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Abstract 

Abstract 

 

The studies reported in this thesis focus on specific problems in the control of 

autonomous vehicles in a mixed traffic scenario whereby the road is shared by 

autonomous driving machines as well as human driven vehicles. Among the major 

concerns are the lateral and the lane change problems in Automated Highway Systems 

(AHS) and mixed mode traffic settings. 

  

The studies in this thesis also contribute to theoretical knowledge in the area of 

soft computing. Firstly, a novel fused Neural Network (NN) controller based on task 

decomposition is proposed. The proposed NN controller structure has been applied to 

a class of benchmark systems that require two input variables such as displacement 

and orientation in order to demonstrate its effectiveness. It has been tested for lateral 

control of autonomous vehicles under simulated and experimental environments.  

 

Secondly, an innovative encoding scheme coined as Fire Rules Chromosome 

(FRC) encoding scheme is proposed which can improve the convergence speed of a 

fuzzy controller optimized by Genetic Algorithms. Although it is a general purpose 

controller and can be applied to a variety of systems, here it has been developed as an 

efficient controller for lateral control. The robustness of this controller is studied by 

Monte-Carlo simulations.  

 

Lane keeping and lane changing are the two tasks involved in vehicle lateral 

control. The aim of the lane keeping is to maintain the vehicle at the center of the road 

and also follow the reference lane. The simplified neural network controller and fuzzy 
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controller optimized by the proposed FRC scheme are implemented on a scaled 

vehicle for vehicle lateral control. 

 

For lane changing, the concept of virtual curvature is proposed to assist an 

automatic lane change maneuver. The virtual curvature algorithm incorporates virtual 

road curvature with bicycle model for vehicle lane change guidance. The virtual road 

curvature, does not physically exist, is a user assigned radius of a curved lane 

changing path which connects the current lane to the adjacent lane. The lane changing 

path guidance is achieved by assigning a virtual road curvature to the bicycle model to 

transform existing physical reference path curvature to the desired lane change path 

curvature. This transforming effect is accomplished by the inherent property of the 

bicycle model. The method is inspired by the observation that any change in the road 

curvature affects the vehicle lateral dynamics 

 

The lane change maneuver offers flexibility in vehicle navigation, coordination 

and obstacle avoidance. However, during the lane changing, the merging vehicle 

should cross lanes which imply that the vehicle should consider obstacles or vehicles 

on adjacent lanes – a situation that could lead to accidents if not properly handled.  

The problem of lane change abortion is also studied through a computation of a 

maximum lateral displacement required for the lane change abortion. Collision free 

abortion point is defined in the study of lane change abortion. The maximum 

allowable lateral acceleration and the vehicle speed are the two prime factors 

governing the collision free abortion point. The effect of the two factors stated above 

on the abortion point is discussed in the thesis. 

 

A scaled prototype semi-autonomous vehicle is constructed for experimental 
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testing of suggested algorithms in the thesis. The scaled vehicle is a modified Radio 

Controller (RC) car which is driving and steering by the front wheels. Infrared and 

ultrasonic sensors are installed to measure distance, and encoder sensor to measure 

vehicle speed. An industrial computer combined with A/D card is mounted on the 

vehicle as the main control system. The vehicle lateral model is obtained and it is 

verified that the scaled vehicle dynamic model exhibits the same properties with 

standard vehicle model.  
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Chapter 1. Introduction 

It can be well argued that the vision of Leonardo da Vinci and the genius of Issac 

Newton laid the foundation of one of the most intriguing machines that man has ever 

devised. However, the evolution of the automobile as we know it goes back to 1769 

when a French engineer by the name of Nicolas Joseph Cugnot (1725-1804) tested the 

very first self-propelled vehicle powered by a steam engine. It took almost two and 

half centuries, more than 100,000 patents, contributions from thousands of engineers, 

and an insatiable passion to create the modern car. In the last 240 years, there have 

been significant improvements in the design, safety, and passenger comfort. In this 

process, driving a sleek and fast car has also become an obsession of the modern man!  

 

The irony is that the term automobile is a misnomer. The car that we drive is very 

much a manual-mobile. Nowadays, some semi-autonomous versions have been out of 

the drawing boards into the assembly lines and on to roads. It is likely that in a decade 

or so, humans will experience the joy of a real Automobile. This thesis is a modest 

attempt to pave the way for the transition from a semi-autonomous (driver-assist) to 

completely autonomous (driverless) vehicle.  

  

Like other significant technological developments, there have been some serious 

byproducts among which are environmental issues, traffic congestion, congested 

roads, and most importantly the loss of human life. Traffic congestion and accidents 

have impacts on human society in terms of travel delays, increases pollution, 

productivity and loss of life. The deployment on the Intelligent Transportation 

Systems (ITS) or Automated Highway Systems (AHS) is a solution towards 
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enhancing the traffic efficiency and safety by employing diverse advanced 

technologies of computing, communication, sensors, and control. The ultimate goal of 

the AHS is enabling fully automated highways such that driverless vehicles could be 

realized. The process towards full implementation of AHS requires sophisticated 

traffic management, intelligent and autonomous vehicles, state of art in sensor 

technology, control systems, and infrastructure enhancement. The whole process 

involves close collaboration of highway authorities with vehicle manufacturers.  

 

The development of AHS is not a fantasy any more and there have been several 

test systems already in operation around the world. There are some positive signs that 

Hong Kong is preparing for AHS. The signposts with electronic displays located on 

the highways which provide traffic information ahead, GPS navigation systems, and 

driver warning systems to avoid congested traffic are among the steps that have been 

taken by the highway department. These are only starting steps but nevertheless 

timely and attribute to Advanced Traffic Management systems (ATMS) of ITS. These 

studies are outside the scope of this research. 

 

Car manufacturers have heavily invested in safety and passenger comfort in the 

last three decades. Lexus, one of the largest Japan car manufacturers offers “Dynamic 

Radar Cruise Control” module which adjusts vehicle speed automatically to maintain 

a pre-set distance. The distance measurement is achieved by millimeter-wave radar. 

Mercedes-Benz, the car manufacturer from Germany, has launched the world first 

vehicle equipped with intelligent light system on E-Class saloons. The dipped beam 

headlamps with active curve illumination automatically adapts to the relevant traffic 

situation in order to enhance the driver visible range at night. BMW, also a car 

manufacturer from Germany, has introduced the “Dynamic Stability Control” (DSC) 
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system which stabilizes the vehicle by coordinating the engine driving torque and 

braking on individual wheels. To detect instability, DSC requires information of 

steering wheel movement, vehicle speed, transverse acceleration and yaw. The DSC 

system is already available on BMW full series sedan.  

 

The aforementioned longitudinal and traction control systems on the market are 

all driver assistance systems and provide building blocks towards autonomous vehicle. 

To achieve the goal of AHS, the key is on the development of fully autonomous 

vehicle. In the thesis, the author primarily focuses on the problems associated with the 

lateral control of autonomous vehicles. This research investigates the integration of 

the hardware, the software, and the control of an in-house designed and built 

prototype vehicle.   

 

In particular, the thesis addresses the following issues: 

 To design a simplified neural network controller structure for vehicle lateral 

control and a class of systems with similar nature. 

 To establish a convergence rate enhancement scheme for the integration of fuzzy 

logic and genetic algorithms. 

 To design a lane change algorithm for automatic vehicle lane change maneuver 

and analyze the collision free abortion of the lane change process. 

 To implement, test, and analyze different algorithm on a scaled prototype vehicle. 

1.1. Motivation of research 

Hong Kong’s roads are known to have the highest vehicle densities in the world. 

As of March 2005, there were more than 500 000 licensed vehicles and less than 2500 

kilometers of roads. According to the Annual Transport Digest, in 2005, there were 
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15062 traffic accidents across the territory. The report ranks the most contributing 

factors for traffic accidents to be too close spacing, careless lane changing, and 

turning inattentively. All these attribute to human error or negligence. In addition, the 

economic growth and the ever-increasing transportation needs in Hong Kong have led 

to the increased traffic congestion and traffic accidents. Coupled with a mixture of 

constraints such as complex terrain, small land area, land-use restriction and dense 

population, it is expected that traffic congestion to be a major obstacle for further 

economic growth in years to come.  

 

It has been suggested that the implementation of autonomous vehicles should 

reduce the number of accidents by automating the decision process to maintain an 

appropriate spacing and environmental assessment for turning and lane changing. In 

addition to the automation of the decision making process, the advantage of machine 

over human driver is the reaction time. Machines react to relevant traffic situations in 

a few milliseconds but human takes hundreds of milliseconds even in the absence of 

fatigue. The fast reaction time of a self-driving machine implies the feasibility of 

increasing the highway capacity by reducing inter-vehicle spacing. Therefore the 

automation on vehicle control not only enhances the traffic safety but also benefits to 

traffic efficiency. 

 

In this thesis, the author addresses selected problems in the interesting way. The 

focus is on lateral control and its associated problems. The control algorithms are 

implemented and tested on an in-house designed. A prototype vehicle was built with 

the aim of filling the gap between design and practical implementation. 

Computational methodologies –in particular, soft computing techniques are employed 

in the design of the vehicle control systems. 
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1.2. Research Outline 

The scope and the flow of this thesis can be classified into 3 phases as shown in 

Figure 1-1. In Phase 1, the elementary components of a semi-autonomous vehicle in 

both hardware and software are attended. Soft computing techniques are used to 

design vehicle controllers and controllers for a class of benchmark systems. A fused 

neural network controller is designed for vehicle lateral control and pendulum 

balancing. The so-called Fired Rules Chromosome (FRC) encoding scheme for 

integration of fuzzy systems and genetic algorithm (FS/GA) is proposed to enhance 

the convergence rate and to retain the controller robustness.  

 

In Phase 2, the problem of vehicle lane change maneuver is considered. The lane 

change problem is challenging due to the limitation on the data collection during the 

transition period. Lane change with virtual road curvature is suggested to tackle the 

problem of lane change. In addition to normal lane change process, the abortion 

process is also considered in this phase. The abortion point on the lane change process 

to ensure a collision free navigation is also proposed and analyzed. In Phase 3, the 

prototype vehicle is served as a platform for controllers testing experimentally on a 

test track. The performances of the controllers are verified under different test 

settings. 
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Figure 1-1: Thesis scope and flow. 

1.3. Organization of the thesis 

In Chapter 2, a brief history on the development of automated highway system, 

detailed literature on autonomous vehicle control, and various soft computing method 

are presented. Control algorithms proposed by researchers on vehicle lateral control 

are classified according to the type of the reference system employed in the design. 

This chapter lays the background for the rest of the thesis. 

 



 

 1-7

In Chapter 3, the design and construction of a scaled semi-autonomous 

prototype vehicle for experimental studies is presented. The scaled vehicle hardware 

construction such as sensors, computation unit, input-output interface are fully 

described. In addition, the theoretical lateral model of the scaled prototype vehicle is 

discussed in this chapter. 

 

In Chapter 4, a fused neural network controller based on the task decomposition 

is presented. The controller can be applied to a class of systems which can be 

decomposed into two variables such as an angle and a displacement. The controller is 

optimized with genetic algorithm for vehicle lateral control and a class of bench mark 

systems including inverted pendulum and ball-and-beam system. Simulation results 

are presented in this chapter and compared with full state feedback linear controller.  

 

In Chapter 5, a novel encoding scheme named as Fired Rules Chromosome 

(FRC) encoding scheme is proposed to enhance the rate of convergence on the 

optimization of fuzzy rule table with genetic algorithm. A fuzzy controller for vehicle 

lateral control is also presented. The convergence rate, performance index, and 

controller robustness of fuzzy controller optimized by GA with FRC encoding scheme 

are compared with fuzzy controller optimized by GA against a traditional method. 

 

In Chapter 6, the vehicle lateral control experiments with controllers based on 

neural network controller (Chapter 4), and fuzzy controllers optimized by GA with 

FRC and traditional method (Chapter 5) are conducted. These controllers are 

implemented on the prototype vehicle (Chapter 3) under different speed settings. The 

performances of the three controllers are compared in terms of performance indices.  
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In Chapter 7, a thorough description on lane change algorithm with virtual 

curvature and lane change abortion analysis are presented. The proposed concept of 

virtual road curvature and lane change scheme guides vehicle from original lane to 

adjacent lane in the absent of infrastructure support. The virtual lane change algorithm 

is verified experimentally. The lane change abortion analysis studies the point of 

abortion which guarantee no collision occur. The collision free abortion point is 

evaluated under different speed and lateral acceleration limit. 

 

In Chapter 8, experimental verifications on vehicle control algorithms are 

presented. The objective of this chapter is to assess the performance of the controllers 

and the analysis of results by various practical experiments. The lateral controller and 

lane change algorithm are integrated and tested under variable speed. The lane change 

abortion point stated in Chapter 7 is also verified experimentally in this chapter. 

 

Chapter 9 outlines the achievements of the thesis and draws tentative 

conclusions and points out the future direction of this research work. 

1.4. Statement of originality  

The main contributions made by the author in this thesis are given in the 

following statements: 

 

 Design of a fused neural network controller by task decomposition for the 

control a class of systems including two variables for manipulation such as 

vehicle lateral control (Chapter 4). 

 Design of a Fired Rules Chromosome (FRC) encoding scheme for convergence 

rate enhancement in the application of fuzzy rule table optimization by genetic 
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algorithms (Chapter 5). 

 Design of a lane change scheme with virtual road curvature to tackle the problem 

of automatic lane changing (Chapter 7). 

 Analyze the collision free abortion point during lane change (Chapter 7). 

 Implementation and verification of the proposed controllers and schemes in 

experiments on a scaled prototype vehicle (Chapter 8). 

1.5. Publications 

At the time of writing this thesis, one journal paper and four conference papers 

have been published. Also, there are three papers that have been submitted to 

international journals. The list of publications is as follows: 

 
1. M.L. Ho, A. B. Rad and P.T. Chan, “Project based learning - design of a prototype 
semiautonomous vehicle”, IEEE Control System Magazine, Vol. 24 No. 5, Oct. 2004. 
page 88-91.  
 
2. M.L. Ho, P.T. Chan and A.B. Rad, “Lane Change Algorithm for Autonomous 
Vehicles via Virtual Curvature Method” Journal of Advanced Transportation (second 
review) 
 
3. M.L. Ho, P.T. Chan and A.B. Rad, ”A novel fused neural network controller for 
lateral control of autonomous vehicles”, Mechatronics (submitted) 
 
4. P.T. Chan, A.B. Rad, and M.L. Ho, “On a Fired Rules Chromosome Encoding 
Scheme”, Fuzzy Sets and Systems (submitted) 
 
5. Y.K. Lo, A.B. Rad, C.W. Wong and M.L. Ho, “Automatic Parallel Parking” IEEE 
Proceedings on Intelligent Transportation Systems, China, Vol. 2 , 12-15 Oct. 2003, 
page 1190-1193.  
 
6. M.L. Ho, A.B. Rad, and P.T. Chan, “Evaluation of Automatic Cruise Control in 
Prototype Autonomous Vehicle” Regional Inter-University Postgraduate Electrical 
and Electronic Engineering conference (RIUPEEEC) 2003, The Hong Kong 
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Polytechnic University, Hong Kong, 29-30 August, 2003, page 99-100.  
 
7. M.L. Ho, P.T. Chan, A.B. Rad and C.H. Mak, “Truck Backing up neural network 
controller optimized by Genetic Algorithms”, IEEE Congress on Evolutionary 
Computation 2003, Canberra, Australia, 8-12 December, 2003, page 944-951.  
 
8. M.L. Ho, P.T. Chan, and A.B. Rad, “A Novel Lane Change Algorithm”, Regional 
Inter-University Postgraduate Electrical and Electronic Engineering conference 
(RIUPEEEC) 2005, City University of Hong Kong, Hong Kong, 14-15 July, 2005, 
page 689-692. 
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Chapter 2. Literature Review 

2.1. Introduction 

In order to set the scene for the rest of the thesis and to give background and 

insight to the core of the studies undertaken in this research, this chapter is aimed at 

giving a thorough yet selective account of the relevant work carried out by other 

researchers.   

 

The earliest research and development on the safety and highway efficiency 

enhancements were initiated in 1960s by the Bureau of Public Roads of the 

Department of Commerce in the United State (Saxton 1993). In the past decades, 

there have been numerous research activities conducted by the Intelligent 

Transportation Systems (ITS) programs around the world especially in the United 

State, Europe and Japan. Fully automated vehicles for specialized applications were 

successfully deployed in the 1990s. The fundamental capability for passenger car 

automation was proven in Europe, Japan, and the United States. (Ioannou 1997).  

 

The main research areas of ITS includes Advanced Traffic Management 

Systems (ATMS), Advanced Traveler Information Systems (ATIS), Commercial 

Vehicle Operation (CVO), Advanced Public Transportation Systems (APTS), and 

Advanced Vehicle Control Systems (AVCS). The ITS research areas focus on the use 

of information technologies and emerging electronic techniques to enhance road 

transportation efficiency and safety. The collaboration of the above mentioned 

systems collectively are referred to as Automated Highway Systems (AHS). 
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The AHS is an area under ITS which aims to improve the efficacy of highways 

and roads by adopting advanced technologies on infrastructure as well as vehicles. In 

the United State, a California statewide transportation research program known as 

Partners for Advanced Transit and Highways (PATH) was established in 1986. The 

PATH program research directions are towards AHS and it has been regarded as the 

pioneering program in the state of art in the field of AHS.  

 

In Europe, a program initiated by vehicle industry called the PROMETHEUS 

(Program for European Traffic and Highest Efficiency and Unprecedented Safety) 

was formed in 1985. One year later, a research projects named DRIVE (Dedicated 

Road Infrastructure for Vehicle Safety in Europe) was established in parallel with the 

PROMETHEUS program but the research focus was on the highway authority 

problem rather than vehicle manufacturer (French et al, 1993). Recently the research 

projects in the Europe are fast growing. The Cybercars project developed in Europe 

shows successful realization of an autonomous vehicle in the urban area with 

dedicated lanes and it is extended to Cybercar-2 which aims to address high demand 

traffic by the enhancement on the communication technologies (Cybercar official 

website). Bouraoui et al. (2006) show the recent development of Cybercar on safety 

of intersections. PReVENT is another project in Europe which conducting research on 

active safety systems. There is wide range of projects under the PReVENT 

(PReVENT official website). Moehler (2006) presents lane keeping support system 

which is developed under the Safelane project of PReVENT. 

 

Figure 2-1 shows the main research areas in ITS and the associated 

methodologies towards achieving more road safety for passengers and highway 
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capacity enhancement. The figure also indicates the research topics covered in this 

thesis.  

There are two main concepts of research in AHS: dedicated lanes and mixed 

traffic. The dedicated lane concept is devoted to the use of platoons for vehicle 

longitudinal control. Horowitz and Varaiya (2000) presented a five layers AHS 

structure namely network, link, coordination, regulation and physical layers for 

dedicated lane approach. The control commands are sent from higher layers and the 

vehicles do not need to make intelligent decisions.  

 

The mixed traffic approach treats each vehicle as an autonomous agent to make 

decision based on local sensors readings. Therefore the development in this paradigm 

aims at autonomous vehicle control for handling the challenging task in mixed traffic 

condition (i.e. designing an intelligent agent to be able to function safely and 

efficiently in a mixed traffic road). This thesis addresses the problem on the 

autonomous vehicle control. 

 

The Advanced Vehicle Control Systems (AVCS) is the key element for both 

dedicated lane and mixed traffic concepts of AHS since both approaches require fully 

automated/autonomous vehicles. Nowadays, some AVCS systems are already 

implemented on commercial vehicles such as cruise control system and anti-lock 

braking system which are intended as driver assistance systems. 

 

AVCS research enjoys the rich pool of classical and modern control systems 

approaches and computational intelligence methodologies at its disposal. In addition, 

communication and perception systems also play an important role in data collection, 

system monitoring and diagnosis. 
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Figure 2-1: Thesis scope and ITS research areas. 
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The rest of this chapter is organized as follows: The literature on sensor systems 

for lateral measurements in the infrastructure supported highways are reviewed in 

Section 2.2. Sections 2-3 and 2-4 discuss the lateral and longitudinal control 

respectively. Section 2.5 introduces the background on soft computing methodologies 

including Fuzzy logic, Genetic Algorithms, and Neural Networks. Finally Section 

concludes this Chapter. 

2.2. Lateral referencing system 

The earliest lateral reference system was a single wire, laid along the center of 

the lane and excited with alternating current. This was used by the General Motor 

Corporation/Radio Corporation of America in 1960’s. The lateral information was 

measured by amplitude-sensing techniques in the early stage and changed to 

phase-sensing approach which offered higher robustness to ferrous material on the 

highway (Fenton and Mayhan, 1991).  

 

Nowadays, the reference system can be divided into look-ahead and look-down 

systems. The look-ahead systems replicate human driving behavior by measuring 

lateral distance ahead the vehicle. In contrast to look-ahead system, look-down system 

measures vehicle lateral position at a location within the vehicle boundaries. The 

automatic control approach can also be grouped into look-ahead and look-down 

systems. The classification is made according to the point of measurement of vehicle 

lateral position with respect to the reference path. 

 

The following discusses the three most typical reference systems worldwide: 

Magnetic markers which are extensively used look-down reference systems in the 

PATH program, Frequency Selective Surface which is a look-ahead system developed 
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by the Ohio State University, and Machine vision approaches which extract lateral 

information from camera by image processing techniques. 

 

Magnetic markers 

Zhang and Parson (1998) suggested the use of discrete permanent magnets as 

reference markers for lateral control. The use of magnetic marker for lateral reference 

system has been investigated in depth by many researcher groups. Guldner et al. 

(1997) presented the use of magnetic marker for coding road information and outlined 

its implementation details. Different magnetic materials ceramic and rare earth 

magnet were installed on normal pavement and bridge respectively. Rare earth 

magnets are more expensive, but much more stronger than ceramic magnets, which 

allows to use 2.5cm long magnets as compared to 10cm long ceramic magnets. On 

bridge structures, drilling 10cm deep magnet holes at locations specified with high 

accuracy proved hazardous with respect to the structural integrity of the bridge and 

shorter rare earth magnets have to be installed. 

 

The investigation of Guldner et al. (1997) also suggest the use of magnet binary 

coding to code permanent information such as road geometry, magnet type, 

merge/diverge, lane change permit, highway ID and Kilometer-post. The availability 

of roadway information to the vehicle provides a platform for the development of 

autonomous vehicle system. 

 

Frequency Selective Surface 

Farkas et al. (1997) developed a forward-looking chirp monopulse radar for 

vehicle lateral guidance. The radar chirp works with frequency selective surface (FSS) 

strip, which installed in the middle of the highway lane, to detect vehicle lateral 
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position. The detection of steering information is based on the sense of backscattered 

radar energy by the highway strip at a specific frequency. The radar operates from 10 

to 11 GHz at 5ms intervals. The configuration of the radar system enables the 

detection of road curvature which provides additional information for vehicle 

guidance. This look-ahead radar guidance system is part of the Ohio State University 

(OSU) Automated Highway System convoy. In addition to provide steering 

information, the radar also provides range information to the nearest front vehicle for 

automatic cruise control. The range information to the front vehicle is achieved by 

detecting the echo of the radar pulse.  

 

Machine vision 

The use of computer vision to detect and extract white painted lines along the road 

for vehicle guidance has been proposed by many researchers (Manigel and Leonhard 

(1992), Tsugawa (1994), Miura et al. (2002)). The visual guidance technique offers 

the advantage of minimal infrastructure modification that enhances the flexibility in 

vehicle guidance. In addition to vehicle guidance in highway, Chen et al. (2004) 

developed an autonomous vehicle named TerraMax with cameras, radar and sonars 

for off-road ground vehicles guidance. The TerraMax vehicle participated in the 2004 

Darpa Grand Challenge which traveled 142 miles across the Mojave Desert. In 

addition to reference lane detection, vision based technology can be extended to the 

level of situation assessment. Eidehall et al. (2007) developed an active safety system 

named Emergency Lane Assist (ELA) which is using vision system for vehicle 

tracking and adjacent lanes monitoring. When dangerous situation is observed, the 

ELA applies torque to the steering wheel to prevent lane departure. 

 

Vehicle guidance with vision sensor would overcome some practical limits of the 
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reference methods mentioned above. The obvious example is the guidance during lane 

changing. In order to provide continuous reference signal during lane change, the 

above methods (magnetic marker and FSS) require installation of extra markers or 

strip between lanes for lane change guidance. If extra markers or strip are not installed, 

some ad hoc techniques or position estimation should be conducted. For the machine 

vision approach, reference signal is extracted from image thus feedback signal is 

always available during lane change. 

 

However, the limitation of computer vision is the dependency on weather 

condition and light. Researches conducted on this area are mainly on the image 

processing techniques to enhance the robustness of the visual sensors. 

 

In this thesis, the lateral controller research is based on look-down reference 

system without preview information of road curvature. For practical experiment 

consideration, a scaled semi-autonomous vehicle was built and the vehicle details will 

be described in Chapter 3.  

 

The establishment of look-down reference system in the scaled prototype system 

is achieved by installing infrared sensors on the vehicle and setting the lateral 

reference lane standing on the ground. The standing up reference lane served as a 

reflecting object for infrared sensor measurement. Since the infrared sensor measures 

lateral distance in the close vicinity of the vehicle, it can be classified as look-down 

reference system. 
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2.3. Lateral control algorithm 

The objective of automatic vehicle lateral control is to steer a vehicle along a 

planned path. Much research has been reported in the past decades which are 

conducted by academic institutions, government funded programs, and industrial 

sector.  

 

The research on the vehicle guidance and control starts at early 1960’s (Fenton 

and Mayhan, 1991) and continuously has grown till now. In the past decades, many 

linear and nonlinear control algorithms such as linear quadratic, sliding mode, 

adaptive control, have been developed to design the control system for autonomous 

vehicles.  

 

Fenton and Selim (1988) used optimal control technique with observer to design 

full state feedback from a measurement of lateral offset at the front of the vehicle. 

Hessburg et al. (1991) studied the feasibility with experimental vehicle of lateral 

control by using classical PID controller with magnetic sensor as reference system.  

 

Guldern (1999) designed a robust lateral controller under vehicle parameter 

variations. Kato et al (2002) presented vehicle control algorithm for cooperative 

driving with communication. The lateral control algorithm presented by Kato et al. is 

based on dead reckoning function with differential global positioning system (DGPS). 

The vehicle is guided by a precise map that contains a series of points representing the 

path of the vehicle. The system is experimentally tested in Demo 2000. Hernandez 

and Kuo (2003) modified a look-down reference controller by using GPS to extract 

geometric information from digital map for tracking enhancement. 
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With the fast advancement of computing technology, soft computing techniques 

were employed in the control of autonomous vehicle. Fuzzy logic controller provides 

a platform for incorporating human experience and engineering judgment for control 

of vehicle steering.  

 

Hessburg and Tomizuka (1991, 1993 and 1994) studied the use of fuzzy logic 

controller for vehicle lateral control. A manually tuned fuzzy controller was 

implemented on a full scale vehicle which consisted of three modules namely: 

feedback, preview, and gain scheduling. Kodagoda et al. (2002) designed a fuzzy 

controller from the perspective of variable structure systems theory. Table 2-1 shows 

lateral controllers in the literature with different techniques for different lateral 

reference system. 

 

In addition to lateral controller design under normal road conditions, vehicle 

control has also been considered in the research of autonomous vehicle control under 

faulty scenarios. Lu (2005) proposed a laser scanning vehicle following scheme to 

handle the vehicle lateral control problem when there is a fault on sensors. Huang and 

Tomizuka (2005) also proposed a controller with linear time varying (LTV) design 

under the fault of rear sensor.  
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Controller type Reference system Reference 

Full state feedback 
controller 

Look ahead 
(FSS) 

Fenton and Selim (1988) 

PID Lookdown 
(Magnetic Markers) 

Hessberg et al. (1991) 

Fuzzy controller Lookdown + feedforward 
(Digital Map) 

Hessburg and Tomizuka 
(1991, 1993 and 1994) 

Robust nonlinear 
controller 

Lookdown 
(Magnetic Markers) 

Guldern (1999) 

Linear controller GPS Kato et al. (2002) 
Fuzzy controller  Kodagoda et al. (2002) 
Nonlinear 
controller 

Lookdown + 
GPS for feedforward 

Hemandez and Kuo (2003) 

Table 2-1: Lateral controller in literatures with different reference systems. 

 

2.3.1. Lane changing / obstacle avoidance 

Vehicles in the AHS capable of automatic lane changing enhance the flexibility 

in vehicle navigation, traffic coordination and obstacle avoidance. Automatic lane 

change can be performed either with or without infrastructure guidance (Tan et al., 

1998). For the infrastructure guided lane change, additional lateral reference markers 

are installed to connect two adjacent lanes. 

Lane change maneuver without infrastructure support requires the vehicle to leave 

the reference markers, to cross over into the target lane using dead-reckoning, and 

resume tracking upon reaching the reference line in the target lane. The crossover 

trajectory is usually defined as an S-curve with smooth curvature transitions to avoid 

lateral jerks. 
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The requirement of additional markers installation in infrastructure guided lane 

change restricts the lane change locations which degrade the flexibility in vehicle 

coordination. Therefore lane change without infrastructure guidance is preferred. The 

problem of lane change without infrastructure guidance includes the determination of 

safety gap to initiate lane change, reference signal establishment, and controller 

design during the dead-reckoning period.  

 

Nelson (1989) shows the use of 5th order polynomial as the continuous steering 

function for lane changing. The polynomial trajectory is computational simple, closed 

form expression that provides continuous curvature to connect the transition between 

two adjacent lanes. Hatipoglu et al. (2003) uses virtual yaw rate reference and 

switching controller to generate steering command so that accomplish a smooth lane 

change for the use in AHS. Shamir (2004) design the optimal trajectory for overtaking 

slower moving vehicle. 

 

Julaet et al. (2000) present the determination of minimum longitudinal spacing 

that vehicle should initiate lane change to avoid any types of collision in lane change 

maneuver. Fu et al. (2004) present a GA tuned Fuzzy controller for tracking virtual 

path during lane change. Godbole et al. (1998) design a distributed control with 

communication to coordinate the motion of vehicles to ensure safety and efficiency 

during lane change.  

 

In Chapter 7, a novel lane change algorithm with virtual curvature is proposed. 

The suggested algorithm use the inherit property of vehicle lateral model (the bicycle 

model) to assist lane change. The lane change scheme uses unified lateral controller 

approach which a single lateral controller is used for both lane keeping and lane 
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changing. Experimental study on scale autonomous vehicle is conducted to verify the 

performance of the lane change scheme. In additional to the study on lane changing, 

lane change abortion is also considered. The analysis on lane change abortion states 

the region of abortion point that ensures no collision occurs. 

2.4. Longitudinal Control 

Longitudinal control is the basis for different automated car initiatives like car 

platooning, Adaptive Cruise Control (ACC) and forward collision warning and 

avoidance systems. Vehicle longitudinal control governs the vehicle speed and 

inter-vehicle spacing. The performance of longitudinal controller contributes to the 

efficiency of the highway capacity and safety. Platooning and ACC are vehicle 

following modes dealing with some similar issues. In car platoon, the goal is to 

maintain close inter-vehicle spacing to increase the highway capacity. However, the 

main objective of the ACC is to maintain a safe distance to relieve the driver from 

spacing adjustment. The lower lever controller of both vehicle following modes are 

very similar, the differences in control design philosophy are reflected more in the 

higher level controller (Vahidi and Eskandarian, 2003). 

 

In dedicated lane concept of AHS, vehicles operate in platoon. Vehicles are 

supposed to follow the lead vehicle which is equipped with most of the control 

algorithms. Raza and Ioannou (1996, 1997) presented a well structured supervisory 

control design for different modes of operation. Platoon string stability is the key 

issue in the platooning research. Swaroop et al. (1994, 1998 and 1999) showed that 

the determination of vehicle acceleration in a platoon to ensure string stability such 

that the inter-vehicle spacing error does not grow toward to the end of the platoon. To 

determine vehicle acceleration, Shladover (1995) and Swaroop et al. (1994) also 
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demonstrated that the inter-vehicle communication was necessary for guaranteed 

string stability of a platoon. In addition to inter-vehicle communication, the use of 

rear-end sensors was also discussed in Zhang et al. (1999). 

 

In the mixed traffic concept of AHS, vehicles operated as intelligent agents. The 

objectives of the longitudinal controller are safety and comfort to the passengers and 

the drivers of manual driven vehicles which share the traffic. The ACC emphasis has 

been on the improving safety and passenger comfort rather than increasing the road 

capacity. Gerdes and Hedrick (1997) applied a sliding mode control for vehicle speed 

and spacing adjustment. Lu et al. (2001) used optimal dynamic back-stepping control 

in deriving the desired acceleration. Liang and Peng (1998 and 1999) implemented an 

optimal control design to balance between various requirements in a following 

maneuver. Dai et al. (2005) used a fuzzy longitudinal controller with reinforcement 

learning for tuning fuzzy parameter to achieve vehicle longitudinal control. 

 

Naranjo et al. (2006) reported on adaptive cruise control (ACC) with “Stop & 

Go” maneuvers. The controller adapts to a user-preset speed and reduces speed to 

keep a safe distance from the vehicle ahead in the same lane of the road. The extreme 

case is the stop and go operation in which the lead car stops and the vehicle at the rear 

must also do so.  

 

Both platooning and ACC adjust the inter-vehicle spacing according to the 

desired space between the vehicles. The determination of the safe distance following 

is a matter of debate but most researchers adopt the standard distance suggested by 

road and safety authorities for manually driven cars. There are three basic 

classifications: constant spacing, constant time headway, and constant safety factor 
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(Shladover, 1995). The constant spacing systems are most suitable for using at very 

short spacing therefore it is adopted in the car platooning approach. The constant time 

headway vehicle following system defines the following distance by the controlled 

vehicle speed and desired time constant. In this design, the spacing varies 

proportionally with the speed of the controlled vehicle. The design mimics the human 

driver distance keeping algorithm. The constant safety factor systems may use any of 

several safety criteria, but typically they maintain spacing proportional to V2 

(Shladover, 1995). 

 

The longitudinal control adopted in this thesis is a basic cruise controller which 

adjusts the vehicle speed according to the desired speed. The cruise controller acted as 

a lower level controller so that the longitudinal controller was decomposed into 

different levels for future development. For application of experimental studies in this 

thesis, a PID controller is implemented and tuned manually. 

2.5. Soft Computing Methodologies 

Computation methods that emulate human decision making and problem solving 

processes are collectively referred to as soft computing techniques (Aminzadeh, 1994). 

Fuzzy logic, neural network, probabilistic reasoning, expert systems, and genetic 

algorithms are main constituents of soft computing methodologies. 

 

In this thesis, fuzzy logic (FL), neural network (NN) and genetic algorithms 

(GA) are employed in the deployment of control and decision making algorithms.  

 

In this section, the focus is on the basic structure of hybrid soft computing 
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algorithms. In Section 2.4.1, the author discusses the architecture of GA for fuzzy rule 

optimization and related publications on FL/GA integration for vehicle control. 

Section 2.4.2 describes the use of GA in NN weight training. 

2.5.1. Fuzzy systems 

Classical control design solves a problem mathematically, however complex tasks 

are often difficult to be formulated completely in terms of mathematical functions or 

the mathematical functions are too complex to be solved efficiently with modest 

computing power. As the world becomes more complex, the ability to incorporate 

information becomes more important and critical to controller design (Zadeh 1973). 

Fuzzy systems (FS) capture imprecise human knowledge into computer with 

linguistic IF-THEN rules of FS. The knowledge capturing feature of FS helps the 

information incorporation in controller design. FS are also able to represent some 

complex nonlinear systems with simple structure instead of complex mathematical 

models. Effectively FS provides a systematic mechanism for transforming knowledge 

base into non-linear mapping.  

 

A typical FS is generally divided into 3 independent units as shown in Figure 2.2. 

These modules are known as Fuzzification unit, inference mechanism, and 

Defuzzification unit. A fuzzy system is a nonlinear mapping between its inputs and 

outputs. Since the nonlinear mapping characteristic is described linguistically in the 

rule-base of the inference mechanism, the measured numerical data are converted into 

linguistic fuzzy set by the fuzzification process. 
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Figure 2-2: Typical fuzzy system architecture. 

 

There are several typical types of fuzzy rule-base such as Mamdani, TSK, and 

Fuzzy base functions (FBF) and the major difference are in the consequent of the 

fuzzy rule.  Mamdani fuzzy systems (Mamdani 1974): The consequent of fuzzy rules 

are fuzzy linguistic variable therefore the output is restricted to the defined linguistic 

variables. TSK fuzzy system (Takagi and Sugeno, 1985): The consequent is 

represented by a function of the input variables. Fuzzy base functions (FBF): The 

system is essentially the same as Mamdani except that the output consequents are not 

restricted to the output linguistic variables and is changed to real number. 

 

The detailed mathematical manipulation of fuzzy systems is not included in this 

Chapter. Those readers insterested in the details and definitions may refer to Passino 

and Yurkovich (1998).  

 

Fuzzy controllers have been implemented in different areas for many years. In a 

recent literature, Sonbol and Fadali (2006) introduce the concept of fuzzy positive 

definite and fuzzy negative definite functions for the stability analysis of discrete TSK 

Types fuzzy systems. The approach uses the cascading of a system and a fuzzy 

Lyapunov function candidate to derive new conditions for stability and asymptotic 
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stability for discrete fuzzy systems. Lam and Leung (2007) present a fuzzy controller 

consists of two groups of fuzzy rules namely stability and performance rules which 

offers a property that tuning the performance rules will not alter the system stability. 

Aceves-Lopez and Aguilar-Martin, J. (2006) propose the natural logic controller 

(NLC) that it comes through a very important simplification of the Mamdani's fuzzy 

controller (MFC) allowing easy-design for single-input-single-output (SISO) 

regulation problems. The NLC approach minimizes fuzzy partition (only two fuzzy 

subsets per variable) and it uses the minimal fuzzy rule base (only two rules). Chen 

and Saif (2005) design a new fuzzy system containing a dynamic rule base. The 

dynamic nature of the rule base has a fixed number of rules and allows the fuzzy sets 

to dynamically change or move with the inputs.  

2.5.2. Genetic algorithms 

Genetic algorithms (GAs) are search algorithms based on the mechanism of 

natural selection and genetic reproduction. They use a simulated version of survival of 

the fittest in improving the features of potential solutions. GAs guide the selection of 

chromosomes such that chromosome with the best evaluations reproduce more often 

than those with bad evaluation. 

 

Since GAs are derivative free optimization, they can solve non-linear, 

discontinuous, multi-objective optimization problems that are difficult using classical 

optimization techniques. These algorithms, using simple encoding and reproduction 

mechanisms, are able to solve some challenging problems in systems and control. 

GAs have extensively been studied and applied to non-linear, discontinuous, 

multi-objective optimisation problems (Teng and Wang (2004), Wang et. al. (2004), 

Herrera and Verdegay (1996), Sharma and Irwin (2003) and Chan et. al. (2003)).  
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The GAs manipulation process uses genetic operators to produce a new 

population of individuals (offspring) by manipulation the chromosome (which code 

the property of the solution candidate). The algorithms start working by evaluating 

many scenarios automatically in the evaluation module until finding an optimal 

answer. The multiple objectives are solved by formulating those objectives in 

proportion to the fitness function. 

 

The coding methods, genetic operators, fitness evaluations and selection 

techniques form the skeleton of GAs. Coding means the formulation of parameters to 

be optimized into chromosome. Genetic operators are typically crossover and 

mutation which perform genes recombination between selected chromosomes and 

introduce variation into chromosomes respectively. 

 

The fitness evaluation tests the performance of the solution candidate 

(chromosome) and grades it by an index function for performance comparison. The 

index function is named as fitness function. The optimization objective is embedded 

in the fitness function so that the index can reflect the achievement of the 

chromosome. The multiple objectives are solved by formulating those objectives in 

proportion to the fitness function. 

 

The selections include parent selection and generation selection. Roulette 

wheel selection will be used to choose parent chromosomes where the corresponding 

angle of the wheel sector is proportional the chromosome fitness. For the generation 

selection, the best members of each generation are copied into succeeding generation. 
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The following steps summarize the procedure of GA optimization: 

 

1. Initializes chromosomes randomly to form an initial population 

2. Tests the performance of the chromosome in simulation. Then, calculate the 

fitness value and assign chromosome fitness 

3. Select parent chromosomes from the population to reproduce children 

chromosomes. The selection is based on Roulette wheel selection. 

4. Reproduce children chromosomes by either crossover or mutation.  

5. Tests the performance of the children chromosome in simulation. Then, calculate 

the fitness value and assign chromosome fitness 

6. Select the best fit chromosomes from children and parent chromosome to form 

new generation. 

7. Repeat Steps 2 to 6 until either maximum number of generations is reached or 

desired fitness value is evaluated. 

2.5.3. Hybrid Fuzzy system and Genetic algorithms 

Many researchers have suggested that the fuzzy systems (FS) and the genetic 

algorithm (GA) complement each other and have advocated their integration (Zadeh 

(1979), Goldberg (1989), Davis (1991), Karr (1991), Casillas et al. (2005), and Juang 

(2005)). Different types of GA optimized fuzzy controllers are proposed for vehicle 

lateral controller (Fu et al. (2004a and 2004b) and Cai et al. (2003)). GA can be used 

in various ways to optimise a fuzzy system. It can be used to tune the membership 

functions (Teng and Wang (2004)), scaling factors (Casillas et al. (2005)), rule-base 

(Chan et al. (2000) and Wang et al. (2004)) or all design parameters simultaneously. 

The reader may refer to an edited volume by Herrera and Verdegay (1996) for a 

comprehensive collection of the papers on integration of fuzzy systems and GA. 
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Wang et al. (2004) proposed a GA-based output-feedback direct adaptive 

fuzzy-neural controller for uncertain nonlinear dynamical systems. They established 

weighting vector of the controller by the Lyapunov design approach and tuned the 

weighting factors via GA. Sharma and Irwin (2003) proposed a fuzzy chromosome 

encoding method to represent real number parameters in a genetic algorithm context. 

The fuzzy coding provided the value of parameters on the basis of the optimum 

number of selected fuzzy sets and their effectiveness in terms of degree of 

membership.  

 

Chang et al. (2003) proposed a discrete-time Takagi-Sugeno (TS) 

fuzzy-model-based controller using GA search space. Juang (2005) proposed a 

combination of online clustering and Q-value based GA learning scheme for fuzzy 

system design with reinforcements. The precondition part of a fuzzy system was 

constructed online by an aligned clustering-based approach whereas the consequent 

part was designed by a Q-value based genetic reinforcement learning.  

 

Teng and Wang (2004) proposed a GA-based algorithm to construct a fuzzy 

system for approximating an unknown system determined automatically number of 

membership functions and parameters of membership functions. The algorithm also 

tried to discard the dummy input variables.  

 

Casillas et. al. (2005) introduced a genetic tuning process to use linguistic 

hedges to slightly modify the symbolic representations to keep good interpretability of 

the fuzzy system. They also proposed refining the scaling factors to modify the 

membership functions of a linguistic fuzzy model. 
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 Chan and Rad (2000) proposed the use of symmetric rule-base and mirror 

action for chromosomes to improve convergence by exponentially reducing the search 

space. Chan et al. (2003) also proposed the use of supervisory control to guarantee 

stability and improve convergence of the integrated FS/GA. 

 

This section presents the integration of fuzzy system and genetic algorithm 

(FS/GA). The rule-table of the fuzzy system will be optimized by GA. The fuzzy rules 

are encoded into chromosome for genetic evolution. Consider Mamdani type fuzzy 

system, the antecedents are represented by linguistic variables. The following shows 

the typical procedure to code a Mamdani type fuzzy rules-table into chromosome by 

integer coding. Consider a two-input/one-output fuzzy system and assume that each 

has seven fuzzy sub-sets. The linguistic variables of output, namely NB, NM, NS, ZE, 

PS, PM, PB are coded as 1, 2,…, 7 respectively. Figure 2-3 shows a chromosome with 

length of 49; i.e. the fuzzy system has 49 rules. The first gene of the chromosome 

codes the first rule as: 

Rule 1: IF x1 is NB and x2 is PB THEN y is NB. 

where the first gene is set to “1” representing “NB” which is the consequent part of 

Rule 1.  
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Rule  1: If is and is  then is x  PB  x  NB  y  NB (NS:1)

Rule 2: If is and is  then is x  PB  x  NB  y  NS (NS:3)

Rule 49: If is and is  then is x  PB  x  NB  y  PB (PB:7)

Rule 48: If is and is  then is x  PB  x  NB  y  PB (PS:5)

NB 
NM
NS
ZE
PS
PM
PB 

: 1
: 2
: 3
: 4
: 5
: 6
: 7

Integer coding for the rule table

 

Figure 2-3 : Integer coding of the general chromosomes for fuzzy systems. 

 

  Figure 2-4 shows a traditional architecture of the FS/GA. There are three 

main modules namely evaluation, selection and reproduction. Given an optimisation 

problem, GA encodes the fuzzy parameters into chromosomes, each of which presents 

a possible solution to the problem. GA tests the initial rule-base for the given problem. 

It calculates the fitness values of the Fuzzy System. Next, selection, reproduction, 

evaluation modules are used to generate the next population.  

 

The Evaluation Module contains an evaluation function that measures the 

fitness of chromosomes of the problem to be solved. The Selection Module selects 

individuals for the next generation.  

 

The Reproduction Module contains techniques for creating new offspring. GA 

use the three modules (selection, reproduction and evaluation) based on the fitness 

function for an iterative evolution. The reproduction mechanism, together with 

crossover and mutation (Goldberg (1989)), cause the best schema (segment of good 



 

 2-24

features) to proliferate in the population, i.e. to produce high-quality schema in a 

single chromosome. Repeated selection and crossover cause the continuous evolution 

of the gene pool and the generation of individuals that survive better in a competitive 

environment, emulating the ‘survival of the fittest’ mechanism in nature.  

 

Finally GA decodes the solution to the problem from the best chromosome. 

The algorithms could either be terminated after a fixed number of generation or after a 

chromosome with a certain high fitness value is allocated.  

 

The integration of FS/GA automates the process of FS parameters 

determination. In this thesis, Mamdani type rule tables of fuzzy controllers for vehicle 

lateral control and process control are presented in Chapter 5. The GA optimizes the 

rule table based on the difference between the desired output and process output. 

Therefore the rule table evolutes towards the desired system performance. 

 
Figure 2-4: Optimisation of fuzzy logic controller by genetic algorithms. 

 

GA optimization is a time consuming process due to the evaluation of the entire 
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possible solution candidate in the population. The enhancement in convergence rate 

would also benefit to the reduction in optimization time. In Chapter 5 a novel fire 

rules chromosome (FRC) encoding scheme is proposed to enhance the convergence 

rate. The suggested FRC scheme would alter the chromosome length dynamically 

throughout the optimization process. 

2.5.4. Neural Network 

Multilayer neural network controllers can be used to control nonlinear systems. 

This is due to the nonlinear mapping characteristic of these powerful processing 

networks. Nevertheless, neural network structure and number of neurons is 

application dependent and there is no generally accepted theory or methodology for 

the design of neural network Tsoukalas and Uhrig (1997). 

 

Increasing the number of neurons and layers would enhance the network 

nonlinear mapping capability. However, excessive numbers of neurons increase the 

network complexity and reduce the effectiveness of network optimization. The 

objective of this chapter is introducing a simplified neural network structure for 

known physical structure systems. 

 

The design of neural network structure and number of neurons is application 

dependent and there is no generally accepted theory or methodology for the design of 

neural network Tsoukalas and Uhrig (1997). In general neural network structure can 

be designed through a trial and error procedure. Increasing the number of neurons and 

layers would enhance the network nonlinear mapping capability. However, excessive 

numbers of neurons increase the network complexity and reduce the effectiveness of 

network optimization.  
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A multilayer neural network refers to a system that consists of numbers of 

highly interconnected neurons. These neurons are organized into a sequence of layers 

with full or random connection between layers. Each of the connection between 

neurons has an adjustable weight, the connection weight. For a typical fully connected 

multilayer neural network, the increase in number of neuron and layer would 

exponentially increase the number of connection weight.  

 

For a fully connected neural network with n layers, the number of connection 

weights can be calculated as follow. Assuming there are i input buffers, j neurons in 

each hidden layer and k outputs in network. The total number of connection weight 

(W) is calculated by equation (2.1). If the network parameters are follow n = 3, i = 4, j 

= 2, and k = 1 then the total number of connection weights (W) is 10.  

 

( )( )kjnijW +−+= 3  (2.1) 

Kehtarnavaz et al. (1998) implement a neural network module for autonomous 

vehicle following. The module collects rang and heading angle data of the lead 

vehicle to perform following function. The speed and steering controller are 

implemented by 2 independent networks and the numbers of hidden layer are 21 and 

12 layers respectively. 

 

Tahirovic et al. (2005) use neural network for vehicle longitudinal guidance. The 

neural network learns from human driver driving style and it was tested in an Audi 

test vehicle. Zhenhai and Bo (2005) present the use of neural network to tune an 

adaptive PID controller for vehicle lane keeping. The network tunes PID parameters 

based on pre-given target trajectory. Kumarawadu and Lee (2006) proposed adaptive 
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Radial Basis Function (RBF) networks to counteract uncertainly for both longitudinal 

and lateral control. The lateral and longitudinal controllers are conventional PD type 

controller with constant gain setting. The RBF network outputs are fused with the PD 

controllers output for uncertainly compensation. 

2.5.5. Hybrid Neural Network and Genetic algorithms 

In addition to network establishment by trial and error method, automatic 

generation of neural network structure is an active topic in neural network research. 

Genetic Algorithms (GA) is an effective search method for optimization and it is 

widely applied in network structure determination. In the literature, the use of GA for 

neural network optimization has been explored by many researchers. Yen and Lu 

(2000) present hierarchical GA for evolving both network topology and parameters. 

Tsai, Chou, and Liu (2006) tuning both neural network structure and parameters by 

modified GA. 

 

Once the network structure is fixed, the remaining task is the training process. 

Error backpropagation is one of the supervised learning techniques for neural network 

training. It was introduced by Werbos (1974) and further enhanced by Rumelhart, 

Hinton, and Williams (1986). The backpropagation training method updates the 

connection weights based on the gradient of the network error with respect to the 

network’s modifiable weights. The connection weight update rules base on simple 

gradient descent for error minimization.  

 

The application of GA in neural network not only applies in the network 

structure determination but also in the network parameter optimization. Whitley and 

Hanson (1989) presented the use of GA in training network parameter of known 
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structure. Miller et al. (1989) have used the genetic algorithm to evolve the optimal 

connected matrix to form a neural network. Whitehead and Choate (1996) use GA to 

find the center and widths of a radial basis function network for time series prediction.   

 

Let us consider the computation burden in network training. with GA. It encodes 

all the neural network connection weights into chromosome for network optimization. 

For the error backpropagation training method, the error gradient is calculated with 

respect to all the connection weights involved in the network. Thus the complexity of 

the training process and convergence rate of the network optimization techniques 

mentioned above are heavy depends on the number of connection weight.  

 

In Chapter 4, a fused neural network controller is proposed which based on task 

decomposition. The proposed fused neural network controller structure decomposes 

the task of vehicle lateral control into displacement and angular adjustment. Therefore 

the network structure is simplified into 2 independent networks so that the number of 

connection weights is reduced in compare with fully connected neural network as 

shown in (2.1).  

 

To adopt GA for connection weight optimization of neural network, connection 

weights are encoded into chromosome with real value. Then the GA optimization 

process is similar to FS/GA discussed in Section 2.5.3. The main different is the 

encoding parameters are network connection weights instead of fuzzy rule-table. 

 

2.6. Conclusion 

In this Chapter, some background information on the AHS, literature survey on 
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the autonomous vehicle control, including lateral control, longitudinal control, and 

soft computing methodologies are presented. The integration methodologies of FS/GA 

and NN/GA have been discussed. This chapter provides underlying materials on 

problems to be tackled in the later chapters.  

 

The review on the AHS background information provides the foundation on the 

vehicle control system design. The constraint and requirements are dissimilar in 

different automation concepts (i.e. the dedicated lane and mixed traffic) and lateral 

reference system (i.e. look-ahead and look-down reference). The understanding on the 

overall system constraint facilitates system design and towards realistic 

implementation. 

 

The literature on vehicle control and soft computing methodologies contain host 

of control techniques to tackle vehicle control problems on both aspects of lateral and 

longitudinal control. The techniques implemented are advance but complicated in 

controller development. Furthermore the traditional integration method does not 

consider the optimization rate. The proposed simplified neural network and encoding 

scheme for FS/GA convergence rate enhancement offer simple but efficient technique 

in contrast to the technique on the literature. 

 

In the next Chapter, the construction of the scaled prototype semi-autonomous vehicle 

and the mathematical vehicle lateral model will be presented.
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Chapter 3. Prototype of a Semi-autonomous Vehicle 

3.1. Introduction 

The early studies on scaled vehicles were associated to wind tunnels 

experiments. Later the use of scaled vehicles was extended to automobiles in the area 

of crash reconstruction, road tire interaction, suspension analysis and dynamics, and 

roll dynamics. In the past decade, scaled vehicles have been used for controller 

implementation and verification. Brennan (1999) designed a scaled vehicle system 

with a treadmill as roadway known as Illinois Roadway Simulator (IRS) for vehicle 

controller design. In IRS, the vehicle maneuvers on a roadway (treadmill surface) 

which is moving under the vehicle so that simulate a vehicle traveling on a highway. 

For the position sensing system and control signal delivery, IRS calculates vehicle 

position based on mechanically connected potentiometers and delivers control signal 

from desktop computer through transmitters to the vehicle. 

 

Brennan (1999) states three reasons to use scaled prototype autonomous vehicle 

in stead of the use of full size vehicle. First, the capital for equipping a full size 

vehicle and conducting research on it require huge amount of grants. However, 

conducting research on scaled vehicle can greatly reduce the cost in both construction 

and maintenance on the prototype vehicle as well as the infrastructure development. 

Second, the development time on scaled vehicle is much less than a full size vehicle. 

The time required to modify a scaled vehicle is insignificant compared to a full size 

vehicle. Third, scaled vehicle testing platform offers safer testing environment than 

full size vehicle for controller testing. In scaled testing, there are no drivers or 
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pedestrians are put at risk during testing of vehicle controllers. 

 

A scaled semi-autonomous prototype was constructed as a test bed for 

experimental studies of different controllers designed in the course of this project. The 

use of scaled vehicle as a test bed can be traced back to 1960’s. The autonomous 

prototype vehicle presented in this chapter is equipped with onboard sensors, 

actuators, interface and processing units. The vehicle dynamics parameters (lateral 

position, speed, and steering angle) are measured by onboard sensors. The measured 

signal is sampled by the onboard computer for control signal generation. The 

hardware construction and configuration will also be presented in this chapter. 

 

Computer control system is an essential component in automatic vehicle control. 

The flow of computer program should be systematic so that performs sampling and 

processing of sensor information in real time. The onboard computer of the prototype 

vehicle samples sensor information and generates control signal within the timer 

interrupt service routine. The timer interrupt service routine ensures the data sampling 

in fixed period of time so that the vehicle system is feasible for real time application. 

 

Understanding the theoretical lateral model of the prototype autonomous vehicle 

is beneficial to controller development and design. To identify the vehicle lateral 

model, the structure of bicycle model is selected for system identification. The 

identified bicycle model is presented in this chapter and it is extensively used in the 

studies presented in the thesis. 

 

This chapter is organized as follow: Section 3.2 describes the hardware 

configuration and the interfacing methods for data sampling and signal generation. 
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Section 3.2 shows the architecture of the software program. Section 3.3 discusses the 

lateral model of the prototype autonomous vehicle. Finally Section 3.4 concludes this 

chapter. 

 

3.2. Hardware design 

This Section presents the detailed information of hardware design including 

vehicle construction, sensors, actuator, computer interface and the circuit design. 

Figure 3-1 shows the schematic of hardware configuration. The hardware 

configuration consists of 3 parts: sensors, industrial PC and actuators. Sensors collect 

vehicle dynamics information (speed, lateral and front distance). The industrial 

computer acquires the sensor information through Digital I/O card or A/D card. The 

implemented control algorithms process the data collected and generate control signal 

to the actuators for lateral and longitudinal control. 

 

 

Figure 3-1: Schematic of hardware configuration. 

 

The following subsections show the detail specification of the hardware being 
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selected for the prototype vehicle. The associated microcontroller programs for 

driving sensors will also be discussed in the following sections. 

 

3.2.1. Vehicle Design 

The prototype vehicle (Figure 3-2) is a modified radio controlled (RC) model car 

with size of 1/10th of a full size vehicle and the vehicle is front wheel steering and 

driving. The existing hardware (chassis, steering mechanism, gear box, and wheels) of 

the RC car is retained as the mechanical building blocks of the vehicle. A platform on 

the top of the vehicle chassis was built for electronic circuitries, sensors and control 

units installation. Figure 3-3 illustrates the allocation of the hardware and infrared 

sensors. The shaded blocks are infrared sensors (GP2D12) for distance measurement. 

There are 5 infrared sensors mounted on the vehicle which located at the front and 

both sides of the vehicle. Sensors located at the side measure lateral displacement 

from the reference wall. The lateral distance measured near the vehicle front and tail 

are named as fy  and ry  respectively. For the sensor located at the front of the 

vehicle measures longitudinal distance from the vehicle to obstacle and the measured 

distance is named as dy . 

Ultrasonic
Sensor

Industrial
PC

Infrared
Sensor

 

Figure 3-2: Prototype semi-autonomous vehicle. 
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Figure 3-3: Infrared sensors allocation. 

3.2.2. Sensors 

3.2.2.1. Infrared measurement sensor 

The infrared sensors (Sharp GP2D12) were installed on both side of the vehicle 

for measuring vehicle lateral position from the reference path. The Sharp GP2D12 

infrared sensor (Figure 3-4) takes continuous measurement after power on and reports 

distance as analog voltage. The range of distance measurement is 10cm to 80cm.  

 

However, the mapping of analog voltage to the distance being measured is 

nonlinear. Figure 3-5 shows the typical nonlinear output of GP2D12 that provided by 

the manufacturer. The solid and dashed lines shown in the figure are the sensor 

measurement output voltage on objects with reflectivity 90% and 18% respectively. 

Since both solid and dashed lines are close to each other, it shows that the sensor 

output is robust to object reflectivity. 

 

To convert the sensor output voltage to distance measured ( dy , fy , and ry ), a 
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fifth order polynomial was used. The coefficients of the polynomial were obtained 

from experiment data via least square method. 

 

Figure 3-4: Sharp GP2D12 infrared 
sensor. 

 

Figure 3-5: Typical nonlinear output of 
GP2D12. 

 

3.1.1.1. Obstacle detector 

The obstacle detector (Sharp GP2D05) detects the object close to vehicle 

surrounding. The GP2D05 (Figure 3-6) output is either logic 1 or 0 to indicate the 

present or absent of obstacle respectively. The range threshold can be adjusted from 

10cm to 80cm by a variable resistor on the back of the detector. To initiate 

measurement, the detector input should bring to low and maintain at low for 56ms. 

When the measurement finished the input should float high for at least 1ms to reset 

the detector.  

 

The detectors are installed at the corners of the vehicle for detecting obstacles or 

vehicle at neighborhood lanes. 
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Figure 3-6: Sharp GP2D05 obstacle detector. 

3.1.1.2. Ultrasonic Sensor 

The aforementioned infrared sensors have measurement range 10cm-80cm but it 

is not sufficient for longitudinal distance measurement. Therefore ultrasonic sensor 

was installed at the front end of the vehicle for longitudinal distance measurement. 

The ultrasonic sensor is Polaroid 6500 series ranging module (Figure 3-7). The 

module effectively is a sonar driver which transmitting ultrasonic pulses on request 

(initiation signal). After initiation of transmitting pulses, the modules will generate a 

feedback signal when an echo is detected.  

 

The distance measurement is achieved by counting the time different between 

the initiation signal and the echo feedback. A microcontroller program is designed to 

taking measurement automatically. 
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Figure 3-7: Polaroid 6500 series ranging module 

The sensor has two basic modes of operation: single-echo and multiple-echo 

modes. Single-echo mode operation reports the first echo feedback after the initiation 

of measurement. The pins INT and ECHO on the sonar driver are used to initiate 

measurement and output echo feedback respectively. The measurement is initiated by 

pulling the INT pin to high and maintain at high until the echo feedback. The time 

between the INT going high and the ECHO output going high was proportional to the 

distance being measured.  

 

The micro-controller AT89C2051 was used to handle the measurement process 

of the ultrasonic sensor. Figure 3-8 shows the micro-controller flow chart for the 

ultrasonic sensor. The timer is initialized by setting overflow at 18ms which is the 

time required to measure 2m. The micro-controller starts timer when measurement is 

initiated. The timer stops only when either echo received or Timer overflow. Finally, 

the micro-controller reports the time counted in the timer. The computer reads the 

output port of the micro-controller and calculates the distance measured by the sonar 

sensor. 
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Figure 3-8: Micro-controller program flow chart for ultrasonic sensor. 

3.1.1.3. Speed sensor 

To measure the speed of the vehicle, a rotary encoder was installed at the rear 

draft of the prototype vehicle. The encoder converts rotary movement to electrical 

pulses. The vehicle speed is measured by counting the time required to receive a fixed 

number of pulses generated from the encoder. 

 

A micro-controller AT89c52 was used to receiving the signal from encoder. The 

AT89c52 provides 3 timers/counters which suitable for the application of pulses 

counting, time counting, and serial communication.  
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Figure 3-9: Micro-controller program flow chart for speed sensor. 

 

The 3 Timers of AT89c52 are named as Timer 0, Timer 1, and Timer 2. In this 

application, Timer 0, Timer 1, and Timer 2 serve as a counter to record the number of 

pulses from encoder output, a rate generator for serial communication, and a timer for 

time counting respectively. Figure 3-9 shows the micro-controller program flow chart 

for the speed sensor. The two-dashed line blocks separate the normal main program 

flow and the timer 0 interrupt service routine (ISR).  

 

The main program starts with setting the operating mode of the three timers. 

Then the Timer 0 and Timer 2 are initialized by setting overflow at 80 pulses and 

50ms count respectively. If the time counted in Timer 2 is greater than 50ms, the 

number of pulses counted in timer 0 will be send to serial port. Therefore, it report the 

number of pulses counted within 50ms. When the data is sent to serial port, both 
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timers (Timers 0 and 2) are reset (initialized). Therefore the functional blocks 

initialization, time comparison, and sending data form the loop of main program. 

 

Timer 0 ISR is interrupt driven. The interrupt is initiated when the Timer 0 

overflow. When the ISR is activated, the time counted in timer 2 will be send to serial 

port. Thus it reports the time required to count 80 pulses. Then both timers (Timer 0 

and Timer 2) are reset after data sent. 

 

The program architecture ensures that the micro-controller reports speed 

information at every 50ms under slow vehicle speed. At high speed operation, the 

micro-controller reports speed information when maximum number of pulse is 

counted. Finally, the computer converts the data sent from the micro-controller to 

speed. 

3.1.1.4. Initial Calibration on Sensors 

Initial testing and calibration was carried out on the hardware for implementation. 

First, we focused on the sensors, including infrared and speed sensor. As discussed in 

section 3.2.2.1, for infrared sensors, the relationship between the output voltage and 

the actual distance was nonlinear. In order to measure the distance accurately, a large 

number of repeatable experimental data were collected and a fifth-order polynomial 

model was fitted for each infrared sensor. The polynomial coefficients were derived 

via least-squares method and are tabulated in Table 3-1.  
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Sensor 
position 

v5 v4 v3 v2 v1 v0 

Left front -3.977E-13 1.600E-9 -2.545E-6 2.032E-3 -8.500E-1 1.719E+2 

Left rear -4.069E-13 1.642Ee-9 -2.628E-6 2.118E-3 -8.949E-1 1.815E+2 

Right front -3.065E-13 1.267E-9 -2.095E-6 1.759E-3 -7.820E-1 1.684E+2 

Right rear -3.301E-13 1.353E-9 -2.214E-6 1.836E-3 -8.056E-1 1.7079E+2 

Table 3-1: Polynomial coefficients of infrared sensors. 

 

As mentioned in previous section, the encoder was installed on the shaft of the 

rear wheels and hence off-road testing on the complete speed sensor module could not 

be conducted for this front wheel-driving vehicle. A square wave signal of 2k Hz 

frequency (equivalent to 70 cms-1) was generated form a signal generator to replace 

the encoder output to test the accuracy of the micro controller assembly code. 

 

3.1.2. Actuators 

The existing RC car technology was used in both lateral and longitudinal 

actuators. The lateral control actuator is Fubtaba S3001 (Figure 3-10a) servo motor in 

the front wheel steering. The longitudinal control actuator is Apex Plus speed 

controller (Figure 3-10b). The inputs of both actuators of lateral and longitudinal 

control are Pulse-width modulation (PWM) signal with 50Hz as fundamental 

frequency. The generation of the PWM signal will be shown in the Section 3.1.1.1.  
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(a) 

 

(b) 

Figure 3-10: (a) Fubtaba S3001 servo motor. (b) Apex Plus speed controller. 

3.1.3. Industrial Computer 

The computing unit used in this prototype vehicle is a compact industrial 

computer. The computer is ADVANTECH PCM-9370 with on-board embedded 

Transmeta Crusoe TM 5400-500 Processor (Pentium III level) and 64MB RAM. This 

Industrial computer is selected for prototype vehicle because the size is compact 

(145mm x 102mm) and the power supply requirement is single +5V, which is feasible 

to install on this prototype vehicle.  

 

The use of industrial computer as the computing unit offers the advantage of 

easy interfacing with the existing standard data acquisition modules such as analog to 

digital conversion card. However, the main disadvantage of using industrial computer 

as on board computing unit in scaled vehicle is high power consumption.  

 

3.1.4. Digital I/O Cards 

3.1.4.1. Analog to Digital Conversion card 

The Analog to Digital Conversion (A/D) Card used is ADVANTECH 
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PCM-3718HG which has 16 single-ended or 8 differential analog inputs and 16 

channels digital input/output (I/O). The A/D conversion resolution is 12 bits. It 

interface with computer through PC/104 slot and the power required by the A/D card 

is also +5V therefore compatible with the industrial computer. 

 

Since the A/D card not only offers analog to digital channels but also digital I/O 

channels, in addition to analog output sensor, digital output sensors are connected to 

the A/D cards. The infrared sensors (GP2D12) output are connected to the A/D 

channels which configured as single-ended inputs for distance measurement. For 

digital output sensors, the microcontroller outputs for ultrasonic measurement and the 

obstacle detectors are connected to the digital I/O ports of the A/D card. 

 

3.1.1.1. Digital Output card with 8254 chips 

The steering servo motor and the hardware speed controller require PWM signal 

with 50Hz fundamental frequency as their control signal. In order to generate the 

PWM signal, 8254 digital output card is used. A single 8254 chips can generate 2 

PWM signals with the same fundamental frequency under specific circuitry and 

program. 

 

The 8254 chip consists of 3 counters and each counter can be programmed in 

different mode of operation. Each counter has 2 inputs and 1 counter output (OUT). 

The 2 inputs are clock signal (CLK) and gate signal (GATE). In general, the counters 
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are working as a programmable timer which will alter the output signal (OUT) when 

desired time is counted. The counting of time is defined by number of CLK pulses 

counted. Different operation modes define the counter OUT behavior with respect to 

the GATE input and the CLK counted. The detail description on the different 

operating modes and functions of input signal can be referred to the manufacturer 

datasheet. 

 

Counter 0

OUT0

Counter 2

OUT2

Counter 1

OUT1

CLK0

GATE0

CLK1

GATE1

CLK2

GATE2

8254

PWM Signal 1

PWM Signal 2

 

Figure 3-11: 8254 wiring. 
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For the application of PWM generation, the input and outputs of the 3 counters 

are connected as shown in Figure 3-11. The CLK are internally connected to the 

system clock and does not shown in the figure therefore the counters share the same 

frequency of clock signal. The output of Counter 0 (OUT0) is connected to gate signal 

input of Counter 1 (GATE1) and 2 (GATE2). The outputs OUT1 and OUT2 are 

served as the PWM signal outputs. 

 

Counter 0 is programmed as a rate generator (Mode 2) to generate pulses with 

50Hz. The detail of Mode 2 operation is not described here, for readers have interest 

please refer to manufacturer datasheet. Since OUT0 is connected to GATE1 and 

GATE2, the GATE of Counter 1 and 2 is effectively triggered by pulses with 50Hz. 

 

For Counter 1 and Counter 2, they are programmed as “hardware retriggerrable 

one shot” (Mode 1) operation. The following briefly describes the mode 1 operation. 

At mode 1 operation, the OUT signal is initially at high and it will reset to low and 

remains at low when GATE is triggered (rising edge). Meanwhile, the GATE also 

triggers the counter to start counting. When desired number of CLK is counted the 

OUT will set to high and thus completes a counting cycle.  
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Figure 3-12: Generation of PWM signal. 

 

Figure 3-12 illustrates the timing diagram of PWM signal generation by 8254 

chips. Although the figure only shows the output of Counter 1, the operation is the 

same in Counter 2. The time of GATE1 being positive triggered is indicated by 

vertical dash lines. Refer to Figure 3-11 OUT0 is connected to GAET1 thus GATE1 

is the signal generated by Counter 0. The OUT1 is reset (low) by the positive trigger 

of GATE1 and set (high) after counting the desired time (td). This output pattern is 

effectively a PWM signal, if the td is less than the period of 50Hz (0.02s). 

 

3.2. Software 

The real-time control experiments were implemented in C code. To sample the 

sensor information and deliver control signal to actuators in a fix time interval, 

onboard timer interrupt service routine (ISR) was used. The onboard timer generated 

interrupt at every 50ms and thus the ISR is initiated every 50ms.  
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When timer interrupt is initiated, the ISR starts with sampling analog data from 

the A/D card and then sampling digital data from the digital input ports. After data 

sampling, the sensor information is passed to control algorithms so that generate 

control commands for lateral and longitudinal control. The control commands are 

converted to control signals and deliver to actuators at the end of the ISR. The above 

describes the general flow of the ISR. In the following paragraphs give descriptions 

on the program flow of control algorithms. 

 

Figure 3-13 describes the flow chart of the control program. After receiving the 

information from the sensors, the control algorithm would be applied. If the vehicle 

was in a emergency situation, such as approaching an obstacle, a stop command 

would be initiated. The longitudinal and speed control is always taking action. If Lane 

changing maneuver is required, the control loop will switch to lane change algorithm. 

The lane keeping control will be activated under normal driving condition. 
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Data Acquisition 

Lateral control
(Lane Keeping)

Longitudinal and 
Speed control

Lane change 
required?

Emergency?

Lane Change 
algorithm

Emergency Stop

Interrupt?

Yes

No

Yes No

Yes

No

 

Figure 3-13: Program flow chat. 

 

3.3. Vehicle Model 

Modelling of the vehicle lateral dynamics is accomplished by fixing a coordinate 

system to the center of gravity of the vehicle. Roll, pitch, bounce and deceleration 

dynamics are neglected to simplify the vehicle dynamics to two degrees of freedom: 

the lateral position and yaw angle. The model is further simplified by assuming that 
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each axle shares the same steering angle and that consequently each wheel produces 

the same wheel angle steering forces. The resulting dynamics model is known as the 

bicycle model, because the dynamics conceptually model a bicycle whose motion is 

constrained to in-plane motion (Brennan and Alleyne, 2001). 

Reference Path 

∆Ψ 

γ 

 

 

Figure 3-14: Classical bicycle model. 
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(3.1) 

The bicycle model is one of the most widely used today for purposes of vehicle 

lateral control. The classical bicycle model description and the associated equation are 

shown in Figure 3-14 and (3.1) respectively. Although the bicycle model is relatively 

simple, it has been verified to be a good approximation for full-size vehicle dynamics 

with small steering angle. The model variables denote: 

V vehicle velocity vector with v = |v| > 0; speed v is assumed measurable, 

 Β side slip angle between vehicle longitudinal axis and velocity vector v at CG, 

 Γ vehicle yaw angle with respect to a fixed inertial coordinate system, 

CGy&&  lateral acceleration at CG, 

Sy&&  lateral acceleration at sensor S,  
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δf front wheel steering angle. 

∆Ψ angular displacement error with the tangent to the reference path, 

 ρref reference road curvature. 

M total vehicle mass, 

Iψ total vehicle inertia about vertical axis at CG, 

lf (lr) distance of front(rear) axle from CG with l = lf +lr, 

ds “look-ahead” distance between sensor location S and CG, 

cf (cr) front(rear) tire cornering stiffness, 

Μ road adhesion as a factor of effective tire cornering stiffness cf
*= µcf  (cr

*= µcr)  

 

Guldner et. al. (1997) analyzed the vehicle system in detail, including time 

domain, frequency domain and eigenvalue domain analysis, and proposed a control 

design direction which was to add a second sensor to measure lateral vehicle 

displacement from the lane reference at tail bumper. Assuming that the two sensors 

are mounted at df for front of and dr for behind of center of gravity (CG) to measure 

the displacement yf and yr of the vehicle from the reference road. The new state space 

model (3.3) can be transformed form (3.1) using the transform matrix P shown in 

(3.2). The Figure 3-15 shows the modified bicycle model. 
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The new state space model is 
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Figure 3-15: Modified bicycle model. 

 

The lateral model of the scaled prototype vehicle presented in this chapter has 

been identified by Cai (2003). The identification is achieved by assuming the vehicle 
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model behavior similar to bicycle model. To collect data for identification, close loop 

approach is selected. The lateral control loop is close by a proportional controller. The 

steering angle and lateral position are recorded with respect to a periodic square wave 

reference input for system identification. 

 

Grey model method was then used to define the lateral model structure which 

reduces to unknown parameters to 8 (a21, a22, a24, a41, a42, a44, b1 and b2). Finally the 

unknown parameters are identified by Prediction Error Method using Matlab System 

identification toolbox.  

Longitudinal 
velocity 
(ms-1) 

State-space model (A) 
State-space 
model (B) 

Poles Zeros 

0 1 0 0 

251.64 -73.24 -251.64 44.96 

-9.67 
±13.13i 

0 0 0 1 

1.3 

239.56 -2.89 -239.56 -24.04 

0 
63.77 
0 
-6.67 

0.00 
0.00 
-26.57 
-70.72 

20.88 
-121.80 

0 1 0 0 

251.64 -96.35 -251.64 54.85 

-14.93    
±6.56i 

0 0 0 1 

1.1 

239.56 -3.92 -239.56 -35.59 

0 
63.77 
0 
-6.67 

0.00 
0.00 
-39.13 
-92.81 

16.87 
-150.69 

0 1 0 0 

251.64 -92.97 -251.64 43.55 

26.77 
-9.93 

0 0 0 1 

0.9 

239.56 -5.79 -239.56 -41.26 

0 
63.77 
0 
-6.67 

0.00 
0.00 
-46.42 
-87.81 

15.51 
-163.91 

0 1 0 0 

251.64 -130.13 -251.64 61.70 

-48.29 
-5.51 

0 0 0 1 

0.7 

239.56 -4.90 -239.56 –60.25 

0 
63.77 
0 
-6.67 

0.00 
0.00 
-64.67 
-125.67 

13.35 
-190.41 

0 1 0 0 

251.64 -193.00 -251.64 105.58 

-67.34 
-3.95 

0 0 0 1 

0.5 

239.56 -0.897 -239.56 –82.33 

0 
63.77 
0 
-6.67 

0.00 
0.00 
-83.08 
-192.25 

11.91 
-213.49 

Table 3-2: Vehicle model parameters. 
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From (3.3), it can be see that some parameters are speed dependent therefore 

different sets of data are recorded under different speed. The identified parameters 

under different speed by Cai (2003) are listed in Table 3-2. 

 

From parameters listed in Table 3-2 and (3.3), the vehicle lateral model of the 

prototype vehicle can be generalized as shown in (3.4). The generalized model 

provides a platform for controller development and design on the prototype 

autonomous vehicle. 
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where v is the longitudinal speed of vehicle, with the unit of ms-1. 

3.4. Conclusion 

This chapter presents the design and construction of a scaled prototype 

autonomous vehicle. The use of scaled vehicle provides a platform for controller 

testing which is safer than actual implementation on a full size vehicle. The 

construction of the vehicle is discussed in detail including hardware configuration, 

sensor selection, sensor calibrations, and signal generation. The software architecture 

presented ensures the feasibility of real time application. 
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Chapter 4. A Novel Fused Neural Network Controller 

4.1. Introduction 

It was noted in Chapter 2 that many researchers have advocated the design of 

hybrid controllers. These controllers exploit one or more methodologies and 

encapsulate their merits into a coherent design in order to meet the stringent 

requirements of complex control systems. However, such attempts usually lead to 

very complex controller design. Hence, the design of a simple and functional hybrid 

controller is indeed a challenge. The proposed algorithm in this Chapter is an attempt 

to address this challenge.  

 

Here, we report a simple fused neural network controller which is optimized 

using Genetic algorithms. The controller can be applied to a class of systems that 

require two input parameters for their stabilization. Consider the following three 

systems: an inverted pendulum, a ball-and-beam apparatus, and a vehicle lateral 

control problem. These systems share common dynamics and their control systems 

should consider two variables of displacement and the angle. The proposed controller 

architecture is designed according to task decomposition and although was designed 

for vehicle lateral control, it is well suited to systems with similar dynamics such as 

inverted pendulum and the ball-beam balancing control systems. The proposed 

network contains two sub-networks to tackle different tasks. The sub-networks 

outputs are fused together by a simple summation. The controller is optimized by 

Genetic algorithms for improved performance. Due to the simple structure of the 

controller, the complexity and search space of the parameters for optimization are also 
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reduced. 

 

Researches have been conducted on the use of neural network controller for 

stabilizing classical benchmark control problem in last two decades. The inverted 

pendulum control problem is widely used for testing neural network control 

algorithms. Anderson (1989) and Jameson (1990) presented a neural network 

controller training with reinforcement learning technique for stabilizing an inverted 

pendulum. Dominic et al. (1991) extended the work of Anderson (1989) to genetic 

reinforcement learning for neural network to controller inverted pendulum. Dadios 

and Williams (1998) addressed the problem of inverted pendulum with Multilayer 

neural network and trained with backpropagation. 

 

For the ball-and-beam system, Wang et al. (2004) tackled the problem by neural 

network controller and using genetic algorithm to search for optimum weight setting 

in offline. Eaton et al. (2000) used neural network controller to solve the “fuzzy 

ball-and-beam problem” suggested by Zadeh (1996). The “fuzzy ball-and-beam 

problem” is much more challenging then conventional ball-and-beam system. Since 

the beam is covered by a special sticky material so that the friction on the beam is not 

uniform. 

 

The organization of the chapter is as follows: Section 4.2 describes the proposed 

neural network controller structure and the connection weights training method. The 

dynamics of the three systems that can be controlled by decomposition is explained in 

Section 4.3. Section 4.4 presents the performance and robustness analysis of the 

proposed controller for different benchmark problems. Section 4.5 discusses the 

results of the simulations conducted. Finally, Section 4.6 concludes this chapter. 
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4.2. Fused neural network design based on task decomposition 

The concept of decomposition is an attractive tool to tackle systems that require 

two input parameters –say an angle and a displacement as control variables. The 

control problems of vehicle lateral control, inverted pendulum, and ball-and-beam are 

among systems that have the above characteristics. For vehicle lateral control, the 

controller has to keep the vehicle position within the lane while maintaining the 

vehicle orientation parallel to a reference lane. The two benchmark systems, namely 

inverted pendulum and ball-and-beam, require maintaining a cart or a ball to a desired 

position while keeping the pole or beam angle at zero degrees. The above systems 

have a common dynamics phenomenon that while maintaining the displacement, the 

angle change simultaneously.  

 

Neural network designed by task decomposition would reduces the number of 

connection weights and hence reduce the network complexity. In this section, the 

neural network controller simplification process will be described for those systems 

have aforementioned common dynamics characteristic. The task decomposition 

techniques start with identifying control objectives from the control system and assign 

it into individual subtasks.  

 

When the subtasks are identified, obtains the intuitive control laws for the 

subtasks based on the understanding on the control system. From the intuitive control 

law, control variables related to the control subtasks can be obtained. For the network 

architecture, independent sub-networks should be created for individual subtasks and 

using the related control variable as network inputs. Finally, the outputs of the 

independent sub-network are fused together as the controller output. 
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The neural network simplification process based on task decomposition can be 

summarized in the following steps: 

1. Decomposing control objective into subtasks.  

e.g. Inverted pendulum:  

Subtask 1 - Maintain pendulum (θ) up right  

Subtask 2 - Control cart position (d) . 

2. Setting up intuitive control law for the subtasks. 

e.g. Inverted pendulum:  

Control law 1 - Increase/decrease forces on the system when θ deviates 

from zero. 

Control law 2 - Increase/decrease forces on the system when d deviates 

from the set-point. 

3. Identifying control variables for the subtasks from the intuitive control law 

obtained in step 2. 

e.g. Inverted pendulum: 

Since the action of the control law 1 depends only on pendulum angle, 

control variables required in the first subtask are pendulum angle and its 

rate of change. For the second subtask, since the action of the control law 2 

depends only on the cart position, control variables required in the first 

subtask are pendulum angle and its rate. 

4. Creating independent sub-networks for the subtasks and using the 

corresponding control variables obtained in step 3 as sub-network inputs. 

5. Fusing the sub-networks output together as the controller output. 

 

In accordance with the decomposition technique described above, the unified 

neural network controller for the inverted pendulum, ball-and-beam system, and 
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vehicle lateral control is divided into two independent sub-networks. Figure 4-1 

shows the network structure. The network has four inputs ( dd && ,,,θθ ) and one control 

output (u) to the system. The parameters θ  and d  are the angle and the 

displacement respectively (The dot over a variable means the rate of change of that 

variable). There are two main sub-networks in the network and each sub-network 

targets on one sub-task of the systems. The first sub-network deals with the angle and 

aims to maintain it at zero. The second network deals with the displacement of the 

control system. Finally the sub-networks output are fused together by a simple 

summation to form the final controller output.  

 
Figure 4-1: Neural network controller. 

 

The proposed three layers network as shown in Figure 4-1 has two inputs, one 

output and two neurons in the hidden layer. The total number of connection weight is 

six. Referring to the multilayer feedforward neural network structure described in 

Chapter 2, the number of connection weights (W) for a fully connected network with 

same structure as the proposed network is ten. In this case, 40% of connection weights 

are reduced from a fully connected network.  

 

The connection weight reduction is achieved by dividing variables into groups 

and set into sub-networks. It can be seen that each sub-network are independent 
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therefore the inputs of sub-network one are not connected to sub-network two and 

vice versa. Since the connection weights are reduced simultaneously. Equations 

(4.1-4.3) show the characteristic of the network. 

( )211 tanh WWZ ⋅+⋅= θθ &  (4.1) 

( )432 tanh WdWdZ ⋅+⋅= &  (4.2) 

6251 WZWZu ⋅+⋅=  (4.3) 

where Z1 and Z2 are outputs from sub-network 1 and sub-network 2 respectively and 

W1-6 are the connection weights shown in Figure 4-1. The next section shows the 

network optimization procedure with genetic algorithms. 

 

4.3. Neural network Optimization via Genetic algorithms 

It was explained in Chapter 2 that a neural network controller could be optimized 

by genetic algorithm (GA). The optimization procedure follows the typical GA 

optimization cycle as depicted in Chapter 2. The reader may refer to Chapter 2 for the 

general description of GA.  

4.2.1 Coding of connection weights into chromosome 

The first step of GA is to encode the optimization variables into chromosomes. 

This incorporates two processes of encoding mechanism and representation method. 

The encoding mechanism describes the allocation method of the variables in the 

chromosome. The representation method facilitates the conversion details from 

optimization variables into genes. In the case of neural network optimization, the 

network can be optimized by GA in several ways such as network structure, activation, 

and connection weights. The choice of encoding mechanism and representation 
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method depends on the nature of optimization and it is important in designing a GA 

optimization process. 

 

The network structure and activation function of the proposed neural network 

controller are both fixed; therefore, only connection weights are encoded into 

chromosome. Figure 4-2 shows the coding mechanism of connection weight into 

chromosome. In the figure, the chromosome length is six and each gene carries a 

connection weight of the network. Since real value does not lose precision due to 

binary quantization, the six connection weights are coded into six real value genes 

instead of conventional binary coding.  

 

Figure 4-2: Coding of network weight into chromosome. 

4.2.2 Fitness function 

Fitness function determines the optimization objective. Since the control 

variables of the controlled system are displacement and angle, the fitness function is 

parameterized by these two parameters. The performance index used is the sum of the 
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integral time absolute error (ITAE) of displacement and orientation error, and is 

defined as shown in (4.4): 

( ) ( )[ ]( )[ ]∑ ×+−+
=

txxsetpoAbs
fitness

12int1
1  (4.4) 

where x2 and x1 are displacement and angle respectively. 

4.2.3 Computation procedure for the neural network optimization 

The following steps summarize the procedure of the GA optimization process for 
the neural network controller. 

 

1. Fix the search range of individual genes in the chromosomes. 

2. Initialize 50 chromosomes randomly to form an initial population 

3. Decode the chromosomes into neural network controller and test its performance 

in simulation. Then, calculate the fitness value from (4.4) and assign chromosome 

fitness 

4. Select parent chromosomes from the population to reproduce children 

chromosomes. The selection is based on Roulette wheel selection. 

5. Reproduce children chromosomes by either crossover or mutation. One point 

crossover is used to recombines the genetic material in two parent chromosomes 

to make two children. Mutation is used to introduce innovative materials to the 

population. 

6. Decode children chromosome into neural network controller to evaluate fitness 

7. Select 50 best fit chromosomes from children and parent chromosome to form 

new generation. 

8. Repeat Steps 3 to 7 until either maximum number of generations is reached or 

desired fitness value is evaluated. 
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4.3  Application to benchmark problems 

In order to evaluate the proposed controller, it is applied to two benchmark 

problems of inverted pendulum and the ball-beam systems. These two systems have 

similar physical characteristics to lateral control problem of an autonomous vehicle. 

These two benchmark problems are generally used to assess the performance of newly 

developed controllers in literature. Chan et al. (2002), Lee and Wong (1996), and 

Wang (1998) implemented a newly designed fuzzy controller on inverted pendulum in 

simulation for performance evaluation. Anderson (1989) used an inverted pendulum 

to verify the proposed neural network controller. Hao et al. (1993), and Jiang et al. 

(1995) using ball-and-beam system for neural network controller performance 

analysis. 

 

These systems have two main variables to describe the states of the system, an 

angle and a displacement. At steady state the angle is maintained around zero to 

stabilize the system. However, while adjusting the displacement, the angle is changed 

simultaneously. Figure 4-3 shows the proposed unified controller structure for the 

mentioned systems which can be decomposed into angular and displacement control. 

The controller is a single layer feed-forward neural network with four inputs and a 

single output. The vehicle lateral control problem consisted of the angle between the 

vehicle center line and the reference lane and the lateral displacement. Inverted 

pendulum control problem can be represented as the cart displacement to the origin 

and the rod angle. The ball-and-beam system can be represented by the ball position 

and the beam angle. The representation of the lateral control problem, the inverted 

pendulum and the ball-and-beam system into different sub-controllers simplify the 

overall controller structure and imply shorter search space and less parameter to be 
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optimized.  

 

Figure 4-3 : The unified controller. 

In this section, full state feedback linear controller (LC) will be designed and 

compared with the NN controller in terms of robustness. The selection of the system 

close-loop (s = pi, i=1,2,3,4) bases on the NN controller performance so that the LC 

has similar and comparable performance with the NN controller for robustness 

comparison. Then the robustness of controllers will be evaluated by varying model 

parameters. The following subsections present the system models for NN controller 

optimization and LC controller design. 

4.3.1 Inverted Pendulum: 

An inverted pendulum mounted on a cart is shown in Figure 4-4. The inverted 

pendulum is unstable in that it may fall in any direction unless a suitable control force 

is applied. The objective of the inverted pendulum is to maintain the cart at the origin 
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from any initial position while maintaining the rod at the vertical position (θ= 0). 

Therefore controller tackles the cart displacement and rod angular displacement 

simultaneously. 

Origin
x

θ

mr

θ&

l

mc
F

 

Figure 4-4: Inverted pendulum. 

The linearized equations of inverted pendulum are shown in (4.5) and (4.6) Ogata 

(1990). The state space equation for simulation, NN controller optimization, and LC 

controller design is shown in (4.7).  
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where [ ]TIIIII xxX &&θθ=  is the system state vector, mc and mr are mass of the cart 

and the rod respectively. l is the length of the rod. xI is the horizontal displacement of 

the cart with reference to the origin. θI is the clockwise angular displacement of the 

rod. FI is the control input to the system. 
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4.3.2 Ball-and-beam system: 

The objective of the ball-and-beam system is to maintain the ball at a desired 

position (rB = rd) by controlling and stabilizing the beam angle to zero (θB=0). Thus 

controller handles the ball displacement and beam angular displacement at the same 

time. Equation (4.8) represents the nonlinear dynamics of the ball-and-beam system. 

(4.8) is used for NN controller optimization. 
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where ],,,[],,,[ 4321 BBBB rrxxxx θθ &&= . rB and θB are the displacement of the ball from 

the center and the angular displace of the beam from the horizon respectively. 

Variables α and β are physical parameter and gravitational acceleration respectively. 

Linearized ball-and-beam system state space equation around the equilibrium point 

(rB = 0) shown in equation (4.9) (Wang (1997)) is used for LC feedback gain matrix 

determination. 
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4.3.3 Vehicle lateral dynamic 

 The Bicycle model described in Chapter 3 will be used for both controller 

design and simulation. The bicycle model equation is shown in (4.10). The detail 

description on the model parameters are shown in Chapter 3. The state of the bicycle 

model is manipulated to match with the NN controller input signalsθ , θ& , d , and d& . 



 

 4-13

The equation for manipulation is shown in (4.11). 
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4.4  Simulation Results 

In this Section, simulation studies of lateral control problem, inverted pendulum 

and ball and beam system are reported. The parameters setting of GA are listed in 

Table 4-1. There are 50 chromosomes in each generation. Maximum number of 

generation is 400. A new generation is reproduced either by mutation or crossover 

with rates of 0.3 and 0.7 respectively. Fitness function for fitness evaluation is based 

on the integral time of absolute error.  

 

Population size 50 

Maximum generation 400 

Crossover rate 0.7 

Mutation rate 0.3 

Fitness function 1/(1+ITAE) 

Table 4-1: Genetic algorithm parameters. 

Connection weight search space for the inverted pendulum of W1, W2, W3, and W4 

are [-20, 20] and [-200, 200] for W5 and W6. For the ball-and-beam system, the 

connection weight search space of W1, W2, W3 and W4 are [-100, 100] and [-10, 10] 

for W5 and W6. For lane keeping problem, the connection weight search space of W1, 
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W2, W3, and W4 are [-1, 1] and [-30, 30] for W5 and W6. The assignment of the search 

space is combined with knowledge of the controlled system dynamics and the neural 

network structure. 

 

mc 2.0kg  l 0.5m Inverted pendulum 
mr 0.1kg g 9.8ms-2 

Ball and beam system α 0.7143 g 9.81 
a21 251.64 a44 -60.25 
a22 -130.13 b21 63.77 
a24 61.70 b22 -4.9 
a41 239.56 b32 14 

 
 

Bicycle model 

a42 -4.9 b41 -6.67 

Table 4-2: Systems parameters. 

The parameters and coefficients in the bicycle model and physical model for the 

inverted pendulum and the ball-and-beam system are shown in Table 4-2. Table 4-3 

shows the optimized connection weights after optimization. 

 
W1 -12.7475 W4 -6.7588 
W2 -3.21193 W5 -112.502 

Inverted pendulum 

W3 8.245037 W6 -99.423 
W1 16.4417 W4 2.1535 
W2 -9.7559 W5 -14.112 

Ball and Beam system 

W3 17.4231 W6 15.6517 
W1 0.9846 W4 0.2148 
W2 0.1342 W5 -16.1873 

Lane keeping problem 

W3 0.1303 W6 12.4779 

Table 4-3: Optimized connection weights. 

After the optimization of NN controllers, LC controllers for the three systems 

are designed. Since the rank of the controllability matrixes of the three systems 

mentioned (i.e. (4.7), (4.9), and (4.10)) are 4, the systems are state controllable and 
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arbitrarily pole placement are possible. The feedback gain matrix determination is 

based on ackermann’s formula. The feedback gain matrixes KI, Kb, and Kv for inverted 

pendulum, ball-and-beam, and vehicle lateral control respectively and the associated 

close-loop system poles are summarized in Table 4-4.  

 

Model Close-loop poles  K1 K2 K3 K4 
Inverted 

Pendulum 
-7.45,-1.65  

-10, -10 
KI -377.430 -87.992 -125.11 -117.785

Ball and Beam -3.2±j2.4, 
 -10, -10 

Kb -226.308 -135.785 244 26.4 

Bicycle Model -1.2±j0.9, 
 -10, -10 

Kv 11.1067 -2.6691 -11.093 -0.334 

Table 4-4: Linear controller feedback gain matrix. 

4.4.1 Inverted Pendulum 

The controller testing condition is follow. The cart is initially located at 0.2m 

away from the origin with vertically positioned pole therefore the initial state of the 

inverted pendulum [θ, x] is [0, 0.2]. Figure 4-5 shows the performance of both NN 

and LC controllers. Figure 4-5a shows displacement of the cart controlled by NN 

controller (solid line) and LC controller (dash line). The LC control signal is 

generated by FI = -KIXI. Where XI is the state vector described in equation (4.7). 

Since the design of the LC controller is based on the NN controller, they have 

similar performance in terms setting time and overshoot. The solid and dashed line is 

the cart displacement controlled by NN and LC controller respectively. The results 

show that both controllers maneuver the cart to the origin after 3.5s.  

 

Figure 4-5b shows the angle of the pole. The solid and dashed line is the pole 

angle controlled by NN and LC controller respectively. The pole angles controlled by 
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both controllers are stabilized at 3.2s. However, the pole swing controlled by NN 

controller is larger than the swing controlled LC controller. 
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Figure 4-5 a (cart displacement.) 
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Figure 4-5b (pole angle.) 

Figure 4-5:  Inverted pendulum simulation result. 
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4.4.2 Ball-and-Beam Balance System 

The initial state of the ball-and-beam system [θB, rB ] is [0, 0.2] for the 

simulation of NN and LC. The control signal of the LC is generated by uB = -KbXb 

where Xb is the state vector of the Ball-and-Beam system described in equation (4.9). 

Figure 4-6 shows the performance of both controllers on Ball-and-Beam system.  

 

Figure 4-6a shows the ball displacement controlled by NN controller (solid line) 

and LC (dash line). The results show that both controllers stabilized the ball to the 

origin (i.e. 0 m) after 2s. Figure 4-6b shows the beam angle. The solid and dashed line 

is the beam angle controlled by NN controller and LC respectively. The beam angle 

controlled by both NN controller and LC are stabilized at 2s.  
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Figure 4-6 a (the ball displacement) 
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Figure 4-6b (the beam angle) 

Figure 4-6: Ball-and-beam system simulation result. 

4.4.3 Lateral control 

Figure 4-7 shows the lateral control performance in a straight road scenario. The 

road curvature ( refρ ) is set at zero through out the simulation such that to simulate a 

straight road condition. The initial state of the vehicle was located at 0 m away from 

the and parallel to the reference lane i.e. zero angle. The distance set-point from the 

reference lane was 0.2 m. In order to track with lateral set-point, the LC generate 

control signal by equation (4.12).  

 

 [ ][ ]Trrffvvvvf yyyyKKKK && −−−−= 2.02.04321δ  (4.12) 

where 0.2 is the lateral set-point. 

 

In Figure 4-7a, the vehicle lateral position controlled by both controllers reaches 

to set-point after time 2.5s and stabilized at time 5s. In Figure 4-7b, the angle between 

NN

LC
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vehicle center line and the road is calculated by the different between front and tail 

displacement. The maximum angle is 0.09 rad at time 0.5s and it resumes to 0 rad at 

time 6s. 
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Figure 4-7a (Vehicle lateral displacement). 
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Figure 4-7b (Vehicle orientation) 

Figure 4-7: Lateral control simulation result. 
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4.4.4  Controller robustness analysis 

The robustness of the LC and the NN controller are compared subject to system 

parameters variations. In this section controllers performance under system 

parameters variation will be presented.  

 

4.4.4.1 Inverted pendulum 

There are 3 parameters in the model of inverted pendulum (4.7) namely mass of 

cart (mc), mass of rod (mr), and length of rod (l). The parameters are varied ±40% for 

controller robustness analysis. There are 6 simulation cases study for each controller 

and there is only one parameter is varied in each simulation. The 6 cases are shown in 

Table 4-5. The shaded cells in Table 4-5 indicate the parameter is varied from the 

nominal value. 

 

Parameters  
Case mc mr l 

1 1.2 kg 0.1 kg 0.5 m 
2 2.8 kg 0.1 kg 0.5 m 
3 2 kg 0.06 kg 0.5 m 
4 2 kg 0.14 kg 0.5 m 
5 2 kg 0.1 kg 0.3 m 
6 2 kg 0.1 kg 0.7 m 

Table 4-5: Inverted pendulum parameters variation. 
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Figure 4-8a (Case 1: mc=1.2kg) 
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Figure 4-8b (Case 2: mc=2.8 kg) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

Time (s)

D
is

pl
ac

em
en

t (
m

)

Figure 4-8c (Case 3: mr=0.06 kg) 
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Figure 4-8d (Case 4: mr=0.14 kg) 
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Figure 4-8e (Case 5: l=0.3m) 
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Figure 4-8f (Case 6: l=0.7m) 

Figure 4-8: Robustness analysis on NN controller for inverted pendulum 

Figure 4-8 presents the 6 cases of the NN controller simulation results. Figure 

4-8a to Figure 4-8f show the results on cart displacement of Case 1 to 6 respectively. 

The results presented in Figure 4-8a to Figure 4-8d are the simulation results under 

the change of mass and the results show that the variation in the mass of cart (mc) and 
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rod (mr) does not affect the performance of the NN controller. In Case 6 (Figure 4-8f), 

the controller performance is deteriorated due to the enlargement in the length of the 

rod (l). The cart position is maintained at the origin with ±0.025m deviation and 2Hz 

oscillation. Based on the simulation result, the proposed NN controller is robust to 

±40% parameters variations and it is able to stabilize the inverted pendulum in all of 

the 6 cases. 

 

For the LC, Figure 4-9 presents the 6 cases of the LC simulation results. Figure 

4-9a to Figure 4-9f show the results of Case 1 to 6 respectively. The results also show 

that the variation in mc and mr does not affect the performance of the LC. In Case 6 

(Figure 4-9f), the controller fails to control the system and the system is oscillating 

with monotonic increasing. According to the simulation results, the LC is robust to the 

±40% variation in mr and mc. However, it is not robust to the variation in the length of 

the rod (l). 
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Figure 4-9a (mc=1.2kg) 
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Figure 4-9b (mc=2.8kg) 
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Figure 4-9c (mr=0.06 kg) 
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Figure 4-9d (mr=0.14 kg) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

Time (s)

D
is

pl
ac

em
en

t (
m

)

Figure 4-9e (l=0.3m) 
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Figure 4-9f (l=0.7m) 

Figure 4-9: Robustness analysis on LC controller for inverted pendulum 

 
 

4.4.4.2 Ball-and-Beam Balance System 

From equation (4.8), the ball-and-beam system consists of 2 parameters α and g. 

Since g is gravitational acceleration, it is assumed as constant. Then the remaining 

parameter is varied ±40% for robustness evaluation. The value of α with -40% and 

+40% variations are 0.42853 and 1.002 respectively. The NN and LC controller 

performances of ball displacement subject to ±40% variation are shown in Figure 

4-10 and Figure 4-11 respectively.  
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Figure 4-10a (α=0.42853) 
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Figure 4-10b (α=1.002) 

Figure 4-10: Robustness analysis on NN controller for ball-and-beam 
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Figure 4-11a (α=0.42853) 
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Figure 4-11b (α=1.002) 

Figure 4-11: Robustness analysis on LC controller for ball-and-beam 

 

Figure 4-10a and Figure 4-10b present the NN controller performance with 

α=0.42853 and α=1.002 respectively. For LC, Figure 4-11a and Figure 4-11b show the 

LC performance with α=0.42853 and α=1.002 respectively. The simulation results 

suggest that both NN controller and LC are able to stabilize the ball at the origin and 

thus both controllers are robust to ±40% parameter variable on the ball-and-beam 

system. 
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4.4.4.3 Vehicle lateral control 

The controller robustness for vehicle lateral control problem is examined by the 

Monte-Carlo evaluation method (Ray and Stengel (1993)). There are 8 parameters in 

the bicycle model (4.10) and single parameter is randomly selected and varied ±20% 

of uniform uncertainty in each evaluation. 1,000 Monte-Carlo evaluations are 

performed on the NN controller and LC. The results of Monte-Carlo evaluations on 

NN controller and LC are shown in Figure 4-12 and Figure 4-13 respectively. 

 

Figure 4-12 shows the 1,000 step responses with ± 20% randomly selected 

parameters uncertainty of the bicycle model. Envelopes (thicker lines) shown in figure 

are constructed based on the nominal step responses of the vehicle with NN controller. 

The step response is multiplied by factors 1.2 and 0.8 to define ± 20% deviation limit 

respectively. From Figure 4-12 , most of the 1,000 evaluations violate the deviation 

limit but all the 1,000 evaluations converge to the lateral set-point at 20cm. Thus the 

NN controller is robust to ±20% parameter variation on the bicycle model. 
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Figure 4-12: Monte-Carlo evaluations on NN controller for vehicle lateral control. 

 

 

Figure 4-13: Monte-Carlo evaluations on LC controller for vehicle lateral control. 

 

1,000 Monte-Carlo evaluations have been conducted on the LC. However, the 

LC performance is unstable in the Monte-Carlo evaluations and only a few 

evaluations converge to the lateral set-point. Therefore there are only 20 Monte-Carlo 

evaluations on the LC are presented in Figure 4-13. From the result of Monte-Carlo 

evaluation, it is concluded that the LC controller is not robust to ±20% parameter 

Time (s) 
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variation on the bicycle model. 

 

Simulation results on the robustness analysis of the NN and LC controller for 

inverted pendulum, ball-and-beam system, and vehicle lateral control are presented in 

this section. The results suggest that the robustness of the NN controller is comparable 

with the LC controller in the classical benchmark systems. For the vehicle lateral 

control, the robustness of the proposed NN controller is superior to the LC controller. 

4.5  Discussion 

In the above sections, linear controllers (LC) with full state feedback are 

designed for the inverted pendulum, ball-and-beam system, and vehicle lateral control. 

The linear controllers are then compared with the neural network (NN) controller 

under the variation of system parameters. In this section, the simulation results will be 

further discussed. 

 

Inverted Pendulum 

From the robustness analysis on both LC and NN controller for the inverted 

pendulum, both controllers are robust to variations of mass. From the model equation 

of inverted pendulum shown in (4.7), the mc and mr affect the motions of both control 

variables (i.e. both cart position x and rod angle θ) in matrix AI. In the input matrix BI, 

the mc reduces the effective force delivered to both control variables.  

 

The effect on the change of mass deduced from the model explains the 

robustness of both controller to the mass variation. Since the effects on the change of 

mass act on both control variables simultaneously with a similar scale, the controllers 

can compensate those effects by increasing forces. 
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For the change in the length of rod, the performances of controllers are 

deteriorated. From the equation (4.7), the change in lr affects the motion on the rod 

angle only but not the cart position. In this case, controller cannot compensate the 

effect by applying strong force but generate control action with good coordination 

with the control variables. The results show that the NN controller is also robust to the 

change in the lr. However, the LC controller cannot stabilize the system when the lr is 

enlarged. 

 

Ball-and-Beam balance system 

The results show that both LC and NN controller are robust to the parameter 

variation. As the system models shown in equations (4.8) and (4.9) are linearized 

model with only one parameter that can be changed (α). Therefore the variation of the 

parameter only contributes to scaling up or scaling down of the system. Since there is 

no limitation on the controller output, the variation with linear scaling can be 

compensated by large control actions. 

 

Vehicle lateral control 

For the Monte-Carol analysis conducted in the vehicle lateral control, the NN 

controller shows much improved performance over the LC controller. Consider the 

bicycle model equation shown in (4.10), the change of a state variable (say ry&& ) is 

related to the sum of the all state variables, thus there are strong coupling between the 

state variables. Therefore the change in one state variable would inference the whole 

vehicle dynamics. 

 

The NN controller shows better performance than LC which is due to the task 
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decomposition structure. Referring to Figure 4-1, individual task is handled by 

independent subnetwork. Each subnetworks outputs are towards the goal of their task. 

Thus the vehicle is stabilized by two independent controllers which enhance the 

robustness of the controller under parameters variations.  

4.6  Conclusions 

A novel and yet simple neural network controller structure utilizing task 

decomposition principle is proposed in this chapter. The controller can be employed 

to control systems that require two input parameters (an angle and a displacement) as 

their control variables. The neural network is optimized by genetic algorithms which 

enhance the flexibility for multi-objective optimization. The connection weight 

settings for inverted pendulum, ball-and-beam system, and vehicle lateral control are 

presented and simulated. 

 

The proposed controller structure reduces the number of connection weight by 

40% in comparison to fully connected network. The reduction in network connection 

weight enhances the effectiveness of the network optimization process. The proposed 

network is basically designed for vehicle lateral control system; however, it can be 

applied to many other systems. Simulation studies for lateral control systems and two 

benchmark problems have also been studied.  

 

The robustness of proposed controller is compared with state feedback linear 

controller and the results show that the controller robustness is superior to the linear 

controller in vehicle lateral control problem through Monte-Carol evaluations. 

Comprehensive discussions have been conducted on individual systems and show the 

advantages of decomposition structure design offer better performance in compare to 
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linear controller. This controller will be tested on a scaled prototype semi-autonomous 

vehicle and the experimental result will be presented in Chapter 6. 

 

In this chapter, widespread studies on the decomposition structure including 

various simulations on different systems and robustness analysis have been conducted.  

The proposed technique offers a possible method to reduce redundant elements 

involved in the GA optimization process and gives reasonable performance. However, 

it is only applicable to systems with a particular dynamics. In the next chapter, a 

general purpose hybrid controller based on fuzzy theory and GA search will be 

devised that can be applied to lateral control of vehicles as well as other systems. 
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Chapter 5. GA/FS Convergence Enhancement by Fired 

Rules Chromosome 

5.1. Introduction 

An algorithm inspired by the task decomposition principle was introduced in the 

last chapter. The rationale was to simplify the conventional neural network structure 

by effectively reducing the number of connection weights. In this chapter, a 

chromosome encoding scheme is proposed as an alternative design to improve the 

optimization speed of hybrid fuzzy-genetic algorithms. In contrast to the algorithm 

discussed in the last chapter, the suggested scheme is not problem specific and 

imposes no requirements on the controlled system. Therefore the scheme can be 

applied in any fuzzy controller that is optimized by the genetic algorithm. 

 

A fuzzy controller design process starts with representing the system knowledge 

in terms of fuzzy linguistic variables. Next, the corresponding membership functions 

of linguistic variables are assigned. The generation of the rule-table is normally 

resolved by exploiting the knowledge of an expert and forming the final rule-base by 

a trial-and-error approach. However, this procedure is time consuming and problem 

specific. Hence, there is a strong motivation to automate this process. To achieve 

automatic fuzzy system determination, the integration of Genetic Algorithms (GA) 

and Fuzzy System (FS) has been proposed by many researchers as reviewed in 

Chapter 2. A specific literature citation related to the theme of this Chapter is included 

in this section.  
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Giordano et al. (2006) proposed the combination of GA and Lyapunov theory 

for adaptive fuzzy controller design. The fuzzy controller structure and parameter 

information was encoded into chromosome for GA optimization in an offline mode. 

The adaptation was then achieved by modifying the output singleton of optimized 

fuzzy controller online based on Lyapunov theory.  

 

Chou (2006) introduced an index function for mapping input fuzzy set to fuzzy 

rules. The index function contained six and nine parameter for the cases of linear and 

nonlinear mapping respectively. Then GA was applied on the index function for fuzzy 

rule optimization by encoding the function parameters into chromosome instead of 

entire fuzzy rules. This proposed method reduced the length of chromosome by 

representing the fuzzy rules table with a linear/nonlinear function. 

 

When it comes to real-time control, the rather tedious process of GA could 

hinder its effectiveness in practical applications. Uddin et al. (2005) implemented 

genetic based fuzzy controller in real time for motor speed control. The scaling factors 

of the implemented fuzzy motor controller are tuned by GA in offline.  

 

GA is a probabilistic search and as such requires several generations before 

convergence to an optimal solution. Therefore, there is a demand to increase the 

convergence rate of the integrated FS/GA systems. The integrated FS/GA approaches 

presented in Chapter 2 have focused on improved robustness rather than speed of 

convergence. To address this requirement, fired rules chromosome encoding scheme 

is suggested for the integrated FS/GA to increase the speed of optimization. This 

method reduces the search space by identifying the fired rules at each generation and 

only optimizes them in the next generation. Modeling errors and parameter 
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uncertainty are inevitable in any control system application. The robustness to 

parameter variation of the resulting FS/GA controller is critical to overall reliability of 

the control system. Thus, Monte-Carlo analysis has conducted to evaluate the 

controller performance under parameters variation. 

 

This chapter is organized as follow: Section 5.2 describes the main idea and the 

operation procedure of the proposed encoding in genetic algorithm. Section 5.3 shows 

a demonstration example of the proposed algorithm to explain the improvement in 

convergence rate and the reduction in search space. Section 5.4 applies the proposed 

scheme to optimize the fuzzy vehicle lateral controller and compares with fuzzy 

lateral controller found by traditional scheme. The comparison is based on the 

simulation results and Monte-Carol analysis for robustness evaluation. Section 5.5  

discusses the result on vehicle lateral control. Finally Section 5.6gives the conclusion. 

 

5.2. Fired Rules Chromosome for Genetic Algorithms 

From the traditional GA architecture and procedure for fuzzy rule table 

generation stated in Chapter 2, the GA/FS system requires encoding optimization 

variables (i.e. fuzzy rules) into chromosome for the GA optimization process.  

 

The suggested scheme improves optimization speed by modifying the traditional 

formation method of chromosome. Traditional encoding method encodes all the fuzzy 

rules into chromosome therefore chromosome length is equal to the number of fuzzy 

rules. Therefore the chromosome length is fixed through out the optimization process. 

For the proposed scheme, only fired rules are encoded into chromosome. Since the 

number of fired rules varies from generation to generation, the chromosome length is 
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not fixed and it is changing dynamically from generation to generation. The length of 

chromosome at generation N is equal to the number of rules fired in generation N-1. 

Details of encoding scheme and implementation procedure will be shown in the 

following sections. 

5.2.1. Fired Rules Chromosome scheme 

Fired Rules Chromosome (FRC) is a chromosome encoding scheme that may 

reduce both the search space and the time for optimization. FRC only modifies the 

“coding” module of the Genetic Algorithms. The scheme reduces the search space by 

encoding the fired rules in each generation into chromosome in contrast to 

conventional approaches that aim to encode all the rules in the rule table.  

 

To elaborate the idea of FRC in counting the number of fired rules, consider a 

fuzzy system is optimized by GA and assuming the population size of the GA is 20. 

Therefore the performances of 20 sets fuzzy rules are evaluated in each generation. 

The rules fired in each evaluation are recorded, thus 20 sets of fired rules are recorded 

after 20 evaluations. The rules fired in that generation is found by union of the 20 sets 

recorded rules. Therefore only the rules that are not fired in all of the 20 evaluations 

will not be counted as fired rules. 

 

In a fuzzy system, only fired rules contribute to the system output which implies 

that only those fired rules are related to the performance of the fuzzy rule table. Thus 

only fired rules are imported to the genetic pool in the FRC scheme without lose of 

useful genetic materials. 

 

This paragraph presents the idea of search space reduction achieved by FRC 
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scheme. The search space is defined as the entire range covers all the possible 

solutions of the given problem. Thus the search space for a fuzzy rule table is all the 

possible combination of the fuzzy output variables in the rule table. For a Mammdani 

type fuzzy rule table with 7 linguistic output variables and 49 rules, the corresponding 

search space is 749 (i.e. 2.57x1041). Since the fuzzy rules are encoded into 

chromosome, the reduction in chromosome length implies reduction in search space. 

49 n = 0

26 

20

22

15

749=2.569x1041

 726=9.38x1021

720=7.97x1016

722=3.91x1018

 715=4.75x1012

Generation
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Figure 5-1 : Change of chromosome length in different generations. 

 

Figure 5-1 shows an illustrative example on the search space reduction in FRC. 

At initialization, generation 0 (n = 0), FRC assumes the fired rules chromosome 

length to be 49. After evaluating the performance of chromosome in the generation 0, 

assuming 26 rules are fired in the generation 0. Then the FRC scheme will only 

encode the fired rule zone showed in the shared part in the rule table. In the first 

generation (n = 1), the chromosome length is 26. As the generation change, Figure 5-1 
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shows chromosome length varies as the change in the number of fired rules. The 

length of the chromosome will not only reduce but increases as showed in Generation 

50 to Generation 51 which the length of the chromosome is changed from 20 to 22. 

Since GA updates the fuzzy rules in each generation with result in altering the fuzzy 

system output characteristic, the number of fired rules may go up or down. Finally, 

the number of fired rules in Generation 199 is 15 and thus the chromosome length of 

Generation 200 is 15. As the chromosome length varies from generations to 

generations, the search space varies as well.  

 

For the above described example, the search space remains at 2.569 x 1041 for 

traditional (TRD) FS/GA optimization (e.g. Steady State Without Duplicate, SSWOD 

(Davis (1991))). However, for FRC, the search space will be at maximum 2.56 x 1041 

and decrease from 4.75 x 1012 to 9.38 x 1021. Hence FRC gives a reduction in the 

search space optimization and substantially improve the convergence rate. 

5.2.2. Optimization procedure with FRC 

The optimization flow of GA/FS with FRC encoding scheme is shown in Figure 

5-2. The optimization flow with FRC is the same as traditional GA/FS system 

discussed in Chapter 2. The FRC encoding scheme is inserted in between the 

evaluation and the selection module so that only fired rules will be evolved in the 

selection and reproduction modules. 
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Figure 5-2: GA optimization flow with FRC encoding scheme. 

Figure 5-3 shows the different between the traditional encoding and the FRC 

encoding scheme. At the Nth generation there are totally 37 rules fired (non-shaded) in 

the population. In conventional coding method all the fuzzy rules are encoded into 

chromosome therefore there are 49 genes in the chromosome. For the FRC encoding 

scheme, only fired rules are encoded into chromosome therefore the length of 

chromosome is reduced to 37. If some of the rules are not covered by any individual 

in the generation N, but they are fired in the evaluation module of generation N, they 

will be inserted in to the chromosome in generation N+1. Moreover if all the rules are 

fired, the length of the chromosome will include all the rules, then the search space is 

still the maximal one (49rules in Figure 5-3), then all of the rules are reachable at any 

point of the GA run. The main point is that the GA using FRC can ignore certain 

unfired rules at early stages of the run. A premature convergence of GA is prevented 
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by including those rules into the chromosomes in the subsequent generations 

whenever they are fired in the Evaluation Module in that generation. 

 

 
Figure 5-3 : Coding of the Fired Rules Chromosomes. 

5.3. FRC demonstration example 

To elaborate the presented idea, consider the optimization of a PI-fuzzy system 

(FS) to control the system (5.3) using GA. The fuzzy controller is optimization to 

follow a reference input with a unit step and followed by a falling step. 
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where U(s) and Y(s) are the input and output in s-domain respectively.  

The fuzzy controller is a 7×7-7 (i.e. the controller have 7 fuzzy sets for two 

inputs and 7 fuzzy sets for the output). The fuzzy inputs are the error (e) and rate of 

change of error (ce). Both e and ce have 7 fuzzy sets and the output of the fuzzy 

system is the rate of change of integral control action also has 7 fuzzy subsets. The 

scaling factors of the FS for e for ce are 1 and 0.1628, respectively. The scaling 

factors the control output is are 0.0347. 

5.3.1. Search space reduction: 

     ce    
  NB NM NS ZE PS PM PB 
 NB PB NB NB NB    
 NM NM  NB NB NM    
 NS NB  ZE PS NS PB NB PS 
e ZE NB  NM NM ZE PM PS PB 
 PS PB  PM PB PS NS ZE PM 
 PM    NM PB  PM ZE 
 PB    PB PM PB PB 

Figure 5-4 : Fired rules in the 30th generation. 

The fuzzy controller is first optimized with FRC scheme and the fired rules in 

each generation are recorded to show the reduction in search space. It turns out that 

not all the rules are fired. Figure 5-4 shows the fired rules in the 30th generation and 

there are 37 rules fired out of 49 rules. Note that some of the rules are not fired (i.e. 

not involved in the generation 30) in the optimization process which implies that the 

changes of the un-fired rules do not affect the performance of the FS in this 

generation. Then the length of the FRC in 31st generation is 37 instead of 49. The 

reduction of search space from the traditional chromosome to FRC is from 749 to 
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737.i.e. a reduction of 2.57×1041. However if the un-fired rules are fired during the 31st 

generation optimization, they will be again included in the 32nd generation 

optimization. A more compact representation of the fired rules in chromosomes can 

lead to better quality solutions for a given amount of function evaluations. 

5.3.2. Controller performance and GA convergence. 

In order to compare the performance of the proposed FRC scheme with 

traditional (TRD) scheme, the fuzzy controller is optimized by GA with both FRC and 

TRD scheme. As the genetic algorithm is a stochastic method, the optimization 

process with the FRC algorithms and the TRD GA/FS is repeated for 50 sets. Table 

5-1 gives a summary of the parameters of the testing for both algorithms. The 

population size, crossover probability, mutation probability, maximum number of 

generation, and fitness function is 50, 0.7, 0.3, 50, and inverse of Integral Time 

Absolute Error (ITAE) respectively. The chromosome length is 49 for TRD, but not 

defined in FRC. 50 sets of initial population are randomly generated for both 

processes (GA with FRC and TRD), therefore both processes start with the same 

initial population in all the 50 simulations. 

 

 After the 50 sets optimization processes, the fuzzy controller fitness, 

performance, and time spent are follow. Figure 5-5 shows the average fitness of 50 

sets verses number of generations. It shows that at the beginning generations (1st to 

3rd) the fitness of fuzzy controller optimized by FRC and TRD encoding scheme are 

more or less the same, this is due to the initial populations are randomly generated. 

However, as number of generations increase, the FRC converged faster that the TRD 

encoding. It is due to the FRC scheme narrows the evolution zone to the rules that 

have effect on controller fitness, but the evolution in TRD scheme covers the 
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complete rule table which includes the rules have no contribution to the controller 

fitness. Figure 5-6 shows performance of FRC (solid line) and the TRD Encoding 

(dotted line) in the first testing. The reference signal is a unit step function and 

followed by a falling step after 100s. In the figure both solid and dotted lines are able 

to follow the reference signal but the solid line shows better tracking performance in 

the falling edge. This result shows that the newly proposed method improves the 

convergence rate and retains the performance as the traditional method. Finally Table 

5-2 summarized the performance of the testing. The optimization time spent for FRC 

and TRD FS/GA are 110.6158s and 110.428s, respectively. This shows that the 

additional overhead of their Fired Rules Chromosome bookkeeping, is insignificant 

compared to the control loop testing spent in each generation. It’s because in GA 

optimization, the most time process involved is the Elevation Module. 

 

Population size 50 
Chromosome length 49 (dynamic for FRC) 

Maximum number of generation 50 
Crossover probability 0.7 
Mutation probability 0.3 
The fitness function 1/(1+ITAE) 

Table 5-1: GA parameters. 
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Figure 5-5: The convergence of FRC (solid line) and the TRD (dotted line). 

0 20 40 60 80 100 120 140 160 180 200
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

S
ys

te
m

 o
ut

pu
t

FRC
TRD

 
Figure 5-6: Performance of FRC (solid line) and the TRD encoding (dotted line) in the first testing. 

 

 FRC TRD 
ITAE 445.8869 469.1287 
Average Fitness (50 generations) 0.001454  0.001290  
Time spent 110.6158s 110.428s 

Table 5-2: Result of average of 50 test sets of FRC and TRD encoding. 

FRC

TRD

FRC

TRD
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5.4. Application to vehicle lateral control 

To study the performance of the proposed method in real life example, a 

Mammdani type fuzzy controller (FC) is designed for the vehicle lateral control. The 

FC has 2 inputs with 7 triangular membership functions and there are 49 rules in the 

rule table. The inputs are lateral displacement error (e) and the vehicle angle (θ) with 

respect to the reference lane. Figure 5-7 shows the membership functions of the 2 

inputs. The membership functions are normalized and the scaling factors for e and θ 

are 0.5 and 1.43 respectively. There are 9 output linguistic variables which namely 

NVB, NB, NM, NS, Z, PS, PM, PB, and PVB with singleton output function. The 

vehicle lateral model used for simulation and optimization is bicycle model. The 

bicycle model equation shows in (5.4) and the detail description on the model 

parameters refers to Chapter 3. Since the vehicle lateral displacement and vehicle 

angle are not explicitly shown in the bicycle model, equation (4.11) is used to obtain 

the lateral displacement and orientation. 

 

Figure 5-7. Input membership functions of the fuzzy lateral controller. 
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The rule table of the above mentioned fuzzy controller is optimized by GA with 

both FRC and TRD encoding schemes. The model parameters (a21 to a44 and b21 to b41) 

in (5.4) are defined in Chapter 3. Both optimization processes with FRC and TRD 

encoding schemes have included SSWOD technique to avoid duplicated chromosome 

in the population. To start optimization, an initial stable fuzzy system (symmetric) is 

designed. The control signal of the fuzzy system depends on the lateral displacement 

and the angular displacement.  

 

The setting of evaluation process in the GA evaluation module is described as 

follow. The vehicle initial lateral position and orientation are 10cm and 0 degree with 

respect to the reference lane. The reference signal (lateral set-point) is initially at 

20cm and step back to 10cm after 10s. This reference signal ensures the fuzzy rule 

table is capable of both positive and negative steering. The total evaluation time is 20s 

therefore 2000 steps for step size with 0.01s. 

 

The GA parameters used in the optimization process are listed in Table 5-3. The 

population size, maximum number of generation, crossover probability, and mutation 

probability are 30, 200, 0.7, and 0.3 respectively. For the fitness function, the ITAE 

shown in Table 5-3 is the integrated time absolute error. After optimization 2 different 

sets of rule table are yield. The GA processes with both encoding schemes take 200 

generations to complete the optimization. These 2 sets of fuzzy rule table are 
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simulated and the simulation result will be shown in Section 5.4.1. In addition to the 

simulation results, the robustness of both fuzzy rule tables subject to vehicle 

parameter uncertainties is evaluated by Monte-Carlo analysis and it will be presented 

in Section 5.4.2.  

 

Population size 30 
Chromosome length 49 (dynamic for FRC) 
Maximum number of generation 200 
Crossover probability 0.7 
Mutation probability 0.3 
The fitness function  1/(1+ITAE) 

Table 5-3 : GA parameter. 

5.4.1. Simulation result on vehicle lateral control 

In the simulation, the vehicle is assumed running at a straight road and thus the 

road curvature is zero (ρref = 0). The vehicle initial position is located at 10cm from 

the reference lane and the lateral position set-point is 20cm. The vehicle is assumed 

running at 0.6ms-1.  

 

Figure 5-8 shows simulated performance of fuzzy controller optimized by FRC 

(solid line) and TRD (dotted line) scheme. The simulation results show that the fuzzy 

controller optimized by both FRC and TRD encoding scheme are able to maneuver 

the vehicle to the lateral set-point. Figure 5-8 shows that the settling time of both 

controllers are 2s and the maximum overshoot of FRC and TRD is 5% and 10% 

respectively. The performance index (ITAE) of FRC and TRD are 192.031 and 

212.072 respectively. The above performance indexes are listed in Table 5-4 for 

comparison. 
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 FRC TRD 
Settling Time 2s 2s 
Maximum percentage of overshot 5% 10% 
ITAE 192.031 212.072 

Table 5-4. Performance indexes of both fuzzy controllers. 
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Figure 5-8: Lateral control simulation result. 

5.4.2. Robustness evaluation by Monte-Carlo analysis 

In this section, the controller robustness is examined by the Monte-Carlo 

evaluation method (Ray and Stengel (1993)). The fuzzy controller optimization 

process bases on mathematical model which inevitably includes incomplete system 

dynamics. Taking the above simulation as example, the parameters change of the 

bicycle model due to the change in vehicle speed, mass, road friction and tire 

cornering stiffness are not reflected in the model. Therefore it is important to show 

that the controller found by the proposed scheme is as robust as controller optimized 

by conventional scheme.  

 

To illustrate the effect of parameter variation on the step response of the fuzzy 
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controller, 10,000 Monte-Carlo evaluations are performed. Two parameters are 

randomly selected and are varied ± 30% of uniform uncertainty in each evaluation. 

Figure 5-9 and Figure 5-10 show the 10,000 step responses with ± 30% randomly 

selected parameters uncertainty of the bicycle model. Envelopes shown in figures are 

constructed based on the nominal step responses of the vehicle with fuzzy controller. 

The step response is multiplied by factors 1.2 and 0.8 to define ± 20% deviation limit 

respectively. The purpose of defining the envelope is to estimate the probability of 

step response violating the envelope. That is the probability of a step response to fall 

out of the envelope if system parameters have ± 30% variation. 

 

Figure 5-9 : FRC Monte-Carlo analysis result. 
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Figure 5-10 : TRD Monte-Carlo analysis result. 

Figure 5-9 shows 10,000 Monte-Carlo evaluations for ± 30% parameter 

uncertainties of the fuzzy controller optimized with FRC encoding scheme. The result 

shows that all the evaluations do not violate the envelope. In Figure 5-10 shows the 

result of Monte-Carlo evaluation on the fuzzy controller optimized with TRD 

encoding scheme. The result also shows that all the 10,000 evaluations are within the 

envelope. 

 

The result presented here has two folds significance. First, it shows that the 

fuzzy controller designed and optimized with FRC encoding and TRD encoding 

schemes is robust to ±30% parameter uncertainties. Second, in comparison with the 

robustness of fuzzy controller optimized with TRD scheme, FRC encoding scheme 

does not affect the robustness of the controller yet it improves the convergence rate 

(result shown in Section 5.3.2). 
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5.5. Discussion 

In this section, the simulation and Monte-Carol analysis results on the vehicle 

lateral control are discussed. The two fuzzy controllers optimized by FRC and TRD 

methods are tested in simulations as described in the previous sections. The fuzzy 

controller structure is a two inputs single output fuzzy system. The controller inputs 

are lateral distance and vehicle orientation.  

 

From the simulation results, there is 10% overshoot observed on the controller 

optimized by TRD method. It is due to the changes of the control variables are not 

involved in the controller design. Thus the controller performance can be further 

enhanced by including those parameters. For the performance index, although there is 

large deviation observed at the initial stage between the two results, there is only 

insignificant difference in the value of performance index. It is due to the ITAE index 

gives large penalties at the steady state but not at the initial stage. 

 

5.6. Conclusions  

The suggested Fired rules chromosome (FRC) encoding scheme offers a novel 

encoding module for the integrated system of fuzzy system and genetic algorithm. 

The advantage of the proposed FRC module is the enhancement of convergence rate. 

The enhancement is achieved by narrowing the search space to fired rules only. The 

special feature of the presented encoding method is that the chromosome length is 

changed dynamically which depends on the number of fired rules. 

 

The comparison results between FRC scheme and conventional (TRD) scheme 
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are presented. Controller performance evaluation bases on performance index (such as 

setting time, overshoot and ITAE) and the results show that both fuzzy controllers 

have similar performance. For the controller robustness, the Monte-Carol analysis 

results show that both controllers are robust to ±30% parameters variation. Thus the 

newly proposed encoding scheme offers higher convergence rate but not affects the 

controller robustness. 

 

In the next chapter, both fuzzy controllers optimized by FRC and TRD scheme 

will be implemented on a scaled prototype vehicle for performance evaluation in 

experimental study.
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Chapter 6. Experimental Results on Vehicle Lateral 

Control 

6.1. Introduction 

Lateral control of autonomous vehicles is a fundamental task within the context 

of an automated highway system (AHS). It is also crucial for successful operation of 

an autonomous vehicle driving in mixed traffic highways where it shares the road 

with other human driven vehicles. Simply stated, the lateral control refers to 

automatic vehicle steering in order to maintain a prescribed direction and follow a 

reference track. The automatic steering control can be grouped into either look-ahead 

or look-down reference systems (Guldner et al. (1997)). This classification is based 

on the lateral displacement of the vehicle from a reference lane. The look-ahead 

system mimics human driving behavior by measuring the lateral displacement ahead 

of the vehicle. Look-ahead systems using machine vision are extensively studied such 

as VaMoRs-P by Maurer et al. (1994) and VITA I and II by Ulmer (1992 and 1994). 

The automatic steering can be considerably improved by a preview of up to a 

approaching road curvature so that allowing the controller to anticipate the change of 

curvature for smooth transition (Hernandez and Kuo (2003)). 

 

Hessburg and Tomizuka (1994) proposed a modularized fuzzy lateral controller 

for preview type lateral orientation. The fuzzy structure consisted of feedback, 

preview, and gain scheduling modules. The feedback modules minimized lane 

tracking error where as the preview module modified the steering angle based on the 

perceived road curvature from a database. Finally the steering angle was scaled by the 
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gain scheduling module according to the vehicle speed. Hessburg and Tomizuka 

(1995) further enhanced the fuzzy controller to a model reference adaptive fuzzy 

controller. Stability was ensured by a supervisory controller based on Lyaponov 

theory.  

 

Hermandez and Kuo (2003) simulated the use of GPS and geometry database to 

preview road curvature for vehicle lateral control. The proposed control structure used 

a single feedback state controller which was already suggested by Guldner et al. 

(1999) for the steering angle generation. The preview action was achieved by 

replacing the state controller input from measured state to an estimated state which 

was based on the previewed road curvature.  

 

Lateral controller based on look-down reference is also an active area due to 

availability of robust lateral displacement measurement sensors. Guldner et al. (1999) 

suggested the use of two sensors installed at the front and tail bumper of the vehicle in 

a look-down reference system design in order to solve the automatic steering problem 

at high speed. A robust state feedback controller based on parameter space approach 

was proposed to tackle the lateral control problem. The state feedback controller 

consisted of two controllers for front and tail lateral measurements respectively. The 

final controller output was the sum of the two controllers outputs. Choi (2000) 

designed an adaptive lateral controller for look down feedback reference system. The 

proposed algorithm uses single magnetic sensor to measurement vehicle lateral 

displacement. Adaptive PD type controller based on Lyapunov criterion is then 

designed as the vehicle lateral controller.  

 

In this chapter, the prototype semi-autonomous scaled vehicle developed in 
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Chapter 3 is configured for a look-down reference system. The lateral measurement is 

obtained by two infrared sensors installed at each side of the vehicle. The lateral 

control system generally requires the information of vehicle lateral displacement and 

its orientation. The controlled vehicle should maintain a desired lateral distance from 

the reference lane. In addition, it should be parallel to the reference lane. Therefore, 

both displacement and orientation should be considered in the control system.  

 

In the previous two chapters, two novel controllers were reported and their 

performance was tested by simulations studies. In this Chapter, the two controllers 

(Fused Neural Network Controller in Chapter 4, and FRC and TRD Fuzzy controller 

in Chapter 5) will be implemented as lateral controllers on the scaled vehicle in order 

to verify their performances in experimental studies and provide alternative solution 

to vehicle lateral problem.  

 

The organization of this chapter is follow: Section 6.2 describes the experimental 

setup for the vehicle lateral control experiment. Section 6.3 presents the experimental 

result of the fused neural network controller. Section 6.4 reports the result of the fuzzy 

lateral controllers optimized by GA with FRC and TRD encoding schemes. Section 

6.5 discusses the experimental results of the three controllers mentioned above. 

Finally Section 6.6 concludes this chapter. 

6.2. Lateral control Experiment setup 

As noted in Chapter 3, four infrared sensors and industrial computer are installed 

on the prototype vehicle for lateral displacement measurement and control algorithms 

implementation. The controllers developed in Chapters 4 and 5 were implemented on 
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the onboard industrial computer for lateral control experiments. The lane keeping 

problem is to maintain the vehicle at a desired lateral displacement from a reference 

lane and to minimize the angle between the vehicle and the reference lane. In the 

following experiments, the reference wall is used as reference lane instead of lane 

makers so that the infrared sensors can measurement the lateral displacement form the 

wall.  

6.2.1. Experimental setup 

The experiments were conducted in a long and narrow corridor inside the 

electrical engineering building. The wall of the corridor was taken as the reference 

lane. The experiments in this chapter emulate straight road scenario on a highway, 

therefore the road curvature is zero. In order to test the controller capability under 

different speeds, three sets of experiments at speed of 42cms-1, 60cms-1, and 

78cms-1were conducted. The speed setting was based on ±30% of the nominal speed 

(60cms-1) used during the controller design process. 

 

The vehicle was required to maintain a lateral displacement of 20cm from the 

reference lane (yref = 20cm) throughout the experiments. The vehicle initially was 

located at 10cm from the reference lane with a zero angle orientation (i.e. parallel to 

the lane). During the experiments, the infrared sensor readings and speed were 

recorded for performance evaluations. 

 

The control system for both lateral and speed control is shown in Figure 6-1. The 

upper loop describes the lateral feedback control loop. The details of the steering 

actuator and speed drive are already described in Chapter 3. Three vehicle lateral 
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controllers, namely Fused Neural Network (NN), Fuzzy (FRC), and Fuzzy (TRD) 

lateral controller are implemented by replacing the “Lateral Controller module” 

shown in Figure 6-1. A conventional PID speed controller was designed and manually 

tuned to achieve a reasonable performance under the desired speed range.  

 

Figure 6-1: Lateral control experiment control loop. 

 

6.2.2. Real time implementation of the lateral controller 

Selection of sampling time is critical to real time applications. In Chapter 3 

presented the onboard computer generates fixed hardware timer interrupts every 50ms 

and the corresponding interrupt frequency is 20 Hz for initiate data sampling. Brennan 

(1999) presented most of full-size vehicle frequency range was from 0 to 2 Hz or 3 Hz. 

The onboard timer offers around 10 times of the bandwidth of the system which lies 

in acceptable range for data sampling. Therefore 50ms is selected as the sampling 

time (ts). 

 

As stated in Chapters 4 and 5 vehicle state variables are manipulated to obtain 
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vehicle lateral displacement (d) and orientation (θ) based on (4.11). In real time 

implementation, the measured lateral displacements are also manipulated. However, 

the rate of lateral displacement is not directly measurable by the infrared sensors. 

Thus the rate of lateral displacement is calculated mathematically by equation (6.1). 

Then equation (4.11) is converted to equation (6.2) for real time implementation. 
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where fy  and ry  are lateral distance measured by infrared sensors as 

mentioned in Chapter 3.  
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To summarize the real time implementation conditions for vehicle lateral control, 

the sampling interval of the system is 50ms for data collection and control algorithm 

computation. For the sensor measurement, the measured lateral displacement 

information is manipulated by equation (6.1) and (6.2) so that the information can be 

processed by the Fused Neural Network controller and Fuzzy controller proposed in 

Chapter 4 and 5 respectively. The experimental results of the three controllers under 

different speed of operation are presented next. 

 

6.3. Fused Neural Network Controller experimental result 

The neural network controller proposed in Chapter 4 is examined experimentally 

in this section. The controller has four inputs and a single output (u i.e. steering angle 

for vehicle lateral control). The inputs are θ , θ& , d , and d&  as shown in Figure 6-2 
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where θ , θ& , d , and d& are angle, rate of angle, displacement, and rate of 

displacement respectively. The controller connection weights for lane keeping 

problem were shown in Table 4-3. The values of the connection weights W1, W2, W3, 

W4, W5, and W6, are 0.9846, 0.1342, 0.1303, 0.2148, -16.1873, and 12.4779 

respectively.  

 

  

Figure 6-2: Fused neural network controller. 

 

The experimental results of the Fused NN controller with speeds of 42cms-1, 

60cms-1, and 78cms-1 are shown in Figure 6-3 to 6-5 respectively. The figures contain 

vehicle lateral position, vehicle orientation, and speed during the experiment. The 

vehicle orientation is evaluated by the different between the lateral displacement 

sensor at front and tail. 

 

In Figure 6-3a, Figure 6-4a, and Figure 6-5a, vehicle reaches the lateral set-point 

at time 3.5s, 2.5s, and 2.2s respectively. The mentioned time is the time taken to 

adjust vehicle lateral position from the initial position to the lateral set-point. The 

results show that the NN controller is able to stabilize the vehicle at the steady state 

under different speeds. In Figure 6-5a, ±10% deviation from the set-point is observed. 
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Figure 6-3c 

Figure 6-3: Fused NN controller experimental result with speed=42cms-1. 
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Figure 6-4c 

Figure 6-4: Fused NN controller experimental result with speed=60cms-1.. 
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Figure 6-5c 

Figure 6-5: Fused NN controller experimental result with speed=78cms-1. 
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From Figure 6-3b, Figure 6-4b, and Figure 6-5b, the maximum degree of vehicle 

orientation (around 7°) appears at time 2.1s, 1.9s, and 1.5s respectively. Referring to 

the time spent recorded at the above paragraph, the maximum degree of orientation 

occurs during the time period of lateral position adjustment from the initial position to 

the set-point. At the steady state operation, the controller stabilizes the vehicle within 

±2° which is well within the acceptable level. Finally Figure 6-3c, Figure 6-4c, and 

Figure 6-5c show the speed profile of the vehicle during the lateral control experiment 

 

The experimental results show that the proposed NN controller designed by task 

decomposition can be applied to tackle vehicle lateral control problem. The controller 

shows acceptable performance in different speed of operation. The experimental 

results with different speed show that the controller maintains vehicle lateral position 

at the desired lateral displacement from the reference lane and adjusts vehicle 

orientation parallel to the reference lane. 

6.4. Fuzzy lateral controllers experimental results 

To study the performance of the FRC encoding scheme in a practical setting, a 

Mammdani type fuzzy controller (FC) was designed for the vehicle lateral control. 

The FLC has 2 inputs with 7 triangular membership functions and there are 49 rules 

in the rule table. The inputs are displacement error (e) and the vehicle angle (θ) with 

respect to the reference lane. In order to show the FRC scheme does not degrade the 

performance, a Mammdani type FLC optimized by traditional method (TRD) is 

constructed. 

 

The two controllers were implemented on a scaled prototype autonomous 

vehicle for experimental testing. The experimental results of the fuzzy controller 
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optimized by FRC encoding scheme (FRC controller) with speeds 42cms-1, 60cms-1, 

and 78cms-1 are shown in Figure 6-6, Figure 6-7, and Figure 6-8 respectively. For the 

fuzzy controller optimized by TRD encoding scheme (TRD controller), the 

experimental results with speed 42cms-1, 60cms-1, and 78cms-1are shown in Figure 6-9, 

Figure 6-10, and Figure 6-11 respectively. 

 

6.4.1. Fuzzy (FRC) controller experimental results 

 

In Figure 6-6a, Figure 6-7a, and Figure 6-8a, the FRC controller maneuver 

vehicle to reach lateral set-point at time 3s, 1.9s, and 1.5s respectively. it is the time 

taken to adjust vehicle lateral position from the initial position to the lateral set-point. 

The FRC controller shows better performance at steady state with speed 42cms-1 and 

60cms-1. Bounded (±10%) lateral oscillation is observed in the experiment with speed 

78cms-1.  
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Figure 6-6c 

Figure 6-6: FRC fuzzy controller experimental result with speed=42cms-1. 

 

From Figure 6-6b, Figure 6-7b, and Figure 6-8b, the maximum degree of vehicle 

orientation is recorded as 11.7°, 12.4°, and 12.4° at time 2.1s, 1.7s, and 1.25s 

respectively. The recorded maximum degree of orientation occurs during the time 

period of lateral position adjustment from the initial position to the set-point. In 

general the FRC controller stabilizes the vehicle at the steady state within ±6° in 

different speed of operation. Finally Figure 6-6c, Figure 6-7c, and Figure 6-8c show 

the speed profile of the vehicle during the lateral control experiment. 
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Figure 6-7c 

Figure 6-7: FRC fuzzy controller experimental result with speed=60cms-1. 

The experimental results show that the FRC controller performs well under the 

speeds of 42cms-1 and 60cms-1; although steady-state oscillation is recorded at a speed 

of 78cms-1, it is bounded and thus the system is stable in operation. 
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Figure 6-8a 
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Figure 6-8c 

Figure 6-8: FRC fuzzy controller experimental result with speed=78cms-1. 
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6.4.2. Fuzzy (TRD) Controller experimental results  

In Figure 6-9a, Figure 6-10a, and Figure 6-11a, the TRD controller adjusts 

vehicle lateral position to reach lateral set-point at time 3s, 2s, and 1.9s respectively. 

The TRD controller also shows better performance at steady state with speed 42cms-1 

and 60cms-1. Bounded (±10%) oscillation is observed in the experiment with speed 

78cms-1.  
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Figure 6-9c 

Figure 6-9: TRD fuzzy controller experimental result with speed=42cms-1. 

 

From Figure 6-9b, Figure 6-10b, and Figure 6-11b, the maximum degree of 
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vehicle orientation is recorded as 9.9°, 9.9°, and 10.7° at time 2.4s, 1.9s, and 1.6s 

respectively. The recorded maximum degree of orientation occurs during the time 

period of lateral position adjustment from the initial position to the setpoint. In 

general the TRD controller stabilizes the vehicle at the steady state within ±6° in 

different speed of operation. Finally Figure 6-6c, Figure 6-7c, and Figure 6-8c show 

the speed profile of the vehicle during the lateral control experiment. 
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Figure 6-10a 
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Figure 6-10c 

Figure 6-10: TRD fuzzy controller experimental result with speed=60cms-1. 

The experimental results show that the FRC controller performs better under 
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speed 42cms-1 and 60cms-1. Although steady stated oscillation is recorded in the speed 

of 78cms-1, it is bounded and thus the system is stable in operation. 
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Figure 6-11a 
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Figure 6-11c 

Figure 6-11: TRD fuzzy controller experimental result with speed=78cms-1. 

 

From the experimental results presented in Sections 6.4.1 and 6.4.2, the fuzzy 

controller optimized either by the FRC or the TRD encoding scheme demonstrate 

similar performance. The results show that both fuzzy controllers have better 

performance at speed 42cms-1 and 60cms-1. Both FRC and TRD fuzzy controllers 

show bounded angle and lateral displacement oscillation result at the steady state with 
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speed 78cms-1. Based on the 6 results shown in Figure 6-6 to Figure 6-11, the fuzzy 

controller optimized by GA with the proposed FRC does not affect controller stability 

in comparison to the TRD fuzzy controller optimized by conventional GA method. 

6.5. Discussion 

This section discusses the experimental controller performance described in 

sections 6-2 to 6-4 based on a performance index. Table 6-1 shows the Integral Time 

of Absolute Error (ITAE) and Integral Square Error (ISE) of the three controllers. The 

calculation of ITAE and ISE are based on equations (6.3) and (6.4) respectively. 

 

( )( )∑
=

⋅+−=
n

mi
iiiref tyyITAE θ  (6.3) 

( )( )∑
=

+−=
n

mi
iiref yyISE 22 θ  (6.4) 

where yref, yi, ,θi and ti are lateral set-point, lateral displacement measured at ith time 

step, vehicle angle evaluated at ith time step and the time at ith time step respectively. 

 

Performance Index Speed FRC TRD NN 
42cms-1 599.37 672.81 651.47 
60cms-1 475.47 521.66 254.40 

 
ITAE 

78cms-1 626.77 601.72 355.30 
42cms-1 30.29 32.98 33.29 
60cms-1 40.67 35.56 20.24 

 
ISE 

(From Time 3s to 7s) 78cms-1 95.66 89.981 29.32 

Table 6-1: Controller performance index. 

 

Consider the ITAE performance index; the error term is defined as the sum of 

absolute displacement error and absolute vehicle orientation. Therefore the system 

error is zero only if the vehicle located at lateral setpoint with zero vehicle orientation 
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with respect to the reference lane. Furthermore, the ITAE index associates the 

controller performance with time therefore the index penalty slow response and large 

steady state error system. 

 

For the ISE, the system error is evaluated in the same way of ITAE but using 

square error instead of absolute error. In addition the penalty factor of time is not used 

therefore the ISE only reflect the system error with respect to the set-point. 

 

From Table 6-1, the ITAE values of the 3 controller at speed 42cms-1 tend to be 

higher even the experimental results (Section 6.3 and 6.4) show that the controller 

performs better at speed 42cms-1 which is obviously due to slow response under low 

speed operation. Comparing the ITAE index among the 3 controllers at the same 

speed of operation, NN controller in general is the most outstanding. The FRC 

controller performs the best at speed 42cms-1. Referring to the fuzzy controller 

experimental result shown in Section 6.4.1 and Section 6.4.2, the bounded oscillation 

at the steady state gains large penalty form ITAE therefore the ITAE indexes are high 

for both fuzzy controller. 

 

In order to examine the controller performance at steady-state and regardless of 

the time factor, the ISE performance index is applied to evaluate each controller 

performance during the time period from time 3s to 7s. Referring to Table 6-1, NN 

controller also shows outstanding performance out of the 3 controllers especially at 

high speed operation. For the 2 fuzzy controllers, their ISE indexes are similar to each 

other. 

 

The performance index evaluated on the two fuzzy controllers has a twofold 
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meaning. First as implied it shows both fuzzy controller performances on vehicle 

lateral control. Second the similarity in performance index of the FRC and TRD fuzzy 

controller shows that the newly proposed FRC encoding scheme in Chapter 5 does not 

affect the fuzzy system stability. 

 

Considering the inputs of controller, the fuzzy controllers minimize tracking 

error based on lateral displacement (y) and vehicle orientation (θ). For the NN 

controller, the inputs are y, rate of y, θ, and rate of θ. The rate of change of the control 

variables help the NN controller to stabilize the vehicle and thus its performance is 

superior to the 2 fuzzy controllers.  

 

6.6. Conclusions 

NN controller proposed in Chapter 4 and Fuzzy controllers suggested in Chapter 

5 are evaluated experimentally with different speed of operation in this Chapter. The 

experimental results show that both Fused Neural Network controller and fuzzy 

controller are able to control the under the variation of speed.  

 

The performance index ITAE and ISE of the experimental results have been 

evaluated for comparison. Among the three controllers studied in this Chapter, the 

Fused Neural Network controller has outstanding performance in all speed of 

operation. In the rest of the thesis the Fused Neural Network controller is selected as 

the vehicle lateral controller for experimental studies in the following Chapters. 

 

In this chapter, the focus was concentrated on steering (lane keeping) aspect of 

vehicle lateral control. However, in addition to lane keeping, lane changing is another 
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challenging topic on vehicle lateral control. Autonomous vehicles with capability of 

lane changing would enhance the flexibility of vehicle navigation and coordination. In 

the next chapter, a lane change algorithm will be presented to handle this challenging 

task.
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Chapter 7. Lane Change Algorithm with Virtual Curvature 

and Lane Change Abortion Analysis 

7.1. Introduction 

Vehicle lateral control, including lane keeping as well as lane change maneuver, is a 

prime issue in the design of autonomous vehicles. Lane change maneuver consists of lane 

selection, smooth and safe travel to the desired lane while avoiding obstacles. To perform 

lateral control, detection of vehicle lateral information with respect to road is required such 

as vehicle orientation and lateral displacement. In general, the detection of vehicle lateral 

information is referred to the detection of reference lane. The method of lane detection 

engaged may introduce difficulties in lateral control application which due to the limitation 

of the detection method. 

 

The lane detection method can be classified into two categories: infrastructure 

independent or infrastructure dependent. Infrastructure independent lane detection 

methodology is based on vision system mounted on the vehicle to capture image of the road 

for painted lane markers detection. Researchers Li et al. (2004) and Yim and Oh (2003) have 

proposed infrastructure independent lane detection algorithms using vision systems to detect 

public road painted lane markers for vehicle guidance. The advantage of this detection 

method is that it does not require modification of public road. However, the detection system 

robustness to weather condition is a challenging task. 

 

However, the infrastructure dependent type lane detection method requires installation 

of lane markers that can be recognized by non-vision sensor, frequency selective strips (FSS) 
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by radar detection or magnetic markers, on the road as reference lane. Farkas et al. (1997) 

and Hatipoglu et al. (2003) introduced forward looking radar to measure vehicle lateral 

position based on the sensing energy from FSS. Zhang and Parsons (1990) designed 

magnetic marker system to measure the lateral position based on the magnetic field strength. 

This detection method is robust to weather condition, but this reference system requires 

heavy infrastructure modification. 

 

During lane changing, vehicle travels from one lane to another which also implies that 

the reference of the lateral control system is also changed from one lane to another. For 

vision based system, the reference signal is extracted from captured image and the 

neighborhood lane is visible in the image, thus the problem of changing reference can be 

alleviated by image processing algorithm. However, for infrastructure dependent type 

reference systems, the sensors are not able to detect the markers on neighborhood lane thus 

this problem should be tackled by some ad hoc scheme or method. 

 

To tackle the problem of reference lane transition in the systems with infrastructure 

dependent type during lane change, Tan et al. (1998) reported results on infrastructure 

supported lane changes schemes and dead reckoning schemes. The infrastructure supported 

lane changes method installed extra markers to mark a path between adjacent lanes to 

provide continuous lateral position information. However this scheme imposes limitations on 

the location of lane transition. The dead reckoning scheme did not require the installation of 

extra markers. The method assists lane change by using internal (soft) sensors to estimate 

vehicle current lateral position. However, there is a dead-zone period during lane transition, 

since no extra markers provide lateral information for feedback control. Therefore the lane 

change process is actually an open loop problem with respect to continuously measurable 

lateral position in the infrastructure supported lane changes schemes. Since there is no 
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limitation in lane transition location, it offers higher flexibility. Various algorithms have been 

proposed to tackle the open loop problem.  

 

Hatipoglu et al. (2003) proposed a reference lateral jerk signal calculated based on the 

desired lateral displacement and maximum lateral jerk. The reference yaw rate signal guides 

the vehicle to adjacent lane in a closed-loop fashion by switching from lane keeping 

controller to sliding mode yaw rate follower. PATH researchers Chee and Tomizuka (1997) 

propose a trapezoidal lateral acceleration profile for lane change. They first implemented a 

tracking controller in experiment by converting the acceleration profile to a virtual reference 

trajectory. Then, they estimated the vehicle position by a state estimator. Next, they designed 

a unified yaw rate lateral tracking controller to handle both lane keeping and lane changing 

tasks to alleviate the controller switching problem. Shamir (2004) proposed an optimal 

trajectory planning which based on minimizing total kinetic energy and “minimum-jerk 

trajectory” for overtaking slower moving vehicle. Papadimitriou and Tomizuka (2003) 

proposed a fast algebraic computation algorithm to design an obstacle avoidance trajectory 

by using polynomials to represent lateral and longitudinal position.  

 

The aforementioned existing works focus on the determination of lane change trajectory 

and follow the trajectory by tracking controllers. However, the main objective of the 

proposed algorithm is introducing a concept of virtual curvature for lane changing. From the 

autonomous vehicle point of view, the virtual curvature transforms the physical lane and 

guides the vehicle to adjacent lane. 

 

The suggested algorithm incorporates virtual road curvature with bicycle model for 

vehicle lane change guidance. The virtual road curvature, does not physically exist, is a user 

assigned radius of a curved lane changing path which connects the current lane to the 
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adjacent lane. The lane changing path guidance is achieved by assigning a virtual road 

curvature to the bicycle model to transform existing physical reference path curvature to the 

desired lane change path curvature. This transforming effect is accomplished by the inherent 

property of the bicycle model. The method is inspired by the observation that any change in 

the road curvature affects the vehicle lateral dynamics (this can be verified by equation (7.1) 

in Section 7.3.2). The virtual road curvature is parameterized by road curvature and time.  

 

The lane change capability of autonomous vehicle offers flexibility in vehicle 

navigation, coordination and obstacle avoidance. However, during lane changing the merging 

vehicle should cross lanes which imply that the vehicle should consider obstacles or vehicles 

on both lanes that may inference the vehicle safety. To encounter danger situation during lane 

changing, the possible actions to avoid collision are steering, braking or both. In the 

literatures on the safety of lane changing, the determination of longitudinal safety spacing 

and safety strategies have been studied. 

 

Jula et al. (2000) suggested Minimum Longitudinal Safety Spacing (MLSS) as the 

minimum spacing to initiate lane change and established lane change safety region based on 

the MLSS. The study also proposed a specific acceleration strategy during lane change to 

enlarge the safety region. Kanaris et al. (2001) presented an algorithm for calculation 

Minimum Safe Spacing for Lane Changing (MSSLC). The calculation of MSSLC considers 

the vehicle braking limit during lane change for collision avoidance. The MSSLC ensures the 

merging vehicle have enough spacing to perform deceleration when vehicle enters 

emergency situation during lane change.  

 

Jeich and Lin (2005) proposed a cascade fuzzy controller for car following and lane 

changing collision prevention. The proposed system handles danger situation during lane 
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change by using both emergency braking and abortion of lane change. However, the details 

of the abortion process have not shown. 

 

In the literature, studies on abortion trajectory and the associated safety region are not 

explored. The abortion trajectory analysis may provide valuable information for vehicle 

coordination during lane change. In this chapter, the lane change abortion trajectory analysis 

is conducted and it evaluates the total abortion distance and collision free abortion point (Pcf). 

The Pcf is defined as the point of abortion on the lane change trajectory that guarantees no 

collision occurs. The general Pcf under different speed of operation and lateral acceleration 

limit will be presented is this chapter. 

 

The chapter is organized as below: Section 7.2 defines the problem of lane changing in 

automated highway. Section 7.3 gives essential background information and the concept of 

the proposed lane change algorithm. Section 7.4 illustrates the algorithm design and the 

scheme for implementing the proposed algorithm. Section 7.5 shows the determination of 

abortion trajectory. Section 7.6 analyzes the abortion trajectory to formulate the safety 

abortion region and collision free abortion point. Section 7.7 shows both simulation and 

experimental results. At last, Section 7.8 concludes this chapter. 

 

7.2. Lane change problem 

This section states the assumption on the vehicle system and defines the lane change 

problem. Assuming the Lane detection method of the vehicle is infrastructure dependent type 

therefore specific reference system is required on the road. Furthermore, dead-reckoning 

scheme is used during lane changing therefore no infrastructure support exists. The main 

problem in infrastructure non-supported lane change within an infrastructure dependent 
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reference system is that physical reference path does not exist and no measurable lateral 

feedback signal available during lane transition.  

 

The lane change problem is characterized as initiating, on demand, a path following 

routine along a specified lateral path from the current lane to the adjacent lane while keeping 

a desired longitudinal speed and aligning the vehicle at the end of the maneuver such that the 

lane keeping task can be resumed in a smooth and safe manner. Obstacle detection and 

avoidance during lane change is critical to vehicle safety, however it is not in the scope of 

this thesis therefore the obstacle detection scheme is not mentioned.  

 

To solve the lane change problem with the above assumed vehicle reference system, 

one has to overcome the difficulty on measuring lateral position during lane changing. Since 

lateral information is not available (actually the information is not correct) during lane 

transition, the problem is handled in open-loop with respect to the lateral position 

information. The concept of Virtual curvature method is introduced to tackle this problem 

and the details will be presented in the later sections.  

 

7.3. Road Profile and Bicycle Model 

This section introduces the background information of the proposed lane change 

algorithm on road profile and bicycle model. The proposed algorithm is inspired by the 

relationship between the road curvature (road profile) and the vehicle lateral dynamics 

(bicycle model). In the coming 2 sections, the formation of road profile and its relationship 

with bicycle model will be discussed. 
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7.3.1. Road profile 

 

The road profile describes the shape of highways by using the curvature of the road. 

Highway consists of both straight and curved sections and the path can be represented as an 

integration of circular arcs and straight lines. Assuming the radius of the circular arcs is Rref. 

For the straight road segment, the radius is infinity (Rref=∞). For the road curvature (ρref), it 

is defined by inverse of the radius (ρref =1/Rref). Furthermore, the curvature is defined to be 

positive for left movements and negative for right movements. Therefore, different road 

profiles can be established with different values of ρref. 

 

 
(a) 

 

(b) 

Figure 7-1 Typical road and road curvature profile 

 

To illustrate the idea of road profile, Figure 7-1 show a typical road and road curvature 

profile of the so-called “lazy-S” formation for lane change. This curve produces a transition 

path between parallel lanes with LW as the lane width. The lateral position at original lane and 

the lane width are assumed as zero and LW respectively. In Figure 7-1(a), y and x is the 

vehicle lateral position and longitudinal position respectively. The road starts at y=0 and 

terminate at y=LW. The longitudinal displacement of the road from y=0 to y=LW is d. The road 
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trajectory shows that it starts with left cornering and gradually changes to right cornering. 

 

Figure 7-1(b) shows that the curvature of the “lazy-S” road. The curvature contains 

both positive value and negative value which implies the change of cornering direction of the 

road. The curvature is continuous and it starts and finishes with zero curvature so that the 

curve connects the two parallel lanes smoothly. 

 

7.3.2. Bicycle model 

To study the automatic steering of an autonomous car, a vehicle steering model 

including velocity, vehicle heading and lateral distance from the sensors to a reference path is 

required. The bicycle model is well known and is used in most applications of lateral control 

design including the works presented by Guldner et al. (1997), Ackermann (1993) and Tan et 

al. (1998).  

 

The bicycle model (7.1) describes the lateral dynamics with respect to steering angle 

and the reference road curvature. Where σf is steering angle, ρref is reference road curvature, 

aij and bij are vehicle parameters, yf and yr are lateral displacement of vehicle from front and 

rear sensor to reference lane respectively. The sign notation of both σf and ρref are the same, 

therefore defined as positive and negative for left and right cornering respectively. 
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In vehicle lateral control simulation, lateral controller output is σf which used to control 
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the steering angle of the bicycle model. However, the ρref is used to describe the curvature of 

the reference lane (i.e. straight or curved). The bicycle model gives vehicle lateral position 

with respect to the reference lane based on these 2 input parameters 

. 

The proposed algorithm in this chapter will assign a virtual reference curvature to the 

model so that transforms the shape of the physical reference system to a virtual reference 

system. The shape of the virtual reference system is a user defined trajectory for lane 

changing. 

7.3.3. Concept of virtual road curvature  

The above sections of road profile and bicycle model introduce the formation of road 

curvature profile and the relation between vehicle lateral dynamics and road curvature 

respectively. The concept of virtual road curvature is inspired by the simulation study of lane 

keeping controller performance on curved highway. To simulate a vehicle riding on a desired 

curved highway, road profile of the highway will be constructed and assigned to the bicycle 

model in the simulation. The bicycle model calculates the vehicle lateral position with 

respect to the curved highway. Then the lane keeping controller adjusts the vehicle steering 

angle according to the bicycle model output so that the vehicle follows the curved highway. 

 

The property of the above mentioned simulation is used for lane changing by scale 

down the highway curvature to lane transition curvature. The profile of the transition lane 

connects current lane to adjacent lane. Since this transition lane does not physically exist, we 

name it as virtual lane, and its corresponding curvature (ρref) as virtual road curvature. During 

lane change, the virtual road curvature profile is used as the bicycle model input instead of 

the physical lane curvature profile so that the lane keeping controller maneuver the vehicle 

towards the adjacent lane. The detail of methodology on curvature determination and 
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controller coordination will be described in the Section 7.4.2. 

 

7.4. Lane Change Algorithm 

7.4.1. Illustration of the lane change algorithm 

The lane change maneuver was divided into 3 Stages and Figure 7-2 illustrates the 

concept of the proposed algorithm on a straight double lane highway. Since the highway is 

straight, the physical road curvature is zero in all Stages. In Stage I and III, The merging 

vehicle (M) performs lane keeping at Lane A (original lane) and lane B (Destination lane) by 

measuring lateral distance from physical reference lane.  

 

 

Figure 7-2: Illustration of lane change algorithm 

 

In Stage II, a virtual reference lane is constructed (dotted line) for lane changing. The 

virtual reference lane is formed according to desired lane change longitudinal distance (d) 
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and the lane width (Lw) by a polynomial equation (Section 7.4.2 (7.2)). The curvature of the 

polynomial formulated is then calculated by equation (7.3) shown in Section 7.4.2. The sign 

of the curvature is designed according to the definition made in Section 7.3.1, therefore 

positive for left movements and negative for right movements respectively. The 

aforementioned virtual reference lane and its curvature guide the vehicle to Lane B 

(Destination lane) by using the property of bicycle model. The calculation and evaluation of 

polynomial and its curvature will be described in the next Section. 

 

During Stage II, bicycle model estimates the vehicle lateral position based on the 

virtual reference lane curvature instead of the curvature of physical lane (dashed line). Since 

the estimated vehicle lateral position is with respect to virtual reference lane in stead of the 

physical lane, the physical lane is transformed to a virtual reference lane from the vehicle 

point of view. Lane keeping controller follows the virtual reference lane by using the 

estimated lateral position as input and guides the vehicle to Lane B. The time duration of 

using bicycle model for lateral position estimation is Ttaken. The vehicle speed (V) and d 

determine the length of Ttaken and the calculation will be shown in the coming Section. 

7.4.2. Virtual road trajectory and curvature determination 

To achieve the lane change algorithm presented in at the above section, a virtual 

reference lane should be constructed and a lane change scheme should be designed. This 

Section presents the determination of the virtual reference lane and its curvature. Then the 

lane change scheme with virtual lane method will be described. 

 

There are several types of lane change trajectories proposed in the literatures. Different 

types of trajectories have different characteristic in the curvature profile. The design of lane 

change trajectory should consider passenger's ride comfort. Caywood et. al. (1977) proposed 
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the transient lateral acceleration and the lateral jerk should not exceed 0.12 g and 0.24 g/s, 

respectively for ride comfort. 

 

There are 3 candidates for the virtual trajectories design (1) Circular trajectory, (2) 

Cosine trajectory, and (3) 5th order polynomial trajectory. Chee and Tomizuka (1994) have 

presented the characteristic of these 3 trajectories and are summarized as follow. For those 

reader interested in the proof of trajectories characteristic, please refer to the report by Chee 

and Tomizuka (1994). 

 

In the following description Lw , V, and amax are referred to the lane width, longitudinal 

speed, and maximum allowable lateral acceleration respectively. 

 

(1) Circular trajectory: 

The trajectory consists of 2 circular arcs with a curvature equal in magnitude but 

opposite in direction, and a straight segment between the two arcs. The lengths of the straight 

segment have proven to be zero to minimize the transition time. Therefore, the circular 

trajectory is effectively consists of 2 arcs only. The radius of curvature (R) of the 2 circular 

arcs can be expressed by equation (7.2). The time spent (tc) for completing the circular arc 

depends on the vehicle speed, lane width, and the radius of curvature. Equation (7.3) 

calculates the time spent (tc) and the total transition time (T) is 2tc. Equation (7.4) shows the 

circular trajectory equations under different time period. 
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The radius of curvature calculated by equation (7.2) limits the lateral acceleration to 

maximum allowable level. Therefore this trajectory satisfies the requirement on lateral 

acceleration. However, the lateral jerk at the time of t = 0, tc, and T is infinity. It is due the 

discontinuous curvature and thus this trajectory is not desirable for lane changing. 

 

(2) Cosine trajectory 

 

The cosine trajectory is an approximation of the circular trajectory. Equations (7.5) and 

(7.6) show the cosine trajectory equation and its second derivative respectively. The α is 

selected by equation (7.7) to satisfy the lateral acceleration constraint. 
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The total transition time for cosine trajectory (Tcos) is defined in equation (7.7). The 

cosine approximation alleviates the problem of infinite lateral jerk at the middle of the 

trajectory that occur at t = tc. However, the second derivative of cosine trajectory still 
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discontinuous at t = 0 and Tcos. 

 

(3) 5th order polynomial trajectory 

 

The 5th order polynomial shown in equation (7.8) proposed by Nelson for lane change 

maneuvers. The variables in equation (7.8), y, x, Lw and d are the lateral position, 

longitudinal distance with respect to the starting point of the trajectory, lane width and the 

terminal point of the trajectory respectively. 

 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=

543

61510)(
d
x

d
x

d
xLxy w  (7.8) 

2

2

2

1 ⎟
⎠
⎞

⎜
⎝
⎛+

=

dx
dy

dx
yd

κ  (7.9) 

 

In order to find the polynomial trajectory that satisfies the lateral acceleration limit, the 

point of maximum curvature (xm) on the trajectory is found. The ratio of xm to the terminal 

point (d) is also evaluated as 0.2113 (i.e. xm/ d = 0.2113). The equation (7.10) relates the lane 

change distance d (i.e. the point of trajectory termination) to maximum allowable lateral 

acceleration (a1max).  
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The 5th order polynomial offers a closed form of trajectory presentation and continuous 
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curvature which satisfy both constraints on lateral acceleration and jerk. Thus consider the 3 

candidates described above, the 5th order polynomial is selected as the reference trajectory 

for virtual curvature determination. 

 

To implement the polynomial equation (7.8) and the curvature equation (7.9), the 

equation (7.8) is modified to equation (7.11) as a function of time by substituting the vehicle 

longitudinal distance (x) with velocity times time (i.e. Vt). The equation (7.9) is simplified to 

the second derivative of the polynomial trajectory. Equation (7.12) shows the express of the 

simplified version of (7.9) that expressed as a function of Vt. The modifications of both 

equations are based on the works by Chee and Tomizuka (1994).  
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The total transition time (Ttaken) of the lane change trajectory is obtained by 

V
dTtaken =  (7.13) 

 

The lane width (Lw) and maximum lateral acceleration (a1max) are substituted into (7.10) 

to find d. Then d is substituted to equation (7.12) for setting up the function of polynomial 

curvature (κ). When the function of curvature profile of the virtual reference lane is ready, the 

lane change maneuver can be started through the lane change scheme described below. 

7.4.3. Lane change scheme 

The proposed lane change scheme is a unified controller approach, using the same 
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lateral controller in both lane keeping and lane changing. Owing to the difficulties described 

in Section 7.2, hardware sensors are not feasible to measure lateral position during lane 

change. The lane change scheme is based on the property of bicycle model to establish a soft 

sensor to estimate the vehicle lateral position during lane change according to the assigned 

virtual road curvature and steering angle. The flow of the lane change scheme is described as 

follows. 

 

Figure 7-3 : Lane keeping scheme at Stage I and III. 

Referring to Figure 7-2, the proposed lane change algorithm is divided into three Stages. 

In Stage I, vehicle performs lane keeping at the original lane with the control block diagram 

shown in Figure 7-3. In the figure, hardware lateral sensor measures vehicle lateral 

displacement from the reference lane. Then the lane keeping controller minimizes the lateral 

error based on the measured lateral information. The full architecture of the lateral controller 

is described in Chapter 4.  

 

Figure 7-4: Lane change scheme at Stage II. 

In Stage II, vehicle starts lane changing with the proposed lane change scheme as 

shown in Figure 7-4. In Figure 7-4, the hardware sensor is replaced by soft sensor and the 
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lateral controller remains the same as lane keeping therefore there is no switching of 

controller. The soft sensor calculates virtual curvature (ρref) and measures actual steering (σf) 

from the steering wheel. The virtual curvature is generated from the virtual lane reference 

generator using equations (7.11) and (7.12). The ρref and σf are then feed into bicycle model 

for lateral position estimation. Then the lane keeping controller maintains the vehicle lateral 

position with the estimated lateral displacement from the bicycle model. 

 

In Stage III, after the lane changing from Lane A to B shown in Figure 7-2, vehicle 

resumes lane keeping in the destination lane with the control block diagram shown in Figure 

7-3. Then the lateral controller maintains the vehicle lateral position according to sensor 

measurement in Lane B. 

 

The lane change algorithm and scheme is summarized by the following steps: 

1. Obtain the lane width (Lw) and desired lane change longitudinal distance (d). 

Formulate the virtual reference lane by substituting Lw and d into equation (7.11) 

of the lane change polynomial (y(x)). 

2. Differentiate y(x) and substitute it into equation (7.12) to find the curvature of the 

polynomial (κ). Establish the virtual road curvature profile by putting ρref =κ for 

implementation. 

3. Perform lane keeping at original lane that the lateral controller inputs are 

physical sensors measurement. 

4. Assign the calculated virtual road curvature and the actual steering angle to 

bicycle model for lateral position estimation during lane change at Stage II. 

5. Use the lateral position estimated by bicycle model with respect to virtual 

reference lane as the lateral controller inputs in Stage II (Figure 7-3). The lateral 
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controller maneuvers the vehicle to adjacent lane by using the same controller as 

lane keeping in Stage I. 

6. Resume lane keeping at the Stage III and uses physical measurement as the 

lateral controller inputs. 

The implementation of the proposed lane change algorithm and scheme will be 

presented later in Section 7.7. In the coming section, the lane change abortion trajectory is 

discussed. 

7.5. Lane Change Abortion - Collision Free Abortion Point Analysis 

The lane change maneuver offers flexibility in vehicle navigation, coordination and 

obstacle avoidance. However, during lane changing the merging vehicle should cross lanes 

which imply that the vehicle should consider obstacles or vehicles on both lanes that may 

inference the vehicle safety. To encounter danger situation during lane changing, the typical 

actions are abortion of lane change or performing emergency braking. In general, emergency 

braking is the last alternative if avoidance maneuvers can be executed. For the abortion of 

lane change, the vehicle should maneuvers back to the original lane to avoid danger and 

resume lane keeping at original lane. 

 

In this section, the determination of collision free abortion point will be discussed. The 

collision fee abortion point defined here refers to the point that vehicle initiates abortion 

would not colloid with obstacles at the adjacent lane. To my best knowledge, this is the first 

analysis to be documented for the evaluation of collision free abortion point. The details of 

the analysis are shown below. 
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Figure 7-5: Lane change and lane change abortion. 

 

Figure 7-5 illustrates the trajectory of the merging vehicle (M) performing lane change 

or lane change abortion. In the figure, vehicle M initiates lane change maneuver at its original 

lane and terminate at the adjacent lane which follows the dotted trajectory to complete lane 

change successfully. However if risky situation is encountered during lane change, lane 

change abortion will be activated which follows the solid trajectory to escape from danger. 

To analyze the abortion process, the abortion trajectory should be obtained explicitly and it 

will be discussed as follow. 

 

The longitudinal distance between the abortion point of lane change and the position 

resume lane keeping is defined as the abortion distance (da). The length of da depends on 

varies of parameters such as lateral position of the abortion point, vehicle speed, lane width, 

and the allowable lateral acceleration. In general, the abortion trajectory can be regarded as 

the mirror image of the lane change trajectory. On the lane change trajectory, the vehicle 

orientation at both initial and termination points are zero so that the vehicle maneuvers to the 

adjacent lane smoothly. However during lane changing, the vehicle orientation at the abortion 

point is not zero which implies that the initial condition of the abortion trajectory is not 

equivalent to the lane change trajectory. Owing to the difference in the initial condition, 

mirror image of the lane change trajectory cannot be directly applied to determine the 

abortion trajectory. 
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Figure 7-6: Lane change abortion process. 

To obtain the abortion trajectory and the associated longitudinal abortion distance, the 

process of lane change abortion is divided into two Phases as shown in Figure 7-6. In Phase I, 

the vehicle adjusts its orientation to zero from the abortion point (PA) to zero orientation 

point (Pz). Then In the Phase II, the vehicle maneuvers back to the original lane from Pz with 

lateral displacement Lzo. The total longitudinal distance required of the 2 Phases mentioned 

above is the required abortion distance (da).  

 

The collision free abortion point is determined from the maximum lateral position of 

the abortion trajectory. From the figure, it can be seen that the maximum lateral position of 

the abortion trajectory is located at Pz which depends on the lateral displacement required for 

orientation adjustment (Ladj). The followings show the trajectories determination of the two 

Phases described above. 

 

7.5.1. Phase I – Vehicle Orientation adjustment 

To determine the trajectory in Phase I, consider a circle with equation (C1) as shown in 
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(7.14) with centre located at x0 and y0 with radius R. The variables x and y are horizontal and 

vertical position respectively. Further consider the tangent lines to the circle C1, the angle of 

the tangent lines is directly proportional to the first derivative of C1 with respect to x. 

Equation (7.15) shows the first derivative of C1 (y’) which also shows that y’ equals to zero 

when x = x0. Therefore it shows that the angle of tangent line at x = x0 is zero. 

 

( ) ( )
( ) 0

2
0

2

22
0

2
01 :

yxxRy
RxxyyC

+−−=

=−+−
 (7.14) 

( )
( )2

0
2

02

xxR

xx
dx
dyy

−−

−
==′   

⎪
⎩

⎪
⎨

⎧

=′
<′
>′

,0
,0
,0

y
y
y

0

0

0

xx
xx
xx

=
<
>

 (7.15) 

 

Assuming the vehicle follows the circular trajectory and the vehicle orientation is equal 

to the angle of the tangent lines. Then it can be further assumed that the vehicle orientation is 

zero when its horizontal position equals to the centre of the circle. Therefore the vehicle 

orientation can be adjusted to zero by using a circular trajectory that connects the point of 

abortion and the point of zero orientation. 

 

 

Figure 7-7: Abortion distance required in the first section of abortion. 
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Figure 7-7 illustrates abortion distance (d1) required in the Phase I of the abortion 

process. The circular trajectory shows in dashed line. The vehicle orientation at abortion 

point is θ. The distance d1 effectively is the horizontal distance between the abortion point 

(PA) and the zero orientation point (PZ). Let the vertical distance between PA and PZ be Ladj 

and the center of circular trajectory is located at (x0,0) with radius R. Then the position of the 

PA and PZ can be evaluated as (x0-d1, R-Ladj) and (x0,R) respectively. 
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To formulate the circular trajectory for vehicle orientation adjustment, the variables R, 

d1 and Ladj shown in the figure should be obtained. (7.16) shows the equation for determine 

the radius of curvature R which is subject to the vehicle speed (V) and the maximum 

allowable lateral acceleration (a2max). For the longitudinal abortion distance (d1) calculation, 

(7.15) is modified to (7.17) by replacing the (x1-x0) and y’ by d1 and tanθ respectively where 

θ is vehicle orientation at abortion point. 

 

When the value of R and d1 are obtained, the Ladj can be evaluated in terms of R and d1 

by substituting the positions of PA and PZ into the circle equation C1 with center (x0, 0) and 

solve simultaneously to form equation (7.18). The value of Ladj associates with the maximum 
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lateral position (Lmax) in the abortion process. Lmax can be calculated by adding Ladj with the 

vehicle lateral position at the abortion point (Lab refer to Figure 7-6). 

7.5.2. Phase II – Abortion Trajectory 

The abortion trajectory considered in the Phase II is the path that connects the point of 

zero orientation (Pz) to the original lane. As the aforementioned discussion, the abortion 

trajectory can be expressed as the mirror image of the lane change trajectory provided that 

the initial condition is the same. Since the initial vehicle orientation has been adjusted to zero 

in Phase I, the lane change trajectory equation can be employed to determine the abortion 

trajectory. 

 

The abortion trajectory equation employed is the same as the 5th order polynomial 

discussed in Section 7.4.2. Equation (7.19) shows the abortion distance (d2) required in the 

Phase II of the abortion process. In equation (7.19), Lzo (which shown in Figure 7-6) is the 

lateral distance between the point of PZ and the target position at the original lane.  
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To conclude the total abortion distance da required is equal to the sum of the distance 

determined in Phase I and Phase II of the abortion process which as shown in (7.20). The da 

is expressed in terms of the V, Lzo, and a2max. Therefore the da can be calculated immediately 

when the abortion point is located. 
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7.6. Abortion trajectory analysis 

The lane change algorithm and the formation of lane change abortion trajectory have 

been presented in the previous sections. The abortion trajectory evaluated by circular and 

polynomial trajectories at the above sections provides two valuable information of the 

abortion process. First the abortion longitudinal distance is explicitly calculated. Second the 

maximum vehicle lateral position (Lmax) in the abortion trajectory is calculated. The abortion 

trajectory analysis in this section introduces the collision free abortion point based on the 

abortion trajectory stated above. 

 

Safety abortion region 

 

The collision free abortion point (Pcf) is defined as the point of abortion on the lane 

change trajectory that guarantees no collision occurs with obstacles at adjacent lane. The Pcf 

is evaluated by investigating the abortion points which ensure the abortion trajectory does not 

violate the Safety abortion region (Sr). Sr is the lateral region that the merging vehicle will 

not collide with the vehicle at the adjacent lane. The determination of Sr is based on the 

assumption that the vehicle at the adjacent lane traveling at the lane center. Figure 7-8 

illustrates the Sr with shaded region and it can be calculated by equation (7.21) where Vw and 

Lw are vehicle width and lane width respectively. Since the Sr is not occupied by other 

vehicles, collision free can be guaranteed if the merging vehicle M does not violate this 

region. 
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Figure 7-8: Safety region in lane change abortion. 

 
Collision free abortion point 

Once the Sr is defined as above, the Pcf can be established by calculating Lmax of the 

abortion trajectory with respect to the abortion point. As stated in Section 7.5.1, the Lmax is 

equal to sum of the abortion point lateral position (Lab) and the lateral displacement (Ladj) 

required for orientation adjustment (i.e. Lmax = Lab + Ladj). The condition for collision free 

abortion can be established based on the Sr, Lab, and Ladj as shown in (7.22). Therefore any 

abortion points and the associated Ladj satisfy (7.22) are Pcf. 

 

adjabr LLS +≥  (7.22) 

 

Referring to Section 7.5.1, the calculation of Ladj is related to the vehicle speed (V), 

allowable lateral acceleration (a2max) and the vehicle orientation (θ) at the point of abortion 

as shown in (7.18). These 3 parameters are regarded as the initial condition of the abortion 

process. Since the abortion point initiates on the lane change trajectory, the initial condition 

can be generated from the lane change trajectory.  

 

To generate initial condition of abortion point for Pcf evaluation from the lane change 

trajectory, the 5th order polynomial (7.8) and its first derivative (7.23) are used for Lab and the 

vehicle orientation (θ) determination. Consider equation (7.8), y(x) associate the vehicle 
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lateral position with respect to the longitudinal position x to Lab(x) by (7.23). The shape of y(x) 

depends on V, Lw and d (d is associated with V, Lw, and a1max as shown in (7.10)). For (7.24), 

it is the slope (tanθ) of the lane change trajectory so that gives the vehicle orientation. 

Therefore by substituting xab as the longitudinal abortion point of the lane change process 

Lab(xab)= y(xab) and tanθ = y’(xab). 
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For the determination of Ladj in the abortion process, equation (7.17) for abortion 

distance calculation is modified to (7.25) by substituting tanθ = y’(xab). Then equation (7.18) 

for Ladj determination is then modified to (7.26) as a function of abortion point position. 

Finally the condition for collision free abortion shown in (7.22) is changed to (7.27) as a 

function of longitudinal abortion point so that the Pcf can be found when the lane change 

trajectory is established. 
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7.6.1. Determination of collision free abortion point 

The condition for collision free abortion point presented at the above section provides 

the foundation for analyzing the range of collision free abortion. In this section, the collision 

free abortion point under different speed and lateral acceleration requirements will be 

evaluated. From the evaluated Pcf, a generalized collision free abortion range will be 

presented. 

 

In order to generalize the location of Pcf, the Pcf is represented by the percentage of 

longitudinal lane change distance completed. The procedure to evaluate the Pcf summarized 

as follows: 

1. Calculates lane change distance d by (7.10) subject to V, Lw, and a1max. 

2. Calculates Lab(xab) and tanθ of all possible abortion points along the lane change 

trajectory by (7.23) and (7.24) respectively. ( where 0 < xab< d ) 

3. Evaluates abortion distance (d1) corresponding to the abortion point xab by (7.25) 

subject to V and a2max. 

4. Obtains Ladj(xab) by (7.26) subject to V and a2max. 

5. Obtains the Lmax with respect to the percentage of lane change completed 

⎟
⎠
⎞

⎜
⎝
⎛ × %100

d
xab  by Lmax = Lab(xab) + Ladj(xab). 

The objective of the above procedure for Pcf calculation is evaluating all the possible 

abortion points on the lane change trajectory for collision free analysis. The Pcf calculation 

consists of 5 steps and it starts with establishing the lane change trajectory subject to V, Lw, 

and a1max. When the lane change trajectory is established, step 2 to 5 is repeated with 

constant V and a2max until all the possible point is evaluated. In the rest of this section, the 

analysis on the range of Pcf under different speed and lateral acceleration limit will be shown. 
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The parameters setting for Pcf determination under different condition are summarized 

in Table 7-1. The Lane width (Lw), vehicle width (Vw), and the safety region (Sr) are 3.4m, 

1.7m and 4.25m respectively. The a1max in lane change process is fixed at 0.2g. For the range 

of a2max in abortion process and vehicle speed are 0.1g to 0.5g and 20km/h to 80km/h 

respectively. 

 

Lw 3.4m a1max 0.2g 

Vw 1.7m a2max 0.1g to 0.5g 

Sr 4.25m V 20km/h to 80km/h 

Table 7-1: Collision free abortion point analysis 

Figure 7-9 shows the results on the maximum lateral position (Lmax) of the abortion 

process against the percentage of lane change completed under different speed and allowable 

lateral acceleration (a2max). The shaded region shown in the figures is the safety region Sr 

which assumed as 4.25m. To begin the discussion on the evaluations results, the relationship 

between the a2max and the abortion trajectories will be described. Since the trajectories in the 

abortion process are curved path, the a2max would limit the curvature of the path. The radius 

of curvature is proportional to speed but inversely proportional to a2max (as shown in 

equation (7.16)). Normally as speed increase, the radius increase and enlarge the Lmax. 

 

Figure 7-9a to Figure 7-9e show the results on Lmax with a2max = 0.1g to 0.5g 

respectively. Figure 7-9a shows that the Lmax are almost the same with different speed under 

a2max = 0.1g. This result suggests that the effect of vehicle speed is suppressed by the large 

radius of curvature with a2max = 0.1g. The range of collision free abortion is about 42% of the 

lane change.  
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Figure 7-9a 

 

Figure 7-9b 

 

Figure 7-9c 

 

Figure 7-9d 

 

Figure 7-9e 

Figure 7-9: Collision free abortion region. 

From Figure 7-9b to Figure 7-9e, the effect on vehicle speed variation is significant to 
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the Lmax that the Lmax increase with the increase in vehicle speed. In the figures, the deviation 

of Lmax between different speeds is decreasing as the increase in percentage of lane change 

completed. It is due to the decrease in vehicle orientation as it close to the end of the lane 

change process, the vehicle orientation adjustment becomes insignificant. 

 

For the effect of the allowable lateral acceleration on the collision free abortion region, 

the result shows that the increase in a2max (from 0.1g to 0.5g) would enlarge the range of 

collision free abortion region (from 42% to 47.5%). Finally from the result in Figure 7-9, the 

collision free abortion region is concluded as 40% for different speed and allowable lateral 

acceleration operation. 

 

To summarize the achievements in lane change abortion analysis, the lane change 

abortion trajectory is decomposed into two phases for evaluation. The total longitudinal 

abortion distance is explicitly calculated which can be employed in longitudinal control 

scheme. Collision free point is evaluated under different speed of operation and lateral 

acceleration constraints.  

7.7. Simulation and Experimental Results on Lane Change 

The simulation and experiment of the proposed lane change algorithm and lane change 

scheme are implemented on a scaled prototype autonomous vehicle that shows in Chapter 3. 

The speed controller is a conventional PID controller to maintain the vehicle speed constant 

at 0.7ms-1.  

 

7.7.1. Simulation Result 

The proposed virtual curvature algorithm was simulated under MATLAB SIMULINK 
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environment. The control scheme used in the simulation is the block diagram described in 

Section 7.4.2 (Figure 7-3). 

 

The bicycle model of the prototype vehicle shown in Chapter 3 is used for simulation. 

The bicycle model parameters used in the simulation are shown in Table 7-2. In the 

simulation, we assumed the vehicle traveling on a double lane highway with lane width 0.6m 

(Lw = 0.6m). The maximum allowable lateral acceleration (a1max) is 0.05g (0.49ms-2) which 

gives margin for controller action. The lateral controller had to keep the vehicle 0.2m from 

the reference lane. The minimum lane change distance d with above mentioned constraints 

was 1.86m which calculated by (7.10). 

 

In the simulation, the desired longitudinal distance to complete lane was assumed as 

3m (longer then the minimum distance) with constant speed at 0.7ms-1 (V = 0.7ms-1). The 

desired Lw, d, and V were substituted into equations (7.11), (7.12), and (7.13) to calculate the 

curvature of the virtual transition lane (κ) and total transition time (Ttaken). Figure 7-10 shows 

the curvature (κ) of the virtual transition lane and the total time of transition (Ttaken) is 4.28s. 

a21 251.64 a44 -60.25 

a22 -130.13 b21 63.77 

a24 61.7 b22 -0.49 

a41 139.56 b32 0.14 

a42 -4.9 b41 -6.67 

Table 7-2: Vehicle parameters. 
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Figure 7-10 : Curvature of virtual transition lane 

 

 The vehicle performs right lane change maneuvers in the simulation. The lane change 

starting time (Ts) is 5s. The lane change finishing time (Tf) is Ts + Ttaken = 9.28s. Figure 7-11 

shows the simulation result of the vehicle trajectory with respect to the original lane. In Stage 

I (t = 0 to Ts), the vehicle performs lane keeping and maintains at 0.2m from the original lane. 

At Stage II (t = Ts to Tf), vehicle performs lane changing and its position changes from 0.2m 

to 0.8m with respect to the original lane. Therefore the virtual transition lane guides the 

vehicle towards the destination lane. Finally in Stage III (t > Tf), the vehicle resumes lane 

keeping at destination lane. 

 

The simulation result shows that the proposed control scheme and the lane change 

algorithm are able to solve the lane change problem. 



 

 7-33

 

Figure 7-11 : Lane change simulation 

7.7.2. Experiment setup 

This section shows the physical setting of the test track for lane changing experiment. 

The proposed algorithm was implemented on the scaled prototype autonomous vehicle. A 

double lane test track was constructed with lane length (Lw) 0.6m for the experiment. Figure 

7-12 shows the experimental setup for the lane change experiment with the proposed 

algorithm. The vehicle had to complete the lane change from Lane A to Lane B within a 

desired lane change longitudinal distance (d).  

 

Two different lane change longitudinal distances 4m and 5m were tested. Assuming the 

vehicle starts lane change at 5s (i.e. Ts = 5s) with constant speed at 0.7ms-1. The lane 

transition time for 4m and 5m calculated by equation (7.13) are 5.71s and 7.14s respectively. 

Therefore the lane change finishing time (Tf) for 4m and 5m are 10.71s and 12.14s 

respectively. 
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Figure 7-12: Lane change experiment setup with virtual transition lane. 

 

The vehicle was programmed to perform the right lane change maneuver. The lane 

change maneuver started at time 5s (Ts) and finished at Tf for different cases of lane change 

distances. Infrared sensors installed on both sides of the vehicle to measure the lateral 

distance from the reference lane. Sensor measurements were used as feedback during the lane 

keeping (Stage I and III), however, sensor measurements were inaccurate during lane 

changing (Stage II). Therefore the sensor measurements in Stage II are used to illustrate 

vehicle lateral position only. 
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Figure 7-13: Lane change experiment setup with physical transition lane. 

To show the performance of the virtual transition lane method is comparable with 

physical transition lane, a test track with physical transition lane was built. Figure 7-13 shows 

the experiment setup of the physical transition lane on a double lane scenario. The trajectory 

of the physical transition lane is based on the polynomial described in equation (7.8). The 

vehicle performs lane keeping at Lane A and follows the physical transition lane to Lane B. 

 

Implementation requirement and hardware constrains 

 

Some assumptions were made to implement this algorithm. The first assumption was 

that the bicycle model of vehicle had already been identified. The second assumption was 

that the lane keeping controller was able to follow the reference lane. The third assumption 

was that the vehicle speed was constant and the road was straight during lane change 
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maneuver. The last assumption was due to the fact that the infrared sensors installed on the 

scaled prototype vehicle are Sharp GP2D12, which measurement range is 0.1m to 0.8m. 

These sensors are inaccurate for long distance measurement. So we further assume that the 

reliable measurement range was 0.1m to 0.4m. 

 

7.7.3. Experimental results 

Figure 7-14 and Figure 7-15 show the experimental results of longitudinal lane change 

distances (d) equal to 4m and 5m respectively. In these Figures, different lane changing 

stages are labeled and separated by dashed line. The vehicle lateral distance with respect to 

Lane B is recorded. The 2 dotted lines located at 0.8m and 0.2m are the desired lane keeping 

distance at Lane A and Lane B respectively. In Stage I (t = 0 to Ts), vehicle perform lane 

keeping at Lane A. The lane changing process starts at Stage II (t = Ts to Tf). In Stage II, the 

virtual transition lane curvature is feed into bicycle model to estimate the lateral distance 

from the virtual transition lane. After Tf the vehicle enters the final stage, Stage III the vehicle 

resume lane keeping at Lane B till the end of the experiment. 

 

Figure 7-14(a) shows the lane change result with 4m virtual transition lane. At Stage II, 

the result shows that the vehicle lateral position with respect to the Lane B is decreasing 

therefore the vehicle is moving toward to Lane B. At the end of Stage II (t = Tf), the vehicle 

lateral position is 0.28m which is higher than the desired 0.2m from Lane B. At Stage III, the 

vehicle resume lane keeping at Lane B and the lane keeping controller adjust the vehicle 

lateral position from 0.28m to the desired lane keeping distance till the end of the experiment.  

 

Figure 7-14 (b) shows the lane change result with 4m length physical transition lane, 

the dashed lines on t = 5s and t = 10.7s indicate the starting and termination of physical 
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transition lane respectively. To show the lane change performance with virtual transition lane 

is comparable with physical transition lane, the trajectories (time 5s to 10.7s) shown in 

Figure 7-14(a) are compared with Figure 7-14(b). The difference between these 2 trajectories 

is evaluated by Integral Square of Error (ISE). The ISE evaluated for 4m lane change is 

0.2576. 

 

 

(a) (b) 

Figure 7-14: Experiment result with virtual transition lane (a) and physical transition lane (b) (d = 4m). 

 

For the experiment with 5m lane change distance, the results are shown in Figure 7-15. 

Figure 7-15(a) shows the result with 5m length virtual transition lane. The result also shows 

that the vehicle lateral position is moving towards to Lane B. The vehicle lateral position at 

the end of Stage II (t = Tf) is 0.12m which is lower than the desired lane keeping distance. 

Finally, at Stage III lane keeping controller resumes lane keeping at Lane B and maintains the 

vehicle at the desired lateral position till the end of the experiment. 

 

Figure 7-15(b) shows the result with 5m length physical transition lane. The vehicle 

starts lane change with physical transition lane at t = 5s and terminated at 12.5s. The 
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difference between the 2 trajectories (time 5s to 12.5s) shown in Figure 7-15(a) and Figure 

7-15 (b) is evaluated. The ISE for 5m length lane change trajectory is 1.578. 

 

(a) (b) 

Figure 7-15: Experiment result with virtual transition lane (a) and physical transition lane (b) (d = 5m) 

 

The lane change trajectories with virtual transition lane and physical transition lane 

under different longitudinal lane change distance (d=4m and d=5m) are compared. The ISE in 

the case of 4m and 5m longitudinal lane change distance are 0.2576 and 1.578 respectively. 

The results show that the lane changing trajectory with the proposed virtual transition lane 

method is comparable with the lane change trajectory with physical transition lane. 

  

However, the ISE of d=5m is much larger than the ISE of d=4m. It may due to 2 

possible error source of the experiment. The first possible error source is the accumulation of 

modeling error during the lane change process. Since the error in bicycle model estimation 

would be accumulated, longer transition time should have larger error. The second possible 

error source is the error in the physical transition lane trajectory. The physical transition lane 

trajectory with 5m long is difficult to be constructed as same as the 5th order polynomial. 
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7.8. Conclusions 

The concept of virtual road curvature for assisting automatic lane change maneuvers is 

presented. This idea is inspired by the relationship between the vehicle lateral dynamics and 

reference lane curvature. A 5th order polynomial trajectory is chosen as the virtual lane 

change trajectory and its curvature is used in the proposed algorithm as the virtual curvature. 

In addition to the concept of virtual road curvature, a lane change control scheme is proposed. 

The proposed scheme tackles the lane change problem with unified lateral controller 

approach. Therefore, there is no switching of controller involved in the scheme. 

 

In addition to the scheme of lane changing, safety consideration of lane change abortion 

trajectory is also investigated. In this chapter, the details on the abortion trajectory are 

presented by explicit calculation of the abortion distance and maximum vehicle lateral 

position in the abortion trajectory. Based on the evaluated abortion trajectory, collision free 

abortion region is proposed for collision free abortion point evaluation. In depth simulations 

on the relationship between vehicle speed, allowable lateral acceleration, and lane change 

process are conducted. The result concludes that the abortion process initiated at the first 

40% (longitudinal) of lane change is within the defined collision free abortion region. The 

abortion point will be tested experimentally in Chapter 8. 

 

The proposed lane change scheme is tested in both simulation and experimental test 

track on a scaled vehicle. Both simulation and experimental result shows that the proposed 

algorithm is able to solve the lane change problem. Furthermore, the experimental results 

show that the performance of the proposed virtual lane method is comparable with physical 

transition lane method.  
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Experimental case studies of the overall control system will be evaluated in the coming 

chapter by implementing the controllers suggested in the previous chapters on the 

semi-autonomous vehicle that presented in Chapter 3. 
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Chapter 8. Experimental Verification of Lateral Control 

Algorithms 

8.1. Introduction 

This chapter further examines the proposed lateral controllers by setting up 

realistic scenarios for experimental studies. The experimental vehicle used in this 

chapter is the scaled prototype semi-autonomous vehicle that was presented in 

Chapter 3. A lateral model of the prototype vehicle has been used for controller design 

based on the bicycle model as presented in the previous chapters. 

 

The prototype vehicle is equipped with infrared sensors, a rotating encoder, a 

steering servo motor, and an industrial computer that is used as a data monitoring and 

control management center (lateral distance measurement, speed measurement, front 

wheel steering, and control algorithms implementation). The sensing, actuation and 

computing units installed form the main hardware platform for experimental studies. 

The detailed hardware configuration of the vehicle was presented in Chapter 3. 

 

This chapter starts with experiments for speed and lateral control studies. These 

two tasks (speed and lateral control) are the building blocks of the autonomous 

vehicle control. To achieve further experimental development and analysis, both 

controllers are required. The speed control experiment shows the ability of the speed 

controller to maintain the vehicle speed at different desired levels. 

 

The lateral control experiment verifies the ability of the lane keeping controller 
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working under different speeds on straight as well as curved road profiles. The lateral 

control experiment assumes that the preview of the road curvature is not available. 

  

The lane change abortion analysis presented in Chapter 7 will also be verified 

experimentally in this chapter. Different abortion trajectories will be recorded under 

different speed settings. The analysis result suggests that collision free lane change 

abortion points are located within the first 40% of the lane change process. Finally, 

the lane change scheme, speed control, and lateral controller are integrated together to 

show the experimental verification of the overall control and management center.  

 

The organization of the chapter is as follows: Section 8.2 presents the results on 

fundamental experiment which includes speed control, lateral control and the 

experimental abortion trajectories. Section 8.3 shows the experimental setup and 

result on the integrated experiment of the suggested control algorithms. Section 8.4 

presents a discussion on the experiments conducted in this Chapter. Finally Section 

8.5 concludes this Chapter. 

8.2. Fundamental experiment analysis 

The lateral controller and the lane change algorithm were experimentally tested 

in Chapters 6 and 7 respectively. In Chapter 6, the NN and Fuzzy controllers were 

studied on a straight road scenario and were compared against each other based on a 

step response test. The results demonstrated that the controllers were able to adjust the 

vehicle lateral position in the straight road scenario. In this chapter, the lateral 

controller performance is further evaluated on curved road profile. 

 

In Chapter 7, the author proposed a lane change scheme with virtual curvature 
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algorithm and suggested the collision abortion points were located within the first 

40% of the lane change process. In this section, lane changes with abortion are 

conducted with different speeds so that reaffirm experimentally the conclusions drawn 

in Chapter 7. 

 

8.2.1. Speed control 

The speed controller implemented on the vehicle is a PID controller. The PID 

parameters were manually tuned through experiments. The parameters of Kp, Ti , Kd 

were obtained as 15.0, 0.7, and 0.2 respectively. In the speed control experiment, the 

speed set-point was a staircase profile. The speed set-point was scheduled at 30, 60, 

and 80cms-1 (Figure 8.1). The speed set-point profile was changed every 8s and the 

sequence of the set-point changes were 30, 60, 80, 60, and 30cms-1. Therefore there 

were four step changes -2 rising and 2 falling, in the profile in order to examine the 

vehicle speed response in both acceleration and deceleration modes. From the speed 

control experiment, the average acceleration and deceleration factor of the PID 

controller corresponding to speed error was determined. 

 

Figure 8-1 shows the vehicle speed control experimental result. The solid and 

dashed lines are the measured vehicle speed and speed set-point respectively. As 

expected, the level of noise increases with increase in the speed. The noise is due to 

the microcontroller miss counting on the number of pulses generated by the rotating 

encoder. As the speed increases, the frequency of the pulses chain produced by the 

rotating encoder increase. Therefore, the chance of the microcontroller missing the 

number of pulses would increase as well. 
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The vehicle starts at standstill and accelerate to 30cms-1 with 2.5s. When the 

set-point is changed to 60cms-1 and 80cms-1, it takes 2s and 1.7s to reach the set-point 

respectively. For the deceleration from 80cms-1 to 60cms-1 and from 60cms-1 to 

30cms-1, the deceleration time are 1.7s and 2s respectively. 

 

From the experimental result, the acceleration and deceleration factors of the 

PID controller are similar and it is approximated as -0.5cms-1. Therefore when the 

speed error is -20cms-1, the corresponding vehicle acceleration rate is 10cms-2. 

 

 

Figure 8-1: Vehicle speed control experimental result.. 

8.2.2. Lateral control 

The NN and Fuzzy controllers proposed in Chapter 4 and 5 were verified 

experimentally in Chapter 6. The experiments conducted in Chapter 6 evaluated the 

controller performance by step response and performance index (such as ITAE and 

ISE). In the comparison of controller performance indices, NN controller 
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demonstrated a better performance than the two fuzzy controllers. Therefore the NN 

controller is selected as the vehicle lateral controller in this Chapter.  

 

In this Chapter, the performance of the NN controller is further evaluated on a 

curved road scenario. Figure 8-2 shows the experimental setup with a curved 

reference lane. The curved reference lane was built by cardboard as depicted in the 

figure. As previously mentioned in Chapter 3, the vehicle is equipped with two 

infrared sensors at the sides to measure the vehicle lateral distance from the reference 

lane. There are two curved sections with opposite turning directions. The vehicle is 

required to turn the right and then to the left while keeping the desired lateral distance 

from the reference lane. The radii of curvature of the two curved sections are 

unknown and there is no feed-forward compensator to assist the steering. Therefore 

the NN controller minimizes the lateral error only based on the look-down 

measurement of infrared sensors. 
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Figure 8-2: Lane keeping experiment setup. 

 

Figure 8-3, Figure 8-4, and Figure 8-5 show the controller lane keeping 

performance with speed 40cms-1, 70cms-1, and 100cms-1 respectively. The figures 

show the vehicle speed as well as the lateral distance during the experiment. The 

results show that the maximum deviation from the set-point is 7cm (at 100cms-1) 

during the right cornering. The vehicle is able to maintain at the desired lateral 

position (20cm) after the curved sections. 
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(a) 

 

(b) 

Figure 8-3: Lane keeping performance with speed =40cms-1. 

 

 

(a) 

 

(b) 

Figure 8-4: Lane keeping performance with speed =70cms-1. 

 

(a) (b) 

Figure 8-5: Lane keeping performance with speed =100cms-1. 
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8.2.3. Lane change abortion 

The analysis on lane change abortion trajectory was reported in Chapter 7. In the 

analysis, the collision free abortion point (Pcf) and the Safety abortion region (Sr) were 

introduced. Sr is the lateral region that the merging vehicle will not collide with the 

vehicle at the adjacent lane. From the analysis, the collision free abortion region is 

concluded as 40% of the lane change process for different speed and allowable lateral 

acceleration of operation. 

 

In this section, the collision free abortion region will be tested experimentally. 

The scaled autonomous vehicle was programmed to perform lane changing with 

abortion at 40% of the lane change process. The infrared sensors on board will record 

the lateral distance from the reference lane throughout the experiment. The vehicle 

lateral position will be compared with the Safety abortion region (Sr) so that to verify 

the successfulness of the defined collision free abortion point.  

 

The experiment was conducted in an indoor environment which the corridor 

wall served as the reference lane. Figure 8-6 illustrates the experimental setup of lane 

change abortion. The vehicle width (Vw) and lane width (Lw) are 20cm and 60cm 

respectively. The shaded region shown in the figure is the Safety abortion region (Sr) 

which defined in Chapter 7. Based on the assumption stated in Chapter 7 and equation 

(7.21), the Sr is 80cm from the reference lane. In order to show the vehicle lateral 

trajectory, the lateral distance yl (as depicted in the figure) is recorded during the 

experiment.  
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Figure 8-6: Lane change abortion experiment setup. 

 

The determination of virtual lane change curvature profile was described in 

Chapter 7. The lane change longitudinal distance is 4m which is determined with the 

lateral acceleration limit at 0.01g. In the experiment, the vehicle started with lane 

keeping which maintaining the vehicle 20cm from the reference lane and then the lane 

change maneuver was activated after time 5s. Subsequently, the lane change process 

was aborted and the vehicle resumed lane keeping at the original lane, when 40% of 

the lane change process was completed. 

 

Figure 8-7 shows the results of the abortion trajectories with dash line, dotted 

line and solid line for speed 50cms-1, 70cms-1, and 80cms-1 respectively. From time 0s 

to 5s, vehicle was operated in lane keeping mode and the results show that the vehicle 

lateral distance was maintained at 20cm under different speeds.  

 

After time 5s, the vehicle started lane changing and it took 3s, 2.5s, and 2s to 

reach to the point of lane change abortion with speed 50cms-1, 70cms-1, and 80cms-1 

respectively. Since the lane change distance was fixed at 4m, the time to reach 40% 

was shortest at high speed. At the abortion point, the maximum lateral distances (y) 
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from the reference lane were 37cm, 35cm, and 38cm for speed 50cms-1, 70cms-1, and 

80cms-1 respectively. 

 

After the abortion point, the vehicle resumed the lane keeping at the original 

lane. Form the figure, a large overshoot on the resuming trajectories is observed. This 

is due to the angle between the vehicle and the reference lane is too large such that the 

infrared sensor can not provide accurate measurements. Therefore it affects the 

performance of the lateral controller. 

 

As noted in Chapter 7, if the vehicle boundary does not violate the defined 

region Sr, the abortion process is collision free. Therefore in this experiment, if the 

vehicle lateral upper boundary yu (Referring to Figure 8-6) is smaller than 80cm, the 

abortion process is safe. 

 

 However the recorded vehicle lateral position is the lower boundary yl, thus the 

upper boundary yu is reproduced from yl by adding the vehicle width (Vw). Therefore 

yu = yl + 20cm. In the experimental result shown in Figure 8-7, the maximum lateral 

position is 38cm at speed 80cms-1(i.e. yl = 38cm). Then the maximum vehicle lateral 

upper boundary position (yu) is 58cm (yu = yl +20cm). Since yu = 58cm is smaller than 

Sr = 80cm, the experimental results conclude that the lane change abortion started on 

or before 40% of lane change process is collision free. The experiment results 

consolidate the findings in the abortion analysis stated in Chapter 7.  
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Figure 8-7: Experimental abortion trajectories under different speed. 

8.3. Integrated experiment 

In this section, the performance of the fused neural network lateral controller 

and the lane change algorithm are evaluated in a single trail. In this experiment, the 

autonomous vehicle is scheduled to perform lane keeping with the proposed fused 

neural network lateral controller on a curved reference path. The lane keeping 

controller is required to maintain the vehicle 20cm from the reference lane. 

 

Then the vehicle is instructed to perform the lane changing with the proposed 

virtual curvature lane change algorithm to the adjacent lane on a straight road section. 

When the lane change process is completed, the vehicle resumes lane keeping at the 

adjacent lane till the end of the experiment. 

 

Two cases with different speed profiles were tested as follows:  
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Case 1: 

The vehicle initial speed was set at 40cms-1 for the first 12s. The vehicle speed 

was increased to 70cms-1 after time 12s. Since the length of the curved section was 6m 

(details on the test track setup will be shown on the coming section), the vehicle 

should take 15s with speed 40cms-1 to complete the riding on the curved road. 

Therefore after time 12s, the vehicle is close to the end of the curved section. Then the 

vehicle completes the lane changing and lane keeping on the adjacent lane with speed 

70cms-1 to the end of the experiment. 

 

Case 2: 

The vehicle speed is kept constant at 70cms-1 throughout the experiment. 

 

Figure 8-8 illustrates the test track setup in a corridor in the Department of 

Electrical Engineering. There are two lanes, namely Lane A (original lane) and Lane 

B (adjacent lane), in the test track with lane width 60cm. The reference lane of the 

Lane A is made by cardboard so that curved road sections can be implemented. The 

reference lane of the Lane B is the wall of the corridor. 

 

The profile of Lane A starts with 2 curved sections and followed by straight road. 

The lengths of curved and straight sections are 6m and 8m respectively. Therefore the 

total length of Lane A is 14m. The radius of curvature of the right and left cornering as 

depicted in the figure are 2.2m and 2m respectively. Lane B is a straight road profile 

with length 8m. 

 

As discussed in Chapter 3, infrared sensors are installed on both sides of the 

autonomous vehicle to measure lateral distance. To achieve lane changing and lane 
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keeping at both Lane A and B, sensors on both sides are required. In Figure 8-8, there 

is an illustration on the direction of sensor measurement and indicates the sensors 

used during lane keeping in Lane A and Lane B. The infrared sensors data at both side 

and vehicle speed are recorded during the experiments. 
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Figure 8-8: Integrated experiment setup. 
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8.3.1. Experimental Result 

Data treatment for presenting vehicle trajectory 

In this section the experimental result of the integrated experiment will be 

presented. The infrared sensors data is recorded throughout the experiment. However 

owing to limitation of infrared sensors on the detection range, the vehicle lateral 

trajectory cannot be reproduced from sensor data that measured with respect to a 

single reference frame (i.e. either reference to Lane A or Lane B). 

 

Figure 8-9(a) and (b) show the sensors measurements in case 1 with respect to 

the Lane A and Lane B respectively. The highly oscillatory measurement shown in 

Figure 8-9 is due to out of measurement range. From the figure, the complete vehicle 

trajectory cannot be reproduced either from Figure 8-9(a) or (b). 

 

In order to reproduce the vehicle trajectory, the 2 sets of sensor data from 

different reference frame are truncated together. The fluctuated data at the end of 

Figure 8-9(a) is replaced by the normal data at the end of Figure 8-9(b). Since the data 

is taken from different frame, the sensor data on Figure 8-9(b) is mapped to reference 

Lane A by offsetting the data with the width of vehicle and lanes. Let the sensor data 

measured with respect to reference Lane B, lane width, and vehicle width be yb(t), Lw 

(i.e 60cm) and vw (20cm from Chapter 3). Then the offset data of yb(t) with respect to 

reference lane A is calculated by 2Lw-vw-yb(t). 

 

The truncated result of the complete vehicle lateral trajectory of case 1 is shown 

in Figure 8-10(a). The vehicle lateral trajectories presented in this section are all with 

respect to the Lane A. 
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(a) 

 

(b) 

Figure 8-9: Sensors measurement in Case 1. 

Result of Case 1: 

After the mapping and truncation of the sensor data, Figure 8-10(a) and (b) 

show the vehicle lateral trajectory and vehicle speed profile of Case 1 respectively. In 

Figure 8-10, from time 0s to 12s, the vehicle is moving on the curved road sections 

with speed 40cms-1 and the result shows good tracking on the lateral position which 
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maintains the vehicle 20cm form the reference Lane A. 

After time 12s, the vehicle speed increases to 70cm-1. At time 18s vehicle starts 

the lane changing maneuver, the vehicle takes 6s to complete lane change and resume 

lane keeping at Lane B at time 24s and maintains the vehicle 80cm from the reference 

Lane A (which equals to 20cm from the reference lane B). 

 
(a) 

 
(b) 

Figure 8-10: Case 1 experimental result. 

Result of Case 2: 
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Figure 8-11 shows the vehicle lateral trajectory and vehicle speed profile of 

Case 2. In Case 2, the vehicle speed is maintain constant at 70cms-1. From time 0s to 

8s, the vehicle is riding on the curved road sections and it shows reasonable good 

tacking performance at 20cm from the reference lane A. At time 10s vehicle starts 

lane changing, the vehicle takes 6s to complete lane change and resume lane keeping 

at Lane B at time 16s. After time 16s, the vehicle is maintained 80cm from the 

reference lane A (i.e. 20cm from the reference lane B). 

 
(a) 

 
(b) 

Figure 8-11: Case 2 experimental result. 
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8.4. Discussion 

Lateral control experiment 
 

The lateral control experiment conducted on curved road section with different 

speed settings from 40cms-1 to 100cms-1. The results show that there is a strong 

coupling effect on the speed to vehicle lateral dynamic. The performance is 

deteriorated as the speed increase.  

 

Improvement can be made by adding feed-forward compensator which 

generates steering angle based on the prior knowledge on the road curvature. 

However if the road curvature is unknown, feed-forward compensation cannot be 

achieved.  

 

The other method to improve the controller performance is to modify the sensor 

location. In this thesis, the prototype vehicle equipped with 2 sensors for lateral 

distance measurement. The current location of the sensor at the front is installed in 

line with the front wheel. If the location of the sensor can be extended ahead to the 

front wheel, riding performance can be improved. Since the extension on the sensor 

location provides virtual look ahead lateral distance, the lateral controller adjusts the 

vehicle lateral position based on the virtual look-ahead distance. 

 
Integrated experiment 

 

The objective of the proposed lane changing algorithm with virtual curvature is 

to guide the vehicle form original lane to the adjacent lane without infrastructure 

support. The lateral sensing device used in the thesis is infrared sensor which provides 
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accurate short distance measurement. As mentioned in Chapter 7, the proposed virtual 

lane change algorithm and control scheme is activated to complete the overall lane 

change profile. 

 

In the integrated experiment, the lane change profile may not be completely 

executed and the time of lane changing with estimation may be shortened. The lateral 

distance to the adjacent lane is measured continuously during lane change. When the 

distance falls into reliable measurement range (i.e <40cm), normal lane keeping at the 

adjacent lane is resumed. The early resume process offers smooth transition between 

the 2 schemes and enhance the safety by shortens the time of lane changing with 

estimation. 

 

8.5. Conclusion 

In this Chapter, comprehensive experimental studies on vehicle control have 

been conducted. The fundamental tests on vehicle speed control and lateral control 

shown in this chapter provide the basis for the further studies on vehicle lane change 

maneuver and integrated experiments. 

 

The experimental lane change abortion trajectory accomplished in this chapter 

verifies the theoretical analysis on the collision free abortion point stated in Chapter 7. 

The suggested collision free abortion point is located at 40% of the lane change 

abortion process and it has been verified by the experiment under different speed. 

 

The integrated experiment shows feasibility on the integration of the two 

proposed controllers and lane change algorithm. Since there is no controller switching 
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in the suggested lane change algorithm, the lateral controller implemented performs 

both lane keeping and lane changing in cope with the virtual lane change algorithm.
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Chapter 9. Conclusions 

We have come a long way since Cugnot steam car. The joy and excitement of 

driving is somehow embedded in each of us. On the other hand, the explosion of the 

number of cars has led to air pollution, road congestion, noise pollution, and most 

importantly, the loss of human life. Technology can be used to alleviate some of these 

problems. Car manufacturers have already implemented driver assistance systems, 

cruise controller, dynamic radar cruise controller, parking sensors, anti-lock braking 

systems, dynamic stability control, etc. However, at present, only the top end luxury 

cars provide such features. But the trend is towards a move to driver assistance 

systems and this consolidates the vision for full automation in the near future. To 

realize complete vehicle automation, the problems associated with longitudinal and 

lateral controls and their interactions should be completely resolved. 

 

The studies on vehicle lateral control and automatic lane change maneuver are 

reported in thesis. The design of novel algorithms for lateral control and lane change 

are implemented in real-time control. Experiments conducted on the prototype vehicle 

demonstrated the effectiveness of the proposed control algorithms. The contributions 

of this thesis not only include studies on vehicle lateral control and lane changing, but 

also control engineering in a wider sense. In this chapter, the major contributions and 

some suggestions for future work are outlined. 

9.1. Major Contributions 

In this thesis, there are five major contributions toward the realization of 

autonomous vehicle and the applications of soft computing techniques in control 
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engineering. For the application of autonomous vehicles, a fused neural network 

controller is proposed as vehicle lateral controller and a virtual curvature lane 

change algorithm is established. Furthermore, Lane change abortion analysis is 

conducted to evaluate a collision free abortion point. For the application of soft 

computing method, a Fired Rules Chromosome encoding scheme is proposed to 

enhance convergence rate. Finally, experimental verification of the proposed 

controllers and algorithms are conducted. The major contributions are summarized 

as: 

 

 A fused neural network controller is proposed which utilizing task 

decomposition principle to design a novel and yet simple controller structure. 

The network structure reduces the number of connection weight by 40% in 

comparison to a fully connected network. The contribution of this controller 

structure is not only restricted to vehicle control but for a class of systems with 

angle and displacement as control variables such as inverted pendulum and 

ball-and-beam systems. Genetic algorithms are used to optimize the network 

weights for different control systems. For the vehicle lateral controller, 

Monte-Carol analysis has been conducted to evaluate controller robustness 

subject to ±20% parameter variation. The result shows that the suggested 

controller is robust to ±20% parameter variation. 

 

 Fire Rules Chromosome (FRC) encoding scheme is suggested to enhance the 

convergence rate of the fuzzy rules optimization process by GA. In FRC, the 

length of chromosome is changed dynamically from generation to generation. In 

each generation only fired rules will be encoded into chromosome for 

optimization in that generation. Since the length of chromosome governs the 
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search space, the reduction in search space would eventually enhance the 

convergence rate. Monte-Carol robustness analysis are conducted on the fuzzy 

controller optimized by FRC scheme and fuzzy controller optimized by 

traditional method. The result shows that FRC scheme would enhance the 

convergence rate but retain the controller robustness. 

 

 Virtual curvature lane change scheme is proposed to handle the automatic lane 

change problem. The lane change maneuver in the absence of infrastructure is a 

challenging task in autonomous vehicle research. The concept of virtual road 

curvature transforms the physical reference lane to the desired transition lane by 

the inherit property of vehicle lateral model. The proposed lane change scheme 

contains no switching of controller and thus offers smooth transition from lane 

change to lane keeping. Experimental studies have been conducted to show the 

feasibility of implementing the lane change scheme in realistic test track. 

 

 Lane change abortion analysis is conducted to show the collision free abortion 

point of a lane change process. To best of the author knowledge, it is the first 

analysis to document the collision free abortion point. In the analysis, collision 

free region is defined in terms of vehicle width and lane width. The collision 

free abortion point is defined as the point which ensures the vehicle completes 

the abortion process within that collision free region. The analysis result 

suggests that the collision free abortion point is located at 40% of the lane 

change process. 

 

 Experimental verification on the proposed controllers and lane change 

algorithms are conducted. Controllers and lane change scheme are integrated 
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and tested in a test track. The result shows the feasibility of implementing the 

suggested algorithms on a vehicle. In addition, the verification on the collision 

free abortion point under different speed consolidates the findings in the lane 

change abortion analysis. 

9.2. Suggestion for future work 

It is impossible to tackle all the problems of autonomous vehicle in thesis and 

this was never the intention. The following discussion gives a short summary of some 

topics, among others, that could be studied in future. 

 

 Further studies on the proposed fused neural network controller can be taken. 

The controller performance can be improved by online adaptation of the 

connection weights. The controller structure is simple and the number of 

connection weight is not bulky which makes it feasible for online adaptation. 

The algorithm may be enhanced to adjust the connection weights according to 

the vehicle speed and the tracking error. 

 

 The proposed lane change algorithm and control scheme could be further 

explored. In the proposed scheme, the period of lane changing with virtual 

curvature method is the full lane width. However, if the maximum 

measurement range of sensors can be considered in the lane change scheme, 

the period of lane change by estimation can be reduced. The reduction would 

enhance the safety and the accuracy of the whole lane change process. 

 

 The development and improvement of the prototype vehicle is extensive for 

conducting precise experiment. The locations of the lateral sensor should be 
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extended to the front end of the vehicle so that to establish a virtual look-ahead 

distance to enhance the performance of the vehicle lateral control. 

 

 In the thesis, the look-down reference system is assumed and no road 

curvature is available. However, on board navigation system with GPS and 

digital map already implemented in vehicle are further steps towards a full 

autonomous vehicle. The vehicle location and curvature information can be 

achieved from the GPS and digital map. Further studies on the uses of digital 

map to extract curvature information are suggested to improve the lateral 

control performance with feed-forward compensation. 

 

 The implementation of the algorithms developed in this research on a real car 

is also the next logical step. 

 

9.3 Final remarks 

Crucial to a seamless transition from a semi-autonomous to an autonomous car 

is the integration of various instrumentation and electronic devices into a user-friendly 

and coordinated management system. This calls for a gradual change in the driver 

attitude, traffic regulations which in turn have numerous legal implications. Therefore, 

driver re-training is required to avoid loss of life and property as a result of 

misunderstanding and miscommunication between man and the machine. These issues 

are outside the scope of the investigation in this thesis. One would imagine that in a 

foreseeable future such autonomous cars are sharing the roads with human drivers. 

Still, there are many open ended questions: How can we cope from relinquishing our 

control of the wheels? What are the legal implications? What would happen to the 

joys and excitement of driving?  
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