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Abstract of thesis entitled ‘Reliability of Spatial Data in GIS’ submitted by
Cheung Chui-kwan for the degree of Master of Philosophy at
The Hong Kong Polytechnic University in April 2000

Geographical data in geographical information system (GIS) are not error-
free. Accuracy of each object in the GIS should be attached with their data

description. This is particularly important when the data is used for decision-making.

In this study, we focus on modeling positional error of spatial features in GIS.
A reliability model of a spatial feature is proposed in this study. It is measured by
discrepancies of the spatial feature. Since the measured spatial feature may contain
positional errors, a simulation technique is adopted to simulate the positional errors
of the spatial features. Most possible measured spatial features are generated based
on the assumption of the nodal errors’ distribution. For each measured spatial feature
generated in the simulation, its discrepant area can be computed. An average of

discrepant areas is an indicator of the reliability of the spatial features.

In this study, we describe three further developments on the reliability of line
segment, which is a basic unit of the linear feature of GIS, to the previous studies.
First, two possible statistical distributions, both uniform and bivariate normal
distributions, of the errors of line segment’s nodes are discussed. While in the
previous studies, the uniform distribution was the only distribution case discussed.
Second, an error ellipse model, instead of the error circle model, is used for
describing the errors of the nodes. Third, an effect of error dependent relationship of
two nodes on the reliability of line segment is further discussed. From our results, it
is noticed that different combinations of correlated nodal errors vield different

reliability of a line segment.

Apart from the simulation approaches, another reliabilitv model is derived
from a newly developed approach - the numerical integration technique - in order to

validate the simulated results, mainly due to the fact that accuracy of the simulation



approaches has caused worry in some circles. After comparing these two methods,
we notice that the simulated and the numerical results are approximately the same,
but they have different computational time. In the reliability model of a line segment,
we can achieve the numerical restlt in a shorter time. On the other hand, the
simulated result can be obtained in a shorter time in other reliability models. This is
due to the complexity of the numerical model depending on the amount of nodes of
the spatial feature itself. The reliability model based on both methods is extended to
the reliability of both 2D and 3D linear features, both 2D and 3D areal features, and
3D volumetric features in GIS. It also concludes that error ellipse parameters affect

the reliability of a spatial feature.

Furthermore, an error propagation model in buffer spatial analysis is derived
based on both the simulation and the numerical analysis approaches. It is observed
that the size of a buffer affects the reliability of the buffer. The reliability model
proposed in this project is thus applicable to all features of GIS and buffer GIS

operations for error description.
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CHAPTER 1
INTRODUCTION

During the last two decades, the handling of spatial data has undergone a
great change. Maps are now not only drawn on a paper sheet, but are also stored in
computers. Users can view maps via the worldwide web (WWW) and even

download them through the file transfer protocol (FTP).

A geographical information system (GIS) can be defined as a software
package, which provides users with a tool to input, store, analyze, retrieve and
transform geographical data (Cassettari, 1993). GIS is now widely applied in many
different areas including military applications, environmental studies and geological
exploration. However, geographical data in GIS is not error-free (Heuvelink, 1998).
Due to the complexity of the geographical world, it is virtually impossible to
represent the world completely. Some of the man-made utilities such as water pipes
and road networks can be represented by point, line and polygons but most natural
phenomena cannot (Burrough, 1986). The geographical representation limits its
scope. Differences between the database contents and the phenomena they represent
depend on the characteristic of the phenomena. These differences may be referred to

as the ‘quality’ of the representation.

Although ignoring these differences is the principal method of dealing with
them, to a certain extent the data quality affects decisions made with the
geographical data. Goodchild (1991) stated that an accuracy of each object in the
database would be attached depeﬁding on the type of data and source of errors.

However, there are sttll no standard models to calculate the errors.

Accuracy 1s defined by the relationship between the measurement and the

reality. This relationship can be described by errors. There exist different standards



of data quality in different organizations. A National Committee on Digital
Cartographic Data Standards (NCDCDS) was established under the auspices of the
American Congress of Surveying and Mapping (ASCM) in 1982 (Aalders, 1999).
The reports of this committee mentioned that data quality was composed of five
components (Moellering, 1985, 1987). Moreover, Guptill and Morrison {1995) stated
that the ICA Commission on Spatial Data Quality added two additional components.
Overall, errors are most likely to be grouped into five categories: lineage errors,
positional errors, attribute errors, logical inconsistency, and completeness. The first
errors refer to an existence of the history of the geographical data (including source
material, dates and processing applied). They are difficult to examine because little
geographical data carries its history. The positional errors are due to a missing entity,
an incorrectly place entity or a disordered entity. Existing research in the positional
eITors is going to be elaborated later on. Attribute errors oceur because of placing the
wrong code for an attribute. Fisher (1992) computed the error standard deviation of
an existing digital elevation model from the root mean square error (RMSE).
Goodchild et al (1992) pointed out that a stochastic error model that could estimate
the uncertainty associated with outputs in GIS. Veregin (1 995) summarized
classification error matrix, which stores error level for each class of attribute value,
by using proportion correctly classified (PCC) index while Nasset (1996) applied
weighted Kappa coefficient for indices of error. Maybe the most common method
used for an attribute classification is the classification error matrix. Placing a code in
a wrong location causes the logical inconsistency. Users should check logical
consistency after inputting the geographical data to make sure no blunders {or
careless mistakes) in the geographical data. Completeness is related to whether a
given data set contains all information it claims to. Among these errors, the

positional errors are the focus of this study.
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1.1 Positional Errors in GIS

There are two types of data structures used for representing geographical
data in GIS: raster and vector. In this study, the positional errors in a vector-based
GIS are studied. They are considered to be of three types: blunders or mistakes,
systematic errors and random errors (Wolf and Brinker, 1994). Mistakes are due to
carelessness on the part of the observer mainly. For example, the observer may
misinterpret the target. Blunders or mistakes may occur through failure in technique
or failure of the equipment but can be detected and eliminated. Systematic errors
occur according to a system (such as digitization), which are always expressed by
mathematical formulation. If an “error” is removed from a measurement, the value of
that measurement should be improved. This error, known as a systematic error can be
identified and corrected. After eliminating blunders or mistakes and correcting
systematic errors, users may notice the existence of the so-called random errors.
Apart from blunders or mistakes, systematic errors and random errors, modeling
errors are introduced during the transfer of both the reality to the digital database and
the source map to the digital database (Bolstad et al.; 1990; Dunn et al., 1990; Keefer
et al.,, 1991; Maffini et al., 1989). Their existence is due to map generalization.
Dutton (1999) stated that some map generalization studies (Cromley and Campbell,
1990, 1992; Zhan and Buttenfield, 1996) concerned scale-changing operations but
failed to relate either techniques or results to specific map scales while some (Muller,
1987, Topfer and Pillewizer, 1966) restricted themselves to relative scale change but
their graphics do not resize appropriately. Hence, further studies on modeling errors

are necessary. In this study positional random errors are modeled.

In addition to the positional errors inherent in the input data, other errors are
introduced during GIS operations, perhaps due to scales, dates and map projections.
As a result, the derived spatial data probably accumulates more errors and has
different error characteristics from the input spatial data. [n other words, errors of the
source spatial data will be transferred to the derived data via GIS operations. A

process of error transference from source to derived spatial data is called error

L]



propagation. Error propagation is modeled mathematically in order to describe the
error mechanism of a particular GIS operation. Its model should be derived for each
GIS operation based on an empirical relation among different source data. Most
existing error propagation models concerned attribute errors in raster-based GIS
(Arbia et al, 1998; Haining and Arbia, 1993; Heuvelink and Burrough, 1993;
Heuvelink et al, 1989; Newcomer and Szajgin, 1984; Shi and Ehlers, 1996; Veregin,
1995) and little attention has been paid on positional error propagation in vector-
based GIS (Stanislawski et al, 1996; Zhang et al, 1998). This is due to the complexity
of vector-based data. Buffer spatial analysis is a basic GIS data transformation
function in which a zone of some specified width is delineated around the spatial

feature, and its error propagation model will be derived.

1.2 A Review of Previous Studies

Within a vector-based GIS, elementary spatial features are point, linear and
areal features. An error model for a point has been studied for a long time in the
fields of geodesy, surveying and mapping. The positional errors of the point are
usually distributed in the proximity of an error ellipse centered at the true location of
the point while existing studies of the positional errors model of a line segment can
be mainly classified into three approaches: (a) error-band models derived from
simulation techniques and error propagation law; (b) confidence region models based
on rigorous statistical approaches; and (c) reliability models of a line segment based

on simulation and integration techniques.

An error-band model is a band around the expected line segment. The epsilon
band model (Perkal, 1966) was created by rolling a circle along the line segment and
this band is similar to a buffer around the line segment. Chapman et al (1997) stated
that the width of the band determined by a function of different uncertainties

accumulated these uncertainties into the final stage. This model can be appled



during the execution of many spatial operations easily but it seems to be odd that the

true line segment is definitely located within the band.

Some researches have derived the error-band model using the error
distribution of the points on a line segment. Dutton (1992) simulated the error
distribution of the line segment using Monte Carlo simulation technique and the error
distribution of the line segment was derived. Moreover, Caspary and Scheuring
(1993) and also Shi (1994) derived error band models using errors of an arbitrary
point on the line segment. Shi (1994) further developed a number of error indicators
for line segments, as an extension to the point error indicators, based on the
assumption of the line segments. These studies, however, are based on the
assumption that the errors of the two nodes were independent. The shape of the error
bands is, therefore, the minimum in the middle of the line segments and maximum at
the two nodes. This result is due to the assumption of the independence (of the errors
between two nodes) and the nonexistence of model errors. A more generic
description on the positional errors of the line segments considers the case of

interrelation between the two nodal errors and was discussed in Shi and Liu (2000).

Alesheikh (1998) proposed the rigorous uncertainty model of a line segment
and stated that the existing model was a subset of the proposed modei. However,
Alesheikh’s model may not be the final stage in the development of the error-band
model. It will be difficult to determine the confidence coefficient of the confidence
region for the line segment if the confidence intervals for the points on the line
segment are used. Shi (1994) created the confidence region for a line segment based
on integrating the simultaneous confidence intervals for the points on the line

segment instead of the confidence intervals for the points.

A confidence region error model is a band surrounding the measured line
segment, containing the true line segment with the probability larger than a
predefined confidence coefficient. The confidence region error model (Shi, 1994) for
a line segment in a two-dimensional (2D) GIS was developed by using rigorous

statistical dertvations. This model was extended to the confidence volume of a three-

N



dimensional (3D) GIS features. A generic model (Shi, 1998) was further developed

for the confidence space for a N-dimensional features.

The reliability of a line segment was discussed by Stanfel and Stanfel (1994).
The extent of a discrepancy, in which the boundary was the true line segment and the
observed line segment, was defined by its area; and this discrepancy was a measure
of the reliability of the line segment. Easa (1994) considered that the model of
Stanfel and Stanfel oversimplified the discrepant area, and then Easa ( 1995)
estimated the reliability of the line segment using the Monte Carlo simulation
'technique. It was concluded that the analytical solutions of the reliability of the line

segment, proposed by Stanfel and Stanfel, might have some adjustments.

In modeling the positional errors, the previous reliability models assumed that
the nodal errors followed a uniform distribution for the simplification and a normal
distribution should be more appropriate according to the measurement technologies
(Stanfel and Stanfel, 1993). Generally, they considered an error circle to be a feasible
region that the measured nodes of the line segment lie inside. A further modification
to the model would be an error ellipse model (Easa, 1995). What is more, the
previous reliability models of a line segment are concerned with the independent
nodal errors. This is, in fact, a simplification to the real world cases in which the

nodal errors were dependent (Keefer, Smith and Gregoire, 1988).

The above error models of a line segment can be extended to error models of
a linear feature while error models of an areal feature’s boundary are similar to those
of the line segment. Dutton (1992) generalized his error band to an error band for the
boundary of an areal feature while Stanfel et al (1995) and Chapman et al (1997)
applied their reliability models of a line segment into reliability models of an areal
feature’s boundary too. Although they further developed errors models of an areal
feature based on integrating the positional errors of the areal feature’s boundary
straightforwardly, the errors models of the line segment may not be extended to those
~ of an areal feature. The positional errors of an areal feature are different from those

of the boundary of the areal feature. The interior part of the areal feature may not be



error-free and hence a positional error model of an areal feature should consider the
interior part of the areal feature apart from its boundary. It is a fact that there is little

research modeled the positional errors of an areal feature.

The research stated above is mainly concerned with the error models for
studying the positional errors of spatiat features in a 2D GIS. Very little research
exists in the modeling of the positional errors in a higher-dimensionat GIS. Shi
(1998) derived the confidence region model of linear features from a strictly
statistical approach. In fhis project, the reliability model of spatial features either in

the 2D or 3D GIS will be taken into account.

In buffer spatial analysis for a vector-based GIS, an absolute accuracy has
been researched (Zhang et al 1998). It was concluded that the absolute accuracy in
buffer spatial analysis was inversely proportional to the width of the buffer. A
weakness with this method is the need to choose an error-band model. Users have to
determine which error-band model should be used to describe the error of the source
linear feature. Error-band models include epsilon band (Blakemore, 1984; Chrisman,
1982; Perkal, 1966), E-band (Caspary and Scheuring, 1993), g-band (Shi and Liu,
2000) and so forth. Based on the error-band model, the error propagation model for
the linear feature can be obtained. Until now, no standard methods can be
implemented to determine the most feasible error-band model for the specified

spatial feature.

1.3 Scope and Objectives

In this study, the reliability of a 2D line segment will be studied. First, two
error ellipse models will be introduced to compute the reliability of the line segment,
the uniform and normal. Second, an error ellipse model, instead of the error circle
model, will be used for describing the nodal errors of the line segment. Third, the

correlated nodal errors of the line segment will be discussed. The reliability model



will be further extended to the reliability model for spatial features in either 2D or 3D
GIS. Furthermore, an error propagation model in buffer spatial analysis will be

proposed.

In this project, positional error model and error propagation model in vector-
based GIS will be proposed based on a simulation technique and a numerical
integration approach. Three areas include the reliability model of spatial features in
2D GIS; the reliability model of spatial features in 3D GIS; and the error propagation
model in buffer spatial analysis. Objectives of this study are

a) to model the reliability of both 2D and 3D spatial features in GIS;

b) to investigate effects of error models, nodal error distribution and correlation
problem of nodal errors on the reliability of spatial features;

¢) to model the reliability of a buffer around spatial features; and

d) to investigate an effect of buffer size on the reliability in buffer spatial

analysis.

This dissertation is divided into seven chapters. Some statistical theories will
be introduced briefly in Chapter 2. Chapter 3 will define how the reliability is
measured and what assumptions are being made. The reliability model of spatial
features will be elaborated in Chapter 4 based on simulation techniques, while in the
next chapter, another reliability model will be derived from a newly developed
approach - the numerical integration technique - and this model is used to validate
the simulated results. The error propagation model in the buffer spatial analysis will
be proposed in Chapter 6. Conclusions and recommendations will be given in the last

chapter.



CHAPTER 2
A BRIEF REVIEW OF RELAVENT STATISTICAL THEORIES

Mathematical and statistical theories form the basis for analysis error in
spatial data. In this chapter, some basic statistical theories used in this study will be
stated. A study of positional errors is derived from an error distribution of a point and
two possible error distributions will be shown in Session 2.1. The next session will

introduce two methods to model the positional errors.

2.1 Error Distributions of a Point

A random vartable associates a numerical value with each outcome of an
experiment. The random variable can be classified into two types: a discrete random
variable and a continuous random variable. The random variable is the discrete
random variable if it has a finite number of values. It is said that a discrete random
variable may assume a countable number of values. The random variable is the
continuous one if it is in an interval or several intervals of real numbers. It has an
infinite number of values. The discrete random variable has a discrete distribution
while the continuous random variable has a continuous distribution. The following
examples demonstrate the difference between the discrete distribution and the

continuous distribution.

Suppose two coins are tossed simultaneous. Four possible outcomes are
‘head-head’, ‘head-tail’, ‘tail-head’ and ‘tail-tail’ where ‘head-tail’ means that the
first coin is head and the second one is tail, and so on. Because the outcome for the
first coin does not affect that for the second one, each outcome has the same
probability ¥a. [f X is the number of heads obtained, each outcome of the experiment

- corresponds to a particular value of X. I call X a random variable. In this example,



the value of X belongs to a set {0, 1, 2}. Then, X has a discrete distribution. Another
example is that a number X is chosen at random between 0 and 1. X is continuous
random variable because the value of X is in the range of 0 and 1. I call the

distribution of X is continuous.

Two continuous distributions, uniform distribution and normal distribution

are considered in the following sessions.

2.1.1 Uniform Distribution

A continuous random variable X is said to have a uniform distribution on
[a,b] if its probability density function (p.d.f.) is
1 ifa<x<h,

f(") =Yb-a
0 otherwise,

2.1)

where a and b are real numbers (see Figure 2.1).

A {(x)

> x

a b

Figure 2.1, Probability density function of a uniform distribution.
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A mean of X, E(X) and its variance, Var(X) are

E(X)= Ix —dx—aer and
(b-a) (2.2)
b-a
Var(X)-Jx -B—:;dx—p = 1

a

2.1.2 Normal Distribution

A continuous random variable X is said to have a normal distribution if its

p.d.f is

2
f(x)= 1 exp(_l[x“}lJJ — 0 < X < +60, (2.3)
2n 2\ ©

where i and o are real numbers and ¢ > 0.

Figure 2.2 shows the special case of f(x) where p is equal to 0 and ¢ is equal
to 1. The standard normal distribution is the normal distribution having a mean equal
to 0 and a standard deviation equal to 1. The letter Z is used to represent the standard
normal random variable. Generally, f(x) is symmetrical about . A mean of X, E(X)

and its variance Var(X) are




-
—_— \\“-_ " X

Figure 2.2. Probability density function of a standard normal distribution.

Equation (2.3) involves only one random variable X and so X has a univariate
distribution. If two random variables are involved, a joint distribution of these two .
random variables is a bivariate distribution. Typically, a set of random variables has

a multivariate distribution.

Let X denote an n x n real symmetric matrix which is positive definite where
n is a positive integer. Let p denote the n x 1 matrix such that p" (the transpose of p)
is equal to [py, M2, ..., W], where each y; is a real constant fori =1, ..., n. Finally, let
x denote the n x 1 matrix such that x” = [x1, X2, ..., Xn]. A joint p.d.f. of n random

variables X, Xa, ..., X, 18

T -l
—1 exp[—(x H) 2 (x “)], —®0<X; <®
(n)2l 2 2.5)
The matrix p is the matrix of means of the random variables X, X,, ..., X,.
The matrix X, which is given by
Gl T2 Cn
g=|%1 %2 7 Om (2.6)
Cin 9o Son

where ojj is the covariance of X and Xj.

12



This matrix is the covariance matrix of the multivariate normal distribution.

2.2 Simulation

Simulation is a method used to study a system that may be a group of units
working in an interrelated manner. The purpose of system studies is to gain an
understanding of the overall operation. Simulation provides a description of system
behavior. The following definition is given by Shannon (1975, 2pp.):

“Simulation is the process of designing a mode! of a real system and
conducting experiments with this model for the purpose either of understanding the
behavior of the system or of evaluating various strategies (within the limits imposed

by a criterion or set of criteria) for the operation of the system.”

Simulation includes different processes (techniques): variance reduction,
simulation validation and so forth. Each simulation process is specialized to special
types of system but some general characteristics are common to and useful for a wide
variety of practical problems. Simulation is good at answering specific “what if”
questions. It requires a model be constructed that represents system behavior in terms
of mathematical and logical relationships between variables. In the Monte Carlo
simulation, which is a subset of variance reduction techniques, a population of
interest is simulated. From the pseudo-population, repeated random samples are
drawn. The statistic under study is computed in each pseudo-sample and its sample

distribution is examined for insights into its behavior.

It is not essential to involve computers in simulation. However, applying the
computers can enhance the efficiency of the simulation. Nowadays, simulation is
highly computer intensive. And the sample data is not physical observed but

represented by the set of computer commands used to generate the data.



Simulation has some advantages and disadvantages. Here are some of the
advantages of simulation. A simulation model can be realistic because it captures the
actual characteristics of the system being modeled. It can be completely controlled
and completely observed. Moreover, it is possible to reproduce random events
identically via sequences of pseudo-random numbers that can exhibit the
characteristics of truly random numbers. it does not require a great level of
mathematical sophistication. On the other hand, it is subject to important
disadvantages. It cannot produce exact results because a system is composed of one
or more elements that a.re subject to random behavior. It is time-consuming when
solving some mathematical problems: solvable integration problems, parameter
estimations for a population distribution, and so forth. In conclusion, simulation is
not a panacea. It offers powerful advantages but suffers from significant
disadvantages. It is a fact that analytical solution, where the system is expressed as a
mathematical model, is more accurate and is usually more easily obtained than
simulation result. Therefore, simulation cannot replace mathematical analysis.
Nevertheless, it is a practical method for gaining an understanding of unsolvable

mathematical models.

2.3 Numerical Integration: Gaussian Quadrature

A mathematical model of a complex situation for interpreting experimental
results and predicting results is always constructed in some fields including
surveying by describing the important features in mathematical terms. Occasionally,
there may be a formal analytical solution procedure available but a great set of
expressions may be involved. A numerical procedure leading to meaningful
numerical results is available and preferable. Numerical analysis is a branch of
mathematics in which such numerical procedures are studied. There are various main
problems in numerical analysis: solving systems of linear equations, eigenvalue
problems, interpolation, evaluating integrals, solving differential equations, and

optimization.



Here numerical integration is implemented to study the reliability problem.

The integrals are mainly of the form
b
1(f)= [r(xhx @7
a

where a and b are finite.

Very few integrals can be evaluated exactly by analytical methods. There is a
desire for developing numerical methods to approximate the integral to be calculated
I(f} that cannot be calculated analytically. Besides, it is often faster to integrate the
integrable functions numerically rather than evaluating them exactly using a
complicated antiderivative of f(x). The approximation of I(f} 1s usually referred to as

numerical integration or quadrature.

Four well-known numerical methods for evaluating the integral in Equation
(2.7) are the trapezoidal rule, Simpson’s rule, the Newton-Cotes integration formula,
and Gaussian quadrature. The first three methods are based on a lower-order
polynomial approximation of the integrand f(x) on subintervals. And the length of
each subinterval is unchanged over the whole interval. Gaussian quadrature uses
polynomial approximations of f(x) of increasing degree. The length of each
subinterval is varied by f{(x) in order to minimize an approximation error. The
resulting integration formula is extremely accurate in most cases. Therefore,
Gaussian quadrature is implemented in this study to model the relability problems of

GIS spatial features and will be explored in Chapter 5.

2.4 Summa ry

In this chapter, some statistical theories relating to the assumption stated in
Chapter 3 are briefly introduced and two methods used to evaluate positional error of

spatial features. Under assumptions, two distributions were considered: uniform and
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normal. In Session 2.1, their properties were demonstrated. You may notice that in
the normal distribution (see Session 2.1.2), matrix £ in Equation (2.5) must be
positive definite. The definition of the term ‘positive definite’ is seen in Appendix.
Moreover, this study will sample the positional error of spatial features and estimate
the confidence interval for the mean of the positional error (see Appendix). From the
definition of the confidence interval for the population mean, the random variable
must be normally distributed. However, the distribution of the positional error of a
spatial feature may not be normal. Therefore, the central limit theorem stated in
Appendix must be applied. How these apply in this study will be elaborated in
Chapter 4. Finally, simulation and numerical methods, which are used to model the
positional error of GIS spatial features and the error propagation in buffer spatial
analysis, are introduced 1in the last two sessions. The details of the implementation

are shown in Chapter 4, Chapter 5 and Chapter 6.
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CHAPTER 3
PROBLEM DEFINITION

Spatial features and buffers studied here will be introduced in Sessions 3.1
and 3.2. Then, the general definition of reliability of the spatial features and the

buffers will be given. Assumptions will be stated in the last session.

3.1 Spatial Features

In the real world, geographical variation is infinitely complex. The world has
to be represented in a discrete manner in a computer environment, GIS. A map is one
of the methods used to describe geographic reality. Three fundamental units of the
map are point, linear and areal features. They characterize features of various shapes

and types.

A map can be treated as a graph in mathematics. The three basic units stated
above can be defined using graph theory. Nodes are used to represent point features.
They also represent the beginning or ending nodes of every linear feature and occur
at the intersection of linear features. Arcs (order sets of points) are the elementary
unit of any line and any curve to describe the location and the shape of a spatial
feature. The linear and the areal features composed of line segments are considered.
Two nodes form a line segment. Therefore, line segment is studied instead of arc,

since an arc can band smoothly.
3.2 Buffer

Buffer operation is a basic GIS data transformation function in which a buffer
of some specified width is delineated around a spatial feature. Figure 3.1 illustrates

buffers around spatial features: point, linear and areal features. When a desired



distance is given, GIS builds the buffer outward from the selected features. Buffering
allows GIS users to retrieve features that lie within the desired distance of the

features such as 1 mile of a school.

Feature Type Buffer of the Feature

Figure 3.1. Buffer around features.

3.3 Reliability of Spatial Features

Reliability is used in surveying with different meanings. Reliability of a
measurement is determined by three main factors: measurement instruments,
measurement errors and the age of source data (McGrew, 1993). Uren and Price
(1994) stated that the extent of detecting and eliminating gross errors was a measure
of reliability, whereas Allan (1993) mentioned an indicator of reliability given by an
estimate of the standard error of a residual. From the statistical point of view, the
difference between a sample result and the result from a complete count taken under
the same conditions is measured by what [ would refer to as the reliability of the
sample result (Hansen, 1993) where the result from a complete count should be
referred to the actual result. From the statistical view, Stanfel and Stanfel (1993,
1994) and Easa (1995) considered an average area of discrepancy between the actual

and the observed line segments as a measure of the reliability of the line segment.
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This measure will be further developed for the reliability of spatial features in this

study.

The difference between a sample feature and the expected feature in fact is an
error in the sample feature and hence the reliability and the difference have an
inverse relationship. Let R(x) denote the reliability function for a spatial feature x
and Error(x) denote a function used for the error measurement in the measured

feature. Their relationship can be expressed mathematically. That is,

[ I ] 3.1
Rx) = f|] ————
Error(x)

In the reliability model for spatial feature, Equation (3.1) can be modified as

Equation (3.2).

1
R(spatial feature) = f 312
(spatt ) [ Error(spatial feature)J (3-2)

Since Error(spatial feature) is a measure of the discrepancy of the spatial
feature, it should be a function of the sample (measured) location and the actual
location of the spatial feature. Furthermore, the actual location is unchanged and
hence Error(spatial feature) is the function of the sample location of the spatial
feature only. Let NP denote the number of nodes of a 2D spatial feature and (x;, ¥j)
denote the coordinate of a node of the spatial feature forj =1, 2... NP. The

mathematical expression of the reliability problem in 2D GIS is

1
R(x1, ¥1, X2, ¥2. ..., XNp, YNP) = f( ] (3.3)
Error(x;, 1, X3, Y2, > Xups Yrp)

Since each node in 3D GIS can be represented by x, y and z where z records

height of the node, the reliability problem in 3D GIS is expressed in Equation (3.4).
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1
R(x1, ¥1, 21, ..., XNP, YNP, ZNP) = f[ ] (3.4)
Error(X, Y1, 2, ..., Xnp»> YNpsZNp)

In the buffer spatial analysis, the error in the source spatial feature will be
propagated. The propagated error depends on the source error and so it should be in
terms of the source error. Then let a function g denote the propagated error in terms

of the source error. Thus the reliability problem can be expressed in Equation (3.5).

|
R(x1, y1, X2, Y2, .-, Xnp, YNP) = f( J (3.5)
g(Error(x], Y1sX25 Y25+ XNps Yne) )

In this study, an area of the discrepancy of a spatial feature measures the
reliability of the spatial feature. This discrepancy is a difference between the
measured and the actual spatial features. The geometrical representation of this
discrepancy in different spatial features will be elaborated in Chapter 4. Also, the
discrepancy in buffer spatial analysis is a difference between the measured and the
actual buffers (see Chapter 6). In order to study possible measured location of a
spatial feature, an assumption of nodal errors of the spatial feature is made in the

following session.

3.4 Assumption

In 2D problems, an error ellipse may be established around a point to indicate
precision regions of different probabilities. The orientation of the ellipse (relative to
the Cartesian coordinate system) of which the axes are called x- and y-axes normally,
depends on the correlation between values of x and y on the eliipse (see the dash
lines with arrows in Figure 3.2). If x and y are uncorrelated, the two axes of the

ellipse will be parallel to axis x and axis y (see Figure 3.3). If the semi-major axis



and the semi-minor axis have the same length, the ellipse becomes a circle.
Similarly, in the case of 3D problems, error ellipsoids may be established around a

point to indicate precision regions of different probabilities.

Semi-minor axis  Semi-major axis

Figure 3.2. Error ellipse. Figure 3.3. Error ellipse with orientation

parallel to the axes.

The reliability of a spatial feature is determined by the discrepancy of the
spatial feature in which the measured spatial feature includes neither gross errors nor
systematic errors. Due to random errors, it is assumed that positional errors of the
nodes of the spatial feature are mostly distributed “within” a feasible region (either
the error ellipse in 2D GIS or error ellipsoid in 3D GIS) centered at the actual
location of the node. And the probability of the positional error lying in the feasible
region 1s larger than or equal to a pre-defined confidence coefficient. Though the
actual location of the node of the spatial feature is not known, from the statistical
point of views, a mean of any variable X is close to its actual value. As a result, the
actual location of the node on the spatial feature should be referred 1o as its

corresponding expected (mean) node.
Now that linear features, areal features and 3D volumetric features consist of

nodes, the above assumption about a node is significant for the reliability of spatial

features.
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3.5 Summary

Positional error in 2D linear and areal features and 3D linear, areal and
volumetric features will be investigated. Also, error propagation in buffer spatial
analysis will be focused on, too. To explain my proposed model easily, the definition
of these features was stated in Session 3.1 and Session 3.2. Second, reliability does
not have a unique definition in GIS. In this study, the reliability is defined from the
statistical view. The difference between a sample result and the expected result under
the same conditions 1s used to measure the reliability of the sample result. This
difference in fact is an error in the sample result and hence the reliability and the
difference have an inverse relationship. The reliability model will be derived by
sampling under the assumption of the nodal error. This assumption was given in
Session 3.4. In the following chapters, the proposed reliability model will be

elaborated.
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CHAPTER 4
MODELING RELIABILITY OF SPATIAL FEATURES BY
SIMULATION

The reliability of a spatial feature is estimated by the discrepancy of the
spatial feature. In this chapter, geometrical definitions of the discrepancy of spatial
features in both 2D and 3D GIS are given. The expected and the measured spatial
features will shape the discrepancy of a spatial feature. In order to investigate
random errors of the spatial feature, samples of the measured spatial feature are
generated based on the spatial feature’s distribution of the spatial feature. This
distribution can be derived from nodal error distributions of the spatial feature
because a node is a fundamental unit of any spatial feature. Here the sample

measured spatial features will be generated using simulation techniques,

This chapter will propose a simulation model on the reliability of spatial
features. The first section will study the reliability problem in a 2D GIS and the
second will study the reliability problem in a 3D GIS. In these two sections, the
discrepancy of spatial features is defined and some examples of the reliability of the

spatial features will be given.

4.1 Reliability of Spatial Features in 2D GIS

Spatial features in 2D GIS considered in this study are linear features and
areal features but not point features, mainly due to the fact that positional error of a
point is commonly assumed to be distributed within an error ellipse. A line segment
is an element of either a linear or areal feature and its reliability is discussed first.
Reliability of a linear feature and an areal feature will be investigated. It is a fact that

the reliability of the areal feature is distinct from that of the areal feature’s boundary.

D
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4.1.1 Line Segments

The discrepancy of a line segment is defined by the difference between the
expected location and the measured location of the line segment; this difference is
caused by measurement errors, which cannot be eliminated. The shaded area in
Figure 4.1 shows the discrepancy of the line segment. The solid line segment

represents the expected line segment composed of the two expected nodes ( Hy, sy, )
and (p, 1y, ); the dash line segment represents the measured line segment

composed of the two measured nodes (x1, y;) and (x2, y2).

y ? Measured line segment

-

(X1, y1)

Expected line segment
(”XZ: J-ly2

X
>

Figure 4.1. Discrepancy of a line segment in the two-triangle case.

For each node of the line segment, its error ellipse centered at its expected
location can be seen in Figure 4.1 whereby its measured location is inside its error
ellipse. Let (x12, y12) denote the intersecting point of the measured and the expected

line segments. Then, | have
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Ry —Kopy +kixg -y,
xlz(xl,YI»Xstz)= K Kk
1~ Ka

9 if 1y, # 1y,
le(XhYl:Xz,Yz): Y1 +k,(x]2 —xl)

and
(4.1)
XIZ(xl!YI’XZsY2)= Hx,
| | iy, =Wy,
yia (X0 ¥ X2 ¥2) = vy + ki (g —x)
where - -
k, =227 ¥ ang i, = 22" ang
Xy =X Hx, Ry
k| must not equatl to k; if the intersecting point exists.
The discrepant area of the line segment is given by
1
A,(X,,yl,xz, Y2):50Px,)’1 TX Y X, XK, XY oYk, |t 42)
|Xz}’lz XKy, FHLY TYo X T Yy, XM, )
y A Expected line segment
(x2, ¥2)
>
X

Figure 4.2. Discrepancy of a line segment in the quadrangle case.
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Figure 4.1 shows the measured line segment intersecting the expected line
segment. This case is called a two-triangle case. In another case, the measured and
the expected line segments do not intersect. I call this a quadrangle case (see Figure
4.2). The discrepant area is given by

Ay (x,y1.%2,¥2)

1 (4.3)
=E|X|}’2 +X2}J.y2 +sz“¥1 +“?‘1yl — XY _pxzyz _“le'!"z _xlplﬁl'

Therefore, the discrepant area of the line segment will be calculated
depending on its case. In order to study an effect of the random errors, the simulation
is implemented under the assumption. The nodal errors of the line segment are

uniformly (or normally) distributed within an error ellipse.

4.1.1.1 Algorithm for uniform distribution

Let us consider uniformly distributed nodal errors inside the error ellipse. The

mathematical expression of the error ellipse is given by

2 2
(X.-—uxi] .,{yi_“w) _ci[x"‘“xi ](”‘“Y&J:l, (4.4)
a; bi di ©i

where 1=1 or 2,

a;, b;, d; and e; are non-zero real numbers; and

c; 1s a real number.

If ¢i 1s zero, a; and b; will be equal to the length of two semi-axes of the error
ellipse and the two semi-axes will be parallel to the x- and the y-axes of the
coordinate system. Given the error f:llipse parameters a;, b;, ¢;, d; and e;, the
discrepant area of the line segment can be determined. According to the assumption,
I generate two nodes for the two expected nodes of the line segment and then
calculate the discrepant area. This is the first iteration. After the simulation is

repeated N times where N is a positive integer, a mean (or average) of the discrepant
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area 1s obtained. The algorithm used to compute the mean of the discrepant area is

shown below.

Algorithm 4.
Step 1 Input the total number of replications for the simulation N, the two expected
nodes of the line segment, and parameters of the two error ellipses:
aj, b),c,,d,,e,a,,b,,¢cy,d, ande,.
Step 2 Set j = 0 where j is used to count the number of replications for the
simulation.
Step 3 Generate four random numbers: uy, uz, u3 and ug in [0,1]; and
increase ] by 1.
Step 4 Transform these random numbers to two generated nodes for the two nodes
of the line segment from the following equations
Xy = 2(u; 0.5} T Hy,
=2, 05, +,

X, =2(u; ~0.5), iy,
y2 =2(uy ~0.5)b, THy,

4.5)

Step 5 Decrease j by 1 and go to step 3 if neither (x1, y)) or (X3, y2) lies in its error
ellipse.

Step 6 Compute an area of the discrepancy from Equation (4.2) or (4.3).

Step 7 Go to step 3 if ) is less than N,

Step 8 Compute the average of the discrepant area.

4.1.1.2 Algorithm for normal distribution

Another feasible distribution of the nodal errors is normal distribution. Under
this assumption, the error ellipse refers to a (1-¢)% confidence region for an expected

node of the line segment. Thus, fori =1 or 2, let p,, denote a correlation coefficient
of xi’s error and y;’s error; and o, and gy denote sample standard derivations of

xi's error and of y;’s error respectively. The key properties of a correlation coefficient
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are well known. When x;’s and y;’s errors are linearly independent, Px.y, = (0. When
error of x; = error of y;, | have Pay, = 1; and when error of x; = -error of y;, [ have
Py, = -1. However, it is only defined for distributions having marginal probability

density function with finite variance. Hence, the correlation coefficient does not exist
in the uniform case. However, it does not mean that x;’s and y;’s errors are
independent in the uniform case. In this study, I only consider correlated errors (or
linearly dependent errors). The mathematical expression of the error ellipse for the

node of the line segment in Equation (4.4) is modified as Equation (4.6).

2 2
X. — .- X, = X i . .
[ i “xiJ +[YI “Yi} _2px-y{ i ~H ‘J[yl p‘y']zl ,1=1lor?2 (4.6)
al bl o cxi cyl

and b;

o o
where a; = ===l =t
' J=2log(a) J-2log{a)
The algorithm in the normal case is similar to that in the uniform case but the

only exception is how to generate nodes of the line segment.

A standard normally distributed node is generated by the Box-Muller method.
This method is an exact method that uses two independent random variables v, and
vy in [0, 1] to sample two independent standard normal variables u; and u;:

u, = cos(2nv, )= 2Infv, )}*?
{uz =sin(2nv2){—21n(vl)}o,5 : @

According to Algorithm 4.2 in the following, the average of the discrepant

area of the linear feature can be estimated.

Algorithm 4.2
Step | Input the total number of replications for the simulation N, the two expected

nodes on the line segment. and parameters of the two error ellipses:

a),b1,0,,,0,,Pyy, 82,0y, 6,6, .P,, . and correlation coefficients

among the nodal errors.



Step 2 Set ) = 0 where j is used to count the number of replications for the
simulation.

Step 3 Generate four standard normal random numbers uy, uy, uz and uy; and
increase j by 1.

Step 4 Transform these random numbers to two generated nodes for the two nodes

of the line segment from the following equations

X =0, U+ 1y

1= p"|Y|GY|u| + V]_pim GYluz +H'Yl

X2 = Pxx,%x, Ul +px2ylcx2u2 +\/1_p>2(,x1 —Pizylcxz% +“x2 : (4.8)
Y2 = p"llszqu] +pY|Y20qu2 +p"25’20-)'2u3

2 2 2
+'J1—p"|Y2 —thYZ _-p"zYz Gqu4 +p‘)’z

Step 5 Decrease j by 1 and go to step 3 if neither (x;, y) or (X3, y,) lies in its error
ellipse. .

Step 6 Compute an area of the discrepancy from Equation (4.2) or (4.3).

Step 7 Go to step 3 if j is less than N.

Step 8 Compute the average of the discrepant area.

4.1.2 Linear Features - Polylines

The discrepancy of a linear feature is defined in the same manner. An
example of the discrepancy of a linear feature is illustrated in Figure 4.3 whereby the
linear feature consists of three nodes and two line segments. An area of the
discrepancy (the shaded area in Figure 4.3) is the measure of the reliability of the

linear feature.
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(x1, ¥1)

(I-Lx2a l'L)'Z)

(M1, Hy1)

(%3, ¥3)

Figure 4.3. Discrepancy of a linear feature.

I call this discrepancy a triangle-quadrangle case. In this example, the
discrepancy has four possible cases: triangle-triangle, triangle-quadrangle,
quadrangle-triangle, and quadrangle-quadrangle cases. A linear feature consists of

2Pl possibilities of its

NP nodes where NP is a positive integer and then there are
discrepancy. It may be impossible to derive one and only one equation used to
calculate the discrepant area among these four cases. As a result, which case the
discrepancy is should be determined, and then compute the discrepant area from the

equation in the corresponding case.

According to Figure 4.3, the discrepant area of the linear feature cannot be
computed by summing the discrepant areas of the line segments of the linear feature.
Otherwise, the area of an extra region, which occurs if either the first measured line
segment intersects the latter expected line segment or the first expected line segment
intersects the latter measured line segment, will be computed twice during

calculating the discrepant area of the linear feature.

Let (x20, y120) denote the intersecting point of the measured line segment
connected by (x), y1) and (x2, y2) and the expected line segment connected by

(K, .My, )and (p 1 ). The subseript of X120 is “120°, where the first character

represents the measured line segment connected by (Xy, ¥) and (x,, v3); the
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remaining two characters represent the expected line segment connected by

(1, k1, )and (p, ,p, ). Then, I have

A:’:(XUYI!XZ:YZ’XS’YZJ:

is

where 8,,, = ¢

Xizo T My, x, % x,
Y, if
Yio =Y F ( 120~ l) Hy =Hy,

17X

Jxlzole
R PSR
Eollnf ) !
Y = “‘y‘+“- “u X120 —Hy, By, FHe (49

(1, - uxz Ny,x, =%,y + (6, —x e b —pon, )
YlXPx. "l—‘x,) (xz - xl)(l-lyz "Py,) i {Xl X,

Hy, #Hy,
Yim =Y, +'X2—L(x1m 1)

L X, — X

X0 =

The area of the so-called extra region is

]
5 e, Y2 T XY 100 + Xppolty, = XMy — XY, — P*x,}'lzo‘- (4.10)

The expected discrepant area of the linear feature in the triangle-triangle case

AJ(XI’yl’xP}'Z’XB’yJ): Al(xw)’]sxz’)'z)"‘Az(xzsh’xv}’s)

(4.11)
+5120A3(x|’y“xz:)’zaxas)ﬁ)

if either the measure line segment composed of (x, y)) and (x,
1 ¥2) intersects the expected line segment composed of ( Hy, oMy, )

and (p_ .p ) or the expected line segment composed of
(K, ., Yand (u, K, ) intersects the measured line segment
composed of (X2, y2) and (X3, ¥3);

()  otherwise.

The expected discrepant areas of the linear feature in the triangle-triangle, the

quadrangle-triangle and the quadrangle-quadrangle cases As, Ags and Ay are given by

Equations (4.12), (4.13) and (4.14) respectively.



As(xnylaxz:haxp}%):A|(x|sY|sx2=y2)+ AI(XZ’YPXLHYJ)

4.12

+6I20A3(xl’yl’x2’YZ’XJ’YJ) *.12)

Aa("n)’nxzah:xsa)’a):Az(xla)’nxz’)@)"“Al(xzs}'pxs’)ﬁ) (4.13)
+BlzoAs(Xanx;:JYz’xzah) ‘

A,(X,,y,,xz,yz,xph): Az(xv)'nxzs}fz)'*' Az(xzastx3=Y3) (4.14)

+6!20A3(xl’yl’x2’y2’x3’yJ)

Procedures used to estimate the discrepant area of the linear feature are
similar to Algorithms 4.1 and 4.2; with respect to the uniformly or normally
distributed nodal errors of the linear feature. Two modified algorithms are given

below respectively.

Algorithm 4.

Step 1 Input the total number of replications for the simulation N; the total number
of nodes on the linear feature NP; the NP expected nodes; and parameters of
NP error ellipses.

Step 2 Set j = 0 where j is used to count the number of replications for the
simulation.

Step 3 Generate 2 x NP random numbers uj(wherei=1,2, ... NP)in [0,1]; and
increase j by 1.

Step 4 Transform these random numbers to NP generated nodes for NP nodes of the

line segment from the following equations

X, = 2(u2i_, —O.S)ai i,
y; = 2{u, —0.5)b, +p, (4.15)
fori=1,.., NP.

Step 5 Decrease j by 1 and go to step 3 if at least one of (x1, yi). ..., (Xnp, Ynp) does
not lie in its error ellipse.

Step 6 Compute an area of the discrepancy.

Step 7 Go to step 3 ifj is less than N.

Step 8 Compute the average of the discrepant area.

Lad
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lgorithm 4.4

Step 1 Input the total number of replications for the simulation N; the total number
of nodes on the linear feature NP; the NP expected nodes; parameters of the
NP error ellipses; and correlation coefficients among the nodal errors.

Step 2 Setj = 0 where j is used to count the number of replications for the
simulation.

Step 3 Generate 2 x NP standard normal random numbers u; (where i = 1, 2, ..., NP)
in[0,1]; and
increase j by 1.

Step 4 Transform these random numbers to NP generated nodes for NP nodes of the

line segment from the following equations
i-1 i1
Xi = prkxi u2k—lcxi + priYk W2k Ox,
k=1 k=l

i-1 i-1
2 2
+ ‘/1 - prkxi - priyk Ugi—1Ox, T Hy,
k=I

k=1

,fori=1,..., NP, (4.16)

i i-]
Yi= szkYiUZk—lc}'i + ZkaYiUZRGYi
k=1 k=1

i i-1
2 2
+\/1“prk)': _Zp)'x}'iuzich +“Yi
k=l k=1

Step 5 Decrease j by 1 and go to step 3 if at least one of (x1, y1), ..., (Xnp, ynp) does
not lie in its error eilipse.

Step 6 Compute an area of the discrepancy.

Step 7 Go to step 3 if j is less than N.

Step 8 Compute the average value of the discrepant area.

Algorithms 4.1, 4.2, 4.3 and 4.4 are similar. Algorithms 4.1 and 4.3 are used
to model the discrepancy in the uniform case while algorithms 4.2 and 4.4 are used to
model the normal case. As a result, in step 3 algorithms 4.1 and 4.3 generate uniform

- random numbers and algorithms 4.2 and 4.4 generate normal random numbers.
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Second, in the uniform case there is no correlation relation of the nodal error and
hence step 4 in the uniform case is different from that in the normal case, Also,
algorithms 4.3 and 4.4 are the general algorithms. When NP = 2, algorithms 4.1 and

4.2 are achieved.

4.1.3 Areal Features

The reliability of the boundary of an areal feature is probably defined by a
combination of reliabilities of line segments circumscribing the areal feature. It is a
fact that the reliability of the boundary of the areal feature is different from that of
the areal feature for the interior of the areal feature may have errors. Consequently,
the reliability of the areal feature is discussed here.

(X4, ¥4)
(Fxa, uy‘*)dr“f;;@éﬁ% (X34, ¥34) (M3, My3)

....
-

......

(x3, ¥3)

(X23, ¥23)

(X1, Yar)

(x12, ¥12)

=
ST s,

/ (x2: YZ)
(ki Hy1) (M2, Ky2)

Figure 4.4. Discrepancy of an areal feature.

The shaded area in Figure 4.4 for instance is the discrepancy of the areal
feature. The solid line represents the expected boundary of the areal feature, and the
dash line represents the measured boundary. The discrepancy of the areal feature
shown in this example is a triangle-triangle-triangle-triangle case, which is one of 16
possible cases. When the areal feature consists of NP nodes (a natural number NP s
larger than 2) the quantity of all possibilities of the discrepancy of the areal feature is
2™ The discrepant area of the areal feature may not be defined from one equation

only, as if the area of the discrepancy of the linear feature may not. This discrepant



area of the areal feature can be computed by summing up the discrepant areas of four
line segments being boundaries of the areal feature; and the area of the interior part
of the region which is bounded by the shaded region, the expected and the measured
areal features; and then subtracting the area of the expected areal feature. In order to
determine the interior part of the region that is bounded by the shaded region, the
expected and the measured areal features (called region I), intersecting points of the
NP measured line segments and the NP expected line segments should be computed
in the first step. In addition to these intersecting points being some nodes of region I,
I have to decide whether the measured node (xi, ¥i) 1s inside the expected areal
feature fori =1, 2, ..., NP. If the measured node is a point in the expected areal
feature, it will be a node of region I. The area of region I can be estimated after its
nodes are determined. The discrepant area of the areal feature in the remaining cases
can be derived in the same manner. This computation considers the relationship

between the discrepant area of a linear feature and that of an areal feature.

The algorithm for the discrepancy of the areal feature is the same as that for a
discrepancy of a linear feature except for the mathematical expression of the

discrepant area.

4.1.4 Examples

Easa (1995) considered a uniformly distributed error of nodes of a line
segment, and the researcher’s data values are used for comparison with the

simulation model proposed here. Two expected nodes of the line segment (|, sHy )
and (K, sHy, ) are (0, 0) and (1000, 0. In Equation (4.4) parameters a,.b,c;,a5,b,

andc, are 148, 148, 0, 54, 54 and 0. Also parameters d,e,,d, and e, are any

nonzero real numbers. A meter is a unit of length in this study. The total number of
replications for the simulation N is 1000 because Easa found that the simulated result

will be stable when N = 1000.



According to Algorithm 4.1, the average discrepant area of the line segment
is 35987.2m’ nearly to 1 decimal place. Running this simulation model again, I get
another value of 35100.4m? Both values tend to be 35626.0m?, which is Easa’s
result. The unstable average discrepant area in the simulation model is due to random
variables. However, the result will be highly accurate if the total number of iterations
for the simulation N is large. Meanwhile, increasing N will lead the algorithm to be
time inefficient during execution. The value of N should be considered based on an

acceptant level or a tolerance.

A (1-a)% confidence interval for the mean of the simulation result is
evaluated where  is a positive real number smaller than 1. Algorithm 4.1 should be
repeated NR times where NR is a positive integer. A set of these NR average values
of the discrepant area is further divided into NB even subgroups where NB is a
positive integer. Since each subgroup has NR/NB average values of the discrepant
area, a mean of these NR/NB average values called a ‘sub-mean’ of the discrepant
area in each subgroup is computed. Then, from the central limit theorem, a (1-a)%

confidence interval for mean of this ‘sub-mean’ is given by

— 1,20
A-MLA 4.17)

VNB

where variable A is the mean of the discrepant area in each subgroup, i.e. the ‘sub-

mean’ of the discrepant area; A is a mean of A; 6, is the sample standard derivation
of A. In the simulation model, I set N = 1000, NR = 50 and NB = 10 (same values as

Easa’s model).

Table 4.1 shows mean A and the 95% confidence interval for mean A of the
‘sub-mean’ of the discrepant area. The expected line segment is connected by (0, 0)
and (1000, 0). The first four columns in Table 4.1 record some parameters of two

error ellipses. Parameters ¢| and ¢, in Equation (4.4) are zero; parameters

. and : . _ .
Py, Py, in Equation (4.6) are zero. Also, the remaining parameters in

Equation (4.4) or Equation (4.6) are any non-zero real number because in the left-

hand side of these two equations, the third part becomes zeros. The last two columns



in Table 4.1 give the mean value A of the ‘sub-mean’ of the discrepant area and its
95% confidence interval for a mean of A under two different assumptions of the
error of the nodes on the line segment. The first is uniformly distributed and the
second normally distributed. In these two columns, the first value is the mean of the
‘sub-mean’ of the discrepant area; the value in the brackets is the 95% confidence
interval for the mean of the ‘sub-mean’ of the discrepant area. In the following, I
name the mean of the ‘sub-mean’ the mean of the discrepant area for simplification.
Figure 4.5 shows a distribution of the line segment in the uniform case, given that
parameters of the two error ellipses are exactly equal to that in the second row of
Table 4.1;i.e. 2, =100,b, =196,a,=30and b, = 78 except NR =NB = 1. A set of
line segments in this illustration involves the expected line segment and a thousand
generated line segments; an error ellipse of each node is figured. For data values in
Table 4.1, distribution of these line segments is shown in Figure 4.6 if NR = NB =].
Both Table 4.1 and Figure 4.6 are used to compare the line segments under various

error ellipses.

Figure 4.5. Distribution of a line segment in 2 uniform independent case.

Table 4.1. Area of discrepancy of line segments.

Average area  (m?)
ai(my by (m) ay(m) by (m) Uniform Random Variable Normal Random Variable
100 196 30 78 | 48442.7 (48226.0, 48659.4) | 34977.7 (34776.8, 35178.5)
100 196 54 341 45900.1 (45669.7, 46130.4) | 32857.7 (32719.0, 32996.4)
100 196 78 30 | 43248.2(42932.5,43564.0) | 30902.0 (30758.1, 31046.0)
148 (48 30 78 39260.7 (39058.2, 39463.3) | 28513.2 (282745, 28751.9)
148 148 54 34 35987.2 (35905.9, 36068.5) | 25950.2 (25739.4, 26161.0)
148 148 78 30 33145.8(33000.3,35291.2) | 23835.9(23730.0, 23941.8)
196 100 30 78 30379.6 (30255.8, 30503.4) | 22006.6 (21910.8, 22102.5)
196 100 54 54 26669.4 (26556.9,26781.9) | 19265.8 (19173.6, 19358. 1)
196 100 78 30 23480.7(23411.6,23549.8) | 16998.1 (16883.9, 171 12.4)




T S—

(i}: (@. by) = (100, 196) and (ii): (a, 6,) = (100, 196) and (i) (ar, by) = (100, 196) and
{az. by) = (30, 78) - (a2, by) = (54, 54) (ay. by) = (78, 30)
{iv): (a;. b)) = (148. 148) and (v): (a), b)) = {148, 148) and (vi): (a,, b)) = (148, 148) and
@ £2)=(30,78) (ay b2) = (5, 54) (as, by) = (30, 78)
(vii): @y, b;,) = (196, 100) and (viii): (@, £;) = (196, 100) and (ix): (@, b,) = (196, 100) and
(a?J bl) = (30, 78) (02! bz) = (54) 54) (a2a bl) = (78, 30)

(a) Uniform random case

—

(i)- (a1, 61) = (100, 196) and (ii): (ay, b,} = (100, 196) and {iii): (@, 1) = (100, 196) and
(a2, b3} = (30, 78) (@, by) = (54, 54) (@2, b2) = (78, 30)
(iv): (a,. by =1{148. 148) and (v): (@, 6)= (148, 148) and (vi): (a;. b)) =(148. 148) and
{as. b) = (30, 78) (ay. ha) = (54, 54) {a~ ba} = (78, 30)
{vit): {ay. b)) = (196, 100) and {viiid): den. &} =196, 100) and {in): Ly, b)Y =(196. 100) and
(a-. b2} = (30, 78) (¢~ bs) =(54, 54) letx, By} = (78, 30)

(b) Normal random case

Figure 4.6. Distribution of line segments in an independent case.



In Figure 4.6, if either a increases or b decreases, the measured line segment
has a decreasing variation on its distribution. From Figure 4.6(a)(i) to Figure
4.6(a)(iii), the line segment for instance has a decreasing variation on its distribution
when b; reduces from 78 m to 30 m. Similarly, if b, decreases from 196 m to 100 m,
the variation of the distribution of the line segment also drops (see Figures 4.6(a)(1),

4.6(a)(iv) and 4.6(a)(vii)).

Besides, the mean of the discrepant area (the mean of the ‘sub-mean’ of the
discrepant area) in the uniform case is larger than that in the normal case as shown in
Tabtle 4.1 and the same result is indicated in Figure 4.6. It is because uniform random
variables can be viewed as normal random variables with infinite standard

derivation.

In the above examples, line segments are generated under the assumption of
independent random variables. Correlated random variables wilt be considered in the
following to generate measured line segments because nodal errors of a spatial
feature may be linearly dependent. Figure 4.7 shows an expected line segment of
nodes (0,0) and (1000,0) under different error ellipse parameters. If parameters a;, b;
and ¢; in Equation (4.4) are given, parametersc, ,6, andp, . in Equation (4.6) will
be obtained and vice versa. Figure 4.7 shows the expected line segment with
different correlation coefficients when a; = 100, b; = 196, a;, =30, b, =78,

Py, =—10,p,, =p.. =p,, =00and the remaining error ellipse parameters are

changing in the normal case.

In Figures 4.7(a) - (e). when P.r, =—1.0 and p . increases from -1.0 to

1.0, there is an increasing variation of the distribution of the line segment. In Figures
4.7(f) - (j), the distribution of the line segment does not have any significant changes

in its variation when p, - =0.0 and p, . changes from-1.0to 1.0. Besides, if

Py, =1.0 and p_  isincreases by 0.5, the variation of the distribution of the line



segment will be reduced. In Figures 4.8(a) - (c), the variation of the line segment’s

distribution decreases when Py,y, is reduced from —-1.0 to 1.0,

Pry =00,p,, =-10and p, =p,  =p,  =00.InFigures 4.8(d) - (f), there
are no significant changes in the variation of the distribution of the line segment

when p, . changes from-1.0t0 1.0, p, , =-0.5,p . =00,

p-"i."z =-1.0 and p)'lJf‘z = p‘z}’z = 00 )

When only one of the error ellipse correlation coefficients increases and the
remaining are zero, the variation of a line segment’s distribution will be discussed. If

either p, , orp, , increases from —1.0, the variation decreases. During a change of
either p, , orp, , , the variation has a minimum value at varying the correlation
coefficient to zero. In another example, the variation will increase if Py.y, inc.reases.
However, the variation has no significant changes when I vary p, , . This is due to

the fact that the expected line segment in these examples is parallel to the x-axis and
so both y; and y; determine which case (two-triangle or quadrangle) the line segment
belongs to regardless of x; and x;. X, y; and x; are considered to be the same values
in Figures 4.1 and 4.2. If y; in Figure 4.1 has identical magnitude with this in Figure
4.2 but they are in an opposite sign, the discrepant area in a quadrangle case is larger

than that in a two-triangle case. This implies that Py,y. affects the discrepant area of

a line segment mainly given that the expected line segment is parallel to the x-axis of

the coordinate system.

For the example of a linear feature, the three expected nodes are (0, 0), (1000,
0) and (1500, 866). The parameters of the three error ellipses a,, by, a;, by, a3 and b,
are 100m, 196m, 30m, 78m, 100m and 196m respectively. In the uniform case, the
mean of the ‘sub-mean’ of the discrepant area and the 95% confidence interval for
mean of the ‘sub-mean’ of the discrepant area are 80222.1m? and (79972.1m?,
80472.1m?). In the normal case, the mean and the confidence interval are 57730.9m’

and (57493.9m’, 57967.9m?). Using the three expected nodes of the linear feature for
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the areal feature results in the mean and the 95% confidence interval 184109.3m? and
(183484.0m%, 184734.5m?) respectively in the uniform case. In the normal case, the
mean and the confidence interval are 133342.2m* and (132795.9m?, 133888.4m?).

)-

=00, p,, =00, p,., =05

(@) Py, =10, Py, =-10, ., =00,
pxl)’z = 0.0, p)’:)’: = 0'0’ p"z)’! =05

U

(0 Py, =-1.0, p,Hz 0.0, pm. 0.0,

() p.\'|Y| =-1.0, px1xz=0'0’ pK;y|=0‘0! (h) pMYl =-1.0, p-“l":=0'o’ pxm =09,
px,y, = 00’ p)-l}-‘ = 00 px,y, = _05 p.\'|_\,‘3 - 00‘ p}‘l)'z - 00, px]}'! - 00
(iypy,, =-1.0.p,, =00.p, =00, Py, =-1.0.p,,=00. p,
P, =00.p . =00.p =05 Pre.=0.0. P, . =00, px‘_\_‘ =1.0
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(M) Py, =-1:0, Py, = 1.0, P, , =00,

(m) Pyy, =-1.0, P, =10, Py, =0.0,
pxl)‘l = 001 p)’n’z = 00, pxﬂ'l = 00 pxly2 = 00, pyly2 = 00, p"zh = 05

(©) Pry, =10, Py, = 10, Py, =0,
pxl)’l =00, ph)‘z =00, px,y, =10

Figure 4.7. Distribution of line segments with p, =-1.0.

(a) p—‘lh =00, p"l"z= -19, p"z)":=0'0’ (b) pxl}'i =00, p"l"z =-10, pxz}ﬂ: 0.0,
p‘l)’z =00, p)’le =-1.0, p-“z)’: =00 p’<|Yz =00, p)‘n.‘v’: =00, pxz)‘z =0.0

(©) Poy, =00, Py, =10, Py, =00, (@) Py, =05, Prs,= 0.0, Py, =-1.0.
p-“l)’x =0.0, p)"l)’z = 1.0, p-‘z!": =00 p-“l)"z =-10, p.\'z."z =040, p-‘z!"z =00

(€) Py, =05, Pyy, =00, Py, =00,
p-‘l)‘: =-10, p}‘l)‘z =00, pxs)‘z =0.0 P ¥y o
Figure 4.8. Distribution of line segments with p_ . =0.0
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4.2 Reliability of Spatial Features in 3D GIS

The reliability of spatial features including linear features, areal features and
volumetric features in 3D GIS will be studied. Since the algorithm used to calculate
the area of the discrepancy of a spatial feature (a measure of the reliability of the
spatial feature) is similar to that in 2D GIS, this section will concentrate on defining

the discrepancy of 3D spatial features.

The computation will assume that an ellipsoid is centered on a true node of a
spatial feature. A mathematical expression of the error ellipse is given by the

following:

Fori=1,...,NP, 1 have

2 2 2
Xj —Hy, Yi—#y, Zi —Hy Xi 7By, || Yi —Hy,
+ b + - +dy; P 3
i i i 2, 3. (418)
Xy — Z, - - zZ; -
+e 1 p'xl 1 “’z, + fl i Y1 p’y, t ”‘zl =1
L€y €31 " fs;

where a, bj, ¢, dz, d3, €2, €3, £ and {3 are non-zero real numbers; and

d;, er; and f, ; are any real numbers.

Ifd,;, e; i and f} ; are zero, a;, bj and ¢; will be the semi-axes of the error
ellipsoid which are parallel to the x-, to the y- and to the z-axes of the coordinate

system.

In the normal case, the error ellipsoid refers to a (1-a)% confidence region for
mean of a node of the line segment, and then Equation (4.18) is modified as shown

below.



2
Xi Ky, +2 pxiz.p)ﬁzi _pxiy_-‘_ Xi=Hy, || ¥i—Hy,
a; k Oy, oy
2
Yi Ry PxiyiPyiz; “Pxz || Xi "My, | i~ ¥y
+ L A +2 itj 15 % i i
[ b, J ( k ox N o (4.19)
2
+ Zi "Mz +9) PriyPxz “Pyz | ¥i THy, | A ~Hy,
Ci k Oy, Oy
=1

where 1=1, 2, ..., NP;

k= —2(1[1(1 - 0‘))(1 - pi;yi - piizi - piili + 2pxiYi pxizipYizi );
Oy,

G,
b; = ——=—;and

' J-2log(o)

o
i

hiT - 2log(a)

4.2.1 Line Segments

The discrepancy of a linear feature in 3D GIS is defined by the difference
between the expected linear feature and the measured linear features; and this
difference is due to measurement error. Similar to the 2D problem, the discrepancy
of a line segment is studied first. Figure 4.9 shows the discrepancy of a line segment

in 3D GIS. The solid line segment represents the expected line segment composed of

the two expected nodes, (;,LxI Ry, sl ) and (M, My s 15 ). And the dash line

segment represents the measured line segment composed of the two measured nodes,
(x1, ¥1, Z1) and (X2, y2, Z2). The discrepancy of the line segment is the shaded plane,
either flat or twisted. For each node of the line segment, its error ellipsoid centered
on its expected node can be seen and its measured node is mostly in the error

ellipsoid.
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Expected line segment - (ix2, Hy2, pa2)

\/

(I—lxls l-lyh uzlj‘:"-"’&

b y
XL, Y 7 _N (x2: Y2, 22)
Measured line segment

Figure 4.9. Discrepancy of a line segment in 3D GIS.

The discrepant area of the line segment (the shaded plane) is determined
differently depending on its case. Three possible cases exist: (a) the measured and
the expected line segments do not intersect and they are on a flat plane; (b) they

intersect; (c) cases neither (a) nor (b) is a possibility.

It is assumed that the measured locations and the expected locations of all
nodes should be on a flat plane and their two corresponding line segments should not

intersect. In such a situation, the discrepant area can be computed as follows.

Let 1x3 vectors A, B, C and D denote (x, oY1 THy 21y ),
(H-“z —“M’“h _}‘L)ﬁ’“lz ~Hq, ), (Xl -l'l-“z’yl ~Hy.- 2 Ha, ), and

(xy =Ky ,Y, —My .2, — 1, ) respectively. Then, ] have

A, = |AxB]+%|CxD], (4.20)

’ | —

where A x B is a vector cross product of A and B and so forth;

€],C;,¢3)| is the length or magnitude of vector (¢, ¢3, c3).
1:€2,€3 24 g
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In the second case, the measured and the expected line segments intersect at a

point (X2, Y12, Z;2). Let 1x3 vectors A’, B’, C’ and D’ denote

(x “Hy Y By 2 — ) (X T Y12 T By 2 — 4 )

(X2 =My, Y12 — Wy, 5 2) ~U,, ) and (X, ~Hx,»¥2 THy, 23 —H, ) respectively. The
area of the discrepancy is expressed in Equation (4.21).

A, :%|A'><B',+%|C'><D'|. (4.21)

*— Plane divider

Figure 4.10. Two sub-planes for discrepancy of a line segment in 3D GIS.

It is also possible that both the measured and the expected line segments are
neither on a ‘flat’ plane nor intersect. Under these circumstances, the area of the
shaded plane cannot be computed exactly. The obscurity of the equation formed by
the measured and the true nodes affects the discrepancy; the discrepancy cannot be
readily calculated. To simplify and quantify such a case, the approximate area of the
shaded plane will be obtained. Supposing the shaded plane shown in Figure 4.9 is
twisted, the plane is divided into two sub-planes (see Figure 4.10). The dotted line

called plane divider is used to divide the shaded plane into the two sub-planes | and

II. Nodes on plane I are (Hy sy, NIRRT 'My, s, ) and (X, y1, 21); nodes on
plane II are (pxz My s Hy, ) (X1, ¥1, 21) and (X3, V2, z2). The total area of the shaded

planes [ and II is presented in Equation (4.22).
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A =%(Px, THe By, THGH, _p'z,)x (xl THe Y TR, LT _pz,]+
. @)

_;"(}lx, —Xaly, “ Yl "'Zz)x (X| XY~ ¥ _sz

Another plane divider passing via (K, sy, sH;, ) and (X2, y2, Z2) can be
chosen, then the two sub-planes Il and IV contain (P‘x, My sHy, ), (X1, ¥1, Z1) and (X3,
¥2, Z2), and (Hy, sy, M ) (K, s My, M, ) and (X3, y2, 25) respectively. The total area
of the shaded planes Ili and IV is shown below

f
|
Ay =5‘0’1x| XKy, YLK, —z,)x(xz XYy TYeZy - 231 +
| (4.23)
ElO’lx, - ”’xl’p'y. - p‘y: ’uz, - p’zz )X (xl - u"z 2 Y. — l-ly, sZy — “21

As a result, the area of the discrepancy of the line segment is approximated by the

average of Ajgand A|).

4.2.2 Linear Features

A Expected linear feature

Measured linear feature

¥ X Figure 4.11. Discrepancy of a linear feature in 3D GIS,

Joining several line segments together yields a polyline, which is a broad line
feature. In this instance, the linear feature only refers to an unclosed polyline. For
instance, a linear feature passes via three nodes and its discrepancy is shown in

Figure 4.11, The solid polyline represents the expected location and the dash polyline
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represents the measured location. The area of the discrepancy of the polyline can be

viewed as union of discrepancies of two line segments.

4.2.3 Areal Features

An areal feature as discussed in this paper refers to a polygon in the digital
database sense. The discrepancy of the areal feature is distinct from the discrepancy
of the boundary of the areal feature, which is in fact the discrepancy of the closed
linear feature. The discrepancy of the areal feature should refer to a volume of the
discrepant object. In Figure 4.12, the solid and the dash polylines represent
boundaries of the expected areal feature and of the measured areal feature
respectively; the shaded object is the discrepancy of the areal feature, A volume of
the shaded object measures the reliability of the areal feature.

A
z

Boundary of the expected areal feature

Boundary of the measured areal feature

Figure 4.12. Discrepancy of an areal feature in 3D GIS.

4.2.4 Volumetric Features

In a 3D GIS, another important feature of spatial data is a volumetric feature.

The discrepancy of the volumetric feature can be determined with Figure 4.14. This
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illustration is an example of the volumetric feature whereby five surfaces S, S, S,
S4 and S5 form the volumetric feature (see Figure 4.13). The difference between the
measured and the expected volumetric features is the discrepancy of the volumetric
feature. For gaining more information on this discrepancy, let us consider a
difference between the expected volumetric feature and one of the measured surfaces
such as the measured surface of S4. This discrepancy (or difference) is the shaded
object involving two sub-objects (see Figure 4.15). One contains nodes P, P,, P13 and
P4 in which Py 18 on the measured surface of S;; P; and P; are intersecting points of
S\’s expected surface and S4’s measured surface; Py is on the expected surface of S;.
The other contains nodes Ps, Pg, Py, Ps, Py and P g while P s and Py are intersecting
points of S4’s measured surface and S4’s expected surface; P; and P are on the
expected surface of S4; Pg and Py are on the measured surface of S;. The shaded
object in Figure 4.15 is related to the discrepancy between surface S4 and the
volumetric feature. Similarly, the discrepant volume between the remaining four
surfaces and the volumetric feature is computed. The sum of the five discrepant

volumes is a measure of the reliability of the volumetric feature.

> A2/

Volumetric feature _ Five surfaces of the volumetric feature

Figure 4.13. A volumetric feature in 3D GIS.

Measured
volumetric
feature :

! -
; N R NN BB
‘,..,.:.}.n.-.-.s.A

.
.

?

Expected volumetric feature

Figure 4.14. Discrepancy of a volumetric feature in 3D GIS.
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Figure 4.15. Discrepancy between a surface of the measured volumetric feature
and the expected volumetric feature.

4.2.5 Examples

An expected line segment is connected by two expected nodes (0, 0, 0) and
(1000, 0, 0). The parameters of the two error ellipsoids, aj, by, ¢y, a3, by and ¢, in
both Equations (4.14) and (4.15) are 148, 148, 148, 66, 66 and 66 respectively;
parameters d, y, ey, {11, di 2, €12 and f) 7 are zeros. In the uniform case, the mean of
the ‘sub-mean’ of the discrepant area is 62627.0m” and the 95% confidence interval
for mean of the ‘sub-mean’ of the discrepant area is in the range of 46903.3m? and
78350.7m’. In the normal case, the mean is 49275.4m? and the 95% confidence
interval is [36903.8m?, 61647.0m?]. As the result obtained in the 2D problem, the
discrepant area of the line segment in the normal case is relatively smaller than that

in the uniform case.

In the previous 2D model, the parameters of the nodal error ellipses may
affect the reliability of a line segment. Table 4.2 shows the mean of the ‘sub-mean’
of the discrepant area and the 95% confidence interval for mean of the ‘sub-mean’ of
the discrepant area under different values for the parameters of the error ellipsoids in
both the uniform case and the normal case. The first six columns in Table 4.2 record

values for the parameters, aj, by, ¢), a3, by and ¢5. The next two columns tabulate the
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mean and the 95% confidence interval under the assumption of uniformly distributed
nodal error and the last two columns tabulate the mean and the confidence interval
under the assumption of normally distributed nodal error. Similar to the previous 2D
study, the values of parameter ay, by, ¢, a3, b and ¢, have the identical average in all
rows. Also, the average of the first three columns is 148m and this of the next three
columns 66m. As a result, for a positive integer i, parameter c¢; will increase if
parameter a; increases and parameter b is a constant; parameter b; will decrease if

parameter a; increases and parameter ¢; are fixed, and so on.

It is noticed that when only one of parameters b; and ¢; keeps constant and a
increases, the average discrepant area decreases. While parameter a; is fixed and
either parameter b; or ¢; varies the average discrepant area does not change
significantly. The expected line segment and the measured line segment generated by
the simulation estimate the average discrepant area. Due to the unchanged expected
line segment, the average discrepant area depends on the measured line segment.
According to the parameters of the two error ellipsoids the measured line segment
will be generated. Then, parameters a;, b; and ¢; may affect the average discrepant
area of the line segment. Figure 4.16 illustrates how the measured line segment

affects the average discrepant area.

Generated line segment 1

¢ Expected line segment

Figure 4.16. The effect of the measured line segment on the discrepancy.
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Table 4.2. Discrepant area of a line segment under different parameters of error

ellipsoids in a uniform case and in a normal case.
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The solid line in Figure 4.16 represents the true location of the line segment.
The dotted and the dash line segments represent the two generated line segments
under the same assumption of the nodal errors: the generated line segment 1 and the
generated line segment 2. Obviously, the discrepancy between the generated line
segment 1 and the expected line segment is larger than that between the generated
line segment 2 and the expected line segment. Moreover, the larger parameter a;, the
smaller the discrepant area, due to the fact that more generated line segments are near

the expected line segment when parameter a; is large.

For the example of a polyline (linear feature), the three expected nodes are (0,
0, 0), (50, 500, 707.1) and (1500, 500, 707.1). The parameters of nodal error
ellipsoids ay, by, ¢i, a;, by, ¢3, a3, by and ¢; are 100m, 196m, 148m, 30m, 78m, 90m,
100m, 196m and 148m respectively. In the uniform case, the mean of the ‘sub-
mean’ of the discrepant area and the 95% confidence interval for mean of the ‘sub-
mean’ of the discrepant area is 113475.0m? and [84985.1m>, 141964.9m?)
respectively. In the normal case, the mean and the 95% confidence interval are

89036.1m” and [66681.9m?, 111390.2m?] respectively.

The three nodes of an areal feature are chosen as that in the example of the
linear feature. The mean and the 95% confidence interval are 2.3x10” m® and
[1.8x107 m’, 3.0x10” m’] in the uniform case. In the normal case, the mean and the

95% confidence interval are 1.9x10” m® and [1.4x10” m*, 2.3x107 m’].

For the example of a volumetric feature, an additional node (to the existing
three) is considered. This addition now specifies a volumetric feature. This additional
node is (500, 707, 500) and its error ellipsoid has parameters a, = 30m, b, = 78m and
cq = 90m. The mean is 5.7x10” m’ and the 95% confidence interval is [4.2x107 mJ,
7.1x107 m3] in the uniform case; the mean is 4.4x10° m® and the confidence interval

is [3.3)(107 m’, 5.5x10 n13] in the normal case.



4.3 Summary

The simulation model has been proposed to model the reliability of 2D and
3D spatial features. Since this model is a further development of the existing
stmulation-based models, a comparison between the proposed model and the existing
models are made. It is concluded that the existing models may require some
adjustments. In the 2D and 3D reliability models, some similar findings are obtained.
It has been observed that the error ellipse model is required instead of the error circle
model. The size and shépe of the error ellipse of a node affects the discrepancy of a
spatial feature, Furthermore, the correlated nodal error is significant in the reliability
model. Correlation combination of the nodal error varies the discrepancy of the
spatial feature. Also, the distribution of the nodal error affects the reliability in a
certain extent. Usually, the discrepancy in the uniform case is greater than that in the

normal case.
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CHAPTER 5
RELIABILITY OF SPATIAL FEATURES BY
ANALYTICAL METHOD

A simulation model has been developed in the previous chapter to investigate
the reliability of a spatial feature in either 2D or 3D GIS. However, one of the
weaknesses of the simulation techniques is that they are time-consuming. Stanfel
(1996) suggested that a stochastic method could be used to approximate the
discrepant area of a spatial feature. It was also pointed out that accuracy and speed of

convergence should be further considered.

An alternative model will be proposed to describe the reliability of spatial
features using numerical analysis in this chapter, while the reliability and the
discrepancy of the spatial features are defined as in the previous chapter. This
numerical model improves upon the past body of work by investigating the analytical
method with a numerical solution. In the following, the numerical model of the
reliability of spatial features including linear and areal features in 2D GIS will be
demonstrated. Next, the numerical model of the reliability of spatial features
including linear, areal and volumetric features in 3D GIS will be discussed. Finally,
numerical results will be compared with simulated results in describing reliability of

spatial feature in GIS.

3.1 Spatial Features in 2D GIS

5.1.1 Linear Features

It is mentioned that a line segment is the fundamental unit of spatia! features
in the previous chapter. The numerical model for the reliability of a line segment is

derived, and then that of a linear feature and an areal feature is discussed later on.



The discrepancy of a line segment is in either the two-triangle or quadrangle
case (see Figure 4.1 and Figure 4.2). The nodes of a spatial feature have been
generated in simulation approaches and then joining the nodes together has created
the so-called generated measured spatial feature, which has been further used to
determine the case of the discrepancy. This simulation model considers the expected
discrepant area of the line segment in a converse approach. The first step of the
numerical model concerns the case of the discrepancy, mainly due to the fact that the

expected discrepant area is expressed as integral.

In order to describe all of these possible cases under the assumption,
integration is implemented to calculate the discrepant area of a line segment. From
statistical theory, the expected discrepant area in the two-triangle case is as follows

E(AI )= ”Hf("n}’h"z,}’z)x AI(XI’YI:X2’Y2 )dXIdY|dX2dY2 (5.1)
D,UD,
where D, and D, are domains of (x), y|) and (x,, y3) such that the two-triangle case
occurs;

f(x1, y1, X2, y2) 1s a joint probability density function of four random variables

X1, Y, X;and Y;; and

Ai(X), y1, X2, y2) is the discrepant area in the two-triangle case (see Equation

(4.2)).

Similarly, in the quadrangle case, the expected discrepant area can be

calculated as follows

E(A;)= ””f(xi:)ﬁ,X2>Y2)XA2(X1:Y|aX2.-Yz)dxld}’ldxdez (5.2)
D,UD,

where D, and D, are domains of (x,. ¥1) and (x3, v2) such that the quadrangle case
occurs;
f{(x1, ¥1, X2, ¥2) 1s a joint probability density function of four random variables
X;, Y. X2and Yy; and
Ax(X1, ¥1, X2, y2) is the discrepant area in the quadrangle case (see Equation

(4.3)).



The domain for the above two integrals is elaborated here. The solid line

. . X4 —H .
segment in Figure 5.1 can be expressed as x — Ry, = H—~-——x'(y —Hy, ) ifp, #p,

¥2 ¥y

and y =p, ifp, =p, where (x, y) is an arbitrary point on the solid line segment.

The domains in the two-triangle case and in the quadrangle case can be modified. In
Figure 5.1, the two nodal error ellipses are divided into two parts by the expected line
segment. If the measured location of the left-hand sided node of the line segment lies
insides region A and the measured location of the right-hand sided node lies insides
region D, these two measured nodes will form two triangles with the expected line
segment. This represents the two-triangle case. If these two measured endpoints lie
inside region B and region C, it remains the two-triangle case. Thus, there are two
possible domains of the integral for the two-triangle case. Similarly, two possible
domains of the integral also exist for the quadrangle case. The first case occurs if the
two measured nodes are inside regions A and C. The second case occurs if the two

measured nodes are inside regions B and D,

Expected line segment

A ¢ C

B s D
\ Error ellipses for another
Error ellipses for a node of node of a line segment
a line segment
Figure 5.1. Domain in the integral of a line segment.
For the two-triangle case, Equation (5.1) can be modified as
E(A, )= ijj.f(xle|=xzs}’2)x Al(xi,}’l,Xz?h)jxldhdxzd}’z
AvD .
(5.3)
+ Ij_fjf(xle|=xz,3"z)x Al(xl!yl!x2=y2 }‘I‘\'Id}'tdxzd)'l
BuC
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For the quadrangle case, Equation (5.2) can be modified as

E(A2)= J‘J‘Hf(x],y,,xz,yz)x Az(x,,y,,xz,yz)dx]dy]dxzdyz

A (5.4)
+ .[J‘J-If(XI’YIaXZ’YZ)XAZ(xI:yI’XZ’Y2)dedYIdx2dYZ

BUD

The overall expected discrepant area E is the sum of the expected discrepant
area in both the two-triangle case and the quadrangle case. That is,

E=E(A)+E(A,) (5.5)

Therefore, given the joint probability density function f, E can be computed.
The function f is represented by distributions of the nodal errors (of the line
segment). Two feasible assumptions are made. The first is uniformly distributed

nodal error; the second is normally distributed nodal error.

Assume that both nodes of a line segment are bivariate uniformly distributed
within their corresponding error ellipses whose equation is given by Equation (4.4)
where two nodes are uncorrelated. A joint probability density function of X; Y, X,

and Y, is

f(XpY],Xz,Yz): f(x]7YI)x f(xz,h)
1
"~ area of the error ellipse for (p, My )
1

area of the error ellipse for (sz My )

X

_ 2na,b,d,e, y 2na,b,d,e, (5.6)
Vadie? —ajbic?  yadZel - alblc2

if (x1, y1) and (xa, y2) are in their own error ellipses.

£(x,, ¥y, X5,¥,) =0, elsewhere.

Another feasible assumption ts that both nodes of a line segment are bivariate

normally distributed “within™ their corresponding error ellipses whose equation is
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given by Equation (4.6). A joint probability density function of four random
variables X, Y|, X, and Y, is

] gl B
f ,Yy)=————exp| —u'%
(X15¥1:X2,¥2) (2n)2|2|,,2 exp( 5B u) (5.7)

-
where mean vector p = (x, My I —Hy X2 ~Hy b Yo _“yz) ;

Oxix, Sxy, U-"‘lxz 0-“15’1
G c G o
. ) X X,y :
covariance matrix ¥ = i 4 Zi yiye : and
lexz 0"23’1 G"zxz G":)’z
G o G o)

X1¥2 ¥i¥2 X2¥2 Ya¥a2
Oy.x.»Oxy »and oy, aresample co-variances of X;’s and X;’s errors, X;’s and
Bl R | [P ]

Y;’s errors, and Y; and Y;’s errors respectively.

After function f is determined, the numerical integration will be implemented
to calculate the multiple integral in Equations (5.3) and (5.4) because the integral
may not be solved by finding antiderivatives. Multiple quadrature rules are the
traditional approach to solve complex integration problems. For example, in an

b
integral Jg(x)dx where a and b are constants, the Gaussian quadrature approximates

a
the integral by integrating the linear function that joins some of its points on the
graph (Burden and Faires, 1993). In Figure 5.2, the solid curve is the graph of the
function g. The first dash line segment is the line passing via (x|, g(x,)) parallel to
the x-axis and the second one is the dash line segment passing via (x,, g(x2)) also
parallel to the x-axis. The nodes x. X3, ..., X, in the interval [a,b] and coefficients ¢y,

€2, ..., Ca are chosen to minimize the expected error obtained in performing the

b n
approximation _[g(x)dx ~ Zci g(xi) for an arbitrary function g,

a i=l
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Y & The first dash

line ;gg;em 2 (x.5) The second dash
= x;;_/ line segment

* Figure 5.2. The Gaussian quadrature.

This technique can be modified in a straightforward manner for use in the
approximation of multiple integrals. To apply the Gaussian quadrature to

b d(x)
J.g(x, y)dydx , the integrals must first be translated. For each x in [a, b), the

a c(x)
interval spans from [c(x), d(x)] to [-1, 1]. The results are expressed by the following
formula
b d(x)
I X,y )dydx
a C(‘( (58)

J{_Ax_z o Sy 00 )N“"'

where the root r,; and coefficients ¢, j are constants (Stroud and Secrest, 1966).

In Figure 5.3, the domain of the double integral is divided into four parts.
Ranges a and b in the x-direction are assumed to be divided into two parts. Similarly,
ranges ¢(x) and d(x) in the y-direction are also divided into two parts (i.e. n =2 in
Equation (5.8)). As a result, the domain of the integral has four parts. The integral
over each part can be calculated, then by summing up these values of the integral

with their corresponding weights, the solution to the double integral g(x,y) is found.
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z=g(,p)

e
y=c@®

Figure 5.3. The domain of the double integral.

Algorithm 5.1 is used to compute:

b di(x)dy{xy,¥, ) dy(x,.5,.%;)

g(x,.y,,%,, ¥, Hy,dx,dy,dx, .

a o{x) ep{xny) o3{xyy)0)
In the single integral, the x range is divided into n classes. In this multiple integral,

ranges for xy, yy, Xz and y, are divided into m, n, no and p classes respectively.

Algorithm 5.1

Step 1 Input ranges a and b; positive integers m, n, no, p (assume that the roots r; J
and coefficients c;; are available for i equals m, n, no,pand for 1 < j<i).
Step2 Seth;=(b-a)/2;h;=(b+a)/2;]=0.
Step3 Fori=1,2,..., mdo Steps 4-12.
Step 4 SetJX=0;

X= hlrm.i + hl;

dir = dy(x);
¢ = ¢(X);
Ky =(di—cn)/2;
ky=(d); +cpy}/ 2.
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Step 5 Forj=1,2, ..., ndosteps 6-11,
Step 6 SetJY =0;
y = kjrq; + kg
dy; = da(x, y);
¢21 = c2(X, Y}
Lh=(dz—ca)/2
h=(dy +ca)/2.
Step7 Forkk=1,2, ..., no do steps 8§ — 10.
Step 8 SetlJZ=0;
Z=litno, kk + I;
d31 =d3 (x, ¥, 2);
c31=c3(X,Y, z);
my =(d3; —c3y)/ 2
my = (d3; +¢31)/ 2.
Step9 Fork=1,2,...,pdo
Set w=myr,  + my;
Q=g y,2z W)
JZ=17+¢c, Q.
Step 10 SetJY =JY + ¢pp 1 JZ my.
Step 11 Set IX=JX +¢,;JY 1.
Step 12 SetJ =J +c¢y  JX k.
Step 13 SetJ=h, J.
Step 14 Output J.

Replacing %, y, z and w with x|, y), x; and y; respectively, the overall

expected discrepant area of a line segment can be computed.
In the general event of a linear feature in which a line segment is a special

one, the average discrepant area of the linear feature composed of more than one line

segment can be expressed as below,
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E= .”.”...ij(xl,yl’...,xN[,,pr)xAdxldyl-‘-depdpr (5.9)

Dy UD
where NP is the total number of the nodes of the linear feature;

Dy, Dy, ..., Dnp are NP error ellipses for the NP expected nodes of the linear

feature;

fis a joint probability density function of 2 X NP random variables X1, Y,

X2, Ya, ..., Xnp and Yynp; and

A is the linear feature’s discrepant area defined as Chapter 3.

This integral can be numerically solved by the Gaussian quadrature. Thus, the
first step of the proposed numerical model is to define a domain for this multiple

integral and express A in terms of co-ordinates of nodes.

For the line segment, there are two possible cases to calculate the discrepant
area: the two-triangle case and the quadrangle case. However, for a linear feature, the
discrepant area is more complex. It may be the two-triangle case, the quadrangle case
or with both cases simultaneously. The following is an example to calculate the

discrepant area of a linear feature of three expected nodes.

Suppose a linear feature has three expected nodes (F‘x. N ) (sz WMy )
and (“x_. My ) There are three error ellipses for the three nodes and these are

centered at the corresponding expected nodes. Next, the domain of the integral is
considered. Referring to Figure 5.4, the first error eliipse (on the left-hand side) is
divided into two regions: A and B. Linking the left-hand sided node and the middle
node forms the first line segment, and the second line segment is formed by linking
the middle and the right-hand sided nodes. These two line segments and their
extensions divide the first error ellipse into regions A and B: the second error ellipse
(in the middle) into regions C and D; and the third error ellipse (on the right-hand

side) into regions E and F.



(Hy, My )

Figure 5.4. A linear feature of three nodes.

A measured location of the first node (x1, y1) may be within regions A or B.

A measured location of the second node (x;, y;) may be within regions C and D.

Similarly, the measured location of the third node (x3, y3) may be within regions E or

F. Therefore, a measured linear feature can be within regions, for example, (A, C, E)

or (A, C, F). There are eight combinations of the discrepancy and hence Equation

(5.9) can be modified as follows

The expected discrepant area of the linear feature of three nodes E

where E| = Ifo-, dx,dy, - dx pdy np;
AuéuE

BuéuF

E3 - ."‘J.fXAd dxnd)ﬁ"'dedeNP;
AuﬁuF

E, = J. J'fo4 dx,dy, - dx ypdy wp;

BUCUE
E = I J.fob dx,dy, '_"dXNPdYNP;

ACUlF

Eg = '[..-ffoﬁ dx(dy; -+ dX wpdy wp;
BUDUE

E,= j---ffoS dx,dy, - dx pdy p; and
AUDUE

Bp= [ [Fxa dxidy,deypdyyg.
BUCUF
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5.1.2 Areal Features

The discrepancy of an areal feature is defined in the previous chapter (see

Figure 4.4) and the expected discrepant area of the areal feature can be expressed as

E= JIII.-,[.[f(xl’yl""’xNP’YNP)xAdxldy"“dePdYNP (5.11)

Dy D
where NP is the total number of nodes of the areal feature;
Dy, Ds, ..., Dyp are NP error ellipse for the NP expected nodes of the areal
feature;
fis a joint probability density function of 2 x NP random variables X,, Y|,
X2, Yz, ..., Xnp and Yyp; and

A is the areal feature’s discrepant area defined as Chapter 3.

This equation seems to be same as Equation (5.9). In fact, f in both equations
is multivariate joint probability function of X, Yy, ..., Xnp, and Yyp; but the only
difference is the meaning of A. A refers to mathematical expression of the discrepant
area of a linear feature in Equation (5.9) while it refers to mathematical expression of
the discrepant area of an areal feature in Equation (5.11); these two mathematical

expressions are distinct.

5.2 Spatial Features in 3D GIS

For the discrepancy of a line segment in 3D GIS, it is noticed that three
possible cases exist in the previous éhapier: (a) the measured locations of all nodes
and their corresponding expected locations are on a flat plane given that the
measured and the expected line segments do not intersect; (b) the measured and the
expected line segment intersect; (c) neither case (a) or case (b) is a possibility. The

discrepant area of a line segment in the first case is represented by Ag; that in the
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second case is represented by Ao; the approximate discrepant area in the last case is
represented by the average of Ao and Ay, mainly in order to simplify the complexity
of the discrepant area in the third case. As a result, the expected discrepant area of

the line segment is computed as per Equation (5.12).

E= [ [rx Agdzdy,du,dzdy dx, + [+ [£x A gdzydydx,dzidy s,
DD, D,uD,

+ J' .. If x (A'“—;A‘L)dzzdyzdx .dz,dy dx,

(5.12)

D,uD,
where D)) and D; are the regions of the two ellipsoids given that case (a) occurs;
D3 and D, are the regions of the two ellipsoids given that case (b} occurs;
Ds and Dy are the regions of the two ellipsoids given that case (c) occurs;
U is union of the two regions; and

f'is a multivariate probability density function.

Practically, the three domains of the above three multiple integrals cannot be
defined easily and thus a simplification is needed. The first and the last integrals on
the right-hand side of Equation (5.12) should have the same integrand because the
area of the quadrangle Ay can be estimated by dividing the quadrangle into two
triangles and then summing areas of these two triangles together. Moreover, the
interval of the second integration on the right-hand side of Equation (5.12) s
ambiguous. lts integrand is further approximated by 0.5 £ x (A + A, 1) and this
approximation is larger than its exact value. Then, Equation (5.12) is modified as

Equation (5.13).

Apg+A ) ,
E:D ID Ifx—-2—d43dy2dxgdz]d}ldx| 5.13)

where D) and D; are the regions of the two error ellipsoids.
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In the uniform case, the mathematical expression of f is shown below

f(xp}’psz;,yz,zz): f(xasylazl)xf(xz’yz’zz)
1

" area of the error ellipsoid for (;le sHy s My, )
1
x 3 -
area of the error ellipsoid for (,uxl VHy sl )

(5.14)

if (x1, ¥1, z1) and (xa, y2, Z2) are in their error ellipseids
f(x1, y1, 21, X2, ¥2, Z2) = 0, otherwise

The joint probability density function of X, Y\, Z;, X3, Y2 and Z; in the

normal case is

1 -1 _
f(xl,Y[,Z|,X2,y2,Zz)=W‘EXP[—?_—MTE IH) (5.15)

where n= (xl _HKI:Y| ““'ylsz[ ——!’lzlsxz _uXI’YZ _“yzszz 'UZQ)TQ

4
Oxix; - Txpyy Oz, G-“l-\'z Oxiy:  Oxz,
G-\'l)'l 0‘)'l)"| 0')’lzl GX:Y: GYlY: GYI"-:
G, (8] e} G, ., (8] a
Xz ¥ 7z X, z FAY
3 = 12 AT 1% 2% Y27y |2;and
UNP\'z G"zYl cy-"‘11| G»‘z-‘z GK:Y: G-“zh
G?"lh GYuY: Ghzl zeh GY:Y: GY:”-:
lezz GYIZz czlzl 0-“222 G)’zzz Gzzzz
Oy x.sOxy, and Gy are sample co-variances of x;’s and x;’s errors, x;’s and
R | rha (]

y;’s errors, and yi's and y;’s errors respectively.
The integral in Equation (5.12) can be solved numerically using the Gaussian

quadrature numerical integration. Consider the discrepant area of a linear feature.

The expected discrepant area is presented in Equation (5.16).
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E = -[“‘J.f(x[JYI’Z]""’XNP,YNP’ZNP)XA dZdiyNPdXNP--.dzldyldX| (5]6)

DDy
where NP is the total number of nodes on the linear feature;
Dy, Dy, ..., Dnp are regions of the NP error ellipsoids for the NP nodes of the
linear feature;
U is union of regions;
fis a multivariate joint probability density function; and

A is the discrepant area of the linear feature.

Similarly, the expected discrepant areas of an areal feature and of a

volumetric feature are calculated by Equation (5.17).

E = J‘ J.f(xl,yl,Z],"',XNP:'YNP’ZNP)XVdZNPdYNPdXNP"'dzldyldx] (517)

Dy Dy
where NP is the total number of nodes on the linear feature;
Dy, Dy, ..., Dnp are regions of the NP error ellipsoids for the NP nodes of the
areal (or volumetric) feature;
U is union of domains;
f is a multivariate joint probability density function; and

V 1s the discrepant volume of the areal (or volumetric) feature.

5.3 Case Study

The following example calculates the expected discrepant area by the
Gaussian quadrature in 2D GIS. Tables 5.1 and 5.2 illustrate the discrepant area of
the line segment joined to two nodes (0,0) and (1000,0) of independent error in both
the uniform and the normal cases respectively. The first four columns of both tables
record values of the parameters of the error eliipse equations. The remaining
parameters of the error ellipse equation are set to zero. The next three columns are

the expected discrepant areas computed by the Gaussian quadrature with different
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values of parameter m, where m = n = no = p. And the last column records the

simulated results.

Table 5.1. Expected discrepant area of a line segment calculated from numerical
integration and simulation in an independent uniform case.

a by & b, Numerical result Simulated
m=35 m=10 m=15 result
100 196 30 78 | 374699  55860.8 55846.1 484427
100 196 54 54 | 323604 487856 48761.7 45900.1
100 196 78 30§ 272509 416753 41643.2 43248.2
148 148 30 78 | 323604  47715.0 47712.9 39260.7
148 148 54 54 | 272509  40679.2 40667.1 35987.2
148 148 78 30 | 221413  33608.4 33587.3 331458
196 100 30 78 | 272509  39569.1 39597.6 30379.6
196 100 54 54 | 221413 325728 32572.6 26669.4
196 100 78 30 | 17031.8  25541.5 25531.5 23480.7

Table 5.2. Expected discrepant area of a line segment calculated from numerical
integration and simulation in an independent normal case.

2 b, 2 by Numerical result Simulated
m=5 m=10 m=15 result
100 196 30 78 | 317504  32296.7 32342.2 34977.7
100 196 54 54 | 29787.1 304104 30448.0 32857.7
100 196 78 30 | 28158.2  28847.9 28878.2 30902.0
148 148 30 78 | 257194  26091.6 26132.2 28513.2
148 148 54 54 | 235550  24021.2 24052.3 25950.2
148 148 78 30 | 217224 222546 22278.1 238359
196 100 30 78 | 19931.0  20064.2 20103.1 22006.6
196 100 54 54 | 17502.0 17770.5 17797.6 19265.8
196 100 78 30 | 15386.8 15746.1 15763.9 16998.1

From the above two tables, the numerical results converge as parameter m

increases. It is a fact that a numerical result is an approximation of the expected

discrepant area. The accuracy of the approximation is related to the number of the

partitions in the domain. The domain of the integral has been divided into 5, 10% or

69



15" parts in the above examples. A difference between the numerical and the exact
results can be minimized if the domain of the integral is divided into more parts.
Theoretically, parameter m should be chosen as large as possible to obtain the
convergent result but the larger m, the more computing time. Parameter m is set to be

10 after both aspects have been taken into account.

For the example of the linear feature composed of three nodes, the three
expected nodes are (0, 0), (1000, 0) and (1500, 866). Error ellipse parameters ay, by,
a3, by, a3 and b; are lOOm, 196m, 30m, 78m, 100m and 196m respectively. The
covariance matrix, in the probability density function of the multivariate normal
distribution f, is a 6x6 diagonal matrix with uncorrelated errors of nodes (x1, yny, (xa2,
¥2), (x3 and y3) in the normal case while the confidence coefficient (1-0)) 100% is
0.95. The expected discrepant areas of the line segment are 73871.0m? in the uniform

case and 59536.5m”? in the normal case, wherem=n=no=p=10

For the areal feature, the three expected nodes are chosen as that in the
example of the linear feature. Its expected discrepant areas are 1.9x10° m? in the

uniform case and 1.3x10° m? in the normal case,

The numerical model on the reliability of 3D spatial features is also applied to
the example data of the proposed simulation model. The two expected nodes of the
line segment are (0, 0, 0) and (1000, 0, 0). Error ellipsoid parameters a;, by, ¢, a3, b;
and ¢z are 100m, 196m, 148m, 30m, 78m and 90m respectively. In the normal case,
the covariance matrix, in the probability density function of the multivariate normal
distribution f, is a 6x6 diagonal matrix with uncorrelated errors of nodes (x1, ¥1, Z1)
and (xa, y2, z3). The confidence coefficient (1-¢) 100% is 0.95. The expected
discrepant areas of the line segment are 9.2x10% m? in the uniform case and 6.2x10°

.
m” in the normal case.

For the 3D linear feature composed of three nodes, the three expected nodes
are (0, 0, 0), (500, 500, 707.1) and (1500, 500, 707.1). Error ellipsoid parameters a,,
b1, ¢, a3, by, ¢2, a3, by and ¢; are 100m, 196m, 148m, 30m, 78m, 90m, 100m, 196m
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and 148m respectively. The covariance matrix in the joint probability density
function of the multivariate normal distribution f is a 9x9 diagonal matrix. The
confidence coefficient (1-¢) 100% is 0.95, The expected discrepant areas of the
linear feature are 1.2x10° m” in the uniform case and 8.6x10*m? in the normal case.
Using the three expected nodes of the 3D linear feature for the 3D areal feature
results in expected discrepant volumes 2.3x10” m” in the uniform case and 1.5x10’

m” in the normal case.

For the example of a 3D volumetric feature, an additional node (to the
existing three) is considered. This addition now specifies a volumetric feature. This
additional node is (500, 707.1, 500), and its error ellipsoid has parameters aq = 30m,
bs = 78m and c4 = 90m. The expected discrepant volume of the 3D volumetric

feature in the uniform case is 6.4x10” m® and that in the normal case is 3.8x10" m’.

5.4 Comparison between the numerical and the simulated results

Since the accuracy of the simulated result and the numerical result are
unknown, their results are compared to check their accuracy. In the 2D examples,
both their difference in results and the ratio of the numerical results to simulated
results are tabulated in Table 5.3 and Table 5.4. In an ideal case (i.e. two methods
provide the same value of the expected discrepant area), the ratio should be equal to

one and the difference should be equal to zero.
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Table 5.3. Comparison of the numerical results with the simulated results in an
independent uniform case.

b . b Difference Ratio
al ‘ P 2 | m=5 [ m=10 | m=15 | m=5 m=10 m=15
100 196 30 78 | L.1x10* | 2.1x10° | -2.1x10° | 077 1.15 1.15
100 196 54 54 | 1.4x10* | -5.9x10° | -5.9x10° | 0.71 1.06 1.06
100 196 78 30 | 1.6x10° | -9.2x10° | -9.2x10° | 0.63 0.96 0.96
148 148 30 78 | 6.9x10° | -4.6x10* | -4.4x10* | 0.8 1.22 1.22
148 148 54 54 | 87x10° | -47x10° | -4.7x10° | 077 113 1.13
148 148 78 30 | 1.1x10" | -8.5x10° | -8.5x10° | 0.67 1.01 1.01
196 100 30 78 | 3.1x10® | 1.6x10° | 1.6x10° | 0.90 1.30 1.30
196 100 54 54 | 45x10° [ -29x10° | -2.9x10° | 083 122 122
196 100 78 30 | 6.4x10° | -7.4x10° | -7.4x10° | 0.73 1.09 1.09
Table 5.4. Comparison of the numerical results with the simulated results in an
independent normal case.
a b . b Difference Ratio
! ‘ 2 | m=5 [ m=10 [ m=15 | m=5 m=10 m=15

100 196 30 78 | 3.2x10° | 2.7x10° | 2.6x10° | 0.9 0.92 0.92
100 196 54 54 13.1x10° | 24x10° | 2.4x10° | 09] 0.93 0.93
100 196 78 30 | 2.7x10° | 2.0x10° | 2.0x10° | 091 0.93 0.93
148 148 30 78 | 2.8x10° | 2.4x10° | 2.4x10° | 09] 0.92 0.92
148 148 54 54 | 24x10° | 1.9x10° | 1.9x10° | 0.9 0.93 0.93
148 148 78 30 | 2.1x10° | 1.6x10° | 1.6x10° | 09] 0.93 0.93
196 100 30 78 | 2.1x10° | 1.9x10° | 1.9x10° | 091 0.91 0.91
196 100 54 54 | 1.8x10° | 1.5x10° | 1.5x10®° | 0.9] 0.92 0.92
196 100 78 30 | 1.6x10° | 1.3x10° | 1.2x10° | 09] 0.93 0.93

In Table 5.3, the difference between the numerical result and the simulated

result is either positive or negative. This shows that the simulated result will be

underestimated or overestimated if the numerical result is highly accurate. Hence the

simulated results should have some adjustment. Besides, the ratio is in the range

from 0.63 to 0.90 in the uniform case and is 0.91 in the normal case, wherem = 5 in

the numerical approach; these ratios are much further from 1. The ratios are in the

range from 0.96 to 1.30 and the range from 0.91 to 0.93 in the uniform and the

normal cases respectively, where m = 10 or m = 15. It is trivial that the simulation
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model in the normal case is better than that in the uniform case. Let us consider the

effects of error ellipse equations on the difference and the ratio.

Figures 5.5 and 5.6 plot the ratio and the difference against the error ellipse
parameter &; (i = 1 or 2) respectively from the results in Tables 5.3 and 5.4, where m
=n=no = p =15. Under the assumption of the nodal error (either uniformly or
normally distributed), three same symbols are displayed at a certain value of a; (i =1

or 2). It is because for this value of a;, other error ellipse parameters vary.
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| 4 ratio against al in the normal case X ratio against a2 in the normal case

Figure 5.5. Ratio of the numerical results to the simulated results against the
error ellipse parameter a;, where i =1 or 2.

In Figures 5.5 and 5.6, changing the error ellipse parameter a; (either i = 1 or
2) does not affect the ratio and the difference significantly in the normal case.
However, in the uniform case, both the ratio and the difference are controlled by the

error ellipse parameter. For example, when a; increases, the difference decreases but
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the ratio increases. When a; increases, the difference increases but the ratio

decreases.
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Figure 5.6. Difference between the numerical and the simulated results against the
error ellipse parameter a;, where i = | or 2.

Both the simulated and the numerical results are the approximation of the
expected discrepant area of the spatial features. From the above figures, it is
observed that the error ellipse affects the difference of the numerical results from the

simulated results.

In the independent case, there is no correlation among the nodal errors. This
may not always be true in the real world. I, therefore, further investigate the
correlation cases. Table 5.5 shows the differences between the numerical and the

simulated results (in the case of correlation) in the normal case.
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Table 5.5. Discrepant area calculated from numerical integration and simulation

under the assumption of the normally distributed correlated nodal errors.
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The co-ordinates of the line segment used in Table 5.5 are (0,0) and (1000,0).
The parameters for the error ellipse equations, a,, b, a, and b, take the values 100m,

196m, 30m and 78m. Parameters m, n, no and p are set to be the same.

It is observed that the ratios of the numerical results to the simulated results
ranges from 0.84 t0 0.93, wherem =n=no = p = §; from 0.64 to 1.07, where m = no
= p =10; from 0.67 to 1.04, where m = no = p = 15. These ratios are distinct from the
ratio in the previous uncorrelated normal case (range from 0.91 to 0.93), mainly due
to the effect of correlation coefficient. The ratios in the first four rows are a little bit
smaller than that in the next eight rows, except the third one. The domains of the first

four rows are very different to the domains of the next eight rows.

A domain of the integral is determined by two error ellipses. The correlation
coefficients among the nodal errors cannot affect the error ellipse equations.

However, the non-zero correlation coefficients p sy, and p, . will rotate the error

ellipses and change its shape, so that the pattern of the domain is different from that
in the independence case. As a result, different extents of the change yield different
ratios between the numerical and the simulated discrepant areas. In an ideal case, the

change does not affect the numerical results.

Table 5.6. The expected discrepant area of spatial features in 2D GIS,

In the uniform case In the normal case

Spatial | Expected discrepant area Expected discrepant area
feature | Numerical | Simulated Ratio Numerical Simulated Ratio

Result Result Result Result
Linear | 7.4x10’ 8.0 x10 0.92 6.0 x10° 5.8 x10* 1.03
feature ) )
Areal 1.9 x10° 1.8 x10° 1.05 1.3 x10° 1.3 xt0* 1.00
feature
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Table 5.7. The expected discrepant area of spatial features in 3D GIS.

In the uniform case

In the normal case

Spatial Expecte:r:;screp ant Expected discrepant area
feature Numerical | Simulated Ratio Numerical Simulated Ratio
Result Result Result Result
Line 9.3x10° | 7.5x10° | 123 | 6.2x10° 5.9x10° 1.05
segment
Linear 12x10° | 1.1x10° | 1.02 | 8.6x10° 8.9x10° 0.96
feature
Areal 23x107 | 24x10" | 0.99 | 1.5x10’ 1.9x107 0.82
feature
Volumetric |0\ 107 | s7x10" | 112 | 38107 4.4x10° 0.85
feature

In Tables 5.6 and 5.7, the expected discrepant areas of the spatial features in

2D and 3D GIS are recorded for both the numerical integration and the simulation

techniques. The ratio of the results from the numerical model to that from the

simulation model is in the range of 0.92 to 1.05 in 2D problem; the ratio is in the

range of 0.82 to 1.23 in 3D problem. In an ideal situation, this ratio should be 1. A

ratio varying from 1 is due to the approximation of the expected discrepant area for

both techniques (numerical integration and simulation techniques).
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CHAPTER 6
RELIABILITY OF BUFFER ANALYSIS

Spatial data in GIS is always expressed in terms of point feature, linear
feature, or areal feature. Its reliability has been discussed in the previous chapters.
Since the spatial data is not error-free, errors of the data will be transferred to the
newly generated data via a GIS operation such as buffer operation. As a result, the
derived spatial data may accumulate more errors and have different error
characteristics from the original data. In this chapter, a reliability model of buffer
analysis for the spatial data will be developed from two methods: simulation and

numerical integration.

A discrepant area of the buffer around a spatial feature measures reliability in
buffer spatial analysis for the spatial feature. The expected and the measured buffers
bound the discrepancy of the buffer. The expected buffer and the measured buffer
can be derived from the expected and the measured spatial features respectively.
Then, it is assumed that nodal errors of the spatial feature are distributed “within” the
nodal error ellipse. The discrepant area of the buffer can be estimated by simulation
or numerical approach. In the following, buffers around point feature, linear feature

and areal feature will be discussed.

6.1 Point Feature

The discrepancy of the buffer around a point feature is composed of a region
of which the boundary is the expected buffer, the measured buffer and the two
tangents of both the expected and the measured buffers. This region is shaded in

Figure 6.1.
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In Figure 6.1(a), {Hy, -1y, ) and (xy, y1) represent the expected and the

measured point features respectively. Points A and C are on the expected buffer;
points B and D are on the measured buffer; and circles on the left-hand side and on
the right-hand side (the expected buffer and the measured buffer respectively}
intersect at points E and F. The radii of these circles are the specified buffer size w.
The line passing through points A and B is tangent to both the expected and the
measured buffers; the line passing through points C and D is also tangent to the
expected and the measured buffers. The two tangents which meet the lefi-hand circle |
at points A and C, and the right-hand circle at points B and D are parallel because

these circles have the same radii. Given w, (Hy, SRy, ) and (x, y}), the coordinates of

points A, B, C, D, E and F can be calculated; the shaded area is subsequently

calculated.

Expected
buffer

Measured
buffer
(a) Two intersecting points on the expected (b} One intersecting point on the expected
and the measured buffers around a point. and the measured buffers around a point.
A

(p""l ’“')'1 )

(¢) No intersecting point on the expected and
the measured buffers around a point.

Figure 6.1. Discrepancy of the buffer around a point feature.
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The shaded area becomes zero when the location of the expected buffer is the
same as that of the measured buffer. This is one end of the spectrum of cases. Many
different cases can arise. In Figure 6.1(a), the two buffers intersect at two points. In
Figure 6.1(b), the expected and the measured buffers intersect only at one point,

point E. In Figure 6.1(c), the two buffers do not intersect at all.

Theoretically, the discrepant area of the buffer around the point feature
should be calculated differently, depending on its case. However, the discrepant area

of the buffer is equal to the area of the rectangle with vertices A, B, D and C.

The two tangents in Figure 6.1 are parallel to the line passing through

(Hy,-Hy, Yand (x), y1) because of the same radii of the two buffers. The normal to the

expected buffer at point A and that at point C has equal slope. These two lines

(normal} pass through ( Hy,-My, ) and so the line joined by points A and C passes
through (pt SRy, )- Similarly, the line joined by points B and D passes through (x,,

y1). A rectangle is formed and its vertices are points A, B, D and C. The discrepant
area of the buffer is equal to adding the area of rectangle ABDC to the area of the
semi-circle of the measured buffer and then subtracting the area of the semi-circle of
the expected buffer. The area of the measured buffer is equal to that of the expected

buffer. The discrepant area therefore should be the area of the rectangle ABDC.

6.2 Linear Feature

Let us consider the discrepancy of a buffer around a line segment. The
discrepancy of the buffer around a line segment is defined as the region whose
boundaries are composed of the expected buffer, the measured bufter and the
tangents of the expected and the measured buffers. This region is shaded in Figure

6.2.
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(“"2’“)’1)

)

(x2,¥2)\ C

(a) Four intersecting points on the expected and  (b) Three intersecting points on the expected and

the measured buffers around a line segment. the measured buffers around a line segment.
(K, Hy, )
(“xl’% j\\ /(_Hxl’p')’l) (p'!;’p)‘z).\
F ® *

J(?'iz, ¥2)

I
{(x1, 1)
(¢) Two intersecting points on the expected and  (d) One intersecting point on the expected and
the measured buffers around a line segment. the measured buffers around a line segment.
(u,,.m,.)
(“"u‘”v.) Moyt

(X1, ¥1)

e) No intersecting point on the expected and the
gp p

measured buffers around a line segment.

Figure 6.2. Discrepancy of the buffer around a line segment.
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In Figure 6.2(a), the solid line segment represents the expected line segment

of the two expected nodes (By, >Hy, ) and (p, 1, ); the dotted line segment

represents the measured line segment of the two measured nodes (x,, y) and (xa, y2).
The band around the solid line segment is the expected buffer around the line
segment; the band around the dotted line segment is the measured buffer; w is the
buffer size. The expected and the measured buffers intersect at points A, B, C and D.
The line passing through E and K is their tangent. Another tangent is the line of
nodes L and G. These two tangents are tangents to the expected and the measured
buffers around the node on the left-hand side, and the expected and the measured
butfers around the node on the right hand side respectively. The expected and the
measured buffers and their two tangents bound the discrepancy of the buffer. If the
buffer size, the two expected nodes and the two measured nodes are given then the
unknown points and the discrepant area can be determined. This is a case where the
expected buffer intersects the measured buffer at four distinct points. Four other

cases are shown in Figures 6.2(b)-6.2(e).

In Figure 6.2(b), the expected and the measured buffers intersect at three
points. The tangent of the expected and the measured buffers around the right-hand
sided node of the line segment is paralle! to the expected line segment and then this
tangent is not taken into accounts. The expected and the measured buffers intersect at
two points and one point respectively in Figures 6.2(c) and 6.2(d) while they do not
intersect in Figure 6.2(e). The amount of the intersecting points can be used to
determine which discrepancy of the buffer is. Therefore, the appropriate case of
discrepancy should be first determined in order to estimate the discrepant area

exactly.

The discrepancy of a buffer around a linear feature is also defined as the
region whose boundaries are composed of the expected buffer, the measured buffer
and the tangents of the expected and the measured buffers. For example, an expected
linear feature (the solid polyline in Figure 6.3) contains three expected nodes

(]J.xl My ), (px2 sHy, Jand (p My ). The corresponding measured linear feature is



the dotted polyline in which the measured nodes are (xy, y}), (x, y2) and (x3, y3). The
discrepancy of the buffer around the linear feature is shaded in Figure 6.3. The
discrepant area is obtained after the intersecting points on the tangents; the expected

and the measured linear features are derived.

(x2, y2)

(Hy sy, )

(x1, ¥1)

Figure 6.3. Discrepancy of the buffer around a linear feature with three nodes.

6.3 Areal Feature

The boundary of an areal feature is a linear feature. As a result, the
discrepancy of the buffer around the boundary of an areal feature has been studied in
the previous section. The discrepancy of the buffer around the areal feature is distinct
from the discrepancy of the buffer around the boundary of the areal feature because
in the former case the interior of the buffer may contain errors. Here, the discrepancy

of a buffer around an areal feature will be discussed.

The discrepancy of a buffer around an areal feature with four nodes is shaded

in Figure 6.4. Forj=1,2, 3 or 4, (ij My, ) and (xj, yj) represent the expected node

and the measured node of the areal feature. The boundary of the expected areal

feature is the solid polyline and that of the measured areal feature is the dotted



polyline. The region around the solid polyline is the buffer around the expected areal
feature while the region around the dotted polyline is the buffer around the measured
areal feature. The discrepancy of the buffer around the areal feature is formed by the
expected buffer, the measured buffer and their tangents. The shaded region in Figure

6.4 represents the discrepancy of the buffer around the areal feature.

(ux, 1y,

g

(bt oy, )

(Kx, oMy, )

(X2, ¥2)
(HyysHy,)

Figure 6.4. Discrepancy of the buffer around an areal feature with four nodes.

The discrepant area of the buffer around an areal feature is determined by the
expected and the measured buffers. The buffer around the areal feature involves
circles centered at the nodes of the areal feature (buffers around the nodes). In Fi gure
6.4, some of the buffers around the measured nodes such as (x,, y|), (X2. v2) and (x4,
ys) are not completely inside the buffer around the expected areal feature but some
such as (X3, y3) are. When the measured buffer around a node belongs to the former
case, a tangent of both the measured and the expected buffers around the node is
calculated and then the shaded area; which is caused by the discrepancy of the node,
is determined. Otherwise, the discrepancy of the node is not considered. Hence,
determining whether the buffer around a measured node of the areal feature is
completely inside the expected buffer around the areal feature is the first step of
estimating the shaded area. As a result, the shaded area of the areal feature is a sum

of all shaded areas of the nodes of the areal feature.
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6.4 Simulation Model

In order to study the effect of the positional error propagation in buffer spatial
analysis, simulation is implemented based on the assumption. Given the error ellipse
parameters, the measured buffer around a spatial feature is then generated and the

discrepant area of the buffer around the spatial feature can be computed.

Based on the nodal error assumption, a node is generated for each expected
node of the spatial feature; the measured buffer around the spatial feature and the
discrepant area is then calculated. This is the first iteration. After the simulation is
repeated N times, where N is a positive integer, an average of the discrepant area can

be obtained.

6.5 Numerical Model

The concept of the numerical model has been demonstrated in the last
chapter. Multiple integral has been used to estimate the expected discrepant area of a
spatial feature. The Gaussian quadrature has been implemented to solve the multiple
integral. In this session, the expected discrepant area of the buffer around a spatial

feature will be derived in terms of multiple integral.

The expected discrepant area of the buffer around a point feature is as
follows:
E= I_[f(xl:}’l)XAdxldY| (6.1)
D,
where D is the error ellipse for the point feature
fis a joint probability density function of two random variables X;and Y, and

A 1s the area of the rectangle ABDC defined in Figure 6.1.
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The expected discrepant area of the buffer around a line segment is as
follows:

S T O -
D,ub,

where D, and D; are two error ellipses for the two expected nodes of the line
segment
fis a joint probability density function of X, Y;, X and Y3, and
A is the shaded area defined in Figure 6.2.

The interval of the multiple integral should be further divided because the
shaded area in the line segment case cannot be expressed by only one equation. In
Figures 6.2(a) and (b), the expected and the measured line segments intersect. The
shaded area in Figure 6.2(a) contains two parts. The boundary of the upper part
passes through points C, D, G and L; the boundary of the lower part passes through
points A, B, I and F. The first region is called as region CDGL and the latter one is
called as region ABIF. The region CDGL shown in Figure 6.2(a) is in the upper part
but sometimes it is in the lower part. Let points A, B, C, D, F, G, I and L denote (Ax,
Ay), (Bx, By), (Cx, Cy), (Dx, Dy), (Fx, Fy), (Gx, Gy), (Ix, Iy) and (Lx, Ly), a
function A|y(Ax, Ay, Bx, By, Ix, ly, Fx, Fy) denotes the area of the shaded region
ABIF. Then, A\y(Cx, Cy, Dx, Dy, Gx, Gy, Lx, Ly) is the function used to denote the
area of the shaded region CDGL. In Figures 6.2(c)-(e), the expected and the
measured line segment do not intersect. Let A3 denotes the area of the region
ABGLIF in which its boundary passes through points A, B, G, L,  and F. Afterward,
the shaded band in Figure 6.5 is the buffer around the expected line segment. At the
end of the expected line segment. there exist two error eilipses surrounding the two
expected nodes. The measured line segment will intersect the expected line segment
if its nodes are either inside D, and Dy or inside D, and Ds. The measured line
segment will not intersect the expected line segment if its nodes are either inside D,

and D; or D, and D,.
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Figure 6.5. Interval of the expected discrepant area of the buffer around
a line segment.

The discrepant area of the buffer around the line segment can be

E = j Ifx (A,z(Ax,Ay, Bx, By, Ix, Iy, Fx, Fy)) dx,dy,dx,dy,

D,wD, )

4 J' f x(A,,(Cx, Cy, Dx, Dy, Gx, Gy, Lx, Ly)) dx, dy,dx,dy,
D,wD, )

+ J fx (A, (Ax, Ay, Bx, By, Ix, ly, Fx, Fy))dx]dy]dxzdyz 6.3)
D,uD,

+ I f x (A}, (Cx, Cy, Dx, Dy, Gx, Gy, Lx, Ly)) dx,dy, dx,dy,
D,wDy ‘-

+ J fxA; dx,dy,dx,dy, + I .[fXA” dx,dy,dx,dy,
Db, ) D,uD,

The expected discrepant area of the buffer around a linear feature and an areal

feature can be defined in the same manner.

6.6 Examples

Examples for a point, a line segment and an areal feature are given in the
following session, where a meter is the unit of length. The simulated results will be

discussed first. For the point, the expected node is (0, 0); a; = b, = 100; ¢, in the
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uniform case = p, . in the normal case = 0.0; w = 500. If the correlation coefficients

are assigned to be zero, the discrepant area of the buffer around the point is
65298.8m” in the uniform case and is 48665.7m? in the normal case. For the example
of a line segment, two expected nodes are (0, 0) and (1000, 1000); a; =b;=a,=b, =

100; ¢, in the uniform case = ¢, in the uniform case = Px,y, in the normal case =
Py, in the normal case = 0.0; w = 500. The discrepant area of the buffer around the

line segment is 3‘5)(105 m? in the uniform case and 3.2x10° m? in the normal case.
For the areal feature, the expected nodes are (0,0), (1000,1000) and (2000, -1000); a,
=bi=ay=b;=a;=b;=100;¢,=c;=¢3 = Pxy, =Px,y, =Py, = 0.0; w=500. The

X31¥,
discrepant area of the buffer around the areal feature is 1.5x10° m? in the uniform

case and 5.3x10> m® in the normal case

The discrepant area of the buffer around a spatial feature in the uniform case
is significantly larger than that in the normal case. The discrepant area is affected by
the measured location of the spatial feature. In this example, the measured spatial
feature is generated by simulation under the assumption of uniformly or normally
distributed nodal errors. The variance of the uniformly distributed nodal errors is

greater than the variance of the normally distributed nodal errors.

The effect of the buffer size on the positional error propagation in buffer
spatial analysis may be of interest. Tables 6.1, 6.2 and 6.3 show discrepant areas of
the buffer around a point feature, of the buffer around a linear feature and of the
buffer around an areal feature respectively with same data values as in the previous
example except for the buffer size. The first column in these three tables shows the
values for the buffer size. The next two columns record the mean and the 95%
confidence interval for the average discrepant area of the buffer around a point
feature in the uniform case and the last two columns record the mean and the

confidence interval in the normal case.
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Table 6.1. Discrepancy of the buffer around a point feature with different buffer sizes
using simulation.

Discrepancy in a uniform case Discrepancy in a normal case

w mean 95% confidence interval mean 95% confidence interval
500 6.5x10" (4.9x10%, 8.2x10% 4.9x10°* (3.6x10°, 6.1x10%
1000 1.3x10° (9.7x10°, 1.6x10%) 9.7x10* (7.2x10°, 1.2x10%)
1500 2.0x10° (1.5x10°, 2.5x10°%) 1.5x10° (1.1x10°, 1.8x10%)
2000 2.6x10° (1.9x10°, 3.3x10%) 1.9x10° (1.4x10°, 2.4x10%)
2500 33x10° (2.4x10°, 4.1x10%) 2.4x10° (1.8x10°, 3.1x10%)

Table 6.2. Discrepancy of the buffer around a linear feature with different buffer
sizes using simulation.

Discrepancy in a uniform case Discrepancy in a normal case

W mean 95% confidence interval mean 95% confidence interval
500 3.5x10° (2.6x10°, 4.3x10°) 3.2x10° (2.4x10°, 4.0x10%)
1000 7.8x10° (5.8x10°, 9.8x10%) 7.4x10° (5.6x10°, 9.3x10%)
1500 1.2x10° (9.1x10°, 1.5x10% 1.2x10° (8.8x10°, 1.5x10°%)
2000 1.7x10° (1.3x10°, 2.2x10% 1.7x10° (1.3x10%, 2.1x10%
2500 2.5x10° (1.8x10°%, 3.1x10% 2.4x10° (1.8x10°% 3.0x10%)

Table 6.3. Discrepancy of the buffer around an areal feature with different buffer
sizes using simulation.

Discrepancy in a uniform case Discrepancy in a normal case

w mean 95% confidence interval mean 95% confidence interval
500 1.5x10° (2.5x10%, 2.7 x10% 53x10° (2.7 x10%, 7.9 x10°%)
1000 | 3.2 x10° (9.6 x10%, 5.4 x109 1.5 x10° (5.3x107, 2.4 x10%
1500 6.0 x10° (1.6 x10°% 1.0 x107) 3.1 xi0° (1.1 x10°% 5.0 x10%
2000 | 9.2xi10° (1.7 x10° 1.7 x107) 5.2x10° (1.7 x10°% 8.7 x10%
2500 1.7 x107 (1.0 x10°, 2.3 x10% 1.1 x107 (7.9 x10% 1.5 x107)
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In Tables 6.1, 6.2 and 6.3, it is observed that the discrepant area of the buffer
around a spatial feature will increase if the buffer size increases. In Figures 6.1, 6.2
6.3 and 6.4, the discrepancy of the buffer around the spatial feature is considered
when the intersection of the measured buffer and the expected buffer is not empty. In

other words, the area of the measured buffer also affects the discrepant area to some

extent.

Let us consider the relationship between the discrepant area of the buffer and
its buffer size. A linear regression model is implemented to study their relationships
in different cases (uniform and normal cases). Table 6.4 shows linear regression
models for the discrepant area of the buffer around spatia] features in both uniform
and normal cases. R squared is a goodness-of-fit measure of a linear model
(sometimes called the coefficient of determination). It represents the dependent
variables (the discrepant area) and ranges in value from 0 to 1. Small values indicate
that the model does not fit the data well. The last two columns show the relationship
between the dependent variables (the discrepant area) and the independent variable
(the buffer size). Each observation of the discrepant area y can be described by the

model

y=bo+b wt+e, (6.4)

where € is a random error with mean zero and variance o2,

Table 6.4. Linear regression mode! for the simulated discrepant area of the buffer.

R squared bo B,
_ uniform case 1.00 18.7 130.5
Point feature in
normal case 1.00 0.0 97.3
_ _ uniform case 0.99 -2.5 x10° 1035.9
Linear feature in
normal case 0.99 -2.6x10° 1019.4
uniform case 0.92 -3.6 x10° 7314.4
Areal feature in
normal case 0.87 3.3 x1p° 5106.3
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Table 6.5. Comparison between the numerical and the simulated expected discrepant

area of a buffer.

w Numerical Simulated .
result result Ratio
500 6.7 x10* 6.5 x10* 1.02
1000 | 1.3x10° 1.3 x10* 1.02
In uniform case | 1500 | 2.0x10° 1.9x10° 1.02
_ 2000 | 2.7x10° 2.6 x10° 1.02
Point ' 2500 | 3.3 x10° 3.3 x10° 1.02
feature 500 4.6 x10* 4.9 x10° 0.94
1000 | 9.1 x10* 9.7 x10* 0.94
In normal case | 1500 1.4 x10° 1.5 x10° 0.94
2000 | 1.8x10° 1.9 x10° 0.94
2500 | 2.3 x10° 2.4x10° 0.94
500 3.9x10° 3.4x10° 1.12
1000 | 6.6 x10° 7.8 x10° 0.85
In uniform case | 1500 | 1.2 x10° 1.2 x10° 0.98
2000 | 1.6x10° 1.7 x10° 0.93
Linear 2500 | 2.5x10° 2.5 x10° 1.00
feature 500 3.4 x10° 3.2 x10° 1.07
1000 | 6.4 x10° 7.4 x10° 0.86
In normal case | 1500 1.2 x10° 1.2 x10° 0.99
2000 | 1.5x10° 1.7 x10° 0.89
2500 | 2.3 x10° 2.4 x10° 0.95
500 1.3 x10° 1.5 x10° 0.89
1000 | 3.1x10° 3.2x10% 0.99
In uniform case | 1500 | 5.5 x10° 6.0 x10° 0.92
2000 | 9.2 x10° 9.2 x10° 0.99
Areal 2500 | 1.7 x107 1.7 x10° 0.99
feature 500 5.3x10° 5.3 x10° 0.99
1000 1.5x10° 1.5 x10° 1.03
In normal case | 1500 | 2.8 x10° 3.1x10° 0.92
2000 | 5.0x10° 5.2 x10° 0.96
2500 1.1 x107 1.1 x107 0.96
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In Table 6.4, R squared is close to 1 in both the uniform and the normal cases
and so it 1s concluded that the discrepant area of the buffer around a spatial feature is

directly proportional to the buffer size.

Now numerical results are going to be compared with simulated results. The
first column in Table 6.5 shows the spatial feature discussed in this example, in
which the data values are equal to the previous simulation model. The second
column shows the assumption of the nodal errors. The next one records the change of
the buffer size. The following two columns record the numerical and the simulated
results respectively. The remaining column tabulates the ratio of a numerical result to

the corresponding simulated result.

It is noticed that the ratio (in the range of 0.85 and 1.12) is close to 1. As
mentioned in Chapter 5, the numerical and the simulation models provide an
approximation of the expected discrepant area (of the buffer around a spatial feature).
Although accuracy of both methods is unknown, it is observed that they have similar
results in the reliability model. Therefore, both methods are suitable to study the

reliability model.

From my point of view, the simulation approach will be potentially
implemented in GIS. The numerical method in fact has some limitations on
combination of the correlation coefficients of the nodal errors. It is because the
probability density function of the multivariate normal distribution f must be exited

and hence the determinant of the corresponding covariance matrix must be non-zero,

6.7 Summary

The error propagation model in the buffer spatial analysis has been derived by
two different approaches: simulation and numerical methods. Similar 1o the result in

the previous comparison between these two methods, the numerical result



approximates to the simulated result, and vice versa. Moreover, it is noticed that the
buffer size affects the discrepancy of the buffer around a spatial feature. When the
buffer size increases, the measure of the discrepancy increases. In the regression
model on the discrepant measure with the buffer size being an independent variable

¥

it is proved that they are directly proportional to each other.



CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS

The quality of spatial data in a GIS database is significant for their
applications. Accuracy information related to spatial data should attach to each
spatial feature depeﬁding on its type and source of error. In this study, positional
error models for spatial features and error propagation models in buffer spatial

analysis were derived based on two means: simulation and numerical analysis.

7.1 Summary of the Study

This study modeled positional errors in vector-based Geographical
Information Systems, a research topic in many organizations such as the
International Standards Organization. It is an important element for potential users to
decide whether the database in hand fit the intended use. This investigation included
modeling positional error in either 2D or 3D spatial features and positional error
propagation in buffer spatial analysis. The reliability of 2D spatial features including
linear features and areal features and that of 3D spatial features including linear
features, areal features and volumetric features was studied first using the simulation
technique. The positional error was measured by a discrepancy. The larger the
discrepancy, the more the positional error. Since the discrepancy depended on the
positional error of a 2D (or 3D) spatial feature, it was assumed that the nodal error of
the spatial feature was either uniformly or normally distributed “inside™ an error
ellipse (or ellipsoid). Then, the positional error was simulated. Moreover, because of
the limitation of the simulation method, the numerical integration was implemented
in order to check the accuracy of the simulation model. Furthermore, errors in source
data will propagate over GIS operations and so the error propagation model was

proposed by the simulation technique or numerical integration.
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7.2 Discussion and Analysis

7.2.1 Reliability of a Spatial Feature on Scale Map

In this study, the discrepancy of a spatial feature is used to measure its
reliability based on the -assumption of nodal error distribution. The reliability of a
spatial feature on different scale maps may be worried. For example, the reliability of
a land parcel on a 1:5,000-scale map should vary from that on a 1:25,000-scale map.
The discrepant area (or volume) of a spatial feature is different on different scale
maps. It is due to the fact that the discrepant area is computed based on the
assumption of nodal error distribution and the distribution’s properties such as
variance are affected by scale. Second, the discrepant area is an indicator for
positional error description. Whether a spatial data is reliable or not is determined by
an acceptant level and potential users may have different acceptant level for different

scale maps.

7.2.2 Error of Commission

The discrepancy of a point can be measured by distance between the
measured location and the expected location of the point. This concept was
generalized to define the discrepancy of a line segment, a region bounded by the
measured location and the expected location of the line segment. Simiiarly, the
discrepancy of a polygon was bounded by the measured location and the expected
location of the polygon and their tangents. Both error of commission and error of
omission should be considered to be the sum of the discrepancy of the polygon.
However, the discrepancy I mentioned in this study was the error of commission.
This simplified the reliability problem and so the error of omission should be

considered too.



7.2.3 Effects of Nodal Error Distribution

In the simulated examples for the 2D line segment, it was concluded that the
existing simulation-based models might require some adjustments. It was ascertained
that when the nodal errors are independent, decreasing either a, or a; would increase
the area of discrepancy. Thus, it was necessary to consider the error ellipse model
rather than the simplified error circle model. Furthermore, the discrepant area of the
line segment in the uniform case was significantly greater than that in the normal
case. This fitted the fact that most of the normal random nodal errors distributed
centrally near the measured nodes. The uniform case seemed to be the normal case
with a very large variance. Finally, it was noticed that different correlation matrices
of the nodal errors yielded different reliability of a line segment. Therefore, users
should be concerned both with positional errors within the nodes and between the
nodes. In the simulated examples for the 3D line segment, similar results in the 2D
problem could be achieved. The discrepancy of a spatial feature in the uniform case
was greater than that in the normal case. It was also observed that the parameters of

the nodal error ellipsoid might affect the reliability of a spatial feature.

7.2.4 Effect of Buffer Size in Buffer Spatial Analysis

In the buffer spatial analysis, it was noticed that the positional error
propagation was affected by the buffer size. The reliability model for spatial features
was further developed in order to investigate the error propagation in the buffer
spatial analysis. Hence, the propagated error was simulated. Buffers around a point
feature, a linear feature and an areal feature were considered. Among these three
features, it was ascertained that the buffer size and the discrepant area had a linear

relationship. Therefore, the buffer size affected the reliability to a certain degree.
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7.2.5 Choice of Methods: Simulation verse Numerical Integration

The weakness of the simulation mode! was that it is very time-consuming and
might not be very accurate. A newly developed analytical model provided alternative
numerical solutions to validate the simulated results. The analytical solution (in the
form of a multiple integral) for the expected discrepant area (or volume) was given.
A numerical integrétidn (Gaussian quadrature) was implemented to provide
numerical solutions. Then, the proposed numerical models were compared with the
simulation models. From our results, both models were able to approximate a similar

value of the discrepancy.

The simulation model was considered the preferred approach in GIS. The
expected discrepancy in the numerical model was expressed in term of 2 multiple
integral in which the interval should be defined regarding the discrepancy case. For a
point feature and a line segment, the interval could be defined in general terms.
However, for a linear feature, an areal feature and a volumetric feature in 2D and 3D,
the interval was determined by the amount of the nodes of the spatia! feature. If the
number of the nodes of the spatial feature increases, the possible discrepancy cases
will increase. It was difficult to express the discrepant area (or volume)
mathematically with only one equation. Therefore, the numerical model was not
suitable to provide the error description of GIS spatial data. Moreover, a limitation of
the numerical solution was its inability to handle the case of a correlation coefficient

being 1 or -1, mainly due to the undefined joint probability density function.

7.2.6 Position Random Errors and Modeling Errors
In this study, it was noticed that the positional errors were smallest midway

between the two nodes of the line segment, but one might expect that the postitional

errors would be the largest at the furthest distance from the given nodes. It was

97



mainly due to modeling the reliability of the line segment regardless of modeling
errors. If the variance of the modeling errors is added to the measurement errors in
perpendicular direction of the line segment, the positional errors at the midpoint
position will be larger than that at the given nodes of the line segment. Therefore, the

proposed model assumed that the modeling errors were zero.

7.3 Conclusions

This study attempted to clarify how to model positional errors of spatial
features and its analysis in vector-based GIS. The proposal models are based on two
approaches: simulation and numerical integration method. After weaknesses of these
two methods were compared, the simulation model is preferable in GIS. It is
potentially implemented to simulate positional errors of GIS-based data and even
error propagation over GIS operations. The results are thus applicable to all features
of GIS for error description. This model provides a measure tool to identity

rehiability of spatial features in GIS.

7.4 Contributions of this Study

The proposed simulation model modified existing simulation-based models
for a line segment. In the simulation model, most possible measured spatial features
were generated based on our assumption. The area (or volume) of the discrepancy for
each measured spatial feature was computed. The average discrepant area (or
volume) was an indicator of the reliability. Differing from existing simulation-based
models on the reliability of a 2D line segment, which assumed the nodal errors
uniformly distributed within error circies, the proposed simulation model further
investigated the reliability of the line segment. Both uniform and normal distribution
cases of the nodal errors were considered. Furthermore, the error circle model was

extended to the error ellipse model, which is a more realistic model to describe the
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positional errors of the real world features. In addition to the reliability model for a
2D line segment, the reliability model was generalized to the model on the reliability

of GIS spatial features.

7.5 Recommendations for Further Studies

In the numerical model, the Gaussian quadrature was implemented to
approximate the expected discrepant area (or volume). An error term, which is the
difference between the true value and the approximation, can be derived in the
numerical analysis and provide much information about the accuracy of this
approximation. Existing estimations of the error term consider that the interval of the
integral should be divided into equal subintervals, However, the subintervals in the
Gaussian quadrature are not in equal length in order to minimize the error term. If

this numerical model is implemented in the future, one should pay attention to the

€rror term.

Second, the discrepant area of spatial features defined in this study depended
on a characteristic of the spatial features such as length, area, and so forth. Dividing
the discrepant area by the length of a line segment in 2D, for example, can normalize
this indicator. In the analysis of the reliability of a line segment using the simulation
approach, the comparison of the discrepant area in different situations was
unaffected, because the length of the spatial features was the same in each
comparison. For a more general study in which the length of the features is not equal

to each other, the normalization approach may be applied.

This research study focused on modeling positional random errors, however
modeling errors (or generalization errors) is also significant in GIS. Although a map
is a traditional approach to identify a destination. it is impossible to represent the
reality completely on a map and so modeling errors exists in the map. If the map is

digitized, modeling errors will be generated. Therefore, modeling errors may be due
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to the difference between (a) the reality and its digital representation in GIS; (b) a
map and its digital representation in GIS; and (c) a digital and its geographical
representations in GIS. It is quite difficult to model them because modeling these
errors is partly in the field of psychology. Hence, a further research in this circle is

necessary.
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APPENDIX
MATHEMATICAL PRELIMINARIES AND
STATISTICAL THEQOREMS

Error distribution of a point may involve a matrix and some matrix operations (such
as matrix arithmetic, product of matrices, and so on), which are common, will not be
shown here but definitions of some matrices will be elaborated in the first session
because these definitions are used when the error distribution 1s defined. The next

session will state some statistical techniques used in this study.

Mathematical Preliminaries

Eigenvalue of Matrix

Systems of n linear equations in n unknowns are usually expressed in the
form
Ax =Xix, (1)

where Aisanxn square maltrix, X is a n x 1 matrix and A is a scalar,

Equation (1) can be rewritten as
(Al-A)x =0, 2)

where 1 is an identity matrix and 0 is a zero vector.
Those values of ) will be determined for which the system has a nontrivial

solution (non-zero sotution). Such a value of A is called a characteristic value or an

eigenvalue of A.
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Positive Definite of Matrix

A symmetric matrix A is positive definite if, and only if, all the eigenvalues

of A are positive.

Statistical Theorems

The Central Limit Theorem

If samples X, X5, ..., X, are selected independently from identical

populations which are normally distributed with mean u and standard derivation o,

i=
n

the distribution of sample means ()_( = ) is normally distributed with mean

R
Hx THx, Pro w and standard deviation o = %. In probability
n

My = "

theory, there is an important theorem called the central limit theorem. In sampling
from a large population of any distribution, the sample means have a normal

distribution whenever the sample size is large. The distribution of the sample means

: o . .
has mean - = and variance o = T - A special case of this theorem asserts that
: ) a

if Xy, X, ..., X, denote the random sample from any distribution having mean p and

positive standard derivation o, the random variable \/H()—(: - ;u)/cs has an

approximate normal distribution with mean zero and variance 1 when the sample size
n is large. That is, the sum of n independent and identically distributed random

variables is approximately normally distributed.
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Confidence Interval for the Population Mean

Suppose that the numerical outcome X of a random experiment is a random
variable having a univariate normal distribution with known variance o but
unknown mean p. Here pu is constant but its value is unknown. To estimate y, the
random experiment should be repeated n times independently under identical
conditions where n is a fixed positive integer. Let the random variables X, X3, ...,
Xn denote the outcomes on these n repetitions of the experiment respectively. Then,

the distribution of the random variable X; (i = 1, .., n) is normal with unknown mean

p and known variance o”. The distribution of the sample mean X is normal with

. o o (X-p).
mean p and vanance 0'2/ n and the distribution of the random variable { / \/EJ is
o/vn

normal with mean zero and variance 1. Since 95% of the area under the standard

normal curve is between z =-1.96 and z = 1.96 (see Figure 1) and X has a standard

normal distribution, we have

P[—1.96< XoH <1.96J=0.95 : (3)

G-
X

Figure Al. 95% of the area under the standard normal curve.

The inequality in Equation (3) is simplified in Equation (4).

X ~1.96c= <p.t<;+l.960; : (4)
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This interval is called a 95% confidence interval for the population mean, p.
The general form for the interval is shown in Equation (5) where Zyy, is the upper o/2
percentage point of the standard normal distribution. The confidence coefficient
(confidence level) is 1-a where 0 <o < 1. The 100(1- a) % confidence interval for

the population mean is

X—ZynO7; <P <X+ AW Ll (5)
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