

Abstract

Caching is a key technique for improving the data retrieval performance of mobile

clients, who will store frequently needed data items in their local cache, often of a

limited size. The emergence of the state-of-the-art peer-to-peer communication tech-

nologies now brings to reality what we call “cooperative caching” in which mobile

clients can help one another in caching. They not only can retrieve data items from

mobile support stations, but also from the cache in their peers, realizing a new dimen-

sion for mobile data caching. This thesis proposes a COoperative CAching scheme,

called COCA, which can be tailored for pull-based, push-based and hybrid mobile

environments. COCA was found to improve the access latency of client requests and

the amount of relatively expensive requests forwarded to the server in the pull-based

environment. It can also effectively reduce power consumption in the push-based and

hybrid environments. We propose a cache signature scheme for the mobile clients

to provide hints for them to determine whether to search the cache of their peers

or directly enlist the server for help. We observe the need for cooperating peers to

cache useful data items together, so as to further improve cache hit from peers. This

could be realized by capturing the data requirement of individual peers in conjunc-

tion with their mobility patterns, for which we respond with two group-based coop-

erative caching schemes for mobile clients: centralized and distributed group-based

COCA schemes or CGCoca and DGCoca respectively. We define a tightly-coupled group

(TCG) as a collection of peers that possess similar mobility pattern and display sim-

ilar data affinity. Built upon the COCA system, we propose a family of centralized

and distributed algorithms to discover and maintain all TCGs dynamically in CGCoca

and DGCoca respectively. Two cooperative cache management protocols: cooperative

cache admission control and cooperative cache replacement, are proposed to improve

data accessibility in TCGs. We conduct performance studies of our COCA schemes

based upon simulated experiments. The group-based COCA schemes are shown to

outperform the conventional caching scheme, standard COCA and COCA with cache

signature scheme. In the group-based COCA schemes, DGCoca is also found to per-

form better than CGCoca, as DGCoca is more effective in discovering and maintaining

TCGs in mobile environments.

Acknowledgments

I would like express my deepest gratitude to my research supervisor Dr. Leong Hong

Va for his invaluable support, advice, insight and guidance throughout this interesting

and challenging research project. In addition, I would like to thank my great research

group members, Dr. Alvin Chan, Mr. Ken Lee, Mr. Gary Lam and Miss Jing Zhou

for their suggestions and sharing experiences and knowledge with me.

Last but not the least, I also would like to thank my family - my elder sister Aster

Chow and my parents, and my best friend Miss Flora Lee for their endless love, sup-

port and encouragement. This thesis is dedicated to all of them.

Contents

Contents i

List of Figures vi

List of Tables xi

1 Introduction 1

1.1 Background . 1

1.1.1 Infrastructure- and Ad-hoc-based Wireless Information Access 2

1.1.2 Data Dissemination Models in Mobile Environments 2

1.1.3 Unique Properties of Mobile Systems 6

1.2 Mobile Cooperative Caching . 7

1.3 Motivation . 8

1.4 Problem Statements . 10

1.5 Contribution of the Thesis . 11

1.5.1 COCA: A Model for Mobile Cooperative Caching 12

1.5.2 Signature Techniques for Information Filtering 12

1.5.3 Group-based Cooperative Cache Management 13

1.6 Organization of the Thesis . 13

i

2 Related Works 15

2.1 Cooperative Caching in Distributed Shared-Memory Systems in Wired

Network . 15

2.1.1 N-Chance Forwarding . 16

2.1.2 GMS . 16

2.1.3 Hint-based Cooperative Caching 18

2.2 Cooperative Caching in Hierarchical Web

Caching . 19

2.2.1 Hash Routing Protocol . 20

2.2.2 Summary Cache and Cache Digests 21

2.2.3 Expiration-Age based Scheme 22

2.3 Cooperative Caching in MANETs . 23

2.3.1 Cooperative Data Dissemination 23

2.3.2 Cooperative Cache Management 25

3 COCA 29

3.1 Introduction . 29

3.2 Assumptions in COCA . 29

3.3 System Model . 30

3.3.1 Multi-hop P2P Data Searching in COCA 31

3.3.2 Pull-based Mobile Environment 32

3.3.3 Push-based Mobile Environment 34

3.3.4 Hybrid Mobile Environment 35

3.4 Simulation Model . 37

3.4.1 Power Consumption Model . 38

3.4.2 Mobility Model . 41

ii

3.4.3 Data Access Pattern . 41

3.4.4 Server Model . 42

3.4.5 Network Model . 42

3.5 Simulation Results . 43

3.5.1 Effect of Cache Size . 46

3.5.2 Effect of Data Item Size . 49

3.5.3 Effect of Skewness in Access Pattern 51

3.5.4 Effect of Access Density . 53

3.5.5 Effect of Common Hot Spot 55

3.5.6 Effect of Client Disconnection Probability 57

3.5.7 Effect of Mobility Speed . 59

3.5.8 Effect of Number of MHs . 60

3.5.9 Effect of Hop Distance . 62

3.6 Concluding Remarks . 65

4 Cache Signature Scheme 67

4.1 Introduction . 67

4.2 Background . 69

4.3 Cache Signatures . 71

4.3.1 Cache Signatures with Compression 72

4.3.2 Generation of Cache Signatures 74

4.4 Cache Signatures with Proactive Generation 75

4.5 Cache Signature Storage Schemes . 79

4.6 Cache Signature Exchange Protocol 81

4.7 Simulation Model . 88

4.8 Simulation Results . 88

iii

4.8.1 Effect of Cache Size . 90

4.8.2 Effect of Data Item Size . 93

4.8.3 Effect of Skewness in Access Pattern 95

4.8.4 Effect of Access Density . 97

4.8.5 Effect of Common Hot Spot 100

4.8.6 Effect of Client Disconnection Probability 102

4.8.7 Effect of Mobility Speed . 104

4.8.8 Effect of Number of MHs . 106

4.9 Concluding Remarks . 109

5 Group-based Cooperative Caching 111

5.1 Introduction . 111

5.2 CGCoca . 115

5.2.1 Similarity Measurement in Mobility Patterns 115

5.2.2 Similarity Measurement in Data Access Patterns 116

5.2.3 Incremental Clustering Algorithm 117

5.2.4 CGCoca with Cache Signature Scheme 123

5.3 DGCoca . 126

5.3.1 Stable Neighbor Discovery Algorithm (SND) 127

5.3.2 Similarity Measurement in Data Access Patterns 130

5.3.3 DGCoca with Cache Signature Scheme 133

5.4 Cooperative Cache Management Protocols 136

5.4.1 Cooperative Cache Admission Control 137

5.4.2 Cooperative Cache Replacement 137

5.5 Simulation Model . 138

5.5.1 Mobility Model . 139

iv

5.5.2 Data Access Pattern . 140

5.6 Simulation Results . 140

5.6.1 Effect of Cache Size . 141

5.6.2 Effect of Data Item Size . 143

5.6.3 Effect of Skewness in Access Pattern 145

5.6.4 Effect of Access Density . 147

5.6.5 Effect of Common Hot Spot 149

5.6.6 Effect of Client Disconnection Probability 152

5.6.7 Effect of Mobility Speed . 154

5.6.8 Effect of Number of MHs . 156

5.6.9 Effect of Group Size . 159

5.7 Concluding Remarks . 162

6 Conclusion 164

6.1 Concluding Remarks of the Thesis . 164

6.2 Future Work . 167

6.2.1 Cache Invalidation Protocol 167

6.2.2 Client Incentive Scheme . 168

6.2.3 Power Conservation Protocol 168

6.2.4 Semantic Cooperative Caching 169

6.2.5 Utilizing the Cache Space of Low-Activity MHs 169

References 171

v

List of Figures

1.1 The relationship between different parts of this thesis: the

COCA system, cache signature scheme and two group-based

COCA schemes. 12

3.1 System architecture of COCA. 31

3.2 Storage hierarchy of pull-based mobile systems. 33

3.3 Storage hierarchy of push-based mobile systems. 35

3.4 Power consumption measurement models for P2P communi-

cation. 38

3.5 Power consumption measurement in a broadcast environment. 40

3.6 Effect of cache size in a pure pull-based environment. 47

3.7 Effect of cache size in a pure push-based environment. 47

3.8 Effect of cache size in a hybrid environment. 48

3.9 Effect of data item size in a pure pull-based environment. . . 50

3.10 Effect of data item size in a pure push-based environment. . 50

3.11 Effect of data item size in a hybrid environment. 51

3.12 Effect of skewness in access pattern in a pure pull-based en-

vironment. 51

vi

3.13 Effect of skewness in access pattern in a pure push-based en-

vironment. 52

3.14 Effect of skewness in access pattern in a hybrid environment. 52

3.15 Effect of access density in a pure pull-based environment. . . 53

3.16 Effect of access density in a pure push-based environment. . 53

3.17 Effect of access density in a hybrid environment. 54

3.18 Effect of common hot spot in a pure pull-based environment. 55

3.19 Effect of common hot spot in a pure push-based environment. 55

3.20 Effect of common hot spot in a hybrid environment. 56

3.21 Effect of client disconnection probability in a pure pull-based

environment. 57

3.22 Effect of client disconnection probability in a pure push-based

environment. 57

3.23 Effect of client disconnection probability in a hybrid environ-

ment. 58

3.24 Effect of mobility speed in a pure pull-based environment. . 59

3.25 Effect of mobility speed in a pure push-based environment. . 59

3.26 Effect of mobility speed in a hybrid environment. 60

3.27 Effect of number of MHs in a pure pull-based environment. . 61

3.28 Effect of number of MHs in a pure push-based environment. 61

3.29 Effect of number of MHs in a hybrid environment. 62

3.30 Effect of hop distance in a pure pull-based environment. . . . 63

3.31 Effect of hop distance in a pure push-based environment. . . 63

3.32 Effect of hop distance in a hybrid environment. 64

vii

4.1 The false positive probability with different values of k and

M . (N = 10, 000) . 70

4.2 An example of the generation of a data signature from a URL. 75

4.3 Effect of cache size in a pure pull-based environment. 90

4.4 Effect of cache size in a pure push-based environment. 90

4.5 Effect of cache size in a hybrid environment. 91

4.6 Effect of data item size in a pure pull-based environment. . . 93

4.7 Effect of data item size in a pure push-based environment. . 93

4.8 Effect of data item size in a hybrid environment. 94

4.9 Effect of skewness in access pattern in a pure pull-based en-

vironment. 95

4.10 Effect of skewness in access pattern in a pure push-based en-

vironment. 96

4.11 Effect of skewness in access pattern in a hybrid environment. 96

4.12 Effect of access density in a pure pull-based environment. . . 97

4.13 Effect of access density in a pure push-based environment. . 98

4.14 Effect of access density in a hybrid environment. 98

4.15 Effect of common hot spot in a pure pull-based environment. 100

4.16 Effect of common hot spot in a pure push-based environment. 100

4.17 Effect of common hot spot in a hybrid environment. 101

4.18 Effect of client disconnection probability in a pure pull-based

environment. 102

4.19 Effect of client disconnection probability in a pure push-based

environment. 102

viii

4.20 Effect of client disconnection probability in a hybrid environ-

ment. 103

4.21 Effect of mobility speed in a pure pull-based environment. . 104

4.22 Effect of mobility speed in a pure push-based environment. . 104

4.23 Effect of mobility speed in a hybrid environment. 105

4.24 Effect of number of MHs in a pure pull-based environment. . 106

4.25 Effect of number of MHs in a pure push-based environment. 106

4.26 Effect of number of MHs in a hybrid environment. 107

5.1 Distance threshold (∆c) selection 119

5.2 An example of the incremental clustering algorithm. 122

5.3 A state diagram of the client relationship 127

5.4 This figure depicts a scatter plot of 49,500 points of the esti-

mated Jacard coefficient (access history signature approach,

on the y-axis) and the actual Jacard coefficient (bit vector

approach, on the x-axis). 133

5.5 Effect of cache size in a pure pull-based environment. 141

5.6 Effect of cache size in a pure push-based environment. 142

5.7 Effect of cache size in a hybrid environment. 142

5.8 Effect of data item size in a pure pull-based environment. . . 143

5.9 Effect of data item size in a pure push-based environment. . 144

5.10 Effect of data item size in a hybrid environment. 144

5.11 Effect of skewness in access pattern in a pure pull-based en-

vironment. 145

5.12 Effect of skewness in access pattern in a pure push-based en-

vironment. 146

ix

5.13 Effect of skewness in access pattern in a hybrid environment. 146

5.14 Effect of access density in a pure pull-based environment. . . 147

5.15 Effect of access density in a pure push-based environment. . 147

5.16 Effect of access density in a hybrid environment. 148

5.17 Effect of common hot spot in a pure pull-based environment. 150

5.18 Effect of common hot spot in a pure push-based environment. 150

5.19 Effect of common hot spot in a hybrid environment. 151

5.20 Effect of client disconnection probability in a pure pull-based

environment. 152

5.21 Effect of client disconnection probability in a pure push-based

environment. 152

5.22 Effect of client disconnection probability in a hybrid environ-

ment. 153

5.23 Effect of mobility speed in a pure pull-based environment. . 155

5.24 Effect of mobility speed in a pure push-based environment. . 155

5.25 Effect of mobility speed in a hybrid environment. 156

5.26 Effect of number of MHs in a pure pull-based environment. . 157

5.27 Effect of number of MHs in a pure push-based environment. 157

5.28 Effect of number of MHs in a hybrid environment. 158

5.29 Effect of group size in a pull-based environment. 159

5.30 Effect of group size in a push-based environment. 160

5.31 Effect of group size in a hybrid environment. 160

x

List of Tables

3.1 Parameter settings for the power consumption model in P2P

point-to-point communication. 39

3.2 Parameter settings for the power consumption model in P2P

broadcast communication. 40

3.3 Simulation parameters and default settings. 45

4.1 The expected length of compressed cache signatures with dif-

ferent values of R and M (N = 100, k = 2). 75

4.2 Average number of overflowed counters. (M = 40000, |Cache| =

100) . 78

4.3 Simulation parameters and default settings for COCA with

cache signature scheme. 89

5.1 Simulation parameters and default settings for the group-

based COCA schemes. 139

xi

Chapter 1

Introduction

Caching is a key technique for improving the data retrieval performance of mo-

bile clients. The recent widespread deployment of new peer-to-peer (known as P2P

throughout the thesis) wireless communication technologies, such as IEEE 802.11 [49]

and Bluetooth [16], coupled with the fact that the computation power and storage

capacity of most mobile devices have been improving at a fast pace, a new information

sharing paradigm, known as P2P information access has rapidly taken shape. The

mobile clients can communicate among themselves to share information rather than

having to rely solely on their connections to the server. This paradigm of sharing

cached information among the mobile clients that assist one another is called mobile

cooperative caching.

1.1 Background

In this section, we will give a brief description on the background of wireless infor-

mation access, mobile systems and mobile cooperative caching.

1

CHAPTER 1. INTRODUCTION 2

1.1.1 Infrastructure- and Ad-hoc-basedWireless Information

Access

Mobile computing environments can be classified into two different types of archi-

tectures, infrastructure- and ad-hoc-based. An infrastructure-based mobile system is

formed with a wireless network connecting mobile hosts (MHs) and mobile support

stations (MSSs). MHs are clients equipped with portable devices, such as laptops,

PDAs, cellular phones and so on, while MSSs are stationary servers providing infor-

mation access for the MHs residing in their predefined service areas. This kind of

networking architecture, with the presence of MSSs, is known as an infrastructure-

based network. It is the most commonly deployed one in real life. Furthermore, the

emergence of the state-of-the-art P2P communication technologies leads to the de-

velopment of an ad-hoc-based mobile computing architecture, called mobile ad-hoc

network (MANET). In MANETs, the MHs can share information among themselves

without any help of the MSSs. This kind of sharing paradigm is also referred to as a

P2P data dissemination model.

1.1.2 Data Dissemination Models in Mobile Environments

In the infrastructure-based network, the MHs can retrieve the required data items

from MSSs, either by requesting them over shared point-to-point channels, i.e., pull-

based data dissemination model, or catching them from scalable broadcast channels,

i.e., push-based data dissemination model, or through the utilization of both types

of channels, i.e., hybrid data dissemination model. In MANETs, the MHs are able

to perform P2P information access among themselves without the presence of MSSs.

These four types of data dissemination models will be briefly described in the following

sections.

CHAPTER 1. INTRODUCTION 3

1.1.2.1 Pull-based Data Dissemination Model

In a pull-based data dissemination model, when an MH cannot find the required data

item in its cache, i.e., a cache miss, it sends a request to the MSS via an uplink

channel. The MSS processes the request and then sends the required data item back

to the MH via a downlink channel. The drawback of this model is that as mobile

environments are characterized by asymmetric communication, in which the downlink

channels are of much higher bandwidth than the uplink channels, the MSS would

potentially become a scalability bottleneck in the system, as it serves an enormous

number of MHs [3].

1.1.2.2 Push-based Data Dissemination Model

It is also known as a data broadcast model, in which the MSS periodically broadcasts

the data items to the MHs residing in its service area via a broadcast channel. The

MHs need not communicate with the MSS explicitly. When they encounter cache

misses, they listen to the broadcast channel and catch the required data items when

the items appear in the channel. By comparison with the pull-based model, data

broadcast model is more scalable, as its performance does not depend on the num-

ber of MHs. However, since the data items are broadcast sequentially, the access

latency gets longer with increasing number of data items being broadcast. The fre-

quency of data items being broadcast in a broadcast cycle is determined by different

scheduling schemes: flat broadcast, probabilistic-based broadcast, broadcast disks

and on-demand data broadcast.

1. Flat Broadcast. It is the simplest broadcast scheduling scheme. The data

items are broadcast with same frequency to the MHs. Thus, the expected

access latency for every data item is the same, i.e., half of the broadcast cycle.

However, this scheme does not consider the data access patterns, so that it gives

CHAPTER 1. INTRODUCTION 4

poor performance compared with other schemes when the data access patterns

are skewed.

2. Probabilistic-based Broadcast. In this scheduling scheme, the frequency of

the data items to be broadcast is based on their access probabilities [89]. For

data item, i, the probability of that i is selected to be broadcast is pi =
√
qi∑N

j=1

√
qj
,

where qj is the access probability for data item j and N is the total number

of data items being broadcast. Although it improves the average performance

when the data access patterns are skewed, the MHs suffer from longer access

latency in obtaining data items with low access probabilities.

3. Broadcast Disks. The MSS maintains multiple broadcast disks with different

disk sizes [2]. In broadcast disks, the smaller the disk size the higher the speed of

the disk spins at. The data items allocated to the broadcast disks with smaller

disk size enjoy a higher broadcast frequency. Every data item is assigned to

one of the disks based on the data access probability. The data items with

higher access probabilities are allocated to the disk with higher spinning speed,

so that those data items can be broadcast more frequently. Broadcast disks

scheduling scheme improves the system performance with skewed data access

patterns. However, it suffers from drawbacks similar to the probabilistic-based

broadcast scheduling. The data access latency increases, as the number of data

items being broadcast gets larger, or when the MHs access the data items with

low access probabilities.

4. On-demand Data Broadcast. The previous broadcast scheduling schemes

exhibit poor performance, when the total number of data items becomes large.

To alleviate this problem, on-demand data broadcast scheduling schemes are

proposed [4, 6]. The MSS reserves some of channels as uplink channels for

CHAPTER 1. INTRODUCTION 5

the MHs to send their requests. The MSS stores the requests in a buffer and

schedules the requests from it by different selection policies, e.g., FIFO (First-In,

First-Out), MRF (Most Requests First), LWF (Longest Wait First) or semantic-

based broadcast schemes [56, 57], etc. Then, the MSS broadcasts the required

data items to the MHs via broadcast channels. The answered requests are then

removed from the buffer.

1.1.2.3 Hybrid Data Dissemination Model

To overcome the downside of pull- and push-based data dissemination models, a

hybrid data dissemination model, which encompasses both models, is proposed [3,

37, 47, 60, 78]. In the hybrid data dissemination model, part of the bandwidth is

reserved for broadcasting data items to the MHs, and the rest is dedicated to pull-

based communication. In the hybrid data dissemination environment, the system

architects have to deal with two major issues: the bandwidth allocation between

broadcast and uplink channels, and data allocation, i.e., which data items should be

allocated to the broadcast channel. The details of the bandwidth and data allocation

will be described in Chapter 3.

1.1.2.4 Peer-to-Peer Data Dissemination Model

This data dissemination model is also known as a mobile ad-hoc network (MANET),

in which there is no dedicated infrastructure support, and an MH works as both a

client, server and even as a router. In MANETs, an MH can directly communicate

with other MHs residing in its transmission range; however, it has to communicate

with other MHs not residing in the range through multi-hop routing [17]. MANET

is practical with many environments with no stationary MSSs, such as battlefield,

rescue operations [33], etc. In MANETs, the MHs can move freely, and disconnect

CHAPTER 1. INTRODUCTION 6

themselves from the network at any time. These two characteristics lead to dynamic

network topology changes. As a result, the MHs may suffer from long access latency

or access failure, when the peers holding the required data items are far way or

unreachable. The latter situation could be caused by network partitioning [85].

1.1.3 Unique Properties of Mobile Systems

A mobile system possesses a lot of unique properties and limitations that make it

more than simply a distributed system, but a fertile area of research [12, 33, 50, 90].

The essential properties of mobile systems are:

• Asymmetric Communication. Mobile environments are characterized by

asymmetric communication, in which the downlink channels are of much higher

bandwidth than the uplink channels. The limited bandwidth in uplink channel

could become the system bottleneck, when the MSS serves an enormous number

of MHs.

• Client Mobility. There is no physical linkage between MHs and MSSs; the

MHs can freely roam around, so it is difficult to locate or predict their locations,

and the unrestricted mobility also causes handover between MSSs or network

partitioning in MANETs.

• Frequent Disconnection. The MHs frequently disconnect themselves from

the network voluntarily (to save energy) or involuntarily (handover or network

failures).

• Limited Battery Power. The battery power on mobile devices is limited.

Thus, power consumption is a crucial factor on designing a data dissemination

model and a set of communication protocols.

CHAPTER 1. INTRODUCTION 7

1.2 Mobile Cooperative Caching

In a mobile cooperative caching environment, the MHs can obtain their required data

items not only from the MSSs, but also from the cache of their peers. COCA is

appropriate for an environment in which a group of MHs possesses a common access

interest. For example, in an exhibition, the MHs crowded near the same booth are

probably interested in information related to the booth. Also, in a shopping mall,

MHs residing in the same shop are likely to access information pertaining to the shop.

Furthermore, at a conference, the participants staying in the same session room also

likely possess common research interest. For instance, they may download similar

documents of the proceedings or related works from the server. When the MHs share

a common access interest, there is a higher probability for them to find the required

data items from their peers.

Consider an MH, m, with a set of neighboring peers, P(m), where m can commu-

nicate with P(m) via P2P communication. Let Am be the set of accessed data items

by m, Cm be the set of data items cached and Pm be the set of data items cached by

its peers P(m). Thus, Pm = ∪i∈P(m)Ci. The local cache hit ratio HitL(m) is |Am∩Cm|
|Am|

and global cache hit ratio HitG(m) is |(Am∩Pm)−(Cm∩Pm)|
|Am| . The overall cache hit rate

Hit(m) = HitL(m) + HitG(M) = |Am∩(Cm∪Pm)|
|Am| . COCA can achieve better system

performance, as HitG(m) is normally larger than zero, i.e., (Am∩Pm)− (Cm∩Pm) 6=

∅. To obtain a higher HitG, m and its peers P(m) are expected to own similar access

set (A ∩ P) and should try to cache more distinct data items in the set (C ∪ P). To

control the data replicas in the system, two cooperative cache management protocols:

cooperative cache admission control and cooperative cache replacement, are proposed

in Chapter 5.

COCA brings several benefits to the MHs and the MSS. In some cases, the telecom-

munication service providers charge the users at a unit cost Cost per access when they

CHAPTER 1. INTRODUCTION 8

access remote data items in the mobile system. The cost can be based on the number

of sessions, connection time or transmission volume. The users have to pay for the cost

of |A|×(1−HitL)×Cost. With COCA, the users can save a cost of |A|×HitG×Cost.

Likewise, the number of access misses as a result of an MH moving outside of the

service area can be reduced by the amount of HitG, since it also has a chance to ob-

tain the required data items from its peers. Furthermore, the server workload can be

reduced from NumClient×|A|×(1−HitL) to NumClient×|A|×(1−HitL−HitG),

where NumClient is the number of MHs in the system. This desirable feature can

be considered as a kind of indirect load sharing technique in mobile environments.

Based on our simulated experiment results, COCA can reduce access latency and

server workload in the pull-based environment, and improve access latency, server

workload and even the power consumption in the push-based and hybrid environ-

ments.

1.3 Motivation

To support effective communication in mobile environments, a robust, scalable, adap-

tive communication platform is necessary. As mobile environments are characterized

by asymmetric communication, in pure pull-based data dissemination model, the up-

link channel would potentially be a scalability bottleneck in the system, as it serves

an enormous number of MHs [3]. Although the push-based and hybrid data dissemi-

nation models are scalable, the MHs in these two models generally suffer from longer

access latency and consume much more power than in the pull-based one, as they

need to tune in to the broadcast channel, and wait for the broadcast channel index

and the desired data items.

We now consider the other kind of communication architecture, MANET. MANET

CHAPTER 1. INTRODUCTION 9

is practical to a mobile system with no fixed infrastructure. However, it is not suitable

for commercial applications alone. In MANETs, the MHs can rove freely, and discon-

nect themselves from the network at any instant. These two characteristics lead to

dynamic network topology changes. As a result, the MHs may suffer from long access

latency or access failure, when the peers holding the desired data items are far way

or unreachable. The latter situation may be caused by network partitioning [40, 85]

or client disconnection [11].

The inherent shortcomings of the pull-based, push-based, hybrid and MANET

mobile systems lead to a result that systems adopting these architectures alone would

not be as appropriate in most real commercial settings. In reality, long access latency

or access failure could possibly cause the abortion of valuable transactions or the

suspension of critical activities, so that it is likely to reduce user satisfaction and

loyalty, and potentially bring damages to the enterprises involved.

The drawbacks of the existing mobile data dissemination models and the state-

of-the-art P2P communication technologies motivate us to combine the P2P com-

munication technology with the conventional mobile system, wherein the MHs can

obtain their desired data items either from the MSS or their peers, to provide a new

communication platform for deploying wireless information access applications. For

instance, in an exhibition, the MHs crowded near the same booth are probably inter-

ested in information related to the booth. In COCA, after some MHs standing near

to the booth downloaded the information about it from the server, they can share

the information with other peers, so that the late-coming peers need not access the

information from the server again. Furthermore, in a conference, the participants

staying in the same session room also likely possess common research interests. They

may download similar documents of the proceedings or related works from the server.

Once an MH downloads a document from the server, all other peers who are inter-

CHAPTER 1. INTRODUCTION 10

ested in this document can retrieve it from that MH without enlisting the MSS for

help.

In this thesis, we focus on designing a cooperative caching system for the MHs,

and proposing a family of algorithms for the MH to search their required data items

in the cache of their peers and cooperatively manage the cache of the MH itself and

its peer.

1.4 Problem Statements

In this thesis, several key research issues on mobile cooperative caching are studied

and addressed, as follows:

• The Combination of P2P Communication Technologies and the Con-

ventional Mobile Environment

To combine P2P communication technologies into the conventional mobile en-

vironment, a set of new communication protocols has to be developed. There

should be amobile cooperative caching framework involving P2P communication

technologies tailored for each conventional mobile environment, i.e., pull-based,

push-based and hybrid conventional mobile environments, in which the MHs

can search their peers’ cache for their desired data items and retrieve them

from either their peers or the server effectively and efficiently.

• An Information Filtering Mechanism for the MHs

As the MHs lack the knowledge about the cache content of their peers, they

have to exhaustively search the peers’ cache for their desired data items when-

ever they encounter local cache misses. To alleviate this problem, the MHs have

to exchange a summary of their cache content with their peers. The cache sum-

maries should provide sufficient hints for the MHs to determine whether their

CHAPTER 1. INTRODUCTION 11

desired data items are cached by their peers based on their local information,

so that they can decide whether to search the peers’ cache for their desired data

items or retrieve them from the server directly.

It is costly to exchange and maintain the cache summary between two MHs,

so that the MHs only exchange their cache summaries with their neighboring

peers. Furthermore, since neighbor join or departure frequently occurs in a

mobile environment, it is also costly to exchange or maintain the cache summary

of all neighbors. To address this problem, the MHs should only exchange and

maintain the cache summary of their neighboring peers with similar mobility

patterns, so that the number of cache summary retrieval and removal operations

can be significantly reduced.

• Cooperative Cache Management

The major issues in cooperative cache management are the proper choice of

cache replacement and admission control strategies, so as to increase the data

accessibility, not only with respect to individual clients, but also to other peers.

Furthermore, client mobility and data access patterns are key factors to system

performance and cache management strategies in a mobile environment. To deal

with these issues, cooperative cache admission control and cache replacement

strategies considering the client mobility and data access patters should be

designed for the MHs.

1.5 Contribution of the Thesis

In this thesis, we first propose a cooperative caching system for mobile environments in

the pull-based, push-based and hybrid environments. A cache signature scheme using

signature techniques for information filtering is next proposed for the MHs adopting

CHAPTER 1. INTRODUCTION 12

COCA. Also, two group-based COCA schemes with cooperative cache management

protocols are proposed and studied on top of COCA system and cache signature

scheme. Figure 1.1 provides a big picture of the research in this thesis, exhibiting

the relationship between different parts of the layered COCA system, cache signature

scheme and two group-based COCA schemes.

1.5.1 COCA: A Model for Mobile Cooperative Caching

A mobile cooperative caching model, namely COCA, is proposed for three different

kinds of mobile data dissemination models: pull-based, push-based and hybrid. For

each data dissemination model, a system model and a set of communication protocols

are designed. In addition, we extend COCA to multi-hop P2P data searching to

further improve system performance.

1.5.2 Signature Techniques for Information Filtering

In COCA, since the MHs do not possess any knowledge about the cache content

of their peers, they have to exhaustively search the peers’ cache for their desired

data items whenever they encounter local cache misses. To alleviate this problem, a

cache signature scheme is proposed for the MHs to provide hints for them to deter-

mine whether the required data items are cached by their peers based on the local

���������	

���
	���������	���
	
	

�	�������	�����������	�

�������
	
	

���������	�����������	�

�������
	
	

Figure 1.1: The relationship between different parts of this thesis: the
COCA system, cache signature scheme and two group-based COCA
schemes.

CHAPTER 1. INTRODUCTION 13

knowledge. Three different signature storage schemes are proposed, with different

tradeoff between the storage space and maintenance overhead. In the group-based

COCA schemes, the information provided by the cache signatures is also used for a

cooperative cache replacement protocol to improve data accessibility.

1.5.3 Group-based Cooperative Cache Management

Two group-based COCA schemes, centralized and distributed group-based COCA

schemes, extending the standard COCA with cache signature scheme are proposed.

The group-based COCA schemes cluster the MHs into groups based on their mobility

patterns and data affinities. We design two cooperative cache management protocols:

cooperative cache admission control and cooperative cache replacement, for the group

members to manage their cached data items cooperatively, in order to improve system

performance.

The performance of COCA, COCA with cache signature scheme and the group-

based COCA schemes is extensively evaluated through a number of simulated exper-

iments to investigate their effectiveness, robustness, scalability and adaptability.

1.6 Organization of the Thesis

In this chapter, we have briefly described the background of mobile data dissemination

models, mobile systems and mobile cooperative caching. We have also discussed the

motivation and contribution of this thesis. The rest of this thesis is organized as

follows:

• Chapter 2 gives a survey on some important works related to cooperative

caching in three different types of environments, including distributed shared-

memory systems in wired networks, hierarchical web caching in the Internet,

CHAPTER 1. INTRODUCTION 14

and mobile environments.

• Chapter 3 presents a cooperative caching scheme, namely COCA, in three dif-

ferent kinds of mobile environments: pull-based, push-based and hybrid. Ad-

ditionally, COCA with multi-hop P2P data searching is also described in this

chapter. We conduct performance studies of COCA based upon simulated ex-

periments.

• Chapter 4 depicts a cache signature scheme for efficient data filtering in COCA.

After describing the background of signature techniques and a proactive genera-

tion mechanism of the cache signature scheme, three signature storage schemes

and their exchange protocols will be proposed. We then evaluate the perfor-

mance of COCA with cache signature scheme by conducting a number of sim-

ulated experiments.

• Chapter 5 presents two group-based COCA schemes: centralized and distributed,

namely CGCoca and DGCoca respectively. After defining the family of algo-

rithms in CGCoca and DGCoca, two cooperative cache management protocols,

cooperative cache admission control and cooperative cache replacement will then

be proposed. The performance of the group-based COCA schemes is extensively

evaluated through a number of simulated experiments.

• Chapter 6 offers concluding remarks on this thesis, and outlines some potential

future works for COCA.

Chapter 2

Related Works

In this chapter, we present some important works related to cooperative caching in

three different types of environments, including distributed shared-memory systems

in wired networks, hierarchical web caching in the Internet, and mobile environments.

2.1 Cooperative Caching in Distributed Shared-

Memory Systems in Wired Network

We first outline some important works on cooperative caching for distributed shared-

memory systems in wired networks (e.g., LANs or local area networks), including

N-Chance Forwarding [28], GMS (Global Memory Service) [31] and Hint-based ap-

proach [74]. Generally speaking, they can be divided into two categories: tightly

and loosely coordinated cooperative caching algorithms. The N-Chance Forwarding

and GMS work are concerned with tightly coordinated systems, whereas hint-based

cooperative caching is related to a loosely coordinated system.

15

CHAPTER 2. RELATED WORKS 16

2.1.1 N-Chance Forwarding

N-Chance Forwarding [28] is a centralized, fact-based cooperating caching algorithm

that all clients execute to cooperate in order to preferentially cache singlets, i.e., the

blocks that are the only copy in the global cache. For each singlet, it is associated

with a recirculation count that is set to N when it is first forwarded. To replace a

singlet, the singlet is randomly forwarded to another peer rather than simply evict-

ing it from the cache to improve data accessibility in the system. When a singlet

becomes the least valuable data in the LRU (Least Recently Used) list, if the value

of the recirculation count is larger than zero, the client decrements the value of the

recirculation count and forwards it to a randomly chosen peer. Otherwise, the client

simply discards the singlet so that the unused blocks are eventually discarded from

the cache. If a singlet is accessed by any client again, the recirculation count is reset

to N . Additionally, this algorithm dynamically adjusts the client cache’s allocation

between local data and global data based on the client activity.

In [28], a centralized file server is dedicated to keep track of all block location

information and singlet status. When a client has to discard a block, if the block is

not associated with a recirculation count, the client needs to check its singlet status

with the file server. Also, when a client forwards a singlet to another peer, the client

has to inform the server about the location change of the forwarded singlet.

2.1.2 GMS

GMS implemented by Feeley et al. [31] is another centralized, fact-based cooperative

caching algorithm approximating a cluster-wide global LRU replacement strategy in a

distributed shared-memory system. In comparison with N-Chance Forwarding, GMS

is implemented with a more strictly coordinated replacement mechanism. Time is

divided into epochs. At the start of each epoch, a designated workstation, namely

CHAPTER 2. RELATED WORKS 17

initiator, is selected to collect global information about the ages of cached pages on all

cluster nodes. Then, the initiator assigns a weight to each workstation by calculating

the number of the oldest pages stored by that workstation out of a maximum number

of cluster replacements for the oldest pages in the epoch, and minimum age of the

pages that will be replaced in the epoch. The initiator disseminates the calculated

weights and minimum age to all workstations in the cluster. The workstations de-

termine the action to be taken when they encounter a page fault based on the given

information. The experiment results show that GMS gives better performance than

N-Chance Forwarding, especially in an environment with a skewed distribution of idle

memory in the cluster.

Veolker et al. [84] extended GMS to consider not only age information, but also

client load information. In that variant, three types of nodes are defined: idle, local

and global nodes. The memory requirements of the jobs at local nodes can be satisfied

by their local memory. For the global nodes, the memory requirements of their jobs

are beyond their local memory, i.e., they need to enlist help from other nodes with

global memory. Lastly, there is no job running on idle nodes. The local and idle

nodes may provide memory space for the global nodes. A global page replacement

algorithm is proposed to balance the global memory traffic load across the idle nodes,

bound the global memory traffic load on local nodes and hinder the global nodes from

handling any global memory requests.

Prefetching Global Memory System (PGMS) [83] further extends GMS by adopting

cooperative prefetching techniques to reduce delay on fetching missing pages. There

are two levels of prefetching: local (disk-to-local and global-to-local) and global (disk-

to-global). For local prefetching, a page is prefetched from the network, if it is in the

global memory; otherwise, the desired page is prefetched from the disk. For global

prefetching, a page is prefetched from the disk to the global memory by another peer.

CHAPTER 2. RELATED WORKS 18

Then, the page will be prefetched from the global memory of the peer to the local

cache of the requesting workstation. The experiment results show that PGMS gives

better performance than the extended GMS [84].

2.1.3 Hint-based Cooperative Caching

Hint-based cooperative caching scheme [74] is a loosely coordinated cooperating caching

scheme applied in a file system that allows clients to make decisions based on local

state or hints rather than global state or facts to reduce the coordination overheads,

thereby making caching more effective. In the hint-based system, a manager is ded-

icated for keeping track of the location information of only one copy of each block,

namely master copy. The master copy of a block is the first copy obtained from the

server as no client is caching the block. When a client opens a file, it consults the

manager to get a set of hints containing the probable location of the master copy of

all required blocks of the file. To maintain the accuracy of the hints, the manager

requests the location information of the master copy of every block of a file from the

last client that has opened it.

A best-guess replacement algorithm is proposed to approximate the global LRU

replacement strategy. Each client maintains an oldest-block list that is sorted in

descending order according to the client’s best guess on the age of the oldest block

cached by other clients. When a client needs to replace a block in the cache, the client

determines whether to forward the victim to another client. If the victim is a master

copy, the client forwards it to the client in the head of the oldest-block list; otherwise,

the victim is simply evicted from the cache. To maintain an accurate oldest-block

list, the clients exchange the age of their current oldest block after forwarding a block.

The clients update their lists based on the received age information.

The experiment results depict that hint-based cooperative caching scheme per-

CHAPTER 2. RELATED WORKS 19

forms better than N-Chance Forwarding, and gives comparable performance to GMS,

but hint-based cooperative caching can significantly reduce the amount of messages

for block access and cooperative cache replacement.

2.2 Cooperative Caching in Hierarchical Web

Caching

Hierarchical web caching is proposed as a strategy adopted in the Harvest project [20]

for Internet information access. The basic idea of hierarchical web caching is that

when a proxy cache encounters a local cache miss, it first requests other nearby

proxies before obtaining the desired data object from the original server. The nearby

proxies and the requesting cache actually form a certain hierarchical structure. A

parent proxy is one level up in the hierarchical structure, whereas a sibling proxy is

on the same level. If no sibling proxy returns the desired data object, the requesting

proxy forwards the request to its parent at the upper level of the hierarchy. This

lookup process will be iterated until the desired data object is found. If the root of

the hierarchy is reached and no proxy holds the desired data object, the object will

be retrieved from the object’s original server. The proxies residing in the hierarchy

involved in returning the desired data object to the requesting proxy also cache a

copy of it. The experiment results show that hierarchical web caching can improve

average response time and reduce server load effectively. A popular open source web

proxy, called Squid [1, 86], is also derived from the Harvest project.

A simple communication protocol, called Internet Cache Protocol (ICP) [86, 87,

88], that is an application layer protocol running on top of User Datagram Proto-

col/Internet Protocol (UDP/IP), is developed to search and retrieve desired data

objects from the proxies in the hierarchical web caching. When a proxy encounters a

CHAPTER 2. RELATED WORKS 20

local cache miss, it sends an ICP query to its sibling proxies to request for the desired

data object. The proxies reply the requesting cache with ICP replies indicating either

a hit or miss. The sibling proxy that caches the data object turns in the data object

to the requesting proxy. If no sibling proxy stores the desired data object, i.e., there

is a miss in the same hierarchy level, the requesting proxy has to forward the request

to its parent.

Since cooperative caching in hierarchical web caching is extensively studied, there

are many relevant research works. In this section, we merely present some of them

that focus on hash-based routing protocol and proxy cooperation.

2.2.1 Hash Routing Protocol

ICP is robust, as there may be several copies of a data item in the hierarchical web

caching. When a web proxy goes down, the data items cached by it are likely to

be still accessible in other web proxies. This nice characteristic does provide fault

tolerance for the system. However, this characteristic probably reduces the effective

aggregate cache size of the entire hierarchy. Additionally, the searching overhead in

ICP is expensive, as the client proxy has to broadcast an ICP request to all other

proxies to seek a desired data item.

To increase the effective cache size and reduce the searching overhead, an alter-

native routing protocol, termed hash routing protocol, is proposed. Highest random

weight [81] (HRW), is a hash routing protocol, in which a randomized weight function

is defined by including the data item name and the Internet Protocol (IP) address

of a server. When a client encounters a local cache miss, it calculates a score for

each available server with the name of the desired data item by the weight function.

The client sends the request for the desired data item to the server with the highest

(or lowest) score. HRW possesses several properties: load balancing, low disrup-

CHAPTER 2. RELATED WORKS 21

tion for server admission and removal, and low overhead of the weight calculation.

The simulated experiment results show that HRW outperforms other mapping meth-

ods, including round-robin, random allocation and least-loaded allocation schemes,

in terms of response time, hit ratio and disruption overhead.

In a realistic web caching hierarchy, the proxies may possess different capacity,

such as cache capacity and processing power. An extended hash routing protocol [71]

is proposed to take this heterogeneous environment into consideration. The idea of

the protocol is to assign more data items to the proxies with higher capacity that can

be done by multiplying an additional factor to the calculated score. The additional

factor is obtained from a recursive calculation based on the target access probability

of each proxy. The proposed hash routing protocol is then implemented in Cache

Array Routing Protocol (CARP) [82].

2.2.2 Summary Cache and Cache Digests

Although ICP is simple and easy to implement, it is not scalable. Li et al. [30]

demonstrate that the communication and computation processing overhead increase

quadratically with increasing number of proxies in a cache hierarchy. Also, Rousskov

and Wessels [72] mention that the amount of network traffic is proportional to the

product of the number of proxies in a hierarchy and the number of Hypertext Transfer

Protocol (HTTP) requests. A new protocol, namely summary cache [30], is proposed

to reduce network traffic among web proxies. The cache content of a proxy is sum-

marized by a signature. By exchanging the signature among all participating proxies,

each proxy can determine whether the required data items are likely cached by other

proxies. When a proxy experiences a local cache miss, and the received signatures

indicate that some of other proxies are likely caching the required data items, the

proxy sends a request to the relevant proxies. Otherwise, the proxy forwards the

CHAPTER 2. RELATED WORKS 22

request to the original server. A similar protocol is proposed by Rousskov and Wes-

sels [72], called cache digests. Both the cache digest and summary cache protocols

adopt standard 128-bit MD5 hash function [70], and store the hash key in a bloom

filter [15]. The major differences between summary cache and cache digests are as

follows:

1. Cache digest protocol adopts a pull technique for cache digest exchange, whereas

a push technique is used by summary cache protocol.

2. Summary cache protocol uses a counter vector structure to produce cache sig-

natures, in order to save computation processing overhead, but cache digest

protocol does not use any structure to support the generation process. The

details of the counter vector structure will be presented in Chapter 4.

2.2.3 Expiration-Age based Scheme

In cooperative caching, data placement strategy plays one of the key roles in system

performance. Web proxies have to make decisions on data placement when they are

involved in data access transaction. An Expiration-Age (EA) based scheme [69] is

proposed for document placement for cooperative web caching to exploit the rela-

tionship between client disk contention and expiration age of cache. The document

placement decisions are based on the average EA of the most recently evicted cache

group. When a proxy encounters a local cache miss, it sends a query to its all sib-

lings and parents via ICP. If any one of them can turn in the required document to

the requesting proxy, they exchange their own average EA with each other. If the

average EA of the requesting proxy is larger than that of the document source proxy,

the requesting proxy caches the document in its local cache; otherwise, it does not

store it locally. Likewise, the source proxy compares its own average EA against that

CHAPTER 2. RELATED WORKS 23

of the requesting proxy. If the average EA of the source proxy is larger, it promotes

the document to the head of the LRU list to extend its time-to-live; otherwise, no

promotion is performed. The EA scheme can reduce the number of document replicas

across the shared web cache proxies and increase the life of cached documents. There

is no extra connection setup in EA scheme, as the EA information is piggybacked on

the HTTP messages.

2.3 Cooperative Caching in MANETs

Recently, cooperative caching schemes in mobile environments have been drawing in-

creasing attention. During the preceding years, several cooperative caching schemes

were proposed for mobile environments. These works can be divided into two major

categories: cooperative data dissemination and cooperative cache management. The

work of cooperative data dissemination mainly focuses on how to search for desired

data items, and how to forward the data items from the source MH or the MSS to

the requesting MHs. The work pertaining to cooperative cache management focuses

on how mobile clients can cooperatively manage their cache as a global cache or ag-

gregate cache to improve system performance along such design dimensions as data

replication, cache invalidation, cache replacement and cache admission control. In

this thesis, our primary focuses are upon designing a cooperative data dissemina-

tion protocol for the COCA system and proposing cooperative cache management

protocols for the group-based COCA schemes.

2.3.1 Cooperative Data Dissemination

Research in [73] proposed an intuitive cooperative caching architecture for a MANET

environment on top of Zone Routing Protocol (ZRP) [38, 39]. ZRP is an ad-hoc

CHAPTER 2. RELATED WORKS 24

routing protocol in which the MHs apply a proactive routing scheme within their

own zone that is defined by a zone radius parameter (in hops), and apply a reactive

routing scheme outside their zone. If an MH can directly connect to a MSS with a

single hop, it would directly obtain the required data items from the MSS; otherwise,

the MH has to enlist its peers at a distance less than the MSS for help to turn in

the required data items. If no such peer caches the data items, the peers route the

request to the nearest MSS. A local cache replacement strategy is also proposed for

the MH based the access probability and time-to-live of the cached data items, and

the estimated energy cost of retrieving them.

A similar cooperative caching architecture is proposed in [55] that is designed to

support continuous media access in MANETs. In [55], two data location schemes,

namely cache-state and reactive, are proposed for the MHs to determine the nearest

source that can be the cache of their peers or the original servers to retrieve the

required multimedia objects. Cache-state is a proactive scheme, whereas reactive is an

on-demand scheme. The simulated experiment results show that reactive outperforms

cache-state in terms of network traffic, quality of service (QoS) and access latency.

In [66], a cooperative caching scheme, called 7DS (Seven Degrees of Separation), is

used as a complement to the infrastructure support with power conservation. When

an MH fails to connect to the Internet to retrieve the desired data item, it would

attempt to search for it from its neighboring 7DS peers. The proposed power con-

servation scheme adjusts the MHs’ activity of their participation in the cooperative

caching scheme based on their battery levels. The client battery power is divided into

three levels: high (the default value in the simulation model is above 75%), medium

(50% to 75%) and low (below 50%). The MHs with high and medium battery power

level take part in active and passive participation respectively. For the those with

low power level, they stop participating in the 7DS to conserve power.

CHAPTER 2. RELATED WORKS 25

Shen et al. [77] propose another data dissemination scheme with power conser-

vation, called energy-efficient cooperative caching with optimal radius (ECOR), in a

cooperative caching environment. In ECOR, an optimal radius (in hops) is estimated

by an analytical model that considers the MH’s location, data access probability and

network density for each data item. The MHs exchange the cache content and the

optimal radius of each cached data item among themselves. When an MH encounters

a local cache miss, if it finds that any peers cache the desired data item and the

distance between them is within the optimal radius based on its local state, the MH

sends a request message to the peer that is the closest to the holder of the desired

data item. Otherwise, the MH obtains the data items from the MSS.

2.3.2 Cooperative Cache Management

In cooperative cache management, all related works can be further divided into three

sub-categories: cooperative data allocation, cooperative cache invalidation, and coop-

erative cache admission and replacement.

2.3.2.1 Cooperative Data Allocation

In [40, 41, 42, 43], replication techniques are adopted in cooperative caching schemes

to improve data accessibility, in order to alleviate the network partitioning problem.

Hara [40] proposes three replica allocation schemes: SAF (Static Access Frequency),

DAFN (Dynamic Access Frequency and Neighborhood) and DCG (Dynamic Con-

nectivity based Group). The MHs applying SAF only consider their own individual

access probability to each data item. DAFN extends SAF to take the access proba-

bility to each data item of the MHs’ connected neighborhoods into account. Finally,

DCG groups the MHs with highly stable connection together. A group of MHs pos-

CHAPTER 2. RELATED WORKS 26

sesses a high connection stability, as they form a biconnected component1 in the

network. DCG considers the access probability to each data item of all MHs in the

same group. The simulation results show that DCG gives the highest data accessibil-

ity, but it incurs much more network traffic than the other two schemes. Thus, DCG

can be considered as a scheme that trades network traffic for data accessibility.

The proposed replica allocation schemes are then adopted to a mobile broadcast

environment [41]. In [41], the replica allocation schemes are based on not only the

access probability, but also the latency on accessing data items from peers and the

broadcast channel. In [42], the proposed replica allocation schemes are further ex-

tended to consider periodic data update by allowing the extended allocation schemes

to consider the remaining time until each data item is updated. In addition to the

access probability, the stability of radio link is also taken into account in [43]. The

stability of a radio link is defined as the remaining time period that two MHs will

still be connected to each other. The longer the time period indicates the higher the

stability of a ratio link.

Huang et al. [48] propose another distributed data replica allocation scheme in

MANETs, namely DRAM, to improve data accessibility and reduce network traffic

pretending to the replication mechanism. DRAM extends E-DCG [42] to consider

group mobility for data replica allocation. The authors in [48] assume that some MHs

tend to roam together and they share a common access range. To discover the group

mobility among MHs, a distributed clustering algorithm is adopted to cluster several

MHs who possess similar mobility pattern into a group. The clustering algorithm is

executed periodically to adapt to the changes in network topology. Then, the data

replicas are allocated to each group member based on their access frequencies of the

data items, and the remaining time until the next update on them. The experiment

1In graph theory, a biconnected component [8] is a maximal subset of edges of a connected graph
such that the corresponding induced subgraph cannot be disconnected by deleting any one vertex.

CHAPTER 2. RELATED WORKS 27

results show that DRAM performs better than E-DCG in terms of data accessibility

and network traffic.

2.3.2.2 Cooperative Cache Invalidation

Two cache invalidation schemes are proposed in [45], namely update broadcast and

connection rebroadcast. The former one is a straightforward, flooding-based scheme.

An MH that caches an original copy of a data item broadcasts an invalidation report

to other peers, when that MH updates the data item. The latter one can be referred

to as a cooperative cache invalidation scheme. When two MHs are newly connected

to each other, they broadcast their collected cache invalidation information. The

newly connected MHs and other peers receiving their broadcast information update

their own previously received cache invalidation information to identify any obsolete

data items in their cache. The experiment results show that connection rebroadcast

scheme reduces the number of accesses to invalid cached data items, but it incurs

higher network traffic than update broadcast scheme.

2.3.2.3 Cooperative Cache Admission Control and Replacement

Lim et al. [63] propose a cooperative caching scheme for Internet-based MANETs,

namely IMANET. In IMANET, a simple, flooding-based searching scheme is proposed

to lookup desired data items in the network. That cooperative caching scheme also

provides two functions: cache admission control and cache replacement. For the

cache admission control, an MH determines whether to cache a data item based on

the distance between itself and the data source that can be either other peers caching

the data item or the MSS. For the cache replacement policy, called time and distance

sensitive (TDS), a victim data item is selected to be evicted from the cache by an MH

based on two factors: the distance between itself and other peers caching the victim

CHAPTER 2. RELATED WORKS 28

or the MSS, and the freshness of the distance information. The distance information

is updated when the corresponding data item is accessed by other MHs. Since the

network topology changes frequently, the distance information could become obsolete,

as it has not been updated for a long time.

Yin and Gao [91] propose three other cooperative caching schemes, called Cache-

Data, CachePath and HybridCache. The idea of CacheData is that an MH caches a

passing-by data item, if the data item is popular and a condition that all requests for

the data items are not originated by the same MH is satisfied. For CachePath, the

MH caches path information, i.e., a data item is likely to be cached by which MHs,

of the passing-by data item instead of the data item. To conserve cache space, an

MH does not cache path information of all passing-by data items. It only caches the

path information of a data item, if it is closer to the requesting MH than the MSS.

HybridCache is a hybrid scheme which combines both CacheData and CachePath.

An MH either applies CacheData or CachePath based on three factors: the size of a

data item, the time-to-live of a data item and the distance between the MH’s distance

to the data holder and the distance to the MSS. If the size of a data item is small or

its time-to-live is short, CacheData is adopted. In case of the distance between the

MH’s distance to the data holder and the distance to the MSS is large, CachePath

is chosen. The simulation results exhibit that HybridCache outperforms CacheData

and CachePath.

Chapter 3

COCA

3.1 Introduction

In this chapter, we design a mobile cooperative caching system, called COCA, for

the MHs in three popular data dissemination models in mobile environments: pull-

based, push-based and hybrid models. For each data dissemination model, a relevant

COCA model and a set of communication protocols are presented. A multi-hop P2P

data searching protocol is also proposed for COCA. The performance of COCA in

the three data dissemination models is extensively evaluated through a number of

simulated experiments. The result shows that COCA effectively improves system

performance in terms of access latency and server workload in mobile environments.

COCA generally incurs higher power consumption in a pull-based environment, but

it can effectively reduce power consumption in push-based and hybrid environments.

3.2 Assumptions in COCA

In COCA, we assume that each MH has a unique identifier. Let the set of MHs be

M={m1, m2, ...,mNumClient}, where NumClient is the total number of MHs in the

29

CHAPTER 3. COCA 30

system. Furthermore, each MH is equipped with two wireless network interface cards

(NICs), in which one is dedicated to communicate with MSS, while the other one is

devoted to communicate with other MHs. This multi-NIC technique is also proposed

to be adopted in IP multi-homing for stream control transmission protocol (SCTP),

in which a machine is installed with multiple NICs, and each assigned a different

IP address [79]. There are two P2P communication paradigms: point-to-point and

broadcast. In P2P point-to-point communication, there is only one destination MH

for the message being sent from the source MH. In P2P broadcast communication,

all MHs residing in the transmission range of the source MH receive the broadcast

message. In addition, a message sent by a source MH is assumed to be correctly

received by the destination MHs within a finite time. For simplicity, we further

assume that there is no update of data items.

3.3 System Model

We first consider a pull-based mobile environment with COCA. Then, COCA is ex-

tended to two other models, push-based and hybrid data dissemination models. Be-

fore describing the system model, we first discuss the four possible outcomes of each

client request.

1. Local Cache Hit (LCH). If the required data item is found in the MH’s local

cache, it constitutes a local cache hit; otherwise, it is a local cache miss.

2. Global Cache Hit (GCH). When the required data item is not cached, the

MH attempts to retrieve it from its peers. If some of the peers can turn in the

required data item, that constitutes a global cache hit.

3. Cache Miss (or Server Request). If the MH fails to achieve neither a local

CHAPTER 3. COCA 31

���

��
�

��
�

��
�

��
�

��
�

�	
��
	��
	�������	�����	�

�
���������������	���������

��
	�	����������
�����

��

Figure 3.1: System architecture of COCA.

cache hit nor a global cache hit, it encounters a cache miss, and has to make a

connection to the MSS to obtain the required data item.

4. Access Failure. If the MH encounters a cache miss, and fails to access the

required data item from the MSS, as it is residing outside of the service area or

the MSS is being down or overloaded, it constitutes an access failure.

COCA is based on the system architecture, as depicted in Figure 3.1. Each MH

and its peers work together to share their cached data items cooperatively via P2P

communication. For instance, when an MH, MH2, encounters a local cache miss, it

broadcasts a request to its peers, MH1 and MH3, as shown in Figure 3.1. If any

peers turn in the required data item, a global cache hit is recorded; otherwise, it is a

global cache miss, and MH2 has to enlist the MSS for help.

3.3.1 Multi-hop P2P Data Searching in COCA

In COCA, there are three types of messages: request, reply and retrieve. A request

message contains a unique identifier that is formed by a combination of the user iden-

tifier (UserID), the time stamp when the request is generated (RequestTS), and a hop

CHAPTER 3. COCA 32

counter (HopCount), which is initially set to HopDistance, i.e., <UserID, RequestTS,

HopCount>. Each peer only processes a request with the same request identifier

once, and it simply drops any duplicate requests. If the MH caches the required data

item, it sends a reply message to the requesting MH directly or through multi-hop

routing. Otherwise, it decrements the HopCount, and if HopCount > 0, it propagates

the request to its neighborhood. If HopCount = 0, the MH simply drops the request.

After the requesting MH receives a reply message from its peer, it sends a retrieve

message to the peer, and the peer then turns in the required data item to it, either

via direct communication or multi-hop routing. In multi-hop P2P data searching, the

immediate MHs not only propagate the requests to other peers, but they also have to

forward the required data items from the source MH to the requesting MH.

3.3.2 Pull-based Mobile Environment

In a conventional pull-based mobile system, the storage hierarchy is generally com-

posed of three layers: Mobile Client Cache, MSS Cache and MSS Disk, as depicted

in Figure 3.2(a). When an MH encounters a local cache miss, it sends a request

to the MSS. The MSS processes the request and sends the data item back to the

requesting MH. If the data item is not located in the MSS cache, the MSS has to

grab the data item from the disk or database server. In COCA, a new logical layer

is inserted between the Mobile Client Cache layer and MSS Cache layer, called Peer

Cache layer [25], as depicted in Figure 3.2(b). When an MH encounters a local cache

miss, it first attempts to search for the desired data items in the Peer Cache layer. If

no peer caches the data item, it obtains the data item from the MSS.

The communication protocol of COCA in a pull-based mobile environment specifies

that an MH should first find the required data item in its local cache for each query.

If it encounters a local cache miss, it broadcasts a request message to its peers within

CHAPTER 3. COCA 33

the distance of a predefined maximum number of hops, i.e., HopDistance, via P2P

broadcast communication. Any peer caching the required data item will send a reply

message to the requesting MH via P2P point-to-point communication. When the MH

receives some reply messages, it selects the most appropriate peer as a target peer.

The selection of the target can be based on different metrics, as follows:

• the peer with the fastest response time that could reduce the access latency;

• the peer with the shortest distance that could reduce the power consumption,

as power control mechanism is adopted [5, 51];

• the peer with the highest battery level that could increase the overall battery

lifetime;

• the most trustworthy peer that could increase the reliability of the obtained

information;

• and, the peer who caches the information with the longest time-to-live that

could increase the validity of the obtained information.

The MH next sends a retrieve message to the target peer via P2P point-to-point

communication. The peer receiving the retrieve message turns in the required data

�����������	
����
�

�������������
��
�
��	����
�

�������������
��
�
��	�����

� �������������	���
��	

(a) Conventional

�����������	
����
�

��������
�

�������������
��
�
��	����
�

�������������
��
�
��	�����

� �������������	���
��	

� �������������	���
��	

(b) COCA

Figure 3.2: Storage hierarchy of pull-based mobile systems.

CHAPTER 3. COCA 34

item to the requesting MH through P2P point-to-point communication. In case of

no peer sending reply message back to the requesting MH during a timeout period, it

has to obtain the data item from the MSS.

The timeout period is adaptive to the degree of network congestion. Let |request|

and |reply| denote the message size of a request and reply message respectively. Ini-

tially, the timeout period is set to a default value that is defined as the round-trip

time of a P2P transmission scaled up by a congestion factor, ϕ, i.e., (|request|+|reply|)
BWP2P

×

HopDistance×ϕ, where BWP2P is the bandwidth of the P2P communication channel

and HopDistance is the distance of a predefined maximum number of hops. For each

search in the Peer Cache layer, an MH records the time, τ ′r, spent on the duration

from the time when the MH broadcasts a request message to the time when a reply

message is received. Then, the timeout period, τr, is set to the average time duration,

τ ′r, plus another system parameter, ϕ′, times the standard deviation of τ ′r, στ ′r
, i.e., τr

is set to τ ′r + ϕ′στ ′r
.

3.3.3 Push-based Mobile Environment

In a traditional push-based mobile system, the storage hierarchy commonly consists

of three layers: Mobile Client Cache, Broadcast Channel and MSS Disk, as shown in

Figure 3.3(a). The MSS grabs the data items from the disk or database, and allocates

them to the broadcast channel. If an MH encounters a local cache miss, it tunes in

to the broadcast channel, and catches the required data item when the data item

appears in the broadcast channel. In COCA, we insert the same logical layer, the

Peer Cache layer, as in the case of pull-based mobile environment, as a supplementary

component of the Broadcast Channel layer, as shown in Figure 3.3(b). When an MH

suffers from a local cache miss, the MH tunes in to the broadcast channel; meanwhile,

it searches for the required data item in the Peer Cache layer. There is a global cache

CHAPTER 3. COCA 35

hit, if some peers turn in the required data item to the MH before either the data

item appears on the broadcast channel or the timeout period elapses. In case of no

peer returning the required data item, i.e., a global cache miss, the MH has to wait

for the data item to appear in the broadcast channel, as in the conventional case.

3.3.4 Hybrid Mobile Environment

In a hybrid mobile environment, MHs make use of both point-to-point and broadcast

channels to retrieve data items from the MSS. We apply three techniques to the hy-

brid data dissemination model: bandwidth allocation, data allocation and broadcast

channel indexing.

3.3.4.1 Bandwidth Allocation

In COCA, a static channel allocation scheme is used, and the channel allocation is

based on a ratio, namely PushChannel, which indicates the percentage of channels

that are allocated for data broadcast. For instance, if there is a total number of 20

channels and PushChannel=30%, then six channels are reserved for data broadcast,

while the remaining channels are devoted to point-to-point communication.

�����������	
����
�

��������
��
�		��

�������������
��
�
��	�����

� �������������	���
��	

(a) Conventional

�����������	
����
�

��������

�
�		��
��������
�

�������������
��
�
��	�����

� �������������	���
��	

� �������

�����	���
��	

(b) COCA

Figure 3.3: Storage hierarchy of push-based mobile systems.

CHAPTER 3. COCA 36

3.3.4.2 Data Allocation

In a hybrid data dissemination system, the MHs can access the hot data items (up to

a total size of all disk sizes) via the broadcast channel to improve system scalability.

On the other hand, to access the remaining cold data items, the MHs still have to

obtain them from the MSS via the point-to-point communication.

The selection of data items to be allocated to the broadcast channel is based on

their access probabilities, which can be estimated by observing their access frequen-

cies, f . The MSS records the relative access frequency of each data item to estimate

its access probability. For data item, i, fi is initially set to zero and the last access

time, ti, is set to the time of initialization, and then fi is updated as it is requested

by an MH via the point-to-point communication based on the equation:

fnew
i = ω × 1

now − ti
+ (1− ω)× f old

i , (3.1)

where ω (0 ≤ ω ≤ 1) is a parameter to weight the importance of the most recent

access. Then, ti is set to the current time (now). The data allocation is performed at

the beginning of each analysis period (AnalysisPeriod), based on the weighted access

frequencies of the data items, which are approximately proportional to their access

probabilities.

Since the access frequency collected by the MSS belongs to “past” information, it

can only be used to predict the trend of the access pattern. The hottest data items are

likely to be cached by most MHs, so they need not to be broadcast with the highest

frequency. Thus, a parameter, namely Offset, is used to determine the number of

the hottest data items that should be shifted from the disk with the highest spinning

speed to the one with the lowest spinning speed [3].

CHAPTER 3. COCA 37

3.3.4.3 Broadcast Channel Indexing

The MSS periodically broadcasts the index of the data items being broadcast in a

broadcast cycle to the MHs, so that the MHs are able to determine whether the

required data items can be obtained via the broadcast channel based on the index.

The index contains the identifier of each data item being broadcast and its broadcast

latency, which is defined by subtracting the current broadcast slot from the slot

containing the data item. The index is broadcast to the MH every IndexInterval.

When an MH encounters a local cache miss, it tunes in to the broadcast channel. If

the data item appears in the broadcast channel before the index is broadcast, the MH

catches the data item. Otherwise, the MH grabs the index and looks up the required

data item. If the MH cannot find the identifier of the data item in the index or the

latency of accessing it is longer than a latency threshold, LatencyThreshold, the MH

switches to retrieve the data item from the MSS via the point-to-point channel [3, 47].

3.4 Simulation Model

In this section, we present the simulation model that is used to evaluate the perfor-

mance of COCA in mobile environments. The simulation model is implemented in

C++ using CSIM [75], which is a process-oriented discrete-event simulation package.

The simulated mobile environment is composed of an MSS and NumClient MHs.

There are NumChannel wireless communication channels between the MSS and the

MHs, with a total bandwidth of BWServer. If all the uplink channels are busy, the

MH has to wait until one of them is available for transmission. Also, there are

NumP2PChannel half-duplex wireless channels for an MH to communicate with its

peers with a total bandwidth of BWP2P and with a transmission range of TranRange.

When an MH has to send a message to another MH, it has to wait if the requested

CHAPTER 3. COCA 38

channels are busy.

3.4.1 Power Consumption Model

For the P2P communication, all MHs are assumed to be equipped with the same

type of wireless NICs with an omnidirectional antenna so that all MHs within the

transmission range of a transmitting MH can receive its transmission. Furthermore,

the wireless NIC of the non-destination MH is operated in an idle mode during the

transmission.

The communication power consumption measurement is based on [32] which uses

linear formulas to measure the power consumption of the source MH, S, the desti-

nation MH, D and other remaining MHs residing in the transmission range of the

source MH, SR and the destination MH, DR, and both the source and destination

MHs, SDR, as depicted in Figure 3.4(a), in a MANET. The power consumption of

P2P point-to-point communication is measured by Equation 3.2,

��
�

��
�

��
�

��
�

��
�

��
�

��
	

��

��
�

�

������ �����������

�

(a) P2P point-to-point communication

��
�

��
�

��
�

��
�

��
�

��
�

��
	

��

��
�

�

������

�����������

�����������

(b) P2P broadcast communication

Figure 3.4: Power consumption measurement models for P2P communica-
tion.

CHAPTER 3. COCA 39

Pp2p =





(vsend × |msg|) + fsend, for MH = S

(vrecv × |msg|) + frecv, for MH = D

(vsd disc × |msg|) + fsd disc, for MH ∈ SR ∧MH ∈ DR

(vs disc × |msg|) + fs disc, for MH ∈ SR ∧MH /∈ DR

(vd disc × |msg|) + fd disc, for MH /∈ SR ∧MH ∈ DR

(3.2)

where f is the fixed setup cost for a transmission, and v is the variable power con-

sumption based on the size of a message msg in bytes (|msg|).

For P2P broadcast communication, the power consumption of source MH, S, and

other MHs residing in SR, as depicted in Figure 3.4(b), can be measured by Equa-

tion 3.3.

Pbc =

{
(vbsend × |msg|) + fbsend, for MH = S

(vbrecv × |msg|) + fbrecv, for MH ∈ SR

(3.3)

Although the proposed power consumption model in [32] is based on an ad-hoc

mode, it is also used to approximate the power consumption of the point-to-point

communication between the MH and MSS. When an MH communicates with the

MSS, we assume that the surrounding MHs are not affected by the transmission.

Thus, no power is consumed by their wireless NICs. Tables 3.1 and 3.2 show the

Table 3.1: Parameter settings for the power consumption model in P2P
point-to-point communication.

Conditions µW · s/byte µW · s
MH = S vsend = 1.9 fsend = 454

MH = D vrecv = 0.5 frecv = 356

MH ∈ SR ∧MH ∈ DR vsd disc = 0 fsd disc = 70

MH ∈ SR ∧MH /∈ DR vs disc = 0 fs disc = 24

MH /∈ SR ∧MH ∈ DR vd disc = 0 fd disc = 56

CHAPTER 3. COCA 40

Table 3.2: Parameter settings for the power consumption model in P2P
broadcast communication.

Conditions µW · s/byte µW · s
MH = S vbsend = 1.9 fbsend = 266

MH ∈ SR vbrecv = 0.5 fbrecv = 56

parameter settings for MHs playing different roles, as used in power consumption

measurement for P2P point-to-point and broadcast communication respectively [32].

The power consumption measurement model of a broadcast environment is differ-

ent from that of a pull-based environment, since there is additional power consump-

tion for the MHs listening to the broadcast channel until they obtain the required

data items or the broadcast channel index. In the latter case, the MHs can determine

when the required data items appear in the broadcast channel by looking up the in-

dex. The MHs can keep themselves in a doze mode for a certain period. Then, they

wake up and catch the required data items, as shown in Figure 3.5(a). In COCA,

there is a chance for MHs to reduce power consumption, when some of their peers

can turn in the required data items before the data items or the index appear in the

broadcast channel, as depicted in Figure 3.5(b). Figure 3.5(c) shows the situation

� �

���������	

���
�	�
���	
���

��
�	���	��������

�
�
	���

��
�	���
��
��

��
����	�����

�
�
�
�
�

��	�

(a) Conventional model

� �

���������	

���
�	�
���	
���

����������

����
�	�
���	���

�
�
�
�
�

��	�

(b) COCA with a global cache hit

� �

���������	

���
�	�
���	
���

���������	

����
�	�
���	
���
��
�	���	��������

�
�
	���

��
�	���
��
��

��
����	�����

�
�
�
�
�

��	�

(c) COCA with a global cache miss

Figure 3.5: Power consumption measurement in a broadcast environment.

CHAPTER 3. COCA 41

when the MHs encounter global cache misses.

3.4.2 Mobility Model

We consider an individual random walk model that is based on “random waypoint”

model [17, 18]. At the beginning, the MHs are randomly distributed in 1, 000×1, 000

meters (Area) space, which constitutes the service area of the MSS. Each MH ran-

domly chooses its own destination in Area with a randomly determined speed s from

a uniform distribution U(vmin, vmax). It then travels with the constant speed s. When

it reaches the destination, it comes to a standstill for a constant time (PauseTime)

to determine its next destination. It then moves towards its new destination with an-

other speed s′ from the uniform distribution U(vmin, vmax). All MHs with individual

random walk pattern repeat this movement behavior during the simulation.

3.4.3 Data Access Pattern

The MHs generate accesses to the data items following a Zipf distribution [92] with

a skewness parameter θ. If θ is set to zero, MHs access the data items uniformly. By

increasing θ, we are able to model a more skewed access pattern to the data items.

The access probability pi of a data item i is defined by: pi = 1

iθ
∑

NumData

j=1
1

jθ

, where

NumData is the total number of data items in the system. The time interval between

two consecutive accesses generated by an MH follows an exponential distribution with

a mean AccessInterval.

For the individual data access patterns, we consider two types of access patterns,

as follows:

1. Random access range - the access range of every MH is randomly selected.

2. Common hot spot - for all MHs, a certain percentage of the hot spots in their ac-

CHAPTER 3. COCA 42

cess ranges are common, and the remaining access ranges are randomly selected

for each MH.

The definition of access density in this work is the same as that defined in [58].

In [58], user access density is defined as a ratio of the total number of requests to

the number of distinct data items during a measurement period of time. To vary the

access density, we maintain the same number of requests, and change the number of

distinct data items, i.e., the access range, being accessed by the MHs. To increase the

access density, the number of distinct data items should be decreased. On the other

hand, to create a lower access density, we should increase the number of distinct data

items being accessed by the MHs.

3.4.4 Server Model

There is a single MSS in the simulated mobile environment. A database in the MSS

contains NumData equal-sized (DataSize) data items. It receives and processes the

requests sent by the MHs residing in Area with a first-come-first-serve policy. An

infinite queue is used to buffer the outstanding requests from the MHs when the MSS

is busy.

3.4.5 Network Model

In the simulation, neighbor discovery is based on a neighbor discovery protocol

(NDP) [39, 61], which is a protocol that maintains the neighboring connectivity

through a periodic beacon of “hello” control message that only contains the source

address. Each MH broadcasts “hello” message to its neighboring peers every time

period, Tbeacon. The reception of “hello” beacon indicates the existence of a direct

connection to a neighboring MH. On the other hand, if the MH has not received

CHAPTER 3. COCA 43

“hello” beacon from a neighboring MH for a period of time, τb, it indicates a discon-

nection or link failure between the neighboring peer. Algorithm 1 is executed when

the MH receives a beacon message from its peers, and Algorithm 2 is a continuous

algorithm to detect any link failure between the MH and its neighboring peers. We

further assume that the “hello” control message has the highest transmission priority

and can be received by the peers within a finite time. Thus, the MHs can precisely

detect a new link to a newly admitted neighbor and a link failure with a leaving MH.

Algorithm 1 Neighbor Discovery Protocol (NDP) at mi - beacon reception

1: procedure OnReceiveBeacon(Neighbor N , MH mj)
2: // N is a set of identifiers of mi’s neighboring peers
3: // mi receives a “hello” beacon message from mj

4: last beacon tsj = now();
5: // now() returns the current time
6: if mj /∈ N then
7: N ← N ∪ {mj};
8: end if

Algorithm 2 Neighbor Discovery Protocol (NDP) at mi - link failure detection

1: procedure LinkFailureDetector(Neighbor N)
2: for all mk ∈ N do
3: if now() - last beacon tsk > τb then
4: N ← N − {mk};
5: end if
6: end for

3.5 Simulation Results

In the simulated experiments, we compare the performance of COCA (denoted as

CC) with a conventional caching scheme that does not involve any cooperation among

MHs (denoted as non-COCA or NC). The non-COCA and COCA schemes all adopt

LRU cache replacement policy. We also consider COCA with two-hop communication

(denoted as CC-2H). In CC-2H, the MHs can search the required data items in their

CHAPTER 3. COCA 44

peers within a distance of two hops, i.e., HopDistance is equal to two. We study NC,

CC and CC-2H in pull-based, push-based and hybrid environments. For the push-

based environment, two broadcast scheduling algorithms: flat disk (denoted as FD)

and broadcast disk [2] (denoted as BD), are considered to provide extensive evaluation.

In addition, we also study COCA with multi-hop P2P data searching (denoted as

CC-MH) in comparison with non-COCA and standard COCA in the pull-based, pure

push-based and hybrid environments. All simulation results are recorded only after

the system reaches a stable state, in which all MHs’ cache are fully occupied, in order

to avoid a transient effect. A simulated experiment ends when each MH generates over

2000 requests after the warm up period. Table 3.3 shows the simulation parameters

and their default settings used in the simulated experiments.

We conduct the experiments by varying several parameters: cache size, data item

size, access patterns, client disconnection probability, mobility speed, number of MHs

and hop distance of multi-hop data searching in the system. The client disconnec-

tion probability, Pdisc, is defined as the probability of an MH disconnecting from the

network after completing a request for a period of time that follows an exponential

distribution with a mean DisconnectT ime. The MH does not disconnect itself from

the network when it is accessing its desired data items. The MHs cannot communi-

cate with disconnected MHs. The performance metrics include access latency, server

request ratio, power consumption on communication, LCH ratio and GCH ratio. The

access latency is defined as the sum of the transmission time and the time spent on

waiting for requested communication channels, if they are busy. Other performance

metrics are determined by following equations:

• server request ratio = 1

NumClient

(∑NumClient

i=1

NumDataItemsFromServer
TotalNumRequests

)
;

• LCH ratio = 1

NumClient

(∑NumClient

i=1

NumDataItemsFromLocalCache
TotalNumRequests

)
;

• GCH ratio = 1

NumClient

(∑NumClient

i=1

NumDataItemsFromPeers
TotalNumRequests

)
;

CHAPTER 3. COCA 45

• power consumption = 1

NumClient

(∑NumClient

i=1

TotalPowerConsumption
TotalNumRequests

)
.

Table 3.3: Simulation parameters and default settings.

Parameter Description Default Value

NumClient No. of MHs in the system 100

NumChannel No. of wireless communication chan-

nels between MSS and MHs

20

NumDisk No. of broadcast disks in a broadcast

environment

3

DiskFrequencypush Disk relative frequency for broadcast

disks in a push-based environment

3:2:1

BDiskSizepush Disk size for broadcast disks in a push-

based environment

1000:3000:6000

DiskFrequencyhybrid Disk relative frequency for broadcast

disks in a hybrid environment

3:2:1

BDiskSizehybrid Disk size for broadcast disks in a hy-

brid environment

300:1200:1500

NumP2PChannel No. of half-duplex P2P wireless com-

munication channels

1

AnalysisPeriod Time interval of executing the data al-

location algorithm

60 s

Offset Shift offset used in the data allocation

algorithm

CacheSize

IndexInterval Time interval of broadcasting the

broadcast channel index

300 data items

LatencyThreshold Latency threshold used in a hybrid en-

vironment

900 data items

BWServer Total bandwidth of wireless commu-

nication channels between MSS and

MHs

Downlink 10,000

Kbits/s;

Uplink 100 Kbits/s

BWP2P Total bandwidth of P2P wireless com-

munication channels

2,000 Kbits/s

Continued on next page

CHAPTER 3. COCA 46

Table 3.3 Simulation parameters and default settings. (Continued from previous page)

Parameter Description Default Value

NumData No. of data items in the database 10,000 data items

DataSize Data item size 4 kilobytes (KB)

AccessInterval Mean think time between two consec-

utive requests

1 s

AccessRange Client data access range 10% of NumData

CommonAccessRange Common access range of all MHs 100% of AccessRange

CacheSize Client cache size 100 data items

Speed (vmin ∼ vmax) Mobility speed 1 ∼ 5 m/s

Tbeacon Time interval between two consecutive

beacons

1 s

τb Timeout period for link failure detec-

tion

2× Tbeacon

TranRange Transmission range 100 m

PauseT ime Pause time used in “random-

waypoint” mobility model

1 s

Pdisc The probability of a client disconnect-

ing from the network

0

DisconnectT ime Mean disconnection time for an MH 10 s

ω Weight used in Equation 3.1 0.25

ϕ,ϕ′ Network congestion parameters 10, 3

θ Zipf skewness parameter 0.5

3.5.1 Effect of Cache Size

The first experiment studies the effect of cache size on system performance by varying

the cache size from 50 to 250 data items.

CHAPTER 3. COCA 47

50 100 150 200 250
60

80

100

120

140

160

180

Cache Size (data items)

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
CC2H

(a) Access Latency

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Cache Size (data items)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC
CC
CC2H

(b) Power Consumption

50 100 150 200 250
10

20

30

40

50

60

70

80

90

100

Cache Size (data items)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
CC2H

(c) Server Request Ratio

50 100 150 200 250
5

10

15

20

25

30

35

40

Cache Size (data items)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
CC2H

(d) LCH Ratio

50 100 150 200 250
20

25

30

35

40

45

50

55

Cache Size (data items)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
CC2H

(e) GCH Ratio

Figure 3.6: Effect of cache size in a pure pull-based environment.

50 100 150 200 250
0

5

10

15

20

25

30

Cache Size (data items)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(a) Access Latency

50 100 150 200 250
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

5

Cache Size (data items)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(b) Power Consumption

50 100 150 200 250
10

20

30

40

50

60

70

80

90

100

Cache Size (data items)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(c) Server Request Ratio

50 100 150 200 250
5

10

15

20

25

30

35

40

Cache Size (data items)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(d) LCH Ratio

50 100 150 200 250
20

25

30

35

40

45

50

55

Cache Size (data items)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−FD
CC−BD
CC2H−FD
CC2H−BD

(e) GCH Ratio

Figure 3.7: Effect of cache size in a pure push-based environment.

Figures 3.6(a), 3.6(c), 3.7(a), 3.7(c), 3.8(a) and 3.8(c) show that all schemes exhibit

better access latency and server request ratio, as cache size gets larger. The MHs can

cache more data items in the local cache with increasing cache size, so it improves

the LCH ratio, as shown in Figure 3.6(d). For the MHs adopting COCA schemes,

it not only achieves a higher LCH ratio as the cache size gets larger, but it also

enjoys a higher GCH ratio. The GCH ratio of all schemes initially improves with

increasing cache size, but the ratio drops when the cache size further gets larger.

With larger cache space, the MHs can cache more data items, so that it increases

the chance of finding some peers caching the required data items, i.e., the GCH ratio

improves. However, when the cache size further increases, more requests can be

satisfied by accessing to the cached data items. Therefore, the demand on the global

CHAPTER 3. COCA 48

50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

Cache Size (data items)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(a) Access Latency

50 100 150 200 250
1

2

3

4

5

6

7
x 10

5

Cache Size (data items)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(b) Power Consumption

50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

Cache Size (data items)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(c) Server Request Ratio

50 100 150 200 250
5

10

15

20

25

30

35

40

Cache Size (data items)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(d) LCH Ratio

50 100 150 200 250
20

25

30

35

40

45

50

55

Cache Size (data items)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(e) GCH Ratio

Figure 3.8: Effect of cache size in a hybrid environment.

cache decreases with increasing cache size, and hence the GCH ratio drops.

In the pull-based mobile environment, although CC-2H yields the highest GCH

ratio, as shown in Figure 3.6(e), the access latency is worse than CC. In multi-hop

data searching, the network traffic is a key factor to system performance. The MHs

adopting CC-2H have to play a role as routers to forward requests and data items to

other peers, so the multi-hop searching incurs a lot of network traffic. If the MHs

cannot find the required data items within their neighboring peers, they better obtain

the data items from the MSS.

However, in the push-based and hybrid mobile environments, CC-2H performs

better than NC and CC in terms of access latency and server request ratio, as depicted

in Figures 3.7(a) and 3.7(c) for the push-based environment, and Figures 3.8(a) and

3.8(c) for the hybrid environment. These two mobile environments are scalable, but

the MHs generally suffer from longer access latency than in the pull-based mobile

environment. As a result, in the push-based and hybrid mobile environments, the

MHs can afford to request data items from their peers with a longer hop distance to

improve access latency. In the hybrid environment, the performance of CC-2H and

CC is consistently better than NC with different PushChannel ratio values.

The cost of adopting COCA schemes is higher power consumption, as shown in

CHAPTER 3. COCA 49

Figures 3.6(b), 3.7(b) and 3.8(b). When the MHs enjoy a higher LCH ratio, they

can reduce the power consumption searching in the Peer Cache layer. However, when

the GCH ratio increases with increasing cache size, the MHs have to consume more

power to return the required data items to the requesting peers. In addition, the MHs

have to spend more power on discarding unintended messages as they are residing in

the transmission range of the source MH, destination MH or both. The result also

shows that the power consumption of CC-2H is much higher than NC and CC. In the

pull-based mobile environment, the power consumption of the MHs adopting CC-2H

is two times more than with CC.

Figures 3.7(b) and 3.8(b) show that the MHs adopting CC-2H consume less power

than the other schemes. When they encounter local cache misses, they tune in to the

broadcast channel to catch the required data item or index. They can switch to doze

mode until the data items are broadcast or obtain them via point-to-point channels

if the data items are not allocated in the broadcast channel. However, the power

that the MHs consume to wait for the index is significantly higher than searching

among peers within a distance of two hops. Thus, it is worthy to study the system

performance of multi-hop data searching with a distance of more than two hops; that

will be investigated in Section 3.5.9.

3.5.2 Effect of Data Item Size

We then study the effect of data item size on system performance by varying the data

item size from one to eight kilobytes (KB).

Figures 3.9, 3.10 and 3.11 show that access latency and power consumption increase

with increasing data item size, since the transmission time of a data item increases

as the data item size gets larger.

In the pull-based mobile environment, CC consistently performs better than NC

CHAPTER 3. COCA 50

1 2 4 6 8
50

100

150

200

250

300

350

Data Item Size (KB)

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
CC2H

(a) Access Latency

1 2 4 6 8
0

0.5

1

1.5

2

2.5
x 10

4

Data Item Size (KB)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC
CC
CC2H

(b) Power Consumption

1 2 4 6 8
30

40

50

60

70

80

90

100

Data Item Size (KB)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
CC2H

(c) Server Request Ratio

1 2 4 6 8
0

5

10

15

20

25

30

Data Item Size (KB)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
CC2H

(d) LCH Ratio

1 2 4 6 8
30

35

40

45

50

55

60

Data Item Size (KB)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
CC2H

(e) GCH Ratio

Figure 3.9: Effect of data item size in a pure pull-based environment.

1 2 4 6 8
0

5

10

15

20

25

30

35

Data Item Size (KB)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(a) Access Latency

1 2 4 6 8
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Data Item Size (KB)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(b) Power Consumption

1 2 4 6 8
10

20

30

40

50

60

70

80

90

Data Item Size (KB)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(c) Server Request Ratio

1 2 4 6 8
0

5

10

15

20

25

30

Data Item Size (KB)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(d) LCH Ratio

1 2 4 6 8
30

35

40

45

50

55

60

Data Item Size (KB)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−FD
CC−BD
CC2H−FD
CC2H−BD

(e) GCH Ratio

Figure 3.10: Effect of data item size in a pure push-based environment.

in terms of access latency, as depicted in Figure 3.9(a). For CC-2H, it is the best

when the data item size is small, i.e., two KB, but it performs worse than CC with

increasing data item size. In CC-2H, the MHs have to forward the data items to the

requesting peers, as the requesting peers cannot directly communicate with the target

peers. When the data item size gets larger, the forwarding operation generates more

network traffic and the requesting peers suffer from longer access latency. The longer

hop distance between the requesting MHs and target peers also incur higher power

consumption, as shown in Figure 3.9(b).

In the push-based and hybrid mobile environments, CC-2H gives the best perfor-

mance in terms of access latency and power consumption, as shown in Figures 3.10(a)

and 3.10(b) for the push-based environment, and Figures 3.11(a) and 3.11(b) for the

CHAPTER 3. COCA 51

1 2 4 6 8
0

1

2

3

4

5

6

Data Item Size (KB)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(a) Access Latency

1 2 4 6 8
0

2

4

6

8

10

12
x 10

5

Data Item Size (KB)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(b) Power Consumption

1 2 4 6 8
0

10

20

30

40

50

60

70

80

90

100

Data Item Size (KB)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(c) Server Request Ratio

1 2 4 6 8
0

5

10

15

20

25

30

Data Item Size (KB)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(d) LCH Ratio

1 2 4 6 8
30

35

40

45

50

55

60

Data Item Size (KB)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(e) GCH Ratio

Figure 3.11: Effect of data item size in a hybrid environment.

hybrid environment, because the latency and power consumption of access to data

items from the MSS are much larger than that in the pull-based environment.

3.5.3 Effect of Skewness in Access Pattern

0 0.2 0.4 0.6 0.8 1
40

60

80

100

120

140

160

Zipf Skewness Parameters

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
CC2H

(a) Access Latency

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Zipf Skewness Parameters

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC
CC
CC2H

(b) Power Consumption

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

80

90

100

Zipf Skewness Parameters

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
CC2H

(c) Server Request Ratio

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Zipf Skewness Parameters

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
CC2H

(d) LCH Ratio

0 0.2 0.4 0.6 0.8 1
15

20

25

30

35

40

45

50

55

Zipf Skewness Parameters

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
CC2H

(e) GCH Ratio

Figure 3.12: Effect of skewness in access pattern in a pure pull-based
environment.

In this set of simulated experiments, we study the effect of skewness in access

pattern by changing the skewness value from zero to one.

Figures 3.12, 3.13 and 3.14 show that system performance of all schemes improves

with increasing skewness parameter value. When the skewness parameter is equal to

zero, the MHs access the data items uniformly, i.e., they access all data items within

the access range with the same probability. Thus, there is a higher chance for them to

CHAPTER 3. COCA 52

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Zipf Skewness Parameters

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(a) Access Latency

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

5

Zipf Skewness Parameters

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(b) Power Consumption

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

80

90

Zipf Skewness Parameters

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(c) Server Request Ratio

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Zipf Skewness Parameters

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(d) LCH Ratio

0 0.2 0.4 0.6 0.8 1
15

20

25

30

35

40

45

50

55

60

Zipf Skewness Parameters

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−FD
CC−BD
CC2H−FD
CC2H−BD

(e) GCH Ratio

Figure 3.13: Effect of skewness in access pattern in a pure push-based
environment.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Zipf Skewness Parameters

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(a) Access Latency

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8
x 10

5

Zipf Skewness Parameters

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(b) Power Consumption

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

Zipf Skewness Parameters

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(c) Server Request Ratio

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Zipf Skewness Parameters

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(d) LCH Ratio

0 0.2 0.4 0.6 0.8 1
15

20

25

30

35

40

45

50

55

Zipf Skewness Parameters

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(e) GCH Ratio

Figure 3.14: Effect of skewness in access pattern in a hybrid environment.

encounter local cache misses, as shown in Figures 3.12(d), 3.13(d) and 3.14(d). When

the skewness parameter increases, the client access pattern becomes more skewed,

such that the MHs can find more required data items in their local cache. The higher

the LCH ratio, the better the performance the MHs can achieve.

The power consumption of all schemes reduces as the skewness parameter gets

larger. When the MHs achieve a higher LCH ratio, they can save on power consump-

tion by not enlisting neither the MSS nor other peers for help. For COCA schemes,

the MHs need less help from their peers, i.e., the GCH ratio reduces, with increasing

LCH ratio.

CHAPTER 3. COCA 53

3.5.4 Effect of Access Density

0.1 0.2 0.4 0.6 0.8 1
110

120

130

140

150

160

170

180

190

Access Range/Total No. of Data Items

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
CC2H

(a) Access Latency

0.1 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Access Range/Total No. of Data Items

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC
CC
CC2H

(b) Power Consumption

0.1 0.2 0.4 0.6 0.8 1
30

40

50

60

70

80

90

100

Access Range/Total No. of Data Items

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
CC2H

(c) Server Request Ratio

0.1 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12

14

16

18

Access Range/Total No. of Data Items

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
CC2H

(d) LCH Ratio

0.1 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35

40

45

50

Access Range/Total No. of Data Items

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
CC2H

(e) GCH Ratio

Figure 3.15: Effect of access density in a pure pull-based environment.

0.1 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12

14

16

18

20

Access Range/Total No. of Data Items

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(a) Access Latency

0.1 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

5

Access Range/Total No. of Data Items

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(b) Power Consumption

0.1 0.2 0.4 0.6 0.8 1
30

40

50

60

70

80

90

100

Access Density

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−FD
NC−BD
CC−FD
CC−BD
CC2−FD
CC2−BD

(c) Server Request Ratio

0.1 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12

14

16

18

Access Range/Total No. of Data Items

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(d) LCH Ratio

0.1 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35

40

45

50

55

Access Range/Total No. of Data Items

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−FD
CC−BD
CC2H−FD
CC2H−BD

(e) GCH Ratio

Figure 3.16: Effect of access density in a pure push-based environment.

We study the effect of access density on system performance by changing the access

range from 1000 to 10000 data items.

In the pull-based mobile environment, access latency and server request ratio in-

crease with decreasing access density, i.e., increasing access range, as shown in Fig-

ures 3.15(a) and 3.15(c). The MHs access more distinct data items as the access

density gets lower; they experience a higher chance to encounter local cache misses,

as depicted in Figure 3.15(d). Likewise, when the MHs are interested in more dis-

tinct data items, the GCH ratio also reduces, as shown in Figure 3.15(e). Hence,

more client requests are sent to the MSS, i.e., the server request ratio increases. As

CHAPTER 3. COCA 54

0.1 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Access Range/Total No. of Data Items

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(a) Access Latency

0.1 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

5

Access Range/Total No. of Data Items

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(b) Power Consumption

0.1 0.2 0.4 0.6 0.8 1
30

40

50

60

70

80

90

100

Access Range/Total No. of Data Items

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(c) Server Request Ratio

0.1 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12

14

16

18

Access Range/Total No. of Data Items

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(d) LCH Ratio

0.1 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35

40

45

50

Access Range/Total No. of Data Items

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(e) GCH Ratio

Figure 3.17: Effect of access density in a hybrid environment.

fewer MHs can turn in the required data items to the requesting peers, the power

consumption reduces, as exhibited in Figure 3.15(b). However, the MHs adopting

NC consume more power, as they need to obtain more data items from the MSS.

Although the MHs adopting COCA schemes also issue more requests to the MSS,

due to the fact that the power consumption on obtaining data items from peers is

much higher than doing so from MSS. Thus, the overall power consumption for CC

and CC-2H reduces with increasing access range.

Figure 3.16(a) shows that the access latency of NC-FD decreases, as the access

density gets lower. When the client access range contains more data items allocated

in the broadcast channel, the access latency approaches the expected access latency.

As the access range is equal to the total number of data items allocated to the flat

broadcast disk, the expected access latency is at most half of the broadcast cycle, i.e.,

NumData
2

× DataSize
BWServer

= 10000
2
× 32768

10000000
= 16.384 seconds, as reflected in Figure 3.16(a).

In CC-BD and CC-2H-BD, when the client access range contains more data items that

are allocated in the disk with the slowest spinning speed, i.e., the disk three, the

access latency sharply increases. The gap between the performance of FD and BD

closes with increasing access density.

CHAPTER 3. COCA 55

3.5.5 Effect of Common Hot Spot

0 20 40 60 80 100
110

115

120

125

130

135

140

145

150

155

160

Common Hot Spot (%)

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
CC2H

(a) Access Latency

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Common Hot Spot (%)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC
CC
CC2H

(b) Power Consumption

0 20 40 60 80 100
30

40

50

60

70

80

90

Common Hot Spot (%)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
CC2H

(c) Server Request Ratio

0 20 40 60 80 100
0

5

10

15

20

25

30

Common Hot Spot (%)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
CC2H

(d) LCH Ratio

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

Common Hot Spot (%)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
CC2H

(e) GCH Ratio

Figure 3.18: Effect of common hot spot in a pure pull-based environment.

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20

Common Hot Spot (%)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(a) Access Latency

0 20 40 60 80 100
2

2.5

3

3.5

4

4.5

5
x 10

5

Common Hot Spot (%)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(b) Power Consumption

0 20 40 60 80 100
30

40

50

60

70

80

90

Common Hot Spot (%)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(c) Server Request Ratio

0 20 40 60 80 100
0

5

10

15

20

25

30

Common Hot Spot (%)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(d) LCH Ratio

0 20 40 60 80 100
0

10

20

30

40

50

60

Common Hot Spot (%)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−FD
CC−BD
CC2H−FD
CC2H−BD

(e) GCH Ratio

Figure 3.19: Effect of common hot spot in a pure push-based environment.

The effect of the percentage of common hot spot of all MHs on system performance

is studied by varying the percentage from 0 to 100 percent.

In the pull-based mobile environment, the varying percentage of common hot spot

does not affect NC scheme. However, it is obvious that the access latency and server

request ratio of COCA schemes improve with increasing percentage of common hot

spot. When the MHs share more common access pattern, the chance of getting the

required data items from their peers increases. As shown in Figure 3.18(e), the GCH

ratio improves with increasing percentage of common hot spot among MHs. The

cost of obtaining data items from peers is higher power consumption. The power

CHAPTER 3. COCA 56

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Common Hot Spot (%)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(a) Access Latency

0 20 40 60 80 100
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Common Hot Spot (%)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(b) Power Consumption

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Common Hot Spot (%)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(c) Server Request Ratio

0 20 40 60 80 100
0

5

10

15

20

25

30

Common Hot Spot (%)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(d) LCH Ratio

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

Common Hot Spot (%)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(e) GCH Ratio

Figure 3.20: Effect of common hot spot in a hybrid environment.

consumption of CC and CC-2H gets higher, as the GCH ratio increases, as depicted in

Figure 3.18(b). Since the MHs adopting CC-2H can search outside of its transmission

range, so they enjoy a higher GCH ratio than those with CC, but they have to spend

more power on searching the Peer Cache layer as well.

The worst case of COCA schemes occurs when the client access range is completely

random. Since the MHs do not have any knowledge of the access pattern of other

peers, they always search the Peer Cache layer when they encounter local cache miss.

The MHs have to wait for a timeout to detect a global cache miss, and then they

enlist the MSS for help. Therefore, if there is a high global cache miss ratio, the MHs

suffer from a longer access latency. When the GCH is low, the performance of CC-2H

is worse than NC, as shown in Figure 3.18(a).

In the push-based and hybrid mobile environments, CC-2H exhibits the best access

latency, server request ratio and power consumption compared with NC and CC. It is

due to the fact that the access latency and power consumption of a global cache access

is much less than accessing data items from the broadcast channel. Thus, it is worthy

to search the required data items in further peers’ cache to achieve better access

latency and power consumption in these mobile environments. We will investigate

the effect of hop distance on system performance in Section 3.5.9.

CHAPTER 3. COCA 57

Figure 3.20(a) shows that the access latency of NC-Push-30%, NC-Push-50% and

NC-Push-70% gets larger with increasing common hot spot. When the common hot

spot increases, the range of the hot spot becomes narrower. As a result, more hot data

items can be allocated to the broadcast channel. However, the latency of accessing

data items in the broadcast channel is longer than that in a the pull-based manner,

so the MHs suffer from a longer access latency when they often wait for their desired

data items to appear in the broadcast channel.

3.5.6 Effect of Client Disconnection Probability

0 0.1 0.2 0.3 0.4 0.5
110

115

120

125

130

135

140

145

Disconnection Probability

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
CC2H

(a) Access Latency

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Disconnection Probability

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC
CC
CC2H

(b) Power Consumption

0 0.1 0.2 0.3 0.4 0.5
30

40

50

60

70

80

90

Disconnection Probability

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
CC2H

(c) Server Request Ratio

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

Disconnection Probability

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
CC2H

(d) LCH Ratio

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

35

40

45

50

Disconnection Probability

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
CC2H

(e) GCH Ratio

Figure 3.21: Effect of client disconnection probability in a pure pull-based
environment.

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

Disconnection Probability

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(a) Access Latency

0 0.1 0.2 0.3 0.4 0.5
2

2.5

3

3.5

4

4.5

5
x 10

5

Disconnection Probability

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(b) Power Consumption

0 0.1 0.2 0.3 0.4 0.5
20

30

40

50

60

70

80

90

Disconnection Probability

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(c) Server Request Ratio

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

Disconnection Probability

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(d) LCH Ratio

0 0.1 0.2 0.3 0.4 0.5
20

25

30

35

40

45

50

55

60

Disconnection Probability

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−FD
CC−BD
CC2H−FD
CC2H−BD

(e) GCH Ratio

Figure 3.22: Effect of client disconnection probability in a pure push-based
environment.

CHAPTER 3. COCA 58

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Disconnection Probability

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(a) Access Latency

0 0.1 0.2 0.3 0.4 0.5
1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Disconnection Probability

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(b) Power Consumption

0 0.1 0.2 0.3 0.4 0.5
20

30

40

50

60

70

80

90

Disconnection Probability

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(c) Server Request Ratio

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

Disconnection Probability

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(d) LCH Ratio

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

35

40

45

50

Disconnection Probability

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(e) GCH Ratio

Figure 3.23: Effect of client disconnection probability in a hybrid environ-
ment.

In this set of simulated experiments, we study the effect of client disconnection

probability on system performance by varying the probability from 0 to 0.5.

The result shows that the performance of COCA schemes degrades with increasing

client disconnection probability. The chance of obtaining the required data items from

peers decreases, as there are more disconnected peers in the system. As a result, the

access latency and server request ratio increases for the MHs adopting CC and CC-2H,

as the client disconnection probability gets higher.

In the pull-based mobile environment, the power consumption of the COCA scheme

decreases with increasing client disconnection probability, as shown in Figure 3.21(b).

When the GCH ratio decreases, more data items are retrieved from the MSS, so the

MHs can save on more power, due to the fact that power consumption on retrieving

data items from the MSS is much lower than doing so from other peers.

In the push-based and hybrid mobile environments, the power consumption of the

COCA schemes is found to rise with increasing client disconnection probability, as

shown in Figures 3.22(b) and 3.23(b). As the access latency and power consumption

of a global cache access is much lower than accessing data items from the broadcast

channel, when the MHs adopting CC and CC-2H encounter a higher global cache miss

ratio with increasing client disconnection probability, they have to spend more power

CHAPTER 3. COCA 59

on obtaining their desired data items from the broadcast channel. In CC-2H, the MHs

enjoy a higher GCH ratio, as shown in Figures 3.22(e) and 3.23(e); they can thus save

more power than those in CC.

3.5.7 Effect of Mobility Speed

5 10 15 20 25 30
110

115

120

125

130

135

140

145

150

Maximum Mobility Speed (m/s)

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
CC2H

(a) Access Latency

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Maximum Mobility Speed (m/s)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC
CC
CC2H

(b) Power Consumption

5 10 15 20 25 30
30

40

50

60

70

80

90

100

Maximum Mobility Speed (m/s)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
CC2H

(c) Server Request Ratio

5 10 15 20 25 30
0

5

10

15

20

25

30

Maximum Mobility Speed (m/s)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
CC2H

(d) LCH Ratio

5 10 15 20 25 30
30

32

34

36

38

40

42

44

46

48

50

Maximum Mobility Speed (m/s)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
CC2H

(e) GCH Ratio

Figure 3.24: Effect of mobility speed in a pure pull-based environment.

5 10 15 20 25 30
0

5

10

15

20

25

30

Maximum Mobility Speed (m/s)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(a) Access Latency

5 10 15 20 25 30
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Maximum Mobility Speed (m/s)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(b) Power Consumption

5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Maximum Mobility Speed (m/s)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(c) Server Request Ratio

5 10 15 20 25 30
0

5

10

15

20

25

30

Maximum Mobility Speed (m/s)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(d) LCH Ratio

5 10 15 20 25 30
25

30

35

40

45

50

55

Maximum Mobility Speed (m/s)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−FD
CC−BD
CC2H−FD
CC2H−BD

(e) GCH Ratio

Figure 3.25: Effect of mobility speed in a pure push-based environment.

In this experiment, we study the effect of mobility speed on system performance

by increasing the maximum mobility speed from 5 m/s to 30 m/s.

As depicted in Figures 3.24, 3.25 and 3.26, the performance of NC is not affected by

varying the mobility speed, and the performance of CC and CC-2H schemes is merely

slightly affected by varying the mobility speed. In the pull-based environment, CC

CHAPTER 3. COCA 60

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

Maximum Mobility Speed (m/s)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(a) Access Latency

5 10 15 20 25 30
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

5

Maximum Mobility Speed (m/s)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(b) Power Consumption

5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

Maximum Mobility Speed (m/s)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(c) Server Request Ratio

5 10 15 20 25 30
0

5

10

15

20

25

30

Maximum Mobility Speed (m/s)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(d) LCH Ratio

5 10 15 20 25 30
30

32

34

36

38

40

42

44

46

48

50

Maximum Mobility Speed (m/s)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(e) GCH Ratio

Figure 3.26: Effect of mobility speed in a hybrid environment.

performs better than NC in terms of access latency and power consumption. However,

CC-2H exhibits the best performance in server request ratio, as it achieves a higher

GCH ratio than CC, as shown in Figure 3.24(e).

In the push-based and hybrid environments, GCH ratio is a crucial factor to system

performance, as it effectively reduces access latency and power consumption. CC-2H

consistently performs better than the other two schemes because CC-2H gives higher

GCH ratio in the push-based and hybrid environments, as depicted in Figures 3.25(e)

and 3.26(e). Based on the result of this series of simulated experiments, CC and CC-

2H schemes are well adapted to the various speed levels in the pull-based, push-based

and hybrid environments.

3.5.8 Effect of Number of MHs

This experiment studies the effect of client population on system performance by

increasing the number of MHs in the system from 50 to 400.

In the pull-based mobile environment, the access latency of all schemes increases

with increasing number of MHs in the system, as shown in Figure 3.27(a). In terms

of access latency, CC outperforms NC and CC-2H, and CC-2H performs better than

NC in heavily-loaded environments. The COCA schemes can improve access latency

CHAPTER 3. COCA 61

50 100 200 300 400
0

100

200

300

400

500

600

700

800

Number of MHs

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
CC2H

(a) Access Latency

50 100 200 300 400
0

1

2

3

4

5

6

7
x 10

4

Number of MHs

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC
CC
CC2H

(b) Power Consumption

50 100 200 300 400
0

10

20

30

40

50

60

70

80

90

Number of MHs

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
CC2H

(c) Server Request Ratio

50 100 200 300 400
0

5

10

15

20

25

30

Number of MHs

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
CC2H

(d) LCH Ratio

50 100 200 300 400
10

20

30

40

50

60

70

80

Number of MHs

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
CC2H

(e) GCH Ratio

Figure 3.27: Effect of number of MHs in a pure pull-based environment.

50 100 200 300 400
0

5

10

15

20

25

Number of MHs

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(a) Access Latency

50 100 200 300 400
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

5

Number of MHs

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(b) Power Consumption

50 100 200 300 400
0

10

20

30

40

50

60

70

80

90

Number of MHs

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(c) Server Request Ratio

50 100 200 300 400
0

5

10

15

20

25

30

Number of MHs

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−FD
NC−BD
CC−FD
CC−BD
CC2H−FD
CC2H−BD

(d) LCH Ratio

50 100 200 300 400
10

20

30

40

50

60

70

80

Number of MHs

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−FD
CC−BD
CC2H−FD
CC2H−BD

(e) GCH Ratio

Figure 3.28: Effect of number of MHs in a pure push-based environment.

because a large number of requests are handled by the MHs, and thus the system

workload is effectively distributed among MHs. When an MH can reach more peers

with increasing client population in the system, it stands a higher chance to obtain

the required data items, and therefore, the GCH ratio increases as the number of MHs

gets larger, as shown in Figure 3.27(e). However, since the MHs have to spend more

power to handle global cache queries, such as receiving more broadcast queries from

peers and forwarding more data items to requesting MHs, the power consumption

increases with increasing GCH ratio, as illustrated in Figure 3.27(b).

In the push-based environment, the access latency of NC-FD and NC-BD is not

affected by the number of MHs in the system. However, the access latency of the

COCA schemes improves significantly with increasing number of MHs, as depicted in

CHAPTER 3. COCA 62

50 100 200 300 400
0

1

2

3

4

5

6

Number of MHs

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(a) Access Latency

50 100 200 300 400
1

2

3

4

5

6

7

8
x 10

5

Number of MHs

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(b) Power Consumption

50 100 200 300 400
0

10

20

30

40

50

60

70

80

90

Number of MHs

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(c) Server Request Ratio

50 100 200 300 400
0

5

10

15

20

25

30

Number of MHs

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(d) LCH Ratio

50 100 200 300 400
10

20

30

40

50

60

70

80

Number of MHs

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−Push−30%
CC−Push−50%
CC−Push−70%
CC2H−Push−30%
CC2H−Push−50%
CC2H−Push−70%

(e) GCH Ratio

Figure 3.29: Effect of number of MHs in a hybrid environment.

Figure 3.28(a), because the MHs adopting the COCA schemes achieve a higher GCH

ratio with increasing client population, and coupled with the fact that the latency

and power consumption of a global cache access is much lower than a broadcast

channel access. The power consumption of CC-2H initially drops and then rises with

increasing client population in the system. The initial drop is due to the fact that

there is a higher chance for the MHs to obtain their desired data items from the peers

as the power consumption of a global cache access is much less than downloading

the required data items from the broadcast channel, so that they can conserve more

power. However, when the number of MHs further increases, the power consumption

on P2P communication offsets the benefit of achieving a higher GCH ratio, as the

MHs have to receive more broadcast requests from peers, to return more data items

to the requesting MHs and to discard a larger amount of unintended messages.

3.5.9 Effect of Hop Distance

Finally, we study the effect of hop distance on system performance by adjusting the

hop distance from 1 to 10. Note that the MHs adopting CC only search for the desired

data items in the cache of their neighboring peers, i.e., the hop distance is constantly

equal to one, and no client cooperative is involved in NC.

CHAPTER 3. COCA 63

1 2 4 6 8 10
100

150

200

250

300

350

400

450

500

Hop Distance

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
CCMH

(a) Access Latency

1 2 4 6 8 10
0

1

2

3

4

5

6

7

8
x 10

4

Hop Distance

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC
CC
CCMH

(b) Power Consumption

1 2 4 6 8 10
10

20

30

40

50

60

70

80

90

100

Hop Distance

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
CCMH

(c) Server Request Ratio

1 2 4 6 8 10
0

5

10

15

20

25

30

Hop Distance

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
CCMH

(d) LCH Ratio

1 2 4 6 8 10
30

35

40

45

50

55

60

65

70

Hop Distance

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
CCMH

(e) GCH Ratio

Figure 3.30: Effect of hop distance in a pure pull-based environment.

1 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

20

Hop Distance

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−FD
NC−BD
CC−FD
CC−BD
CCMH−FD
CCMH−BD

(a) Access Latency

1 2 4 6 8 10
2

2.5

3

3.5

4

4.5

5
x 10

5

Hop Distance

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−FD
NC−BD
CC−FD
CC−BD
CCMH−FD
CCMH−BD

(b) Power Consumption

1 2 4 6 8 10
10

20

30

40

50

60

70

80

90

Hop Distance

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−FD
NC−BD
CC−FD
CC−BD
CCMH−FD
CCMH−BD

(c) Server Request Ratio

1 2 4 6 8 10
0

5

10

15

20

25

30

Hop Distance

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−FD
NC−BD
CC−FD
CC−BD
CCMH−FD
CCMH−BD

(d) LCH Ratio

1 2 4 6 8 10
30

35

40

45

50

55

60

65

70

75

80

Hop Distance

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−FD
CC−BD
CCMH−FD
CCMH−BD

(e) GCH Ratio

Figure 3.31: Effect of hop distance in a pure push-based environment.

The effect of hop distance in the pull-based mobile environment is shown in Fig-

ure 3.30. Although the GCH ratio improves with increasing hop distance, the access

latency and power consumption also increase, as the MHs have to spend more time and

consume more power on searching for the desired data items in the Peer Cache layer.

Combined with the result from Figure 3.27, the MHs should only apply multi-hop

searching in the pure-pull mobile environment when the system is highly overloaded,

and the hop distance should not exceed two, in order to conserve battery power.

Figure 3.31 exhibits the result of varying hop distance in the mobile broadcast

environment. The access latency of CC-MH-FD and CC-MH-BD improves with in-

creasing hop distance in searching for desired data items in the system. When the

hop distance gets larger, there is a higher chance for the MHs to obtain the desired

CHAPTER 3. COCA 64

1 2 4 6 8 10
0.3

0.5

1

1.5

2

2.5

Hop Distance

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CCMH−Push−30%
CCMH−Push−50%
CCMH−Push−70%

(a) Access Latency

1 2 4 6 8 10
1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Hop Distance

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CCMH−Push−30%
CCMH−Push−50%
CCMH−Push−70%

(b) Power Consumption

1 2 4 6 8 10
15

20

30

40

50

60

70

80

90

Hop Distance

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CCMH−Push−30%
CCMH−Push−50%
CCMH−Push−70%

(c) Server Request Ratio

1 2 4 6 8 10
0

5

10

15

20

25

30

Hop Distance

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−30%
NC−Push−50%
NC−Push−70%
CC−Push−30%
CC−Push−50%
CC−Push−70%
CCMH−Push−30%
CCMH−Push−50%
CCMH−Push−70%

(d) LCH Ratio

1 2 4 6 8 10
30

40

50

60

70

80

90

Hop Distance

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−Push−30%
CC−Push−50%
CC−Push−70%
CCMH−Push−30%
CCMH−Push−50%
CCMH−Push−70%

(e) GCH Ratio

Figure 3.32: Effect of hop distance in a hybrid environment.

data items from their peers, as shown in Figure 3.31(e). We observe that retrieving

data items from peers is more efficient than passively waiting for them in the broad-

cast channel in terms of access latency. The power consumption of CC-MH-FD and

CC-MH-BD first reduces and then rises with increasing hop distance, as depicted in

Figure 3.31(b). The initial drop is due to the fact that the MHs can save on power

when they access the desired data items from their peers. However, if the MHs search

for the data items in a distance of larger than three hops, the power consumption

increases as the hop distance gets larger. This is because the power consumption on

disseminating request messages to distant peers and forwarding requested data items

from the distant peers to the requesting MHs undermines the benefit of multi-hop

searching. Figure 3.31(e) shows that the GCH ratio is saturated as the hop distance

is over six. Therefore, we suggest that the MHs should merely search for their desired

data items within six hops, in order to gain benefit of multi-hop searching in terms

of access latency and power consumption.

The effect of hop distance in the hybrid environments is similar to the push-based

environments, as depicted in Figure 3.32. Figure 3.32(e) shows that the GCH ratio

is saturated at a distance of six hops. We suggest that the MHs should not search

for their desired data items from the cache of the distant peers, i.e., the hop distance

CHAPTER 3. COCA 65

is larger than six hops, in order to optimize system performance in terms of access

latency and power consumption, as the multi-hop searching traffic can increase access

latency when the hop distance is getting further, as shown in Figure 3.32(a).

3.6 Concluding Remarks

In this chapter, we have proposed a mobile cooperative caching for MHs, called

COCA, in mobile environments. Three COCA models are described for three dif-

ferent mobile data dissemination models: pull-based, push-based and hybrid. To

extensively evaluate the performance of COCA, a multi-hop searching protocol is

also described. The performance of COCA is evaluated through a series of simu-

lated experiments by considering various client behaviors and system properties. The

results show that COCA with single-hop searching always performs better than tra-

ditional caching scheme in the pull-based environment in terms of access latency and

server request ratio. However, the cost of MHs adopting COCA is higher power

consumption. In the broadcast and hybrid mobile environments, COCA yields the

better performance in access latency, power consumption and server request ratio

compared with the conventional caching scheme, as the MHs can achieve a higher

GCH ratio. COCA with multi-hop searching further improve system performance in

the push-based and hybrid environments.

Based on the simulated experiment results, we conclude that the MHs should not

search too far away in the pull-based environment, as cost of multi-hop searching is

more expensive than getting the required data items from the MSS. However, they

better enlist more peers with the distance of a maximum number of six hops for help

in the push-based and hybrid environments because the cost of retrieving data items

from MSS via broadcast channels is higher than obtaining them from peers with a

CHAPTER 3. COCA 66

distance of multi-hop.

The results also show that COCA can improve the system scalability, as the sys-

tem workload can be shared among MHs. COCA is good for the pull-based mobile

environment; on the other hand, COCA with multi-hop searching is more suitable for

push-based and hybrid mobile environments.

Chapter 4

Cache Signature Scheme

4.1 Introduction

As the MHs do not possess any knowledge about the cache content of their peers,

they have to search their peers’ cache whenever they encounter local cache misses. In

case of no peer caching the required data items, the search in the Peer Cache layer

gives in vain, wasting power and increasing access latency. In this chapter, a cache

signature scheme is proposed for the MHs. It provides hints for the MHs to make

decision whether to search the Peer Cache layer based on their local state. In the

cache signature scheme, each signature is stored as a bloom filter [15], which will be

described in the next section.

Signature techniques have been applied in information filtering in mobile broadcast

environments [59]. In [59], signatures are used to summarize the information that will

be broadcast in next information segment. When an MH encounters a local cache

miss, it generates a query signature, and then tunes in to the broadcast channel to

download the signature from the MSS. If the signature matches the query signature,

the MH keeps listening to the broadcast channel and catches the required data items.

67

CHAPTER 4. CACHE SIGNATURE SCHEME 68

Otherwise, it switches to the doze mode to reduce power consumption until the MSS

broadcasts the next signature.

Signature techniques are also applied on efficiently searching P2P networks [62].

In [62], the clients exchange their local signatures with other peers within their neigh-

borhood, and then the clients are able to determine whether they should search out-

side of their neighborhood, or select a subset of neighborhood and forward the request

to them, in order to reduce network traffic.

In [34], signatures are adopted to facilitate URL (Uniform Resource Locator) rout-

ing in WWW (World Wide Web) content distribution networks. The author in [34]

proposes to use signature as a compression method to reduce variable length URLs

to fixed length integer signatures. The signatures that are generated by cyclic redun-

dancy check (CRC) codes are used as keys in the URL routing table. The trace-driven

simulation result shows that using signatures can reduce the routing table size and

improve the look-up time.

Signature techniques are also used in web cache sharing protocol [30]. In [30], each

proxy maintains a signature that summarizes its cached data items. The proxies can

determine by exchanging the signatures among themselves which proxies are likely

to cache the required data items, and then forward the requests to them. It also

proposes a proactive approach to generate signatures to reduce searching latency and

processing computation overheads.

A compressed bloom filter scheme [65] is proposed, that compresses the bloom

filter with arithmetic coding to reduce its size before transmitting to others, so as to

improve system performance.

In our work, we adopt signature techniques in a mobile cooperative caching envi-

ronment. A proactive signature generation mechanism is used to reduce processing

computation overhead and response time. To reduce the transmission time and power

CHAPTER 4. CACHE SIGNATURE SCHEME 69

consumption, signatures are compressed before sending to other peers. Three signa-

ture storage schemes are proposed to study the tradeoff between storage space and

maintenance overhead. A cache signature exchange protocol is also proposed for the

MHs to exchange their cache signature with their neighbors. The exchange protocol is

then extended to handle client disconnection by adopting a time-stamping technique.

4.2 Background

A bloom filter is used to represent a set S = {s1, s2, . . . , sN} of N elements (also

called keys). A vector V with M bits, denoted v1, v2, . . . , vM , is initially set to zero.

In addition, there are k independent hash functions, denoted h1, h2, . . . , hk, each

yielding a hash value within the range between 0 and M − 1.

To construct a bloom filter, an element s ∈ S is hashed by the k hash functions

to produce k hash values, h1(s), h2(s), . . . , hk(s). Then, the corresponding bits in

V for the hash values are set to one, i.e., ∀j ∈ [1, k], vhj(s) = 1. This two-step

procedure is repeated for each element in S. To check whether an element s′ is

contained in V , s′ is first hashed by the k hash functions. If all the bits at positions,

h1(s
′), h2(s

′), . . . , hk(s
′), are set in V , i.e., ∀j ∈ [1, k], vhj(s′) = 1, then s′ is probably

stored in V . Otherwise, if no bit or only some of the bits are set in V , i.e., ∃j ∈

[1, k], vhj(s′) = 0, it indicates that s′ must not be stored in V .

Since each bit in V can be randomly set multiple times by different elements, a

bloom filter, i.e., the vector V , could give a wrong indication, called a false positive,

that occurs when the bloom filter indicates the existence of an element, but the

element is actually not stored in it.

The false positive probability is dependent on the values of k, M and N . After

hashing all elements in S into V , the probability that a particular bit still remains

CHAPTER 4. CACHE SIGNATURE SCHEME 70

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of hash functions (k)

Fa
ls

e
po

si
tiv

e
pr

ob
ab

ili
ty

M=10,000
M=20,000
M=30,000
M=40,000
M=50,000
M=60,000
M=70,000
M=80,000

Figure 4.1: The false positive probability with different values of k and M .
(N = 10, 000)

zero is (1 − 1/M)Nk. It is commonly assumed that all bits are independently set to

zero and one [30, 65]. Thus, the probability of the occurrence of a false positive, i.e.,

an element is not stored in V , but all the corresponding bits are set, can be calculated

by the equation:

(
1−

(
1− 1

M

)Nk
)k

, (4.1)

where k, M and N are positive integers. Figure 4.1 exhibits the false positive prob-

ability with different values of M and k if N = 10000. An approximate optimal

number of hash functions, k, to produce the lowest false positive probability with

respect to the values of M and N is derived in [30], i.e., k = (ln 2)(M/N).

CHAPTER 4. CACHE SIGNATURE SCHEME 71

4.3 Cache Signatures

In the cache signature scheme, there are four types of signatures, data signature,

cache signature, peer signature and search signature [22]. A data signature for a data

item is a bit string that is produced by hashing its unique identifier, such as integral

identifier, keywords, attribute values, URL, document content with single or multiple

hash functions. A cache signature is a bloom filter that summarizes the cache content

by superimposing all data signatures of the data items in a cache. A peer signature for

an MH is produced by superimposing the cache signatures of its peers to provide hints

for the MH to determine whether to search the Peer Cache layer, when it encounters

a local cache miss. The generation procedure of a data signature and search signature

is the same. A data signature is for a cached data item, while search signature is for

a requested data item that cannot be found in the local cache. The search signature

is used for comparing with the peer signature by a bitwise AND operation. If the

result is the same as the search signature, it indicates that some of peers are likely

caching the required data item, so the MH searches the Peer Cache layer. Otherwise,

the MH will bypass the Peer Cache layer and obtain the required data item from the

MSS directly instead.

All MHs need to exchange their own cache signature with other peers. To enable

them to manipulate the cache signature of their peers, the bloom filter size should be

identical across all participating peers, even though they may only cache a portion of

data items in the system. Furthermore, in a highly dynamic distributed environment,

it is impossible to limit or predict the client cache size, so we have to assume that

some MHs could possess very large storage capacity that is enough to cache most, if

not all, data items of the system. To this end, when we determine the value of k, the

total of number of data items of the system rather than the client cache size will be

considered as the setting of M .

CHAPTER 4. CACHE SIGNATURE SCHEME 72

4.3.1 Cache Signatures with Compression

When an MH merely caches a small portion of data items of the system, there are

many “zeros” in its cache signature; therefore the transmission overhead can be re-

duced, if the bloom filter is compressed before it is transmitted to other peers. A

variable-length-to-fixed-length (VLFL) run-length encoding [10] is used to compress

the cache signature because it is simple and yet practical for most mobile devices.

The VLFL run-length encoding consists of two steps. First, the sequence of bits is

decomposed into run-lengths (L) which are terminated by two cases:

1. there are R consecutive “zeros”, where R = 2l − 1 for any positive integer l;

2. there are L consecutive “zeros” followed by a single “one”, where 0 ≤ L < R.

Second, a fixed-length codeword, which indicates the length of the run-length, is

assigned to each run-length.

The compression performance is dependent on the value of R, as it defines the

maximum run-length in the first step of the VLFL run-length encoding. An analytical

model has been developed to select an optimal value for R [10]. The probability of

the occurrence of a “zero” in a signature is p0 = (1 − 1/M)Nk. In addition, the

probabilities of possible run-lengths, 0 ≤ L ≤ R can be obtained by:

P (L) =

{
pL0 (1− p0), for 0 ≤ L < R

pR0 , for L = R (4.2)

Hence, the expected length of an intermediate symbol, that is either a run-length

with R consecutive “zeros” or a run-length with L consecutive “zeros” and a termi-

nator “one”, where 0 ≤ L < R, is:

η =
R−1∑

L=0

(L+ 1)P (L) +RP (R) =
1− pR

1− p
. (4.3)

CHAPTER 4. CACHE SIGNATURE SCHEME 73

Let M ′ be the length of a compressed signature. The expected length of a com-

pressed signature, E(M ′), is given by:

E(M ′) = (M/η)× log2(R + 1), (4.4)

where M is the length of a cache signature. Algorithm 3 is used to determine an

optimal value of R based on the values of N , M and k. We can take advantage of

the VLFL encoding compression, i.e., M ′ < M , when log2(R+ 1) < η. Therefore, an

MH has to make a local decision on whether to compress its cache signature before

transmitting it to other peers based on three factors: its cache size (|Cache|) in terms

of number of data items that can be stored in the cache1, bloom filter size (M) and

the number of independent hash functions (k). The VLFL encoding compression only

reduces a cache signature size, as the expected length of an intermediate symbol is

shorter than the length of a fixed-length codeword, i.e., log2(R + 1) < η. A cache

signature thus should be compressed, if the condition, log2(R̂ + 1) < 1−ρR̂

1−ρ
, where

R̂ = FindOptimalR(|Cache|,M, k), is satisfied. Otherwise, the MH simply sends its

cache signature to other peers without any compression.

Table 4.1 shows the expected length of compressed cache signatures with different

values of M and R for MHs with the cache size of N data items, and the highlighted

figures are the compressed signature with the shortest length for different values ofM ,

and R in the column of a highlighted figure is the optimal value for the corresponding

value of M in the row.

1If the size, data size, of all data items is identical, the number of data items can be stored in
a cache is equal to cache size

data size
, where cache size is the cache size of an MH; otherwise, it is equal to

the average number of data items that can be cached, i.e., cache size
1

N

∑
N

i=1
data sizei

.

CHAPTER 4. CACHE SIGNATURE SCHEME 74

Algorithm 3 Finding an optimal value of R.

1: FindOptimalR (N , M , k)

2: ρ←
(
1−

(
1
M

)Nk
)
;

3: min M ′ ← +∞;
4: R← 1;
5: i← 1;
6: Optimal R← 1;

7: while i ≤ 1−ρR

1−ρ
do

8: tmp M ′ ← Mi(1−ρ)
1−ρR

;
9: if tmp M ′ < min M ′ then
10: min M ′ ← tmp M ′;
11: Optimal R← R;
12: else
13: break;
14: end if
15: i← i+ 1;
16: R← 2i − 1;
17: end while
18: return Optimal R;

4.3.2 Generation of Cache Signatures

The generation mechanism of cache signature is similar to that of a summary cache [30].

The identifier of a data item is first hashed by a 128-bit MD5 [70] signature. The

128-bit hash value is then divided into four 32-bit words. A modulus function is next

applied on each 32-bit word to yield a hash value bounded by M (the vector size),

i.e., between zero and M − 1, as illustrated in Figure 4.2. If k = 4, the bits at the

position of the four hash values are set to one in the vector. This process is repeated

for each cached data item. Then, the cache signature is compressed by the VLFL

run-length encoding. If k < 4, only the bits at the position of the first k hash values

are set to one; or if k = 1, cyclic redundancy check (e.g., CRC32) [34] can be used

to generate a single 32-bit word. In case of k > 4, other additional independent hash

functions would be used, such as CRC32, some secure hash algorithms (e.g., SHAs)

and so on.

CHAPTER 4. CACHE SIGNATURE SCHEME 75

Table 4.1: The expected length of compressed cache signatures with dif-
ferent values of R and M (N = 100, k = 2).

M
R

1 3 7 15 31 63 127 255 511 1023

10000 10000 6800.4 4547.1 3056 2142.8 1658.6 1504.8 1593.9 1782.3 1980.2

20000 20000 13466.9 8830.7 5714.7 3732.9 2554.6 1937 1726.9 1801.9 1990.2

30000 30000 20133.5 13115.7 8378.7 5338.1 3487.4 2443 1951.1 1855.6 1995.6

40000 40000 26800.1 17401.1 11044 6947.1 4429.9 2970.9 2214.9 1946.8 2007.1

50000 50000 33466.8 21686.6 13709.9 8557.7 5376.3 3507.9 2497.3 2063.7 2029.9

60000 60000 40133.4 25972.1 16376 10169.1 6324.7 4049.6 2789.7 2197 2064.9

70000 70000 46800.1 30257.8 19042.3 11780.9 7274.3 4593.9 3088 2341.1 2110.7

80000 80000 53466.7 34543.4 21708.7 13392.9 8224.5 5140 3390 2492.5 2165.3

90000 90000 60133.4 38829 24375.1 15005.2 9175.2 5687.2 3694.6 2649 2227.1

100000 100000 66800 43114.7 27041.6 16617.6 10126.3 6235.2 4001 2809.1 2294.6

4.4 Cache Signatures with Proactive Generation

Since the cache content is changed frequently, i.e., every cache insertion and eviction

changes the cache signature, the MH has to re-generate the cache signature before

�����������	
����
������������������	��	
����������
	
��������������������������

���

!��
����

"!�� !"����!��#��$%���&���%!������&"#'� ��
()#*+

��������$�$%����%�$���$�"��

�������

!��
����

(�����+
!��	��
��

,
����

!��	�$�-.��

/�	��

012

Figure 4.2: An example of the generation of a data signature from a URL.

CHAPTER 4. CACHE SIGNATURE SCHEME 76

sending it to other peers. To reduce the processing computation overhead, a proactive

approach is used to generate cache signatures. In the proactive approach, a counter

vector [30] is adopted to maintain the information of a cache signature. An MH

maintains a vector with M counters, each counter with counter size bits. These

counter size bits are used to represent an integer value. Initially, the integer value

is set to zero. When a data item is inserted into the local cache, a data signature is

generated for the data item. If k independent hash functions are used to construct

the bloom filter, k bits are set in the data signature. The counters at the position of

the bits that are set in the data signature are incremented (Algorithm 4). Likewise,

when a data item is evicted from the cache, a data signature is also generated for the

data item. The corresponding counters at the position of the bits are decremented

(Algorithm 5). By using this proactive signature generation approach, the MH can

construct a new cache signature by simply setting the bits at the position of the

counters with non-zero values.

Algorithm 4 Inserting a data item into the cache

1: procedure InsertDataItem(CounterVector V , DataItem d, int counter size)
2: // V = {v1, v2, ..., vM};
3: Compute H; // H = {h1(d), h2(d), ..., hk(d)};
4: for all hi(d) ∈ H do
5: if vhi(d) < 2counter size − 1 then
6: vhi(d) ← vhi(d) + 1;
7: end if
8: end for

The integer value of a counter is bounded by the number of bits used to represent

the value, i.e., it is between 0 and 2counter size − 1. Thus, in case that the value of a

counter is equal to 2counter size−1, further increment operation is omitted. Also, if the

value is equal to zero, future decrement operation should not be executed. However,

there could be overflow and underflow problems in the proactive generation scheme.

CHAPTER 4. CACHE SIGNATURE SCHEME 77

Algorithm 5 Removing a data item from the cache

1: procedure RemoveDataItem(CounterVector V , DataItem d, int
underflow counter)

2: //V = {v1, v2, ..., vM};
3: Compute H; // H = {h1(d), h2(d), ..., hk(d)};
4: for all hi(d) ∈ H do
5: if vhi(d) = 0 then
6: underflow counter ← underflow counter + 1;
7: else
8: vhi(d) ← vhi(d) − 1;
9: end if
10: end for

For instance, a single bit is used to represent a counter value, i.e., counter size = 1,

and two data items, di and dj, overlap between their data signatures. The insertion of

di causes the corresponding counter value to be incremented from zero to one. Then,

the insertion of dj also causes that counter value to be incremented. To avoid an

overflow error, the latter increment is discarded. Such avoidance of overflow problem

can induce a false negative error. When one of these data items, di, is removed from

the cache in future, the corresponding counter value is decremented, i.e., the value

is changed from one to zero. Then, the cache signature is unable to represent the

existence of dj in the local cache. A peer that queries this cache signature will not

be aware of the existence of dj and its request for dj will constitute a false negative

error.

The analysis of the overflow problem in the proactive signature generation scheme

can be referred to as a ball-and-urn problem. In the ball-and-urn model [76], the balls

are randomly distributed in the urns, and the number of urns represents the number

of counter in the counter vector, whereas the number of balls in an urn represents

the value of a counter. The average number of urns with x balls, after β balls are

distributed in α urns, can be determined by the equation:

CHAPTER 4. CACHE SIGNATURE SCHEME 78

α


 β

x



(
1

α

)x(
1− 1

α

)β−x

. (4.5)

Let Cache be a set of cached data items in an MH, denoted Cache = {c1, c2, . . . c|Cache|}.

Hence, the average number of overflowed counters for an MH as derived by Equa-

tion 4.5 is:

M


 k × |Cache|

2counter size



(

1

M

)2counter size (
1− 1

M

)|Cache|k−2counter size

, (4.6)

where |Cache| is the number of cached data items. For instance, let M = 40000

and |Cache| = 100, Table 4.2 shows the average number of overflowed counters in

a counter vector when the number of bits used to represent the counter value varies

from one to five with different values of k by using Equation 4.6.

Table 4.2: Average number of overflowed counters. (M = 40000, |Cache| =
100)

counter size Upper bound
Average number of overflowed counters

k = 1 k = 2 k = 3 k = 4

1 21 − 1 = 1 0.1234 0.4950 1.1129 1.9752

2 22 − 1 = 3 6.1122 × 10−08 1.0058 × 10−06 5.1305 × 10−06 1.6256 × 10−05

3 23 − 1 = 7 1.1332 × 10−21 3.3469 × 10−19 8.9739 × 10−18 9.1557 × 10−17

4 24 − 1 = 15 1.2508 × 10−51 1.5681 × 10−46 1.2663 × 10−43 1.3972 × 10−41

5 25 − 1 = 31 3.0958 × 10−117 2.5620 × 10−106 2.7313 × 10−100 4.2135 × 10−96

Since the occurrence of counter overflows does not affect the resulted cache sig-

nature, the number of overflow errors is not recorded in Algorithm 4. On the other

hand, any underflow error directly leads to generate an imprecise cache signature. In

Algorithm 5, a counter (underflow counter) is thus maintained to record the num-

CHAPTER 4. CACHE SIGNATURE SCHEME 79

ber of occurrences of an underflow error. When the underflow counter reaches an

unacceptable level, all counters in the vector will be reset and Algorithm 4 is next

applied to each cached data item to re-construct a correct counter vector. Then,

underflow counter is reset to zero.

4.5 Cache Signature Storage Schemes

There is a tradeoff between the storage space and maintenance overhead for storing

cache signatures. When an MH stores the cache signatures of its peers individually, it

conserves power as the cache signatures can be handled separately. For instance, when

an MH detects a link failure with a peer, it can simply remove the cache signature of

that peer from the cache.

On the other hand, if the MH groups the peer signatures together and stores them

in a counter vector structure, it enjoys a higher LCH ratio, as this storage method

can save on cache space. However, the MH has to suffer from higher maintenance

overhead on updating the peer signature. When an MH detects a link failure with

a peer, it cannot simply drop the corresponding cache signature from the cache, as

it cannot extract the required cache signature from the counter vector structure.

To keep the accuracy of its peer signature, the MH has to reset the counter vector

structure and re-collect the cache signatures of its peers, and then re-construct the

counter vector.

In the proactive generation mechanism, a fixed upper bound of the counter size is

adopted, since we can easily find the appropriate counter size to attain an acceptable

probability of the occurrence of underflow errors. The MHs can also re-construct

the counter vector at a low cost, as the re-construction does not incur any commu-

nication between their peers. However, for the cache signature storage scheme, the

CHAPTER 4. CACHE SIGNATURE SCHEME 80

re-construction of a counter vector could induce very high overhead because the MHs

have to re-collect all required cache signatures from their peers. Therefore, a dynamic

upper bound mechanism is adopt to control the counter size, in order to reduce the

signature maintenance overhead.

To study the effect of the tradeoff on system performance, we propose three sig-

nature storage schemes for storing cache signatures: individual, group and hybrid.

The individual signature storage scheme is the most intuitive and simplest one.

An MH stores all the received cache signatures of its peers separately. When the

MH gets any update information of the cache signatures from peers (the details on

the cache signature update will be described in Section 4.6), it updates the cache

signatures accordingly. If the MH detects a link failure with a peer, it simply evicts

its signature from the cache. This scheme requires the largest cache space to store

cache signatures, but it incurs the least maintenance overhead in comparison with

the other schemes.

For the group signature storage scheme, an MH constructs a counter vector struc-

ture to store all cache signatures of its peers. Each MH maintains a vector of M

counters, i.e., M is the size of a bloom filter, each counter with counter size bits.

If an MH has not detected any peer, counter size is zero, i.e., the MH needs not to

store any peer signature. Once the MH discovers a peer, it creates a counter vector

with one bit and set all counters to zero. After the MH grabs the cache signature

from the peer, it updates the counter vector by incrementing the counters at the

position of the bits that are set in the received cache signature. When the MH is

going to increase a counter to a value of 2counter size, counter size will be increased

by one to avoid an overflow error. Likewise, in case that all counter values fall below

2counter size−1, counter size will be decremented to save on cache space. When the

MH detects a link failure with a peer whose cache signature is stored in the counter

CHAPTER 4. CACHE SIGNATURE SCHEME 81

vector, it resets the counter vector, and then it re-collects all the cache signatures

from the remaining neighboring peers. After the MH collects all the required cache

signatures, it re-constructs the counter vector. This scheme requires the least cache

space to store the cache signatures, but the maintenance overhead incurred by this

scheme is much higher than the other schemes.

In the hybrid signature storage scheme, an MH makes use of both the individual

and group signature storage schemes. The MH first caches all cache signatures of

its peers individually. After the MH has cached a cache signature for a period of

time, Thybrid, it uses the counter vector to store information of that cache signature

and removes it from the cache to save on storage space. When the MH detects a link

failure with a peer whose cache signature is stored in the counter vector, the MH resets

the counter vector and re-collects the cache signatures from other peers whose cache

signatures are stored in the counter vector. It re-constructs the counter vector based

on the received cache signatures. On the other hand, if the MH detects a link failure

with a peer whose cache signature is stored individually, the MH simply removes the

peer’s signature from the cache. This scheme saves the cache space by storing some

of cache signatures to a counter vector, and reduces communication overheads based

on the belief that the cache signatures continuously cached for Thybrid will be cached

for a longer time than other cache signatures in the future.

4.6 Cache Signature Exchange Protocol

Cache signature exchange protocol consists of two parts: new neighbor detection and

link failure detection. For the individual signature storage scheme (Algorithms 6

and 7), when an MH has detected a new neighbor through NDP, as described in

Chapter 3 (Section 3.4.5), NDP triggers Algorithm 6 to request the cache signature

CHAPTER 4. CACHE SIGNATURE SCHEME 82

from the newly detected neighbor. The MH sends a request (SigRequest) to the

new neighbor, and the neighbor replies the MH with its full cache signature via P2P

point-to-point communication. If the free cache space is not enough to cache the

received cache signature, the least valuable data item is evicted from the cache, and

this process is repeated until there is enough free space to store the cache signature.

NDP executes Algorithm 7 when it detects a link failure with a neighbor. It removes

the cache signature from the cache.

Algorithm 6 Cache Signature Exchange Protocol for Individual Signature Storage
Scheme - new neighbor detection at MH mi

1: procedure OnDetectNewNeighbor(Peer Pi, MH mj)
2: // Pi is a set of identifiers of MHs whose cache signatures are stored in mi’s cache
3: // mj is a newly discovered neighbor by NDP
4: // Sigj is the cache signature of mj

5: if mj /∈ Pi then
6: Send SigRequest to mj;
7: Receive Sigj from mj;
8: Insert Sigj into cache;
9: Pi ← Pi ∪ {mj};
10: end if

Algorithm 7 Cache Signature Exchange Protocol for Individual Signature Storage
Scheme - link failure detection at MH mi

1: procedure OnDetectLinkFailure(Peer Pi, MH mk)
2: // Pi is a set of identifiers of MHs whose cache signatures are stored in mi’s cache
3: // a link failure with an MH mk is detected by NDP
4: // Sigk is the cache signature of mk

5: if mk ∈ Pi then
6: Pi ← Pi − {mk};
7: Remove Sigk from cache;
8: end if

For the group signature storage scheme (Algorithms 8 and 9), when an MH has

detected a new neighbor through NDP, it sends a SigRequest to the newly discovered

neighbor to request its cache signature, and the neighbor then replies the MH with

CHAPTER 4. CACHE SIGNATURE SCHEME 83

its full cache signature via P2P point-to-point communication. Algorithm 8 updates

the counter vector by incrementing the counters at the position of the bits that are

set in the received cache signature. NDP executes Algorithm 9 when it detects a link

failure with a neighbor. It resets the counter vector and counter size, and then it

re-collects the cache signatures of other peers.

Algorithm 8 Cache Signature Exchange Protocol for Group Signature Storage
Scheme - new neighbor detection at MH mi

1: procedure OnDetectNewNeighbor(CounterVector Vi, Peer P
G
i , MH mj)

2: // Vi = {v1, v2, . . . , vM}
3: // PG

i is a set of identifiers of MHs whose cache signatures are stored in a counter
vector in mi’s cache

4: // mj is a newly discovered neighbor by NDP
5: // Sigj is the cache signature of mj, Sigj = {s1, s2, . . . , sM}
6: if mj /∈ PG

i then
7: Send SigRequest to mj;
8: Receive Sigj from mj;
9: PG

i ← PG
i ∪ {mj};

10: for all sh ∈ Sigj do
11: if sh = 1 then
12: if vh = 2counter sizei − 1 then
13: counter sizei ← counter sizei + 1;
14: end if
15: vh ← vh + 1;
16: end if
17: end for
18: end if

For the hybrid signature storage scheme (Algorithms 10, 11 and 12), when an

MH has detected a new neighbor through NDP, it requests the cache signature from

the newly detected neighbor by sending a (SigRequest) request to the new neighbor,

and the neighbor replies the MH with its full cache signature via P2P point-to-point

communication. The MH stores the received cache signature individually in the cache.

NDP triggers the execution of Algorithm 11 when it detects a link failure with a peer.

If the cache signature of the peer is stored in the counter vector, the MH resets the

CHAPTER 4. CACHE SIGNATURE SCHEME 84

Algorithm 9 Cache Signature Exchange Protocol for Group Signature Storage
Scheme - link failure detection at MH mi

1: procedure OnDetectLinkFailure(CounterVector Vi, Peer P
G
i , MH mk)

2: // Vi = {v1, v2, . . . , vM}
3: // PG

i is a set of identifiers of MHs whose cache signatures are stored in a counter
vector in mi’s cache

4: // a link failure with a MH mk is detected by NDP
5: if mk ∈ PG

i then
6: for all vg ∈ Vi do
7: vg ← 0;
8: end for
9: PG

i ← PG
i − {mk};

10: counter sizei ← 0;
11: // re-collect cache signatures from all remaining members in PG

i ;
12: for all mj ∈ PG

i do
13: Send SigRequest to mj;
14: Receive Sigj from mj;
15: for all sh ∈ Sigj do
16: if sh = 1 then
17: if vh = 2counter sizei − 1 then
18: counter sizei ← counter sizei + 1;
19: end if
20: vh ← vh + 1;
21: end if
22: end for
23: end for
24: end if

counter vector and counter size, and then it re-collects the cache signatures from the

remaining peers whose cache signatures are stored in the counter vector. Otherwise,

the MH simply drops the cache signature from the cache. In addition, Algorithm 12

is periodically executed to decide whether any cache signature should be stored in

the counter vector. It stores a cache signature in the counter vector if the MH has

cached the cache signature for a period time Thybrid. To store an individual cache

signature in the counter vector, the MH updates the counter vector by incrementing

the counters at the position of the bits which are set in the cache signature. Then,

the cache signature is removed from the cache to save on cache space.

CHAPTER 4. CACHE SIGNATURE SCHEME 85

Algorithm 10 Cache Signature Exchange Protocol for Hybrid Signature Storage
Scheme - new neighbor detection at MH mi

1: procedure OnDetectNewNeighbor(Peer Pi, MH mj)
2: // Pi is a set of identifiers of MHs whose cache signatures are stored in mi’s cache
3: // mj is a newly discovered neighbor by NDP
4: // Sigj is the cache signature of mj

5: if mj /∈ Pi then
6: Send SigRequest to mj;
7: Receive Sigj from mj;
8: Pi ← Pi ∪ {mj};
9: // now() returns the current time
10: signature receive tsj ← now();
11: end if

To reduce communication overhead on updating cache signature, the MHs embed

the signature update information to the request message that is broadcast to all their

neighboring peers. When a peer receives the request message along with signature

update information, it extracts the signature update information from the request

message, and then it updates either the cache signature or the counter vector accord-

ingly. If an MH has no neighbor at all, it does not piggyback any signature update

information into the request message. The signature update information is main-

tained in two lists: one list storing the bit position that has been set, and another

one storing the bit position that has been reset since the last time the MH broadcasts

a request message along with signature update information. All bit positions are

stored as integer values. If a bit position exists in both lists, the change is annihi-

lated and the bit position is removed from them. After the MH broadcasts signature

update information to the peers, it reset both lists.

To ensure the accuracy of cache signatures, an MH that has not generated any

request to its neighboring peers for a period of time Tsig is required to broadcast its

signature update information to its neighbors, unless there is no change in its cache

signature.

CHAPTER 4. CACHE SIGNATURE SCHEME 86

Algorithm 11 Cache Signature Exchange Protocol for Hybrid Signature Storage
Scheme - link failure detection at MH mi

1: procedure OnDetectLinkFailure(CounterVector Vi, Peer Pi, Peer P
G
i , MH mk)

2: // Vi = {v1, v2, . . . , vM}
3: // Pi is a set of identifiers of MHs whose cache signatures are stored in mi’s cache,

not the counter vector
4: // PG

i is a set of identifiers of MHs whose cache signatures are stored in a counter
vector in mi’s cache

5: // a link failure with an MH mk is detected by NDP
6: if mk ∈ PG

i then
7: for all vg ∈ Vi do
8: vg ← 0;
9: end for
10: PG

i ← PG
i − {mk};

11: counter sizei ← 0;
12: // re-collect cache signatures from all remaining members in PG

i ;
13: for all mj ∈ PG

i do
14: Send SigRequest to mj;
15: Receive Sigj from mj;
16: for all sh ∈ Sigj do
17: if sh = 1 then
18: if vh = 2counter sizei − 1 then
19: counter sizei ← counter sizei + 1;
20: end if
21: vh ← vh + 1;
22: end if
23: end for
24: end for
25: else if mk ∈ Pi then
26: Pi ← Pi − {mk};
27: Remove Sigk from cache;
28: end if

When an MH is disconnected from the network either voluntarily or involuntarily,

it will miss some of the signature update information sent by its peers. After the MH

re-connects to the network, some cache signatures may become stale. The system

performance could be degraded, as the peer signature cannot provide precise infor-

mation for the MH to decide whether to search for the desired data item in the Peer

Cache layer when it encounters a local cache miss. Therefore, the cache signature

CHAPTER 4. CACHE SIGNATURE SCHEME 87

Algorithm 12 Cache Signature Exchange Protocol for Hybrid Signature Storage
Scheme - signature time stamp checking at MH mi

1: procedure CheckSignTimeStamp(CounterVector Vi, Peer Pi, Peer P
G
i)

2: // Vi = {v1, v2, . . . , vM}
3: // Pi is a set of identifiers of MHs whose cache signatures are stored in mi’s cache,

not the counter vector
4: // PG

i is a set of identifiers of MHs whose cache signatures are stored in a counter
vector in mi’s cache

5: for all mj ∈ Pi do
6: if now() −signature receive tsj ≥ Thybrid then
7: Pi ← Pi − {mj};
8: PG

i ← PG
i ∪ {mj};

9: // Sigj is a cache signature of mj

10: for all sh ∈ Sigj do
11: if sh = 1 then
12: if vh = 2counter sizei − 1 then
13: counter sizei ← counter sizei + 1;
14: end if
15: vh ← vh + 1;
16: end if
17: end for
18: Remove Sigk from cache;
19: end if
20: end for

exchange protocol is extended to handle client disconnection to preserve the accuracy

of the bypassing mechanism.

When an MH broadcasts a request to its peers with the signature update informa-

tion, it records the time, last signature update ts. The MH immediately records the

time, when it is disconnected from the network, disconnection ts. After the MH re-

connects to the network, it broadcasts a request to its neighbors with disconnection ts.

Its neighbors compare its last signature update ts with disconnection ts. For a peer,

if last signature update ts ≥ disconnection ts, the cached cache signature of this

peer is stale, and the peer turns in its full cache signature to the requesting MH. Oth-

erwise, the cache signature is still valid, the peer sends an acknowledgement message

to the MH. After the MH receives response from all the peers, the MH performs the

CHAPTER 4. CACHE SIGNATURE SCHEME 88

signature update procedure based on the adopted signature storage scheme.

For the individual signature storage scheme, the MH simply replaces the stale cache

signatures with the newly received ones. For the group signature storage scheme, if

there is any stale cache signature, the MH needs to reset the counter vector and re-

collect the cache signatures from the peers that have responded with acknowledgement

messages. Then, the MH re-constructs the counter vector based on the collected cache

signatures. For the hybrid signature storage scheme, if the stale cache signature is

not stored in the counter vector, the MH can simply remove them with received cache

signatures. Otherwise, the MH has to reset the counter vector and re-collect the cache

signatures from the peers that have responded with acknowledgement messages and

their cache signatures are stored in the counter vector. The MH then re-constructs

the counter vector based on the received cache signatures.

4.7 Simulation Model

The simulation model of COCA with cache signature scheme is based on the model de-

fined in Chapter 3 with additional parameter settings for the cache signature scheme,

as shown in Table 4.3.

4.8 Simulation Results

We adopt the same simulation model, including power consumption model, mobility

model, data access pattern, server model and network model, as defined in Chap-

ter 3 to compare the performance of COCA with cache signature scheme (denoted as

CC-SIG) with a conventional caching scheme that does not involve any cooperation

among MHs (denoted as NC) and standard COCA (denoted as CC) in the pull-based,

push-based and hybrid environments. All schemes use LRU cache replacement policy.

CHAPTER 4. CACHE SIGNATURE SCHEME 89

Table 4.3: Simulation parameters and default settings for COCA with
cache signature scheme.

Parameter Description Default Value

M Signature length 40000

k No. of independent hash functions 2

R Maximum run-length 511

counter size Counter size of a counter vector used in
proactive generation of a cache signa-
ture

1

Tsig Time period of broadcasting signa-
ture update information to neighboring
peers

10 s

Thybrid Time period of storing a cache signature
in a counter vector

10 s

As the simulation result presented in Chapter 3 exhibits that the flat disk broadcast-

ing scheduling always performs worse than the broadcast disk broadcast scheduling,

we only consider the broadcast disk [2] in the push-based environment. For the hy-

brid environment, the simulation result depicts that the trend of the three broadcast

channel allocation policies are similar to each other, except two series of experiments:

common hot spot and number of MHs. For simplicity, we only consider the policy

of PushChannel = 50% in the hybrid environment. To study the tradeoff between

storage space and maintenance overheard for storing cache signatures, three proposed

cache signature schemes, individual, group and hybrid are applied to CC-SIG (denoted

as SIG-I, SIG-G and SIG-H respectively).

A series of simulated experiments is conducted by varying several parameters:

cache size, data item size, access patterns, client disconnection probability, mobility

speed, number of MHs in the system. The performance metrics include access latency,

power consumption, server request ratio, LCH ratio and GCH ratio.

CHAPTER 4. CACHE SIGNATURE SCHEME 90

4.8.1 Effect of Cache Size

50 100 150 200 250
40

60

80

100

120

140

160

Cache Size (data items)

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
SIG−I
SIG−G
SIG−H

(a) Access Latency

50 100 150 200 250
0

1

2

3

4

5

6

7

8

9

Cache Size (data items)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (m
W

.s
)

NC
CC
SIG−I
SIG−G
SIG−H

(b) Power Consumption

50 100 150 200 250
20

30

40

50

60

70

80

90

100

Cache Size (data items)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
SIG−I
SIG−G
SIG−H

(c) Server Request Ratio

50 100 150 200 250
5

10

15

20

25

30

35

40

Cache Size (data items)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
SIG−I
SIG−G
SIG−H

(d) LCH Ratio

50 100 150 200 250
15

20

25

30

35

40

Cache Size (data items)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
SIG−I
SIG−G
SIG−H

(e) GCH Ratio

Figure 4.3: Effect of cache size in a pure pull-based environment.

50 100 150 200 250
2

3

4

5

6

7

8

9

10

Cache Size (data items)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(a) Access Latency

50 100 150 200 250
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

5

Cache Size (data items)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(b) Power Consumption

50 100 150 200 250
20

30

40

50

60

70

80

90

100

Cache Size (data items)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(c) Server Request Ratio

50 100 150 200 250
5

10

15

20

25

30

35

40

Cache Size (data items)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(d) LCH Ratio

50 100 150 200 250
15

20

25

30

35

40

45

Cache Size (data items)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(e) GCH Ratio

Figure 4.4: Effect of cache size in a pure push-based environment.

Our first experiment studies the effect of cache size on system performance by

varying the cache size from 50 to 250 data items.

For the pure pull-based environment, Figures 4.3(a) and 4.3(c) show that all

schemes exhibit better access latency and server request ratio with increasing cache

size. This is because the LCH ratio increases as the cache size gets larger, as depicted

in Figure 4.3(d). In terms of access latency and server request ratio, CC and CC-SIG

outperform NC. For an MH adopting CC and CC-SIG, other than achieving a higher

LCH ratio as the cache size gets larger, it also enjoys a higher GCH ratio, as shown

in Figure 4.3(e), because the chance of some neighboring peers caching the required

CHAPTER 4. CACHE SIGNATURE SCHEME 91

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Cache Size (data items)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(a) Access Latency

50 100 150 200 250
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

5

Cache Size (data items)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(b) Power Consumption

50 100 150 200 250
20

30

40

50

60

70

80

90

100

Cache Size (data items)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(c) Server Request Ratio

50 100 150 200 250
5

10

15

20

25

30

35

40

Cache Size (data items)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(d) LCH Ratio

50 100 150 200 250
15

20

25

30

35

40

Cache Size (data items)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(e) GCH Ratio

Figure 4.5: Effect of cache size in a hybrid environment.

data items increases with the larger cache size. CC-SIG gives the best performance

in access latency, since the cache signature scheme effectively provides hints for the

MHs to bypass the Peer Cache layer. Therefore, the MHs adopting CC-SIG does not

need to waste time to search the Peer Cache layer, as they are likely to encounter

global cache misses.

In NC, the MHs witness a larger LCH ratio as the cache size gets larger, so the

power consumption is reduced, as shown in Figure 4.3(b). It also suggests that the

cost of adopting CC and CC-SIG is higher power consumption. When the MHs enjoy

a higher LCH ratio, they can reduce the power consumption in searching the Peer

Cache layer and retrieving the required data items from the MSS. However, when the

GCH ratio increases, more peers cache the required data items and need to forward

them to the requesting MHs. Therefore, the MHs have to consume more power for

sending data items and discarding unintended messages over P2P communication

channels as they are residing in the transmission range of the source MH, destination

MH or both.

Among CC-SIG, SIG-G gives the best performance in access latency, but the MHs

adopting SIG-G have to consume more power than the other cache signature storage

schemes to re-collect all the cache signatures of their peers when they detect any link

CHAPTER 4. CACHE SIGNATURE SCHEME 92

failure with their peers, as shown in Figures 4.3(a) and 4.3(b). For SIG-H, it gives the

second best performance in access latency, but the MHs adopting this scheme also

consume more power than SIG-I. SIG-G and SIG-H slightly improve access latency, but

they incur much more power consumption than SIG-I. Thus, we suggest that the MH

should adopt SIG-I in the pull-based mobile environment rather than the other two

schemes.

In the push-based environment, CC-SIG cannot improve access latency, as shown in

Figure 4.4(a). This is because CC-SIG is a filtering mechanism for an MH to determine

whether to search the Peer Cache layer. When the peer signature of an MH indicates

that no peer is likely caching its desired data item, the MH merely listens to the

broadcast channel and overlooks the Peer Cache layer. As the MH can start to tune

in to the broadcast channel and search the Peer Cache Layer at the same time after

it encounters a local cache miss, so CC-SIG cannot improve access latency. The MHs

adopting CC-SIG can bypass the Peer Cache layer when the peer signature indicates

that the required data items are not in the global cache, so they can reduce power

consumption compared with CC, in which the MHs have to search the Peer Cache

layer for every local cache miss. However, the storage of cache signatures reduce the

effective cache space of an MH. As a result, the MH suffers from a lower LCH ratio,

as depicted in Figure 4.4(d). The MH has to consume more power to obtain the

required data items either from the broadcast channel or the cache of its peers and

exchange its cache signature and signature update information with its peers. All

these communication overheads offset the benefit of the CC-SIG schemes.

In the hybrid environment, we can draw similar conclusions as in the push-based

environment, as exhibited in Figure 4.5. CC-SIG cannot improve system performance,

as the effective cache size is the dominant factors in access latency and power con-

sumption. In addition, the exchange of cache signatures and signature update infor-

CHAPTER 4. CACHE SIGNATURE SCHEME 93

mation among MHs accounts for higher power consumption in CC-SIG than CC.

4.8.2 Effect of Data Item Size

1 2 4 6 8
60

80

100

120

140

160

180

200

Data Item Size (KB)

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
SIG−I
SIG−G
SIG−H

(a) Access Latency

1 2 4 6 8
0

2

4

6

8

10

12

Data Item Size (KB)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (m
W

.s
)

NC
CC
SIG−I
SIG−G
SIG−H

(b) Power Consumption

1 2 4 6 8
50

55

60

65

70

75

80

85

Data Item Size (KB)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
SIG−I
SIG−G
SIG−H

(c) Server Request Ratio

1 2 4 6 8
0

5

10

15

20

25

30

Data Item Size (KB)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
SIG−I
SIG−G
SIG−H

(d) LCH Ratio

1 2 4 6 8
20

22

24

26

28

30

32

34

36

38

40

Data Item Size (KB)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
SIG−I
SIG−G
SIG−H

(e) GCH Ratio

Figure 4.6: Effect of data item size in a pure pull-based environment.

1 2 4 6 8
0

2

4

6

8

10

12

14

16

18

Data Item Size (KB)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(a) Access Latency

1 2 4 6 8
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Data Item Size (KB)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(b) Power Consumption

1 2 4 6 8
45

50

55

60

65

70

75

80

85

Data Item Size (KB)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(c) Server Request Ratio

1 2 4 6 8
0

5

10

15

20

25

30

Data Item Size (KB)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(d) LCH Ratio

1 2 4 6 8
20

22

24

26

28

30

32

34

36

38

40

Data Item Size (KB)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(e) GCH Ratio

Figure 4.7: Effect of data item size in a pure push-based environment.

This series of experiment studies the effect of data item size on system performance

by varying the data item size from one to eight kilobytes (KB).

Figures 4.6, 4.7 and 4.8 show that the access latency and power consumption

increase, as the data item size gets larger. This is because the data item with larger

size requires longer transmission time that induces higher power consumption.

In the pull-based environment, the MHs adopting CC-SIG suffer from a lower GCH

ratio than CC as depicted in Figure 4.6(e). When the data item size gets larger,

CHAPTER 4. CACHE SIGNATURE SCHEME 94

1 2 4 6 8
0

0.5

1

1.5

2

2.5

3

Data Item Size (KB)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(a) Access Latency

1 2 4 6 8
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Data Item Size (KB)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(b) Power Consumption

1 2 4 6 8
50

55

60

65

70

75

80

85

Data Item Size (KB)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(c) Server Request Ratio

1 2 4 6 8
0

5

10

15

20

25

30

Data Item Size (KB)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(d) LCH Ratio

1 2 4 6 8
20

22

24

26

28

30

32

34

36

38

40

Data Item Size (KB)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(e) GCH Ratio

Figure 4.8: Effect of data item size in a hybrid environment.

the GCH ratio of CC-SIG increases, as the impact of data item size on CC-SIG is

much smaller than on CC, as shown in Figure 4.6(a). When the data item size is

small, i.e., less than or equal to 2 KB, CC-SIG is the worst performer in the access

latency. However, CC-SIG performs better than CC and NC, as the data item size

further increases. It is due to fact that the overhead of cache space occupied by

the cache signature as reflected by the ratio of the cache signature size to the total

cache size reduces with increasing data item size. When the data item size is small,

this overhead ratio is higher and the impact of the storage overhead significantly

degrades system performance, so it hurts the LCH and GCH ratios, as depicted in

Figures 4.6(d) and 4.6(e). As the data item size gets larger, this ratio decreases, i.e.,

the impact of the storage overhead on the cache signature reduces. Thus, the LCH

and GCH ratios rise with increasing data item size.

When the data item size increases, the MHs adopting NC have to consume more

power on receiving data items from the MSS. In COCA schemes, the MHs not only

receive data items from the MSS, but they also consume power on forwarding re-

quired data items to other peers. As a result, the MHs adopting COCA schemes are

expected to consume more power than NC with increasing data item size, as shown

in Figure 4.6(b).

CHAPTER 4. CACHE SIGNATURE SCHEME 95

For CC-SIG, when the data item size is small, i.e., 1 KB, the tradeoff between

storage space and maintenance overhead is obvious. SIG-G performs better than the

other two schemes in terms of access latency, as depicted in Figure 4.6(a), as it can

improve the effective cache space, so the MHs adopting SIG-G achieve higher LCH and

GCH ratios, as shown in Figures 4.6(d) and 4.6(e). However, they have to consume

more power than the other two schemes, because they need to re-collect the cache

signatures from their peers when they detect any link failure with their peers. SIG-I

gives the longest access latency than SIG-G and SIG-H, but it consumes less power in

return. The tradeoff becomes negligible with increasing data item size because the

overhead of storing cache signatures reduces.

In the push-based and hybrid environments, the effective cache size is the most

important factor to system performance in these environments. The effective cache

size of CC is better than CC-SIG because the CC-SIG schemes use a portion of cache

space to store cache signatures. Thus, CC-SIG performs worse than CC, similar to the

result in Section 4.8.1.

4.8.3 Effect of Skewness in Access Pattern

0 0.2 0.4 0.6 0.8 1
40

60

80

100

120

140

160

Zipf Skewness Parameters

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
SIG−I
SIG−G
SIG−H

(a) Access Latency

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

Zipf Skewness Parameters

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (m
W

.s
)

NC
CC
SIG−I
SIG−G
SIG−H

(b) Power Consumption

0 0.2 0.4 0.6 0.8 1
20

30

40

50

60

70

80

90

Zipf Skewness Parameters

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
SIG−I
SIG−G
SIG−H

(c) Server Request Ratio

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Zipf Skewness Parameters

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
SIG−I
SIG−G
SIG−H

(d) LCH Ratio

0 0.2 0.4 0.6 0.8 1
15

20

25

30

35

Zipf Skewness Parameters

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
SIG−I
SIG−G
SIG−H

(e) GCH Ratio

Figure 4.9: Effect of skewness in access pattern in a pure pull-based envi-
ronment.

CHAPTER 4. CACHE SIGNATURE SCHEME 96

0 0.2 0.4 0.6 0.8 1
2

3

4

5

6

7

8

9

Zipf Skewness Parameters

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(a) Access Latency

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

5

Zipf Skewness Parameters

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(b) Power Consumption

0 0.2 0.4 0.6 0.8 1
20

30

40

50

60

70

80

90

Zipf Skewness Parameters

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(c) Server Request Ratio

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Zipf Skewness Parameters

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(d) LCH Ratio

0 0.2 0.4 0.6 0.8 1
15

20

25

30

35

Zipf Skewness Parameters

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(e) GCH Ratio

Figure 4.10: Effect of skewness in access pattern in a pure push-based
environment.

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Zipf Skewness Parameters

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(a) Access Latency

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

5

Zipf Skewness Parameters

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(b) Power Consumption

0 0.2 0.4 0.6 0.8 1
20

30

40

50

60

70

80

90

Zipf Skewness Parameters

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(c) Server Request Ratio

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Zipf Skewness Parameters

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(d) LCH Ratio

0 0.2 0.4 0.6 0.8 1
15

20

25

30

35

Zipf Skewness Parameters

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(e) GCH Ratio

Figure 4.11: Effect of skewness in access pattern in a hybrid environment.

In this section, we study the effect of skewness in access pattern on system perfor-

mance by varying the Zipfian parameter value from zero to one.

The result shows that all schemes give the worst performance when the skewness

parameter is equal to zero. This is because the MHs uniformly access data items

within their access range. The system performance improves with increasing skewness

parameter value. As the access pattern becomes more skewed, more required data

items can be obtained in the local cache, thereby increasing the LCH ratio, as depicted

in Figure 4.9(d). When the MHs record higher a LCH ratio with increasing skewness

parameter value, the access latency and power consumption improve as a result.

Figures 4.9(a) and 4.9(c) illustrate that COCA schemes outperform NC in terms of

CHAPTER 4. CACHE SIGNATURE SCHEME 97

access latency and server request ratio.

SIG-G gives the shortest access latency, as shown in Figurer 4.9(a), because the

MHs adopting SIG-G use less cache space to store the peer signature than SIG-I and

SIG-H, but they consume more battery power to re-construct the counter vector when

they detect any link failure with their peers. SIG-I performs the worst in access latency,

but it can conserve more power than the other CC-SIG schemes and CC. Although

the access latency of SIG-I is slightly worse than SIG-G and SIG-H, the MHs can take

advantage of conserving battery power from SIG-I. When the remaining battery power

on an MH is low, SIG-I is thus more preferable than the other two schemes.

In the push-based and hybrid environments, CC-SIG performs worst than CC in

terms of all performance metrics because the effective cache space is a key factor to

system performance. As the MHs adopting CC-SIG use a portion of cache space to

store peer signatures, the effective cache space is reduced and they suffer from lower

LCH and GCH ratios than CC, as depicted in Figures 4.10(d) and 4.10(e) for the

push-based environment, and Figures 4.11(d) and 4.11(e) for the hybrid environment.

4.8.4 Effect of Access Density

0.1 0.2 0.4 0.6 0.8 1
100

110

120

130

140

150

160

170

Access Range/Total No. of Data Items

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
SIG−I
SIG−G
SIG−H

(a) Access Latency

0.1 0.2 0.4 0.6 0.8 1
2

3

4

5

6

7

8

Access Range/Total No. of Data Items

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (m
W

.s
)

NC
CC
SIG−I
SIG−G
SIG−H

(b) Power Consumption

0.1 0.2 0.4 0.6 0.8 1
50

55

60

65

70

75

80

85

90

95

100

Access Range/Total No. of Data Items

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
SIG−I
SIG−G
SIG−H

(c) Server Request Ratio

0.1 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

Access Range/Total No. of Data Items

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
SIG−I
SIG−G
SIG−H

(d) LCH Ratio

0.1 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35

Access Range/Total No. of Data Items

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
SIG−I
SIG−G
SIG−H

(e) GCH Ratio

Figure 4.12: Effect of access density in a pure pull-based environment.

In this series of experiment, we study the effect of access density on system per-

CHAPTER 4. CACHE SIGNATURE SCHEME 98

0.1 0.2 0.4 0.6 0.8 1
4

6

8

10

12

14

16

Access Range/Total No. of Data Items

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(a) Access Latency

0.1 0.2 0.4 0.6 0.8 1
3

3.5

4

4.5

5

5.5

6
x 10

5

Access Range/Total No. of Data Items

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(b) Power Consumption

0.1 0.2 0.4 0.6 0.8 1
50

55

60

65

70

75

80

85

90

95

100

Access Range/Total No. of Data Items

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(c) Server Request Ratio

0.1 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

Access Range/Total No. of Data Items

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(d) LCH Ratio

0.1 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35

Access Range/Total No. of Data Items

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(e) GCH Ratio

Figure 4.13: Effect of access density in a pure push-based environment.

0.1 0.2 0.4 0.6 0.8 1
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Access Range/Total No. of Data Items

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(a) Access Latency

0.1 0.2 0.4 0.6 0.8 1
3

3.5

4

4.5

5

5.5

6
x 10

5

Access Range/Total No. of Data Items

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(b) Power Consumption

0.1 0.2 0.4 0.6 0.8 1
50

55

60

65

70

75

80

85

90

95

100

Access Range/Total No. of Data Items

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(c) Server Request Ratio

0.1 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

Access Range/Total No. of Data Items

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(d) LCH Ratio

0.1 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35

Access Range/Total No. of Data Items

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(e) GCH Ratio

Figure 4.14: Effect of access density in a hybrid environment.

formance by changing the access range from 1000 to 10000.

Figures 4.12(a) and 4.12(c) show that CC and CC-SIG perform better than NC,

and CC-SIG is the best performer in terms of access latency and server request ratio

in the pull-based environment. The access latency and server request ratio increase

when the access density gets lower. The lower the access density ratio, the more

distinct data items an MH will access; thus, it reduces the LCH ratio as shown in

Figure 4.12(d). Likewise, the GCH ratio drops, when the access density gets lower,

as depicted in Figure 4.12(d). When the MHs are interested in a large number of

distinct data items, the probability of some peers caching the required data items is

reduced.

The power consumption of NC increases with decreasing access density because

CHAPTER 4. CACHE SIGNATURE SCHEME 99

there is a higher probability for the MHs to enlist the server for help, i.e., higher server

request ratio, as shown in Figure 4.12(b). On the contrary, the power consumption

of CC and CC-SIG is reduced, as the access density gets lower, due to the fact that

power consumption of a global cache access is higher than a server access. Thus,

when the GCH ratio of CC and CC-SIG reduces as the access density gets lower, the

power consumption also drops. The cache signature scheme can further reduce the

power consumption, as the MHs can save power by reducing the chance of having to

exhaustively search the Peer Cache layer for every local cache miss.

Figure 4.12(a) shows that SIG-G gives the best performance in access latency, as

it allows the MHs to reduce the overhead of storing cache signatures. However, there

is a tradeoff between the storage space and maintenance overhead. Although SIG-G

reduces the storage overhead by storing all cache signatures in a counter vector, it

increases maintenance overhead for the MHs, as they have to re-build the counter

vector when they detect any link failure with their peers. Therefore, SIG-G incurs

higher power consumption than SIG-I and SIG-H. The access latency of SIG-I is larger

than the other two CC-SIG schemes, but it effectively reduces power consumption in

comparison with the other CC-SIG schemes and CC, as illustrated in Figure 4.12(b).

However, CC-SIG incurs higher access latency and power consumption than CC in

the push-based and hybrid environments, as shown in Figures 4.13 and 4.14 respec-

tively, because the CC-SIG scheme reduce the effective cache space for storing cache

signatures. As a result, there is a higher chance for the MHs adopting CC-SIG to

obtain their desired data items from the MSS, as they suffer from lower LCH and

GCH ratios than CC, as depicted in Figures 4.13(d) and 4.13(e) for the push-based

environment, and Figures 4.14(d) and 4.14(e) for the hybrid environment.

CHAPTER 4. CACHE SIGNATURE SCHEME 100

0 20 40 60 80 100
100

105

110

115

120

125

130

135

140

145

Common Hot Spot (%)

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
SIG−I
SIG−G
SIG−H

(a) Access Latency

0 20 40 60 80 100
2

3

4

5

6

7

8

9

Common Hot Spot (%)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (m
W

.s
)

NC
CC
SIG−I
SIG−G
SIG−H

(b) Power Consumption

0 20 40 60 80 100
50

55

60

65

70

75

80

85

Common Hot Spot (%)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
SIG−I
SIG−G
SIG−H

(c) Server Request Ratio

0 20 40 60 80 100
0

5

10

15

20

25

30

Common Hot Spot (%)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
SIG−I
SIG−G
SIG−H

(d) LCH Ratio

0 20 40 60 80 100
0

5

10

15

20

25

30

35

Common Hot Spot (%)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
SIG−I
SIG−G
SIG−H

(e) GCH Ratio

Figure 4.15: Effect of common hot spot in a pure pull-based environment.

0 20 40 60 80 100
4

6

8

10

12

14

16

18

Common Hot Spot (%)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(a) Access Latency

0 20 40 60 80 100
2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 10

5

Common Hot Spot (%)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(b) Power Consumption

0 20 40 60 80 100
45

50

55

60

65

70

75

80

85

Common Hot Spot (%)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(c) Server Request Ratio

0 20 40 60 80 100
0

5

10

15

20

25

30

Common Hot Spot (%)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(d) LCH Ratio

0 20 40 60 80 100
0

5

10

15

20

25

30

35

Common Hot Spot (%)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(e) GCH Ratio

Figure 4.16: Effect of common hot spot in a pure push-based environment.

4.8.5 Effect of Common Hot Spot

We next study the effect of common hot spot of all MHs by varying the percentage of

common hot spot from zero to 100 percent. The MHs possess random access range,

when the percentage of common hot spot is zero. On the other hand, they own the

same access range, as the percentage of common hot spot is 100 percent.

The simulation result shows that the performance of NC is not affected by increas-

ing the percentage of common hot spot among MHs in pure pull-based environment,

since there is no cooperation among MHs in NC. The MHs adopting CC and CC-SIG

record better access latency and server request ratio, as depicted in Figures 4.15(a)

and 4.15(c), because they exhibit more common data access similarity. In COCA,

CHAPTER 4. CACHE SIGNATURE SCHEME 101

0 20 40 60 80 100
0.8

1

1.2

1.4

1.6

1.8

Common Hot Spot (%)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(a) Access Latency

0 20 40 60 80 100
2.5

3

3.5

4

4.5

5
x 10

5

Common Hot Spot (%)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(b) Power Consumption

0 20 40 60 80 100
40

45

50

55

60

65

70

75

80

85

Common Hot Spot (%)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(c) Server Request Ratio

0 20 40 60 80 100
0

5

10

15

20

25

30

Common Hot Spot (%)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(d) LCH Ratio

0 20 40 60 80 100
0

5

10

15

20

25

30

35

Common Hot Spot (%)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(e) GCH Ratio

Figure 4.17: Effect of common hot spot in a hybrid environment.

if the MHs possess similar access pattern, they have a higher chance to obtain re-

quired data items from their peers, resulting in a higher GCH ratio, as shown in

Figure 4.15(e). However, the side effect of a higher GCH ratio is that the MHs have

to consume more power to turn in the required data items to the requesting peers.

The power consumption increases, as the MHs share more common access patterns,

as depicted in Figure 4.15(b).

In terms of access latency and power consumption, CC-SIG performs better than

CC. However, CC-SIG incurs higher server request ratio than CC. This is because

the effective cache size of the MHs adopting CC-SIG is less than that with CC, as

certain portion of local cache space is used for storing their peers’ cache signatures.

Figure 4.15(b) exhibits that the power consumption of SIG-I is better than CC, as

the MHs adopting SIG-I suffer from a lower GCH ratio, and they are able to bypass

the Peer Cache layer to save on power. Also, the power consumption of SIG-I is less

than the other CC-SIG schemes because the MHs enjoy a lower maintenance overhead

on the stored cache signatures. However, the drawback of SIG-I is a reduction in

effective cache size. As a result, it records a slightly longer access latency than SIG-G

and SIG-H, as shown in Figure 4.15(a).

In the push-based and hybrid environments, CC is the best performer in access

CHAPTER 4. CACHE SIGNATURE SCHEME 102

latency, power consumption and server request ratio, as depicted in Figures 4.16 and

4.17. The performance of CC-SIG is worse than CC because the CC-SIG schemes suffer

from a lower effective cache size. As there is a higher chance for the MHs adopting

CC-SIG to encounter local and global cache misses, they have to spend more time and

consume more power to obtain their desired data items from the MSS.

4.8.6 Effect of Client Disconnection Probability

0 0.1 0.2 0.3 0.4 0.5
100

105

110

115

120

125

130

135

140

145

Disconnection Probability

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
SIG−I
SIG−G
SIG−H

(a) Access Latency

0 0.1 0.2 0.3 0.4 0.5
2

3

4

5

6

7

8

Disconnection Probability

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC
CC
SIG−I
SIG−G
SIG−H

(b) Power Consumption

0 0.1 0.2 0.3 0.4 0.5
50

55

60

65

70

75

80

85

Disconnection Probability

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
SIG−I
SIG−G
SIG−H

(c) Server Request Ratio

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

Disconnection Probability

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
SIG−I
SIG−G
SIG−H

(d) LCH Ratio

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

35

Disconnection Probability

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
SIG−I
SIG−G
SIG−H

(e) GCH Ratio

Figure 4.18: Effect of client disconnection probability in a pure pull-based
environment.

0 0.1 0.2 0.3 0.4 0.5
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

Disconnection Probability

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(a) Access Latency

0 0.1 0.2 0.3 0.4 0.5
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 10

5

Disconnection Probability

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(b) Power Consumption

0 0.1 0.2 0.3 0.4 0.5
45

50

55

60

65

70

75

80

85

Disconnection Probability

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(c) Server Request Ratio

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

Disconnection Probability

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(d) LCH Ratio

0 0.1 0.2 0.3 0.4 0.5
15

20

25

30

35

Disconnection Probability

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(e) GCH Ratio

Figure 4.19: Effect of client disconnection probability in a pure push-based
environment.

We also study the effect of client disconnection probability on system performance

by increasing the disconnection probability that is from 0 to 0.5.

CHAPTER 4. CACHE SIGNATURE SCHEME 103

0 0.1 0.2 0.3 0.4 0.5
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Disconnection Probability

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(a) Access Latency

0 0.1 0.2 0.3 0.4 0.5
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 10

5

Disconnection Probability

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(b) Power Consumption

0 0.1 0.2 0.3 0.4 0.5
50

55

60

65

70

75

80

85

Disconnection Probability

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(c) Server Request Ratio

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

Disconnection Probability

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(d) LCH Ratio

0 0.1 0.2 0.3 0.4 0.5
5

10

15

20

25

30

35

Disconnection Probability

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(e) GCH Ratio

Figure 4.20: Effect of client disconnection probability in a hybrid environ-
ment.

In the pull-based environment, there is no cooperation among peers in NC, the

MHs adopting NC have not been affected by varying the disconnection probability.

However, the performance of COCA schemes is more sensitive to the disconnection

probability. Figures 4.18(a) and 4.18(c) show that the access latency and server

request ratio increase, as the client disconnection probability gets higher. The higher

the client disconnection probability, the less the peers can help the requesting MHs,

so that the GCH ratio degrades with increasing the client disconnection probability,

as depicted in Figure 4.18(e).

When an MH disconnects itself from the network, it cannot handle the requests

issued from other peers, and need not discard any unintended messages. With a

higher client disconnection probability, the power consumption reduces, as shown in

Figure 4.18(b). It also shows that CC-SIG incurs higher power consumption than CC

with increasing client disconnection probability. In SIG-I, after the MHs re-connect

to the network, they have to validate the cached peer signatures with their peers,

and need to replace the stale cache signatures with the up-to-date cache signature

of relevant peers, so they consume more power on signature validation. For SIG-G

and SIG-H, if any cache signature that is stored in a counter vector is stale, the MHs

have to re-collect all cache signatures of their peers and re-build the counter vector

CHAPTER 4. CACHE SIGNATURE SCHEME 104

structure. Thus, the power consumption of SIG-G and SIG-H is higher than SIG-I.

In the push-based and hybrid environments, CC gives the best performance, as

exhibited in Figures 4.19 and 4.20. CC-SIG performs worse than CC, also due to the

fact that the MHs adopting the CC-SIG scheme suffer from a lower effective cache

size than those with CC. Therefore, the CC-SIG MHs have to spend more time and

consume more power to retrieve their required data items from the MSS.

4.8.7 Effect of Mobility Speed

5 10 15 20 25 30
100

105

110

115

120

125

130

135

140

Maximum Mobility Speed (m/s)

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
SIG−I
SIG−G
SIG−H

(a) Access Latency

5 10 15 20 25 30
2

3

4

5

6

7

8

9

10

11

12

Maximum Mobility Speed (m/s)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (m
W

.s
)

NC
CC
SIG−I
SIG−G
SIG−H

(b) Power Consumption

5 10 15 20 25 30
50

55

60

65

70

75

80

85

Maximum Mobility Speed (m/s)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
SIG−I
SIG−G
SIG−H

(c) Server Request Ratio

5 10 15 20 25 30
0

5

10

15

20

25

30

Maximum Mobility Speed (m/s)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
SIG−I
SIG−G
SIG−H

(d) LCH Ratio

5 10 15 20 25 30
20

22

24

26

28

30

32

34

36

38

40

Maximum Mobility Speed (m/s)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
SIG−I
SIG−G
SIG−H

(e) GCH Ratio

Figure 4.21: Effect of mobility speed in a pure pull-based environment.

5 10 15 20 25 30
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

Maximum Mobility Speed (m/s)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(a) Access Latency

5 10 15 20 25 30
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8
x 10

5

Maximum Mobility Speed (m/s)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(b) Power Consumption

5 10 15 20 25 30
50

55

60

65

70

75

80

85

Maximum Mobility Speed (m/s)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(c) Server Request Ratio

5 10 15 20 25 30
0

5

10

15

20

25

30

Maximum Mobility Speed (m/s)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(d) LCH Ratio

5 10 15 20 25 30
20

22

24

26

28

30

32

34

36

38

40

Maximum Mobility Speed (m/s)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(e) GCH Ratio

Figure 4.22: Effect of mobility speed in a pure push-based environment.

In this experiment, we study the effect of mobility speed on system performance

by increasing the maximum mobility speed from 5 m/s to 30 m/s.

CHAPTER 4. CACHE SIGNATURE SCHEME 105

5 10 15 20 25 30
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Maximum Mobility Speed (m/s)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(a) Access Latency

5 10 15 20 25 30
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8
x 10

5

Maximum Mobility Speed (m/s)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(b) Power Consumption

5 10 15 20 25 30
50

55

60

65

70

75

80

85

Maximum Mobility Speed (m/s)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(c) Server Request Ratio

5 10 15 20 25 30
0

5

10

15

20

25

30

Maximum Mobility Speed (m/s)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(d) LCH Ratio

5 10 15 20 25 30
20

22

24

26

28

30

32

34

36

38

40

Maximum Mobility Speed (m/s)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(e) GCH Ratio

Figure 4.23: Effect of mobility speed in a hybrid environment.

In the pull-based environment, the performance of CC is slightly affected by varying

the movement speed. However, CC-SIG is more sensitive to the movement speed

than CC. When the mobility of the MHs accelerates, the GCH ratio of CC-SIG gets

lower. With the client moving with high speed, the neighborhood membership of

the MHs changes frequently. The frequent changes in neighborhood membership in

an environment with high client movement speed increases the network traffic and

degrades the precision of the filtering mechanism.

When the network traffic dynamically increases with increasing client movement

speed, the timeout mechanism described in Section 3.3.2 may not be effective in

detecting a GCH, due to occasional network congestion caused by exchanging cache

signatures among MHs, when some MHs discover any link failure with their peers.

This problem is referred to as a false negative error: no peer turns in the desired data

item to the requesting MH upon a timeout, but in fact there are some peers caching

it. To alleviate the false negative error, we can increase the network congestion factor,

ϕ′.

In the environment with high client movement speed, there is a higher chance for

an MH to encounter link failure with other peers, so that the maintenance overhead

of SIG-G and SIG-H gets higher with increasing client movement speed. Thus, the

CHAPTER 4. CACHE SIGNATURE SCHEME 106

MHs adopting SIG-I consume less power than the other CC-SIG schemes, as SIG-I is

more effective in maintaining the stored cache signature than the others.

In the push-based and hybrid environments, we can draw similar conclusion as in

the pull-based environment. The result suggests that SIG-I is more well-adapted to

the various movement speed compared with the other CC-SIG schemes.

4.8.8 Effect of Number of MHs

50 100 200 300 400
0

100

200

300

400

500

600

700

800

Number of MHs

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
SIG−I
SIG−G
SIG−H

(a) Access Latency

50 100 200 300 400

5

10

15

20

25

30

Number of MHs

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (m
W

.s
)

NC
CC
SIG−I
SIG−G
SIG−H

(b) Power Consumption

50 100 200 300 400
10

20

30

40

50

60

70

80

90

Number of MHs

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
SIG−I
SIG−G
SIG−H

(c) Server Request Ratio

50 100 200 300 400
0

5

10

15

20

25

30

Number of MHs

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
SIG−I
SIG−G
SIG−H

(d) LCH Ratio

50 100 200 300 400
10

20

30

40

50

60

70

Number of MHs

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
SIG−I
SIG−G
SIG−H

(e) GCH Ratio

Figure 4.24: Effect of number of MHs in a pure pull-based environment.

50 100 200 300 400
0

1

2

3

4

5

6

7

8

9

Number of MHs

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(a) Access Latency

50 100 200 300 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Number of MHs

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(b) Power Consumption

50 100 200 300 400
10

20

30

40

50

60

70

80

90

Number of MHs

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(c) Server Request Ratio

50 100 200 300 400
0

5

10

15

20

25

30

Number of MHs

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(d) LCH Ratio

50 100 200 300 400
10

20

30

40

50

60

70

Number of MHs

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
SIG−G−BD
SIG−H−BD

(e) GCH Ratio

Figure 4.25: Effect of number of MHs in a pure push-based environment.

In this experiment, we study the effect of client population on system performance

by increasing the number of MHs in the system from 50 to 400.

CHAPTER 4. CACHE SIGNATURE SCHEME 107

50 100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of MHs

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(a) Access Latency

50 100 200 300 400

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Number of MHs

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(b) Power Consumption

50 100 200 300 400
10

20

30

40

50

60

70

80

90

Number of MHs

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(c) Server Request Ratio

50 100 200 300 400
0

5

10

15

20

25

30

Number of MHs

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(d) LCH Ratio

50 100 200 300 400
10

20

30

40

50

60

70

Number of MHs

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
SIG−G−Push−50%
SIG−H−Push−50%

(e) GCH Ratio

Figure 4.26: Effect of number of MHs in a hybrid environment.

In the pull-based environment, the system workload becomes higher with increas-

ing number of MHs in the system, so that access latency increases in all schemes,

as depicted in Figure 4.24(a). In terms of access latency and server request ratio,

the COCA schemes perform much better than NC, as the number of MHs gets larger.

This is because there is a higher chance for the MHs to obtain the required data items

from their peers, i.e., a higher GCH ratio, with increasing number of MHs. Thus,

the MSS in a system adopting COCA schemes handles fewer requests, as shown in

Figure 4.24(c). In other words, the system workload caused by increased number of

MHs is shared among MHs. Therefore, we suggest that COCA can be used as an

indirect load sharing technique in mobile environments. However, the drawback of

the COCA schemes is that they are power-intensive protocol. As depicted in Fig-

ure 4.24(b), the power consumption of the MHs adopting COCA schemes increases

with increasing number of MHs. The MHs have to consume much more power to

turn in more required data items to the requesting peers, to receive more broadcast

requests from peers and to discard a larger amount of unintended messages. The

access latency and power consumption of SIG-G and SIG-H gets worse than SIG-I in

heavily-loaded environments because there is a higher maintenance overhead for the

MHs adopting SIG-G and SIG-H. The maintenance overhead leads to more message

CHAPTER 4. CACHE SIGNATURE SCHEME 108

passing among MHs and higher network traffic, so the MHs suffer from longer access

latency and higher power consumption.

Since a push-based data dissemination model is scalable, the system performance

is not degraded by increasing number of MHs, as shown in Figure 4.25(a). The

performance of CC and SIG-I gets better with increasing number of MHs in the system.

When the client population increases, there is a higher chance for the MHs to obtain

the their desired data items from the peers, thereby achieving a higher GCH ratio, as

depicted in Figure 4.25(e). The MHs adopting CC and SIG-I conserve more power with

increasing GCH ratio, due to fact that the power consumption of a global cache access

is much lower than a broadcast channel access. However, Figure 4.25(b) exhibits that

the power consumption of SIG-G and SIG-H initially reduces with increasing client

population, but it increases as the client population further gets larger. The initial

drops arise because the MHs can take advantage of a higher GCH ratio. However,

the rising power consumption as the number of MHs further increases, due to the

maintenance overhead of SIG-G and SIG-H. When the number of MHs increases, there

is a higher chance for the MHs detecting link failure with other peers. For SIG-G and

SIG-H, when the MHs discover any link failure with peers whose cache signatures are

stored in a counter vector, they have to reset the counter vector and re-collect the

required cache signatures from the relevant peers to re-construct the counter vector,

thus leading to higher power consumption and network traffic than CC and SIG-I.

In the hybrid environment, the behavior of the COCA schemes is similar as that

in the push-based environment. However, when the number of MHs is over 200,

the access latency of NC increases with increasing client population, as depicted in

Figure 4.26(a). This is because the uplink channel is overloaded, leading to a longer

channel waiting time. On the contrary, the access latency of the COCA schemes do

not get worse with increasing number of MHs. This is because the COCA schemes

CHAPTER 4. CACHE SIGNATURE SCHEME 109

effectively reduce the number of requests sent to the MSS via the uplink channel, as

many client requests can be handled by the MHs themselves.

4.9 Concluding Remarks

In this chapter, we propose a cache signature scheme for COCA. Cache signatures

summarize the local cache content of the MHs. After exchanging cache signatures, the

signatures provide hints for the MHs to determine whether the required data items are

likely held by their peers. We have described the signature structure, i.e., bloom filter,

generation and compression mechanism and exchange protocol among MHs. Besides

compressing all cache signatures before transmission to reduce the transmission cost

of exchanging cache signatures between peers, the technique of incremental cache

signature is adopted. An MH only sends its full cache signature to its newly admitted

neighbors, and then it piggybacks the signature update information on the request

that is broadcast to its all neighboring peers. When an MH receives a request with

signature update information, it extracts the signature update information from the

request and updates the peer’s cached signature accordingly. As client disconnection

is a general behavior in mobile environments, we enhance the cache signature exchange

protocol to handle client disconnection by using time-stamping mechanism to validate

the stored cache signatures.

The performance of COCA with cache signature scheme is extensively evaluated

through a number of simulated experiments. The result shows that the cache sig-

nature scheme improves access latency in comparison with the traditional caching

scheme and standard COCA in the pull-based environment. However, as a tradeoff,

it increases the server request ratio because certain portion of cache space is used

to store the peers’ cache signatures, thereby reducing the effective cache size. The

CHAPTER 4. CACHE SIGNATURE SCHEME 110

result also indicates that the cache signature is not suitable to the push-based and

hybrid environments, as the effective cache size is a key factor to system performance

in these environments.

As the cache signature scheme induces communication and storage overheads, it

is worthy to extend the usage of cache signatures to amortize the cost. So far we just

adopt cache signatures to filter searching in the global cache. In the next chapter,

we use cache signatures to perform cooperative cache replacement among a group

of MHs, in order to improve effective cache size among a group of MHs. We will

also propose an adaptive approach to reduce the storage overheads incurred by cache

signatures.

Chapter 5

Group-based Cooperative Caching

5.1 Introduction

In mobile environments, client mobility and data access patterns are key factors to

system performance and cache management strategies. The major issues in cooper-

ative cache management are the proper choice of cache replacement and admission

control strategies, so as to increase the data accessibility, not only with respect to

individual client, but also to other peers. For instance, if an MH arbitrarily forwards

its cached data items to its peers for cache replacement, the MH may not effectively

obtain the forwarded data items, as the peers could have moved far away. Likewise, if

an MH does not cache the data item returned by peers in order to conserve its cache,

based on the belief that the peer would still be accessible in the future, it may have

regretted as the peer moves far away. In addition, when an MH forwards a data item

to another peer and they possess totally different data access patterns, the action will

reduce the peer’s LCH ratio, and the “alien” data item will be removed very soon,

as the peer is not interested in that data item. The decision of whom a cached data

item should be forwarded to thus depends on both factors of access affinity on data

111

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 112

items and the mobility pattern.

In the past, several distributed clustering algorithms have been proposed for mobile

environments. The two simplest distributed clustering algorithms are the lowest-

ID [29] and largest-connectivity (degree) [67] algorithms. In the lowest-ID clustering

algorithm, the MHs form clusters with their neighboring peers by broadcasting their

ID to them, and the MH with the lowest ID in a cluster is assigned as the clusterhead.

In the largest-connectivity clustering algorithm, the MHs also form clusters with their

neighboring peers, but the MH with the highest connectivity becomes the clusterhead.

To break a tie, the lowest-ID clustering algorithm is performed.

The cluster information, i.e., clusterhead and cluster members, may change fre-

quently, due to the fact that the network topology of MANETs dynamically changes.

Gerla et al. [35] find that the lowest-ID algorithm is more stable than the largest-

connectivity one. When the MHs roam freely, their connectivity change so that they

need to re-select a new clusterhead. The authors in [35] adopt the lowest-ID algorithm

to group MHs into clusters. Each clusterhead is dedicated to perform channel schedul-

ing and power control for its own cluster, and establish virtual circuit connection for

cluster-wise multimedia information access.

To improve the stability of clusters in MANETs, several mobility-based clustering

algorithms are proposed. In [7], the authors propose a bottom-up cluster algorithm

considering the mobility pattern of MHs. The MHs record their own mobility pattern

in a mobility profile, and they periodically exchange their mobility profiles with other

peers. The clustering criterion is based on the relative velocity between MHs. An

MH with the lowest-ID and its average relative mobility between all neighboring peers

being larger or equal to a predefined threshold is selected as a clusterhead. Then,

the inter-cluster merging algorithm is executed to combine clusters that are within a

distance of hops. In the simulated experiments, both the random and group-based

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 113

mobility patterns are considered. The result shows that the proposed mobility-based

cluster algorithm is more stable than the lowest-ID and highest-connectivity clustering

algorithms.

In [85], an incremental clustering algorithm is proposed to discover group mobility

pattern, in order to alleviate network partitioning problem. The algorithm only

considers user mobility pattern, and identifies all mobility groups in the system.

When the system detects that some network partitions are likely to form, i.e., there

is no MH acting as a gateway between two mobility groups, it replicates appropriate

data items among mobility groups to improve system performance.

Another mobility-based clustering algorithm, namely DRAM [48] is proposed to

improve data accessibility in the system. DRAM considers not only the current

motion information of the MHs, but also their historical motion locations. When

a cluster is constructed, the data replica allocation algorithm is executed to place

appropriate data items in the cluster members to improve data accessibility.

Lam et al. propose another distributed mobility-based clustering algorithm, namely

GBL [52], for group-based location update in mobile environments. In GBL, the MH

with the highest degree of affinity in neighborhood is assigned as the cluster leader.

The degree of affinity is defined by the distance between an MH and its peers, together

with the similarity in their movement vectors. Each cluster leader is responsible for

updating the locations of cluster members. To improve the cluster stability and re-

duce network traffic, location prediction technique is adopted to cluster admission

control and intra-cluster location update (from cluster members to the leader) re-

spectively. The cluster admission protocol of GBL is improved, in [54], to reduce

the amount of message passing in the protocol. Additionally, to further improve the

cluster stability, Lam et al. [53] extend the distributed clustering algorithm to select

a stand-by cluster leader that will take over the responsibility of the primary leader

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 114

if necessary. The selection of a stand-by cluster leader considers both the mobility

pattern and connectivity.

Other than using velocity or distance to determine the mobility pattern, the author

in [13] proposes to adopt signal power detection to calculate the relative mobility

metric for distributed clustering in MANETs. The calculation of the mobility metric

is based on the received power at a receiving MH between two successive packet

transmission from the same peer. The MH with the lowest aggregate local mobility

value that is defined by the variance of the mobility metric with all the neighboring

peers in the neighborhood becomes the cluster head.

In this chapter, we propose two group-based COCA schemes, one is a centralized

scheme (called CGCoca), and the other one is distributed (called DGCoca). Both

schemes define and make use of the concept of a tightly-coupled group (TCG) that is

defined as a group of MHs that are geographically and operationally close, i.e., sharing

common mobility and data access patterns. It is not difficult to define whether two

MHs are geographically close, based upon their locations. Two MHs are said to

be operationally close, if they perform similar operations and access similar set of

data items. Since we are more interested in data management and caching issues in

this work, we consider two MHs to be operationally close based on the set of data

items they access. Also, in the group-based COCA schemes, two cooperative cache

management protocols: cooperative cache admission control and cooperative cache

replacement, are proposed for the MHs to work together to manage their cache space

as an aggregate cache or global cache in a TCG.

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 115

5.2 CGCoca

In this section, we present a centralized group-based COCA scheme (CGCoca) [23].

In CGCoca, the common mobility pattern is discovered with an incremental clustering

algorithm and the similarity in access pattern is captured by a vector space model [9].

5.2.1 Similarity Measurement in Mobility Patterns

The MSS performs the incremental clustering algorithm to cluster the MHs into TCGs

based on their mobility patterns. The mobility pattern is modelled by the weighted

average distance between any two MHs. The MHs need not explicitly update their

locations, but they piggyback the location information on the request sent to the MSS

when they are requesting data items from it. The location information is represented

by a coordinate (x, y) that can be obtained by a global positioning system (GPS) [36]

or indoor sensor-based positioning systems, such as BAT [44] and Cricket [68]. For two

MHs, mi and mj, the distance between them is calculated as the Euclidean distance,

|mimj| =
√

(xj − xi)2 + (yj − yi)2, where (xi, yi) and (xj, yj) are the coordinates of

mi and mj respectively. An exponentially weighted moving average (EWMA) [21]

is used to forecast the future distance of each pair of MHs based on their mobility

histories. The weighted average distance between two MHs, mi and mj, is denoted

by ||mimj||. It is initially set to +∞. After the MSS receives both the location

information of mi and mj, ||mimj|| is set to |mimj|. Then ||mimj|| is updated when

either mi or mj sends its new location to the MSS, based on the equation:

‖mimj‖new = ω × |mimj|+ (1− ω)× ‖mimj‖old, (5.1)

where ω (0 ≤ ω ≤ 1) is a parameter to weight the importance of the most recent

distance. The weighted average distance of each pair of MHs is stored in a two-

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 116

dimensional matrix, called a distance matrix (DM).

5.2.2 Similarity Measurement in Data Access Patterns

Other than the mobility pattern of the MHs, the incremental clustering algorithm

also considers the similarity of their accesses to the data items. In the MSS, each

data item is associated with an identifier from 1 to NumData, where NumData is

the total number of data items stored in the server. The MSS maintains a counter

vector (V) with a length NumData for each MH.

When an MH accesses a data item, the MSS increments the corresponding counter

for the MH. The similarity score of the access pattern of two MHs, mi and mj, is

calculated by the equation:

sim(mi,mj) =

∑NumData

d=1 Vi(d)× Vj(d)√∑NumData

d=1 Vi(d)2 ×
√∑NumData

d=1 Vj(d)2
, (5.2)

where Vi(d) is the total number of times that an MH, mi, accesses the data item

d, and 0 ≤ sim(mi,mj) ≤ 1. The access pattern of two MHs are more similar to

each other when the similarity score gets higher. If two MHs possess the same access

pattern, the similarity score is equal to one. The similarity score of each pair of MHs

is stored in a two-dimensional matrix, called an access similarity matrix (ASM).

Since the uplink channel is scarce, a passive approach is adopted for collecting the

data access pattern. An MH does not send any data access information actively to the

MSS, but the MSS learns its data access pattern from the received requests along with

location information sent by the MH. If the measured similarity score of two MHs is

larger than or equal to a threshold δc, they are considered to possess a similar access

pattern. The threshold δc is set to the average non-zero similarity score in ASM, and

adjusted with the standard deviation to adapt to client access behavior in different

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 117

types of systems, i.e., s =
∑NumData−1

i=1

∑NumData
j=i+1 sim(mi,mj)∑NumData−1

i=1

∑NumData
j=i+1 dsim(mi,mj)e

, δc = s + φσs, where φ is a

system parameter. Since the calculation of δc is costly, δc is only updated periodically

(see Algorithm 13). As the measured similarity score only takes into consideration a

sample of the access pattern of each MH, it is smaller than the actual similarity score.

The MSS would not start the clustering algorithm until δc grows up to non-zero.

5.2.3 Incremental Clustering Algorithm

The incremental clustering algorithm clusters the MHs into TCGs by considering

their mobility and data access patterns. The MHs in the same TCG possess a tight

relationship because they share the common mobility and data access patterns.

In the clustering algorithm, a distance threshold ∆c is adopted to determine

whether an MH should be assigned to one of the existing clusters or a new clus-

ter should be created. Every member in a TCG possesses two properties: for any two

MHs, mi and mj, ‖mimj‖ ≤ ∆c, and sim(mi,mj) ≥ δc. The two matrices DM and

ASM are used as inputs to the algorithm. The first MH classified into a new cluster

is considered as the leader of a cluster, called cluster leader. Each cluster has only

one leader, and the cluster leader may be changed when a new MH is classified into

the cluster.

The clustering algorithm considers the MHs one at a time and either assigns them

to the existing clusters or creates new clusters for them. Let there be NumClient

MHs in the system, M = {m1,m2, . . . ,mNumClient}, in |C| existing clusters, C =

{C1, C2, . . . , C|C|} with |C| corresponding cluster leaders, L = {l1, l2, . . . , l|C|}. Ini-

tially, a new cluster C1 is created for the first MH, m1, and m1 becomes the cluster

leader of C1. Then, the other MHs are considered one by one for admission. For

each newly admitted MH, m, the algorithm finds out the closest cluster leader by

looking up the weighted average distance in DM. m is assigned to the closest cluster

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 118

on condition that the two properties hold, i.e., the weighted average distance between

m and the cluster leader is less than or equal to ∆c and their similarity score is larger

than or equal to δc; otherwise, the algorithm finds out the next closest cluster leader.

This procedure is repeated until an appropriate cluster is found or no cluster satisfies

the conditions. If there is no suitable cluster for m, m becomes the cluster leader of

a new cluster.

When an MH is assigned to one of the existing clusters, the algorithm has to

decide whether the newly admitted MH should be the leader of that cluster. The

decision is based on their connectivity. The connectivity of an MH, m, as denoted by

Conn(m), is defined as the number of peers whose weighted average distance between

m and them is less than or equal to ∆c. For instance, assume that m is assigned to

an existing cluster Ch. If Conn(m) > Conn(lh), m takes over the role as the cluster

leader from lh; otherwise, no transition is required.

When a transition of cluster leader occurs, the algorithm checks whether any

neighboring clusters should be merged together. If an MH, m, becomes the cluster

leader of a cluster, Ch, the algorithm finds out the closest cluster leader, lk. If the

weighted average distances betweenm and all MHs, including the leader, in cluster Ck

are less than or equal to ∆c and their data access similarity scores are larger than or

equal to δc, Ch and Ck are merged together. The cluster leader of the merged cluster

is the one with the higher connectivity. If they are tied, the initiator lh becomes the

leader of the cluster. The algorithm repeats the checking to the next closest cluster,

until the weighted average distance between the next closest cluster and m is larger

than ∆c.

The MSS postpones the announcement of any changes in the cluster, e.g., an MH

is assigned to a new cluster or an MH joins/leaves, to any affected MH until the MH

sends a request to it. The MSS then piggybacks the up-to-date member list to the

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 119

�
�
�

�
�

�
�

�

Figure 5.1: Distance threshold (∆c) selection

MH along with the required data item. In the member list, the first MH is the cluster

leader. In effect, we are performing an asynchronous group view change [14], without

enforcing stringent consistency among group members.

The incremental clustering algorithm consists of four components (Algorithms 13,

14, 15 and 16). Algorithm 13 is a continuous clustering algorithm that is periodically

executed to keep track of any changes in the MH mobility and data access patterns

and hence the TCG properties. Algorithm 14 is executed when the system detects

a new MH. Algorithm 15 is invoked when an MH leaves the system. Algorithm 16,

which is invoked by Algorithm 13, is dedicated to handling cluster merging operations.

In the incremental clustering algorithm, the distance threshold ∆c is a key factor

to clustering results. If we consider a case that all MHs in a cluster can connect to

each other in single-hop communication, the required threshold distance ∆c is now

derived. Figure 5.1 illustrates a cluster whereinm1 is the leader of the cluster, andm2

and m3 are two MHs classified into m1’s cluster. Let the weighted average distance

between m2 or m3 and m1 be equal to ∆c. The distance l between m1 and m2 can

be computed as:

l =
√

∆2
c +∆2

c − 2∆2
c cos γ = ∆c

√
2(1− cos γ), (5.3)

where 0 < γ ≤ 180◦. When γ = 180◦, l = 2∆c, i.e., l is maximal. To ensure single-hop

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 120

Algorithm 13 The continuous clustering algorithm for CGCoca

1: procedure ClusterUpdate(Cluster C, Leader L, MHM)
2: while true do
3: // C is a set of clusters, C = {C1, C2, . . . , C|C|}
4: // L is a set of leaders for the clusters in C, L = {l1, l2, . . . , l|C|}
5: //M is a set of MHs, m, in the system
6: for all m ∈M do
7: cid← ClusterID(m); // return the ID of the assigned Cluster of an MH
8: classified← false;
9: if lcid = m then
10: ClusterMerge(C, L, m);
11: else
12: while minCj∈C ‖mlj‖ ≤ ∆c do
13: if sim(m, lj) ≥ δc then
14: if m /∈ Cj then
15: // reassign m to Cj

16: Ccid ← Ccid − {m};
17: Cj ← Cj ∪ {m};
18: end if
19: if Conn(m) > Conn(lj) then
20: // change leadership
21: lj ← m;
22: ClusterMerge(C, L, m);
23: end if
24: classified← true;
25: else
26: next Cj;
27: end if
28: end while
29: if not classified then
30: // form a new cluster for m
31: k ← newClusterID(); // return a new ID
32: Ccid ← Ccid − {m};
33: Ck ← {m};
34: C ← C ∪ {Ck};
35: lk ← m;
36: L ← L ∪ {lk};
37: end if
38: end if
39: end for
40: end while

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 121

Algorithm 14 The MH join algorithm for CGCoca

1: procedure MHJoin(Cluster C, Leader L, MH m)
2: // C is a set of clusters, C = {C1, C2, . . . , C|C|}
3: // L is a set of leaders for the clusters in C, L = {l1, l2, . . . , l|C|}
4: // m is a new MH in the system
5: classified← false;
6: if C 6= φ then
7: while minCj∈C ‖mlj‖ ≤ ∆c do
8: if sim(m, lj) ≥ δc then
9: Cj ← Cj ∪ {m};
10: if Conn(m) > Conn(lj) then
11: lj ← m;
12: ClusterMerge(C, L, m);
13: end if
14: classified← true;
15: else
16: next Cj;
17: end if
18: end while
19: end if
20: if not classified then
21: // form a new cluster for m
22: k ← newClusterID(); // return a new ID
23: Ck ← {m};
24: C ← C ∪ {Ck};
25: lk ← m;
26: L ← L ∪ {lk};
27: end if

communication for the peers in a cluster, l should be less than or equal to TranRange,

i.e., 2∆c ≤ TranRange; hence, ∆c =
TranRange

2
. If ∆c is set to TranRange, all MHs

in a cluster can still connect to one another in single- or two-hop communication.

A simplified example for the clustering algorithm is depicted in Figure 5.2. There

are two clusters and four MHs in the system. The grey nodes are the cluster leaders.

Let the data access similarity scores among them be larger than or equal to δc so

that we can merely consider their weighted average distances in this example. The

average weighted distance between any two of them are: ‖m1m2‖, ‖m3m4‖ ≤ ∆c <

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 122

Algorithm 15 The MH leave algorithm for CGCoca

1: procedure MHLeave(Cluster C, Leader L, MH m)
2: // C is a set of clusters, C = {C1, C2, . . . , C|C|}
3: // L is a set of leaders for the clusters in C, L = {l1, l2, . . . , l|C|}
4: // m is a leaving MH in the system
5: cid← ClusterID(m);
6: Ccid ← Ccid − {m};
7: if Ccid = φ then
8: C ← C − {Ccid};
9: L ← L− {lcid};
10: return;
11: end if
12: if lcid = m then
13: k ← argj maxmj∈Ccid

(Conn(mj));
14: lcid ← mk;
15: end if

‖m1m3‖, ‖m1m4‖, ‖m2m3‖, ‖m2m4‖ ≤ TranRange. As a result, m2 and m4 are

assigned to clusters C1 and C2 respectively. Consider a newly admitted MH, m5,

as shown in Figure 5.2(b). Let the weighted average distance between m5 and any

other MHs be also less than ∆c. As ‖l1m5‖ is shorter than ‖l2m5‖, m5 is assigned

to cluster C1. A transition of the cluster leader in C1 needs to be considered. Since

Conn(m5)(= 4) is larger than Conn(l1)(= 2), m5 then becomes the new leader of

C1. After a new leader is elected, the clustering algorithm checks whether any other

clusters should be merged to the cluster with a new leader. The clustering algorithm

�
�

�
�

�
�

�
�

�
�

�
�

(a) Two existing clusters

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(b) Clustering a new MH

�
�

�
�

�
�

�
�

�
�

�
�

(c) Merging two clusters

Figure 5.2: An example of the incremental clustering algorithm.

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 123

Algorithm 16 The cluster merge algorithm for CGCoca

1: procedure ClusterMerge(Cluster C, Leader L, MH m)
2: // C is a set of clusters, C = {C1, C2, . . . , C|C|}
3: // L is a set of leaders for the clusters in C, L = {l1, l2, . . . , l|C|}
4: // m is a cluster leader that initiates the cluster merge algorithm
5: cid← ClusterID(m);
6: while minCj∈C∧cid6=j ‖lcidlj‖ ≤ ∆c do
7: if sim(lcid, lj) ≥ δc then
8: merge← true;
9: for all mh ∈ Cj do
10: if ‖lcidmh‖ > ∆c or sim(lcid,mh) < δc then
11: merge← false;
12: break;
13: end if
14: end for
15: if merge then
16: if Conn(lcid) < Conn(lj) then
17: lcid ← lj;
18: end if
19: Ccid ← Ccid ∪ {Cj};
20: C ← C − {Cj};
21: L ← L− {lj};
22: end if
23: end if
24: end while

first checks the closest cluster C2 because the average weighted distance between l1 and

l2 is the shortest and less than ∆c. The distance between l1 and all other MHs in C2,

i.e., m4, is less than ∆c, so C2 is merged into C1. Asm5 has the highest connectivity in

the merged cluster, it remains as the leader of the cluster, as depicted in Figure 5.2(c).

After presenting the clustering algorithm, CGCoca with cache signature scheme will

be described in the next section.

5.2.4 CGCoca with Cache Signature Scheme

This scheme is extended from the cache signature scheme to save storage overhead by

considering the group-based mobility pattern. In CGCoca, the MHs adopt counter

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 124

vector structure with dynamic counter size to store cache signatures sent from their

peers. The MHs only exchange their signatures with other peers who are belong-

ing to their own cluster to enhance the stability of the counter vector. Each MH

maintains a vector of M counters, i.e., M is the size of a bloom filter, each counter

with counter size bits. If an MH does not have any peers in its assigned cluster,

counter size is zero, i.e., the MH needs not to store any peer signature. Once there

is a peer in the MH’s cluster, it creates a counter vector with one bit and set all

counters to zero. If the MH discovers a newly joined member in its cluster, it sends a

SigRequest message to it. The peer receiving SigRequest returns its full cache signa-

ture to the requesting MH. Then, the MH updates the counter vector by incrementing

the counters at the position of the bits that are set in the received cache signature. If

there are more than one peers assigned to the MH’s cluster at the same time, the MH

requests their cache signatures and updates the counter vector one by one. When

the MH is going to increase a counter to a value of 2counter size, counter size will be

increased by one to avoid an overflow error. Likewise, in case that all counter values

fall below 2counter size−1, counter size will be decremented to save on cache space.

Algorithm 17 shows the mechanism of handling cluster member admission. Al-

gorithm 18 describes the mechanism on how an MH handles a member leaving its

cluster. After the MH synchronizes the cluster membership information with the

MSS, when it detects a member leaving its cluster, it resets the counter vector, and

then re-collects all cache signatures from its cluster members. The MH broadcasts

SigRequest to its neighborhood with the membership information. The peers receive

the request and look up their identities in the membership information. If a peer

finds that its identity is included in the membership information, it sends its full

cache signature to the MHs. Otherwise, the peer drops the request.

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 125

Algorithm 17 Cache Signature Exchange Protocol for CGCoca - member admission
at MH mi

1: procedure OnDetectNewMember(CounterVector Vi, Peer Pi, Cluster Ci, MH
mj)

2: // Vi = {v1, v2, . . . , vM}
3: // Pi is a set of identifiers of MHs whose cache signatures are stored in mi’s cache
4: // Ci is a set of identifiers of MHs that are assigned to mi’s cluster
5: // mj is a newly admitted cluster member in Ci

6: // Sigj is the cache signature of mj, Sigj = {s1, s2, . . . , sM}
7: if mj ∈ Ci then
8: Send SigRequest to mj;
9: Receive Sigj from mj;
10: Pi ← Pi ∪ {mj};
11: for all sh ∈ Sigj do
12: if sh = 1 then
13: if vh = 2counter sizei − 1 then
14: counter sizei ← counter sizei + 1;
15: end if
16: vh ← vh + 1;
17: end if
18: end for
19: end if

Similar to the cache signature scheme, the cluster-based cache signature scheme

should be able to handle client disconnection in CGCoca. When an MH broadcasts

a request with the signature update information to its peers, it records the time to

a variable, last signature update ts. In addition, when an MH detects that it is

disconnected from the network, it immediately records the time to another variable

disconnection ts. After a disconnected MH re-connects to the network, it sends a

request to the MSS to synchronize its cluster membership information. The MH

broadcasts SigRequest with its disconnection ts and membership information to its

neighbors. The peers who are belonging to the same cluster of the MH reply the MH

with an acknowledgement message, if last signature update ts < disconnection ts.

Otherwise, the peers turn in their full cache signatures to the MH. If the MH receives

some cache signatures, it resets the counter vector and sends SigRequest to every

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 126

Algorithm 18 Cache Signature Exchange Protocol for CGCoca - member leave at
MH mi

1: procedure OnDetectMemberLeave(CounterVector Vi, Peer Pi, Cluster Ci, MH
mk)

2: // Vi = {v1, v2, . . . , vM}
3: // Pi is a set of identifiers of MHs whose cache signatures are stored in mi’s cache
4: // Ci is a set of identifiers of MHs that are assigned to mi’s cluster
5: // mk is a leaving MH from Ci

6: if mk ∈ Pi then
7: for all vi ∈ Vi do
8: vi ← 0;
9: end for
10: Pi ← ∅;
11: counter sizei ← 0;
12: // re-collect cache signatures from all remaining cluster members in Ci;
13: for all mj ∈ Ci do
14: Send SigRequest to mj;
15: Receive Sigj from mj;
16: Pi ← Pi ∪ {mj};
17: for all sh ∈ Sigj do
18: if sh = 1 then
19: if vh = 2counter sizei − 1 then
20: counter sizei ← counter sizei + 1;
21: end if
22: vh ← vh + 1;
23: end if
24: end for
25: end for
26: end if

peer that responded with an acknowledgement message. The peer receives the request

returns its full cache signature to the MH. After that, the MH re-constructs the

counter vector based on the received cache signatures.

5.3 DGCoca

In this section, we present a distributed group-based COCA scheme (DGCoca) [26]

that is also extended from COCA. It is similar to CGCoca; a group of MHs that

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 127

is sharing common mobility and data access patterns forms a TCG to manage their

cached data items cooperatively. DGCoca exhibits two desirable features over CG-

Coca. First, it is fully distributed, i.e., it does not need any help of the MSS. Second,

the MH does not depend on any location systems or devices, e.g., GPS or other

sensor-based positioning systems, to capture the mobility pattern of itself or other

MHs. Thus, DGCoca is suitable for most indoor or open environments. The MHs

adopting DGCoca use a stable neighbor discovery algorithm (SND) to find out the

MHs with common mobility pattern, and they figure out the data access similarity

between themselves and their peers by exchanging signatures that store their data

access histories.

5.3.1 Stable Neighbor Discovery Algorithm (SND)

������� ���	�
�� ��
��� ������

����
���	���	���

�
���	���	���

���

��	��

��������
����

����
�����	��������

	��
������
�����

��������
����

����
�����	��������

	��
������
�����

��������
������
��

��	����������	��
��

���
�����

��������
������
��

��	����������	��
��

���
�����

Figure 5.3: A state diagram of the client relationship

In DGCoca, we propose a memorization-based SND that is extended from NDP

for discovering stable neighboring peers. In SND, there are three kinds of relationship

between any two MHs: stranger, friend and member (in an increasing order of the

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 128

Algorithm 19 Stable Neighbor Discovery Algorithm for DGCoca at MH mi

1: procedure DiscovryStableNeighbors(CounterVector Vi, Relation Ri, Peer Pi,
Score Si)

2: // Vi = {v1, v2, . . . , vM}
3: // Pi is a set of identifiers of MHs whose cache signatures are stored in mi’s cache
4: // rel(i, j) maintains the current relationship between mi and mj

5: // Ri contains only relationship with mi, i.e., ∀k = i ∧ i 6= j, rel(k, j) ∈ Ri

6: // Si maintains the valid similarity scores of access pattern of mi’s peers
7: for all rel(i, j) ∈ Ri do
8: // now() returns the current time
9: if now() − last beacon tsj > TBeacon then
10: if rel(i, j) = “stranger” then
11: rel(i, j) ← “unknown”;
12: Ri ← Ri − {rel(i, j)};
13: OnDetectTCGMemberLeave(Vi, Pi, mj);
14: next mj;
15: end if
16: if not disappearedj then
17: last disappeared tsj ← now();
18: disappearedj ← true;
19: end if
20: end if
21: if disappearedj then
22: if now() − last disappeared tsj ≥ τ then
23: if rel(i, j) = “member” then
24: rel(i, j) ← “friend”;
25: else if rel(i, j) = “friend” then
26: rel(i, j) ← “stranger”;
27: end if
28: last disappeared tsj ← now();
29: end if
30: else
31: if now() − first consecutive beacon tsj ≥ τ then
32: if rel(i, j) = “stranger” then
33: rel(i, j) ← “friend”;
34: first consecutive beacon tsj ← now();
35: else if rel(i, j) = “friend” then
36: if CheckSimiliarityScore(S, mi, mj) then
37: // procedure CheckSimiliarityScore() will be described in Section 5.3.2
38: rel(i, j) ← “member”;
39: OnDetectNewTCGMember(Vi, Pi, mj);
40: end if
41: end if
42: end if
43: end if
44: end for

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 129

Algorithm 20 Stable Neighbor Discovery Algorithm for DGCoca at MH mi

1: procedure OnReceiveBeacon(Relation Ri, MH mj)
2: // rel(i, j) maintains the current relationship between mi and mj

3: // Ri contains only relationship with mi, i.e., ∀k = i ∧ i 6= j, rel(k, j) ∈ Ri

4: // mi receives a “hello” beacon message from mj

5: last beacon tsj ← now();
6: if rel(i, j) /∈ Ri then
7: rel(i, j) ← “stranger”;
8: Ri ← Ri ∪ {rel(i, j)};
9: first consecutive beacon tsj ← now();
10: else if disappearedj then
11: disappearedj ← false;
12: first consecutive beacon tsj ← now();
13: end if

closeness of relationships between two MHs). When an MH has communicated with

a peer, i.e., the MH has consecutively received “hello” beacon from the peer, for a

period of time, the relationship between them becomes closer. On the other hand,

if a peer has disappeared to the MH for a period of time, their relationship will be

degraded.

For two MHs, mi and mj, mj becomes a “stranger” to mi, if mi receives a “hello”

beacon from mj, and mi does not have any relationship information about mj at that

moment. When mi consecutively receives “hello” beacons from mj for an additional

period of time, τ , mj becomes mi’s “friend”. Then, if mi obtains “hello” beacons

from mj consecutively for another period of time, τ , mi treats mj as its “member” in

its TCG. Nevertheless, if mi cannot receive any beacon from mj beyond a time period

of τ , their relationship is downgraded to “friend”. After another period of time τ , mi

still cannot receive any beacon from mj, the memory of mi for mj is faded away, and

mj becomes a “stranger” to mi. mi next removes the relationship information about

mj, and mj reverts to be unknown to mi. Figure 5.3 shows the state diagram of the

client relationship in DGCoca.

SND consists of two components (Algorithms 19 and 20). Algorithm 19 is a con-

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 130

tinuous algorithm that is periodically executed to learn about any changes in the

relationship between other MHs. Algorithm 20 is executed when the MH receives a

“hello” beacon from its neighboring peers.

5.3.2 Similarity Measurement in Data Access Patterns

In DGCoca, an access history signature is used to store the access history of an MH.

When the MH accesses a data item, it generates a data signature for it. Then, the

access history signature is updated by performing a bitwise OR operation on the data

signature with the last access history signature, i.e., (access history signature)new =

data signature ⊕ (access history signature)old. The data access pattern introduces

an additional condition to the SND algorithm. When an MH, says mi, is going to

upgrade a relationship with a peer, mj from “friend” to “member”, it requests the

peer to turn in its access history signature. The MH calculates a score on the data

access similarity between themselves by Jaccard Coefficient,

sim(mi,mj) =
Ai ∩ Aj

Ai ∪ Aj

, 0 ≤ sim(mi,mj) ≤ 1, (5.4)

where Ai and Aj are the access history signatures of mi and mj respectively. If

sim(mi,mj) is equal to or larger than the similarity threshold δd, the peer becomes

the MH’s “member”; otherwise, the peer only remains to be its “friend”. In DGCoca,

a small value is set to δd because we would like to obtain a higher GCH ratio, and

only filter out the peers whose access patterns are totally different.

In an access history signature, since k bits are randomly assigned to each data item,

some bits may be used to represent a part of multiple data items. When two data

items share some common bits in an access history signature, the similarity score

of these data items is larger than zero, even though they are two totally different

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 131

Algorithm 21 Checking the similarity score between two MHs for DGCoca

1: procedure CheckSimiliarityScore(Score S, MH mi, MH mj)
2: // S is a set of valid similarity scores of access pattern of peers maintained by mi

3: if scorej ∈ S then
4: if now() − last score tsj ≤ SimScoreTTLj then
5: if scorej ≥ δd then
6: return true;
7: else
8: return false;
9: end if
10: else
11: S ← S − {scorej};
12: end if
13: end if
14: // get mj’s access history signature
15: last score tsj ← now();
16: S ← S ∪ {scorej};
17: if sim(mi,mj) ≥ δd then
18: return true;
19: else
20: return false;
21: end if

data items. This means that the estimated similarity score may be higher than the

actual score. In fact, the two measures are not identical in nature. Fortunately, if the

false positive probability is low, the estimated similarity score is a highly accurate

approximation to the actual score. We do need this approximation, since it is very

costly, if not impossible, to compute and compare the similarity based on an actual

access history in practice.

To verify the appropriateness of the access history signature approach as an efficient

and practical approximation, it is compared with the bit vector approach, in which

each data item is assigned to a unique integral identifier from one to N . When a bit

vector with N bits is used, each data item can be perfectly assigned to a particular bit

based on its unique identifier. Thus, the MHs adopting the bit vector approach can

precisely determine a data access similarity score between themselves and their peers.

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 132

The appropriateness of the access history signature approach is evaluated through a

simulated experiment.

In our experiment, when an MH accesses a data item, it sets the corresponding bit

in the bit vector and updates the access history signature. The simulated experiment

is run for two million time units in an environment of 100 MHs. For consistency and

accuracy, the details of the simulated experiment setting follows those in Section 5.5.

We calculate the similarity score of each pair of MHs (there are 100×99
2

= 4,950 pairs)

by using the access history signature and bit vector approaches every two hundred

thousand time units, i.e., there are 2,000,000
200,000

× 4, 950 = 49, 500 data points. The two

scores, (bit vector score, access history signature score), are recorded and plotted

as a scatter plot in Figure 5.4. The straight line shown in the figure is the reference

line (y = x) that we are looking for, i.e., direct relationship between bit vector and

access history signature approaches. The result depicts that the estimated similarity

score possesses a very strong linear relationship with the actual score. The better the

linear relationship between the estimated and actual similarity scores is, the higher

the accuracy of the estimation is. Therefore, the result confirms that the estimated

data access similarity score obtained by using our proposed access history signature

approach is a highly precise approximation to the actual score. Based on the data,

we obtain a correlation coefficient of r =
∑n

i=1(xi−x)(yi−y)√∑n
i=1(xi−x)2

∑n
i=1(yi−y)2

= 0.9994, where n is

the total number of points, x and y are the average value of the actual and estimated

similarity scores respectively; that indicates a strong linear relationship between the

estimated and actual similarity scores. Also, the correlation of determination is r2 =

0.9988, which says that approximately 99% of the variation in the values of the

estimated similarity score is accounted for by a linear relationship with the actual

similarity score. The access history signature similarity score is thus a very good

approximation to the actual score.

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 133

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6
���������	

���	�
����
��	�
���

�
�
�
�
��
��
�
	

��
�	
�

��
�
�
�
	
�
�
��
��

�
��
��
��
�
�

�
�	
�

Figure 5.4: This figure depicts a scatter plot of 49,500 points of the esti-
mated Jacard coefficient (access history signature approach, on the y-axis)
and the actual Jacard coefficient (bit vector approach, on the x-axis).

To reduce communication overheads, a similarity score will be maintained for a

period of time-to-live (SimScoreTTL). The calculated score is removed after its

SimScoreTTL elapses. Algorithm 21 checks whether the similarity score of two

MHs is larger than δd. If so, it returns true to the calling algorithm (Algorithm 19);

otherwise, it returns false.

5.3.3 DGCoca with Cache Signature Scheme

Since DGCoca is a distributed mechanism, the MHs detect member joins and

leaves through SND protocol without any help from the MSS. Each MH maintains

a counter vector structure with dynamic counter size to store cache signatures sent

by their peers. The MHs only exchange their signatures with other peers who are

belonging to their own TCG. Each MH maintains a vector of M counters, i.e., M

is the size of a bloom filter, each counter with counter size bits. If an MH does

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 134

Algorithm 22 Cache Signature Exchange Protocol for DGCoca - member admission
at MH mi

1: procedure OnDetectTCGNewMember(CounterVector Vi, Peer Pi, MH mj)
2: // Vi = {v1, v2, . . . , vM}
3: // Pi is a set of identifiers of MHs whose cache signatures are stored in mi’s cache
4: // mj is a newly admitted MH in mi’s TCG
5: // Sigj is a cache signature from mj, Sigj = {s1, s2, . . . , sM}
6: if mj /∈ Pi then
7: Send SigRequest to mj;
8: Receive Sigj from mj;
9: Pi ← Pi ∪ {mj};
10: for all sh ∈ Sigj do
11: if sh = 1 then
12: if vh = 2counter sizei − 1 then
13: counter sizei ← counter sizei + 1;
14: end if
15: vh ← vh + 1;
16: end if
17: end for
18: end if

not have any members in its TCG, counter size is zero, i.e., the MH needs not to

store any peer signature. Once there is a member in the MH’s TCG, it creates a

counter vector with one bit and set all counters to zero. If the MH discovers any

newly joined TCG member, it sends a SigRequest message to it. The peer receiving

SigRequest returns its full cache signature to the requesting MH. Then, the MH

updates the counter vector by incrementing the counters at the position of the bits

that are set in the received cache signature. If there are more than one peer joining

to the MH’s TCG at the same time, the MH requests their cache signatures and

updates the counter vector one by one. When the MH is going to increase a counter

to a value of 2counter size, the counter size will be increased by one to avoid an overflow

error. Likewise, in case that all counter values fall below 2counter size−1, the counter

size counter size will be decremented to save on cache space. Algorithm 22 presents

an algorithm for the MHs to handle a newly discovered TCG member.

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 135

Algorithm 23 Cache Signature Exchange Protocol for DGCoca - member leave at
MH mi

1: procedure OnDetectTCGMemberLeave(CounterVector Vi, Peer Pi, MH mk)
2: // Vi = {v1, v2, . . . , vM}
3: // Pi is a set of identifiers of MHs whose cache signatures are stored in mi’s cache
4: // mk is a leaving MH from mi’s TCG
5: if mk ∈ Pi then
6: for all vi ∈ Vi do
7: vi ← 0;
8: end for
9: Pi ← Pi − {mk};
10: counter sizei ← 0;
11: // re-collect cache signatures from all remaining members in mi’s TCG;
12: for all mj ∈ Pi do
13: Send SigRequest to mj;
14: Receive Sigj from mj;
15: for all sh ∈ Sigj do
16: if sh = 1 then
17: if vh = 2counter sizei − 1 then
18: counter sizei ← counter sizei + 1;
19: end if
20: vh ← vh + 1;
21: end if
22: end for
23: end for
24: end if

Algorithm 23 is executed by the MH, when a peer departs from the MH’s TCG.

After the MH detects a departure of its TCG member, it resets the counter vector,

and broadcasts SigRequest with its TCG membership information to its neighbors.

If the peers receive the request and find that their identities are contained in the

membership information, they return their full cache signatures to the requesting

MH. Otherwise, they simply drop the request. After the MH collects all required

cache signatures, it re-constructs the counter vector.

To deal with the client disconnection problem, the MHs adopting DGCoca have

to backup all relationships between their peers when they are just disconnected from

the network. After they re-connect to the network, they need to restore all the

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 136

relationships. They broadcast a relationship restore request message containing their

peers’ identities and the relationship to their peers. The peers who receive the request

also restore the relationship, and then they send an acknowledgement message to the

requesting MH. However, as disconnected peers cannot receive the request, they will

lose the relationship, and they have to build up their relationship from scratch again.

In DGCoca, the MHs have to check for the validity of their cached cache signa-

tures after they re-connect to the network. The checking mechanism is the same as in

CGCoca. When an MH broadcasts a request with the signature update information

to its peers, it records the time to a variable, last signature update ts. Additionally,

when an MH disconnects from the network, it records the time to another variable,

disconnection ts. After it re-connects to the network, disconnection ts will be in-

cluded in the broadcast request. The peers who are the MH’s members reply the MH

with an acknowledgment message, if last signature update ts < disconnection ts.

Otherwise, the peers return their full cache signatures to the MH. If the MH receives

some cache signatures, it resets its counter vector and broadcasts a SigRequest mes-

sage to every peer that responded with an acknowledgement message. The peer who

receives the request returns its full cache signature to the MH. After collecting all re-

quired cache signatures, the MH re-constructs the counter vector. To reduce commu-

nication overhead, SigRequest is combined with a relationship restore request message,

i.e., the relationship restore request message contains the value of disconnection ts.

5.4 Cooperative Cache Management Protocols

We propose two cooperative cache management protocols: cooperative cache admis-

sion control and cooperative cache replacement, for the MHs to work together to

manage their cache space as a whole, i.e., the aggregate cache or global cache.

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 137

5.4.1 Cooperative Cache Admission Control

When an MH encounters a local cache miss, it sends a request to its peers. If some

peers turn in the required data item to the MH and the local cache is not full, the

MH caches data item, no matter it is returned by a peer in the same TCG or not.

However, if the local cache is full, the MH does not cache the data item when it is

supplied by a peer in the same TCG, on the belief that data item can be readily

available from the peer if needed. If the cache is full but the data item comes from a

peer outside of its group, the MH would rather cache the data item in its local cache

by removing the least valuable data item, since the providing peer may move far away

in future. After a peer sends the required data item to the requesting MH, if they

are belonging to the same TCG, the peer updates the last accessed time stamp of

the data item, so that the item can have a longer TTL in the global cache. If there

are more than one member caching the same required data item, the MH selects the

member caching the data item with the longest TTL to update the last access time

stamp of the data item. If more than one data item with the same TTL, the MH

randomly selects one of them to update the last access time stamp.

5.4.2 Cooperative Cache Replacement

The proposed cooperative cache replacement protocol allows the MH to collaborate

with its “members” to replace the least valuable data item with respect to the MH

itself and other members in the same TCG. This scheme can satisfy the three desirable

properties for caching [24]. First, the most valuable data items are always retained

in the local cache. Second, in a local cache, a data item which has not been accessed

for a long item, is replaced eventually. Third, in a global cache, a data item which

“spawns” replica is first replaced to increase the effective cache size.

The LRU cache replacement policy is used. To retain valuable data items in

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 138

the local cache, only a number of ReplaceCandidate least valuable data items are

selected as the candidates that are to be replaced. Among the candidates, the least

valuable data item is first chosen, and the MH generates a data signature for that

data item. The data signature is then compared with the peer signature by a bitwise

AND operation. If the result is the same as the data signature, the data item is likely

a replica in the global cache, so it is removed from the cache. Otherwise, the second

least valuable data item is chosen, and so on and so forth. If no candidate is probably

replicated in the TCG, the least valuable data item is removed from the cache.

There could be a wasting issue with the above arrangement, a data item without

any replica could always be retained in the local cache, even though it will not be

accessed again. If most data items cached in the local cache of an MH belong to such

type of data item, the MH’s cache will be populated with useless data items. As a

result, the LCH ratio will be degraded. To solve this problem, a SingletTTL counter

is associated with each candidate. The SingletTTL is initially set to ReplaceDelay.

When the least valuable data item is not replaced because it does not have any

replica, its counter is decreased by one. The cooperative cache replacement mecha-

nism is skipped, if the counter value of the least valuable data item is equal to zero,

and the MH simply drops that data item from the cache. The counter is reset to

ReplaceDelay, when the data item is accessed by the MH itself or other members in

its TCG.

5.5 Simulation Model

The system performance of CGCoca and DGCoca is evaluated through a series of

simulated experiments. The simulation model is based on the model defined in the

Chapters 3 and 4 with additional parameter settings for the group-based COCA

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 139

Table 5.1: Simulation parameters and default settings for the group-based
COCA schemes.

Parameter Description Default Value

GroupSize No. of MHs in a motion group 10

φ System parameter used to determine
the data access similarity threshold in
CGCoca

0

∆c Distance threshold in CGCoca 50 m

τ Time period threshold in DGCoca 10 s

SimScoreTTL Time-to-live of a similarity score in DG-
Coca

30 s

δd System parameter used to determine
the data access similarity threshold in
DGCoca

0.05

ReplaceDelay Replacement delay of the least valuable
data item in the cache

2

ReplaceCandidate Proportion of cached data items partici-
pating in the cooperative cache replace-
ment protocol

20 data items

schemes, as shown in Table 5.1.

5.5.1 Mobility Model

In the simulated mobile environment, the MHs are divided into several motion groups,

and each group consists of GroupSize MHs. The mobility of the MHs is based on

a “reference point group mobility” (RPGM) model [18, 46]. RPGM is a random

mobility model for a group of MHs and for an individual MH within its motion

group. Each motion group has a logical center which represents a motion reference

point for all MHs belonging to the group. The mobility of each motion group is

defined according to “random waypoint” model [17, 18].

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 140

5.5.2 Data Access Pattern

We consider a group-based data access pattern among motion groups. In default

simulation settings, the MHs belonging to the same motion group possess the same

access range, and their individual access pattern to the data items is following Zipf

distribution [92] with a skewness parameter. To evaluate the effect of group-based

access pattern on system performance, we consider two additional types of group-

based access patterns, as follows:

• Random access range - all MHs in a motion group have the same access range.

The access range of each motion group is randomly selected.

• Common hot spot - all MHs in a motion group share a certain percentage of

hot spot, i.e., common hot spot, and the remaining access ranges are randomly

chosen for each MH. The common hot spot of each motion group is randomly

selected.

5.6 Simulation Results

In the simulated experiments, we adopt the same simulation model, including power

consumption, mobility, server and network models, as defined in Chapters 3 and 4

to compare the performance of the centralized and distributed group-based COCA

with cooperative cache management protocols (denoted as CGCC and DGCC respec-

tively) with a conventional caching scheme that does not involve any cooperation

among MHs (denoted as NC), standard COCA (denoted as CC) and COCA with

cache signature scheme that applies the individual signature storage scheme (denoted

as SIG-I) in the pull-based, push-based and hybrid environments. All schemes adopt

LRU cache replacement policy. For the push-based environment, only the broadcast

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 141

disk [2] broadcast scheduling algorithm is considered. Since CGCC relies on the MSS

to discover TCGs, it cannot be applied to the push-based environment in which there

is no uplink channel from the MHs to the MSS. Thus, we only examine the perfor-

mance of CGCC in the pull-based and hybrid environments. All simulation results

are recorded after the system reaches a stable state, in which all client caches are

full, in order to avoid a transient effect. A simulated experiment terminates after

each MH generates over 2000 requests after the warmup period. We conduct the

series of experiments by varying several parameters: cache size, data item size, access

patterns, client disconnection probability, mobility speed, number of MHs and mo-

tion group size. The performance metrics include access latency, power consumption,

server request ratio, LCH ratio and GCH ratio.

5.6.1 Effect of Cache Size

50 100 150 200 250
20

40

60

80

100

120

140

160

Cache Size (data items)

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
SIG−I
CGCC
DGCC

(a) Access Latency

50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20

Cache Size (data items)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC
CC
SIG−I
CGCC
DGCC

(b) Power Consumption

50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

Cache Size (data items)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
SIG−I
CGCC
DGCC

(c) Server Request Ratio

50 100 150 200 250
5

10

15

20

25

30

35

40

Cache Size (data items)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
SIG−I
CGCC
DGCC

(d) LCH Ratio

50 100 150 200 250
25

30

35

40

45

50

55

60

65

70

75

Cache Size (data items)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
SIG−I
CGCC
DGCC

(e) GCH Ratio

Figure 5.5: Effect of cache size in a pure pull-based environment.

Our first simulated experiment studies the effect of cache size on system perfor-

mance by varying the cache size from 50 to 250 data items.

Figures 5.5(a) and 5.5(c) show that the performance improves with increasing cache

size. The LCH ratio increases as the cache size gets larger, as shown in Figure 5.5(d).

The group-based COCA schemes perform better than the standard COCA in terms

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 142

50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20

Cache Size (data items)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(a) Access Latency

50 100 150 200 250
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

5

Cache Size (data items)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(b) Power Consumption

50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

Cache Size (data items)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(c) Server Request Ratio

50 100 150 200 250
0

5

10

15

20

25

30

35

40

Cache Size (data items)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(d) LCH Ratio

50 100 150 200 250
20

30

40

50

60

70

80

Cache Size (data items)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−BD
SIG−I−BD
DGCC−BD

(e) GCH Ratio

Figure 5.6: Effect of cache size in a pure push-based environment.

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Cache Size (data items)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(a) Access Latency

50 100 150 200 250
0

1

2

3

4

5

6

7
x 10

5

Cache Size (data items)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(b) Power Consumption

50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

Cache Size (data items)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(c) Server Request Ratio

50 100 150 200 250
5

10

15

20

25

30

35

40

Cache Size (data items)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(d) LCH Ratio

50 100 150 200 250
10

20

30

40

50

60

70

80

Cache Size (data items)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(e) GCH Ratio

Figure 5.7: Effect of cache size in a hybrid environment.

of access latency and server request ratio. In addition, DGCC performs better than

CGCC, as its distributed membership formation approach gives faster response to the

newly admitted peers than centralized one.

The cooperative cache management protocols on the aggregate cache reduce the

LCH ratio of DGCC and CGCC, as shown in Figure 5.5(d), but it improves the data

accessibility in TCGs, so that the MHs adopting group-based COCA schemes can

enjoy a higher GCH ratio, as shown in Figure 5.5(e). In the pull-based environment,

the cost of DGCC and CGCC is higher power consumption. When the MHs adopting

these schemes enjoy a higher GCH ratio, they have to consume more power to return

required data items to the requesting peers. Also, DGCC is more effective in discov-

ering tightly-coupled peers than CGCC, so that for the DGCC MHs, they achieve a

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 143

higher GCH ratio, but they need to consume more power in handling global cache

queries.

In the push-based and hybrid environments, DGCC outperforms the other schemes,

in terms of access latency, power consumption and server request ratio. The effective

cache size is a key factor to system performance in the push-based and hybrid en-

vironments. The group-based COCA schemes allow the TCG members to construct

an aggregate cache, and manage it cooperatively by adopting the cooperative cache

management protocols to ameliorate their effective cache size. As DGCC and CGCC

improve the data accessibility of the aggregate cache, the MHs adopting them can

achieve a higher GCH ratio than other schemes, as depicted in Figures 5.6(e) and

5.7(e). They record the best performance because the access latency and power con-

sumption of a global cache access is much less than a broadcast channel access in

the push-based and hybrid environments. Since DGCC is more effective in discov-

ering TCGs than CGCC in a distributed environment, the performance of the MHs

adopting DGCC is better than CGCC, as exhibited in Figures 5.6 and 5.7.

5.6.2 Effect of Data Item Size

1 2 4 6 8
0

50

100

150

200

250

Data Item Size (KB)

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
SIG−I
CGCC
DGCC

(a) Access Latency

1 2 4 6 8
0

0.5

1

1.5

2

2.5
x 10

4

Data Item Size (KB)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC
CC
SIG−I
CGCC
DGCC

(b) Power Consumption

1 2 4 6 8
10

20

30

40

50

60

70

80

90

Data Item Size (KB)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
SIG−I
CGCC
DGCC

(c) Server Request Ratio

1 2 4 6 8
0

2

4

6

8

10

12

14

16

18

20

Data Item Size (KB)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
SIG−I
CGCC
DGCC

(d) LCH Ratio

1 2 4 6 8
0

10

20

30

40

50

60

70

80

Data Item Size (KB)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
SIG−I
CGCC
DGCC

(e) GCH Ratio

Figure 5.8: Effect of data item size in a pure pull-based environment.

We next study the effect of data item size on system performance by increasing

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 144

1 2 4 6 8
0

5

10

15

20

25

30

Data Item Size (KB)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(a) Access Latency

1 2 4 6 8
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Data Item Size (KB)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(b) Power Consumption

1 2 4 6 8
10

20

30

40

50

60

70

80

90

Data Item Size (KB)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(c) Server Request Ratio

1 2 4 6 8
0

2

4

6

8

10

12

14

16

18

20

Data Item Size (KB)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
SIG−I
CGCC
DGCC

(d) LCH Ratio

1 2 4 6 8
0

10

20

30

40

50

60

70

80

Data Item Size (KB)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−BD
SIG−I−BD
DGCC−BD

(e) GCH Ratio

Figure 5.9: Effect of data item size in a pure push-based environment.

1 2 4 6 8
0

0.5

1

1.5

2

2.5

Data Item Size (KB)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(a) Access Latency

1 2 4 6 8
0

1

2

3

4

5

6

7

8

9

10
x 10

5

Data Item Size (KB)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(b) Power Consumption

1 2 4 6 8
10

20

30

40

50

60

70

80

90

Data Item Size (KB)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(c) Server Request Ratio

1 2 4 6 8
0

2

4

6

8

10

12

14

16

18

20

Data Item Size (KB)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(d) LCH Ratio

1 2 4 6 8
0

10

20

30

40

50

60

70

80

Data Item Size (KB)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(e) GCH Ratio

Figure 5.10: Effect of data item size in a hybrid environment.

the data item size from one to eight kilobytes (KB).

Figures 5.8(a), 5.9(a) and 5.10(a) show that the access latency of all schemes gets

worse with increasing data item size because the transmission time increases, as the

data item size gets larger. Likewise, when the MHs transmit data items with larger

size, they have to spend more power on the transmission, as shown in Figures 5.8(b),

5.9(b) and 5.10(b).

When the data item size gets larger, the ratio of cache space occupied by the cache

signature to the total cache space decreases. SIG-I can perform better than CC, as

the data item size is larger than 4 KB. In terms of access latency and server request

ratio, DGCC and CGCC perform better than CC and SIG-I, and DGCC is the best

scheme. It shows that the group-based COCA schemes effectively improve system

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 145

performance with various data item sizes. In group-based COCA schemes, when the

data item size gets larger, they constitute higher LCH and GCH ratios, as shown

in Figures 5.8(d), 5.9(d) and 5.10(d) for LCH ratio, and Figures 5.8(e), 5.9(e) and

5.10(e) for GCH ratio. This is because the storage overheads of cache signatures and

access history signatures become more insignificant, as the data item size gets larger.

In summary, DGCC improves access latency and server request ratio in the pull-based

environment, but it incurs much more power consumption than the other schemes. In

the push-based and hybrid environments, the effective cache size is primarily factor

to system performance. The MHs adopting DGCC achieve the best performance in

terms of access latency, power consumption and server request ratio in the push-based

and hybrid environments, as DGCC effectively improves the data availability in TCGs

that leads to a larger effective cache size.

5.6.3 Effect of Skewness in Access Pattern

0 0.2 0.4 0.6 0.8 1

40

60

80

100

120

140

160

Zipf Skewness Parameters

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
SIG−I
CGCC
DGCC

(a) Access Latency

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

Zipf Skewness Parameters

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (m
W

.s
)

NC
CC
SIG−I
CGCC
DGCC

(b) Power Consumption

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Zipf Skewness Parameters

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
SIG−I
CGCC
DGCC

(c) Server Request Ratio

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Zipf Skewness Parameters

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
SIG−I
CGCC
DGCC

(d) LCH Ratio

0 0.2 0.4 0.6 0.8 1
20

30

40

50

60

70

80

Zipf Skewness Parameters

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
SIG−I
CGCC
DGCC

(e) GCH Ratio

Figure 5.11: Effect of skewness in access pattern in a pure pull-based
environment.

We study the effect of skewness in access pattern on system performance by varying

the Zipfian skewness value from zero to one.

Figures 5.11, 5.12 and 5.13 show that the performance improves with increasing

skewness parameter values in all mobile environments. The access pattern becomes

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 146

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

Zipf Skewness Parameters

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(a) Access Latency

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

5

Zipf Skewness Parameters

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(b) Power Consumption

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Zipf Skewness Parameters

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(c) Server Request Ratio

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Zipf Skewness Parameters

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(d) LCH Ratio

0 0.2 0.4 0.6 0.8 1
20

30

40

50

60

70

80

Zipf Skewness Parameters

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−BD
SIG−I−BD
DGCC−BD

(e) GCH Ratio

Figure 5.12: Effect of skewness in access pattern in a pure push-based
environment.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Zipf Skewness Parameters

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(a) Access Latency

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
x 10

5

Zipf Skewness Parameters

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(b) Power Consumption

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Zipf Skewness Parameters

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(c) Server Request Ratio

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Zipf Skewness Parameters

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(d) LCH Ratio

0 0.2 0.4 0.6 0.8 1
20

30

40

50

60

70

80

Zipf Skewness Parameters

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(e) GCH Ratio

Figure 5.13: Effect of skewness in access pattern in a hybrid environment.

more skewed as the skewness parameter value gets larger, so there is a higher prob-

ability for MHs to obtain the required data items from the local cache, as shown in

Figures 5.11(d), 5.12(d) and 5.13(d). The GCH ratio of all schemes decreases with

increasing skewness value because the higher LCH ratio eases the demand for the

global cache.

In the pull-based environment, DGCC outperforms other schemes in terms of access

latency and server request ratio, but the MHs adopting DGCC consume more power

than the other schemes because the improvement comes from a higher GCH ratio,

as shown in Figure 5.11(e). Therefore, although the MHs enjoy a higher GCH ratio,

they have to spend more power in handling global cache queries and exchanging cache

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 147

signatures to achieve shorter access latency.

On the contrary, DGCC consistently outperforms all other schemes, in terms of

access latency, server request ratio and power consumption in the push-based and

hybrid environments. As the MHs adopting DGCC record the highest GCH ratio, as

depicted in Figures 5.12(e) and 5.13(e), they can enjoy better system performance,

it is due to the fact that a broadcast channel access incurs longer access latency and

higher power consumption than a global cache access.

5.6.4 Effect of Access Density

0.1 0.2 0.4 0.6 0.8 1

60

80

100

120

140

160

180

Access Range/Total No. of Data Items

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
SIG−I
CGCC
DGCC

(a) Access Latency

0.1 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12

14

16

Access Range/Total No. of Data Items

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (m
W

.s
)

NC
CC
SIG−I
CGCC
DGCC

(b) Power Consumption

0.1 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Access Range/Total No. of Data Items

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
SIG−I
CGCC
DGCC

(c) Server Request Ratio

0.1 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

Access Range/Total No. of Data Items

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
SIG−I
CGCC
DGCC

(d) LCH Ratio

0.1 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

Access Range/Total No. of Data Items

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
SIG−I
CGCC
DGCC

(e) GCH Ratio

Figure 5.14: Effect of access density in a pure pull-based environment.

0.1 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Access Range/Total No. of Data Items

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(a) Access Latency

0.1 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

5

Access Range/Total No. of Data Items

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(b) Power Consumption

0.1 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Access Range/Total No. of Data Items

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(c) Server Request Ratio

0.1 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

Access Range/Total No. of Data Items

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(d) LCH Ratio

0.1 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

Access Range/Total No. of Data Items

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−BD
SIG−I−BD
DGCC−BD

(e) GCH Ratio

Figure 5.15: Effect of access density in a pure push-based environment.

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 148

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

Access Range/Total No. of Data Items

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(a) Access Latency

0.1 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

5

Access Range/Total No. of Data Items

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(b) Power Consumption

0.1 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Access Range/Total No. of Data Items

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(c) Server Request Ratio

0.1 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

Access Range/Total No. of Data Items

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(d) LCH Ratio

0.1 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

Access Range/Total No. of Data Items

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(e) GCH Ratio

Figure 5.16: Effect of access density in a hybrid environment.

We study the effect of access density on system performance by increasing the

access range from 1000 to 10000.

The simulation result shows that the access latency and server request ratio get

worse with decreasing access density. When MHs have a larger access range, the

chance of finding the required data items from the local cache decreases. Thus, the

LCH ratio reduces as the access density gets lower, as shown in Figures 5.14(d),

5.15(d) and 5.16(d). Likewise, the lower access density also reduces the probability

of the MHs getting required data items from their peers, so they suffer from a lower

GCH ratio, as shown in Figures 5.14(e), 5.15(e) and 5.16(e).

Since the power consumption of getting data items from the MSS is much lower

than getting them from the peers in the pull-based environment, the MHs can reduce

power consumption when they get more data items from the MSS, as depicted as

Figure 5.14(b). Thus, the power consumption of all COCA schemes reduces as the

GCH ratio drops with decreasing access density. On the other hand, the power

consumption of retrieving data items from the MSS is much higher than obtaining

them from the peers in the push-based and hybrid environments. Figures 5.15(b)

and 5.16(b) show that the MHs have to consume much more power with decreasing

density in data access pattern because they suffer from a lower GCH ratio, as exhibited

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 149

in Figures 5.15(e) and 5.16(e), so that they need to grab more desired data items from

the MSS.

The MHs adopting the group-based COCA schemes suffer from a lower GCH

ratio than CC in the environment with high access density. The group-based COCA

schemes are dedicated to improve the data accessibility by caching more distinct data

items in the aggregate cache of TCGs. The higher the access density, the larger

the range of data items an MH would access. As the data access pattern is skewed,

some data items may possess low access probabilities. In the group-based cache

management scheme, it first keeps all distinct data items in the aggregate cache,

and evicts them if the data items have not been accessed for a predefined number of

replacement cycles. When the access density is low, CGCC and DGCC tend to cache

many data items with low access probabilities and no replica in a TCG that is likely

to reduce the GCH ratio. Thus, the performance of group-based COCA schemes

may perform worse than COCA when the MHs possess low access density. DGCC can

tolerate a lower data access density than CGCC. The MHs adopting DGCC are more

effective in discovering tightly-coupled peers, so they can enlist more peers to help

when encountering local cache misses.

5.6.5 Effect of Common Hot Spot

We also evaluate system performance by varying the percentage of common hot spot

of the MHs in a motion group from 0 to 100 percent. The MHs in a motion group

possess random access ranges when the percentage of common hot spot is zero percent.

On the other hand, all MHs in the same motion group share a common access range,

when the percentage of common hot spot is 100 percent.

Figures 5.17(a) and 5.17(c) show that the access latency and server request ratio

of all COCA schemes get better when the percentage of common hot spot increases in

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 150

0 20 40 60 80 100
50

75

100

125

150

Common Hot Spot (%)

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
SIG−I
CGCC
DGCC

(a) Access Latency

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

Common Hot Spot (%)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC
CC
SIG−I
CGCC
DGCC

(b) Power Consumption

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

Common Hot Spot (%)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
SIG−I
CGCC
DGCC

(c) Server Request Ratio

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20

Common Hot Spot (%)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
SIG−I
CGCC
DGCC

(d) LCH Ratio

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Common Hot Spot (%)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
SIG−I
CGCC
DGCC

(e) GCH Ratio

Figure 5.17: Effect of common hot spot in a pure pull-based environment.

0 20 40 60 80 100
0

5

10

15

20

25

Common Hot Spot (%)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(a) Access Latency

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Common Hot Spot (%)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(b) Power Consumption

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

Common Hot Spot (%)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(c) Server Request Ratio

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20

Common Hot Spot (%)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(d) LCH Ratio

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Common Hot Spot (%)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−BD
SIG−I−BD
DGCC−BD

(e) GCH Ratio

Figure 5.18: Effect of common hot spot in a pure push-based environment.

the pull-based environment. This is because there is a higher chance for the MHs to

obtain the required data items from their peers when they share a higher similarity in

hot spot. The performance of DGCC is better than other schemes, as DGCC effectively

improves the data accessibility in the TCGs that leads to a higher GCH ratio, as shown

in Figure 5.17(e). However, the power consumption of all COCA schemes gets higher

with increasing percentage of common hot spot within a motion group. When the

GCH ratio increases with a higher percentage of common hot spot, the MHs have to

consume more power to turn in the required data items to the requesting peers and

discard more unintended messages.

In the push-based and hybrid environments, the power consumption of the MHs

adopting COCA schemes reduces with increasing percentage of common hot spot, as

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 151

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Common Hot Spot (%)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(a) Access Latency

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Common Hot Spot (%)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(b) Power Consumption

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

Common Hot Spot (%)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(c) Server Request Ratio

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20

Common Hot Spot (%)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(d) LCH Ratio

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Common Hot Spot (%)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(e) GCH Ratio

Figure 5.19: Effect of common hot spot in a hybrid environment.

shown in Figures 5.18(b) and 5.19(b). There is a higher chance for the MHs to obtain

their desired data items from the peers, so that they can save on more power, it is

due to the fact that the power consumption of accessing data items from the cache

of peers is less than the MSS in the push-based and hybrid environments. When

the percentage of common hot spot is zero, i.e., the MHs in a motion group possess

random access pattern, CC performs better than SIG-I and the group-based COCA

schemes in terms of access latency, as depicted in Figure 5.18(a) for the push-based

environment, and Figure 5.19(a) for the hybrid environment. This is because the

MHs experience difficulty in discovering tightly-coupled peers as the score of data

access similarity is not higher than the required thresholds, denoted as δc and δd for

CGCC and DGCC respectively. When the percentage of common hot spot is larger

than zero, the MHs can more readily discover tightly-coupled peers, so they exchange

their cache signatures among the TCG members, and a portion of the cache space

is then occupied by the cache signatures. Also, DGCC and CGCC try to cache more

distinct data items in the global cache, when the percentage of common hot spot is

low, many cached data items without any replica may possess low access probabilities.

The storage of cache signatures and low percentage of common hot spot leads to a

lower LCH ratio. When the percentage of common hot spot increases, the MHs in

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 152

the same TCG access fewer distinct data items, so that more data items with higher

access probabilities are cached in the global cache; thus, the LCH and GCH ratios

improve, as exhibited in Figures 5.17(d) and 5.17(e) for the pull-based environment,

Figures 5.18(d) and 5.18(e) for the push-based environment and Figures 5.19(d) and

5.19(e) for the hybrid environment.

5.6.6 Effect of Client Disconnection Probability

0 0.1 0.2 0.3 0.4 0.5
50

75

100

125

150

Disconnection Probability

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
SIG−I
CGCC
DGCC

(a) Access Latency

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Disconnection Probability

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC
CC
SIG−I
CGCC
DGCC

(b) Power Consumption

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

80

90

Disconnection Probability

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
SIG−I
CGCC
DGCC

(c) Server Request Ratio

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

14

16

18

20

Disconnection Probability

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
SIG−I
CGCC
DGCC

(d) LCH Ratio

0 0.1 0.2 0.3 0.4 0.5
10

20

30

40

50

60

70

80

Disconnection Probability

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
SIG−I
CGCC
DGCC

(e) GCH Ratio

Figure 5.20: Effect of client disconnection probability in a pure pull-based
environment.

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

Disconnection Probability

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(a) Access Latency

0 0.1 0.2 0.3 0.4 0.5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

5

Disconnection Probability

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(b) Power Consumption

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

80

90

Disconnection Probability

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(c) Server Request Ratio

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

14

16

18

20

Disconnection Probability

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(d) LCH Ratio

0 0.1 0.2 0.3 0.4 0.5
20

30

40

50

60

70

80

Disconnection Probability

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−BD
SIG−I−BD
DGCC−BD

(e) GCH Ratio

Figure 5.21: Effect of client disconnection probability in a pure push-based
environment.

The effect of client disconnection on system performance is studied by increasing

the client disconnection probability from 0 to 0.5.

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 153

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

Disconnection Probability

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(a) Access Latency

0 0.1 0.2 0.3 0.4 0.5
1

2

3

4

5

6

7
x 10

5

Disconnection Probability

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(b) Power Consumption

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

80

90

100

Disconnection Probability

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(c) Server Request Ratio

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

14

16

18

20

Disconnection Probability

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(d) LCH Ratio

0 0.1 0.2 0.3 0.4 0.5
20

30

40

50

60

70

80

Disconnection Probability

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(e) GCH Ratio

Figure 5.22: Effect of client disconnection probability in a hybrid environ-
ment.

As depicted in Figure 5.20, the performance of COCA schemes is sensitive to the

disconnection rate in the pull-based environment. The performance of COCA schemes

degrades with increasing disconnection probability. The higher the disconnection

probability, the less the peers can help the requesting MHs. Thus, the MHs suffer

from a higher global cache miss ratio, as shown in Figure 5.20(e). However, the

power consumption of all COCA schemes decreases with increasing disconnection

probability, as shown in Figure 5.20(b). The MHs can save on power consumption

when they disconnect from the network, as they need not handle global cache queries,

and discard fewer unintended messages.

DGCC performs worse than the other COCA schemes in the environment with

high client disconnection probability, i.e., over 0.2. The MHs adopting DGCC can

only restore the relationship with other peers after re-connecting to the network if

the peers are connected to the network. Otherwise, the MHs cannot maintain the

relationship. When the client disconnection probability is high, there is a higher

chance for the case that the peers are disconnecting from the network when the

MHs re-connect to the network. Such mutual disconnection problem degrades the

system performance of DGCC. To alleviate this problem, when a re-connected MH

restores the membership relationship with its peers, if it cannot communicate with

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 154

some peers, it stores the relevant relationship information. When the MH receives

a relationship restore request message from them, it sends the corresponding stored

relationship to them, and then they both restore the relationship. For CGCC, when

there is a high disconnection probability for MHs, the location precision degrades

because disconnected the MHs cannot send their location information to the MSS.

With the outdated location information, the MSS cannot correctly discover TCGs,

so that the system performance is also degraded as in DGCC.

In the push-based environment, the performance of DGCC is better than other

schemes. The MHs suffer from a longer latency of accessing their required data items

from the MSS, as shown in Figure 5.21(a) and they need to keep themselves connected

to the network to wait for the broadcast index or the data items, so the time interval

between two consecutive disconnection in the push-based environment is longer than

pull-based environment.

In the hybrid environment, the latency of accessing data items from the MSS is

much shorter than the push-based environment, as depicted in Figure 5.22(a). Thus,

the group-based COCA performs worse than CC in the environment with high client

disconnection probability as in the pull-based environment.

5.6.7 Effect of Mobility Speed

In this experiment, we study the effect of mobility speed on system performance by

increasing the maximum mobility speed from 5 m/s to 30 m/s.

In the pull-based environment, CC, SIG-I and DGCC are slightly affected by vary-

ing the maximum mobility speed. However, CGCC is more sensitive to the various

mobility speed than the other schemes. When the mobility speed increases, the GCH

ratio of CGCC aggravates, as shown in Figure 5.23(e). As the MHs adopting CGCC

only update their location by piggybacking the location information on the request

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 155

5 10 15 20 25 30
40

50

60

70

80

90

100

110

120

130

140

150

Maximum Mobility Speed (m/s)

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
SIG−I
CGCC
DGCC

(a) Access Latency

5 10 15 20 25 30
2

4

6

8

10

12

14

16

Maximum Mobility Speed (m/s)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (m
W

.s
)

NC
CC
SIG−I
CGCC
DGCC

(b) Power Consumption

5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

Maximum Mobility Speed (m/s)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
SIG−I
CGCC
DGCC

(c) Server Request Ratio

5 10 15 20 25 30
0

5

10

15

20

25

30

Maximum Mobility Speed (m/s)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
SIG−I
CGCC
DGCC

(d) LCH Ratio

5 10 15 20 25 30
30

35

40

45

50

55

60

65

70

75

80

Maximum Mobility Speed (m/s)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
SIG−I
CGCC
DGCC

(e) GCH Ratio

Figure 5.23: Effect of mobility speed in a pure pull-based environment.

5 10 15 20 25 30
0

5

10

15

Maximum Mobility Speed (m/s)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(a) Access Latency

5 10 15 20 25 30
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Maximum Mobility Speed (m/s)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(b) Power Consumption

5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

Maximum Mobility Speed (m/s)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(c) Server Request Ratio

5 10 15 20 25 30
0

5

10

15

20

25

30

Maximum Mobility Speed (m/s)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(d) LCH Ratio

5 10 15 20 25 30
30

35

40

45

50

55

60

65

70

75

80

Maximum Mobility Speed (m/s)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−BD
SIG−I−BD
DGCC−BD

(e) GCH Ratio

Figure 5.24: Effect of mobility speed in a pure push-based environment.

sent to the MSS, the high speed movement leads to imprecise location information, so

that the centralized approach encounters a problem to correctly cluster the tightly-

coupled peers together. For instance, two MHs, m1 and m2 are in fact tightly-coupled

peers in the system. When m1 encounters a cache miss, it forwards a request to the

MSS along with its location information. After a few seconds, e.g., five seconds, m2

also encounters a cache miss, it sends a request to the MSS and m1 has not sent

any request to the MSS during this time period. If m1 and m2 are moving with

the maximum speed 30 m/s, the MSS may find that the distance between m1 and

m2 is about 150 meters, but m1 and m2 are actually close to each other with only

a distance of a few meters. Therefore, the centralized approach cannot tolerate the

high client movement speed, unless the MHs update their location more frequently,

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 156

5 10 15 20 25 30
0.2

0.4

0.6

0.8

1

1.2

1.4

Maximum Mobility Speed (m/s)

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(a) Access Latency

5 10 15 20 25 30
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Maximum Mobility Speed (m/s)

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(b) Power Consumption

5 10 15 20 25 30
10

20

30

40

50

60

70

80

90

Maximum Mobility Speed (m/s)

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(c) Server Request Ratio

5 10 15 20 25 30
0

5

10

15

20

25

30

Maximum Mobility Speed (m/s)

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(d) LCH Ratio

5 10 15 20 25 30
30

35

40

45

50

55

60

65

70

75

80

Maximum Mobility Speed (m/s)

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(e) GCH Ratio

Figure 5.25: Effect of mobility speed in a hybrid environment.

but the frequent location update could degrade system performance by generating a

lot of network traffic in the uplink channel. The result in Figure 5.23 exhibits that

the distributed approach, DGCC, is more adaptive to the high speed movement.

In the push-based and hybrid environments, CC, SIG-I and DGCC are also well-

adapted to the various speed levels. In the hybrid environment, the CGCC performs

worse with accelerated movement speed, as depicted in Figure 5.25. The MHs do not

send any location information to the MSS if they can catch their desired data items in

the broadcast channel, so that the knowledge of their actual location becomes more

inaccurate than in the pull-based environment. Thus, the performance of CGCC in

access latency, power consumption, server request ratio and GCH ratio is worse than

CC, as the maximum speed is higher than 15 m/s.

5.6.8 Effect of Number of MHs

We study the effect of client population on system performance by increasing the

number of MHs in the system from 50 to 400.

In the pull-based environment, all schemes are shown to perform worse with in-

creasing client population, as shown in Figure 5.26. Figure 5.26(a) exhibits that the

access latency of NC increases sharply, when there are more than 200 MHs in the

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 157

50 100 200 300 400

100

200

300

400

500

600

700

800

Number of MHs

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
SIG−I
CGCC
DGCC

(a) Access Latency

50 100 200 300 400
0

2

4

6

8

10

12

14

16

18

20

22

Number of MHs

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (m
W

.s
)

NC
CC
SIG−I
CGCC
DGCC

(b) Power Consumption

50 100 200 300 400
10

20

30

40

50

60

70

80

90

Number of MHs

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
SIG−I
CGCC
DGCC

(c) Server Request Ratio

50 100 200 300 400
0

5

10

15

20

25

30

Number of MHs

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
SIG−I
CGCC
DGCC

(d) LCH Ratio

50 100 200 300 400
20

30

40

50

60

70

80

Number of MHs

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
SIG−I
CGCC
DGCC

(e) GCH Ratio

Figure 5.26: Effect of number of MHs in a pure pull-based environment.

50 100 200 300 400
0

2

4

6

8

10

12

14

16

18

20

Number of MHs

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(a) Access Latency

50 100 200 300 400
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Number of MHs

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(b) Power Consumption

50 100 200 300 400
10

20

30

40

50

60

70

80

90

Number of MHs

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(c) Server Request Ratio

50 100 200 300 400
0

5

10

15

20

25

30

Number of MHs

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(d) LCH Ratio

50 100 200 300 400
20

30

40

50

60

70

80

Number of MHs

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−BD
SIG−I−BD
DGCC−BD

(e) GCH Ratio

Figure 5.27: Effect of number of MHs in a pure push-based environment.

system. The power consumption of the COCA schemes increases, as the number of

MHs gets larger. Since the access range of each motion group is randomly assigned,

the increasing number of MHs does not bring in improvement in the GCH ratio as

anticipated, but may even degrade the GCH ratio, as shown in Figure 5.26(e). When

one motion group meets with another group, since their access ranges may not overlap

with each other, they cannot share cached data items with one another. If two motion

groups with no common access range meet together, they cannot take advantage of

the cached data items with one another; they actually degrade the system perfor-

mance in terms of access latency and power consumption. This is because they have

to consume more power not only to receive more broadcast requests from the peers

of another motion groups, but also to discard more unintended messages. Thus, the

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 158

50 100 200 300 400

0.5

1

1.5

2

2.5

3

Number of MHs

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(a) Access Latency

50 100 200 300 400
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Number of MHs

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(b) Power Consumption

50 100 200 300 400
10

20

30

40

50

60

70

80

90

Number of MHs

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(c) Server Request Ratio

50 100 200 300 400
0

5

10

15

20

25

30

Number of MHs

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(d) LCH Ratio

50 100 200 300 400
20

30

40

50

60

70

80

Number of MHs

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(e) GCH Ratio

Figure 5.28: Effect of number of MHs in a hybrid environment.

MHs adopting all the COCA schemes have to consume more power with increasing

client population, as exhibited in Figure 5.26(b). For SIG-I, the MHs consume more

power than the other COCA schemes, when there are more than 200 MHs in the

system. As the MHs adopting SIG-I have to exchange their cache signatures with

all neighboring peers, they use more cache space to store the cache signatures with

increasing number of MHs, and therefore, they suffer from a decay of the LCH and

GCH ratios when the number of MHs gets larger. Also, they have to consume more

power on exchanging and maintaining cache signatures than DGCC and CGCC.

In the push-based environment, CC and DGCC are effective in improving ac-

cess latency and reducing power consumption in comparison with NC because the

MHs adopting CC and DGCC record a higher GCH ratio than NC, as shown in Fig-

ures 5.27(a), 5.27(b) and 5.27(e). For SIG-I, the access latency and power consump-

tion get worse with increasing client population because the higher client population

the more cache signature exchange an MH has to perform. Therefore, the system

performance of SIG-I degrades with increasing number of MHs. As the MHs adopt-

ing DGCC only exchange their cache signatures with other tightly-coupled peers, the

amount of message passing generated by signature exchange is significantly reduced.

Also, the MHs adopting SIG-I suffer from lower LCH and GCH ratios, as exhibited

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 159

in Figure 5.27(d) and 5.27(e). The portion of cache space occupied by storing cache

signatures is proportional to the number of neighboring peers to an MH. Thus, they

use up more cache space to store cache signatures, when the number of MHs gets

larger.

In the hybrid environment, we can draw similar conclusions as in the push-based

environment. The COCA schemes are found to effectively improve system perfor-

mance compared with NC, as illustrated in Figure 5.28. DGCC outperforms the other

COCA schemes in terms of access latency, power consumption and server request ra-

tio. Due to the overhead of exchanging cache signatures among MHs, the performance

of SIG-I and DGCC degrades with increasing number of MHs. DGCC outperforms SIG-I

because it only allows the MHs to exchange their cache signatures with tightly-coupled

peers. For DGCC, one possible way to prevent from degrading system performance

with increasing client population is to adopt transmission power control to reduce

the power of a wireless NIC, so as to reduce the number of peers an MH can contact

with.

5.6.9 Effect of Group Size

1 5 10 15 20
40

60

80

100

120

140

160

Group Size

A
cc

es
s

La
te

nc
y

(m
s)

NC
CC
SIG−I
CGCC
DGCC

(a) Access Latency

1 5 10 15 20

2

4

6

8

10

12

14

16

18

20

22

Group Size

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (m
W

.s
)

NC
CC
SIG−I
CGCC
DGCC

(b) Power Consumption

1 5 10 15 20
0

10

20

30

40

50

60

70

80

90

Group Size

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC
CC
SIG−I
CGCC
DGCC

(c) Server Request Ratio

1 5 10 15 20
0

5

10

15

20

25

30

Group Size

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC
CC
SIG−I
CGCC
DGCC

(d) LCH Ratio

1 5 10 15 20
0

10

20

30

40

50

60

70

80

90

Group Size

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC
SIG−I
CGCC
DGCC

(e) GCH Ratio

Figure 5.29: Effect of group size in a pull-based environment.

Finally, we study the effect of motion group size on system performance by increas-

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 160

1 5 10 15 20
0

2

4

6

8

10

12

14

16

18

Group Size

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(a) Access Latency

1 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Group Size

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(b) Power Consumption

1 5 10 15 20
0

10

20

30

40

50

60

70

80

90

Group Size

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(c) Server Request Ratio

1 5 10 15 20
0

5

10

15

20

25

30

Group Size

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−BD
CC−BD
SIG−I−BD
DGCC−BD

(d) LCH Ratio

1 5 10 15 20
0

10

20

30

40

50

60

70

80

90

Group Size

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

CC−BD
SIG−I−BD
DGCC−BD

(e) GCH Ratio

Figure 5.30: Effect of group size in a push-based environment.

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Group Size

A
cc

es
s

La
te

nc
y

(s
ec

on
ds

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(a) Access Latency

1 5 10 15 20
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Group Size

P
ow

er
 C

on
su

m
pt

io
n/

R
eq

ue
st

 (µ
W

.s
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(b) Power Consumption

1 5 10 15 20
0

10

20

30

40

50

60

70

80

90

Group Size

S
er

ve
r

R
eq

ue
st

 R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(c) Server Request Ratio

1 5 10 15 20
0

5

10

15

20

25

30

Group Size

Lo
ca

l C
ac

he
 H

it
R

at
io

 (%
)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(d) LCH Ratio

1 5 10 15 20
0

10

20

30

40

50

60

70

80

90

Group Size

G
lo

ba
l C

ac
he

 H
it

R
at

io
 (%

)

NC−Push−50%
CC−Push−50%
SIG−I−Push−50%
CGCC−Push−50%
DGCC−Push−50%

(e) GCH Ratio

Figure 5.31: Effect of group size in a hybrid environment.

ing the group size from 1 to 20. Note that when the group size is equal to one, the

mobility model is equivalent to an individual random walk model, i.e., the “random

waypoint” model [17, 18], and the data access range of all MHs are randomly selected.

In all the environments, the MHs adopting the COCA schemes record the lowest

GCH ratio when the group size is equal to one, as shown in Figures 5.29(e), 5.30(e)

and 5.31(e), that constitutes the worst case of all COCA schemes in terms of access

latency and server request ratio.

In the pull-based environment, the performance of the COCA schemes is better

in access latency and server request ratio with increasing group size, as depicted in

Figures 5.30(a) and 5.30(c). This is because there is a higher chance for the MHs

to obtain their desired data items from the peers, i.e., a higher GCH ratio, when

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 161

they have more neighboring peers with similar data affinity. Although the MHs enjoy

shorter access latency, they have to consume more power to handle global cache

queries, as exhibited in Figure 5.29(b). The larger group size also implies a higher

GCH ratio. For every GCH, a required data item is forwarded from the source MH to

the requesting MH. Thus, there are more data items passing among the MHs of the

same motion group that leads to a higher network traffic around the vicinity of the

motion group, which in turn increases the latency of a global cache accesses (when

the motion group size is larger than 10), as shown in Figure 5.29(a).

In the push-based environment, the access latency of all schemes improves with

increasing the group size, as shown in Figure 5.30(a). As the group size gets larger,

there are fewer motion groups in the system. Also, each motion group shares the

same access range. The fewer the number of motion groups, the smaller the range

of hot spot of the system, so that the more hot data items can be allocated in the

broadcast disks with faster spinning speed as number of motion groups decreases.

Hence, the access latency of all schemes improves with increasing motion group size.

When the motion group size increases, there is a higher chance for the MHs adopting

the COCA schemes to obtain their desired data items from the peers, so they achieve

a higher GCH ratio, as depicted in Figure 5.30(e). When the MHs record a higher

GCH ratio, they save more power, due to the fact that the power consumption of a

global cache access is much less than a broadcast channel access in the push-based

environment. In the COCA schemes, DGCC is always found to perform the best in

the GCH ratio, so that it can save more power than the other COCA schemes, as

exhibited in Figure 5.30(b).

In the hybrid environment, the access latency of NC gets larger with increasing

group size, as shown in Figure 5.31(a). As the group size increases, there are fewer

motion groups in the system, so that more hot data items are allocated to the broad-

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 162

cast channel. The latency of accessing data items from the broadcast channel is

longer than the pull-based point-to-point. Thus, the MHs adopting NC suffer from

a longer access latency, when the motion group size increases. On the other hand,

the access latency of all the COCA schemes get better with increasing group size.

This is because the MHs adopting the COCA schemes can take advantage of a higher

GCH ratio, to improve system performance in terms of access latency, power con-

sumption and server request ratio, as shown in Figure 5.31. DGCC is also shown to

perform the best in the GCH ratio, so the MHs adopting DGCC enjoy the best system

performance.

5.7 Concluding Remarks

In this chapter, we propose two group-based schemes for MHs: centralized and dis-

tributed group-based COCA schemes, namely CGCoca and DGCoca, respectively.

In the group-based COCA schemes, a collection of MHs possesses similar mobility

pattern and data affinity form a group, called tightly-coupled group (TCG). A central-

ized incremental clustering algorithm is proposed for CGCoca to discover all TCGs

dynamically in the system, while a distributed memorization-based membership al-

gorithm is proposed for DGCoca. In a TCG, the cache of all MHs forms an aggregate

cache or global cache. Two cooperative cache management protocols: cooperative

cache admission control and cooperative cache replacement are proposed for them to

work together to manage their aggregate cache. The MHs adopt the cache signature

scheme not only to determine whether their desired data items are likely cached in

the aggregate cache, but also to perform cooperative cache replacement protocol to

improve data accessibility in the TCG. The cooperative cache admission control pro-

tocol is proposed for the MHs to control data replicas in a TCG. The performance of

CHAPTER 5. GROUP-BASED COOPERATIVE CACHING 163

CGCoca and DGCoca is extensively evaluated through a series of simulated experi-

ments. The result shows that the group-based COCA schemes further improve system

performance in comparison with standard COCA and COCA with cache signature

scheme in the pull-based, push-based and hybrid environments. DGCoca gives the

best in access latency and server request ratio, but incurs higher power consumption

in the pull-based environment. DGCoca outperforms all other schemes in the push-

based and hybrid environments. Based on the simulation results, we suggest that the

distributed approach is more suitable than centralized one in discovering TCGs in mo-

bile environments. However, there is a drawback of the group-based COCA schemes.

CGCoca and DGCoca cannot tolerate a very high client disconnection probability.

In a mobile environment with very frequent client disconnection, the performance of

CGCoca and DGCoca is reduced to be close to the standard COCA. To alleviate the

client disconnection problem, the MHs adopting DGCoca have to store the relation-

ship information of their peers for a longer time, whereas a precise location prediction

algorithm is required in CGCoca to predict the location of disconnected MHs.

Chapter 6

Conclusion

In this chapter, we will give some concluding remarks to this thesis, and then propose

some potential future works for extending COCA.

6.1 Concluding Remarks of the Thesis

In this thesis, we have proposed a cooperative caching scheme, called COCA, for

MHs in the pull-based, push-based and hybrid mobile environments. In COCA, the

MHs retrieve their desired data items not only from the MSS, but also from the

cache of their peers. COCA is also extended to support multi-hop data searching.

The performance of COCA is studied through a number of simulated experiments.

The result shows that COCA reduces access latency and server request, but incurs

more power consumption in the pull-based mobile environment. On the other hand,

COCA improves system performance in terms of access latency, server request ratio

and power consumption in the push-based and hybrid environments. For COCA with

multi-hop data searching, it further improves system performance in the push-based

and hybrid environments.

A cache signature scheme is proposed for MHs to provide hints for them to de-

164

CHAPTER 6. CONCLUSION 165

termine whether to search for their desired data items in the Peer Cache layer. To

study the tradeoff between the storage space and maintenance overhead, three signa-

ture storage schemes are proposed: individual, group and hybrid. For the individual

signature storage scheme, the peer signatures are stored in the cache individually to

conserve battery power, as the peer signature can be efficiently maintained. For the

group signature storage scheme, the peer signatures are grouped together and stored

in a counter vector structure. When an MH detects any link failure with its peers, it

has to remove the cache signature of that peers by resetting the counter vector and

re-construct the counter vector by re-collecting the cache signatures from all the re-

maining neighbors. Thus, the group signature scheme trades power for storage space.

For the hybrid signature storage scheme, it combines the individual and group signa-

ture storage schemes by defining a time threshold. The MHs initially cache the peer

signature individually, and then store the cached peer signature in a counter vector

when the cache signature has been cached for the time threshold. The performance

of cache signature scheme with the three different storage schemes is investigated

through a series of simulated experiments. Generally, the cache signature scheme

with group signature storage scheme gives the best access latency, but it incurs more

power consumption than all other storage schemes and standard COCA. Although

the access latency of the individual signature storage scheme is slightly worse than the

other two storage scheme, it incurs lower power consumption than the other signa-

ture storage schemes and the standard COCA. The performance of the hybrid storage

scheme is generally between the individual and group signature schemes.

To further improve system performance, we also propose two group-based COCA

schemes: centralized and distributed, namely CGCoca and DGCoca respectively. In

the group-based COCA schemes, we define a group of MHs that possess similar mo-

bility pattern and data affinity as a tightly-coupled group (TCG). For CGCoca, a

CHAPTER 6. CONCLUSION 166

centralized incremental clustering algorithm is adopted to discover all TCGs dynam-

ically in the system. For DGCoca, a distributed memorization-based membership

algorithm is proposed to discover all the TCGs in a self-organized manner without

any support of the MSS. In a TCG, all cache of the members are considered as an

aggregate cache or global cache. Two cooperative cache management protocols: co-

operative cache admission control and cooperative cache replacement, are proposed

for the MHs to manage the aggregate cache cooperatively, in order to improve data

accessibility. Since the exchange of cache signatures among MHs is expensive in terms

of power consumption and network traffic, the MHs merely exchange their cache sig-

natures with other peers in the same TCG. In a TCG, since all members possess

similar mobility pattern, the cached peer signatures are stable. Because of this de-

sired property, we adopt group signature storage scheme to cache all peer signatures

to reduce on cache space consumption. Additionally, the peer signature is adopted

not only to provide hints for the MHs to determine whether to bypass the search in

the peers’ cache, but also to provide information for the MHs to perform coopera-

tive cache replacement in a TCG. Extensive simulation experiments are conducted

to evaluate the performance of CGCoca and DGCoca. The simulation result depicts

that CGCoca yields a better performance than standard COCA and COCA with

cache signature scheme, while DGCoca outperforms all other schemes in terms of

access latency and server request ratio, but it incurs more power consumption in the

pull-based environment. In the push-based and hybrid environments, DGCoca out-

performs all other schemes in terms of access latency, server request ratio and power

consumption. The result also demonstrates that DGCoca is more effective in discov-

ering TCGs than CGCoca, as DGCoca is well-adapted to the environment with high

client movement speed. The common drawback of the group-based COCA schemes

is intolerance of client disconnection. Although we have proposed client disconnec-

CHAPTER 6. CONCLUSION 167

tion handling mechanism for CGCoca and DGCoca, they cannot tolerate very high

client disconnection probability and long disconnection duration. The simulation re-

sults show that the performance of CGCoca and DGCoca becomes close to standard

COCA in the environment with high client disconnection probability. To alleviate the

client disconnection problem, the MHs adopting DGCoca have to store the relation-

ship information of their peers for a longer time, whereas a precise location prediction

algorithm is required in CGCoca to predict the location of disconnected MHs.

6.2 Future Work

Several important issues and improvement related to COCA remain unexplored in

this thesis. To complete this research project, we will discuss some potential future

work for COCA.

6.2.1 Cache Invalidation Protocol

Currently, we have not considered data updates in COCA. Our imminent step is to

study the impact of data updates and design a cache coherence strategy for COCA.

There are two conventional ways to maintain client cache coherency in mobile environ-

ments. First, the MSS periodically broadcasts invalidation reports (IRs) to the mobile

clients to indicate which data items become invalid [11]. Second, the MSS assigns a

time-to-live to each data item, when it is sent to an MH, and the MH invalidates the

cached data item with expired time-to-live [73, 91]. Recently, with the emergency

of new P2P communication paradigm, cooperative cache invalidation protocol [45]

is proposed for the MHs to validate their cached data items in MANETs. We will

investigate the performance of the conventional and cooperative cache invalidation

protocols in COCA.

CHAPTER 6. CONCLUSION 168

6.2.2 Client Incentive Scheme

In this thesis, we assume that all MHs are willing to cooperate for the benefit of the

community. However, in reality, there are many selfish MHs that only enlist other

peers for help, but they never or rarely share information with others, or even deny

to forward any requests or data items. In P2P networks, some distributed incentive

mechanisms [64, 80] are proposed for information sharing systems, to provide fairness

and incentive for the community.

We would study how the selfish MHs affect the system performance in COCA, and

then examine the effectiveness of the existing P2P incentive mechanisms on mobile

cooperative caching, upon considering the unique properties of mobile systems.

6.2.3 Power Conservation Protocol

Based on our simulation results, we find that COCA incurs much more power con-

sumption than conventional caching strategy in a pull-based environment. Thus, we

will examine transmission power control mechanism to reduce transmission power

consumption in COCA. The basic idea of power control [5, 51] is to detect the mini-

mum required transmission power, and then the MHs adjust the power level of their

wireless NICs to communicate with the required peers, in order to conserve battery

power. Also, movement prediction techniques together with transmission power con-

trol [19] are also adopted to reduce power consumption in wireless communication.

When an MH wants to communicate with another peer, it predicts the movement of

the peer based on its movement history. If the peer is likely to move closer to the MH

in the near future, the MH postpones the communication until the peer has moved

close enough to it.

Since there is no transmission power control mechanism adopted by the MHs, we

will examine how power control mechanisms with other techniques, such as movement

CHAPTER 6. CONCLUSION 169

prediction, can affect the system performance of COCA.

6.2.4 Semantic Cooperative Caching

Semantic caching is highly beneficial in a mobile environment [56, 57], by enabling

queries to be self-answerable, even with limited support from peers and in the absence

of server connectivity, through the association of descriptive semantics to cached data

items. We consider semantic caching as an alternative of cache signatures. Cache

signatures provide hints for the MHs to know about the cache content of their peers,

in order to perform filtering and cooperative cache replacement. In semantic caching,

the cached data items are grouped into clusters based on predicates. An MH can

determine whether its cached data items are sufficient in answering a query totally

or partially, or not. If the cached data items cannot completely answer the query,

the MH has to obtain the required data items from the MSS. The cache signature

is effective in handling individual data items, whereas semantic caching is good at

manipulating a group of data items based on semantic descriptor. In the future, we

would like to explore on the performance of COCA with semantic caching in a mobile

database environment.

6.2.5 Utilizing the Cache Space of Low-Activity MHs

Allocating appropriate data items to the low-activity MHs in COCA is found to

improve system performance [25, 27], as the high-activity MHs can take advantage of

the data items stored at the low-activity MHs. In [25, 27], each MH detects its own

activity state by monitoring its periodic weighted cache access rate. An MH with

low weighted cache access rate is considering as a low-activity client. When an MH

detects its state changing to low activity state, it reports its state to the MSS, and

the MSS then allocates the appropriate data items to it.

CHAPTER 6. CONCLUSION 170

In CGCoca, since the MSS possesses knowledge about all MHs’ mobility pattern

and data affinity, it would be more effective in selecting the appropriate data items

to be allocated to the low-activity MH by considering the access pattern of the MH’s

nearby peers. Similarly, in DGCoca, the MHs have knowledge about the cache content

of their TCG members based on their peer signatures. In addition, they can extract

the access pattern of their members from their access history signatures. A low-

activity MH could determine the appropriate data items to be allocated for its own

and its members’ interest based on the hints. Therefore, we will attempt to utilize

the cache space of low-activity MHs in the group-based COCA schemes to see if the

system performance can be further improved by allocating suitable data items in the

cache of the low-activity members in a TCG.

References

[1] Squid Web Proxy Cache, 1996. [online] http://www.squid-cache.org.

[2] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broadcast disks: Data man-

agement for asymmetric communication environments. In Proceedings of the 1995

ACM SIGMOD International Conference on Management of Data (SIGMOD),

pages 199–210, San Jose, California, USA, May 1995.

[3] S. Acharya, M. Franklin, and S. Zdonik. Balancing push and pull for data

broadcast. In Proceedings of the ACM International Conference on Management

of Data (SIGMOD), pages 183–194, Tucson, Arizona, USA, May 1997.

[4] S. Acharya and S. Muthukrishnan. Scheduling on-demand broadcasts: New met-

rics and algorithms. In Proceedings of the 4th International Conference Mobile

Computing and Networking (MobiCom), pages 43–54, Dallas, Texas, USA, Oc-

tober 1998.

[5] S. Agarwal, R. H. Katz, S. V. Krishnamurthy, and S. K. Dao. Distributed power

control in ad-hoc wireless networks. In Proceedings of the the 12th IEEE In-

ternational Symposium on Personal, Indoor and Mobile Radio Communications

(PIMRC), pages 59–66, San Diego, California, USA, September 2001.

171

REFERENCES 172

[6] D. Aksoy and M. Franklin. RxW: A scheduling approach for large-scale on-

demand data broadcast. IEEE/ACM Transactions on Networking (TON),

7(6):846–880, December 1999.

[7] B. An and S. Papavassiliou. A mobility-based clustering approach to support

mobility management and multicast routing in mobile ad-hoc wireless networks.

International Journal of Network Management, 11(6):387–395, November 2001.

[8] M. J. Atallah. Algorithms and Theory of Computation Handbook, chapter Basic

Graph Algorithms. CRC Press, 1999.

[9] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrievel. Addison-

Wesley, 1999.

[10] L. R. Bahl and H. Kobayashi. Image data compression by predictive coding II:

Encoding algorithms. IBM Journal of Research and Development, 18(2):172–179,

March 1974.

[11] D. Barbará and T. Imielinski. Sleepers and workaholics: Caching strategies in

mobile environments. The International Journal on Very Large Data Bases,

4(4):567–602, October 1995.

[12] D. Barbarh. Mobile computing and databses - a survey. IEEE Transactions on

Knowledge and Data Engineering (TKDE), 11(1):108–117, January/February

1999.

[13] P. Basu, N. Khan, , and T. D. Little. A mobility based metric for clustering

in mobile ad hoc networks. In Proceedings of the International Workshop on

Wireless Networks and Mobile Computing, in conjunction with the 21st Interna-

tional Conference on Distributed Computing Systems (ICDCS), pages 413–418,

Phoenix, Arizona, USA, April 2001.

REFERENCES 173

[14] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group

multicast. ACM Transactions on Computer Systems (TOCS), 9(3):272–314, Au-

gust 1991.

[15] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-

munications of the ACM (CACM), 13(7):422–426, July 1970.

[16] Bluetooth SIG. Bluetooth specification v1.2. [online] http://www.bluetooth.com,

November 2003.

[17] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva. A perfor-

mance comparison of multi-hop wireless ad hoc network routing protocols. In

Proceedings of the 4th Annual International Conference on Mobile Computing

and Networking (MobiCom), pages 85–97, Dallas, Texas, USA, October 1998.

[18] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad hoc

network research. Wireless Communications and Mobile Computing (WCMC),

2(5):483–502, August 2002.

[19] S. Chakraborty, Y. Dong, D. K. Y. Yau, and J. C. S. Liu. On the effectiveness of

movement prediction to reduce energy consumption in wireless communication.

IEEE Transactions on Mobile Computing (TMC), to appear.

[20] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Worrell.

A hierarchical internet object cache. In Proceedings of the USENIX Annual

Technical Conference, pages 153–164, San Diego, California, USA, January 1996.

[21] J. H. P. Chim, M. Green, R. W. H. Lau, H. V. Leong, and A. Si. On caching and

prefetching of virtual objects in distributed virtual environments. In Proceedings

of the 6th ACM International Conference on Multimedia, pages 171–180, Bristol,

England, September 1998.

REFERENCES 174

[22] C.-Y. Chow, H. V. Leong, and A. T. S. Chan. Cache signatures for peer-to-

peer cooperative caching in mobile environments. In Proceedings of the 18th

International Conference on Advanced Information Networking and Applications

(AINA), pages 96–101, Fukuoka, Japan, March 2004.

[23] C.-Y. Chow, H. V. Leong, and A. T. S. Chan. Group-based cooperative cache

management for mobile clients in a mobile environment. In Proceedings of the

33rd International Conference on Parallel Processing (ICPP), pages 83–90, Mon-

treal, Canada, August 2004.

[24] C.-Y. Chow, H. V. Leong, and A. T. S. Chan. Peer-to-peer cooperative caching

in a hybrid data delivery environment. In Proceedings of the 7th International

Symposium on Parallel Architectures, Algorithms, and Networks (ISPAN), pages

79–84, Hong Kong, May 2004.

[25] C.-Y. Chow, H. V. Leong, and A. T. S. Chan. Peer-to-peer cooperative caching in

mobile environments. In Proceedings of the 2nd IEEE International Workshop on

Mobile Distributed Computing (MDC), in conjunction with the 24th IEEE Inter-

national Conference on Distributed Computing Systems (ICDCS), pages 528–533,

Tokyo, Japan, March 2004.

[26] C.-Y. Chow, H. V. Leong, and A. T. S. Chan. Distributed group-based coop-

erative caching in a mobile broadcast environment. In Proceedings of the Sixth

International Conference on Mobile Data Management (MDM), pages 97–106,

Ayia Napa, Cyprus, May 2005.

[27] C.-Y. Chow, H. V. Leong, and A. T. S. Chan. Utilizing the cache space of

low-activity clients in a mobile cooperative caching environment. International

Journal of Wireless and Mobile Computing (IJWMC), to appear.

REFERENCES 175

[28] M. Dahlin, T. Anderson, D. Patterson, and R. Wang. Cooperative caching:

Using remote client memory to improve file system performance. In Proceedings

of the 1st USENIX Symposium on Operating Systems Design and Implementation

(OSDI), pages 267–280, Monterey, California, USA, November 1994.

[29] A. Ephremides, J. Wieselthier, and D. J. Baker. A design concept for reliable

mobile radio networks with frequency hopping signaling. Proceedings of IEEE,

75(1):56–73, January 1987.

[30] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: A scalable

wide-area web cache sharing protocol. IEEE/ACM Transactions on Networking

(TON), 8(3):281–293, June 2000.

[31] M. Feeley, W. Morgan, E. Pighin, A. Karlin, H. Levy, and C. Thekkath. Im-

plementing global memory management in a workstation cluster. In Proceedings

of the 15th ACM Symposium on Operating Systems Principle (SOSP), pages

201–212, Colorado, USA, December 1995.

[32] L. M. Feeney and M. Nilsson. Investigating the energy consumption of a wire-

less network interface in an ad hoc networking environment. In Proceedings of

the 20th Annual Joint Conference of the IEEE Computer and Communications

Societies (INFOCOM), pages 1548–1557, Anchorage, Alaska, USA, April 2001.

[33] L. D. Fife and L. Gruenwald. Research issues for data communication in mobile

ad-hoc network database systems. ACM SIGMOD Record, 32(2):42–47, June

2003.

[34] Z. Genova and K. Christensen. Using signatures to improve URL routing. In

Proceedings of the 21st IEEE International Performance Computing and Com-

REFERENCES 176

munications Conference (IPCCC), pages 45–52, Phoenix, Arizona, USA, April

2002.

[35] M. Gerla and J. T.-C. Tsai. Multicluster, mobile, multimedia radio network.

Wireless Networks (WINET), 1(3):255–265, January 1995.

[36] I. A. Getting. The global positioning system. IEEE Spectrum, 12(30):36–38,

43–4, December 1993.

[37] Y. Guo, M. C. Pinotti, and S. K. Das. A new hybrid broadcast scheduling

algorithm for asymmetric communication systems. IEEE Transactions on Com-

puters, 5(3):39–54, July 2001.

[38] Z. J. Haas. The routing algorithm for the reconfigurable wireless networks. In

Proceedings of IEEE 6th International Conference on Universal Personal Com-

munications (ICUPC), pages 562–566, San Diego, California, USA, October

1997.

[39] Z. J. Haas and M. R. Pearlman. The performance of query control schemes

for the zone routing protocol. IEEE/ACM Transactions on Networking (TON),

9(4):427–438, August 2001.

[40] T. Hara. Effective replica allocation in ad hoc networks for improving data

accessibility. In Proceedings of the 20th Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM), pages 1568–1576, An-

chorage, Alaska, USA, April 2001.

[41] T. Hara. Cooperative caching by mobile clients in push-based information

systems. In Proceedings of the 11th International Conference on Information

and Knowledge Management (CIKM), pages 186–193, McLean, Virginia, USA,

November 2002.

REFERENCES 177

[42] T. Hara. Replica allocation in ad hoc networks with periodic data update. In Pro-

ceedings of the 3rd Interntional Conference on Mobile Data Management (MDM),

pages 79–86, Singapore, January 2002.

[43] T. Hara, Y.-H. Loh, and S. Nishio. Data replication methods based on the sta-

bility of radio links in ad hoc networks. In Proceedings of the 6th International

Workshop on Mobility in Databases and Distributed Systems (MDDS), in con-

junction with the 14th International Conference on Database and Expert Systems

Applications (DEXA), pages 969–973, Prague, Czech Republic, September 2003.

[44] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The anatomy of a

context-aware application. Wireless Network (WINET), 8(2-3):187–197, March-

May 2002.

[45] H. Hayashi, T. Hara, and S. Nishio. Cache invalidation for updated data in ad

hoc networks. In Proceedings of the 11st International Conference on Cooperative

Information Systems (CoopIS), pages 516–535, Catania, Sicily, Italy, November

2003.

[46] X. Hong, M. Gerla, G. Pei, and C.-C. Chiang. A group mobility model for ad

hoc wireless networks. In Proceedings of the 2nd International Workshop on

Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM),

pages 53–60, Seattle, Washington, USA, August 1999.

[47] Q. Hu, D. L. Lee, and W.-C. Lee. Performance evaluation of a wireless hierar-

chical data dissemination system. In Proceedings of the 5th International Con-

ference Mobile Computing and Networking (MobiCom), pages 163–173, Seattle,

Washington, USA, August 1999.

REFERENCES 178

[48] J.-L. Huang, M.-S. Chen, and W.-C. Peng. Exploring group mobility for replica

data allocation in a mobile environment. In Proceedings of the 12th International

Conference on Information and Knowledge Management (CIKM), pages 161–

168, New Orleans, Louisiana, USA, November 2003.

[49] IEEE Std. 802-11, IEEE Standard for Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) Specification. June 1997.

[50] T. Imielinski and B. R. Badrinath. Mobile wireless computing: challenges in data

management. Communications of the ACM (CACM), 37(10):18–28, October

1994.

[51] E.-S. Jung and H. H. Vaidya. A power control mac protocol for ad hoc networks.

In Proceedings of the 8th International Conference on Mobile Computing and

Networking (MobiCom), pages 36–47, Atlanta, Georgia, USA, September 2002.

[52] G. H. K. Lam, H. V. Leong, and S. C. F. Chan. Gbl: Group-based location

updating in mobile environment. In Proceedings of the 9th International Confer-

ence on Database Systems for Advances Applications (DASFAA), pages 762–774,

Jeju Island, Korea, March 2004.

[53] G. H. K. Lam, H. V. Leong, and S. C. F. Chan. Leadership maintenance in

group-based location management scheme. In Proceedings of the International

Conference on Cooperative Information Systems (CoopIS), Part I, pages 25–29,

Agia Napa, Cyprus, October 2004.

[54] G. H. K. Lam, H. V. Leong, and S. C. F. Chan. Reducing group management

overhead in group-based location management. In Proceedings of the 7th Inter-

national Workshop on Mobility in Databases and Distributed Systems (MDDS),

REFERENCES 179

in conjunction with the 15th International Conference on Database and Expert

Systems Applications (DEXA), pages 640–644, Zaragoza, Spain, August 2004.

[55] W. H. O. Lau, M. Kumar, and S. Venkatesh. A cooperative cache architecture

in support of caching multimedia objects in MANETs. In Proceedings of the

5th ACM International Workshop on Wireless Mobile Multimedia (WoWMoM),

in conjunction with the 8th International Conference on Mobile Computing and

Networking (MobiCom), pages 56–63, Atlanta, Georgia, USA, September 2002.

[56] K. C. K. Lee, H. V. Leong, and A. Si. Semantic data access in an asymmet-

ric mobile environment. In Proceedings of the 3rd International Conference on

Mobile Data Management (MDM), pages 94–101, Singapore, January 2002.

[57] K. C. K. Lee, H. V. Leong, and A. Si. Semantic data broadcast for a mobile

environment based on dynamic and adaptive chunking. IEEE Transactions on

Computers (TOC), 51(10):1253–1268, October 2002.

[58] K.-W. Lee, K. Amiri, S. Sahu, and C. Venkatramani. Understanding the potential

benefits of cooperation among proxies: Taxonomy and analysis. IBM Research

Report # RC22173, September 2001.

[59] W.-C. Lee and D. L. Lee. Signature caching techniques for information filtering

in mobile environments. Wireless Networks (WINET), 5(1):57–67, January 1999.

[60] H. V. Leong and A. Si. Database caching over the air-storage. The Computer

Journal, 40(7):401–415, 1997.

[61] L. Li, J. Y. Halpern, P. Bahl, Y.-M. Wang, and R. Wattenhofer. Analysis of

a cone-based distributed topology control algorithm for wireless multi-hop net-

works. In Proceedings of the 20th ACM symposium on Principles of Distributed

Computing (PODC), pages 264–273, Newport, Rhode Island, USA, August 2001.

REFERENCES 180

[62] M. Li, W.-C. Lee, and A. Sivasubramaniam. Neighborhood signatures for search-

ing P2P networks. In Proceedings of the 7th International Database Engineering

and Application Symposium (IDEAS), pages 149–159, Hong Kong, July 2003.

[63] S. Lim, W.-C. Lee, G. Cao, and C. R. Das. A novel caching scheme for internet

based mobile ad hoc networks. In Proceedings of the 12th IEEE International

Conference on Computer Communications and Networks (ICCCN), pages 38–43,

Dallas, Texas, USA, October 2003.

[64] R. T. B. Ma, S. C. M. Lee, J. C. S. Lui, and D. K. Y. Yau. An incentive mecha-

nism for p2p networks. In Proceedings of the 24th IEEE International Conference

on Distributed Computing Systems (ICDCS), pages 516–523, Hachioji, Tokyo,

Japan, March 2004.

[65] M. Mitzenmacher. Compressed bloom filters. IEEE/ACM Transactions on Net-

working (TON), 10(5):604–612, October 2002.

[66] M. Papadopouli and H. Schulzrinne. Effects of power conservation, wireless cov-

erage and cooperation on data dissemination among mobile devices. In Proceed-

ings of the 2nd ACM Interational Symposium on Mobile Ad Hoc Networking and

Computing (MobiHoc), pages 117–127, Long Beach, California, USA, October

2001.

[67] A. K. Parekh. Selecting routers in ad-hoc wireless network. In Proceedings of the

SBT/IEEE International Telecommunications Symposium (ITS), pages 420–424,

Mexico, August 1994.

[68] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The Cricket location-

support system. In Proceedings of the 6th International Conference on Mobile

REFERENCES 181

Computing and Networking (MobiCom), pages 32–43, Boston, Massachusetts,

USA, August 2000.

[69] L. Ramaswamy and L. Liu. An expiration-age based document placement scheme

for cooperative web caching. IEEE Transactions on Knowledge and Data Engi-

neering (TKDE), 16(5):585–600, May 2004.

[70] R. Rivest. The MD5 Message-Digest Algorithm. Network Working Group

RFC1321, April 1992.

[71] K. W. Ross. Hash routing for collections of shared web caches. IEEE Network

Magazine, 11(6):37–44, November/December 1997.

[72] A. Rousskov and D. Wessels. Cache digests. Computer Networks and ISDN

Systems, 30(22-23):2155–2168, November 1998.

[73] F. Sailhan and V. Issarny. Cooperative caching in ad hoc networks. In Proceedings

of the 4th International Conference on Mobile Data Management (MDM), pages

13–28, Melbourne, Australia, January 2003.

[74] P. Sarkar and J. H. Hartman. Hint-based cooperative caching. ACM Transactions

on Computer Systems (TOCS), 18(4):387–419, November 2000.

[75] H. Schwetman. User’s Guide CSIM19 Simulation Engine (C++ Version).

Mesquite Software Inc.

[76] R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms.

Addison-Wesley, 1996.

[77] H. Shen, S. K. Das, M. Kumar, and Z. Wang. Cooperative caching with optimal

radius in hybrid wireless network. In Proceedings of the 3rd International IFIP-

TC6 Networking Conference, pages 841–853, Athens, Greece, May 2004.

REFERENCES 182

[78] K. Stathatos, N. Roussopoulos, and J. S. Baras. Adaptive data broadcast in

hybrid networks. In Proceedings of the 23rd International Conference Very Large

Data Bases (VLDB), pages 326–335, Athens, Greece, August 1997.

[79] R. Stewart and Q. Xie. Stream Control Transmission Protocol (SCTP): a refer-

ence guide. Addison-Wesley Publishing Company, Boston, 2001.

[80] Q. Sun and H. Garcia-Molina:. Slic: A selfish link-based incentive mechanism for

unstructured peer-to-peer networks. In Proceedings of the 24th IEEE Interna-

tional Conference on Distributed Computing Systems (ICDCS), pages 506–515,

Hachioji, Tokyo, Japan, March 2004.

[81] D. G. Thaler and C. V. Ravishankar. Using name-based mappings to increase

hit rates. IEEE/ACM Transactions on Networking (TON), 6(1):1–14, February

1998.

[82] V. Valloppillil and K. W. Ross. Cache Array Routing Protocol (CARP) v1.1.

Internet Draft, draft-vinod-carp-v1-03.txt, February 1998.

[83] G. Voelker, E. Anderson, T. Kimbrel, M. Feeley, J. Chase, A. Karlin, and H. Levy.

Implementing cooperative prefetching and caching in a globally-managed mem-

ory system. In Proceedings of the ACM SIGMETRICS International Conference

on Measuring and Modeling of Computer Systems, pages 33–43, Madison, Wis-

consin, USA, June 1998.

[84] G. M. Voelker, H. A. Jamrozik, M. K. Vernon, H. M. Levy, and E. D. Lazowska.

Managing server load in global memory systems. In Proceedings of the ACM SIG-

METRICS International Conference on Measuring and Modeling of Computer

Systems, pages 127–138, Seattle, Washington, USA, June 1997.

REFERENCES 183

[85] K. H. Wang and B. Li. Efficient and guaranteed service coverage in partitionable

mobile ad-hoc networks. In Proceedings of the 21st Annual Joint Conference of

the IEEE Computer and Communications Societies (INFOCOM), pages 1089–

1098, New York, USA, June 2002.

[86] D. Wessels and K. Claffy. ICP and the Squid web cache. IEEE Journal on

Selected Areas in Communications (JSAC), 16(3):345–357, April 1996.

[87] D. Wessels and K. Claffy. Internet Cache Protocol (ICP) (Version 2) Application

Specification. Network Working Group RFC2187, September 1997.

[88] D. Wessels and K. Claffy. Internet Cache Protocol (ICP) (Version 2) Specifica-

tion. Network Working Group RFC2186, September 1997.

[89] J. Wong. Broadcast delivery. Proceedings of the IEEE, 76(12):1566–1577, De-

cember 1988.

[90] J. Xu, B. Zheng, M. Zhu, and D. L. Lee. Research challenges in information

access and dissemination in a mobile environment. In Proceedings of the Pan-

Yellow-Sea International Workshop on Information Technologies for Network

Era (PYIWIT), pages 1–8, Saga, Japan, March 2002.

[91] L. Yin and G. Cao. Supporting cooperative caching in ad hoc networks. In

Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM), pages 2537–2547, Hong Kong, March

2004.

[92] G. K. Zipf. Human Behavior and the Principle of Least Effort. Addison-Wesley,

1949.

	theses_copyright_undertaking
	b18181107

