Q THE HONG KONG
Q' db POLYTECHNIC UNIVERSITY
v T T AR

Pao Yue-kong Library
BIERIESE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

A Paradigm for the Integration of

Real-time Monitoring and MRP II

by
Mr. Kwok-Cheung Lee
Department of Manufacturing Engineering

The Hong Kong Polytechnic University

A thesis submitted to
The Hong Kong Polytechnic University
in accordance with the regulation

for the degree of Master of Philosophy

February 1999

,‘?b Pao Yue-Kong Librar
< y
Q(*/ PolyU « Hong Kong

Abstract of thesis entitled ‘A Paradigm for the Integration of Real-time Monitoring
and MRP I’

submitted by Mr. Kwok-Cheung Lee, Department of Manufacturing Engineering

for the degree of Master of Philosophy

at The Hong Kong Polytechnic University in February 1999,

Abstract

The objective of this research is to design a methodology for integrating
Manufacturing Resource Planning (MRP II) systems and Supervisory Control and
Data Acquisition (SCADA) systems. The aim- is to enhance data integrity, data
consistency and data accuracy of the execution phase of MRP II applications through

the use of real-time data provided by real-time data capturing systems.

Although there are numerous methods established to enable real-time data in MRP II
applications, these methods are application dependent and none of them can be
considered as a general methodology. This is further hindered by the unlimited
hardware and software standards in the past; it is difficult to provide a solution in an
infinite, diverse, dynamic and unpredictable environment. With the advancement of
software engineering technology, a universal standard (i.e. OLE for Process Control),
for data interchange between ficld devices and software was available in the late 90’s.
This evolution created a finite environment for this research that has not been possible

in the past.

Early studies indicate that integration is not only difficult to construct properly for the
first time, but more significantly, that it is often difficult to specify correctly the first
time. To overcome these pitfalls, the proposed integration methodology is based on
both theoretic and pragmatic premises. The integration methodology contains three
key elements: a data model, a collection of modeling heuristics, and a method of
implementing the designed model. The model is a data representation of real world
objects and operations. It employs the Hierarchical Object-Oriented Design (HOOD)
tree as the core data structure. The HOOD tree is devised from the HOOD method
that 1s a proven t.echnology for designing real-time mission-critical application in both
the academic and the industry field. The complexity of the model is mirrored in the
size and structure of real-world entities. Hence, the proposed methodology provides a
consistent manner to form the data model. Modeling heuristics are apparent to
transform the HOOD tree from a physical model to a logical model. Various
optimization strategies that are based on the rule of inheritance and polymorphism are

also introduced in this research for the effective use of a data model.

To validate the proposed methodology, case studies were carried out with the help of
a collaborated company as a Teaching Company Scheme project. The results
indicated that the proposed methodology is a feasible solution to integrate MRP II
systems and SCADA systems. Two industrial projects are successfully implemented

based on the integration methodology developed in this research.

i

Acknowledgements

The author expresses his gratitude to Dr. W.H. Ip of the Hong Kong Polytechnic
University, and to Dr. K.I.. Yung of the Hong Kong Polytechnic University, who

were directly involved in and supported this project.

Special thanks are due to Mr. Simon Lee of GRD Engineering (H.K.) Ltd. for his

many useful technical discussions and recommendations.

iii

Table of Contents

ADSITACE ..ottt s et b bt i
ACKNOWIEAZEIMENES. ... it sas s sa s e e se s ens i
Table of CONENLS.........ooiieiiiiiri et es s aa b e e e iv
LASEOF FRZUIRS ..ottt ettt st r s e e s ee b n s s e enaeasnees vi
GIOSSATY ettt ettt e e et et n e e s e e r e s e e b S ad e Rt e n s vil
1. IBTOAUCHION. ...ttt et bs sttt a s st e e na e 1
11 The PIOBIEM.......ciie et cab s s 1
1.2 Identification of the Problem Area ... 2
1.3 Industrial Survey and Results........occoie 3
1.4 Overview of the ThesiS.......veoiiiririiicicr s e 6

2. LIETAIUIE SUIVEY oottt sar e st s s s sas e s s et e e nsbs 7
2.1 Manufacturing Resource Planning (MRP II).............coois 8
2.2 Supervisory Control and Data Acquisition (SCADA)..........c.coeiiiiii 12
2.3 Existing Integration SOIUHONSoooveeiiiiiiiiiniiininii e e 15
2.4 Hierarchical object-oriented design (HOOD)......cccccovviimininininniicniee 20
2.5 OLE for Process Control (OPC).....c.ooiveiiciciiriiinnniiisciec e 24

3. The Proposed MethodOIOZY.....cccccoreieiiieeeee e cabe s 26
3.1 Design HypPothesis. ... rreenene e reessene s ss e s 26
3.2 System Integration Methodology ..o 29
3.21 Problem Tdentificationcciiiiniicniiiniiinnince s 33
3.2.2 Formalization of the physical model ... 34
323 Formalization of the logical model..............ciiiiis 36
324 Formalization of the solution........c.ccccociiciniiiiiiniiie 37

3.3 Knowledge Representation...........cococvevieririieniccninciiinenensitesnn s 39
34 Data Model ..ot 41
34.1 Physical I/O POINESoocciriiiieeiecener e 42
342 Logical T/O POINLS....eiiveeeienceece et e e s e 42
343 Data Linkage Points........c.oooviiiiiiieiiieiinceceree e ne s 43

3.5 Sample Physical Model ... 44
3.6 Sample Logical Model.........cocoivieninininiicicrecrnri i e 45
3.7 INNEIIIANCE ..ceviiiirreee e st ssb e e s e e e s 47
3.8 PolymoOrphiSM.. ..ot et st 51

4. ImpIeMentationc.ooiiiiiiiee e e 54
4.1.1 The COnroller......ocvrii et 57
4.1.2 The DISPatCREr....ccciovieiriieeeie et sne e 58
413 The EXECULOT....cviiiii it e 59
4.14 The MOMIEOT ...ttt e 60
4.1.5 The Intelligent AGENt.....cccoviiiiiriiiiiiieiee e 61

5. S STUAY oottt ae e s e a e ae s aenreer e s e neesasenee e 63
5.1 [Case Study I] Statement of the Problemcocceevieeniinciniicincne, 63
5.2 [Case Study I] Analysis and Structuring of Requirement Data................... 64
3.3 [Case Study I] The Physical Model..........cccovmniiiiiiniicee 65
5.4 [Case Study I] The Logical Modelooeiiiiniiiieinennceeecre e 65
5.4.1 Objects IdentifiCation.........cccooii it 65
542 A Logical Data Model ..ot e 67
543 A Logical Data Model with Inheritance and Polymorphism............... 68

v

544 Sample Command SCIIPL......cooviriiiiiienrn e e 69

545 Sample OPC Implementation ... 69
54.6 Execution of the Model ... 70

5.5 [Case Study II] Statement of the Problem ... 71
5.6 [Case Study II] Analysis and Structuring of Requirement Data.................. 72
5.7 [Case Study II] The Physical Model............cocociiiiniiiie, 73
5.8 [Case Study II] The Logical Model.........cccooceiiiiiiiiiicciaciaenc e 73

6. RESIIES. ettt b e et 74
6.1 Industrial PrOJectScooreriiriinioiieieie ettt e 74
6.2 System CompleXity.......ccoeciiierereiiriesesrrerereesseste e r s eas et saeeneens 74
7. DHSCUSSIONuiieieiecicttit ettt ee st eae s ee s s s s s e e s anssencneeneeen 76
7.1 Advantages and Limitations of the Methodologyccccooovviiiiiniiniinnnncne 76
7.2 Benefits of the Methodologyccocoiririiiriii e 79
7.3 FUUFE WOTK ..ot see st oo a e e e sne 80
8. CONCIUSIONetni ettt st nssesae e s s senesasneressenentas 82
9. Statement of Originality and Contribution to Knowledge.........cc.coveviiurienivinncnne. 85
10. BiblioIapRY ..ot et 58
11. APPENAIXES .oiiitiireeiimeierireieenerseereseeseeseesasrateasassssesssestessssessessssssesnsesssnsseesenases 101
11.1 Survey Sample ..ot e sr e s e 102
11.2 Sample Shop FIoor Layout........cccoceicriiinrinieneieeneeveenesaereereeemrnvessaeas 106
11.3 Sample HOOD TTEEc..coieiieiiiiiiinc ettt st rnes e neeeas 107
11.4 Sample Source Code (Auto Generation)cccovvrevererrerereresescesneeeereeenes 111

List of Figures

Figure 1: Distribution of software applications. ..o 4
Figure 2: Average System IeSPONSE tIE.cceveeirimrrvirenesresiaeererasresreeseesreerressesenaeas 4
Figure 3: The most important target of the organization...........c..cccooeiivvveecercvenenreennns 5
Figure 4: The importance of data...........cccoceiiiiiniiiircecc e e 5
Figure 5: A typical MRP I SYSEEM......oviiiiiiiieiiieeic et 9
Figure 6: A typical SCADA SYSIEIM. ..cccooieiiiiiieierieceeeeree et ev e e sve s saesnesnenens 13
Figure 7: System Integration — A proprietary SystemM........cccoooovevecuereerecrereeesrneesneenenns 16
Figure 8: System Integration — Electronic Data Interchange (EDI)...........ccccoveveeeee. 16
Figure 9: System Integration — Application Program Interface (API)..........cccoeenvnee. 17

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:

System Integration — Dynamic Data Exchange (DDE).............ccccoocveen.n. 17
System Integration — Direct access to database.cc.ccoeeeevierieiicnicene, 18
System Integration — Transaction File.ocooevivireniiieeeciiceeee 18
System Integration — Global Object.........cceceuiiiiniiinrerieeeeece e 19
A typical object MOdel.oovoiieiiiie e 20
OPC AIChitecture.o.ooviteeiriieeenerce e e s 24
OPC Servers and OPC CHENDLS.cocoreriivueeeeeieeeeesiciee e essess s esesne e 25
System Integration MethodolOgY.......cooveueeereeereeeereeieeeerees e 29
COdE GERETALION.ceuieeieeieieeesreete et et se e s s e e e e eeeeee e essaseaes 38
Knowledge model to integrate MRP I and SCADA..........cccoeevvvveceenennn. 39
Data Model to integrate MRP Il and SCADA.cccocovevvvveveerrennne 41

Core HOOD Tree — A physical model.........cccooiiiiiiniiiniiicne. 44
HOOD Tree with attributes and operations ~ A logical model.................. 46
Sample of inheritance and polymorphism..........ccccocevececiececeieceeeea 49
The eXecution SYSEEML.ccouoiiirerrerccreetet et ne 56

The Controller.c.covirieiiierietee e ene e e e nenee 57
The DispatCher.coooviiiniiecrn et ettt e eeabeaeas 58
The EXeCutor. ..c..ovvviviiiiieieie e, e e 59

The MORIOL. ...covieeicieee ettt r e ee e e s s 60
The Intelligent AZEnt.ccocoeiimiriinecrieieee et e e 61
Case Study I: Shop Floor layout. ettt n s enneaes 64
Case Study I: The Physical Model.........ccccovueririinciiceiceneeeca e 65
Case Study I: Object Definition.ccovvevveeceeenriis e 66
Case Study I: Logical Model (I)....ccooeovioiieiiiieieiceeeeeeeee e 67
Case Study I: Logical Model (IT)........coovrvrommieiiiiieiececceiceeec s 68
Case Study IT: Scope 0f WOTK........ouoveieieinieiee e 71
Case Study II: Shop FIoor 1ayout...........coooveriureiieieiiieieceeeeeeee e 72

Case Study II: The Physical Model...............cccooovevireeririeeceeceeceevas 73

vi

Glossary

APS
AS/RS
CASE
CIM
CORBA
DDE
DFD
DOOD
EDI
ERP
ESA
HOOD
JIT
LTR
MPS
MRP
MRP 11
OLE
00
OOAD
00D
OPC

PLC

Advanced Planning and Scheduling
Automated Storage/Retrivel System
Computer Aided Software Engineering
Computer Integrated Manufacturing
Common Object Request Broker Architecture
Dynamic Data Exchange

Data Flow Diagram

Distributed Object-Oriented Database
Electronic Data Interchange
Enterprise Resource Planning
Eeupoean Space Agency

Hierarchical Object-Oriented Database
Just In Time

Langage Temps Reele

Master Production Schedule

Material Requirement Planning
Manufacturing Resource Planning
Object Linking and Embedding
Object-Oriented

Object-Oriented Analysis and Design
Object-oriented Design

OLE for Process Control

Programmable Logic Controller

vil

POC
RTU

SA&D

SCADA

STD

Plant Operation Control

Remote Terminal Unit

Structured Analysis and Design
Supervisory Control and Data Acquisition

State Transition Diagram

viil

1. Introduction

1.1 The Problem

To complete effectively in the global marketplace, manufacturers are being faced with

challenges including:

* Lowering operating costs

* Integrating with the supply chain
¢ Reducing product time-to-market
* Improving product quality

* Decreasing cycle times

* Increasing productivity

* Improving customer service

* Improving regulatory compliance

In order to meet today’s manufacturing challenges, decision makers throughout the
enterprise must have accurate and timely production information to allow them to
make effective decisions. "All too often decision support systems do no provide timely
information. Most of existing applications (e.g. Material Requirement Planning
(MRP) software, Manufacturing Resource Planning (MRP II) software, Enterprise
Resource Planning (ERP) software, etc.) are batch driven, giving reports on the status
of production as of the last shift, day or even week. Obviously, this is not an
appropriate way to manage a manufacturing enterprise. The need of a real-time

manufacturing management system is clear.

Furthermore, real-time data provides a critical element of supply chain integration.
MRP II software, Electronic Data Interchange (EDI) standards and Advanced
Planning and Scheduling (APS) software have gone a long way toward linking the
supply chain. Manufacturing enterprises can plan their business effectively with the
above software systems. However, they are weak in executing their plan without the

help of real-time data.

1.2 Identification of the Problem Area

Today’s manufactures face the task to integrate real-time shop floor data into their
business systems in order to have a better control to their business. The task of
integrating shop floor data into their business systems is made difficult, since
integration strategies, standards and tools are hardly available in the market.
Moreover, the task itself is not an all-in-one product. Investment in knowledge, time,

cost and tools is essential to achieve the integration goal.

From a technical point of view, basic components of a real-time manufacturing
management system are available from various manufacturers. However, those
components are working in their own domain and they are isolated from each other

for more than ten years. The problem can be identified into three main areas:

First, the original design and implementation of MRP II system does not facilitate the

capture of real-time data from shop floor automatically. Instead, MRP II system is

targeted on the planning stage of the manufacturing cycle. The execution stage of the

manufacturing cycle is usvally omitted in the scope of MRP [I applications.

Secondly, data capture systems such as Supervisory Control and Data Acquisition
(SCADA) system has made data available electronicaily, but they are not designed for
manufacturing management. SCADA system is a comprehensive data capturing
application. It is a computerized system for monitoring and for controlling shop floor
equipment. SCADA system is widely used in process manufacturing. However,

SCADA system concentrates on process conirol instead of shop floor management.

Thirdly, there are different types of shop floor devices utilized to communication with
other systems. This technical aspect is the main barrier to implement real time data in
the manufacturing management application. In the past, manufacturers have to
develop a special driver for each shop floor device to communicate with their
enterprise information system. This approach is ineffective because every solution
will be a proprietary system, system components cannot be reused and the solution

cannot be generalized.

1.3 Industrial Survey and Results

A survey on the need of a real-time manufacturing system was performed in this
research. The survey was prepared and organized by the Hong Kong Polytechnic
University and the collaborated company — GRD Engineering (H.K.) Ltd. under the

Teaching Company Scheme project in which [am the research assistant. The target

of this survey is to identify the importance of real-time data from the view of Hong

Kong’s manufacturers.

The survey was carried out in the 4™ quarter of 1997. One thousand manufacturers in
Hong Kong were randomly selected from the customer database of the GRD
Engineering (H.K.) Limited. The mode of survey was by mail and followed up by
telephone interviews. A total of 238 out of 1000 questionnaires were returned. The
targets of this survey are the executives and senior managers of Hong Kong’s

medium-size manufacturers. The questionnaire can be seen in Appendix 11.1.

0 3 Jovem ok
= =
.EE”E % £, 832
= = Q
c 9 S5 wsgd
2] < .SE.E 93 0
[Q 36 £ %3]
4 te @
=]

Figure 1: Distribution of software applications.

c3B888283y

Figure 2: Average system response time

From the analysis, we can see that half of the manufacturers have implemented
manufacturing applications and 9% of them have data capturing systems (see figure
1), but only 2% of them can obtain real-time data through their system (see figure 2).
Over one third of them have to take more than one day to identify their production
status. It shows that manufacturers are aware of the importance of planning, but they
are weak in keeping track of their production plan. This may owing to the reason of
around 70% of manufactures have their factories in main land China and
communication across the border is the major problem. The resuit of survey shows
that manufacturers are well aware the need of accuracy and timing of data. They are

prepared to effectively make use of production information.

Reducing
incressing stock level
production and WIP

rnanagement\ 9%
inforrmation .
41%
Reducing
Increasing production
quality, cost
productivity 44%
and capacity
6%

Figure 3: The most important target of the organization

Quartity of
Data
Accuracy of 14% "
Data Quality of
39%

Figure 4: The importance of data

From figure 3, we know that manufacturers want to have more production data to
manage their business in order to reduce the production cost. Their need of accurate
and up-to-date production data is shown in figure 4. However, from the result of
figure 2, it shows that most of the manufacturers are not achieving what they want.
According to the answers of the open question in the questionnaire and through the
telephone interview, we identified that the lack of real-time production data in the
management level is the main reason behind the problem. Problems are not being
able to report to the management in time and this aspect delay the management to
make the correct decision. This research targets to close the gap between the
production level and the management level through the integration of MRP Il systems

and real-time data.

1.4 Overview of the Thesis

This thesis is organized in nine chapters. Chapter one gives an introduction to the
problem and the problem area is identified with an analysis on the survey results.
Literature survey on previous researches and nowadays technologies are provided in
chapter two. The proposed methodology for integrating MRP I1 systems with real-
time data is presented in chapter three. Chapter four describes the approach to
implement the integration methodology. Two case studies are presented in chapter
five. Research results are stated in chapter six. Chapter seven discusses the
advantages and limitations of the proposed methodology. Chapter eight concludes
works and results in this research. A statement of originality and contribution to
knowledge is given in chapter nine. Finally, bibliography and appendixes are

attached at the end of this report.

2. Literature Survey

Five major areas have been investigated in the literature review. The five areas are
Manufacturing Resource Planning (MRP II), Supervisory Control and Data
Acquisition (SCADA), existing integration solutions, Hierarchical Object-oriented
Design (HOOD) and OLE for Process Control (OPC). This research first identifies
the nature, needs and weakness of both the MRP II system and the SCADA system.
Then, existing integration solutions are reviewed and evaluated. Finally, HOOD
method is introduced as the core design concept and OPC is applied as a proven

implementation method.

The review on MRP II aims to identify problems- in the implementation stage and the
execution stage of a manufacturing software system. The discussion on SCADA
systems stress on their impacts on changing the mode of software automation.
Existing integration solutions are then described and their inadequacies are identified.
The review on HOOD illustrates the hierarchical design concept and usage of object-
oriented technology in real-time applications. Literatures on OPC demonstrate that it

is a feasible technology to implement the integration.

2.1 Manufacturing Resource Planning (MRP li)

Material Requirement Planning (MRP) is a calculation technique for planning
purchase orders and manufacturing orders (Takana, 1992). MRP 1l is an extension of
MRP. By linking other business management applications to MRP, MRP II becomes a
method for effective planning of all resources of a maﬁufacturing company. MRP [l is
a systematic approach to plan production in complex multistage manufacturing
systems, Most of the manufacturing application software is based on the concept of
MRP II as the central application. MRP II is the dominant application software

system for today’s manufacturing management (Turbide, 1995).

The major inputs of MRP II are the master production schedule (MPS), the product
structure records and the inventory status records. The MPS is a statement of the
orders for finished goods. It indicates the quantity of each finished good that needs to
be produced by a time period. The MPS usually involves the purchase order released
from the customer and the work order to be issued to the shop floor. The product
structure records or the bill of material (BOM) is a list of components and material
that required to produce a finished good. It contains information on the relationships
of parts, components and assemblies. It also shows the quantity of each component
and the sequence to assemble a finished good. The inventory status records contain

the data of on-hand inventory, inventory location and on-order inventory.

The outputs of an MRP system includes purchases orders for raw material, work
orders for shop floors, reschedule notices for job review and capacity requirements for
labor arrangement. Figure 5 illustrates a typical MRP II system.

8

Forecasts

_A/

Customer
Orders

Inventory Master Bill of
Status Production Materials
Records Schedule
. MRPUI
Purchase Work Orders Reschedule Capacity
Orders Motices Analysis

Figure 5: A typical MRP II system.

The study of MRP II has received a lot of attention in the field of manufacturing
management. Many literatures (Woodgate, 1989) (Villa, 1990) (Poon, 1991) (Muller,
1990} dealt with defining MRP II and integrating MRP Il with new functions and
other systems. In recent years, the execution and feedback phase has been described
as a weakness in many MRP II systems (Murthy, 1991). The following section
describes some researches that identified the problems of the execution and feedback
phase in MRP II.

1985) concentrates integrating MRP with flexible

Sampson (Sampson, on

manufacturing systems such as material handling systems. The main idea 1s to

computerize the shop floor area and storage area to gain better control such as

Automatic Storage/Retrieval System (AS/RS). Although his paper is based on material

handling system only, the idea of computer control and feedback in shop floor level has

been raised.

Piciacchia (Piciacchia, 1989) discusses the importance of shop floor control and defines
the Plant Operations Control (POC) function that integrates all shop-floor activities and
maintains control over the execution of the Just In Time (JIT) manufacturing schedule in a
Computer Integrated Manufacturing (CIM) Plant. The idea of POC is similar to SCADA
systems in the 90’s. However, SCADA is a more advanced and well-established expert system

for real-time control and monitoring.

Browne (Browne, 1995) focuses on shop floor control for discrete parts cellular manufacturing
system. He proposes a functional architecture for managing the flow of work through the
system in quasi real time. His work is based on the conventional structured design

methodology.

The lack of well-defined data structure and the piecemeal development approach of
traditional MRP II systems had posed a number of problems (Correll, 1995). We

noted the following shortcomings inherent in the traditional approach:

* Data does not represent an abstraction of reality
* Pending data affects estimation
* Real-time data is not available

* Production data is not taken into account in lime

The manufacturing technology, modes of production and hardware devices have

advanced dramatically over the past several decades, the network and computer

10

systems have got faster and more standardized (Loose, 1995). For example, the speed
of the communication interface of field devices has advanced from 2400bps serial link
to 100Mbps fast Ethernet. Unfortunately, the manufacturing software has not kept up
with the changes in hardware. This problem is usually related to the quality of
software. Inflexible software makes the whole system very difficult or even
impossible to modify. Unsupported software and hardware are a great barrier for the
growing of MRP II applications. Moreover, task specific MRP type applications do
not support linkage to other enterprise information systems for data sharing.
Therefore, new technology for developing flexible and scalable manufacturing

software is required to support the modern manufacturing enterprises.

11

2.2 Supervisory Control and Data Acquisition (SCADA)

Collecting shop floor data and entering it into a computer manually s an error-prone,
time-consuming and inefficient process. More importantly, this approach cannot
provide up-to-date information and it is not realistic for time critical applications. For
the above reasons, data capturing systems such as SCADA systems became common

since the late 60°s (Nicoloro, 1994).

The term SCADA was defined by the Bonneville Power Administration, Portland,
Oregon, as comprehensive definition for a combination of technologies. Supervisory
control is the process of looking at ‘current activity from a distance and passing
operating directives to the remotely located controllers. Data acquisition is the
process of obtaining information from remotely located devices or systems. In its
basic form this implies a one-way transfer of data from remotes to central hosts.
However the state-of-the-art devices now allow transfers in the opposite direction and
downloading of configuration parameters (Szelke, 1994). Earlier examples of control
systems based on reed relays and tone telemetry such as railways control systems.
General examples of modern SCADA systems include breweries, sewage treatment
plants, welding plants, hydroelectric power stations, automotive transfer systems and

mains water treatment plants, etc. (Rhodes, 1994).

In the early 90’s, SCADA systems were widely used for real-time data capturing. A
SCADA system is a high level framework for building real-time control and
monitoring application (Mazumdar, 1991). A typical SCADA system consists of
shop floor equipment, communication protocols, data networks, logistic control

12

software and Man-Machine Interface (MMI). A sample SCADA system is
demonstrated in figure 6. Since a SCADA system operates in real-time, it requires
some mechanisms for synchronization of its active components. An object-oriented
model is proposed for handling the interaction between each component in such an

active system (Jorgensen, 1994).

Windows 3.1

Windows-95 ,
Windows NT Business Management

Client Applications

PRI —

-

e
)

A . WA 3 A S $H TR TR A

Windows NT
Operator Console
RT/History Data

Y Server

Windows NT Windows NT Plant Highway
Operator Console 2:!\';’&‘?'00' Data P swemw sullan s v .

Plant Highway

B -
PD Meters Analytical

Meoasurement ¥ . CommonHead -Simple -Analog /O Handheld)
-Pressure Coriolis -Complex-Discrete O PDA Conlig

——

g
uration and

-Temp V?!ves TC/ATD Maintenance
Flow Positioners
Level Field Management

Figure 6: A typical SCADA system.

13

Gay (Gay, 1994} pointed out the hardware required to support a SCADA system has
changed dramatically over the past several years, the network and computer systems
have got faster and more open. The software unfortunately has not kept pace with the
changes in the hardware. There have been more analysis tools available but the
SCADA software has remained proportionally closed and proprietary. Because these
systems have been built with speed and data integrity as the main concern, the ability
to share data is usvally omitted in the design stage. This has generally lead to only
one group or department having access to highly valuable data. Since that department
is charged with maintaining the speed and integrity of the SCADA system, they are

usually reluctant to allow other departments access to the SCADA system.

Common deficiencies associated with existing SCADA systems were identified by

Brinkler (Brinkler, 1997) as follows.

* Inflexible software made it impossible to modify.

¢ Aging/unsupported hardware/software.

» No electronic linkage to corporate system for data/application sharing.

¢ Multiple systems existed with no electronic linkage among them.

* No efficient way to store/retrieve data and perform ad hoc queries.

* Remote Terminal Units (RTUs) and Programmable Logic Controller (PLCs)
(Peshek, 1993) were at maximum capacity and were not capable of
storing/processing information.

* Limited communication diagnostic capabilities.

14

2.3 Existing Integration Solutions

Dynamic changes in manufacturing shop floors introduce an infinite development
environment. Changing hardware and their configurations likely will result in
modifying the software interface as well. The success of implementing a real-time
MRP 11 system has been limited usually because of the lack of flexibility in its
software layer to adopt the changes. This is a common pitfall of all existing solutions

(Grimble, 1996}

Russell (Russetl, 1990) stresses real time data is available at the process level, but it is
difficult to access and associate with schedules and management functions such as
Enterprise Resource Planning (ERP) systems (Fitzgerald, 1994) or MRP II systems.
However such data contains vital information as to the actual machine performance
on the shop floor at any moment in time, and when processed correctly can be used to
monitor and indicate production problems in time to make calm adjustments (o

schedules. Russell (Russell, 1990) address how a PLC is used to collect shop floor
data and is interfaced to a low cost super-micro computer for production monitoring

and control.

Common methods to integrate SCADA systems and MRP II systems are as follows
and they are illustrated from figure 7 to figure 13:

* Build a proprietary system.

* Use Electronic Data Interchange (EDI) for information interchange.

* Use Application Program Interface {API) calls provided by MRP II systems.

* Use common communication protocols, e.g. OLE 2.0, DDE, etc.

15

* Access MRP II's database directly.
» Use transaction files to update information.

» Use object technology, ¢.g. global objects, message passing, etc.

A proprietary system is a closed system. Data cannot be shared or to share with the

built system.

Data Real-
Databasc | MRPII | Capturing |q time
Module Pata

Figure 7: System Integration — A proprietary system.

EDI is a common method to exchange data between two devices. However, the data

format of each device must be compatible to the other.

. Device EDI

Database MRP I Driver [—» Module
Real-

time

Data

Figure 8: System Integration — Electronic Data Interchange (EDI).

16

API 15 a code level implementation of EDI. The use of API is limited by the

compatibility of programming languages and development platforms.

Database MRP II APl
Data

Capturing I;(iii‘l-

Program Data

Figure 9: System Integration — Application Program Interface (API).

DDE communication is widely adopted in desktop computer. Unfortunately, the

speed of communication is ineffective.

DDE ' DDE

Database MRP 11 Client [* » Server
Real-

time

Data

Figure 10: System Integration — Dynamic Data Exchange (DDE).

17

Directly write to MRP II application’s database may introduce the problem of

security, data integrity and maintainability.

Database MRP Il

Data Real-
» Capturing time
Program Data

Figure 11: System Integration — Direct access to database.

The use of transaction files to update MRP II database is a batch processing. This

method cannot process real-time data.

Database MRPII |€— Transaction

Data Real-
Capturing time
Program Data

Figure 12: System Integration — Transaction File.

18

Object technology is a feasible solution to integrate MRP II systems with real-time

data. However, object definition for each component has not been standardized.

Global

Database MRP II Object
Data Real-
Capturing time
Program | Data

Figure 13: System Integration — Global Object.

The above methods, however, are designed for integrating particular systems only.
They have a lack of flexibility and fail to account for the requirements of dynamic
changes in manufacturing shop floors and information technologies (Dongarra, 1996).
Thus it is necessary to introduce and develop a methodology to formalize the

integration of SCADA systems and MRP II systems.

19

2.4 Hierarchical object-oriented design (HOOD)

The object-oriented approach is an evolving paradigm in the computer industry.
Many object-oriented methods have been proposed over the years (Meyer, 1988)
(Booch, 1994) (Poo, 1994) (Sodhi, 1996). The object-oriented method represents a
model of a system that is based on real world entities. Objects are the basic elements
in the object-oriented paradigm and a system is defined in terms of objects. An object
represents a real-world entity, such as a table, car, house, etc. Each object 1s
completed and self-contained with well-defined attributes and operations. In
traditional software development approaches, operations determine the structure of
the system. However, in an object-oriented system, operations and data are combined
together to form objects. Structure of the system is determined by a set of objects
instead of operations (West, 1996). Figure 14 illustrates the typical composition of an

object, its attributes and operations

OBJECT:
Traffic Light

ATTRIBUTES:
Timer
State

OPERATIONS:
On Red Light
On Green Light
Flash Green Light

Figure 14: A typical object model.

20

Although object-oriented development has caught many researchers attention and
various object models are proposed, only a little of them has focused on the real-time
domain. There re;llains a certain reluctance (Haban, 1990) to apply the object-
oriented approach in real-time application in conjunction with a manufacturing
system. In the real-time domain, it requires a mechanism for synchronization of its
active components (Lee, 1993). An object-oriented model is purposed for handling

the interaction between each component in such an active system (Mitchell, 1996).

There are numerous object-oriented design methods and standards in the world, where
Coral was developed and used in the UK, Common Object Request Broker
Architecture (CORBA) in USA, Pearl in Germany and Language Te-mps Reele (LTR)
in France, etc (Robinson, 1992). However, these design methods were not widely
accepted in other countries. The Hierarchical Object-oriented Design (HOOD)
method (HOOD User Group, 1992) was recommended for the design of real-time
applications and the following describes the advantages of the HOOD. The HOOD
method has bf;cn adopted by several military projects in Europe, European Fighter
Aircraft, nuclear power plants, electricity projects and large communication network
projects (Robinson, 1992). HOOD is considered for most major mission-critical
projects as an established method well supported by Computer Aided Software

Engineering (CASE) tools.
HOOD was developed as an architectural design method for real-time applications.

The HOOD method was developed by CISI Ingenierie and commissioned by the

European Space Agency (ESA). The original version of HOOD focuses on

21

modularity, data abstraction, information hiding, hierarchically structured abstract

machines and supports for real-time applications.

HOOD is based on software engineering principles of abstraction, encapsulation and
modularity. It is basically a top-down method, particularly suitable for a project
development environment. Besides, it provides useful features for maintenance, both
enhancement and correction. In short, HOOD is a combination of object-oriented
design (OOD) and hierarchical decomposition of abstract machines. Software
engineering features of HOOD includes abstraction, information hiding, cohesion and

modularity.

Abstraction facilities to deal with complexity by focusing on the important elements
of the problem. At the top level of the design, the objects are at a higher level of
abstraction. These objects relate to each other and provide a complete solution to the
problem without a great deal of detail. The lower-level objects are not visible. The
design is shown in such a way that the structure and interfaces are clear and separated
from the details of the processing. Emphasis is made on the control flows and data

flows at high-level design. Hence this is hierarchical decomposition.

Information hiding benefits to reduce the complexity of an object. The essence of an
object is that the data is encapsulated inside the object, and are accessible only
through external operations. Details of the implementation are hidden in the body of
the object. A common example is a stack object that provides operations to pop and

push data onto the stack while maintaining the stack itself hidden in the stack object.

22

Cohesion aims to aid maintenance, abstractions that are logically in the same object or
package. Thus if a change is required by a change of the environment, then the
effects on the software are localized. For example, if the version of hardware is
changed and requires changes to the internal software, the software interface of the
object may remain unchanged such that other components and systems are not

affected.

23

2.5 OLE for Process Control (OPC)

HOOD is a design method for building real-time applications. On the other hand,
OPC is the technology to implement the application. Detailed description of the OPC
technology are not included in this thesis, for more information, please refer to the

OPC specification (OPC Taskforce, 1996).

Before the age of OPC, to design the integration of shop floor data with MRP II
systems was a difficult task, to implement such a solution can be described as
impossible. This is because MRP I systems and real-time data capturing systems are
designed and developed by various companies. These companies gain access to the
data by independenily developing device drivers and databases for their own
packages. Each company has their own design methods and standards. It is quite

impossible to generalize the solution. Figure 15 illustrates the basic architecture of

OPC.

VB ; OPC Automation OPC Automation
Application < Interface - Wrapper Local or Remote
e TR OPC Server
(Shared by many clients)
Ct+ :
Application ’ Server Data Cache
o : OPC Custom Interface
Physical
Device/
Data

Figure 15: OPC Architecture.

24

OPC is an open and effective communication enabler concentrating on data access. It
is designed as a common way for applications to access data from any device on the
shop floor, allowing compliant applications to seamlessly access data in a

manufacturing environment.

With OPC, hardware manufacturers only have to make one set of software
components for customers to utilize in their applications. On the other side, software
developers won’t have to rewrite driver programs because of feature changes or
additions in a new hardware release. Last but not least, end users will have flexibility
to build their own manufacturing system with different components. System

integration in a heterogeneous computing environment will become simple.

OPC consists of an OPC Client and OPC Servers provided by different vendors. The
code written by the vendor-determines the devices and data to which each server has
access, the way in which data items are named and the details about how the server
physically access that data. Figure 16 illustrates the relationships between OPC

servers and OPC clients.

N

Server
Vendor A 2

OFPC Client 1

- OPC Client ##+2

Vendor 8 ‘}
e

J

OPC Client #¥#3

Figure 16: OPC Servers and OPC Clients.

25

3. The Proposed Methodology

3.1 Design Hypothesis

From our earlier discussion of the problem and literature review, we can see that there
is a need for integrating MRP II systems and SCADA systems. The primary
hypothesis is that real-time data is essential in today’s manufacturing application.
This point is also confirmed by the industrial survey. In the proposed integration
methodology (see Figure 17), MRP II systems will be integrated with SCADA
systems in order to provide real-time data. This research aimed to provid'c real-time
data for MRP II systems, but not changing existing MRP II applications to real-time

basis.

In order to achieve the integration, a systematic approach is necessary. There are
many methodologies available in the field of system engineering that can be used to
develop a model of the integration. . However, the object paradigm is particularly well
suited to handle the real-time domain and it was selected as the design tool after

consideration (Selic, 1994). A list of considered methodologies are as follows:

* Structured Analysis and Design (SA&D)
* Functional decomposition
* Hierarchy presentation

* Data flow diagrams (DFD)

State transition diagrams (STD)

26

* Data-Oriented Analysis and Design
* Data driven approach
* Data flow diagrams
* Events-Oriented Analysis and Design
* Event driven approach
* Event specification
* Module-Based Analysis and Design

» Package specification

In the past, structured analysis and design was the most common methodology to study
MRP II and other information systems (Senn,-1989). Conventional analysis and design
of an information system involves the identification of data structures, information flow
and task decomposition, etc. However, researches in software engineering and intuitive
science (Sommerville, 1992) {Vlient, 1993) have shown that structured model may not
be the best methodology for understanding a system. This is simply because a human

does not think in this way.

Therefore, many people have moved to the object-oriented approach in the 90’s. Object
Oriented Analysis and Design (OOAD) becomes a new stream for system analysis and
design. In OOAD, we identify real objects in the system as well as the relationships
between objects. This is much closer to the human way of thinking than traditional

analysis techniques.

The object-oriented paradigm claims to promote reuse, reduce development time, and

improve analysis, design and software quality. Hence the cost and the risk that is

27

associated with software development is reduced. The introduction of object-oriented

technology brings simplification and better understanding of requirements analysis.

The HOOD method is selected as the core design for our integration, because it suits
the needs of complex and sophisticated real-time systems. Although other object-
oriented methodologies support some of HOOD features to various degrees, there is a
shortcoming that they were not designed for building real-time applications. Instead,
most of them are general-purpose methodologies and not specializing in the real-time

domain.

28

3.2 System Integration Methodology

MRP I and SCADA [ntegration

Problem
[dentification

I Define statement of scope I
I Perform requirement analysis I

Foremalization of

<
h 4

the physical L Construct HOOD tree I
o] ¢
[Design man-machine interfaces |
Formalization of *
the logical model I 1dentify abjects |
I Identily abject attributes I
I lientify object operations —I I Redesign

y

Diecfinc abject relationship
* associalion
* inheritance
* polymorphism

Formalization of
the sotution

h 4

I Rebuild H}OD zee with inheritance |

v

l Imptement logistic control script I

v

I Implement man-machine interfaces —|

l Configure hardware components
| Generate source code I

Real-fime MRP [l application

Figure 17: System Integration Methodology.

29

The proposed integration paradigm is illustrated in figure 17. It is a combination of
top-down and bottom-up design approach. The method makes use of top-down
hierarchical decomposition approach to formulate the physical model and then works
out its logical model by the bottom up approach. Physical model consists of the shop
floor equipment layout, equipment specification, and the communication media.
Logical model contains the logistic control software, communication protocols and

man-machine interfaces.

Before we move on to describe the complete integration methodology, in this section,
we first have a look at the concept of a model in our methodology. The model is a
key element in the proposed methodology and it distinguishes our methodology from

other design methodologies.

According to the integration methodology, formalization of the model can be divided
into four major steps. In step 1 (i.e. Constructing HOOD tree), a list of shop floor
equipment and their layout is drawn out with the help of the HOOD tree. The HOOD
tree forms the first version of the model - the physical model. Two types of objects
are identified in this step, i.e. production objects and machinery objects. Production
objects contain process level data required by MRP II systems. Machinery objects
contain hardware level data required by SCADA systems. A physical model is
represented by two HOOD trees (see section 3.3 and 3.4 for more information). The
first one 1s the hierarchy of shop floor equipment with machinery objects as its nodes.

The second one is the inventory hierarchy with production objects as its nodes.

30

The bottom up object-oriented approach is them used to define attributes and
operations of each object defined in step 1. In Step 2 (Identifying object attributes
and operations), attributes and operations for each object are then identified by
considering the function of each object required supporting and manipulating in the
system. Objects and their relationships are incrementally identified through the first

two steps. All those information are represented by the HOOD trees.

Step 3 (Defining object associations) is a consolidation step. It examines the
identified objects and produces a consolidated set of rules that would appropriately
analysis objects according to their instances. The target is to identify linkage objects
to establish bridges between machinery objects (real-time data) and broduction
objects (MRP 11 data). Hence, this is the major step for linking real-time data to MRP

II systems. For detailed description, please refer to section 3.4 — Data Model.

In step 4 (Applying inheritance and polymorphism), optimization strategy is applied
to the HOOD tree by the nature of object iniheritance and polymorphism. A complete
combination of the physical and logical model is finalized after several refinement
steps. Real-time application is finally generated according to the model created in this

stage.

An important concept of the proposed integration methodology is to model the
application by HOOD tree instead of building task-specific functions to accomplish
the goal. The preliminary output of the integration methodology is not an executable
system; indeed, it is a data model that contains all necessary knowledge to execute an

application. The execution system is fully described in the next chapter. This

31

approach creates a model-driven application, such that the design and implementation

of any system can be generalized.

32

3.2.1 Problem ldentification

Simuilar to the other design models, the first stage of system design is problem

identification and it contains two basic activities:

* Define the scope in terms of statements

* Perform requirement analysis

The statement of the problem is a clear and precise definition of the problem and the
context of the system to design. Scope of work, constraints and available resources
should be included in the statement. The purpose of requirement analysis is to verify
and validate the terms of the statement. Flexibility study is an essential task to make
sure the problem has been well understood, and more important, the possibility of the

proposed solution.

Problem identification involves understanding the problem domain such as system
specification and requirement. This is a general stage for all kinds of system
development and does not involve any design paradigm. There are numerous
methods to analyze a problem (Harhalakis, 1991), however, stepwise refinement is
recommended to deal with its complexity. The principle of this method is to break
down the problem into smaller parts down to a manageable level. Feasibility study

and project planning is also included in this phase.

33

3.2.2 Formalization of the physical model

Formalization of the physical model is the process to encapsulate real world entities
(Berrisford, 1994). The physical model provides a standard tool to formalize real-

world entities. This stage contains two events:

* Construct HOQOD tree

* Design man-machine interfaces

The HOOD tree is a diagram of the whole MRP 1I system and the SCADA system
decomposed down to component level. Nodes in the HOOD tree could either be a
physical component (a hardware component) or a logical component (e.g. a group of
components). The bottom nodes of the HOOD tree are either physical I/0 points that
connect to field devices or logical /O points for data processing. The nodes at the
bottom are either physical I/O points that connect to field equipment or logical /O

points for data processing.

The constructions of HOOD tree facilities the identification of real-world objects. To
form the HOOD tree, a complete shop floor layout is required. There is no need to
identify active and passive objects in the application like the other object-oriented
design methodology, because an object in the proposed model is the same as the

physical equipment can be seen on the shop floor.

34

After defining the physical objects, definition of how to present those objects is
required. According to user requirement specified in the problem identification stage,
a set of graphical user interfaces (GUIs) could be built. The rule of thumb is that if an
object has been defined in the man-machine interfaces, it usvally will have its
definition in the HOOD tree as well. If this is not the case, the physical layout design
and the man-machine interface design might have compatibility problems in terms of
system completeness. The design of man-machine interface is an option in the
development cycle. This step is performed if graphical representation of the dala 1s
required in the application. The graphical representation here is considered as the

interface for process control.

35

3.2.3 Formalization of the logical model

The goal of this stage is to create an online solution of the problem that has been
defined. This solution is described by using the HOOD Tree. The steps are as

follows:

* Identify objects
* Identify object attributes
* Identify object operations
* Define object relationship
. Assoéiation
* Inheritance
* Polymorphism

* Redesign

The purpose of this stage is to convert the HOOD tree skeleton defined in the physical
model to a workable HOOD tree with attributes and operations, i.e. the logical model.
Then optimization strategies such as inheritance and polymorphism are applied to the
logical mode] to reduce the overall complexity. After several refinements, a formal
model of the solution can be elaborated. Details of inheritance and polymorphism are

provided in the section 3.7 and 3.8.

Formalization of the logical model is the procedures to build a system conceptual
model by converting physical entities to logical entities. The first step is to identify

potential objects. An object is a model of a real-world entity that consists of attributes

36

and operations of those attributes (i.e. nodes in the HOOD tree). After that,
identification of private and public attributes for each object is required. Services
(operations) provided by objects have to be defined as well. Finally, objects are
linked together either in cohesive or loose coupling mode. As a result, a HOOD tree
with attributes and operations associated with each tree node is formed. Inheritance is
then applied to introduce a super-class for grouping similar objects together. This
technique simplifies the creation of similar classes and restricts unauthorized access to
any devised classes. Polymorphism is another technique that facilities system
simplicity. Polymorphism enables a single service call to give different outcomes
from performing the operation on different objects. More details about inheritance
and polymorphism are described in the next section. Walkthrough and redesign
processes are also essential to assure system quality and completeness. All the steps
defined in this stage will be carried out repeatedly until a finalized design is made.
Further discussion on inheritance and polymorphism are provided in section 3.7 and

3.8.

3.2.4 Formalization of the solution

This stage performs the following steps to generate the final system:

Rebuild HOOD tree with inheritance
* Implement logistic control script

* Implement man-machine interfaces
* Configure hardware components

* (Generate source code

37

This part of the methodology can be described as a universal engine to implement the
solution. This engine will take the logical model as the main and deduce a result table
to map the data from SCADA system with the data from MRP II system. The system
is all driven by the HOOD data model, but not the function of any particular system.

A sample code generation engine is presented in figure 18.

Formulation of the solution is the implementation stage of the designed system.
Hardware configuration such as I/O points énd device addresses are associated with
the appropriate component in the HOOD tree. Control logic can be implemented by
OPC calls. The advantage is to manipulate I/O points by object abstraction instead of
non-memorable I/O addresses. Once the man-machine interfaces are built and all the
hardware components are installed, source code and executable programs for the

specified platform could be generated and the execution system is ready for testing.

ROOD Trce Object Ohject
with ' Instance
Inheritance Description
OPC calls Platferm Info
with
MRP I Man-Maching
Database Interface
Execution
System

Figure 18: Code Generation.

38

3.3 Knowledge Representation

Before we can develop the physical and logical model to represent the MRP II data
and the shop floor data, the information flow between each component must first be
identified. Like the conversion of energy, knowledge in a real-time manufacturing
application forms a recursive cycle. The knowledge required performing the
integration between MRP II system and SCADA systems could be classified in three

basic levels (see Figure 19):

* Level1 —MRPII Data
* Level 2 - Interchange Interface

* Level 3 — Shop Floor Data

Work Orders Production
\//ZFeedback
Q Interchange
Interface

Work Reai-time
Commands Data

Figure 19: Knowledge model to integrate MRP II and SCADA.

39

MRP II data represents the work order to shop floor and the feedback data from the
production line. A work order provides information on the production schedule, input
material data, work procedure and the quantity of finished goods required to meet the
ordered production requirements. The feedback data from the shop floor is used as
the basis to reschedule production schedule according to the actual production
situation. Essential data includes machinery statuses, the information of WIP, the

number of surplus and scrap items; and the amount of finished goods.

The interchange interface deals with the conversion from work orders to work
commands and the propagation of real-time data back to the MRP II system. This
part of knowledge does not exist either in the MRP 11 system or the SCADA system.

Further elaboration of this area is presented in the next section.

Shop floor data includes operating commands and real time production status.
Operating commands can either be in the form of procedures on paper or computer
program instructions. Production status reflects the actual execution of a work order.
Equipment health status and production throughput rates are the main pool of

knowledge.

40

3.4 Data Model

Based on the knowledge representation, we can further expand the model in section
3.3 in terms of data. The data model is the detailed implementation of the knowledge
flow diagram. It represents the knowledge to integrate MRP II systems with SCADA
systems in terms of data format. The data model is basically a combination of the
MRP II HOOD tree and the SCADA HOOD tree. The bottom nodes of both trees are
either physical I/O points or logical 1/O points. Linkage I/O points are used to linkup

the physical and logical I/O points. Figure 20 illustrates the data model.

Work Order Storage

#321 Area A
Work Production Compartment
Commands quantity 1234
Speed On/Off Setpoint Count
(L0} State (1/0) (V0) o

Production
Line

Figure 20: Data Model to integrate MRP II and SCADA.

41

3.4.1 Physical I/O Points

Physical I/O points are data points captured from data capturing devices directly. All
of the real-time data from shop floor are physical I/O points. They are in the form of
electronic pulses or analog signals. Numeric data can be gathered through SCADA
devices such as communication port, Programmable Logic Controller (PLC) and
Remote Terminal Unit (RTU), etc. In the proposed data model, they are classified as

attributes of a data object.

3.4.2 Logical /O Points

Logical I/O points are data points stored in the system as internal variables. All of the
MRP II data are logical I/O points. They are usually stored in the format of databases.
Logical I/O points can represent numeric data like quantity. Moreover, it can also
represent a set of commands and a sequence of jobs. For example, command number
‘3’ can 1mply to start the third production line. In the proposed data model, they are

classified as attributes of a data object.

42

3.4.3 Data Linkage Points

Data linkage points are all those objects not locating at the bottom of the HOQD tree.
They can be classified as passive objects, because they will not take part in the
integration directly. The purpose of data linkage points is to organize physical [/O
points and logical 1/O points in a hierarchical manner. Although it does not take part
in the integration, it facilitates the implementation of inherence and polymorphism
theory on the HOOD tree, such that the overall complexity of the HOOD tree can be

simplified.

43

3.5 Sample Physical Model

The physical layout of any manufacturing plant can be represented by a HOOD tree.
The use of a hierarchical structure has been suggested by many researchers (O’ Grady,
1989) in the field of shop floor monitoring and control. The typical hierarchy consists
of four levels: factory, shop, cell and equipment. However, the number of
hierarchical level is application dependent and even in the same application, each
branch could have its own number of hierarchical levels. Therefore a more generic
hierarchy is required and the n-level HOOD tree is employed by the proposed

methodology. A sample physical model is given in figure 21.

ATVs Conveyor

Stack Transport Vehicle conveyor AC drive

Figure 21: Core HOOD Tree — A physical model.

3.6 Sample Logical Model

The logical model is the optimized HOOD tree derived from the physical model. The
physical model represents shop floor layout. It targets to minimize the
implementation information required to compile client applications. The logical
model is the combination of the physical model with object features. It aims to

minimize the implementation information programmatically available to the client.

In short, the physical model is a data model that facilitates the design phase. Whereas
the logical model is a data model that facilities the implementation phase. A logical

model is illustrated in figure 22.

AS/RS
zone 1

ATVs Conveyar

Stack Transport Vehicke conveyor AC drive
position onfofl fautt position direcrion anfaft faul setpuint frequency

state staie state State

45

OBIECT:
Conveyor

ATTRIBUTES:
Speed
On/Off State
Direction

OPERATIONS:
Turn On/Off
Change Speed
Change Direction

Figure 22: HOOD Tree with attributes and operations — A logical model.

46

3.7 Inheritance

This section further elaborated the inheritance theory applied to the logical model

stated in section 3.2.3.

In our integration methodology, an n-way HOOD tree is formed after the formation of
the physical model. A class is a set of objects that share a common structure and a
common behavior that is the same type of equipment in the HOOD tree. Inheritance
ié used to reduce the complexity of the HOOD tree by eliminating duplicate and
similar objects. There are many different relationships possible between classes
(Booch, 1994). The most important of all these relationships is inheritance.
Inheritance is appropriate between classes only when we can have “is a“ relationship
between the objects. By the inheritance law, if a subclass (or derived class) inherits
from the superclass (or base class) then an object of the subclass is an object of the
superclass, but not vice versa. In single inheritance, one subclass inherits from one
superclass. In multiple inheritance, one subclass inherits from more than one
superclass. No matter in single or multiple inheritance, inheritance relationships
cannot form a cycle. Therefore inheritance relationships either form a tree or a one-

way D-graph (see Figure 23).

As a design strategy, inheritance introduces an intuitive design. Objects constitute the
fundamental building block for modeling. This approach enables the RAD (rapid
application development) technology. After the HOOD tree is formed, the inheritance
relationships between each node could be identified. There are three main types of

class relationships in a HOOD tree.

47

-3

Parent-to-Child Association (e.g. conveyor contains rollers). The most common
relationship between objects is that of association (or aggregation). In association
relationship, objects relate to one another in a whole part hierarchy. That is, one

object contains another object.

Parent-to-Child Inheritance (e.g. thermometer is a sensor). The parent-to-child
inheritance relationship exists when the child node is inherits from the parent
node. In this case, the parent node is described as an abstract base class and it is a

pure logical node in the HOOD tree.

Node-to-Node Inheritance Hierarchy (e.g. motor A and motor B are both inherit
from the motor class). The node-to-node inheritance hierarchy is a kind of
inheritance as well. However, the abstract base class does not exist in the HOOD
tree. A separate n-way 3D graph is required to build on top of the existing HOOD

tree.

48

By combining the n-way HOOD tree with the inheritance hierarchy, we could have an
n-way 3D-graph. Hence this is the complete logical model. A sample HOOD tree

with the above inheritance relationships is demonstrated in figure 23.

Girun ?

Crnveunr R E | Comvsunr E

M

inheritance & £ Root
hicrarchy i e

..................... @ Parent-to-child inkeritance

‘— HoOD —— Nade-to-node inberitance

Teee
Parent-to-child association

[Os

Figure 23: Sample of inheritance and polymorphism.

49

As an implementation strategy, inheritance fully facilitates re-use of code. Thereby
minimizing total coding effort needed. Especially in a SCADA system, each type of
component usually has more than one piece and the layout for each subsystem is

expected to be similar, inheritance reduces the total implementation effort.

50

3.8 Polymorphism

This section further elaborated the polymorphism theory applied to the logical model

stated in section 3.2.3.

Another special feature of our proposed design paradigm is its multi-platform
development capability. Polymorphism is a Latin word that means many (poly~)
objects of such form (~morphism). Basically, polymorphism is a concept in type
theory such that a name may denote instances of many different classes as long as
they are related by some common superclass. Any object denoted by this name is
therefore able to respond to some common set of operations (Booch, 1994). In short,
different objects could be treated in the same way by the law of polymorphism. The
nature of polymorphism is employed as an open system (Nicoloro, 1994} architecture
for handling different forms of implementation such as design methodology,

programming language, performance requirement and operating system.

In the presence of polymorphism, new design and implementation strategies could be
employed. The following are four derived techniques that based on the law of

polymorphism.

* Design Polymorphism
* Implementation Polymorphism
* Performance Polymorphism

* Platform Polymorphism

51

Design polymorphism is the most common technique to be employed in OOAD. This
kind of polymorphism separates the detail implementation level from the abstract
design level. It also facilities system designer to combine a mountain of similar
operations to a single operation for easy handling. For instance, the operation to turn
the light on and the operation to turn a heater on are both described as a “turn on”
operation in the point of view of a system designer. Therefore the total number of

different operations could be highly reduced (Gay, 1994).

Followéd by the design stage, implementation polymorphism is the actual phase to
built polymorphism by means of coding. This type of polymorphism is language
dependent. For example, in C++, virtual function is the feature to support
polymorphism. By declaring a base class to be virtual, it implies that classes derived
from the base class may have their own version of operations in the base class and

these operations are invoked based on the actual object types at run-time.

Performance polymorphism refers to the concept of maintaining and selecting
appropriate implementation approach. The selection criteria is usually constrained by
execution time, memory space, system configuration, result precision, and soon. Ina
real-time system, this type of polymorphism is essential if timing constraint is

important.

For enabling the feature of multi-platform development, the technique of platform
polymorphism is employed. This type of polymorphism is usually integrated with the
code generator. With platform polymorphism, the code generation operation could

then generate appropriate application according to the specified platform. The most

52

important aspect in here is that adding new platform generating operation will not

affect the existing platforms. A sample polymorphism model is shown in figure 23.

53

4. Implementation

The proposed methodology as stated in chapter 3 is a data model to integrate MRP 11
systems and SCADA systems. This chapter further describes the formalization of

solution in the proposed methodology stated in figure 17.

In the generic design paradigm, physical aspects of the SCADA system are
implemented by encapsulated objects, the functions of the system are modeled by
object operations, and the interaction between components are represented by a class
and object relationship diagram. Thf_: design approach then make use of the nature of
object inheritance behavior to associate common components and their characteristics
to a super-class object for reducing the complexity during system design and
implementation. Polymorphism in this case, is demonstrated by acting a single
operation on different equipment (o obtain different results according to the
equipment type. Emphasis is put on the operation instead of the type of equipment.
This approach enables open system architecture for integrating any hardware devices
and software programs produced by different manufacturers. Practically, this

approach is implemented by the OPC technology.

The proposed implementation strategy is considered as a system configuration tool
that will generate an application by the given logical and physical model. This
approach gives a significant advantage when building multi-platform applications and

it ensures system consistence and data integrity.

54

The physical aspects of the system are described by the object description and the
object instance. The logical linkages between objects are represented by the HOOD
tree. Control logic for individual components and subsystems are implemented as the
operations acted on the object. With the above information and platform specific
data, source code and executable files can be generated. Relational databases and
object-oriented database (OODB) (Zhou, 1995) are both suitable to store real-time
data gathered from field devices, since both of them can implement the hierarchical
structure. For better performance, the main memory database (Cornelio, 1993) could
be used. After integrating with the man-machine interface, the system prototype is

ready for testing.

The execution of the integration is driven by five main processes: the controller, the

dispatcher, the executor, the monitor and the intelligent agent. Figure 24 illustrates

the proposed execution system to integrate a MRP II system with real-time data.

55

Cuslomer
Orders

Master Production

» Schedule

N

Bill Forecasts
of ot
Material
Real-time laventory
Work Scheduler Status <

Data from MRP [§, Order Records
manual contral,
shop floor authorization, ege!

Production

request

rd y 4
Intelligent
Controller Dispatcher Monitor Agent Anatyzed dota,
processed informjation,
Machinery Machinery/ e,
e -
comman Executor production states
SCADA
A
X 1
Common HOOD Architeclure
co Olf, FEEDBACK, LOGIC SEQUENCE FLOW,
MALHINE STATE. PROCESS\STATE, eic.
Warehouse, Shop Storage, Physical
AS/RS Floor WIP, devices, PLC, RTU,
Equipment Finished goods ete.

Figure 24: The execution system.

56

4.1.1 The Controller

From SCADA

Manual

Automatic

Control Caontrol

To the Dispatcher

v

Controller Work
HOGD < > Commands

Tree

Figure 25: The Controller.

The controller is used to translate automatic control commands and manual control
commands from the SCADA application to work commands in HOOD representatién.
For example, a command to start a conveyor is zone ABC may be interpreted as
“Factory/Zone ABC/ConveyorSystem/ConveyorA/Start”. Since the HOOD
representation is associated with both the shop floor layout and the object
representation. Commands issue by the dispatcher is human readable and they can be

converted to any object-oriented language.

Work commands are forwarded to the dispatcher instead of directly to the executor.
This is an interlocking mechanism to prevent the controller shutting down a machine

that is in production.
The controller is an optional process of the whole system. If the overall system does

not support supervisory control, then the controller can be removed from the system

without affecting other processes.

57

4.1.2 The Dispatcher

From the Controller From MRP 11
f f
{ i
Work Work
Commands Orders

To the Executor

HOOD Dispatcher
Tree

Script to
operite
1/0 points

Figure 26: The Dispatcher.

The dispatcher is 2 multipurpose converter to interpret a work order in terms of raw
material information, production quantity, production schedule, etc. All of the above
items will be converted into a sequence of operation scripts like the work command
from the controtler. For example, the operation of retrieving items from compartment

#123 through the conveyor may be:

“Factory/Zone ABC/ConveyorSystem/ConveyorA/Start”

“Factory/Zone ABC/Storage Area/Compartment/123/Release”

In the system without supervisory control, the dispatcher will issue worksheet to the
shop floor instead of creating computer instructions. For semi-automated processes, a
combination of worksheets and computer instructions can be used. If an operation has

not been defined in the HOOD tree, then it is defaulted as a manual operation.

58

4.1.3 The Executor

From the Dispatcher To the Monitor

I
[

Manual

Automatic

Control Control

T

Real-time
Data

Executor

HOOD P

Tree

Figure 27: The Executor.

The executor is the bridge between the shop floor equipment and the proposed
execution model. The executor is implemented by the OPC technology, such that it
can access different equipment produced by different manufacturers in a consistence

manner.

Supervisery control is issued through the executor to the shop floor equipment. The
executor will convert the work command to the OPC operation by looking up the
HOOQOD tree. Since the work command is implemented as a hierarchical object, the

executor can convert the script to OPC object call directly.

By using the same mechanism, the executor will call up field equipment to obtain

their current status via the OPC object call. Collected real-time data will be

forwarded to the monitor.

59

4.1.4 The Monitor

HOOD
Tree

Monitor

Raw Data

To the
[ntelligent
Agem

Processed
Data

From the Executor

Figure 28: The Monitor.

The monitor is a data processor. Data received from the executor is raw data.

Sometimes encoded raw data needs to be processed before their actual value can be

extracted. The following is a list of the core functions of the monitor:

* A scale turner. Analog signals are usually measured in 4-20mA. Scaling helps to

obtain the numeric reading in the floating-point format.

* Anaccumulator. The monitor will add up pulse signal and return the sum.

* Logical Analyzer. The monitor can derive logical points from physical points, for

example, detecting the high-level alarm limit from a pressure reading.

* An Adder. The monitor can sum up the total value from a set of I/O points, e.g.

total flow rate.

60

4.1.5 The Intelligent Agent

To MRP I

Intelligent Agent mfolr)r?l[:l"on Real-time
mietligent Agen L ation, —Pp Scheduler
HOOD rcports, cte.) M
Tree
Processed Rework
Data From the Monitor Orders

Figure 29: The Intelligent Agent.

The intelligent agent is an analysis tool to produce information from data. Both the
data and the information will be feedback to the MRP {I system. Processed data is
used as the measurement ground for the MRP II function to compare the difference
between the schedule plan and the actual performance. Raw data can reflect
machinery health status. It can act as an estimation tool for the condition-based

maintenance and the preventive maintenance.

Moreover, with the help of processed data and a real-time scheduler, rework order can
be i1ssued by the MRP II system automatically on a real-time basis. MRP II systems
now gain the ability to reschedule work orders according to the actual shop floor
performance. Hence, the integratibn between MRP II systems and SCADA systems

facilitate the forming of a fully automated factory.

A list of the report and information for MRP 11 system is as follows:

61

Real-time production Gantt chart. It provides a real-time production status for the
management to govern the production schedule. If the re-scheduling module is
enabled in MRP II, real-time data from the shop floor can be used as the
rescheduling basis.

Real-time tooling utilization report. Production efficiency will be affected if
production tools are not in a proper condition. With the help of tooling utilization
report, preventive maintenance and condition-based maintenance can be
performed according to the tooling condition reported from the shop floor.
Real-time WIP report. This is useful for the management to identify the
bottleneck on the shop floor immediately.

On-line alarm reporting. This report will alert the supervisor if any of the
production procedure has a problem.

On-line inventory report. Real-time inventory data guarantees the MRP II system
has accurate and up-to-date inventory information. Moreover, it provides raw

data for the warchouse system to keep track of the stock.

62

5. Case Study

Case Study [illustrates how the proposed integration methodology is used in an
industrial oven system. This case study concentrates on demonstrating how can the
proposed methodology be applied in the field of manufacturing. This case study was
implemented by the collaborated company with the author through the Teaching
Company Scheme, however, because of the limitation of space and company policy,

detail of the whole system has been simplified.

Case Study II illustrates how the proposed integration methodology is used in a huge
AS/RS of an air cargo terminal. This case study concentrates on showing the
flexibility and reusability of the proposed methodology in large-scale systems. This
case study was implemented by the collaborated company with the author through the

Teaching Company Scheme as well.

5.1 [Case Study I] Statement of the Problem

According to the proposed methodology in Figure 17. The first stage is problem

identification. A precise statement of the problem is given.
The industrial oven system controls two conveyors, a gas valve, a safety valve, a

counter and a burner. The system has to control the temperature by adjusting the

valve opening. Figure 30 illustrates the physical components of the industrial system.

63

From previous Safety Valve
step Bumer

—’
Gas Valve
Product | To next step
i G G - :
Counter
Conveyor A Conveyor B

Figure 30: Case Study I: Shop Floor layout.

5.2 [Case Study I] Analysis and Structuring of Requirement Data

After defining the problem, we have to declare the system requirements. The

following statements are the basic control philosophy for this demonstration.

* “If the temperature is too high, slightly close the gas valve.”

* “If the temperature is too low, slightly open the gas valve.”

* “[If the temperature excesses the high-level limit, shutdown the system (i.e. close
the safety valve).”

* “The counter is used to determine number of finished product.”

64

5.3 [Case Study I] The Physical Model

The first step is to construct the physical model. A physical model is established
according to the physical layout. Figure 31 illustrates the physical model in HOOD

tree format. The physical model in figure 31 is based on the shop floor layout

specified in figure 30.
Conveyor A
Conveyor
System Conveyor B
Oven Counter
System
Burner
Burner
System
Gas Valve
Safety Valve

Figure 31: Case Study I: The Physical Model.

5.4 [Case Study I} The Logical Model

5.4.1 Objects |dentification

Based on the integration methodology in figure 17. We now identify the logical

model. The active objects are conveyor, burner, gas valve, safety valve and counter

65

and the passive objects: oven system, conveyor system and burner system.

their attributes and object methods are illustrated in figure 32.

Objects,

OBIECT: OBIECT: OBIJECT:
Conveyor Burner Counter
ATTRIBUTES: ATTRIBUTES: ATTRIBUTES:
Start/Stop State On/Off State Value
Fault State Temperature
Limit
OPERATIONS: OPERATIONS: OPERATIONS:
Start Turn On Reset
Stop Turn Off Add
OBJECT: OBIJECT:
Gas Valve Safety Valve
ATTRIBUTES: ATTRIBUTES:
%O0PEN Open/Close
Fauit State Fault State
OPERATIONS: OPERATIONS:
Increase Open
Decrease Close
Figure 32: Case Study I: Object Definition.

66

5.4.2 A Logical Data Model

After identifying the object attributes, we can construct the logical model by adding

object attributes to the physical model as shown in figure 33.

Add Trigger

Counter

/O Contral

/O Rtate

Conveyor A Fanlt State

Conveyor

System On/OFf Coatenl

Conveyor B
On{OHT Siate,

Oven

Systcm Fault Srate

Burner On/OHE Cantenld

Burner
System

An/Off Stale

Tamnerature

Gas Valve

% Onen

Fanli State

+ % nen

- % Close

Safety Valve OneniClace Cantenl

Onen/Clace. State

Fault State

A\ A AN

Figure 33: Case Study I: Logical Model (I).

67

5.4.3 A Logical Data Model with Inheritance and Polymorphism

To optimize the implementation effort, we now apply the rule of inheritance and
polymorphism according to the guidelines specified in the integration methodology.
An optimized logical model is shown in figure 34. With the help of inheritance and
polymorphism, the complexity of conveyors and valves are reduced. Conveyor A and
conveyor B are now unified as inheritance objects of the conveyor system. The gas

valve and the safety valve are simplified as polymorphism objects of the common

valve.
Conveyor A
...... .l
d“"j”‘-."
o
Conveyor
System
T,
T | ConveyorB
Oven
System
Burner OnfOFf Canteal I
Burner l
System OnIOFF State
Temneratnre |
Valve

Gas Valve

Safety Valve

Figure 34: Case Study [: Logical Model (H)

68

5.4.4 Sample Command Script

This example illustrates the case of section 5.2 (high-level limit). The main idea of
the command script is to implement shop floor controls and operations in a human
readable and program-ready language. The most important to bear in mind is that the
syntaxes and operations of the command script are derived from the HOOD tree.
There is no need to memorize or to learn any programming language before writing

the script. Hence, the HOOD tree is the language enabler.

If OvenSystem.BurnerSystem.Burner. Temp>0OvenSystem.BurnerSystem. Burner. Limit
OvenSystem.BurnerSystem. Valve.Close
OvenSystem.ConveyorSystem.Stop
OvenSystem.BurnerSystem.Burner. Off

endif

5.4.5 Sample OPC Implementation

The following segment of C++ program illustrate how can the script in 5.4.4 be
converted to programming language. This part of work is done by the controller and

dispatcher automatically in the execution system.

If OPCServerl.Burner->Temp > Burner->Limit

{
OPCServer2.Valve->Close(}; /f Close Gas Valve
OPCServer3.Valve->Close(); // Close Safety Valve
OPCServerd.Conveyor->Stop(); # Stop Conveyor A
OPCServer5.Conveyor->Stop(); // Stop Conveyor B
OPCServert. Burner->Off(); /{ Turn Off the Burner
}/* end-if */

69

5.4.6 Execution of the Model

The factory in this case is still under developing and has not been a fully automated
factory. Once a work order is released by the MRP II system. The dispatcher will
analysis the work order and forward the work command to the shop floor in paper

format, since it cannot find the existence of any automated device on the HOOD tree.

After the workman received the job command, he/she will pick up raw materials from
the warehouse and prepare them for production. When the system startup button is
pressed, the SCADA will issue a start command to the controller. The controller will
then translate the start command to a set of equipment startup sequence in the foﬁn of
HOOD script. Through the dispatcher, HOOD scripts are downloaded to the shop

floor equipment by the executor.

When a finished good passes through the counter, a digital pulse will be generated.
The executor will report the pulse to the monitor. The monitor acts as an accumulator
to store the total number of finished goods. The monitor will then forward the
accumulated total to the intelligent agent and finally the total number of finished good
feed back to the MRP II system. The actual implementation is through the use of
OPC technology. The intelligent agent acted as an OPC server, where the MRP II

system is the OPC client.

Sample source code of the developing system is provided in the Appendix.

70

5.5 [Case Study ll] Statement of the Problem

According to the proposed methodology in Figure 17. The first stage is problem

identification. A precise statement of the problem 1s given.

The scope of this project is to build a SCADA system to connect with the existing
cargo handling system for a cargo terminal. The scope of work is illustrated in figure
35. The system has to monitor and to control all equipment on the shop floor. Figure

36 illustrates the physical components of the cargo system.

Inventory
Control
Scope of Work
Warehouse
Control
SCADA Log'stic Cargo
System -« Control -+ Handling Work Order
A System System Handling
Order
PLCs Scheduling
... Billing &
Field Accounting
Devices | R

Figure 35: Case Study II: Scope of work.

Figure 36: Case Study II: Shop Floor layout.

5.6 [Case Study ll] Analysis and Structuring of Requirement Data

After defining the problem, we have to declare the system requirements. The major

significances of this project are as follows:

» The cargo terminal contains two different AS/RSs supplied by two manufacturers.
The new system should be able to adopt different hardware and standards used by
two systems.

* The system contains over 5000 different components and 400,000 I/O points. The
new system should be able to handle that amount of data in both the design and

the implementation stage.

72

5.7 [Case Study ll] The Physical Model

The first step is to construct the physical model. A physical model is established
according to the physical layout. Figure 37 illustrates the physical model in HOOD
tree format. The physical model in figure 37 is based on the shop floor layout
specified in figure 36. All hardware components are identified and defined by using

the HOOD tree as the below format.

Hood Tree Hieraracy = |- '* “Logical Name ‘ “Objects”)

Level 1 ' [AREA Bulk Storage System and
Container Storage System

Level 2 WNIG _ North Block and South Bock
Level 3 ZONE Zone E, Zone F, etc.
Level 4 FLOOR Floor 3, Floor 4, etc.
Level 5 EQUIPMENT Conveyaor, Crane, etc.
Level 6 I/0 Devices I/O points

Figure 37: Case Study II: The Physical Model.

5.8 [Case Study lI] The Logical Model

To optimize the implementation effort, we now apply the rule of inheritance and
polymorphism according to the guidelines specified in the integration methodology.
With the help of inheritance and polymorphism, the complexity of conveyors and
cranes are highly reduced. More than 3000 conveyors are now unified as inheritance
objects of the conveyor class. 48 cranes are now unified as inheritance objects of the
ATV class. As a result, 5000 components are unified to less than 20 object classes.

Hence, the overall complexity of the project is highly reduced.

73

6. Results

6.1 Industrial Projects

- A generic methodology to integrate MRP II with real-time data has been developed in
this research. The academic research result is justified in the industry through the
Teaching Company Scheme that co-operated by the Manufacturing Department, Hong
Kong Polytechnic University and the GRD Engincering (H.K.) Limited. The
collaborated company is a system integrator mainly involved in developing real-time
applications in the manufacturing industry. The integration methodology has been
adopted by the collaborated company as the integration strategy in two of their-
projects. during this scheme. With the proposed methodology, the collaborated
company has successfully implemented a manufacturing oven system with 800 [/O
points and an Automatic Storage and Retrieval System (AS/RS) with over 400,000
I/O points. This result is only possible with the joint research in the Teaching
Company Scheme. The integration barriers were solved by the proposed
methodology. Moreover, the advantage of -the model-driven approach and the
possibility of application generation highly reduce the development time on
programming, debugging and testing. The collaborated company employs the

integration methodology in their ongoing projects.

6.2 System Complexity

For the AS/RS, although there are more than 5,000 different components in the

system, the abstract type of equipment could be classified into a few classes. The

74

main identified classes are bi-directional conveyor, unidirectional conveyor, transport
vehicle, stacker crane, workstation and buffer. By the help of inheritance and
polymorphism theory, the problem size in BigQ analysis (Sommerville, 1992) is

highly reduced from BigO[>5000] to BigO[<30].

75

7. Discussion

7.1 Advantages and Limitations of the Methodology

With the advance of computer technology, many limitations in the past have been
broken through. In the early 90°s, the client/server technology with computer
networks enables _data to be interchanged between different software systems, even
different platforms and operating systems. Programs and data can be freely
distributed all around an enterprise. Information sharing is a major milestone towards

a modern manufacturing system.

Secondly, the problem of hardware and software incompatibility has been solved by
the OPC technology since 1996. We now are able to design any hardware system
without concerning the compatibility of software system. I[n the past, this aspect
limited many research works such as CIM (Computer Integrated Manufacturing)
(Adam, 1993) on the conceptual level. Many difficulties to implement the concept in
the field of manufacturing can now be overcome. The OPC technology has broken
the barrier and it concurs with our methodology in both the academic and the

industrial community.

Last but not least, the open connectivity of field devices facilities real-time data
capturing. Nowadays, field devices, sensors and controllers are widely opened
equipment. They can share captured data through common communication media

such as the Ethernet, serial network and the profi bus, etc. Without the above

76

hardware devices, the integration of MRP II systems with SCADA systems can never

be realized.

However the proposed methodology is still facing certain limitations. The major
limitation of the methodology depends on the level of automation. This is the core
problem in the topic of manufacturing integration. This problem can be classified into

three catalogues:

* The process must be handled manually (e.g. artwork).

* The process can be automated, but does not invoive any automation components
(e.g. packing).

* The process involves automation components, but they are not able to

communicate with each other (e.g. proprietary hardware and software).

Although there are many ways to improve the above cases, the efficiency and the
effectiveness of the proposed methodology will be highly reduced owning to the
possibility of automation. In contrast, more pre-works and modifications on the
existing system will be required if we apply the integration methodology to such a

system.

Another limitation is concerned with the compatibility with the existing MRP II
system. Most of the worldwide software vendors designed their MRP I products
based on the concept of object-oriented technology. Their products have open
connectivity and they are well prepared to interface with other systems. Multinational

enterprises are affordable to employ these products. However, these products may be

77

too expensive for Small Manufacturing Enterprise (SMEs). If the low-end MRP Il
products employed by SMEs do not support open connectivity, it will create a

difficulty for SMEs to apply the integration methodology.

The integration methodology introduces two modeling techniques:

* Formalization of the physical model

* Formalization of the logical model

The physical model can be built from the shop ﬂoor‘layout and the equipment
specification. There is no prerequisite knowledge requi;ed to complete this task
except the knowledge-on the manufacturing process itself. The physical model can be
described as a data representation of the shop floor. However, the logical model is
not straight forward as the physical model. Based on the core architecture built from
the physical model, optimization strategies are integrated to the physical model to
form the logical model. Certain knowledge on object-oriented theory, inheritance,
polymorphism and ‘complexity analysis is required to construct an effective and

efficient model.

To implement the integration methodology, there are two major constraints. The first
constraint requires the manufacturer to have a systematic stock keeping system. Since
the integration is through the linkage between the item data in MRP II systems and
I/O points in SCADA systems, a well-defined stock control procedure is essential to
provide adequate information. The second constraint requires the manufacturer to

have a complete set of components before defining the data model. Since the

78

proposed system in figure 17 does not support prototyping, all of the components
must be well defined at the first time. Missing a component in the design stage may

affect the formalization of our solution.

7.2 Benefits of the Methodology

In this research, the integration methodology was not only served as a design tool for
enabling real-time data in MRP II applications, it is a complete framework guides the
analysis, design, optimization and the implementation of the integration towards a

general solution that was not available in the past.

As stated earlier in section 1.2, the primary objective of this research is to have better
control of the execution stage of MRP Il systems. Moreover, the real-time data also
facilities the management of equipment. With real-time data, condition-based
maintenance technique can be applied. As a result, the number of equipment failure is
reduced. Hence, the overall productivity can be raised. Some of our preliminary
research relating to the application of SCADA in a maintaining environment has been
summarized in an article entitled “SCADA in Maintenance System: A Case Study”
and is being under reviewed by the Journal of Quality Maintenance Engineering.
Because of the scope has been targeted on our integration methodology, it has not

been elaborated in here.

Design a system from data models is the main characteristic of the proposed
methodology. The use of physical model simplifies the stage of object identification
in other object-oriented methodologies. The use of logical model reduces the system

79

complexity significantly. Moreover, applying inheritance and polymorphism theory
in the logical mode! have enriched the inadequacy in the original HOOD method. In

conclusion, this approach provides a consistent manner in all stages of development.

Another state-of-the-art is the HOOD tree. The HOOD tree is simple to build and
easy to modify. More importantly, the HOOD tree represents both object attributes
and relationships between objects in the same data model. This feature enables the
conversion between the design and the implementation. In other word, with the
HOOD tree, the design is the implementation and the implementation is the design;
this characteristic is essential for code generation solutions. Moreover, the advantlage
of the model-driven approach and the possibility of application generation highly

reduce the development time on programming, debugging and testing.

7.3 Future Work

The proposed methodology may be adapted to support other object-oriented
databases, especially Distributed Object-Oriented Databases (DOOD) (Zhou, 1995).
The use of DOOD facilities to construct a data model in the global manufacturing
environment is necessary. Because of the historical development of MRP II since
1790’s, relational databases are used in the existing MRP Il applications.
Nevertheless, relational theory has no conflicts with the object-oriented approach,
applying relational databases on an object-oriented model may affect the overall
performance. Besides, relational databases do not support object-oriented features
such as inheritance and polymorphism. This aspect limits the design flexibility and
future expansion. Therefore research on replacing relational databases with DOOD in

80

MRP II applications and the integration model can facilities the implementation of a

distributed solution.

With the help of DOOD, the hierarchical approach can be upgraded (o the network
architecture. The integration methodology employs the hierarchical approach as the
core data model, since a hierarchical data structure is compatible with relational
databases. However, the hierarchical data structure supports one-to-many structure
only. It can not cater many-to-many relationship. Even if the use of a hierarchical
model or a network model does not make any different in the integration
methodology, replacing the core data structure with a more flexible data structure is
the treﬁd to innovate knowledge. Inheritance and polymorphism theories can be
further explored by using the network data model. Therefore, research on upgrading
the hierarchical model to the network model is recommended to explore more

oplimization strategies through the use of network model.

The integration methodology has been implemented in two industrial plants.
However, the generalization of the result needs further applications and conclusions.
It is anticipated that further work will be done in different manufacturing industrial by

using the integration methodology.

81

8. Conclusion

In this research, we have proposed an integration methodology (Figure 17) as a
general solution to integrate MRP Il systems with SCADA systems. The ultimate
goal of the proposed integration is to enhance the consistency, and the accuracy of

MRP II systems.

There is no doubt that manufacturers are facing an environment that requires more
efficient production as well as build-to-order environments. From the survey, it
shows that manufacturers want to have more production data to manage their business
in order to reduce the production cost. However, most of the manufacturers are not
achieving what they want. The survey identified that the lack of real-time production
data in the management level is the main reason behind the problem. This research
provides the execution layer that connects MRP II systems with shop floor data
collection systems. Traditionally, MRP II vendors have embedded process specific
knowledge in monolithic systems that are unable to communicate with other systems.
The proposed integration methodology falls outside the realm of traditional MRP II
systems. It allows manufacturers to seamlessly integrate MRP II systems with
SCADA systems and provides a total solution to close the gap between the production

level and the management level.

The integration can be summarized with four main steps. First, a physical model is
constructed according to the physical shop floor layout to form the basic HOOD tree.
Then object attributes and operations are added to each of the objects on the basic

HOOD tree. Afterward, inheritance and polymorphism theory is applied to the

82

HOOD tree to reduce system complexity. A logical model of the HOOD tree is then
formed. This is a universal way to construct the logical data model of the proposed

methodology.

In the execution stage, the controller will coordinate all of the shop floor equipment.
The dispatcher will interpret work orders into work commands. The executor will
download the machinery command generated by the controller and the work
command interpreted by the dispatcher to the SCADA system based on the shop floor

layout defined on the HOOD tree.

During the prodqction stage, real time data are captured by the SCADA system and
transmitted to the executor according to the HOOD tree. The executor will forward
real-time data to the monitor. The monitor is used to convert the received data to
readable format. It also derives logical data from physical data, for example,
determining the high-level alarm limit from a hardware device reading. The purpose
of the intelligent agent is to translate raw data into meaning information, for example,

SPC chart, trend diagram, elc.

Finally the production data and information are forwarded to the MRP II system.
MRP II functions will evaluate the difference between the planned schedule and the
actual performance. Rescheduling will be performed if necessary. If so, MRP II
system will download a new set of work orders and machinery commands to adjust

the production environment.

83

With the integration methodology, the design framework for integrating MRP II
systems with real-time data is now available. The success of the methodology in the
industry shows that our model-driven approach is a breakthrough of the integration
technology. Moreover, real cases indicate that the developing time required on
programming, debugging and testing are reduced significantly with the proposed

methodology.

To validate the proposed methodology, case studies were carried out with the help of
a collaborated company as a Teaching Company Scheme project. The results
indicated that the proposed methodology is a feasible solution to integrate MRP II
systems and SCADA systems. Two industrial projects are successfully implemented

based on the methodology developed in this work.

84

9. Statement of Originality and Contribution to Knowledge

The major contribution of this research is the design of methodology o enable the
integration of MRP II systems and SCADA systems, this work enable both the
planning and the execution phase of manufacturing advances from batch system (o

real-time system.

In addition, innovated knowledge such as HOOD tree with numerous types of
inheritance and polymorphism is introduced. HOOD tree is a data model derived
from the HOOD method. HOOD tree is the data structure to represent real-world
entities in the manufacturing environment. Both the shop floor layout and the
material distribution can be transform to a HOOD tree. The core integration concept
is through the mapping of the shop floor layout tree and the material distribution tree.
Traditional integration methods usually integrate two systems by their functions.
Instead of using this conventional approach, we proposed the integration by data

models. This approach can identify the problem and provide the solution.

Two unique features of object-oriented technology, inheritance and polymorphism are
not supporied by the original HOOD method. Our research work has applied the

theory of inheritance and polymorphism to the HOOD tree.

Furthermore, deriving from the object theory, three new inheritance laws are
introduced in our methodology; they are:
e Parent-to-Child Association

* Parent-to-Child Inheritance

85

* Node-to-Node Inheritance Hierarchy

and again, Deriving form the object theory, four new polymorphism laws are
introduced in our methodology:

* Design Polymorphism

* Implementation Polymorphism

* Performance Polymorphism

* Platform Polymorphism

As a result of our research, several international publications have been completed.

They are summarized as follows:

Published:

Lee, K.C., Ip, W.H. and Yung, K.L.
“Hierarchical ~ Object-Oriented Supervisory Monitoring and Control for
Manufacturing Enterprises”

Advances in Industrial Engineering Applications and Practice II, Volume Two,

pp.1241-1246 (1997)

Lee, K.C,, Ip, W.H., Yung, K.L.

“Intelligent Supervisory Monitoring and Control System for | Automated
Manufacturing”

4th International Conference on Manufacturing Technology in Hong Kong, CDROM.

(1997)

86

Lee, K.C., Ip, WH., Yung, K.L.
“Data Acquisition and MRP II”

Proceedings of the Management & Technology 98 Seminar, pp. 33-36 (1998)

Accepted (to be published):

Lee, K.C, Ip, W.H., Yung, K.L.

“Inheritance and Polymorphism in Real-time Monitoring and Control Systems”

Journal of Intelligent Manufacturing.

Under Review:

Lee, K.C,, Ip, WH., Yung, K.L.

“SCADA in Maintenance System: A Case Study”

Journal of Quality in Maintenance Engineering

87

10. Bibliography

1. Aarsten A., Brugali, D. and Menga, G.
“Designing Concurrent and Distributed Control Systems”

Communication of the ACM, October, Vol.39, No.10 (1996)

2. Adam, N.R. and Gangopadhyay, A.
“Integrating Functional and Data Modeling in a Computer Integrated
Manufacturing System”
Proceedings of the 9" International Conference on Data Engineering, April,

pp-302-309 (1993)

3. APICS
“APICS dictionary - Sixth Edition”

The American Production and Inventory Control Society, Inc. (1987)

4. Berrisform, G. and Burrows, M.
“Reconciling OO with Turing Machines”

The Computer Journal, Vol. 38, No. 10, pp. 888-906 (1994)

5. Billaut, I.C. and Roubellat, F.
“Significant States and Decision Making for Real Time Workshop Scheduling”

IEEE, 0-8186-4030-8/93, pp.493-500 (1993)

6. Booch, W.

88

10.

11.

12.

“Object-Oriented Analysis and Design with Application (2nd edition)”

Benjamin/Cumming (1994)

Borangiu, T. and Popescu, A.
“Intelligent Components and Object-oriented Concept for CIM”

IFAC Intelligent Manufacturing Systems, pp. 415-419 (1994)

Bostel, A.J. and Sagar, V.K.
“Dynamic Control System for AGVs”

Computing & Control Engineering Journal August, IEE (1996)

Brinkler, V.C., Twidell, J. and Crane, M.
“SCADA Systems and their application to wind farm performance”

Institute of Energy and Sustainable Development, De Montfort University (1997)
Browne, J.

“Interoperable Control”

Manufacturing Engineer, December, pp. 279-283 (1995)

Cha, S.K. and Park, J.H.

“An Object-oriented Model for FMS Control”

Journal of Inteiligent Manufacturing, 7, pp. 387-391 (1996)

Chung, S.H. and Lin, C.W.

89

13.

14.

15.

16.

17.

“From an Integration Viewpoint to Build a Short-term Production Planning
System for Flexible Manufacturing Systems”
Proceedings of the 1991 IEEE International Conference on Robotics and

Automation, April, pp. 2224-2230 (1991)

Cornelio, A. and Navathe, S.B.
“Using Active Database Techniques for Real Time Engineering Applications”
Proceedings of the 9" International Conference on Data Engineering, April,

pp.100-107 (1993)

Correll, J.G.
“Reengineering the MRP Il Environment”

IEE Solutaions, July, pp. 24-27 (1995)

Dongarra, J.J., Otto, S.W., Snir, M. and Walker, D.
“A Message Passing Standard for MRP and Workstations”

Communication of the ACM July, Vol.39, No.7 (1996)

Editor
“Process comes to terms with MRP”

Works Management, June (1993)

Fitzgerald, A.
“Enterprise Resource Planning (ERP) — Breakthrough or Buzzword?”

Oracle Corporation UK Ltd, UK (1994)

90

18.

19.

20.

21.

22.

23.

Gay, R.
“Integrating GIS and SCADA Systems”

AM/FM International, pp. 581-587 (1994)

Grimble, M.J.
“Control’s a Big Gamble”

Computing & Control Engineering Journal, April, p.111-112, IEE (1996)

Gunther, O. and Lamberts, J.
“Object-oriented Techniques for the Management of Geographic and

Environmental Data”

The Computer Journal, Vol. 3, No.1, pp. 16-25 (1994)

Haban, D. and Shin, K.G.

“Application of Real-time Monitoring to Scheduling Tasks with Random
Execution Times”

IEEE Transactions on Software Engineering, Vol. 16, No. 12, December,

pp.1374-1389 (1990)

Haigh, D. and Adams, W.
“Why 64 bit Computers in the Control Room”

Computing & Control Engineering Journal, December, p.277-281, IEE, (1996)

Hargrove, S.K.

91

24.

25.

26.

27.

28.

“A Systems Approach to Fixture Planning and Design”
Internal Journal of Advanced Manufacturing Technology, Vol. 10, pp. 169-182

(1995)

Harhalakis, G., Lin, C.P. and Mark, L. and Pedro, M. M.
“Information Systems for Integrated Manufacturing (INSIM)”

[EEE, 0-7803-0233-8/91, pp. 335-341 (1991)

Harhalakis, G., Lin, C.P., Mark, L. and Pedro, M.M.

“Implementation of Rule-Based Information Systems for Integrated
Manufacturing”

IEEE Transactions on Knowledge and Data Engineering, Vol. 6, No. 6, pp. 892-

908 (1994)

Harris, W., McClatchey, R. and Baker, N.
“The Use of an Object Repository in the Configuration of Control Systems at
CERN”

Proceedings of the 6™ International Conference CISMOD’95, pp.153-163 (1995)

HOOD User Group
“HOOD Reference Manual Issue 3.1.1”

Prentice Hall International (1992)

Horn, F. and Stefani, J.B.

“On Programming and Supporting Multimedia Object Synchronization”

92

29.

30.

31.

32.

33.

The Computer Journal, Vol. 36, No. 1, pp. 4-18 (1993)

Johansson O.

“Using an Extended ER-Model Based Data Dictionary to Automatically Generate
Product Modeling Systems”

Proceedings of the First International Conference, ADB-94 Vadstena, June, PP

42-61 (1994)

Jordan, P., Browne, J. and Browne, M.
“Production Activity Control for Small Manufacturing Enterprises”

Knowledge-Based Reactive Scheduling, pp.29-34 (1994)

Jorgensen, K.A. and Madsen, O.
“Object-oriented modelling of Active Systems”

IFAC Intelligent Manufacturing Systems, pp. 129-133 (1994)

Kehoe, R. and Jarvis, A.
“ISO 9000-3 A Tool for Software Product and Process Improvement”

Springer (1995)

Khmelnitsky, E., Kogan, K. and Maimon, O.
“Optimal Flow Control for Scheduling in Manufacturing Systems with

Continuous Setup”

[EEE, 0-8186-6510-6/94, pp. 178-183 (1994)

93

34.

Lee, K.C., Ip, W.H., Yung, K.L.

“Hierarchical Object-Oriented Supervisory Monitoring and Control for
Manufacturing Enterprises”

Advances in Industrail Engineering Applications and Practice II, Volume Two,

pp.1241-1246 (1997)

35. Lee, K.C,, Ip, W.H., Yung, K.L.

36

37.

38.

“Intelligent Supervisory Monitoring and Control System for Automated
Manufacturing”
4th International Conference on Manufacturing Technology in Hong Kong,

CDROM. (1997)

. Lee, K.C.,, Ip, W.H,, Yung, K.L.

“Data Acquisition and MRP II”

Proceedings of the Management & Technology *98 Seminar, pp. 33-36 (1998)

Lee, W.J, Chen, M.S and Wang, S.P.

“Development of a Real Time Power System Dynamic Performance Monitoring
System”

[EE 2" International Conference on Advances in Power System Control,

Operation and Management, December, pp.11-16 (1993)

Loose, G.
“Fieldbus and its Impact on the Automation User”

Computing & Control Engineering Journal, December, p259-262, IEE (1995)

94

39.

40.

41,

42.

43.

44,

Mazumdar, S. and Lazar, A A.
“Modeling the Environment and the Interface for Real-Time Monitoring and

Control”

ICC’ 91, IEEE, CH2984-3/91/0000-1598, pp. 1598-1603 (1991)

Meyer, B.
“Object-oriented Software Construction”

Prentice Hall International, 1988

Mitchell, S.E. and Wellings A.J.
“Synchronisation, Concurrent Object-oriented Programming and the Inheritance

Anomaly”

Computer Languages, Vol. 22, No. 1, pp. 15-26 (1996)

Muller, D.J., Jackman, J.K. and Fitzwater, C.F.
“A Simulation-Based Work Order Release Mechanism for a Flexible

Manufacturing System”

Proceedings of the 1990 Winter Simulation Conference, pp. 599-602 (1990)

Murthy, D.N.P. and Ma, L.
“MRP with Uncertainty: A Review and Some Extensions”

International Journal of Production Economics, pp.51-64, (1991)

Muth., P., Rakow, T.C., Weikum, G., Brossler, P. and Hasse, C.

95

“A Simulation-Based Work Order Release Mechanism for a Flexible
Manufacturing System”
Procecdings of the 9™ International Conference on Data Engineering, April, pp.

233-242 (1993)

45. Nicoloro, M.A.
“Commonwealth Gas Company SCADA/GASS Project Implementation and
Future Linkage to AM/FM/GIS”

AM/FM International, pp. 59-68 (1994)

46. O’Grady, P.J. and Lee, K.H.
“An Intelligent Cell Control System for Automated Manufacturing”

Knowledge-based Systems in Manufacturing, pp. 151-172 (1989)

47. OPC Taskforce
“OLE for Process Control Standard, Final-Release 1.0”

OPC Foundation {1986}

48. Peshek, C.J. and Mellish, M.T.
“Recent Developments and Future Trends in PLC Programming Languages and
Programming Tools for Real-Time Control”

IEEE Cement Industry Technical Conference, May, pp.218-230 (1993)

49, Piciacchia, F.R.

96

50.

51.

52.

53.

54.

55.

“Plant Operations Control: A Vital Necessity for Executing the JIT Schedule in a
CIM Plant”

Proceedings of the Autofact’89 Conference, pp.22/49-22/67 (1989)

Poo, C.C. and Lee, S.Y.
“An Object-oriented Systems Modelling Method based on the Jackson Approach”

The Computer Journal, Vol. 37, No. 8, pp. 669-682 (1994)

Poon, J.L..
“Integration of MRP and JIT and Its Applicability in Hong Kong’s Industries”

IEEE, 07803-0161-7/91, pp. 836839 (1991)

Rhodes, R.A.
“Making SCADA a Sustainable Competitive Advantage”

AM/FM International, pp. 225-230 (1994)

Robinson P.J.
“Hierarchical Object-Oriented Design”

Prentice Hall, pp. 175-180 (1992)

Russell, D.W.
“Integration of PLCs and Databases for Factory Information Systems™

IEEE, TH0309-5/90/0000/0730, pp.730-737 (1990)

Sampson, R.A.

97

56.

57.

“Integration of MRP with the Flexible Manufacturing System”

FMS for Electronics, EE85-130 (1985)

Seidman, A.
“Intelligent Information Models for Operating Automated Storage and Retrieval
Systems”

Knowledge-based Systems in Manufacturing, pp.279-304 (1989)

Selic, B., Gullekson, G. and Ward, P.T.

“Real-Time Object-oriented Modeling”

Wiley (1994)

58.

59.

60.

Senn, J.A.
“Analysis & Design of Information Systems™

McGraw-Hill (1989)

Shahid, M.S., Saygin, C. and Eskicioglu, H.
“A Frame-Based Object-oriented Product Modelling System for Rotational
Components™

IFAC intelligent Manufacturing Systems, pp. 135-138 (1994)

Sodhi J. and Sodhi, P.

“Object-Oriented Methods for Software Development”

McGraw Hill (1996)

98

61. Sommerville, I.
“Software Engineering - fourth edition”

Addison-Wesley (1992)

62, Szelke, E.
“Intelligent Supervisory Control and Reactive Scheduling for Event Sensitive
Dynamic Manufacturing Environment”

IFAC Intelligent Manufacturing Systems, pp. 345-351 (1994)

63. Tanaka, Y., Ogawa, F. and Katayama, H.
“Ordering loading operation -management systems for MRP: Mathematical
programming versus a knowledge-based approach”
International Journal of Technology Management, Vol. 7, Nos 4/5, pp. 290-301

(1992)

64. Turbide, D.A.
“MRP II Still Number One!”

IEE Solutaions, July, pp. 28-31 (1995)

65. Villa, A.
“Production Planning Architectures: A Common Framework for the Comparison
of MRP I}, OPT, JIT”

IEEE, 0-8186-1966-X/90/0000/0526, pp. 526-530 (1990)

66. Vlient, H.V.

99
Q’&S Pao Yue-Kong Library
& PolyU « Hong Kong

67.

68.

69.

70.

“Software Engineering”

John Wiley & Sons (1993)

Ward, R.M.

“Application of COGSYS to Real-time Process Control”

West, M.
“Object Technology: An Overview”

BCS Computer Bulletin, Feb, pp.2-3, (1996)

Woodgate, H.S.
“MRP III - Material Flow Control in JIT Manufacturing”

Proceedings of the Autofact’89 Conference, pp.22/9-22/24 (1989)

Zhou L., Rundensteiner, E.A. and Shin, K.G.
“O0DB Support for Real-Time Open-Architecture Controllers”
Proceedings of the 4™ ‘International Conference on Database Systems for

Advanced Applications, April, pp. 206-213 (1995)

100

11. Appendixes

101

11.1 Survey Sample

Remark: This questionnaire was prepared and distributed through the collaboration
company of this project in 1997. The following is a list of questions in the
questionnaire and a summary of the result. Detailed company information and
sensitive data is excluded from this report.

L. Which one best describes the primary business performed at your location?
A. Discrete Manufacturing
B. Product Manufacturing
C. Process Manufacturing

D. Others

. 01 Percentage
A 21%
B 68%
C 8%
D 3%

2. Number of Employees?

A. Under 50

B. 50-99

C. 100-500

D. Over 500

- Q2 ° |- “Percentage. .

A 6%
B 19%
C 32%
D 43%

3. What is your primary job function?

A. Executive Management
B. Product/Service Management
C. Engineering/Technical Management
D. Operating Management
Q3 - Percentage

A 53%

B 22%

C 21%

D 4%

102

4. What 1s your organizalion unit annual turnover?
A. Less than HK$1 million

B. HK$1 million - HK$9.9 million

C. HK$10 million - HK$49.9 million

D. Over HK$50 million

. Q4 'Pétccﬁtagé__ o
A 2%
B 32%
C 57%
D 9%

5. What is your organization unit annual budget for software products?
A. Less than HK$50,000

B. HK$50,000 - HK$99,999

C. HK$100,000 — HK$499,999

D. Over HK$500,000

‘‘‘‘ Q5 | Percentage
A 14%
B 74%
C 11%
D 1%
6. In what areas of the world does your organization have branches or factories?
A. Hong Kong
B. China
C. Asia
D. Other
Q6 |, Perceptage
A 22%
B 69%
C 7%
D 2%

103

7. Have your organization employ the following software? (check all that apply)
A. Accounting Software

B. CAD/CAM Software

C. Manufacturing Software (c.g. MRP I, ERP)

D. Shop Floor Control Software (e.g. Bar Code, SCADA)

07 o) Pcrcent;igc
(Individual)
A 93%
B 42%
C 47%
D 9%

8. What 1s your organization unit annual wastage on scrap items?
A. Less than HK$50,000

B. HK$50,000 — HK$99,999

C. HK$100,000 — HK$499,999

D. Over HK$500,000

Q8 Percentage
A 7%

B 20%

C 65%

D 8%

9. What is the time basis for you to tell the production status? (For example, how
many items of a particular product have been made?)

A. Yes, I can tell from my computer or the automation equipment.
B. Yes, Ican tell on a daily basis.
C. Yes, I can tell, but it takes more than a day to find it out.
D. No, Ican’t tel. There is no way to identify.
Q9 Percentage
A 2%
B 63%
C 35%
D 0%

104

10. Which of the following is the most important for your organization? {check one
only)

A. Reducing stock level and work-in-progress

B. Reducing production cost (e.g. scrap items)

C. Increasing quality, productivity and capacity

D. Increasing production management information

Q10 Percenlage
A 9%
B 44%
C 6%
D 41%

11. Which of the following is the most critical for your organization? {(check one
only)

A. Machinery Data

B. Production Data

C. Inventory Data

D. Costing Data

Q11 Percentage
A 7%
B 44%
C 12%
D 37%

12. Which of the following need to be improved for your organization? (check one
only}

A. Quantity of Data (enough data?)

B. Quality of Data (well prepared?)

C. Timing of Data (up-to-date information?)

D. Accuracy of Data (data realistic?)

Q12 Percentage
A 14%
B 4%
C 43%
D 39%

105

11.2 Sample Shop Floor Layout

The following is a sample man-machine interface of the case study.

106

11.3 Sample HOOD Tree

The following is a tabular represent of an HOOD tree.

ZONE [Zone Kj
S5TATE [DEFAULT]
LOGLVL [15] GINDEX [NONE]

FLOCR {G/F})
STATE [DEFAULT]
LOGLVL [10] GINDEX [HNONE]

EQUIP [PLOKL0O0OQ]
STATE [DEFAULT]
LOGLVL [5] GINDEX [NONE]

I0 (AutoFault]
STATE [0] [Normal|] NORMAL
STATE (1] [FAULT]
ALARM [PLOK1GQQOB04WBad RAM at Power-up]
DEVICE {PLOK10G00] ADDRESS [404/0]
RAWLOC {PLC_UREAD] RAWTYPE [AMA] RAWINDEX [20141]
LOGLVL {5] GINDEX [HONE] GTYPE [NOHE]

I0 [AutoFault]
STATE [0] [Normal| NORMAL
STATE [1] [FAULT]
ALARM [PLOK1000120iWProcessor in TEST Mode]
DEVICE {PLOK1000} RADDRESS [400/L]
RAWLOC {PLC_UREAD] RAWTYPE [ANA] RAWINDEX [20142]
LOGLVL [5] GINDEX [HONE) GTYPE [MONE]

IO [AutoFaulk]
STATE [0] [Normal] NORMAL
STATE (1] [FAULT}
ALARM [PLORK10001202WProcessor in PROG Mode|
DEVICE {PLOX1000] ADDRESS [400/2]
RAWLUC |PLC_UREAD] RAWTYPE [ANA] RAWINDEX [20:143]
LOGLVL {5] GINDEX [NONE) GTYPE [HONE]

ID [AutoFault]
STATE [0] [Mormal} NORMAL
STATE [1] (FAULT|
ALARM [PLOK10001203WProcessor burning EEPROM]
DEVICE |[PLOK1000| ADDRESS [400/3]
RAWLOC [PLC_UREAD| RAWTYPE [ANA] RAWINDEX [20144]
LOGLVL {S5] GINDEX [NONE] GTYPE [NONE]

10 (AutoFault]
STATE [0] [Normal] NORMAL
STATE {1] [FAULT]
ALARM [PLOK10001204WProgram Download in Process|
DEVICE {PLOK100C0] ADDHESS [400/4]
RAWLOC {PLC_UREAD]| RAWTYPE [ANA] RAWINDEX [20145]
LOGLVL [5] GINDEX |[MONE] OGTYPE [NONE|

IO [AutoFault]
STATE [0] [Normal] NORMAL
STATE [1] [FAULT]
ALARM [PLOK10001206WForces Present)
DEVICE [PLOK1000] ADDRESS [40D/S]
RAWLOC [PLC_UREAD) RAWTYPE [AMA] RAWINDEX [20146]
LOGLVL [5] GINDEX [NONE] GTYPE [NONE]

IO [AutoFault]
STATE [0] [Normal] NORMAL
STATE (1] [FAULT]
ALARM {PLOK10001205WOnline Programming in Process|
DEVICE {PLOK10CO| ADDRESS [400/6]
RAWLOC {PLC_UREAD| RAWTYPE [ANA] RAWINDEX [20147]
LOGLVL (5] GINDEX [NONE] GTYPE [NONE]

I0 [AutaFault]
STATE (0] [Normal] NORMAL
STATE (1] [FAULT]
ALARM {PLOX10000B07WLow Battery Power|
DEVICE [PLOK1000] ADDRESS [408/7]
RAWLOC {PLC_UREAD| RAWTYPE [ANA] RAWINDEX [20148]
LOGLVL [5] GINDEX {NOME} GTYPE [NONE)

10 [AutoFault]
STATE [0} [Mormal] NORMAL
STATE [1] [FAULT]
ALRARM [PLOK10000808FProgram File Corrupted]
DEVICE [PLOK100C] ADDRESS [400/10]
RAWLOC [PLC_URERD] RAWTYPE [ANA] RAWLNDEX [2014%)
LOGLVL [5] GINDEX (NONE| GTYPE {MHONE}

IC jAutoFauit]
STATE [0] (Hormal] NORMAL
STATE [1] {FAULT]
ALARM {PLOK10000809FAddreas Corrupted]
DEVICE [PLOK1000] ADDRESS {400/11)
RAWLOC [PLC_UREAD] RAWIYPE [ANAJ] RAWIRDEX (20150}
LOGLVL [5} GINDEX [WOME] GTYPE {HONE}

107

10

I0

10

Io

10

10

o

I

10

io

i

10

Io

{AutoFault]
STATE [0] [Hormal] NORMAL
STATE (1) [FAULT]
ALARM [PLOX10000B10FWatchdog Timew-out]
DEVICE [PLOK1000] ADDRESS [400/12]
RAWLOC [PLC_UREAD] RAWTYPE [ANA| RAWINDEX [2015%]
LOGLVL [5] GIKDEX [HONE] GTYPE (MONEf

[AutoFault]
STATE [0} [MNormal] NORMAL
STATE [1] |FAULT]
ALARM [PLOK100Q00811FPLC Hardware Fault])
DEVICE [PLOK1000] ADDRESS [400/13]
RAWLOC [PLC_UREAD] RAWTYPE [AMA] RAWINDEX {20152]
LOGLVL [5] GINDEX [RONE] GTYPE [NONE]

{AutoFault)
STATE [0] [Normal] NORMAL
STATE [1) [FAULT]
ALARM [PLOR1000L207WLCS/IS Message Send FIFQ Full]
DEVICE [PLOK1000] ADDRESS [400/17]
RAWLOC {PLC_UREAD] RAWTYPE [ANA) RAWINDEX [20153]
LOGLVL [S] GINDEX [NONE] GTYPE {NONE)
[AutoFPault]
STATE [0] [Normal} NORMAL
STATE [1] [FAULT]
ALARM [PLOR10D009CIFEmergency Stop Relay Tripped]
DEVICE [PLOK1000] ADDRESS [400/20|
RAWLOC [PLC_UREAD] RAWTYPE [ANA] RAWINDEX [20154]
LOGLVL [5} GINDEX [NONE| GTYPE [NONE]
[AutoFauli|
STATE (0] [Normal] WORMAL
STATE {i] [FAULT)
ALARM [PLOK10000901FEmergency Stop on Main Panel Pushed]
DEVICE [PLOKL000)] ADDRESS {400/21)
RAWLOC {PLC_UREAD] RAWTYPE [ANA) RAWINDEX (20155]
LOGLVL [5] GINDEX [NONE] GTYPE [NOMNE]
{AutoFault]
STATE [0] [Mormal|] NORMAL
STATE (1] {FAULT)
ALARM {PLOK10000901FEmergency Stop on +MPOK10l Pushed)
DEVICE [PLOK1000) ADDRESS [400/22)
RAWLOC [PLC_UREAD| RAWTYPE [ANA] RAWINDEX [20156]
LOGLVL [5] GINDEX {NONE] GTYPE [HONE]
[AutoFault])
STATE [0] {Hormal| HORMAL
STATE [1] [FAULT]
ALARM (PLOK100C0901FEmergency Stop on +OMOKL03] Pushed}
DEVICE [PLOKL0Q0] ADDRESS [400/23)
RAWLOC [PLC_UREAD] RAWTYPE [ANA] RAWINDEX [20157]
LOGLVL [5] GINDEX [NONE| GTYPE [MONE]
[AutoFault]
STATE (0] [Normal) NORMAL
STATE [1] [FAULT]|
ALARM [PLOKLG00D901FEmergency Stop on +MPRK102 Pushed)
DEVICE {PLOK1000|] ADDRESS [400/241)
RAWLOC [PLC_UREAD| RAWTYPE [ANA| RAWINDEX [20150]
LOGLVL [5] GINDEX {NOME] GTYPE [HONE|
{ AutoFauit]
STATE [0] [Normal] HOBRMAL
STATE {1]) [FAULT]
ALARM [PLOK100005G1FEmergency Stop on +0MOK104 Pushed)
DEVICE {PLOKL000] ADDRESS {400/25]
RAWLOC {PLC _UREAD] RAWTYPE {ANA|] RAWINDEX [20159)
LOGLVL [5] GINDEX {NONE] GTYPE (NOHNE|
{AuteFault)
STATE [0) [Normal| NORMAL
STATE [l] {FAULT]
ALARM [PLOK10G00901FEmergancy Stop on +OMOK1O5 Pushed)
CEVICE [PLOK1000] ADDRESS {400/26]
RAWLOC [PLC_UREAD] RAWTYPE [ANA] RAWINDEX [20160]
LGGLVL [5] GINDEX [NONE] GTYPE [NONE]
| AutoFault]
STATE [0] [Mormal] RORMAL
STATE [1] [FAULT]
ALARM [PLOK10000901FEmergency Stop on +OPOK106 Pushed|
DEVICE [PLGK100GD] ADDRESS [400/27}
RAWLOC [PLC UREAD| RAWTYPE [ANA] RAWINDEX [20161})
LOGLVL [S]| GINDEX [NONE] GTYPE [NONE]
[AutoFault]
STATE [0#] [Mormal] HORMAL
STATE [1] {FAULT)
ALARM [PLOR10000301PEmergency Stop on +MPOULO3 Fushed}
DEVICE [PLOK1C00| ADDRESS [400/30)
RAWLOC [PLC_UREAD] RAWTYPE {ANA) RAWINDEX [20162}
LOGLVL [5] GINDEX [NONE] GTYPE |HONE]
[AutoFault]

STATE [0] {Mormal] HORMAL
STATE [l] [FAULT]
ALARM [PLOK10000112W24V Power Supply iz Off]
DEVICE {PLOK100D] ADDRESS [400/40)
RAWLOC {PLC_UREAD] RAWTYPE [ANA] RAWINDEX [20163)

108

10

10

1o

1o

I0

IO

I0

ic

10

I

I0

I0

I0

LOGLVL [5) GINDEX [HONE] GTYPE |NONE)

[AutoFault]
STATE [0]) [Normal] NORMAL
STATE [1} [FAULT]

ALARM [PLOK10000111W220/380 V Power Supply is Off]
DEVICE {PLOK1000] ADDRESS {400/41)
RAWLOC [PLC_UREAD] RAWTYPE [ANA| RAWINDEX [20164]
LOGLVL [$]| GINDEX [NONE] GTYPE (HOHNE|

[AutoFault]
STATE |0] [Normal] MORMAL
STATE |1] [FAULT}

ALARRM [PLOK10001002FRemote L[/0 Rack 00 Faulted)
DEVICE [PLOKLO0OQ) ADDRESS [400/60]
RAWLOC [PLC_UREAD] RAWTYPE {ANA| RAWINDEX (20165]
LOGLVL [5] GINDEX [NONE] GTYPE [NONE]
[AutoFault]
STATE {0) [Normal] NORMAL
STATE {1] [FAULT}

ALARM [PLOKL0O001002FRenmote I/0 Rack 01l Paulted]
DEVICE [PLOKLGOO| ADDRESS [400/61)
RAWLOC [PLC_UREAD] RAWTYPE [ANA] RAWINDEX [20166)
LOGLVL {5)] GINDEX [NONE] GTYPE [NONE]
[Autofault])
STATE [0] [Normal} NORMAL
STATE [1] {FAULYT]

ALARM {PLOK100Q1002FRemote I/O Rack 02 Faulted]
DEVICE (PLDK1000] ADDRESS [400/62]
RAWLOC |PLC_UREAD| RAWTYPE [ANA] RAWINDEX (20187}
LOGLVL [5] GINDEX [NONE) GTYPE [HONE|
[AutoFault]
STATE (@) [Normal| MNORMAL
STATE (1} {FAULT]

ALARM [PLOK10001002FRemote I/0 Rack 03 Faulted]
DEVICE [PLOK1000] ADDRESS [400/63]
RAWLOC [PLC_UREAD] RAWFTYPE [ANA] RAWINDEX [20168}
LOGLVL [5] GINDEX [NONE| GTYPE {MNONE]
[AutoFault)
STATE |0] fNormal] NORMAL
STATE {!] (FAULT]

ALARM [PLOK100D1002FRemote 1/0 Rack 04 Faulted}
DEVICE [PLOK1000| ADDRESS [400/64])
RAWLOC {PLC_UREAD] RAWTYPE [ANA] RAWINDEX {2016%)
LOGLVL [S5] GINDEX [NONE] GTYPE [NONE]
[AutoFault]
STATE [0)] [Normal]| NORMAL
STATE [1] [FAULT]

ALARM [PLOK10G01002FRemnte I/0 Rack 05 Faulted]
DEVICE [PLOK1000] ADDRESS [400/65]
RAWLOC [PLC_UREAD] RAWTYPE [ANA] RAWINDEX [20170)
LOGLVL [S] GINDEX [NONE] GTYPE [NONE]
{AutoPault]

STATE (0] [Mormal] NORMAL
STATE (1) [FAULT|

ALARM {PLOK10001G02FRemote I/0 Rack 06 Faulted]-
DEVICE [PLOKL000] ADDRESS [400/66]
RAWLOC [PLC_UREAD| RAWTYPE [ANA] RAWINDEX [20171]
LOGLVL [5] GINDEX {NONE] GTYPE {NONE]

[AutoFault)
STATE [0] {Hormal] HORMAL
STATE [1] {FAULT)

ALARM [PLOK10001002FRemote I/0 Rack 07 Faulted]
DEVICE [PLOR1000] ADDRESS [d400/67)
RAWLOC [PLC_UREAD] HRAWTYPE {AHA| RAWINDEX (20172)
LOGLVL [5] GINDEX [NONE] GTYPE [HONE]

[AutoFault]
STATE [¢] [Normal] RORMAL
STATE (1] [FAULT]

ALARM {PLOK10001C¢02FRemote I/0 Rack 10 Faulted]
DEVICE (PLOK1000] ADDRESS [400/70]
RAWLOC [PLC_UREAD] RAWTYPE [ANA] RAWINDEX (20173]
LOGLVL [5] GINDEX {NONE]| GTYPE [HONE}

[AutoPault)
STATE [0] {Normal] NORMAL
STATE [1] [FAULT]

ALARM [PLOK100C0L002FRemote L/0 Rack 11 Faulted)
DEVICE (PLOK1000)] ADDRESS {400/71]
RAWLCC [PLC_UREAD] RAWTYPE {AMA| RAWINDEX [20174]
LOGLVL {5] GINDEX [NOKE| GTYPE [NONE)

{ AutoFault]
STATE [0] [MNormal}j HORMAL
STATE (11 [FAULT]

ALARM (PLOK10001002FRemote I/0 Rack 12 Faulted]
DEVICE [PLUK1000] ADDRESS [400/72]
RAWLOC [PLC_UREAD] RAWTYPE [ANA] RAWINDEX [20175)
LOGLVL (5) GINDEX [NONE] GTYPE [NCNE]

[AutoFault)
STATE [0) (Normal] NORMAL
STATE {1] [FAULT]
ALARM [PLOK10001002FRemote E/Q Rack 13 Faulted)

109

DEVICE (PLOKi000} ADDRESS [400/73}
RAWLOC (PLC_UREAD] RAWTYPE {ANA] RAWINDEX {20176}
LOGLVL (5] GINDEX (NONE| GTYPE {RONE]

IO [AutoFault]
STATE {0] [Normal)] NORMAL
STATE {1] [FAULT|
ALARM [PLOKLO0Q1002FRemote I/0 Rack 14 Faulted]
DEVICE [PLOKL0QO] ADDRESS [(400/74)
RAWLOC [PLC_UREAD] RAWTYPE [ANA|) RAWINDEX (20177]
LOGLVL [S] GINDEX [NONE] GTYPE [NONE}

IO [AutoFault]
STATE [0] [Mormal| MORMAL
STATE {1] [FAULT]
ALARM [PLOKL0001402FRemote I/0 Rack 15 Faulted}
DEVICE [PLOK1000] ADDRESS [400/75]
RAWLOC {PLC_UREAD)] RAWTYPE [ANA] RAWINDEX [20178]
LOGLVL [5} GINDEX [NOME] GTYPE [NOHE]

I0 [AutaFault)
STATE [0) {Normal] NGRMAL
STATE [1] |FAULT)
ALARM [PLOK140G1002FRemote I/0 Rack 16 Faulted]
DEVICE {PLOK1000] ADDRESS {j400/76]
RAWLOC [PLC_UREAD| RAWTYPE [ANA| RAWIRDEX {20179)
LOGLVL (5] GINDEX [RAOME| GTYPE [HONE]

10 [AutoFault]
STATE |C0] (Normal] NORMAL
STATE [l] [FAULT|
ALARM [PLOKLO001002FRemote I/O0 Rack 17 Faulted]
DEVICE [PLOKL0O00] ADDRESS (400/77)
RAWLOC [PLC_UREAD] RAWTYPE [RNA] RAWINDEX [201B0]
LOGLVL [S] GINDEX [NONE] GTYPE [MNONE]

EQULIP [PLOK1100]
STATE [DEFAULT]
LOGLVL {5] GINDEX [HONE]

10 [AutoFault)
STATE [¢] [Normal] NORMAL
STATE [1] [FAULT] .
ALARM [PLOK1l000112W24V Power Supply is Off]
DEVICE [PLOK1100| ADDRESS [400/360}
RAWLOC |PLC UREAD| RAWTYPE [ANA] RAWINDEX [20181]
LOGLVL {5] GINDEX [NONE] GTYPE [MNONE]

I0 {AutoFault]
STATE [0| {Hormal] NORMAL
STATE [1] [FAULT]
ALARM [PLOK1100C114FMaintenance Group Main Switch is Tripped)
DEVICE [PLOK1140] ADDRESS [400/361]
RAWTOC [PLC_UREAD| RAWTYPE [ANA| RAWINDEX [20182]
LOGLVL [5) GINDEX [NONE| GTYPE (HONE]

I0 [AutoFault]
STATE [¢] [Normal| NORMAL
STATE [1] [FAULT]
ALARM [PLOK11000115FMaintenance Group Circuit Breaker is Tripped]
DEVICE |PLOKL100| ADDRESS [400/362]
RAWLOC [PLC_UREAD| RAWTYPE [ANA] RAWINDEX [20183})
LOGLVL {5] GINDEX {NONE] GTYPE [NONE]

[more...]

110

11.4 Sample Source Code (Auto Generation)

The complete set of source code is too large to be printed in here (over SOMbyte).

The following program is part of the executor that processes the physical I/0.

#inciude "gbl.h~
fincluds ~gkl_err.h"
#include “cfg.h"

ARA ReadlORec(FILEY)

RNA RAdTORec (char{GBL_MAX_DESC_LEN + 1}, ANA, ANA, AMA, ANA,
ANA, ANA, ANA, AHA);

ARA LogIOoSqlRec {CFG_STRUCT_IO, ANA);

ANA ConfiqlOTags(ANA);

ANA ReadIORec (FILE* pDataFile}

CFG_STRUCT_ALARM sAlarm{GBI,_MAX_MSG_LEWN);
CPG_STRUCT_STATE sState[GBL_MAX_MSG_LEN};

char czToken[GBL_MAX_MSG LEH];
char c¢2Msg[GBL_MAX_MSG_LEN];

char czIOName[GRL_MAX_DESC_LEN + 1];

ANA iIostateIndex = GBL _UNDEFINED;

ANA iIOStateTotal = 0;

ANA iIOAlarmTotal = 0;

ANA iI0PreLogLvl = GBL_UNDEFINED;

ANA iIoGraphicIndex = GBL_UNDEFINED;

ANA iIoGraphicType = GBL_UNDEFINED;

ANA iICRawLocation = GBL_UNDEFINED;

ANA iICRawIndex = GBL_UNDEF INED;

ANA iTORawlype = GBL_UNDEFINED;

char <zIiODevName|GBL_MAX_DESC_LEN + 11;
char cziODevAddress[GBL_MAX_DESC_LEMN + 1];
ARA ismgIndex;

ANA iPleTableIndex;

ANA iCount:

ANA iScreen;

ANA iDrawType;

ANA iIOVirtualindex;

char czIOVirtualTag|GBL_MAX_TAG_NAME_LEN + 1];

char czRdtlTableHame[CBL_MAX_MSG LEN + 1);
char c¢zNdtlWriteTrig{GBL_MAX MSG_LEN + 1]:
char czRdtlWriteState[{GBL_MAX_MSG_LEN + 1];
char czNdtiTag[GBL_MAX_MSG LFN];

char czGraphicType(GBL_MAX_ TAG NAME_LEN + 1|;
char czGraphlcoTypeTag[GBI,_MAX_TAG_NAME_LEN + L);

f*ase init records ---+/
memset (czIOName, ‘\0', GBL _MAX DESC_LEN + 1j;

for { iCount = 0; iCount < GBL_MAX_DESC_LEN; LiCount++ |

{
sState[iCount).istateNextIndex = GBL_UNDEFINED;
sState[iCount).iStatePrevindex = GBL_UNDEFINED;
sState[iCountj.iStatevValue = GBL_UNDEFINED;
sState[iCount}.iStateAlarm = GBL_UNDEF INED;
memset(aState(iCount].czStateDeac, '\0‘, GBL_MAX_DESC_LEN);

shlarm| iCount].iAlarmindex = GBL_UNDEFINED;
sAlarm[iCount | . iAlarmGroup = GBL_UNDEFINED;
memset (shlamm[iCount [.czhlarmTag, ‘\¢', GBL_MAK_TAG_NAME_LEN);
memset{sAlarm[iCount].czAlarmCond, ‘\0', GBL_MAX_DESC_LEN);
sAlarm[iCount].iAlarmLimit = GBL_UNDEFINED;
memset{sAlarm[iCount].czAlarmDesc, ‘\0', GBL_MAX_MSG_LEN};

} /* end-for +/

/*~-- get IO description —--*/

if (GetNextToken(pDataFile, czToken) == KEYWORD_STRING })
{

strcpy(czIOName, czToken);

¥

alse

! ReadBrroc(czToken);

y /* end-if */

/*—~— get State ---+/

while { GetWextToken{pDataFile, czToken} == KEYWORD_ID)
if { strcmp(czToken, EEYWORD_STATE) == 0)

{
/*-——- process state record ==-+/

111

if (GetRextTcken{pPataFile, czToken} == KEYWORD_STRING |

{
/*-—-~ read state value ---+/
if { strcmp(czToken, KEYWORD DEFAULT} == ¢)
{
f*=es setup default state records -—-*/
DefaultStateRec{GBL_IQ, czIQName, CFG_iIOPtr,
s8tate,
siEOStatelndex,
&if05tateTotal);
1f (GetNextToken(pDataFile, czToken) == KEYWORD_ID)
if { strcmp{czToken, KEYWORD _STATE) t= 0)
{
break;
}
else
{
ReadErcor (czToken)
} /* end-if */
}
elaa
{
ReadError(czToken);
} /% end=if +/
}
elsa
{
/*=-— add a new state record ---*/
sState[iloStateTotal),iStateValue = atoi(czToken);
/*=-— read state description ---%/
if { GetNextToken([pDataFile, czToken) == RKEYWORD_STRING }
{
stropy({sState{iI0OStateTotal].cz8tatelesc, czToken);
}
elsae
{
ReadError (czToken);
} /* end-if */
/*——- read state alarm ---*/
if (CetHextToken{pDataFile, czToken) == REYWORD_ID }
{
if { strcmp(czToken, KEYWORD_ALARM) ==)
sState[iICStateTotal].iStateAlarm = GBL_ALARM;
/¥——- read state alarm description ---*/
if { GetNextToken(pDataFile, czToken) 1=
KEYWOAD STRING)
{
ReadError(¢2zToken);
} /* end-if */
{%--= c¢reate alarm record ---*/
shlarm{iIgAlarmTotal].iAlarmLimit =
sState[iI0StateTotali.iStateValue;
atrepy(shlarm{ iT0AlarmTotal | .czhalarmbDesc,
czToken};
iIORlarmTotal++;
}
else
{
if { stromp(czToken, KEYWORD NORMAL) == 0 }
{
sState|iI0StateTotal].iStateAlarm =
GBL_NORMAL;
4
alae
{
ReadError(czToken};
} /* end-if */
y /* end-if */
¥
else
{
ReadError{czToken});
} /% end-if *+/
iIostaceTotal++;
} /* end-~if */
}
elss

ReadError{czToken);
} /* end-if */
}
else

{

f*=r— Do or no more state recorcd —--*/

break; /* break the while loop */

112

} £ end-if */

/* end-while */

f*-—- add state records if any ---*/

if { iIoStateTotal > 0)

AddStateRec(sState, iIOStateTotal, &ilOStatelndex);

} /* end-if */

/*--- Read Data Source ---*/

if { strocmp{czToken, KEYWORD DEV_NAME) == 0 |

if (GetMextToken{pDataFile, czToken) == KEYWORD STRING)
strepy(czIODevName, czToken);
/%——- search device index —---*/

icount = 0;
ismgIndex = GBL_UNDEFINED;
while (iCount < CFG_iSmgPtr && CFG_iSmgPtr > O}
{
if { stremp{ czICDeviame, CFG_sSmg[iCount].czSmgName} == 0 }
{
ismgIndex = iCount;
iPlcTableindex = CPG_sSmg[iCount}.iPlcIndex; FERCHS
} /* end-if »/f

iCount ++;
} /* end-while */

if (iSmgIndex == GBL_UNDEFINED)

ReadErcor (czToken)
} /¥ end-if +/f
H
else
{
ReadFrror{cztoken);
} /* end-if */

alse

ReadError (czToken);

} /* end-if ~/

f*-—- Read Source Addresa ---*/
if { GetNextToken(pDataFile, czToken) == KEYWORD ID })
if { stromp(oczToken, KEYWORD_DEV_ADDRESS)] == 0O }
{ if { GatNextToken(pDataFile, czTcken} == KEYWORD_STHIKG)

strepy(czIOhevAiddress, czToken);
i
else
{
ReadError{czToken};
} /* end-if */
H
else
{
ReadError (czToken);
} /* end-if =/

elae

ReadErrar{czToken});

y /* end-if =/

f*--- Read Raw Location —--+/
if (GetWextToken{pDataFile, czToken} == KEYWORD_ID)
if { strcmp(czToken, EEYWORD_RAW LOC) == 0)
{ if { GetMextToken(pDataFile, czToken} == KEYWORD STRING 1}
¢ if { strcmp(czToken, KEYWORD PLC_REAR) == 0)

1I0RawLocation = GBL_PLC_READ;

else if (strcmp{czToken, KEYWORD_PLC WRITE} == 0)
iIORawLocation = GBL_PLC WRITE;

else if (atrcmp{czToken, KEYWORD_ADA_READ) == 0)
iIoRawlocation = GBL_ADA_RERD;

else if (strcmp{czToken, KEYWORD_ADA WRITE) == 0)
iI9RawLocation = GBL_ADA_WRITE;

else if {strcmp{czToken, KEYWORD PLC_UREAD) == G)
iIoRawLocation = GBEL_PLC_UREAD;

else -

{
ReadError{czToken});

¥ /* end-if +/

¥

else

ReadError (czToken) ;
} /* end-if */

113

else
{
ReadError(czToken);
} /* end-if =/
}
else
{
ReadError(czToken);
} /% end-if ~/

/*-—— Read Raw Type ---*/
if (GetWextToken(pDataFile, czToken) == KEYWORD_ID)
(

if (strcmp(czToken, KEYWORD RAW_TYPE) == 0)

if { GetNextToken{pDataFile, czToken) == KEYWORD _STRING)

{
if { strcmp{czToken, REYWORD_ANALOG) == 0 |}
¢
iIORawType = FL_ANALOG;
}
else
{
if { strcmp{czToken, KEYWORD MESSAGE) == 0)
{
iIDRawType = FL_MESSAGE;
}
else
{
ReadBrror{czToken};
} /v end-if */
y /* end-if +f
}
else
{

ReadError (ezFoken);
} F* end-if =/
}
else
{
ReadError{czToken};
} /* end-if */
}
else
{
ReadError({czToken);
y /* end-if »/

/%*--— Read Raw Index ---*/
if (GetNextToken(pDataFile, czToken) == KEYWORD_ID |}

if { stromp(czfoken, KEYWORD_RAW_INDEX) == 0)
{

iF { GetHextToken{pDataFile, ¢2Token) == EEYWORD STRING
{
if (strcmp{czToken, KEYWORD_NONE} == 0 }

iIORawIndex = GBL_UNDEFINED;
}
else
{

iIORawindex = atoi{czToken};
/*wew keep track of largest raw value ---*/

switch (iIORawType }
{
case FPL_RANALOG:
if { CFG_iRawAnalogTotal < iTORawIndex |
{
CFG_iRawAnalogTotal = iIORawIndex;
}y /* end-if */
break;

case PL_MESSAGE:
if (CPG_iRawMessageTotal < iIQRawIndex
{

CFG_iRawMessageTotal = iIDRawLlndex;
} /v end-if */
break;
} /+* end-switch +/
y /% end-if +/
}
else
{
ReadErroc{czltoken};
} /* end-if */
¥
else
{
ReadError(czToken);
y /% end-if */
}

else

ReadError{czToken);
} /* end-if =/

f/*--— Read log level —--+/

114

LE { GetdNextToken(pDataFile, czToken) == KEYWORD_ID }
¢ if { strcmp(czToken, FEYWORD_LOG) == 0)
{ if { GetNextToken|pDataFile, czToken)} == KEYWORD STRING)
‘ iIOPreLogLvl = atoi{czToken);

if {(iIOPreLogLvl < G)

ReadErcor (czToken) ;
} /* end-if *~/
}
alse
{
ReadBrror{czToken);
} /+ end-if */
H
else
{
ReadError{czToken);
} /* end-if */
}

else

ReadError(czToken);
} /¥ end-if */f

/%--- Read Graphic index --~-+/

if | GetNextToken{pDataFile, czToken} == KEYWORD_ID }

‘ if (stremp{czToken, EKEYWORD GINDEX) == Q0)
if (GetNextToken{pPataFile, czTcoken) == KEYWORD_STRING)
{ if { strcmp(czToken, KEYWORD_NONE) == 0)

{
i10GraphicIndex = GBL_UNDEFINED;
}
else
{
iIoGraphicIndex = atoi{czToken); .
} /* end-if */
}
elsea
{
ReadError(czTcken) ;
} /% and-if *f
}
else
{
ReadBrror{czToken};
} /* end-if */
}
alse
{
ReadError (czToken);
} F* end-if /

/*=m= Read Graphic Type ---*/
if { GectNextTaken(pDataFile, czToken} == KEYWORD_ID)
{ if (stromp{czToken, KEYWORD_GTYPE) == G)
! if { GetdextToken(pDataFile, czToken) == REYWCORD_STRING)
! iLf { strcmp{czToken, KEYWORD _NOHE) == 0 |

{

iTaGraphicType = GRL_UNDEFINED;
¥
else

{
iIdGraphicType = atoi(czToken);

if { iI0GraphicType != GBL_UNDEFIMED)

UpdateGTypeTaghin(iloGraphicType, iLIOGraphicIndex);
} £ end-if */

y /* end-if */
}
else
{
ReadError{czToken);
} /* end-if =/
}
alse
{
ReadError(czToken);
} F* end-if */
H
else
{
ReadError{czToken};
y /* end-if +/
f*ane Add Alarm Recoprd —w-r/

for (iCount = 0; iCount < iIOAlarmTotal; iCount++)
{

115

switch {iIDRawlLocation)
{
case GBL_PLC_USEAD:

AddAalarmRec (GBL_OPS, CPG_ilIOPtr,
sAlacm|iCount |.iAlarmLimit,
sAlarm| iCount] .czAlarmDesc) ;

AddAlarmRec (GBL_MMS, CFG_iIOPur,
BAlarmfiCount].iAlarmLimit,
sAlarm[iCount | .czAlarmbDesc);

break;

defaulc:
AddAlarmRec{GBL_ICG, CFG_ilOPtr,
sAlarm[iCount].iAlarmlimit,
shlarm[iCount) .czAlarmbDesc);
} /* end-switch */
} /* end-for +/

f*-—- Add current record to local structure --=-*/

AddIORec(czIOName, i1IQStatelndex, ilOStateTotal,
iIOPreLogLvl, [IOGraphicIndex, ilOGraphicType,
iIQRawLocation, LIORawlype, ilORawIndex);

/*%=== Generate FLLAN tables ---s/

if (iIoGraphicType != GBL_UNDEFINED &é
iI0GraphicIndex »= 0
{
iDrawType = GBL_UNDEFINED;
SeekDrawByGType{ i [0GraphicType, &iDrawType);

switch (iDrawType)
{
case CFG_DIRECT: f* atatic objects +/
f*—-- config FLLAN =---#/

SoekGRameByGType (LIOGraphicType, czGraphicType);
sprintf{c2GraphicTypeTag,
“ss[ad|”, czGraphicType, iIOGraphicIndex):
AddFllanTag(CFG_SRV _CLI, czGraphicTypeTag,
czGraphicTypeTag, CFG_UNIQUE);
break;

case CFG_INDIRECT: /* movable objects */
SeekCNameByGTypa(iIOGraphicType, czGraphicType):

f*——~ config FLLAN -==*/

Eor { iSeresen = 0; iScreen < CFG_MAK_MOVABLE_SCREEN: iScreant+)
{
sprintf(czGraphicTypeTag,
“%8_Xvd[¥d)", czGraphlcType,
lscreen, 1I0GraphicIndex);
AddFllanTag{CFG_SRV_CLI, czGraphicTypeTag,
czGraphicTypeTag, CFG_UNIQUE);

sprintf({czGraphicTypeTag,
"%s_Ytd[¥d]“, czGraphicType,
i5creen, 110Graphicindex);
AddF1l1anTag(CFG_SRV_CLI, czGraphicTypeTag,
cz2GraphicTypeTag, CFG_UNIQUE);
} /* end-for +/

/#*==— config MOVCTL table =--#/

AddMovRec (CPG_sEquip[CFG_iEguipPtr - 1].czEquipName,
ixoGraphicType, iIoGraphicIndex);

break;
} /* end-switch ¢/
} /* end-if 4/
/*-—- Generate NDTL tablea ---2/

if { iIORawLocation a=m GBL_PLC_WRITE)
{

sprintf(czNdtlTableName, "tsid*,
HNDTL _WRITETABLE_TAG, iIORawIndex}:

sprintf{ezIOVirtualTag, “ta”, HDTL_WRITETRIG_TAG);
irovirtualIndex = iIORawIndex;
ConvartVirtualTag{czIoVictualTag, kiloVirtualindex):
sprintf{czNdtlWriteTrig, “Ms[%d]",

czI0VirtualTag, ilovirtualindex):

sprintf(czIOVirtualTag, "¥s", NDTL_WRITESTAT_TAG);
LIOVirtualIndex = {IORawlndex;
ConvertVirtualTag(czIOVirtualTag, EifQVirtuallIndex);
sprintf(czidtlWritestate, "ts(¥%d]",

czIOVirtualTag, LIOVirtualIndex);

AddRdtl_hdrRec(CFG_INdtl_hdrPtr, czNdtlTableMame, "H-,

ww mm mw oma
v v . r r

1, ¢zNdtlWriteTrig, “*, “*, czNdtlWriteState,
LPlcTableIndex, GBL_PLC_WRITE);

sWitch { 1IORawType }
{

116

case FL_ANALOG:
sprintf{c¢2i0VirtualTag, "%s5, NDTL_RAW_AHA_TAG);
iIovirtualindex = iIQRawIndex;
ConvertVirtualTag(czIOVirtualTag, LilOVirtuallndex);
sprintf{czitidtlTag, =%s[ad]-,
czIOVirtualTag, iIOVirtuallndex):;

AddRdt)_ovrRec(CFG_iNdyl_evePtr, czNdtlTableName,
czldtlTag, CFG_sSmg[iSmgIndex|,iPlcIndex,
czIODevhddress, MDTL_DATA_TYPE);

break;

case FL_MESSAGE:
sprintf{czIoVirtualTag, "¥s", NDTL_RAW_MSG_TAG);
itovirtualIndex = iIORawIndex;
ConvertVirtualTag{eczIOVirtualTag, &ilOVictuallIndex);
sprintf{czNdtlTag, "is[td}",
czIOVirtualTag, ilOVirtualIndex);

hddidtl_ovrRec{CFG_iRdt]l_ovrPtr, czidtlTableName,
czNdt1Fag, CFG_sSmg[isSmgIndex].iPlclIndex,
czICDevAddress, NDTL_DATA_TYPE);
break;

dafault:
GBLLog(“ReadIORec: cfg_fo.¢ - internal errer”, GBL_LOGO);
} /* end-switch =/

} /+ end-if =/

if { iIORawLocation == GHL_PLC_READ)
{
sprintf{czidtlTableName, “ig%d“,
HDTL_READTABLE_TAG, iPlcTablelIndex);

switch { iIORawType)
{
case FL_ANALOG:
sprintf(czIOVirtualTag, “¥s", NDTL_RAW_ANA_TAG);
ilovirtualIndex = jIORawindex;
ConvertV¥irtualTag(czIQVirtualTag, &iloVirtualIndex);
sprintf{czRdtlTag, ~is{¥d|“,
czIQVirtualTag, iIOVirtualIndex);

Addidtl_ovrRec(CFG_iNdtl_ovcPtr, czNdtlTableName, czNdtlTag,
CFG_sSmg|iSmgIndex|.iPleindex, cziODevAddress,
NDTL_DATA_TYPE);
break;

case PL_MESSAGE:
sprintf{czIOVirtualTag, "%s*, HDTL_RAW_MSG_TAG);
iIOVirtualIndex = iIORawIndex;
ConvertVirtualTag{czIOVirtualTag, &ilovirtuallndex);
sprintf{czRdtlTag, “ts[%d)~,
czIoVirtualTay, [IovirtualIndex);

AddRdtl_ovrRec{CFG_iNdtl_ovrPtr, czNdtlTableName, czHdtlTag,
CFG_sSmg[iSmgIndex].iPicIndex, ¢zIODevAddress,
NOTL_DATA_TYPE) ;
break;

default:
GBLLog("ReadICRec: cfg_io.¢ - intercnal erroc*, GBL_LOGO) ;
} /* end-switch */
} /* end-if +/

if (iIORawLocation == GBL_PLC_UREAD)
i
Bprintf(czNdtiTableName, "%sid-,
NDTL_UREAD TABLE_TAG, iPlcTableIndax);

sprintf{czIOVirtualTag, "%s-, ROTL_RAW_DIG_TAG);
iI0Virtuallndex = iIORawlndex;
ConvertVirtualTag{czIioVirtualTag, LiIovirtualIndex);
aprintf(czNdt1Tag, "%s[wd]",
czIOVirtualTag, iIOVirtualIndex);
AddRdtluovrRec(CFG_iNdtluovrPtr, czNdtlTableName, czNdtliTag,
CFG_s5mq{ iSmglndex}.iPlcIndex + CFG_DEFAULT_USTATION_SEQ,
czlQDevhddress, NDTI,_DATA_TYPE):
} /* end-if #/
return PAIL;
} /* end {ReadIORec) +/

ANA AddIORec(char czIOName{GBL_MAX_DESC_LEN + 1],
ANA iIOStatelIndex, AMA ilOoStateTotal,
ANR ilOPreLogLvl, ANA [IOGraphicIndex,
ANA iIOGraphicType, ANA iIORawLocation,
ANA 1TORawType, ANA iIORawIndex)

ANA i;

ANA icheckct;

ANA istop;

ANA iStop2;

char czString[GBL_MAX_MSG_LEN];

istop = 1;
isyop2 = 1;
/4—=~ copy io Info to local structure ——-+/

CFG_sIQ{CFG_iIOPtr|.iI0Index = CFG_iIOPtr;

117

/** EW - 8 Dct 98 Check for duplicated GINDEX, GTYPE *+/
if (iChosen == 1}
{
for (iCheckCt = 0; (iCheckCt < CFG_ilOPtr) && (iStop == 1}; iCheckCt++)

if (iloGraphicindex == CFG_sIO[iCheckCt].iIOGraphicIndex &&
iIOGraphicType == CFG_sIO{iCheckCt}.il0GraphicType &&
iIoGraphicIndex != GBL_UNDEFINED)

sprintf(czstring, "Duplicated GINDEX [td] GTYPE[td] RawIndex[td]\n*,
iI0GraphicIndex, iIOGraphicType, iIORawIndex):

GBLLog{czString, GBL_LOGO);

istop = 0;

/** EW - 9 Oct 98 Check for duplicated Rawlndex *+/
far {iCheckCt =0; (iCheckCt < CFG_LiIOPtr} && (iStop2 == l}; iCheckCt++}

H

{iIORawIndex
iI0RawType

CFG_sI0{ iCheckCt].iIORawIndex &&
CFG_sIO[iCheckCt].iIORawType)

i

sprintf{cz5tring, "bDuplicated RawIndex(%d] RawType[id]\n*,
iIORawIndex, LIDRawType};
GBLLog(czString, GBL_LOGO);
Istop2 = 0;
}
}
}

/* RC - 27Mar9f - +/
/* strepy(CFG_sIO{CPG_ilOPtr].czIOName, c¢z2IOName); */
U e e e e ——_———— e Y]
/* 0ld code above did not check czIOName length, which imposes error. */
/* The loop at the following limits czIOName length to 15 characters. +/
ft __________________________ ____t/
for {(1 = 0; 1L < 15; i++)

CFG_sIO[CPC_iIOPtr|.czIOName[i] = czIOName(i];
}
czIOName{i] = '\0"';
f* « RC */

CFG_sTO[CFG_iIOPtr|.LEO0NextIndex = GBL_UNDEFINED;
if { CFG_sEquip(CFG_iEquipPtr - 1].iEquipChildTotal == 0 }

CPG_SEquip[CFG_iEquipPtr = 1}.iEquipChildIndex = CFG_iIDPtr;
CFG_sIO{CFG_iIOPtr).ilOPrevindex = GBL_UNDEFINED;

}

else

{
CFG_sIO[CFG_iIOPtr - 1].ilONextIndex = CFG_iI0®tr;
CFG_sSTO[CFG_iIOPtrj.iI0Previndex = CFG_iIOPtr - 1;

} /% end-if */

CFG_sEquip[CFG_iEquipPtr - 1|,iEgquipcChildTotal++;

CFG_sIO[CPG iIOPtr|.iloFarentIndex = CFG_iEquipPtr - 1;
CFG_sIO[CFG_iIOPtr].il0StateIndex = ilOStatelndex;

CPG sTO[CFG_LICPtr|.iTOStateTotal = iIOStateTotal;
CPG_sIO[CFG_iIGPtr].iIOPreLoglvl = iIQPreLogLvl;
CFG_sIO(CFG_iIOPty).il0GraphicIndex = iT0GraphieIndex;
CPG_sIO{CFG_iIOPtr].iI0GraphicType = iIOGraphicType;
CFG_sIO{CPG_iIOPtr).ilORawLocation = iICRawLocation:
CFG_sIG[CFG_iTOPtr}.ilORawindex = ilORawIndex;
CFG_pIG[CFG_iIOPtr)].iIORawType = iIORawType;

CFG_iIOPtr++;

} /* end (AddIORec) +/

ANA LogTOSglRec{CFG_STRUCT IO sI0, ANA iIoCnt)
{

atatic LANA iSeq = 10000;
char cz2Seq[GBL_MAX_MSG_LEN];
/*-—- insert record ----vf

FormatSeqNum(isSeq, czSeq};
GeneratelNextSeq(LiSeq);

fprintf{CFG_hSql, “insert into %s%d(\\\n", TABLE_IO, iIGCnt);
fprintf(CFG_hsql, " DOMATIR, TABLE_MNBR, IO_INDEX, NAME,\\\n"};
fprintf (CFG_hsql,

- HEXTINDEX, PREVINDEX, PARNTINDEX,\\\n");
Eprint£{CFG_hsqi,
" STATEIRDEX, STATETOTAL, PRELOGLVL, GRPINDEX,\\\n"):;
fprintf{CFG hSql,
" BAW_LOC, RAW_INDEX, RAW _TYPE, GRP_TYPE) VALUES\\\n");
fprintf(CFG_hsql, " {'SHARED', 'ts', "%d', *‘%3',\\\n-,
czSeq, 8T0.il0Index, sIO.czIOName);
fprint£(CFG_hsql, - ‘d', td', Ttd',\\\n®,

sI0.i¥0NextIndex, sIO.ilOPrevindex,
sl0. iTOParentIndex};

Eprint£{CFG_hsql, * ‘de, twd, 'td, ‘ad’,\\\n",
8I0.il0Statelndex, sIO.iI0StateTotal,
5I0.1iI0PreLogLvl, sIO.iIOGraphicIndex);

fprint£(CFG_hsql, " ‘td', '%d', ‘ad°, 'sd");\n\npn",

118

s10.il0RawLocation, sIC.iIORawlndex,
sI0.iTORawType, sI0.iIOGraphicType);

} f* end [l..oqIOSquec_i */

ANA ConfigIQTags (ANA iTagDim)

{
UpdateObjectDim("IOName~, iTagDim, GBL_SERVER}:
UpdateobjectDim(*IONextIndex", iTaqDim, GBL_SERVER);
UpdateObjectDim(~I0Previndex~, iTagDim, GBL_SERVER);
UpdatedbjectDim(~IOParentIndex”, iTagDim, GBL_SERVER);
UpdateObjectDim("IochildIndex", LTPagDim, GBL_SERVER};
UpdateObjectDim("TochildTotal~, LTagbim, GBL_SERVER) ;
UpdateObjectDim("I0StateIndex*, (TagDim, GBL_SERVER};
UpdateObjectDim(" IOStateTotal”, ITagDim, GBL_SERVER} |
UpdateObjectDim("I0Statevalue®, iTagbim, GBE_SERVER]) ;
UpdateObjectbim(“I0StateName”, iTagDim, GBL_SERVER) ;
Updategbjectlim("IO0RawLocatlon”, iTagDim, GBL_SERVER};
UpdatetbjectDim("I0RawIndex”, iTagDim, GBL_SERVER);
UpdaceObjectDim({ " I0RawType~, iTaqDim, GBL_SERVER) ;
UpdateObjectDim{ "I0RawValue~, iTagDim, GBL_SERVER);
UpdateObjectDim{ “IOAlarmState™, iTagDim, GBL_SERVER) ;
UpdateObjectDim{ "I0CurLogLevel”, iTagDim, GBL_SERVER) ;
UpdateObjectDim{ "IOPreLogLevel™, iTagDim, GBL_SERVER);
UpdateobjectDim{*I0GraphicType”, iTagDim, GBL_SERVER);
UpdateObjectDim("I0GraphicIndex", iTagbim, GBL_SERVER);
UpdatedbjectbDim{ "GraphicAnavalue®, iTagDim, GBL_SERVER};
UpdateObjectDin(~GraphicMsgValue®, iTagDim, GBL_SERVER) ;
Updateobjectbim("RawDigital*, CFG_iRawAnalogTotal, GBL_SERVER);
UpdateObjectDim("RawAnalexy™, CFG_iRawAnalogTotal, GBL_SERVER);
UpdateCbjectbim("RawAnalogLink”, CFG_iRawAnalogTotal, GBL_SERVER);
UpdateObjectbim(“RawMessage®, CFG_iRawMessageTotal, GBL_SERVER) ;
UpdareObjectDim(“RawMessageLink™, CFG_iRawMessageTotal, GBL_SERVER);
UpdateObjectDim("OPS_ACK", CFG_iUReadTotal, GBL_SERVER);
UpdateObjectDim({ "QPS_ACK", CFG_iUReadTotal, GBL_CLIENT);

} /* end (ConfigIoTags) */

119

