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Abstract i

Abstract

As a picture can describe a thousand of words, it is necessary to develop a computer
management system that can efficiently handle image/video data. Subsequently, a good
image/video database system should provide a fast and accurate method that can help us
handle the matching problem of visual features. Texture can be recognized as an
important feature for content-based image/video feature similarity matching. One of the
objectives of this research is to investigate a fast and accurate texture feature. retrieval
method which can be efficiently used on an image/video database for similarity searching.
We suggest using the over-complete wavelet-based model for texture feature analysis.
The method matches the viewpoint of human vision on multi-channels, frequencies and
orientations of texture properties. The computation time for this texture analysis is small
as compared to other well-known texture analysis methods, such as the Gabor wavelets.
A new texture analysis approach from the Laplacian of Gaussian(LOG)-based over-
complete wavelets is derived. It is proven to be suitable for texture analysis from both
theoretical and experimental studies. Also, a .new texture representation that can
significantly improve the retrieval accuracy of texture features for both over-complete and
sub-sampling wavelet schemes is given. We have compared different texture-based
feature retrieval methods, and experimental results indicate.that our proposed method
achieve the highest retrieval rate on the entire Brodatz texture database with a low feature
analysing time. It 1s thus suitable for real-time content-based retrieval applications. We

have also analysed the retrieval performance of various texture-based feature retrieval
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methods under different Gaussian noise levels. Results of the study indicate that the over-

complete wavelet scheme is robust against noise, due to its translation invariant property.

The traditional over-complete wavelet implementation contains redundancy between
filtering structures. Also, it causes boundary artifact in reconstructed images. Therefore,
based on LOG-base over-coﬁplete wavelet transform derived for texture analysis, we
have investigated a fast implementation method which aims to reduce the complexity and
boundary artifact of wavelet transforms. Results of our theoretical and experimental
studies show that the computational complexity can be reduced significantly by using the
spatial approach as compared to the filtering approach. Furthermore, it can effectively
eliminate the boundary artifacts, during multi-resolution wavelet transforms effectively,

and thus perfect reconstruction is always obtained.
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Statements of Originality

The following points are claimed to be original in this work.

1. Based on the Canny-based over-complete wavelet proposed by Mallat and Zhong,
a new Laplacian of Gaussian(LOG)-based over-complete wavelet has been
derived. The new wavelet kernel corresponds to the second deviative of the
Spline family and is equivalent to the Laplacian of Gaussian filter. The wavelet
kernel is proved to allow perfect reconstruction, i.e., a stable inverse transform
can always be obtained. Details of 1D LOG-based over-complete wavelet
transforms can be found in Section 3.1.2. And details of 2D LOG-based over-

complete wavelet transform can be found in Section 3.2.2.

2. This thesis suggests using the LOG-based over-complete wavelet for texture
feature extraction. Similar to other spatial approaches for texture analysis, such as
Gabor wavelets and sub-sampling wavelets, the over-complete wavelet transform
can characterize a texture image in multi-frequencies and orientations. This is
similar to the human vision system on texture recognition. Even though the over-
complete wavelet scheme requires longer computational time than the sub-
sampling wavelet scheme for texture analysis, it does not have the translation
invariant problem. Compared to the Canny-based over-cpmplete wavelet, the
LOG-based over-compete wavelet has a better distinguishing capability on the
thickness of a line in texture image. Therefore, it is more suitable for describing
the texture features. Details about using the LOG-based over-complete wavelet

for texture feature extraction can be found in Section 3.2.2.



Statements of Originaljty xii

3. A new texture representation which can significantly increase the retrieval rate of
the entire Brodatz texture database is proposed. The new representation can
effectively characterize the texture feature of an image which is extracted from
over-complete wavelet transforms and sub-sampling wavelet transforms.
Different from the common statistical method for texture feature representation
which calculates the variance of filter responses, the new representation calculates
the mean and standard deviation of bandpass filter responses at_positive and
negative sides separately. As a consequence, it produces a 52 dimensional texture
feature vector. Retrieval results on the entire Brodatz database show that the new
representation can increase significantly the retrieval rate of both sub-sampling
and over-complete wavelets scheme for texture extraction compared to using the
variance representation. More dc_tails of the new feature representation are in
Section 3.2. And details of comparative retrieval results using the new feature

representation and other feature representations are in Section 3.3.2.

4. Comparative experiments are conducted to compare different methods of
similarity retrieval on the entire Brodatz texture database. The comparison of
texture feature extraction methods includes LOG-based over-complete wavelet,
Canny-based over-complete wavelet, Gabor wavelets and various sub-sampling
wavelets. Experimental results show that the LOG-based over-complete waveulet
can achieve the highest retrieval rate on the entire Brodatz texture database as
compared to others. Furthermore, these methods have been tested on the Brodatz
texture image with different levels of Gaussian noise. The over-complete

wavelets, both Canny- and LOG-based wavelet kernels, have the smallest

reduction retrieval rate as compared to other retrieval methods. It is demonstrated
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that the over-complete wavelet scheme can achieve a more robust performance
under different noise levels. Details of the comparison experiments are in Section

3.3.3 and Section 3.3.4.

5. This research proposes a feature reduction method which reduces the redundancy
information in the new feature representation. As a consequence, it reduces the
length of texture features from 52 to 41 dimensions. Using the reduced feature
representation, it can efficiently decrease 25% of the retrieval time as compared to
the original feature representation. From the retrieval results on the entire Brodatz
texture database using LOG-based over-complete wavelet, the reduce feature
representation causes only a 0.25% decrease in retrieval rate as compared to the
original representation. Details of the reduced feature representation and its

retrieval results are in Section 3.3.6.

6. A new  spatial implementation for the LOG-based over-complete wavelet
transform is proposed. The wavelet transform and conventional filtering
approaches ignore the redundancy between the lowpass and the bandpass filters
and may cause boundary artifacts. By deriving some general expressions for the
computational cost using the conventional filtering implementation, it reveals that
the inverse transform is significantly more costly than the forward transform. It is
undesirable for real-time applications. By exploiting the redundancy between
filters, it is possibly to use an alternative implementation method to reduce the
redundancy. A spatial implementation of the 1D LOG-based over-complete
wavelet transform is proposed. Results of both theoretical and experimental
studies show that this spatial implementation of the LOG-based over-complete

wavelet can highly decrease the computational complexity, especially the



_Statements of Originality xiv

complexity of inverse transforms. It can eliminate the boundary artifact of
reconstructed signals completely without the use of any compensation method.
Details of 1D spatial implementation of LOG-based over-complete wavelet and

its experimental results can be found in Section 4.2 to Section 4.3.

7. Based on the spatial implementation of LOG-based over-complete wavelet for 1D
signals, we have extended the approach to the 2D wavelet lransforrh. Similar to
the problems in 1D, the inverse transform is significantly more costly as
compared to the forward transform in the 2D case. It also causes boundary artifact
of reconstructed images. A 2D spatial implementation is proposed which can
efficiently reduce the computational time of the transform, especially the inverse
transform, as compared to the filtering approach. It also eliminates the boundary
artifact of the reconstructed image completely without any compensation. Details
of 2D spatial implementation of the LOG-based over-complete wavelet and its

experimental results are in Section 5.2 to Section 5.4.
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Chapter I Introduction

CHAPTER 1

1. Introduction

The growth of digital image and video information in computer technology demands
an efficient tool for management. Conventional database management system may
help to solve the problems of data storage, indexing and retrieval. However, visual
features, such as image and video, can not easily be described by their contents or by
words. As a result, the conventional word searching system may not sufficiently
satisfy the requirement for indexing. It directly affects the accuracy of similarity
searching. In order to provide a system with image and video search capabilities,
content-based visual query techniques are being developed, to index the visual
features of images[1, 2, 3, 4, 5, 6] and videos[7, 8). The principle of content-based

retrieval system is based on pictorial similarity for searching.

Among different content-based features which have been proposed, texture feature is
recognized as an important candidate for image/video data searching. However,
retrieval of texture images is a very difficult task. Texture images contain a wide
variety of patterns, e.g. bricks, sand and grass patches, etc. To develop a practical
system for texture similarity searching, an appropriate mode! is needed, and it should
make use of human vision on texture for its evaluation. Furthermore, the time for
texture analysis is another essential consideration to develop applications. Computer

users may not be patient enough for long analysing time.
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1.1. Texture
1.1.1. What is the definition of texture?

It is very difficult to define texture even we recognize its importance. Textures can be
described as a spatial arrangement of pixels which contain some homogeneous
patterns. This involves different feature properties, including. statistical[11] and
structural features[12], or both[13]. Texture may contain structured or random
elements but may also contain no fundamental sub-units. Examples of texture images
from the Brodatz Album[14], as shown in Figure 1.1, illustrate a wide variety of
textures. Texture may contain structural (e.g.D1, D3, D49 and D69) or random
patterns (e.g. D2 and D5). We can further classify structural patterns into periodic

patterns (e.g.D1, D3) and directionality patterns (E.g. D49 and D69).

DI D3 D49 D69 D2 D5
Figure 1.1, Examples of texture image from the Brodatz Album. From left to right,

D1(Woven Aluminum wire), D3(Reptile skin), D49(Straw screening), D69%(Wood grain),

D2(Field stone) and D5(Expanded mica).

Much research effort[15, 16, 17, 18, 19, 20, 21] have tried to define texture and hence
use it to form practical machine vision systems. However, there is no generally an
agreed definition of texture. Some definitions of texture features are perceptually

motivated and others are drived completely by the application in which the definition

is used.

1.1.2. Related research work on texture feature retrieval

Techniques for texture modeling have been investigated for a long time in different

research areas such as image segmentation, classification and similarity retrieval.
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Texture extraction is concerned with finding a suitable model to describe the feature
of natural texture images. Texture retrieval is to match characteristics of extracted
textures with the reference. Examples of excellent texture retrieval tools include 2D
Wold-based feature modeling[22], Gabor wavelets[23, 24], and wavelet packets[25,
26] etc. Liu and Picard[22] compared Wold-based features with other statistical
texture approaches and concluded that our human vision system should contain some
degree of structural and statistical structures. Wold-based analysis can achieve
outstanding retrieval rate on the entire Brodatz database retrieval test[28]. Ma and
Manjunath{23] proposed to use Gabor wavelets for texture feature retrieval. Their
comparison of the Gabor wavelets with various texture analysing methods show that
the Gabor wavelets achieved the highest retrieval results on.the entire Brodatz texture
database. They concluded that the Gabor wavelet is the best texture analysing method
for multi-orientation and multi-frequency cases which involve human vision on
textures. Mojsilovic et al[25] analysed more than 30 wavelet kernels for a sub-
sampling wavelet scheme with 30 Brodatz Albums to test their performance on
classifications. They found that the bi-orthogonal wavelet kernel can achieve better
classification results. Texture feature retrieval is an on-going topic and the objective

of which is to find a better texture analysing method that could achieve better retrieval

results.

1.1.3. Related work on texture-based feature image retrieval

Several content-based image retrieval systems utilize texture feature sets to aid image
retrieval. Some well known content-based image retrieval systems inciude the IBM
QBIC[29], Virage system[30], Photobook[31], Netra[32] etc. All provide texture
feature searching. The IBM QBIC system is the first that provides low-level texture

similarity search. Its texture features were based upon the one which was proposed by
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Tamura et al[29]. The texture properties including coarseness, directionality and
contrast. It indices texture features of the whole image and are indexed manually
divided into regions. The Virage system provides image query by texture. In the
Virage system, it indexes the global texture feature of an image, rather than regions of
texture within the images. The MIT’s Photobook[31) uses the Wold-based feature for
texture analysis. It defines texture into three components, periodicity, directionality
and randomness. In the Photobook system, it provides local region search using
textures. The system provides scene retrieval within a picture such as building, cloud,
tree, etc. Manjunath and Ma[32] used Gabor wavelets-based representations to extract
texture information in their Netra system. It supports local region searching.
Manjunath et al[33, 34] applied the method to retrieve images based upon the
detection of various features of the earth’s terrain for satellite image retrieval in the

Alexander project[33, 34].

1.2. Overview of the texture feature retrieval system

A texture-based feature extraction and retrieval system basically includes three
modules: texture extraction, feature representation and similarity measurement. In
texture extraction, a model is used to describe the characteristics of the texture images.
Feature representation is concerned with the extraction of important features from the
model for texture description. Similarity measurement, which is based on the features
found from the feature representation, is then used for texture retrieval. In this section,

we will provide an overview of each component in the system.

1.2.1. Texture extraction

Techniques for texture analysis have been investigated for a long time in areas such as

image segmentation and retrieval. Texture extraction is concerned with finding a
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model which can describe natural texture images. The model should confirm with the
human viewpoint on most of the texture patterns. There are basically three approaches
to texture description, namely the statistical, structural and spectral approaches. More

detailed discussion will be given in Section 1.3.

1.2.2. Feature representation

A good feature representation is needed to increase retrieval accuracy. In feature
representation, the purpose is to use a low dimensional feature vector to describe
important details of a pattern. In [35], it was found that two texture patterns of
randomly oriented lines are perceived as similar, if the mean and the standard
derivation of the line orientations are the same regardless of the actual distribution.
E.g. for analysis using wavelets or Gabor features, the frequently used feature
representation parameters are simply the mean and the standard derivation.
Furthermore, this simple representation helps solve the translation variant problem
that might occur in similarity measurement.

1.2.3. Similarity measurement

The objective of the similarity measurement is to compare the difference between
features in two patterns and find out how similar the two patterns are. In our retrieval
model, we used a distance measure for similarity measurement. This allows high
dimensional vectors to be combined to give a scalar which is used in database image
query. A common similarity calculation is the distance measure. Let ¢ and f° be
the M-dimensional feature vectors of texture patterns a and b respectively. The

distance between a and b is defined as,

M
dis(a,b)=

m=|

a_ gb
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where f* denotes the m-th element in the feature vector x and a(f,) is the standard
derivation of the m-th element. The standard derivation a( f, )is used to normalize the

individual feature components over all query images. A small distance value

dis(a,b) indicates that the two patterns @ and b are similar.

1.3. Texture-based feature extraction

Texture-based feature extraction is concerned with finding a suitable model which can
precisely describe various natural textures. The model is defined based on human
vision or from psychophysiqlogy conclusions. In this section, we summarize different
texture analysis methods and classify them into three approaches, namely the

statistical, structural/statistical and spectral.

1.3.1. Statistical approach

The statistical approach characterizes texture in terms of local statistical measures,
eithér by the statistics of pixel values or by a stochastic model. It indicates the early
human viewpoint on texture pattern. Examples of this approach include auto-
correlation[35], run length[36], and simultaneous auto-regressive models(SAR)[37].
Many papers gave good discussions on the area of texture modeling using Markov-
type random field models[38] during 1980°’s. Statistical approach is suitable for
analysis on random looking textures. In general, these methods are good at modeling
random patterns such as sand and cloud but not so suitable for modeling highly
structured patterns such as brick walls and nettings. To satisfy the human vision for
similarity searching, a texture model should contain some degree of structures on

texture.
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1.3.2.  Structural/Statistical approach

The structural approach assumes that textures are composed of texture primitives. The
texture is produced by the placement of these primitives according to certain
placement rules. Example of texture methods using structural analysis can be found in
[39, 40, 41]. A pure structural analysis is incapable of capturing or generating
randomness. Researchers combined both statistical and structural approaches to model
textures. Examples of the texture properties observed by Rao and Lohse[42] conclude
that a texture usually contains three independent patterns of repetitivity, directionality
and granularity. Analogy models have been made to combine structural/statistical
characterization of texture models in low-level human vision. Liu and Picard[22]
extended the 2-D Wold decomposition, proposed by Francos et al[43, 44], to develop
a 2D Wold-based feature model. The Wold-based feature model describes texture
patterns in terms of “periodicity, directionality and randomness” which possess
properties such as “repetition, directionality and granularity” as defined by Rao and
Lohese. It is proven that the model can describe human vision on a
statistical/structural approach. In general, the statistical/structural approach provides a
systematical viewpoint of natural texture image. However, the main deficiency of this
approach is the definition of the texture pattern which may not easily cover the nature
of texture. Moreover, formulating the model into machine version is non-trivial. For
example, the Wold-based model uses complicated classification and jointing

procedures respectively to distinguish properties of various texture features or

combine them.

1.3.3. Spectral approach

Studies in psychophysiology have suggested that the human is able to analyse texture

images by making use of multi-channels, frequency components and orientations.
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Campbell and Robson[45], who performed psychophysiology experiments using
various gating patterns, concluded that the human visual system decomposes an image
into filtered images of various frequencies and orientations. De Valsois et al.[46] have
also arrived at a similar conclusion for the human vision on texture. These
psychophysiology studies have motivated recently texture analysis using spectral

approaches.

Spectral approach models the texture features into localized spatial-frequency
contents. The commonly used spectral approach for texture analysis is wavelet-based
filtering. In general, wavelet-based filtering attains a joint resolution in spatial and
spectral components that are bounded by the uncertainty principle[47, 48, 49]. By
spacing the filters at octave-band distances, the wavelet filter bank provides a trade-
off between space and frequency resolutions. In particular, the Gabor filter is able to
model the receptive fields sufficiently for texture discrimination experiments. The
Gabor filter allows selection of directional and spectral features from texture patterns.
Some excellent work on applying the Gabor-based filtering for texture analysis was
done by Manjunath and Ma[24]. The Gabor wavelets, which place the set of Gabor
filtering bank in octave band distance, extract texture features in multi-orientations
and multi-resolutions from image patterns. High retrieval rate on Brodatz texture
database[28] was reported in [19], indicating that the Gabor wavelet is able to analyse
a texture image in multi-channels, frequencies and orientations. The main deficiency
of the Gabor filter is its long analysing time, which hinders real-time applications.
Another commonly used spectral approach is the sub-sampling wavelets. The sub-
sampling wavelets also allows multi-channels and multi-orientation decompositions

and is suitable for texture analysis[25, 26, 27] due to its half sampling structure and
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separable wavelet transforms. Therefore, it can achieve high speed processing for
texture analysis as compared to Gabor wavelets. However, this scheme is not

translation invariant and this affects its performance in texture analysis.

1.4. Focus: The over-complete wavelet scheme

In this dissertation, we present a new model for texture feature indexing and retrieval.
The objective of this dissertation is to introduce a new texture analysis approach in
spatial domain. We suggest using the over-complete wavelet scheme proposed by
Mallat and Zhong[9], due to its low analysing time and translation invariant property.
The method agrees with the studies of psychophysiology for approaches using multi-
channels, frequencies and orientations analysis of the visual image. However, instead
of using the wavelet kemel in [9], we have derived a new wavelet kernel which
corresponds to the second deviative of the Spline family and is equivalent to the
Laplacian of Gaussian filter[S0]. We will prove that the new wavelet kernel is more
suitable for texture analysis as compared to the original wavelet kernel. The proposed
wavelet kernel allows perfect reconstruction, i.e., a stable inverse transform can
always be obtained. We also present a new representation model for wavelet-based
texture feature, which can significantly improve the accuracy of the retrieval rate. A
comprehensive set of experiments on the Brodatz texture database is carried out to
compare the retrieval accuracy of our proposed wavelet representation, the sub-
sampling wavelet scheme and_the Gabor wavelet featuref24]. Lastly, the retrieval
results of different features under vartous Gaussian noise levels are examined. In
particular, it is demonstrated that the over-complete wavelet scheme can achieve a
more robust performance than the sub-sampling wavelet scheme under different noise

levels. We summarize the contribution of this dissertation as follows,
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e A new texture analysing feature using the over-complete wavelets is proposed. A

new wavelet kernel, which is proven to be suitable for texture analysis, is derived.

e A new texture representation which can significantly improve the retrieval
accuracy of texture features for both the over-complete and the sub-sampling

wavelet schemes is proposed.

o Comparisons on different texture-based feature retrieval methods are given.
Experimental results indicate that our proposed method can achieve excellent
retrieval rate with a low feature analysing time. It is thus suitabie for real-time

content-based retrieval applications.

* An analysis on the retrieval performance of various texture-based feature retrieval
methods under different Gaussian noise levels has been performed. Results
indicate that the over-complete wavelet scheme is robust to noise, due to its

translation invariant property.

Furthermore, we have also analysed the wavelet transforms[52-55] and proposed some
fast algorithms for the LOG-based over-complete wavelet. By exploiting the
redundancy between the bandpass and lowpass FIR filters in the wavelet transforms,
we have found that it is possibly to use an alternative implementation method to
reduce the redundancy. Therefore, we propose a spatial implementation for this LOG-
based wavelet transform. Compared to the conventional filtering approach, the spatial
implementation can significantly improve the performance of wavelet transforms. The

following is a list of contributions about these new spatial approaches.

e A new spatial implementation for both 1D and 2D LOG-based over-complete

wavelet transform is proposed;
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o the computational complexity is reduced significantly using the spatial approach

as compared to the filtering approach; and

e the boundary artifacts are eliminated completely during multi-resolution wavelet
transforms without extra processing. Perfect reconstruction is thus always obtained

easily, even at the boundary.

1.5. Thesis organization

The rest of this dissertation is organized as follows. Chapter 2 reviews different
wavelet algorithms for texture feature extraction. These include the sub-sampling
wavelet schemes[51], and Gabor wavelets[24]. A discussion on the advantages and
disadvantages of two wavelet schemes for texture analysis is given. Also, we discuss
the motivation of using over-complete wavelets for texture analysis. Chapter 3
presents a new texture feature extraction and retrieval scheme using Laplacian of
Gaussian-based over-complete wavelet for featﬁre extraction. A comparative study
with other texture analysing features, including the Gabor wavelet feature and various
sub-sampling wavelets, is also presented. A fast spatial implementation for both 1D
and 2D Laplacian of Gaussian based wavelet will be discussed in Chapter 4.

Conclusion and future directions will be discussed in Chapter 5.
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CHAPTER 2

2. Texture feature extraction using wavelet —
based approach

In this chapter, we give an overview of two commonly used spétial approaches for
multi-frequency, orientation and channel texture pattern analysis. They include the
Gabor wavelets (Gabor filtering bank) and the sub-sampling wavelet scheme. We will
review the methods of wavelet transforms and discuss their advantages and
disadvantages. Having made the analysis on the problems available in these two
wavelet schemes, we give our motivation 6f this study propose use the over-complete
wavelet scheme for texture analysis. We will preview the structure of over-compete
wavelets and discuss how an over-complete wavelet scheme can overcome the

deficiencies in Gabor wavelets and sub-sampling wavelet schemes for texture analysis

and retrieval.

2.1 Two dimensional Gabor filter

Two-dimensional Gabor filters were proposed by Daugman[57] for modefing
receptive field of simple cells in the visual cortex of some mammals. Gabor filters can
be considered as a space-frequency technique that can be used to characterize textures.
There are sufficient psychophysical data to support that a Gabor filter is efficient for
texture discrimination for different frequencies and orientations. References[58-60]
give some key ideas for using the Gabor filter for various texture analysis. Eqn.2.1-1

denotes the general 2D Gabor function in the space domain. The 2D Gabor function
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consists of a sinusoidal plane wave of a certain frequency and orientation modulated

by Gaussian envelope as follows,

—20*

2 2
| G(x,y,a,w,6,¢)=f(x,y,a,w,9,¢)exp((x_x°) (%) J @.1-1)

where G represents the Gabor function. The parameters of the Gabor function include

the center of filter(x,,y,), frequency(@), bandwidth(w), orientation(c) and
phase(¢). Center of filter(x,,y,) is used to locate the center of the Gaussian
envelope in space domain. Orientation (a) specifies the standard deviation along both
x- and y-axes. The frequency(&) of the sinusoidal plane wave is determined by the

bandwidth (@), and orientation (o) is the angle of orientation, and ¢ is the phase of

the plane wave. Function f is a sinusoidal wave function is given by,
f(x3,0,0,0,8)=sin(w[xcos6- ysin&]+¢) (2.1-2)

Gabor filter is a frequency and orientation selective filter. E.g. when the phase ¢ =0,

the Fourier transform of the Gabor function, F (u,v), is given by,

o a ag.

It v u v

; o 2 2
F(u,v)=Ajexp -%{(u—'f"—)’r%} +exp -%{wﬁ—z}

where ¢, and o, specify the standard deviation along u- and v-axes in the spatial

domain, respectively. Note that standard deviations are related to o, and o, by
- - 1 . " .
o, % 7o, and o, Aﬂav . 0, and o, are the standard deviations of horizontal

and vertical directions in spatial domain. A is the magnitude of the Gabor function
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which is equal to A =270,0,. This function gives two lobes in the spatial domain,

one centered at u, and other at —u, .

2.1.1. Gabor filter bank design for texture analysis

Due to the frequency and the orientation selectivity properties of the Gabor filter,
much work was proposed to using a bank of Gabor filters to extract the multi-
frequencies, orientations and channels information in texture analysis[23;24, 58-63].
Manjunath and Ma[24} proposed a design strategy of Gabor filter bank for texture
feature retrieval. They designed a set of Gabor filters in the spatial domain which
aimed at minimizing the redundant information between individual filters. We call the
design of Gabor filtering bank as Gabor wavelets in the rest of the dissertation.

Eqn.2.1-6 to Eqn.2.1-8 denote the general equations to design Gabor wavelets,

o =(U% )T‘ (2.1-6)

(a-1)U, @2.1-7)

g, = ————=
* (a+1)v2In2

]
: 22
o, = tan(wa[Uh —2ln["“2 JJ[zmz-(z—'"zz)—q'J (2.1-8)
2% U, 7

where U/, and U, denote the lower and upper center frequencies of interest,

respectively, in the spatial domain. Assume that £ and s are the number of orientations
and the number of scales in the multi-resolution decompositions respectively.
Parameters o, and ¢, are the standard derivations of the filter along the abscissa and

ordinate in frequency domain respectively. These two parameters give the shape of

the filter and minimize the redundancy between filters. They ensure that half-peak
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magnitude support of the filter response in frequency domain with least overlapping to
~ each other. Figure 2.1 depicts the Gabor filtering banks design in spatial domain.
Experiments[24] have indicated that four levels and six orientations of the Gabor
wavelet transform can achieve the best retrieval results. Fm_— texture feature
representation, the absolute mean and standard derivation of each channel of the
image should be used. As a consequence, 48 dimensional feature vectors are obtained
from a texture image. Distance measure is used, as depicted in eqn.1.2-1, to measure

the similarity between two images.

-

-7 w

/2=
Figure 2.1, The Gabor filter banks design in spatial domain. It shows the design strategic for
the four levels and six orientations of Gabor filter bank.

2.1.2. - Discussion of Gabor wavelets

Gabor wavelets allow multi-f_requencies, orientations, and channels for texture
analysis which confirm with the human vision system. It achieves very good retrieval
results on the entire Brodatz texture database[28] as reported in [24], compared to
other texture models such as statistical and spatial approaches. The retrieval rate using
Gabor Wavelets is about 74.13% on the entire Brodatz database. However, the main

deficiency of Gabor wavelets is its lengthy analysing time. It takes about 9.5 seconds
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to analyse a grey image with 128x128 pixels'. The reason for long analysing time is
because of its non-separable properties and thus it has to analyse the pattern in the
frequency domain. To implement the Gabor wavelets for texture analysis, it is
necessary to transform the whole image pattern into the frequency domain. To extract
the textﬁre feature, the filtered image has to be transformed back to the spatial
domain. As a result, the analysing time is greatly increased. The long waiting time of

texture analysis makes it unsuitable for real-time applications.

2.2. Sub-sampling wavelet schemes for texture analysis

Another common spatial approach for texture analysis[25-27, 64-65] is dyadic sub-
sampling wavelet [47, 51]. Compared to Gabor wavelets, the advantages of sub-
sampling wavelet scheme is its sub-sampling properties during wavelet transforms
and separable properties which can analyse local space and frequenc_:y relation in
spatial domain. Rather than analysing texture pa.tterns in the spatial domain, the
texture features are extracted from spatial domain to convolute with FIR filters, which
can greatly reduce the computational complexity. In the following section, we discuss
the dyadic sub-sampling wavelet transform and show how the method is used for

multi-frequencies, orientations and channels texture analysis and retrieval.

2.2.1. Sub-sampling wavelet schemes for texture analysis

We start from the one dimensional dyadic sub-sampling wavelet transform. Dyadic
sub-sampling wavelet transform performs the decomposition of a signal onto the

family of functions by the mother wavelet,

W (t)=2"y (2"t =n) (2.2-1)

"The timing experiment reported in [24] are carricd on a SUN SPAR20 machine with one processor.
The Gabor wavelets were implemented by MATLAB.
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where m and n are the scale and the translation parameters respectively. And ¢ denotes

the time parameter. The mother wavelets i, (t) generated from a prototype mother

wavelet by dilation and translation has to satisfy the condition that It,.r/(t)a’t =0. This

implies at least some oscillations. The mother wavelet is constructed from the two

scale equations,

p(1)=v2 Y hy (k)p(2~k) (2.2-2)

[ Y—

v()=V2 3 h(k)p(2—k) 223)

[ £
where h,(k) and A (k) are coefficients of the lowpass and bandpass filters
respectively. In the case of the dyadic discrete wavelet transform(DWT), filters, h, (k)
and h, (k) can be used for DWT computation instead of the explicit forms,#(¢) and
w (1), respectively. For the j-th level of dyadic wavelet transform, the signal dyadic
discrete approximation lowpass details, fz, (x), and dyadic bandpass details, d_; (x),

can be computed by,
fyo (%)= i [ Ly (K)hy (x—2k ) +d,; (k)h (x—2k )] (2.2-4)

It is well knov\;n in the subband filtering community that linear phase, such as
symmetry and orthogonality, is not possible for wavelet transform fiiters. However,
the symmetry of decomposition filters can be achieved, by relaxing the orthogonality
condition and introducing the biorthogonal bases, where the scaling function and the

wavelet used for decomposition are different from those used for synthesis. In such a
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scheme, instead of two filters h, and h,, we have four filters i), b, g, and g,.

Hence, Eqn.2.3-2 and Eqn.2.3-3 have to be written as,

Ly (x)=§mfy-u (k)hy (k—2x) (2.2-5)
d,(x)= 2 Sy (k) g (k—2x) | (2.2-6)
Sy (%)= 2’. [ £ (K)go (x—2k)+d,, (k)b (x—2k)] (2.2-7)

where k (n)=(-1) k (1-n) and g (n)=(-1) g, (1-r). Figure 2.2 and Figure 2.3

depict the forward and the inverse dyadic sub-sampling transforms respectively.

Gl E2)-0i6)
x (»-{ GO0
OO o s [EFO-00
ﬁ(z)@—x,-(z)

Figure 2.2, j-th level of the forward transform of dyadic sub-sampling wavelets.

Dy (z) ( :) Gle)
» — Dz(z)—@' G(Z)} ( :Ifxo(z)
jZ) (::) z X,z)—(:}—H(z)
]»Xj_,(z)— - =Xz ({1 2Hu ()

X j(z)-@ )

Figure 2.3, j-th level of the inverse transform of dyadic sub-sampling wavelets.
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The simplest way to compute two-dimensional dyadic wavelet transform is to apply
one-dimensional transforms over image rows and columns separately. Thus, the image
decomposition is obtained by using separable filters along the abscissa and ordinate

and the same algorithm as in 1D case. The transform is characterized by 2D scaling

function,
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o(r.1,)=0(1.)8(t,) - (2.2-8)

and by three wavelets which are given as follows,

oot =0 (1) 229)
W, (rx,ry)=A¢(.t,)uf(t,) (2.2-10)
w (tat,)=v () (t,) (2.2-11)

Eqn.2.2-9, 2.2-10 and 2.2-11 represent the bandpass transform of the x-axis, y-axis
and the diagonal directional transform respectively. The wavelet transform
decomposes an image with an overall scale factor of four and produces one low-
resolution sub-image and three wavelet coefficient sub-images in each level. The
dyadic sub-sampling wavelet transform can be used for multi-frequency and
orientation in texture analysis. A two-dimension frequency spectrum of the forward

decomposition is depicted in Figure 2.4.

|
l
Lo

-nTw
Figure 2.4, 2D dyadic sub-sampling wavelet transform in spatial domain.
It shows the 2 levels of sub-sampling wavelet transforms.

2.2.2.  Texture retrieval using sub-sampling wavelet schemes

Texture feature is extracted from each filter channel in the wavelet transforms. Many
researchers proposed using various feature representation and similarity measurement
methods for texture retrieval. The most common approach is to characterize texture

feature using statistical representation to calculate each of the channel energy, such as
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the mean[65], standard deviation[25], etc. For similarity retrieval, many measures
were suggested, such as Euclidean distancef26], Mahalanobis distance[27], etc. Many
experiments show that sub-sampling wavelets can achieve a high rate on texture

classification[25-27, 65].

2.2.3.  Discussion of the sub-sampling wavelet schemes for texture extraction

Sub-sampling wavelet scheme can also extract texture properties in multi-frequencies,
orientations, and channels which agree with the human vision system on texture.
Compared to Gabor wavelets, the sub-sampling wavelet scheme can greatly reduce the
analysing time. It is because of the separable properties of wavelet transform and sub-
sampling operations in each level of the transform. For each level of decomposition,
three quarters of sampling filtered image are ignored. It directly decreases the
processing time in each level of transform. On the other hand, sub-sampling operation
also causes the translation variant problem. Due to the sub-sampling operation, many
samples in pattern are deleted during each of transform level, and pattern details are
lost in each channel as well. Thus it reduces the precision needed t(l) obtain the texture

feature for representation. Consequently, it affects directly the retrieval results.

2.3. Texture feature extraction and retrieval using the over-
complete wavelet transform '

One of the objectives of this research is to find a texture retrieval method which can
gchicve low analysing time but high texture retrieval accuracy. Due to the deficiencies
in the previous two wavglet—based transforms, the motivation of this research is to find
an appropriate spatial approach which can achieve low analysing time and permits
multi-frequencies, orientations and channels for texture analysis. Furthermore, the
wavelet transform must be translation invariant without details lost during each level

of transform. Therefore, we suggest using the over-complete wavelets, which were
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proposed by Mallat and Zhong[9], for texture analysis. The advantages of the over-
complete wavelet scheme are translation invariant during multi-resolution transforms
and low processing time. Furthermore, the wavelet transform has compact support and

separable properties which allow processing data in the spatial domain.

2.3.1. The over-complete wavelet transform and its use for texture analysis

The over-complete wavelet scheme used by Mallat & Zhong[9] is obtained by
assuming that the wavelet kernel is derived from the deviative of a Spline function.

For one dimensional wavelet transform, let &(x) denote the Gaussian smoothing
function, whose integral is equal to 1. It converges to O at infinity and is k times

differentiable. Then,
a'o o
w(x)=% keZ (2.3-1)

where yi('x) defines the wavelet kernel whose integral is always zero. The dyadic

wavelet representation is defined as
wf(x)=—1:-y/ Xl iez (2.3-2)
2 21 2|

where ., (x) is the wavelet function dilated by a dyadic scaling factor 2. Suppose a

signal f(x) is wavelet transformed, the lowpass S, f(x) and the bandpass W,, f (&)

filter responses are given respectively as
S, f(x)=f#¢,(x) and W, f (x)= f *p,, (x) (2.3-3)

where * denotes convolution and

8, (x)= zia{zij (2.3-4)
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Similar to the sub-sampling wavelet scheme, the 2D over-complete wavelet transform

is also separable. Let us denote the wavelet kernel in x and y directions respectively at

scale s as
vi(x,y) and ¥} (x,y) (2.3-5)
For a 2D image f (x, y), the wavelet transform is defined as,
S, f(x.)=f*8,(xy) (2.3-6)
W, f(x,y)= F*y} (x,y) and W f(x,y) = f 5y (x,y) (2.3-7)

where § f(x,y) is the lowpass filter response, Wz',. f(x,¥) and W; f(x,y) are the

vertical and the horizontal filter responses respectively. Figure 2.5 shows the

frequency spectra of the bandpass and the lowpass filters.

A
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Figure 2.5, 1D frequency spectrum of the (a) bandpass (b) lowpass of the quadratic over-
complete Canny based kernel.

The original wavelet transform contains both vertical and horizontal filter responses. It
1s because these two directions have already received sufficient information to
reconstruct an image. However, since we wish to apply the wavelet scheme for texture

analysis, we have to include more information on its directions for texture pattern



Chapter 2 Texture Feature Extraction Using Wavelet based approach 23

analysis. In order to provide a better analysis on line orientation in texture analysis, we

include a third directional transform, Wj J(x,y) which is the response by applying the

bandpass filter in both x and y directions, i.e.,
W f(xy) = F*wy (. y)*vs (%) (2.3-8)

In summary for texture analysis, a single level wavelet transform using the over-

complete wavelets produces four outputs: S f(x), W,f(xy), W, f(xy) and
W, f(x.y).

2.3.2, The Canny-based wavelet kernel

Mallat and Zhong have proposed a Canny-based edge operator for the wavelet kernel
in the over-complete wavelet transform. It is found that the resultant modulus maxima
correspond to the multi-scale edges in a signal. As poiﬁts of sharp variations are one
of the most important features for analysing signal properties, the over-complete

representation using this kernel is able to provide a meaningful signal characterization.

In this section, we will briefly summarize this Canny-based wavelet kernel. The
Canny-based wavelet kernel basically corresponds to a first deviative edge detector,

i.e., kis set to one in eqn.2.4-1. As the Spline function can be written as

2n+2 ’
in@,
8(w)= M (2.3-9)

%

The wavelet kernel and the scaling function[9] can be shown to be

2n+l
sin &
—_/i (2.3-10)

v (w)=-o’ A
4
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2a+2
sin®
o(w)= ——wé (2.3-11)
%
where n is the order. If n is 2, it corresponds to the commonly used quadratic Spline
wavelet. Figure 2.5 shows the frequency spectrum of the bandpass and lowpass filters.
For implementation, the over-complete wavelet transform can be computed by

performing purely discrete convolutions with the input signal. All are FIR structures.

The lowpass and the bandpass filters are given respectively as,
2n+l]
iwi? w '
Hw)=e (COSEJ (2.3-12)

and
G(w) = —4ie‘%( sin%) (2.3-13)

The expressions for the reconstruction filters are given as follows,

_L-H@f
K(w)= G@) (2.3-14)
and
1 2
L(w)=w (2.3-15)

Figure 2.6 and Figure 2.7 show the 1D forward and inverse wavelet transforms. Figure
2.8 and 2.9 show the 2D forward and inverse wavelet transform. Table 2.1 shows the
filter coefficients of Spline order for n=0, 1, 2 in Eqn.2.3-12 of the Canny-based over-

complete wavelet transform.
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Figure 2.6, j-th level one dimension forward over-complete wavelet transform.
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Figure 2.7, j-th level one dimension inverse over-complete wavelet transform.
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Figure 2.8, j-th level two dimension forward over-complete wavelet transform. Dotted lines

indicate the third directional transform which is suggest for texture analysis.
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Figure 2.9, j-th two-dimensional inverse over-complete two dimensional wavelet transform.
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s,mwﬂmw n=1 n=2 =3
k G(k) Hk) Kk) Lk) | Gk) Hk) K(k) L{k) Gk) H(k) Kk) L(k)
-6
.5 112048 112048
-4 11/2048 1012048
-3 1/128 1/128 71256 45/2048
=2 7/128 6/128 1/32 117128 120/2048
-1 -1/8 1/8 1/8 1i/64 15/128 5/32 19371024 210/2048
0 -2 172 -1/8 6/8 -2 3/8 -11/64 84/128 2 5/16 -193/1024 1276/2048
1 2 172 1l/8 2 3/8 -7/128 15/128 2 5/16 -11/128 210/2048
2 1/8 -1/128 6/128 5/32 -74256 120/2048
3 1/128 1732 -11/2043 45/2048
4 -1/2048 1072048
5 112048
6

Table 2.1, Filter coefficients of the Canny-based wavelets kernel with Linear, quadratic and Cubic Spline (n=1,2 and 3).
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2.3.3. Discussion on the over-complete wavelet for texture feature extraction

Similar to the previous two wavelet schemes, the over-complete wavelet can be used
for multi-frequencies, orientations and channels in texture analysis. The benefit of
using over-complete wavelet transform is its separable properties and thus it can
perform the transform in the spatial domain. It overcomes the problems in frequency
domain as seen in the Gabor wavelets. Moreover, it is translation invariant because
there is no sub-sampling. Feature details can be retained in filtered images and thus
heip to keep the information for texture feature extraction. Chapter 3 will contains

more details for texture representation.

24. Summary

In this chapter, we have discussed different spatial approach using multi-frequencies,
orientations and channels for texture analysis. These schemes include Gabor wavelets
and sub-sampling wavelet schemes. Both analysing methods confirm with the human
vision system on texture, However, each scheme has its deficiencies for texture
analysis. For examples, the Gabor wavelets need high computational complexity and
sub-sampling has the translation variant problems. Therefore, we should investigate a
new texture analysis method that uses low computational complexity and can solve
the translation variant problem. The new method should confirm with the human
vision system on multi-frequencies, orientation and channels for texture analysis. We
have suggested the over-complete wavelet scheme for texture analysis. The wavelets
scheme is secparable in the spatial domain and thus the computational complexity is
low. Also, it is translation invariant because there is no down-sampling during wavelet
&ecomposition. We have discussed the advantages of the over-complete wavelets,
compared them to the Gabor waveiet and the sub-sampling-wavelet scheme for texture

analysis. Furthermore, rather than using Canny-based over-complete transform[9], we
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propose to use the Laplacian of Gaussian(LOG) based over-complete wavelet which is
more efficient for texture analysis and retrieval. The LOG-based over-complete
wavelet is derived from a Spline order which has similar structure as the Canny-based
over-complete wavelet. This wavelet kernel is more efficient for analysing the line
information in texture pattern. In Chapter 3, we will present texture feature extraction
and retrieval using the over-complete wavelet technique. Also, the details of LOG-
based wavelet kernel its use for texture retrieval will be given. Comparative texture

retrieval experiments using various sub-sampling wavelets and Gabor wavelets will

also be presented.
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CHAPTER 3

3. Texture-based feature extraction and
retrieval using the Laplacian of Gaussian
based over-complete wavelet transforms

In this chapter, we introduce a new texture analysis method which requires low feature
analysing time but possesses high retrieval accuracy. We suggest using the over-
complete wavelet scheme proposed by Mallat and Zhong[9], due to its low analysing
time and transiation invariant property. However, instead of using the wavelet kernel
in [9], we derive a new wavelet kernel which comresponds to the second deviative of
the Spline family and is equivalent to the Laplacian of Gaussian (LOG) filter. We
prove that the new wavelet kernel is more suitable for texture analysis as compared to
the original wavelet kemel. The proposed wavelet kernel allows perfect
reconstruction, i.e., a stable inverse transform can always be obtained. We also present
a new representation model for wavelet-based texture feature which can significantly
improve the accuracy of the retrieval rate. A comprehensive experiment on the
Brodatz texture Aatabase is carried ou‘t to compare the retrieval accuracy of our
proposed wavelet representation, the sub-sampling wavelet scheme and the Gabor
wavelet feature[24]. Lastly, the retrieval results of different features under various
Gaussian noise levels are examined. In particular, it is demonstrated that the over-
cbmplete wavelet scheme can achieve a more robust performance than the sub-

sampling wavelet scheme under various noise levels.
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3.1. The proposed second deviative-based (Laplacian of Gaussian-
based) wavelet kernel

3.1.1. Deficiency in first deviative-based wavelet kernel

Mallat and Zhong{9] chose the wavelet kemnel to be the first deviative of a smoothing
function as discussed in Chapter 2.3. It was shown to be equal to the Canny operator
for edge detection[67]. They pointed out that the Canny detector provides a large
variance response for local extrema in the signal and a low variance response on other
parts of the signal. On the other hand, Marr-Hidreth described a zero-crossing-based
edge detection method which is derived from the Laplacian of Gaussian filter[68). The
filter detects the local extrema from the zero-crossing point between the maxima and
the minima. We have examined both filter properties with different input as shown in

Table 3.1.

As observed from Table 3.1, the input signal, G,(x), has one data sample ‘thicker’
than G,(x). Using only mean and standard deviation for signal representation, it can
be seen that VG, and VG, from the Canny filter have exactly the same
representation. On the other hand, the variance of V’G, is different from that of VG,

on using the Laplacian of Gaussian filter. Different from the requirement in edge
detection, texture analysis needs to emphasize line information. From this example, it
is clear that the Laplacian of Gaussian filter is more sensitive to the thickness of line
than the first deviative-based Canny filter. It should have better performance in

distinguishing the thickness of lines in texture pattern.
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Test examples Canny Laplacian of Gaussian
) % .ll . 3 = & ;
% o ¢ 00 ¢ 0 ! L ) o o s 0 0 & O [ o & a0 & & 4 2 3 ¢ 0 a o [ l L - ] 4
2 |31 J -2
o N dG,(x) d’G (x
G,(x) = 5(0) VG =2 vig, = 46
; S & 0 0 4 o T I S o & 4 0 ;; LI - - I A I 2 j o i’ 0 9 0 O i o 0 ¢ & & T 1 1 r [- I TR+ ] i
Y R RN = EIE N R NN B ‘,' R T R oj,'fj
dG,(x) d’G,(x
G,(x) =6(0)+5() VG, ==L vig, = LG

Table 3.1, Examples of input signals filtered by Canny detector and Laplacian of Gaussian.

3.1.2.  The proposed 1D second deviative-based wavelet kernel

A new wavelet kernel using the Laplacian of Gaussian filter is derived in this section.

In our derivation, we also consider the smoothing function 9((0) which i1s derived

from the Spline wavelet family. The general expression of the Spline function is given

by,

m+l :

&2 sind, =1 i ;

O(w)=¢ ? _/Z where & If " lts even (3.1-1)
% =0 if m is odd

Similar to [9], we impose ¢{w) to have the form,

#(0)=T1H (2" v) (3.1-2)
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where H(w) is a 27 periodic differentiable function. The lowpass kernel ¢ (@) can

be obtained from multiplication of lowpass filters H in the forward transforms as

shown in Figure 2.6. The lowpass filter H (@) satisfies the following conditions,
|H@) +|H@+m) <1 and |H(©O)|=1 | (3.1-3)

The proof of eqn.3.1-3 can be found in [69] which are sufficient so that eqn.3.1-2
defines a smoothing function. To obtain a Laplacian of Gaussian-typed wavelet

function, k is chosen to be two in eqn.2.3-1. From eqn.3.1-2, we have,

¢(2w)=H (@)p(0) (3.1-4)
To obtain the band pass signal, let us define the wavelet kernel i (2w) as,

v (20)=G(w)é(w) | (3.1-5)

where G(w) is a 27 periodic function. To eliminate the aliasing effect of

~ biorthogonal wavelet design during reconstruction, it needs to choose the

reconstruction kernel ¥ (@) to compensate the aliasing caused by the band pass

kernel. For a dyadic transformation, the kernels, including ¥ (@), ¢(w) and y(w),
must satisfy the following constraint,
v (20) 2 (20)=|p (@) -[p (o) (3.1-6)

Figure 3.1 shows the diagram of idea signal reconstruction using the inverse

overcomplete wavelet transform.
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Ld

|5 (@)

v (2w) x (20)

>
0 % n w
Figure 3.1, Ideal signal reconstruction using inverse overcomplete wavelet transform.
The reconstruction wavelet kemnel g () is defined as,
z(20)=K ()¢ (o) (3.1-7)

K (a)) is a 2z periodic function for reconstruction. We want the wavelet kernel
yf(m) to be equal to the second deviative of the smoothing function 8{w). This
implies that !/f(a)) should have a zero of order 2 at @ = 0. To satisfy this requirement,

we define,

2n
H(w) =(cos%) (3.1-8)

2
. .
Gla) = —-8(sm —Z—J (3.1-9)
Hence, the corresponding reconstruction filter is defined as,

2
M (3.1-10)

K =
(@) Glw)
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Substituting eqn.3.1-8 and eqn.3.1-9 into eqn.3.1-10, it becomes,

1 2n=1 w 2k
Kw)y=—— cos— (3.1-11)
16 i 2

From eqn.3.1-4, eqn.3.1-5, egn.3.1-8 and eqn.3.1-9, it can be shown that

2n+2
sina/
= —m? 4 -
w(w)=-w “/ (3.1-12)
4

2n

sin,

¢ (w)= ILA (3.1-13)
2

Therefore, by using eqn.2.3-1 and eqn.3.1-12, we prove that the smoothing function

9(0)) is equivalent to the Spline function defined in eqn.3.1-1, i.e.,

2n+2
sin &,
0 (w)= —A (3.1-14)

%

Using the expressions in eqn.3.1-8 to 3.1-11, the filter coefficients can be obtained as

shown in Table 3.2,

N H(n) G(n) K(n) L(n)
-4 0.001933125
-3 . -0.0009765625 0.015625
-2 0.0625 -0.009765625 0.0546875
-1 0.25 4 -0.0478515625 0.109375

0 0.375 -8 -0.1484375 0.6367187

1 0.25 4 -0.0478515625 0.109375

2 0.0625 -0.009765625 0.0546875
3 -0.0009765625 0.015625

4 0.001953125

. Table 3.2, Finite impulse response of the filters H, G, K and L that correspond to the second
deviative Spline Wavelet

Note the fast wavelet algorithm discussed in [9] (c.f., Figure 2.6 to Figure 2.7 for 1D

case and Figure 2.8 to Figure 2.9 for 2D case which will discussed in next section) is
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also suitable for the implementation of our proposed wavelet kernel. For a p-level

decomposition of the dyadic wavelet transform, 2° —1 zeros are inserted between

each of the coefficients of the filters H , E, G and K for both forward and inverse
transforms. To solve the boundary problem, we can use the symmetric extension to

extend the signal data at the boundary.

31.3. The proposed 2D second deviative-based wavelet kernel

As discussed in Chapter 2.3, the 2D transforms are simply extended from 1D

transforms due to its separable nature. We defined the kernels y'(x,y) and

¥*(x, y)in eqn.2.3-5, for the vertical and the horizontal directions, as follows,

v (x,y)=w(x)2¢(2y) and v’ (x,y)=w(y)2¢(2x) (3.1-15)

Since we consider a second deviative-based operator, we define the wavelet kernels to

be the partial deviative of 8 (x, y) , Le.,

0°6* (x,y)

21
96" (x.y) and w*(x,y)= 5 (3.1-16)

V() =205

where
6' (x,y)=0(x)2¢(2y) and 6" (x,y)=6(y)2¢(2x) (3.1-17)

For the dyadic wavelet transformation, we define the 2D bandpass functions as

follows,

v' (20,,20,)=G(w,)d(o,)¢(w,) (3.1-18)
v (20,,20,)=G(, )¢ (0,)t (v,) (3.1-19)

The reconstruction kemels, 7' (@, @, ) and 7’ (@,,®,) can be defined as,
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¥ (2w,.20,)=K (0,)L(o,)¢ (v, )¢ (v,) (3.1-20)
1 (20,.20,)=K (0,)L(0, )¢ (@,)d(v,) | (3.1-21)
where L{w} is 27 periodic and satisfies the following conditions,

G (@)K (0)+[H (o) =1 (3.1-22)
(3.1-23)

The derivation of G(@),K(w) and H (@) have been given in Section 3.1.2.
Expanding eqn.3.1-23, the filter coefficient function L(n) is obtained and is shown in

Table 3.2. Note that we also include the third bandpass direction in the texture

analysis model. It can simply be obtained by convolving the bandpass filters G(a)l)

and G(a)y), ie.,

v’ (20,,20,)=G(0,)G (@, )¢ (@,)¢(,)

The forward and the backward of LOG-based wavelet transforms had shown in Figure
2.7 and Figure 2.8. It has the same structure as Canny-based over-complete wavelet.
Figure 3.2 shows an example of wavelet transform using the proposed wavelet kernel,
and Figure 3.3 shows the reconstructed image. It can be seen that the proposed

wavelet kernel can achieve a perfect reconstruction.



Chapter 3 Texture-based feature extraction and retrieval using the Laplacian of Gaussian based 3

o\ r'r—:‘rm![w'l'[r wavelet transforms

—
_—
S
o
-
-
N—

.“ ‘
(=
]

|

.
t
|
|
t

+
|
|

|

AUDDDN

Figure 3.2, Example of the dyadic wavelet transform — Top:

['he original image. From lett to
yrd

right, Ist column: lowpass response, 2nd column: vertical bandpass response, 3™ column

horizontal bandpass response, 4"column: the bandpass response of both horizontal and

vertical filters.

Figure 3.3, Example of image reconstruction: (Left) Onginal image (Right) Reconstructed
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3.2. New feature representation model

Many wavelet feature representations use simple statistical method such as mean[64]
or variance[27] for texture feature representation. Different statistical values are
efficient to represent specific features, such as the ‘mean values can represent the
intensity and the variance can represent the variation of image pattern. However,
consider two texture images with the same pattern but opposite intensity, e.g., the
D101 and D102 or D103 and D104 in Brodatz Album([13] as shown in Figure 3.4. As
feature representation used in [27), the similarity measure based on the variance only

may not distinguish between intensities of patterns.

D101 and D102 (Cane) D103 and D104 (Loose burlap)
Figure 3.4, The examples of Brodatz Album that contain similar texture patterns but with

inverse intensities.

In [70], it was found that two texture patterns of randomly oriented lines are perceived
as similar, if the mean and the standard derivation of the line orientations are the
same, regardless of the actual distribution. Manjunath and Ma[24] proposed a texture
feature representation method which calculates both mean and standard deviation
from the Gabor wavelet results. The method can significantly increase the retrieval
rate from the Brodatz database test[28]. We extent their feature representation method
and apply in separable wavelet schemes. We found that the new representation is more

suitable for representing wavelet features. After one level wavelet transform, we can
obtain a lowpass signal S, f(x,y) and three bandpass signals W f(x,y) for
b=1,2,3 as explained in Sections 2.3.1 and 3.1.3. For the lowpass signals, we have

still to calculate the mean and the standard deviation. However, for all bandpass

signals, we calculate the mean g and the standard deviation o at positive and
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negative sides separately. Mathematically, at s =2' level, the mean and the standard

deviation are caiculated respectively as,

i ME_’ Istf ("' m) >0
w(Wef(xy)) S — (3.2-1)
;J(W,"’ f{= y))< et b where W, f (n,m)
§5w2 7 () .
,U- (W,"f(x. y))= n=0 m=0
. L
""”"[pf (wef)-(wes (n,m))]z -0
o (W) f (x.y))=1|2=2n=2 3 (3.2-2)
o (W,”f (x y))< m— - where Wf (n,m)
IS8 02)- (27 (o) <0
o (w’bf(x_y))=vn= m=0 L

where L, and L, are the number of samples greater than and less than zero in the
bandpass signal respectively. By using this new representation, the “inverse” matching
problems can be solved. In fact, this new representation can be used for other schemes
such as the sub-sampling wavelets. As shown in the experimental results, the new
representation can significantly increase the retrieval rate, for both the over-complete

and the sub-sampling wavelet features as compared to the original representation.

For each level of decomposition, we obtain three bandpass and one lowpass filter
responses. For each bandpass, we calculate the mean and the standard deviation values
using eqn.3.2-1 and eqn.3.2-2 respectively. As for the lowpass filter, we simply ;ake
the mean and standard deviation values because the value is always positive and
approaches the mean value of the image. Therefore, for each level of decomposition,
we obtain 7 pairs of mean and standard deviation values. For four decomposition
levels, the feature vector contains 28 pairs of mean and standard deviation which gives

a total of 506 features, 1.¢e.,
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_ O ST R S S o -
f —(“uoo'oo“ma'olumo'o|"020'02“01‘701“030'03“03003uloalo -------- uaaassuasass) (3.2-3)

It is possible to further reduce the number of features in eqn.3.2-3 without adversely
affecting the retrieval accuracy. Section 3.3.6 will describe a way to do this and give
some experimental results. It is shown that features can be reduced to 41 with a slight

decrease in retrieval accuracy.

3.3. Retrieval Performance

In this section, we present retrieval results on the entire Brodatz database for both the
original and Gaussian noise corrupted images. A comparative study of the proposed
over-complete wavelets with other texture retrieval methods is also carried out. These
methods include the Gabor wavelet feature[24], the Canny-based over-complete

wavelets[9] and various sub-sampling wavelets[51, 71-73].

3.3.1. Brodatz texture database and retrieval performance measure

To test the accuracy of various texture retrieval approaches, the full Brodatz texture
database is examined. The Brodatz texture database is obtained from the entire
Brodatz Album. In our experiment, we obtain 111 texture images collection® from the
Brodatz Album. Figure 3.5 shows the entire Brodatz Album images. Each album
image is an 8 bit gray level image and the size is 512x5]12. We extract nine 128x128
non-overlapping sub-images at the center of each ‘texture image. Therefore, the
database contains a total of 999 sub-images. Every sub-image extracted from the same

texture image is considered to be from one texture class.

A request query image is obtained from one of the sub-images in the database. A

query is then performed on the whole database and the results are ranked in the order

The entire Brodalz Album contains 112 texture images. However, the texture image D14 is missing in our Brodatz Album
collection.
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depending upon the distance measurement of feature vectors as discussed in Section
1.2.3. The accuracy is calculated by averaging the overall retrieval rate of the same
class images within a retrieval size. Excluding the query sub-image, a 100% collection
is achieved if the other 8 sub-images from the same texture class are retrieved at the

top 8 positions. More details on this retrieval analysis technique can be found in [28].
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V ‘-.:}' E

Figure 3.5, Images form Brodatz texture database. Starting from the upper left and scanning
in raster order gives DI to D112 images. Note that D14 is missing in our database and
occupies blank position.
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3.3.2.  Retrieval rate comparison for different feature representation

Section 3.2 discussed the proposed feature representation while eqn.3.2-1 and eqn.3.2-
2 show the methods to calculate the mean and standard deviation of the texture
features. In this section, the experimental results of the retrieval rate using our
proposed method and the variance only approach are shown. The tested features
include the over-complete wavelets with both the Laplacian of Gaussian-based and
Canny-based kernels, and several sub-sampling wavelets with different wavelet
kernels. Similar to the feature representation in [27], we calculate the standard
deviation in the bandpass and the lowpass outputs of both the over-complete and the
sub-sampling wavelet transforms. The feature length is 13 for four level
decompositions. Table 3.3 shows the retrieval rate in the Brodatz database texture as
discussed in Section 3.3.1. Figure 3.6 shows the retrieval results of the two over-

complete wavelets and one sub-sampling wavelets.

The experimental results show that the proposed feature representation can increase
the retrieval rate, by around 11-14%, compared to the case of using variance only for

both the over-complete and the sub-sampling wavelets scheme.

(&)
- (&) () (S) (S) (3) (5)
Texture Feature Lg’izzls?gn()f Canny |Villal810|Antonini} Odegard | Daub8 Haar

Retrieval rate using
New feature 79.65 76.93 76.46 76.26 76.38 74.74 74.82

representation(%)

Retrieval rate using| 5 g 6207 | 66.19 | 6504 | 6503 | 63.56 | 61.34
Variance only (%)

{0) — Over-complete wavelets, (8) — sub-sampling wavelets,
Table 3.3, Comparison of Retrieval performance of different features using new feature
representation and vartance only.
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Figure 3.6, Retriecval performance of different texture features, using the new feature
representation and variance, on Brodatz texture database. Note that for clarity, we show two
over-complete wavelets and one sub-sampling wavelet transform only.

3.3.3. Comparative study of different texture features

In this section, a comparative study of the three texture retrieval methods is presented.
Except for the retrieval method using the Gabor wavelet feature that used 48
dimensions feature representation{24], all the other retrieval methods follow the new
approach as discussed in Section 3.2. In our analysis, four decomposition levels in the
wavelet transform are found to perform the best on the entire Brodatz texture database
test. Table 3.4 shows the average retrieval rate of each Brodatz Album. Examples of
the retrieval results are shown in Section 3.3.5. Due to space limitations, we present
only 4 retrieval results in our study, they are the over-complete wavelet using the
proposed Laplacian of Gaussian-based structure and the Canny-based structure, the
Gabor wavelet features and the sub-sampling wavelets using Villal810. The overall
retrieval performance was obtained by averaging the retrieval rate of each album.

Figure 3.7 and Table 3.5 show the overall retrieval results of the Brodatz texture
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database test. The timing information including the average analysis times and the

retrieval times of the three retrieval methods are shown in Table 3.6.

Average retrieval rate in percentage of each Brodatz Album (%)

(0) - Over-complete scheme, (S) - Sub-sampling scheme, (G) ~ Gabor wavelet scheme

)] (0} (8) (G) (0) (0) (S) (G) (o] o) (S) {G)
Laplacian| Canny [ Vila | Gabor Laplacian| Canny | Villa | Gabor Laplacian | Canny | Villa | Gabor
of 1810 | [eature of 1810 | feature of 1810 | feature
Gaussian Gaussian Gaussian
D1 | 100.00 | 100.00 [ 97.22 [100.00] D40 | 55.56 | 50.00 | 58.33 | 41.67 | D7B | 66.67 59.72 | 66.67 | 72.22
D2 | 8056 | 7500 { 7361 | 9861 ] D41 | 8750 | 7500 | B6.1l | 76.39 | D73 | 98.61 95.83 | 100.00 | 100.00
D3 | 10000 [ 100.00 | 10000 94.44 | D42 | 5278 | 41.67 | 4583 | 33.33 | DBO | 86.11 8333 | 77.78 | 98.61
D4 | 8056 | 7222 | 80.56 | 98.61 | D43 | 12.50 9.72 | 11.11 | 2.78 | D81 | 87.50 86.11 | 66.67 |100.00
DS | 7639 | 7083 | 63.89 | 73.61 | D44 | 3056 | 3056 | 3472 | 11.11 | D82 | 100.00 { 100.00 | 100.00 | 100.00
D& | 10000 | 100.00 ] 100.00 [ 100.00) D45 | 4028 | 37.50 | 36.11 | 9.72 | D83 | 100.00 | 100.00 | 100.00 { 100.00
D7 | 4861 | 48.61 | 4583 | 52.78 [ D46 | 100.00 | 100.00 | 100.00 [100.00] D84 | 100.00 ] 100.00 | 100.00 | 100.00
D8 | 10000 | 100.00 | 86.11 {100.00| 047 [ 100.00 { 100.00 | 100.00 | 100.00] D85 | 98.6) 98.61 | 90.28 |100.00
D9 | 9306 [ 8750 | 97.22 | 9583 | D48 | 93.61 98.61 | 10000 | 88.80 | D86 | 77.78 66.67 | 69.44 | B0.56
D10 | 9861 | 98.61 | 95.83 |100.00] D49 | 100.00 } 100.00 | 10000 | 100.00) D87 | 10000 | 100.00 | 9861 | 98.61
D11 | 100.00 | 100.00 [ 100.00 | 10000 D50 | 7222 | 6806 | 77.78 | 79.17 | D8B| 68.06 76.39 | 58.33 | 20.83
D12 79.17 | 79.17 | 81.94 |100.00F D51 | 9444 | 9444 | 90.28 | 93.06 | D8%| 36.11 30.56 | 38.89 [ 19.44
D13 | 5833 { 5000 [ 43.06 {70.83 | D52 | 7222 | 7361 | 6944 | 90.28 | D3O | 4583 4306 | 34.72 | 62.50
D15 | 8056 | 7360 | 8472 | 77.78 | D53 | 100.00 | 100.00 | 100.00 | 100.00{ D91 19.44 16.67 | 18.06 | 25.00
D16 | 100.00 | 100.00 | 100.00 | 100.00] D54 | 63.89 | 66.67 | 58.33 [ 63.82 | D92 | 100.00 | 100.00 | 100,00 | 94.44
D17 | 100.00 | 100.00 | 100.00 | 100.00] D55 | 100.00 | 100.00 | 100.00 | 100.00] D93 | 93.06 81.94 | 88.80 | 98.61
DI8 | 84.72 | 75.00 | 88.89 | 98.61 J D56 | 10000 | 10000 | 95.83 {100.00] D94 | 98.61 94.44 | 97.22 [ 100.00
D19 | 100.00 | 100.00 | 97.22 |100.00] D57 | 100.00 | 100.00 | 100.00 [100.00| D95 | 10000 | 100.00 | 100.00 | 100.00
D20 | 100.00 | 100.00 { 100.00 { 100.00| D58 | 12.50 13.82 | 1111 } 16.67 | D96 | 100.00 | 95.83 | 90.28 | 93.06
D21 [ 100.00 | 100.00 | 100.00 | 100.00] D59 { 27.78 { 23.61 | 37.50 | 26.39 | D97 | 4583 36.11 | 4722 | 34,72
D22 | 7083 | 59.72 | 6544 | 75.00 | DBO | 4722 | 36.11 | 4583 | 5417 | D98 77.78 75.00 | 66.67 | 55.56
D23 | 5000 | 4861 | 4167 | 63.80 | D61 | 5694 | 5833 | 47.22 | 38.89 | D99 | 3472 36.11 | 5000 | 298.17
D24 | 9583 | 9444 | 9167 | 9444 f D62 | 5833 | 58.33 | 55.36 | 52.78 |D100} 62.50 61.11 | 29.17 | 47.22
D25 | 100.00 | 100.00 | 100.00 | 100.00] D63 | 59.72 | 56.94 | 55.56 | 34.72 |D101{ 100.00 | 100.00 ] 87.50 | 56.94
D26 | 100.00 | 95.83 | 58.33 [100.00| D64 | 95.83 | 9444 | 97.22 | 88.89 |D102| 10000 | 100.00 [ 94.44 | 54.17
D27 | 55.56 | 45.83 | 4583 | 5417 | D65 [ 100.00 | 100.00 | 100.00 | 100.00fD103| 10000 | 70.83 | 87.50 | 43.06
D28 | 10000 | 97.22 | 9444 [ 9861 | D66 | 95.83 | 83.33 | 100.00 | 86.11 |D104] 100.00 | 80.56 | 87.50 | 52.78
D29 | 10000 | 10000 | 9444 | 9861 | D67 | 70.83 | 58.33 | 56.94 | 86.11 |D105| 6528 55.56 | 81.94 | 48.61
D30 | 47.22 | 43.06 | 36.11 | 33.33 | D68 | 10000 | 100.00 | 100.00 | 100.00]D106| 87.50 83.33 | 81.94 | 75.00
D31 | 3611 | 50.00 | 3194 | 25.00 | D69 | 4167 | 37.50 | 41.67 | 26.39 |[D107| 7778 73.61 | 63.89 | 62.50
D32 | 100.00 | 100.00 [ 100.00 {100.00] D70 | 5000 | 5000 [ 50.00 | 47.22 [D108] 54.17 48.61 | 55.56 | 40.28
D33 | 9722 | 9583 | 9444 | 98.61 | D71 | 91.67 | 84.72 | 91.67 | 83.33 |D109{ 86.11 71.78 | 8333 | 72.22
D34 | 10000 | 98.6]1 | 10000 }100.00) D72 | 5000 | 52.78 | 50.00 | 34.72 |JO11¢| 100.00 ({ 100.00 | 100.00 | 84.72
D35 | 10000 | 97.22 | 9028 | 9028 J D73 | 38.80 | 41.67 | 40.28 | 45.83 |D111} 93.06 91.67 | 87.50 | 88.89
D36 | 8056 | 79.17 | 84.72 | 86.11 | D74 | 100.00 | 100.00 | 90.28 | 88.89 |D112] 54.17 54.17 | 54.17 | 69.44
D37 | 100.00 | 98.61 {100.00(100.00) D75 | 100.00 | 100.00 | 100.00 | 97.22 |Avg.| 79.65 | 76.93 | 76.46 | 75.70
D38 [ 8056 | 80.56 | 69.44 | 9583 | D76 | 100.00 | t00.00 [ 100.00 | 100.00
D39 | 5417 | 5417 | 59.72 [ 50.00 { D77 | 100.00 | 100.00 [ 100.00 | 100.00
of each Brodatz Album. For clarity, only 4 retrieval

Table 3.4, Average of retrieval rate

results are shown.
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Gabor

Retrieval feature

Method | Over-complete scheme| wavelet | Sub-sampling scheme

Laplacian

Wavelet of

Kemel | Gaussian | Canny | Gabor |Villal810]Antonini| Odegard | Daub8 | Haar
Retrieval

size=8] 79.65 76.93 7570 | 76.46 | 76.26 | 76.38 | 74.74 74.82

Table 3.5, Performance of different texture features at a retrieval size of 8.

Over-complete Gabor feature Sub-sampling
wavelets scheme wavelets wavelet scheme
scheme
Feature extraction time (sec) ~1 ~7.5 ~(0.2-0.3
Feature vector length 56 48 56
Query time (sec) ~1.1 ~1 ~1.1

Table 3.6, The timing information for different texture retrieval methods on an Intel Pentium
II-300 MHz PC using a C-language implementation.

100.00 -
9%6.00 1
92.00
*
& 8300 {
14
H
E a4.00 4 —|_aplacian of Guassian ()
[
—a— Canny (0)
80.00 - —a— Gabor feature ()
4 — Villa1810 (S)
76.00 4
(0) - Qver-camplete Wavelsts
(G) - Gabor Wavelels
(S} - Sub-sampling Wavelets
7200 +
8 16 24 2 40 49 56 64 72 60 6a 96

Retrigval size (Number of fop matches)

Figure 3.7, Retrieval performance of different texture features on Brodatz texture database.
Note for clarity, only 4 retrieval methods are shown.

As it can be seen in Table 3.5, all retrieval methods can achieve above 70% retrieval

rate. In particular, our proposed Laplacian of Gaussian based over-complete wavelets

achieve above 79% from this test which is the highest retrieval rate among the tests.
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Compared to sub-sampling and the Gabor Wavelet features, it has around 3-5% higher
rel:rieval_ rate.

Comparing the timing information in Table 3.6, the sub-sampling methods have the
shortest analysing times due to its sub-sampling nature. The two over-complcte‘
wavelets features take about one second. The Gabor wavelet feature takes the longest,
around 7.5 sec. However, all three methods have nearly the same query time due to the

short length of the feature vector.

3.34. Retrieve performance under different noise levels

Real world signals usually contain noise signals from the ideal signal. These are not
part of the ideal signal. A noise signal may be caused by a wide range of sources, such

as variations in the environmental variations or quantization errors. Independent noise

can be described by an additive noise modet, where the recorded image x'(zl,zz) is

the sum of the true image x(z,, z, ) and the noise n(z,z,)

x(2,2,)=x(z,2,)+n(z.2)

The noise is often zero-mean and described by its variance ¢. The impact of the
noise on the image is often described by the signal to noise ratio (SNR), which is
given by

o’.\'

SNR =

where o is the variances of the true image. In many cases, additive noise is evenly

distributed over the frequency domain (i.e. white noise), e.g. Gaussian noise is one of
the white noise signal which distributes over the frequency domain, whereas an image

contains mostly low frequency information.
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Translation invariant is an important consideration in multi-resolution pattern
analysis. It could seriously affect the texture retrieval results since any mistake in
information characterization will directly affect the accuraC); of the retrieval results.
Theoretically, the over-complete wavelets should perform better than the sub-
sampling wavelet scheme under different noise levels due to its translation invariant
properly. However, it is necessary to assess and confirm this in an experimental
setting. In this section, we present a comparative study of the three retrieval methods
with white noise corrupted data. In the experiments, different levels of Gaussian noise
are added to the Brodatz Album with the peak-signal-to-noise ratio that ranges from
0dB to 25dB. We assume that the peak value of each texture image in database is 255,

and we take every 5dB step for examination.

Figure 3.8 shows a plot of the percentage drop of the retricval rate against signal-to-
noise ratios at the first eight queried images(retrieval size of 8), and Table 3.7 shows

the overall retrieval rate at the retrieval size of 8.

From the experimental results, the retrieval rates of both Laplacian of Gaussian-based
and Canny-based over-complete schemes are least affected as the signal-to-noise-ratio
decreases. The sub-sampling wavelet scheme using various kernels has a large
percentage drop in retrieval rate as' the signal-to-noise ratio decreases. The Gabor
wavelet scheme remains to have a high retrieval rate at low noise level but the
retrieval accuracy decreases dramatically as the noise level increases. in summary, the

over-complete wavelet scheme has a robust performance even under severe noise

conditidn.
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100.00% 1

Percentage drop i the retrieval slze 8

20.00%

—e— {0} Lapaicion of Gaussian

—a— (0) Canny
—a— (5) Odegard
—o— (S) Antanini
—a—(S5) Haar
—o—(S) Daubl
-~ [5) Villa1810
—a— (G) Gabor

{0) - Cver-complate Wavalets.
S} - Sub-samgpling Wavalets

(G) - Gabor Wavatets

0.00%

10

15

Signa! to Naise ratio (dB)

Figure 3.8, Percentages drop of the retrieval rate versus the signal-to-noise ratio at the
retrieval size of 8.

The average retrieval rates with different Signal-to-Noise Ratio

Toxture | are!  0(dB) 5 (dB) 10 (dB) 15 (dB) 20 (dB) 25 (dB)
feature [Retieva|Retraval Retrisval Retriaval Ratrigval Retrieval Retrigval
irato % | rate% | 9P | g oy | B IOP | g oy | U0 | ipe | HdOP | ey, | odiop [ gy, | % drop
(0)
Laplacian | 7965 | 38.26 [51.96%| 51.31 [35.58%| 60.94 |23.50% | 65.90 |17.26%] 69.06 |13.31%] 72.02 | 9.58%
of
Gaussian
ngw 76.93 | 32.38 |57.91%| 44.94 [41.57%) 57.78 |24.89%} 64.03 (16.77%[ 66.42 [13.66%] 69.41 | 9.78%
o dg)a g | 7838 [ 19.61 (74.33%/ 31.52 [58.73% | 44.88 |41.24% | 56.04 [26.62%| 62.35 |18.37%| 67.81 |11.22%
) | 7626 | 18.09 |76.28%| 30.27 [60.31%| 43.33 |43.18%| 54.69 |28.20%| 61.22 |19.72%| 67.02 |12.12%
Antonini
{S) 74.82 | 16.02 |78.60%| 27.63 (63.08%| 41.17 [44.98%| 52.38 [30.00%| 59.92 [19.92%] 64.25 [14.13%
Haar
D{ﬂ)& 74.74 | 12,22 |83.64%| 22.87 |69.40%| 36.82 |50.73%] 50.59 |32.31%| 59.03 |21.01%| 65.08 |12.92%
Vi“SLm 76.46 | 17.37 |77.20%| 30.04 [60.71%| 42.9 [43.80%| 54.84 |28.28%| 62.58 |18.16%| 67.57 |11.62%
Gg‘ar 75.70 | 18.97 |74.94%/ 32.80 |56.68%) 48.26 [36.25%| 59.30 |21.67%| 65.14 [13.95%| s8.81 { 9.11%

(0) — Over-complete wavelets, (S) — Sub-sampling wavelets, {G) — Gabor wavelets
Table 3.7, Retrieval results at the retrieval size of 8§ for different noise levels
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3.3.5. Retrieval examples

Figures 3-9, 3-10 and 3-11 show the top 20 retrieval images of different retrieval
schemes using different query image. These schemes include the two over-complete
wavelet schemes (the proposed Laplacian of Gaussian-based kernel and the Canny-
based kernel), the Multi-resolution Gabor wavelet and the sﬁb—safnpling wavelet using

VilIz_i 1810 kernel.

(0) Laplacnan of Gau331an-based - (0) Canny-based ovcr-coplete wavelets
over-complete wavelets

5...( 94@ ER\N

(G) Gabor Feature (S) Sub-sampling wavelet using Villa 1810

Figure 3.9, Image retrieval results of the Cane (D102 in Album texture). In each result, the top
left is the query example, and the images are raster-scan ordered by their similarities to the query

image
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Laplacian of Gaussianased
over-complete wavelets

{1

(G) Gabor Feature (S) Sub-sampling wavelet using Villa 1810

Figure 3.10, Image retrieval results of the Loose burlap (D104 in Album texture). In each result
the top left is the query example, and the images are raster-scan ordered by their similarities to

the query image.

(0) Laplacian of Gaussian-based

over-complete wavelets

(§) Sub-sampling wavelet using Villa 1810
Figure 3.11 Image retrieval result of the Lace (D41 in Album texture). In each result the top left
is the query example, and the images are raster-scan ordered by their similarities to the query
image.
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3.3.6. Feature vector reduction

It can easily be seen that some features in eqn.3.2-3 are redundant and could be
eliminated in order to speed up the query time. Since the mean value of the bandpass
response is always zero, the magnitude of the mean value at both positive and
negative sides should be the same. We can simply combine these two features by

taking their averages, i.e.

N +lu;m'
u =T where m=0,1,23,4.... and n=1,2,3

mn

where m is the level of decomposition and n is the comresponding bandpass response.
On the other hand, the mean values of the lowpass responses at different
decomposition levels are approximately equal to the mean of the texture pa-ttern.
Therefore, we can ignore all the mean values from the low pass response. As a result,
the feature length of a four level wavelet transform is decreased from 56 to 41. The

modified feature representation can be written as:
_ o ' * o= + o= * - ' + = + - 3 31
S = He0O00tp1 001051 40,0 0. T ptt 303 T3 O g - U3,03,03153,03,0; ) (3.3-1)

The length of the feature vector is decreased by 25%. The comparison of retrieval
results using the original and reduced features are shown in Figure 3.12 The overall
retrievall rate using this new representation becomes 79.4%, a decrease of about 0.25%
from the original proposed feature representation as shown in Table 3.5. However, the
retr.ieval rate is still higher than other texture features as can be seen in Section 3.3.3.
Therefore, this feature reduction does not seriously affect retrieval accuracy while

decreasing the query time.
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100 -

Retrleval Rate %

------- Reduced features (41dimensions)
= Oringiral feature 56 dimensions)

75
] 18 24 32 40 48 56 64 72 80 88 %6

Retrieval size (Number of top matches}

Figure 3.12 Comparison of retrieval rate between the original and reduced feature
representation

3.3.7. Summary of retrieval results

Some important points from the retrievai results are summarized as follows:

* The over-complete wavelets using either the Laplacian of Gaussian-based or the

Canny-based kernels can achieve a higher retrieval rate than other schemes.

¢ Comparing the Canny-based wavelet kernel in [9] and the proposed Laplacian of
Gaussian-based wavelet kernel in the over-complete scheme, our proposed
wavelet kerrllel has a higher retrieval rate in the test. It proves that the proposed
wavelet kernel is more suitable for texture analysis due to its line thickness

detection capability as discussed in Section 3.1.1.

» The proposed feature representation, i.e. calculating the mean and standard
deviation separately on the positive and the negative filter responses, can be

applied to both the over-complete and the sub-sampling wavelet schemes. The
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retrieval accuracy is significantly increased as compared to the representation that

uses a single variance only.

e Analysis time is greatly reduced by using the over-complete wavelets as
compared to the Gabor wavelet feature. It indicates that the new texture module is

suitable for real-time texture feature extraction.

e From the retrieval experiment with white noise corrupted data, the over-complete
wavelet scheme is the least affected as compared to other schemes. It proves that

this scheme has a robust performance even under severe noise levels.

34. Summary

This chapter introduces a new texture feature extraction scheme using the over-
complete wavelets that have the advantages of low analysing time and translation
invariant property. However, instead of using the first deviative-based wavelet kernel
proposed by Mallat and Zhong[9] discussed in Chapter 2, we have derived a new
kernel that is based on the Laplacian of Gaussian kernel and proved that it is more
suitable for texture feature characterization. We also present a new feature
representation method that calculates the mean and the standard deviation separately
on the positive and negative sides. It is found that the new feature representation can
significantly improve the accuracy of texture retrieval for both the over-complete
wavelets and the sub-sampling wavelets. From the experimental results using the
Brodatz texture database, our proposed over-complete wavelet scheme can achieve a
low analysing time, the highest retrieval accuracy and robust performance even under
severe noise levels. It indicates that this scheme is suitable for real-time texture

analysis for content-based image/video retrieval applications.
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CHAPTER 4

4. A Fast algorithm for 1D Laplacian of
Gaussian-based over-complete wavelet

As we mentioned in Chapter 1, wavelet transform is a powerful technique that has
wide application in signal processing. The technique is especially useful for signal
compression, image enhancement, content-based feature analysis, etc, which involve
very heavy computation. Fast algorithms for wavelet transforms become essential to
reducing the processing time. Most of the fast algorithms are designed for specific
processors{74-77]. However, due to the cost of hardware, it is not economical for
some applications. Software approach using fast algorithms for wavelet transform is a
good alternative. However, not much research on fast algorithms using the software
approach is available. Recent studies of fast algorithms, such as lifting scheme for
sub-sampling wavelets[52] and spatial implementation for Canny-based over-

complete wavelets[53, 54], can greatly reduce the computation time for wavelet

transforms.

The Laplacian of Gﬁussian(LOG)-based wavelet kernel has shown superior
performaﬁce in texture feature analysis as discussed in Chapter 3. The kernel gives a
complete wavelet transform and thus it allows perfect reconstruction of the signal.
quever, implementation using conventional filtering is inefficient and causes

artifacts. By deriving a general expression for the computational cost using the
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conventional filtering implementation, it reveals that the inverse transform is
significantly more costly in computation than the forward transform. In order to
reduce the computational complexity, a spatial implementation is proposed. Both
theoretical and experimental studies show that the new approach can greatly decrease
the cost of transforms. Furthermore, the boundary artifact effect can be eliminated
during multi-level wavelet transforms using the new approach. The description can
also be more accurate for different image processing applications, such as the

description of texture contents for similarity retrieval.

In this chapter, we propose the fast algorithm for LOG-based over-complete wavelet
transforms. We start from the 1D case for the wavelet transforms in Section 4.1. We
first discuss the computational complexity of the transform using me conventional
filtering approach. And then we propose the spatial implementation method to reduce
the computational complexity. Later, we extend the fast algorithm of the 1D wavelet
transform to the 2D wavelet transforms in Section 4.2. In order to simplify the

discussion, we use z-transform to explain the mathematical formulation in the rest of

chapter.

4.1. 1D dyadic LOG-based over-complete wavelet representation

4.1.1.  Conventional filtering approach for LOG-based over-complete wavelet
representation 1D transforms

Assume the lowpass X (z) and bandpass D(z) filter responses are obtained through

filtering as follows,

X (z):H(zj)X,- (z) (4.1-1)

D, (Z)-:G(ZJ)XJ(Z) | ' (4.1-2)
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where ijzz!-y_H(Z) and G(z) are the lowpass and bandpass FIR filters

respectively, while index j indicates the level of the wavelet transform. The LOG-

based wavelet kernel with an arbitrary order n can be written as
Zn —i 2n
H(zj)=2%(l+zj) (4.1-3)

G(z;)=4(zg;' -2+2;) 4.1-4)
In reconstruction,
X; (z)=K(zj)Dj+, (Z)*’E(Zj)xw (2) 4.1-5)

where E(zj) is the time inverse of H (zj). The reconstruction filter K (z,-) is

written as,

2
) 1-|H(z))|

(Zf) G(z,) (4.1-6)

The structure of the one-dimensional LOG-based over-complete wavelet transforms
are the same as the Canny-based over-complete wavelet transforms. Figure 2.6 and
Figure 2.7 also give the LOG-based over-complete forward and inverse transforms,
respectively. Table 4-1 shows the first level (j=0) filter coefficients of G, H and K, for
n=1,2 and 3 in eqn.4.1-4, 4.1-5 and 4.1-6. To analyse the computational complexity
of the forward and the inverse wavelet transforms, the numbers of additions and

multiplications are calculated. Using the Binomial theorem, H(z;) can easily be

expanded as follows,

H(z;)= 2lzn (i AT A 2"C"J (4.1-7)

k=0
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where C is the binomial expression. Substituting eqn.4.1-3 and eqn.4.1-4 to eqn.4.1-

0, K (zj )can be rewritten as,

2n-1

K(z;)=B,+ > B[] +2"] 4.1-8)

where

B = _L znz_lluc
[} 16 “ 22.\; k—m

By analysing eqn.4.1-4, eqn.4.1-7 and eqn.4.1-8, the computational costs of both

forward and inverse filters can be expressed as follows,

COSt (G) = (Z)COStadd + (2)C0‘gtmul:iply
Cost (H )= Cost (ﬁ) =(2n)Cost,4 +(n+ 1)Cost,,

Cost(K)=(4n-2)Cost,,, + (2n)Costm,".p,y
where Cost,,, and Cost,,,., are the computational costs of an addition and a

multiplication operations respectively.

Note 4.1: The computational complexities of the forward and the inverse wavelet

transforms at level j, using the filtering approach, can be written as,
Cost, (Forward )= (2n+2)Cost,,, +(n+ 3)Costmu,".p,y

Cost, (Inverse)=(6n—2)Cost,,, +(3n+1)Cost, .

Proof: The forward wavelet transform consists of filtering the input signal with G and

H. Thus the computational complexity of the forward wavelet transform is calculated
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by summing up Cost{G) and Cost(H ). Similarly, for the inverse wavelet transform,

it equals the sum of Cost (E ) and Cost(K).o

Note that these complexities are independent of the decomposition level. As shown in
Note 4.1, the inverse transform requires approximately three times the cost of the
forward transform. By exploiting the redundancy between filters, an alternative

implementation is proposed to reduce complexity.

4.2. Proposed spatial approach for 1D LOG-based wavelet
transform

Similar to other over-complete schemes, the LOG-based kemnel provides a redundant
signal representation. We can exploit the correlation between the lowpass and the

bandpass outputs to simplify some of the computations. From eqn.4.1-2,

z;—'.G(Zj)=4(z'."2—2-z}"+z}) 4.1-9)

J
§"G(z;)=4(z;" -2 + 577) (4.1-10)

Rearranging eqn.4.1-9, eqn.4.1-10 and using mathematical induction, it can be proved

that for an arbitrary m,
m-1
" =%{(E(m-k)[zf +z;*]J-G(z,.)+m-G(zj)+s} (@.1-11)
. k=1

By substituting eqn.4.1-11 into eqn.4.1-7, and using the fact that,

22n ="E—12(2"Ck)+ ZnC" .

=0

P

we obtain the following equation,
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n-1
X, (2)=X,(2)+D, (z){E,, +YE (' +72, )} (4.1-12)
1=
where

E, 22n+2 Z (*Cpoi) (4.1-13)

Define F [Dj.(z)] as the predictor at the j level wavelet transform, then,

(2,0, b+ S B +2) @114

X=X, (Z)"'F[Dj (Z)] (4.1-15)

Eqn.4.1-15 shows that X, (z} can be obtained simply by adding the predictor to

X; (z) This pure spatial relationship also provides an alternative way for calculating

the inverse. We can replace the addition with subtraction to reconstruct the signal.

Figure 4-2 shows the new structure for implementing wavelet transforms from

eqn.4.1-15.
X, {z) Glz;) D, () Dy (2}———
F(D;(z)) F(D;(2))
DX (2) X a2} D X,
(a) (]

Figure 4.1, Fast algorithm for LOG-based wavelets. (a) Forward transform, (b) Inverse
transform

For the complexity of the new structure, note that,

Cost(F[ D, (2)]) = (2n~2)Cost 4y + (1) COSt i,
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Note 4.2: The computational complexities of the 1D forward and inverse wavelet

transforms of the proposed spatial algorithm are,

Costg (Forward)=(2n+1)Cost 4, +(n+2)Cost ..
Cost, (Inverse) = (2n — I)Costadd + (n )COStmuIriply

Proof: The forward complexity equals the sum of the costs of G(z), F [D (z)] and
one addition operation as shown in eqn.4.1-15. The inverse complexity equals the sum

of the cost of F [D (z ):I and one addition.o

4.3. Analysis of the spatial approach

The spatial approach can efficiently reduce the computational complexity of both
forward and inverse wavelet transforms. Comparing Note 4.1 and Note 4.2, the
complexity of the forward wavelet transform is slightly decreased, while for the
inverse wavelet transform it is greatly reduced (nearly 3 times) due to the use of a
simple spatial approach for reconstruction.

For instance, the Spline wavelet (n=2) achieves a saving of 1 addition and 1
multiplication in the forward wavelet transform. In the inverse transform, the number
of additions is reduced from 10 to 3 and multiplications from 7 to 2.

A comparative study was also carried out experimentally. The average computation

times using both filtering and spatial approaches are shown in Figure 4.2. Consistent

with the theoretical studies, the spatial approach is more efficient than the filtering

approach.
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Figure 4.2, Comparison of computation time for the Spline wavelet (n=2), using filtering
approach and spatial approach, versus different levels of wavelet transform.

Since F[D(z )] remains the same in both forward and inverse wavelet transforms,

the spatial approach does not require boundary corrections after reconstruction as in
the filtering approach. Any boundary extension scheme can be used while maintaining

the ease of the inverse transform.
Our proposed approach is also able to achieve a lossless transform. The denominator
(22") in eqn.3 can be ignored to give integer filter coefficients. As the coefficients are

integer and no floating point error is introduced in the proposed spatial approach, the

wavelet transform becomes lossless.

4.4. Summary

In summary, our approach reduces the computational complexity, handles boundary

extension in a flexible way and also allows a lossless wavelet transform.
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CHAPTER S

5. Fast algorithm for 2D Laplacian of Gaussian-
based over-complete wavelet

The Laplacian of Gaussian (LOG)-based wavelet kemnel has recently been proposed
for texture feature analysis and retrieval as discussed in Chapter 3. It belongs to the
class of the over-complete wavelet scheme which was proposed by Mallat and
Zhong[9]. There are several advantages of using this kernel. First, it has beén shown
that this kernel can achieve the highest retrieval rate as compargd to kernels from
various sub-sampling wavelet schemes[70-73] and the Gabor wavelet[24]. Second, it
allows a simple implementation structure due to its separable nature. Because of the
translational invariant property, a robust performance under different levels of noises

has also been reported in section 3.3.4.

Despite these advantages, a major issue in a real-time texture analysis and retrieval
sysiem is the computational complexity. Implementation using conventional filtering
approach is inefficient and can cause boundary artifacts unless proper compensation is
done either before or after the transform. By deriving some general expressions for the
computational cost using the conventional filtering implementation, it reveals that the
inverse transform is significantly more costly than the forward transform. A class of
recent techniques[52-55], commonly know as the lifting scheme, shows that a pure

spatial implementation can greatly reduce the computation time in the wavelet
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transform and help remove the artifacts. This approach is based on finding the

common computations between the lowpass and the bandpass filters in the wavelet

kemnel to reduce the complexity.

In this Chapter, we identify common computations within the 2 dimensional LOG-
based wavelet kernel in the over-complete wavelet scheme. Similar to the lifting
scheme in the sub-sampling wavelet scheme, it results in an efficient pure spatial
implementation. Both theoretical and experimental studies show that the new
implementation can reduce the computational cost of the wavelet transform. In
particular, the cost associated with the inverse transform is reduced significantly.
Furthermore, the new implementation can completely eliminate the boundary artifacts

without any extra boundary compensation.

This Chapter is organized as follows. Section 5.1 provides an overview of the LOG-
based over-complete wavelet representation. In particular, the computational costs for
th_e forward and the inverse transforms using the conventional filtering approach are
given. Section 5.2 introduces the new spatial approach of the wavelet kernel and
analyzes its computational cost. The boundary artifact that may occur in the filtering
approach and how it can be eliminated by the new approach are discussed. Section 5.3
discusses the texture analysis using the new approach. In Section 5.4, comparative
experiments on t.he complexity of the forward and the inverse transforms between the
filtering approach and the proposed spatial approach are given. A comparative study,
using the LOG-based wavelet kernel and other texture analysis methods, of retrieval

accuracy on using the entire Brodatz texture database is also presented. Finally,

Section 5.5 concludes this Chapter.
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5.1. The over-complete wavelet representation using the LOG-
based wavelet kernel

5.1.1.  The 2D dyadic LOG-based over-complete wavelet representation

The over-complete wavelet transform of a pattern such as an image is obtained by
applying filters separately to both the horizontal and the vertical directions. For the 2D
dyadic LOG-based over-complete wavelet representation, three filtering responses are
obtained at each level of decomposition. They are the lowpass approximation of the
original image and two bandpass outputs - one bandpass output shows the horizontal

feature while the other shows the vertical feature of an image. Mathematically, the

lowpass output at the j dyadic level is given by
Xin (ZI’ZZ)ZH(ZIJ)H (zl.j)Xj (anz) (5.1-1)

where z,,=z¢ and k denotes the direction of the filter, z,; and z,; denote the
horizontal and the vertical direction samples at the j* dyadic level of decomposition

- respectively. X, (z,,z,) is the j* level lowpass approximation of the original image.

The two bandpass outputs can be written as

D, (2.2,)=G(z,,)8(z,,)X,; (2. 2) (5.1-2)

D}n (Zl’zz):a(zl.j)a(zz.j)xj (ZI’ZZ) (5.1-3)

where §, G and H are delta function, the 1D bandpass filter and the 1D lowpass
filter, respectively. D!, (z,.2,) and D%, (z,.z,) are the responses of the bandpass
filters in the horizontal and the vertical directions at the j"' level of decomposition,
respectively. Figure 5.1 shows the general structure of different levels of the wavelet
ransform. For the inverse over-complete wavelet transform, the lowpass

approximation at the 7" level can be reconstructed as shown in eqn.5.1-4,
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Figure 5.1, Forward over-complete wavelet transform of the j™ level. The solid line shows
the traditional filtering transform, while the dotted line shows the third direction for texture

feature analysis [9).
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Figure 5.2, Inverse over-complete wavelet transform of the i level.

X; (Zlv 7y )= K (Zl.j+l )L(ZZ.}'H )D}u (21’ Zz)
) — _ (5.1-4)
+ L(Zl.jﬂ )K (Zz.jn )Dj+l (Zla ) )+ H (Zl.j+l )H (Zz,_m )Xj+] (Z: 1 2y )
where H is the time inverse of H , K and L are the 1D bandpass reconstruction
filters. The reconstruction framework is shown in Figure 5.2. Similar to the forward
transform, the inverse filter is applied separately to the horizontal and the vertical
directions. By substituting eqn.5.1-1, eqn.5.1-2 and eqn.5.1-3 to eqn.5.1-4, the perfect

reconstruction constraint can be stated as follows,
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K (Z!,j+l )L(Z2.j+l )G (Zl.jﬂ )+ L(Zl.jﬂ )K (ZZJH )G (Zz.jﬂ )

i JTEAS (5.1-5)
+H(Zld_+l )H (ZZ.;'H )H (Zl.fﬂ )H (zz,,-,,. )=1

Eqn.5.1-5 shows the condition for perfect reconstruction of the original image. One
can see that th;:re is considerable freedom in choosing these four filters in an over-
complete wavelet scheme. Since points of sharp variations, such as edges, are usually
one of the most important features for analysing and characterizing patterns, a way of
choosing these filters 'is to construct these filters so that the resultant wavelet
transform could characterize those sharp variations in an image. In [9], the 1D

lowpass and bandpass filters, at the ™ level transform, for the order n are written

respectively as,
Z - \2n .
H(zk‘,)=5§-—;~(1+;k;) (5.1-6)
and
G(z, ) =4z, ~8+4z, (5.1-7)

The wavelet function corresponds to the second derivative of a smoothing function.
Thus this set of kernels corresponds to the Laplacian of Gaussian filter and the zero-

crossing point shows the sharp variations such as edges in a pattern. Following the

analysis from the 1D framework, the reconstruction filter, X (z,‘. i ) can be expressed

as

_ 1—|H (z,w.)r

K (Zk-i )_ G (Zk.i)

Substituting eqn.5.1-6 and eqn.5.1-7 to the above expression, K(z,w.) can be

rewritten as
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2m

2n-1 ')_4 2
K (zk.,-)=[-%] ) Ly (5.1-8)

To achieve perfect reconstruction, it is required that,

2
L(z,‘_,.)=-1—+'H:£¢")I (5.1-9)

Substituting eqn.5.1-6 into eqn.5.1-9, L(z,"j) can be expanded as,

4n
Sy i

Zy,j

.L(zk.;)=%1 — 5L (5.1-10)

+

For the texture feature analysis system proposed in [9], a third bandpass response,
denoted as D? (2»2, ), is included to characterize the diagonal feature in a pattern. It

is obtained by applying the 1D bandpass filter to the responses of both the vertical and

the horizontal directions, 1.e.
D}, (2,%)=G(z,)G(2,)X;(z02) (5.1-11)

5.1.2. Filter complexity

To measure the computational costs required in the LOG-based wavelet kernel, we
need to expand the filter expressions and find out the numbers of additions and
multiplications involved. The bandpass filter G has a fixed number of coefficients

and it requires 2 additions and 1 multiplication only. The computation cost is written

as,

Cost(G) = {(2)Cost,y; +(2)COSt 0 (5.1-12)
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where Cost,,, and Cost,,,, are the computational costs of an addition and a

multiplication operations respectively. For analysing the cost of the lowpass filter H ,

eqn.5.1-6 is expanded by using the Binomial theorem as follows,

H(n,)= 2%(2 A EvEEvad Z"C,,J (5.1-13)

m=0
where

n!
"C =— ‘ 5.1-14
" (n—m)im! ( )

Eqn.5.1-13 shows that fhe cost of the lowpass filter H is,
Cost(H) = (2n)Cost,,, +(n+ 1)Cost,,.. (5.1-15)
In reconstruction, we need to find the costs of ﬁ, K and L. Since H is the time

inverse of H , the filter expression can simply be obtained by replacing z with z™'in

eqn.5.1-13. The cost of H is thus the same as H , i.e.
Cost(H) = (2n)Cost g, + (11 +1)Cost 11 (5.1-16)

In calculating the complexity of K, we expand the summation in eqn.5.1-8 and use

Binomial theorem to obtain the following expression,

2n=1

K(Zk.f)=Bo+ZBm[ZL?+ZL’T;] (5.1-17)
m=1

where

l 2n-1 1 -
B {T@J( S ck_m) (5.1-18)
k=m

The computation cost of K in eqn.5.1-17 can be written as,
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Cost(K )= (4n—2)Cost 4 +(2n)COSt i, (5.1-19)

Again, by employing the Binomial theorem, an expression for L can be obtained by

expanding eqn.5.1-10 as follows,

2n-1
L(zk,j)=%+2—;—+—l—{ PIRA R Tl b ""cz,,} | (5.1-20)

m=0

Rearrange eqn.5.1-20, it can be rewritten as,

2n-1
L(z,)=D+ X E,[ a5 +2i5" ] 5.1-21)
m=0
where
l 4n . 4nCm
D=E+ 24.;31 and E_= S

The computation cost of L in eqn.5.1-21 means that,

Cost(L) = (4n)Cost,,, +(2n+1)Cost, 4 (5.1-22)

5.1.3. Computational cost

In each level of forward transform, both filters in the horizontal and the vertical

directions are involved as shown in Figure 5.1. Substituting the filter expression for
H(z,w.) in eqn.5.1-13 and egn.5.1-1, the lowpass output X (z.z,}, can be

rewritten as follows,

= ~(n-4, n—k, n
XJ'+I (Z,,ZI)=*2-1;;(Z i C"l I:le(f k)+zl‘jk ]+2 C"J

k=0

| (5.1-23)
(S el o
ky =0 )
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Since the scalar factors in both H (z,) and H (z,) can be merged as in eqn.5.1-23,
one multiplication is saved. Consequently, the complexity of obtaining X ,,,(z,.2,)

equals to two times the complexity of H and one less multiplication, i.e.,

Cost(X,,,(2,2,)) =(4n)Cost,y +(2n+1)CoSt,, (5.1-24)
The bandpass outputs, D}, (z.2,) and D}, (z,z,), can be found byrsubstitutirlg
eqn.5.1-7 to eqn.5.1-2 and eqn.5.1-3 as follows,

D), (2.2,)=4(z)} —2+2,,)X,(2) (5.1-25)

D}a(2:2)=4(z)—2+2,) X, () (5.126)
Tﬁus, the complexity of D},, (z,,z,) and -DJ?H (21,2, ) can be written as,

Cost (D}, (2,2, })= Cost (D}, (2,2,)) = (2)C08tgq +(2)COSty0, (5-1-27)

To obtain the complexity of the inverse transform, we consider the complexities of
K(z,.].)L(zlj)D} (z2.2,) L(z,‘j)K(zz_j)D} (z,,2,) and ﬁ(z,lj)ﬁ(z”)Xj (z.2,)

as in eqn.5.1-4. The structure of multi-level inverse transform is shown in Figure 5.2.

Using the filter expressions in eqn.5.1-17 and eqn.5.1-20, K(z,'j)L(zz_j)Df,. (z,22)

can be expanded as,

K (@, )L(2,;)P; (@0 22)=

{BO + %j B, [z,'_:,f' + z{f’j]}{D+ 25_‘: E, [zi&?"‘m) +z,0" }} Di(z.z,)
m=|

m=0

(5.1-28)

The complexity of filters K and L are,

Cost(K )= (4n-2)Cost,,, +(2n)Cost 1, 6. 1-29)
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Cost(L) = (4n)Cost y, +(2n +1)Cost, (5.1-30)

Thus, the complexity of K(z,'_,.)L(zzJ)D}(z,,zz) is equal to the sum of the

complexitiesin X and L i.e.

Cost(K (2, )L{2,;) D} (21,2, )) = (Bn = 2)COst 4y + (4n+1)COSt 5, (5.1-31)

The complexity of L(z,';)K (Zz_,-)Df (z.2,) is also equal to the sum of the

complexityin X and L,i.e.,

Cost(L(z1,;)K (23, )0} (21:22)) = (81 =2)C05tygy + (47 +1)COSL 1 (5.1-32)

Let ?{—(z,.j)ﬁ(zz'j) be the time conjugate of H(z,_j)H (Zz,j) . Therefore, its

complexity is equal to the complexity of H (zl‘ ; )H (Zz, i ), ie,

Cost(H (z,; )H (2., )) = (4n)Cost oy +(20+1)COSt 1, (5.1-33)

Based on the complexities shown in eqn.5.1-24, eqn.5.1-27, eqn.5.1-31, eqn.5.1-32
and eqn.5.1-33, we can obtain the computation costs of the forward transform and the

inverse transform. It is summarized as in theorem 5.1.

Theorem 5.1: The computational cost of a single level 2D LOG-based over-complete

forward wavelet transform uvsing the filtering approach is written as,

Cost, (Forward }=(4n+4)Cost,,, +(2n+5)Cost,, 1.1 (5.1-34)

The inverse transform using the filtering approach is written as,

Cost, (Inverse)=(20n —4)Cost,,, +(10n+3)Cost, ... (5.1-35)
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Proof: At the /" level forward wavelet transform, there are three outputs: X (2 )
D!(z,z,) and Di(z,z,). The complexity of the forward transform can thus be

obtained by summing their complexities as shown in eqn.5.1-24 and eqn.5.1-27. The .

operations in the inverse transform involve three parts; namely
K(Zl.j)L(ZZ.j)D;I‘ (z02:)» L(Zl.j)K(Zz.j)Df (z.2;) and E(Zl.f)ﬁ(zz.i)xj (z.2,)-
The inverse complexity is thus obtained by summing their complexities shown in

eqn.5.1-31, eqn.5.1-32 and eqn.5.1-33.0

From Theorem 5.1, the inverse transform has approximately 5 times more
computational cost than the forward transform. It is due to the fact that the inverse
filters always have a longer coefficient length than the forward filters. It is undesirable
in image analysis to have a higher computational complexity for reconstruction.

For texture feature analysis, the third bandpass output, D3 (z,,z, ), is included in the
forward transform. It involves bandpass filtering in both horizontal and vertical

directions, i.., G(z,;) and G(z,,). In actual implementation, D, (z,.z,) can be
calculated from either convolving D:(z,,z,} with G(z”) or convolving D?(z,,z,)

with G(zl. J.) as shown in Figure 5.1. The complekity of the forward transform for

texture analysis thus requires only one more cost in filter G . The computation costs

Cost}, for the texture can thus be written as,

Cost; (Forward )= (4n+6)Cost,,, +(2n+7)Cost .1, (5.1-36)
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5.2. Proposed spatial implementation for the LOG-based wavelet
kernel

The filtering technique in the sub-sampling wavelet scheme exploits the common
computations between the lowpass and the bandpass filters. This results in a saving of
nearly 50% in computations. In fact this idea can be extended to the over-complete
wavelet scheme because of its redundant nature. A major objective of our study is to
investigate the common computation in filtering the lowpass and the bandpass outputs
to simplify some of the computations, especially in the inverse wavelet transform.
Furthermore, it is found that the boundary artifacts do not appear in the new

implementation structure.

5.2.1.  Single level wavelet transform using the LOG-based wavelets

Let us consider a single level wavelet transform. Before illustrating the new approach,

Lemma 1 is requested to be defined first.

Lemma 1: The following expression

k=0

n-1
Y(Z): 212" [ cht [Z‘(n—t)+ Zn—k:|+ annJXO (Z) (52‘1)
can be written as,

Y(z)=X,(2)+D,(z {E +§ .2 )} (5.2-2)

where
D, (2)=G(2) X, (2)=4(z" +2+2) X, (2) (5.2-3)

and

£ = Sk 524
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Proof: Using Theorem A.1 which is shown in Appendix I, for an arbitrary m, we can

write,
T+ " é%{(:’z:(m—-k)[z"‘ +z*]J-G(é)+m-G(z)+ 8} (5.2-5)

Substituting eqn.5.2-5 into eqn.5.2-1, we obtain,

Y(z)=X,(z)+ g‘zfj) {Zk nC L+ E(z"" + z"‘)ik- ’"c,,,_,} (5.2-6)
k=1 i=1

m=l

Using eqn.5.2-4, eqn.5.2-6 becomes,

Y(2)=X,(z)+D, (z){E,, +"2_IE,,_,,, (2 +z"')} (5.2-7)

m=1
‘which completes the proof.a

Using Lemma 1, the wavelet transform, along z, (the column) for every row of the

image, can be written as,

H (Zz)xu (ZI’ 4 ): Xy (ZI’ 2y )+ Dlz (ZI’ZZ){En + nz—lEm-l '(Zz_m +2; )} (5.2-8)

m=}

Using the expression in eqn.5.2-8, we can arrive at Theorem 5.2. This theorem

provides an alternative method for the implementation of the LOG-based wavelet

kernel.

Theorem 5.2: The first level lowpass output of the over-complete wavelet transform

using the LOG-based wavelet kernel with an arbitrary order n can be rewritten as,
X, (2,2,)= X, (2,22 )+ £,{D} (2.2 )}+ F, {Dl' (2,2, )1, [D,z (2,2, )]} (5.2-9)

where
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F {D,’ (2.2 )}= h [Dlz (202 )] - {E" * "Z‘i E,., [2242 tz ]}D'z (z,2) (52-10)

and

F, {Dll (Zn % )’Yl [Dl2 (Zl’ 2 ):I}
{E + Sk, [at e ]}{D: (202)+G(@)5 [ D (2 2)]}

4=l

(5.2-11)

Proof: We start with substituting eqn.5.2-10 to eqn.5.1-1

X (2:2,)=H(5)X,(2.2,)+H(z) {E +EE,,_,[ g, ]}Dlz(zl!zz)

L=l

x (z,,zz)+{E 5 E.[ ."‘+z."]-}Dl' (z,2)

h=I

g geaten )

5=l

(5.2-12)

The last term in eqn.5.2-12 can be rewritten as,

2 - =
%{i Zanl I:zl-(n-k,}+ Z]n—kl]+ ann } {En +2En-!1 [Zz-r, + erz ]}

k=0 L=l

[Dlz (ZI’ 4 )"'%[G (Zl )D:Z (ZI' 2 )] {En + :Z;; E_, [Zl_r! + Zl’, ]}}

=

=Y I:Dl2 (2,2 )]+2217{En +z E. [Zl_f’ + 2-'|I3 ]}G (z)Y, I:Dl2 (2,2 ):l

(5.2-13)
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Substituting eqn.5.2-13 into eqn.5.2-12, the first level lowpass output can be

expressed as,

( n=1
Xo(z,2, )+ {ER + EEn-!. [z,_" +z" ]}Dl' (z-25)
h=1

X, (31:22): )

+Y [Dlz (2.2, )]"'?}.T{{En + :2: E_, [Zl_’j +7,° ]}G(ZI ) 4 [D|2 (2,2 )]

X, (ZI’Z2)+YI I:Dlz (Zuzz)]

i +'22_1"+'2—{En +"2_' E., [Zl_lj +z” ]}{Dll (20%)+G(z)Y, [D12 (22 )]}

1=l

(5.2-14)

which completes the proof.oo

Theorem 5.2 not only provides an alternative implementation scheme for the forward
transform, but also simplifies the computation for the inverse transform. In particular,

the inverse transform can be easily calculated as follows,
Xo(2,2)=X, (2.2, )- F{D} (z. 2. )}- F {Dl' (2.2,)., [Dlz (2.2, )]} (5.2-15)

The proposed implementation structures for the forward and the inverse transforms
according to Theorem 5.2 and eqn.5.2-15 are shown in Figure 5.3 and Figure 5.4
respectively. It can be seen that a simple spatial implementation is used for image

reconstruction. It greatly simplifies the computation involved in the inverse transform.



Chapter 5 Fast algorithm for 2D Laplacian of Gaussian based over-complete wavelet 78

GG ) ---Dl (@ z)
G(z,) i D/(z,,z,)
X,(z.2,H—G(z,) ) D}(z,z,)
|
[ F,
X X,(zl,zz)

Figure 5.3, Proposed spatial implementation structure for the forward transform using the
LOG-based wavelet kernel. Solid lines show the general structure of the wavelet transform.
The Dotted line shows the third direction in texture analysis.

D!(z,,z,)
D; (Zu o ) ]

XI(ZI’ZZ) }W/ XO(ZI’ZZ)

Figure 5.4, The proposed spatial implementation structure for the inverse transform using the
LOG-based wavelet kernel.

5.2.2. Computational complexity of the new approach in the first stage
“transform

In analysing the computational complexity associated with the proposed scheme, the
complexities in F, {D,2 (2.2, )} and F, {D,' (7.2, )Y, [D,z_ (2.2, )]} given in eqn.5.2-

12 and eqn.5.2-13 can be written as follows,
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Costy (F {D} (2,2, )})= (2n—2)Cost gy +(n)COSt (5.2-16)

Cost, (F2 {D! (21,2, %[ D} (2o, )]}) = (2n+1)Cost,yy + (1 +1)Cost,,, (5.2-17)
Using both eqn.5.2-16 and eqn.5.2-17, the complexities for the forward and the
inverse wavelet transforms can be defined as in Theorem 5.3.

Theorem 5.3: The LOG-based over-complete forward wavelet transform using the

spatial implementation scheme described in Theorem 5.2 has a complexity of,

Costg (Forward )= (4n +5)Cost 4, +(2n+5)Cost 0. (5.2-18)

and the inverse has a complexity of,

Cost; (Inverse) = (4n + I)C ost ,, + (2n + I)Costmmp,y _ (5.2-19)

Prooj'?’Ihe forward transform has three outputs: two bandpass outputs, D) (z,,z,) and

D} (z.z,), and the lowpass output, X,(z,.2z,). The costs for obtaining the two
bandpass outputs are given in eqn.5.1-27. According to the new implementation

scheme in Theorem 5.2, the lowpass output involves the calculation of F,{D| (z,.z,)}
and F, {Dll (2,21, [Dl2 (z.2, )]} , its cost would include two additions, the

complexities in . obtaining F,{D‘1 (2,2 )} and F, {D,l (z,,zz),Yll:D,2 (Zuzz)]}- By
summing up these complexities, the forward complexity can be determined. In
reconstruction, there is no need to calculate D, (z,,z,)} and D (z,z,). Thus the

inverse complexity would only involve two additions, plus the complexities in

obtaining F, {D,I ( ,.zr2 )} and F, {D,' (z2.2;). 1, [D,2 (2,2 ):I}.D
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In the filtering approach, the cost of the forward transform is much smaller than that
of the inverse transform as shown in Theerem 5.1. In contrast, the complexity of the
forward transform is slightly higher than that of the inverse transform in the proposed
implementation scheme as shown in Theorem 5.3. In comparing the filtering approach
and the proposed scheme, we can see that the complexity of the forward transform of
the proposed scheme has only one addition more than the filtering approach. This does
not affect significantly the computational time in actual implementation. On the other
hand, the complexity of the inverse transform of the proposed scheme is much lower
than that of the filtering approach. In the proposed scheme, no filtering is required for
the reconstruction of the original signal. Rather a simple spatial implementation is
used for the reconstruction and thus the computational complexity of the inverse
transform is greatly reduced. It can be seen that the inverse transform using the
proposed scheme requires three multiplications and two additions less than the

forward transform in the filtering approach.

Similar to the filtering approach for the texture analysis, the third direc.:tion D} (z.2,)
can be calculated from the convolution between D) (z,,z,) and G, (z,,2,) as shown
in Figure 5.3. The cost can be calculated simply by adding the cost of G(z) in
eqn.5.1-12 to that of eqn.5.2-18, ie.,

Cost! (Forward )= (4n+7)Cost,,, +(2n+7)Cost .., (5.2-20)

5.2.3. Multi-level wavelet decomposition using the proposed spatial approach

In the previous section, we explored the common operations between the lowpass and
the bandpass outputs for the first level over-complete wavelet transform and provided

a new spatial implementation structure for the wavelet transforms. In this section, we
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extend the proposed scheme to multiple level wavelet decomposition. As shown in

Figure 5.1, the second level wavelet transform involves filters G(zz), H (zz),

K (zz) and L(zz). Similar to the first level of wavelet transform, the two bandpass

outputs and the lowpass approximation at the second level of decomposition can be

written as,
D} (2,2 )=G(2)5() X, (a2.) (52-21)
D} (2,2,)=6 (22 )G(23) X, (2. 22) (52-22)
X, (2.2,)=H (22 )H (22) X, (22,) (5.2:23)

Let us first analyse the computational complexity involved in calculating the second

level output, Dj(z,,z, ), in comparing to the first level output, D} (ztl, z, }, eqn.5.2-21

can be rewritten as,

D;(2,2,) =G (21} Xy o (2422 )+ G (&0 )X s (201 22) (5.2-24)
where X,,...(z.2,) and X, , (7.2,) are tespectively the even and the odd parts of
X,(2.2,)- As the length of either X, ., (2/,2,) or X, (2,2, ) is only half of that
of X, (zf,zz), the total number of ope;:rations involved in obtaining D;(z,,z,) is the

same as that of D, (z,,z, ). In fact, for any dyadic decomposition level, j=2"",

Di(z.2)  =G(d" )X, (a2)

-8 6 (@ )X (5 2) (5:2:25)

=0

>

where
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%, (mom)=x, (2'm +k,m, ) | (5.2-26)

An analysis of eqn.5.2-26 shows that the number of operations involved in obtaining
D!(z,z,) remains the same as that of Dj(z.z,). Using eqn.5.2-22, a similar
conclusion can be arrived for Df (z,,2,)- Therefore, the computational complexities
of the two bandpass outputs remain unchanged, regardless of the number of

decomposition levels. Substituting eqn.5.1-23 to eqn.5.2-24, we obtain the second

level lowpass response as shown below,

Xl (ZI,ZZ)=2_L,{Z 21‘:C-.h [le(n—tl)+ Z]—Z(n—h)]+ 2nCnJ

k=0

n—1
x[ E znct, [222("—&1) + 22_2('1—*')] + Z”Cn JXI (Zl x4 )

ky =0

(5.2-27)

Upon comparing eqn.5.2-25 and eqn.5.2-28, it shows that both expressions look very
similar if z is replaced by z* in eqn.5.2-28. The analysis in Theorem 5.2 can thus be
extended to obtain X, (z,z,) by replacing D} (z,,z,) and D}(z,,z,) with D] (z,,z,)
and D?(z,z,) respectively, and z with z* . This takes into account the filter

interpolation in the subsequent decomposition levels. Mathematically, the second

level lowpass output can be obtained as follows,
X,(2,2,)= X, (2.2,)+ £ {D} (2. 0. )}+ F, {D; (2.2,).%[ D (202, )]} (5.2-28)

where

FAD: (2.%)}=1.[ D} (z,2,)] = {E Sk, [200+ zi“"’}} D (2,,2,)(5.2-29)

L=

and
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F, {Dzl (Zp 4 )’ Y, [D22 (Zn % )]}
(a8 [260 440 Bl ol 1 )]

b=l

(5.2-30)

Using similar argument for an arbitrary decomposition level, we arrive at the
following theorem.

Theorem 5.4: For a LOG-based wavelet kernel, the j* level lowpass output can be

rewritten as,
X 1 (2:2)= X, (202 )+ F{D} (20 )}+ F, {D} (20,2, ). 1, [ P} (20,2, ) ]} (5:2-31)

where
n—1
g {D;z (212, )}: Y I:DJZ (22, )] = [En + D, [Zz_f} + z;fj]} Dj(z,7,) (52-32)
L=l

and

F, {D} (z,2,).Y; [D? (22, )]}
{E +E el [Zl "'Zu]}[DI (z,,zz)+G Zl [Dz(z,,zz)ﬂ

=l

(5.2-33)

Proof: Using Lemmal and egqn.5.1-1, we can obtain the lowpass response from the i

decomposition level as,

X (z2:%)= H(z,J)X (zl,z2)+H(z“){E +2E,t ,z[zz +z2,] }Df(z,,zz)



Chapter 5 Fast algorithm for 2D Laplacian of Gaussian based over-complete wavelet 84

EACRI R S N RN TS

L=l

_ b
2 n—
adISe [agear e e e [si 1,

k=0 f=1

(5.2-34)

Following the analysis in eqn.5.2-14 and eqn.5.2-15, we will arrive at the prediction

terms as shown in eqn.5.2-32 and eqn.5.2-33.0

Theorem 5.4 provides a general expression for the j"‘ level lowpass output. By
comparing Theorem 5.4 and Theorem 5.2, it shows that the number of operations
remains unchanged for all j. Therefore, the computational complexity of the lowpass
output is independent of the decomposition level. In summary, the computational
complexity of the proposed implementation remains the same as in Theorem 5.3 for
an arbitrary level of decomposition.

5.24. Design examples

We provide some low order LOG-based wavelet examples using the new approach in
this section. Table 5.1 shows the coefficients for kernels with different orders using
the filtering approach. Substituting n=17 into eqn.5.2-9, a new implementation for the

lowpass output becomes,
X, (2:2,)=X,(2.2,)+ F{D (2. 2,)}+ F, {D,l (2,2, )., [Df (2,2, )]} (5.2-35)

where

FAD! (z,%)}= ( JDz(zl,zl)and

FAD} (z,,).%[ D (2.2, )]}=[%J{D,' (22.)+G (2% D! (z.2,) ]}
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For n=2, the lowpass output becomes,
X, (2,%)= X, (2,2)+ B {D} (2, 2 )}+ B D} (2. 2.). %[ D} (a0 22 )} 62-36)

where
D2 G} = [ (o)< g [ +6+ 5100 o)
and

K, {Dll (z,2).4 [Dzz (2.2 )]}z(éJ[Zl_l ;"6+ 4 ]'{Dll (2:2)+G(2)Y, I:Dl2 (2,2, )]}

Similarly, for n=3, we obtain the following lowpass output,
Xl (Zl » &y ) = XO (Z; 1 Ly )+ F; {JDI2 ‘(Zlv Zy )}+ F'z {Dli (Z| » 43 ), Y; [Dlz (Z] 227 )]} (52-37)

where
2 {Dlz (202, )}= Y [Dlz (202 )] =(E16][30+ 8(222 + 22—2)+ (32 +z ):I'Dl2 (ZI'ZZ)

and

F{D! (z.2)4[ D} (z.2,)]} |
=[5 [0 8 +57) s+ P! o)+ O a1 )]}

The computational costs of the wavelet kemnels for n=1/, 2 and 3 are shown in Table
| 5.2. It can be seen that the saving in computation of the inverse transform is
significant. For n=2, the number of additions is reduced from 39 to 9, and the number
of multiplications is reduced from 23 to 5. This corresponds to a saving of 76% and

70% of the costs of addition and multiplication respectively. For n=3, then number of



Chapter 5 Fast algorithm for 2D Laplacian of Gaussian based over-complete wavelet 86

additions is reduced from 58 to 13, and the number of multiplications is reduced from
33 to 7. This corresponds to a saving of 77% and 78% of the costs of addition and
multiplication respectively. Figure 5.5 shows a comparison of costs of the forward and
the inverse transforms using the filtering and the spatial approaches. The new
approach is about five times faster than the conventional filtering approach of the
inverse transforms. When the order of the wavelet kernel increases, the saving is also

increased.
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%Mﬁ__mﬁ n=1 n=2 n=3

k G(k) Hk) Kk Lk} { Gk) Hk) K{k) Lk} Gk}  H(k) K(k) L)

-6 1/8192
.5 -1/16384 12/8192
-4 1/512 -5/16384 66/8192
-3 -1/1024 8/512 1764 ~93/16384 220/8192
-2 1/32 1/16 -10/1024 28/512 6/64 -392/16384 49578192
-1 4 1/4 -1/64 4/32 4 4/16 -49/1024 56/512 4 15/64 -1186/16384 792/8192
0 -8 2/4 -6/64 22/32 -8 6/16 -152/1024 326/512 -8 20/64 -2952/16384 5020/8192
1 4 1/4 -1/64 4/32 4 4/16 -49/1024 56/512 4 15/64 ~1186/16384 792/8192
2 1/32 1/16 -10/1024 28/512 6/64 -392/16384 495/8192
3 -1/1024 8/512 1/64 -93/16384 220/8192
4 1/5i2 -5716384 66/8192
5 -1/16384 12/8192
6 i/8192

Table 5.1, Filter coefficients of the LOG-based wavelets kernel with n=1,2 and 3.
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Filtering Approach Spatial Approach
n=1 Forward Inverse Forward Inverse
Additions 8 18 9 5
Multiplications 7 13 7 3
n=2 Forward Inverse Forward Inverse
Additions 12 38 13 9
Multiplications 9 23 9 5
n=3 Forward Inverse Forward Inverse
Additions 16 58 17 13
Multiplications 11 33 11 7

Table 5.2, Computational complexity for n=1, 2 and 3 of LOG-based wavelets for the two-
dimensional wavelet transform.
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Figure 5.5, Plots of (a) the forward transform (b) the backward transform for different order
of the L.OG-based wavelet kernel for a two-dimensional wavelet transform. Dotted lines
indicate filtering approach and solid lines indicate spatial implementation.
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5.2.5. Boundary artifacts

Comparing the structure of the proposed spatial implementation and the filtering
approach, the proposed spatial implementation handles the boundary in a better way
than the filtering approach. Under the filtering approach, there are two common ways
to deal with the boundary extension problem: the image is extended before filtering or
the boundary pixels are corrected after the inverse transform. The former would
increase the comp;.ltational time especially for a large image, while the latter involves
the design of a set of filter dependent and often non-trivial boundary correction ruleé.

However using the spatial implementation, any arbitrary boundary extension scheme

can  be  used.  The  prediction terms, F{D!(z.,z,)}  and

F, {Df (2.2, ),Y,[D,2 (zl,zz)]}, remain the same in both forward and inverse

transforms as shown in Figure 5.3 and Figure 5.4 respectively. Thus there is no need
for any boundary comection after reconstruction; the image can always be

reconstructed perfectly.

3.3.  Texture-based feature extraction and retrieval analysis using
the LOG-based wavelet kernel

Recent research on texture-based feature retrieval using the LOG-based wavelet kernel
has shown a superior performance[9] compared to other well-known relriev;d
algorithm such as the Gabor filtering{24] and various sub-sampling wavelet schemes
[70-73]. From the retrieval experiments[28] on the entire Brodatz texture
| database[13], it is shown that the LOG-based wavelet kernel can achieve the highest
retrieval rate while being low in computational complexity. In order to make this
thesis self-explanatory, we briefly review the structure of the texture retrieval model.

Full details can be found in [9].
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5.3.1.  Texture extraction retrieval system

A texture-based feature extraction and retrieval system basically includes three
modules: texture extraction, feature representation and similarity measurement. In
texture extraction, a model is used to describe the characteristics of the texture images.
Feature representation is concerned with the extraction of the important features from
the model for texture description. Similarity measurement, which is based on the

features found from the feature representation, is then used for texture retrieval.

Using the LOG-based wavelet kernel, a texture pattern is decomposed in a multiple

resolution fashion for further analysis. From an arbitrary decomposition level j, we
extract one lowpass signal X, (z,2,) and two bandpass signals, D), (z.z,) and
Dj,,(z:2,). as shown in eqn.5.1-1, eqn.5.1-2 and eqn.5.1-3 respectively. In addition,
for a good analysis of the orientation information in the texture pattern, the third
direction of bandpass signal D3}, (z,,z,) in eqn.5.1-4 is included. Examining the
retrieval accuracy in different levels of decomposition, the fourth level decomposition

is found to achieve the highest retrieval rate[28] on the entire Brodatz texture
database.

53.2. Feature representation

A good feature representation is needed to increase the retrieval accuracy. In feature
representation, the purpose is to use a low dimensional feature vector to describe
important details about the texture pattern. The statistical representation is widely
used in different texture feature representation due to its simplify. After one level of

decomposition, we obtained a lowpass signal X i (z,,zl) and three bandpass signals

D!, (2.2, ) for b=1,2 or 3 as explained in eqn.5.1-2, eqn.5.1-3 and eqn.5.1-11. For
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the lowpass signal, we calculate the mean and the standard deviation. However, for all

bandpass signals, we calculate the mean 4 and the standard deviation & at positive
and negative sides separately. Mathematically, at j=2', the mean and the standard

deviation are calculated respectively as follows,

N-lM-1

P ACES >0 .
| u (D) (e )= 2oty —— (5.3-1)
p(Df(z,,zz)) et where D}(z,2,)
2207(31'52) <0

s (Df (2.2 ))= n=0 m=0 z

Na1M-1

o) o (01 ) (P o)) 20
o (D_,-(Z],Z;))—V 7 Db
N-1M =] where i (ZI -ZZ)

L Zm D_'?(z].z ) - D?(Zl.z ) 2 )
"_(D?(zl.Zz))=J"=°"‘=°[ ( L:) ( 2 )] 0

(5.3-2)

O'(D_? (Zl. ) ))

where L, and L, are the number of samples greater than and less than zero in the
bandpass signal respectively, N and M denote the number of pixels in the horizontal

and the vertical directions of image respectively.

For each level of decomposition, we obtain three bandpass and one lowpass filter
responses. For each bandpass, we caiculate the mean and the standard deviation values
using eqn.5.3-1 and eqn.5.3-2 respectively. As for the lowpass filter, we simply take
the mean and standard deviation values because the value is always positive and
approaches to the mean value of the image. Therefore, for each level of
decomposition, we obtain 7 pairs of mean and variance values. For four
decomposition levels, the feature vector contains 28 pairs of mean and standard

deviation, which gives a total of 56 features, i.e.,

_ T S T N O N
f—("(}ogoouor00|“0|au|”uzo'oz“oz002“030'03“030-03%0010 """"" “33033“33033) (3.3-3)
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5.3.3. Similarity measurement

The objective of the similarity measurement is to compare the difference between
features in two patterns and find out how similar the two patterns is. In our retrieval
model, we used a distance measure for similarity measurement. This allows a high

dimensional vector to be combined to give a scalar, which is used in database image
query.
Let f° and f° be the M-dimensional feature vectors of texture patterns a and b

respectively. The distance between a and b is defined as,

dis(a,b) = i o7 )

£ denotes the m-th element in the feature vector x and a(f,) is the standard
derivation of the m-th element. The standard derivation a(f,,) is used to normalize

the individual feature components over all query images. A small distance value

dis(a,b) indicates that the two patterns a and b are similar.

54. Experiment

In this section, we compare the performance of the spatial implementation and the
filiering approach using the LOG-based wavelet kernel. This includes the
computational complexity and the boundary artifact error from the image
reconstruction. A comparison of the texture retrieval results on the entire Brodatz
texture database between the LOG-based wavelet kernel using the new approach with

other texture analysing methods is also presented.
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54.1. Comparative study on the computational complexity

In order to confirm the theoretical analysis of both the filtering and the spatial
approaches for the LOG-based wavelet kernel, some experiments on the
computational complexity have been carried out. Prograrﬁs are written in Borland C++
Builder program and run on an AMD Athlon 1.2GHz PC. The experiment is to
calculate the average time per pixel in the forward and the inverse transforms. The
size of image used in the experiment is 128x128 pixels. For each of the forward and
the inverse transforms, we repeat the calculation one thousand times for the same

image pattern and measure the average time per pixel,

1 ¥ Time
T = £ 5.4-1
“ ~ 1000 ,‘Z 128x128 G4-1)

where T, and Time, denote the average time of each pixel and the time at the k™

avg
wavelet transform respectively. The experiments were carried out for the order, n=1, 2
and 3 in eqn.5.1-2 and up to four decomposition levels. Table 5.3 shows the average
computational times for different decomposition levels in the forward and the inverse
transforms using the filtering and the spatial approaches. For n=1 in a single level of
decomposition, the inverse transform wusing the spatial approach can save
approximately 70% of computational time as compared to that for filtering approach.
For n=2, the inverse transform using the spatial approach can save approximately
73% of computational time as compared that for filtering approach. For n=3, the
inverse transform using the spatial approach can save approximately 78% of
computational time as compared to that of filtering approach. These results are plotted
in Figures 5.6, 5.7 and 5.8 for n is equal to 1, 2 and 3 respectively. It can be clearly

seen that for the multi-level analysis with different orders n, the decomposition times
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in the inverse and the forward transforms are increased linearly as the decomposition
level increases. The experimental results agree with the theoretic analysis of
computational complexity in Theorem 5.1 and Theorem 5.3 for the filtering approach
and the spatial approach. Although the computational complexity of the forward
transform in the spatial approach is slightly higher than the filtering approach, it
becomes insignificant for large n as shown in Figures 5.6-5.8. On the other hand, the

computational time is greatly increased using the spatial approach rather than the

filtering approach.
Unit = 10 Sec Filtering Approach Spatial Approach

n=1 Forward Inverse Forward Inverse
Level=1 2.96592 5.22254 3.03821 1.52534
Level =2 6.04775 10,7411 6.385 3.14142
Level =3 94131 16.423 9.75127 5.01318
Level =4 12.9788 23.0723 13.2775 6.49185

n=2 Forward Inverse Forward Inverse
Level =1 3.3117 9.88854 3.9606 2.76335
Level =2 7.4275 20.4204 7.76258 5.3252
Level =3 10.8451 29.4325 11.6847 7.9871
Level=4 14.9327 40.8981 16.607 10.829

n=3 Forward Inverse Forward Inverse
Level =1 4.60306 14.1872 4.81069 2.98347
Level =2 999194 28.0534 9.73156 5.97725
Level =3 15.2403 42.5447 15.3373 8.92351
Level=4 20.3415 56.799 20.7573 12.3251

Table 5.3, Average computation times for n=1,2 and 3 of LOG-based wavelets. All the

experiment results were obtained from using an AMD Athlon 1.2GHz processor.
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Average realisation time {x10e-8 second)
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Figure 5.6, Realisation times for an image of size 128x128 pixels with different
decomposition levels in the forward and the inverse transform using the LOG-based wavelet
kernel with order n=1.
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Figure 5.7, Realisation times for an image of size 128x128 pixels with different
decomposition levels in the forward and the inverse transform using the LOG-based wavelet
kernel with order n=2.
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Figure 5.8, Realisation times for an image of size 128x128 pixels with different
decomposition levels in the forward and the inverse transform using the LOG-based wavelet
kernel with order n=3.

54.2. Boundary artifact on the reconstructed image

Experiments were carried out to investigate the boundary artifact error in different
orders using the filtering approach and the spatial implementation. Different kinds of
boundary extension methods, such as symmetric extension, periodic extension and
zero padding, are compared. Figure 5.9 shows an example of the reconstructed image
and the boundary artifact of the 128x128 image uvsing the filtering approach. Table 5.4
lists the mean square errors in the reconstructed image for different level of
decompositions. The MSE in the reconstructed image using the spatial approach s
approximately zero on all kind of extension methods for all orders. The small errors
are due to the floating-point implementation in the program. Note that all the filter
. coefficients for LOG-based wavelet kernel can be expressed in terms of an integer

divided by 2°, where a is an integer. Thus, one can avoid this floating-point error

simply by multiplying each coefficient with 2 to achieve prefect reconstruction.

However, using the filtering approach, the boundary extension method determines the
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severity of the boundary artifact. For example, the zero padding causes relatively large
MSE errors as compared to other two extension methods. Extra processings are
required to remove this type of artifacts. We can thus conclude that the spatial
approach can completely eliminate the boundary artifacts due to the prediction
structure in the implementation. It is consistent with the analysis of the theoretic

studies discussed in Section 5.3.5.

(a) | (b) ©
Figure 5.9, Example of the residual error using the filtering approach. (a) Original image; (b)
reconstructed image; and (¢) the difference between the original and the reconstructed
images.
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MSE of the reconstructed image at different decomposition levels
Boundary n
Extension | Order 1 2 3 4 5 6 7
Symmetric n=1 0 0 0 2.88E-06 | 4.74E-06 | 5.9E-06 | 6.4E-06
(Filtering) n=2 }357.1433(535.5415]|617.8259656.7239 | 674.5634 | 685.7483 | 686.0295
n=3 |632.0102[673.5237 | 668.0302 | 663.2393 | 656.4475 | 661.1504 | 689.7277
. n=1 0 0 0 0 1.51E-05 | 4.12E-05 | 4.87E-05
s{;;’:;;’)"’ n=2 0 0 | 4.62E-05|6.66E-05 | 7.94E-05 | 8.97E-05] 9E-05
n=3 0 5.45E-05 | 9.1E-05 [0.000102{0.000112[0.000113]0.000113
Periodic n=1 0 0 0 2.66E-06 | 4.92E-06 | 4.45E-06 | 4.5E-06
(Filtering) n=2 |354.4464|533.7122(616.3153[655.3734 | 673.4763 | 685.0622 | 685.3458
n=3 [627.4098]669.2703(663.6874|658.7151|651.8494 | 656.1674 | 684.4078
Periodic n=1 0 0 0 0 5.39E-06 | 4.12E-05 | 4.15E-05
(Spatial n=2 0 0 4.56E-05 [ 6.51E-05 | 7.62E-05 | 8.29E-05 | 9.76E-05
n=3 0 5.46E-05 | 9.17E-05 {0.000103[0.000117 | 0.000117 | 0.000149
Zero n=1 [16.84547]29.47319[40.24727|49.10952 | 56.68426 | 62.49113 | 72.40338
Padding n=2 [408.3870| 618.464 | 728.7636| 794.535 |839.9896 | 873.4829| 951 5075
(Filtering) | n=3 |695.1384|785.7806|816.5108(841.3199]869.1735[904.3027 | 983.8851
Zero n=1 0 0 0 0 4.86E-06 | 2.87E-05 | 3.08E-05
Padding n=2 0 0 4.28E-05 | 5.78E-05 | 6.7E-05 | 7.05E-05 | 7.06E-05
(Spatial) n=3 0 5.27E-05 | 8.79E-05 | 9.64E-05 | 0.000101 | 0.000102 | 0.000102

Table 5.4, A comparison of MSE of the reconstructed image using the filtering approach and
the spatial implementation. The boundary extension methods include Symmetric, Periodic
and Zero-padding and the decomposition levels are from | to 7.

5.4.3. Texture retrieval on the entire Brodatz texture database

A comparative study is carried out for the LOG-based wavelet kernel and other

methods including the Gabor filtering[24], the sub-sampling wavelets[70-73] and the

Canny-based wavelet kernel[9]. Figure 5.10 shows the retrieval results. The LOG-

based wavelet kernel using the new approach can achieve a 79.22% retrieval rate on

the entire Brodatz texture database[13], which is the highest retrieval rate among

different feature extraction algorithms. It has around 4-7% higher retrieval rate as

compared to other methods. Furthermore, due to the separable nature of the wavelet

transform, the computation time can be greatly reduced as compared to Gabor

filtering.
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Figure 5.10, Comparison of the LOG-based wavelet kemel using the spatial approach with
other texture feature analysing methods on the Brodatz texture database.

5.5. Summary

A new spatial implementation of the LOG-based wavelet kernel has been proposed.
The new approach can greatly reduce the computational complexity. In particular, the
inverse wavelet transform using the new approach can achieve about five times less
computational cost than the inverse transform using the filtering approach. In addition,
the new approach has a simple structure that the same prediction terms are used in
both forward and inverse transforms. This helps eliminate the boundary artifact
completely; no matter what kind of boundary extension methods are used. The
approach is attractive that it is always not necessary to used boundary correction after
reconstruction. Images can always be reconstructed perfectly. Experiments results
show that the new approach can greatly. decrease the computational cost of the inverse
transform and eliminate the boundary artifact of the reconstructed image for different
boundary extension methods. For the applications such as texture feature retrieval, it

achieves the highest retrieval rate as compared to other texture analysing methods.
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CHAPTER 6

6. Conclusion and future directions

6.1. Conclusion

This dissertation describes a new texture-based image feature retrieval techniqué
which uses the over-complete wavelet scheme for texture feature analysis. The
advantage of using the wavelet scheme is its ability to achieve low computational complexity
and translation invariance for the multi-resolution wavelet transform. Compared to other
texture-based feature retrieval methods such as Gabor wavelets and sub-sampling
wavelet schemes, the over-complete wavelet schemes can achieve the highest retrieval
rate on the entire Brodatz Texture database test. Also, it is robust even under severe
noise levels. Instead of using the Canny-based wavelet kernel, we have derived a new kernel
that is based on the Laplacian of Gaussian(LOG)-based wavelet kernel. It has been proven
that the LOG-based wavelet kernel is more suitable for the characterization of the texture
feature. It is especially suitable for analysing line information of texture pattern. We
have proposed a new texture presentation representation. The feature is calculated from
the variance separately on the positive and the negative filter responses. It can be applied to
both the over-complete wavelet schemes and the sub-sampling wavelet schemes. The
retrieval accuracy is significantly increased as compared to other feature representations.

We have further investigated the fast algorithm for the LOG-based over-complete

wavelet transform in this dissertation. The kernel is a completed wavelet transform

and thus it allows perfect reconstruction of the signal. However, implementation using
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conventional filtering approach is inefficient and causes artifacts. By deriving some
general expressions for the computational cost using the conventional filtering
implementation, it is found that the inverse transform is significantly more costly in
computation than the forward transform. In order lto i‘educe the computation '
complexity, a spatial implementation is proposed. Results of our theoretical and
experimental studies show that the new approach can greatly decrease the cost of
transforms. Furthermore, affect boundary artifacts can be eliminated by multi-level

wavelet transforms using the new approach. It is accurate for uses in different image

processing applications.

6.2. Future directions
6.2.1. Improve the distance measurement using appropriate weighting

In chapter 1, we have used a simple normalize distance measurement[24] to join two
different vector spaces (mean and standard deviation) for calculating the similarity of
images. Actually, to combine different vector spaces may not simple. As shown in
section 3.3.6, we have done the experiment on the reduced feature representation
which indicated a reduction in mean vector causes a drop in retrieval rate. It gives
some hint that if appropriating weighting is added to the reduced feature, it may have
decrease the retrieval results. Therefore, for more éppropriate representation of the

distance measure, we can rewrite the eqn.1.2-1 as follow,

S = fu

dis(a,b)=§: W - a(F.)

m=1

where w is the weighting and m is index of the feature representation in eqn3.2-3.
Appropriate weighting factors are more meaningful to different vector spaces and can

increase the retrieval accuracy.
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However, to estimate the weighting factor is non-trivial. It involves some prior
knowledge, such as classification, relevant feedback or neural network, to estimate
these weighting factors. This approach is related to the supervising texture retrieval
[27, 64, 70]. And results from the literature that a significant improvement in retrieval
can be achieved. Hence, our research work is only at the initial. stage. Further

researches are necessary to advantage the similarity measurement method.

6.2.2. Improving the directional pattern feature extraction using the over-
complete wavelet transform

The over-complete wavelet scheme is a separable wavelet ransform. It decomposes
an image pattern into three directions, including horizontal, vertical and diagonal(45
degrees) components. However, the main deficiency of the transform for texture
analysis is its limitation on the degree of direction information extracted from image
pattern. Compared to non-separable wavelet scheme, such as Gabor wavelet, which is
selective on the decomposition direction and thus it extracts better directional
information for the texture pattern. As observed from the texture images in Brodatz
Album, some image classes mainly consist of diagonal lines, such as D18, D38 and
D52, in the Brodatz Album. Let us Compare the retrieval results of texture images
between the Gabor wavelet and LOG-based over-complete wavelet as shown in Table
3.4 in Chapter 3. vThe retrieval performance of Gabor wavelet is around 18% which
gives a better retrieval performance as compared to the LOG-based over-complete
wavelet transform. It is the weakest point of the over-complete wavelet for the
retrieval diagonal pattemn. In order to. improve the retrieval performance of using the
over-complete wavelet scheme for texture images which consists mainly of diagonal
lines, it should implfove the extraction method of directional components. Wavelet
packet[26] is a good possibility to improve the spatial-frequency relationship. It

Pao Yue-Kong Library
QU PonU ° qu_lg Kong
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decomposes “smaller” frequency spectrum of feature and thus allows extraction of
better directional information. However, the main deficiency of using wavelet packet
is that the length of features should be increased. As a result, it directly increases the
complexity on comparison. However the complexity problem can be resolved by
using classification methods{26] which reduces the number of features used for
texture retrieval.

6.2.3. Content-based feature image/video retrieval

The main objective of this research is to develop a texture-based feature retrnieval
method which is suitable for image/video applications for content-based feature
searching and indexing purposes. In Chapter 3, we proved that the LOG-based
wavelet transform can achieve superior retrieval performance on Brodatz texture
database. The short analysis time using the over-complete wavelet-based implies a
reduction in the waiting time on feature analysis. This method should be suitable for

content-based image/video indexing and retrieval system.

Most of the content-based image/video retrieval systems support local region
searching[2, 6, 32]. In order to apply the LOG-based over complete wavelet for real
image/video data searching, further investigations are needed to resolve problems
such as the problems of region-based searching and scale invariant. Further
investigation should also be given to storage problem. In order to reduce feature
contents stored in database and to achieve faster retrieval time, we should use fewer
dimensions in texture representation. Many classification and training techniques[26,

78-80] can help to solve this problem.
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6.2.4.  Texture-based Image segmentation using the over-complete wavelet-
based transform

Image segmentation is an impbrtant research area for image processing. Basically,
image segmentation partitions an image into smaller homogeneous regions. Many
texture-based image segmentation techniques were proposed, which were based on the
similarity of local texture characteristic to distinguish regions. Gabor filters were
commbnly used for image segmentation[25, 81-83]. It permits extraction of multi-
frequencies, orientations and channels of texture characteristics in image patterns and
makes use of clustering similar properties of texture region. Although it has very good
performance on segmentation, these segmentation methods always require a large
amount of computation time. We can consider the LOG-based wavelet scheme since it
can extract effcctively multi-frequencies, orientations and channels of texture
characteristics. Furthermore, it takes less computation time as compared to Gabor

filters. It is suitable to apply it for image segmentation.

6.2.5. Shape-based feature image feature extraction and retrieval

Shape is recognized as another important content-based image retrieval feature. Over
the past few decades, many shape analysis methods were proposed which aim to
characterize shape features for similarity matching. An important class of shape
analysis algorithms is based on the representation of the outer boundaries of objects.
Fourier descriptor is a well-known shape analysing technique[84-86], which describes
the global contour in frequency spectrum. For shape retrieval using the Fourier
descriptor, it compares the feature extracted from frequency spectrum. The idea was
extended to using the wavelet approach to describe the shape features to analysis of
spatial-frequency. Examples of using dyadic sub-sampling wavelet approach to

characterize the multi-resolution shape feature can be found in [87]. However, similar
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to the texture analysis discussed in Chapter 2, the sub-sampling wavglet scheme
suffers from the translation variant problem. However, the over-complete wavelet
transform gives no such prqbiem. Some early results of using the Canny-based over-
complete wavelet transform for the characterization of tﬁe comer detection of shape
contour for multi-resolution have been reported[88]. However, as discussed in
Chapter 3, the LOG-based operator seems to have a better analysis in “thickness” of
line during feature extraction rather than Canny operator. Therefore, it is a possible

method that can achieve better retrieval performance using shape features.

6.2.6. Other image processing applications

Wavelet is a powerful tool for image processing and it has been widely used on
various image processing researches. This dissertation has introduced a new LOG-
based over-complete wavelet which achieves low transform time and translation
invariance during multi-levels wavelet transforms. Also, since the LOG-based over
complete wavelet is a complete wavelet transform, it gives perfect reconstruction of
the signal. As we have reported, the spatial implementation of the wavelet can greatly
reduce the computation time and can eliminate the boundary artifacts. This wavelet
approach can be applied to larger image processing areas such as image enhancement,
noise climination, image compression, texture synthesis etc. We believe that this

wavelet approach will be widely used in other image processing researches in the near

future.
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Appendices

Appendix 1. Realisation of bandpass filter in the Laplcian of
Gaussian Based Wavelets

For the bandpass filter G(z), we have

G(z)=4(z"—2+z) (A-1)
Multiply eqn.A-1 by "' at both sides, where n is an integer, gives

Zn-llc(z)=4(zn—2_2lzn-l+Zn) (A-2)
Similarly, multiply eqn.A-1 by z""") at both sides, gives

N6 (o) = (D 270D ) | (A-3)

Adding eqn.A-2 and eqn.A-3, gives

G (2)+ NG (z)= 4(3"_2 T L R ) (A-4)

By rearranging eqn.A-4, we obtain,

n—1 =(n-1)
Mg ___[z f(Z)+ Z 4G(z)_zn—2 +2.277 +2_Z—(n—l)_z—(n-2)] (A-5)

Proof: Substitute m=n into eqn.A-5, we obtain the general expression as eqn.A-G. we

use the mathematical inductions to prove the eqn.A-6 is true for all integer,.

- =%{E}l(""”[‘-‘k 427k ]J.G(a)+m»c(2)+8} (A-6)
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By substituting n=1/, we can easily prove that eqn.A-5 are equal at both side, i.e.,

LHS =z+7 "

RH.S =%G(z)+%6(2)—z'l+2+2—z
=zl o24z4z —24z-271 42422
()
Assume that eqn.A-6 is true for m=n. Let us consider the ca;e_when m=n+1,

LHS = z_("H) +2"1

RHS =(%)[[k§i‘,l(n+l—k)l:zk+z"k]J.G(z)+(n+l).6(1)+8]

(l) (z."' +2271 -l-...+n-z+n-z_l +...+2z_(n_i) +z " )(42—84-4!._1)
= 4

4 +(n+l)(4z—3+4z“l)+8

(z" +2:" e dnezinez 22_("_1) + z_")(z—Z +277) )

+(n+l)(z—2+z"l)+2
= (Z—2+ Z_l)(z" +2:" el Zz_("_')+z"')+2

(z+ z_l)(zk +2£k-l +..+ n-z+n+l+n-z_] +...+ 23_“_!) + .r_'k)

—Z(z" +2z"_l +...+n-z+n+1+n-z'1 +..+ 2z'(k“l)+z’k)+2

The first term in eqn.A-7 can be written as

(z_l + z)(z" +22" ksl 427070 z—")

(A-7)
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2™ 4227 43 +...-l-(n)z2 +(n+1)z
+n+(n-1) s (n - 2).:_2 44370 g D) )

:,,_1 +22n-2+3Zn—3+___+(n_2)32 +(n—[)£
+

et (re ) (a)e ot 350D 2 700D

2" 427" +427 4+ (2n)2 +(2n)

) +(2n)z! rotdz D gy o (14) (A-8)
The second term in eqn.A-7 can be written as
—2-(z" +22" 4+ (n D)4t 2700, z'")

- _(2z" +aM b () e 2m 4 24 (2n) e 4o r a2 0D 4 z'") (A-9)

Submitting eqn.A-8 and eqn.A-9 into eqn.A-7, it becomes,

RHS =z ™) m S pg

Therefore, the statement is true for m=n+1. By using the mathematical induction, the

statement is true for all integer n, which completes the proof.o



