






ABSTRACT

This thesis includes two parts. In the first part, we will mainly introduce

Takens’ embedding theorem and a few nonlinear statistics which will be utilized

throughout this thesis. Time delay embedding reconstruction based on Takens’

embedding theorem is a powerful and vital tool to reconstruct the underlying

system from a scalar time series, based on which estimation of invariant measures

such as correlation dimension can be performed. In practical situations, however,

we need to choose two suitable parameters, i.e., embedding dimension and time

delay, to properly apply this technique. We will review some popular criteria on

the choice of these two parameters, and describe a new method we have developed

to choose suitable time delay for a continuous dynamical system. We compare

our algorithm with several available algorithms (for example, the average mutual

information criterion) and found that our algorithm has a satisfactory performance,

while the implementation is simple and its computational cost is fairly low. Hence

this algorithm is suitable to apply to situations such as surrogate tests, where a

large amount of data might be used.

In the second part, we will introduce the technique of surrogate tests to

detect possible nonlinear determinism (or nonlinearity). An irregular time series



in practice can be produced either from a stochastic process or from a nonlinear

deterministic system. To understand the underlying system of the time series, the

first step shall be to investigate whether the irregularity is brought by stochasticity

or by nonlinearity (often chaos), only then can corresponding strategies for further

analysis be properly applied. In this part, we will mainly introduce surrogate al-

gorithms to detect nonlinear determinism for time series from unknown dynamical

systems. To apply surrogate techniques on a time series for nonlinearity detection,

we need to adopt a null hypothesis, which usually supposes the time series is gen-

erated by a linear stochastic process and potentially filtered by a nonlinear filter.

Based on this null hypothesis, a large number of data sets (surrogates) are to be

produced from the original time series, which in principle keeps the linearity of the

original time series while destroying all other structures. We then calculate some

nonlinear statistics (discriminating statistics), for example, correlation dimension,

of both the original time series and the surrogates. If the discriminating statis-

tics of the original time series deviate from those of the surrogates, then we can

reject the null hypothesis we proposed and claim that the original time series is

deterministic with a certain confidence level (depending on how many surrogates

we have generated). After the detection of nonlinearity, we are also interested in

examining whether the time series is pseudoperiodic or chaotic (This distinction is

important in some situations, for example, cardiac disease diagnosis, where heart

v



rate data are believed to be chaotic for healthy patients but indicate regularity for

those with congestive heart failure ). We propose a further null hypothesis, i.e.,

we assume the time series is pseudoperiodic rather than chaotic. We will present

a new algorithm to generate surrogates for pseudoperiodic time series, then by

choosing the correlation dimension as the discriminating statistic, we can distin-

guish chaotic time series from pseudoperiodic time series. As an application of the

surrogate tests, we will apply this technique to some experimental data sets.
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CHAPTER 1

INTRODUCTION

A sequence of measurements as time evolves is called a time series [22]. We

can think of a time series as the outputs from an underlying system in terms of

signal processing. However, it is often the case that we do not know the explicit

descriptions of the underlying system a priori, hence we have to analyze the time

series instead to extract information of the underlying system. Usually this is not

an easy task, especially for complex systems such as the human heart, in which

nonlinearities are often involved. We may find spurious results if extending well

established linear analysis techniques to nonlinear fields. This fact reminds us to

be more cautious with our familiar linear methods if we attempt to apply them to

analyze nonlinear time series. An alternative choice is to apply techniques within

the context of nonlinear dynamics and chaos theory, which will be called nonlinear

time series analysis in this thesis. The hallmark of nonlinear time series analysis is

to present data to be analyzed in phase space (or state space) rather than in a time

or frequency domain [20]. Usually phase space is spanned by the state variables

(and possibly, their derivatives). If the ensemble of data points in phase space is

invariant under the dynamics, towards which neighboring states in a given basin of

attraction asymptotically approach in the course of dynamic evolution [58], we call

such ensembles attractors. A characteristic description of attractors of dynamical

systems, especially for those with fractal structures, is the fractal dimension (or
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Hausdorff dimension) [10]. In practical situations, however, due to the difficulty in

calculation, an alternative statistic, namely correlation dimension, is proposed as

a substitution for the Hausdorff dimension [14]. This will be introduced in a later

chapter.

Since usually we do not know the system equations a priori, a problem natu-

rally arising is that, how could we obtain the attractor of the underlying system

in phase space only from our observations? One solution is to seek a diffeomor-

phism of the attractor in a reconstructed state space instead of the original one

in the underlying system’s original phase space. The embedding theorems proven

by Whitney and Takens [59] guarantee the uniqueness and equivalence of the re-

constructed attractor to the original one in an embedding space (to be introduced

below). Therefore we can equivalently describe the underlying system’s character-

istic behavior by reconstructing the attractor from a scalar time series 1. With the

reconstructed attractors, we can then apply nonlinear techniques such as dimension

analysis for further investigation.

The motivation of this thesis is to introduce the application of the surrogate

method, together with the method of dimension analysis, for nonlinearity detection

to our observed data. We can often observe the irregularity in measurements, which

is caused either by stochasticity or by nonlinearity (often chaos) in deterministic

systems. To distinguish between stochasticity and nonlinearity is important as

they indicate quite different directions in research. The idea to apply the surrogate

1 In many cases a scalar time series might be sufficient. However, in some situations multi-
variate time series are needed to provide more information for reconstruction.
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test technique for nonlinearity detection is that, we assume a stationary irregular

time series 2 is generated from a linear stochastic process (and potentially filtered

by some nonlinear filter), based on this assumption we can generate many data

sets (the surrogates) from the original time series, which keeps the linearity in

the original time series while destroying all other structure. By comparing the

correlation dimension (the discriminating statistic) of the original time series and

the surrogates, we can determine whether our assumption is likely to be true. After

nonlinearity in the time series is detected, a further investigation of the underlying

system can be performed to determine whether the time series is possibly chaotic.

The organization of the thesis is as the following: In Chapter 2 we will introduce

the embedding theorems. We will also discuss the problems on how to choose

proper embedding parameters in practical situations and present some criteria on

parameter choice, including one proposed by us in a recent work on the choice

of suitable time delay. In Chapter 3 we will introduce the concept of correlation

dimension and the calculation algorithm. Another statistic to appear is the one

step local prediction error [11], arising as a reflection of reconstruction quality in

Chapter 2. With the necessary knowledge introduced in the previous two chapters,

in Chapter 4 we will apply the surrogate test method, with the discriminating

statistic of correlation dimension, to detect nonlinearity in a time series. We will

also propose a new surrogate generation algorithm for pseudoperiodic time series,

which can be applied to distinguish between chaos and pseudoperiodicity in a time

2 See Chapter 4 for the definition of stationarity.
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series after the detection of nonlinearity. An application of these techniques to

experimental data will also be demonstrated at the end of Chapter 4. Finally, in

Chapter 5, we will have a summary of the whole thesis.



CHAPTER 2

STATE SPACE RECONSTRUCTION FOR NONLINEAR TIME SERIES

ANALYSIS

2.1 Overview

In general, a finite dimensional dynamical system M can be described by the

n first-order ordinary differential equations as shown in Eq. (2.1),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̇1 = F1 (ξ1, ξ2, . . . , ξn) ;

ξ̇2 = F2 (ξ1, ξ2, . . . , ξn) ;

...

ξ̇n = Fn (ξ1, ξ2, . . . , ξn) .

(2.1)

The n dimensional space consisting of the state variables (ξ1(t), ξ2(t), . . . , ξn(t))
T

is called state space or phase space, where t is the time index.

Usually we will introduce a measurement function h to observe the systemM ,

for example, we typically obtain the experimental data sets via some apparatus.

Hence we actually obtain the transformed data sets

n
X(t) ≡ (x1(t), x2(t), . . . , xp(t))T : X(t) = h(Γ(t))

o
, (2.2)

where Γ(t) = (ξ1(t), ξ2(t), . . . , ξn(t))
T . This process can be described as h : Rn →

Rp, i.e., h maps vectors Γ(t) in n dimensional state space to vectors X(t) in p

dimensional space. For the case of p = 1, we obtain scalar measurements of
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Figure 2.1: Schematic representation of the embedding reconstruction problem.

the time series, as shown in Fig. 2.1. We will only consider scalar time series

throughout this thesis, the reason is that, on one hand some times we cannot

measure several variables simultaneously, or the dimension n is too high to conduct

a feasible measurement (for example, systems with infinite dimensions). On the

other hand, thanks to Whitney’s and Takens’s embedding theorems [59] to be

introduced below, we often need only measure one state variable of the dynamical

system. With a proper embedding reconstruction of scalar time series from this

state variable, the attractor thus reconstructed can sufficiently characterize the

original attractor in state space. Hence, the main task left for us is to determine

how to choose suitable parameters for an embedding reconstruction, which shall

preserve the characteristic properties of the original dynamical system.
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In the next sections, we will introduce the embedding theorems of Whitney

and Takens. We will also introduce the algorithms to choose suitable parameters

for the time delay embedding reconstruction, including a new algorithm we have

proposed recently to choose suitable time delays.

2.2 The Embedding Theorems

The embedding reconstruction is a construction process going from a scalar

time series in time domain to a multivariate attractor in phase space. As shown

in Fig. 2.1, we apply a measurement function h to the dynamical system M1

and obtain a scalar time series {xi}. We want to reconstruct an attractor from

scalar time series {xi} which is embedded in the manifoldM2 and can characterize

the original attractor of the system M1. This process is denoted by the map

Φ :M1 →M2, which means Φ (M1) is the submanifold embedded in the manifold

M2. Notice that, usually the phase space reconstructed by the time series from

an unknown system is not the true (original) phase space, i.e., Φ (M1) 6= M1.

Their topological dimensions will typically also be different, i.e., dim(Φ (M1)) 6=

dim(M1). Nevertheless, by properly reconstructing the phase space, we may infer

the behavior of the original system from that of the reconstructed attractor. Hence

in this sense we can capture the characteristic behavior of the original system.

Not all maps Φ : M1 → M2 can lead to a good reconstruction. To be a

good reconstruction we require that a map Φ shall be one-to-one. In addition,

its derivative map DΦ shall also be one-to-one, where D denotes the derivative

operator. The reason to require Φ to be a one-to-one map is that, we expect the
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Figure 2.2: Demonstration of two situations under which the reconstructions can-

not be embeddings. Attractor A is the original orbit. Attractor B is the recon-

structed orbit by map Φ1 with the appearance of self-intersection. Attractor C is

the reconstructed orbit by map Φ2 which does not preserve the differential struc-

ture of the original orbit. This graph is plotted with some modifications according

to the one in [13].
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dynamical system in the reconstructed space to be unique, any self-intersection

appearing through a map, for example, the situation brought by the map Φ1 in

Fig. 2.2, is not desired. But uniqueness is not sufficient to guarantee the capture of

the characteristic behavior of the original system, we further require the derivative

map DΦ to be one-to-one, which will preserve the linearization of the dynamics at

any points in the state space [20]. A map satisfying the above two conditions is

called an embedding. In the following we will introduce the theorems of Whitney

and Takens on embedding issues (and the corresponding strengthened versions by

Sauer, Yorke & Casdagli [59]).

Suppose manifold M1 is a d dimensional topological space Rd, through the

map Φ :M1 →M2 we want to embedM1 into another manifoldM2. Whitney [59]

proved a theorem stating that:

Theorem 1 (Embedding theorem of Whitney)
©
Embedding Φ :M1 → R2d+1

ª
is an open and dense set in the space of smooth maps.

From the above statement we see that M1 can be embedded in any manifold

M2 as long as that the topological dimension of M2, denoted dim(M2), > 2d+ 1.

Whitney’s embedding theorem is useful in that it indicates a way through

which we can achieve an embedding. However, stating in "topology language"

makes this theorem difficult to be applied in practice. We might not be sure

whether "an open and dense set" is a meaningful assertion in practice because

observables in "an open and dense set" could still have a rather low probability

to be observed. In addition, Whitney’s embedding theorem requires that manifold
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M1 shall be smooth enough. This requirement is actually not compulsory. In a

work of Sauer, Yorke & Casdagli [59], they proved a strengthened theorem saying

that, for a compact fractal setM1 with fractal dimension d0, the following theorem

holds,

Theorem 2 (Enhanced embedding theorem of Whitney) Φ chosen arbitrar-

ily from the set
©
Φ :M1 → Rceil(2d0)

ª
is an embedding with probability 1.

The above statement can be interpreted as that, even for a compact fractal set

M1 (not necessary to be a smooth manifold) with fractal dimension d0, an arbitrary

map Φ :M1 → Rceil(2d0) can almost always lead to an embedding if we choose the

embedding dimension to be at least ceil(2d0), where ceil(x) denotes the smallest

integer larger than x.

Although Whitney’s embedding theorem and its enhanced version can indeed

tell us how to achieve an embedding, there is still a technical problem remaining.

Recall the situation depicted in Fig. 2.1, usually we do not know the manifold

M1 exactly (otherwise there is no need to seek an embedding map), hence, we

cannot directly construct the map Φ : M1 → Rm, where m(> ceil(2d0)) is the

embedding dimension. But notice that, actually we do have much information of

the unknown system M1 which is obtained by measuring the dynamical system

via a measurement function h, however, such information ({xi : xi = h(Γ(ti))} in

concretion), is the projection of the dynamical systemM1 onto a lower dimensional

space. The information is somewhat distorted and unreliable. We need to remove

the distortion and resolve the information from scalar time series. One idea is
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that, as indicated in Fig. 2.1, from scalar time series {xi} we produce a set of vec-

tors
n
yi : yi =

¡
xi, xi+τ , ..., xi+(m−1)τ

¢To
which span a subspace M2 of Rm, where

parameter m and τ are called embedding dimension and time delay respectively.

If the equivalent map Φ : M1 → M2 proves to be an embedding, where Φ = Ξh

with Ξ denoting the map Ξ : {xi} →
n¡

xi, xi+τ , ..., xi+(m−1)τ
¢To

, then we have

found out a convenient way to (indirectly) embed the original systemM1 into a m

dimensional topological space. The process Ξ : {xi}→
n¡

xi, xi+τ , ..., xi+(m−1)τ
¢To

is called time delay embedding reconstruction. In 1981, Takens proved an embed-

ding theorem related to this process (the same result is also obtained by Man̂é, see

Ref. [59]), which is stated as follows:

Theorem 3 (Embedding theorem of Takens)
©
Embedding ΦΞh :M1 → R2d+1

ª
is an open and dense set in the space of smooth maps (h,Ξ) 1.

It is not surprising to find that the statement of Takens’ embedding theorem

is almost the same as that of Whitney’s embedding theorem. The meaning of

Takens’ embedding theorem is that, through this theorem, we know we have a good

chance to form an embedding Φ :M1 →M2 within certain regions in the space of

smooth maps (h,Ξ) by generating a vector field
n¡

xi, xi+τ , ..., xi+(m−1)τ
¢To

. But

this theorem also has the same limitations as those mentioned above. Again, Sauer,

Yorke & Casdagli [59] proved an enhanced version of this theorem:

Theorem 4 (Enhanced embedding theorem of Takens) ΦΞh chosen arbitrar-

ily from the set
©
ΦΞh :M1 → Rceil(2d0)

ª
is an embedding with probability 1.

1 Actually, the map Γ, which governs the evolution trajectory of manifold M1, is implicitly
included without affecting our discussions. See [13] for more details.
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Similarly, we see that, via map Ξ : {xi} →
n¡

xi, xi+τ , ..., xi+(m−1)τ
¢To

, in

ideal situations ΦΞh will almost always be an embedding provided that embedding

dimension m > ceil(2d0).

We give some final remarks on the embedding issues without involving the

details. For more information, please see the works mentioned below and the

references therein.

• The requirement that m > ceil(2d0) is a sufficient but not necessary condi-

tion. In some situations, we can still obtain an embedding map ΦΞh even

only condition m > ceil(d0) satisfies.

• Time delay embedding reconstruction Ξ : {xi}→
n¡

xi, xi+τ , ..., xi+(m−1)τ
¢To

is not the only method to construct an embedding. Available alternatives

include, for example, filtered time delay embedding [42], derivative embedding

[34], interspike interval embedding [41] and their hybrids.

2.3 Algorithms to Choose Embedding Parameters

As indicated above, Takens’ embedding theorem is a powerful tool which allows

us to conveniently conduct an embedding of the original system based only on

a set of scalar observations. Unfortunately, this theorem only works under the

ideal situations, where we assume the data set obtained is infinitely long and is

measured with infinite precision. However, such assumptions cannot be true in

practical situations. We have to accept the fact that the data set we obtained is

only an approximation to that from the original system, which contains only a
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part of the whole evolution states and is contaminated by noise from digitization

process, quantization process and so on. Nevertheless, time delay reconstruction is

still a useful tool based on which many nonlinear analysis techniques are developed,

although there are some differences from that in the ideal situation. For example,

originally from (the enhanced) Takens’ embedding theorem we learn that for an

arbitrary time delay τ , the mapΦΞh will be an embedding with probability 1 as long

as the embedding dimension m is large enough. However in practical situations,

too small or too large time delays can no longer lead to an embedding for a chaotic

system 2, as we shall introduce below. Hence we have to be careful to choose the

time delay τ . Moreover, as often encountered in reality, we cannot know a priori

the fractal dimension of an unknown system, therefore we also have to investigate

to what extent an embedding dimension m can be considered large enough to

produce an embedding. Consequently, we will divide our following discussions into

two parts. One is focused on the algorithms to choose proper time delay. The

other, of course, is dedicated to the introduction to the algorithms to determine

suitable embedding dimension.

2.3.1 Algorithms to Choose Time Delay

2 In reality, no measurement function will be smooth enough, hence the conditions for Takens’
embedding theorem actually cannot rigorously hold, i.e., time delay reconstruction cannot be an
embedding in the strictest mathematical sense. But this does not mean time delay reconstruction
is not useful, instead it is a valid representative of the underlying system from the discrete obser-
vations we have obtained. For convenience, we will still call a proper time delay reconstruction
as an embedding, but readers should bear in mind this limitation.
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The Criteria of Autocorrelation Function and Other Higher Order Statistics

An often used criterion at the early development stage of nonlinear time series

analysis is the criterion of the second order autocorrelation function (SOAC ). The

autocorrelation function for a scalar time series {xi} is defined by

A(τ) = hxixi+τi− hxii2 , (2.3)

where hxii denotes the expectation of data set {xi}. Initially the criterion is to

choose τ as the time delay when A(τ) first drops to zero, since when A(τ) =

0, elements xi and xi+τ are linearly uncorrelated. Some authors [2] found that

although this algorithm works well in some situations (as an example, the Rössler

system), it may fail to yield a suitable time delay for some dynamical systems,

for instance, the Lorenz system [26]. They suggested an alternative criterion to

choose the time delay at the moment when A(τ) first drops to 1/e of its initial

value A(0). This alternative method is more robust to obtain the suitable time

delay for dynamical systems (such as the Lorenz system), however, no evidence

shows that 1/e is a universal factor of the autocorrelation function criterion to

yield suitable time delays for, if not all, most of the dynamical systems.

As an extension of the above idea, Albano et al. [3] proposed to take the

time at the consistent extrema (say, local minima or maxima) of several different

higher order autocorrelation functions, for example hxixi+τxi+2τ i and hx2ixi+τi, as

the candidates of suitable embedding windows 3. The practical performance of

3 Embedding window is usually defined as τw = (m− 1)τ or τw = mτ . Therefore if we know
the embedding dimension m, we know the time delay as well.
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this criterion proves to be good, but its theoretical basis is not strongly grounded.

The Criterion of Average Mutual Information

In Eq. (2.3) the SOAC A(τ) is a linear measure of the correlation between sub-

sets {xi}N−τi=1 and {xi+τ}N−τi=1 of a time series {xi}Ni=1 4, therefore for a nonlinear

dynamical system, there is a potential blindness of function A(τ) to detect the

nonlinear correlation between subsets{xi}N−τi=1 and {xi+τ}N−τi=1 . With this consid-

eration, Fraser and Swinney [12] applied an important statistic, namely mutual

information, to measure the nonlinear correlation. The definition goes as follows:

Let p(x) denote the probability distribution of a data set {xi}, according to Shan-

non’s information theory, we can calculate the information entropy

H(x) ≡ −
X
i

p(xi) log p(xi). (2.4)

Mutual information I(x, y) between two data sets {xi} and {yi} is defined by [37]

I(x, y) ≡ H(x) +H(y)−H(x, y), (2.5)

where H(x, y) is the joint information entropy between {xi} and {yi} with a joint

probability distribution p(x, y), i.e.,

H(x, y) ≡ −
X
i

p(xi, yi) log p(xi, yi). (2.6)

Mutual information I(x, y) can tell us how much information we can learn about

the data set {yi} if we already know the data set {xi}. For a scalar time se-

ries, we shall instead calculate the average mutual information (AMI) I(xi, xi+τ)

4 Previously, we ignore the data set size N of time series {xi}Ni=1 since it does not affect our
discussion, for convenience we will continue to use the form {xi} later if it causes no confusion.
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between subsets {xi}N−τi=1 and {xi+τ}N−τi=1 of the original time series {xi}Ni=1. The

criterion is to choose time delay at the first local minimum of I(xi, xi+τ), where

a local minimum nonlinear correlation (or dependence) between subsets {xi}N−τi=1

and {xi+τ}N−τi=1 can be achieved. Mutual information is a valuable concept, it pro-

vides us with a proper tool to deal with time series in a nonlinear way. But the

minor disadvantages of this algorithm are that, the calculation of AMI involves

a complex implementation because of the difficulty in calculating joint probabil-

ity distribution p(xi, xi+τ). As a common problem, both the length of a data set

and the presence of noise will have great influences on the computation of joint

probability distribution. Hence, it is natural to expect that the AMI algorithm

will not be very robust for small noisy data sets, as observed in [30]. In addition,

it has been found that for some dynamical systems, the AMI measure will decay

monotonically and show no minima at all, in which cases we cannot select any time

delay through this criterion. We will propose a possible remedy for this situation

later, which is based on the idea of tradeoff between redundancy and irrelevance.

The Criterion of Fill-factor

When examining the reasons for the failure of the SOAC criterion, we see some

comments such as "a zero of the autocorrelation indicates on average linear inde-

pendence of x(t) and x(t+τ), but not necessarily of x(t) and x(t+2τ)" and " The

deeper reason for this failure is the fact that this approach does not employ any

state space information" 5. Indeed, usually the information-like criteria such the

5 See ref. [13] (p87) and references therein for more details.
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Figure 2.3: (a) Projection of the Rössler attractor onto the x-y plane; (b), (c) and

(d): Reconstructed attractor of the Rössler system in two dimensional embedding

space xi+τ vs xi with τ = 2, τ = 16 and τ = 32 respectively.

SOAC and the AMI do not utilize any geometric information of the reconstructed

attractors in embedding spaces 6. Comparatively, Buzug and Pfister [6] proposed

the fill-factor algorithm to determine a suitable time delay by examining the re-

constructed attractors expansion in embedding spaces. The authors noticed that

if a dynamical system has only one unstable focus, choosing too small or too large

delay time will lead to the collapse of the reconstructed attractor in embedding

space. Therefore their criterion is to choose time delay when the volume of the

reconstructed attractor in hyperspace is maximized. Take the Rössler system (See

6 This situation is understandable. In fact, the information criteria tend to determine a suit-
able time delay τ without involving embedding dimension m as the parameter. Comparatively,
criteria utilizing reconstruction information in embedding spaces will inevitably take into account
the affect of different embedding dimensions, thus such criteria are often related to choosing suit-
able embedding windows, as to be shown below.
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Eq. (2.18) for system equations) as an example, as shown in Fig. 2.3, panel (a)

indicates the projection of the Rössler system onto the x−y plane, while panel (b),

(c) and (d) demonstrate reconstructed attractors in two dimensional embedding

space (e.g., xi+τ vs. xi) with different time delays, from which we see that for

time delay τ = 2 or 32 ("improper" choices), the corresponding attractors have

less volumes than that of the attractor with time delay τ = 16.

To implement this algorithm, we need to randomly choose m+1 delay vectors

on the reconstructed attractor in metric spaceRm and calculate the volume V (m, τ)

of the corresponding hyper-parallelepiped, repeat this procedure for many times

and we obtain an average hV (m, τ)i of these volumes. The fill-factor is defined by

γ(m, τ) ≡ log10
hV (m, τ)i

(1
2
(max (xi)−min (xi)))m

, (2.7)

where max (xi) and min (xi) denote the maximum and the minimum of time series

{xi} respectively. This is a simple and effective method to choose time delay for

systems with only one unstable focus, however, it will fail to yield significant delays

for dynamical systems with more than one unstable focus, for example, the Lorenz

system.

The Criterion of Integral Local Deformation

Realizing the limitation of the fill-factor algorithm, Buzug and Pfister [6] sug-

gested an alternative algorithm, namely integral local deformation (ILD), to over-

come the difficulties we introduced previously. The essential idea of this algorithm
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is that, for a deterministic system, false neighbours 7 will usually no longer be neigh-

bours as time evolves ahead, while true adjacent points will have approximately

the same direction of evolution within a short period. A good reconstruction shall

(on average) have a minimum deviation between evolution directions of adjacent

points. The detail in implementing this algorithm is presented below.

We first randomly choose a delay vector
−→
Xi =

¡
xi, xi+τ , . . . , xi+(m−1)τ

¢T
as a

reference point in m dimensional embedding space, then search and determine the

ensemble
n−→
Xj :

°°°−→Xj −
−→
Xi

°°° < �
o
, which consists of the delay vectors falling within

a hyper-sphere of radius � centered by
−→
Xi, where k·k denotes the metric distance in

Euclidean space. The mass center
−→
Mi of the ensemble can thus be calculated (with

equal weight for each element
−→
Xj), and the distance di between the reference point

−→
Xi and the mass center

−→
Mi will be di =

°°°−→Xi −
−→
Mi

°°°. After p step evolution, the
reference point

−→
Xi and the original ensemble

n−→
Xj :

°°°−→Xj −
−→
Xi

°°° < �
o
become

−−→
Xi+p

and
n−−→
Xj+p :

°°°−→Xj −
−→
Xi

°°° < �
o
respectively, then we need to locate the new mass

center position
−−−→
Mi+p of the new ensemble

n−−→
Xj+p :

°°°−→Xj −
−→
Xi

°°° < �
o
. Therefore the

corresponding distance di+p turns to be
°°°−−→Xi+p −

−−−→
Mi+p

°°°. We denote the difference
between distance di+p and di as ∆d(m, τ, p, i) = di+p − di. The average integral

local deformation is defined by

δ(m, τ, p) =

*
pX

q=1

(∆d(m, τ, q − 1, i) +∆d(m, τ, q, i))

+
2(max (xi)−min (xi))

, (2.8)

7 For the concept of false neighbour, see a full description in the next subsection, where we
will use the criterion of false nearest neighbour to choose suitable embedding dimension.
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where operator h·i denotes expectation taken over i, which means we shall choose

different reference vector for many times, and functions max (xi) and min (xi) have

the same meaning as that described in Eq. (2.7).

If we choose to observe one step evolution, then we can define a simpler measure

of the average local deformation, which governs the relative growth of distances

between reference points and the corresponding mass centers in the logarithm scale,

i.e.,

δ(m, τ) =

¿
ln

di+1
di

À
. (2.9)

The advantage of the ILD algorithm is that, by examining the evolution of

the reference points and their neighbours in local flows, the statistic δ(m, τ, p) (or

δ(m, τ)) can provide us dynamical information of the underlying system, however,

the corresponding computational cost will substantially increase compared to other

algorithms. In addition, as we are to show below [27], the algorithm based on Eq.

(2.9) might be more suitable to determine the embedding window rather than to

determine embedding dimension m and delay time τ separately.

The Criterion of Redundancy and Irrelevance Trade-off Exponent

Recently we proposed a new method [27] to choose time delay based on the

concepts of redundancy and irrelevance [7], which is very effective in computation

but can achieve roughly equivalent performance to the previous criteria.

In a very recent paper Cellucci and coworkers [8] state their viewpoint on pre-

vious embedding methods as: A circular logic has resulted in which embedding
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criteria are assessed by an adjudicating criterion which is itself an embedding cri-

terion. Following this viewpoint, we learn that the best embedding criterion might

differ under different adjudicating criteria. Hence we would like to elucidate that

we do not seek the best embedding criterion for different adjudicating criteria, in-

stead we attempt to seek time delays through which the delay reconstructions can

equivalently characterize the original dynamical systems (to be verified later).

Suppose we apply a smooth measurement function h to measure a manifold

M and obtain a N data point scalar time series {xi}Ni=1. We want to reconstruct

an attractor in m dimensional embedding space Rm from the scalar time series

which characterizes the original one on manifold M . According to Takens’ em-

bedding theorem, a sufficiently high embedding dimension m will almost always

lead to a time delay embedding reconstruction for any time delay τ 8. In prac-

tice, however, the situation will be different. Due to the non-smoothness of the

measurement function h (in the processes such as digitization and quantization,

for example), we can no longer achieve an embedding reconstruction in a rigorous

sense. However, delay reconstruction, as a valid representative of the underlying

system if properly constructed from the discrete observations, is still a useful tool

in most practical cases, based on which further steps in data processing such as

invariant statistic analysis (dimension, entropy etc.) can proceed. By "properly

constructed", we mean that, for the ensemble of discrete observations E (obtained

by measuring manifold M), the reconstruction map Ψ : E → U shall be one-to-

8 For Takens’ embedding theorem to hold, there shall be some additional requirements (see
[13] for details).



22

one, where U is a sub-manifold embedded in Rm. Moreover, its derivative mapping

DΨ shall also be one-to-one, where D denotes the differentiating operator on Ψ.

Note that, because of the finiteness of the time series and the presence of noise, a

sufficiently high embedding dimension turns out to be necessary but not sufficient

to produce a proper delay reconstruction (for convenience, we will use "delay re-

construction" or "reconstruction" instead of "proper delay reconstruction" when

causing no confusion). Also unlike the ideal situation, not all of the time delays

can lead to a reconstruction (to be shown below).

We shall emphasize that, although in practice some time delays no longer lead

to a reconstruction, it is expected the remaining time delays shall equivalently lead

to a reconstruction in the sense of characterizing the original attractor in state

space, although some particular values might indeed facilitate certain analysis of

a time series. Hence, even if we later obtain different time delays from different

criteria, we still consider them equally as possible candidates for a reconstruction.

Now let us first consider the effects of different time delays on the reconstructed

attractor in an embedding space. From a time series {xi}, we want to construct a

set of delay vectors
−→
Xi = (xi, xi+τ , . . . , xi+(m−1)τ)

T in a m dimensional embedding

space. For convenience, we confine our argument within a two-dimensional embed-

ding space xi+τ vs. xi. Fig. 2.4 illustrates the projection of the original attractor

onto the x − y plane and the reconstructed attractors of the Lorenz system (see

Eq. (2.17)) from the x component for three different time delays. When τ is too

small, xi+τ will be very close to xi due to the continuity of a manifold. Therefore
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Figure 2.4: Effects of different time delays on the reconstructed attractor of the

Lorenz system in two-dimensional embedding space. (a) Projection of the Lorenz

attractor onto the x-y plane; (b), (c) and (d): Reconstructed attractor in embed-

ding space xi+τ vs xi when time delay τ = 2, τ = 8 and τ = 32 respectively.

the pair points (xi, xi+τ) will distribute around the unity line xi+τ = xi as indi-

cated in panel (b) of Fig. 2.4. But in practice, the presence of noise will lead to a

noisy delay vector
−→
Xn

i = (xi + εi, xi+τ + εi+τ) distributed within a "square" rather

than as a point in the metric space R2, where εi denotes the noise introduced from

measurement. The squares of adjacent vectors might intersect with each other.

Then a delay vector
−→
Xn

i , falling within a common region of these squares, can

be either one of the adjacent vectors. Hence in this situation the reconstruction

map Ψ is not one-to-one and cannot lead to a reconstruction. When time delay
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τ is too large, say, τ = 32 as adopted in panel (c) of Fig. 2.4, the reconstructed

attractor is over-decorrelated and does not preserve the tangent space structure of

the original attractor compared to those in panel (a) and (b). The corresponding

derivative map DΨ is not one-to-one in this case 9, hence it also cannot lead to a

reconstruction.

From the viewpoint of information theory, too small time delay τ means that

xi+τ contain mainly redundant information of xi, which is called redundancy [7].

If a time delay is too large, then for chaotic systems, xi+τ will be irrelevant to

xi, hence xi+τ contains no information of xi, which is known as irrelevance [7].

As Liebert and Schuster have argued that, we shall consider not only the effect

of redundancy but also that of irrelevance in estimate of suitable time delays [24].

Therefore a tradeoff shall be achieved between redundancy and irrelevance so as

to produce a reconstruction map Ψ. We define the following statistic, namely

redundancy and irrelevance tradeoff exponent (RITE), to measure the tradeoff,

RITE =
ρ(xi, xi+τ) hx2i i+ (1− ρ(xi, xi+τ)) hxii2

hx2i i+ hxii
2 , (2.10)

where h·i denotes the expectation taken over time index i and

ρ(xi, xi+τ ) =
cov(xi, xi+τ)

var(xi)
=
hxixi+τi− hxii2

hx2i i− hxii
2 , (2.11)

where ρ(xi, xi+τ) is the SOAC, cov(xi, xi+τ) and var(xi) are the covariance and

variance function respectively for a time series {xi}. After simplifications, we have

RITE =
hxixi+τi

hx2i i+ hxii
2 . (2.12)

9 For example, we can observe some break points where the directions of tangent vectors
abruptly change.
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Now let us interpret the meaning of Eq. (2.10). We take hx2i i as the case of

complete redundancy for the measure hxixi+τi, when time delay τ tends to zero

and referring to xi+τ brings no more information of xi. Conversely, hxii2 is the case

of complete irrelevance for the measure hxixi+τi, when xi+τ is irrelevant and thus

uncorrelated to xi, hence hxixi+τi is reduced to hxii2. ρ(xi, xi+τ) plays the role to

measure the redundancy between xi+τ and xi with a weight of hx2i i
±¡
hx2i i+ hxii

2¢ ,
while 1 − ρ(xi, xi+τ) denotes the measure of irrelevance with the assigned weight

of hxii2
±¡
hx2i i+ hxii

2¢ . Starting from τ = 0, as time delay τ increases, the re-

dundancy measure ρ(xi, xi+τ) shall usually decrease while the irrelevance measure

1−ρ(xi, xi+τ) shall increase, hence our criterion is to choose the suitable time delay

at the first local minimum of RITE, where an optimal tradeoff between redundancy

and irrelevance is deemed to be achieved according to Eq. (2.10).

If directly applying the measure of RITE to measure the original scalar time

series {xi}, from Eq. (2.10) we can find that, Eq. (2.12) is a constant affine

transformation of the SOAC, therefore it will have the same performance as that

of the ordinary SOAC algorithm since hx2i i and hxii
2 are both independent of

time delay τ . When examining the performance of the SOAC algorithm, some

authors gave some comments (cf. [13], p87 for more details) such as "a zero of the

autocorrelation indicates on average linear independence of x(t) and x(t+ τ), but

not necessarily of x(t) and x(t+ 2τ)" [24] and "The deeper reason for this failure

is the fact that this approach does not employ any state space information" [40].

However, as to be indicated below, if we apply certain kind of transform on {xi}
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Figure 2.5: Geometric variables in the two-dimensional embedding space.

and use the new generated time series to substitute the original one, we can let

the SOAC algorithm not only contain the information of xi, xi+τ and xi+2τ at the

same time but also utilize the geometric information of the reconstructed attractor

in the two-dimensional embedding space xi+τ vs. xi.

Now let us consider the possible transforms over the time series {xi}. Let
−−−−−→
(xi,xi+τ) denote the vector from the origin to point (xi, xi+τ ) in the two dimensional

embedding space, as shown in Fig. 2.5, we have the distance di of the pair points

(xi, xi+τ) to the identity line xi+τ = xi expressed by:

di =
1√
2
|xi+τ − xi| , (2.13)

where |·| denotes the distance in Euclidean space. The projection length pi of
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vector
−−−−−→
(xi,xi+τ) onto the identity line is:

pi =
1√
2
|xi+τ + xi| . (2.14)

Therefore the angle between vector
−−−−−→
(xi,xi+τ) and the identity line is :

θi = tan
−1
¯̄̄̄
xi+τ − xi
xi+τ + xi

¯̄̄̄
. (2.15)

From Eq. (2.13), (2.14) and (2.15), we can obtain three new time series {di},

{pi} and {θi}, which consist of geometric description variables of the reconstructed

attractor in the two-dimensional embedding space (other transforms are also pos-

sible of course). We apply the measure of RITE to these geometric variables with

the same criterion aforementioned to choose suitable time delays, i.e., a suitable

time delay will be chosen at the first local minimum of the geometric measures of

RITE.

We note that if the origin in the embedding space of a time series is marginal

to or even outside of the reconstructed attractor, the sensitivity of the geomet-

ric measures of RITE to different time delays will be significantly reduced. We

therefore conduct the following smooth affine transform on the original time series

{xi}

yi =
xi − hxiip
var(xi)

. (2.16)

The new time series {yi} shall have the same dynamical properties in the time

domain as the original one has, while it takes the origin of embedding space as the

center of its reconstructed attractor in a statistical sense. With this property, we

prefer to study the time series {yi} rather than {xi}. In addition, we will discard
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the scale factor 1
±√
2 of both Eq. (2.13) and (2.14) in all of our calculations

without affecting the results.

We will study the simulation data sets from the Lorenz and Rössler systems

[13]. For the Lorenz system, the system equations are:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ẋ = σ(y − x);

ẏ = rx− y − xz;

ż = xy − bz.

(2.17)

with parameters σ = 10, r = 28, c = 8/3 and the sampling time ∆ts = 0.02 time

units. For the Rössler system, the equations are:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ẋ = −y − z;

ẏ = x+ ay;

ż = b+ z(x− c).

(2.18)

with parameters a = 0.15, b = 0.20, c = 10.00 and the sampling time ∆ts = 0.1

time units.

We will also apply the geometric measures of RITE to the sunspot record from

year 1700 to year 1987 and infant respiratory data during stage 4 sleep (S4) [49]. In

addition, we will calculate the time delays chosen by the criteria aforementioned,

such as the SOAC (both ordinary and geometric measures), ILD and AMI algo-

rithms, for the purpose of comparison. Our results are listed in Tables 2.1 and

2.2.

For the ordinary SOAC algorithm in Table 2.1, we use both the criteria which

chooses time delay when the SOAC first drops to zero or 1/e (see [2] and references
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Table 2.1: Time delays chosen by the ordinary SOAC and the geometric

measures of SOAC algorithms.

Data set Ordinary SOAC Geometric measures of SOAC

(first dropping to 0/e−1) distance projection angle

Lorenz 209/15 10 14 13

Rössler 15/11 16 15 15

sunspot 3/2 2 3 3

S4 7/5 7 7 6

therein). These two criteria work for the Rössler system, sunspot record and S4

data set. However, for the first-to-zero criterion, choosing time delay at 209 for the

Lorenz system is improper (From Fig. 2.4 we see that time delays larger than 32

cannot reconstruct the Lorenz system properly), which can be taken as an example

of failure for this criterion. While for the first-to-1/e criterion, the choice of 15

is acceptable (to be shown below). Indeed, no longer requiring complete linear

independence between two subsets, the first-to-1/e criterion can be thought of as

an effort to achieve certain tradeoff between redundancy and irrelevance, although

we may not know a priori whether the prescribed constant factor 1/e is better

than any other coefficients for an unknown system.

It is interesting to notice that, if we adopt the geometric variables obtained

from Eq. (2.13), (2.14) and (2.15) in the ordinary SOAC algorithm (i.e, in Eq.

(2.11) we calculate, for example, ρ(di, di+τ ) instead of ρ(xi, xi+τ)), it also can be a

time delay selection criterion (similar to the AMI algorithm, time delay to be cho-
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Table 2.2: Time delays chosen by the algorithms of the

ILD, AMI and the geometric measures of RITE.

Data set ILD AMI Geometric measures of RITE

τ/m distance projection angle

Lorenz 9/4 8 9 12 10

Rössler 10/3 16 16 14 13

sunspot 2 3 2 3 2

S4 5/5 8 7 8 5

sen at the first local minimum) 10. In Table 2.1, time delays chosen by this criterion

are close to those chosen by the AMI algorithm and the geometric measure algo-

rithms of RITE. However, in this criterion we do not include any tradeoff between

redundancy and irrelevance, which is not desired as we have stated previously.

In Table 2.2, although the ILD algorithm was originally designed to determine

suitable time delays τ , it might be more appropriate to utilize it to establish an

embedding window mτ . As indicated in the left panel of Fig. 2.6, when using Eq.

(24) in Ref. [6] for calculation, for the Lorenz system the products of embedding

dimensions m (m >correlation dimension dc) and the corresponding time delays τ

at the first local minimum of the average ILD are nearly a constant of 36. This

conclusion also holds for data sets of the Rössler system and S4. In contrast, the

10 Professor A. M. Albano commented that it might actually be the inclusion of the dynamics
in the geometric variables (distance, projection and angle) of the two-dimensional embedding
space that make it possible for a linear statistical measure such as SOAC to extract dynamical
information from a scalar time series. In the future work, we could, of course, extend this idea
to higher-dimensional embedding space.
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Figure 2.6: Figure in the left panel indicates the average integral local deformation

vs. time delay for the time series from the Lorenz system with 9000 data points.

The number of reference points is 500, radius for neighbour searching is set to 5.

Embedding dimension m varies from 2 to 6 (from upper to lower) and time delay

increases from 1 to 50. Figure in the right panel adopts the same parameters as

the left for calculations except that the time series is shorter, consisting of only

1200 data points.

sunspot record has consistent local minima and the products of m · τ do not keep

constant. This still does not contradict our conclusion as the sunspot record is an

extremely short time series. As shown in the right panel of Fig. 2.6, the constant

embedding window will vanish when the time series from the Lorenz system is

short, instead a consistent local minimum appears at τ = 8.

Since embedding window mτ remains constant, different time delays will be

obtained from the ILD algorithm for different embedding dimensions, neverthe-

less, we still think that the ILD algorithm can indicate how to obtain a proper

reconstruction by choosing proper embedding dimensions. Here we will choose a
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suitable embedding dimension for each data set (except for the sunspot record)

under the criterion of global False Nearest Neighbours (GFNN) [29], then we can

obtain the corresponding time delay according to the embedding window 11. For

the sunspot record we choose the time delay at the first consistent local minimum

of the average ILD. The results are indicated in Table 2.2.

We will compare the algorithm performances below, especially for the AMI

algorithm and geometric measure algorithms of SOAC and RITE . Take the time

delays chosen by the popular AMI algorithm as the reference, loosely speaking,

time delays selected by the geometric measures of SOAC and RITE are close to

those chosen by the AMI. But note that direct comparison between these time

delays tells us little, we have to instead evaluate whether a time delay is suitable

according to the reconstruction quality, which can be reflected by some statistics

related to the reconstruction. We will adopt two such statistics (both to be intro-

duced in the next chapter with more details) in the following for reconstruction

evaluation.

The first statistic is the correlation dimension, which shall be approximately

the same for different reconstructions with properly chosen time delay and embed-

ding dimension. We use the Gaussian kernel algorithm (GKA) implemented in

[60] to calculate the correlation dimension. Since the experimental data sets we

11 We must admit that this is somewhat ”circular”,since the choice of the suitable embedding
dimension by GFNN algorithm in turn needs to take the suitable delay time as a parameter . In
our calculation, we use the suitable delay time obtained by the AMI algorithm in Table 2.2 as
the parameter to determine the optimal embedding dimension for each data set (except for the
sunspot record).
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Figure 2.7: Correlation dimension vs. time delay with error bars. We adopt the

Gaussian kernel algorithm (GKA) implemented in [60] for calculation. To speed up

computation, we use only 4000 data points as references, hence for each time delay

we calculate 10 times in order to evaluate the uncertainty. Embedding dimensions

are 4 and 3 for the Lorenz and Rössler systems respectively, and both of the

time delay ranges are from 1 to 50. For each data set, the correlation dimensions

corresponding to time delays listed in Table 2.1 and 2.2 are marked with stars

(except for the choice 209 of the Lorenz system).

have are relatively short 12, their estimated correlation dimensions are unreliable.

We thus will only investigate simulation data sets from the Lorenz and Rössler

systems, each with 9000 data points. In Fig. 2.7, we plot the curve of correlation

dimension vs. time delay and mark correlation dimensions corresponding to the

time delays in both Table 2.1 and 2.2 with stars (except for the choice 209 of the

Lorenz system). As can be found, for the Lorenz system, the curve is less smooth

than that of the Rössler system. Besides, the corresponding fluctuations are also

12 The sunspot record has 288 data points while data set S4 has 1900.
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larger than those of the Rössler system. One explanation for these phenomena

may be that, to speed up computation, in the GKA we randomly adopt 4000

data points as the reference points, and the distribution of these randomly picked

data points may have a greater influence on the Lorenz system because of its two-

wing structure than that on the Rössler system with the same number of reference

points. But roughly speaking, the marked correlation dimensions of both systems

lie on plateaus as expected, which means, for those time delays we may obtain

approximately the same correlation dimension. Hence the marked time delays can

be thought of as equally suitable for a reconstruction.

The second statistic is the one step local prediction error (LPE). As we know,

local constant model [11] utilizes nearest neighbours for nonlinear prediction, when

sufficiently high embedding dimension is reached, most of the effect of false nearest

neighbours will be excluded. With embedding dimension and the radius of neigh-

bour searching fixed, the LPE will only depend on the time delay. Hence one step

LPE can qualitatively tell whether our choice is acceptable, since it shall achieve

a tradeoff between being too small and being too large if the reconstruction is

neither too redundant nor too irrelevant. In Fig. 2.8, the LPEs corresponding to

the time delays listed in Table 2.1 and 2.2 chosen by different algorithms for each

data set are marked with stars, from which we can see that they are indeed neither

too small nor too large. In this sense, a certain tradeoff is achieved when choosing

time delays in the above tables.

As we have mentioned before, we think all of the time delay candidates are
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Figure 2.8: One step prediction error of local constant model vs. time delay with

error bars. Note that to calculate the uncertainty of the prediction errors, we use

10 different subsets of each original data set without affecting the choice of time

delays. Embedding dimensions used in the model are 4,3,3 and 5 for the Lorenz

system, the Rössler system, the sunspot record and data set of S4 respectively.

The ranges of time delays are all from 1 to 50 . The LPEs corresponding to time

delays in Table 2.1 and 2.2 chosen by different algorithms for each data set are

marked with stars (except for the choice 209 of the Lorenz system). We use the

program zeroth in TISEAN package [18] for all our calculations.

equally suitable if they can lead to a proper reconstruction, no matter if they are

the best choices under certain adjudicating criterion. But we still prefer geomet-

ric measure algorithms of RITE to those of SOAC because the RITE criterion

represents the idea of tradeoff between redundancy and irrelevance. Indeed, only
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Table 2.3: Time delays chosen by the geometric measures of RITE for the time

series from the Lorenz and Rössler systems contaminated with observational

Gaussian white noises .

Noise level (%) Lorenz system Rössler system

distance projection angle distance projection angle

0 9 12 10 16 14 13

3 9 12 10 16 14 13

6 9 12 9 16 14 13

9 9 12 10 16 14 13

12 9 12 8 16 14 2

considering the linear and nonlinear dependence between two subsets, the SOAC

and AMI criteria may fail for some systems. We have shown that the first-to-zero

criterion of the ordinary SOAC does not work for the Lorenz system. As for the

AMI criterion, we may only obtain monotonically decaying curves for some dynam-

ical systems 13, hence there is no local minimum to choose time delay. Therefore

we would like to suggest that, even for the AMI algorithm, it may be better to

include certain tradeoff.

Now let us examine the computational cost of each algorithm listed in Table

2.1 and 2.2. Let N denote the data set size of time series {xi}, then the ILD algo-

rithm approximately requires O(Nref × (N lnN)) operations on searching nearest

neighbours for each embedding dimension and each time delay, where Nref is the

13 For example, some ECG observations.
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number of reference points. The AMI algorithm needs about O(N2) operations

to calculate joint probability distribution for each time delay, while the RITE al-

gorithm will be faster than both of them, undergoing about O(N) operations on

both the transforms over the original data set and the calculations of expectation

for each time delay. This is an advantage under some situations, for example,

surrogate tests [52], where lots of data sets will be involved in calculation.

We will also test the robustness of the geometric measures of RITE against

observational Gaussian white noise N(0, δ2). The noise level is defined as the ratio

of δ to δs, where δs is the standard deviation of the original scalar time series

{xi} before the transform of Eq. (2.16). As indicated in Table 2.3, using the time

delays chosen at noise level zero as the references, we find both the distance and

the projection measures of RITE are rather robust against observational noise,

noise level up to 12% still do not affect the choices of the time delay. However,

the angle measure of RITE is more sensitive to noise. For the Lorenz system,

small fluctuations of the choice appear when noise level is higher than 6%. For the

Rössler system, the performance seems better. The odd choice τ = 2 at noise level

12% follows our criterion suggested above, which is due to a small spike on the

curve of the angle measure of RITE vs. time delay, while the next local minimum

is exactly at the time delay τ = 13. Although the robustness against observational

noise of the geometric measures of RITE might vary from system to system, we

believe in general it is satisfactory.

Up to now, average mutual information is the most preferred statistic used
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for choosing time delay since it has a valuable physical meaning, but it requires a

complicated implementation algorithm. To achieve higher accuracy, more complex

implementation and more running time are needed. Also it does not deal well with

short time series. The RITE algorithm can overcome some of the disadvantages

of the AMI algorithm. It is much simpler to implement, and our calculations

indicate that the RITE algorithm performs well for a variety of time series of

various lengths and even with the presence of substantial noise. Although through

the RITE algorithm we may obtain different results under different geometric

criteria, we can take all of them as suitable candidates for a reconstruction if

we do not seek the "best" choice for certain adjudicating criterion. We therefore

feel that such a simple algorithm could be a valuable tool to choose time delay,

especially for the situation such as the surrogate test, where there are many data

sets needing to be reconstructed.

2.3.2 Algorithms to Choose Embedding Dimension

There are many works concerning how to choose a suitable embedding dimension

for a nonlinear time series, in general, they can be included into three kinds of

algorithms:

• One algorithm is based on the invariant statistics, for example, the corre-

lation dimension and entropy etc., of the underlying system. As we know,

theoretically the invariant statistics of a dynamical system shall be the same

for different but equally proper embedding parameters. If we know a proper

time delay, then by fixing time delay and examining the trend of convergence
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Figure 2.9: Using the correlation dimension as the invariant statistic to choose

a proper embedding dimension. We prescribe a suitable time delay through the

RITE algorithm introduced above, then calculate the local correlation dimensions

at different length scales. Within a moderate scale interval (we will discuss the

effect of length scale on the calculation of local correlation dimension in the next

chapter), we find the curves will begin to converge when the embedding dimension

is up to three. Hence we can determine that the embedding dimension shall be at

least three.

of different embedding dimensions, we may choose a proper embedding di-

mension, although it is somewhat empirical and has to depend on our visual

inspection of the situations. We use the Lorenz system as an example to cal-

culate the (local) correlation dimensions of different embedding dimensions
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with the prescribed time delay, as shown in Fig. 2.9.

• Another algorithm utilizes the singular value decomposition (SVD) tech-

nique. In [5] the authors define the embedding matrix E for a scalar time

series {xi}Ni=1 as

Er×d = r−1/2 ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−→
E1

T

−→
E2

T

...

−→
Er

T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
r×d

= r−1/2 ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 · · · xd

x2 x3 · · · xd+1

...
...

...
...

xr xr+1 · · · xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
r×d

, (2.19)

where
−→
Ei =

¡
xi, xi+1, ..., xi+(d−1)

¢T
, r = N − (d− 1) and d is the embedding

dimension to be chosen. Note that matrix E has a Toeplitz structure, i.e.,

its elements Ei,j satisfy that Ei,j = xi+j−1, and obviously Ei,j = Em,n if

i+ j = m+ n.

We will discard the factor r−1/2 since it does not affect our discussion at all.

Utilizing the SVD technique, we can decompose the matrix Er×d into two

orthogonal matrices (U and V ) and one diagonal matrix (S),

Er×d = Vr×dSd×dUd×d, (2.20)

where V TV = UTU = Id×d with Id×d denoting the d dimensional identity

matrix.
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Usually it is preferred to arrange the (non-negative) singular values in matrix

S in decreasing order, i.e., given the diagonal matrix S = diag(s1, s2, ..., sd),

we have

s1 > s2 > ...sd > 0.

If rank(E) = n, then we have

s1 > ... > sn > sn+1 = ... = sd = 0.

We can take n as the number of eigenvectors which span the space where the

original attractor of the underlying system is embedded. Without noise, we

can count the number of positive values in set (s1, s2, ..., sd) to determine the

matrix rank, which is taken as the embedding dimension. If noise is present

in the time series, however, the situation will be different. Consider the case

of an i.i.d noise process {ξi} with mean value 0 and standard deviation σ.

Denote the new singular values as (s
0
1, s

0
2, ..., s

0
d), it can prove that [5]

³
s
0
i

´2
= s2i + σ2/d i = 1, 2, ..., d. (2.21)

The presence of i.i.d noise will not change the directions of the origi-

nal eigenvectors but only increase their magnitudes, for i > rank(E) = n,¡
s
0
i

¢2
= σ2/d hence they will no longer be zero. Nevertheless, we can still

determine the rank of matrix E by inspecting the onset of convergence (to

σ2/d, ideally).
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If the perturbation to the time series is colored noise, i.e., the noise compo-

nents have certain correlations with each other, in general, the presence of

noise will change both the amplitudes and the directions of the original eigen-

vectors, and usually we cannot get the simple relationship as that described

in Eq. (2.21), instead, we have to write the relationship as

³
s
0
i

´2
= g(−→s1 ,−→s2 , ...,−→s3 ; −→σ1,−→σ2, ...,−→σd).

where (−→σ1,−→σ2, ...,−→σd) are the eigenvectors of colored noise which span the same

metric space as (−→s1 ,−→s2 , ...,−→s3). Here we add an arrow for each component

to highlight that the eigenvectors of signal and noise might follow different

directions. Therefore it is possible that the singular values
¡
s
0
1, s

0
2, ..., s

0
d

¢
might not converge. For such situations, we cannot use this technique to

determine the suitable embedding dimension any more.

There are many further discussions on the failure of the SVD algorithm

(see ref. [31] & [35], for example). Essentially, the SVD technique, being

equivalent to the power spectrum analysis technique, is a linear approach.

Hence, it is natural that it will fail to reveal the characteristic structures of

nonlinear dynamical systems.

• The third algorithm is based on the false nearest neighbour (FNN). We use

an example to demonstrate the concept of false nearest neighbour. As shown

in Fig. 2.10, we have an attractor in two dimensional space, whose trajectory

is denoted T . Consider data points A, B and C on T , initially B and C are
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Figure 2.10: An attractor in two dimensional space. We denote the trajectory of

the attractor as T . Consider data points A and B on trajectory T , initially they

are too far away to be neighbours, however, if we project the whole trajectory onto

the x axis, the corresponding projection points, D and E, can become neighbours

(depending on how we choose the radius for nearest neighbour searching). Through

this example we can see that, given a scalar time series, there could be many

false neighbours if we choose an improper embedding dimension, see text for more

discussions.

neighbours while A and B are not 14, however, the corresponding projections

onto the x axis, D, E and F respectively, are all close enough to become pos-

14 Whether two data points are neighbours actually depend on the maximal distance we choose
between two adjacent data points (i.e., the radius for nearest neighbour searching). However,
usually we will not take two data points as neighbours if they have a large evolution time gap,
otherwise the trajectory we reconstructed will distort to some extent since we ignore too much
trajectory information between the so-called "neighbours".
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sible neighbours. Suppose the projection of trajectory T (onto the x axis)

is exactly the scalar time series we obtained, and if we choose embedding

dimension m = 1 for reconstruction, then D and E will be falsely treated

as neighbours, we call such adjacent data points false neighbours. If we in-

crease the embedding dimension to 2, then the false neighbours can be easily

distinguished. Hence we can design a criterion to choose the suitable embed-

ding dimension, i.e., we randomly select some data points, count the number

of their nearest neighbours15 for each embedding dimension. For suitable

embedding dimensions, the number of their nearest neighbours will approx-

imately be constant, however, if the embedding dimension is improper, the

false nearest neighbours will occupy a substantial portion of the whole. Hence

by comparing the variation of the number of nearest neighbours for different

embedding dimension, we can select a suitable embedding dimension.

2.4 Brief Summary

In this chapter we have introduced the embedding theorems, especially Takens’

embedding theorem, for dynamical systems. Takens’ embedding theorem proves

that a time delay reconstruction from a scalar time series will almost always be

a diffeomorphism (as a sub-manifold embedded in space Rm) of the original at-

tractor if we choose a sufficiently high embedding dimension m. Hence time delay

embedding reconstruction is a convenient and powerful method to represent the

15 In practice, we use the concept of the i-th nearest neighbour. An i-th nearest neighbour of
a data point A is the data point whose distance to data point A is the i-th shortest among all of
the data points (except A).
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underlying system of scalar observations, however, since the theorem only consid-

ers the ideal conditions (no noise, infinite precision etc.), in practice not all of the

time delays are equally good even we have chosen a suitable embedding dimension.

Hence after introducing the theorem, we also provided some criteria for parameter

selection, including the RITE algorithm which we proposed recently for the choice

of suitable time delay .



CHAPTER 3

SOME USEFUL STATISTICS IN NONLINEAR TIME SERIES ANALYSIS

In this chapter we will discuss a few nonlinear statistics, including both the

correlation dimension and the local prediction error. The main reason to introduce

these two statistics is that, throughout this thesis, we will utilize them as the

characteristic measures of the dynamical systems or as the discriminating statistics

in the surrogate tests, with which we can either quantitatively estimate the systems’

characteristic behaviors (see Chapter 3) or distinguish different dynamical systems

(see Chapter 4 and 5). There are also many other nonlinear statistics, for example,

information entropy and Lyapunov exponent etc., but since no application of these

measures will be involved in this thesis, detailed discussion of the statistics will

not be presented.

3.1 Introduction to Correlation Dimension: Definition and Calculation

An attractor of a chaotic system in state space is often called strange attrac-

tor. To measure the strangeness of the attractor, one may use the statistic such as

fractal (Hausdorff ) dimension [10]. The difficulty in adopting fractal dimension

as the characteristic measure of a strange attractor is that, it is often impractical

to calculate the fractal dimension from a scalar time series whenever the (fractal)

dimensionality is larger than two, as pointed out by Grassberger and Procaccia

[14]. They proposed an alternative measure, namely correlation dimension (or
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correlation exponent), by considering nonlinear correlations between points of the

reconstructed attractor. Given a scalar time series {xi}, by choosing proper em-

bedding dimension and time delay, we can reconstruct the underlying system and

obtain a set of delay vectors
n−→
Xi =

¡
xi, xi+τ , . . . , xi+(m−1)τ

¢To
. Grassberger and

Procaccia [14] defined a measure called correlation integral as follows,

C(m, r) = lim
N→∞

1

N2

NX
i,j=1

θ(r −
¯̄̄−→
Xi −

−→
Xj

¯̄̄
), (3.1)

where N is the element number of set
n−→
Xi =

¡
xi, xi+τ , . . . , xi+(m−1)τ

¢To
, r is the

threshold of interpoint distance (length scale), θ(x) is the Heaviside function sat-

isfying

θ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0, x < 0;

1
2
, x = 0;

1, x > 0.

(3.2)

and | · | denotes the metric norm (in calculation, we adopt the Euclidean norm).

It is assumed that, C(m, r) follows a power law of r for small enough r with

infinite embedding dimension, i.e., in ideal situations (no noise, infinite data, for

example), we have

lim
r→0
m→∞

C(m, r) ∼ rdc , (3.3)

where dc is the correlation dimension. From Eq. (3.3) we can estimate the corre-

lation dimension by
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dc = lim
r→0
m→∞

logC(m, r)

log r
. (3.4)

Hence in order to calculate dc, we need first to estimate the correlation in-

tegral defined in Eq. (3.1). We call this estimate the correlation sum when N

is finite. Given C(m, r), we can estimate the correlation dimension dc through

many conventional parameter estimation methods. Since we are more interested

in the estimation of the correlation sum, no details in parameter estimation (i.e.,

estimating dc according to the behavior of C(m, r) ) will be discussed. Readers

are referred to, for example,[13], for more details.

To estimate C(m, r) in Eq. (3.1), a straightforward way is to adopt the box-

counting algorithm, i.e., we use hypercubes with edge length r to cover the recon-

structed attractor, then index the non-empty hypercubes by number 1, 2, . . . ,M(r).

By counting the number of points µi on the reconstructed attractor which fall

within the i-th non-empty hypercubes, roughly we have [14],

C(m, r) ' 1

N2

M(r)X
i=1

µ2i . (3.5)

Recalling the methods of estimation of the density of a data set, we will find

the box-counting algorithm is similar to the histogram algorithm, i.e., both algo-

rithms will need to partition the region where the data sets locate on and then

count the number of data points in each partition. The difference is that, den-

sity estimation calculates the distribution of data points while the correlation sum

estimates the distribution of interpoint distances. Nevertheless, in the spirit of
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distribution estimation, some techniques in density estimation can be applied to

the correlation sum estimation, for example, Diks applied the kernel density esti-

mation (KDE) technique [47] to calculate the correlation sum [9]. First we write

Eq. (3.1) equivalently in the integration form

C(m, r) =

Z
ρ(
−→
X ;m)d

−→
X

Z
ρ(
−→
Y ;m)θ(r −

¯̄̄−→
X −−→Y

¯̄̄
)d
−→
Y , (3.6)

where ρ(x) is the probability density function (PDF) of variable x. To introduce

the technique of kernel density estimation, Diks substituted function θ(x) by a

kernel function w(x), hence the correlation integral can be generalized as

T (m, r) =

Z
ρ(
−→
X ;m)d

−→
X

Z
ρ(
−→
Y ;m)w(

¯̄̄−→
X −−→Y

¯̄̄
/r)d
−→
Y . (3.7)

By adopting the Gaussian kernel function

w(x) = e−x
2/4, (3.8)

we have

T (m, r) =

Z
ρ(
−→
X ;m)d

−→
X

Z
ρ(
−→
Y ;m)e−|

−→
X−−→Y |2/4r2d−→Y . (3.9)

Also under the assumption of the power law behavior of T (m, r) as r → 0,

m→∞ 1, Eq. (3.9) can be shown to be scaled as

T (m, r) ∼ e−Kmτm−dc/2rdc. (3.10)

1 It is shown that, for any kernel function w(x) which monotonically decreases in x for x ≥ 0, if
it also satisfies that lim

r→0
r−pw(x/r) = 0 (pointwisely) for x > 0 and p ≥ 0, then the corresponding

correlation integral will follow a power law behavior [9].
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Parameter K is called the correlation entropy, which needs to be estimated from

the behavior of T (m, r) just as the correlation dimension dc does. In practice,

Diks suggested to extract parameters K and dc from T (m, r) through the method

of Schouten [36].

To approximate the correlation integral, we discretize Eq. (3.7) and take and

average over the interpoint distribution. The estimate T̂ (m, r) turns out to be

T̂ (m, r) =
1

Np

X
i,j 6=i

ψi,j, (3.11)

where Np is the number of delay vector pairs (
−→
X i,
−→
X j) used an

ψi,j = exp(−
¯̄̄−→
X i −

−→
X j

¯̄̄2
/4r2). (3.12)

Yu et al. [60] devised an efficient implementation of the Gaussian kernel algorithm

(GKA) to estimate the correlation integral, for example, by excluding the rep-

etition in scanning interpoint distance
¯̄̄−→
X i −

−→
X j

¯̄̄
and adopting efficient binning

strategies to take an average over interpoint distribution, the authors substantially

decrease the computational cost in calculating the summation of the integral core©
ψi,j

ª
. In this thesis we will adopt their implementation to calculate the correla-

tion dimension unless otherwise specified.

Remark 5 Note in the above discussions, we always assume the correlation inte-

gral C(m, r) ∼ rdc for m fixed, r → 0. However, in some situations (for example,

a Cantor-like data set), this assumption does not necessarily hold. Judd [16] sug-

gested to use the relation C(m, r) ∼ ϕ(r)rdc for m fixed, r → 0. For practical
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purposes, he used the first order polynomial to approximate the function ϕ(r), i.e.,

we have C(m, r) ∼ (a0+a1r) ·rdc. Hence, besides parameter dc, there are two more

parameters a0 and a1 that need to be extracted.

Remark 6 The correlation dimension discussed above is obtained by fitting the

global slope of the curve C(m, r) for fixed embedding dimension m. If we want to

inspect the local slope (local correlation dimension) of C(m, r) at different length

scales, another formula is adopted, i.e., dlc(m, r) = ∂ logC(m, r)/∂ log r. Take the

curves in Fig. 2.9 as an example, the typical behavior of dlc(m, r) is that, at very

large length scale, due to the boundary (or finite size) of the reconstructed attrac-

tor of the Lorenz system, the local correlation dimension will drop to zero. At

very small length scale, the presence of measurement noise will conceal the power

law. In addition, if length scale r is close to min(
¯̄̄−→
X i −

−→
X j

¯̄̄
), statistical fluctua-

tions will appear when counting the number of pair points (
−→
X i,
−→
X j), therefore the

corresponding local correlation dimension will be unstable.

3.2 Introduction to One Step Local Prediction Error

First let us consider the prediction problem of a chaotic time series {xi}. In

principle, long-term prediction for a chaotic time series is impossible. However,

short-term prediction is still feasible. For example, if currently we know the values

{xi : i = 1, 2, ..., k} and we want to predict the future value xk+1 (one step predic-

tion), one idea for (local) prediction could be that [11], first we use time delay em-

bedding reconstruction to reconstruct the underlying system from the scalar time

series {xi}, then we can obtain a set of vectors {−→xi : −→xi = (xi, xi−τ , ..., xi−(m−1)τ)}.
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We could examine the evolution history of variable −→x , if two vectors, for exam-

ple, −→xp and −→xk are very close, then due to the determinism in the chaotic time

series, the values of the next evolution step, −−→xp+1 and −−→xk+1 are possibly also close

if the sampling time is not very large (also depending on the local Lyapunov ex-

ponent of course). Therefore if we know the value xp+1, we can infer the value

of xk+1 from
−−→xp+1 (see below discussion). In practice, however, due to the pres-

ence of noise, some states of the observations might be indistinguishable from the

true states of the underlying system, which brings the uncertainty in prediction

[17]. Therefore, in order to increase the stability of prediction, we do not com-

pare −→xk with only one of the closest neighbours, instead, we will search a number

of nearest neighbours. We have two approaches to obtain the ensemble of them.

One is that we first specify a proper radius � [20]. We take the vectors falling

within the sphere {−→xi : k−→xi −−→xkk < �,−→xi 6= −→xk} as the neighbour ensemble,

where k·k denotes the metric norm, usually we adopt the Euclidean norm, i.e.,

k−→xi −−→xkk =
(

mP
j=1

(xi−(j−1)τ − xk−(j−1)τ)
2

)1/2
. The other approach is to select q

nearest neighbours {−→xIs : s = 1, 2, ..., q, q > m + 1}, where m is the embedding

dimension and −→xIs is the s-th nearest neighbour of −→xk 2 [11]. For convenience in dis-

cussion, we denote the neighbour ensemble as U = {−→xni : i = 1, 2, ..., n|−→xk}, where

n is the number of nearest neighbours. We can construct a local predictor from U

[11], for example, the simplest way, called local constant prediction or zeroth-order

prediction, is to let the prediction value x̂k+1 be the average value of xni+1, i.e.,

2 The s-th nearest neighbour of −→xk is defined as the vector −→xIs among the set {−→xi}, which
satisfies that the distance rank rank(k−→xIs −−→xkk) = s, where function rank(·) denotes the ordinal
number of a value in a list (in the increasing order).
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x̂k+1 =
nP
i=1

wni · xni+1
Á

nP
i=1

wni , where xni+1 is the next scalar value of xni in time,

or equivalently xni+1 ∈ {xni+1 : −→xni ∈ U}, and wni is the corresponding weight. A

superior approach is to utilize the information of {(−→xni , xni+1) : i = 1, 2, ..., n}, we

can use an autoregressive model to fit (−→xk, xk+1) linearly (local linear prediction),

i.e., we have x̂k+1 = ak ·−→xk + bk, where ak and bk are vector coefficient and scalar

coefficient respectively, which are obtained by fitting {(−→xni , xni+1) : i = 1, 2, ..., n}

(for example, using the singular value decomposition technique, see [11]).

After we obtain the prediction value {x̂i} through the above methods, we can

define the (one step) local prediction error as

e =

(X
i

(x̂i − xi)
2

)1/2
. (3.13)

3.3 Brief Summary

In this chapter we have introduced two statistics, the correlation dimension and

the local prediction error. The correlation dimension indicates the strangeness of a

strange attractor, while the local prediction error describes the local predictability

of a dynamical system. Both of these statistics can characterize the system’s

behavior, therefore they are often adopted in many applications.



CHAPTER 4

SURROGATE TESTS ON IRREGULAR TIME SERIES

4.1 Overview

Constrained-realization surrogate tests (surrogate tests in short) [52] are exam-

ples of Monte Carlo hypothesis tests [13]. Take the surrogate test of nonlinearity

in a time series [52] as an example, we first need to adopt a null hypothesis, which

usually supposes the time series is generated by a linear stochastic process and po-

tentially filtered by a nonlinear filter. Based on this null hypothesis, a large number

of data sets (surrogates) are to be produced based on the original time series. Two

approaches are available to create surrogates. One is the traditional bootstrap

method, which usually uses the explicit model extracted from the original time

series to generate surrogate data. This is a parametric method in essence, the dis-

tributions of the discriminating statistics (defined in previous chapters) are most

likely dependent on the parameters of the extracted model and hence it might lead

to spurious conclusions on the original data set. An alternative approach called

constrained realizations [54] is more suitable for our purpose. In general, it avoids

fitting any model, instead depending on the null hypothesis, this method ensures

that the surrogates keep some properties which are supposed to exist in the original

time series according to the null hypothesis. Surrogates thus generated are known

as constrained-realization surrogates. In case of nonlinearity detection, we want
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the surrogates to keep the linearity of the original time series but destroy all other

structures. After the generation of the surrogates, we then calculate some non-

linear statistics (discriminating statistics), for example, the correlation dimension,

of both the original time series and the surrogates. If the discriminating statistic

of the original time series deviates from those of the surrogates, we can reject the

null hypothesis we proposed and claim that the original time series is more likely

to be deterministic than to be stochastic with certain confidence level (depending

on how many surrogates we have generated, to be shown later).

In general, to apply surrogate techniques to test if a time series possesses the

property P we are interested in, we first select a null hypothesis, which assumes the

time series instead has a propertyQ opposite to P . We then devise a corresponding

algorithm to produce surrogates from the observed data set. In principle, these

surrogates shall preserve the potential property Q while destroying all others. The

next step is to choose a suitable discriminating statistic, which shall be an invariant

measure for both the surrogates and the original time series if the null hypothesis

is true. Hence if the discriminating statistic of the original time series distinctly

deviates from the distribution of the discriminating statistic of the surrogates, the

null hypothesis is unlikely to be true, or in other words, the time series is more

likely to possess the property P than Q. In this way, we can assess the statistical

significance of our calculations through surrogate tests even when we have only a

very limited amount of observations. Such assessments are important because in

many practical situations statistical fluctuations are inevitable due to the presence
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of noise, hence the surrogate test is a proper tool to evaluate the reliability of

our results in a statistical sense. Note that, one can also apply direct detection

techniques, for examples, some authors proposed direct techniques to detect the

nonlinearity in a time series (see, for example, [21]). However, a direct test usually

will not give out the confidence level. Consider the following situation, if we find

that the (maximal) Lyapunov exponent of a time series is 0.01, it may be difficult

for us to tell whether the time series is chaotic, or the time series is pseudoperiodic,

but the presence of noise causes the Lyapunov exponent to be slightly larger than

zero. In such situations, we would like to suggest adopting the surrogate test (if

possible) rather than the direct test.

In this chapter we will focus on two topics. First we will apply the surrogate

test technique to detect the nonlinear determinism in irregular time series. In

general, an irregular time series is generated either from a (pure) stochastic process

or from a deterministic nonlinear system 1. To understand the underlying system

of the time series, the first step shall be to investigate whether the irregularity is

caused by stochasticity or nonlinearity (often chaos), then corresponding strategies

for further analysis can be properly developed and applied. After the detection

of nonlinearity, we are also interested in examining whether the time series is

pseudoperiodic or chaotic 2, we will also employ the surrogate test technique to

distinguish chaos and pseudoperiodicity in the time series.

1 In this sense, determinism in an irregular time series often means nonlinearity.
2 In many cases, an irregular nonlinear deterministic time series is either pseudoperiodic or

chaotic.



57

0 50 100 150 200 250 300
-10

-5

0

5

10

0 50 100 150 200 250 300
-300

-200

-100

0

100

200

300

400

(a) 

(b) 

Figure 4.1: (a) The waveform of an AR(1) process; (b) The waveform of data set

from the AR(1) process after the measurement of a cubic function.

4.2 Surrogate Tests to Detect Nonlinearity

This section will be arranged in the order of the surrogate test procedures.

As we have introduced, to apply the surrogate technique, we first need a null

hypothesis. Based on the null hypothesis we then design the surrogate generation

algorithm. After calculating the discriminating statistic for both the surrogates and

the original time series, according to certain criterion, we shall examine if the null

hypothesis can be rejected or not, and give out the corresponding interpretations

of the results.
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4.2.1 Null Hypotheses

Note that in our discussions we will always assume the time series is second order

stationary. Loosely speaking, by second order stationary we mean that the time

series has constant mean value, finite second order autocovariance, while its covari-

ance function only depends on the time difference between two subsets. Concretely,

if a time series {xi} is second order stationary, we have

• E(xi) is a constant, where E denote the expectation operator.

• |var(xi) = E(x2i )−E2(xi)| <∞.

• cov(xi, xi+τ) = cov(x0, xτ) for any indices i, where cov(x, y) = E(xy) −

E(x)E(y) is the covariance function between data set x and y.

Wold proved that any stationary stochastic process {xi} can be expressed in a

linear representation ([4], p47), for example,

xi = µ+
∞X
j=1

φj · xi−j + σ · ξi (4.1)

with
∞P
j=1

¯̄
φj
¯̄
< ∞ , where ξi are independent random variables with standard

deviations σ, µ is a constant determined by the mean of time series {xi} and the

coefficients φj.

Since irregular time series are usually generated by nonlinear deterministic

systems or stochastic processes, if we know that a stationary time series is not

produced from a linear stochastic process, then it is highly likely that it comes from

a nonlinear deterministic system, hence we say the time series contains nonlinearity.
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However, a problem we shall note is that, we might introduce nonlinearity to

a linear stochastic time series during the measurement process. Let us use an

example to demonstrate this point. Suppose {xi} is a linear stochastic time series

from the AR(1) process in Eq. (4.2), whose waveform is indicated in the upper

panel of Fig. 4.1.

xi = −0.9 · xi−1 + ξi. (4.2)

If we use a cubic function f(x) = x3 to measure {xi}, we will obtain the distorted

time series {yi : yi = f(xi)}. By observing the distorted time series in the lower

panel of Fig. 4.1, we might be deceived that the data are obtained from a low

dimensional intermittent chaotic system. The nonlinearity is introduced by the

measurement function, although the original time series are generated from a linear

stochastic process.

With the above considerations, three null hypothesis for nonlinearity detection

can be proposed in hierarchy [13]

• NH1: The time series {xi} are i.i.d noise of with unspecified mean and vari-

ance.

• NH2: The time series {xi} are generated via AR(p) process

Xi = µ+

p−1X
j=1

φj ·Xi−j + σ · ξj, (4.3)

where µ,
©
φj
ª
and σ have the same meaning as those in Eq. 4.1.
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• NH3: The time series {xi} are produced in essence from an AR(p) process

described by Eq. (4.3), but the final data set we obtained is the output

filtered by a static, monotonic and time-independent nonlinear filter, i.e.,

xi = f(si), (4.4)

where {si} are the underlying signals satisfying Eq. (4.3) and f represents

a class of nonlinear filters satisfying the above constraints.

4.2.2 Surrogate generation algorithm

Given a time series (see panel (a) of Fig. 4.2), to produce surrogates of NH1, we

only need to randomly permute the original time series (panel (b) of Fig. 4.2). If

the original time series really follows an i.i.d distribution, then the surrogates shall

also keep the same distribution. If the original time series is not i.i.d noise, then

shuffling shall destroy any existing temporal relations.

Now we consider how to generate constrained-realization surrogates of NH2.

It is well known that the autocorrelation functions of a time series is related to its

Fourier coefficients (moduli) [4] 3, if we keep the power spectrum of the surrogates

the same as that of the original time series, we also preserve the autocorrelation

functions and hence the linear properties of the original time series during the

generation of surrogates. By replacing the Fourier phases of the original time series

3 Autocorrelation function can also be related to parameters of AR(p) model. But due to the
finite size of data set, we will usually find somewhat different parameter values from the original
time series and spurious results might therefore appear, as shown by Theiler and Prichard [54].
This is also the reason not to apply parametric bootstrap methods in this context.
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Figure 4.2: (a)Original time series; (b) Surrogates corresponding to NH1; (c) Sur-

rogates corresponding to NH2, generated by FTPR algorithm; (d) Surrogates cor-

responding to NH3, generated by AAFT algorithm; (e) Surrogates corresponding

to NH3, generated by iAAFT algorithm. Realization algorithms are described in

the text.



62

with random phases, the potential nonlinearities are destroyed. Thus a sketch is

formed to generate surrogates of NH2 as follows [13]:

1. Apply Fourier transform to the original time series.

2. Record the moduli of the Fourier coefficients of the original time series.

3. Replace the phases of the Fourier coefficients with random values uniformly

drawn from interval (−π, π].

4. Use the original moduli and the new phases to form new Fourier coefficients

and conduct an inverse Fourier transformation. Data set thus generated is

the required surrogate.

This surrogate generation procedure is called Fourier transformation phase

randomization (FTPR in short). For example, see panel (c) of Fig. 4.2.

We now discuss the surrogate generation procedure of NH3. Notice that sur-

rogates generated by the FTPR procedure approximately follow Gaussian distri-

bution as a consequence of the central limit theorem. But after passing through a

nonlinear filter, the distribution will typically be distorted, as the example shown

in Eq. (4.2). According to the observations of Rapp et al. [39], applying FTPR

procedure to time series with non-Gaussian distribution might result in spurious

rejections of the null hypothesis. Thus for NH3, we need to conduct a transfor-

mation on the original time series so that the new time series follows a Gaussian

distribution. Then the FTPR can be safely applied to the new time series to gen-

erate surrogates. An inverse transformation will be applied on the surrogates of
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the new time series and we thus obtain the surrogates of the original time series.

The procedure is summarized by the following steps [13]:

1. Produce a random data set drawn from the normal Gaussian distribution.

2. Rank the original time series, i.e., indicate which data point of the original

time series is the largest, which is the second largest one, and so on.

3. Arrange the random data set so that the new random data set has exactly

the same rank order as the original time series. The new data set is a

"Gaussianized" version of the original time series after transformation.

4. By applying the FTPR, we can obtain a surrogate of the new random data

set in step 3.

5. Rank the interim surrogate in step 4.

6. Arrange the original time series so that it has exactly the same rank order

as that of the surrogate generated in step 4. The arranged time series in this

step is the final surrogate of the original time series.

We call this procedure amplitude-adjusted Fourier-transform (AAFT) [13].

Again the example is shown in panel (d) of Fig. 4.2.

Later, Schreiber and Schmitz [43] noticed that the power spectra of the surro-

gates generated by AAFT algorithmwill be slightly biased toward a white spectrum

comparing to the power spectrum of the original time series. The reason is that,
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when arranging the original time series according to the rank order of the surro-

gates generated in step 4 of the AAFT, we will distort the power spectra somehow.

As a remedy, Schreiber and Schmitz suggested to replace the moduli of the Fourier

coefficients of the surrogates generated by the AAFT algorithm with those of the

original time series but to preserve the phases of the Fourier coefficients. In this

way, the surrogates shall have exactly the same power spectra as that of the original

time series but their distributions shall differ from the Gaussian distribution, hence,

another AAFT shall be performed. We have to repeat the AAFT procedure and

the moduli replacement until some criterion is reached, for example, the difference

between the Fourier moduli of the surrogates and those of the original time series

does not change after a certain number of iterations. But note that the final step

in iteration shall be moduli replacement so that the surrogates we finally obtained

have the same power spectra as the original time series. Schreiber and Schmitz call

the whole procedure as iterative amplitude-adjusted Fourier-transform (iAAFT).

The whole procedure is outlined in the following together with the example shown

in panel (e) of Fig. 4.2 [13]:

1. Perform Fourier transformation on the original time series and keep the mod-

uli.

2. Generate an AAFT surrogate of the original time series.

3. Conduct a Fourier transform on the AAFT surrogate to calculate its Fourier

moduli and phases. Keep the phases of the surrogate but replace the moduli

with those of the original time series.
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4. Conduct an inverse Fourier transform and we obtain a new surrogate. Rank

this new surrogate.

5. Arrange the original time series so that it has exactly the same rank order as

that of the new surrogates in step 4, the arranged time series is the interim

surrogate

6. Repeat the above operations (from step 2 to step 5) on the interim in step 5

until a certain criterion is reached, for example, the criterion can be that the

deviation of the Fourier moduli of the surrogate from those of the original

time series does not vary for 10 consecutive iterations [13].

Remark 7 It is well known that the implementation of discrete Fourier transform,

e.g., FFT, assumes that the data set is drawn from one period of a periodic orbit.

In practice, however, a data set usually will not satisfy this condition without care-

ful selection. Spurious high frequencies might be introduced due to the endpoints

mismatch of the data set. Theiler and Rapp [55] call this phenomenon "wraparound

artifact ". Because of the essential role of Fourier transform in generating surro-

gates, this problem will exist in the above algorithms, that is, FTPR, AAFT and

iAAFT. Remedies proposed can be found in [55], [45] and references therein.

4.2.3 Choice of Discriminating Statistics, Criterion for Rejection of Null Hypothesis

and The Corresponding Interpretation of The Results

After the generation of the surrogates, we need to choose a discriminating statistic

for both the surrogates and the original time series. In principle, this statistic shall
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keep invariant for all data set if our null hypothesis is true, however, if our null hy-

pothesis is false, it shall turn out to be different for the surrogates and the original

time series. In our calculations, we adopt the correlation dimension as the discrim-

inating statistic. Theoretically, the correlation dimension of a stochastic process

is infinite 4. If our null hypotheses (NH1-NH3) are true, then the surrogates and

the original time series are actually different realizations of the same stochastic

process (for NH3, the final data will be filtered by a nonlinear filter). Therefore

the correlation dimensions of the surrogates and the original time series will be

statistically the same. If our null hypothesis is not true, it is very possible that the

time series is from a nonlinear deterministic system. For a nonlinear (determinis-

tic) time series, applying all of the above three surrogate generation algorithms will

destroy the temporal sequence of the original time series, the surrogates obtained

will almost always have different structures from the original time series. Hence in

this sense, the correlation dimension is a suitable candidate for the discriminating

statistic.

After we calculate the correlation dimensions of both the surrogates and the

original time series, we need a criterion to judge whether we can reject our null hy-

potheses or not. Here we adopt the ranking criterion [56]. The idea of this criterion

is that, let Q0 denote the statistic of the original time series and {Q1, Q2, ..., QNs}

denote the statistics of the surrogate 1, 2, ...Ns respectively. If Q0 obviously falls

outside the distribution of {Q1, Q2, ..., QNs}, then we expect thatQ0 < min{Q1, Q2, ..., QNs}

4 In practice since we can only generate a time series with finite amplitude and finite length,
it is of course impossible to actually obtain an infinite correlation dimension .
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or Q0 > max{Q1, Q2, ..., QNs}. However, consider the inverse problem, that is,

if Q0 < min{Q1, Q2, ..., QNs} or Q0 > max{Q1, Q2, ..., QNs}, can we know for

sure that Q0 does not follow the distribution of {Q1, Q2, ..., QNs} ? Under the

ranking criterion, the answer is no. For the distribution {Q0, Q1, Q2, ..., QNs},

we can obtain a corresponding rank set {r0, r1, r2, ..., rNs}, where ri = rank(Qi)

with function rank(·) denoting the ordinal number of a value in a list in the in-

creasing order, for example, for min{Q0, Q1, Q2, ..., QNs}, its rank is 1, while for

max{Q0, Q1, Q2, ..., QNs}, its rank is Ns + 1, etc. The ranking criterion assumes

that, if {Q0, Q1, Q2, ..., QNs} follows the same distribution, then for each element

Qi, its rank ri has an equal probability (1/Ns + 1) to be any integer number be-

tween 1 and Ns + 1. Therefore, in a surrogate test, if we find the statistic of

the original time series Q0 < min{Q1, Q2, ..., QNs} or Q0 > max{Q1, Q2, ..., QNs},

under the ranking criterion, we have two alternative interpretations. One is that

Q0 does not follow the distribution of {Q1, Q2, ..., QNs}. The other one is that,

Q0 follows the same distribution as that of {Q1, Q2, ..., QNs}, however, it happens

that Q0 is the smallest or the largest one. Therefore in the surrogate test, if we

reject a null hypothesis according to the condition Q0 < min{Q1, Q2, ..., QNs} or

Q0 > max{Q1, Q2, ..., QNs}, it is possible that we will falsely reject the null hy-

pothesis. The probability of a false rejection is 1/(Ns+1) for a one-sided test (the

statistic of the original time series cannot be larger (or smaller) than those of the

surrogates), or 2/(Ns + 1) for a two-sided test (the statistic of the original time

series can be either larger or smaller than those of the surrogates).
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Another problem to be discussed here is the interpretations of the results. As

we introduced previously, the surrogate test does not tell us which property a

time series has, rather it tells us which property a time series lacks by rejecting

the corresponding null hypothesis. If we fail to reject a null hypotheses, our null

hypothesis might be true, however, we shall also note the possibility that our dis-

criminating statistic is not powerful enough to detect the difference between the

surrogates and the original time series, in such situations, we shall have to seek

more powerful statistics [44]. Successful rejection of null hypotheses in most of

the cases can provide accurate information, but we shall still be careful when in-

terpreting the results. As we mentioned previously, for NH3 we actually restrict

the distortion function to be static,monotonic and time-independent for the pur-

poses of simplicity and feasibility, but sometimes other nonlinear filtering functions

might also lead to the rejection of our null hypothesis [20].

4.2.4 An Example

We use an example to demonstrate the above procedures. The data set is generated

from the Rössler system according to Eq. (2.18), the corresponding parameters

are set to be a = 0.395, b = 2, c = 4 and the sampling time ∆ts = 0.1 time unit,

which makes the Rössler system exhibit one-band chaotic behavior. We plot the

time series in panel (a) of Fig. 4.3.

Using the corresponding surrogate generation algorithm, we generate 100 sur-

rogates for each null hypothesis test (NH1-NH3). We adopt the GKA (chapter 3)

to calculate the correlation dimension for the original time series and the surro-
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Figure 4.3: (a) Waveform of the time series. (b) Surrogate test for NH1. The

abscissa is the indices of 100 surrogates and the ordinate is the corresponding

correlation dimensions. The middle line is the mean correlation dimension of the

original time series calculated 100 times using the GKA, the upper and lower lines

denote the correlation dimensions twice the standard deviation away from the mean

value and the asterisks connected with lines indicate the correlation dimensions of

100 surrogates. (c) Surrogate test for NH2. The meaning of the lines and asterisks

is the same as that in panel (b). (d)Surrogate test for NH3. The meaning of the

lines and asterisks is the same as that in panel (b).

gates. Through the false nearest neighbour criterion (chapter 2), we choose the

embedding dimension m = 3 for all data sets. We also adopt the RITE algorithm

(chapter 2) to choose the time delay. Note that to speed up the calculation, only
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2000 data points are used as the reference points for the GKA. There are some

statistical fluctuations even for the same data set when calculating its correlation

dimension, therefore for the original time series, we will calculate 100 times to

estimate the mean correlation dimension and the standard deviation. As shown

in panel (b), (c) and (d) of Fig. 4.3 5, in each panel there are three lines parallel

to the abscissa. The middle line denote the estimation of the mean correlation

dimension of the original time series, while the upper and lower lines indicate the

positions twice the standard deviation away from the mean value. For the sur-

rogates, however, we will calculate their correlation dimensions only once to save

time. We plot the correlation dimensions of the surrogates marked with asterisks

and connected with solid lines in each panel.

Using the ranking criterion introduced previously, we can reject all of the null

hypothesis (as we expect). By rejecting NH1, we can see that the time series is

very unlikely to be an i.i.d noise realization (the probability of a false rejection

is 2%, the same for the following tests). By rejecting NH2, we can claim it is

almost impossible that the time series is from a linear stochastic process. By

rejecting NH3, we also exclude most of the probability that the time series is

from certain linear stochastic process which passes through a monotonic, static

and time-invariant nonlinear filter. Together with these three hierarchy surrogate

test, we may conclude that the time series is very unlikely to be generated from

a linear stochastic process. Instead, it is more likely that there exists (nonlinear)

5 Note for all panels, the correlation dimensions of the original time series are the same.
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determinism instead.

4.3 Surrogate Tests to Distinguish between Pseudoperiodicity and Chaos

4.3.1 Null Hypothesis for ANew Surrogate Generation Algorithm for Pseudoperiodic

Time Series

In this section we will employ the surrogate tests to distinguish between pseu-

doperiodicity and chaos. For a nonlinear irregular time series, in most cases it is

either pseudoperiodic or chaotic. By pseudoperiodic time series we mean a rep-

resentative of a periodic orbit perturbed by dynamical noise, or contaminated by

observational noise, or with the combination of both types of noise, whose states

within one cycle are largely independent of those within the previous cycles for a

given cycle length. Note that chaotic and pseudoperiodic time series often look

similar, we might not be able to distinguish them from each other only through

visual inspections, quantitative techniques will be needed instead. Once again we

recommend use of the surrogate test technique in such situations.

Initially, to generate surrogates for pseudoperiodic time series, Theiler [53] pro-

posed the cycle shuffled algorithm. The idea is to divide the whole data set into

some segments and let each segment contain exactly an integer number of cycles.

The surrogates are obtained by randomly shuffling these segments, which will pre-

serve the intracycle dynamics but destroy the intercycle ones by randomizing the

temporal sequence of the individual cycles. The difficulty in applying this algo-

rithm is that it requires a priori knowledge of the precise periodicity, otherwise

shuffling the individual cycles might lead to spurious results [50]. Therefore, in or-
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der to avoid introducing contradictory results, we will not apply it to the surrogate

tests in all of the following computations.

Later, Small et.al [50] proposed the pseudoperiodic surrogate (PPS) algorithm

from another viewpoint. They first apply the time delay embedding reconstruction

[59] to the original data set, then utilize a method based on local linear modelling

techniques to produce surrogate data which approximate the behavior of the un-

derlying dynamical system. As the authors pointed out, this algorithm works

well even with very large dynamical noise, but it may incorrectly reject the null

hypothesis if the intercycles of the pseudoperiodic orbit have a linear stochastic

dependence induced by colored additive observational noise.

In this section we will propose a new surrogate generation algorithm [28] for

continuous dynamical systems, which properly copes with linear stochastic depen-

dence between the cycles of the pseudoperiodic orbits. The null hypothesis to

be tested is that the stationary data set is pseudoperiodic with noise components

which are (approximately) identically distributed and uncorrelated for sufficiently

large temporal translations. Note that the constraints of the noise components in

our null hypothesis are stronger than those of Theiler’s algorithm, which requires

the noise distribution only periodically depends on the phase of the signal. How-

ever, under our hypothesis, we can produce the surrogates in a simple way through

the algorithm to be described below. In addition, a large scope of noise processes

often encountered in practical situations, including (but not limited to) linear col-

ored additive observational noise described by the ARMA(p, q) model [4], match
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the above constraints.

4.3.2 Surrogate Generation Algorithm

Let {xi}Ni=1 be a data set with N observations (the form {xi} will be adopted

instead for convenience when there is no ambiguity), where xi means the obser-

vation measured at time ti = i · ∆ts with ∆ts denoting the sampling time. We

assume {xi}Ni=1 is stationary and can be decomposed into the deterministic com-

ponents and the noise components, which are approximately independent of each

other. Similar to the surrogate test idea of time shifting to desynchronize two data

sets [38], we also assume the noise components (approximately) follow an identical

distribution and are uncorrelated for sufficiently large temporal translations (or

time shifts). According to the null hypothesis we proposed in the previous section,

the deterministic components are periodic, then we can write a data point xi as

xi = pi + ni, where pi and ni denote the periodic component and the noise com-

ponent respectively. In many cases, we can set E(pi) = E(ni) = 0 where E is the

expectation operator. Since {pi} are roughly independent of {ni}, we have that

the autocovariance var(xi) = var(pi) + var(ni). Let

yτi = αxi + βxi+τ = (αpi + βpi+τ ) + (αni + βni+τ) (4.5)

with i = 1, 2, ..., N − τ , where coefficients α and β satisfy α2+β2 = 1 and param-

eter τ is the temporal translation between subsets {xi}N−τi=1 and {xi+τ}N−τi=1 , then

the autocovariance function var(yτi ) = var(αpi+ βpi+τ ) + var(αni+ βni+τ). Con-

sider the noise component, if τ is sufficiently large, under our hypothesis, ni and

ni+τ are uncorrelated. Also note {ni} and {ni+τ} are drawn from (approximately)
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the same distribution, we have var(αni + βni+τ) = var(ni). For the determin-

istic component, if we require the translation τ to satisfy cov(pi, pi+τ) = 0, then

var(αpi+βpi+τ) = var(pi). Hence by choosing a suitable temporal translation, the

noise levels of {yτi }, defined by (var(αni + βni+τ )/var(y
τ
i ))

1/2, will be the same as

that of {xi}Ni=1, i.e., (var(ni)/var(xi))
1/2. The reason to preserve the noise level is

that, the presence of noise will affect the calculation of the correlation dimension,

hence we would like to let the surrogates and the original time series (roughly)

have the same noise level in order to make the results be more reliable.

The above deduction leads to the central idea of our surrogate algorithm.

From Eq. (4.5), we note that if {pi} is periodic, the nonconstant deterministic

components {αpi + βpi+τ} shall also be periodic. In addition, {xi}Ni=1 and {yτi }

shall have the same noise level if a suitable translation τ is selected. Therefore by

randomizing the coefficient α or β, we can generate many data sets {yτi } as the

surrogates of {xi}Ni=1. Note that {pi} and {αpi + βpi+τ} have the same degree-

of-freedom, if both of them are periodic, their correlation dimensions [14] will

theoretically be the same. Now let us consider the noise components. Although

the noise components {αni + βni+τ} may have a different distribution from that

of {ni}, the noise level is preserved after the transform in Eq. (4.5). As Diks [9]

has reported, the Gaussian kernel algorithm (GKA) can reasonably estimate the

correlation dimensions of noisy data sets with different noise distributions. This

implies that, under the same noise level, the correlation dimensions of {xi}Ni=1 and

{yτi }, calculated by the GKA, shall statistically be the same if {xi}
N
i=1 and {yτi } are
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both pseudoperiodic (and satisfy the constraints we imposed). In contrast, if {pi} is

chaotic, its linear combination, {αpi + βpi+τ}, may have a new dynamical structure

with a different correlation dimension from that of {pi}, hence by adopting the

correlation dimension as the discriminating statistic we might detect this difference.

We shall also note that, for an unstable periodic orbit, even a small dynamical

noise might drive the resultant orbit far away from the original position after a

sufficiently long time, and the pseudoperiodicity might be lost. In such situations,

our algorithm might fail to work. Nevertheless, we suggest applying our algorithm

as the first step in pseudoperiodicity test. This algorithm is computationally fast

and in principle deals well with a large scope of observational noise (comparatively,

the PPS algorithm will sometimes fail for colored observational noise). If we can

reject the null hypothesis proposed previously, the time series under test is possibly

chaotic or pseudoperiodic perturbed by dynamical noise. Then we can adopt the

PPS algorithm for further tests, which will work well even under a large amount

of dynamical noise. If the corresponding null hypothesis, i.e., the time series is

pseudoperiodic perturbed by dynamical noise, can be rejected again, then we may

claim the time series is likely to be chaotic.

We now consider several computational issues in our algorithms. As described

in Eq. (4.5), to generate the surrogates {yτi }, we select two subsets of {xi}
N
i=1—

{xi}N−τi=1 and {xi+τ}N−τi=1 —multiply them by the coefficients α and β respectively

and then add them together. We shall emphasize that choosing the temporal

translation τ is a crucial issue for our algorithm. From one aspect, we require
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the translation τ to satisfy the condition cov(pi, pi+τ ) = 0. The reason is that

we want to keep the noise level for the original time series and the surrogates. In

addition, we want the deterministic components {αpi} to be orthogonal to {βpi+τ}

for arbitrary coefficients α and β, otherwise the projection of {αpi} onto {βpi+τ}

might counteract {βpi+τ} under some situations, for example, if pi ≈ −pi+τ and

α = β, the deterministic components {αpi + βpi+τ} will almost vanish while the

noise components {αni + βni+τ} remain. In this situation, the correlation dimen-

sions calculated would actually be those of the noise components instead of the

deterministic components, which will certainly cause the false rejection of the null

hypothesis. From another aspect, we require τ to be sufficiently large to guarantee

the decorrelation between the noise components. However, we expect {xi}N−τi=1 and

{xi+τ}N−τi=1 will have at least some overlaps to make use of the information of the

whole data set {xi}Ni=1 (i.e., τ shall not exceed N/2). In addition, it is recom-

mended the length of a data set shall not be too short in order to appropriately

calculate its correlation dimension, which also implies τ shall not be too large.

Moreover, from Eq. (4.5) we note that the coefficient ratio |α/β| shall not be

too large or too small, otherwise {yτi } will be very close to {xi}
N−τ
i=1 or {xi+τ}N−τi=1 ,

which will lead to approximately the same correlation dimensions of {xi}Ni=1 and

{yτi } regardless of the dynamical behavior of {xi}
N
i=1, and thus decrease the dis-

criminating power of the correlation dimension. To avoid this situation, we re-

quire {xi}N−τi=1 and {xi+τ}N−τi=1 to contribute equally when producing the surrogates.

Thus, ideally, we expect |α/β| ' 1 and coefficient |α| (we let β =
√
1− α2) to be
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Figure 4.4: (a) Pseudoperiodic time series contaminated by observa-

tional noise; (b) State space xi+n vs. xi of the pseudoperiodic time

series from the Rössler system with n = 16; (c) Surrogate test for pseu-

doperiodic time series based on our new algorithm. The meaning of the

lines and asterisks is the same as that in panel (b) of Fig. 4.3.

uniformly drawn from an interval [p, q], which satisfies

p2 + q2 = 1, 0 < p < q and q − 1/
√
2 = 1/

√
2− p (4.6)

so that probability Pr(|α/β| > 1) = Pr(|β/α| > 1), therefore {xi}N−τi=1 and {xi+τ}
N−τ
i=1

will equally affect the generation of the surrogates {yτi }. Unfortunately, condition

q−1/
√
2 = 1/

√
2−p can only be achieved when p = q = 1/

√
2, we have to require

q − 1/
√
2 ' 1/

√
2 − p instead. In our calculations we let α be uniformly drawn

from the interval [−0.8,−0.6] ∪ [0.6, 0.8] and β =
√
1− α2, which can satisfy our

requirements well. But note that other choices are of course also available.

4.3.3 Examples

We now use two examples to demonstrate the application of our algorithm. The

data sets are also generated from the Rössler system according to Eq. (2.18). We
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fix parameters b = 2, c = 4 and the sampling time ∆ts = 0.1 time unit. For

the first example, parameter a = 0.39095, which makes the Rössler system exhibit

limit cycle behavior (period 6). We then introduce 5% observational noise into

the periodic time series and plot it in panel (a) of Fig. 4.4 6. For comparison (to

the second example), we also plot the corresponding attractor in two dimensional

embedding space in panel (b) of Fig. 4.4. Although Gaussian white observational

noise is the most common choice in this situation, in order to demonstrate the

ability of our surrogate algorithm to deal with colored noise, we will instead adopt

the noise generated from the AR(1) process ξi+1 = 0.8ξi + �i with the variable

� following the normal Gaussian distribution N(0, 1), which is the more difficult

case due to the correlation between noise components. However, we note that,

Gaussian white noise and other colored noises satisfying the constraints in our null

hypothesis (for example, those modelled by the ARMA(p, q) processes), can be

dealt with in the same way.

To produce surrogate data, first we shall choose a suitable temporal transla-

tion. Since it is impractical to separate noise from signal completely, in general it

is difficult to estimate the correlation decay time between noise components. For-

tunately, to decorrelate noise components, all temporal translations are equivalent

as long as they are large enough. In addition, in many real situations, it is often

possible to observe the background noise and thus estimate the decay time. In this

example, we think the AR(1) noise will be uncorrelated when the temporal transla-

6 For the case that time series is driven by small dynamical noise, see examples in Ref. [28]
for more details.
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tion is larger than 50 (in units of the sampling time ∆ts). As another requirement,

temporal translation satisfying cov(pi, pi+τ) = 0 is desired. In practice, of course,

this requirement is generally impractical due to digitization and quantization in

the sampling process. Recall the discussion in the previous section, by letting

α2 + β2 = 1, we have var(αpi + βpi+τ ) = var(pi) + 2αβ · cov(pi, pi+τ ). Function

cov(pi, pi+τ) 6= 0 means we do not preserve the noise level. However, under the null

hypothesis of pseudoperiodicity, there shall always be some temporal translations

to make cov(pi, pi+τ) ∼ 0, hence the noise level will not deviate from the original

one too much. Besides, according to Eq. (4.5), we generate the surrogates by

uniformly drawing coefficient α from interval [−0.8,−0.6]∪ [0.6, 0.8] (β =
√
1− α2

is always kept positive), the noise level of the surrogates will fluctuate around

that of the original one due to the alternative signs of product αβ. Therefore,

cov(pi, pi+τ) 6= 0 will only cause some fluctuations to the calculated correlation

dimension because of the fluctuations of noise level, however, generally such fluc-

tuations will not affect our conclusion if we can select a temporal translation τ to

let cov(pi, pi+τ ) ∼ 0. Since we have assumed the noise components are roughly in-

dependent of the deterministic components, then cov(xi, xi+τ ) = cov(pi, pi+τ ) for a

large enough temporal translation (to decorrelate noise components), therefore in

order to let cov(pi, pi+τ) ∼ 0, we can equivalently require cov(xi, xi+τ) ∼ 0. In the

first example, there are many temporal translations satisfying the two constraints

discussed above, i.e., τ > 50 and cov(xi, xi+τ ) ∼ 0. To pick a value from all these

candidates, we first select an interval [100, 150], then search the temporal transla-
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tion which makes the absolute value |cov(xi, xi+τ )| be the minimum (most close to

zero) among all translations 100 6 τ 6 150. Note that the choice of the interval

[100, 150] is arbitrary, except that we have to make sure that the lower bound of

the interval is large enough to decorrelate noise components, and that there exists

temporal translations to let cov(xi, xi+τ) ∼ 0 within the interval. After selecting

the temporal translation, by randomizing the coefficient α we will generate 100

surrogates according to Eq. (4.5).

To recover the underlying system from the scalar time series, two parameters,

i.e., embedding dimension and time delay, shall be properly chosen to apply the

technique of time delay embedding reconstruction. We still use the false nearest

neighbour criterion to determine the global optimal embedding dimension, in the

first example, the embedding dimension is chosen at m = 4. Again we use the

RITE algorithm to choose the time delay since it is more convenient to be used

for the surrogate tests. The correlation dimensions of all data sets calculated by

the GKA are indicated in panel (c) of Fig. 4.4, from which we can see that the

mean value of the correlation dimension of the original time series falls within

the dimension distribution of the surrogates, therefore we cannot reject our null

hypothesis, in other words, the time series is possibly pseudoperiodic as we expect.

In the second example, we set parameter a in Eq. (2.18) to be a = 0.395.

The Rössler system exhibits single-band chaotic behavior. We also introduce the

same AR(1) noise as that in the first example into the obtained time series, which,

together with the corresponding reconstructed attractor in two dimensional em-
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Figure 4.5: (a) Chaotic time series contaminated by observational noise;

(b) State space xi+n vs. xi of the chaotic time series from the Rössler

system with n = 16; (c) Surrogate test for chaotic time series based on

our new surrogate generation algorithm. The meaning of the lines and

asterisks is the same as that in panel (b) of Fig. 4.3. (d) Surrogate test

for chaotic time series based on the PPS algorithm. The meaning of

the lines and asterisks is the same as that in panel (b) of Fig. 4.3.

bedding space, are plotted in panel (a) and (b) of Fig. 4.5 respectively.

Similar to the first example, to generate the surrogates, we search for a suitable

temporal translation within the interval [100, 150]. By uniformly drawing a value

from interval [−0.8,−0.6]∪[0.6, 0.8] for the coefficient a (β =
√
1− α2), we produce
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100 surrogates from Eq. (4.5).

The surrogate test based on our new algorithm is indicated in panel (c) of

Fig. 4.5, from which we see that the mean value of the correlation dimension of

the original time series falls outside the dimension distribution of the surrogates.

Therefore under the ranking criterion we can reject our hull hypothesis, the prob-

ability of a false rejection is 2%. Note that, to exclude the possibility that the

time series is produced by a periodic orbit driven by large dynamical noise, we

also perform a surrogate test based on the PPS algorithm, which deals well with

dynamical noise. The corresponding test results are indicated in panel (d) of Fig.

4.5, from which we can also reject the null hypothesis that the time series is pseu-

doperiodic driven by dynamical noise. Together with these two surrogate tests, we

can claim that the time series in the second example is more likely to be chaotic

than pseudoperiodic.

4.4 Application to Experimental Data

From the above discussions we have seen the generic procedure to apply the

surrogate test technique. Here we will apply this technique to two experimental

data sets to demonstrate the whole procedures of nonlinearity and chaos detection.

Note that, for the detection of chaos, since the cycle shuffled algorithm sometimes

will lead to spurious results, we will not apply it to the surrogate tests in order to

avoid introducing contradictory results. Of course, in principle one can apply the

procedures to other data in the same way.

The first data set, as shown in left panel of Fig. 4.6, are the observations
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Figure 4.6: (a) The observations of human pulse; (b) The reconstructed attractor

in two dimensional embedding space.
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Figure 4.7: Surrogate test to detect nonlinearity in human pulse data. (a) Surro-

gate test for NH1. The meaning of the lines and asterisks is the same as that in

panel (b) of Fig. 4.3; (b) Surrogate test for NH2. The meaning of the lines and

asterisks is the same as that in panel (b) of Fig. 4.3; (c) Surrogate test for NH3.

The meaning of the lines and asterisks is the same as that in panel (b) of Fig. 4.3.

of human pulse, measured from the forefinger of the right hand at a sampling

frequency of 150Hz. The corresponding reconstructed attractor in two dimensional

embedding space is indicated in the right panel of Fig. 4.6. Using the nearest

neighbour criterion, the suitable embedding dimension is chosen at m = 7, while

for the suitable time delay, we find τ = 11 through the RITE algorithm.
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Figure 4.8: Surrogate test to detect chaos in human pulse data. (a) Surrogate

test for pseudoperiodicity based on the new algorithm. The meaning of the lines

and asterisks is the same as that in panel (b) of Fig. 4.3; (b) Surrogate test for

pseudoperiodicity based on the PPS algorithm. The meaning of the lines and

asterisks is the same as that in panel (b) of Fig. 4.3.

Since we are going to inspect the nonlinearity in the pulse data through sur-

rogate test technique, the first step is to perform the hierarchical tests for null hy-

potheses NH1, NH2 and NH3 presented previously, which aims to examine whether

the time series is generated from a potentially filtered linear stochastic process. Us-

ing the associated surrogate generation algorithms introduced above, we produce

100 surrogates for each test. We still adopt the correlation dimension as the dis-

criminating statistic. To calculate the correlation dimension of the surrogates, we

keep the embedding dimension m = 7 but choose a suitable time delay for each

surrogate via the RITE algorithm. The corresponding results are shown in Fig.

4.7, from which we can see that, for the surrogate test for each null hypothesis, the

mean correlation dimension of the original time series falls outside the distribution
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of the correlation dimensions of the surrogates. Using the ranking criterion we can

therefore reject all of the null hypotheses, in other words, the pulse data is most

likely to be generated from a nonlinear deterministic system (human heart).

After the detection of nonlinearity, the further step is to investigate whether

the time series is possibly chaotic or pseudoperiodic. Usually the pulse of a healthy

subject will have some regular patterns, an irregular pulse means disorder or even

heart disease (such as sinus arrhythmia, atrial fibrillation etc, cf. [19]). We first

apply the surrogate test based on the our new algorithm to the pulse data. By

observing the (second order linear) autocorrelation function of the pulse, we let

the temporal translation be selected from interval [100, 180], and coefficient a is

uniformly drawn from interval [−0.8,−0.6] ∪ [0.6, 0.8]. Finally we generate 100

surrogates based on the algorithm described in the last section. The correlation

dimension is kept as the discriminating statistic. In calculations, we let embedding

dimension m = 7 and time delay be chosen by the RITE algorithm. The result

of the surrogate test is indicated in panel (a) of Fig. 4.8. As we can find, the

correlation dimensions of the surrogates are all larger than the mean value of the

original time series, therefore we can reject our null hypothesis. We would also

like to include an additional test based on the PPS algorithm in case that the

pulse data contains large dynamical noise. We generate 100 surrogates for test,

and choose the correlation dimension as the discriminating statistic. The result

of test is plotted in panel (b) of Fig. 4.8. Once again we can reject the null

hypothesis using the ranking criterion. Therefore, together with these two tests
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Figure 4.9: (a) The observations of ECG data; (b) The reconstructed attractor in

two dimensional embedding space.

on pseudoperiodicity, we can claim that the pulse data is very likely to be chaotic

rather than pseudoperiodic.

The second data set, as shown in left panel of Fig. 4.9, are the observations

of human electrocardiogram (ECG), measured from human chest at a sampling

frequency of 150Hz. The corresponding reconstructed attractor in two dimensional

embedding space is indicated in the right panel of Fig. 4.9. We again apply the

nearest neighbour criterion to choose the suitable embedding dimension atm = 10,

while for the suitable time delay, we find τ = 6 through the RITE algorithm.

Similar to the procedure for nonlinearity detection in the first data set, we

generate 100 surrogates for NH1, NH2 and NH3 and then calculate the correlation

dimensions of both the surrogates and the original time series. The results are

indicated in Fig. 4.10. For the surrogate test of each null hypothesis (NH1-

NH3), the mean correlation dimension of the original time series falls outside the

distribution of the correlation dimensions of the surrogates. Using the ranking

criterion we can reject all of the null hypotheses, hence, the ECG data is most
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(c) Surrogate Test for NH3

Figure 4.10: The surrogate test to detect nonlinearity in human ECG data. (a)

Surrogate test for NH1. The meaning of the lines and asterisks is the same as that

in panel (b) of Fig. 4.3; (b) Surrogate test for NH2. The meaning of the lines and

asterisks is the same as that in panel (b) of Fig. 4.3; (c) Surrogate test for NH3.

The meaning of the lines and asterisks is the same as that in panel (b) of Fig. 4.3.

likely to be (nonlinear) deterministic than (linear) stochastic.

To detect chaos in the data set, we choose a temporal translation from in-

terval [100, 200] (by observing the linear autocorrelation function). Coefficient a

is uniformly drawn from interval [−0.8,−0.6] ∪ [0.6, 0.8] again. We first generate

100 surrogates through our algorithm. The corresponding correlation dimensions

of the surrogates and the surrogates are indicated in panel (a) of Fig. 4.11. As

we can find, the mean correlation dimension of the original time series falls within

the dimension distribution of the surrogates, therefore we cannot reject our null

hypothesis. We also conduct an additional test based on the PPS algorithm to ver-

ify the results. We generate 100 surrogates for the test again, the corresponding

correlation dimensions of the surrogates and the original time series are plotted in

panel (b) of Fig. 4.11. The second test results are consistent with first one, that is
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(a) Surrogate Test Based on Our Algorithm
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(b) Surrogate Test Based on PPS Algorithm

Figure 4.11: Surrogate test to detect chaos in human ECG data. (a) Surrogate test

based on our new algorithm. The meaning of the lines and asterisks is the same

as that in panel (b) of Fig. 4.3; (b) Surrogate test based on the PPS algorithm.

The meaning of the lines and asterisks is the same as that in panel (b) of Fig. 4.3.

once again we cannot reject the null hypothesis using the ranking criterion.

4.5 Brief Summary

In this chapter we have introduced the surrogate test technique. To apply this

technique, the first step is to propose a hypothesis describing the property that

we are interested in. The other associated procedures in a surrogate test shall

also include the design of the surrogate generation algorithm and the choice of

discriminating statistic. In principle, the generated surrogates shall preserve the

potential property proposed by our null hypothesis while destroying all others.

Accordingly, the discriminating statistic shall be an invariant for the surrogates

and the original time series if the null hypothesis is true, meanwhile, if the null

hypothesis is false, the discriminating statistic shall have the power to detect the
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difference between the surrogates and the original time series.

As an application, we adopt this technique to detect the nonlinearity in irreg-

ular time series, which is often the preparative step to investigate the underlying

system of the data. We also applied the surrogate test technique to distinguish be-

tween pseudoperiodicity and chaos, as a natural issue to proceed after the positive

identification of nonlinearity in a signal.



CHAPTER 5

CONCLUSION

In this thesis we have studied the application of the surrogate test technique,

together with the technique of dimension analysis, to detect nonlinearity and chaos

in irregular time series. By generating many surrogates from the original time

series, it can provide us with a confidence level even when we only have a very

limited amount of data. But note that, the surrogate test does not directly tell

us whether a time series possesses a property that we are interested in, instead,

it can only tell us that the data does not possess a property described by our

assumption. We should be careful to interpret the result when we cannot reject

the null hypothesis. Besides the possibility that our null hypothesis is true, we

shall also notice other possibility, for example, the discriminating statistic is not

powerful enough, or, our null hypothesis is not generic enough to cover the general

situations.

The main contribution of this thesis lies in two aspects. One is that, in Chapter

Two we proposed an efficient algorithm to choose suitable time delay [27], which is

especially useful for dimension analysis in a surrogate test, where a large amount

of data sets might be involved. The other is that, in Chapter Four we designed a

surrogate generation algorithm for pseudoperiodic time series [28], which can work

well under a range of colored observational noise. This algorithm, together with

the PPS algorithm, can provide a schematic surrogate test to detect chaos in a
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time series.

As we discussed previously, when applying the FFT in the generation of

surrogates for NH1-NH3, we actually implicitly assume the time series is peri-

odic with a cycle length equal to the length of the time series, it is not true

of course. Recently we proposed an alternative surrogate generation algorithm

[32], which aims to not only avoid adopting the FFT but also generate the sur-

rogates in a more effective way. The main idea is that, given a stationary time

series {xi}Ni=1, we presume that it is generated from a linear stochastic process

but might be filtered by a nonlinear filter (that is, we actually adopt the same

null hypotheses, i.e., NH1, NH2 and NH3). First let us consider the surrogate

generation for NH1 and NH2, if {xi}Ni=1 is from a stationary linear stochastic pro-

cess, then usually it can be modelled by an ARMA process [4]. Note for data

set
©
yτi : y

τ
i = αxi + (1− α2)1/2xi+τ , i = 1, 2, ..., N − τ

ª
, if temporal translation τ

is large enough to decorrelate xi and xi+τ , then {yτi }
N−τ
i=1 and {xi}Ni=1 will follow

the same ARMA process (but note they are different realizations for the same

stochastic process), therefore, {yτi }
N−τ
i=1 can be treated as the surrogate for both

NH1 and NH2. Randomizing coefficient α, we can obtain many surrogates. To

produce the surrogates for NH3, we adopt the same way as that of the AAFT

algorithm, that is, given a stationary time series {xi}Ni=1, we generate a "Gaussian-

ized" version {Gi}Ni=1of {xi}
N
i=1, based on NH1 and NH2, we produce an interim

surrogate {yτi }
N−τ
i=1 of {Gi}Ni=1, arrange {xi}

N−τ
i=1 so that {xi}N−τi=1 and {yτi }

N−τ
i=1 have

the same rank order, then we obtain the final surrogate {sτi }
N−τ
i=1 .
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