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Abstract
The validity of the recently proposed time-domain impedance boundary condition is
explored. The one-dimensional piston in an impedance tube problem 1s formulated and
attempted using the classical Laplace transform to compare with a recently developed
time-domain method. It will be shown that the classical frequency-domain method does
not lead to uniformly convergent analytic solutions in one-dimension, but to finite series
approximations, which resemble the long time stable and accurate numerical solutions.
The time-domain solution with time-domain impedance boundary condition is then
compared with the frequency-domain solution of harmonic point sources near an
impedance plane in two dimensions, which establishes the agreement between time-
domain and frequency-domain approaches at discrete frequencies. Solutions for noise
abatement with mixed impedance grounds using different mixed impedance models and
Boundary Element Method (BEM) numerical scheme are compared with those using the
time-domain approach. Applications and further extensions of the time-domain approach

to problems in acoustics will be addressed.
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NOMENCLATURE

acoustic admittance (= 1/2).

sound speed in air (= 340m/s).

complementary error function with complex argument.
boundary loss factor with p. dependence.

receiver height.

source height.

wave number of a wave (= w/c).

Courant-Federick-Lewis (CFL) condition.

circular frequencies of an-acoustic wave.

single frequency component of a wave,

total (direct + reflected) acoustic wave sound pressure level.
Fourier component of sound pressure level p.

direct wave sound pressure level.

total (direct + reflected) acoustic wave sound pressure level.
numerical distance.

acoustic potential.

Fourier component of the acoustic potential ¢.
spherical wave reflection coefficient.

horizontal seﬁaration distance.

resistance of an impedance Z(w) with & dependence.
plane wave reflection coefficient with E'dependence.

direct wave path from the source to the receiver.
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R,

w(t)
()
Ao(@)

Z(w)

reflected wave path from the image source to the receiver.
angle of incidence measured from the incident wave to the normal of the surface.
perturbed acoustic velocity in the x-direction.

=utp.

Fourier component of 2"

perturbed acoustic velocity in the y-direction.

=v+p.

Fourier component of v'".

perturbed acoustic velocity in the z-direction.

=w+p.

Fourier component of w'.

time-domain reflection coefficient.

frequency-domain reflection coefficient.

reactance of an impedance Z(®) with @ dependence.

specific acoustic impedance (= Ry(w) + iXy(®)) with @ dependence.,
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Chapter 1 Introduction

1.1 Impedance Boundary Condition in Acoustics

The sound field of a sound source and its reflections from a soft boundary has been
viewed as the superposition of the direct waves from the source with the reflected
waves from the image source. The mathematical method for this solution is known as
the method of superposition or the method of images. Due to the complexity of the
reflecting surface, the amplitude and the phase angle of the reflected wave will be
changed relative to the incident wave. Such changes of amplitude and phase angle can
be mathematically related to a complex quantity. This complex quantity is frequency
and incident angle dependent, which represents the acoustical propertics of the
reflecting surface. In addition, the reflected sound field from a material surface
depends on the location of the source relative to the surface and the acoustical
properties of the reflecting surface‘. These acoustical properties can be characterized
by the acoustic impedance Z, which is defined as the ratio of the sound pressure level
to the normal fluid velocity at the material surface. In mechanics, the ratio of force
amplitude to velocity amplitude is referred as an impedance.'! The concept of
impedance, something impeding on motion, was first introduced to electric circuit
theory as the ratio of voltage amplitude to current amplitude by Heaviside in the late
nineteenth century.' Webster introduced impedance into acoustics in 1914 and
independently by Kennelly and Kurokawa in 1921." When the material has a high
refractive index, the speed of the wave traveling in the material is much less than the
speed of sound in air. In other words the refracted sound wave is strongly bent
towards the normal to the surface.” Hence the surface is considered to be locally

reacting. This means that Z depends only on the frequencies of the incident wave, or

Z = Z{w), where @ is the circular frequency of the wave. This happens when the



material has a high flow resistivity. For material with low flow resistivity, the acoustic
impedance becomes dependent on the angle of incidence &, which i1s measured from
the incident wave toward the normal of a surface. Therefore, Z = Z(w,8), in such a
circumstance, the surface is described as non-locally reacting, externally reacting,

extended reaction, or bulk reaction.?

1.2 QOther Boundary Conditions

Apart from surfaces with uniform impedance treatment, there are also many other
different boundary conditions. The wall of a building is an example of the rigid
boundary 1if it reflects sound waves totally. In some cases, the walls inside a room are
composed of different materials, such as glass windowpanes as vibrating panels on a
wall, soft foam ceilings for heat insulation, and decorative picture hung on the wall as
protrusion. This kind of wall is considered as a mixed impedance boundary. A train
running on a track, or an automobile cruising on a freeway, is an example of sound
reflection from a moving source over a stationary boundary. Practical acoustic
surfaces are not flat in shape. A column inside a room is a curved convex hard
boundary. Sound absorbing materials with corrugated surfaces could be lined inside
an auditorium, a lecture theater or a music room. With human beings, furniture and
pets inside a room, the prediction of sound reflection from the irregular boundaries

becomes much more complicated.

1.3 Experimental Literature Review
There are many experimental methods to determine the specific acoustic impedance.
Mellert et al. approximated impedance values from the measured spherical wave

reflection coefficient.’ Cramond and Don simplified the theory by ignoring the



surface wave term when computing the impedance.*” Acoustic sound pressure level

can be found if the admittance £ is known and vice versa. In fact, Cramond and Don*”

11,i2

used the Weyl Van der Pol formula' "™ to compute the acoustic impedance. The Wey!

Van der Pol formula has the following expression

_ exp(ikR,)  exp(ikR,)
¢= ank +0 R (1.1a)
O=R@O)+(1-R(ENF(p.), (1.1b)
_cos(8)-p
R(G _cos(g)ﬂﬁ’ (1.1c)
Flp,)=1+iN7 p, expl- p2 Jerfel-ip,), (1.1d)
P.= %fkﬂz[ﬂHOS(@)]- (1.1e)

Here ¢ is the acoustic pdtential, k = @lc is the wave number, @ is the circular
frequency, ¢ is the characteristic sound speed in air, R, is the path length between the
source and the receiver, R, 1s the path length betwgen the image source and the
receiver, () 1s the spherical wave reflection coefficient, R(6) is the plane wave
reflection coefficient, £1s the angle of incidence measured from the normal axis of thé

impedance surface, £ is the acoustic admittance, F(p.) is the boundary loss factor, p,
1s the numerical distance, and erfc(-ip.) is the complementary error function with
complex argument. Daigle and Stinson proposed the procedure of the phase difference
technique to acquire- the impedance,’ but the results showed a wide range of
uncertainties at frequencies below 200/z. Davies and Mulholland utilized the pulse
method to determine the normal impedance at oblique incidence.” Jones and Stiede

compared different methods of measuring the impedance inside an impedance tube ®



1.4 Theoretical Literature Review

Theoretical prediction of sound pressure level (SPL) reflected from a homogeneous
impedance ground is based on the Weyl Van der Pol formula. Nocke et al.’
numerically search the acoustic admittance £ from the Weyl Van der Pol formula. The

admittance f is the inverse of the acoustic impedance Z. An estimated value of 4 for

B 1s pre-selected to compute the spherical wave reflection coefficient Q(5) from Eq.
(1.1b) to Eq. (1.1e). The measured spherical wave reflection coefficient Qneasured 1S

deduced from the measured excess attenuation (£4) that has the following expression

P
EA =20log i—,
Pd

PP exp(ikR,) O exp(ikR,) ,
R R,
kR .

P, =P E%, Py is a constant.

I

Here P, is the direct wave sound pressure level, P, is the total wave sound pfessure
level. If O(F) is within certain accuracy when compared with Queasure, then the
search is terminated. Otherwise, a new search for f is generated by Nelder-Meade

method or Downhill Simplex method. The numerical searching process continues

until

O easured — Poncoreticat (ﬁ')l < tolerance, where tolerance 1s a small positive real

number, or the maximum number of iterations has been reached.
The derivation of the Weyl Van der Pol formula can be found from Brekhovskikh'®

"2 Upon the reflection from the impedance ground, a reliable

and Chien and Soroka.
impedance model is desired. There are many different formulations on acoustic

impedance models. Some impedance models are obtained by curve fitting the

experimental data. Others depend on material parameters such as porosity, flow



resistivity, turtuosity, ete.” By measuning the sound pressure level through

experimental procedures, excess attenuation (£4) can be computed with respect to the

measured data. Its definition is generally accepted to be EA4 =20log,,|-—~|, p, and

Pa
Py are the total and direct sound pressure field respectively. However, the excess

attenuation (£A4) at various frequencies depends on source height, receiver height,
honizontal separation distance, ground topology and meteorological effects.'® Once
the excess attenuation is known at certain receiver points, we can formulate the
acoustic impedance mode! of the reflecting surface. With a known impedance model,
we can then calculate the sound pressure level over the whole domain of interest
either numerically or theoretically. Prediction of sound pressure field by Weyl Van
der Pol formula and impedance model assumes a locally reacting surface.
Experimental comparisons on monopole and dipole making use of Weyl Van der Pol
formula and two-parameter impedance model can be found from Li et al.'® If the
acoustic surface is of extended reaction, the reflection coefficient becomes dependent
on the angle of incidence 8 Unfortunately, analyticﬁl method of solving acoustic
problem with extended reaction ground has not been known yet. Nonetheless, the

time-domain numerical approach could provide a mean of unraveling the mystery.

15 Numerical Literature Review

Time-domain construction of specific acoustic impedance has drawn much attention
recently. The validity of the time-domain impedance boundary condition can be
established from the comparison between numerical solutions and frequency-domain
solutions. Until recently, numencal implementation of the acoustic impedance in

time-domain has yet been performed. However, if the time-domain impedance



boundary condition is verified to be equivalent to the frequenéy-domain impedance
boundary condition, specific acoustic impedance can then be accessed numerically.

Fung and Tallapragada'® formulated the frequency-domain reflection coefficient

~

W(w) as a ratio of the reflected wave to the incident wave. The formulation is

u” = Pf/(a))ﬁ* at the impedance boundary, where 4" =4+ p and 4~ =4~ p, 4 and
p are the Fourier components of the acoustic normat velocity # and the acoustic

pressure p respectively. The frequency-domain reflection coefficient W (a)) 1s defined

as

_1-Z(w)
1+ Z(w)’

W(w) (1.2)

where Z(w) = Ro(w) + iXy(w) is the impedance of the reflecting surface and w is the

circular frequency of the incident wave, Ry(w) is the resistance of the impedance,

Xo(@) 1s the reactance of the impedance. The corresponding time-domain formulation

of W(w) for single frequency Q is

d . d
| — |=UQ)+V () —, 1.3
(;‘d:] Q) +¥( )de (1.3a)
l-R- X} |
U= —"5—", (1.3b)
(1+R, ) + X
X
o 2% (1.3c)

1+R, ) + X
The value of the impedance Z(w) is obtained experimentally. For the 6.7%-perforated
treatment panel,” its {{w) and V{w) representations in W (a)) = Uw) + 1¥{w) by least
square fitting may be expressed as

Ulw)=-1.1877 +0.8918w - 0.13490* +0.0059160° ,

Vio)=1.0740 +0.29210° — 0.015860° .



Tam and Auriault used the usual definition for impedance,I7 which 1s the ratio of the
acoustic pressure to the acoustic normal velocity. They proposed the time-domain

formulation of the surface impedance for acoustic wave with single frequency Q as

%:Ro%—xogu, X, <0, (1.42)
¥ :
p=R0u+E°%, X, 20, (1.4b)

where p ts the acoustic pressure and u is the acoustic velocity normal to the
impedance surface, Q is the frequency of the incidence wave. The separated
consideration of the negative and non-negative reactance X; is because of numerical
stability. The Fourier transform of Eq. (1.4) will give the frequency-domain
impedance boundary condition. The acoustic resistance R, and the acoustic reac.tance
X, are generally frequency dependent. They also vary with the intensity of the incident
sound wave and the adjacent mean flow velocity."”

Glandier et al.'® employed the BEM for the sound fields inside a rectangular cavity
with impedance treatment on one of its interior surfaces. Numerous high-order
accurate finite difference schemes representing the goveming equation in the domain
of interest, the initial conditions and the boundary conditions have been used to
attaining solutions for the wave problem. Sparrow used the Lattice gas method in the
aeroacoustics computation.'” Kim and Roe recommended the second and fourth-order
upwind leapfrog schemes to tackle the acoustic equations in polar coordingtes.m
Goodrich applied a new finite difference method to the linearized two-dimensional
Euler equation.”’ Tang and Baeder suggested the Cubic-Interpolated Psuedo-particle
(CTP) scheme for the linear convection equation.”? This method is a polynomial
interpolant representation of the grid cell. Tam and Webb constructed a dispersion

relation preserving (DPR) scheme.” The scheme is a finite difference scheme with



the same dispersion relation as the PDE that is being studied. Carpenter et al.
proposed a compact scheme that is both GKS and asymptotically stable.”* In addition,
simultaneous approximation term (SAT) was introduced to better treat the boundary
condition.” Fung et al. demonstrated the accuracy of the implicit high-order compact
scheme to the convection equation and the two-dimensional Euler equati011.2“
Boulanger et al. applied the BEM to acoustic problem with mixed impedance
ground.”” The BEM numerical results were compared with mixed impedance models
and experimental data. Botteldooren had treated the time-domain acoustic problem by
means of the finite volume method.”®?* But the numerical method was limited only to

the particular impedance boundary condition.

1.6 Areasof [ﬁvestigarion

In Chapter 2, acoustic wave equation in two dimensions with time-domain impedance
boundary condition will be formulated. Analytical methods of deriving the tinte-
domain impedance boundary condition from the frequency-domain impedance
boundary condition for the multi-dimensional problems will be covered. In Chapter 3,
the one-dimensional piston problem ~bounded at two ends is presented. One-
dimensional wave equation with impedance boundary condition is dealt with by both
frequency-domain and time-domain apprbaches. The time-domain impedance
boundary condition is coded into the Compact 3™ order Non-uniform grid® (C3N)
numerical scheme. Impedance values at different frequencies will be extracted from
the C3N numerical results and compared with the theoretical impedance values. In
Chapter 4, the reflection of harmonic sound sources from a uniform impedance
ground is discussed. The constructed two-dimensional Weyl Van der Pol formula will

be compared with the two-dimensional time-domain numerical solution computed



using the C3N finite difference scheme over a homogeneous impedance ground.
Comparisons of the time-domain numerical approach on a mixed impedance ground
with the existing mixed impedance models will also be shown. Finally, a discussion
on the applications and extensions of the time-domain approach to acoustic problems

will be given in Chapter 5.



Chapter 2 Time-Domain Formulation
2.1 Governing Equations, Directional Formulation and the C3N Scheme

The linearized isentropic 2-D Euler equations with source terms are written as

U ,oU  , aU _

—+ A, —+4,—=§, | (2.1)
o - T Ox ¥ By
where
u M. 0 1 M, 0 0 /s
U={v|s 4= 0 M, 0| 4=0 M 1| S=|1|
p 1 0 M, 0 1 M, /s

where p is the perturbed pressure from the ambient pressure p,, u and v are the perturbed
velocities from the ambient velocities I/ and ¥ in x and y directions respectively, M, =

Ulc and M), = V/c are Mach number components in the x and y directions respectively, ¢

is the sound speed of air. Sound sources involved are the oscillating forces f =(/.. D

and the 1njection or expansion of fluid force f, in the forms of dipoles and monopoles.
Density, length, velocity components, time and sound pressure level have been non-
dimensionalized by the ambient density g, the characteristic length £, the sound speed ¢,

the characteristic time £ /¢, and the dynamic pressurep,c’ respectively. Since no heat is
added or removed from the system, the flow 1s adiabatic. Further, with no viscous
dissipation, entropy change is non-existent. That means the flow system ts a reversible
process. An isentropic process is both adiabatic and reversible. Following Fung et al.,”®
Eq. (2.1} 1s split into two sets of equations

%+Ata_u"=£: —+ A4
ot R S

10



The source § assumes the average strength in each direction for algorithmic symmetry.
Each of the above equation sets can further be diagonalized and decoupled.

In the x-direction,

% M, 0 0 5 v f,
agu—.p + 0 M,-1 0 F™ U—=p =-;— fe=71 (2.2a)
¢

wtp] L0 0 M+ usp| “|f+f,

In the y-direction,

5 u M, 0 0 5 u | £
3 v-p|+| 0 M, -1 0 Ey— v—p =3 =1 (2.2b)
it

v+ p 0 0 M, +1 V4 p St/

Thus waves in 2-D are split into 6 simple waves (or 4 simple waves, M, =M, =f, =f, =
0), each of which has the form

—@+M@=s. (2.3)
ot Jo

Eq. (2.3) is discretized using the C3N scheme,?

|
4, @7 + @07 + 4,07 =507 +5,07, +b,0%  +A(a,s,? +as: Tta,s, ), (2.4)
where
vb _ vb,, N Vb,
a,=a+—, a,-—-am+7, a,=4a,+—,
vb vb, vb
b(}:a—'—"’ blzam—— 2 , bz_ap__zi’
a, = s a=1 a, = 1
S S ) ’ ety
. __2r2(r+2), b=2(r—1) 5 _2@2r+1)

11



At Ao,
U:MA— s r= A - 3 Acrjﬂ =O-f+l—o-,f'

The symbol © = u, u-p, u+p, v, v-p or v+p, with corresponding M = M,, M;-1, M,+1, M,,
M,-1, or My+1. The corresponding s = f/2, (,-fo)/2, ()2, /2, (,-f,)/2 ot (f /)2, o=
x when Eq. (2a) is used, o=y when Eq. (2b) is used. Though the current form pertains to
two-dimensional problems, the directional splitting of the three-dimensional problem is
straightforward and shown below.

The linearized isentropic 3-D Euler equations with source terms are written as

ﬂ+AIQ+A —a£+Az%=S,

ot ox 7 oy

where
u M, 0 0 1 M, 0 0 0
Ul I LU A |0 M 0
lw 10 0 M, 0 4= 0 o M, 0
p 1 0 0 M, 0 1 0 M,
M, 0 0 0 S
0O M 0 O
A__: * » S= fy .
0 0 M 1 /:
0 0 1 M £

The perturbed velocity vector @ = (u,v, w) and the perturbed sound pressure p have been
non-dimensionalized by the sound speed ¢ and the dynamic pressure p,c® respectively, g,

is the ambient density of air, M, = Ule, M, = V/c and M, = W/c are Mach number
components in the x, y and z directions respectively, U = (U,V,W) is the ambient mean

velocity vector. Sound sources involved are the oscillating forces J? =(f.,/,,f,) and

12



injection or expansion of fluid force f, in the forms of dipoles and monopoles. Following

Fung et al.,”® the 3-D Euler equation is split into three sets of equation
au g S U ot/ § v v §
— .r_—:—’ —-+A —_—— —+A‘—=—.
ar ax 3 a oy 3 ot oz 3

The source S assumes the average strength in each direction for algorithmic symmetry.
Each of the above equation sets can further be diagonalized and decoupled.

In the x direction,

v M, 0 O 0 v £,
al w 0 M, 0 0 |a| w 1 /i
—_ + _ —
otlu—p| |0 O M, -1 0 |ox|u-p| 3|/, -1,
u+p| [0 0 0 M, _+1 U+ p St s,
In the y direction,
W FMY 0 0 0 ] w fz
gl u +0 M, 0 0 16| u i
atlv-p| |0 0 M, ~1 0 |ayjv-p| 3|f,-Ff |
vipl [0 0 0 M, +1| [v+p 5+t
In the z direction,
u M, 0 O 0 u /.
al v 0 M_. 0 0O (3| v 1 £
m— -+ —_— = —
selw-p| [0 0 M, -1 0 |&|w-p| 3L~/
wep|l [0 0 0 M, +1 w+ p Lo+,

Thus waves in 3-D are split into 12 simple waves (or 6 simple waves, M, = M, = M. = f,
=f, = fz = 0), each of which has the form of Eq. (2.3) and is handled numerically by Eq.

2.4).

13



2.2 Boundary Conditions for the C3N Scheme

Each simple wave of Eq. (2.3) assumes an updated value at wave entry and is allowed to
exit freely through a closure scheme.”® There are right propagating waves if M > (0 and
left propagating waves if M < 0 in both of the x and y directions of Eq. (2.3). For each
simple wave, the C3N scheme requires the information of the values at all grid points at
time level n, the boundary value of the entering wave at time level #n+1 and the boundary
value of the exiting wave at time level n+1 to compute the values of the interior grid
points at time level #+1. Whereas the initial {(# = 0) values at all grid points are known.
The entering waves boundary values at time level n+1 are determined according to the
boundary conditions. While the exiting waves boundary values are determined according

to the characteristic lines of propagation.

1

free boundary

at y=Va
free free
boundary boundary
at X=X, at X=Xp

0

—»>
impedance
boundary atV=Vs

Fig. 2.1. The figure shows the computational domain employed by the C3N numerical scheme with free
and impedance boundaries.

Fig. 2.1 shows the computational domain of the two-dimensional reflection problem
employed by the C3N scheme. The sound source is placed at the origin O. For the two-

dimensional reflection problem, the impedance boundary is at y=y» and the free



boundaries are at y=y,, x=x,, and x=x, of the computational domain. Let the domajiy.

exiting wave and the domain-entering wave be v' and v respectively, v is updated at time

level n+1 by the time-domain equivalent of v~ = W (" . Here W(cu) 1s the frequency_

domain reflection coefficient of the acoustic material at the impedance boundary apq

4 (w) = 0 for the free boundaries. The determination of the entering wave v’ at the

impedance boundary using the time-domain equivalent of the frequency-domaip

reflection coefficient Pf/(a)) will be discussed in Section 2.4. For a full description on the
evaluation of the exiting wave v' at the free boundary in time-domain, please refer to

Fung et al.?®

2.3 Boundary Schemes and Numerical Stability

When free boundary or rigid boundary condition is imposed, there is no numericy
stability concerns in the numerical computations. However, if the boundary is of
impedance nature, then the impedance boundary condition might give rise to a stability
concern. The implementation of the time-domain impedance boundary condition in the
C3N scheme is based on the frequency-domain impedance ‘boundary condition.. The
frequency-domain impedance boundary condition is known to be p = Z(,8), p is the
Fourier component of the pressure p, ¥ is the Flourier component of the normal velocity v
in the y-direction, Z(w,6) is the frequency-domain acoustic impedance. For simplicity,
locally reacting surface is assumed. Hence Z = Z(w), which is independent of the angle of
incidence 8 Since the wave is reflected at y=y,, the incident wave v* and the reflected

wave v at the impedance boundary are related by

15



i (y=y,) = W@y (y=y,), (2.5)
where y; is the right end coordinate value in the y-direction, v* =%+ p and ¥ =9 - 5.
The frequency-domain reflection coefficient W (@) is related to the impedance Z(w) by

1-Z(w
l+Z(a)

R

W(w) = 3 (2.6)

Taking the modulus on both sides of Eq. (2.6), we have

1- Z(cu)
1+ Z(w)

(@) -

_|1—-R0-iX0|

- “R +iX
1+ R, +X,|’ Zw)= Ry +iX,,

J1-2R, + R + X
JI+2R, +RZ + X2

Therefore, iIf Re(Z) = R, = 0 then ‘I’f/ (a))| <1. To scrutinize the stability of the numerical

scheme on the interior grid points, we use Fourier (Von Neumann) stability analysis. Eq.

(2.4) without the source term is

2,0"" +a,07 + 42,07 =b, CHENACH

g+l -1

+5,0°

i+l

2.8)

By substituting @7 =¢“**%< into Eq. (2.8) and assuming uniform grid, ie.

o + . . .
X L — 1 in Eq. (2.4), the amplification factor G of Eq. (2.8) becomes
a

—ikA ihA
s _ Dg the ™ +b,e™

G =e —-ikAor
a, +a,e +a2e

kAo

To show the numerical stability on the interior grid points, we need 'G| <1. From Eq.

(24) whenr =

16



o =1 1 v 13w
o ‘T4 g7 T4 80
b=t 5 ol.B lw
4 8 4 8
As a result,
_ L+acos(kAc)+ Beos(kAo)+ [~ asin(kac) + Bsin(kac)]
1+acos(kdc)+ Beos(kac )+ i sin(kAc)- Asin(kac)]
where
1 3 1 3
a=a2=b1:2+?u, ﬂ:a[=b2=z—--8£.

Taking the modulus of G, we obtain

\/ 1+ cos(kac) + Bcos(kAcr)F +[-a sin(kAc )+ 8 sin(kAo )| o1 |
J [1+acos(kac)+ g cos(kac))’ +[asin(kAc )~ Bsin(kac)]’

6l =

Thus, the scheme is stable on both the interior and impedance boundary grid points.

2.4 Time-Domain Impedance Boundary Condition
To obtain the time-domain reflected wave v from the time-domain incident wave v* at
the impedance boundary, inverse Fourier transform and convolution theorer are applied

toward Eq. (2.5). The result gives

vi(e) = I]'W(t -7 (r)dr. (2.9)

W(y) is the inverse Fourier transform component of W (w) defined in Eq. (2.6). The
expression in Eq. (2.9) involves an infinitely time integration as a result of the inverse
Fourier transform. This integration is not immediately applicable to time-domain

methods unless the integration period can be localized. The behaviors of W(#) depend on
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Z(w), which is primarily an experimental quantity and may not be an analytic function of
@. Consider a simple Fourier transformed three-parameter frequency-domain impedance
model,

Z(@)=RotiXy, =Rs+i(X./ o+ X ). (2.10)
This impedance Z(w) contains the real part of resistance K, and the imaginary part of
reactance X The parameters Ry, X.,, X, are predefined real coefficients that give the best
fit of the ground impedance over a range of frequencies. This algebraic model describes a
class of sound absorptive materials with constant resistance that has linearly varying
reactance at high frequency and inversely linearly varying reactance at low frequency.

For a 6.7%-perforate treatment panel,'’ the best fit parameters are experimentally found
tobe R, =0.2, X, =-13.48, X, =0.739 in Eq. (2.10). The unit of the dimensional o
is measured in kilo-radian per second. R, and X are non-dimensional but X, is
dimensional with the same unit of w and X, is dimensional with the inverse unit of @. fw
is non-dimensionalized by ‘the characteristic time L/c, where L =00lm is the
characteristic length and ¢=340m/s is the characteristic velocity, then R, =02,
X =-0.396471, X, =2.5126 are all non-dimensional quantities. From Eq. (2.6), the

time-domain reflection coefficient becomes,

_ 1 71-Z{@) .
WD) = _.,[1 T Z00) expliot Mdw

X
1—R0—i(—~;’+X1w
w

|-
“E-L

" expliot Jdw
+R, +i[—'i+X,w]
@
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15 2;(0 |
=— J- ‘ —1|expliot)dow
2 2 1+ R, X
| w* —i2
2X, .

- with

W, = tw, +iw,,

-X, [1+R, i
@y = - ,
X, 24X,

1+ R,
W, = ——.
2X,

By residual theorem,

W) = i‘:w, exp(ia),t)+ W, exp(z'cozt)} _5(), @, 50, ¢ >0,
X, (a’l'"a)z) (wz_a’J)

= }%_|VCOS(0JRI)—&sin(a)kt)}exp(—-m,t)—é(t) ,0,>0,t>0,
@

1 R

and
W(t)y=-5(t), w, >0,1<0.

Hence,

W)= 2i(t) [cos(a)kt)— ﬂsin(a)Rt)] exp(— a),t)— o(t), w, >0,
@ ‘

1 R

or equivalently,
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o= 210 1+(ng_l ) cos(@,t + 7)expl-w,)=5(0), @, > 0. (2.11a)

H(t) is the Heaviside function which is defined as 1 when ¢ > 0 and is defined as 0 when ¢

< 0, &¢) 1s the Dirac delta function with jf(t)c‘i(t—to)dtzf(tn) and y =tan™ E!_.

25

Similarly for w, <0,

40 22_[1%1 1+[.§LJ cos(mﬂz+z)exp(—w!t)—§(t) yw, <0, (2.11b)

The first term of #(¢) in Eq. (2.11) oscillates at frequency Z’—R with amplitude
T
2 2
@
— 1+ =L | expl-w,1), (2.12)
. ¢ @,
which has a decay rate of @,. This amplitude is a monotonic function of ¢. By defining
Wst) = W(1) + &t), we can construct a sequence {W g (t,, )}:’=0. Hence gtven £> 0, AV ¢

[0,0) 5.t. Vn>N, we have [Wt,) - Wsts)| < & In other words, im W, ()= wlt,).

Wih=wn+ g
Q.8r
0.6

0.4}

0.2f

o] 10 20 30 40

t

Fig. 2.2. The figure shows the asymptotically decaying property of the function ¥, «5.
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A typical plot of Wg(t) = W(t) + &¢) is shown in Fig. 2.2. If the asymptotic values of the
reflection coefficient Wy(t) is negligible beyond certain time T when |I¥5#)| dips below a

small positive value &, then there exists compact supports ['" and [, such that

1, 0<t<T,
o )-| |
0, otherwise,
L 0, otherwise,
r (t)={
1, -T<t<0.
Thus Eq. (2.9) may be written as
. |
V() = jr*(r)WJ(r)w(z ~0ydr-v*(t), @, >0, (2.132)
0
0
viy= [T @, @vie-ndr—v ), o, <0. (2.13b)
-7

Eq. (2.13b) corresponds to a non-casual integration which is mathematically plausible but
physically unimaginable. By specifying the accuracy required once the amplitude in Eq.

(2.12) reaches ¢ at time 7, we obtain

Hence,

2
Tz_l-ln i 1+ _03.";
w, |Xe& W,

The time integration in Eq. (2.13) is a compact implementation of Eq. (2.11). An
equivalent discrete form of Eq. (2.13) suitable for the numerical implementation may be

written as
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TIAr

V()= > Wkttt -kat)-v (1), @, >0, (2.14a)
v(t) = iWJ (kAtw* (t —knt)-v* (1), w, <0. (2.14b)

=T/ At
The fact that the wave propagation function v (y,#) has the characteristic form v*(y —¢)

implies an increase in ¢ by some amount or a decrease in y by the same amount will give
the same right traveling phenomenon. Similarly, v™(y,¢) assumes a characteristic form of

v~ (y +¢t) implies an increase in ¢ by some amount or an increase in y by the same amount
will give the same left traveling phenomenon. This means the time variation of the flow
field at a fixed location is mathematically identical to the spatial variation of a temporally

frozen flow. Thus Eq. (2.14) may be formulated alternatively as

Tiay

V(. 0y = O W (ktyv' (v, + by, t)-v* (y,,1) , @, >0, (2.15a)
k=0
0
V()= D Wsktyy (n, + kayt) - v (y,,t) , @, <0, (2.15b)
k=—T/Ap

where y, is the spatial coordinate value of the impedance boundary in the y-direction.

Eq. (2.15b) is preferred over Eq. (2.14) because there is no extra spatial storage for

v (y,t) and v"(y,t) during the numerical computations.

Notice that the time dependence in the time-domain solution is exp(i@t). This is because
exp(iat) is the convention established in the inverse Fourier transform when determining
the time-domain reflection coefficient from the frequency-domain reflection coefficient.

However, for outdoor sound propagation, exp(-i@x) is assumed. As a matter of fact, the
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“impedance boundary condition for single frequency wave in the Weyl Van der Pol
formula when exp(-iwt) is assumed has long been

f)(rb ,B)exp(— iot)=7Z (a))f)(r,, , ﬁ)exp(— iot), (2.16)
where p(r,,0) and ¥(r,,6) are the frequency-domain sound pressure level and the
frequency-dom‘éin normal velocity at the impedance boundary respectively, r, is the
radial distance from the source to the impedance boundary, 8 is the angle of incidence.
The complementary counterpart of Eq. (2.16) has exp(ieX) time dependence assumption.

This 1s because the impedance boundary condition complementary to Eq. (2.16) is

p(r,,0)explion) = Z(w }v“irb,Q}exp iot), (2.17)
b

“where Z (@) is the complex conjugate of the ground impedance Z{w), ,51 rb,é)i and

m are the complex conjugates of their corresponding quantities. By expanding
terms, it can be easily shown that Eq. (2.16) and Eq. (2.17) are equivalent to each other.
Since exp(iwf) is always assumed in the time-domain numerical solution, the impedance
used in the numerical scheme is juSt the complex conjugate of the impedance being
introduced to the Weyl Van der Pol formula where exp(-iax) is assumed. If exp(iat) is
assumed in the Weyl Van der Pol formula, both of the impedance inherited to the
numerical scheme and the Weyl Van der Pol formula will be the same. Though the
solutions of the Weyl Van der Pol formula are complex conjugates to each other with
different time dependence assumptions, the prediction on sound pressure level will be the

same. After all, only the real part of the Weyl Van der Pol formula is of practicality.
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Chapter 3  The One-dimensional Acousti¢ Problem
3.1  Frequency-Domain Approach
Results of the wave propagation in a piston determined by Laplace transform method
1s now considered. In this problem, the right end of the piston is being mounted with a
sound .absorbing material with impedance Z. The impedance Z is in general dependent
on the frequencies of the a_lcoustic wave and 1s assumed to be locally reacting. A

physical view on the problem is displayed in Fig. 3.1.

AV

OOOUOOOUOQ(“

X

Sound absorbing material

_ ‘ _ ] with impedance Z(@).
Piston is moving at a harmonic

velocity of ¢(f) = sin{Q¥).

Fig. 3.1. A physical view of the wave propagation inside a piston with impedance material at the
right end, £ is the maximum distance of the piston deviates from ¥ =0 with 0 < g << [,

Non-dimensional spatial variable x € [0,1] and non-dimensional temporal variable ¢ e
[0,e0) are assumed. For x in any other interval say [a,b], solution can easily be mapped
into the interval [0,1] because (x,f) coordinates can be transformed to (£,7) coordinates
by &= (x-a)/(b-a) and 7= t/(b-a) with £ € [0,1] and}c € [a,b]. Since the piston surface
1s moving at a velocity @(£), where ¢(¢) ~ O(¢) and 0 < £ << 1, the piston position x, is

related to the piston velocity @(¢) by

dx
_7 -
” olt).



Therefore, x, = I ¢(¢)dt is the position of the piston surface as a function of time ¢,

The left end boundary condition could be regarded as

¢, (x,,0) = plt).

By Taylor expanding the left-hand side of the above equation at x = 0, we obtain

¢x(x,,,c)=¢x(o,r)+(?;_xj X, 4
29

=0

But

¢, _, a"n -0+ glx+0)], n=123,..
X

where fx-¢) is the right traveling wave, g(x+/) is the lefi traveling wave. Both fx-1)
and g(x+r) are functions of. O(1). By retaining the O(g) terms only, the left end
boundary condition becomes _

8,0, = (t).
The formulation of this 1-D piston problem and the result of the frequency-domain

solution are

¢, —¢,.=0, 0<x<1, t>0, (3.1a)
¢(x,0) =0, (3.1b)
9,(x0)=0, (3.1¢c)
¢.(0,0)= o)A (1), (3.1d)
-5d(1,5) = Z(s)g, (1,5), (3.1¢)

where ¢ is the acoustic velocity potential, ¢ is the Laplace compoent of ¢, s is the

Laplace transform variable in the frequency-domain, H(¢) is the Heaviside function,
Z(s) 1s the Laplace transformed three-parameter frequency-domain impedance model

which has the form

Z(s):Ro—Ll+X,s.
5
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Ry, X, X, are predefined real coefficients that give the bést fit of the ground
impedance over a range of frequencies. Eq. (3.l¢) is the Laplace transformed
frequency-domain representation of the impedance boundary condition. By Laptace

transform of Eq. (3.1a) to Eq (3.1d), Eq. (3.1) may be rewrtten as
b, -sp=0, 0<x<I,
5.00.9) = 9(6),
- 543(1, 5)= Z(s)éz (,s5).
The solution of the above ODE is
d(x,5)=A cosh(sx)+ B sinh(sx) ,
where

4= —¢(s) sinh(s)+ Z cosh(s)

cosh(s)+ VA sinh(s) ’ B= G?’(S)-

By inverse Laplace transform,

¥+l

1 7 ' T
#(x0) = [plxskds

y=in

rte 3 7t
= [strs)ends+—— [htx,s)e"ds, (3.2)
m 2 mi 2

4 4

where

5(s) sinh(s)+ Z cosh(s)

8(xs)=—¢ cosh(s)+ Z sinh(s)COSh(sx) ’

h(x,s) = @(s)sinh(sx).
The value of y is a chosen real constant such that the contour integration on the
complex plane includes all the poles of g(x,s) and h{x,s) that are to the left of the

vertical line x = y. By choosing y = 0, Eq. (3.2) may give a time stable approximation
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of Eq. (3.1) after applying the residue theorem in complex analysis. Some of the poles
in Eq. (3.2) are determined from
cosh(s) + Z(s)sinh{(s) = 0,

or equivalently

~Z(s). (3.3)
Substituting s = a, * if3, as the poles into Eq. (3.3), the resulting real and imaginary
parts are respectively

- Rge™™ cos(28, )+ X_ e n cos(Zi,,z):-g; sin(24,) - X,e* [a, cos(28, )-8, sin(28, )]

(3.4a)
144

L+ X, —e*% cos(28,)-1=0,

+Ry— X
ay + Bl

and

Rue sn@p. ) e LoD P colile) s e o) , coslas,)
oo (3.4b)

+ X, a_I%FJr X\ B, —e* sin(28,)=0.
Sincé éos(Zﬂn) and sin(2/3,) are periedic functions of g, with period 7, each £, € [nr,
(nt1)#], where n = 0,1,2,3,..., must correspond to a value of &, so that both sétisfy
Eq. (3.4). Let £ be a small positive number and £,(a,, 5,) = LH.S. of Eq. (3.4a), then
for each interval [n7, (n+1)7), we may use the following algorithm to find &, and B
L. Set B, =nmand ) = (nt D
2. With known values of g, and S+, find the corresponding values of a, and
ay+ from Eq. (3.4b) using bisection method.
3. Find E(an, £,) and E, +\(per, Busi).

4. Set fuin = (f + B-1)/2 and find the corresponding value of a4, from Eq.

(3.4b) using bisection method.
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5. Find Envio( @urins frin). IE |Ensia @i frvin)] < € then STOP, take Qyriy and
B2 s aToot of Eq. (3.4). Otherwise go to Step 6. |

0. If Ef(an, f) and Epein(@uei, Bovina) are of opposite signs, set Borr = Basi, else
set £, = Pusin-

7. Go to Step 2.

Once ¢(¢) is known, ¢(x,?) can be evaluated from Eq. (3.2) using convolution theorem

3.2 Time-Domain Numerical Approach

The acoustic disturbance in a piston is governed by the second order wave equation

. 32415 _a2_¢ _ .
8t At =f(x0). (3.5)

where f{x,t) is the forcing function, x and ¢ are non-dimensional variables. [, must be
chosen in a way that the non-dimensional grid size Ax > 1 and there are at least eight
grid points per wavelength for each frequeﬁcy of the wave in the computation. In
terms of the potential ¢, the perturbed velocity u and the perturbed pressure p can be
written as u=¢_ and ‘p = —¢, respectively. Similarly, » and P are non-
dimensionalized by ¢ and p,c® respectively, gy is the ambient density of air. In terms
of w and p, Eq. (3.5) méy be written as

U aU
—+A—=F, .Gz
a | ox (3.62)

where

U< u Pl 01 Fo 0
= p}’ =l1 ol | _j:—fj|‘ (3.6b)

Eq. (3.6) is recognized as the linearized isentropic Euler equations with a source term.

[t can be transformed into an uncoupled system as
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T+ A—=F, (3.74)

where

U:[“_p}, Z:[_l OJ, F:[IJ. (3.7b)
u+p 0 1 -f

The term « + p is known as the advancing wave, u — p is known as the receding wave.
The above transformation is based on matrix theory from linear algebra. By assuming
matrix 4 to be diagonaﬁzable, the eigenvectors of matrix A will span the -
dimensional Euclidean space R" with n being the dimension of matrix 4. In this case,
n = 2. Hence there exists a matrix £ such that 4 = P~' 4P . The diagonal elements of
matrix 4 are the eigenvalues of matrix 4. The off-diagonal elements of matrix A4 are
all zeros. Columns of P contains the distinct eigenvectors of matrix 4. Thereafter, Eq.
(3.6a) can be written as

il.j__,.pjp-l 6_[£=

ot Ox

F.

Multiplying the above equation throughout by P”', we then obtaiﬁ Eq. (3.7). At the left
end boundary, say x=a, the condition u(x=a,t) = @()H(?) is mscribed, ¢ (£) is an
arbitrary function, H(¢) is the Heaviside function. At the night impedance boundary,
say x=b, p(x=b,0)= Z(a))ﬁ(x =b,w) is supposed for a locally reacting end. The
impedance model employed is the time-domain equivalent of the Fourier transformed

three-parameter frequency-domain impedance model. It has the form
. . X—I
Z(w) = Ru(a))+zXD(a))= Ry +i| —+ X w|.
@

Refering to Fung,'® the time-domain impedance boundary may be constructed from

the frequency-domain relation #* =Wi ™ at the boundary, W is the Fourier

component of the time-domain reflection coefficient W. The relation between
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1-W
1+Pf/'

impedance Z and the frequency-domain reflection coefficient W is Z = A

detailed description of the equivalent formulation of the time-domain impedance
boundary condition in terms of the time-domain reflection coefficient W has been

elucidated in Chapter 2. Eq. (3.7) contains two equations, each has the form

00,30 _

> =5,
ot ox

and is discretized using the C3N implicit compact scheme

. 1 | H
n+l + nsl _ g n n+; = H+—
2,07 + a0 +a,07 =507 +507, +5,07, + Ata,s; ! +as; ? +a,s, ). (3.8)

J+l gl

The coefficients in Eq. (3.8) are stated completely in Chapter 2, @ = u-p or u+p, with

corresponding M = -1 or 1. The corresponding s = -for .

3.3 Comparison of Frequency-Domain and Time-Domain Results

To give a numerical example, we set ¢(f) = sin(Q)H(¥), the forcing function fx,s) = 0,
parameters for the impedance model Z are R, = 0.2, X,, =-13.48 and X, = 0.073-9, non-
dimensional length L = 0.012m. Fig. 3.2 shows the results predicted by Eq. (3.2) and

the C3N scheme at resonance frequency f= 2.8333kHz.

px=0.%)
o

150 |,
1 .

0.5 %} 5! 'l, HEATL R
of .::: | iy

-0.5{ji § i ;f'? 4 ‘
—1-.:5 'l: v

1% 100 200 300 400

H

Fig. 3.2. Solid line — is the numerical solution. Dashed line -- is the analytical solution. Frequency
is at 2.8333 &z Variables ¥ and ¢ are non-dimensional. Length of the piston is 0.12. All aw < 0.
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Fig. 33 a
P(x.1=150)
2r

o 100

Fig.3.3b
P(%,1=450)
T.5(
1}
0.5¢
0
-0.5
_1 -
~Lso ~100 50
Fig. 3.3 ¢
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P(%.1=650)

X
Fig.33d
P(x.1=1050)
61
F50 100 50
. X
Fig.33e

Fig. 3.3. The figures have the following configuration. Solid line — is the numerical solution.
Dashed line -- is the analytical solution. Frequency is at 1.1 41z, Variables X and ! are non-
dimensional. Characteristic length is 0.012m Al au < 0.
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P(%.4=650)

20r
15;¢
108
=)
ot
~5f ’
-1 ’|
-150 -100 -50
X
Fig. 3.4 d
P(%.4=1050)
1000,
|
;
500 I
1
“I:I|l
K .,“'Iu'.;"':::,j.{':'.,‘.unnw. Teiugnagt
O Y n'-.\'.g:.:u.l.u.,u'\l.",n-ruu,.a'..'u',.,“
i
Yuy
it
-500r "
’
-100 . !
=150 -100 -50
X
Fig.3.4d

Fig. 3.4. The figures have the following configuration. Solid line — is the numerical solution. Dashed
line -- is the analytical solution. Frequency is at 1.1 ¥HZ Variables * and ? are non-dimensional.
Characteristic length is 0.0127. Some . > 0.
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P{X1=650)
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05

50 _100 -50
X
Fig.3.54d
P(%.1=1050)
1.
0.5
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~150 100 50
X
Fig.3.5¢

Fig. 3.5. The figures have the following configuration. Solid line — is the numerical solution. Dashed line --
is the analytical solution. Frequency is at 2.25 A2 Variables * and ! are non-dimensional. Characteristic
length is 0.012. All &= < 0.
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The plots in Fig. 3.2, Fig. 3.3 and Fig. 3.5 use the poles of Eq. (3.2) lying to the left of the
axis x = y= 0. This implies that the real parts of the poles are all negative. While Fig. 3.4 has
some of the poles lying to the right of the axis x = y = 0. That means some of the real part of

the poles are positive, which gives rise to the time unstable approximation.

3.4 Verification of Input and Computed Impedance
In order to demonstrate the effectiveness of the time-domain impedance boundary condition,

the impedance values are extracted from the numerical results. Assuming the right running
wave u” (x,r) has the form

u* (x,8) = acos[Qfx - 1)+ ], (3.9)
the unknowns @ and « arc the arﬁplitude and phase of the wave respectively, Q is the non-

dimensional circular frequency. Expanding Eq. (3.9), we obtain

ut(x,t)=a cos[Q(x ~t)|cosa —a sin[Q(x - r)]sin a.
If two values of the numerically computed u*(x,f) are known at two different locations x
with fixed time ¢, @ and « can be resolved. Similarly, the left runrﬁng wave u (x,t) can be
expanded as

u™ (x,8) = beos[Q(x + t))cos g - bsin[Q(x + t)]sin il
with unknowns amplitude b and phase . Knowing two values of the numerically computed

u”(x,t) at two different locations x with fixed time ¢, b and £ can be resolved. After the wave

is reflected from the impedance boundary, the wave amplitude change is #/a and the wave

phase change is & -+ 4. Hence the reflection coefficient becomes # Q)= 5 exp[i(a + ). The
43

impedance Z(Q}) is computed from Z (Q) = I—_-g%
+
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107

0 . 1000 2000 3000 4000 f

Fig. 3.6. Comparison of the impedance spectrum between the numerically (circle) extracted impedance
values with the theoreticaily (solid line) predicted impedance values. Two-parameter impedance model is
embraced.

Fig. 3.6 shows the comparison between the impedance values extracted from the numerical

solution (circle) with the theoretical impedance values (solid line) for a material characterized

1-15

by the two-parameter impedance model. > The two-parameter impedance model has the form

Z(f)=0.436(1 +1) % + 19.481'%, o= 38000 Pasm?, a=15m",

where f is the frequency in Hertz, values of Z(f) are non-dimensional. Eight points per
wavelength are necessary in resolving the waves numerically. The results agree well with

each other.
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Chapter 4 Acoustics Bounded by One Impedance Plane
4.1 Reflection of Harmonic Sources at a Uniform Impedance Plane
The time-domain three-parameter impedance model implemented in the C3N numerical
scheme in Chapter 2 has the Fourier transformed frequency-domain equivalence
L @)=Ro+iXy =Ro+i(X./ o0+ X w), (4.1)
where @ is the circular frequency measured in kilo-radian per second, X., has the same
unit as @, X, has the inverse unit as @. The coﬁesponding time-domain reflection

coefficient derived in Chapter 2 has the expression

@
17 X .
wi{t)= E_!i(a) o Yoo . exp(zmt)dco ~o(t),

where

W, =tw, +iw,,

2
- 1
w0, = =X [+ R ) (4.22)
X, A 2x
1+ R,
w, = . 4.2b
' 3x (4.2b)

For a harmonic sound source with the single frequency , X, and X, may be varied in Eq.
(4.1) without the change of the reactance X; for the prescribed frequency. Suppose X, is

taken to be a free parameter, then from Eq. (4.1)
X, =X,Q-X0°%, 4.3

To make w, real, X, in Eq. (4.2a) is being chosen under the constraint

X]Zlein=§-1§liXO+U(1+RU)2+X§:l‘ (44)
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By suitably picking values of R,, X., and X, that satisfy Eq. (4.3) and Eq. (4.4), the
impedance model in Eq. (4.1) can represent any other impedance model which has the
same resistance R, and the same reactance X, at the prescribed frequency Q. Fig. 4.1
shows the comparison of the pressure distribution of a harmonic wave reflected from the

impedance wall with two different sets of X, and X, values. For demonstration purposes,

they are chosen to beR, =02, X_ =-13.48, X, =0.0739 (soiid line) and R, =0.2,

X_, =-14.46696, X, =0.1739 (dashed line) at S =500Hz. X, and X, are dimensional

quantities.

P(XY=0=128)
0.5r.

-1 . . .
5 -50 0 50
: x

Fig. 4.1. The figure shows the indistinguishable predictions of sound prediction by imposing two
different sets of values of X; and &) in Eq. (4.1). Ry =02, X, = _13.43, v = 0.0739 (solid line). R, =
0.2, X, =-14.46696, X, = 0.1739 (dashed line). Frequencyf = 500 Az,
Non-dimensional computational domain is x € [-64,64] and y € {-32,64]. Acoustic wave
is propagating up to the non-dimensional time ¢ = 128. The tmpedance wall is located at y
= -32. Although sets of values of X, and X are different, the dimensionless reactance A
in Eq. (4.1) remains the same. The plot indicates that there is no discrepancy in the

prediction of reflection wave using different sets of values of X, and X,. This means that

no matter what relationships the sound absorbing materials have, impedance model Eq.
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(4.1) could be used provided that the wave is propagating at a single frequency Q. This
concept will be demonstrated by implementing the time-domain equivalent of Eq. (4.1) in
the C3N scheme to predict sound reflection from the ground characterized by the two-
parameter impedance model proposed by Attenbourough.'® The two-parameter

impedance model has the form

Z(w) = 0.436(1 + 1‘)\/_76—_” +19. 48{ 0.037;)
@ w

where @ is measured in kilo-radian per second. The distributed harmonic source S

associated with the numerical computation in Eq. (2.1) will have the form

L=h=0,

(0= exp(—l’Jrs2 )sin(Qt) , = \/(x—xs)z +(y-y.)".
(xs.y5) is the center of the cylindrical harmonic source, b = In(2)/# is a constant for the
propagation of the sound source, y is a chosen constant for the wave according to the
propagation frequency Q. This parameter y is of no significance for far field concerns as
long as there are fine enough grid resolution to resolve the pulse f{r.,¢), and the circular

regibn centered at (x,y;) with radius »* does not overlap with the boundaries. After

o . 7€) ? :
adjusting the numerical pressure values by the factor Eexp[—zj, the results are

compared with the zeroth order Hankel function distribution, where the zeroth order
Hankel function is the 2-D Green'’s function for the singular point source. The asymptotic

pressure form for the zeroth order Hankel function has the expression
(x, y,t) =—iQY i-c:':x (ikR)) - QO 2 exp(ikR,) |ex (— z'Qt) (4.5}
p ] y: ﬂle p 1 7TkR2 p 2 p H :
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where 4=Q/c is the wave number, Q=2 7f 1s the circular frequency of the single frequency

wave. Eq. (4.5) may be deduced from the 2-D Weyl Van der Pol formula described in

Appendix B.
P(X y=-12,t=64) : P(*Y=-12,1=128)
0.1 [ 0.1 (
0.05; 0.0st

-0.05}¢

ol

-0.05+

200 100 o 100 200 . -0 200 100 0 100 200 N
Fig. 4.2 a Fig.4.2 b
P(Xy=.12,/=408) P(XV=-12,=408)|
0.1
o.1f
0.05}
0.08
o .
0.06}
-0.05 0.04/_
Iy 100 0 100 200 x 0927 % 000 0 100 200 .
Fig.42¢ Fig. 4.2d

Fig. 4.2. The figures are comparisens between the C3N scheme (solid line) and the results predicted by
Eq. (4.5) {dashed line). Frequency / = 500 #2_ Source height 4, = 0,16, Receiver height %, = 0.04m.
Two-parameter impedance model is adopted.

Fig. 4.2 compare the results between the sound pressure level distribution p of the

numerical solutions and the solutions obtained from Eq. (4.5) at frequency f= 500 Hz.
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Solid line is the 2-D numerical solution. Dashed line is the solution obtained from Eq.
(4.5). The sound source is placed at the coordinate system center (0,0). The receiver
location is at (x=100,y=-12). The impedance ground is leveled at (x,y =-16). Spatial
variable x is the separation distance in the computational domain. Negative values of x
means the receiver is to the left of the source. Positive values of x means the receiver is to
the right of the source.The coordinate system 1s non-dimensionlized by the characteristic
length L = 0.01m and the characteristic velocity ¢ = 340m/s. This corresponds to the
physical configuration of source height A, = 0.16m and receiver height 4, = 0.04m.
P(X=100y=-12,9)

0.8}

0.4t

0.2
0
-0.2}
-0.4f

-0.8

0.8 100 200 300 400

t
Fig. 4.3, Time history of the pressure variation at a fixed location. Frequency /= 500 #2. Source height
hy =0.16™, Receiver height #, = 0.04", Separation distance * = 171, '
Fig. 4.3 pictures the time history of the sound pressure level at the receiver location
(x=100,y=-12) with the sour;:e location at (x=0,y=0). The impedance ground is at (x,y=-
16). This corresponds to source height A, = 0.16m, receiver height 4, = 0.04m and
separation distance r = lm. Frequency f = 500 Hz. Sound pressure level tends to
sinusoidal wave form after about three wavelengths of the propagating wave. The

sinusoidal wave form after three wavelengths has sound pressure level with constant

amplitude at all time.
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-1 . . . . . ;
gOO 1000 1500 2000 2500 3000 3500 f

Fig. 4.4. £4 predicted by C3N scheme (circles), the boundary element method (solid line) and Eq. (4.5)
(dashed line). Source height #, = 0.16™. Receiver height #, = 0.3m. Separation distance © = |7 Two-
parameter impedance model is used.

Fig. 4.4 compares the excess attenuation (EA) spectra predicted by the C3N scheme

(circle), the boundary element method (BEM) (solid line) and the results of Eq. (4.5)

g

(dashed line). Excess attenuation (£4) is defined as EA — 201lo0g,, . The configuration

d
at ail frequencies are the same, source height A, = 0.16m, receiver height 4, = 0.3m and
separation distance » = 1m. The cotresponding non-dimensional source position is at
(x=0,=0), the non-dimensional receiver position is at (x=100,y=14), the impedaﬁce
boundary is located at (x,y=-16) in the numerical configuration. Results agree fairly well

with each other.

4.2 Comparisons with Models for Mixed Impedance Planes
Acoustic pressure estimated by mixed impedance models over a single impedance
discontinuity will be compared with the numerical predictions. The models included are

the De Jong model and the modified Fresnel-zone models. The De Jong model is built
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upon the approximation of the diffraction theory at a semi-infinite wedge. The

configuration of the model for various path lengths is depicted in Fig. 4.5.

receiver

source
. =

.....
.,
.,

.,

Fig. 4.5. R, is the direct path length. &, is the reflected path length. & is the path length that passes
through the point of impedance discontinuity. Z, and Z; are the impedance values for the hard and soft
ground respectively.

The definition of the excess attenuation (£4) defined by De Jong is

L
f)l »

}1?- =1+ %—Q:.z exp{ik(R, - R )}+ (Q_z‘&)ﬁexp(— i%]{Fj, + Fy, explik(R, - R, )}}

2 \/7? R,
Fsl ZF(Vk(Rs *le), F32 =F(\Jk(R3 "sz),

EA=20log

F(x)= u]-exp(iw2 )a’w’

where £ is the wave number, P is the total wave pressure, P\ is the direct wave pressure,
R is the direct path length from source to receiver, R: is reflected path length through the
specular reflection point, Rs is the path length through the impedance discontinuity, QO is

the spherical wave reflection coefficient chosen when the specular reflection point falls
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on the ground with impedance Z,, and 0, is the spherical wave reflection coefficient
chosen when the specular reflection point falls on the ground with impedance Z,. The
plus sign before £, is selected when Q) is used. The minus sign before F, is selected
when O, is used. F(x) is the Fresnel integral function which can be alternatively

expressed as™

F(9)= | Zlste) 7 (enple),
76)= 5-5)eose?)-[ - ).
£l =5 S0)sins” )+ - e o),

2rr+l

erf(z) = Z( ) ———

,,,0 n' 2 +1)

For |z] — o and [arg(z)| < 3n/4, the error function is expanded as®*

erf(z) = exp! z }[4_ 1) (2n—1)J
7= e | Y (222

=1- ﬂ——)[nin( 2k - IJJ

a=l k=t

The next mixed impedance models considered are the modified Fresnel-zone models. To
evaluate the proportions of impedance of each type contributing to the excess attenuation
(EA) at the receiver, Slutsky and Bertoni*° suggested the use of Fresne! diffraction theory.
This theory is further developed into the modified Fresnel-zone models and applied by

Hothersall and Harriott.>! The Fresnel-zone defined in the modified Fresnel-zone models
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sweeps out an elliptical area that has the following configuration in the x-y-z coordinate

system.

T receiver R
o -
source S

!

Fig. 4.6. Configuration for the Fresnel-zone model. The elliptical Fresnel zone cuts across the *-axis at X2

and the V-axis at ¥, , @is the angie of incidence, ” is the horizontal separation distance between the source
S and the receiver R, point P is the specular reflection point.

The boundary of the Fresnel-zone on the x-y plane is an ellipse which is given by

2 2 2 -2
i+(ycosﬁ c) L ysin 9=

b2 al b2 1:
2
a:M b= M.}.(ﬂ c:-R.i_SP
2 ? 2 2 : 2 ’

where &is the angle between the line PR and the x-y plane, r is the horizontal separation

distance between the source and the receiver, F' = 1/3 (Hothersall and Harriott”), A is the

wavelength of the propagating wave. In F 1g. 4.6,
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’ =_£i’ A=[cos€) -{smé’) ’ B:CCOSQ,
A a b a’

where x,, and y, , are the boundary points of the elliptical Fresnel zone. The first modified
Fresnel-zone model in this study. was suggested by Hothersall and Harriott. Following

their assumption, the excess attenuation (E£4) at the receiver is evaluated from

EA = 1201og|l + %Q, exp{i}’c(x'i2 - R, ))J +(1 - p)2010g 1+ %QZ exp{ik(Rz - R, )} ,
2 2

where £ is the wave number, R, is the direct path length, R, is the specular reflection path
length, O, is the spherical wave reflection coefﬁcient‘of the ground with impedance Z,,
Q; is the spherical wave reflection coefficient of the ground with impedance Z,, 4 is the
proportion of the line representing the Fresnel zone that intersects with the area of
impedance Z,, and (1-4) is the pro‘pontion of the line representing the Fresnel zone that
intersects with the area of impedance Z,. The line representing the Fresnel zone is defined
as the intersection between the elliptical Fresnel zone and the vertical plane containing
source, recetver and specular reflection point. The above £4 expression is the linear
interpolation of the £4’s over the two different impedance grounds. Alternatively, if the
pressures over the two different impedance grounds are linearly interpolated instead, a

new definition of the excess attenuation is obtained,

£Ad = ZOlog{,ul + —gLQI exp{z'k(R2 - R )){ + (1 - ,u+ + -}{:'—Qz exp{ik(Ré -R, ))G .
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This is termed as the second modified Fresnel-zone model. C3N numerical scheme
described in Chapter 2 is capable of solving the wave equation with an arbitrarily
prescribed impedance value at each boundary point. Therefore, the scheme is well-

adapted for implementing any mixed impedance boundary condition.

£EA

_1§00 1000 1500 2000 2500 3000 3500

Fig. 4.7. £4 spectra comparison. C3N numerical solution (circles). Boundary element method (solid
line). De Jong model (dashed line). First modified Fresnel-zone model {dotted line). Second modified
Fresnel-zone model (dashed-dot line). Source height £=0.16". Receiver height A,=0.3m, Separation
distance =1 The impedance discontinuity is located at 7=0.5m, From source to the impedance
discontinuity is the hard ground. From impedance discontinuity to the receiver is the impedance ground.
Two-parameter impedance mode! is employed for the impedance ground.

Fig. 4.7 shows the comparisons of the excess attenuation (£4) spectra among the C3IN
numerical solution, the boundary element method (BEM) and the mixed impedance
models. The impedance discontinuity is located half way between the source and the
receiver. That is 50% hard ground from source to impedance discontinuity and 50%
impedance ground from impedance discontinuity to the receiver. The impedancelmodel

employed is the two-parameter impedance model

Z(f)=0.436(1+1) % + 19.48:'% , 0=38000 Pas m?, a=15 m",
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Frequency J1s measured in Hertz (Hz). The configuration in the numerical computation is
non-dimensionalized by the characteristic length L = 0.01m and the characteristic velocity
¢ = 340m/s. Fig. 4.7 has the source location -at' (x=0,)=0) and the receiver location at
(x=100,y=14). The impedance boundary is situated at (xy)=-16), x is the horizontal
separation distance between the source and the receiver in the numerical configuration.
Note that the excess attenuation (£A4) defined in the mixed impedance models is different
from the definition given by Hothersall and Harriott* by a negative sign. Although only
single impedance discontinuity phenomenon is presented in this chapter, there are also
acoustic grounds with periodic impedance. Grounds with multiple impedance
discontinuitie_s are of practical interests. For instance, at outdoor sound propagation,
people are interested in adjusting the mixed impedance ground in order to position the
first dip of the EA spectra at certain frequencies. The objective is to control the noise
level at those particular frequencies. A conjecture on the average sound energy
dissipation inside a room with mixed impedance walls is critical in the design of good

room acoustics. Such issues are discussed further in Chapter 5.
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. Chapter 5 Applications and Extensions

5.1 Overview on Room Acoustics |

One of the many important applications of sound prediction methods is on room
aco.ustics. In architectural acoustics, people are always concened about the echoes inside
a building. Too much reflection of sound from the wall will degrade the quality of
musical sound during a performance. Since the time of Sabin, criteria for designing a
room with good acoustics for specified purposes have been developed extensively.
Reverberation time Ty, comppted from the Sabin-Franklin-J aeger theory plays the central
role in the quantitative formulation of some of the simpler criteria.' The reverberation
time Tgp is defined as the time required to have the spatial average.of the running time
average of the acoustic energy inside a room to drop by a factor of 10° (60dB). If the
reverberation time is too short, the perception of sound inside the room may become
undetectable because the loudne_ss of sound.is directly proportional to the acoustic
energy. If the reverberation time ié too long, the information of sound becomes inaudible
and the perception decreases even though the sound intensity continues to increase
further. Thus, for a given size of a room and a given intensity of a sound source, there is
an bptimum reverberation timg for the room. Experiences show that the optimum
reverberation time for a given room voluxﬁe should be higher for music reception than for
speech reception.' Experiments have been performed to determine this optimum
reverberation time Ty by changing the wall coverings with different sound absorbing

powers inside a room.
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5.2 Sabin-Franklin-Jaeger T heory
The theoretical development in obtaining the reverberation time Tso is based on the

Sabin-Franklin-Jaeger theroy. To derive the theory, one starts from the Euler equations

6—p+V-(pU)=0, (5.1)
ot
B
Z=Vp. 5.2
P P (3.2)

pis the density of air, {7 = (u,v, w)r 1s the acoustic velocity vector, V is the del operator,

2 is the sound pressure level. Subtituting p= p, +o, U = (uo +u', vy + v w, + w‘)r, P="r

+p'into Eq. (5.1) to Eq. (5.2) and retaining only the first order terms, we obtain

9‘1+v-(p0z7')=0, ' (5.3)
ot

U

&y, 5.4
o a1 P (5.4)

where py, py and U, = (uo,vo,wo Y =0 are the ambient density of air, ambient pressure
and ambient velocity vector respectively of an undisturbed stage. The primed variables o,

pand U'= (u',v‘, w’) are the disturbed quantities from the ambient state of the density of
air, pressure and velocity vector respectively when there is sound propagation in the flow

field. Taking the dot product of 7' with Eq. (5.4), we obtain

U'-(po %:-'J =-U"Vp',
or
P 6((,7'-(7')__ An'iVe o
T =V ) pv0. (5.5)
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By substituting Eq.(5.3) into Eq.(5.5) and writing U = (707" = 4" +v'?+w'? | we obtain

Py OU° ) 2.9
S -2 (56)
0

If the relation p = p(p) is presumed for compressible fluid, then

3 187
rere{B) i)
| Py P Jo
By retaining terms up to the first order together with the definition ( gEJ =c?, where ¢
_ : 0/,
ts the sound speed in air, Eq. (5.7) becomes p'= 'CPT Substituting this relation into Eq.

(5.6) and taking away the prime () sign, we obtain

0E -
—+V.7=0, 5.8
py (5.8)
2
where F = %—poU 2 +-;— L = 1s known as the acoustic energy which is the sum of the
PoC

acoustic kinetic energy and the acoustic potential energy respectively, I = pU is known
as the acoustic energy flux or the acoustic intensity. Eq. (5.8) is the energy conservation
law of acoustics expressed in differential form. If £ and I are replaced by the running
time averages Eand T respectively, Eq. (5.8) stili holds true. To prove this, it is known
that for each frequency of the spherical waves interacting inside a room, the acoustic
potential is just the superposition of waves with wave form A(r,é?)exp[i(r - ct)]. |A(r,8)|
is the amplitude of a wave which is inversely proportional to the radial distance r, r is the

radial distance from the source to the receiver if the wave is a direct wave or r is the

radial distance from the image source to the receiver if the wave is a reflected wave.
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Hence the corresponding velocity I/ and pressure p would have the wave forms
U=4, (r,&)exp[i(r - cr)] and p=4, (r,&)exp[i(r - ct)] respectively. Putting these forms

into Eq. (5.8) and taking the runming time average, we have

1 +T 1 a 1 . )
; .—"[ [2 Y (PoA exp[21(r Ct)] o2 A; exp[Zz(r—ct)]]+V-Isz =0,

0
where T'is the integral number of a half wave period, # is any time instance which is itsel
an independent time variable. Thus, from the above equation,

'+T

% ,.I [- z'c( PoAS expl2i(r ~ct)]+

: — A2 expl2i(r - ct)]J +9. dez =0,
c

[
or

a—E+V'I 0.

or'
The second term on the left of the above equation is not immediately obvious from its
previous equation. But it can be proved by mat'hematicaI analysis. However, the proof is
omitted in the present context. By replacing ¢ by ¢, we have the running time average

acoustic energy of conservation law

a—E+v-f=o, (5.9)
ot

where E is the running time average acoustic energy and is defined as

SR

E=1p4,]
4 4/90

By definition, the running time average acoustic energy is the average of the minimum

and the maximum amplitudes of the squared sinusoidal quantity, which is precisely what
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E is. For a squared sinusoidal quantity f = 4%sin®t say, the running time average of /

can be determined as

f= —‘det —HﬁAI sin’ tdt = ”J-T[l cos(2¢ )t = l—][z‘——sm@z):, = ]_/12L2

where T is the integral number of the half wave period of /- This indicates that the
running time average of f is just the average of the minimum amplitude of /(= 0) and the
maximum amplitude of £ (= |4]%). To express Eq. (5.9) in integral form, one needs to

integrate this equation over an arbitrarily chosen volume V. As a result,
Hj%m:jﬁms:o. (5.10)
¥ at 5

Eq. (5.10) is the running time average conservation law of acoustic energy for an empty
room. § is the surface enclosing the volume ¥, 7 is the unit normal vector poting

outward of the volume ¥. Now consider the first term on the left of Eq. (5.10),

15 -2 ym S B0

rd

a . ZEH’

= 2| lim =— NAY
drfarse N

E is the spatial average of the running time average of the acoustic energy, E. is the

value of £ in each of the corresponding infinitesimally small volume AV. The surface

integral on the left of Eq. (5.10) is drawn from the Gauss theorem and is known as the
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acoustic power. This acoustic power includes the power emitted from the sound source
and the power lost due to the sound energy absorbed by and/or transmitted through the
walls. If we denote P as the acoustic power of the sound source, P, as the acoustic power

dissipated at the wall, then Eq. (5.10) becomes

v

<
SISy
It
3l
|
O

(5.11)
The double bar over each of the quantity denotes the spatial average of the runniﬁg time

average of the corresponding quantity. From the statistical assumptions, I’T 1s dependent
on £ and room properties with the expression ]—3‘; = %(Z a,.A‘.)E, a; is the absorption

coefficient of the wall covering with area 4;. It has the expression q; = (1-Q)( 1+Q) ang

Qi is the spherical wave reflection coefficient of the corresponding wall covering

material, ¢ is the sound speed in air. Substituting }? = %[Z a,-A,.JE into Eq. (5.11), we

obtain

BE c = =
V—+=%a4 |[E=P.
ot 4(Z ' ’]

After the waves have made a hundredth reflections from the wall, the source power ig

turned off (i.e. ; = 0 at ¢+ =0). The solution of the above differential €quation becomes,

E(r)=?:exp(—ij, T= cfZ.A , (5.12)

T

where E, is the spatial average of the running time average of the acoustic €nergy at the

instance when the source is turned off. The reverberation time Too is the time when
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=10"". Putting ¢ = Ty into Eq. (3.12), we have Ty = (6In10)7. This eXpression is the

| e

Sabin-Franklin-Jaeger theory for the reverberation time T,

3.3 Acoustic Field with Stratified Fluid, Mean Velocity or Entropy Variations

There are many extensions of the time-domain approach beyond the frequency-domain
approach in the prediction of sound fields. For example, the density of air could vary with
height at the outdoor sound propagation. A wind current might be blowing over an
acoustic field. Acoustic propagation in air might have an entropy change. For fluid with
entropy change, heat transfer and viscosity become factors in the sound propagation.
More precisely, acoustic pressure will depend on both fluid density and entropy.
Henceforth, the governing equlations of acoustics with entropy change will be the mass
conservation equation, the momentum transport equations and the €nergy transport
equation. All of the situations m'éntioned above cannot be easily dealt with by the
ﬁetjuency-domain approach. Therefore, the time-domain numerical approach 1s a general

approach to cope with all the realistic situations.
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Chapter 6  Closing Remarks and Suggested Future Work
Time-domain impedance boundary condition has been derived for the three-parameter
frequency-domain impedance model. Numerical results using this time-domain
impedance boundary condition agree well with the frequency-domain predictién of
sound pressure level. |
The Laplace transform method has been applied to the one-dimensional piston
problem with impedance boundary condition. The resulting seﬁes is a divergent series
that 1s not uniformly valid for all time. Howe.ver, by truncating the divergent series to
a finite series, it approximates the true solution with accuracy dependent on the
number of terms in the finite series.

The demonstration of using the three-parameter time-domain impedance model to
predict sound fields reflected from a material characterized by the two-parameter
frequency-domain impedance model is successful. Thus shows that by implementing a
fixed impedance model in the C3N scheme, the numerical code can surmise sound
fields reflected from any other surface with a different impedance model provided that
the sound wave is trav_eling at a single frequency.

For the suggested future work, the time-domain numerical predictions on acoustic
problems with broadband frequencies sound source should be attempted. Sound
propagation problems predicted by the C3N scheme with fluid density stratification,

mean flow or entropy variation should further be investigated.
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Appendix A Derivation of the Weyl Van der Pol Formula
Sound pressure level predicted by the Weyl Van der Pol formula has been apphed
successfully to sound wave reflected from a soft wall. The Weyl Van der Pol formula
is the solution of the 3-D acoustic wave problem with impedance boundary condition.
The theory assumes a pulse as the sound source. The expression Xx)Xy)Xz-h;)K1-07)
is a mathematical function which corresponds to a physical pulse starts at position
(0,0,45) and at time ¢ = 0", §is the Dirac delta function and hs is the source height.
Sound wave propagation in time-domain is modeled by the wave equétion. On the
plane z = 0, the impedance boundary condition is imposed. In all the other directions,
free boundary conditions or the Sommerfeld radiation condition at infinity are
described. The mathematical problem that accounts all of the above statements may

be formulated as

by =" (P +4,, +4.)=0, —w<x<w, -w<y<owm, z>0, t>0, (A.la)
#(x,y,2,0)=0, (A.1b)
¢.(x,3,2,0") = c*6(x)6(y)5(z - h,)8(t - 0*), (A.1c)
— ik(x,y,0,k) = Z, (x,v,0,k) (A.1d)
lim g(x, y,2,1) = Nim g(x, y,2,8) = lim ¢(x, y,2,1) = 0. (A.le)

Now define a temporal integral transform on ¢ as
¢ = [pexp(~ikct)dr . (A.2)
0
Define a two-folded Fourier transform in x and yas

$ = Tj’¢ expl-i(k, x+ k, y) Jxdy . (A.3)

—uC—a

By applying the transforms of Eq. (A.2) and (A.3) to Eq. (A.1), we obtain

B + (k> ~k? —k*)F =-6(z 1), (A.4a)
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~ kG (k, &, ,0,k) = Z§, (k, &, 0,k), (A.4b)
lim (k.. k,,2,4)=0. (A 40)

Define a transform in z by -
é = IE exp(—ik,z)dz .
4]
Applying the above transform to Eq. (A.4), we obtain
(k* —k —k} —k2)§ = —exp(—ik,h,) +i(k, - kB)P (k, . k,,0,k),
where = 1/Z is the admittance of the acoustic surface. Hence

_ —exp(=ik,h,) +i(k, - kB)§ (k. k. 0,k
Bk ko k)= xp(tz,z) 1(22 f”’f‘ y )_
L T

(A.5)
Define an inverse Fourier transform in 2 as,
'{5 1 Téﬁ_ex (ik,z)dk
27 - PUk.2)ak, .
Applying the above transform to Eq. (A.5), we obtain

Bk, k), 2,k) = —2—;{— [~ expik, | 2=h, )+ ik, ~kB)§ (k.. k,.0, k) exp(ik,z)], (A.6)

z

where

Substituting z = 0 into Eq. (A.6), we obtain

~ Lexp(ik,h,)
Bk, k,,0,k) =—k‘3——-.
.+ k3

Hence Eq. (A.6) becomes,

i

2k

z

P, k) 2,k) =

2kp ]exp(ikz (z+h, ))J. (A7)

ik, |z=h )+ 1-
[CXP(IZIZ ,D[ PRy

Define a two-folded inverse Fourier transform in k. and k, as
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n I oy @ - )
b= [ [# explite x+ &, ),k
Applying the above transform to Eq. (A.7), we obtain

Z_hs ’)

- i “rhrexp(ik, |
Px, v, 2,k = — L{ p dk dk,

H

i tirexplik,(z + )
tes [ p dk, dk,

~—C0— 00 z

w

P { j-——zﬂ—-exp(ikz (z+h,))dk,dk, (A.8)

8% 21 k. (k,+kf)

The first integral on the right is the direct wave term that has been evaluated by
Brekhovskikh.'® The second integral on the right is the reflected wave term that can
be levaluated by residue theorem from complex analysis. The third integral on the

right corresponds to the surface wave term which is evaluated by Chien and

Soroka.'"'? The result of Eq. (A.8)is

_ exp(ikR,) exp(ikR,)
p=— = +0— R, (A.92)
Q=RO)+(1-RONF(p,), ' (A.9D)
_ cos(@)—- Jij |
'R(B - cos(9)+ﬂ ' (A.5¢)
F(p,)=1+iN7 p, expl- p? Jerfe(~ip, ), (A.9d)
p, = —;-ikRz [B+cos(8)]. . | (A.9¢)

The above equation is known as the Weyl Van der Pol formula. The symbol (*) on ¢
indicates the frequency-domain solution is eliminated for clarity. Time dependence of
exp(-iax) is assumed. The geometry and the notations of the theoretical derivation are

indicated in Fig. A.1.
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< »

Fig. A.1. Geometry used in theory and experiment. 5 denotes the position of the source at height A R
is the position of receiver at height h,. " 1s the separation distance between the source and the receiver,

R, is the path length of the direct wave, &, is the path length of the specularly reflected wave, ?is the
angle of incidence from the normal axis.

If the receiver R is located at position (x,,z) and the source S is at (0,0,4;), then

R = \/xz +y2 +(z—hx)2

R, ='\/x2 +y P +(z+h)
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Appendix B Construction of the 2-D Weyl Van der Pol Formula

The Weyl Van der Pol formula is designed as a solution of the 3-D wave problem.
Sometimes a 2-D wave problem is being studied for theoretical importance. A 2-D
sound wave has the zeroth order Hankel function distribution. If the spherical wave
reflection coefficient is assumed in the 2-D reflection from an impedance wall, then
the solution is the same as Eq. (A.9) except Eq. (A.9a) may be replaced by

¢ = H, (kR )+ OH,(kR,). | B.1)
Hy(.) 1s the zeroth order Hankel function. Eq. (B.1) and Eq. (A.9b) to Eq. {A.9¢) is
termed as the 2-D Weyl Van der Pol formula. The evaluation of the spherical wave
reflection coefficient Q in Eq. (A.9) involves the complementa_.ry error function erfe(-
ipe). A complete description on the evaluation of this complementary error function

erfc(ipe) is mentioned in Chien and Soroka.'? The details are repeated below.

Define

w(z) = exp(—- z? )erfc(— iz),

wherez=x+iy. Ifx>6ory>6, .

[ 05124242 0.05176536
w(z) =iz| — +— +7(z),
28 -0.2752551 z? -2.724745
In(z)| <10 . [fx>390ry>3,

0.4613135 . 0.09999216 N 0.002883894
z? —0.1901635 27 -1.7844927 2% -5.5253437

w(z)=iz( ]+€(Z),

|e(2)] <2x 107 Ifx <0 ory <0,

w(—x+iy)=w(x+1y),

wlx ~iy) =2 4.=:xp(y2 -x* Icos(ny) +isin(2xy)]- w(x + iy},

For smaller absolute values of x and y,
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L 2 0 )2n+|
ot O

7T w=0
erfc(~iz) =1—erf(—iz),
w(z) =rexp(— z’ )erfc(—iz) .

A sample “C” program for the evaluation of the 2-D Weyl Van der Pol formula of Eq.

(B.1) and Eq. (A.9b) to Eq. (A.9¢) is included as follows.

s
Header file “complex.h”

W R
typedef struct complex complex;

complex Czero();

complex Cone();

complex CA(complex, cornplex)
compiex CS({complex,complex);
complex CM(complex,complex);
complex CD(complex,complex);
complex CC(complex);

complex Cexp (complex);

#include "sub.h"”

struct complex
{ _
double real;

double imag;

}

/¥ B R
Header file “sub.h”
HHEH

complex erfl (complex);

complex erf2 (complex);

complex erf3 (complex);

complex erfcc (complex);

compiex HankelQ (double);

complex weyl (double,double,double,double,double);

L R R R R R

Subroutine “fmain.c”. This returns the excess attenuation.
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#include <stdio.h>
#include <math.h>
#include "complex.h"

main ()

{
double f, t, hs, hr, r, df, dfh, fmin, fmax, L, EA;

complex K;

L=0.01,

hs =16.0*L;

hr =4.0*L;
r=100.0*L;
t=256.0%L/340.0;

df = 100.0;

dfh = df/2.0;

fmin = 500.0;

fmax = 20000.0+dfh;

for (f=fmin;f<fmax;f=f+df)

{
K = weyl(f,hs,hr,rt); ,
EA = sgrt(K.real*K real+K.imag*K.imag);
EA =20.0*logl0(EA);

printf ("%lf\n", EA):
}
}

#include "complex.c”

I
Subroutine “complex.c”
B>
complex Czero ()

complex zero;

zero.real = 0.0;
zero.imag = 0.0;

return zero;

}

complex Cone ()

complex one;
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one.real = 1.0;
one.imag = 0.0;

retum one;

}

complex CA (a,b)
complex a, b;

{

complex c;

c.real = a.real+b.real;
c.lmag = a.imag+b.imag;

return c;

}

complex CS (a,b)
complex a, b;

{

complex ¢;
>

c.real = a.real-b.real;
c.lmag = a.imag-b.imag;

return ¢;

}

complex CM (a,b)
complex a, b,

{

complex ¢;

c.real = a.real*b.real-a.imag*b.imag;
c.imag = a.real*b.imag+a.imag*b.real;

return c;

}

complex CD (a,b)
complex a, b;
{
complex c;
double temp;

temp = b.real*b.real+b.imag*b.imag;

c.real = (a.real*b.real+a.imag*b.imag)/temp;
¢.imag = (-a.real*b.imag+a.imag*b.real)/temp;
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return c;

)

complex CC (a)
complex a;

{

complex c;

c.real = a.real;
c.lmag = -a.imag;

returmn c;

}

complex Cexp (a)
complex a;

{

double temp;
complex ¢;

temp = exp(a.real);
c.real = temp*cos(a.imag);
c.lmag = temp*sin(a.imag);

return c;

}

#include "sub.c"

(¥ BB
Subroutine “sub.c”

P |

#include "erfl.c"
#include "erf2.c”
#include "erf3.c"
#include "erfcc.c”
#include "Hankel(Q.c"
#include "weyl.c"

[ R B
Subroutine “erfl.c”

HHHHHHHHRH R R

complex erfl (pe)
complex pe;

{

complex w, z, z2, zz, a, b, k;

Z = pe;



z2 = CM(z,z);

zz.real = z.imag*z.imag-z.real*z.real,

zz.imag = 2.0*z.real*z.imag;
w = Czero(), '

areal =0.5124242;

a.imag = 0.0;
b.real = 0.2752551;
b.imag = 0.0;

w = CA(w,CD(a,CS(z2,b)));

a.real = 0.05176536;

a.imag = 0.0,

b.real = 2.724745;

b.imag = 0.0;

w = CA(w,CD(a,CS(z2,b)));

k.real = 0.0;
k.imag = 1.0;

w = CM(k,CM(z,w));

if (pe.imag<0.0)
{
a.real = 2.0,
a.imag = 0.0;
k = CM(a,Cexp(zz)),

if (pe.real>0.0) w = CC(CS(k,w));
else w = CS(CC(k),w); :

1
else if (pe.real<0.0) w = CC(w);

return w;
}

[ R R
Subroutine “erf2.c”
HHH BRI

complex erf2 (pe)
complex pe;
{

complex w, z, z2, zz, a, b, k;

Z = pe;
z2 = CM(z,z),

zz.real = z.imag*z.imag-z.real*z real;
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zz.imag = 2.0*z.real*z.imag;
w = Czero(),

areal =0.4613135;

a.imag = 0.0;

b.real = 0.1901635;

b.imag = 0.0;

w = CA(w,CD(a,CS(z2,b)));

a.real =0.09999216;

a.amag = 0.0;

b.real = 1.7844927;

b.imag = 0.0;

w = CA(w,CD(a,CS(z2,b)));

a.real = 0.002883894;
a.imag = 0.0;

b.real = 5.5253437;

b.imag = 0.0;

w = CA(w,CD(a,CS(z2,b)));

k.real = 0.0;
k.imag = 1.0;

w = CM(k,CM(z,w));

if (pe.imag<0.0)
{
areal =2.0;
a.imag = 0.0;
k = CM(a,Cexp(zz));

if (pe.real>0.0) w = CC(CS(k,w));
else w = CS(CC(k),w);

}
else if (pe.real<0.0) w = CC(w);

return w;

}
VB

Subroutine “erf3.c”
BRI

complex erf3 (pe)
complex pe;
{
int n, NumTerm;
double pi, factn; )
complex z, z2, pe2, kw, K, k, w;
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pi=3.14156265359;
NumTerm = 100;

K.real = 0.0
K.imag =-1.0;

z = CM(K pe);

22 = CM(z,2);
pe2 = CM(pe,pe);
k=z;

W=z,

factn = 1.0; :
for (n=1;n<=NumTerm;n++)
{ )
k = CM(k,z2);
factn = factn*n;

K.real = factn*(2.0¥n+1.0);
K.imag ='0.0; ,
if (n%?2) '=0) K.real = -K.real;

w = CA(w,CD(k,K));

}
K.real = 2.0/sqrt(p1);
K.imag = 0.0;

w = CS(Cone(),CM(K,w));
w = CM(Cexp(CS(Czero(),pe2)),w);

return w;,

)
PR

Subroutine “erfce.c”
TR AR

complex erfce (pe)
complex pe;
{
double x, y;
complex w;

x = fabs(pe.real);
y = fabs(pe.imag);

if (x>6.0) || (v>6.0)) w = erfl (pe);
else if ((x>3.9) || (y>3.0)) w = erf2 (pe);



else w = erf3 (pe);

return w;

}

P R B T R R R R R
Subroutine “Hankel0.c”. This returns asymptotic form of the zeroth-order
Hankel function.

T e e

complex HankelQ (z)
double z;

{
double p1, J, Y, k;
complex H;

pi=3.14156265359;
k = pv/4.0;

I = sqrt(2/pi/z)*cos(z-k);
Y = sqrt(2/pi/z)*sin(z-k);

H.real =1];
H.mag =Y,

return H;
}

P R R R R R R R R B R R
Subroutme “weyl ¢”. This returns the ratio of the total SPL to the direct SPL.

complex weyl (f hs,hr,r,t)

double f,hs,hr,r,t;

{
double R1, R2, k, wt;
double pi, theta, omega, temp,
complex K, cosT, dexpiwt;
complex Z, W, beta, pe, R, F, w;
complex phu, direct, reflect;

= 3.14156265359;
k =2.0*pi*f/340.0;

R1 = sqrt((hr-hs)*(hr-hs)+r*r);
R2 = sqrt((hr+hs)*(hr+hs)+r*r);

theta = atan(r/(hs+hr));

Z.real = 0.436*sqrt(38000.0/f);
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' Z.imag = Z.real+19.48*15.0/1;
beta = CD(Cone(),Z);

cosT.real = cos(theta);
cosT.umag = 0.0;

R = CD(CS(cosT,beta),CA(cosT,beta));

K.real = sqrt(k*R2)/2.0;
K.imag = K. real;
pe = CM(K,CA(cosT,beta));

w = erfcc(pe);

K.real = 0.0;
K.imag = sqrt(pi); .
F = CA(Cone(),CM(K,CM(pe,w)));

W = CA(R,CM(CS(Cone(),R),F));

omega = k*340.0;
wt = omega*t;

direct = HankelQ(k*R1);
reflect = HankelO(k*R2);

dexpiwt.real = k*0.01*sin{wt);
dexpiwt.imag = k*0.01 *cos(wt);

phi = CA(direct,CM(W reflect));
/*
phi = CM(phi,dexpiwt);
®/

return CD(phi,direct);
1



