)− j‖d l̂(k)− j‖Ẑ = 0, (5.37)

and

lim
k(∈K)→∞

Θ(zl̂(k)− j) = lim
k(∈K)→∞

Θ(zl(k)). (5.38)

If j = 1, since {l̂(k)} ⊂ {l(k)}, (5.37) follows from (5.34). This in turn implies

‖zl̂(k)− zl̂(k)−1‖Ẑ = ‖Sl̂(k)−1(zl̂(k)−1 +αl̂(k)−1d l̂(k)−1)− zl̂(k)−1‖Ẑ

≤ C̃Sαl̂(k)−1‖d l̂(k)−1‖Ẑ → 0. (5.39)

From this we intend to deduce the convergence of the function values in (5.38). Notice

that Θ is continuous w.r.t. the norm in Z∞ but not necessarily w.r.t. the norm ‖ · ‖Ẑ

and that (5.39) does not necessarily hold w.r.t. to the norm in Z∞. Nevertheless, (5.39)

implies that for almost every t ∈ [0,1] zl̂(k)(t) converges to zl̂(k)−1(t). As ‖F(zk)(t)‖Y2 ≤
CY‖F(zk)‖Y∞ ≤CYCF for every k this implies that (5.38) holds for j = 1 by Kolmogorov

and Fomin [86, Thm. 1, p. 56] 2.

Assume now that (5.37) and (5.38) hold for a given j. Then by (5.27) it follows for

k ≥M,

Θ(zl̂(k)− j)≤Θ(zl(l̂(k)− j−1))+σαl̂(k)− j−1Θ′(zl̂(k)− j−1)(d l̂(k)− j−1). (5.40)

2Alternatively, Fatou’s Lemma can be used to avoid the assumption ‖F(zk)‖Y∞ ≤CF . Then, instead
of working with the limit we have to work with the limes inferior.
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Taking limits for k(∈ K)→ ∞, we have, by (5.38)

lim
k(∈K)→∞

αl̂(k)− j−1Θ′(zl̂(k)− j−1)(d l̂(k)− j−1) = 0, (5.41)

This, together with Lemma 5.10, yields

lim
k(∈K)→∞

αl̂(k)− j−1‖d l̂(k)− j−1‖Ẑ = 0. (5.42)

Moreover this implies ‖zl̂(k)− j − zl̂(k)− j−1‖Ẑ → 0 by exploitation of (5.32). Thus by

(5.38) and the same reasoning as above, we have

lim
k(∈K)→∞

Θ(zl̂(k)− j−1) = lim
k(∈K)→∞

Θ(zl̂(k)− j) = lim
k(∈K)→∞

Θ(zl(k)). (5.43)

This completes the induction.

Now for any k ∈ K ⊂ IIN, it holds

‖zl̂(k)− zk+1‖Ẑ ≤
l̂(k)−k−2

∑
j=0

‖zl̂(k)− j− zl̂(k)− j−1‖Ẑ. (5.44)

By (5.27), we have l̂(k)− k− 1 = l(k + M + 2)− k− 1 ≤ M + 1. This, together with

(5.44) and (5.37), yields

lim
k(∈K)→∞

‖zk+1− zl̂(k)‖Ẑ = 0. (5.45)

By (5.38) and the above reasoning, this implies

lim
k(∈K)→∞

Θ(zk+1) = lim
k(∈K)→∞

Θ(zl̂(k)). (5.46)

Taking limits in (5.25) for k(∈ K)→ ∞, it follows from (5.46) that

lim
k(∈K)→∞

αkΘ′(zk)(dk) = 0. (5.47)

By Lemma 5.10 again, we also have

lim
k(∈K)→∞

αk‖dk‖Ẑ = 0. (5.48)
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Next, we consider two cases for (5.47).

Case 1: Assume

α = liminf
k(∈K)→∞

αk > 0.

We need to consider two subcases. Suppose first that dk = −W kF(zk) holds for

infinitely many k ∈ K ⊂ IIN. Then it follows from (5.27) that for some infinite subset

K′ ⊆ K

lim
k(∈K′)→∞

−Θ′(zk)(W kF(zk)) = 0. (5.49)

Hence z∗ is a stationary point of Θ by Lemma 5.21.

On the other hand, if (5.26) and the condition that (5.11) is solvable hold for all but

finitely many k ∈ K. Then from (5.29), it follows that

Θ′(zk)(dk)≤ (ρ̄−1) · ‖F(zk)‖2
Y2
≤ 0

and thus lim
k(∈K)→∞

‖F(zk)‖Y2 = 0. By the continuity of ‖ · ‖Y2 and F (in Z∞), z∗ is a zero

of F .

Case 2: Assume that there is a subsequence {zk}k∈J , J ⊆ K, with lim
k(∈J)→∞

αk = 0.

The sequence {dk}k∈J is bounded since

0≤ ‖dk‖Z∞ ≤max
{
‖W kF(zk)‖Z∞,‖(V k)−1(F(zk)− rk)‖Z∞

}
(5.50)

≤max
{

C̃‖F(zk)‖Y∞,C(1+CY ρk)‖F(zk)‖Y∞

}

≤max
{

C̃‖F(z0)‖Y∞,C(1+CY ρ̄)‖F(z0)‖Y∞

}
.

where CY is a constant satisfying ‖·‖Y2 ≤CY‖·‖Y∞ and C̃ is a constant with ‖W k‖L (Y∞,Z∞)≤
C̃. Note that the linear operator W k is uniformly bounded as the first and second deriva-

tives of f0, f ,c,ψ are assumed to be uniformly bounded, see also Section 5.6 for a

detailed description of W k.

Since dk is bounded in Z∞, it is also bounded in the space Ẑ = Z2, which is a Hilbert

space and thus reflexive. From Werner [134, Thm. III.3.7], it follows that there exists

a weakly convergent subsequence {dk}k∈Ĵ , Ĵ ⊆ J. Hence, by [56, Thm. 4.2], we know
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that Θ′(z∗)(·) can be viewed as elements of Ẑ∗ and

Θ′(z∗)(dk)→Θ′(z∗)(d∗).

Furthermore, due to the continuity of Θ′(·) (in Z∞) for every ε > 0 there exists δ > 0

such that for every ‖zk− z∗‖Z∞ ≤ δ it holds

|Θ′(zk)(dk)−Θ′(z∗)(dk)| = ‖dk‖Z∞

∣∣∣∣Θ′(zk)
(

dk

‖dk‖Z∞

)
−Θ′(z∗)

(
dk

‖dk‖Z∞

)∣∣∣∣
≤ ‖dk‖Z∞ · sup

‖d‖Z∞=1
|Θ′(zk)(d)−Θ′(z∗)(d)|

= ‖dk‖Z∞ · ‖Θ′(zk)−Θ′(z∗)‖L (Z∞,IR) ≤ ε‖dk‖Z∞.

For arbitrary ε > 0 we find

|Θ′(zk)(dk)−Θ′(z∗)(d∗)| ≤ |Θ′(zk)(dk)−Θ′(z∗)(dk)|
+|Θ′(z∗)(dk)−Θ′(z∗)(d∗)|

≤ ε‖dk‖Z∞ + |Θ′(z∗)(dk)−Θ′(z∗)(d∗)|.

Since ε > 0 was arbitrary and since dk is weakly convergent it holds

Θ′(zk)(dk)→Θ′(z∗)(d∗) as k(∈ Ĵ)→ ∞.

Moreover, it holds Θ′(z∗)(d∗)≤ 0 because Θ′(zk)(dk) < 0 for every k.

In a similar way the Fréchet differentiability of Θ yields

∣∣∣∣
1

αk

(
Θ(Sk(zk +αkdk))−Θ(zk)

)
−Θ′(z∗)(d∗)

∣∣∣∣

≤
∣∣∣∣

1
αk

(
Θ(Sk(zk +αkdk))−Θ(zk)

)
−Θ′(zk)(dk)

∣∣∣∣
+

∣∣∣Θ′(zk)(dk)−Θ′(z∗)(d∗)
∣∣∣

≤
∣∣∣∣

1
αk

(
Θ(Sk(zk +αkdk))−Θ(zk +αkdk)

)∣∣∣∣

+
∣∣∣∣

1
αk

(
Θ(zk +αkdk)−Θ(zk)

)
−Θ′(zk)(dk)

∣∣∣∣
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+
∣∣∣Θ′(zk)(dk)−Θ′(z∗)(d∗)

∣∣∣

≤ 2Lαγ
k Θ(zk)+

1
αk

o(‖αkdk‖Z∞)+
∣∣∣Θ′(zk)(dk)−Θ′(z∗)(dk)

∣∣∣

+
∣∣∣Θ′(z∗)(dk)−Θ′(z∗)(d∗)

∣∣∣

≤ 2Lαγ
k Θ(zk)+‖dk‖Z∞

o(αk‖dk‖Z∞)
αk‖dk‖Z∞

+ ε‖dk‖Z∞

+
∣∣∣Θ′(z∗)(dk)−Θ′(z∗)(d∗)

∣∣∣ .

Since dk is weakly convergent it holds

1
αk

(
Θ(Sk(zk +αkdk))−Θ(zk)

)
→Θ′(z∗)(d∗) as k(∈ Ĵ)→ ∞.

The line search in step (3) of the algorithm and Assumption 5.11 yield

Θ′(zk)(dk)+o(
αk

β
)+2L

(
αk

β

)γ
Θ(zk)≥

Θ(zk + αk
β dk)−Θ(zk)+2L

(
αk
β

)1+γ
Θ(zk)

αk
β

≥
Θ(Sk(zk + αk

β dk))−Θ(zk)
αk
β

>
Θ(zl(k))+σ αk

β Θ′(zk)(dk)−Θ(zk)
αk
β

≥
Θ(zk)+σ αk

β Θ′(zk)(dk)−Θ(zk)
αk
β

= σΘ′(zk)(dk).

Passing to the limit and exploiting the previous considerations yields

Θ′(z∗)(d∗)≥ σΘ′(z∗)(d∗).

Since σ ∈ (0,1) and Θ′(z∗)(d∗)≤ 0 the above inequality only holds for Θ′(z∗)(d∗) = 0.

Repeating the process in previous case, it follows that either (5.49) for some infinite

subset K′ ⊂ IIN, i.e., z∗ is a stationary point of Θ, or

0≥−(1− ρ̄) · ‖F(zk)‖2
Y2
≥Θ′(zk)(dk)→Θ′(z∗)(d∗) = 0.
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In the latter case, z∗ is a zero of F by the continuity of F . Therefore, in either case, we

established the conclusion. ¥

The above result only shows that each accumulation point is a zero of F , provided

that eventually only Newton steps are accepted by the algorithm. Two important ques-

tions arise:

• Does the algorithm eventually accept Newton steps (close to a zero of F)?

• Does the global method allow a final locally superlinear convergence?

The locally superlinear convergence would follow from the local convergence Theo-

rem 5.3 if we were able to show that αk = 1 satisfies non-monotonic Armijo’s rule for

all sufficiently large k.

Theorem 5.15. Let the assumptions of Theorems 5.4 and 5.14 be valid with q = 2. In

Algorithm 5.9 let σ ∈ (0,1/4) and either κ > 0 sufficiently small and ρ = 2 or κ > 0 and

ρ > 2 sufficiently large (the magnitude will be given in the proof). Then, for sufficiently

large k the step length αk = 1 is accepted and the global method turns into the local

one.

Proof. Owing to ‖(V k)−1‖L (Y2,Z2) ≤C and ‖rk‖Y2 ≤ ρ̄‖F(zk)‖Y2 , the Newton direction

dk in (5.11) satisfies

‖dk‖Z2 ≤C
(
‖F(zk)‖Y2 +‖rk‖Y2

)
≤C(1+ ρ̄)‖F(zk)‖Y2.

This, together with (5.29), yields that

Θ′(zk)(dk)≤ (ρ̄−1) · ‖F(zk)‖2
Y2
≤ ρ̄−1

C2(1+ ρ̄)2‖dk‖2
Z2

, (5.51)

which implies that for sufficiently large k, the search direction dk from (5.11) in Algo-

rithm 5.9 satisfies the condition (5.26) with either κ =
1− ρ̄

C2(1+ ρ̄)2 and ρ = 2, or with

κ > 0 and ρ > 2 sufficiently large.

The superlinear convergence of the residual norms ‖F(zk)‖Y2 was shown in Theo-

rem 5.4, that is, for any ε > 0 and sufficiently large k it holds

‖F(Sk(zk +dk))‖Y2 ≤ ε‖F(zk)‖Y2. (5.52)
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In addition,

|Θ′(zk)(dk)|=
∣∣∣∣
∫ 1

0
F(zk)(t)>V k(dk)(t) dt

∣∣∣∣ (5.53)

=
∣∣∣∣
∫ 1

0
F(zk)(t)>(rk(t)−F(zk)(t)) dt

∣∣∣∣

=
∣∣∣∣
∫ 1

0
F(zk)(t)>rk(t) dt−‖F(zk)‖2

Y2

∣∣∣∣
≤ ‖F(zk)‖Y2 · ‖rk‖Y2 +‖F(zk)‖2

Y2

≤ (ρk +1) · ‖F(zk)‖2
Y2

≤ (ρ̄ +1) · ‖F(zk)‖2
Y2

.

This, together with (5.52) and

ε :=
√

1−2σ(ρ̄ +1) > 0,

implies that for sufficiently large k

Θ(zl(k))+σΘ′(zk)(dk)≥Θ(zk)+σΘ′(zk)(dk)

=
1
2
‖F(zk)‖2

Y2
+σΘ′(zk)(dk)

≥ 1
2
‖F(zk)‖2

Y2
−σ(ρ̄ +1) · ‖F(zk)‖2

Y2

= (1−2σ(ρ̄ +1)) · 1
2
· ‖F(zk)‖2

Y2

≥ 1−2σ(ρ̄ +1)
ε2 · 1

2
· ‖F(Sk(zk +dk))‖2

Y2

= Θ(Sk(zk +dk)),

i.e. non-monotonic Armijo’s line-search accepts αk = 1 and zk+1 = Sk(zk +dk). ¥

5.4 A Smoothing Newton Approach

In this section, we first present a smoothing reformulation for complementarity condi-

tion (5.4), and then design a smoothing Newton approach for the reformulations of the

OCP. To this end, there exist several smoothing functions available, for example, the
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smoothing Fischer-Burmeister function [73] defined by ϕ : IR+× IR2 → IR:

ϕ(µ,a,b) =
√

a2 +b2 +2µ−a−b, (5.54)

and the Chen-Hanker-Kanzow-Smale (CHKS) [22, 73, 125] smoothing function de-

fined by ϕ : IR3 → IR:

ϕ(µ,a,b) =
√

(a−b)2 +4µ2−a−b. (5.55)

In what follows, without loss of generality, we choose the smoothing Fischer-Burmeister

function (5.54) to illustrate our approach. The cases of choosing other smoothing func-

tions can be discussed similarly.

The necessary conditions (5.3)-(5.4) are equivalent to the nonlinear equations

F(µ,z) =


 µ

G(µ,z)


 =




µ

F1(z)

F2(µ,z)


 = 0, (5.56)

where F1 : Z∞ →Y1,q and F2 : IR×Z∞ →Y2,q denote the smooth and the smoothing part

of F : IR×Z∞ → Y = Y1,q×Y2,q, respectively, where

F2(µ,z)(·) = ω(z(·)), (5.57)

ω = (ω1, . . . ,ωnc)
> : IR× IRnx × IRnu × IRnx × IRnc × IRnψ → IRnc and

ωi(µ, x̄, ū, λ̄ , η̄ , σ̄) := ϕ(µ,−ci(x̄, ū), η̄i), i = 1, . . . ,nc. (5.58)

From (5.56), for any µ 6= 0 a straightforward calculation yields

F ′(µ,z) =


 1 0

G′
µ(µ,z) G′

z(µ,z)


 =




1 0

0 F ′1(z)

F ′2µ(µ,z) F ′2z(µ,z)


 , (5.59)
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where F ′1(z) is defined by (5.9), and

F ′2µ(µ,z)(·) =




1√
c1[·]2 +η1(·)2 +2µ

...

1√
cnc[·]2 +ηnc(·)2 +2µ




, (5.60)

F ′2z(µk,zk)(µ,z) =−S(·)(c′x[·]x(·)+ c′u[·]u(·))+R(·)η(·), (5.61)

where

S(·) = diag

(
ci[·]√

ci[·]2 +ηi(·)2 +2µ
−1

∣∣∣ i = 1, . . . ,nc

)
,

R(·) = diag

(
ηi[·]√

ci[·]2 +ηi(·)2 +2µ
−1

∣∣∣ i = 1, . . . ,nc

)
.

As shown in previous section, we employ the squared L2-norm (5.24) of F as a merit

function.

Ξ(ν) = Ξ(µ,z) (5.62)

=
1
2
‖F(µ,z)‖2

Y2

=
1
2

µ2 +
1
2

∫ 1

0

∥∥x′(t)− f (x(t),u(t))
∥∥2 dt

+
1
2

∫ 1

0

∥∥∥λ ′(t)+H ′
x(x(t),u(t),λ (t),η(t))>

∥∥∥
2

dt

+
1
2

∫ 1

0

∥∥∥H ′
u(x(t),u(t),λ (t),η(t))>

∥∥∥
2

dt +
1
2

nc

∑
i=1

∫ 1

0
ϕ(µ,−ci(x(t),u(t)),ηi(t))2 dt

+
1
2
‖ψ(x(0),x(1))‖2 +

1
2
‖λ (0)+ψ ′

x0
(x(0),x(1))>σ‖2

+
1
2
‖λ (1)−ψ ′

x1
(x(0),x(1))>σ‖2.
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Similar to the previous section, we can find a direction

dk =−

 M k

N k


 =−


 µk +W k

µ G(µk,zk)

W k
z G(µk,zk)


 =−W kF(µk,zk), (5.63)

such that Ξ′(νk)(dk) =−‖dk‖2
Ẑ
, where the linear operators W k, W k

µ , W k
z are defined via

replacing Θ(zk) by Ξ(νk) in Section 5.6. We are not going to use this direction in the

following algorithm. Instead we will use a modified direction which guarantees that the

component µk remains positive throughout the iteration, which cannot be guaranteed

for the above gradient-like direction without additional safeguards.

Let the signum function sgn(M k) defined by

sgn(M k) =





1, if M k > 0;

0, if M k = 0;

−1, if M k < 0.

(5.64)

In the sequel let νk = (µk,zk) ∈ IR×Z∞ denote the iterate at iteration k. Moreover,

for a constant γ define

ζ (ν) = γ min{1,Ξ(µ,z)}, ν = (µ,z).

Algorithm 5.16. GLOBAL INEXACT SMOOTHING NEWTON METHOD

(0) Choose z0 ∈ Z∞, β ∈ (0,1), κ > 0, ρ > 1, σ ∈ (0,1/4), m and M. Choose µ̄ > 0

and γ ∈ (0,1) such that γ µ̄ < 1. Let ν̄ = (µ̄,0).

(1) If some stopping criterion is satisfied, stop.

(2) Compute the search direction dk = (dk
µ ,dk

z ) by

F(νk)+F ′(νk)dk−ζ (νk)ν̄ = rk, (5.65)

where rk = (rk
µ ,rk

z ) satisfies max{‖rk‖Y2,‖rk‖Y∞} ≤ ρk‖F(νk)‖Y2 , 0≤ ρk ≤ ρ̄ <
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1, and rk
µ +ζ (νk)µ̄ > 0. If (5.65) is not solvable or if the condition

Ξ′(νk)(dk)≤−κ‖dk‖ρ
Ẑ

(5.66)

is not satisfied, set

dk =−




sgn(M k)min{1, |M k|}µk

1+
∣∣M k

∣∣
W k

z G(µk,zk)


 , (5.67)

herein M k and W k
z are defined by (5.63), sgn(M k) is defined by (5.64).

(3) Find smallest ik ∈ IIN0 with

Ξ(Sk(νk +β ikdk))≤ Ξ(ν l(k))+σβ ikΞ′(νk)(dk) (5.68)

and set αk = β ik , where

Ξ(ν l(k)) = max
0≤ j≤m(k)

{Ξ(νk− j)} (5.69)

instead of Ξ(νk), herein m(0) = 0 and 0≤m(k)≤min{m(k−1)+1,M}, k≥ 1.

(4) Set zk+1 = Sk(zk +αkdk), k = k +1, and goto (1).

Before giving the theoretical analysis to Algorithm 5.16, we first introduce a con-

cept of P(artial)-stationary point.

Definition 5.17. ν∗ = (µ∗,z∗) = (0,z∗) is called a P-stationary point of Ξ in (5.62), if

WzG(ν∗)(·)≡ 0.

If (0,z∗) is P-stationary point of Ξ in (5.62) then Θ′(z∗)(·) = 0 in (5.24). Neverthe-

less, it follows from (5.63) that a stationary point of Ξ may have no relationship with a

solution (or a stationary point) of Θ in (5.24).

The following Lemma shows that Algorithm 5.16 is well-defined.
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Lemma 5.18. Suppose νk is neither a P-stationary point, nor a stationary point of Ξ in

(5.62) and µk > 0. Then µk+1 > 0 and dk is a descent direction of Ξ at νk, i.e., either

Ξ′(νk)(dk)≤−κ‖dk‖ρ
Ẑ

< 0, (5.70)

or

Ξ′(νk)(dk) =−min{1, |M k|}|M k|
1+

∣∣M k
∣∣ µk−‖W k

z G(µk,zk)‖2
Ẑ < 0. (5.71)

Proof. If (5.65) is solvable, then

Ξ′(νk)(dk) =
∫ 1

0
F(νk)(t)>F ′(νk)(dk)(t) dt (5.72)

=
∫ 1

0
F(νk)(t)>(rk(t)−F(νk)(t)) dt

=
∫ 1

0
F(νk)(t)>rk(t) dt−‖F(νk)‖2

Y2

≤ ‖F(νk)‖Y2 · ‖rk‖Y2 −‖F(νk)‖2
Y2

≤ (ρk−1) · ‖F(νk)‖2
Y2

≤ (ρ̄−1) · ‖F(νk)‖2
Y2

< 0.

and

µk+1 = µk +αdk
µ = µk +α(rk

µ +ζ (νk)µ̄−µk) (5.73)

= (1−α)µk +α(rk
µ +ζ (νk)µ̄)

≥min{µk,rk
µ +ζ (νk)µ̄}> 0.

Notice that the first equation in (5.65) always can be solved exactly and thus it is not

necessary to consider the case rk
µ 6= 0. However, for the sake of completeness we leave

this case included.

In addition, (5.70) follows readily from (5.66) in Algorithm 5.16.

On the other hand, if (5.67) holds, then

Ξ′(νk)(dk) =−
∫ 1

0
F(νk)(t)>F ′(νk)




sgn(M k)min{1, |M k|}µk

1+
∣∣M k

∣∣
W k

z G(µk,zk)


(t) dt
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=−
∫ 1

0


 µk

G(µk,zk)(t)



>

 1 0

G′
µ(µk,zk) G′

z(µk,zk)







sgn(M k)min{1, |M k|}µk

1+
∣∣M k

∣∣
W k

z G(µk,zk)


(t) dt

=−min{1, |M k|}|M k|
1+

∣∣M k
∣∣ µk−

∫ 1

0
G(νk)(t)>G′

z(νk)(W k
z G(νk))(t) dt

=−min{1, |M k|}|M k|
1+

∣∣M k
∣∣ µk−‖W k

z G(µk,zk)‖2
Ẑ < 0, (5.74)

which implies (5.71). Moreover,

µk+1 = µk +αdk
µ = µk−α

sgn(M k)min{1, |M k|}µk

1+
∣∣M k

∣∣ (5.75)

=

(
1− sgn(M k)min{1, |M k|}α

1+
∣∣M k

∣∣

)
µk > 0.

Therefore, dk is a direction of descent of Ξ at νk and the line-search in the Algorithm

5.16 is well-defined unless νk is a stationary (or P-stationary) point of Ξ. ¥

The following global convergence result extends the proof presented in Kanzow [73],

Qi, Sun, and Zhou [112] for finite dimensions into infinite dimensions.

Theorem 5.19. Let ν∗ = (µ∗,z∗) be an accumulation point of the sequence {νk} gen-

erated by Algorithm 5.16. Let all first and second derivatives of the functions f0, f ,c,ψ
be uniformly bounded. Let there be a constant CF such that ‖F(zk)‖Y∞ ≤CF for every

k. Let Assumption 5.11 hold for Ξ. Moreover, let a constant C̃S exist with (5.32) for all

k.

Then, ν∗ is either a P-stationary point, or a stationary point of Ξ. Moreover, if the

inverse operators (V k)−1 exist for all k, C > 0 is a constant such that ‖(V k)−1‖L (Y∞,Z∞)≤
C holds for all k, and (5.66) is satisfied by the Newton direction for all but finitely many

k, then z∗ is a zero of F.

Proof. Let {νk}k∈K be a subsequence with νk → ν∗ and Ξ′(νk)(dk) 6= 0. Replacing
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Θ(zk) by Ξ(νk) in Theorem 5.14, together with Lemma 5.18, we have

lim
k(∈K)→∞

αkΞ′(νk)(dk) = 0, (5.76)

and

lim
k(∈K)→∞

αk‖dk‖Ẑ = 0.

Case 1: Assume

α = liminf
k(∈K)→∞

αk > 0. (5.77)

We need to consider two subcases. Suppose first that

dk =−




sgn(M k)min{1, |M k|}µk

1+
∣∣M k

∣∣
W k

z G(µk,zk)




holds for infinitely many k ∈ K ⊂ IIN. Then it follows from (5.74) in Lemma 5.18 that

for some infinite subset K′ ⊆ K

lim
k(∈K′)→∞

Ξ′(νk)(dk) =− lim
k(∈K′)→∞

min{1, |M k|}|M k|
1+

∣∣M k
∣∣ µk

− lim
k(∈K′)→∞

‖W k
z G(µk,zk)‖Ẑ

= 0.

Hence ν∗ is a stationary (or P-stationary) point of Ξ.

On the other hand, if the condition that (5.65) is solvable holds for all but finitely

many k ∈ K, then replacing Θ(zk) by Ξ(νk) and repeating the corresponding process

used in the Case 1 of Theorem 5.14 shows that ν∗ is a zero of F .

Case 2: Assume that there is a subsequence {zk}k∈J , J ⊆ K, with lim
k(∈J)→∞

αk = 0.

By the similar process employed in the Case 2 of Theorem 5.14, the conclusion of

theorem is valid. Therefore, in either case, we establish the conclusion. ¥

Finally, we discuss the locally superlinear convergence of Algorithm 5.16.

Theorem 5.20. Let the assumptions of Theorems 5.4 and 5.19 be valid. In Algo-

rithm 5.16 let σ ∈ (0,1/4) and either κ > 0 sufficiently and ρ = 2 or κ > 0 and ρ > 2
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sufficiently large. Then, for sufficiently large k the step length αk = 1 is accepted and

the global smoothing method turns into the local one.

5.5 Numerical Results

We used the smoothing Newton method with non-monotone line-search described in

Algorithm 5.16 for the following computations. We did not make use of explicit inex-

actness (apart from numerical inaccuracies owing to rounding errors), that is we used

rk = 0 for our computations. A typical example, for which rk 6= 0 occurs, is if iterative

solvers are used for the occurring linear equations in the Newton step. In this case the

accuracy of the iteratively obtained solutions has to be adapted as outlined in the above

theory.

In each step of the smoothing Newton method a linear boundary value problem

defining the search direction has to be solved numerically. For the following compu-

tations, a single shooting method was used to solve these boundary value problems.

Herein, the differential equations are discretized on the time interval using the explicit

Euler method with N equidistant subintervals. The occurring derivatives (xk)′ and (λ k)′

are approximated by finite forward differences on the grid.

All computations were performed on a PC with 3 GHz processing speed and 1 GB

of memory. The following parameters were used throughout the computations: µ̄ = 1,

γ = 0.5, β = 0.9, σ = 0.1, M = 5.

5.5.1 Rayleigh Example

We consider the Rayleigh problem, which was investigated earlier in Maurer and Au-

gustin [95, p. 39], and in Gerdts [56, Section 5.2]:

Minimize ∫ 4.5

0
u(t)2 + x1(t)2 dt (5.78)

subject to





x′1 = x2, x1(0) =−5, x1(4.5) = 0,

x′2 = −x1 + x2
(
1.4−0.14x2

2
)
+4u, x2(0) =−5, x2(4.5) = 0,

(5.79)
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TABLE 5.1
Output of the smoothing Newton method for Rayleigh’s problem for N = 1000 subintervals and
Euler discretization: local superlinear convergence.

ITER ALPHA ||F|| ||d|| MU
-----------------------------------------------------------------------

0 0.729000E+00 0.432539E+02 0.150713E+05 0.635500E+00
1 0.590490E+00 0.665081E+02 0.621723E+04 0.555489E+00
2 0.100000E+01 0.147693E+02 0.690325E+04 0.500000E+00
3 0.100000E+01 0.233098E+01 0.236290E+04 0.500000E+00
4 0.100000E+01 0.342511E+00 0.173333E+04 0.500000E+00
5 0.100000E+01 0.164712E-01 0.509764E+03 0.171255E+00
6 0.100000E+01 0.960063E-02 0.835709E+03 0.823562E-02
7 0.100000E+01 0.205645E-03 0.146192E+03 0.480031E-02
8 0.100000E+01 0.120216E-04 0.248320E+02 0.102823E-03
9 0.100000E+01 0.115521E-05 0.581244E+01 0.601078E-05
10 0.100000E+01 0.193262E-07 0.238858E+00 0.577607E-06
11 0.100000E+01 0.486511E-10 0.347779E-01 0.966310E-08
12 0.100000E+01 0.113434E-14 0.185980E-02 0.243256E-10
13 0.100000E+01 0.100863E-23 0.859600E-05 0.567170E-15

and

−1≤ u(t)≤ 1.

It can be checked (see Gerdts [56, Section 5.2]) that the regularity assumptions are

satisfied for this problem. We leave the details to the reader.

Table 5.1 shows details of the iterations, i.e. step size α , residual norm ‖F‖2, search

direction ‖dk
z‖, and smoothing parameter µk.

Figure 5.1 shows the iterates of the smoothing Newton method for N = 1000.

The number of iterations remains nearly constant, which indicates — at least nu-

merically — the mesh independence of the method. Furthermore, the CPU time grows

at a linear rate with N. For this example the smoothing method requires 2-5 iterations

less compared to the results presented in Gerdts [56, page 347].
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FIGURE 5.1 Numerical solution of Rayleigh’s problem for N = 1000 Euler steps: Intermediate
iterates (thin lines) and converged solution (thick lines).
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N CPU time [s] Iterations

100 0.112 12

200 0.236 12

400 0.400 13

800 0.640 13

1600 1.332 14

3200 2.672 15

6400 6.692 16

12800 12.789 16

25600 23.217 16

In addition, reference solutions were computed using a direct discretization method

as in Gerdts [53] using an Euler discretization and feasibility tolerance 10−10 and op-

timality tolerance
√

eps, where eps denotes the machine precision. This direct dis-

cretization method needed 2.724 seconds for N = 100, 21.565 seconds for N = 200

and 311.911 seconds for N = 400. This indicates that the smoothing Newton method

is extremely efficient, provided that all regularity assumptions are satisfied.

5.5.2 Trolley Example

We consider an optimal control problem for a trolley of mass m1 moving in a high rack

storage area. A load of mass m2 is attached to the trolley by a rigid cable of length `,

cf. Figure 5.2. Herein, x1 and x3 denote the x-coordinate of the trolley and its velocity,

respectively, and x2 and x4 refer to the angle between vertical axis and cable and its

velocity, respectively. The acceleration of the trolley can be controlled by the control u

which is subject to

−0.5≤ u(t)≤ 0.5. (5.80)
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x

z

u(x1,z)

x2

−m2g

`

FIGURE 5.2 Configuration of the trolley and the load.

The equations of motion of the trolley are given by the following differential equations

for the state x = (x1,x2,x3,x4)>:





x′1 = x3

x′2 = x4

x′3 =
m2

2`
3 sin(x2)x2

4−m2`
2u+m2Iy`x2

4 sin(x2)− Iyu+m2
2`

2gcos(x2)sin(x2)
−m1m2`2−m1Iy−m2

2`
2−m2Iy +m2

2`
2 cos(x2)2

x′4 =
m2`

(
m2`cos(x2)x2

4 sin(x2)− cos(x2)u+gsin(x2)(m1 +m2)
)

−m1m2`2−m1Iy−m2
2`

2−m2Iy +m2
2`

2 cos(x2)2

(5.81)

The optimal control problem is defined by the task to control the trolley from the given

initial position

x1(0) = x2(0) = x3(0) = x4(0) = 0

to the terminal position

x1(t f ) = 1, x2(t f ) = x3(t f ) = x4(t f ) = 0.

within the fixed time t f = 2.7 such that the objective function

1
2

∫ t f

0
u(t)2 +5x4(t)2 dt
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TABLE 5.2
Output of globalized non-monotone smoothing Newton method for the trolley example for N =
1000 subintervals and Euler discretization: local superlinear convergence.

ITER ALPHA ||F|| ||dx|| MU
------------------------------------------------------------------------

0 0.100000E+01 0.317199E+00 0.566262E+04 0.500000E+00
1 0.100000E+01 0.227788E-01 0.208544E+04 0.158600E+00
2 0.100000E+01 0.477624E-02 0.994667E+03 0.113894E-01
3 0.100000E+01 0.136652E+00 0.230600E+04 0.238812E-02
4 0.100000E+01 0.660310E-01 0.561017E+04 0.683261E-01
5 0.100000E+01 0.374706E-02 0.356179E+04 0.330155E-01
6 0.100000E+01 0.261953E-03 0.114805E+04 0.187353E-02
7 0.100000E+01 0.121403E-03 0.763222E+03 0.130977E-03
8 0.100000E+01 0.263449E-05 0.185290E+02 0.607015E-04
9 0.100000E+01 0.450633E-07 0.387605E+01 0.131725E-05
10 0.100000E+01 0.321005E-09 0.940170E+00 0.225316E-07
11 0.100000E+01 0.650199E-12 0.280432E-01 0.160502E-09
12 0.100000E+01 0.161108E-15 0.114973E-02 0.325100E-12
13 0.100000E+01 0.252786E-21 0.203142E-04 0.805541E-16
14 0.100000E+01 0.464054E-26 0.243029E-07 0.126393E-21

is minimized subject to (5.80) and (5.81). The objective function aims at minimizing

the steering effort and the angle velocity of the cable to avoid extensive swinging of the

load.

Note that the boundary conditions define an entirely symmetric configuration, so

the resulting solution should be symmetric, too.

The following parameters were used for the numerical computations:

g = 9.81, m1 = 0.3, m2 = 0.5, ` = 0.75, r = 0.1, Iy = 0.002.

Table 5.2 summarizes CPU times for the smoothing Newton method depending

on the number N of equidistant intervals used in the linear boundary value problems.

Table 5.2 shows the output of the smoothing Newton method with non-monotone line-

search, i.e. step size α , residual norm ‖F‖2, search direction ‖dk
z‖, and smoothing

parameter µk during iterations. The iterations show the rapid superlinear convergence

at the end of the iteration sequence as predicted by Theorem 5.20.

The following table summarizes results for different step sizes. The number of itera-
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tions is nearly constant, which indicates – at least numerically – the mesh independence

of the method. Furthermore, the CPU time grows at a linear rate with N.

N CPU time [s] Iterations

101 0.244 11

201 0.392 13

401 0.752 13

801 1.408 13

1600 3.060 14

3200 6.176 13

6400 11.673 13

12800 22.981 14

25600 45.951 14

As before reference solutions with a direct discretization method were computed

and led to the following CPU times: 6.708 seconds for N = 200, 62.576 seconds for

N = 400 and 797.122 seconds for N = 800. Again, the smoothing Newton method

turns out to be very efficient.

Finally, Figures 5.3 and 5.4 illustrate the iterates of the smoothing Newton method.

Notice the symmetry in the solution which is due to the symmetry in the boundary

conditions.

Figure 5.4 shows that the smoothing Newton method is able to find the switching

structure of the optimal solution without any a priori assumptions.

5.6 Gradient Operator

Our aim is to compute the operator W k in dk = −W kF(zk) in Algorithm 5.9 given the

functional

Θ(z) =
1
2
‖F(z)‖2

Y2

=
1
2

∫ 1

0

∥∥x′(t)− f (x(t),u(t))
∥∥2 dt

+
1
2

∫ 1

0

∥∥∥λ ′(t)+H ′
x(x(t),u(t),λ (t),η(t))>

∥∥∥
2

dt
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FIGURE 5.3 Numerical solution of the trolley example for N = 1000 Euler steps: States and
adjoints at intermediate iterates (thin lines) and converged solution (thick lines).
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+
1
2

∫ 1

0

∥∥∥H ′
u(x(t),u(t),λ (t),η(t))>

∥∥∥
2

dt

+
1
2

∫ 1

0
‖ω(x(t),u(t),λ (t),η(t),σ)‖2 dt

+
1
2
‖ψ(x(0),x(1))‖2 +

1
2
‖λ (0)+ψ ′

x0
(x(0),x(1))>σ‖2

+
1
2
‖λ (1)−ψ ′

x1
(x(0),x(1))>σ‖2,

where ω is given by (5.8). Differentiating Θ at zk and partial integration yields

Θ′(zk)(z) =
∫ 1

0

(
(xk)′(t)− f [t]

)> (
x′(t)− f ′x[t]x(t)− f ′u[t]u(t)

)
dt

+
∫ 1

0

(
(λ k)′(t)+H ′

x[t]
>
)>(

λ ′(t)+H ′′
xx[t]x(t)

+H ′′
xu[t]u(t)+H ′′

xλ [t]λ (t)+H ′′
xη [t]η(t)

)
dt

+
∫ 1

0
H ′

u[t]
(
H ′′

ux[t]x(t)+H ′′
uu[t]u(t)+H ′′

uλ [t]λ (t)+H ′′
uη [t]η(t)

)
dt

+
∫ 1

0
ω[t]>

(−S(t)
(
c′x[t]x(t)+ c′u[t]u(t)

)
+R(t)η(t)

)
dt

+(ψ(xk(0),xk(1)))>
(

ψ ′
x0

(xk(0),xk(1))x(0)+ψ ′
x1

(xk(0),xk(1))x(1)
)

+
(

λ k(0)+(ψ ′
x0

(xk(0),xk(1)))>σ k
)>(

λ (0)+((ψ ′
x0

)>σ k)′x0
x(0)

+((ψ ′
x0

)>σ k)′x1
x(1)+(ψ ′

x0
)>σ

)

+
(

λ k(1)− (ψ ′
x1

(xk(0),xk(1)))>σ k
)>(

λ (1)− ((ψ ′
x1

)>σ k)′x0
x(0)

−((ψ ′
x1

)>σ k)′x1
x(1)− (ψ ′

x1
)>σ

)

=
∫ 1

0
g1(t)>x′(t) dt +

∫ 1

0
g2(t)>u(t) dt +

∫ 1

0
g3(t)>λ ′(t) dt

+
∫ 1

0
g4(t)>η(t) dt +∆>1 x(0)+∆>2 x(1)+∆>3 λ (0)+∆>4 λ (1)+∆>5 σ ,

where

g1(t)> =
(
(xk)′(t)− f [t]

)>
+

∫ t

0

((
(xk)′(τ)− f [τ]

)>
f ′x[τ]

−
(
(λ k)′(τ)+H ′

x[τ]>
)>

H ′′
xx[τ]−H ′

u[τ]H ′′
ux[τ]−ω[τ]>S(τ)c′x[τ]

)
dτ,
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g2(t)> = −
(
(xk)′(t)− f [t]

)>
f ′u[t]+

(
(λ k)′(t)+H ′

x[t]
>
)>

H ′′
xu[t]

+H ′
u[t]H

′′
uu[t]−ω[t]>S(t)c′u[t],

g3(t)> =
(
(λ k)′(t)+H ′

x[t]
>
)>

−
∫ t

0

((
(λ k)′(τ)+H ′

x[τ]>
)>

H ′′
xλ [τ]+H ′

u[τ]H ′′
uλ [τ]

)
dτ,

g4(t)> =
(
(λ k)′(t)+H ′

x[t]
>
)>

H ′′
xη [t]+H ′

u[t]H
′′
uη [t]+ω[t]>R(t),

∆>1 = ψ>ψ ′
x0

+
(

λ k(0)+(ψ ′
x0

)>σ k
)>

((ψ ′
x0

)>σ k)′x0

−
(

λ k(1)− (ψ ′
x1

)>σ k
)>

((ψ ′
x1

)>σ k)′x0
,

∆>2 = ψ>ψ ′
x1

+
(

λ k(0)+(ψ ′
x0

)>σ k
)>

((ψ ′
x0

)>σ k)′x1

−
(

λ k(1)− (ψ ′
x1

)>σ k
)>

((ψ ′
x1

)>σ k)′x1
+

∫ 1

0

((
(xk)′(τ)− f [τ]

)>
f ′x[τ]

−
(
(λ k)′(τ)+H ′

x[τ]>
)>

H ′′
xx[τ]−H ′

u[τ]H ′′
ux[τ]−ω[τ]>S(τ)c′x[τ]

)
dτ,

∆>3 =
(

λ k(0)+(ψ ′
x0

)>σ k
)>

,

∆>4 =
(

λ k(1)− (ψ ′
x1

)>σ k
)>

+
∫ 1

0

((
(λ k)′(τ)+H ′

x[τ]>
)>

H ′′
xλ [τ]+H ′

u[τ]H ′′
uλ [τ]

)
dτ,

∆>5 =
(

λ k(0)+(ψ ′
x0

)>σ k
)>

(ψ ′
x0

)>−
(

λ k(1)− (ψ ′
x1

)>σ k
)>

(ψ ′
x1

)>.

Moreover, it holds

x(1) = x(0)+
∫ 1

0
x′(t) dt, λ (1) = λ (0)+

∫ 1

0
λ ′(t) dt.

Introducing these relations into the above formula yields

Θ′(zk)(z) =
∫ 1

0
(∆2 +g1(t))

> x′(t) dt +
∫ 1

0
g2(t)>u(t) dt

+
∫ 1

0
(∆4 +g3(t))

>λ ′(t) dt +
∫ 1

0
g4(t)>η(t) dt

+(∆1 +∆2)
> x(0)+(∆3 +∆4)

>λ (0)+∆>5 σ .
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Define dk = (x,λ ,u,η ,σ) ∈ Z∞ by

x′(t) = −(∆2 +g1(t)) , x(0) =−(∆1 +∆2) ,

λ ′(t) = −(∆4 +g3(t)) , λ (0) =−(∆3 +∆4) ,

u(t) = −g2(t),

η(t) = −g4(t),

σ = −∆5.

Then, dk can be expressed as dk = −W kF(zk) with a continuous (and thus bounded)

linear operator W k : Y∞ → Z∞. Notice that dk is actually an element of the space Z∞.

We omit the technical details of defining W k explicitly although this is straightforward

by exploiting the linear structure of g1, . . . ,g4 and ∆1, . . . ,∆5.

We note, that W k is uniformly bounded, i.e. there exists a constant C independent

of k with

‖W kh‖Z∞ ≤C‖h‖Y∞ for every k,

if all first and second derivatives of the functions f0, f ,c,ψ are uniformly bounded.

Actually, dk can be interpreted as the negative gradient of Θ at zk in the Hilbert

space Ẑ = Z2 equipped with the norm ‖d‖Ẑ =
√
〈d,d〉Ẑ×Ẑ with the inner product

〈v,w〉Ẑ×Ẑ := 〈vx,wx〉1,2 + 〈vu,wu〉2 + 〈vλ ,wλ 〉1,2 + 〈vη ,wη〉2 + v>σ wσ ,

where v = (vx,vu,vλ ,vη ,vσ ) ∈ Z∞, w = (wx,wu,wλ ,wη ,wσ ) ∈ Z∞. The inner prod-

ucts 〈·, ·〉1,2 in the space W 1,2 and 〈·, ·〉2 in the space L2 for v,w ∈W 1,2 and v,w ∈ L2,

respectively, are defined by

〈v,w〉1,2 = v(0)>w(0)+ 〈v′,w′〉2, 〈v,w〉2 =
∫ 1

0
v(t)>w(t) dt.

Using this norm, the search direction dk =−W kF(zk) satisfies

Θ′(zk)(dk) =−‖W kF(zk)‖2
Ẑ

=−‖dk‖2
Ẑ

and hence dk is a direction of descent unless dk = 0.
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In addition, we should note that by replacing Θ(zk) with Ξ(νk) of Section 5.4 in the

above discussions, we can find a direction

dk =−

 M k

N k


 =−


 µk +W k

µ G(µk,zk)

W k
z G(µk,zk)


 =−W kF(µk,zk),

in Algorithm 5.16 such that Ξ′(νk)(dk) = −‖dk‖2
Ẑ

with linear operators W k, W k
µ , W k

z .

More specifically, dk = (µ,x,λ ,u,η ,σ) ∈ IR×Z∞ is given by

µ = −
(

µk +
∫ 1

0
ω[t]>F ′2µ(νk)(t) dt

)
,

x′(t) = −(∆2 +g1(t)) , x(0) =−(∆1 +∆2) ,

λ ′(t) = −(∆4 +g3(t)) , λ (0) =−(∆3 +∆4) ,

u(t) = −g2(t),

η(t) = −g4(t),

σ = −∆5,

where F ′2µ is defined in (5.60) and S and R in g1, g2, and g4 are defined in (5.61). The

details are just a verbatim repetition of the above procedures. We omit these here.

Finally, we establish an auxiliary result on stationary points.

Lemma 5.21. Let Θ : Z∞ → IR be Fréchet differentiable. Let z∗ ∈ Z∞ and d∗ ∈ Z∞ be

given with Θ′(z∗)(d∗) = 0. Furthermore, let {zk}k∈IIN and dk =−W kF(zk) be sequences

with zk → z∗ in Z∞ and Θ′(zk)(dk)→ 0.

Then z∗ is a stationary point of Θ, i.e. Θ′(z∗)(d) = 0 for every d ∈ Z∞.

Proof. Assume that there exists d ∈ Z∞ with ‖d‖Ẑ = 1 and Θ′(z∗)(d) 6= 0. It holds

0 = lim
k→∞

Θ′(zk)(dk) =− lim
k→∞

‖dk‖2
Ẑ

and thus for some constant C

0≤ |Θ′(zk)(d)|= |〈dk,d〉Ẑ×Ẑ| ≤C‖dk‖Ẑ‖d‖Ẑ = C‖dk‖Ẑ → 0.
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The continuity of Θ′(·) implies

0 = lim
k→∞

Θ′(zk)(d) = Θ′(z∗)(d) 6= 0,

which is a contradiction. ¥

5.7 Contributions and Future Research

This chapter studied the numerical solutions for the optimal control problems subject

to mixed control-state constraints via the inexact nonsmooth and smoothing Newton

methods. Global convergence of the proposed algorithms is established under a non-

monotonic backtracking strategy. The locally superlinear convergence under certain

regularity conditions is analyzed. Numerical examples show that our approaches are

very promising.

It would be interesting to establish the locally quadratic convergence for the inex-

act nonsmooth Newton method we mentioned. Also the feasibility of weakening the

regularity conditions of the generalized Jacobian matrix at a zero of the OCP presents

further challenges. This would be particularly beneficial for problems with pure state

constraints or singular controls as in these cases the presented regularity assumptions

for uniform non-singularity do not hold. We are currently starting to investigate this

semismoothness of the reformulation of OCP in more details.
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