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Abstract of thesis entitled
‘Conditional Heteroscedastic Autoregressive Moving Average Models
with Seasonal Patterns’
submitted by LAU, Suk Ting
for the degree of Master of Philosophy

at The Hong Kong Polytechnic University in November 1998

The earlier research in time series mainly concentrated on models that
assume a constant one-period forecast variance. In reality, however, the assumption
may not be met 1n all cases, especially in economics and finance. Therefore, much
recent work has been directed towards the relaxation of the constant conditional
variance assumption, namely allowing the conditional variance to change over time
and keeping the unconditional variance constant.

Tsay (1987) proposed the conditional heteroscedastic autoregressive moving
average (CHARMA) model. One of the advantages of the model is that it includes
the autoregressive conditional heteroscedastic (ARCH) model and the random
coefficient autoregressive (RCA) models as its special cases. Both models
characterize time series with varying conditional variance in different
representations.  Therefore, the CHARMA model is more flexible and is able to
mode! data from a wider perspective.

It is also believed that seasonal pattern can be an important phenomenon in
the conditional variance and so the purpose of this research is to study seasonal
conditional heteroscedasticity and extend the CHARMA model to the seasonal
CHARMA model. One of the advantages of our approach is that the relevant time

series can be modeled in a parsimonious parameterization.



The invertibility and stationarity conditions for the model are derived. We
study all the procedures for building up the model. These include the test for varying
conditional variance, estimation of the model parameters by the least squares, and
the maximum likelihood method and diagnostic checking methodology for testing
the adequacy of the fitted model. Two empirical examples are discussed in detail: the
exchange rate of US dollar/Japanese Yen and the money supply (M1) of United
States.

In addition, the ability of capturing volatility will be compared among the
proposed model and the GARCH family since the GARCH family is widely used in
modeling conditional heteroscedasticity.

It is found that the exchange rate and money supply have a clear seasonal

volatility. The proposed model can capture this effect and produce good forecasts.
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CHAPTER 1 INTRODUCTION

The earlier research in time series mainly concentrated on models that
assume a constant one-period forecast variance. The classic book by Box and
Jenkins (1994) summarized important contributions in this area. In reality, however,
the assumption may not be met in all cases, especially in economics and finance.
Therefore, much recent work has been directed towards the relaxation of the constant
conditional variance assumption, i.e., allowing the conditional variance to change
over time and keeping the unconditional variance constant.

Kendall (1953) pointed out, in the modeling of economic data, it seems
reasonable to let the coefficients of the model change through time as the economy
changes. Kendall considered his coefficients to follow quadratic trends, which 15 a
special case of the random coefficient autoregressive (RCA) models (further
investigated by Conlisk (1974, 1976), Andel (1976}, and Nicholls and Quinn
(1982)).

The autoregressive conditional heteroscedastic (ARCH) processes were
~ introduced by Engle (1982) to mode! the United Kingdom's inflation. The errors of
the processes are serially uncorrelated with zero mean and constant unconditional
variances, but the conditional variances are changing over time. The conditional
variance depends upon variances in the conditioning set such as the past residuals
while the unconditional variance is a constant as traditionally assumed. Since then,
the model has been highly popular with econometricians, statisticians and finance
researchers. Bollerslev (1986) gave a generalization of Engle’s model, which is

known as GARCH (Generalized Autoregressive Conditional Heteroscedasticity).



GARCH model can be interpreted as an ARMA model for the squared residuals,
whereas ARCH model can be regarded as an AR model.

Many generalizations of the GARCH model then appeared. In many
applications of the GARCH model, an unit root may be present. In order to achieve
stationarity, Engle and Bollerslev (1986) introduced integrated GARCH (IGARCH)
model. The IGARCH model is stationary but not covariance stationary. Bollerslev
(1987) proposed GARCH-r model in which the residuals are conditionally -
distributed. Exponential GARCH (EGARCH) model was proposed by Nelson
(1991) for tackling with leverage effects. Other than EGARCH, all the coefficents
of the conditional variances of the above models are non-negative but EGARCH
allows the parameters to be negative. So, the conditional variance not only depend
on the value of lagged residuals but also their signs. Engle and Ng (1993) introduced
the quadratic GARCH (QGARCH) model to cope with the problem that the error
distribution of the time series being skewed to the left.

Tsay (1987) proposed the conditional heteroscedastic autoregressive moving
average (CHARMA) model, in which the observed process is the usual ARMA
mode! whereas the innovational models follows a purely random coefficient transfer
function model. The model links up the ARCH and the RCA models by their
common special feature - varying conditional variance. Hence, the ARCH and the
RCA models become special cases of the CHARMA model, which allows a more
parsimonious description of the data and has a broader platform to capture the data.
Wong and Li (1997) gave the multiplicative version of the CHARMA model.

In many economic series there is a clear presence of seasonality effect. Box
and Jenkins proposed general multiplicative seasonal ARMA model to capture this

effect. Later in this report, the seasonality of the monthily money supply of U.S. will

i~



be discussed. It is widely believed that seasonal patterns can exist in the conditional
variance structure, especially for high frequency data. For example, in the financial
market, it is expected the volatility of Monday is greater than the others since more
information accumulates over the weekend. The length of non-trading day between
Friday and Monday is longer than that between other days of the week. Therefore, in
daily data, the seasonal heteroscedastic pattern may be present. For intraday series,
many traders also report their belief of a difference in the volatility across the day.
The volatility is usually higher when the market opens, and then drops around lunch
hour. Volatility picks up again near the closure of tﬁe market. A possible
explanation is as follows: it is known that news will affect the market. The increase
in volatility at the open of the markets might reflect the news release at that time and
also the accumulated information overnight. Around the lunch hour, there might be
less market activity and news release so that the volatility drops. The activity is
more active before the closure. This might be due to the long waiting time after the
market closure and the openings of the other countries’ market. Therefore, the
intraday periodic pattern is highly possible and investigation is needed.

Baillie and Bollerslev {1989) worked with the conditional variances of daily
spot exchange rate for six currencies. Day-of-week and vacation effects present in
the data are captured by introducing seasonal dummy variables in the GARCH
model. Dacorogna ef al., (1993, 1996) modeled foreign exchange (FX) rates, which
has daily and weekly seasonal heteroscedasticity, by changing time scales.
Bollerslev and Hodrick (1995) observed that there is a strong seasonality in the
conditional variance of the monthly New York Stock Exchange (NYSE) dividend
growth rates. Florentini and Maravall (1996) found that the conditional variance on

the monthly Spanish money supply has a strong seasonal pattern and dealt with it by



seasonal adjustment.  Bollerslev and Ghysels (1996) proposed a periodic
autoregressive conditional heteroscedasticity (P-ARCH) model to model the seasonal
heteroscedasticity.  The above description shows that seasonal conditional
heteroscedasticity deserves more extensive attention. Therefore, in this research, the
CHARMA models will be extended to the seasonal CHARMA models to model the
seasonality effect from another approach.

The details of the proposed model including the stationary and invertible
conditions are stated and discussed in chapter 2. In chapter 3, the procedures for
identifying and setting up the model are developed. We discuss the test for varying
conditional variance, depict the use of the Akaike's information criterion (AIC), and
the Schwarz's information criterion (SIC) to select the order of the innovation
equation, use the least squares and the maximum likelihood method for estimating
the model and finally perform the diagnostic checking for the model. The exchange
rate of the U. S. Dollar / Japanese Yen is an empirical example for these
investigations.

In chapter 4, we will compare the performance among the proposed model
and the GARCH family (GARCH, P-GARCH, and seasonal GARCH) for the Yen
data. In chapter 5, money supply (M1) of the United States from 1954 to 1994 will
be used as a further example. It is interesting to observe the existence of seasonal
conditional heteroscedasticity in these important economic series. We will draw the

conclusion and suggest direction of further research in chapter 6.



CHAPTER 2 SEASONAL CHARMA MODEL AND ITS

THEORETICAL PROPERTIES

2.1 THE SEASONAL CHARMA MODEL

2.1.1 The autoregressive model
Let Y, be a stationary time series, if
Y, =¢, Y +¢,Y,,+..+¢ Y, _ +a (2.1)

P t-p

and the white noise a, is assumed to be normally and independently distributed with

Zero mean, constant variance ci and is independent of Y . k=1,2, ..., p, 1€,
E(a,)=0
2 .
G ift=s
E(aa,) =4 * .
0 ift#s

E(a, Y, )=0,wherek=1,2,....p

Then (2.1) is called an autoregressive (AR) process of order p, AR(p). It was
proposed by Yule (1927) and has been given a detailed account by Box and Jenkins

(1994).

The reason for the name "autoregressive' is that a linear model
Y=6¢Y +¢,Y,+..+¢,Y, +a
relating a 'dependent’ variable Y to a set of 'independent' variables Y, Y, ..., Y,

plus an error term a, is often referred to as a regression model. In (2.1), the variable

Y is regressed on previous values of itself, hence the model is autoregressive.



If we define an autoregressive operator of order p by
¢(B)=1~-¢,B~0,B* —...—¢ B,
where B is the backshift operator, such that BY, = Y,,, then the autoregressive model
may be written as
¥BY, =a,.
where a, is a white noise sequence.
The stationarity condition is that all the roots of ¢(B) = 0 are outside the unit

circle.

2.1.2 The autoregressive conditional heteroscedastic model

Engle (1982) proposed the autoregressive conditional heteroscedastic
(ARCH) models. The models allow for the conditional variance to depend on the
squares of previous innovations. With financial data it captures the tendency for
volatility clustering, as written by Mandelbrot (1963), *..., large changes to be
followed by large changes - of either sign - and small changes tend to be followed by

small changes, ...”.

Let Y, be a time series and a, is serially uncorrelated with mean zero, but the
conditional variance equals to h, that may be changing through time. The ARCH(q)
model can be written as

Y v~ NXb, h)

-

where hy=a,+a,a_+...+oa .

a=Y,-Xb,



V., is the information set available at time t-1,
T . . .
and X, be a vector of explanatory variables included in y;.

To make sure the conditional variance to be positive, the necessary condition
isa,> 0,20, fori=1, ..., q. The model is covariance stationary if and only if the

sum of ¢, fori=1, ..., q, is less than unity.

2.1.3 The random coefficient autoregressive model
The random coefficient autoregressive (RCA) models allow the
autoregressive coefficient to change through time. The conditional variance depends

on the squares of previous observations. The RCA(p) model can be written as
Yr = (¢l + bl.t)Y:—l + (¢2 + bz.: )Yt—z et (¢p + bp,l)YI—p +e,
which is equivalent to

Y=g, Y+ Y, +. ..+ ¢le-p+ &

i T

where a, =ib. Y_ +e,,

b, are zero mean random variables,

and e, is a white noise sequence.

The model generalizes the constant coefficient AR(p) model with a, being the
innovation term for Y,. The random coefficient vector B, = (b,,, by, ... , b, )" is a
sequence of identically and independently distributed (i.i.d.) random vectors with
mean zero and constant covariance matrix £ = (cy). B, and e, are mutually

independent. Thus, it can also be written as

YIIWPE—‘-’ D(gl ? h: ):



where g, is the same as that defined in the ARCH model, and

h: = 03 +iicin\-iYn-j '
i=t j=1

2.1.4 The conditional heteroscedastic autoregressive moving average model
If Y, for the ARCH(q) model is a AR(p) model with varying conditional

variance, then the model named as ARCH(p.q) and can be written as follows,
Y:|W‘—|~ D(gl s h1)
where g, =6 Y., +0,Y,+. .. +9,Y,,,

_ 2 2
h=a,+aa_+...toa_,

a, = Yl -id)iY:-i s
i=l

and y,, is the information set available at time t-1.

Tsay (1987) proved that a stationary ARCH(p,q) model is second-order
equivalent to a special case of a stationary RCA(p+q) model. Using this connection,

Tsay (1987) proposed the CHARMA model that includes ARCH model and RCA

model as special cases.

The CHARMA(p.q.r,s) model is defined by

d(BXY, —u)=6(B)a,, (Observation Equation)

and 8 (B)a, =, [Y, (1) -p]+o;(BXY,—p)+e,.  (Innovation Equation)



In the Observation Equation, which is a traditional ARMA model, ¢(B) =1 -
¢B-...-¢,B?,and 6(B)=1-6B-...-6,B% are constant polynomials in the
backshift operator B, and of order p and q, respectively. For model stationarity and
invertibility, all of the roots of ${B) = 0 and 6(B) = 0 are outside the unit circle and
have no common roots.

In the Innovation Equation, o,(B)=o B+---+w, B and §(B) =

1-8 B----—38, B are purely random coefficient polynomials of degrees s and r.

Lt

Here ¢, is a white noise sequence, ?H (1) is the one-step-ahead forecast of Y,. Thus

?'-!(1)=E(Y‘|Wl_l) and w,_, is the available information at time t1. A

CHARMA(p,0,0,p) with ®,, = 0 reduces to an RCA model; a CHARMA(p,0,q,0)

model with uncorrelated 3, is second-order equivalent to an ARCH(p,q) model.

2.1.5 The seasonal autoregressive moving average model
Since many time series data contain both non-seasonal and seasonal patterns,

Box-Jenkins develop the muitiplicative seasonal ARMA model, ARMA(p,q)x(P,Q),,
¢(B)D(B*)Y, =08(B)O(B%)a,
where s is the seasonal period,

and a, is a white noise sequence.

Assumptions for the seasonal ARMA model
l. ¢B)=1-¢,B-...-¢,B°, d(B*)=1 -O,B -.. . -®,B*,08B)=1-6B-...
-9,B%, and ©(B*) =1 - ©,B° - .. .- @y B¥ are constant coefficient polynomials

in B of degrees p, P, q and Q, respectively.



2. All of the roots of §(B) =0, ®(B*) = 0, 8(B) =0, and @(B*) = 0 are outside the

unit circle and ¢(B), ®( B*), 8(B), and ©( B*) have no common factors.

The autocorrelation function (acf) and partial autocorrelation function (pacf)
are useful tool for identifying the tentative model. Here we shall briefly describe and
figure out the patterns for the non-seasonal cases (Figure 1) and the similar patterns
occur at multiples of lag s for the seasonal cases.

1. For an AR(p) model, the acf dies out while the pacf cuts off at lag p.
2. For an MA(q) model, the acf cuts off at lag q while the pacf dies out.

3. For an ARMA(p,q) model, both acf and pact die out,

Figure 1. Patterns in acf and pacf for some ARMA models

acf pacf

AR(1)

MA(1)




Figure I{cont). Patterns in acfand pacf for some ARMA models

acf pacf

ARMA(p,q)

2.1.6 The proposed model

We now extend the CHARMA model to the seasonal case.  With the
convenience in describing the Observation Equation, the model will be extended in a
multiplicative way. The properties of models following the Observation Equation,
the seasonal ARMA model, have been discussed in Box-Jenkins (1994) and we list
some of them in the above section. Properties relating to the Innovation Equation in

our model will be described shortly.

Let
O(BYD(BY) (Y, -u)= G(B)G( B%)a, Observation Equation (2.2}
5,(B)Aa( B*)a, =[0(B)Q(B*)-1](Y, —p) +e  Innovation Equation  (2.3)
where d is the seasonal period,
u is the mean level of Y,
e, is @ white noise sequence,

and B is the backshift operator, i.e. B'Y, =Y, wherej>0.



In the Observation Equation (2.2), $(B)=1-¢,B-...-$,B?, ®(B*)=1 -

®B'-...-©,B" 9B)=1-0B-...-0B%, and O(B)=1-OB'-. . .-
©,BY.

In the Innovation Equation (2.3), §(B)=1-8,B-...-5 B, A(B*)=1-
AB ... -0, B™ 0B)=1+0,B+.. .+, B, and Q(B)=1+QB+. ..
+ Qg B%.

To facilitate the discussion of the theoretical properties of the model, the
following formulations and observations are useful.

Rewriting (2.3),
(1-38,B)(1-34, 8%, =[Go, BUTQ,B*)~ 1KY, - +e,

(1 - kl,tB T T }\' BNRd )a: = (YI_IB +...+ YhSd.lB”Sd )(Yl _p') + e:’

r+Rd.t

we have the following representation of the Innovation Equation:

A (Bla, =y, (B)Y, —p)+e, (2.4)

For further analysis, we put (2.4) in another way

a = l]-lat* ot ?\'T+Rd.lal—(l‘+Rd) + YI.I(YI-I —W) e+

(2.5)
Ys+sd(Y1-(s+Sd) —pu)+e,

and let ?\.[ = (?“1,1: )‘«g‘p - }"n‘-Rd.!)T ’

Y= (YI,:: Yz.ta ret Ys+5d.:)T'

Here " denotes the transpose of a matrix.



erties of the innovational serie
Following Tsay (1987), it can be shown that:

1. E(ajy.)=0

2

G if i=0
2. E(ae_ )= 0‘

otherwise

3. var(aly,,) = E(al|y.)
= AT AA_ +F' TF_ +o?,
where A, =(a.,--. :a1-(r+Rd))T!
Fou= (Y ~t Yos =)
A=E(A D),
and A=E(y,y,)

4. E(aa;))=0 if j>0

mptions for the [nnovati ion

1. 8(B), A(B"), w,(B), and Q(B*) are purely random coefficient polynomials in B
of degreesr, R, s and S, respectively.

2. Since the Innovation Equation depends on the available information up to time t-
1 only, it does not contain the Y, term.

3. {e} is a sequence of i.i.d. random variables with mean zero and finite positive
variance o .

4. {3} and {y,} are sequences of i.i.d. random vectors with zero expectations and
constant covariance matrices E(AA})=A=A; (i,j=1,.. ., r+Rd) and E(y y]) =

I'=0;(@,j=1,..., 5+Sd), respectively. Both A and I are nonnegative definite.



5. The three sequences of random variates {e}, {}}, and {y} are mutually
independent.

6. e, A, and y, are jointly normal.

Under the assumptions above for the Observation Equation and the
Innovation Equation, it can be shown that the seasonal CHARMA model is both

stationary and invertible.

2.2 INVERTIBILITY AND STATIONARITY CONDITION OF THE MODEL

For ease of exposition, the theoretical properties of the model will be
illustrated and discussed in the special case p=q=r=s=P=Q=R=S=1landd=
4. The general case follows as a direct extension and will be indicated in the course
of the discussion.

Consider the Observation Equation,

(1-¢B)1- ®B)Y,-w=(-6B)1-0B%,
which can be written as

(1-¢,B-cB'-cB)Y,-w)=(1-gB-gB"-gB,
wherec, = ¢,, ¢, = D), ¢;=-0,D,, g, =06, g, =0, g =-9,0,,
ie.,

Y, —p=c (Y —w+c,(Y,_,—n) +e(Y, s —p)+

(2.6)

a — 5, — 8438,y —Es8 s

For the Innovation Equation (2.3),



(1-8, B-A,,B*+8, A, B)a, = (&, B+ Q B*+e,,Q, B Y, -u) + ¢,
it can be written as

(1-2,B- A, B 7\.5,‘B5)a1 =(y, B+ ¥, B + ys‘lBs)( Y —-p)te,
where A, =8, , Ay = Ay hsy = =0,,8, 5, Y10 = Do Yar ™ Qio s = 01,82,

i-e-: 31 = 1'l_tat-l + }“4,la1-4 + 7"5,(31-5 + YI,K(YI - p’) + Y4.I(Yt - “) + YS,I(Yl- “) + 81 (27)

2.2.1 Stationarity condition
Combining the observation and Innovation Equation, i.e., substituting a, in (2.7) into
(2.6) gives,
Y- p=(c v )Y - )+ (€t ¥a XY - )+ (5 F 15, )(Yos - )+
(Mg - 803 + (A - 2 + (As, - saus + €

In matrix form the above can be written as,

Y =(D+M)Y_, +N, (2.8)
where
Y ]
Yl-l —H
Y|-2 K
Yl 3 K|
.oty -
yo=| e TH
a:—!
al-!
a|-3
- al-“ J

s
e

= 1
"
~
~
~
>
—;.,
_>->

SSOO -
SOOS .
[=¥=Y=F=3¥
oD
oocood

)

—

DOoOO00 -
<
SO0V Fr OO+

COOOr COOOW

-
SOOON DOOO -
-
-
[ R e X e VY

o
COoOODO ~ OQOOS
DOOO_NP‘J
cooc.t

s
ODOoOoSC+s OO0 &~
coocod

[}



fc, 00¢c, c, ~g, 00-g, —gﬂ
1000 0 0 00 O 0
0100 0 0 00 O 0
0010 0 0 00 O 0 |-
M=000100000 0
00000 0 00 0 0
00000 1 00 0O 0
co000O0QC O 10 O 0
00000 0 O1 O 0
'_000000001 0 |
-el
0
and ol.
0
N,-——el
0
0
0
uoq

Now (2.8) is in the form of a first order Markov Chain.

In general form, model (2.2) and (2.3) can be written as

Y =(D,+MY_ +N,
where Y: =(Y, 1 Y — s Yo —H:8308500 800 4 N

m, = max(p+Pd,s+Sd), m,=max(q+Qd,r+Rd},

D, is a matrix whose first and (m,+1)th row are the random coefficient of the
Innovation Equation and the rest are zero.

N, is a (m,+m,)x1 vector whose first and (m,+1})th elements are e, and the rest

are Zero.

U
-| 10
Let M = i ,

—

0|1
where U is a constant coefficient vector of the Observation Equation. The (2,1) and
(4,2) block of M is the {m-1)x(m,-1) identity matrix plus a (m,-1)x1 null vector and

(m,-1)x(m,-1) identity matrix plus a (m,-1)x1 null vector, respectively. The (2,2) and



(4,1) block is the (m,-1)}xm, and (m,-1) xm, null matrix, respectively. The third
block is a 1x(m,+m,) null vector.

The model (2.2) and (2.3) is stationary if all of the eigenvalues of the matrix
(M®M + D,) where D. = E(D,® D)) are less than unity in modulus, where ® is the
Kronecker product of matrices.

Proof:
The following identities will be used.

1. vec(ABC) =(C"®A)vecB
2. ([1A)®(]B,) =[1(A,®B)

Rewrite (2.8) recursively, we can get

Y =(M+D)Y_, +N,
=N, +(M+D)N_ +(M+D)YM+D,_)Y.,

=N, + Z[ﬁ(M + D:-k)]Nn-j

=l k=0

For positive integers j and v, define

i .
Sj'l'l - E(M-{- D!—k) and Ev‘l =ZS N j "

vec E(Z, Z27,) = vec E(Zisj—l.rNt—j)(zlSj—l.lNl—j)T
= I

T T
j—l,r‘N l—th—ij-l.l )

= vec E(iS
=
= E[S vec(S,., N NLST,)]
pa

yvee N _ N[ ] Identity |

Lt

= E[il(sj_,_, ®S
=

= E{‘Z[ﬁ(M +D )@ (M+ D, )vec Nl,jN‘T_j} Identity 2

=1 k=0

Il
g

(FIE(M+ D) ® (M + D, )lvec E(N, NL))

[
[}

(M®&M +D,) vec(N.)

I
M<

—
1}



where D.=E(D®D),

and N.=E(N_N_ ), which does not depend on t-j.

=T

To prove the model is stationary it suffices to show that E(= ) converges

v T vt

v .
as v—oo, i.e., Y (M @M + D, ) converges as v—>o.
=1

If (M®M + D.) may be diagonalized as
(M®M + D.,)=P¥ P’
where V¥ is a diagonal matrix having the eigenvalues of (M + D.) along its main

diagonal, and zero elsewhere, then (M®M + D.Y =PW¥/P"', and it can easily be seen

that if the diagonal elements of ¥ are less than unity in modulus, then ¥’ converges

to zero. Hence, lim ¥ ¥ = (1 - ¥)™".

v—m j=0

lim S(M®M +D.)vec(N.) = P(I - %)™ P~'vec(N.)

V= j=0

= (I~ P¥P")" vec(N.)
=(I-M®M-D,) " vec(N,)

Therefore, if all the eigenvalues of (M®M + D.) are less than unity in

modulus, i(M ® M + D.)’ converges so that the stationarity of the full model will

!

hold.

If M + D. is not diagonalizable, we shall resort to a result of Issacson and

Keller (1966). iAJ is convergent, if and only if p(A) < 1, where p(A) =

j=0
max|l_‘,(A)| and A (A) denotes the sth eigenvalue of A. Then, applying to our case

and from the above, the stationarity of the full model will still hold.



2.2.2 Invertibility condition
Combine Innovation Equation at time t and Observation Equation at time t-1,
8= (A Y12 - Yi8ida + A+ (R - 11,8080 - 1,85+

V1€ Y2 t ¥ Y+ (et Vs Yos + 1185 Y6t €,

In matrix form,

’—ax ] rrlu 090 A'J,l A‘s_t 0] I—Yu —Y.B 00 _Yl,.tg-l -_Yl,tgj_—ral—l— Fy['
a, | [l0 00 0 0 o0/}1 o0 00 o0 0 [la_l]o0
a.|_[[0 00 0 00 0o 1 00 o0 0 las|,]0
a,| (o oo o o0 oflo o 10 o0 0 |la_L| |0
a_|{l0 00 0 o0 o]0 o0 01 o 0o |la,||o0
a L0 00 0 000 0 00 1 0 Jja.] 0]
Al D, M, AL N
Where Y: = Yl,lclYt-Z + YMYM + (Yl,rc4+ YS.:)Yt-S + YI.ICSY:-6+ et (29)

In the general case,
Al =(D,+M)A],+N,
where A =(a,a_,..a,__)"
m = max{q+Qd,r+Rd)
D, = mxm matrix whose first row is A| and the rest are zero (A is first row

of D, in (2.9))

v _[U.
(i)

The (2,1) block of M, is the identity, the (2,2) biock is the null vector and U,

is the coefficient of A, other than A,



A: =(M| +DI)A:-I +N1
= Nl +(M( + DI)N(-I +(Mt +Dt)(Ml-l +D\-—I)A:—2

» j-l
=N, +Z(T(M, +D )N,
ke
For positive integers j and v, define

s, =fI(M_, +D,,) and

vl [ i B

vecE(Z,,Z7,) = E[5(S,, ®S,,)veeN,_NL ]
o
v
= E{Zl [J—.{[](Mpk +D)® M +D,_, )]VECNl—jN;r-j}
o1 k=

= S (FIEM,., + D) ® (M, + D, ,)vec E(N NI )}

k=0

= > (M. +D.)'vec(N.)

where (M. +D.)=EM®&M, + DXD,),
and N.=E(N, N ), which does not depend on t-j for stationary Y.
Similar to the condition of stationarity, the model (2.2) and (2.3) is invertible
if all of the eigenvalues of the matrix (M. +D.) = E(M,®@ M+D,® D) are less than

unity in modulus.



CHAPTER 3 IDENTIFICATION, ESTIMATION AND DIAGNOSTIC

CHECKING OF THE SEASONAL CHARMA MODEL

3.1 THE BOX-JENKINS 3 - STEPS APPROACH

Box-Jenkins' iterative approach for constructing linear time series model
basically consists of three steps:
1. Identification of the preliminary specifications of the model
2. Estimation of the parameters of the model

3. Diagnostic checking of model adequacy

At the identification stage, we examine the autocorrelation function (acf) and
the partial autocorrelation function (pacf) of the data and then choose a particular
model from the general class of ARMA models, i.e., selects the order of the non-
seasonal and seasonal autoregressive and moving average polynomials necessary to
represent the model.

After identifying a particular ARIMA model, the parameters of that model
are estimated. There are basically two methods available for estimating these
parameters. One method is the least squares method and the other is the maximum
likelihood method.

Then, by applying various diagnostic checks, such as residual analyses, and
fitting extra parameters, we can determine whether or not the model adequately
represents the data. If any inadequacies are detected, a new model must be identified
and the cycle of steps 1 to 3 repeated. Finally, the best model that passes all the

checks is used to generate forecasts.
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For building up our model, the procedures are quite similar to the 3-steps
approach. At the stage of initial examination, we first identify and estimate the
Observation Equation and then perform similar procedure of building the seasonal
ARMA model. In the identification stage of the Innovation Equation, we examine
the acf of the squared residuals obtained from the Observation Equation — testing
whether the residuals possess the varying conditional variance property and
tentatively identifying all possible orders for the Innovation Equation.

Then, we estimate the Innovation Equation only and calculate the
corresponding criterion function for all possible equations for choosing the suitable
one. After determining the order for the Innovation Equation, we estimate the
observation and Innovation Equation together. Finally, we also perform diagnostic
checking for the standardized squared residuals. As choosing the right order for time
series models is a rather difficult problem, we give a brief account of some standard

methods in the next section.

3.1.1 Order selection

The Akaike's information criterion (AIC) (Akaike 1974) and the Schwarz's
information criterion (SIC) (Schwarz 1978) are widely used in the identitication of
the order of linear models and the favored model is determined by minimizing the
criterion function among various possible models. Both the AIC and SIC criterion
consider maximizing the log-likelihood (the first term of equation (3.1) and (3.2))
with a penalty factor for increasing the parameters in the model (the second term of
the equations). SIC penalizes for additional parameters more than AIC when n is

large. So SIC favors the model with less parameters as compared with AIC.



AIC = -2 x log-likelihood + 2 x k| (3.1)
© SIC = -2 x log-likelihood + k; x In(n) (3.2)
where k; is the number of parameters estimated in the model.

!

3.2 TEST FOR VARYING CONDITIONAL VARIANCE

The residuals defined in the Box-Jenkins model is a strict white noise
sequence, the properties of which are described in section 2.1.1. After fitting the
Observation Equation, we need to check for the validity of this assumption.
However, the standard diagnostic checks only detect whether or not the residuals are
autocorrelated and cannot detect for other types of departures from the white noise
assumption.

Granger and Andersen (1978) and Miller (1979) suggested that the

autocorrelation function of the squared residuals could be useful in identifying non-
linear time series. The autocorrelation function of a7, the squared residuals obtained

from a fitted ARMA model, is estimated by

(a1 -8 )42, - &%)
r (k) = St , k=0,1,...,n-1,
NCREE )

2a;

n

where 6° =

McLeod and Li (1983) showed that the squared residual autocorrelations are
useful for detecting the presence of non-linearity in the second moment and proposed

a test based on them. The statistic is:

Q, =n(n+2)3 =&
k=l O — k
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and is asymptotically y*(M) distributed if the &, are residuals from an ARMA model

fitted to data. A condition for the choice of M is that M/n — 0 as n — <.

Wong and Li (1995) proposed a rank portmanteau statistic that is a rank
version of the McLeod-Li statistic and found that it is more robust than its parametric

counterpart against additive outliers.

The rank autocorrelation function at lag k for a; is defined as

YR, -R)R_, -R)
T oo — , k=1,2,...,n-1,
(R, -R)®

where R,=rank(a’),

—Ii:ZR: =n+1’
n 2
and ¥ (R, -R)’ _nn -1

12
And the statistics

Qg = %(E — )

~2
k=1 Gk

>

is x*(M) distributed with p, = E(T) and & = v(T3).

Moran (1948) showed that E(T)=— ‘(" kl) . and Dufour and Roy (1986)
nin-—

5n* — (Sk +9)n’ +9(k — 2)n® + 2k(5k + 8)n + 16k’

showed that V(?k)= 5(n_1)2n2(n+1)
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By using simulated and real data, it is found that (Wong and Li, 1995) the
power of Qj, statistic is slightly greater than Qg when there are ARCH effects and
without outliers in the data. However, when there are outliers, the Q,, statistic may

fail to detect ARCH effect but Qg does not.

3.2.1 Simulation

As discussed in the last section, it is reasonable to believe that examining the
acf of the squared residuals plays an important role in the detection of ARCH pattern
for non-seasonal case. Thus, it is of interest to find out the use of the acf for
determining the form of the proposed model. Qur aim is to investigate if the graph
of the acf different among various orders and if the acf shows the pattern at seasonal
lags for seasonal conditional heteroscedasticity. We simulate twenty time series for
five models, each series with 500 observations, then calculate the corresponding acf

and plot them in appendices 1 to 5.

Here are the five simulated models:

a.

Y -04Y_ =a,

al = QlYl—S +et’

=h, =0.01+ 0.4356Yf_5.
b.

Y, -04Y_ =a,

(1- A[Bs)a[ =e,

=h, =0.01+0.4356a’ .
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Y, -04Y,_ =a,
(1-AB’)a, = QY +e,,

= h, =0.01+0.4356Y2, +0.36aZ,.

d.

Y -04Y_ =a,

a, =[(1-0B)(1-QB’)-1]Y, +e,,

= hl = BU + BIYE-I + BzYtz—S + BsYtz—as

where 3, = 0.01,B, =0.4356,and B, = 0.36.
e.

Y, -04Y_ =a,
(1-3,BX1- 4&,135)::1t =e,
=h =f,+ Blatz—l + Blatz—S + Baaf-es

where 3, =0.01,B, = 0.4356,and 3, = 0.36.

Figure 2. A summary of the patterns of acf for different models

a.

acf A\

5 lag
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Figure 2(cont.). A summary of the patterns of acf for different models

b.
acf AN\
7 5 lag
cC.
acf M\
LRI
i P
3 10 lag
d.
acf A\
1 5 6 - lag
c.
acf A\
1 L 5
1 56 lag
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In Figure 2, we summarize the patterns of the autocorrelation functions for
the corresponding models. In the Box-Jenkins model, the patterns of the acf are
clearly different between the AR model and the MA model .(Figure 1). Although the
acf of the squared residuals cannot show the same difference in this simulation, it
can be seen that there is also a spike at the seasonal lag or multiples of seasonal lags,
which can serve as indicators that the time series have seasonal conditional

heteroscedastic variance.

3.2.2 Empirical example

As stated in the introduction, many economic series may have seasonal
pattern in the conditional variance because of information accumulation. Friedman
and Vandersteel (1982) examined the statistical properties of daily foreign exchange
spot rates from the period 1 Jun 1973 to 14 Sept 1979 for nine currencies relative to
U.S. Dollar: German Mark, Swiss Franc, Pound Sterling, Japanese Yen, Dutch
Guilder, French Franc, Canadian Dollar, Belgian Franc and Italian Lira. It was
found that all spot rates are leptokurtotic, with massive tails and a sharper central

peak than normal. Moreover, it suggested that the leptokurtotic phenomenon might
be caused by the changes of the process over time and p, and &, should be

estimated as functions of time-varying economic and institutional variables.

Hsieh (1988) examined ten daily exchange rates against U.S. Dollar, from
1974 to 1983 and found all of them are not independent and identically distributed.
Moreover, variances changing over time appeared to be the strongest characterisitic
in the data. Hsieh set up the ARCH model with daily and holiday dummy variables

to describe the data. The model only fitted the data for Swiss Franc, Canadian

18



Dollar, and Deutsche Mark, but not for Japanese Yen, and British Pound. It can be
seen from his model that the variances of daily exchange rates are larger whenever

the trading days span a weekend or a holiday.

Baillie and Bollerslev (1989) found that the autocorrelations of the squared
residuals of daily exchange rate are significant around the seasonal lags and set up a
GARCH model with daily dummy and holiday dummy variables. From the model, it
confirmed that distinctive daily seasonality and holiday effects are present in the

conditicnal variance.

From the above, it confirms that seasonality in the conditional variance
present in the daily exchange rate. Although there are many papers in the study of
foreign exchange rates, it is hard to say there is a model that can fully characterize
the seasonality picture of the behavior of the exchange rate volatility. Foreign
exchange is an important market in the financial world, therefore, we would like to
study the weekend effect in the exchange rate again using the seasonal CHARMA
model. Our aim is to see whether seasonal heteroscedasticity can be characterized in
a parsimonious way as compared with dummy variables. In addition, we like to see

how well the seasonal CHARMA characterizes the distribution of volatility.

Daily closing exchange rate of the U.S. Dollar / Japanese Yen (USD/JPY)
from 5 May 86 until 5 Jun 95 for a total of 2369 observations excluding weekends,
Sundays, and bank holidays is considered. The missing data (because of holidays)
are handled by assuming they have the same rate as the previous day. The time series

plot of the exchange rate X, is given in Figure 3.
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Figure 3. The time series plot of the exchange rate of USD/JPY

180 —
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140 —
120 —
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Yen

Figure 4. The plot of acf for Yen
Autocorrelations: YEN

Auto- Stand.

Lag Corr. Err. -1 -.75 -.5 -.25 0 .25 .5 .75 1 Box-Ljung Prob.
1 -.011 .021 * .282 .596
2 -.018 .021 Lw 1.086 .581
3 -.013 .021 .. 1.516 L8679
4 .007 .021 * 1.630 .803
5 -.015 .021 L * 2.195% .821
6 -.028 .021 LN 4.074 .667
7 .02 .021 * 4.421 .730
8 .12 .021 [ 4.763 .T83
9 .013 .020 N 5.151 .B17
10 .058 .020 LA 13.230 .211
11 -.001 .020 .. 13.231 .278
12 022 .020 . 14.376 .277
13 .018 .020 T, 15.176 L2896
14 .007 020 L, 15.291 359
15 .044 020 O 20.013 171
16 .015 .020 ', 20.581 196
Plot Symbols: Autocorrelationa * Two Standard Error Limits
Total casea: 2369 Computable first lags: 2368
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Figure 5. The plot of pacf for YEN
rartial Autocorrelations: YEN

Pr~Aut- Stand.

Lag Corr. Brr. -1 -.75 -.5 -.25 1] .25 .5 .75 1
1 -.011 .021 >,
2 -.019 .021 .*,
3 -.014 021 E,
4 .006 .021 L*
5 -.016 .021 .*,
6§ -.028 .021 *3
7 .011 .021 e
8 .011 .021 L,
9 .014 .021 W,
10 .58 .021 LA
11 .00 .021 .,
12 .024 .021 N
13 .022 .021 .,
14 .009 021 W,
15 .049 .021 e
16 .020 .021 .,
Plot Symbola: Autocorrelations * Two Standard Error Limits .
Total cases: 2369 Computable first lags: 2368

We consider the first differences of the series' natural logarithms: Y, =
100xIn(X, /X _, ). None of the autocorrelations and partial autocorrelations (Figures

4 and 5) for Y, are significant at the 5% level, we can conclude that the Observation
Equation of the series is a white noise model, i.e.
Y =a,

where a, is the white noise.

In a series of daily data, from Monday to Friday, it can be postulated that the
seasonal lags are multiples of 5. For the residuals the Ljung and Box (1978)
portmanteau test statistic Q(5) = 2.195, which is insignificant at the 5% level
compared with the critical value y*(5) = 11.070.

Next, we investigate whether there is any evidence of non-linearity in the
second moments. By examining the autocorrelation coefficients of squared residuals

of the model (Figure 6), the large acf at lag 1, 3 and 5 indicate that non-linear
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structure may be present in the residuals. Employing the conditional
heteroscedasticity test, Qa.(5) = 44.3301, the squared residuals are highly significant

at the 5% level. There is strong evidence of conditional heteroscedasticity.

Figure 6. The plot of acf for the squared residuals
Autocorrelations: SQRES

Auto- Stand.

Lag Corr. Brr., -1 -.75 ~.5 -.25 [+] .25 .5 .75 1 Box-Ljung Prob.
1 087 .021 J1.e 22.426 .000
2 .022 .021 . 23.626 .000
3 .057 .021 D 31.474 .600
4 .028 .021 i 33.392 .00
3 .068 .021 e 44.320 .00
& .053 .021 I 51.062 .000
7 . 004 .021 ¥, 51.096 .000
8 .058 .021 LAw 58.971 .000
9 .034 .020 JAw 61.770 .000
10 .022 .020 ¥, 62.953 .000
11 .041 .020 i 66.91% . 000
12 .034 .020 A 69.701 .000
13 . 009 .020 . 69.890 000
14 .081 .020 R B5.732 000
15 .009 .020 . 85.922 L000
lé -.010 .020 » 86.153 000
Plot Symbols: Autocorrelationg Two Standard Error Limits .
Total cases: 2369 Computable first lags: 2368

3.3 ORDER SELECTION IN THE INNOVATION EQUATION

3.3.1 Initial estimates for parameters of the Innovation Equation

Before calculating the criterion function, we need to estimate the covariance
matrices of A, y. and e. Let vech(G) be the half-column stacking vector of a
symmetric matrix G by using elements either on or below the main diagonal, and
vech2(G) = vech(G"), where G is obtained from G by multiplying all of the off-

diagonal elements by 2.

From properties 3 of the innovation series described in section 2.1.6, the

conditional expectation of a’ can be written as
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h, =E(a;

W)
=(A_®A_) vec(A)+(F_ ®F_) vee(I + 0.
=X vech2(A)+ X! _vech2(I')+o:

1.1-1 2t-1

=W'B+a’
where X, , =vech(A_A[)),
Xy = vech(F_F)),
B = (vech2(A)", vech2(I)")7,

and W =(X]_,X].)".

1t-1?

The conditional log-likelihood function of {a;} is

[™1=

L L $inn )+af] (3.3)
= i e —1, )
" T, Y h,

k

where k = max(r+Rd, s+Sd),

and h,= E(a’lv.,)=W/'B+c’.

Let v=(oc. B')" be the vector that we want to estimate, the likelthood

estimating equation is given by setting f(v) = 661:; to zero. We have

oL lal 1oaal
L R T _',
30'3 2[=Zkht 2:=Zk ?
L, =_,1_iW.(1)+1iafW,(i)
PGy 2= h, 2 hP

where W (i) is the ith element in W.



The Hessian for the Newton's method can be computed as follows,

o’L
f'(v) = =,
(V) ===
oL, _ls1 sa
dc2dc?  2:kh;  exh)

'L, _laW(i)_22/W(j)

dc20B(j) 2 % h? X h?
_OL, _1aWOWGH e aWOW()
OBWAP() 2=  h ar h? ’

a‘nd l)n = Dn—l - [f' (l'))]_I f(l,)) ‘

3.3.2 Model selection criteria

In section 3.1.1, we have described how to choose the suitable order among
various tentative linear models by the Akaike’s information criterion (AIC) and the
Schwarz's information criterion (SIC). Not only useful in the linear models, both
criteria are also used heavily in identification of the order of ARCH models.
Nevertheless, it is worthwhile to notice that the theoretical performance and
statistical properties of the criterion function in the ARCH models are not widely

studied.

Recall the definition,
AIC = -2xIn{maximum likelihood) + 2k, (3.4)
and  SIC = -2xIn{maximum likelihood) + k;xin(n} (3.5)

where k, denotes the number of parameters estimated in the model.
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Applying to the Innovation Equation, from (3.3)

AIC, = S[in(h,) +a2 /b ]+ 2k, ,
1=k

and  SIC, = ¥[In(h,)+a’/h,}+k, xIn(n),
t=k

where a, is the residual from the Observation Equation (2.2), ﬁl is the (conditional)

maximum likelihood estimate from section 3.3.1 and k; is the number of parameters

in the Innovation Equation (2.3).

3.3.3 Using mean square error (MSE)
It is natural to consider the mean square error as another loss function instead
of the likelihood function, thus similar to AIC, and SIC,, some authors like to

consider
AlICg = In(MSE) +2k, / n,

SICg = In(MSE) + k; x In(n) / n,

1 & ’ ~
and MSE=—3{a’-h}’.
n 1=k
Here the error is defined as the difference between the squared residuals from
the Observation Equation (2.2), a’, and the conditional variances in the Innovation

Equation (2.3), fl[. Both criteria are normalized by the sample size n. The order of

the equation is again determined by the minimum criteria. Tsay (1987) investigated
the performance of these criterion functions by simulations for the CHARMA

models and the results were reasonable.
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3.3.4 Simulation

In this section, we shall carry out a simulation experiment to test the ability of
the various criteria for choosing the correct order of the Innovation Equation for the
seasonal cases and assume that all a, are coming from seasonal ARMA models.
Three models are generated and the numbers of observations of each time series are
200, 500 and 800 respectively. For each combination of model and sample size, due
to the large amount of computer time involved, we only consider 100 replications.
Since the number of replications is only 100, we understand the results can only

serve as general guides for model selection.

Recall the Innovation Equation (2.3) of the proposed model is,

8(B)A( B )ay =[0(B)U( B )-1]( Y, —p1) + &
and we symbolize the equation as (r,s)x(R,S)4, where r, s, R, and S is the order of
8(B), A BY), @(B), and Q( B?), respectively, and d is the seasonal period.

All the models have the same Observation Equation and the only difference is
in the Innovation Equation. The three models are as follows and the right hand side
of the parentheses is the specified order for the Innovation Equation.

Model 1 (M1, (0,1)s)

(1-0.4B)Y, =a,

a, =Q, Y. +e,

=h, =0.01+0.64Y}

Model 2 (M2, (1,0)x(0,1)s)

(1-0.4B)Y, =a,

(1-8,B)a, =Q Y, +e,

=h, =0.01+0.64a>, +025Y2,
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Model 3 (M3, (0,1)x(0,1)s)

(1-04B)Y, =a,

a, =[(1-®B)1-QB)-1]Y, +e¢,

= h‘ =B, +B|Yaz—|

+ BzYzz-s + B3Y:2-6

where B, = 0.01,p, = 0.64,and B, = 0.25

Table 1. The AIC criterion based on the mean square error

n (0,1) [ (0.1)s | (1,0) | (1,005 | (0,2)s | (2.0)s | (1.0)x(0,1)s | {0, 1)x(1,0)s | (0,1)x(0,1)s } (1,0)x(1.0)s
ML 53 8 24 0 1 6 4 1 2
2001 M2| 11 14 | 20 | 12 0 3 21 6 7 6
M3| 14 | 15 9 14 0 1 6 16 20 5
Mi| 7 60 1 16 0 3 1 7 2
500 |M2| 4 1 14 5 0 0 37 7 5 17
M3| 9 9 4 7 0 3 8 5 42 t3
MI| 3 65 5 13 0 2 5 5 0 2
800 [M2| 5 10| 9 2 0 2 32 9 14 17
M3| 6 8 6 4 0 2 3 3 50 18
Table 2. The SIC criterion based on the mean square error
n (0.1) [ (0.1)s§ (1,0) | (1.0)s | (0.2)5 | (2,0)5 | (1,0)=(0,1)5 | {0, 1)x(1,0)s | (0.1x(D,1)s | (1.0)x(1,0)5
ML I 57 8 26 | 0 1 3 2 0 2
2001 M2 | 11 13 | 26 | 15 0 1 20 6 5 3
M3 | 21 18 I 11 0 2 4 15 13 3
ML 7 61 2 21 0 3 1 4 0 1
500 M2 7 12 | 20 3 0 0 36 5 6 11
M3} 10 | 11 4 7 0 3 8 6 38 13
ML| 2 69 6 14 0 2 1 4 0 2
800 M2| 6 12 9 0 0 35 9 13 14
M3| 7 10 7 0 0 4 7 46 15
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Table 3. The AIC criterion based on the log-likelihood

(1,0)x(1,00

n (0,1 [(0,1)s 1 (1,0) | (1,005 | {0,2)5 | (2,005 | (1,00%(0, 1) | (0,1)x(1.0)s | {0, 1)x(0, 1)s
M| O 90 0 2 0 2 5 0 1 0
200 ([ M2| O 0 2 0 0 0 91 0 2 5
M3} 0O 1 0 0 0 0 3 18 73 5
MLy 0O 93 0 0 0 0 7 0 0 0
500 | M2| 0 0 0 0 0 0 99 0 1 0
M3| 0O 0 0 0 0 0 0 3 97 0
Ml O 98 0 0 0 1 1 0 0 0
800 |M2| O 0 0 0 0 0 100 0 0 0
M3| O 0 0 0 0 0 100 ]
Table 4. The SIC criterion based on the log-likelihood
n (0,1) | (@15 | (1,0} | (1L,0)s | (0,2)5 | (2,005 | {1,00(0,1)5 | (0,1)x(1,0)5 | (0.1)x(C. 1)s | (1.0)x(1.0)s
Ml| 0O 95 0 2 0 2 1 0 0 0
200 | M2) O 0 4 0 0 0 93 0 2 1
M3] 1 l 0 0 0 0 5 5 63 25
MI{ O 97 0 0 0 0 3 0 ] 0
500 |M2| O 0 0 0 0 0 100 0 0 0
M3| O 0 0 0 0 0 0 6 94 0
Ml| O 99 ] 0 0 1 0 0 0 0
800 |M2| O 0 0 0 0 0 100 0 0 0
M3| O 0 0 0 0 0 0 1 99 0

First, we use the maximum likelihood estimation to fit the Innovation

Equation of various orders for the three models and then calculate their

corresponding AIC and SIC criteria. Tables 1 to 4 report the results for selecting the

order of the Innovation Eqdation by the AIC and SIC criteria. The numbers in the

Tables indicate how many of the replications are chosen by the corresponding

criterion. Except for the cases of model 2 and 3 with n =200 by SIC criterion using

the mean square error as a loss function, all the criteria are able to choose the correct

models most of the time as compared with other possibilities. In both undesirable

cases, the criterion prefers the model without seasonal factor.
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It is clear from all the Tables that the ability of choosing the correct model is
higher as the value of n increases. When comparing Tables 1 and 2 with Tables 3
and 4, it is immediately seen that the criteria based on log-likelihood choose the
correct order much more than that based on the mean square error. Using the log-
likelihood as a loss function, most of the cases get over 90% for choosing the right
order. In addition, the criteria based on the mean square error are not quite reliable

for model 2 and 3. They are less than 50% in choosing the right order.

Comparing Tables 1 and 3 with Tables 2 and 4, SIC performs better than AIC
when the model parameters are less (model 1) but AIC is better when the number of
parameters increases {models 2 and 3). There seems to be a tendency that SIC

underestimates the order on large parameterizations.

3.3.5 Empirical example

Returning to the exchange rate of USD/JPY, to capture the conditional
heteroscedasticity of the residuals detected in section 3.2.2, the suggested Innovation
Equations are
Model 1

(1-8,B)1-A,B)a =e

= h=pa’, +Bja’ +psa’, +c:
Model 2

(1-81,B-8,B)1-4,Ba=e¢

= h = Blatl-l + Bzalz—l+ B3alz—5+ B4a12-6 + B5a:1-s + Gi
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As the Observation Equation is a white noise model, the Innovation Equation

is the same for selecting order of Y? or a’. The top part of Table 5 shows the

maximum likelihood estimates for model 1 and 2 and at the bottom part of the Table
we provide the criteria for the corresponding model. Both AIC, and SICa of the
log-likelihood favor model 2 and AICy using mean square error prefers model |
while SICy prefers model 2. Hence, we choose model 2 for modeling the exchange

rates.

Table 5. The AIC and SIC of the specified order for the Innovation Equation

Model 1 Model 2
0-3 0.34853 0.29284
By 0.11602 0.10714
B, - 0.09754
B4 0.09696 0.09494
Bs 0.07710 0.07921
Bs -- 0.03170
AlC, 559.23708 523.43274
SICA 582.31798 558.05408
AlCg 0.23161 0.23126
SICy 0.24136 0.24587

3.4 ESTIMATING THE FULL MODEL

3.4.1 Least squares estimation
The first step is to estimate the parameters in the Observation Equation by the
least squares estimation and calculate the residuals a,. The second step is to estimate

the parameters in the Innovation Equation by using a, from the first step.
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Then the least squares estimates of the parameters in the Innovation Equation are
B={Z(W, - W)W, - W)} {Z(W,-Wal} ,
and &7 = (n-k)"'Ta; ~B"W,
where t sums from k+1 to n,
k = max(r+Rd, s+8d),
and W is the sample mean of W,.

Recall that W =(X[_.X]. )", X, = vech(A_Al), and X, = vech(F_FT).

Lt-17?
We have the following result:

Theorem

Let X, = (L, W', 0 = (67 p7)", and n,= a? - h. IfE(X,X] ) is nonsingular, then
(a) ¥ is a strongly consistent estimate of U If E(Y,') < .

(b)n""?(0-v) >, N(0,C)if E(Y) <o where -, denotes convergence in
distribution and C = E(X, X")"E(X X )E(X XF)™.

It can be proved along the same lines as Tsay (1987, p.593, theorem 4).

3.4.2 Maximum likelihood estimation

Expanding equation (2.2) and re-define the coefficients of Y\, and a, as §;, and
E;, respectively, then

(¥, --"F G(Yo - =a - E gan
whence we put

‘ p+Pd q+0Qd
3, =(Y,=)='% GV -0+ 2 Eag,

into the conditional log-likelihood function.
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The conditional log-likelihood function of {a;} becomes

(Yr —l'l-bt)z

L,= —% 3 {in(h,) + ], (.6)

where k = max(r+Rd, s+Sd),

h[ = erﬁ + 0': ,
p+Pd q+Qd
b1 = § Qi(Yn-i _l-'l')_' ; éial_i )

and v = (&, & ,a:, BT).

We use the maximum likelihood estimation algorithm proposed in Mak
(1993) and Mak et al. (1997) to estimate v. As shown in Mak ef al. (1997), this
algorithm's convergence is quite robust to the choice of initial values and is faster in
reaching convergence as compared with the BHHH (Berndt e al. (1974)) algorithm.
Mak’s algorithm is as follows: the maximum likelihood estimate O of v is obtained

from solving

oL 1 _6h 1 (y -p-b) éb, (y. —p-b.)
fly,0)=—0 =—=FY —{— -2t AT tL — ().
(y,v)=— R 2 M2 -

Let g(,v) = E_{f(y,0)[5] and v, be the rth iteration estimates, then
8(V)s V) =E(y:0,), |

and v, = O(the maximum likelihood estimate), ast — .

We then calculate

oB0) 1 z%[?ﬁ)(%) +z~1—[ﬂ)(%) |
& 19=v 2%hI v Ao h, L év A\ 6v

1
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Finally, the iteration equation is

sy, T
Yy =V + {[g—(as——)lﬁm] } f(y,v,)

V=P

Also it is worthwhile to point out that the Fisher’s Information matrix can be

obtained as,

_ o)
TR Iv=

and the covariance matrix of v 1s given by I

3.43 Simulation

In this section, the reliability of the least squares estimation and the
maximum likelihood estimation are investigated and compared by simulations. The
following model is considered,

(1-¢B)Y,=a

a = [(1 + 01,B)(1 + Q1 BY)-1]Y + e
where ¢ = 0.4, 2 =0.01,

var(a)=he=PB, Y2, +B, Y., +B,Y s,

var(o;,) = B = 0.4356,

var(Q,) = B2=0.36,
and  var(w;,£) = var(w, ) var(Q,) = B3 =0.156816.

The parameter of interest is v = (¢, &., B, B2, B3)'. We consider various

length of realization with n = 100, 200 and 500. For each case, there are 500

‘independent replications. The initial value vg is (0.1, 0.005, 0.1, 0.1, O.l)T for all
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cases. The average estimate of ¢, o7, B, B, and B3 and their average standard errors

(in parentheses) are shown in Table 6. The conclusion of the simulations is obvious.
For each n, the maximum likelihood estimates are more accurate than the least
squares estimation and are much closer to the true values. Also, it can be seen that
the estimates for the maximum likelihood method generally improve as n becomes
larger. Hence, we will use the maximum likelihood estimation to fit the model.

Since the initial values affect the existence and consistency of interested parameters

in iterative numerical methods, the least squares estimates will be used as the initial

values of the maximum likelihood method.

Table 6. The average estimates of ¢, O'i, Bi, Ba Bjand the corresponding average standard errors

n estimation ) c. B; Bs B;
Least 0.31531 0.05789 0.16995 0.18020 0.13386
squares (0.09618) | (0.03973) | (0.08775) | (0.09254) | (0.09547)

1860 | Maximum 0.39121 0.01194 0.35734 0.31576 0.20414
likelihood (0.1159D) (0.00502) {0.15285) (0.14985) (0.13364)
Least 0.33433 007142 0.18980 0.19930 0.12022
squares (0.06691) (0.04355) (0.05963) (0.06246) (0.06464)

200 | Maximum 0.39272 0.01089 0.39500 0.33156 0.16736
likelihood {0.08300) (0.00326) (0.11252) (0.10690) (0.08563)
Least 0.35034 0.05064 0.21456 0.20070 0.11549
squares (0.04184) (0.05330) (0.03613) (0.03734) (0.03858)

500 | Maximum 0.39500 0.01053 0.42325 0.35224 0.15735
likelihood (0.05323) {0.00202) (0.07367) (0.06877) (0.05228)

3.4.4 Empirical example

Since the Observation Equation is a white noise model, we do not need to

estimate the full model again. The final mode! is

Y, =a

(1 -8B -8B - A B =e,

a

=h=Pia,, +Pra_,+Psa_ +Psa,, +Psa , + o,
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It is found that & = 0.2928, B, = 0.1071(0.0240), Bz = 0.0975(0.0236), B =

0.0949(0.0235), B4 = 0.0792(0.0226), and Ps =0.0317(0.0174).
The coefficients with standard error in parentheses are estimated by the

maximum likelihood method. All the t-ratios of the variances are significantly

different from zero. The large coefficient for a’,, the seasonal lag, has sound

financial interpretation as discussed in previous sections. It supports the presence of

weekend effect in the Yen exchange rates.

3.5 MODEL DIAGNOSTIC CHECKING

i and Mak (1994) proposed a general class of squared residual
autocorrelations and derived their asymptotic distribution that can be used for

diagnostic checking general conditional heteroscedastic models.

Let ¢, be the estimated residual from the Observation Equation, ﬁ. be the

estimated conditional variance from the Innovation Equation. Then, the lag-k-

squared standardized residual autocorrelation is defined as

_S@UR DG /AL D

[ =& " , =1,2,..
(4°/h, —3)

1

t

_ Loa
where a=n"'Y =-.

1

[f the model is correct, it may be shown that a2 converges in probability to 1.

Thus, T can be replaced by

(@B -1@EL, /h,, - ])
rk - 1=k =1 - , k
(3 /h, —1)

il
P—
%)

™=

i
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Also, the lag-k squared standardized residual autocovariance is defined as

S - b a;
C,=—Z(F-I(z*-1,
K nZ(h, )(h )

=k

and an overall test statistics is

Q(M) = ni"V'E ~ x 2 (M).

Here i7" =(8,%,,....5), V=1, —%XG"XT, and Iy = order M identity

&L,
dvduT

matrix. Furthermore, G =—~E(n™ }, Ly is the log-likelihood as defined in

"

(3.6), and X is a matrix of the partial derivatives of the residual autocovariances C,

with respect to L.

For ARCH(q) model,

QM) =n 3'#* ~ (M),

i=r+l

2
since E[--(uy Ak _1y)= 0, ifk> .
h ov h,

3.5.1 Empirical example
Table 7 gives the first ten autocorrelation coefficients for the squared

standardized residuals. They are within the standard error bound
(= i2/J_ =+0.04109). Q(5) in Li-Mak test is 1.58761, which is insignifiant at the
5% level. There is no heteroscedasticity in the squared standardized residuals. The

autocorrelation coefficients at lag 1, 3 and 5 are comparatively smaller after

considering the Innovation Equation (Table 8). There are good improvements if the
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Innovation Equation is fitted, i.e., the model successfully captured the seasonal non-

linearities.

Table 7. The autocorrelation coefficients of squared standardized residuals up to order 10
lag 1 2 3 4 5 6 7 8 9 10

acf [ 0.0025 | 0.0181 {-0.0072| 0.0157 |-0.0062 [-0.0142|-0.0182]-0.0153| 0.0126 | 0.0054

Table 8. The comparison of acf before and after the incorporation of Innovation Equation

lag 1 lag 3 lag 5
before fitting the Innovation Equation 0.097 0.057 0.068
after fitting the Innovation Equation 0.0025 -0.0072 -0.0062

3.6 SUMMARY OF MODEL BUILDING PROCEDURES

We summarize the procedures for building a seasonal CHARMA model as
follows:

Step | Start with the traditional ARMA models. Identify the order (p,q) x(P,Q)q for
the Observation Equation. If the series is non-stationary, transform to
stationarity by standard techniques like the Box-Cox transformation and
differencing.

Step 2 Estimate the parameters ¢;’s, 6;’s, @’s and ©’s by the conditional least
squares or conditional maximum likelihood method and obtain the residuals
a,.

Step 3 Perform diagnostic checking using say, the Ljung and Box test. If any
inadequacies are detected, go back to step 1 and repeat the procedure again
until the model passes all the checks.

Step 4 Examine autocorrelation function of squared residuals for varying conditional

variance and perform the test described in section 3.2. If the test fails to
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indicate any model discrepancy, the model obtained in step 3 is regarded as
adequate. Otherwise, tentatively specify the order r, R, s and S of the
Innovation Equation by treating a, as observable rather than as residuals from
the linear model.
Step 5 Estimate all of the parameters simultaneously in the observation and
Innovation Equations by using the conditional maximum likelihood method.
Step 6 Perform diagnostic checking for the full model. Go back to step 4 if

necessary.
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APPENDIX TO CHAPTER 3
Appendix 1 —Model a

h, =B, + Bl.vlz-ﬁ

Note: a_j"2 denotes squared residuals of the jth set data, j=1. ..., 20
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Appendix 1 — Model a (cont.)
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Appendix 2 — Model b (cont.)
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Appendix 3 — Model ¢ (cont.)
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Appendix 4 — Model d
h, =B, + By, + Bz)’:z—s +BsYis
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Appendix 4 — Model d (cont.)
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CHAPTER 4 COMPARISON WITH THE GARCH FAMILY

4.1 GARCH MODEL

The ARCH model is very popular and useful in modeling economic and
financial data after it is introduced. However, in many applications, the ARCH(q)
model calls for a long lag q, thus leading to a large number of parameters to be
estimated.  Therefore, Bollerslev (1986) extended the ARCH model to Vthe
generalized ARCH (GARCH) model in order to provide a more flexible lag
structure. The conditional variance of the ARCH model is a linear function of past
squared residuals, whereas the GARCH modetl includes both past squared residuals
and lagged conditional variances.

Let {y,} be a time series, a; denote the innovations obtained from the fitted
model, .., the information set available at time t-1 and L denotes the lag operator.

The GARCH(p.q) model is defined as

a, =Y, -Xb,

a |y, ~N(O,h), (4.1)

1L=%+ga@3+§mmﬂ | 4.2)
= o, + A(L)a} + B(L)h, (4.3)

where X be a vector of explanatory variables,
p20,9>0,
o> 0,020, i=1,...,4q,

and B; 20, i=1,....p.
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A(L) and B(L) are polynomials in L and have no common roots. When p =
0, the model reduces to the ARCH(q) model. From (4.3), if all the roots of the

polynomial B(x) = 1 lie outside the unit circle, the conditional variance of the
GARCH(p,q) model can be represented by past a’ only. Namely,
h, = a,o(1=B)™ + A(L)(1 - B(L)a;

=ay(l- éBi)—l + %Biatz-i

o, +2Bd., i=1...,9
where §, = =

;Bjat—ji' i=q+1,...

=1

The mean and variance of time series with the GARCH{(p,q) model are 0 and
ao(l — A(1) — B(1))}, respectively. It is stationary if and only if A(1) + B(1) < 1.
For example, the stationary condition for GARCH(1,1), the simplest but is found to

suffice in many applications, is oy + f1 < 1.

Rearranging terms in (4.2) as
2 2 P 2
al =ap+ Yoal + XBal; - Sy v,
1= = =
- S 2 i
=, + ;(ai +Ba; -] :ij"j +v,
1= =

where m = max{p.,q} ,

and v, is the serially uncorrelated innovation sequence { a’-hy}.
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Thus GARCH(p,q) model can be interpreted as an ARMA(m,p) model for a’
with autoregressive parameters (o + B, ), and moving average parameters -B;. From

Bollerslev (1988), the Yule-Walker equations for a’ are

P, = g(ai +B;)p,.i 0> D

The autocorrelations for a} are
py =0 (1 -, -Bi)/(1-2a8, -B),

P, =(o, +B)"'p,,n> 1.
GARCH model is reported to be highly successful in financial modeling, see

Bollerslev et al. (1992).

4.1.1 Maximum likelihood estimation of the GARCH model
Letz/=(l,a’,...,a , h_,.., h ) o =(u,,a,. .., 0,B,..B)

1-q? t-1

and v=(b",w0"). Then (4.2) can be written as

1 1 a?
] =——In(h ) - —(=
\ 2n( ) 2(h,)

Then,

. 2
o _Llyohfa, )
o 2 ' dwlh,

6l



and i&(-a&}lhg?& a ),
b hl{adb ) 2" ablh,

where %=zl+ ﬁi-@b‘—“,
ow i O
ch d oa, a (ch
d — =2%qa | —&= |+ J i Ry
R TR ( b ] EB'[ 3 J

Therefore, the maximum likelihood estimates are calculated from

2l Al Y'(adl
Vpety =V + (E% 60’] [;‘é{;)

with the information matrix I = Z (?-l'—](i] .
=1 Ldu A av!

4.2 P-GARCH MODEL

Bollersiev and Ghysels (1996) introduced the periodic generalized ARCH
model (P-GARCH) whose parameters change seasonally for better characterizing the
repetitive or seasonal conditional heteroscedasticity patterns. Unlike the
multiplicative seasonal ARMA models described in section 2.1.5, in P-GARCH
model, the periodic cycles need not be purely repetitive: the periodicity is known but
the actual observations may not follow the periodic cycles strictly. For example, the

purely repetitive pattern may be interrupted by holidays in the daily data.

Similar to GARCH, the class of strong P-GARCH processes is defined as

3w, ~N(0,h,) (4.4)

and B, =0ty + 2008+ 2By 43)
= =
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where d(t) is the stage of the period cycle with an upperbound D at time t, where D is

the length of the cycle. If the periodic cycle is purely repetitive, then d(t) = t mod D.
Note that @, may be the residuals from a periodic ARMA model (P-ARMA, Tiao

and Grupe (1980)) while a, in the GARCH model may be from a multiplicative

seasonal ARMA model.

Like the GARCH model, the P-GARCH model can also be interpreted as a P-
ARMA representation for 3/,

~

~7 m ~7 ~
a; =0y + g}(aid(a) +Bign)a - gﬁjd(t)vt—j + Ve,

where m = max(p, Q), and Vl = 512 - hx .

The conditional log-likelihood function for P-GARCH model is similar to the

GARCH model with different seasonal cycles,
LT(U | WL) = El:(udm) 3

where 1,(Uy,)) = —+[In(h, (V4)) + 87 (Vgey)/ B, (Vg1

4.3 SIMULATION

As GARCH model is so popular and successful in the literature recently, it is
of interest to investigate and compare the performance between the proposed model
and GARCH model. A simulation experiment is worked out to study their

forecasting performance. The true model! is an AR-seasonal ARCH model with ¢ =

0.4,0p=0.01, 0, =0.4356, ct; = 0.36, a3 = 0.156816, 1.e.,
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Yt _¢Y-l =4,
(1-8B)1-AB%)a, =¢,

_ 2 2 2
= h =o,+aa +a,a, +aa;

Table 9. The maximum likelihood estimates of the proposed model and GARCH model

Proposed GARCH
s 0.30786 0.39687
(0.06565) (0.06787)
o 0.01246 0.01220
o 0.39219 0.34786
‘ (0.15941) (0.10315)
_ 0.30828 -
=200
" @ (0.15010)
o 0.14316 -
’ (0.10046)
8 - 0.42506
' (0.11073)
4 0.36048 0.39819
(0.03961) (0.04129)
o 0.01144 0.01695
o 0.41834 0.40938
' (0.09684) (0.06717)
1 = 500 o 0.33589 -
: (0.08893)
o 0.14313 -
’ (0.05887)
B - 0.29045
! (0.06177)

The proposed and GARCH models are built up and listed at the top of Table
9. The length of the data set, n, is 200 and 500. For each time series, 500
replications are generated. In order to evaluate the performance of forecasting the
volatility among different models, the average AIC and SIC described in section
3.3.2 and 3.3.3 are calculated. Besides these criteria, the relative squared error loss
function is also cdnsidered, namely heteroscedasticity-adjusted MSE (HMSE,

Bollerslev and Ghysels (1996)),
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Mz

HMSE=L
N

3

~2

at 2
L 1.
(hl )

We use the models listed in Table 9 to do the out-of-sample forecasting. For

each time series, 1000 replications are forecasted and we calculated the average of

their errors, i.e. the differences between their corresponding a} estimated from the

Observation Equation, and the conditional variance, h,. In Table 10, we compare the
forecast errors of the proposed model with those of the GARCH(1,1) and find that
the proposed model prevailed the GARCH (1 ,1). The GARCH(1,1) model is weaker
in modeling the time series as it does not take care of the seasonal conditional

heteroscedastic variance.

Table 10. The out-of-sample forecast comparisons

Proposed GARCH(1,1)

AlIC, -4582.19237 .-299.77252

SICa -435.70078 -286.57925
n =200 AlCy -4.03586 -3.05629
SICs -3.95340 -2.99032
HMSE 2.66182 25.24020

AlC, -1099.20655 -667.93969

SIC, -1678.13351 -651.08126
n=500 AlCy 312117 -2.11810
SICy -3.07903 -2.08438
HMSE 2.80671 71.98713

4.4 SEASONAL GARCH MODEL

The next natural step is to compare our model with some seasonal
heteroscedasticity models. It is worthwhile to look into the seasonal GARCH

models.
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The seasonal GARCH model is given by
a, |y, ~N(h), (4.6)

S(B)A(BY; =atg + [0 B)UBY-1]a, (4.7)

s+5d 5 r+Rd
= h =o,+ X aa_+ 2Bh
i=! i=l

where s>0,r>0,
S>0,R=0,
op>0,a;20,1=1, ...,s+8d,

and B;20,i=1,...,r+Rd.

Here a, are the residuals obtained from the multiplicative seasonal ARMA
model and d is the seasonal period, &(B), A;(Bd), o{(B), and Ql(Bd) are defined the
same as in (2.3). The model reduces to a seasonal ARCH model if r and R =0 and is
also a special case of seasonal CHARMA (5,0)x(S,0)q.

Rewrite (4.7) as

s+58d r+Rd

2 5 r+Rd 2
a, =, + Z; oa + ZI Bjat_j - Zlﬁjv"j +v,
I= F =

=y + 30 +Bak, — X Bv., +V, (4.8)

i.i.d.

where v, = af ~h, = (T]f’ —Dh, withn, ~ N(0,1},

and k=max(r+Rd, s+ Sd).

Here v, is serially uncorrelated with mean zero, (4.8) can be interpreted as an
ARMA(k,r+Rd) in a}. Ifr,R>s, S, 0rs, S 21, R, (4.8) can also be regarded as

ARMA(m,r)x(M,R),, where m = max(r, s) and M = max(R, S).
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Multiplying a’ _on both sides of (4.8) and let the covariance function for a’

be denoted as

y, =y, =cov(al,a; ).

Then it follows that
k
¥, =2 +B; )y, n=r+Rd,
i=l
and we get the Yule-Walker equations

k
p, =2(a; +P)p,;-n2r+Rd
i1

4.5 EMPIRICAL EXAMPLE
4.5.1 GARCH(1,1)
We model the exchange rates by the GARCH model, since it is found to be
successful in many applications. The estimates are obtained as follows:
Y, =a,
h, =a, +aa’, +B,h,,
where op = 0.0454,
oy = 0.0998 (0.0154),

and B, =0.8115 (0.0258).

o and B, are both highly significant at the 5% level. To check for the model

adequacy, we employ the acf of the squared standardized residuals up to order 10

and the results are given in Table 11. Although all the acf are within the error bound
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(=+0.04109), the acf at lag 5 is large as compared with the other lags and the acf of

the proposed model.

Table 11. The autocorrelation coefficients of squared standardized residuals up to order 10

lag 1 2 3 4 5 6 7 8 9 10
acf | 0.0096 |-0.0284( 0.0072 1-0.0139] 0.0187 | 0.0091 |-0.0362|-0.0059-0.0015{-0.0133
4.5.2 Seasonal GARCH

We use the critenia described in section 3.3.2 and 3.3.3 to select the order of

seasonal GARCH. Recall the general form for the model can be written as.

Yl=at

— 2 2 2
hl - ao + 0(lat—l + azax—s + Cx:ial—ﬁ + B]hl—l + Bzh:-s

We estimate three GARCH models and the results are shown in Table 12.

Table 12. Order selection of seasonal GARCH

seasonal GARCH 1| seasonal GARCH 2 | seasonal GARCH 3
Oy 0.06866 0.18898 0.12860
o 0.09884 -- 0.11211
o 0.04031 0.10296 0.07535
B, 0.72524 -- -
B3, -- 0.51074 0.53642
Log-Likelihood -259.35744 -306.72872 -274.84731
AIC, 526.71488 619.45743 557.69462
SIC, 549.79577 636.76810 580.77551
MSE 1.25625 1.26884 1.25560
AlCy 0.23151 0.240635 0.23099
SICy 0.24125 0.247942 0.24074

On comparing the forecasting criteria listed in Table 12, we find that both

AIC4 and SIC4 favor model 1, whereas AICy and SICp favor model 3. And the

autocorrelation coefficients of squared standardized residuals are reported in Table

68



13. By looking at the magnitude of the differences in the criterion functions, we

conclude that model 1 is more successful in capturing the seasonal

heteroscedasticity.

Table 13. The autocorrelation coefficients of squared standardized residuals up to order 10
lag 1 2 3 4 5 6 7 8 9 10

acf 1| 0.0071 [-0.0251] 0.0147 |-0.0071 | 0.0040 | 0.0023 |-0.0397 |-0.0084 |-0.0028 | -0.0100
acf3(-0.0015] 0.0164 | 0.0566 | 0.0280 [-0.0212| 0.0002 |-0.0181| 0.0339 | 0.0147 [-0.0173

4.5.3 Comparison

Table 14. The in-sample forecast comparisons of various models for USDIJPY

Proposed GARCH Seasonal GARCH | | Seasonal GARCH 3

Log-Likelihood | -255.71637 -261.00391 -259.35744 -274.84731

AlIC, 523.43274 528.00782 526.71488 557.69462

SIC, 558.05408 545.31849 549.79577 580.77551
MSE 1.25382 1.25834 1.25625 1.25560
AlCg 0.23126 0.23233 0.23151 0.23099
SiCg 0.24587 0.23963 0.24125 0.24074
HMSE 4.54536 4.78313 4,73824 4.64742

In Table 14, we report the evaluated criteria for forecasting volatility of the
proposed, GARCH, and seasonal GARCH models. The proposed model produces
the largest log-likelihood and the smallest MSE, and HMSE. From log-likelihood
and MSE, we can see that GARCH does not do well. However, both SIC, and SICy
favor the GARCH model probably because of its parsimony. On the average, the
proposed model does quite well but the trade-off is that it has more parameters. We
believe seasonal_heteroscedasticity exists and cannot be ignored in the modeling of

the conditional variance of daily exchange rate for Japanese Yen.
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CHAPTER 5 CASE STUDY

5.1 INTRODUCTION

Our case study concerns the money supply M1 of the United States. Money
is the medium of exchange because the use of money is more convenient than the
system of barter. In addition, money is a store of value —a good maintains some or
all of its value over time and a unit of account — the standard unit for quoting prices
and measuring value.

There are three monetary aggregates give the definition of money: M1, M2,
and M3. M1 can be spent immediately and without restrictions. It is composed of
currency (coins and notes in circulation), traveler's checks, demand deposits, and
other checkable deposits (i.e., negotiable order of withdrawal [NOW] accounts, and
automatic transfer service [ATS] accounts, and credit union share drafts.). M2 is the
combination of M1 with short term investment accounts: small time deposits,
savings deposits, money market mutual funds, overnight repurchase agreement, and
overnight Eurodollars. M3 is combination of M2 with long term investment
accounts: large denomination time deposits, money market mutual fund shares

(institutional), term repurchase agreements, and term Eurodollars.

Money supply is complicatedly linked with the other important economic
indicators, such as interest rates, and these connections will influence the economy.
In the short run, if the money supply increases, then the interest rate will decrease
and leads to an increase in the business investment spending. An increase in
production will lower the unemployment rate. However, inflation occurs when a

nation's central bank attempts to supply a greater quantity of money than the public
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desires to hold. It is because rising prices help balance the amount of money
demanded and supplied. Therefore, in the long run, higher and higher inflation wil
result in production decreasing and unemployment will be higher again.

We can see that the money supply is an important figure in the economy.
Since the United States is the largest economy in the world, it has significant
economic and financial effects on other countries. We will use one of its money

aggregates, M1, as a case study in this chapter.

5.2 INITIAL EXAMINATION
We consider the money supply (M1) of United States, covering the period
Jan 1959 to Dec 1994, collected from Datastream. There are 432 monthly

observations in total. The time series plot (in billions) is shown in Figure 7.

Figure 7. The time series plot of the money supply (M1) of United States

1200 7]

1000
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Index - 100 200 300 400
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To make the series stationary, we take natural logarithm of the data, and then
perform nonseasonal and seasonal differencing. By the usual Box-Jenkins analysis

(Figures 8 and 9), the suggested model 1s MA(1)-SMA(1),

Y, =(1+0.3139B)(1 - 0.6432B")a,
(0.0463)  (0.0392)

where X, is the logged data of M1,
and Y,=100xV'V'ZX,.

The values inside the brackets are the standard errors.

However, the residual autocorrelations at lags 3, 6 and 9 are significantly
different from zero (Figure 10). Hence, the tentative model is changed to

Y, =(1+0.3025B +0.1529B° + 0.1556B° + 0.1681B%)(1 - 0.6409B')a,
(0.04540) (0.04671) (0.04658) (0.04673)  (0.04026)

Figure 8. The plor of acf for the money supply (M1} of United States

Autocorrelations: M1DATA

Auto- Stand.

Lag Corr. Brr. -1 -.75 -.5 -.25 0 .25 .5 .75 1 Box-Ljung Prob.
1 .321 .049 LR _wERn 43.530 .0go0
2 .072 . 049 . 45.703 .000
k] .099 .049 R 49.868 .000
4 -.040 .049 LA 50.551 .000
5 .076 .048 . 53.042 L0040
6 .064 .048 AR 54.802 .000
7 -.048 .048 L'y 55.808 .000
8 .138 .048 , e 64.013 .000
9 .133 . 048 L e 71.670 .000
10 -.046 .048 e 72.563 .000
11 -.122 . 048 w3 75.008 .000
12 -.401 .048 ddkdkkd Wl 148.635 .000
13 -.147 . 048 * w3 158.0859 .000
14 L0786 .048 L, 160.604 .000
15 .014 .048 .o 160.690 .000
16 .032 .048 RN 161.127 .000
Plot Symbols: Autocorrelations Two Standard Error Limits .
Total cases: 419 Computable firat lagsa: 418
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Figure 9. The plot of pacf for the money supply
Partial Autccorrelations: M1DATA

Pr-Aut- Stand.
Lag Corr. Brr. -1 -.75 -.5 -.25 0 .25 .5 .75 1

1 .321 .049 LA kkRe
2 -.035 .049 w
k} .087 .049 L Ve
4 =-.112 .049 *rd
5 .142 .049 LA
& ~-.0l1a3 .049 .o
7 =-.08S .049 W3
8 173 .049 P
9 . 043 .049 P
10 -.11% .049 *xd
11 -.140 .049 * w3
12 -.365 .049 bk a3
13 .142 .049 A
14 .0B6 .049 L Bhw
15 .074 .049 . Y
16 -.025 049 w2
Plot Symbols: Autocorrelations * Two Standard Error Limits
Total caaea: 419 Computable first lags: 418

Figure 10. The plot of acf for residuals of the model
Autocorrelationsa: BRR_1 Error for MIDATA from ARIMA, MOD_2 NOCCN

Auto- Stand.
Lag Corr. Erxr. -1 -.75 -.5 -.25 0 .25 .5 .75 1 Box-Ljung Prob.

1 -.017 .049 . .123 726
2 .026 .049 L., .408 .817
3 .224 .049 L aw 21.690 .000
4 -.078 .049 wwdo, 24 .256 .000
5 .Q56 .048 AL 25.616 .000
6 .185 .048 L 1w _ww 40.291 .000
7 -.104 .D48 ww) 44 .B98 000
8 .079 .048 L e 47.550 .000
9 .131 .048 L Iw _ww 63.228 .000
10 -.124 .048 L3 LI 69.857 .000
11 .007 .048 .. 69.877 .000
12 . 047 .048 AR 70.833 .000
13 -.127 .0438 * wd 77.831 .000
14 L1089 .048 . Paw 82.978 .000
15 . 044 .048 A 83.815 .000
16 -.045 .048 L, 84.713 .000
Plot Symbola: Autocorrelations * Two Standard Error Limits
Total cages: 419 Computable £irst lags: 418

5.3 TEST FOR VARYING CONDITIONAL VARIANCE
Inspection of the autocorrelation coefficients (Figure 11) for the residuals do

not reveal any mis-specification. However, by examining the plot of the squared

residuals (Figure 12), there is a spike (exceeding 2/ Jn ) at lag 1 and lag 12 which
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means that there may be a nonseasonal and a seasonal ARCH pattern. To confirm
this, we carry out the McLeod and Li test described in section 3.2, Qg,(12) = 51.265
is highly significant at the 5% level so the null hypothesis of no ARCH effect can be

rejected.

Figure 11. The plot of acf for the residuals for model 2

Autocorrelations: ERR 2 Error for MIDATA from ARIMA, MOD_4 NCCON

Auto- Stand,

Lag Corr. Brr. -1 -.75 -.5 -.25 0 .25 .5 .75 1 Box-Ljung Prob.
1 .010 049 .o* .042 .838
2 .040 .049 . A, L7158 699
3 .020 . 049 .o .883 .827
4 . 005 . 049 . % .904 .924
5 .033 .048 AR 1.380 .926
6 .002 048 .* 1.383 .967
7 -.030 .048 Jw 1.767 .972
8 .052 .048 RS 2.941 .938
9 .01% .048 R 3.091 .961
10 -.052 .048 w3 4.27% .934
11 -.038 .048 L*3 4,911 .935
12 .034 .048 LA, 5.421 .942
13 ~-.102 .048 wwd 9.5354 .698
14 .105 .048 R 14_786 .383
1S .032 .048 ., A, 15.231 . 435
16 .017 .048 . v 15.365 .498
Plot Symbols: Autocorrelations * Two Standard Error Limits .
Total cases: 41% Computable first lage: 418

Figure 12. The plot of acf for the squared residuals
Autocorrelations: sQ

Auteo- Stand.

Lag Corr. Brr. -1 -.75 =-.5 -.25 0 .25 .§ .75 1 Box-Ljung Prob.
1 .141 .045 Lk 8.332 .Q04
2 .019 .049 . * 8.489 .014
3 .04a7 .049 A 9.417 024
4 .10% .049 ., dhw 14.118 007
s .052 .048 AT 15,282 .009
6 .0%90 .048 . ww 18.734 . 005
7 044 .048 EAE 15.578 .007
8 2112 .048 L e 24.370 .002
9 .050 .48 EAE 26.032 .002
10 .023 . 048 R . 26.256 .003
11 .157 .048 L, AW > 36.909 .000
12 .182 .048 LA ok 51.267 .0c0
13 073 .048 AR 53.564 .000
14 .008 .048 . ', 53.599 .000
15 Q70 .048 L AW . 55.745 .Qo0
16 .03  .048 ) AL 56.305  .0600

Plot Symbols: Autocorrelations * Two Standard Error Limits

Total cases: 419 Computable firat lags: 418
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Other than the autocorrelation function, we can also investigate the periodic
behavior of time series by spectral analysis. In spectral analysis, we decompose a
time series into a function of sines and cosines by Fourier decomposition and

calculate the power spectrum. The power spectrum p(f) is defined by
p(f)=2[y, + 25y, cos(2nfk)], 0sf<i,
k=1

where v is the lag k autocovariance.

At the seasonal frequencies, there are peaks in the power spectrum of the
seasonal time series. If the length of the seasonal period is denoted as T, then the
seasonal frequency f in cycles per unit time is the reciprocal of the period £ = 1/T. So

if we find out the seasonal frequency by plotting the spectrum, we can calculate back

the seasonal period.

Figure 13. The spectral density for the squared residuals of M1

Spectral Density of M1SQ

.0000006 4
.0000004

.0000002 4

.0000001 + A
.00000008 - 2

.00000006 - \

00000004 - ‘/\{J /L\ﬁ/ \/P U! \,L{\ \ \Ju

.00000002 -

.00000001 +
0.0 A 2 3 4 5

Density

Frequency

Window: Tukey-Hamming (8)

73



We calculate the spectral density function of the squared residuals to support
the finding of the seasonality in the conditional variance. In Figure 13, we can see
that the frequency of the first major peak is around 0.08. T = 1/f =~ 12. This supports

that there is a seasonal period of 12 in the conditional variance.

5.4 ESTIMATION AND DIAGNOSTIC CHECKING
5.4.1 The proposed model

Since we detect non-constant conditional variance of the money supply, we
build up the innovation equation. Firstly, the orders of equation needed to be
determined as described in section 3.3. We detect spikes at lag 1 and lag 12 of the
autocorrelation coefficients in the squared residuals, using the same technique as
identifying Box-Jenkins model, we guess the innovation equation is multiplicative

seasonal model with seasonal period 12. Putting all possible models of order 1 Into

the general form, we can write E(a; [y,_) as

-

E(af | ‘Ul‘!) - hl = G: + Bla‘lz—l + Bza:-l‘_’ + Bialz-lj + B-lyf—l + BSyI:-IZ + styl—ll

At the top part of Table 15 we report the maximum likelihood estimates with
asymptotic standard error in the parentheses of the innovation equation for different
order and at the bottom part of the Table we provide the criteria as described in
section 3.3.2 and 3.3.3 for model selection.

From the viewpoint of mean square error, both AIC and SIC suggest the
order of innovation equation is (0,1)x(1,0h2. However, using log-likelihood as a
loss function, AIC favors the order (1,0) x(1,0))2 and SIC favors (0,1)x(1,0)»

because of less parameters. Recall the simulation in section 3.3.4. we found that the
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criteria based on the log-likeiihood favors the right order rather than the mean square
error does. And AIC is better than SIC when the “real” model has more parameters.
We thus build up both models to see the differences of forecasting performance in

the latter section.

Table 15. The AIC and SIC of the specified order for the innovation equation

(r;5) x(R,S) (0,0) x(1,0),2 (0,0) x(0,1)y; (0,1} x(1,0)2 (1,0) x(1,0)s2
o 0.24182 0.28222 0.21289 0.19588
B _ — — 0.13815

! (0.06659)
B 0.14823 — 0.15382 0.15134
: (0.06651) (0.06775) (0.06841)
B — —_— — 0.02696
3 (0.05256)
B — — 0.05950 —
! (0.03632)
B — 0.00432 - —
’ (0.02214)
AIC, -114.4522 -104.2303 -119.2465 -119.2940
SIC. -106.3764 -96.1545 -107.1329 -103.1425
AlCg -1.6293 -1.3950 -1.6437 -1.6346
SICg -1.6101 -1.5758 -1.6148 -1.5960

Maximum likelihood estimates with standard error reported in parentheses

for the joint observation and innovation equations are as follows:
Proposed model A (0,1)x(1,0)2

Y, = (1 +0.2836B+0.1657B° + 0.1572B% + 0.1711B%)(1-0.6264B'%)a,
(0.0413)  (0.0416) (0.0445)  (0.0455) (0.0371)

(1-AB%a =0, Yo + e
= h,=c, +B,y., +B.a,,
where ol =0.2145.

B, =0.0587 (0.0360),

and B, =0.1563 (0.0649).
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All the t-ratios are significant at the 10% level. Note that the t-ratios of B is

2.41, which is significant at the 5% level. This indicates that the money supply does

have annual conditional heteroscedasticity.

Proposed model B (1,0)x(1,0)2

Y, = (1 +0.3037B + 0.1666B° + 0.1521B® + 0.1692B%)(1-0.6234B'?)a,
(0.0379)

(0.0477)

(0.0408)

(1-8,BY(1 - A B'Ha = ¢

(0.0446)

= hl = Gj +Bla,3_. + Bzaf-lz +B3a.2-|3

where o =0.1996,

B, = 0.1382 (0.0749),

B, = 0.1490 (0.0686),

B, = 0.0210 (0.0586).

(0.0440)

Again, the coefficient for a’ , is significantly different from zero at the 3%

level, it supports that the money supply has conditional heteroscedasticity as found

in model A.

Employing squared standardized residual autocorrelations described in

section 3.5, the squared standardized residuals up to order 13 are provided in Table

16. The only large autocorrelations of the squared standardized residuals for model

A at lag 11

GARCH models. For comparison purpose, we do not pursue this issue further.

[t was also found the same phenomenon appeared in all seasonal

Table 16. The awtocorrelation coefficients of squared standardized residuals up to order 13

lag ] 2 3 4 5 6 7 3 9 10 I 12 ]
acf A |0.047(-0.021]0.075}0.072(0.021|0.0520.023{0.098 | 0.001 |0.017(0.149|-0.009|-0.024
act B J-0.154(-0.012|0.082(0.056 [ 0.0230.043 (0.0290.105 | 0.009 [0.002{0.128|-0.007 (-0.017
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From Table 17, we can see that the squared residual autocorrelations have

been much improved for lag 1 and lag 12, they are within the standard error bounds

(~+2/ Jn = +0.098) now. Both models remove the annual heteroscedasticity.

Table 17. The acf of squared residual before and after the innovation equations fitted

lag 1 lag 12
before adding the innovation equation 0.141 0.182
after adding the innovation equation (Proposed,) 0.0470 -0.0092
afier adding the innovation equation (Proposedg) -0.0154 -0.0068

We then consider other models.

5.4.2 MA-GARCH model
Using the maximum likelihood method described in section 4.4.1 to model

the money supply. The result is:

Y= (1 +0.2961B + 0.1617B + 0.1496B + 0.1724B%)(1 - 0.5681B'*)a,
(0.04511) (0.04779) (0.04889) (0.04820)  (0.03502)

h, = 0.02876 + 0.09154a; +0.81178h,,
(0.03906)  (0.05281)

All the coefficients are significantly different from zero at the 3% level.
Diagnostic checking results for the whole model is in Figure 14. The autocorrelation
coefficients for the squared standardized residuals at lag 11 and 12 are clearly longer

than the others. The GARCH(1,!) cannot capture the seasonal ARCH effect.
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Figure [4. The acf of the standardized residuals for GARCH model
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5.4.3 MA-Seasonal GARCH model
We firsdy select the order of seasonal GARCH for the money supply, the

general form of seasonal GARCH of order 1 is

2 2 2
h, =o, +oya, +o,a., +aa,_;+Bh_ + Bohe iy +Bsh 5.

and h,,; are

1
2

In fitting the full model, we find that the coefficients of a’,

negative. So we delete the two coefficients in subsequent work. [n the top part of
Table 18 reports the maximum likelihood estimates of various models with standard

errors in parentheses.
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Table 18. Order selection of seasonal GARCH

seasonal GARCH 1 seasonal GARCH 2 | seasonal GARCH 3

o 0.04222 0.03967 0.12860

o, 0.07199 -- 0.11211

Q; 0.10489 0.06956 0.07535

B, 0.68127 --

B2 -- 0.82094 0.55642

Log-Likelihood 65.43837 65.44123 68.47438

AlIC, -122.97675 -124.88247 -128.94876
SIC4 ' -106.82526 -112.76886 -112.79727
MSE 0.19189 0.18908 0.18818
AlCg -1.63172 -1.65124 -1.65128
SICs -1.59317 -1.62233 -1.61274

From the bottom of Table 18, most of the criteria favor model 3 except SICg
because GARCH model uses fewer parameters than the others. In view of this
result, we decided to choose model 3 for building seasonal GARCH for the money
supply.

Y, = (1 +0.3141B + 0.1478B> + 0.1502B° + 0.1649B°)(1 - 0.6093B'})a,
(0.04574) (0.04253) (0.04385) (0.04491)  (0.03855)

h, = 0.06890 + 0.05239a% + 0.10329a’ _ + 0.62655h,.12
(0.05074)  (0.04099)  (0.09775)

However, the coefficient of af_E is insignificant. So, we drop the parameter

and re-estimate the model, i.e. using model 2.

Y = (1 +0.3090B + 0.1545B> + 0.1545B% + 0.1631B%)(1 - 0.6065B'%)a,
(0.04184) (0.04251) (0.04271) (0.04594)  (0.03845)

hy = 0.06533 + 0.10463 a’

-12 + 06945 7h(_12
(0.04639)

(0.06279)
Both the coefficients at lag 12 are significant at the 5% level, it again

supports there is seasonal heteroscedasticity in the variance of a, for the money

supply.
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5.5 COMPARISON
In order to assess the accuracy of these estimated models, we calculate their
in-sample and out-of-sample forecasts errors and also make a comparison among

them. The in-sample results are given in Table 19.

Table 19. The in-sample forecast comparisons of various model for money supply

Proposed, Proposeds GARCH Seasonal GARCH
Log-Likelihood 60.94432 61.74985 6121831 64.98187
AIC, -105.88865 -105.49970 -106.43662 -113.96373
SICa -73.58568 -69.15886 -74.13366 -81.66076
MSE 0.19349 ©0.19355 0.20364 0.1937!
AICy -1.60433 -1.59926 -1.55319 -1.60322
SICg -1.52723 -1.51253 -1.47610 -1.52612
HMSE 2.29254 2.24278 2.26215 2.15042

According to Table 19, the criteria of the log-likelihood suggest seasonal
GARCH model but the proposed model A is slightly better under the criteria based
on the mean square error. And seasonal GARCH model gets the smallest HMSE. It
is interesting to note that the overall performance of all seasonal models is better
than GARCH model. Hence, it is worthwhile to take account of the seasonal pattern

in the conditional varance.

That the fitted mode! fits the historical data well does not imply that it is also
good for the future. Therefore, we want to analyze the out-of-sample forecasts. To
evaluate the out-of-sample forecasting performance, we forecast the money supply
from Jan 1995 to Aug 1998 and calculate their forecasting errors. Table 20 reports
the results of one-step-ahead fixed parameter model forecasts. In other words, we

use all the models in the previous sections to model the money supply, and update
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the data set for every forecast but do not change the parameter estimates, i.e., we use

the information only up to time t for model building. Let the one-step-ahead forecast

be h,,, then h,, =E(Y,, [v,).

Table 20. The out-of-sample one-step-ahead fixed parameter model forecast comparisons for the
money supply

Proposed, Proposedy GARCH Seasonal GARCH

Log-Likelihood 10.23510 9.83791 8.96307 8.67448
AlIC, -4.47020 -1.67582 -1.92615 0.65105
SICA 9.80332 14.38189 12.34737 16.70875
MSE 0.06897 0.07369 0.07482 0.08094
AlCy -2.31050 -2.19885 -2.22901 -2.10500
SICy -1.98610 -1.83390 -1.90461 -1.74005
HMSE 0.76979 0.828407 1.05624 0.33806

As we can observe from Table 20, all the criteria agree that the proposed
model A gives the best volatility forecasts. It is slightly different from the result in
in-sample forecasts. In Table 21, -we report the criteria for the one-step-ahead
updating model forecast errors. We continue to carry out the procedure of updating
the time series and re-estimating the parameters of all models. To keep the number
of observations constant, we will drop the oldest one when we add the latest one into
the series. Then, we use the new model to produce the next volatility forecasts. The
forecast result of the fixed model is similar to the updating model. We cannot obtain
result of the GARCH model because the coefficients of the model do not converge in
some cases. It further suggests that the GARCH model is not suitable for forecasting
the money supply.

From the in-sample and out-of-sample forecasts, it can also be seen that the

seasonal CHARMA is more successful in capturing the volatility of the money
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supply than the GARCH, seasonal ARCH (proposed B model), and seasonal

GARCH.

Table 21. The out-of-sample one-step-ahead updating parameter model forecast comparisons for the
money supply

Proposed, Proposedg GARCH Seasonal GARCH

Log-Likelihood 10.31538 9.89619 -- 8.75163
AlC, -4.63076 -1.79238 - -1.46326
SICa 9.64276 14.26532 -- 12.81026
MSE .06794 0.07363 - 0.08263
AlCy -2.32555 -2.19964 - -2.12982
SICs -2.00116 -1.83469 - -1.80543
HMSE 0.75778 0.82394 -- 0.76609
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CHAPTER 6 CONCLUSION AND FURTHER WORK

Undoubtedly, the GARCH model is very popular and successful in modeling
economic and financial data, since it allows the conditional variance to vary, which
is more realistic for the economic world. However, there is another important
characteristic in the economic world, that is seasonality, especially for the high
frequency data such as daily and intraday series. It can be seen from the real data of
the exchange rate USD/JPY, and money supply that there are clear seasonal
conditional heteroscedasticity. In a certain sense, the exchange rate is more striking
to the statisticians. This is because its linear model is just the white noise, but then it
is found that its variance possesses both non-seasonal and seasonal structures.

The GARCH model does not quite capture this phenomenon. Therefore,
Bollerslev and Ghysels (1996) proposed the P-GARCH model that can compensate
for the weakness of the GARCH and characterize the periodic conditional
heteroscedasticity. The advantage of the P-GARCH is that it is flexible to capture
the pattern for the seasonality. For instance, the periodic cycles need not be purely
repetitive. The model is good for the data that has strong seasonal conditional
heteroscedasticity. Nevertheless, the length of the period, d, can bring along a rather
serious problem. From (4.5), when the period increases, the number of parameters
~can also increase dramatically. From the exchange rate and money supply, we show
that the seasonal CHARMA is able to fully capture the seasonal conditional

heteroscedasticity with parsimonious parameters.
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For GARCH (or seasonal GARCH) model, there is a restriction that the
conditional variance must use the information of both past squared residuals and
lagged conditional variances. Or it can be reduced to ARCH (or seasonal ARCH)
model including only past squared residuals but it cannot be reduced to only lagged
conditional variance terms. However, the seasonal CHARMA model can use both
the past squared residuals and past squared observations, or either one. It is more
flexible than the GARCH (or seasonal GARCH) model.

The results in the volatility forecasts of the exchange rate are probably not
strong enough to distinguish the proposed model from the others. It does, however,
indicates empirically that seasonal conditional heteroscedasticity is an eminent
feature in financial time series. In the money supply, both the seasonal CHARMA
model and the seasonal GARCH model are much more successful in modeling the
data than the GARCH. For the out-of-sample forecasts, the seasonal CHARMA is
slightly better than the seasonal GARCH.

In some cases, seasonal ARCH model is enough to capture seasonal
conditional heteroscedasticity, such as the exchange rate of USD/JPY. In other
cases, both the data and the residuals are used to model the variance. Sometimes, the
time series may prefer a model that makes more use of the data, such as the money
supply. The interpretation is also natural, as that means the volatility is highly
dependent on the level of the data. In this example, the seasonal CHARMA model
provides the forecasts that are more suitable than the seasonal GARCH. Hence, the
proposed model is valuable in modeling economic or financial data and deserves

further investigation.
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It is worthwhile to analyze the differences of the properties among the
proposed model, the P-GARCH, and the seasonal GARCH with respect to standard
tools, such as the pattern of the autocorrelation function. This will help us in .the
choice of models.

During this research, we have also briefly studied the GDP of Hong Kong, a
set of 91 quarterly data. Seasonality was found but the effect is not strong. Thus it
was not further pursued. It is well known that the study of ARCH usually needs
large data sets. The natural problem is then the study of seasonal conditional
heteroscedasticity with short data sets. A possible direction is the Baysian analysis
of the seasonal CHARMA model using modern techniques such as the Gibbs
sampler.

The availability of high frequency data such as minute-minute, and tick-tick
data and the help of high speed computer account for an increase in popularity for
modeling intraday series. Many papers have shown that the intraday series have
strong seasonality pattern in the conditional variances, such as Andersen and
Bollerslev (1997), Miiller et al. (1990). So, it is interesting to test how well the
proposed model can model such series.

In addition, we have only investigated the weekend effect for the daily
exchange rate using the seasonal CHARMA model. It will be worthwhile if we can
build up the periodic CHARMA model and make a comparison between the periodic
and seasonal CHARMA model.

Finally, many economic and financial series do not only depend on its own
history but are also influenced by the other vanables. Wong and Li (1997)
established the multiplicative conditional heteroscedastic model and study the

Standard & Poor's 500 (SP500) index and the Sydney All Ordinaries (SAQ) index as
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an example. In this research, the seasonal CHARMA model is only discussed in a
univariate case. Therefore, it 1s worthwhile to extend the model to the multivariate

case.
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