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Abstract

One of the most important branches of logistics management is to inves-

tigate where to locate new facilities such as transportation hubs, air and sea

ports, retail outlets, and so on. There is a wide variety of applications of facility

location models. These include, but not limited to, locating a given number

of ambulances to minimize the maximum response time (the time between a

demand point and the nearest ambulance), and locating warehouses within a

supply chain to minimize the average transportation time to market. The above

two problems have different objective functions: minimax (center) for the former

and minisum (median) for the latter.

Facility location models differ not only in objective functions (center, me-

dian or others), but also in decision space (planar, discrete or networks), the

number (singe-facility or multi-facility), capacity limit (uncapacitated or capaci-

tated) and shape (isolated point or connected structure) of the facilities to locate,

the nature of the inputs (static or dynamic; demands known with certainty or

uncertainty), and other problem parameters.

This thesis focuses on studying the network location problems as follows:

Demand points with certainty are taken to be at the nodes of the network, and

to be served by their own nearest facilities, which are to be located anywhere

in the given network. The facilities may be isolated points, or connected struc-

tures such as paths, trees, and so on. The objective is to locate a given number

of uncapacitated facilities to minimize the ordered median function (OMf) and

its special cases. The cost of satisfying the demand points depends on the dis-

tances between demands and facilities, which are measured by the shortest paths

through the network. The organization of this thesis is as follows:
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Chapter 1 introduces a taxonomy of location problems and presents the

definition of the ordered median problems (OMP) proposed by Nickel and Puerto

(2005), and describes two main methodologies applied in this thesis.

Chapter 2 presents a literature review of the network location models,

including two main clues on the history and development of the ordered median

problems.

Chapter 3 deals with the multi-facility ordered median problem in undi-

rected networks, in which multiple isolated facilities are to be located. Multi-

facility OMP in general networks are NP-hard, since the p-median and the p-

center problems are special cases. In this chapter we use a finite dominating set

(FDS) to study some special instances of the OMf in networks. FDS is a finite

set of points to which some optimal solutions must belong, and is very useful for

solving a variety of optimization problems, which enables one to restrict one’s

attention to a finite set of possible solutions. We first characterize an FDS for a

special convex OMP in general networks, where the convex OMP is an important

class in the OMP family. The FDS result generalizes some known results in the

literature. Then, based on the FDS result, we obtain a polynomial size FDS and

solve the problem confined to tree networks in polynomial time, which extends

some results in the literature.

Chapter 4 is devoted to the multi-facility OMP in directed networks, since

most of the networks in the real world are directed and not symmetric (undirected

networks can be viewed as symmetric directed networks). For instance, routes

are usually directed in a bus traffic system. In this chapter we again apply

FDS to identify some possible solutions for a multi-facility OMP in a strongly

connected directed network. We first prove that the OMP has an FDS in the
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node set, which generalizes the FDS result on the single-facility OMP in the

literature. Furthermore, we show that the OMP can be solved efficiently based

on the FDS result when the number of facilities is fixed and small. However, if

the number of facilities is large, it is not practical for us to obtain an optimal

solution in an efficient manner, since the OMP in directed networks is NP-hard.

Hence, instead of finding an optimal solution, we resort to some approximation

algorithms for some near-optimal solutions. At the end of Chapter 4, we present

a 62
3
-approximation algorithm for the p-median problem in directed networks.

Chapter 5 focuses on the OMP in tree networks, in which the facilities to

locate are not isolated points but connected structures (e.g., paths, trees, etc).

These problems are motivated by specific decision problems related to routing

and network design. In this chapter we use the “nestedness property” to in-

vestigate subtree OMP in tree networks, where the nestedness property is the

property that for any optimal solution x to the point OMP, there exists an op-

timal subtree to the corresponding subtree OMP including x. The nestedness

property provides researchers with a powerful tool to develop some efficient al-

gorithms. First, we prove the nestedness property for a special convex OMP in

tree networks. This finding extends some classical results concerning the nest-

edness property. Second, we solve the problem in polynomial time by applying

the nestedness property result. Finally, we provide one counter example to show

that the nestedness property does not hold for the non-convex case.

Chapter 6, the last chapter, concludes the major findings of the thesis and

suggests some directions for future research.
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Chapter 1

Introduction

One of the most important branches of supply chain management is facility

location, which investigates where to locate new facilities such as transportation

hubs, air and sea ports, retail outlets, etc, to minimize the cost of satisfying some

set of demands. Almost every enterprise in each stage of a supply chain is faced

with the problem of locating facilities at some time in its history. For instance,

a manufacture company must identify a good location to provide raw materials

as efficiently as possible. A production firm must determine the locations of its

assembly plants, as well as warehouses. A retail outlet must locate stores. These

location decisions are integral to a specific system’s capability to satisfy demands

efficiently, and can have lasting impacts on the system’s flexibility.

There is a wide variety of applications of facility location models. These

include, but not limited to, locating a given number of ambulances to minimize

the maximum response time (the time between a demand point and the nearest

ambulance), and locating warehouses within a supply chain to minimize the
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average transportation time to market. The above two problems have different

objective functions: minimax (center) for the former and minisum (median) for

the latter.

Facility location models differ not only in objective functions but also in

other parameter indices. In the next section, we describe a taxonomy of location

problems.

1.1 A Taxonomy of Location Problems

Location problems can be classified in a number of ways. The following clas-

sifications of location problems include, but are not limited to, the choices of

decision spaces, objective functions, shape, number, and capacity limit of the

facilities to locate, and the nature of the inputs.

First, most location problems focus on the choice of decision spaces. The

basic types of problems with respect to decision spaces are listed below (see

Huang, 2005).

• Continuous location problems: location problems in a general space endowed

with some metric, e.g., the lp norm. Facilities can be located anywhere in the

given space.

• Discrete location problems: location problems where the sets of demand points

and potential facility locations are finite.

• Network location problems: location problems that are connected to the links

and nodes of an underlying network.
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Second, different choices of objective functions lead to different types of

location problems. The idea of making a facility placed at a location that is

on average good for each demand leads to the median problem (also called the

Weber or Fermat-Weber Problem) (see Wesolosky, 1993). Identifying a location

that is as good as possible even for the most remote customer stimulates the

idea of the center problem (see Plastria, 1995). The insight that both of the

above points of view might be too extreme results in the cent-dian approach (see

Halpern, 1978). Furthermore, considering a location that only satisfies the k

farthest demand leads to the k-centrum criterion. The contrary to the k-centrum

type is anti-k-centrum that only considers the k nearest demands. In addition,

disregarding the k1 nearest and the k2 farthest weighted distances brings up the

(k1, k2)-trimmed criterion. The aim to express all of the above ideas in a common

format leads to a unified approach − the Ordered Median function (OMf) (see

Nickel and Puerto, 1999).

Third, different shapes of the facilities to locate lead to different location

models. Traditionally, most research investigates location problems where a fa-

cility is represented by an isolated point in the metric space. Recently, the idea

of locating a connected structure, e.g., a subway, stimulates the research on lo-

cation problems where a facility should be connected, and cannot be represented

by isolated points in the space.

In addition, facility location problems also differ in the number (singe-

facility or multi-facility) and capacity limit (uncapacitated or capacitated) of

the facilities to locate, the nature of the inputs (static or dynamic; demands

known with certainty or uncertainty), and other problem parameters.

In this thesis we aim to study facility location problems in networks using
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the ordered median function and its special instances, where the facilities to lo-

cate have unlimited capacity, and demands in networks are known with certainty

in advance. In the next section we formulate the multi-facility location problem

to be studied in this thesis.

1.2 Problem Formulation

In our research problem throughout this thesis, demand points with certainty

are taken to be at the nodes of the network, and to be served by their own

nearest facilities, which are to be located anywhere in the given network. The

facilities may be isolated points, or connected structures such as paths, trees, and

so on. The objective is to locate a given number of uncapacitated facilities to

minimize the ordered median function or its special cases. The cost of satisfying

the demand points depends on the distances between demands and facilities,

which are measured by the shortest paths through the network.

In the following we follow some notation from Nickel and Puerto (2005).

First, we identify the elements that constitute the corresponding network model.

Let G = (V, E) be an undirected network with the node set V = {v1, · · · , vn}
and the edge set E = {e1, · · · , em}. Each edge has a non-negative length and is

assumed to be rectifiable. Thus, we will refer to the interior points on the edges.

We let A(G) denote the continuum set of points on the edges of G. Each edge

e ∈ E has an associated positive length by means of the function l : E → R+.

The edge lengths induce a distance function on A(G). For any x, y in A(G),

d(x, y) denotes the length of a shortest path connecting x and y. Also, if Y is a
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subset of A(G), then we define the distance from x to set Y by

d(x, Y ) = d(Y, x) = inf{d(x, y) : y ∈ Y }.

Through w : V → R0+, every vertex is assigned a non-negative weight.

A point x on an edge e = [vi, vj] can be written as a pair x = (e, t), t ∈
[0, 1], with

d(vk, x) = d(x, vk) = min{d(vk, vi) + tl(e), d(vk, vj) + (1− t)l(e)},

where vk ∈ V .

Let p ≥ 2 be an integer. Then for Xp = {x1, · · · , xp} ⊂ A(G), the distance

from a node vi ∈ V to the set Xp is

d(vi, Xp) = d(Xp, vi) = min
k=1,··· ,p

d(vi, xk).

Now, for Xp ⊂ A(G), we define

d(Xp) := (w1d(v1, Xp), · · · , wnd(vn, Xp)),

and

d≤(Xp) := sortn(d(Xp)) = (w(1)d(v(1), Xp), · · · , w(n)d(v(n), Xp)),

where (·) is a permutation of the set {1, · · · , n} satisfying

w(1)d(v(1), Xp) ≤ w(2)d(v(2), Xp) ≤ · · · ≤ w(n)d(v(n), Xp).

To simplify notation, we denote the entries wid(vi, Xp) and w(i)d(v(i), Xp)

in the above vectors by di(Xp) and d(i)(Xp), respectively.
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The p-facility ordered median problem (OMP) on A(G) is defined as

OMp(λ) = min
Xp⊂A(G)

fλ(Xp), (1.1)

with

fλ(Xp) :=< λ, d≤(Xp) >=
n∑

i=1

λid(i)(Xp) and λ = (λ1, · · · , λn) ∈ Rn
0+.

Remark 1.1 The function fλ(Xp) is called the Ordered Median function (OMf).

Note that the linear representation of this function is defined point-wise, since it

changes when the order of the vector of distances is modified.

Remark 1.2 Different choices of λ in the OMf lead to different criteria: median,

center, α-centdian, k-centrum, anti-k-centrum, (k1, k2)-trimmed, the convex and

the concave cases. Specifically,

(1) The median criterion is a special case of the OMf with λ = (1, 1, · · · , 1), i.e.,

fλ(Xp) =
n∑

i=1

di(Xp).

(2) The center criterion is a special case of the OMf with λ = (0, · · · , 0, 1), i.e.,

fλ(Xp) = max
1≤i≤n

di(Xp).

(3) The α-centdian (α ∈ [0, 1], a convex combination of the median and cen-

ter criteria) criterion is a special case of the OMf with λ = (α, · · · , α, 1), i.e.,

fλ(Xp) = α
n∑

i=1

di(Xp) + (1− α) max
1≤i≤n

di(Xp).

(4) The k-centrum criterion is a special case of the OMf with λ = (0, · · · , 0, 1,
k· · ·

, 1), i.e., fλ(Xp) =
n∑

i=n−k+1

d(i)(Xp).

(5) The anti-k-centrum criterion is a special case of the OMf with

λ = (1,
k· · ·, 1, 0, · · · , 0), i.e., fλ(Xp) =

k∑
i=1

d(i)(Xp).
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(6) The (k1, k2)-trimmed criterion is a special case of the OMf with

λ = (0,
k1· · ·, 0, 1, · · · , 1, 0,

k2· · ·, 0), i.e., fλ(Xp) =
n−k2∑

i=k1+1

d(i)(Xp).

(7) The convex OMP criterion is a special case of the OMf with

0 ≤ λ1 ≤ · · · ≤ λn.

(8) The concave OMP criterion is a special case of the OMf with

λ1 ≥ · · · ≥ λn ≥ 0.

In this thesis we study location problems using the OMf and some of its

special instances. In the next section, we introduce some research methodologies

to study network location problems.

1.3 Research Methodologies

Network location problems are concerned with a general location model in which

there are a number of demand points in a given network, such as transportation

hubs, air and sea ports, retail outlets, and so on. These points are usually taken

to be at the nodes of the network, and are to be served by facilities, which are

to be located in the network. The facilities are usually isolated points, paths,

trees, and so on, in the network. The objective is to locate the facilities in the

network to attain some optimality, where the definition of optimality varies from

problem to problem. However, the cost of satisfying the demand points depends,

at least to some extent, on the distances between them and the facilities, which

are measured by the shortest paths through the network (see Hooker, et al.,

1991).

Since network location problems belong to combinatorial optimization prob-
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lems, the techniques to deal with combinatorial optimization problems can be

applied to solving network location problems. One most powerful approach to

tackle location problems is to use the complexity theory to classify network loca-

tion problems into polynomial solvable and NP-hard problems. The complexity

of a problem is defined as the computational complexity of the best possible

algorithm solving it. An algorithm is order f(n) if there exists some constant

a such that the number of basic operations required to run the algorithm for a

problem of size n is less than or equal to af(n) for all values of n. An algorithm

is a polynomial time algorithm if its order f(n) is a polynomial function of n.

A problem is polynomial solvable if it can be solved by a polynomial time

algorithm, and no NP-hard problem can be solved by any known polynomial

time algorithm. Most location problems in general networks are NP-hard, while

location problems in special networks, such as tree networks, path networks, etc.,

are polynomial solvable. In this thesis we develop some polynomial time algo-

rithms for location problems in tree networks, and use approximation algorithms

to obtain near-optimal solutions for those in general networks with a reasonable

performance guarantee.

Furthermore, to design efficient algorithms, we apply two methodologies

to study network location problems with point-shaped facilities and connected

facilities to locate, respectively. First, when the facilities to locate are isolated

points, we mainly focus on the identification of a finite dominating set (FDS),

a finite set of points to which some optimal solution for an OMP must belong.

In the literature, there are several papers on the identification of an FDS. The

seminal paper in this field was conducted by Hakimi (1964, 1965), who proved an

FDS for the p-median problem. Several decades later, a distinguished research



1.3 Research Methodologies 9

on FDS was provided by Hooker et al. (1991), who showed the characterizations

of FDS for a number of location problems. Recently, much research focuses on

obtaining an FDS for some instances of the OMP, as is evident in the studies

by Nickel and Puerto (1999), Kalcsics et al. (2002), Kalcsics et al. (2003) and

Puerto et al. (2005).

FDS is very useful in a variety of optimization problems, which enables

one to restrict one’s attention to a finite set of possible solutions. For instance,

at the heart of the simplex algorithm for linear programming is the fact that

the vertices of the feasible set form an FDS (see Hooker et al., 1991). Another

classical example is the FDS result of the p-median problem, in which the nodes

of the network comprise an FDS, as shown by Hakimi (1964, 1965). Furthermore,

we can devise exact algorithms for network location models by taking advantage

of a priori knowledge of an FDS when it is available. Moreover, obtaining an

FDS allows the development of different types of algorithms to solve the problem

concerned by enumerating a (finite) candidate set. In addition, we can establish

the computational complexity of these algorithms, which depends strongly on

the cardinality of the FDS.

Second, the facilities we want to locate are connected structures, e.g., trees

or paths, and cannot be represented by isolated points in the space, which is

motivated by specific decision problems related to routing and network design.

There are already several studies on the location of connected structures (see

Morgan and Slater, 1980; Hedetniemi et al., 1981; Slater, 1982; Minieka and

Patel, 1983; Minieka, 1985; Becker and Perl, 1985; Tamir et al., 2002, Puerto

and Tamir, 2005).

A natural idea to study this type of location problems is to link its optimal
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connected facility with one optimal point-shaped facility such that the possible

optimal connected facility can grow at the point-shaped facility. This idea leads

to the nestedness property, the property that for any optimal solution x to the

point OMP, there exists an optimal subtree to the corresponding OMP including

x. The nestedness property provides researchers with a powerful tool to develop

some efficient algorithms.

The seminal study on nestedness property was introduced by Minieka

(1985), who presented some efficient algorithms for optimally locating a path

or a tree in a tree network. Recently, there are some studies on efficient al-

gorithms for location problems in networks, especially in tree networks, using

the nestedness property, as is evident in Wang (2000), Tamir et al. (2002), and

Puerto and Tamir (2005). In this thesis we apply the nestedness property to

study subtree OMP.

1.4 Organization of the Thesis

The thesis begins with an introduction on facility location in networks, including

its classification, problem formulation and research methodologies. The remain

chapters in this thesis are organized as follows:

Chapter 2 presents a literature review of network location models, in which

we introduce the history and the development of the network location problems

under study in this thesis.

Chapter 3 deals with the multi-facility ordered median problems in undi-

rected networks, in which multiple isolated facilities are to be located. Multi-
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facility OMP in general networks are NP-hard, since the p-median and the p-

center problems are special cases. In this chapter we use a finite dominating set

(FDS) to study some special cases of the OMP in networks. FDS is a finite set

of points to which some optimal solutions must belong, and is very useful for

solving a variety of optimization problems, which enables one to restrict one’s

attention to a finite set of possible solutions. We first characterize an FDS for a

special convex OMP in general networks, where the convex OMP is an important

class in the OMP family. The FDS result generalizes some known results in the

literature. Then, based on the FDS result, we obtain a polynomial size FDS and

solve the problem confined to tree networks in polynomial time, which extends

some results in the literature.

Chapter 4 is devoted to the multi-facility OMP in directed networks, since

most of the networks in the real world are directed and not symmetric. For

instance, routes are usually directed in a bus traffic system. In this chapter we

also use the FDS to identify some possible solutions for a multi-facility OMP in a

strongly connected directed network. We first prove that the OMP has an FDS in

the node set, which generalizes the FDS result on the single-facility OMP in the

literature. Furthermore, we show that the OMP can be solved efficiently based

on the FDS result when the number of facilities is fixed and small. However, if the

number of facilities is large, it is not reasonable for us to find an optimal solution,

since the OMP in directed networks is NP-hard. Hence, instead of finding an

optimal solution, we resort to some approximation algorithms for near-optimal

solutions. In the end of Chapter 4, we present a 62
3
-approximation algorithm for

the p-median problem in directed networks.

Chapter 5 presents the subtree OMP in tree networks, in which the fa-
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cilities to locate are not isolated points but connected structures (e.g., path,

tree, etc.) These problems are motivated by specific decision problems related

to routing and network design. In this chapter we use the nestedness property

to investigate the subtree OMP in tree networks, where the nestedness prop-

erty is the property that for any optimal solution x to the point OMP, there

exists an optimal subtree to the corresponding OMP including x. The nested-

ness property provides researchers with a powerful tool to develop some efficient

algorithms. First, we prove the nestedness property for a special convex OMP in

tree networks. This finding extends some classical results concerning the nest-

edness property. Second, we solve the problem in polynomial time by applying

the nestedness property result. Finally, we provide one counter example to show

that the nestedness property cannot hold for the non-convex case.

Chapter 6, the last chapter, concludes the major findings of the thesis and

suggests some directions for future research.



Chapter 2

Literature Review

Location science is a field of analytical study that can arguably be traced back

to Pierre de Fermat, Evagelistica Torricelli, and Battista Cavallieri early in the

seventeenth century (see Hale and Moberg, 2003). Facility location in networks is

one of the most important and well-developed branches in location science, which

is evident in numerous surveys and textbooks (see Mirchandani and Francis,

1990; Daskin, 1995; Drezner, 1995; Labbé et al., 1995; Puerto, 1996; Drezner

and Hamacher, 2002). The seminal work on network location problems was

introduced by Hakimi in 1964.

As introduced in Chapter 1, network location models differ in a variety of

parameter indices, such as objective functions, shape requirements of the facilities

to locate, the nature of the inputs and so on. For the sake of clarity, we focus on

the development of two main clues: objective functions and shape requirements

of the facilities to locate along with the application of the research methodologies.

From the objective function point of view, in location science, there exist
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two predominant objective functions: minisum (also called median) and minimax

(also called center).

The p-median problem on a network was introduced by Hakimi (1964),

which finds the location of p facilities to minimize the demand-weighted total

distance between demand nodes and the facilities to which they are assigned.

The p-median problem was later investigated by Hakimi (1965), Goldman (1971),

Minieka (1977), Kariv and Hakimi (1979b). Hakimi’s original studies proposed

the well-known property that bears his name, the Hakimi property, which sug-

gests that for the p-median problem on a network, at least one optimal solution

must be included in the node set of the network. Moreover, some algorithms for

1-median problem on a network were presented. For instance, Goldman (1971)

provided simple algorithms for locating a single facility for both an acyclic net-

work and a network containing exactly one cycle. Another well-known, albeit

trivial, algorithm for the 1-median problem on an acyclic network is known as the

Chinese Algorithm (Francis, McGinns and White, 1992). In addition, Dearing

et al. (1976) provided a thorough treatment of convexity on a network.

The p-center problem in a network was also first formulated by Hakimi

(1964), which identifies the location of p facilities to minimize the maximum

distance that demand is from its closest facility. This problem was later addressed

by Hakimi (1965), Minieka (1970, 1977), Kariv and Hakimi (1979b), Elzinga and

Hearn (1972), and Tansel et al. (1982), respectively. The p-center problem

was proved to be NP-hard by Kariv and Hakimi (1979b). Another location

model involving the maximum distance is a maximal covering location problem,

first formulated by Church and ReVelle (1974). The maximal covering location

problem focuses on the location of p facilities to maximize the number of covered
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demands. Note that all the demands in the maximal covering location problem

are not necessarily severed by facilities. Church and Meadows (1979) provided

a pseudo-Hakimi property for the maximal covering problem, which stated that

there exists a finite augmented set of the nodes containing at least one optimal

solution to the problem in any network.

Except for the above models, there exist other important location models.

For instance, Halpern (1976) introduced the α-centdian as a parametric solu-

tion concept based on the bicriteria center/median model in a tree network. He

established the corresponding trade-off with a convex combination of the un-

weighted center and weighted median objectives. Another important model, the

k-centrum problem was first introduced by Slater (1978), which minimizes the

sum of the k farthest weighted distances. The other objective functions, such as

anti-k-centrum (the sum of the k closest weighted distances), (k1, k2)-trimmed

(disregarding the k1 closest and the k2 farthest weighted distances), the concave

(the λ-weights in a decreasing order) and the convex (the λ-weights in an increas-

ing order) cases have also been studied within the location science community.

Although modern location theory is now more than 90 years old, and there

is a vast collection of papers and books on this topic, a group of researchers

realized that a common theory is still missing. Thus Nickel and Puerto (1999)

introduced a unified approach − the ordered median function − to express most

of the relevant location objectives, which started their work on a unified frame-

work. In this thesis, we focus on network location problems using the ordered

median function and its special instances.

Along with the development of location objectives, the shapes of the facili-

ties to locate varies according to different practical requirements. Location theory
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was traditionally concerned with the optimal location of point-shaped facilities

(single-facility or multi-facility) at either vertices or along arcs of a network. The

seminal work in this area was due to Hakimi (1964, 1965).

Recently, there is more attention on the location of connected structures,

which cannot be represented by isolated points in a network, motivated by con-

crete decision problems related to routing and network design. For instance, in

order to improve the mobility of the population and reduce traffic congestion,

many existing rapid transit networks are being updated by extending or adding

lines. These lines can be viewed as new facilities. In fact, studies on the location

of connected structures (which are called extensive facilities) already appeared

in the early 1980’s. Slater (1981, 1982) extended the network location theory

to include a facility that is not merely a single point but a path. His work was

confined to tree networks. A path in a tree network with the median criterion is

defined as a core. A linear time algorithm for computing a core of a tree network

was proposed by Morgan and Slater (1980).

Slater imposed no constraints on the length of the path selected as a core.

Minieka and Pate (1983) first studied the problem of finding in a tree network

a core of a specified length, exploring some properties of the problem and con-

cluding that it is difficult to design an efficient algorithm for the problem. Later,

Minieka (1985) extended the Minieka and Pate’s study (1983) to consider the

problems of optimally locating in a tree network a path and a tree of a specified

length.

Peng and Lo (1994) proposed an efficient parallel algorithm for computing a

core of a tree network on the EREW PRAM model, in which a PRAM consists of

a collection of autonomous processors, each having access to a common memory
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and performing the same instruction at each step, and a memory location cannot

be simultaneously accessed by more than one processor. They also proposed

efficient parallel algorithms on the EREW PRAM model for optimally locating

in a tree network a path and a tree of specified length with the center and median

criteria (Peng and Lo, 1994; 1996).

Since the introduction of the ordered median function, there have been in-

creasing studies dealing with a single facility, multi-facility, or connected facilities

using this new objective function, reproving a lot of known results in an easier

way and generating more insight into the geometrical structure of the optimal

solution sets with respect to different criteria (see e.g., Tamir, 1996; Tamir et

al. 1998, Nickel and Puerto, 1999; Tamir, 2001; Kalcsics et al., 2002, Tamir et

al., 2002; Puerto and Tamir, 2005; Puerto and Rodŕıguez-Ch́ıa, 2005). In this

thesis, based on the known findings on the above studies, we continue on network

location problems with the ordered median function, using some methodologies

introduced in Section 1.3.



Chapter 3

Multi-facility OMP in

Undirected Networks

3.1 Introduction

In this chapter we use the FDS methodology to study the multi-facility ordered

median problems (OMP) in undirected networks, in which the multiple isolated

facilities are to be located. Study on network location problems with FDS appli-

cation was first introduced by Hakimi (1964). Afterwards, much research related

to network location problems started to focus on the identification of FDS. FDS

is very useful in a variety of optimization problems, which enables one to restrict

one’s attention to a finite set of possible solutions. For instance, at the heart

of the simplex algorithm for linear programming is the fact that the vertices of

the feasible set form an FDS (see Hooker et al., 1993). Another classical ex-

ample is the FDS result for the p-median problem, in which the nodes of the
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network comprise an FDS, as shown by Hakimi (1964, 1965). Furthermore, we

can devise exact algorithms for network location models by taking advantage

of a priori knowledge of an FDS when it is available. Moreover, obtaining an

FDS allows the development of different types of algorithms to solve the problem

concerned by enumerating a (finite) candidate set. In addition, we can establish

the computational complexity of these algorithms, which depends strongly on

the cardinality of the FDS.

Multi-facility OMP in general networks are NP-hard, since the p-median

and the p-center problems are special instances of the OMP. First, we review

some known results on the FDS for the OMP in the literature. Second, we

characterize an FDS for a special convex OMP with the λ-weights defined in 3.1

and 3.2 in general networks, where the convex OMP is an important class in the

OMP family. The FDS result generalizes some known results in the literature.

Finally, based on the FDS result, we obtain a polynomial size FDS and solve the

problem confined to tree networks in polynomial time.

To characterize an FDS in this thesis, we cite some related notation from

Nickel and Puerto (2005) as follows:

Definition 3.1

(1). A point x on an edge e = [vi, vj] ∈ E is called a bottleneck point of node vk,

if wk 6= 0, and

d(x, vk) = d(x, vi) + d(vi, vk) = d(x, vj) + d(vj, vk).

(2). BNi denote the set of all the bottleneck points of a node vi ∈ V .

(3). BN :=
n∪

i=1
BNi is the set of all the bottleneck points of the network.
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(4). NBN :=
n∪

i=1
wi<0

BNi. A point in NBN is called a negative bottleneck point.

Definition 3.2

(1). For all vi, vj ∈ V, i 6= j, define

EQ′
ij := {x ∈ A(G) : wid(vi, x) = wjd(vj, x)}.

(2). Let EQij be the relative boundary of EQ′
ij, i.e., the set of end points of the

closed subedges forming the elements in EQ′
ij; EQkl

ij ⊆ EQij be the equilibrium

points of nodes vi, vj on the edge [vk, vl] for any i, j ∈ {1, · · · , n}, and k, l such

that [vk, vl] ∈ E.

(3). EQ :=
n∪
i,j
i6=j

EQij. A point x ∈ EQ is called an equilibrium point of G.

(4). Two points a, b ∈ EQ are called consecutive if there is no other c ∈ EQ on

a shortest path between a and b.

Definition 3.3

(1). Define the set of ranges (canonical set of distances) R ∈ R+ by

R := {r ∈ R+|∃x ∈ EQij : di(x) = r = dj(x)

or ∃vi, vj ∈ V, vi 6= vj : r = wid(vi, vj)}.

Ranges correspond to the weighted distance values between equilibrium points

and nodes.

(2). A point x is called an r−extreme point or pseudo−equilibrium with range

r ∈ R if there exists a node vi ∈ V with r = wid(x, vi).

(3). Denote by PEQ the set of all the pseudo-equilibria with respect to all the
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ranges r ∈ R, i.e.,

PEQ(r) = {y ∈ A(G)|wid(vi, y) = r, vi ∈ V }

with r ∈ R, PEQ = ∪r∈RPEQ(r).

Example 3.1

mv1

mv2 mv3

3
2

2

Figure 3.1. A cycle network of Example 3.1

Consider the cycle network in Figure 3.1 with the node set V = {v1, v2, v3}
and the λ-weights: w1 = 1, w2 = 2, w3 = 2. The distances between two nodes

are shown in Figure 3.1. Based on the above definitions, we can compute the

sets defined above as follows:

(1) The set of all the bottleneck points of node v1 is BN1 = {([v2, v3], 1/4)}. Sim-

ilarly, BN2 = {([v1, v3], 1/4)}, and BN3 = {([v1, v2], 1/2)}. Hence, the set of the

bottleneck points of the network in Figure 3.1 is BN = {([v2, v3], 1/4), [v1, v3], 1/4),

([v1, v2], 1/2)}.
(2) The set of the equilibrium points of nodes v1 and v2 is EQ12 = EQ12

12∪EQ13
12∪

EQ23
12. It is easy to compute that EQ12

12 = {([v1, v2], 2/3)}, EQ13
12 = ∅, and EQ23

12 =

{([v2, v3], 2/3)}. Thus we obtain that EQ12 = {([v1, v2], 2/3), ([v2, v3], 2/3)}.
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Similarly, we have that EQ13 = {([v1, v3], 2/3), ([v2, v3], 1/6)}, and EQ23 =

{([v1, v2], 1/6), ([v2, v3], 1/2)}, which directly lead to the set EQ.

(3) According to the above EQ, we can compute the set of ranges

R = {4/3, 2, 8/3, 3, 10/3, 4, 5, 6}.

Then we can identify all the pseudo-equilibria with every r ∈ R. For instance,

([v1, v3], 2/3) is a pseudo-equilibrium with range 4/3.

In the following the FDS for some research on the single-facility or multi-

facility OMP can be represented by a combination of the node set V, EQ, BN, NBN,

and PEQ.

3.2 Previous Results

3.2.1 Single-facility OMP

The paper by Nickel and Puerto (1999) contained the first results concerning the

FDS for some instances of the OMP. The first one is an FDS for the single-facility

OMP.

Theorem 3.1 (Nickel and Puerto, 1999) An optimal solution for the single-

facility OMP with non-negative λ-weights can always be found in the set V ∪EQ.

When the λ-weights can be negative, Kalcsics et al. (2002) provided a

more general FDS below.

Theorem 3.2 (Kalcsics et al., 2002) The set V ∪EQ∪NBN is a finite dominating

set for the single-facility OMP with general node weights.



3.2 Previous Results 23

Meanwhile, Kalcsics et al. (2002) also dealt with the case of directed

networks with non-negative node weights as follows:

Theorem 3.3 (Kalcsics et al., 2002) The single-facility OMP on directed net-

works with non-negative node weights always has an optimal solution in the

node-set V . If in addition λ1 > 0 and wi > 0, ∀i = 1, . . . , n, then any optimal

solution is in V .

3.2.2 Multi-facility OMP

In the case of multi-facility location, the first well-known result was introduced

by Hakimi (1964) below.

Theorem 3.4 (Hakimi, 1964) There exists an optimal solution for the p-median

problem in the node set V .

After the introduction of the OMf, Nickel et al. (2003) identified an FDS

for the OMP with λ1 ≥ λ2 ≥ · · ·λn ≥ 0, which generalizes Theorem 3.4 as

follows:

Theorem 3.5 (Nickel et al., 2003) The p-facility OMP with λ1 ≥ λ2 ≥ . . . ≥
λn ≥ 0 always has an optimal solution X∗

p contained in V .

Remark 3.1

As we know, the problem stated in Theorem 3.5 is also called the concave OMP.

We have seen that V is an FDS for the concave multi-facility OMP, and V ∪EQ

is an FDS for the single-facility OMP. Then a natural question arises: Is V ∪EQ

also an FDS for the multi-facility OMP? The answer is negative. In the following

we provide a counter example (see Figure 3.2).
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Example 3.2

±°
²¯
v1

2

±°
²¯
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1

±°
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1
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²¯
v31

±°
²¯
v5

2

±°
²¯
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2
4 30 4

1

1

Figure 3.2. A tree T = (V, E) of Example 3.2

Consider the 2-facility OMP with λ = (1, 1, . . . , 1, 2) in the tree network in Figure

3.2. If X2 is restricted in V ∪ EQ, the optimal solution is given by

X2 = {EQ12
13 = ([v1, v2],

5

12
), EQ56

56 = ([v5, v6],
1

2
)},

with the objective value fλ(X2) = 241
3
. If we disregard this restriction, then we

have a better solution, i.e.,

X∗
2 = {x∗ = ([v1, v2],

1

2
), EQ56

56 = ([v5, v6],
1

2
)},

with the objective function value of 24. Note that x∗ is neither an equilibrium

point nor a vertex.

Despite this negative result, Kalcsics et al. (2003) characterized a polyno-

mial size FDS for an important class of the p-facility OMP. Let 1 ≤ k < n, λk =

(a, . . . , a, b, . . . , b) ∈ Rn
0+, where

a = λ1 = · · · = λk 6= λk+1 = · · · = λn = b.

Note that the λ-weights corresponding to the center, centdian or k-centrum prob-

lem are of this type.
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Theorem 3.6 (Kalcsics et al., 2003) The p-facility OMP with non-negative

node weights p ≥ 2 and λk ∈ Rn
0+, 1 ≤ k ≤ n− 1 always has an optimal solution

X∗
p ⊆ A(G) in the set PEQ. Moreover, X∗

p ∩ (V ∪ EQ) 6= ∅.

Theorem 3.6 not only proves the existence of an FDS, but also allows

us to identify an FDS for any given problem. On the other hand, Puerto and

Rodŕıguez-Ch́ıa (2005) proved that there is no polynomial size FDS for the multi-

facility OMP even in path networks. Thus it is interesting to investigate the

structure of the λ-weights such that there must exist a polynomial size FDS.

In the next section we characterize a polynomial size FDS for a special

case of the convex p-facility OMP in general networks, in which the λ-weights

are defined as follows:

λ1 ≥ 0, λi+1 ≥
i∑

j=1

λj, (i ∈ Z+). (3.1)

3.3 Special Convex OMP in Networks

Before we prove our theorem, we introduce some lemmas below.

Lemma 3.1 Let G = (V, E) be an undirected network with non-negative node

weights, Xp = {x1, · · · , xp} ⊆ A(G), x = (e, t) ∈ Xp with e ∈ E and t ∈ [0, 1] an

arbitrary solution point and λ = (λ1, · · · , λn) ∈ Rn
0+. Then there exists a point

x′ = (e, t′), t′ ∈ [0, 1], such that fλ(X
′
p) ≤ fλ(Xp), where X ′

p = Xp\{x} ∪ {x′},
and either

x′ ∈ V or d(i)(X
′
p) = d(i+1)(X

′
p) for some i (i ∈ {1, · · · , n− 1}) (3.2)

holds.
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Proof. Let Xp = {x1, · · · , xp} ⊆ A(G) with xl = (el, sl), sl ∈ [0, 1], l = 1, · · · , p,

such that Xp does not satisfy one of the relations in (3.2). Without loss of

generality, let x1 = x ∈ A(G). Define Xp(t) := {x1(t), x2, · · · , xp}, where

x1(t) := (e1, s1 + t), t ∈ [−s1, 1 − s1]. In the following we prove the concav-

ity of the objective function.

Let T := [t, t] be an interval with −s1 ≤ t ≤ 0 ≤ t ≤ 1 − s1 such that

d(i)(Xp(t)) < d(i+1)(Xp(t)) holds for all i ∈ {1, · · · , n − 1} and all t ∈ T . This

interval exists since d(i)(Xp(t)) < d(i+1)(Xp(t)) holds for t = 0 and all distance

functions di(·) are continuous on an edge. Then we consider the following two

cases.

Case 1. No re-allocation of the nodes vi = v(s) (s ∈ {1, · · · , n}) allocated to x1

occurs with respect to x1(t) for all t ∈ T0 = [−s1, 1− s1]. We have d(s)(Xp(t)) =

di(x1(t)) for all t ∈ T0. Note that di(x1(t)) is concave on e1. For those nodes

xj allocated to xl ∈ Xp (xl 6= x1), we have d(t)(Xp(t)) = dj(xl) (t 6= s), which

is constant. Thus we claim that d(i)(Xp(t)) is a concave function of t ∈ T0 (i =

1, · · · , n).

Case 2. If the re-allocation of nodes occurs, i.e., there exists at least a node

vj ∈ V such that d(vj, x1(t0)) = d(vj, xl) (xl 6= x1) for some t0 ∈ T0, then x1(t0)

is not the bottleneck point of this node on edge e1, otherwise the re-allocation

will not change with respect to x1(t), t ∈ T0. Without loss of generality, assume

that vj is allocated to x1(t) for t ≤ 0 and to xl, l ∈ {2, · · · , p} for t > 0. Thus we

have dj(Xp(t)) = dj(x1(t)) for t ≤ 0 on one edge e1 and dj(Xp(t)) = dj(xl(t)) for

t > 0 on one edge el. In order to be re-allocated, the distance function of vj on

edge e1, dj(x1(t)), has to be increasing for t ≤ 0. After the change of allocations,

we obtain dj(Xp(t)) = dj(xl) on el, which is constant with respect to t. Hence,



3.3 Special Convex OMP in Networks 27

for those nodes vi re-allocated to other solution points with respect to x1(t),

we claim that di(Xp(t)) is concave for t ∈ T0. Moreover, the distance functions

for the other nodes are independent of t. Hence, based on the assumption that

d(i)(Xp(t)) < d(i+1)(Xp(t)) holds for all i ∈ {1, · · · , n−1} and all t ∈ T , we claim

that the objective function fλ(Xp(t)) is also concave in the interval T ⊆ T0.

According to the definition of T and the above arguments, the concav-

ity of fλ(Xp(t)) holds during the process of extending T from [t, t] to T0 until

d(i)(Xp(t)) = d(i+1)(Xp(t)) for some i ∈ {1, · · · , n− 1} holds. Thus, without loss

of generality, we may assume that the objective function is increasing for t ∈
[−s1, 0). Hence, we may decrease t until x1(t) ∈ V or d(i)(Xp(t)) = d(i+1)(Xp(t))

for some i ∈ {1, · · · , n− 1} holds. ¤

With Lemma 3.1 we can move an arbitrary solution point on its edge either

to the left or to the right without increasing the objective function value until a

point is attained for which (3.2) holds. Obviously, we can repeat this procedure

for all the points in Xp. Hence we obtain the second lemma below.

Lemma 3.2 Let Xp = {x1, · · · , xp} ⊆ A(G), p ≥ 2, be a solution for the p-

facility OMP with all node weights equal to 1 and the λ-weights defined in (3.1).

Then there exists a solution X ′
p with fλ(X

′
p) ≤ fλ(Xp) such that the following

two cases must occur:

(1). At least one solution point of X ′
p belongs to the set V ∪ EQ;

(2). For each solution point in X ′
p\(V ∪EQ), there exists another solution point

in X ′
p ∩ (V ∪ EQ) and two nodes allocated to each of the two points such that

the distances of these two nodes to their respective solution points are equal.

Proof. Let xs (s ∈ {1, · · · , p}) be the solution point related to the largest
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distance in d≤(Xp). By Lemma 3.1, we can move xs on its edge to the left or

to the right without increasing the objective function value until xs(t) ∈ V or

d(i)(Xp(t)) = d(i+1)(Xp(t)) holds for some i ∈ {1, · · · , n − 1}, where Xp(t) =

(Xp\xs) ∪ {xs(t)}.

If xs(t) ∈ V , we continue to identify the solution point related to the

second largest distance in the updated inequality sequence. Otherwise, we have

that d(i)(Xp(t)) = d(i+1)(Xp(t)) = rs holds for some i ∈ {1, · · · , n − 1}. In the

following we consider two cases.

Case 1. At least two nodes, e.g., vi and vj, are allocated to xs(t) with the same

distance rs. In this case xs(t) ∈ EQij is an equilibrium of the two nodes vi and

vj with range rs. As a result, rs ∈ R (R corresponds to the function values

of equilibria or to the node-to-node distances), and those solution points with

distance rs are pseudo-equilibria with range rs.

Case 2. Only one node, e.g., vs, is allocated to xs(t) with distance rs. According

to the proof of Lemma 3.1, xs(t) is the solution point related to the largest

element in the updated inequality sequence. We can continue to move xs(t)

on its edge to the left or to the right with decreasing the objective function

value until xs(t0) ∈ V or at least two nodes, vi and vj, allocated to xs(t0)

with the same distance. This procedure is feasible as we claim below: Without

loss of generality, assume that the largest distance in the updated inequality

d(n)(xs(t)) decreases when we move xs by a small δ on its edge to the left. Since

λ1 ≥ 0, λi+1 ≥
∑i

j=1 λj, (i ∈ Z+) and all node weights are equal to 1, it is easy

to check that the variation of the objective function, denoted as V ar(f), satisfies

the following inequality

V ar(f) ≤ (
n−1∑
j=1

λj − λn)δ ≤ 0.
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Hence, with the same argument as in Case 1, we obtain that xs(t0) ∈ V or

xs(t0) is an equilibrium point.

Next we use the same procedure as above to deal with the solution point re-

lated to the largest distance in the updated inequality sequence, except those so-

lution points that have been identified as PEQ points. Obviously, we can continue

to move one solution point after another without increasing the objective function

until the desired result follows. ¤

As we know, the λ-weights in (3.1) has at most two elements with the

same values. In fact, according to the above argument, it is easy to see that

Lemma 2 also holds for the λ-weights taking at least two elements with the

same values, i.e., λ(k, m, t) = (k1,
m1· · ·, k1, k2,

m2· · ·, k2, · · · , kt
mt· · ·, kt) ∈ Rn

0+ (mi ∈
Z+, kj ∈ R0+, t ≥ 2, i, j = 1, · · · , t) satisfying

k1 ≥ 0, ki+1 ≥
i∑

j=1

mjkj, (i ∈ Z+). (3.3)

Hence, with the above argument and Lemma 3.2, we have the identification

of the FDS as follows:

Theorem 3.7 The p-facility OMP with all node weights equal to 1, p ≥ 2 and

λ defined in (3.1) or (3.3) always has an optimal solution X∗
p ⊆ A(G) in the set

PEQ. Furthermore, X∗
p ∩ (V ∪ EQ) 6= ∅.

Proof. Let Xp (p ≥ 2) be an optimal solution. With Lemma 3.2 there exists an-

other optimal solution X∗
p with fλ(X

∗
p ) = fλ(Xp) such that X∗

p ⊆ PEQ and X∗
p ∩

(V ∪EQ) 6= ∅. ¤

Remark 3.1
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Since PEQ is an FDS for the p-facility OMP with the λ-weights defined in

(3.1), as stated by Kalcsics et al. (2003), a natural question refers to the number

of elements contained in the set PEQ. Denote h = |EQ|, then we have a range

r for every equilibrium and every pair of nodes u, v ∈ V, u 6= v, which lead to

|R| = O(h + n2) ranges. Since every distance function di(·) can assume a value

r ∈ R in at most two points on an edge e ∈ E, we obtain O(nm) r-extreme

points and hence |PEQ| = O(nm(h+n2)). With the above results, it is possible

to devise an algorithm to solve the ordered problem exactly.

Remark 3.2

The location model stated in Theorem 3.7 can be easily applied in the real

world. For example, in the location of a distribution center perishable goods, in

which the goal is for the longer distances and the total travel distance to be as

small as possible, we might apply some penalty to a customer with the weighted

distance in Position n more than the sum of the former (n− 1) penalties.

Remark 3.3

Since the λ-weights in Theorem 3.7 are a special one of the convex case,

including a p-center case, our problem belongs to the set of the convex p-facility

OMP.

In the following we solve the p-facility OMP stated in Theorem 3.7 on a

general network. By Theorem 3.7, there always exists an optimal solution in

which one of the points, e.g., xp, is a node or an equilibrium point. According

to the proof of Lemma 3.2, we see that all the other solution points are either

nodes or pseudo-equilibria with respect to the range of the equilibrium or one of

the ranges of the nodes. Therefore, we may first compute the set of equilibria
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EQ, then the ranges R, and afterwards the pseudo-equilibria for every r ∈ R.

The latter should be saved with reference to r in a set PEQ[r].

Next, choose a candidate xp from the set V ∪ EQ. If xp ∈ EQij is an

equilibrium of range r = di(xp) = dj(xp), then the objective function value

fλ(Xp−1 ∪ {xp}) is determined for all the p− 1 subsets Xp−1 = {x1, · · · , xp−1} of

V ∪ PEQ[r]. If xp = v is a node, then the set Rv can be obtained. Moreover,

for all the subsets Xp−1 = {x1, · · · , xp−1} of V ∪ {PEQ[r]|r ∈ Rv}, the objec-

tive function value fλ(Xp−1 ∪ {xp}) should be determined. Thus we apply the

algorithm introduced by Kalcsics et al. (2003) as follows:

Algorithm 3.1

Computation of an optimal solution set X∗
p

Input: Network G = (V, E), distance-matrix D, p ≥ 2, and a vector λ satisfying

the conditions defined in (3.1) or (3.3)

Output: An optimal solution set X∗
p

1. Initialization

Let X∗
p := ∅, res := +∞.

2. First compute EQ, then the set of ranges R, and based on these sets, determine

for every r ∈ R the pseudo-equilibria and save them with reference to r in a set

PEQ[r].

3. For all equilibrium points in EQ Do

Let xp ∈ EQij and compute the range r of the equilibrium, i.e., r :=

di(xp) = dj(xp).

for all Xp−1 = {x1, · · · , xp−1} ⊆ V ∪ PEQ[r] do

Compute fλ(Xp), where Xp := Xp−1 ∪ {xp}.
if fλ(Xp) < res then X∗

p := {Xp}, res := fλ(X
∗
p )
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4. For all vi ∈ V Do

Let xp := v and compute the set Rv of all ranges of the node.

for all Xp−1 = {x1, · · · , xp−1} ⊆ V ∪ {PEQ[r]|r ∈ Rv} do

Compute fλ(Xp), where Xp := Xp−1 ∪ {xp}.
if fλ(Xp) < res then X∗

p := {Xp}, res := fλ(X
∗
p )

5. Return X∗
p .

As claimed by Kalcsics et al. (2003), the above algorithm has time com-

plexity O(pmp−1np log n(h+np)). Note that the above problem is NP-hard, since

one of its particular instances is p-center problems, which is NP-hard.

In the following we solve the p-facility OMP stated in Theorem 3.7 with the

λ-weights defined as (3.3) in which t = 3 in polynomial time on a tree network,

by adapting and modifying the algorithm provided by Kalcsics et al. (2003).

3.4 A Polynomial Algorithm for Multi-facility

OMP

Before developing the algorithm, we introduce some related notation. Suppose

that the given tree T = (V, E), |V | = n and |E| = n − 1, is rooted at some

distinguished node, say, v1. For each pair of nodes vi, vj, we say that vi is a

descendant of vj if vj is on the unique path connecting vi to the root v1. If vi is

a descendant of vj and vi is connected to vj with an edge, then vi is a child of

vj and vj is the unique father of vi. If a node has no children, it is called a leaf

of the tree. As shown in Tamir (1996), the original tree can be assumed to be a

binary tree, where each non-leaf node vj has exactly two children, vj(1) and vj(2).
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The former is called the left child, and the latter, the right child. For each node

vj, Vj denotes the set of its descendants.

In the following we develop an algorithm, which consists of three phases.

In the first phase, compute and augment an FDS into the node set of T . By

Theorem 3.7, Y = PEQ is an FDS for this problem and is of cardinality O(n4)

since |E| = n− 1. This phase has complexity O(n4) by the procedure of Kim et

al. (1996). Let T a denote the augmented tree with the node set Y . Each point

in Y is called a seminode. In particular, a node in V is also a seminode.

In the second phase, similar to the one in Tamir et al. (1998), for each

node vj, we compute and sort the distances from vj to all seminodes in T a. This

sequence is denoted by Lj = {r1
j , · · · , rm

j }, where ri
j ≤ ri+1

j , i = 1, · · · ,m − 1,

and r1
j = 0. Without loss of generality, there is a one-to-one correspondence

between the elements in Lj and the seminodes in Y (Tamir et al., 1998). The

seminode corresponding to ri
j is denoted by yi

j, i = 1, · · · ,m. With the centroid

decomposition approach given in Kim et al. (1996), the total computational

effort of this phase is O(n6).

In the third phase, some functions are introduced as below. First, for

each node vj, an integer q = 0, 1, · · · , p, tij ∈ Lj, two integers li = 0, 1, · · · ,mi,

and ci being a distance from any node to a seminode (i = 2, 3, c2 ≤ c3), let

G(vj, q, r
i
j, l2, l3, c2, c3) be the optimal value of the subproblem defined on the

subtree Tj with the following conditions:

1. A total of at least one and at most q seminodes (service centers) can

be selected in Tj, at least one of which is located in {y1
j , · · · , yi

j}∩Yj;

2. There are exactly li vertices associated with ki λ-weights, where
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li ≤ min{mi, |Vj|}, i = 2, 3, and Vj is the node set of Tj;

3. ci are the minimum distances allowed for a distance with a ki (i =

2, 3) λ-weights, respectively;

4. G(vj, 0, r, 0, 0, c1, c2) = +∞, and G(vj, q, r
i
j, l2, l3, c2, c3) = +∞ for

any combination of parameters that leads to an infeasible configura-

tion.

According to the definition, G(vj, q, r
i
j, l2, l3, c2, c3) is computed only for q ≤ |Vj|,

and if li > 0, then ci ≤ max{wkd(vk, y)|vk ∈ Vj and y ∈ Yj}, i = 2, 3, where Yj

is the seminode set of the augmented subtree rooted at y1
j = vj.

Similarly, for each node vj, an integer q = 0, 1, · · · , p, rj ∈ Lj, two integers

li = 0, 1, · · · ,mi, and ci (i = 2, 3) being a distance from any node to a seminode,

define F (vj, q, rj, l2, l3, c2, c3) as the optimal value of the subproblem defined in

Tj satisfying the following conditions:

1. A total of q service centers can be located in Tj;

2. There are already some selected seminodes in Y \Yj and the closest

among them to vj is at a distance rj;

3. There are exactly li vertices associated with ki λ-weights, where

li ≤ min{mi, |Vj|}, i = 2, 3;

4. ci are the minimum distances allowed for a distance with a ki (i =

2, 3) λ-weight, respectively.

Obviously, the function F is only computed for those ri
j that correspond to

yi
j ∈ Y \Yj.

As in Kalcsics et al. (2003), the algorithm computes the function G and
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F at all the leaves of T and then, recursively, proceeding from the leaves to the

root, computes these functions at all nodes of T . Thus the optimal value of the

problem is given by

min
c2,c3
c2≤c3

G(v1, p, r
m
1 ,m2,m3, c2, c3),

where v1 is the root of the tree.

Define

fj(r, l2, l3, c2, c3) =





k1r if r < c2,

k2r if c2 ≤ r ≤ c3 and 0 < l2 < m2,

k3r if r ≥ c3 and 0 < l3 < m3,

+∞ otherwise,

and

gj(r, l2, l3, c2, c3) =





k1r if r < c2,

k2r if c2 ≤ r ≤ c3 and l2 > 0, l3 = 0,

k3r if r ≥ c3 and l2 = 0, l3 > 0,

+∞ otherwise.

Let vj be a leaf of T . Then,

G(vj, 0, r
i
j, 0, 0, c2, c3) = +∞, i = 1, · · · ,m; ci 6= 0,

G(vj, 1, r
i
j, 0, 0, c2, c3) = 0, ci 6= 0,

G(vj, 1, r
i
j, l2, l3, c2, c3) = +∞ otherwise.

For each i = 1, · · · ,m such that yi
j ∈ Y \Yj,

Fj(vj, 0, r
i
j, 0, 0, c1, c2) =





k1r if ri
j < c2,

+∞ if ri
j ≥ c2,



3.4 A Polynomial Algorithm for Multi-facility OMP 36

Fj(vj, 0, r
i
j, 1, 0, c1, c2) =





k2r if c2 ≤ ri
j ≤ c3,

+∞ otherwise,

Fj(vj, 0, r
i
j, 0, 1, c1, c2) =





k3r if ri
j ≥ c2,

+∞ otherwise,

F (vj, 1, r
i
j, 0, 0, c2, c3) = 0,

F (vj, 1, r
i
j, l1, l2, c2, c3) = +∞.

Let vj be a non-leaf node in V , and let vj(1) and vj(2) be its left child and

right child, respectively. The r1
j corresponds to vj. In addition, it corresponds to

a pair of elements, say rk
j(1) ∈ Lj(1) and rt

j(2) ∈ Lj(2), respectively. Then denote

G(rk
j(1), r

t
j(2)) = min

q1+q2=(q−1)+

l21+l22+l31+l32=l

{
F (vj(1), q1, r

k
j(1), l21, l31, c2, c3)

+F (vj(2), q2, r
t
j(2), l22, l32, c2, c3)

}
;

G(ri
j(1), r

t
j(2)) = min

q1+q2=(q−2)+

l21+l22+l31+l32=l

yi
j(1)

∈(vj(1),vj)

{
F (vj(1), q1, r

i
j(1), l21, l31, c2, c3)

+F (vj(2), q2, r
t
j(2), l22, l32, c2, c3)

}
;

G(rk
j(1), r

i
j(2)) = min

q1+q2=(q−2)+

l21+l22+l31+l32=l

yi
j(2)

∈(vj(2),vj)

{
F (vj(1), q1, r

k
j(1), l21, l31, c2, c3)

+F (vj(2), q2, r
i
j(2), l22, l32, c2, c3)

}
,

where for any number a, we denote by a+ = max(0, a).

Thus we have

G(vj, q, r
1
j , l2, l3, c2, c3) = min

{
G(rk

j(1), r
t
j(2)) + G(ri

j(1), r
t
j(2)) + G(rk

j(1), r
i
j(2))

}
.
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For i = 2, · · · ,m, consider ri
j. If yi

j ∈ Y \Yj, then G(vj, q, r
i
j, l2, l3, c2, c3) =

G(vj, q, r
i−1
j , l2, l3, c2, c3). If yi

j ∈ Yj(1), then it corresponds to rk
j(1) ∈ Lj(1) and to

rt
j(2) ∈ Lj(2). In this case, we can compute G in the following way. For the sake

of clarity, denote

H1(vj, q, r
i
j, l2, l3, c2, c3)

= min
q1+q2=q

1≤q1≤|Vj(1)|
q2≤|Vj(2)|

l21+l22+l31+l32=

8
>>>>>><
>>>>>>:

l if ri
j < c2

(l − 1)+ if ri
j ≥ c2,

lhi≤{lh,|Vj(i)|}, h=2,3, i=1,2

{
G(vj(1), q1, r

k
j(1), l21, l31, c2, c3)

+F (vj(2), q2, r
t
j(2), l22, l32, c2, c3)

}
.

Thus we have

G(vj, q, r
i
j, l2, l3, c2, c3)

= min
{

G(vj, q, r
(i−1)
j , l2, l3, c2, c3);

gj(r
i
j, l2, l3, c2, c3) + H1(vj, q, r

i
j, l2, l3, c2, c3)

}
.

If yi
j ∈ (vj, vj(1)) and yi

j 6= vj(1), then define

H2(vj, q, r
i
j, l2, l3, c2, c3)

= min
q1+q2=q−1

1≤q1≤|Vj(1)|
q2≤|Vj(2)|

l21+l22+l31+l32=

8
>>>>>><
>>>>>>:

l if ri
j < c2

(l − 1)+ if ri
j ≥ c2,

lhi≤{lh,|Vj(i)|}, h=2,3, i=1,2

{
F (vj(1), q1, r

k
j(1), l21, l31, c2, c3)

+F (vj(2), q2, r
t
j(2), l22, l32, c2, c3)

}
.
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Hence we obtain

G(vj, q, r
i
j, l2, l3, c2, c3)

= min
{

G(vj, q, r
(i−1)
j , l2, l3, c2, c3); gj(r

i
j, l2, l3, c2, c3) + H2(vj, q, r

i
j, l2, l3, c2, c3)

}
.

Analogous formulas can be derived for yi
j ∈ Yj(2) with obvious changes.

Once the function G is obtained, we compute the function F . Let yi
j be a

seminode in Y \Yj. Thus, yi
j corresponds to some elements, say rk

j(1) ∈ Lj(1) and

rt
j(2) ∈ Lj(2). Similarly, define

H3(vj, q, r
i
j, l2, l3, c2, c3)

= min
q1+q2=q

q1≤|Vj(1)|
q2≤|Vj(2)|

l21+l22+l31+l32=

8
>>>>>><
>>>>>>:

l if ri
j < c2

(l − 1)+ if ri
j ≥ c2,

lhi≤{lh,|Vj(i)|}, h=2,3, i=1,2

{
F (vj(1), q1, r

k
j(1), l21, l31, c2, c3)

+F (vj(2), q2, r
t
j(2), l22, l32, c2, c3)

}
.

Hence, we also have

F (vj, q, r
i
j, l2, l3, c2, c3)

= min
{

G(vj, q, r
i
j, l2, l3, c2, c3); fj(r

i
j, l2, l3, c2, c3) + H3(vj, q, r

i
j, l2, l3, c2, c3)

}
.

Complexity As claimed by Kalcsics et al. (2003), the computational effort

required to evaluate the functions G and F depends on the cardinality of the FDS

for this problem. According to Theorem 3.7, PEQ is an FDS with cardinality

O(n4). Therefore, it follows directly from the recursive equations that the effort

to compute the function G at a given node vj, for all relevant values of q, r, l2, l3

and c2, c3, is O(p2(n4)m2
2m

2
3n

2(n4)2) = O(m2
2m

2
3p

2n14).



3.4 A Polynomial Algorithm for Multi-facility OMP 39

In the following we give one example to show the procedure of the above

polynomial algorithm.

Example 3.3

hv1

hv3 hv2

2 1

Figure 3.3 A tree network T

hv1 y1
1

hv3 y6
1

hv2 y5
1

ry2
1

ry3
1

ry4
1

2 1

Figure 3.4 An augmented tree T a

In the tree network T rooted at v1 (see Figure 3.3) with the node set

V = {v1, v2, v3} and all the node-weights equal to 1. We consider the 2-facility

OMP with λ = (1, 1, 2).

According to the above algorithm and the definition of PEQ, we first ob-

tain that PEQ = {v1, v2, v3, ([v1, v2], 1/2), ([v1, v3], 1/4), ([v1, v3], 1/2)}, and T a

denotes the augmented tree with the node set PEQ. Second, we compute

and sort the distances from v1 to all the seminodes in T a as the sequence

L1 = (r1
1, r

2
1, r

3
1, r

4
1, r

5
1, r

6
1) = (0, 1/2, 1/2, 1, 1, 2), and the corresponding semi-

nodes are denoted by y1
1, · · · , y6

1, respectively (see Figure 3.4). Third, let C

be the set of distances from any node to a seminode, and then we have C =

{0, 1/2, 1, 3/2, 2, 5/2, 3}. Thus an optimal value of the problem is given as fol-

lows:

min
c2,c3∈C
c2≤c3

G(v1, 2, r
6
1, 1, 1, c2, c3). (3.4)

It follows that the optimal solution of (3.4) can be obtained by computing

the functions F and G from its leaves, v2 and v3, to the root v1. It is not difficult
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to check that v3 and ([v1, v2], 1/2) are optimal locations of the two facilities with

the optimal value 5/2.

3.5 Conclusions

In this chapter we identified a polynomial size FDS for the multi-facility ordered

median problem on networks, in which the set of λ parameters can take at least

two different values. This FDS result not only includes the FDS research for the

p-center problem, but also extends the case provided by Kalcsics et al. (2003) to

some extent. Furthermore, we gave a polynomial time algorithm for the problem

with at most three different values in the λ-weights on tree networks.

Although we have characterized a polynomial size FDS for a special case

of the convex p-ordered median problem, the identification of a polynomial size

FDS for the convex p-ordered median problem needs to be further investigated.

Furthermore, Puerto and Rodŕıguez-Ch́ıa (2005) proved that there is no

FDS of polynomial size for the p-facility OMP with general λ-weights by con-

structing a path network with the λ-weights including two same elements. Thus

another challenging research direction is to identify the characteristics of the λ-

weights such that there exists a polynomial size FDS for the multi-facility OMP.



Chapter 4

Multi-facility OMP in Directed

Networks

4.1 Introduction

Chapter 3 investigated the multi-facility OMP in undirected networks. In this

chapter we focus on the multi-facility OMP in directed networks, since most

of the networks in the real world are directed and not symmetric (undirected

networks can be viewed as symmetric directed networks). For instance, routes

are usually directed in a bus traffic system. In this chapter we also use the

FDS to identify some possible solutions for a multi-facility OMP in a strongly

connected directed network.

In the literature there are some known results identifying FDS for different

instances of the multi-facility ordered median problem. For instance, Kalcsics

et al. (2003) proved that the set of pseudo-equilibria (PEQ) is an FDS for the
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p-facility OMP where the λ-weights take at most two different values. Puerto et

al. (2005) showed that the set F = ((V ∪ EQ) × PEQ) ∪ T ⊂ A(G) × A(G)

is an FDS for the 2-facility OMP in any network for any choice of non-negative

λ-weights. However, so far there is no study focusing on the multi-facility OMP

in directed networks. In this chapter we show that the node set is an FDS of

the p-facility OMP with non-negative λ-weights in a strongly connected directed

network. Based on this result we design an exact algorithm and a constant-factor

approximation algorithm for the p-median problem, respectively.

The multi-facility ordered median problem in a strongly connected directed

network is defined similarly to that in Kalcsics et al. (2002) as follows: Let

ND = (V, E) be a directed network with the node set V = {v1, · · · , vn} and the

arc set E = {e1, · · · , em}. Each node vi is associated with a non-negative weight

wi. Each arc ej = [vs, vt] is the edge assigned by a positive length l(ej), directed

from vs to vt, and is assumed to be rectifiable, where vs is called the head of ej,

and vt is called the tail of ej. A point x on an arc e = [vi, vj] can be written as

a pair x = (e, t), t ∈ [0, 1], where the distance from vi to x is tl(e). We assume

that ND is embedded in the Euclidean plane. Let A(ND) be the continuum set of

points on the arcs of ND. For any x, y ∈ A(ND), a directed path
−→
P (x, y) is a path

directed from x to y, and the distance from x to y,
−→
d (x, y), is the length of the

shortest directed path
−→
P from x to y, i.e., the sum of the lengths of the partial

arcs in
−→
P . A directed network ND is strongly connected if there exists a directed

path from each vertex to another vertex. The distance between vi ∈ V and a

point xj ∈ A(ND) is denoted as dj(vi) = d(xj, vi) = wi(
−→
d (xj, vi) +

−→
d (vi, xj)),

and dj(·) is viewed as a distance function of A(ND) from the facility xj. Let

Xp = {x1, · · · , xp} ⊂ A(ND) (p ≥ 2) be a set of p facilities, and the distance
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from a node vi ∈ V to the set Xp is defined as d(vi, Xp) = min
k=1,··· ,p

d(vi, xk). We

denote di(Xp) = d(vi, Xp) for i = 1, · · · , n, d(Xp) = (di(Xp), · · · , dn(Xp)), and

d≤(Xp) = (d(1)(Xp), · · · , d(n)(Xp)) satisfying d(1)(Xp) ≤ · · · ≤ d(n)(Xp).

The p-facility ordered median problem (OMP) in a strongly connected

directed network is defined as

OMp(λ) = min
Xp⊂A(ND)

fλ(Xp) = min
Xp⊂A(ND)

n∑
i=1

λid(i)(Xp),

where λ = (λ1, · · · , λn) ∈ Rn
0+.

4.2 FDS for Multi-facility OMP

Before we derive an FDS for the p-facility ordered median problem in a strongly

connected directed network ND, we present some lemmas below. First, we cite

a result from Nickel and Puerto (2005) as follows:

Lemma 4.1 Let x = (x1, · · · , xn) and y = (y1, · · · , yn) be two vectors in Rn.

Suppose that x ≤ y, then

x≤ = (x(1), · · · , x(n)) ≤ y≤ = (y(1), · · · , y(n)).

Second, we follow one observation in Kalcsics et al. (2002) below.

Lemma 4.2 Let e = [vi, vj] ∈ E be an arc of the directed network ND, and x a

point in the interior (vi, vj) of the arc e. Then for a node vk ∈ V , the distance

function dk(·) is constant on the interior (vi, vj), and dk(vi), dk(vj) ≤ dk(x).

From Lemma 4.2, it follows that we can move an arbitrary point located

in the interior of one arc to its head or its tail without increasing the values of
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the elements in the distance d(Xp). This leads to the following lemma.

Lemma 4.3 Let ND = (V, E) be a strongly connected directed network with

non-negative node weights, Xp = {x1, · · · , xp} ⊆ A(G) (p ≥ 2), x = (e, t) ∈ Xp

with e = [vi, vj] and t ∈ (0, 1) an arbitrary solution point in (vi, vj), and X ′
p =

Xp\{x} ∪ {vi} or Xp\{x} ∪ {vj}. Then we have d(X ′
p) ≤ d(Xp).

Obviously, based on Lemma 4.3, we can move those points in Xp, that are

not located in the vertices of the network to their heads or tails, respectively.

This leads to the following corollary.

Corollary 4.1 Let Xp = {x1, · · · , xp} ⊆ A(ND), p ≥ 2, be a solution for the

p-facility ordered median problem with non-negative node weights. Then there

exists another solution X ′
p ⊆ V with d(X ′

p) ≤ d(Xp).

Proof. Assume that Xp * V . Then, according to Lemma 4.3, we start by mov-

ing one solution point after the other until we obtain a new solution X ′
p such that

X ′
p ⊆ V and d(X ′

p) ≤ d(Xp). ¤

Thus we can derive a finite dominating set for the p-facility ordered median

problem in a directed network below.

Theorem 4.1 The p-facility ordered median problem (p ≥ 2) in a strongly

connected directed network, with non-negative node weights, has an optimal

solution in the node set V .

Proof. Let Xp (p ≥ 2) be an optimal solution such that Xp * V . By Corollary

4.1, we claim that there exists another solution X ′
p = {x1, · · · , xp} ⊆ V such

that d(X ′
p) ≤ d(Xp). Then we aim to prove that X ′

p is also optimal, which is

equivalent to prove that fλ(X
′
p) ≤ fλ(Xp). According to Lemma 4.1, we have
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that d≤(X ′
p) ≤ d≤(Xp), which completes the proof since the objective function

fλ(·) is the scalar product of the non-negative λ-weights and the sorted weighted

distances d≤(·). ¤

In the next section, with the above FDS results, we develop an exact algo-

rithm to solve OMP in a strongly connected directed network by evaluating the

objective function at p points of the node set.

4.3 An Exact Algorithm for Multi-facility OMP

Algorithm 4.1

Computation of an optimal solution set X∗
p

Input: Strongly connected directed network ND = (V, E), distance-matrix

D, p ≥ 2, and non-negative λ-weights

Output: An optimal solution set X∗
p

1. Initialization

Let X∗
p := ∅, res := +∞

2. For all vi ∈ V Do

Let xp := vi

for all Xp−1 = {x1, · · · , xp−1} ⊆ V do

Compute fλ(Xp), where Xp := Xp−1 ∪ {xp}.
if fλ(Xp) < res then X∗

p := {Xp}, res := fλ(X
∗
p )

3. Return X∗
p .

In Step 2 we have to evaluate the objective function for a node for all the

subsets of size p−1 of the node set V . Since we have O(
(

n
p−1

)
) = O(n)p−1 different
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subsets and the evaluation of the objective function takes O(pn log n) time using

a line-sweep algorithm (Bentley and Ottmann, 1979), the above algorithm has a

total time complexity of O(pnp+1 log n).

Note that the above problem is easily solved based on the FDS result when

p is fixed and small. In the following we provide one example to show how to

solve the OMP efficiently with the FDS result.

Example 4.1

ND = (V, E) is a strongly connected directed network with six nodes (see Figure

4.1). Consider the 2-facility OMP with λ = (1, 1, 2, 2, 3, 3) in which two facilities

need to be located. The node weights are w1 = w3 = w4 = w5 = 1 and

w2 = w6 = 2, and the distances between nodes are shown in Figure 4.1.
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Figure 4.1. A strongly connected directed network of Example 4.1

Based on the above FDS result, the optimal location of the two facilities

must be in the node set {v1, · · · , v6}. Furthermore, according to the distance

distribution in Figure 4.1, the one optimal facility must be in {v1, v2, v3}, and

the other optimal facility must be in {v4, v5, v6}. It is easy to prove that {v2, v6}
is an optimal solution.

As shown in Example 4.1, Algorithm 4.1 is efficient when the size of p is

fixed and small. However, when the numbers of demand points and facilities
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increase, the complexity grows in exponential time. Moreover, note that the p-

center problem and the p-median problem are NP-hard, and these two problems

are special instances of the OMP, the problem stated in Theorem 4.1 is also

NP-hard. Due to this reason, efforts to obtain an optimal solution in an efficient

manner becomes impossible. Thus we may resort to approximation algorithms

to obtain near-optimal solutions with a reasonable relative error.

In the next section, based on the above FDS result, we present a constant-

factor approximation algorithm for the multi-facility OMP with λ = (1, . . . , 1)

confined to a directed network.

4.4 Approximation algorithms for the OMP

Currently, constructing approximation algorithms is one of the most successful

approaches to treat NP-hard optimization problems. Since the introduction of

the concept of NP-hardness, which is viewed as a concept for proving the in-

tractability of optimization problems, increasing attention has been paid to the

following question (see Hromkovič, 2003): If an optimization problem does not

admit any efficient algorithm computing an optimal solution, is there a possibil-

ity of efficiently computing at least an approximation of the optimal solution?

The answer is affirmative, which was already given in the middle of the 1970s.

It is of great practical importance if we can reduce from exponential complexity

to polynomial complexity when a small change is given on the conditions and

the cost of a solution differs from the cost of an optimal solution by at most ε%

of the cost of an optimal solution for some ε > 0. Hence, for NP-hard prob-

lems, it is more practical to investigate whether there exists a polynomial-time
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approximation algorithm that solves them with a reasonable relative error.

Recently there are already some studies on approximation algorithms for

the p-median problem, a special instance of the OMP. For instance, Charikar

and Guha (1999) provided a 4-approximation algorithm for the metric p-median

problem in O(n2(L + n) log n) time, where L is the number of bits needed to

represent the metric distance. Jain and Vzairani (1999) provided an approxi-

mation algorithm with an approximation guarantee of 6 for the metric p-median

problem. Thorup (2001) presented a 12+o(1) constant factor approximation al-

gorithm for the p-median problem. Jain et al. (2002) again presented a lower

bound on the approximation guarantee of the metric p-median problem, showing

that it may not be approximated with a factor strictly smaller than 1+2/ε.

In this section, we give a constant-factor approximation algorithm for a

special instance of the multi-facility OMP, the p-median problem, in directed

networks. First, we introduce the concept of an approximation algorithm as

follows:

Definition 4.1 Given a minimization problem, an algorithm is said to be a

(polynomial) ρ-approximation algorithm, if for any instance of the problem, the

algorithm runs in polynomial time and outputs a solution that has a cost at most

ρ ≥ 1 times the minimum cost, where ρ is called the performance guarantee or

the approximation ratio of the algorithm.

In general, the minimum cost is unknown. Hence, in order to obtain a

performance guarantee of an algorithm, we have to compare the cost of the

solution produced by the algorithm to a lower bound of the minimum cost.

Thus we resort to linear programming relaxations, which can provide good lower
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bounds for the minimum cost.

In the following we apply the approximation algorithm for the metric p-

median problem from Charikar et al. (2002) to the p-median problem in directed

networks, a special case of the multi-facility OMP. Note that there is something

different between the p-median problem in networks and the metric p-median

problem in Charikar et al. (2002). Specifically, the facilities in the former model

can be located anywhere in the given network, while the facilities in the latter

model are only limited to a finite set of points.

Fortunately, for the OMP in a strongly connected directed network, we

have proven that there must exist at least one optimal solution in the node

set. Therefore, we can reduce the p-median problem in directed networks to

the following location model: In a given strongly connected directed network

ND = (V, E), the problem is to select p nodes as servers or facilities and assign

each demand in the node set V to its nearest server, so as to minimize the

p-median objective value.

Hence the problem can be described as the following integer linear program,

which is modified from Charikar et al. (2002):

Minimize
∑
i,j∈N

wj d̄ijxij (4.1)

subject to

∑
i∈N

xij = 1, for each j ∈ N, (4.2)
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xij ≤ yi, for each i, j ∈ N, (4.3)

∑
i∈N

yi ≤ p, (4.4)

xij ∈ {0, 1} for each i, j ∈ N, (4.5)

yi ∈ {0, 1} for each i ∈ N, (4.6)

where N = {1, · · · , n}.

In the above integer linear program model, there are several variables: wj

represents the demand for node vj; d̄ij represents the distance cost between vi

and vj constraints; yi is a 0-1 variable, which indicates if the location at vi is

selected as a facility; xij is a 0-1 variable, which indicates if demand node vj is

assigned to the facility at vi. The constraints (4.2) make sure that each demand

node vj is assigned to some facility at vi, the constraints (4.3) make sure that

a facility must have been open at vi, whenever a demand node vj is assigned

to a facility at vi, and constraints (4.4) ensures that at most p facilities can be

located in the node set V .

Then we convert the integer linear program (4.1)-(4.6) to a linear program-

ming relaxation, by replacing the 0-1 constraints (4.5) and (4.6), respectively, by

xij ≥ 0, for each i, j ∈ N, (4.7)

yi ≥ 0, for each i ∈ N. (4.8)

Let (x̄, ȳ) denote a feasible solution to the LP relaxation and f̄LP denote its

objective function value. Thus we can apply the three-step algorithm introduced
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by Charikar et al. (2002) to solve the p-median problem in directed networks as

follows:

Step 1. First, simplify the problem instance by consolidating nearby locations.

Do not change the linear programming solution (x̄, ȳ) but modify only the de-

mands. Let w′ = {w′
1, · · · , w′

n} denote the new set of demands, then the following

property holds: each feasible integer solution for the modified instance with de-

mands w′
j, j ∈ N , can be converted to a feasible integer solution for the original

instance, at an added cost of at most 4f̄LP .

Step 2. Next, simplify the structure of the solution by consolidating nearby frac-

tional facilities. Specifically, modify the solution (x̄, ȳ) to obtain a new solution

(x′, y′) such that

y′j = 0 for each j ∈ N, such thatw′
j = 0, (4.9)

y′i ≥ 1/2 for each i ∈ N, such thatw′
i > 0. (4.10)

Refer to such a solution as a 1
2
-restricted solution. Moreover, the cost of the

1
2
-restricted solution produced is at most 2f̄LP .

Step 3. Finally, show how to convert a feasible {1
2
, 1}-integral solution to the

linear programming relaxation to a feasible integral solution of the cost at most

4
3

times the cost of the {1
2
, 1}-integral solution.

As proved by Charikar et al. (2002), the modified three-step algorithm

provides a constant performance guarantee of 62
3
.
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4.5 Conclusions

In this chapter we also applied the FDS method to identify some possible so-

lutions for a multi-facility OMP in a strongly connected directed network. We

first proved that the OMP has an FDS in the node set, which generalizes the

FDS result on the single-facility OMP in the literature. Then, based on this FDS

result, we proposed an exact algorithm to solve the problem. Furthermore, we

showed that the OMP can be solved efficiently based on the FDS result when the

number of facilities is fixed and small. However, if the number of facilities is not

small, it is not practical for us to find an optimal solution, since the OMP in di-

rected networks is NP-hard. Finally we presented a 62
3
-approximation algorithm

for the p-median problem in directed networks.

However, there is no such work on developing approximation algorithms for

the general OMP in networks. Since the OMf is non-linear, we can not directly

reduce the general OMP to linear programming. Thus it is very interesting and

challenging to develop some constant-factor approximation algorithms for the

general OMP in the future.



Chapter 5

Subtree OMP in Tree Networks

5.1 Introduction

Since the seminal paper by Minieka (1985) presented some efficient algorithms for

optimally locating a path (tree) in a tree network, by applying the property that

an optimal solution to the point median or center problem must be included in

some optimal solution to the path (tree) median or center problem, the property

has provided researchers with a powerful tool to develop algorithms to handle

extensive facility location problems. This property is called the nestedness prop-

erty.

Recently, there are some studies on efficient algorithms for network location

problems in networks, especially in tree networks, using the nestedness property,

as is evident in Minieka (1985), Wang (2000), Tamir et al. (2002), and Puerto

and Tamir (2005).

For the convenience of description, some related terminologies are given
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first.

5.1.1 Notation

We adopt some pertinent notation from Puerto and Tamir (2005). Suppose that

T = (V, E) is an undirected tree network with node set V = {v1, v2, · · · , vn} and

edge set E = {e2, e3, · · · , en}. Each node vi is associated with a non-negative

weight wi. Each edge ej is assigned a positive length lj and is assumed to be

rectifiable. In particular, an edge ej is viewed as an interval of length lj so

that we can refer to its interior points. Let e(x, y) be a subedge of ej, where

x and y are points on ej. We assume that T is embedded in the Euclidean

plane. Denote A(T ) as the continuum set of points on the edges of T , and T (u)

as the subtree rooted at the point u. For any x, y ∈ A(T ), let P (x, y) be the

unique simple path in A(T ) connecting x and y, and d(x, y) be the length of

P (x, y). A subset S ⊂ A(T ) is called a subtree if it is closed and connected, and

d(x, S) = min{d(x, y)|y ∈ S} for any x ∈ A(T ). The length of S, l(S), is defined

as the sum of the lengths of its partial edges, and V (S) is denoted as the set of

the nodes in S.

Then we give the definition of the ordered median objective of a sub-

tree S similar to that from Nickel and Puerto (2005, p.199). Let d(S) =

(w1d(v1, S), · · · , wnd(vn, S)) and d≤(S) = (w(1)d(v(1), S), · · · , w(n)d(v(n), S)) sat-

isfying w(1)d(v(1), S) ≤ w(2)d(v(2), S) ≤ · · · ≤ w(n)d(v(n), S). The subtree ordered

median problem (OMP) on A(T ) is defined as f(λ) = min
S⊂A(T )

∑n
i=1 λiw(i)d(v(i), S),

where λ = (λ1, · · · , λn) ∈ Rn
0+.

For different choices of λ, we obtain different types of objectives. Note that
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taking λ = (1, 1, · · · , 1) yields the median problem; taking λ = (0, 0, · · · , 0, 1)

gives the center problem; taking λ = (0,
n−k· · · , 0, 1, · · · , 1) and λ = (α,

n−1· · · , α, 1) (α ∈
[0, 1]) leads to the k−centrum problem and α-centdian problem, respectively. In

addition, taking λ1 ≤ λ2 ≤ · · · ≤ λn leads to the convex ordered median problem.

In addition, we also adopt some related terminologies from Puerto and

Tamir (2005, p.316). Given a positive real number l(≤ l(A(T ))), the tactical

subtree OMP is the problem of finding a subtree S with l(S) ≤ l that minimizes

the ordered median objective. When l = 0, we refer to the problem as the point

OMP instead of the subtree OMP, and call its solution a point solution. Given a

positive real number α, the strategic OMP is the problem of finding a subtree S

minimizing the sum of the ordered median objective and the setup cost αL(S) of

the facility. If the endpoints of S may be anywhere (must be nodes) in A(T ), we

call the model continuous (discrete). The nestedness property is the property that

for any optimal solution x to the point OMP, there exists an optimal solution,

with its length smaller than or equal to l, to the corresponding subtree OMP

that contains x.

In the following we cite some previous results on the nestedness property,

which are used to develop some efficient algorithms.

5.1.2 Previous Results

The first result concerning the nestedness property was presented by Minieka

(1985). He proved that the nestedness property holds for both of the median

and center network location problems.

Theorem 5.1 (Minieka, 1985) Every optimal tree-shaped facility of size L con-
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tains the unique center C for all L; for all feasible L, there is a minimum dis-

tancesum tree T ∗
L of size L such that T ∗

L ∩M 6= ∅ (M denotes the set of all the

medians).

Tamir et al. (2002) proved that the nestedness property holds for the

subtree cent-dian problem in a tree network.

Theorem 5.2 (Tamir et al., 2002) Let xc be a cent-dian point of a tree network T .

For each length L there is an optimal cent-dian subtree with length L containing

xc.

Recently, Puerto and Tamir (2005) proved that the nestedness property

also holds for the continuous tactical, discrete strategic and continuous strategic

k-centrum problems.

Theorem 5.3 (Puerto and Tamir, 2005)

(1). Let v′ be an optimal solution for the continuous point k-centrum problem.

If v′ is a node, then there is a an optimal solution to the strategic discrete subtree

k-centrum problem that contains v′. If v′ is not a node, then there is an optimal

solution that contains one of the two nodes of the edge containing v′.

(2). Let v′ be an optimal solution for the continuous point k-centrum prob-

lem. There is an optimal solution to the strategic continuous subtree k-centrum

problem that contains v′.

(3). Let v′ be an optimal solutions for the continuous point k-centrum prob-

lem. Then there exists an optimal solution to the tactical continuous subtree

k-centrum problem that contains v′.

In the following we prove that the nestedness property holds for the tactical
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continuous subtree OMP in a tree network with the λ-weights defined below:

λ(n, k) = (a,
n−k· · · , a, b, · · · , b) ∈ Rn

0+(0 ≤ a ≤ b, 1 ≤ k ≤ n− 1), (5.1)

and apply the nestedness property to solve the problem in polynomial time.

5.2 Nestedness Property for Subtree OMP

Theorem 5.4 Let v0 be an optimal solution to the continuous point OMP in

a tree network T with λ(n, k) in (5.1). There exists an optimal subtree to the

corresponding tactical continuous subtree OMP that contains v0.

Proof. We modify the technique introduced by Puerto and Tamir (2005). The

tree network T can be considered as being rooted at v0. Let v1, · · · , vt be the

set of nodes that are neighbors of v0, and T 1, · · · , T t be the components rooted

at v1, · · · , vt, respectively.

Let T 0 be an optimal subtree to the corresponding tactical continuous

OMP that does not satisfy the property stated in the theorem, and has the root

u closest to v0 among all the optimal subtrees. It is easy to obtain l(T 0) = l.

Without loss of generality, we assume that T 0 is located in T 1 ∪ P [v1, v0). Note

that u is the closest point to v0 in T 0.

The logic of the proof is as follows: First, select an appropriate leaf u′ of

T 0. Second, perturb the subtree T 0 at u′ and its root u by a small positive δ to

generate a perturbed subtree T p. That is, we decrease the length of the unique

subedge of T 0 incident to u′ by δ, and augment the path P [u, u′′] to T 0, where u′′

is the point on P [u, v0] with d(u, u′′) = δ. Let F (T 0) and F (T p) be the objective

values at T 0 and T p, respectively. Finally we prove that F (T p) − F (T 0) ≤ 0,
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which contradicts the property that T 0 has the closest root to v0 among all the

optimal subtrees of length l.

Let H1(v
0) (H2(v

0)) be the set of nodes corresponding to the (n−k) smallest

(k largest) weighted distances of nodes from v0. H1(T
0) and (H2(T

0)) are defined

similarly. Suppose that k11 (k12) of the nodes in H1(v
0) (H2(v

0)) are in T 1,

and k21 (k22) are outside T 1 with k11 + k21 = n − k (k12 + k22 = k). Denote

W11,W12,W21 and W22 as the total weights of the k11, k12, k21 and k22 nodes,

respectively. According to the optimality of v0, we have aW11 + bW12 ≤ aW21 +

bW22.

Define M1
u(v0) = V (T (u))∩H1(v

0), M1
u(T 0) = V (T (u))∩H1(T

0), N1
u(v0) =

V (T\T (u)) ∩ H1(v
0), N1

u(T 0) = V (T\T (u)) ∩ H1(T
0), M2

u(v0) = V (T (u)) ∩
H2(v

0), M2
u(T 0) = V (T (u)) ∩ H2(T

0), N2
u(v0) = V (T\T (u)) ∩ H2(v

0), and

N2
u(T 0) = V (T\T (u)) ∩H2(T

0). According to the definitions related to v0 (T 0),

we observe that the following two properties hold for c = v0 (c = T 0).

(1) |M1
u(c)|+ |N1

u(c)| = n− k, and |M2
u(c)|+ |N2

u(c)| = k;

(2) M1
u(c) (N1

u(c)) and M2
u(c) (N2

u(c)) are node complementary in T (u)(T\T (u)),

i.e., M1
u(c) ∪M2

u(c) = V (T (u)) (N1
u(c) ∪N2

u(c) = V (T\T (u))).

Moreover, it is easy to see that |M2
u(T 0)| ≤ |M2

u(v0)| and |N2
u(T 0)| ≥ |N2

u(v0)|.

In addition, considering that the sets of nodes M2
u(T 0) and N2

u(T 0) may not

be uniquely defined, we make a similar non-degeneracy assumption on the two

sets as that stated in Puerto and Tamir (2005, p. 330) as follows: Denote X as

the set of leaves of T 0. For each x ∈ X, ex is identified as the unique subedge of T 0

incident to x. Assume that there are sx ≥ 0 nodes in V (T (x))∩H2(T
0). If they

are not uniquely defined, we select them according to the following procedure: If

there exist at least two nodes with equal weighted distance values for any point
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in ex, then we select them arbitrarily. Otherwise, because of the fact that all the

weighted distance functions are piecewise linear, there exists a point x′(6= x) on

ex, sufficiently close to x, satisfying that no pair of functions in the collection of

linear functions {gi(y) = wid(vi, y) : vi ∈ V (T (x))} has an interior intersection

point in the path P [x, x′]. In particular, the ordering of these linear functions is

independent of y. Suppose that the sx nodes in V (T (x))∩H2(T
0) correspond to

the sx largest weighted distance functions over P [x, x′] in the above collection.

Moreover, assume that there are tu ≥ 0 nodes in V (T\T (u))∩H2(T
0). Similarly,

we suppose that the tu nodes in V (T\T (u))∩H2(T
0) correspond to the tu largest

weighted distance functions over P [u, z], where z 6= u is sufficiently close to u on

P [u, v0].

With the above non-degeneracy assumption, the change in the objective is

linear in δ when we perturb T 0 at both the chosen leaf u′ and the root u, by a

sufficiently small δ. This change equals the sum of the variations at u and u′ in

the direction of v0, which are denoted by var(u) and var(u′), respectively. Thus

we have F (T p)− F (T 0) = var(u) + var(u′). Define

f(N, u) = a(
∑

vi∈N1
u(T 0)\N1

u(v0)

wi +
∑

vj∈N1
u(v0), vj∈V (T 1\T (u))

wj −
∑

vk∈N1
u(v0)\N1

u(T 0)

wk)

+b(
∑

vi∈N2
u(T 0)\N2

u(v0)

wi +
∑

vj∈N2
u(v0), vj∈V (T 1\T (u))

wj −
∑

vk∈N2
u(v0)\N2

u(T 0)

wk),

and

f(M,u′) = a(
∑

vi∈M1
u(T 0)\M1

u(v0), vi∈V (T (u′))

wi −
∑

vj∈M1
u(v0)\M1

u(T 0), vj∈V (T (u′))

wj

−
∑

vk∈M1
u(v0), vk∈V (T (u)\T (u′))

wk) + b(
∑

vi∈M2
u(T 0)\M2

u(v0), vi∈V (T (u′))

wi

−
∑

vj∈M2
u(v0)\M2

u(T 0), vj∈V (T (u′))

wj −
∑

vk∈M2
u(v0), vk∈V (T (u)\T (u′))

wk).
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Then the above two variations are calculated as follows:

var(u) = −
[
a

∑

vi∈N1
u(T 0)

wi + b
∑

vj∈N2
u(T 0)

wj

]
δ

= −
[
a(

∑

vi∈N1
u(T 0)∩N1

u(v0)

wi +
∑

vj∈N1
u(T 0)\N1

u(v0)

wj)

+b(
∑

vi∈N2
u(T 0)∩N2

u(v0)

wi +
∑

vj∈N2
u(T 0)\N2

u(v0)

wj)
]
δ

= −
[
a

∑

vi∈N1
u(v0)

wi + b
∑

vj∈N2
u(v0)

wj

]
δ

−
[
a(

∑

vi∈N1
u(T 0)\N1

u(v0)

wi −
∑

vj∈N1
u(v0)\N1

u(T 0)

wj)

+b(
∑

vi∈N2
u(T 0)\N2

u(v0)

wi −
∑

vj∈N2
u(v0)\N2

u(T 0)

wj)
]
δ

= −
[
aW21 + bW22 + f(N, u)

]
δ, (5.2)

and

var(u′) =
[
a

∑

vi∈M1
u(T 0), vi∈V (T (u′))

wi + b
∑

vj∈M2
u(T 0), vj∈V (T (u′))

wj

]
δ

=
[
a(

∑

vi∈M1
u(T 0)∩M1

u(v0), vi∈V (T (u′))

wi +
∑

vj∈M1
u(T 0)\M1

u(v0), vj∈V (T (u′))

wj)

+b(
∑

vi∈M2
u(T 0)∩M2

u(v0), vi∈V (T (u′))

wi +
∑

vj∈M2
u(T 0)\M2

u(v0), vj∈V (T (u′))

wj)
]
δ

=
[
a

∑

vi∈M1
u(v0)

wi + b
∑

vj∈M2
u(v0)

wj + f(M,u′)
]
δ

≤
[
aW11 + bW12 + f(M,u′)

]
δ. (5.3)

Thus we get

F (T p)− F (T 0) ≤ [(aW11 + bW12)− (aW21 + bW22)]δ + (f(M,u′)− f(N, u))δ.

Since aW11 + bW12 ≤ aW21 + bW22, we only need to show that

f(M,u′)− f(N, u) ≤ 0, (5.4)
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which implies that F (T p)− F (T 0) ≤ 0. In the following we show how to choose

the point u′ and prove Inequality (5.4).

With the node complementary property, we get

M1
u(T 0)\M1

u(v0) = M2
u(v0)\M2

u(T 0),M1
u(v0)\M1

u(T 0) = M2
u(T 0)\M2

u(v0),

N1
u(T 0)\N1

u(v0) = N2
u(v0)\N2

u(T 0), and N1
u(v0)\N1

u(T 0) = N2
u(T 0)\N2

u(v0).

Thus, with 0 ≤ a ≤ b, we have

f(N, u) ≥ (b− a)(
∑

vi∈N2
u(T 0)\N2

u(v0)

wi −
∑

vj∈N2
u(v0)\N2

u(T 0), vj∈V (T\T 1)

wj).

Moreover, it is easy to check that

f(M,u′) ≤ (b− a)(
∑

vi∈M2
u(T 0)\M2

u(v0), vi∈V (T (u′))

wi −
∑

vj∈M2
u(v0)\M2

u(T 0)

wj).

First, we aim to prove f(N, u) ≥ 0. If N2
u(v0)\N2

u(T 0) = ∅, then we have

f(N, u) ≥ 0 since b ≥ a. Otherwise, we have N2
u(v0)\N2

u(T 0) 6= ∅, which leads to

N2
u(T 0)\N2

u(v0) 6= ∅ since |N2
u(T 0)| ≥ |N2

u(v0)|. Then we make the claim below:

For each vi ∈ N2
u(T 0)\N2

u(v0), we have wi ≥ max{wj|vj ∈ N2
u(v0)\N2

u(T 0), vj ∈
V (T\T 1)} (for each node vj ∈ N2

u(v0)\N2
u(T 0), we have wid(vi, v

0) ≤ wjd(vj, v
0)

and wid(vi, u) ≥ wjd(vj, u). Since vi ∈ V (T\T (u)) and vj ∈ V (T\T 1), we get

d(vi, u) ≤ d(vi, v
0) + d(v0, u), and d(vj, u) = d(vj, v

0) + d(v0, u), and obtain

wi ≥ wj by the above inequalities). With the above claim, and the facts that

|N2
u(T 0)\N2

u(v0)| ≥ |N2
u(v0)\N2

u(T 0)| and b ≥ a ≥ 0, we obtain f(N, u) ≥ 0.

Second, we identify the point u′ and prove f(M,u′) ≤ 0. If M2
u(T 0)\M2

u(v0) =

∅, then it is easy to see that f(M,u′) ≤ 0 since a ≤ b. Otherwise, we have

M2
u(T 0)\M2

u(v0) 6= ∅, which leads to M2
u(v0)\M2

u(T 0) 6= ∅ since |M2
u(v0)| ≥

|M2
u(T 0)|. Denote T1, · · · , Tm as the components of T (u)\T 0, and x1, · · · , xm as
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their points of intersection with T 0, respectively (we have f(M,u′) ≤ 0 when

T 0 = T (u), with the proof in Case 2.2 below).

Case 1. |(M2
u(v0)\M2

u(T 0))∩V (Ti)| ≥ |(M2
u(T 0)\M2

u(v0))∩V (Ti)| holds for some

i.

In this case, we choose xi, the intersection point between Ti and T 0, as u′,

decrease the length of the subedge incident to xi by a small δ, and perturb T 0 at u

by δ. Then we claim that wi ≥ max{wj|vj ∈ (M2
u(T 0)\M2

u(v0))∩V (Ti)} for each

vi ∈ (M2
u(v0)\M2

u(T 0)) ∩ V (Ti), since wi(d(vi, u
′) + d(u′, v0)) ≥ wj(d(vj, u

′) +

d(u′, v0)) and wid(vi, u
′) ≤ wjd(vj, T

0) = wjd(vj, u
′), which leads to wi ≥ wj.

Thus we have

f(M,u′) ≤ (b− a)(
∑

vm∈(M2
u(T 0)\M2

u(v0))∩V (Ti)

wm −
∑

vh∈(M2
u(v0)\M2

u(T 0))∩V (Ti)

wh) ≤ 0.

Case 2. |(M2
u(v0)\M2

u(T 0)) ∩ V (Ti)| < |(M2
u(T 0)\M2

u(v0)) ∩ V (Ti)| holds for all

i.

Case 2.1. T 0 has no leaf node of T (u). Then we decompose T 0 into m paths

ending at x1, · · · , xm, respectively, with the condition that each pair of these

paths has no interior intersection points. Denote the m paths as P1, · · · , Pm,

and define T ′
i = Ti ∪ Pi (i = 1, · · · ,m). Since |M2

u(v0)| ≥ |M2
u(T 0)|, there

exists at least one component, without loss of generality say T ′
1, such that

|(M2
u(v0)\M2

u(T 0))∩V (T ′
1)| ≥ |(M2

u(T 0)\M2
u(v0))∩V (T ′

1)|. Thus x1 is identified

as u′. Then we claim that wi ≥ max{wj|vj ∈ (M2
u(T 0)\M2

u(v0)) ∩ V (T1)} for

each vi ∈ M2
u(v0)\M2

u(T 0)) ∩ V (T ′
1) (if vi ∈ P1, wid(vi, v

0) ≥ wjd(vj, v
0), which

leads to wi ≥ wj since d(vi, v
0) < d(vj, v

0). Otherwise, we have vi ∈ V (T1),

which has been proved in Case 1). Hence we obtain

f(M,u′) ≤ (b− a)(
∑

vm∈(M2
u(T 0)\M2

u(v0))∩V (T1)

wm −
∑

vh∈(M2
u(v0)\M2

u(T 0))∩V (T ′1)

wh) ≤ 0.
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Case 2.2. T 0 has at least one leaf node of T (u). Define d1 = max{d(vi, u)|vi

∈ V (T 0)} and d2 = max{d(vj, u)|vj is a leaf node of T 0}. Let vs be the node

such that d(vs, u) = d1, and vt be the leaf node in T 0 such that d(vt, u) = d2.

Obviously, d2 ≤ d1.

First, suppose d2 = d1, then select vt as u′. If vt ∈ M2
u(v0), then it is obvious that

f(M,u′) ≤ 0. Otherwise, vt ∈ M1
u(v0). With the assumption of Case 2, there

exists at least one node, say vi, in T 0, such that vi ∈ M2
u(v0)\M2

u(T 0). Observing

that wid(vi, v
0) ≥ wtd(vt, v

0) and d(vi, v
0) ≤ d(vt, v

0), we have wi ≥ wt, which

leads to f(M,u′) ≤ 0. Second, suppose d2 < d1. Denote T 0 as the union of the

path connecting u and vs, and the paths connecting u and each leaf node in T 0,

respectively. Without loss of generality, let x1 be one end point of T 0. Then

decompose T 0\T 0 into other (m − 1) paths ending at x2, · · · , xm, respectively,

satisfying that each pair of the paths has no interior intersection points. Using

the similar procedure in Case 2.1, we obtain f2(M,u′) ≤ 0, too.

Therefore, we conclude that

F (T p)− F (T 0) ≤ [(aW11 + bW12)− (aW21 + bW22)]δ ≤ 0,

which completes the proof. ¤

Remark 5.1 Theorem 5.4 includes some classic location problems as follows:

(1) The median problem: a = b = 1.

(2) The center problem: a = 0, b = 1 and k = 1 (Minieka, 1985).

(3) The 1/2-centdian problem: a = 1/2, b = 1 and k = 1 (Tamir et al., 2002).

(4) The k-centrum problem: a = 0 and b = 1 (Puerto and Tamir, 2005).
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5.3 Complexity of Subtree OMP

Based on the above nestedness result, the tactical continuous subtree OMP with

λ(n, k) in (5.1) can be reduced to the model in which an optimal subtree contains

one corresponding optimal point. Using the technique introduced by Puerto and

Tamir (2005), we assume that the known point is v1 and T is rooted at v1. For

each ej ∈ E(T ) connecting vj and its parent p(vj), assign a variable xj such that

0 ≤ xj ≤ lj, and denote xj(ej) as the point on edge ej such that its distance

from p(vj) is xj. For each node vi ∈ V (T ), the weighted distance of vi from a

subtree is yi = wi

∑
vj∈P [vi,v1)

(lj − xj). Then we can apply the LP formulation for

the convex OMP by Ogryczak and Tamir (2003) and obtain a reduced one as

follows: min (b−a)(kt+
n∑

i=1

d+
i ), subject to d+

i ≥ yi−t, d+
i ≥ 0 (i = 1, · · · , n), yi =

wi

∑
vm∈P [vi,v1)

(lm − xm), (vi ∈ V (T ), 0 ≤ xj ≤ lj, j = 2, · · · , n), and
∑n

j=2 xj ≤ l.

By the complexity result in Nickel and Puerto (2005, p. 274), we can find an

optimal point solution in O(n log2 n) time. Thus, using the algorithm of Vaidya

(1990), we conclude that the tactical continuous subtree OMP stated in Theorem

1 can be solved in O(n3 +n2.5I) time, where n is the number of demand points in

a given tree network, and I denotes the total number of bits needed to represent

the input.

On the other hand, there also exist some negative results for the nestedness

property. For instance, Puerto and Tamir (2005) claimed that the discrete tac-

tical k-centrum problem does not have the nestedness property with respect to

the point solution, even for the regular median objective, n-centrum, by showing

the following example on the line: v1 = 0, v2 = 2, v3 = v2 + 1/4, and v4 = v3 + 1;

w1 = 2 and wi = f for i = 2, 3, 4. The unique solution for the tactical dis-
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crete problem with L = 0 is v2, and the unique solution for the tactical discrete

problem with L = 1 is the edge (v3, v4).

Since the k-centrum objective is a special case of the convex OMP, we

investigate whether the non-convex OMP has the nestedness property. In the

following we provide a counter example (see Figure 5.1) that shows that the

nestedness property does not hold for a non-convex OMP.

5.4 A Counter Example for Non-convex OMP

x
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Figure 5.1. A counter example

In this section, we construct a tree network T and prove that T does not

have the nestedness property with respect to the point solution for the continuous
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tactical model using a special case of the concave ordered median objective.

Let T = (V, E) be a tree network with node set V and edge set E,

where V = {u0, v0}∪{u1, · · · , um}∪{v1, · · · , vm}∪{x1, · · · , xm}∪{y1, · · · , ym},
E = {u0v0, u0ui, i = 1, · · · ,m} ∪ {v0vj, j = 1, · · · ,m} ∪ {ukxk, k = 1, · · · ,m} ∪
{vtyt, t = 1, · · · ,m}, and m is a sufficiently large positive integer. T is shown in

Figure 5.1.

Let n be the order of V , then n = 4m + 2. Each node is associated with a

weight. Specifically, w(u0) = 5w, w(v0) = 6w, w(ui) = 3w, w(vi) = 4w, w(xi) =

w, and w(yi) = 3
2
w (i = 1, 2, · · · ,m), where w is a positive real number. More-

over, each edge has a length. In detail, L(u0v0) = l, L(u0ui) = 2l, L(uixi) =

7l, L(v0vi) = 2l and L(viyi) = 4l (i = 1, · · · ,m), where l is a positive real

number.

In the following we first resort to finding an optimal point solution for

the continuous model that minimizes the sum of the n − m smallest weighted

distances, then we search for an optimal subtree of length l
2

for the continuous

tactical model using the same objective type. For the sake of simplicity, the

former and latter models are denoted as Model 1 and Model 2, respectively, and

the objective fλ is written as f .

To begin with, we need the following lemma.

Lemma 5.1 (Nickel and Puerto, 1999) There is at least one optimal solution for

Model 1 in the node set V .

Lemma 5.2 u0 is the unique optimal solution for Model 1 in T .

Proof. First, we prove that u0 is optimal. By Lemma 5.1, to prove the optimality
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of u0, it suffices to compute the objective value of Model 1 at each node.

Moreover, there exists some symmetry in T . That is, the objective values

at ui and uj, vi and vj, xi and xj, and yi and uj (i 6= j) are the same, respectively.

Thus we only need to calculate the objective values at u0, v0, u1, v1, x1 and y1.

Let U(v)(U(S)) denote a set of m nodes corresponding to the m largest

weighted distances from v(S). It is easy to check that U(u0) = {v1, · · · , vm}.
Then

f(u0) =
∑

vi∈V \U(u0)

wid(vi, u0)

= m× w × 9l + m× 3w × 2l + 6w + m× 3

2
w × 7l

= (25.5m + 6)wl.

Similarly, f(v0) = (26m+5)wl. However, if the facility is located at u1(x1),

then all the other nodes, except x1(u1), arrive at u1(x1) through u0, which makes

their weighted distances from u1(x1) greater than those from u0 with the same

disregarding node set {v1, v2, · · · , vm}. Thus, f(u1) > f(u0) and f(x1) > f(u0).

It is also evident that f(v1) > f(u0) and f(y1) > f(u0). Therefore, f(u0) is the

smallest among the objective values at V , and thus u0 is an optimal solution for

Model 1.

In the following the uniqueness of u0 is to be demonstrated. From the

above discussion, it suffices to explore whether there is another optimal solution

on the path P (u0, v0).

Let x be the point on P (u0, v0) such that d(u0, x) = xl(0 ≤ x ≤ 1). We

distinguish the following two cases separately.
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Case 1. 0 ≤ x < 0.6

It is easy to check that U(x) = {v1, v2, · · · , vm} and f(x) = [(25.5 + 2.5x)m +

6− x]wl. So minx∈[0,0.6)f(x) = f(0) = (25.5m + 6)wl = f(u0).

Case 2. 0.6 ≤ x ≤ 1

Then U(x) = {x1, x2, · · · , xm} and f(x) = [(28.5 − 2.52.5x)m + 6 − x]wl. In

this case, minx∈[0.6,1]f(x) = f(1) = (26m + 5)wl = f(v0) > f(u0), since m is

sufficiently large.

Hence, the uniqueness of u0 holds. ¤

Lemma 5.3 Let v be the point on the path P (u0, v0) such that d(v, v0) = l
2
.

Then e(v, v0) is the unique optimal subtree for Model 2, excluding u0.

Proof. First, we check the local optimality of e(v, v0) with respect to the path

P (u0, v0). Let e(y, u) be a subegde of length l
2

on P (u0, v0) such that d(u0, y) = y.

It is obvious that 0 ≤ y ≤ 0.5. There are three cases according to the range of y.

Case 1. 0 ≤ y < 0.1

In this case, U(e(y, u)) = {v1, v2, · · · , vm}. Then f(e(y, u)) = [(24.75+2.5y)m+

3− y]wl, the minimum of which is (24.75m + 3)wl.

Case 2. 0.1 ≤ y ≤ 0.3

It is not hard to compute that U(e(y, u)) = {y1, y2, · · · , ym}, and f(e(y, u)) =

(25m + 3− y)wl, which yields the minimum value of (25m + 2.7)wl.

Case 3. 0.3 < y ≤ 0.5

Then U(e(y, u)) = {x1, x2, · · · , xm}, and f(e(y, u)) = [(25.75−2.5y)m+3−y]wl.
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It is evident that the minimum is (24.5m+2.5)wl if and only if e(y, u) = e(v, v0),

which leads to the local optimality of e(v, v0).

In the following the global optimality of e(v, v0) is to be demonstrated. On

one hand, if the tree-shaped facility of length l
2
, denoted as S, contains u0 or lies

in the left down subtree of u0 in T , then U(S) = {v1, v2, · · · , vm}, which is same as

the one corresponding to the case of y = 0. Since m is a sufficiently large positive

integer, an increase in distance from S to v0 leads to a large increase in the sum

of weighted distances from S to each yi(i = 1, 2, · · · ,m), and contributes to a

small decrease in the sum of weighted distances from S to each of the elements in

{u1, · · · , um, x1, · · · , xm}. Hence, in this case, the corresponding objective value

increases with the increase in the distance from S to v0.

On the other hand, if S contains v0 or locates in the right down subtree of

v0, the same result can be obtained.

In summary, e(v, v0) is the unique optimal subtree for Model 2. ¤

By Lemmas 5.2 and 5.3, it is easy to establish the following theorem.

Theorem 5.5 The nestedness property of T in Figure 5.1 does not hold for the

continuous tactical model minimizing the sum of the (n−m) smallest weighted

distances.

5.5 Conclusions

In this chapter we proved that the nestedness property holds for the tactical

continuous subtree OMP with the λ-weights taking two different values. Due to



5.5 Conclusions 70

this nestedness property result, the problem can be solved in polynomial time.

Furthermore, we characterize a counter example to show that the nestedness

property cannot hold for the non-convex OMP.

Our finding extends the results related to the nestedness property of Minieka

(1985), Tamir et al. (2002) and Puerto and Tamir (2005), and fills a gap in the

research on the nestedness property.

However, considering that our problem is a special case of the convex OMP,

the problem of whether the nestedness property holds for the convex OMP re-

mains open, which was posed by Puerto and Tamir (2005). On the other hand,

considering that the (k1, k2)-trimmed problem is another important type in the

OMP family, especially important in the statistics science, which disregards the

k1 smallest and the k2 largest weighted distance functions, thus it is interesting

and challenging to study the trimmed OMP in the future.

In addition, this chapter only deals with locating tree-shaped facilities using

the OMf. In the real world, there are many different connected facilities, such

as cycle-shaped, star-shaped, clique-shaped facilities, and so on. Hence study on

the OMP with the location of different shape of facilities may be another future

research direction.



Chapter 6

Summary and Suggestions for

Future Research

In this thesis we investigated several network location problems with the ordered

median function and its special instances.

First, we studied the multi-facility ordered median problems in undirected

networks, in which the multiple isolated facilities are to be located. Since multi-

facility OMP in general networks are NP-hard, we focused on some efficient poly-

nomial algorithms for the OMP confined to tree networks. We adopted the FDS

method to study some special instances of the OMP in networks. Specifically,

we first characterized an FDS for a special convex OMP in general networks,

where the convex OMP is an important class in the OMP family. The FDS

result generalizes some known results in the literature, and leads to an exact

algorithm for the OMP in general networks. Then, based on the FDS result, we

obtained a polynomial size FDS and solved the problem confined to tree networks
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in polynomial time, which extends some results in the literature.

Second, we focused on the multi-facility OMP in directed networks, since

most of the networks in the real world are directed and not symmetric (undirected

networks can be viewed as symmetric directed networks). We made use of the

FDS method to identify some possible solutions for a multi-facility OMP in a

strongly connected directed network. We first proved that the OMP has an FDS

in the node set, which generalizes the FDS result on the single-facility OMP in

the literature. Then, based on this FDS result, we proposed an exact algorithm

to solve the problem. Moreover, we showed that with the FDS result Algorithm

4.1 was efficient for the small number of the facilities to locate. However, when

the number of the facilities is large, it is not practical to obtain an optimal

solution in an efficient manner, since the OMP in networks is NP-hard. Thus we

presented a constant-factor approximation algorithms for the OMP.

Third, we investigated the OMP in tree networks, in which the facilities

to locate are not isolated points but connected structures (e.g., paths, trees,

etc.). We adopted the nestedness property to study the subtree OMP in tree

networks. Specifically, we proved the nestedness property for a special convex

OMP in tree networks. This finding extends some classical results concerning

the nestedness property. Then we solved the problem in polynomial time based

on the nestedness property result. In addition, we provided one counter example

to show that the nestedness property cannot hold for the non-convex case.

Finally, we propose some directions for future research with respect to the

choices of objective functions and shape requirements of the facilities to locate

with the corresponding methodology used in this thesis.
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So far there are already some known results on FDS for the concave and

some special convex instances of the OMf, the latter includes the center, the cent-

dian and the k-centrum problems. As introduced in Chapter 1, the OMf is a big

family of objective functions. There are three main types of objectives: concave

OMP (the λ-weights in non-increasing order), convex OMP (the λ-weights in

non-decreasing order), and (k1, k2)-trimmed OMP. Study on these three main

types of problems may help us gain more insight into the inherent properties of

the OMf and provide more efficient algorithms to solve them in practice. Hence,

we should continue to investigate some unsolved problems in the future.

On the one hand, we should further study the identification of an FDS of

polynomial size for the OMP as follows:

Question 6.1 Does an FDS of polynomial size exist for the convex or (k1, k2)-

trimmed multi-facility OMP?

Currently there are already results of an FDS of polynomial size for con-

cave case and some special instances of the convex OMP, and some efficient

polynomial-time algorithms for the problems. However, many other special cases

of the convex OMP remain unsolved. In this thesis, we used BN, NBN, EQ and

PEQ to characterize an FDS successfully. We conjecture that Question 6.1 would

hold for some special instances, and some sets of points, more general than PEQ,

should be introduced to identify an FDS.

Furthermore, Puerto and Rodŕıguez-Ch́ıa (2005) proved that there is no

FDS of polynomial size for the p-facility OMP with general λ-weights by con-

structing a path network with the λ-weights including two same elements. This

counter example does not belong to the above three main types of the OMP.
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Thus, from an algorithmic point of view, we may classify a type of problems

with certain structures for the λ-weights, which can be solved by some FDS-

based algorithms in polynomial time. Thus another open problem is posed as

follows:

Problem 6.2 Identify the characteristics of the λ-weights such that there exists

a polynomial size FDS for the OMP.

On the other hand, once we prove the nestedness property for some OMP,

we can develop a powerful algorithm by growing from one point solution into a

possible connected facility. However, to the best of my knowledge, only some

special convex cases of the OMf (e.g., p-center, k-centrum, cent-dian, etc.) have

the nestedness property. Furthermore, we proved that the nestedness property

cannot hold for the non-convex OMP by constructing a counter example. Thus

the nestedness property for the (k1, k2)-trimmed OMP remains to be studied

further as follows:

Problem 6.3 Does the nestedness property hold for the (k1, k2)-trimmed OMP?

If the answer is affirmative, develop an efficient algorithm based on the nestedness

property result. Otherwise, construct a counter example.

Moreover, this thesis only deals with tree-shaped facilities. However, in the

real word, the connected facility may be star-shaped, clique-shaped, and so on.

Thus, to develop some efficient algorithms based on the nestedness property to

solve those OMP, we should prove the nestedness property for them in advance.

The two methodologies, FDS and nestedness property, lead us to develop

some efficient polynomial-time algorithms to solve the OMP in some special

networks. Unfortunately, the two methodologies can only be limited to some
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special instances of the OMP. From the practical application point of view, some

constant-factor approximation algorithms should to be developed, which is an-

other direction for our future research.

Problem 6.4 Develop some constant-factor approximation algorithms for the

OMP in networks. Furthermore, it is important to establish a performance

guarantee as low as possible for approximation algorithms.

In addition, since our network location models are assumed that the de-

mands of customers are known with certainty in advance, disregarding this as-

sumption can provide many open challenging location problems.
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