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Abstract

Block-based motion estimation is widely used for exploiting temporal
redundancies in arbitrarily shaped video objects, which is computationally the most
demanding part within the MPEG-4 standard. One of the main differences of MPEG-4
video in comparison to previously standardized video coding schemes is the support of
arbitrarily shaped video objects for which the numerous existing fast motion estimation
algorithms are not suitable. The conventional fast motion estimation algorithm works
well for the opaque macroblocks. This is not the case for boundary macroblocks which
contain a large number of local minima on their error surfaces. In view of this, we
propose a fast search algorithm which incorporates the binary alpha-plane to accurately
predict the motion vectors of boundary macroblocks. Besides, these accurate motion
vectors can be used to develop a novel priority search algorithm which is an efficient
search strategy for the remaining opague macroblocks. Experimental results show that
our approach requires simple computational complexity, and it gives a significant
improvement in accuracy on motion-compensated video object planes as compared with
conventional algorithms, such as the diamond search. Numerically, a speed-up of about
27 times as compared with the full search algorithm is obtained in our tested VOs.

Although many fast search agorithms can achieve low computationa load and
acceptable encoding quality requirement, it is always desirable to look for identical
searching results as compared with that of the conventional full search algorithm. For
instance, high quality digital video product and object tracking applications need to
estimate motion activities accurately. To develop a fast full search agorithm, we have
made use of our observation that pixel matching errors with similar magnitudes tend to

appear in clusters for natural video sequences on average. Subsequently an adaptive



partial distortion search agorithm has been proposed. The algorithm significantly
improves the computation efficiency of the original partial distortion search. In terms of
the number of operations, our experimental results show that the computational
efficiency of the algorithm outperforms other algorithms. The algorithm can have a
speed-up of 3 to 9 as compared with the Full Search Algorithm (FSA). In terms of real-
time measurement, our algorithm can speed up the search for about 3.38 times as
compared to the FSA on average, which is again better than other tested algorithms
including Successive Elimination Algorithm for encoding sequences with high motion
activities and arbitrarily shaped video objects.

Discrete Cosine Transform (DCT) is widely used in modern video compression
standards including the ISO MPEG-4, to achieve high compression efficiency. The
DCT domain scheme works very well for intraframe coding. On the other hand, block-
based compensation typically results in a peaky distribution of errors. It leads to a
scattering of DCT coefficients and makes the DCT coding inefficient. This disadvantage
motivates us to study the spatia distribution of prediction errors resulting from either
the full-search motion estimation or other fast search agorithms. As a result, we
propose a Mixed Spatial-DCT-based Coding Scheme to code the prediction errors. The
scheme divides prediction errors in a block into two components. One component is
coded in the spatial domain with the arithmetic coding technique while the other is
coded with the traditional DCT method. The coding scheme can improve the rate-
distortion performance of the traditional DCT-based coding for high quality video
applications. The proposed scheme is especially suitable for arbitrary shaped video
objects and, video sequences which contain moderate to high motion activities.

In order to find a possible optimal coding system, a signal-source model has been
used, which hopefully can be sufficiently accurate enough to reflect the characteristics

of practical signals. The first-order Markov process has been found to be a successful



model for intraframe coding. However, for motion-compensated error signas, the
situation is very different. It has been observed that the motion compensation prediction
(MCP) errors are space-dependent and the assumption of wide-sense stationary (WSS)
isnot valid. As aresult, it isinaccurate to employ a ssimple Markov model for the MCP
errors. Hence, we have studied a covariance model analyticaly from the first order
Markov model by making use of the space-dependent characteristics. Consequently, we
derive an approximated and separable autocorrelation model for the block based motion
compensation difference signal. Experimental results show that the proposed model
reflects the autocorrelation characteristics of practical prediction errors accurately.
Furthermore, this model can provide some very useful insights for an analytical design
of the coding system and make possible the investigation of various video signa

decomposition algorithms. Thisisafruitful direction of further research.
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Statements of Originality

The following contributions reported in this thesis are claimed to be original.

1

A new search technique is introduced for the motion estimation of boundary
macroblocks (MBs) of an MPEG-4 arbitrarily shaped video object (VO). We
incorporate the shape information provided in a binary alpha-plane of the VO to
predict accurately the motion vectors of boundary MBs. Furthermore, these
motion vectors can be used to assist the estimation of the remaining opaque MBs

of the VO. More details can be found in section 3.3.

A new priority search algorithm (PSA) is introduced for the motion estimation of
a VO. In this algorithm, we recognize that motion activities in opaque MBs are
highly correlated with the neighboring boundary MBs. Hence, we perform motion
estimation on all boundary MBs first in contrast to the conventional raster-
scanning approach. Experimental results show that this strategy works well if the
motion vectors in the boundary MBs truly represent the moving video object.
After all motion vectors of the boundary MBs are found, we compute a motion
vector for each opague MB by taking the best-matched one among all of its
neighboring motion vectors and the zero motion vector (0,0) as the initial centre.
A conventional fast block matching algorithm is then employed. On average, the
proposed algorithm can speed up the motion estimation process by about 23 times
in terms of the total number of operations when compared to the Full Search

Algorithm (FSA). More details can be found in section 3.4 and 3.5.

Vil



We have found that on average, pixel matching errors with similar magnitudes
tend to appear in clusters for natural video sequences during the motion
estimation. It is different from the past study in the literature, in which most, if
not al, researchers made an assumption that pixels with larger gradient
magnitudes have larger matching errors on average. More details can be found in

section 4.2.

We have made use of the observed clustering characteristic to introduce an
adaptive Partial Distortion Search (PDS) for the motion estimation of both
boundary MBs and opaque MBs in a VO. The clustering characteristic leads us
to construct an adaptive index set, and thus a pixel with greater matching error
can be firstly computed, and this error is accumulated to the Sum of Absolute
Difference (SAD) earlier than other pixels. As a result, the SAD calculation can
be terminated sooner. We have analytically found that both mean of pixel values
in atarget MB and mean of pixel valuesin a candidate MB are good references to
predict the magnitude of each pixel matching error in the target MB. In the study,
we have proved that the mean of pixel vaues in the initial candidate MB at the
centre of a search window is the best candidate to explore the clustering
characteristic. Hence, it is used to calculate a reference value and to construct the
adaptive index set. Our experimental results show that the proposed adaptive PDS
can have a speed-up of 3 to 9 as compared with the FSA. More details can be

found in section 4.3 and 4.4.

Another row-based adaptive PDS is developed in order to remedy the non-
uniform memory access problem. We have modified the original adaptive PDS

algorithm into arow-based agorithm, in which arow of 4 consecutive pixels with

viii



larger prediction errors is accumulated to a partial SAD sooner than other rows.
Experimental results show that the row-based adaptive PDS outperforms al other
tested algorithms for encoding sequences with high motion activities and

arbitrarily shaped video objects. More details can be found in section 4.3 and 4.4.

A New Coding scheme for coding Motion Prediction Error Frames of Video
Objects and Frames is proposed. In this algorithm, we make use of the
phenomenon that pixel matching errors in some MBs tend to appear together in a
cluster form. The algorithm divides a prediction error MB into two components.
Each component is characterized by its own spatial correlation. One component is
then coded by using the context-based arithmetic encoding (CAE) and variable
length coding techniques (VLC), and the second component is coded by using the
traditional DCT-based method. Our experimental results show that the algorithm
successfully improves the coding efficiency of the traditional DCT-based coding
for MBs with clustered prediction errors. More details can be found in section 5.2

and 5.3.

An approximated separable autocorrelation model for the block based motion
compensation frame difference (MCFD) signal has aso been derived. In this
study, we have made use of the first order Markov model to derive the
approximated autocorrelation model. The major assumption we made in the
derivation is that a net deformation of pixelsisdirectional in genera rather than a
uniform error distribution in a block. Simulation results show that, the derived
model can describe the statistical characteristics of the MCFD signals accurately.

The model proves that the concern of imperfect block-based motion



compensation is an important step to study the motion-compensated coder; and

thus the autocorrel ation function of the MCFD signals can be expressed correctly.
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Chapter 1. Introduction

With the development of communication and information processing technologies,
the demand for efficient transmission and storage of a video signal for many
applications and services has increased rapidly. From simple calculation, we know that
a large amount of bits is required for video signal. For example suppose the a video
sequence is digitized as discrete arrays with 640 pixels per raster line and 480 lines per
frame, which is a resolution very typical in real situation. Assuming each pixel consists
of three color components (i.e. the three primaries, red, green, and blue) for each frame.
And each color component for a pixel is sampled with 8-bit precision. The storage
capacity of each frame requires approximately 340KBytes. If this video sequence is
transmitted at 24 frames/second without compression, the raw data rate for the video
signal is about 170 Mbit/s. Hence, the need to find an efficient compression and coding

technique urge on the people to develop some video compression standards.

1.1 History and Development Video Coding Standards

1.1.1 H.261

Digital compression standards for video conferencing were developed in the
1980s by the International Telegraph and Telephone Consultative Committee (CCITT),
which is now known as the ITU Telecommunications Standardization Sector (ITU-T).
The ITU-T is a permanent organ of the International Telecommunications Union (1TU)
and is responsible for studying technical and operating questions and issuing
Recommendations with a view to standardizing worldwide telecommunications. The

ITU-T was formed from the CCITT as part of the ITU reorganization in 1993. In early



1991, the CCITT finalized a set of coding standards known as H.320 or sometimes
Px64 to indicate that it operates at multiple of 64 kbits/s. The video coding part is called
H.261 [1]. This standard targeted to code pictures at a Common Intermediate Format
(CIF) 352x288 pixels. A lower resolution called Quarter CIF (QCIF) with picture size
176x144 pixels is supported for sending videotelephone or videoconference pictures on
integrated services digital network (ISDN) facilities.

It is the first widespread practical successful video standard. It was also the first
standard using the basic video coding structure that many current standards still keep
using. For instance, H.261 has aready utilized 16x16 MB for motion compensation.
Moreover, 8x8 block-based DCT, scalar quantization and two-dimensional run-level

variable length entropy coding have been employed in H.261.

1.1.2 MPEG-1

In 1988, a working group in charge of the development of standards for coded
representation of digital audio and video, was established. The group is named as
Moving Picture Experts Group (MPEG). The MPEG working group is formed under the
auspices of the International Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC). In this year, the working group
started the moving picture standardization process with a strong emphasis on real-time
decoding of compressed data stored on digital storage devices such as CD-ROMs. Their
first standardization product is the ISO/IEC 11172. This international standard is the
MPEG-1 and its second part, ISO/IEC 11172-2 [2], is the well-known MPEG-1 video.
The ISO/IEC 11172 is officidly entitled “Information technology — Coding of moving
pictures and associated audio for digital storage media up to 1.5Mbit/s’. Asindicated by
the title, MPEG-1 is concerned with coding of digital audio and digital video. And

because of the primarily target bit rates is set around 1.5 Mbit/s, it is particular suitable



for storage media applications such as CD-ROM retrieval. Consequently, it is awidely
successfully video codec capable of approximately VHS videotape quality are better at
about 1.5 Mbit/s and covering a bit rate range of about 1-2 Mbit/s. The MPEG-1 video
(I1SO 11172-2) was finally approved in 1993.

In terms of technical features, it added bi-directionally predicted frames, half-
pixel motion compensation and including the H.261 compression techniques. In fact,
half-pixel motion had been proposed during the development of H.261, but it was
apparently thought to be too complex at the time. When comparing to the H.261,
MPEG-1 provides superior quality than H.261 when operated at higher bit rates. On the
other hand, H.261 performs better at bitrates below 1 Mbit/s, as MPEG-1 was not

designed to be capable of operation in this range.

1.1.3 MPEG-2

In the moment of the technical development of MPEG-1 was nearly complete, the
MPEG working group started another new project to target higher bits rates and better
quality for applications such as broadcast TV in 1992. That is the MPEG-2 and formally
referred to as ISO/IEC 13818. MPEG-2 is aimed at more diverse applications such as
television broadcasting, digital high-definition TV (HDTV), and communication. Some
of the possible applications listed in the MPEG-2 video standard (1SO/IEC 13818-2 /
ITU-T H.262) [3] are: broadcast satellite service (BSS) to the home; cable TV (CATV)
distribution on optical and copper wire networks; interactive storage media (ISM) such
as optical disks; interpersonal communications (IPC) such as videoconferencing and
videophone; etc. MPEG-2 offers little benefit over MPEG-1 for programming material
that was initially recorded on film. One difference between MPEG-2 and MPEG-1 isthe
MPEG-2 provides a more efficient method to code interlaced video signals. MPEG-2

video syntax was frozen in April 1993. Two years later, in 1995, the three primary



documents (systems, video, audio) that comprise the MPEG-2 standard finally reached
international standard status.

MPEG-1 video was intended only for progressive video pictures but not interlaced
format. MPEG-2 is not only limited to focus on interlaced video coding. It was designed
to encompass MPEG-1 and to also provide high quality at much higher bit rates with
interlaced video sources, such as the initially recorded programming material on film.
Although usually thought of as an ISO/IEC standard, MPEG-2 video was developed as
an official joint project of both the ISO/IEC and ITU-T organizations. Its primary new
technical features are efficient handling of interlaced-scan pictures. It adds the support
of hierarchical bit-usage scalability, such as spatial scalability, temporal scaability,
SNR scalability and data partitioning. Its target bit-range was approximately 4-30

Mbit/s.

1.1.4 H.263 and H.263+

H.263 (version 1) [4] is the first codec designed specially to handle very low-bit-
rate video. It consists of different video compress techniques that are more advance
when comparing to the MPEG-2 video. H.263 is the most dominant standards for
practical video telecommunication nowadays. The ITU-T is responsible for the
standardization process of H.263 (version 1) and the H.263 was approved in early 1996
(with technical content completed in 1995). The original target bit-range of H.263 was
about 10-30 Khit/s, but this was broadened during development to perhaps at least 10-
2048 Khit/s as it become apparent that it could be superior to H.261 at any bitrate.

The significant coding improvement by H.263 is due to severa new technical
features. They were 8x8 block-size motion compensation, overlapped block motion
compensation, allowing motion vectors pointing outside of a frame (unrestricted motion

compensation), three-dimensional run-level-last variable-length coding, median motion



vector prediction for differential coding, and more efficient header information
signaling. Comparing to H.261, H.263 also includes arithmetic coding, half-pixel
motion compensation, and bi-directional prediction. Note that these techniques were
previously employed in different international standard but not firstly find in H.263. At
very low bitrate, such as below 30 Kbit/s, H.263 can code with the same quality as
H.261 using half or less than half the bitrate. At bit rates above 80 Kbit/s, it can provide
amore moderate degree of performance superiority over H.261.

H.263 (the second version) [4] is officially known as H.263+. The H.263+ project
added a number of new optional features to H.263. It extends the effective bitrate range
of H.263 to essentially any bitrate and support both progressive and interlaced picture
formats and any frame rates. H.263+ is targeted to outperform any existing standards
over this entire range. In order to support telecommunication in error prone
environments, the H.263+ is the first video coding standard that offers a high degree of
error resilience for wireless or packet-based transport networks. H.263+ also added a
number of improvements in compression efficiency, which is custom and flexible video
formats and scalability supporting. The ITU-T approved H.263+ in early of 1998 (with

technical content completed in September 1997).

1.1.5 MPEG-4

After the successful development and achievement of the MPEG-1 and MPEG-2,
the MPEG working group initiated the standardization phase of MPEG-4 in 1994.
MPEG-4, with formal as ISO/IEC designation “ISO/IEC 14496" was finalized in
October 1998. In early 1999, MPEG-4 became an international standard. The fully
backward compatible extensions under the title of MPEG-4 Version 2 were frozen at the

end of 1999, to acquire the formal International Standard Status early in 2000.



Originally, the objective of the MPEG-4 was to develop advanced coding for very
low bit-rates (below 64 kbit/s) applications. However, In July 1994 its target was
expanded to coding of a scene as a collection of individual Audio-Visual-Object (AVO)
and to provide a set of tools for these AVOs, so as to fulfill the requirements of future
interactive multimedia applications and services. In order to provide the solutions for
these objectives, a set of “tools’ and “algorithms’ for audio-visual data have been being
developed in the MPEG-4 project. Consequently, it will provide significantly superior
compression performance and new object-oriented capabilities for artificially generated
scene sSituations. A user can access arbitrarily shaped objects in the scene and
manipulate these AVOs in client side terminal. In the future, the MPEG-4 standard
should provide the features including universal accessibility and robustness in extremely
error prone environments, new interactive functionalities for users when presenting
audio-visual material; hybrid coding of natural and synthetic AVOs,; increased
compression efficiency compared to previously standardized methods; the possibility of
“downloading” decoder tools; integration of real-time applications and non-real-time
(stored) applications.

MPEG-4 visual which is officialy named as ISO/IEC 14496-2 [5] will includes
most technical features of the prior video and still-picture coding standards and will also
include a number of new coding features such as, shape coding of segmented objects
with context-based arithmetic coding, shape-adaptive DCT and padding techniques for
arbitrarily shaped texture coding. Hence, it can achieve efficient coding of hybrids of
synthetic and natural video-content. In addition, it uses wavelet coding of still pictures,
global motion compensation and sprite generation to increase compression efficiency.
Reversible variable length coding is applied for robust video coding in error prone
environments. It also extends half-pixel motion compensation to quarter-pixel accuracy

by using wiener filter for interpolation. MPEG-4 aims to cover essentialy al bitrate



ranges, picture formats and frame rates, including both interlaced and progressive-scan
video pictures. In generally speaking, it employs similar techniques of H.263 for
predictive coding of normal camera-view video content for non-interlaced video and

utilizes MPEG-2 approaches for interlaced sources.

1.1.6 H.264

In early 1998, a “long-term” effort proposed by the Video Coding Experts Group
(VCEG) to develop a new standard for low bitrate visual communications. The proposal
led to the draft “H.26L" standard, which targeted to double the coding efficiency in
comparison to any other existing video coding standards for a broad variety of
applications. The VCEG working group adopted a first draft design for that new
standard in October 1999. In December 2001, VCEG and the Moving Picture Experts
Group (MPEG) formed a Joint Video Team (JVT) to finalize the draft of this new video
coding standard. In March 2003, it was approved by ITU-T as Recommendation H.264
and by ISO/IEC as International Standard 14496-10 (MPEG-4 part 10) Advanced Video
Coding (AVC) [6]. It is often abbreviated as H.264/AVC.

In terms of technical features, it employs, generalizes and improves the prediction
techniques in previous standards. It supports flexible selection of block sizes down to
4x4 pixels for motion compensation. Similar to the MPEG-4 visual, it alows motion
vector with quarter-pixel accuracy, but reduces the complexity of interpolation filter
from 8 taps to 6 taps. Furthermore, it enable efficient coding by allowing selection of
reference frames among a larger number of pictures that have been decoded and stored
in the decoder for motion compensation purposes. Improved skip-mode and direct-mode
in prior standards are aso included, which obtain better coding performance for video
with global motion contents and bidirectionally predictive frames respectively. Some

previous standards alow prediction coding for intra-coded blocks. H.264/AVC,



however, carries out the prediction in spatial domain. It also makes use of loop-
deblocking filter to improve both objective and subjective quality for motion
compensation. In addition to the above progresses, some significant improvements of
the DCT transform are found in this new standard, which includes 4x4 block size
transform and adaptive block-size transform. Because of the improved transforms,
H.264/AVC is the first standard to realize exact-match of inverse transform in all
decoders. Furthermore, two advanced entropy coding methods using arithmetic coding

areincluded in H.264/AVC [7].

1.2 Literature Review

The developments of these video compression standards have spanned more than
two decades and built upon a large number of experimental works and in depth
theoretical studies. The huge successes were results of dedication by hundreds of
researchers and engineers from all over the world.

Motion compensation is one key technique to attain the effectiveness of most
video coding standards. Different motion representations have been widely investigated
in the research. Jain and Jain [8] studied interframe Hybrid Coding involving block-
based motion compensation, in which block size is fixed. The major advantages of the
block-based motion model are its effective prediction for trangational motion and lesser
hardware complexity. Fixed block size model suffers the problem of inaccurate
matching for complex motions. The natural variation is variable block size techniques
[9-11], such that blocks with smaller size will compensate complex motions. Peter
Strobach [9], Li, Lin and Wu [10], and Sullivan and Baker [11] used quadtree structure
to represent the variable block size model for compression improvement. Instead of
using rectangular block-based representation, Mahmoud and Bayoumi [12] suggested to
partition a frame into equilateral triangle blocks. The division is represented by a
quadtree structure. A scene often contains foreground objects with complex action and a
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relative static background. Supporting interactive application in MPEG-4 is due to its
exploitation of object-oriented model. Musmann, Hotter and Ostermann [13] proposed a
description of objects by means of motion, shape and color of the objects. The Object-
oriented approaches for motion compensation can be classified into three main
categories. The first category describes the objects in terms of segmented region similar
to the method proposed by Y okoyama, Miyamoto and Ohta [14]. The second category
applies the parametric model for object motion description. For instance, both [15,16,17]
use spatial transform to represent spatial distortion between two successive frames.
Nakaya and Harashima [15] studied the use of affine transform, bilinear transform and
perspective transform involving triangular grids motion compensation. The
corresponding performance is evaluated theoretically and experimentally. Ghanbari,
Faria, Goh and Tan, [16] investigated the compensation of block-based distortion by
using bilinear transform and bilinear interpolation. Tekalp, Altunbasak, and Bozdagi [17]
showed that a triangular mesh model with affine or perspective transform can capture
amost all capabilities of 3-dimensional (3-D) object-based model. The major drawback
of this category is the problem in mismatching of the model with complex motion. The
third category [18,19] makes use of dense motion field to overcome this difficulty. A
dense motion field employs at least one motion vector per pixel to provide improved
motion compensation such as the works of Stiller [18] and Han and Podilchuk [19].

A proper theoretical treatment of motion-compensated video coding is valuable
for the design of state-of-the-art video codecs, even though it requires many
assumptions and simplifications for the analysis of a complicated system processing
real-world signals. In 1987, Girod [20] presented the first comprehensive rate-distortion
analysis of motion-compensated prediction (MCP). This theoretical framework leads
motion-compensated video coding away from heuristics and toward an engineering

science. Girod [21] presented a theoretical analysis of multi-hypothesis motion-



compensated prediction for hybrid video coders. When more than one prediction values
are weighted to generate a pixel value, the approach is generally defined as muilti-
hypothesis technique. The bidirectionally prediction frame is a kind of the multi-
hypothesis prediction. MPEG-4 employs Wiener filter interpolation to extend the half-
pixel motion compensation to quarter-pixel accuracy [22]. Quantitative analysis about
the dedication of factional-pixel accuracy for coding performance was given by Girod in
[23]. He studied the effect of fractiona-pixel accuracy on the efficiency of motion-
compensation by using various spatial predictions and interpolation filters and found
that quarter-pixel accuracy is suitable enough for typical broadcast TV signals.
Overlapped block motion compensation (OBMC) is another kind of multi-hypothesis
technique employed in the modern video standards. The propose of OBMC proposed by
Nogaki and Ohta [24] is originally to remove blocking artifacts of motion prediction
error. Orchard and Sullivan [25] presented an approach that combines an optimized
overlapping window design technique with optimized motion estimation. They also
studied the influence of two shapes of the window support to their motion estimation,
which involved a diamond shaped support and a square of 32x32 pixel support. Tao and
Orchard [26] statistically modeled the motion field, the field of motion estimation and
their relationship for formulating a parametric solution of an optimal OBMC window.
In 2002, Zheng et a. [27] investigated thoroughly the theoretical aspects of OBMC by
applying a statistical motion distribution model. Moreover, he used the statistical model
to interpret the space-dependent characteristics of motion-compensated frame
differences.

MPEG-4 introduces the concept of Video Objects (VOs) to support access of
individual semantic objects in visual contents. A tempora instance of a VO is
represented by its texture value and shape information [28]. In natural scenes, VOPs are

obtained by semi-automatic or automatic segmentation. The MPEG-4 visua has
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suggested a framework of segmentation for VOP generation. The framework ams at an
appropriate combination of tempora and spatial segmentation strategies. Two kinds of
algorithm for temporal segmentation are used in the framework. The first one is
temporal segmentation based on change detection, which is proposed by Mech and
Wollborn [29]. For this algorithm, Aach, Kaup and Mester [30] smooth the boundaries
of changed image areas by a relaxation technique using local adaptive thresholds. The
second temporal segmentation algorithm is based on higher order moments and motion
tracking. Neri, Colonnese and Russo [31] produce a segmentation map of each frame of
a sequence by processing a group of frames, which involves higher order Statistics. The
framework uses watershed algorithm for the spatial segmentation. Salembier and Pardas,
[32] had smplified the images for easier processing, before calculating the spatial
gradient of an image. Both of the image simplification and spatial gradient calculation
make use of morphological operators. The spatial gradients were used by Vincent and
Soille [33] as an input of a watershed algorithm to partition an image into homogeneous
intensity regions. The European-Algorithmic Group COST211 proposes another
platform for video object segmentation. The Group COST211 is a forum and research
network on video analysis. During their 5th framework, this forum has focused on video
segmentation based on a test model, called COST 211 Analysis Model (AM) [34]. The
COST 211 meeting in October 1996 witnessed the definition of the 1st AM, which
consists of a full description of tools and algorithms for automatic and semiautomatic
image sequence segmentation, object detection, extraction and tracking. In image
segmentation problem, Active contour models, or snakes proposed by Kass, Witkin, and
Terzopoulos [35], have also been extensively studied and applied for video
segmentation in the past decade. Gastaud and Barlaud, [36] proposed a video
segmentation using active contours on a group of frames, which was robust to light

variations, noise and camera motion, etc. Sun, Haynor and Kim, [37] recommended a
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new class of active contour approaches and named it as Vsnakes. The VSnakes
algorithm defines a differential contour energy, which reflects the difference between
successive contours.

MPEG-4 needs to code shape information of a segmented object for purposes of
interactive applications. Within MPEG-4, two different categories of shape coding
algorithms have been evaluated. The first one is contour-base shape coding [38-43].
Y amaguchi, Ida and Watanabe, [38] modified the normal MMR for arbitrarily shaped
coding. The full name of MMR is “Modified Modified Read”, which is the standard
method for the G4 facsimile compression. Lee et al. [39] described the contour of a
binary shape by tracing a 1-dimensiona baseline and turning points. Ma, Chen and
Cheng proposed a selection scheme [40], which could reduce the turning point of the
boundary for lossless coding. Hwang, Wang and Wang [41] made use of a differential
chain coding technique for shape coding. While Zaetelj and Tasi¢, [42] approximated
an object shape with cubic B-splines technique. The second category is bitmap-based
approach [44-48], such as the Context-based Arithmetic Encoding (CAE) that adopted
by MPEG-4. Bossen, and Ebrahimi, and Brady, Bossen, and Murphy [44, 45] proposed
a shape coding technique based on the JBIG algorithm in both lossless and lossy modes.
The Joint Bi-level Image experts Group (JBIG) is a group of experts who work for
standardization of bi-level image coding. Instead of using CAE technique, Chen, Hsieh
and Wang [47] studied the utilization of quadtree-based decomposition to obtain a shape
representation at different resolution levels. Furthermore, Liu, Shieh and Lee, [48]
presented their study about the efficiency of hardware architecture for binary shape
coding. In the reference [46, 49], Ostermann and, Katsaggelos, Kondi, Meier and
Schuster, introduced the above techniques developed for shape coding within MPEG-4
standardization effort and compared their performance in terms of rate-distortion,

computational complexity and scalability. Note that, the CAE can aso involve in rate-
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control algorithm by using lossy coding and efficient entropy coding. Marpe,
Blattermann, Heising, and Wiegand [50] developed a context model for efficient
prediction of the coding symbols, in which this approach has been integrated into the
ITU-T H.26L test model. On the other hand, Lee, Cho, and Eleftheriadis [51]
formulated a buffer-constrained adaptive quantization problem for shape coding, and
then proposed an algorithm for the optimal solution under buffer constraints.

MPEG-4 extends the conventional block-based techniques for object-based
coding. Especialy for boundary regions (boundary macroblock) of an arbitrarily shaped
object, a wide variety of techniques have been studied to improve these conventional
techniques. Chen, Gu and Lee [52] proposed two padding technique, which is the
repetitive and morphological padding, for motion compensation of the object’s
boundary macroblock (MB). Edirisnghe, Jiang and Grecos [53] make use of variation
trend of boundary pixels to develop another padding technique for motion compensation.
Chen and Liu, [54] suggested motion estimation of the boundary MB in transform
domain, such that padding processes will be prevented. In addition, padding of the
boundary MB is also necessary for intraimode coding. Kaup [55, 56] employed a low-
pass padding technique to handle the discontinuity problem at an object boundary.
Hence, traditional block-based DCT can be utilized directly. Shen, Zeng, and Liou [57]
developed a new padding technique that guarantees the number of nonzero transformed
coefficient after traditional DCT be equal to the number of opague pixels in a boundary
MB. Other researchers focused on designs of non-block-based transforms. In 1989,
Gilge, Engelhardt and Mehlan, [58] used an orthogonalization schemes to obtain a set of
basis functions which is orthogonal with respect to the shape of the segmented object,
thus shape adaptive transform can be realized. Afterward, a lot of researchers [59-63]
studied and improved a shape-adaptive DCT algorithm (SA-DCT). Sikora and Makai

[59] was the group who developed the SA-DCT, in which the SA-DCT involves a
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predefined orthogonal sets of DCT basis function. Shishikui and Sakaida [64] proposed
a Region Support DCT (RS-DCT). The major features of the transform are that it is
designed based on conventional 2-DCT but the basis is not orthogonal, so that an
iteration processes was suggested. Another specia algorithm used to enhance the
traditional DCT for boundary MB was investigated by Moon, Kweon and Kim [65].
This algorithm merges two boundary blocks together before the block-based DCT,
which is called Boundary Block-Merging technique (BBM).

The simplest block matching motion estimation algorithm is the full search
algorithm (FSA). The FSA exhaustively compares a matching criterion [66-72] between
the target MB and every candidate MOBs in a searching window, W. Hence, it can give
the optimum solution. However, heavy computational load is its mgor disadvantage.
Consequently, it attracts a lot of researchers to investigate different fast approaches.
These fast search agorithms can be classified into six categories. 1) The fast search
algorithms in this category seek for away to select a subset of the candidate MB in W to
reduce the computational time [8, 69, 73-86]. A lot of famous agorithms belong to this
group, such as the 2D-L ogarithmic Search by Jain and Jain [8], Three-Step Search (TTS)
by Koga et a. [73], Genetic Search Algorithm by Chow and Liou [77], Diamond Search
by Tham, Ranganath, Ranganath and Kassim [81], Four-Step Search by Po and Ma[82],
and Motion Vector Field Adaptive Fast Maotion Estimation by Hosur and Ma, [85], etc.
2) The agorithms [73, 89-98] in the second category use a reduced complexity
distortion measure to save computation. For instance, Koga et a. [73] and Chan and Siu
[90] used pixel decimation for speed up purpose; the partial distortion search adopted in
H.263 test model [92] and adaptive PDS by Kim and Choi, [96]; Winner-Update
Strategy by Chen, Hung and Fuh [98] are all fall in this category. 3). The third category
[99-103] make use of mathematical inequalities to reduce the computational load. The

most representative one may be the Successive Elimination Algorithm (SEA) suggested
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by Li and Salari [99]. 4) Chan and Siu [104, 105], and Tao and Orchard [106] studied
the employing of different image features to reduce computational burden in motion
estimation, and the edges are the feature that they have investigated. This feature based
techniques are the fourth category. 5) A performance analysis of MPEG-4 codec [107]
showed that motion estimation will remain as a computationally intensive step in object-
based coding. The fifth category focused on devel oping object based motion estimation,
such as the study by Panusopane and Chen, [108]. 6) The emerging of H.264/AVC aso
directs the study of motion estimation into another direction, such as Wiegand, Zhang,
Girod, Lincoln and Steinbach [109-111] investigated long-term memory motion-
Compensated prediction in depth.

Transform coding scheme has proven to be an effective technique for image
compression and video coding. In terms of compression efficiency, the objective of a
transform is to decorrelate the original signal, and this decorrelation generally resultsin
the signal energy being redistributed among only a small set of transform coefficients.
The most efficient transform that can maximize energy packing capability is the
Karhunen-Loeve Transform (KLT) [112]. Unfortunately, the KLT basis functions are
source-dependent. The Discrete Cosine Transform (DCT) is the one widely used in the
modern video standards, because it is shown that for the case of the first-order Markov
source, the DCT is asymptotically equivalent to KL T as the adjacent element correlation
coefficient tends to unity [112, 113]. However, after the motion compensation, Kaneko,
Hatori and Koike [114] claimed that the correlation between adjacent prediction errors
are far from unity and in fact ranges from 0.3 to 0.5. To study suitability of the original
DCT for the prediction errors, Chen and Pang [115] proposed a compound covariance
model for motion-compensated frame differences and demonstrated that DCT performs
nearly optimally. In 1999, Niehsen and Briinig, [116] found that means and standard

deviations may change significantly from block to block and another compound
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covariance model that closely fits the empirical covariance sequence was introduced. By
using the this model, they again confirmed that DCT is still suitable for video coding

when only asingle transform is supported in a codec.

1.3 Organization of the thesis

Therest of the thesisis organized as follows. In Chapter 2 we make a brief review
on the modern video coding techniques, which including block-based motion
compensation, arbitrary shaped object coding, block-based motion estimation and
transform coding technique theory.

In chapter 3, we investigate a new priority search algorithm (PSA) for motion
estimation of arbitrarily shaped object in MPEG-4 by studying the characteristics of
different types of macroblocks in the bounding box of aVVOP.

In chapter 4, we explain and illustrate the characteristics of the pixel errors that
tend to form clusters. We apply these characteristics to develop a new clustered pixel
matching error for adaptive partial distortion search algorithm (CPME-PDS). Moreover,
we establish an analysis to determine an adaptive index set required for the CPME-PDS.

In chapter 5, we illustrate and discuss the observation of spatial characteristics of
the motion compensated prediction errors. Making use of our observations, we develop
anew Mixed Spatial-DCT-based Coding Scheme (MSDCS).

Chapter 6 presents the derivation of a mathematical model for autocorrelation of
block-based motion prediction error. We use a variety of simulation results to compare
our model with others.

We give the conclusion of our work in Chapter 7, where some suggestions for

further development can also be found.
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Chapter 2. Technical Review

2.1 Modern video coding standard review

The modern video coding standards including H.263 [4], MPEG-1 [2], MPEG-2
[3], and MPEG-4 [5], achieve high compression performance for different applications
by exploiting the spatial and temporal redundancies remaining in video sequences.
These video standards exploited the redundancies by using several common
compression techniques. Figure 2-1 depicts a simplified block diagram of an hybrid
video encoder and decoder, which shows some common functional blocks of various

video standards.
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Figure 2-1. Simple block diagram of video encoder and decoder
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In the decoder side, the functional block “MC”, for block-based motion
compensation, is responsible for the reduction of the temporal redundancies between
successive frames. The temporal correlation is utilized by using motion information of a
past frame to predict the current frame causally, or predict the current frame from past
and future frames by non-causal and interpolative methods. In 70s, some researchers
investigated the motion properties inherent in video sequences that can be used to
improve the performance of a coding system. After a wide variety of experiments, it has
been considered that much of the motion in video sequences is pure translation, i.e. a
foreground object moves across a nearly still background in an arbitrary direction, but
without rotation, size change or any irregular shape transformation. This property is
extremely plausible provided that the motion is not too violent in the short time interval
between successive frames. The video standards divided a current frame into a number
of non-overlapped blocks with M x N pixels. A decoder uses one or more than one
block/s of pixels in the previous decoded frames to compensate each of these blocks in
the current frame. The errors between the current block and the compensated block are
then compressed using the discrete cosine transform (DCT) to remove the remaining
spatial correlation.

The functional block DCT in Figure 2-1 is responsible for the transform coding
of intraframes and interframes. Intraframe compression in these standards makes use of
the compression techniques for still images, such as photographs and diagrams to
compress individual frames in a video sequence. An intraframe is coded by transform
coding without any reference to previously coded frame. On the other hand, an
interframe is coded using previously coded frames for motion-compensation prediction.
After this prediction process is finished, a video coder compresses the prediction errors
using the transform coding. Transform coding is an image conversion process that

transforms an image from the spatial domain to the frequency domain. The most
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popular transform used in the video standards is the Discrete Cosine Transform (DCT).
All traditional DCT-based coding partition a large images into non-overlapping 8x8
square blocks and transform each block separately. The DCT represents any input data
as 64 2-dimension (2D) cosine functions with different weighting factors. The resulting
weighting factors are represented as a matrix of DCT coefficients. Although the DCT
does not in itself result in compression, the transform coefficients tend to be good
candidates for compression using run length encoding and predictive coding when it is
read inside the system in an appropriate order.

Quantization is the next process after the DCT coding. The DCT coefficients are
quantized in an irreversible process that discards the less important information.
Although quantization seems to be a simple process, an efficient quantization algorithm
involves in-depth studies of distributions of coefficients energy, its relation to that in the
data domain, processing of the coefficients in the context of the human visual response
and relation to the rate-distortion theory. An appropriate quantization must minimize the
distortion of the input data after reconstruction, for a given data rate. Some objective
distortion performance measures, such as peak-signal to noise ratio (PSNR) and
subjective distortion evaluation, i.e. the perceptibility of the human visual system to the
distortion must be considered in the design of a quantization process.

The quantized DCT coefficients and the information for motion compensation are
finally entropy coded by a variable-length coding scheme, the Huffman coding. Under
the constraints that each source message is mapped to a unique codeword, Huffman
coding can provide an optimal statistical coding procedure that approaches the
theoretical entropy limit. The variable-length code words used in the standards are
derived according to a priori knowledge of the probability of all possible events. Thus,
instead of using fixed-length code words for all symbols, relatively short code words are

assigned to represent events with the highest probability of occurrence. In the decoder
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side, we maintain an identical code book, such that the Huffman coding preserves the
coded information.

In the following sub-sections, we will introduce the basic concepts and techniques
for the conventional block-based motion compensation. The modern video standards
use motion vectors to describe the motion information between successive frames. It is
coded differentially in an encoder. The algorithm used to obtain a prediction motion
vector is described in Section 2.1.1.1. Section 2.1.1.2 describes the procedure and some
studies about the half-pixel interpolation scheme, which is supported in MPEG
standards. Both H.263 and MPEG-4 support the Overlapped Block Motion
Compensation. The details of its operation are introduced in Section 2.1.1.3.
Furthermore, the basic tools of arbitrarily shaped object coding in MPEG-4 will also be
presented. These techniques include how to represent a video object planes, content-
based arithmetic encoding for shape information coding and padding techniques that
extend an arbitrarily shaped object data to rectangular support. Section 2.1.2 describes

the details of these techniques.

2.1.1 Block-based motion compensation

We can improve video coding efficiency significantly if the frame-to-frame
temporal redundancy is taking into account. A lot of researchers have proposed many
different motion representations [8-19] to exploit this temporal information. The block-
based motion compensation is the one widely adopted in the modern video standards for
compression. The major advantages of the block-based motion compensation are its
effective prediction for translational motion, lesser hardware complexity and simple
implementation.

The H.263, MPEG-1, MPEG-2, and MPEG-4 support two types of prediction
frames, the Predictive Frame (P-Frame) and Bidirectionally Predictive Frame (B-Frame).

A P-Frame is coded by a prediction causally from an immediate previous intraframe (I-
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Frame) or P-Frame. A B-Frame is non-causally predicted from a previous reference
frame or next reference frame or both these frames. A theoretical analysis of multi-
hypothesis motion compensation for hybrid video coder [21] explains the role of B-
Frame in a video coder. A reference frames must be coded as either an I-Frame or a P-
Frame. Note that it is not allowed to code a P-Frame or a B-Frame with reference to any

B-Frame.

2111 Motion Vectors

To perform the block-based motion compensation, a current frame is divided into
a number of non-overlapped M x N pixels blocks. In the industrial standards, we name
the block as a Macroblock (MB) and a block with a size of 16x16 pixels, and 8x8 pixels
respectively. MPEG-2 and MPEG-4 supports the coding of interlaced frame, and thus
an interlaced MB consists of 16x8 pixels.

The industrial standard allows a MB in a P-Frame to be coded with different
modes, such as intra-mode (1) and inter-mode (P). The basic idea of block-based
compensation is illustrated in Figure 2-2. When a MB in a P-Frame is coded as a P-MB,
a forward motion vector is transmitted. The forward motion vector represents a
displacement between the MB in the current frame at time t and the matched MB in a
past reference frame at time t-m, m is greater than or equal to 1 in general situation. A
predictive MB in a B-Frame is named as B-MB. For a B-MB, its forward, or backward,
or both of these two motion vectors has to be transmitted. The displacement of the
matched block in a reference at time t+n is denoted as a backward motion vector.

Similar to the forward case, n is generally greater than or equal to 1.
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Figure 2-2. lllustration of block-based motion compensation in a P-Frame or a B-Frame

Both H.263 and MPEG-4 do not only support coding of one motion vector per
MB, but also include an advanced prediction mode that subdivides a MB into four
blocks in P-Frame or P-VOP. The codec compensate a MB with four motion vectors for
the four blocks.

The pixel errors between the current frame and the motion compensated frame are
called the prediction errors. For a B-MB, the matched MB from a past frame, or the
other matched MB form a future frame, or an average of both can be used as the
compensated MB. Consequently, the resulting prediction errors for a P-MB or B-MB

involving either a forward or a backward motion vector are expressed as
e Yii, ) = f(x+i, y+ )= fuma(X+i+u y+j+v) (2-1)
where (X, y) indicates the location of a MB in the current frame, f,(-),

(i, ]) is the coordinate of a pixel in the MB, and

(u,v) is a forward or backward motion vector.

When both motion vectors are used, the prediction errors are given by
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ft_m(X+i +Ug, Y+ J + V¢ )_ an(X+i tU, Y+ J +Vb) (2-2)
2 2

e(x, yii, ) = f(x+i,y+j)-

where (U, v¢) is a forward motion vector.

(un,Vp) is a backward motion vector.

These motion vectors are differentially coded in the standards [4-5], and thus the
motion correlation between adjacent blocks can be utilized for compression. That is
using values of previously transmitted motion vectors to obtain a prediction motion
vector. The difference between the motion vectors and the corresponding prediction
motion vector is encoded and transmitted. We calculate the horizontal and vertical
components of a predictor separately. In [4, 5], a median filter is used for three
candidate prediction motion vectors to form a predictor. The three candidate predictors,
(MVi, i =1, 2, 3), are obtained from the spatial neighborhood macroblocks or blocks
that already coded. Figure 2-3 clearly defines the positions of the candidate predictors
for each block’s motion vector in the advanced prediction mode. In the case of one
motion vector per macroblock, the top-left case in Figure 2-3 is applied. The following
four decision rules are applied to obtain the value of the three candidate predictors:

1. Let MV, be the motion vector found by normal motion estimation. A candidate
prediction motion vector is not considered to be valid, if this candidate predictor

MVi is sited outside of a Frame or a VOP, or in a transparent MB or block.

Otherwise, such as MV1, MV2 and MV3 can be used as valid candidate MV for

further coding.

2. If one and only one candidate predictor (either MV1, MV2 or MV3) is not valid (e.g.
it is sited outside the frame, etc), it is set to zero.

3. If two and only two candidate predictors are not valid, they are set equal to the
third candidate predictor.

4. If all three candidate predictors are not valid, they are set to zero.
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The median value of the three candidates for the same component is computed as
predictor, denoted by Px and Py:

Px = Median(MV1x, MV 2x, MV 3x) (2-3)
Py = Median(MV1y, MV2y, MV3y)

MV2 MV3 MV2 | MV3
mvi | My, MV1 | MV,

MV2 | MV3 MV2 | MV3
Mv1 | My, MV1 | MV,

Figure 2-3. Definition of the candidate predictors MV1, MV2 and MV3 for each of the luminance
blocksin a macroblock.

2.1.1.2  Half-pixel accuracy

In fact, the true physical motion of a moving object between successive frames is
not limited to our spatial sampling frequency or the sampling grid. It leads us to expect
that we can improve the motion-compensation efficiency with fractional-pixel accuracy.

MPEG standards support motion vector with half-pixel accuracy for 16x16 MB
and for 8x8 block as well as for 16x8 field block in case of interlaced video. Since
decoder prefers a simple interpolation to a complex one, a bilinear interpolation
technique is a suitable choice. The interpolation scheme used in the MPEG-4 is shown

in Figure 2-4.
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+ Integer pixel position

O O (O  Half pixel position

a=A,

b=(A+B+1-rounding_control) / 2
c=(A+C+1-rounding_control) /2,
d=(A+B+C+D+2-rounding_control) / 4
where rounding_control is equal to 1 or 0.

Figure 2-4. Bilinear inter polation scheme.

Motion-compensation with quarter-pixel accuracy is supported in MPEG-4 version 2.
The main target of Quarter Pixel Motion Compensation is to enhance the resolution of
the motion compensation scheme with only small syntactical and computational
overhead, leading to more accurate motion description and less prediction error to be
coded [22].

The author of [23] has studied and analysed theoretically and experimentally the
contribution gained from motion-compensation with fractional-pixel accuracy. In the
theoretical analysis, the power spectral density of the prediction error is related to the
probability density function of the displacement error. It predicts that the possibility of
further improving prediction by more accurate motion-compensation is small if a
critical accuracy is exceed. According to his analysis and experimental results, for a
motion-compensation block size of 16x16 and typical broadcast TV signals, quarter-
pixel accuracy is sufficient, while for videophone signals, half-pixel accuracy is
desirable. Moreover, in views of different interpolation schemes, bilinear interpolation

is as good as, or better than sinc-interpolation.
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21.1.3 Overlapped Block M otion Compensation [5]

We can improve the inefficiency of block-based motion compensation due to
variation of motion within a block, quantization of motion vectors, model mismatched
such as uncovered background, etc, improved by using overlapped block motion
compensation (OBMC). OBMC and its theoretical basis have been studied and
proposed in the literature [24-27]. Several video coding standards, such as the H.263
and MPEG-4 also incorporate various forms of OBMC. The following description
briefly presents the OBMC scheme in the MPEG-4.

When OBMC is enabled, each pixel in a 8x8 luminance block is a weighted sum
of three prediction values, divided by 8 with rounding. In order to obtain the three
prediction values, three motion vectors, MV, MV1 and MV2 are used:

1.  the motion vector of the current luminance block, MVp,

2. the motion vector of the block above or below the current luminance block, MV1,
and

3. the motion vector of the block at the left or right side of the current luminance
block, MV2.

For pixels in the current block, the motion vectors of blocks at the two nearest block

borders are used. We name these motion vectors as remote MVs. For instance, MV1apove

and MV2¢ are the remote MVs for the pixels in top-left quarter of the current block.

Figure 2-5 shows an example of a top left block in a MB and depicts the used remote

MVs for the pixels within each quarter. Moreover, if one of the surrounding blocks was

not coded, the corresponding remote MV is set to zero. If one of the surrounding blocks

was coded in intra mode, the motion vector for the current block replaces the

corresponding remote MV. If the current block is at the border of a frame or a VOP, the

current motion vector replaces the corresponding remote MV. In addition, if the current

block is at the bottom of the MB, the remote motion vector corresponding with a 8x8

26



luminance block in the MB below the current MB is replaced by the motion vector for

the current block.

Jeft right

|

MV2 -—= MV, =4 MV2
i
|

MV

below

Figure 2-5. lllustration of the used remote motion vectors for the pixels within each quarter of a
current block. (Solid line—MB; Thin line— 8X8 block; Dashed line — Partition of the pixelsto four

quartersin the current block)

The pixel values in the OBMC block shown in the example of Figure 2-5 are

governed by the following equation

FG,0) = (Fo 0, )< Ho (i, 1)+ G, )< HL G i)+ £,3, ) H, G, j)+4)/8

where f,(i, j) = fli+MV,,, j+MV,,)
fl(i! J) = f(l + Mle,aboveor below? J + MVly,aboveor below)
fl(i! J) = f (I + Mvzx,leftorright’ J + Mvzy,leftorright)'

subscript x,y denotes component of a motion vector.

(2-4)

The weighting matrices or OBMC windows, Hofi, j) , Ha(i, J) and Hx(i, j) are defined in

Figure 2-6.
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Figure 2-6. Theweight matricesHq(i,j), Hi(i,j) and H(i,j) defined in the H.263 and M PEG-4.

2.1.2 Arbitrary shaped object coding

Nowadays, content browsing in the World-Wide Web becomes part of our daily
life due to the successful and rapidly growth of Internet activities. Text-based and still
image type interactive operations are already familiar to all Internet users. Demands of
other interactive functionalities involving various contents, such as audio and video will
increasing. In 1993, MPEG (Moving Pictures Experts Group) launched the MPEG-4
work item, which officially called "Coding of audiovisual objects". In addition to
increasing compression efficiency for storage and transmission, one major characteristic
of the MPEG-4 different from its predecessor is that it offers the capability of video and
audio manipulation in multimedia environments. In order to provide the solutions for
these objectives, a set of “tools” and “algorithms” for audio-visual data, called audio-
visual objects (AV objects or AVOs) are being developed.

The MPEG-4 introduces the concept of Video Objects (VOs) to support access of
individual semantic objects in visual contents. A temporal instance of a VO is named as
a Video Object Plane (VOP). It is represented by its texture value (i.e. pixels luminance
and chrominance values) and shape information [28]. In natural scenes, VOPs are
obtained by semi-automatic or automatic segmentation [29-37], and the resulting shape
information is represented as a binary alpha plane. On the other hand, for hybrid (of
natural and synthetic) scenes generated by blue screen composition, shape information
is represented by an 8-bit component, referred to as greyscale alpha plane.

28




An object-based coder is mainly composed of two parts, namely shape coder, and
motion and texture coder. The emerging of the MPEG-4 attracted a number of
researchers to study different approaches for shape coding [38-43], including the
Context-based arithmetic encoding (CAE) [44-48]. The MPEG-4 adopts the CAE to
code the shape of a VOP in the shape coder [49].

For a VOP, it is represented by means of a bounding rectangle, in which the
rectangle can be defined as the minimum number of macroblocks that contain the object.
There are three kinds of macroblocks within a bounding rectangle: the transparent MB,
the boundary MB and the opaque MB. The boundary and opaque MBs include the
pixels belonging to the object, and the transparent MB lies completely outside the object
area. For different kinds of MBs, different coding techniques are used in MPEG-4.
MPEG-4 employs the CAE to code arbitrary shape in a boundary MB. Similar to the
frame-based situation, we can use inter-mode and intra-mode for the coding of a
boundary MB with the CAE.

The MPEG-4 codes the texture information of a VOP by using similar techniques
of the traditional video coding. We code an opaque MB as a normal MB in the fame-
based coding. The transparent MB is not necessary to be coded since it has not
contained any object pixels. Because of the coding efficiency, it is not suitable for us to
apply traditional block-based coding techniques to the boundary MBs directly. We must
handle the discontinuity condition at an object boundary carefully, otherwise resulting a
degradation of rate-distortion and compression performance. A lot of researchers have
been proposing many different approaches to improve the coding efficiency for a
boundary MB [52-65] in the past decade.

Padding is one of the studied techniques in the course of the MPEG-4
standardization process. It aims at extending an arbitrarily shaped block to a regular

block such that traditional hybrid block-based coding techniques can be applied. Two
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padding techniques [52] have been proposed in 1997 for motion estimation and
compensation of the boundary MBs. The MPEG-4 adopts the Repetitive padding for
object-based video coding. With the repetitive padding, object shape information and
prediction error, a boundary MB can be reconstructed as usual. The author in [55,56]
proposed an Adaptive low-pass extrapolation padding technique for intra-mode coding,
which increases the PSNR of boundary blocks by an average of 2dB. For inter-mode,
padding the prediction errors outside the object with zeros gives good efficiency.

In additional to the padding techniques, shape adaptive transformations have been
proposed in the literature [56, 58-64]. The Shape-Adaptive DCT (SA-DCT) has been

suggested in the MPEG-4 to improve the coding efficiency of boundary MBs.

2121 Forming of the bounding rectangle

According to the following procedure, a bounding rectangle with the minimum
number non-transparent MBs will be obtained to bound the whole object as shown in
Figure 2-7.

1.  Generate a tightest rectangle with even numbered top left position.

2. If the top left position of this rectangle is the same as the origin of the image
frame, extend the right bottom corner of the rectangle to form a final bounding
rectangle that consists of multiples of 16x16 MBs.

3. Otherwise, form a control MB at the top left corner of the tightest rectangle. Note
that the top left position of the control MB cannot site outside of the image.

4. Count the number of MBs that completely contain the object, starting at each
even numbered point of the control MB. Details are as follows:

a. Generate a bounding rectangle from the control point to the right bottom side

of the object, which consists of multiples of 16x16 blocks.
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b. The control point and the corresponding right bottom corner that resulting in
the smallest number of the MBs for the given object is the coordinates of the

bounding rectangle.

Control MB
| &

nnnnn

3 . Tightest Rectangle

1 ‘ I

Object

K Extended

Bounding
Box

N
1: Intelligently generated VOP

@ : control point

Figure 2-7. Formation of Bounding rectangle according to the procedurein the MPEG-4 VM [22].

21.22  Context-based arithmetic encoding

There are two major approaches in shape coding. The first one is contour-based
shape coding, such as [38-43], which extracts and then codes a description of the closed
contour enclosing the shape. Its advantages include scalability and having semantic
representation, but complex treatments of intercepted contours and objects with holes
are required. The second one is a bitmap-based approach, which encodes the bitmap of
the binary alpha plane directly. It can achieve reasonable compression efficiency.
However, this kind of approaches lacks direct semantic information about the coded
object comparing to the previous approach. The techniques proposed in [44-48] belongs
to this category.

MPEG-4 accepts a bitmap approach, which is the Context-based Arithmetic
Encoding (CAE), to code an object shape. In CAE, it is assumed that a high degree of
local correlation exists in the shape of a boundary MB. We name the shape of the MB as
a Binary Alpha Block (BAB) in MPEG-4. Several coding modes are available including

intra-mode and inter-mode. In intra-mode, a template of 10-pixels shown in Figure
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2-8(a) is used to calculate a context number and defines the causal context for predicting

9
the shape value of the current pixel. The context number is computed as C = ZCK x 2%,
k=0

where ¢ indicates the corresponding binary pixel value according to the template in
Figure 2-8(a). It is used to access a probability table, which contains 1024 different

contexts. For encoding the context state, a context-based arithmetic encoder is used.

C9 C8 C7
C.|C|c|c|c,
Cl CO *

* denotes current pixel position

X
X
X
X
X
X
X
X
X
X
X
X
X
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X
X
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XXX XXX XXX XXX |X]|X]|X]|X
XXX XXX XXX XXX XXX ]|X
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XXX XXX XXX XX |X]|X]|X]|X
XX XXX XXX [X XXX |X]|X]|X]|X
XXX XXX XXX XXX |X]|X]|X]|X
XX XXX XX XXX XX |X]|X]|X]|X
XXX XXX XXX XXX |X]|X]|X]|X
XXX XXX XXX XXX XXX ]|X
XXX XXX XXX XXX XXX ]|X

(@) (b)

Figure 2-8. (a) Thetemplate for intra-mode context construction (b) Current bordered BAB.

When encoding a BAB, a border of width equal to 2 is extended from the current

BAB for context number construction. The following rules must be obeyed to construct

a current bordered BAB [22].

o Any pixels outside the bounding rectangle of a current VOP to the left and above
are assumed to be zero.

o The template may cover pixels from BABs, which are not known at decoding
time (value marked as “?” in Figure 2-8(b)). These unknown pixels are therefore
estimated by template padding.

o For the intra-mode, the following steps are taken in the sequence
1. if (c7 is unknown) c7=c8,

2. if (c3 is unknown) c3=c4,
3. if (c2 is unknown) c2=c3.

o For the inter-mode, if (c1 is unknown) c1=c2.
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For inter-mode, temporal redundancy is exploited by taking advantage of the high
correlation between two successive alpha planes. A reference BAB in a previous binary
alpha plane is obtained by means of a motion vector. This BAB is regarded as a Motion

Compensation BAB (MC BAB) in Figure 2-9(b). Similar to the situation of intra-mode,

8
we calculate a 9-pixel context number, C = ch x 2% using an inter-mode template in
k=0

Figure 2-9(a) to access the probability table.

Pixels of the
C C C X X X X X X X X X X X X X X X X
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X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
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X X X X X X X X X X X X X X X X
C X X X X X X X X X X X X X X X X
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Plxels Of the X X X X X X X X X X X X X X X X
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C
4
The current pixel which indicated as * is
aligned with pixel of C, for context
number calculation
(a) (b)

Figure 2-9. (a) Thetemplate for inter-mode context construction. (b) Bordered M C BAB.

A lot of shape-coding algorithms, including different bitmap-based and contour-
based shaper, were thoroughly investigated in [49] with respect to their coding
efficiency, subjective quality for lossy shape coding, hardware and software complexity,
and performance in scalable shape coders. With the consideration of the required
bandwidth for off-chip memory access and caching, MPEG-4 focused on optimizing the
selected CAE for shape coding.

Furthermore, a context-based arithmetic coding is not limited for the purpose of
shape coding. It can also serve for symbol coding, such as the study in [50]. MPEG-4

may also involves the CAE in rate control [51] by lossy shape coding.
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2.1.2.3 Paddingfor arbitrarily shaped object coding

Image padding refers to enlarging the area of an image by filling additional pixel
values in the enlarged area. For arbitrarily shaped object coding, a padding operation
extends the object shape to a rectangle, such that traditional video coding algorithms can
be employed. Clearly, a specific padding algorithm should be designed to deal with a
particular application.

MPEG-4 treats the boundary MB as a regular MB and encodes the texture of each
block using an 8x8 DCT. A decoder decodes the texture and discards all pixel values
that outside of the object shape. In order to increase the coding efficiency, an encoder
must pad the pixels outside of the object adaptively such that the bitrate is minimized.
For intra-mode, MPEG-4 makes use of a low-pass extrapolation padding [55,56] to

achieve this purpose.

21231 The Low-pass Extrapolation Padding

For a boundary MB which is coded in intra-mode, it is preferred to pad the given
image data to a rectangular area such that conventional block-based DCT coding can be
applied. The authors of references [55,56] proposed the low-pass extrapolation (LPE)
padding for the intra-mode coding. The LPE aims at seeking for a computationally
simple extrapolation method which is operated completely in the spatial domains.
Moreover, the padding result must fulfill the following two criteria. 1) The signal
extension should be smooth enough, i.e. it should have a low-pass characteristic. 2)
Discontinuities at the border between given and extrapolated image data should be
avoided. To resolve this problem, it can be regarded as solving the variational problem
of Dirichlet. It is identical to the task of solving the differential equation under a given

boundary conditions.
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Af =f +f,=0 (2-5)
where Af is gradient of an image function, f.

fxx IS the second derivate of f with respect to x.

fyy 1s the second derivate of f with respect to y.
The above equation can be approximated by finite differences using Laplacian operator

for a digitized image. We let i and j are the variables in x and y direction respectively.
AFG, )= @, j-1)+f(-1j)+ G, j+1)+f(i+1j)-41(,j). (2-6)
Since a direct solution of this equation is not possible in general, the author adopted a

relaxation method for determining the function f. This leads to a simple averaging

operation, which is applied iteratively to all transparent pixels in a boundary MB.
£, 1) = 146, §)+ A1) @

where Kk indicates stages of the iteration.
If one or more of the four pixels are outside of an image block during the averaging
operation, the corresponding pixels are not considered. Hence, the averaging processes

can be equated as equivalent to a convolution process applying iteratively to an image
block. Let us represent the image block as elements of a matrix [F*] , i.e. Fi=14G,]).

Result of the processes is given by

, 10 & O (2-8)
)3 e 0 o]
1=0 0 ¢ O

where * is a convolution operator

B 1 if inside block
10 otherwise.

According to the experimental results [56], the author claimed that the first iteration

could already provide enough smoothing effect for efficient DCT coding. Hence, it is
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sufficient to restrict the LPE padding to a single iteration for the sake of lower

computational load.

21.2.3.2 The Repetitive Padding

Block-based motion estimation and compensation requires an arbitrarily shaped
object to be padded properly so that motion prediction coding can be efficient. MPEG-4
accepts the repetitive padding proposed in [52]. In the repetitive padding, a boundary
MB is padded by replicating the boundary samples of the VOP towards the exterior.
First, this replicating process is divided into two stages, which are the horizontal
repetitive padding and vertical repetitive padding. If a value lies between two pixels in a
row or column, an average value is assigned to this pixel. Second, since this repetitive
padding puts a significant computational burden on the decoder, we use an extended
padding to pad the remaining MBs that are completely outside the object.

In the horizontal repetitive padding, we fill each transparent pixel in a boundary
MB by replicating each pixel at the edge of a VOP horizontally to the left and/or right
direction. If there are two edge pixels values for filling a transparent pixel outside of a
VOP, we average the two edge pixels values. Figure 2-10(a) demonstrates an example
of the horizontal padding in a boundary MB. Afterward, the remaining unfilled
transparent region in the MB is padded by a similar manner as the horizontal process
but in the vertical direction. Pixels already filled in the horizontal repetitive padding are
regarded as if they were the video object pixels for the purpose of this vertical stage.
Figure 2-10(b) and (c) shows the vertical repetitive padding and the repetitive padded

boundary MB respectively.
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Figure 2-10. (a) Horizontal repetitive padding by replicating pixels at the edge of a VOP
horizontally to the left. In the thirteen row, averaging of two edge pixels values is used to fill the
transparent pixel values lied between. (b) Processes of the vertical repetitive padding. (c). The
resulting boundary M B after the repetitive padding.

The macroblocks immediately next to boundary MBs are named as exterior MB
in the padding processes. They are filled by horizontally or vertically replicating the
pixel values at the border of their surrounding boundary MBs in the extended padding.
If an exterior MB is surrounded by more than one boundary MBs, we shall pick one of
these MBs according to the priority stated in Figure 2-11 for this padding. The boundary
MBs with the largest priority number is used for the extended padding of an exterior
MB. The remaining unfilled MBs in the bounding rectangle are filled with mean of all
possible pixel value. We assume that probability of occurrence of each pixel value is

uniform. For 8-bit pixel representation, they are filled with 128.

Repetitively
padded boundary

MB (Priority 2)

Repetitively Repetitively
padded boundary Exterior MB padded boundary
MB (Priority 3) MB (Priority 1)
Repetitively

padded boundary
MB (Priority 0)

Figure 2-11. Priority of boundary MBs surrounding an exterior MB for the extended padding.
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The author [52] claimed that efficient motion estimation and compensation for the
object boundary is most critical to the performance of object-based video coding.
Moreover, the discontinuity at object boundary could degrade the coding performance
seriously if not handled properly. Comparing to the non-padded case, the repetitive

padding improves the rate-distortion performance of motion prediction for about 20%.

21.24  Motion compensation for arbitrarily shaped object

After a reference VOP has been repetitively padded, motion compensation can be
performed for a VOP reconstruction. A special treatment should be done for a boundary
MB in MPEG-4. Using the coded motion vector and shape information, we can

reconstruct a boundary MB according to the following equation.

fi,§) = fg (X+i+U Y+ | +V)+ ey (i, )] X Alphay (i, ) (2-9)
where f_(-) and f () is a reconstructed MB and reference VOP respectively

€, () is the coded prediction error.

Alpha_, () is the coded alpha plane.

(x,y) denotes location of a current MB.
(i,)) is coordinate of each pixel in a MB.

(u,v) is the motion vector.
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2.2 Block-based motion estimation review

In the Block-based compensation scheme, we use motion vectors to represent
motion activities of objects between the current frame and reference frames. Although
industrial standards do not specify a particular motion estimation technique, block-

based motion estimation is a natural selection for video encoding.

Estimated Motion vector

Search Window

\

Current target MB

Reference Frame

Figure 2-12. Block-based motion estimation.

A motion estimation process in an encoder obtains a motion vector by the using
block-based matching technique. The motion estimation detects the interframe motion
with the use of a cost function between a target MB in the current frame and a candidate
MB within a search window in a reference frame. The displacement between the most
suitable candidate MB and the target MB is defined as the resulting motion vector,

(G,V). A variety of cost functions have been investigated in the literature. One such

function is the cross-correlation function, (CCF) which is mentioned in [69] and defined

as

DS 6l i) g (i +u, j+v) (2-10)

CCF(u,v)= =0 =0 7T
16 16 16 16
{sz } {ZZfrd +u,j+v)
=0 j=0 =0 j=0

Where f,(-,;) is atarget MB in the current frame at time t.

fref () is a candidate MB in a reference frame with a motion vector (u,v).
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However, the authors in [8] claimed that correlation method is not suitable for small
block size condition, and a mean distortion function was subsequently proposed. In fact,

this distortion function is a mean of squared I,-norm distance. An I>-norm of a vector

A=[a1,a,...,a] is defined by /Z|an|2 . The squared |,-norm distance for the prediction
i=1

errors of a MB between a target MB at position (x,y) in the current frame, f;, and a

candidate MB at position (x+u, y+V), in a reference frame, f.¢, is defined as below,

SDy, (X, Y;U, V) =ZN:§:‘11 (X+i,y+])- fef(x+i+u,y+j+v)(” (2-12)

i=0 j=0

where n=2and N= M =16.

It is also called the Sum of Squared Difference (SSD). Block matching with |>-norm
minimizes the energy of the prediction errors, and for Gaussian signals, it minimizes the
bitrate required to encode the errors. In practice, block matching with [;-norm distance
is often used due to its lower complexity for hardware implementation. The I;-norm is
defined by (2-11) with n = 1. It is normally named as Sum of Absolute Difference
(SAD). The SAD can be viewed as an approximation to block matching with I>-norm
distance. Furthermore, some researchers have studied other cost functions, including the
Pixel Difference Classification (PDC) [66], the Minimized Maximum Error (MME) [67]
and the Geometric Mean of the DCT coefficient variances (GMDCT) [68]. The former
two methods were explored when the consideration of hardware realization is taken. For
the GMDCT, the authors developed the criterion by considering a spatial domain coder,
when the coder is based on DCT and dynamic bit allocation. When the problem of
optimally allocating a limited bitrate to the displacement vector field and the motion
compensation prediction error is addressed, a rate-constrained motion estimation
theoretical framework was introduced in [70]. The authors [71,72] introduce a
Lagrangian cost function by making use of the Lagrange multiplier for the rate-

constrained motion estimation.
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Instead of being as a matching criterion, we often use SSD or its mean value to
evaluate the searching ability between different motion estimation algorithms. Another
frequently used metric for performance evaluation is the peak signal-to-noise ratio

(PSNR), which is defined as follows,

S iﬁ] f (% y) = free(X, y)|2 (2-12)
y

M xN <

PSR =-10log,, SoE?
where N and M are the width and height of a frame respectively, in frame-based
situation,

f.(,-) and f () are the current and compensated frame respectively.

When the SAD is used for block matching criteria, the motion vector of the best
matched block, (G,f/) IS given by,

(G,9)= arg(min SAD(X, y;u,V) (2-13)

uVv)e W

where W ={(u,v)|-D <u,v< D} is a set of all possible locations in a search

window and D is the maximum possible displacement of the motion

vector (u,v).

The simplest block matching motion estimation algorithm is the full search algorithm
(FSA). This algorithm can give an optimum solution by exhaustively examining all
possible locations within the search window. In addition to its optimum result, the
advantages of block-based FSA in video-coding application are its regularity and
simplicity. It is suitable for a simple hardware realization. However, its heavy
computational load for a large search range can be a significant problem in real-time

applications. For example, a search window for a maximum possible displacement, D,
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will require (2D +1)* number of calculation of SAD. Equation (2-11) shows that a SAD

involves M x N absolute operations and M x N — 1 additions for a block. In order to
resolve this difficulty, many fast search algorithms have been developed in the past.
Basically, the factors that determine the performance of a block matching motion
estimation algorithms are matching criteria, search schemes and the search area. A lot of
researchers make use of these factors to investigate a large variety of fast algorithms in
the past [8, 69, 73-108]. These fast search algorithms can be classified into the
following categories. 1) In the first category, the fast search algorithms seek for a way
to select a subset of the candidate MB in W to reduce the computational time [8, 69, 73-
86]. The most challenging part of these algorithms is to determine the subset of W for
searching. Because these algorithms can easily be trapped into local minima,
degradation in predicted images is an inevitable result on average. Many researchers
select an initial searching point by studying the motion field to reduce the probability of
being trapped in local minima. Another approach to find a good initial point is
hierarchical or multiresolution techniques [87, 88]. 2) The algorithms [73, 89-98] in this
category use a reduced complexity distortion measure to save computation, such as
pixel decimation [73, 89-91] and partial distortion (PDS) techniques [92-96]. The pixel
decimation techniques subsample the pixels in a target MB and the candidate MBs
within the computation of the SAD. Hence, the computation for each SAD can be
reduced. The PDS reduces the computation complexity by terminating the SAD
calculation early when it finds that a partial SAD is already greater than the minimum
SAD encountered so far in the search. In general, PDS is regarded as a fast full search
algorithm because it has identical prediction quality as that of the FSA. 3). The
algorithms [99-103] in the third category make use of mathematical inequalities to
reduce the computational load; this includes the Successive Elimination Algorithm

(SEA) [99-101]. By making use of the Minkowski’s inequality, the SEA eliminates an
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impossible candidate MB without calculating the SAD. 4) Edges are the most prominent
feature in image processing. They are also frequently used to predict pixel matching
errors in motion estimation. The fourth category [104, 105] uses information of edges in
a block to reduce computational burden in motion estimation. 5) Moreover, a
performance analysis of MPEG-4 decoder and encoder [107] shows that motion
estimation will remain as a computationally intensive step in MPEG-4 arbitrarily shaped
VOs encoding. Object based motion estimation is a new direction in this field [108].
Many other algorithms combine the above techniques together in order to further
improve the coding efficiency.

In addition to the above classification, another frequently used classification is to
compare the quality of a motion compensated frame by a motion estimation to that of
the FSA. If a searching technique can produce identical quality as the FSA, The motion
estimation is regarded to be a lossless algorithm. Otherwise, it is a lossy one. The
algorithms proposed in [96-101, 103] are categorized as lossless algorithms, which
search all candidate positions in W and save the computational load by making use of
the Minkowski’s inequality or partial distortion in a SAD. Other algorithms introduced
are lossy because they do not search all of possible locations in W and involve
subsampling of pixels or approximation of mathematical inequalities in the calculation
of matching criteria.

One of the differences between the H.264/AVC [6] and previous video standards
is that it increases the coding efficiency by allowing an encoder to select reference
pictures for motion compensation among a larger number of pictures. These reference
pictures have been decoded and stored in the decoder. The studies in [109-111] have
investigated the subject of this new motion compensation and estimation problems.

Among these wide variety of motion estimation techniques, four fast algorithms

are going to be discussed in detail. Section 2.2.1 introduces the major ideas of lossy
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motion estimation. The discussions mainly focus on the Partial Distortion Search (PDS)
algorithm and its modification, Normalized PDS. In Section 2.2.2, a simple idea that can
improve the efficiency of the traditional PDS is illustrated. Two adaptive PDS
algorithms, which utilize this technique, are presented. Their basic idea is explained in
details. Section 2.2.3 gives the procedure of the Diamond Search (DS). We shall present
the explanation about the success of the DS. Another algorithm making use of the
mechanism is also introduced and compared. Section 2.2.4 concentrates on the
introduction of the Motion Vector Field Adaptive Search Technique (MVFAST) and its
generalization, the Predictive MVFAST (PVMVFAST). It gives the step by step
implementation of the MVFAST. Note that MPEG-4 has already accepted these two

algorithms in its optimization model.

2.2.1 Partial Distortion Search

Using Partial Distortion or the Minkowski’s inequality are two major approaches,
which are mostly utilized to develop different lossless motion estimation algorithms or
fast Full Search Algorithm.

The I;-norm version of the Minkowski’s inequality gives a relation between two

arbitrarily sets of non-negative real numbers. For two given sets A={a,,a,,...,a, ,} and
B={b,.b,....b,,} which have same number of elements, they obey the following
inequality,

|A-Bjz||A-[8]- (2-14)

When (2-14) is applied involving SAD, it is expressed as

N

LN

N-1

Y[ §) =1 l+u, ) 219
i=0 j=
J N-1 N-1 N-1 N-1
=D WA ESII A ENERY
i=0 j=0 i=0 j=0
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It means that an absolute different between |1-norm of a reference block and that of a
target MB is always smaller or equal to their SAD. The Successive Elimination
Algorithm (SEA) compares the norm differences to the encountered minimum SAD,
SADtemp min.  The intensive computations of SAD are not necessary if the norm
differences are greater than the SADyemp _nin.

The basic idea of the PDS algorithm is described as follows. For a given reference
MB and a target MB, a partial distortion is defined as a part of the total distortion. The

p-th accumulated partial distortion in the traditional PDS algorithm is given by (2-16)

p 15

SADP(X’ y;u,v) = ZZ‘It(X"'i'BH‘ D=l (x+i+uy+] +V)(- (2-16)

j=0 i=0
The value p indicates the number of rows accumulated into the p-th partial distortion as
shown in Figure 2-13(a). If the p-th accumulated partial distortion, SAD,, is greater than
the SADienp min, the coder can simply rejects this candidate without calculating the
remaining partial distortion. This algorithm can greatly reduce computation of the
distortion calculation if the saving of computation in the remaining partial distortion can

compensate the additional comparison operations.
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Figure 2-13. Order of calculation of the partial distortions.
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Instead of define the partial distortion in row-by-row manner, the author who
proposed the Normalized Partial Distortion Search (NPDS) [95] using a uniform pattern
to define the order of partial distortion calculation. The recommended order of
calculation is depicted in Figure 2-13(b). Afterward, they normalize the accumulated
partial distortion and the SADienp min before comparison. The probability of early
rejection of non-possible candidate MB is thus increased.

Every location in the search window is searched one by one with normal raster
scanning order from left to right and top to bottom in the traditional PDS. However, it is
well know that most real-world sequences have a centrally biased motion vector
distribution. The motion vectors tend to concentrate at the central region of a search
window. We can use spiral scanning path to exploit this motion-vector distribution
characteristics. The spiral scanning begins the searching at the center of a search
window and then moves outwards with a spiral manner as shown in Figure 2-14. This
order of scanning will increase the probability of meeting the global minimum and thus

rejects the impossible candidate MBs earlier.
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Figure 2-14. Spiral scanning path in a search window with D=7.

The Minkowski’s inequality and partial distortion can be used to reduce
computation required for the calculation of SAD. If we examine all possible candidates

in a search window, identical result as the FSA can be obtained. The overhead
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introduced by the SEA is the calculation and comparison of the sum norm. The authors
[99] reduce the computation required for the sum norm by using a recursive technique.
Hence, all sum norms are pre-calculated and stored in a memory buffer. The
computational saving of the SEA and spiral-PDS have been evaluated in [96]. The
results shows that performance of the SEA and spiral-PDS are comparable but the PDS
does not require additional preprocessing. Note that the normalized PDS is not a lossless
algorithm although it scans all possible candidate MBs. Moreover, the partial distortion
of pixels is accumulated in a uniform pattern; such that rejection of impossible
candidates by normalize partial distortion is more accurate. However, for a hardware
implementation, uniform pattern may not be desirable as it results in more irregular

memory access.

2.2.2 Adaptive Partial Distortion Search

The capability of eliminating an impossible candidate MB by conventional PDS
depends on the comparison between SAD, and SADiemp min. If One can eliminate the
candidates at lower p-th accumulated partial distortion, the saving of computation can
be increased. We can develop different Adaptive Partial Distortion Searches based on
this idea.

The algorithm [96], “Fast Full-Search Motion-Estimation Algorithm Using
Representative Pixels and Adaptive Matching Scan”, (AMS-PDS) is one of these

adaptive approaches. The authors approximated the gradient magnitude of an image,

G (x, y)]|, by the following representation,

6l (x y)]| = \/(al (a); y)j +(8I (axy y)] zIal (g; y)Hm (x,y) (2-17)
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They used Taylor series expansion to formulate a predicting function of an image at
some position, a1, in terms of the image function and its spatial derivative at a nearby

position «; as given below,

1 azlt(o/)( oV + (2-18)

oo 2! 9a?

...+£an|t(a )
n oa""

where «;indicates the position (x,y) of the t-th frame.
After that, they approximately described the relation between a current frame at time
t+1 and a reference frame at time t using (2-18). Let e.1(«) be the prediction error and
given by

@.1(@)=[1,(@)~1 (or+cnw) 219
where cmv is a candidate motion vector, (cmvx, cmvy),

assuming that l1(a) = ly(at+mv), where mv=(mvx, mvy) is the true motion vector of a

pixel at position a. By substituting &’ =a+mv and a” = a +cmv into (2-18), we have

e (0!) - |a| t (0! + CITI\;Z(CITN— mv)I (2-20)

According to the approximation of the gradient magnitude defined in (2-17), the authors
claimed that the matching distortion at position « is proportional to the gradient
magnitude of reference block in the current frame. Another researcher [106] also
derived this relation by different approach.

The development of AMS-PDS is based on the above relation. Authors of the
AMS-PDS used adaptive block-matching-scan instead of the conventional raster
matching scan to calculate the SAD,. They use the image’s gradient magnitude to
determine the scanning direction and order. Two approaches have been developed in
[96]. We only describe the details of the one with the best performance in the following

paragraph.
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The AMS-PDS, first calculates magnitudes of pixel gradient in a MB by using the
finite difference from (2-17). Second it sums up gradient magnitudes of four blocks as
labeled in Figure 2-15(a). Let us define the sum of gradient magnitudes of block (i) to
be |block(i)|. Then, results of four cases, |block(i)|+|block(ii)|, |block(iii)|+|block(iv)|,
|block(i)|+|block(iii)| and |block(ii)|+|block(iv)| are evaluated to find the maximum value.
These results are used to decide horizontal-matching or vertical-matching scan.
Conceptually, the AMPDS assumes that the sum of gradient magnitudes of two aligned
blocks is maximum, the larger errors tends to line up along the same direction. It makes
the decision according to the following rules: 1) Horizontal-matching scan if
|block(i)|+|block(ii)| or |block(iii)|+|block(iv)| has maximum value. 2) Vertical-matching
scan if |block(i)|+|block(iii)| or |block(ii)[+|block(iv)| has maximum value. With the
selected scanning direction, it sorts the gradient magnitudes of rows or columns in the
MB as illustrated in Figure 2-15(b) and (c) respectively. Finally, the SAD, is
accumulated with the sorted order. For instance, the numbers indicated in Figure 2-15(b)

and (c) determines the order of a row or column that sum up to the SAD,,

0] (ii) 0

(iii) (iv) o

() (b) ©)

Figure 2-15. The AM S-PDS scheme. (a) Block division for deter mination of rows or columns
scanning. (b) Horizontal matching scan by sorted row gradient magnitudes. (c) Vertical matching
scan by sorted column gradient magnitudes.

Another researchers [97] also proposed a different adaptive PDS using the same
relation (2-19). They determined the accumulation order of pixel matching errors to

SAD,, in a more detailed way. Gradient magnitudes of a set of nearby pixel pairs are
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used to determine the accumulation order. Besides, they suggest using the Hilbert scan
[123] to further reduce the computational complexity of the PDS. The Hilbert scan
illustrated in Figure 2-16 preserve some of the 2-dimension spatial coherence of the
scanned data-space on a single dimensional sequence formed by the scan. They

calculated the gradient along the Hilbert scanned sequence and sorted the results.

Figure 2-16. TheHilbert scan in aMB.

In this algorithm, a total of 255 gradient magnitudes need to be sorted and a
conventional Count Sort algorithm is used. An outline of the Count Sort is expressed

here. For a given positive integer data set, A={a,,...,a,,...,a,_,}, the algorithm counts

the number of elements in A not exceeding a, for every n. By using the element values
to indexing an array of counter which is declared as C[m], m=0,...,max{A}, the
counting results are kept in the array. At the end of the counting, the array, C[m], carries
the required complete information to form the sorted A. (need a simple illustration?)
Accumulating the matching errors adaptively to SAD, is a simple and efficient
method for improving the performance of the partial distortion search. All of these two
algorithms provide significant progress. It must be point out that irregular memory
access is its major disadvantage for a hardware implementation. In addition, the relation
formulated by (2-19) is only valid in a region close enough to the best matching position
due to the limitation of the Taylor expansion series. In a practical search window, a lot

of candidate motion vectors are far from the best one. As a result, gradient-based
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adaptive technique limits the improvement of the PDS. Moreover, these two algorithms
do not suitable for coding of boundary MBs in arbitrarily shaped objects, unless

modification is applied.

2.2.3 Diamond Search Algorithm

Lossy motion estimation development attracts much attention in the field of video
coding, although different fast lossless algorithms have been proposed in the literature.
The computational requirement of these lossless techniques is still not suitable for real
time applications such as video conferencing and visual telephony sequences.
Fortunately, it is observed that the locally changed areas usually small and restricted
especially for sequences with low motion activities. Moreover, empirical experiences
show that error surfaces encountered during motion estimation are often decreasing
monotonically. These characteristics motivate the design of any fast search algorithms
that searching only a subset of the candidate MB in a search window.

The MPEG-4 verification model, VM14 [120] has adopted the Diamond Search
algorithm [80] for the motion estimation. In the proposition of the Diamond Search
(DS), the authors stated that the shape and size of search patterns jointly determine not
only the error performance of fast block matching algorithms but also their search speed.
The authors using several commonly used test image sequences to investigate the
motion vector distribution probabilities based on the FSA with the mean-square
difference (MSD) matching criterion. Their results indicated that about 53% (in large
motion case) to 99% (in small motion case) of the motion vectors are enclosed in a
circular support with radium of 2 pixels and obey the centrally biased motion vector
distribution. Furthermore, the displacement of real-world video sequences could be in
any direction but mainly in horizontal and vertical directions due to camera panning.

Based on these two observations, the author advised using the search points within a
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circle of radius equal to 2 pixels units to compose the search pattern. These search

points are indicated by “x” in Figure 2-17(a) within a dotted-line circle (radius = 2).

() (b) (©

Figure 2-17. (a) The appropriate search pattern support proposed in Diamond Search. (b) Large
diamond search pattern (LDSP), and (c) Small diamond sear ch pattern (SDSP)

The DS algorithm employs two search patterns as illustrated in Figure 2-17(b) and
(c) which are derived from the crosses “x” marked in Figure 2-17(a). The first pattern,
called large diamond search pattern (LDSP), comprises of 9 checking points from which
eight points surround the center one to compose a diamond shape. The second pattern
consisting of 5 checking points forms a smaller diamond shape, called small diamond
search pattern (SDSP). During the search, LDSP is repeatedly used until the step in
which the minimum block distortion occurs at the center point. The search pattern is
then switched from LDSP to SDSP as reaching to the final search stage. Among the five
checking points in SDSP, the position yielding the MBD provides the motion vector of
the best matching block. Note that a maximum overlapping region is chosen such that
number of search points at each next step will be minimized. The SAD values of the
search points obtained in the previous stage were stored in the memory, and thus re-
computation is not necessary. In addition, DS algorithm does not restrict the number of
search range. However, since all the SAD values found along the search path are always
in a decreasing order, the search path is impossible to form a closed search loop.

Therefore, the convergence of DS algorithm is guaranteed.
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In 2002, the authors [84] investigated the principle of the diamond shape pattern
that its speed improvement outperforms other square-shaped search pattern. Hence, they
proposed a Hexagon-Based Search Algorithm (HEXBS) that can achieve substantial
speedup comparing to the DS with similar MAD performance.

The authors found that the LDSP can arrive a far minimum position with fewer
search points and also have lesser probability to be trapped in local minima due to its
relatively large step size in both horizontal and vertical directions. Nevertheless, the

authors pointed out that the advancing speed of the DS is 2 pixels/step horizontally and

vertically but V2 diagonally as illustrated in Figure 2-18(a). It means that speedup
performance of the DS is sensitive to motion vectors in different directions. In order to
remedy this disadvantage, it prefers to have a search pattern approximate enough to a
circle. Hence, each search point can be utilized with maximum efficiency. The authors
proposed a large and small hexagonal search patterns, which depicted in Figure 2-18(b)

and (c) respectively.
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Figure 2-18. (a) Search Step size of Large diamond sear ch pattern, (b) proposed large HEXBS
pattern and (c) small HEXBS pattern.

The DS and HEXBS have much better performance when comparing to other
square-based searching algorithms, such as the [73, 75, 78 and 82]. Comparison
between the DS and HEXBS shows that the speed improvement rates of HEXBS over
DS are as high as about 40% with similar distortion performance. Because these

algorithms assume monotonically decreasing error surface, the major disadvantage is
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trapping in local minima. This problem often occurs in sequences with high motion
activities and boundary MBs of video objects, in which complex error surface happens

frequently.

2.2.4 Motion Vector Field Adaptive Search Technique

The Motion Vector Field Adaptive Search Technique (MVFAST) [85] is regarded
as an enhancement of the DS. It can get higher search speed with better PSNR
performance. The significant improvement of search efficiency is due to the application
of the large and small diamond patterns adaptively. The main idea is to select an
appropriate initial search point, while the point has high probability to close to the
global minimum. Then it performs the searching starting from the initial point with
different search pattern according to the motion activity. Details of the MVVFAST are
described in the following.

Determination of local motion activity is the first step of the algorithm. A local
motion vector field at a macroblock position is defined as the set of motion vectors in a
region of support (ROS) of that MB. The ROS of a MB defined in MVFAST includes 3

neighborhood MBs as shown in Figure 2-19.

MB2 | MB3

MB1 [ MB

Figure 2-19. Region of support (ROS) for the current MB consists of MB1, MB2 and M B3.

Let V={MV,,,MVLMV2 MV3} (2-21)
where MV__=(0,0), and MVi (i=1,...,3) is the motion vector of MBi in the

ROS.
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We define sum of each component’s length of a motion vector as a MV-length. A MV-
length of a motion vector MV, = (u;,v;) is thus given by |, =|u|+|v|. By using MV-
lengths of the MVi, the motion activity at the current MB position is defined as follows.
Let L= max{lvi} for all MV,.

Motion Activity =Low, if L<L;
=Medium, if L, <L<L,;
= High, if L>L,;

where L;=1 and L,=2 are the greatest distance from the centre point of the DS patterns

to any point on the small and large search pattern (Figure 2-17(b) and (c))

respectively.

The second step is the selection of the search center. A search center is the initial
search point in motion estimation. The choice of the search center depends on the local
motion activity at the current MB position. If the motion activity is low or medium, the
search center is the origin. Otherwise, the MV that yields the minimum SAD is chosen as
the search center.

With the determined motion activity, different searching is performed around the
search center. The MVFAST uses the original diamond search if the motion activity is
medium. On the other hand, it uses small diamond search pattern for the local search
and the resulting motion vector is obtained if center point yields the minimum SAD.

The MVFAST also includes an optional mode, early elimination of search. It
terminates a local search immediately when the SAD(0,0) is less than a threshold T=512.
The resulting motion vector is assigned as (0,0).

Another new algorithm, named Predictive Motion Vector Field Adaptive Search
Technique (PMVFAST) [86], which generalize the predictor (search center) selection
and use adaptive thresholding techniques. PMVFAST is a median motion vector biased

algorithm. The author [86] found that median vector have a much higher correlation

55



with the optimal one than the MV, for different test sequences. A brief description of
PMVFAST is given below.

In additional to the set V defined in (2-21), two more motion vector predictors are
involved in the PMVFAST. They are the median of the ROS motion vectors (MV,,) and
motion vector of the collocated MB in the reference frame (MV,). The PMVFAST

computes the SAD of the MV,,,, and the termination depends on the following criteria.

MV, =MV, ,and SAD(MV, ) < SADof collocated MB
Stop if <or
SAD(MV, ) < 256

After that, the PMVVFAST computes the SAD of MVy,, MV, and the MVi in Set V and

uses early elimination technique again by these criteria,

MV of minimum SAD (SAD
Stop if <or
SAD,,, <an adaptive threshold, ThresA

) =MV,_,,and SAD,,, < SAD of collocated MB

min

Then the MV associated with SADyn is used for searching with the search pattern of
MVFAST. If MV = MV, or an adaptive threshold, ThresB greater than 1535, the large
diamond search pattern is applied. On the hand, if the MV; and MV, are identical to
each other, small diamond search is applied only once to find the best MV. Otherwise,
the small diamond search of MVFAST is applied. Please refer to [121] for the
definitions of the adaptive thresholds, ThresA and ThresB.

Part 7 of the MPEG-4 [121, 122] have already accepted the MVFAST and
PMVFAST after extensive experiments. These two algorithms attain great speedup
performance and maintain the best PSNR when comparing to different lossy algorithms.
The PMVFAST is faster than MVVFAST at the expense of higher hardware complexity.
Both the MVVFAST and PMVFAST apply the ‘stop when good enough’ spirit, and the
spatial and temporal correlation between neighboring motion vectors to achieve such

significant improvement.
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2.3 Transform coding techniques for intraframe and interframe

Transform coding scheme has proven to be an effective technique for image
compression and video coding. A transform operation can be considered as using a set
of basis functions to synthesize an image given its corresponding transform coefficients.
Hence, a forward transform decomposes the original data into transform coefficients for
a given set of basis function. In terms of compression efficiency, the objective of a
transform is to decorrelate the original signal, and this decorrelation generally results in
the signal energy being redistributed among only a small set of transform coefficients.
As a result, many coefficients can be discarded after a certain quantization scheme and
for further encoding.

The most efficient transform that can maximize energy packing capability is the
Karhunen-Loéve Transform (KLT). Unfortunately, the KLT basis functions are source-
or image-dependent and require an estimate of the image covariance function for basis
functions generation. These drawbacks make the KLT less than ideal for image and
video coding.

In the fields of image processing and video coding, the first-order Markov model
is often used due to it simplicity for theoretical analysis. For the KLT, some researchers
made use of the first-order Markov model to analyze the KLT. At this simplified
situation, determination of the basis vectors of the KLT is not still data-dependent.
Hence, this model can be used for transform comparison.

The Discrete Cosine Transform (DCT) is the one widely used in the modern video
standards due to its fine decorrelation and energy compaction properties. In fact, one
can show that, for the case of the first-order Markov source, the DCT is asymptotically
equivalent to KLT as the adjacent element correlation coefficient tends to unity

[112,113].
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The analytical results show that the DCT is near optimal for intraframe coding.
However, modern video codecs apply the DCT to frames in both intra- and inter-mode
coding. It is well known that, after motion-compensation, the correlation between
adjacent prediction errors is less than those in the original image [114]. This observation
motivates different researchers to consider the role of the DCT in inter-mode coding.
For this reason, using the simple first-order Markov model to describe the statistical
properties of prediction errors is inaccurate and insufficient. Ref. [115] proposes a
compound covariance model for an analysis of the motion-compensated frame
difference. In [116], another compound covariance model was introduced to fit the
empirical covariance sequence.

The above issues shall be discussed with the following organization. First-order
Markov model plays an important role for still image and video sequence analysis. This
model is included in Section 2.3.1. Section 2.3.2 review the basic concept of the
optimum transform for coding, KLT. The relation between the KLT and the DCT will
also be discussed. Section 2.3.3 expresses the transform coding scheme of modern video
coding standards. This coding scheme involves the DCT for signal transform. It can be
shown that this scheme is designed extremely suitable for intraframe coding. Utilizing
the DCT for both intra- and inter-mode coding in the video codec is supported
empirically. Lack of theoretical basis motivates the research in this problem. The
analytical works for this purpose are illustrated in Section 2.3.4. Moreover, Section

2.3.4 also gives the conclusions drawn by these analytical models.

2.3.1 First order Markov model for Image Processing

The interdependence of data-source lies at the heart of any statistical data
compression scheme, and thus the correlation properties of images are of considerable

importance in the development of transform processing techniques.
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By regarding a one-dimensional frame as a set of random variable denoted as, f,,

where n is index or position of a frame element, we may express its autocovariance

matrix as,
M 2 2 2 2 7]
0y, Oy O3 -+ Oy (2-22)
2 2 2 2
Oy Oy Oy O)n
_ 2 2 2 2
COV(I )_ O3 O3 Oy 0 Ozy
2 2 2 2
[On: On2 Ons O
where
2 rE rE R
0.= E[(fm_ mefn - fn)] (2-23)

f_is the mean of random variable, fn,

m

If we assume the data is wide-sense stationary (WSS), the mean and variance can
be treated as constant and the covariance is a function of relative displacement only.

Hence, we do not need to consider the direction of displacement, d, between two

elements in (2-23), i.e. o7, = a‘fﬂ where d=m-n. Another important approximation for

an image field is that we frequently assume the value of a‘fj‘ Is related to the correlation

coefficient at distance one by 0"2‘ oc ld‘ and p, = p. After normalization, we may

rewrite (2-22) to

1 p ,0‘2‘ p\N—l\_ (2-24)

p 1 p P

cov(l)=| p? p 1 .. N

_pl.\l—l pm_z\ pm_s\ i_
0_2

where p = —‘;‘ usually named as correlation coefficient.

O
o
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It is the correlation (normalized covariance) matrix of the stationary first-order Markov

process.

2.3.2 The Karhunen-Loeéeve Transform

The Karhunen-Loeve Transform is a decorrelating transform for wide sense
stationary processes when the second order statistics (covariances) are known. For the
random variables F,, its autocovariance matrix defined in (2-22) is symmetric and
nonnegative definite. All of its eigenvalues are greater or equal to zero. Let T be a
N x N transform matrix which is unitary. The transformed F is given by Y=TF. The

autocovariance of Y is

cov(Y) =E[YY’] =E[TFFT]=TE[FF|T (2-25)
=TCOV(F)T

where *’ " is stand for a transpose.

For efficient compression, we would like to obtain uncorrelated transform coefficients,
such that their covariance has to be zero. That means the COV(Y) is diagonal after an
optimum transform. Let v, be the eigenvector of COV(F) corresponding to the

eigenvalue A,. With the following ordering of the Ay,

A2221.
We obtain a complete set of orthonormal eigenvectors. These eigenvectors form the

rows of the transform matrix required for the KLT.

/

T =V, VeV | (2-26)
To show that the KLT has the optimum energy packing capability (i.e. minimum mean
square error performance can be obtained by retain only most important M out of the N
transform coefficients), we may represent F by using only M preceding basis vectors
instead of totally N. By minimizing the resulting error energy, one will find that the

KLT achieves the optimal performance. Detailed derivation please refers to [112, 113].
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The above description apparently shows that the KLT is source-dependent. This
problem makes it not ideal for compression usage. For theoretical analysis, researchers
therefore take the alternative approach and employ the first-order Markov model. In this
case, the solutions of these basis vectors are expressed involving the eigenvalues,
An(p,Wr), Where wi, are real positive roots of a transcendental equation. Consequently, it
can be illustrated that the DCT is asymptotically equivalent to KLT for the Markov

model as p tends to unity [112, 113].

2.3.3 Discrete Cosine Transform for Video Coding

The separable 2-dimensional Discrete Cosine Transform used in the industrial

video standard is defined as,

1

V()= %C(U)C(V)NZ

1

" . .
> (i, j)cos (2 ;t)u” cos 2] ;Ii)\m (2-27)
j

where i, j are spatial coordinates in a block.

u, v are coordinates in the transform domain.
iz foru,v=0

1 otherwise

The most useful property of DCT coded blocks is that the coefficients can be
coarsely quantized without seriously affecting the quality of the image that results from
an inverse DCT of the quantized coefficients. In MPEG standards, the lowest spatial
frequency coefficients, which generally possess the greatest energy, are quantized most
finely, and the highest spatial frequency coefficients are quantized coarsely. The
guantized coefficients are stored in a register according to a predefined scanning order.
MPEG-4 defines a zigzag scan and other two alternative scans which are depicted in

Figure 2-20.
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Figure 2-20. (a) Zigzag scan, (b) Alternate-Horizontal scan, and (c) Alternate-Vertical scan.

The scanned coefficients are then entropy coded. It is well know that natural images are
dominated by low frequency components. These scanning orders favor the coding of
natural images. Because the quantized high frequency coefficients often equal zero, and
thus this long tailing zeros do not need to be coded.

The above coding scheme is well designed for intraframe coding. Some
researchers claimed that most of the performance gain of a coding scheme is obtained
by carefully designing quantizers that are tailored to the transform structure [124].
Nevertheless, this benefit is not obvious for coding of inter-mode. First, the lower
correlation between adjacent prediction errors predicted that among all famous
orthogonal transform, such as the Discrete Sine Transform (DST), Discrete Fourier
Transform (DFT) and DCT etc, the DCT may not again be the one closest to the KLT.
Second, it is observed that block-based compensation typically results in a peaky
distribution of the errors, with high residual concentration at block edges and image
edges [117, 118]. It leads to a scattering of the DCT coefficients and makes the
scanning order inappropriate. However, experimental results support using the DCT for
both intra- and inter-mode coding. It is because the difference between other transform
and the DCT is so marginal for the prediction error coding [115, 116]. It would be

simpler to employ a single transform in a practical coder.
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2.3.4 Theoretical analysis about the using of DCT for inter-mode
coding

Analytical investigation of transform coding algorithms requires a simple but
sufficiently accurate signal-source description for analytical treatment and to reflect the
practical signal characteristics. The first-order Markov-process satisfies these criteria,
and thus is widely used for still image analysis. However, statistical behaviors of the
motion-compensated errors is very different from that of natural image. The results
predicted from the simple Markov model did not persuade other researchers [115] of its
accuracy. Beside, they are unsatisfying the lack of theoretical basis about the suitability
of utilizing the DCT for encoding the prediction error. They proposed a compound
covariance model for the motion-compensated frame difference and demonstrated that
the DCT performs nearly optimally as the intraframe coding. A difference covariance
model, which takes overlapped block motion compensation into account, was derived in
[116] empirically.

To derive the compound covariance model [115], the authors started from the
definition of autocorrelation function. For the motion-compensated prediction error, its

autocorrelation function is given by

(2-29)

R(1LI) = E[fful+uiri-fua+u vk

f,(i+u+l, j+v+J)— ft+1(i+u+l,j+v+J)}]

where f,_ () is an incoming frame.

A

f..,(,) is a predicted frame with motion vector (u,v).
Due to the inaccuracy of motion estimation, by defining the true motion vector as
(Ai,Aj), error of the quantization of the motion vector to an integer pixel unit is known

as

(8,8) = (Ai +u,Aj —v)
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The author assumed that Ji and oj is a pair of independent identical random variables
with a uniform distribution in the interval [-a, a]. The parameter a represents inaccuracy
of the motion estimation, with a typical value of 0.5.

Hence, it can be shown [115] that the variance-normalized autocorrelation
function, Cg(l,J), of the motion-compensated frame difference (MCFD) can be

expressed as

pIpJ _( 1 T(p|+a_p|a)(pJ+a_pJa) (2-29)

when 0O<ac<l,J

where p is correlation coefficient

To simplify the problem, the author further assumed that the autocorrelation function
for the MCFD is separable. For instance, along the x-axis, the autocorrelation function is

derived as

2
4 _(Zalln p] o -pNep-2) -

a l 2
ac
In p®

C.(1) =

=p'Aa p)

2
1 a -a a (2-31)
2a|np] (p*=p*N2p —2)<1

a 1 2
2t
In p®

The value of function A(a, p) is very close to 0.5 over a wide range of values by a

where A(a, p)= _(

when O<a<|

and p. The 2-dimensional separable autocorrelation function for the MCFD is thus given

by
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C.(1,3)=C(1)c.(3) (2-32)

The aim of transform coding is to decorrelate the signals and thereby compress

the bitrate further. The heart of the KLT is the autocorrelation function of a data-source.
The authors used the proposed model to investigate transform gains of different
orthogonal transform coding, including the KLT, DCT, Discrete Fourier Transform
(DFT) and Discrete Sine Transform (DST) for the MCFD signals. Considering the
MCEFD signals in a single direction with a <1, its normalized autocorrelation matrix in

Toeplitz form is shown as below.

1 c.)  c - C(N-I)] (2-33)
C.() 1 C.() C.(N-2)
cov()=| C(2)  C) - C(N-3)
CN-1) CN-2) CN-3) - 1

Replacing Ce(1) by p'A(a, p) as derived in (2-30), we have

1 pAa.p)  p*ANap) - p MA@ p) (2-34)
pAa, p) 1 pAap) - p"A@p)
COV =| p*Ala,p)  pAla p) 1 - p"Aa p)
P A p) pMPAEp) pM AR p) - 1]

(2-34) was used to evaluate the transform gains of the four transform coding. The
results proved that the DCT appears to be closest to the KLT. The difference between
the DCT and other transforms are only marginal. In fact, the COV(l) in (2-34) can be

separated into two parts,

COV =R, +R, i (2-35)
1 D pz prl
p 1 p PNt
=Aa.p) p* p 1 - PV HL-Aap)l]
_pN—l pN—Z pN—S l |

where [I] is an identity matrix
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The first matrix Re; in (2-35) represents the autocorrelation matrix of a first-order
Markov process el with the correlation coefficient p. The second one is a diagonal
matrix. It reflects that the second component e2 is white noise with a flat power
spectrum. When we employ the KLT to (2-34), we have

T-COV-T" =T(R;+R,JT’
=T-Ry T'+R,

Consequently, the author concluded that the KLT for the first-order Markov model is
also the KLT for COV in (2-34) and the DCT remains a near optimal transform for
MCEFD signal.

However, other researchers [116] studied the covariance of inter-coded blocks of
four MPEG test sequences. According to their experimental results, they claimed that
the covariance model (2-34) do not appropriately fit the empirical covariance results.
Therefore, they proposed two empirical models, which are autoregressive covariance
models and a compound covariance model, to fit their requirements.

Autoregressive (AR) process may be used as a parametric description of a random
signal. An p-th order autoregressive process, AR(p), is defined by the following

stochastic difference equation

p
S + z .S =W, (2-36)
m=1

where w; denotes a write noise process with zero mean and variance o7 .
An AR(1) process represents the first-order Markov process by the difference equation
s +aX,,=4(1) 237)
where a; = - p.
o(1) is a delta function.
The covariance Cs (I) of a zero-mean WSS process X, satisfies the Yule-Walker

equations
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cs<|>+ilamcs<l—m>:a;a<l> ;

>0

(2-39)

The authors proposed an autoregressive covariance models with p <4 using (2-38). The

corresponding parameter an, for (2-38) are listed in the Table 2-1.

Table 2-1. AR(p) modelsfor parametric description of the empirical covariance of MCFD [116].

Y a 2% as as

1 -0.4683 - - -

2 -0.5080 0.0848 - -

3 -0.5205 0.1595 -0.1471 -

4 -0.5217 0.1608 -0.1514 0.0081

They also pointed out that the compound covariance model (2-34) is equivalent to

the equation,
c.()=A0"T+1-A)s01) 1>0 (2-39)
where A= A(a, p) = 0.5, with aand p is equal to 0.5 and 0.95 respectively.

However, this model deviates significantly from their experimental results. Hence, they

proposed another compound covariance model

s

C.(1)=coll +(1-c)p) (2-40)
where ¢, po and p; are model parameters.
The model parameters, c=0.17, po=0.91 and p;=0.38, were chosen to fit the empirical
covariance in the l;-norm sense.

This compound model was then used for transform gain comparison. For a block
size equal to 8, the coding gain of the DST and KLT is negligible comparing to that of
the DCT. This negligible loss and the superiority of the DCT for intraframe transform
coding explain the suitability of the DCT for both intra- and inter-mode transform
coding. With respect to the energy compaction performance for nonzero-mean signals, a

further advantage of the DCT compared to the DST is that the DC component of the

67



signal is compactly represented by the first DCT coefficient whereas the DC component
is distributed over the even indexed DST coefficients.

The close fit to empirical results and simplicity make the compound model (2-40)
very suitable for the analysis of block-based MCFD signal. On the other hand, this
model is pure empirical and the physical mean behind the model is still mystery to us.

The using of this model for other analytical purposes is so limited.
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Chapter 3. Fast motion estimation of arbitrarily shaped
video objects in MPEG-4

3.1 Introduction

MPEG-4 is an international standard which provides a coding scheme for
arbitrarily shaped video objects (VOs) [5, 120]. Each VO is composed of its temporal
instances, video object planes (VOPs), which is the central concept of MPEG-4 video.
Block-based motion estimation is also used for exploiting temporal redundancies in
arbitrarily shaped video objects, which is computationally the most demanding part
within the MPEG-4 standard. The support of arbitrarily shaped video objects makes
most of the existing fast motion estimation algorithms unsuitable.

In the past, much work such as the Motion Vector Field Adaptive Search
Technique (MVFAST) in the Part 7 of MPEG-4 [122], the Diamond Search (DS) [80]
and many other searching techniques [8, 69, 73-108] were reported for reducing the
complexity of motion estimation. It is known that motion estimation remains as a very
computationally intensive step in MPEG-4 arbitrarily shaped VOs encoding [104, 127].
Hence, It is highly desirable to reduce the computational requirement of motion
estimation. In MPEG-4, motion estimation is performed on two kinds of macroblocks:
the boundary macroblock (MB) and the opague MB. Since the motion activities in
opaque MBs are highly correlated with the neighboring boundary MBs, a new priority
search algorithm (PSA) for motion estimation is proposed in this chapter, which
performs motion estimation on al boundary macroblocks first in contrast to the
conventional raster-scanning approach. This search strategy works well if the motion
vectors in the boundary macroblocks truly represent the moving video object.

Consequently, the full search algorithm (FSA) is applied to the boundary MB in order to
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ensure its accuracy. However, the computational burden of motion estimation of the
boundary MBs must be reduced. Fast search algorithms proposed in the past tend to
reduce the amount of computation by limiting the number of locations to be searched.
Nearly all of these agorithms assume that the distortion function increases
monotonically as the search location moves away from the global minimum.
Unfortunately, thisis usualy not true in boundary MBs. We can reasonably assume that
it is monotonic in a small neighborhood around the global minimum. Consequently, one
simple strategy, but perhaps the most efficient and reliable one, is to place the checking
point as close as possible to the global minimum. In this charter, we aso propose a fast
search algorithm, which incorporates the binary apha-plane to predict accurately the
motion vectors of boundary MBs such that these motion vectors can be used in the PSA.
Experimental results show that, when compared to conventional methods, our approach
requires low computational complexity and provides significant improvement in terms
of accuracy in motion-compensated video object planes. The proposed agorithm
incorporates the binary al pha-plane to accurately predict the motion vectors of boundary
MBs such that the motion-compensated VVOPs are tied more closely to the video object.
Besides, these accurate motion vectors can be used to develop an efficient motion
estimation algorithm for the remaining opaque MB.

In Section 3.2, the characteristics of different types of macroblocks in the
bounding box of a VOP are studied. According to these characteristics, a new priority
search algorithm (PSA) is introduced. This section also shows that the accuracy of the
motion vectors of boundary macroblocks is critical in the performance of the proposed
PSA. In section 3.3, we present an in-depth study of the correlation between the SAD
error surface and shape information of alpha-plane, and then formulate a reliable search

algorithm for boundary macroblock. Section 3.4 describes the details of the proposed
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PSA with the new search algorithm for boundary macroblock. Experimental results are

then presented in Section 3.5. Finally a conclusion is drawn in Section 3.6.

3.2 Priority Search Algorithm (PSA) on Arbitrarily Shaped
Video Objects

A VOP can be fully described by texture variations and shape representation, as
shown in Figure 3-1. The shape information is represented as a binary alpha-plane. The
alpha-plane contains the information to identify pixels which are inside an object (value
of apha-plane = 1), and pixels which are outside the object (vaue of apha-plane = 0),
as depicted in Figure 3-1(b). For efficient block motion estimation, it is important to
know the characteristics of different types of macroblocks. MPEG-4 defines an
arbitrarily shaped VOP by means of a bounding box, in which details of the definition
of a bounding box have been introduced in Charter 2, Section 2.1.2.1. In Figure 3-1,
three types of macroblocks exist in the bounding box of the VOP. Their corresponding

motion search strategies are summarized as follows.

Transparent
macroblock

Boundary
macroblock

Opaque
macroblock

Bounding
Box
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Figure 3-1. Representation of the VOP. (a) Image of original “Bream” VOP. (b) Binary alpha-plane
of “Bream” VOP.

o Transparent macroblocks: They are not coded and recovered at the decoder side
from the shape information. Thus no motion search is required.

o Boundary macroblocks: This type of MB partialy includes object pixels, and
polygon matching is employed to adopt arbitrarily shaped moving video objects.
The human visual system is very sensitive to poor motion-compensated
prediction along the moving contours of video objects, which are located on
boundary macroblocks. A correct motion estimation of boundary macroblocks is
critical to the development of an efficient motion estimation algorithm for
arbitrarily shaped moving video objects.

o Opaque macroblocks: The opague MB is coded using the conventional block
matching motion estimation algorithm. Usually the motion activities within the
video object are consistent; hence the motion activities in these MBs are highly
correlated with the neighboring boundary MBs provided that the motion vectors
in the boundary MBs truly represent the moving video object. For example, the
motion vector of the opagque macroblock, MBe, in Figure 3-1 is correlated highly
with those of the boundary macroblocks, MB,, MBy, MB, MBg4 and MB;. Thus,
the motion vectors of the boundary MBs can play a significant role in motion

estimation for the opaque MB.
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The characteristics of different types of MBs described above inspired to develop
a new priority search algorithm (PSA) which performs motion estimation on al
boundary MBs first within the bounding box of a VOP in contrast to the conventional
raster-scanning approach (scanning MBs in the order of top-to-bottom and left-to-right).
The idea behind the new search strategy is that the opagque MBs which are inside of
moving video objects are correlated highly with the moving boundary MBs. For each
opague MB, if all motion vectors of its neighboring boundary MBs have already been
computed, the current opague MB can take the best-matched one among al its
neighboring motion vectors as the initial centre and employ a conventional fast block
matching algorithm such as the Diamond Search (DS) [80] to compute its motion vector
for a reduction of the computational complexity. It is likely that the global minimum
can be found by aloca search such as using the DS if the initial centre is close enough
to the globa minimum. Hence, the computations for finding the motion vectors of
opague MBs will be postponed until al motion vectors of the boundary MBs are
available. The advantage of this new search strategy is that it avoids unnecessary
computations of the opague MB so that the motion search can be conducted more
efficiently.

In order to ensure the accuracy of the motion vectors of the boundary MBs, a full
search algorithm (FSA) which evaluates the SAD at al possible locations of the search
window is employed. By using the accurate motion vectors of the boundary MBs, the
motion vectors of the opaque MBs can be found by the DS. This PSA produces smaller
motion compensation errors, and has a lower computational complexity as compared
with the traditiona raster-scanning motion estimation. Figure 3-2 depicts the
performance of the PSA in encoding the “Bream” video object. The figure plots the
mean square errors (M SE) between the original VOP and the motion-compensated VOP

of the PSA with the FSA performing on boundary macroblocks and the DS on opaque
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MBs using the best-matched motion vector among all its neighboring motion vectors as
theinitial centre (PSA(FSA+DS)) and compares the results with those of the full search
algorithm (FSA). The results show that the MSE performance of the PSA(FSA+DYS) is

very close to the FSA. Details on the ssmulation environment are described in Section

3.5.

— % - PSA(DS+DS)
— -4~ PSA(FSA+DS)
—+—FSA

225 4

175 A
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MSE per pixel
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frame number

Figure 3-2. M SE performance of PSA for “Bream” video object.

As mentioned above, the accuracy of the motion information of boundary
macroblocks is critical to PSA(FSA+DS). Consequently, the FSA is used to ensure its
accuracy. Overall speaking, over 90% of the total search points required that the whole
motion estimation process are performed for the boundary macroblocks. In order to
increase the flexibility and practicability of the PSA(FSA+DS), the computational
burden of the motion estimation of the boundary macroblocks must be reduced. In
Figure 3-2, we aso analyze the MSE performance of the PSA by using the DS for both

the boundary macroblocks and the opaque macroblocks (PSA(DS+DS)), in which the
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best-matched motion vector among all of its neighboring motion vectors obtained by the
DS act as an initia centre for performing the DS on opague MBs. Figure 3-2 shows that
thereisabig prediction error in PSA(DS+DS) as compared with that of the FSA. Thisis
because the probability of encountering the local minimum problem is more often in the
boundary MB. This phenomenon could achieve our desire to develop afast and efficient

search algorithm for the boundary MB, which is described in the following section.

3.3 Binary Alpha-plane Assisted Search algorithm (BAAS) of
the Boundary Macroblock

In traditional block based motion estimations, the error measure criterion such as
the sum of absolute differences (SAD) for block matching motion estimation is
calculated using all pixels. This conventional block matching approach is applied to the
opaque MB. But, on the boundary MB, the binary alpha-plane for the VOP is used to
exclude the pixels of the MB that are outside of the VOP. This forms a polygon
matching instead of block matching for the motion estimation of the boundary MB. The
SAD matching criterion used in the boundary MBs is a measure of the error between a
MB of the present frame and a MB with displacement (u,v) of the previous frame with a
block size of NxN pixels, and is calculated only on the pixels inside the object, and can

be written as

pzd
LN

-1 N-1
SAD . (U V) = DN [ .G, ) = fou(i+u, j +V) |- (alpha# 0) (3-1)
i j=0 n

Il
o

where fi(i,j) isthe intensity of the pixel at location (i,j) within the macroblock in

thet ™ frame.

From (3-1), the maximum motion in the vertical and horizontal directions is =D.

There are thus (2D+1)? candidates in total to be checked if the full search algorithm is
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used, each corresponding to a checking point in the search window. The SAD vaues
that result from these checking points form an error surface.

The statistical behavior of an error surface has a significant impact on the
performance of afast search algorithm. For the surface of the boundary MB as shown in
Figure 3-3(a), it contains a large number of local minima due to the repetitive padding
[52] of an arbitrarily shaped video object. Almost all conventional fast algorithms have
assumed explicitly or implicitly [8] that the error surface is unimodal over the search
window. As a consequence, it is unlikely that conventional fast search algorithms would
converge to the global minimum when performing motion estimations on the boundary
MB. In other words, the search would easily be trapped into alocal minimum.

Without loss of generality, we employ the Diamond Search algorithm (DS) as an
example to illustrate the problem of conventional fast search algorithms on the
boundary macroblock. Let us recall that, the original diamond pattern as shown in
Figure 2-17(b) is a basic searching pattern of the DS. It consists of nine candidate search
points. For each of the nine candidate search points, the SAD is computed. If the
minimum SAD is found at the centre of the diamond pattern, a shrunk diamond pattern
as shown in Figure 2-17(c) is used with the same centre and the candidate point that
gives the lowest SAD is chosen as the estimated motion vector. Otherwise, the minimum
SAD point in the previous search step could be regarded as a new centre of the original
diamond pattern for a next search step. Of course, the DS relies on the assumption that
the SAD measure decreases monotonically as the search point moves closer to the
optimal point. It can easily be trapped into the local minimum in cases where the error

surface looks like the one in Figure 3-3(a).

76



3000——

.ﬂ‘i-..' .*
", ; ‘.#

000 -

1000——

=

)

)

‘\ >
WY
M ;- tH

\\%ﬂ;
\\%‘*"';l'l'n'f#

100——

Figure 3-3 (b)

Figure 3-3. Therelationship between (a) the error surface and (b) the proposed BAM S surface of
the boundary macroblock.
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Figure 3-4. A nonumimodal error surfacetested by a checking block. (a) The checking block starts
at theorigin and a false checking results, hence alocal minimum isfound. (b) If theinitial checking
block is close enough to the global minimum, the global minimum can be successfully found.

Let us use Figure 3-4 to give a clearer account of this phenomenon. Figure 3-4(a)
shows a nonunimodal surface of a boundary macroblock. The initial step of the DS
starts at the origin of the error surface, the centre point in the checking block wins. It
stops the search process and alocal minimum will be found. However, it is seen that the
global minimum is located at the far side of the winning point and the SAD value of the
winning point is significantly larger than that of the global minimum. This will affect
the accuracy of the motion vector of the boundary macroblock.

Despite the error surface exhibiting uncertainties in a large spatial scale, we can
reasonably assume that it is monotonic in a small neighborhood around the global
minimum. In the existence of local minima, one simple strategy, but perhaps the most
efficient and reliable, is to place the starting diamond pattern as close as possible to the
global minimum, as depicted in Figure 3-4(b). If the initial diamond pattern is close
enough to the global minimum, it will likely be able to find it through a local search.
One possible solution to prevent the problem of trapping to alocal minimum is to test

more starting points which spread across the search window.
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Figure 3-5. Regular SPP

Figure 3-5 shows one of the starting point patterns (SPP) in which the starting points
(SP) are distributed evenly over the search window. However, it is inefficient to use so
many of the starting points in this regular SPP. It is obvious that if the number of
starting points is reduced as much as possible and the starting point is as close as
possible to the true motion vector, the search agorithm becomes efficient. Hence, we
have to adjust the regular SPP so that the limited SPs have a higher chance of catching
the global minimum. In this study, we try to employ the binary apha-plane of an
arbitrarily shaped video object for the adjustment of the regular SPP. It generally
includes a matching process for tracking a polygon shape in the separated VOPs and we
will refer it to as a Binary Alphaplane Assisted Search algorithm (BAAS). The
proposed algorithm first estimates an initial probability of being the global minimum for
each possible matching pair between the current boundary macroblock and the
macroblock at the regular SPP which is updated based on the shape information. In the
following, we highlight the main steps of our BAAS.
o Step 1: Adjustment of the regular SPP

In order to evaluate the similarity of arbitrary shapes between two macroblocks,

we define a cost function which should have a small value or be zero only if the two

79




macroblocks have identical shapes. A binary apha-plane matching score (BAMYS) is
introduced to measure the shape similarity between a boundary macroblock of the
present VOP and a macroblock with displacement (u,v) of the previous VOP with a

block size of NxN pixels.

N-1 N-

BAMS(u,v) = > > BA(i, j) ® BA,(i+u,j+V) (3-2)

i=0 j=

=

where BAy(-,-) and BA,1(:,) are the values of the binary alpha-plane of the current
boundary macroblock at the t" VOP and the reference macroblock at the (t-1)™ VOP
that are to be compared respectively, and ® denotes the exclusive-or operation.

The adjustment of the regular SPP is based on the measure of how high the
probability of it being the global minimum of each possible matching pair between the
current target MB and the MB at the regular SPP. The BAMS s used to determine if the
polygon shapes in the two boundary macroblocks are similar. Hence, the macroblock in
the regular SPP has a high probability of being closest to the global minimum. Figure
3-3 plots the error surfaces and the BAMS surfaces of a boundary MB. We have found
that the correlation between these two surfaces is very high and it further ensures that
the motion search algorithm can be guided by the BAMS. Thus a macroblock in the
regular SPP whose BAMS is less than a pre-defined threshold, Tgams, iS good enough to
be an interested SP. In other words, this SP is reserved in the updated SPP. In order to
normalize thresholding, the Tgaus must be proportional to the number of opague pixels

of the current macroblock. That is,

1N-1

Toaus = Z BA, (i, 1) (33

i=0 j=

where «isaproportional constant.

o Step 2: The formation of the final SPP
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In order to reduce further the computational complexity, the updated SPP can be
refined by using the image intensity. A simple way is to employ the SAD polygon
matching criterion. Selection of the best-matched SP as compared to other SPs in the
updated SPP is based upon the SAD values, and it is defined as

Gy = SAD, — SAD,i1 in upctued 5 (3.4
where k means to cover all selected SPs of the updated SPP, except the SP with the
smallest value of SAD in the updated SPP, SADyin in updated_sep 1S the smallest value in
the updated SPP and SADy is the value of the SAD from the SP in the updated SPP.
Two major criteria are used to form the final SPP. First, the SP with the smallest value
must be reserved as the final SPP. Second, the value of Gy is used to establish the fina
SPP. If the value of Gy is small enough (smaller than £ x SADyin in_updated_spp, Where Sis
another constant of proportionality), it implies that the probability of this SP being the
global minimum is high. In other words, this SP must be included in the fina SPP;
otherwise, this SP is eliminated from the updated SPP. After examining all the SPs in
the updated SPP, the final SPPis formed.

o Step 3: Motion vector estimation using the final SSP as the starting point

After the establishment of the final SPP, each SP in the final SPP serves as the

starting point for one of the conventional fast searching algorithms, such as the DS.

Finally, a search is conducted to find the minimum value of the SAD.

3.4 The proposed PSA with the BAAS performing on the
Boundary Macroblock, PSA(BAAS+DS)

In this section, a fast motion estimation algorithm for arbitrarily shaped video
objects is described and this new algorithm employs both PSA and BAAS as mentioned
above. The proposed agorithm is mainly divided into two stages. The first stage

involves a fast motion estimation of boundary MBs with the help of the alpha-plane
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(BAAS) while the second stage estimates the motion of opaque macroblocks through

motion vectors of its neighboring boundary MBs (PSA). In other words, the boundary

MBs employ the BAAS to ensure accuracy of their motion vectors. While the motion

vectors of opague MBs can be found by the DS through the help of the accurate motion

vectors of boundary macroblocks. Some details of the proposed algorithm are given
below.

1. To estimate the motion vectors of boundary macroblocks: By using the binary
alpha-plane, the macroblocks of a VOP can be easily classified into three types:
transparent macroblocks, boundary macroblocks, and opague macroblocks. Only
motion estimation of the boundary macroblocks is handled in this stage by using
the BAAS as mentioned in Section 3.3, and motion estimation of opague
macroblocks is postponed to the second stage.

2.  To estimate the motion vectors of opague macroblocks: The opaque MBsinside a
video object correlate highly with the neighboring MBs. Thus, if there are
neighboring MBs for which the motion vectors have already been computed, the
current MB will select one of these motion vectors as the initial centre of the DS.
Besides, the zero motion vector, (0,0) is also considered as an initia candidate
centre. It can exploit the center-biased motion-vector distribution characteristics
of real-world video sequences and avoid incorrect predictions if all neighboring
MB motion vectors fail. In the following, the process of motion estimation of the
remaining opaque macroblocks is described as shown below.

a) Determination of the initial search centre: Since the correlation between
the opague macroblock and its corresponding macroblocks is high in
genera as shown in Figure 3-6, the initial search centre of the opague
macroblock is the best-matched motion vector among al of its

neighbouring macroblocks and it is given by
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SCint = arg,,,min SAD(u,v) (3-5)

where (u,v) € {estimated motion vectors of neighbouring macroblocks, (0,0)}

b) SC isthen regarded as theinitial search centre to perform the DS.

Figure 3-6. Example of high correlation between the motion vector s of opaque macroblock and
those of the boundary macroblocks.

3.5 Simulation Results

3.5.1 Quality comparison

A series of computer simulations have been conducted to evaluate the
performance of the proposed algorithm. It is obvious that quality of the provided binary
alpha-plane of a video object seriously affects our proposed BAAS agorithm. Hence,
we generally look for sequences with available binary alpha planes for video objects,
such as the “Goldfish”, “Children”, “Bream”, etc for our experimental work. However,
we have aso included a segmented video object in the “Stefan” sequence in our
simulation to test this kind of situation. Note that the sequence “ Stefan” contains some
fast moving objects and fast camera motion. A moving object of the “ Stefan” sequence
is depicted in Figure 3-7 and the alpha plane of which was obtained from private
communications. In our simulation, the maximum allowable displacement in both
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horizontal and vertical directions is 15 with a block size of 16x16. The mean square
error (MSE) is used to compare the performance of the proposed algorithm with some
related techniques reported in the literature. For our proposed PSA(BAASt+DS)
agorithm, o and f were set to 0.3 and 0.25, respectively. Table 3-1 lists the
experimental results to determine the values of o and . The case with ¢ = 0.3 and § =
0.5 is the optimal setting that obtains the minimum MSE result for our tested video
objects. In order to minimize the required computationa load, we have decreased « and
p to 0.25 separately. It is because decreasing a and S can reduce the number of
interested starting points (SP) in the regular starting point patterns (SPP). Moreover, we
can use a bitwise shift operation to replace the floating-point multiplication of 0.25. We
have found that if @ = 0.3 and = 0.25, it becomes the best setting to trade off the

required number of operators and M SE performance.

(@) VOP at Frame 87

(b) VOP at Frame 88

Figure 3-7. Examples of the video object plane in segmented " Stefan" .
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Table 3-1. Experimental resultsto determine a and .

| Number of Addition | Number of Absolute operation | MSE
%=03;3=05

Bream 3174676 1126172 173.1

Children 3733316 1531701 101.6

Goldfish 8874788 3555965 116.5
«=025; =05

Bream 2991453 1025084 173.7

Children 3547168 1431670 101.8

Goldfish 8424077 3312306 117.5
«=03;8=025

Bream 2620971 839357 173.1

Children 2982690 1148788 101.9

Goldfish 7159290 2678477 116.8

Figure 3-8 compares the results of the MSE of the motion-compensated video
object of the proposed PSA(BAAS+DS) agorithm together with the results of other
approaches, including the FSA, the DS, the PSA(FSA+DS), and the PSA(DS+DS). It
shows that there is a big increment in prediction error for the PSA(DS+DS) and the
conventional DS as compared to that of the FSA. This is because the probability of
having complex error surfaces as shown in Figure 3-3(a) is large for boundary
macroblocks with fast moving objects, especially after the transparent pixels in a
bounding box are padded using the repetitive padding process defined in MPEG-4. This
situation causes an unreliable stop in the search for using the conventional DS, and it
implies that these kinds of algorithms can be trapped in a loca minimum easily.
However, our BAAS can resolve this problem by placing one of the starting points
closest to the global minimum which is obtained by making use of the binary alpha-
plane. For the video sequence, “Stefan”, the object is not perfectly represented by its
segment mask (Figure 3-7). However, shape correlation between masks of successive
VOPs can provide useful shape information for our BAAS to assist the boundary
macroblock motion estimation in a VOP. The evidence is shown in Figure 3-9 and

Table 3-2. Figure 3-9 compares the performance of different search agorithms
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including the BAAS, DS and FSA when they are applied to process boundary

macroblocks only. Table 3-2 summarizes the average peak signal to noise ratios (PSNR)

and Mean Square Errors (MSE) of different kinds of macroblocks with different search

algorithms. The proposed BAAS is significantly better than that of the DS, which

provides about 0.5dB PSNR improvement in the boundary macroblock. Moreover,

Figure 3-10 compares the PSNR performance of the algorithms for boundary

macroblocks of Video objects with high motion activity, such as “Bream” and

“Segmented Stefan”. We can find that up to about 4dB PSNR improvement can be

achieved by the BAAS, while the human visual system is very sensitive to the defeat at

object edge regions.

Table 3-2. Comparison of average PSNR and M SE for various algorithms per VOP and in

differ nent types of macraoblock.

Algorithms PSNR (db) MSE of | PSNR (dB) of MSE of PSNR (dB) MSE of
of VOP VOP boundary boundary of opague opaque
macroblock | maccroblock | macroblock | macroblock
Children (Average Num. of boundary MB : Average Num. of Opaque MB = 74 : 20)
FSA 26.0 169.9 27.0 133.1 235 306.9
DS 25.6 189.9 26.6 151.8 23.3 330.7
PSA(BAAS+DS) 25.9 173.1 27.0 136.1 235 310.0
Bream (Average Num. of boundary MB :Average Num. of Opaque MB =54 :78)
FSA 28.7 98.5 32.3 41.8 274 130.0
DS 27.6 128.4 315 53.0 26.3 170.7
PSA(BAAS+DS) 28.6 101.9 32.0 4.7 27.3 133.8
Goldfish (Average Num. of boundary MB : Average Num. of Opaque MB = 141 : 106)
FSA 28.1 106.2 27.3 125.2 29.5 789
DS 271 132.3 26.3 159.9 28.8 93.6
PSA(BAAS+DS) 21.7 116.8 26.9 137.8 29.1 854
Segmented Stefan(Average Num. of boundary MB : Average Num. of Opaque MB = 28 :6)

FSA 22.6 381.6 229 358.7 21.8 505.7
DS 21.8 462.1 22.0 442.7 214 562.8
PSA(BAAS+DS) 224 401.9 22.6 378.8 21.7 525.7

The PSNR of opaque MBs by using DS to process video objects in “Children”,

“Bream”, “Goldfish” and “Stefan” are 23.3dB, 26.3dB, 28.8dB and 21.4dB respectively.

Results of using PSA(BAAS+DS) are 23.5dB, 27.3dB, 29.1dB and 21.7dB for the
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above video objects respectively. This shows that the PSA coupled with the BAAS can
provide about 0.45dB PSNR improvement for coding the opague macroblocks in our
tested sequences. The above results show that an accurate estimation of motion vectors
of boundary macroblocks making use of the BAAS and the PSA can successfully
provide motion estimation for the opaque macroblock of VOs.

The average PSNR performance per VOP of the PSA(BAAS+DS) is about
22.4dB. It is very close to the average PSNR of the FSA which is about 22.6dB for the

tested sequences.
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Figure 3-8(a) “ Goldenfish”
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Figure 3-8(d) Segmented “ Stefan”

Figure 3-8. M SE performance comparison of M PEG-4 video objects. (a) “ Goldenfish”, (b)
“Children”, (c) “Bream” and (d) Segmented “ Stefan”
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Figure 3-9. M SE performance comparison of boundary macroblocks. (a) “ Goldfish”, (b)
“Children”, (c) “Bream” and (d) Segmented “ Stefan” .
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Figure 3-10. PSNR perfor mance comparison of boundary macraoblocks. (a) “ Bream” and (b)
Segmented “ Stefan” .

3.5.2 Complexity analysis

In this section, the computational complexity of our proposed algorithm is
compared with that of the conventional algorithms including the FSA, the DS and that
of the PSA(FSA+DS) and the PSA(DS+DS). In general, several factors are needed to be
taken into account in comparing the cost associated with various algorithms. These
factors include speed, chip area and power, and a trade off among these factors can be
made depending upon the architecture to be used, hence a comparison of the costs
associated with various algorithms is not an easy task. However, it is possible to choose
asimple way of defining complexity. In comparing 8-bit fixed point implementations, it
is assumed that the cost of an 8-bit addition is 16 times more than that of bitwise

manipulation [128].
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The fixed-point implementation of the proposed algorithm is now compared with
that of the FSA, that of the DS, that of the PSA(FSA+DS) and that of the PSA(DS+DS).
The matching criterion as shown in (3-1) requires two-dimensional operations; i.e.
Nopaque-1 additions, Nopaque Subtractions, and Ngpague abdsolute conversions per search
point are needed; where Nopague IS the number of opague pixelsin the MB. Therefore, for
its 961 search points in the search range of the FSA, each MB requires 961x(Nopaque-1)
additions, 961x(Nopague) subtractions, and 961x(Ngpaque) absolute conversions. For the
DS and the search algorithms with the help of our proposed PSA and BAAS, only the
average number of search points per MB for the entire sequence is reported. For the
conventional DS and the proposed BAAS, the number of search points required depends
on whether the stop criterion is fulfilled.

Our proposed BAAS employs multiple initial search points to enhance the
accuracy of the motion vectors of boundary MBs. Apart from calculating the matching
criterion, the formation of the final SPP for providing multiple initial search points is
the maor overhead of our proposed BAAS. Its computational complexity is now
examined. Step (2) in the BAAS is not considered as overhead since its major
computation has been taken into account in the required search points as mentioned
above and it just requires one additional multiplication for the calculation of b ~
SADyin_in_updated_spp- 10 adjust the regular SPP, a computational effort which is
equivalent to 49 times of that required for BAMS calculation and selection process, as
shown in (3-3) and (3-4), is required in the boundary macroblock. From (3-3), it is
obvious that the BAMS can be easily implemented by a simple circuitry containing an
‘XOR’ logic gate and a counter. The mgjor advantage in using this binary alpha-planeis
its simplicity, which requires 256 bitwise operations per search point and it is equivalent

to 16 additions per search point. The selection process involves the calculation of Tgaus,
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as shown in (3-4). Again, the calculation of Tgaus iS sSimply implemented by a counter
and one multiplication.

In the PSA algorithm, the initial search centre for an opaque MB is determined by
finding the best-matched motion vector in a set of candidate initial centres which
include al estimated neighboring motion vectors and the zero motion vector, (0,0). The
determination is just considered as the additional search points. Combining all these,
Table 3-3 shows a comparison of the operational complexity of the proposed PSA with
different combinations of using the new BAAS, the DS and the FS, the conventional DS
and the conventional FSA. The table shows that the PSA(BAAS+DS) requires more
computational effort as compared with the DS and the PSA(DS+DS). This is because
BAAS can avoid the serious loca minimum problem of the DS by involving a
reasonable number of starting points in the boundary MBs, which have a high degree of
similarity of arbitrary shapes between the current MB and the MB in the search window.
However, the proposed PSA(BAAS+DYS) is fast compared with the PSA(FSA+DS), and
it ismore significant in the case of the FSA. On average, the PSA(BAAS-DS) can speed
up the motion estimation about 15 and 23 times in terms of the total number of

operations when compared to the PSA(FS+DS) and the FSA respectively.
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Table 3-3. Comparison of computational complexity and average M SE for variousalgorithms.

Algorithms Average Average Average Num. Average Average | Average
Num. of Num. of of bitwise XOR Num. of MSE PSNR
additions per absolute per VOP multiplication
VOP conversions | (equivaentto per VOP
per VOP 8-hit additions)
Children

FSA 45,835,483 22,962,590 — — 169.9 26.0
DS 804,671 403,123 - - 189.9 25.6
PSA(FSA+DS) 36,405,768 18,238,441 — — 170.7 26.0
PSA(DS+DYS) 829,356 415,425 - - 185.5 25.6
PSA(BAAS+DS) 1,680,712 839,357 57,817 147 173.1 259

(925,068/16)

Bream

FSA 64,836,153 32,481,517 — — 98.5 28.7
DS 1,278,221 640,361 — — 128.4 27.6
PSA(FSA+DS) 27,066,110 13,559,355 — — 100.7 28.6
PSA(DS+DS) 1,213,546 607,777 — — 105.2 28.4
PSA(BAAS+DS) 2,297,516 1,148,788 42,132 108 101.9 28.6

(674,104/16)

Goldfish
FSA 121,509,689 | 60,873,738 - - 106.2 28.1
DS 2,931,646 1,468,692 — — 132.3 27.1
PSA(FSA+DYS) 70,485,018 35,311,215 — — 109.6 27.9
PSA(DS+DS) 2,709,257 1,357,018 — — 129.2 27.2
PSA(BAAS+DS) 5,356,807 2,678,477 110,835 283 116.8 27.7
(1,773,361/16)
Stefan

FSA 16,443,488 8,237,833 - - 381.6 22.6
DS 434,657 120,396 - - 462.1 21.8
PSA(FSA+DS) 14,164,687 6,855,377 - - 385.2 22.6
PSA(DS+DYS) 426,708 120,092 - - 456.0 21.9
PSA(BAAS+DS) 1,226,416 355,775 21,748 56 401.9 224

(347,960/16)

3.6 Conclusions

In this charter, a fast search agorithm for block motion estimation of arbitrarily

shaped video objects in MPEG-4 has been proposed. By considering the correlation

between the boundary macroblock (MB) and the opague MB, a priority search

algorithm (PSA) for arbitrarily shaped video objects has been proposed. The PSA

initially performs motion estimation on all boundary MBs within the bounding box of a

VOP. This is in contrast with the conventional raster-scanning approach. The

motivation behind the new search strategy is that the opague MBs which are inside of
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moving video objects are correlated highly with the moving boundary MBs. For each
opague MB, if all motion vectors of its neighboring boundary MBs have already been
computed, the current opague MB can take the best-matched one among all its
neighboring motion vectors and the zero motion vector (0,0) as the initial centre and
employ a conventional fast block matching algorithm. We have also demonstrated that
obtai ning accurate motion information about boundary MBs is important to improve the
performance of the proposed motion estimation algorithm for VOP.

A fast and efficient algorithm for estimating the motion vectors of boundary MBs
Is suggested, which is referred to as the binary apha-plane assisted search (BAAYS) in
this paper. The binary apha-plane is used for the adjustment of the starting point
patterns of the search windows such that a limited number of starting points can still
provide a high chance of catching the global minimum in the boundary MBs.
Experimental results show that our PSA coupled with the BAAS can reduce the heavy
computational burden of the FSA without significantly increasing the prediction error of
the motion-compensated frame. The proposed algorithm is significantly better than that
of the famous DS and substantially improves the accuracy of the block motion
estimation for MPEG-4 video objects.

However, because the BAAS and the PSA are not highly regular, hardware
implementation is difficult. On the other hand, as genera-purpose processors are
becoming more and more powerful, software encoding will likely be possible, since this
isatrend in video processing. As a concluding remark, we believe that the results of our

work will certainly be useful in the future development of software MPEG-4 codecs.
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Chapter 4. New Adaptive Partial Distortion Search
Using Clustered Pixel Matching Error
Characteristic

4.1 Introduction

In order to reduce the computation load, many conventional fast block-matching
algorithms have been developed to reduce the set of possible searching points in the
search window. All of these algorithms produce some quality degradation of a predicted
image. Alternatively, another kind of fast block-matching algorithms which do not
introduce any prediction error as compared with the full-search algorithm is to reduce
the number of necessary matching evaluations for every searching point in the search
window. The partial distortion search is a well-known technique of the second kind of
algorithms. In the literature, many researches tried to improve both lossy and lossless
block-matching algorithms by making use of an assumption that pixels with larger
gradient magnitudes have larger matching errors on average. Base on a ssimple analysis,
it isfound that on average, pixel matching errors with similar magnitudes tend to appear
in clusters for natural video sequences. By using this clustering characteristic, we
propose an adaptive partia distortion search algorithm which significantly improves the
computation efficiency of the origina partial distortion search. This approach is much
better than other agorithms which make use of the pixel gradients. Furthermore, the
proposed agorithm is most suitable for motion estimation of both opagque and boundary
macroblocks of an arbitrary shaped object in MPEG-4 coding.

Block-based motion compensation technique has been widely used in many
modern video coding standards [3, 4]. It is used to reduce the redundancy between
successive frames in avideo. Motion estimation process is to obtain a motion vector for

atarget macroblock by using the block matching technique, which minimizes a measure
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of matching distortion between the target MB in the current frame and a candidate MB
within a search window in a reference frame. The displacement between the candidate
MB with the smallest distortion and the target MB will be selected as the resulting
motion vector. One of the most frequently used criteria to measure the matching
distortion is the sum of absolute difference (SAD). The SAD between a target MB at
position (x,y) in the current frame, f;, and a candidate MB at position (X+u, y+V), in the

reference frame, f..1, is defined as below.

M M

SAD(X, y;u,v) = D D | f (x+i, y+ )= f(x+i+u,y+ j+V)

j=0 i=0

(4-1)

where MxM is size of a block and M is equal to 16 for our consideration; f,(--) and

f_(,) represent pixels intensity in the current frame and the reference frame
respectively. This equation isidentical to the [;-norm defined in (2-11) withn= 1.

The simplest block matching motion estimation agorithm is the full search
algorithm (FSA). This algorithm can give an optimal solution by exhaustively searching

all possible locations within a search window, W. The resulting best motion vector,

(G,\A/) , is defined in (2-13). However, this agorithm suffers from heavy computational

load. In order to resolve this difficulty, many fast search algorithms have been
developed in the past.

In this study, we have investigated and compared the performance of two
categories of fast lossless search algorithms. 1) Algorithms in the first category use a
reduced complexity distortion measure to save computation, such as partial distortion
(PDS) techniques [92, 93]. The PDS [92] reduces the computation complexity by
terminating the SAD calculation early when it finds that a partial SAD is already greater
than the minimum SAD encountered so far in the searching. In general, the PDS is
regarded as afast full search algorithm because it has identical prediction quality as that

of the FSA. 2) The second category makes use of mathematical inequalities to reduce
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the computational load; this includes the Successive Elimination Algorithm (SEA) [13].
By making use of the Minkowski’s inequality, the SEA eliminates an impossible
candidates MB without calculating the SAD.

In addition, we suggest further techniques to improve the searching efficiency of
the PDS. Its efficiency also comes from an early termination of the partial SAD. Let us

define a generalized form of the partial SAD as shown below,

SAD,(x, y;u,v) = Zp:2|ft (X+Ky, y+1,)— fo(x+k, +u,y+1,+V) (42)

j=0 j=0
where {(k,,1,)|n=0,..., jx16+i,...,256} isan index set of all pixelsin aMB, and p =

0,...,15 which specifies the number of elements for producing the sum of errors for a
partial SAD. For a given p, there are 16x(p+1) pixels to be accumulated to SAD,. The
index set determines the coordinates and orders of the pixel matching errors to be
accumulated to the SAD,,. One simple idea to improve the PDS is to design an adaptive
index set such that a pixel with greater matching error is firstly computed, and this error
is accumulated to the SAD,, earlier than other pixels. As a result, the SAD calculation
can be terminated sooner. In the literature, many researches [96, 106] indicated that
pixels with larger gradient magnitudes have larger matching errors on average. They
made use of this hypothesis to develop their searching algorithms. An approach is to
make use of representative pixels and adaptive matching scan PDS (AMS-PDS)[96] to
determine the index set by sorting the gradient magnitude of rows or columns in the
target MB of the current frame in descending order. As a result, pixels of a row or
column with greater gradient magnitudes will be used to calculate the SAD, prior to
other rows or columns in the MB. However, it can be shown that pixel matching errors
with similar magnitudes tend to appear in clusters in natural video sequences. This
characteristic is illustrated in Figure 4-3 and discussed in the next Section. In this

chapter, we propose an adaptive partial distortion search algorithm by using the
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characteristics of these clustered pixel matching errors. This approach is significantly
more efficient as compared to algorithms which make use of pixel gradient propertiesin
an adaptive partial distortion search.

In the rest of this charter, we firstly explain and illustrate the characteristics of the
pixel errors that tend to form clusters in Section 4.2. Section 4.3 applies these
characteristics to develop a new clustered pixel matching error for adaptive partia
distortion search algorithm (CPME-PDS). In Section 4.3.1, we establish an analysis to
determine an adaptive index set required for the CPME-PDS. Then our proposed
CPME-PDS is described in details in Section 4.3.2. It is unavoidable to have a certain
amount of overheads for the establishment of the adaptive index set. These overheads
are described in Section 4.3.3. Section 4.4 gives the details of our experiments and
results. In order to compare the performance of the adaptive PDS based on the cluster
pixel matching error characteristic and based on the pixel gradient characteristic, we
have aso designed another adaptive PDS, the pixel gradients based adaptive partia
distortion search agorithm (PG-PDS). The details of the PG-PDS are described in
Section 4.4.1. Section 4.4.2 presents the results and anaysis of the CPME-PDS
comparing to other fast algorithms including the PG-PDS. Finally, concluding remarks

are given in Section 4.5.

4.2 The characteristic of clustered pixel matching error

The major idea of our proposed CPME-PDS is to design an adaptive index set
such that a pixel with greater matching error can be accumulated to the SAD,, sooner
than other pixels according to the order indicated by the index set.

For thisreason, it is necessary for us to investigate possible spatial distributions of
pixel matching errors in a MB. We have found that errors with similar magnitude tend

to appear together in clusters. It is because natural images are dominated by low
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frequency components. The matching errors of low frequency regions between a target
MB and a candidate MB have similar magnitudes and are partitioned by edge pixels of
these two MBs. This phenomenon is demonstrated in Figure 4-1. Figure 4-1(a) depicts
the matching of a one dimensional (1-D) target MB (thick continuous line) within a 1-D
search window (thin dotted line). The corresponding pixel matching errors appear in a

cluster form as shown in Figure 4-1(b).

% o Pty of a target B
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@ X
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1 /

Figure 4-1. (a) Matching of a 1-D target MB within a 1-D sear ch window. (b) Corresponding pixel
matching error of thetarget MB at the current position.

Edges are the most prominent feature in image processing. They are aso
frequently used to predict pixel matching errors in motion estimation. The prediction is
accurate especialy near a minimum distortion position. Figure 4-2(b) shows that
locations with large pixel matching errors (the hatched region) can be detected by using
pixel gradients when the target MB is located near a good candidate MB. However, the
result is not good enough in general. In Figure 4-1(b), only pixel matching errors in the
hatched region are found, while matching errors outside the hatched region are

underestimated. Figure 4-3(a) and (b) are examples of prediction errors in two motion
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compensated MBs, which are extracted from the sequence “Football” and video object

“Goldfish”, respectively. These examples demonstrate the clustered prediction errors

during motion estimation.
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Figure 4-2. (a) Matching of a 1-D target MB within a 1-D search window near a minimum
distortion location. (b) Corresponding pixel matching error of thetarget MB at the current position.
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Figure 4-3. Examples of clustering errorsin a motion compensated prediction MB of (a) the
sequences “ Football” and (b) the video object “ Goldfish”.
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According to the above analysis, we can predict that clustered pixel matching
error characteristic can be used to achieve greater advantage in an adaptive partial

distortion search.

4.3 Proposed Algorithm

4.3.1 Determination of an adaptive index set
For a given target MB, the positions of pixels are represented by an index set,

S={(k,.I,)|n=0,..,N -1}, where N is the number of pixelsin aMB. For asingle pixel

a s, =(k,l,), s,€S, its matching error is, e(s,)=1,(s,)-R(s,), where R(s,) is a
random variable which represents the pixel value a s, of a candidate MB. In the
following discussion, the notation for properties relating to the pixel at s, isindicated by
the argument n, and the MB location (x,y) and motion vector (u,v) are dropped for
simplicity. Hence, the pixel matching errors are represented by,
e(n) =, (n) — R(n) @3

To improve the saving in computation of a PDS, pixel matching errors with an
ideal index set must have the following relation,
e(0)° >...2e(n)*>...> (N -1)°

To fulfill the above objective, we have to predict the pixel matching error of each

p(n) at location s,. Hence, the expected values of p(n) must fulfill the following criterion,
E[ p(0)° 2.2 E[ p(n)*]>...2 E[ p(N-1?*] (4-4)
Let us define p(n) =1,(n)—m, where mis a reference value to be used to obtain

the predicted pixel matching errors. One possible solution of m is to minimize the

expected value of the sum of squares of the differences between e(n)? and p(n)?,
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H

m:argmnln{ [N [I(n) R(n) (It(n)—m)z}z}}
i.e n=0

In solving this equation, we have

%E{Nf[(h(n)—R(n))z—(h(n)—m)zﬂzo @)

n=0

By substituting R(n) = I, (n) —e(n) into egn. (4-5), finally we can have a cubic equation,

m3—3ltm2+(3lt2—e2)m+IteZ—If:O (4-6)

- 1 [Nl 2
=—E| > en) }
N and

where n=0 ,
;> 1 ~ 2
| € :NE{ZH(”)G(”) }

The roots of the cubic equation are either all reals or one real and two complex
conjugates which depend on the discriminant of the equation. We look for real roots for
(4-6), such that m can be practically useful. Let us assume that natural images are

dominated by low frequency components. Hence, let,

and
These are valid only if the image frame under question consists mainly low frequencies

and the standard deviation of I:(n) is small enough. Asaresult, it gives

I,
~ (4-7)
m=<_ =
{.t 7
Mathematical detail is shown in Appendix A. The first approximated root is the
mean of pixel valuesin thetarget MB. To use this mean as the reference value it already

gives a better computational saving when comparing to the PG-PDS, for which we

proposed it as a comparison. Intuitively, m is a function of pixel values in a candidate
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MB, i.e. m=m(R(n)). The other roots, I+ € can also be obtained by the following

approximation.

R=T —e~1 +V&
It indicates that this solution is an approximation of the mean of pixel values in a
candidate MB. Note that our assumption is not always true. However, a shifting of m

would not affect the criterion in (4-4) dramatically. In fact, the solution of m= R can

N-1
also be obtained directly by minimizing the equation, E{Z[e(n)— p(n)]z} (see

n=0
appendix A). Hence, this result is used to determine an adaptive index set for the

CPME-PDS.

4.3.2 Clustered Pixel Matching Errors for Adaptive Partial Distortion
Search (CPME-PDS)

There is another factor which affects the ability of a PDS to reject impossible
candidates. The earlier the global minimum is met in a search, the earlier the PDS can
terminate a partial SAD to regject the candidates. To achieve this purpose, we use two
strategies as shown below.

1.  The outward spiral scanning is used to exploit the center-biased motion vector

distribution characteristics of the real world video sequence [75].

2. The correlation in the motion field is exploited by using a median predictor of
three adjacent blocks, left, top and top right blocks to the current position as the
initial searching point of the spiral scanning. We have used the median predictor

described in [5].
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According to the above considerations and our analytical results, we suggest to
use the mean of pixel vaues in the candidate MB of the initia searching point to

compute the reference value, m, because we can assume that

[ (+U o J+V) =130, ])
where (U, V) = the median predictor. The expected pixel matching error, pPeg(n), of
each pixel in the target MB is calculated with m. The required adaptive index set, S, is
given by sorting ‘pexp(n)‘ in descending order. The partial SAD in (4-2) is calculated
with S during the searching in an outward spiral scanning. The CPME-PDS approach
can be summarized as follows:
CPME-PDS:
Note that all division operations in the following description are integer division with
truncation toward zero for the sake of lower complexity.

Step 1) Determine the median predictor, (Umed, Vimed), Of the three adjacent blocks.

Step 2) Calculate the reference value, m, with the median predictor, (Umed, Vimed)-

1 15 15

M=——>" "1 (Xt Uy +i, Y+ Vg + ) (4-8)
256 1531

Step 3) Initialize an index set, S'={(k",.I",)[n=0,...,N -1}, which represents all pixels
of thetarget MB
Step 4) Calculate the expected absolute pixel matching error, ‘pexp(n)‘ , of each pixel in
the target MB.
[P ()] =1, (K'yu1,) = (@9)
Step 5) Rearrange the order of set S' to obtain an adaptive index set S by sorting the

expected absolute pixel matching error, ‘ pexp(n)‘ , in descending order, such that,

S

I(k,.l,)|n=0,..,N -1}
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The pegp(n) corresponding to the order of the sorted index set, S has the

following feature,
[Pep (0) 2 ... 2 [Py () 2 ... 2 [ Py (N 1)

Step 6) Apply the adaptive index set, S to calculate the partial SAD in (4-2) during the
searching in an outward spiral scanning.

Note that the adaptive index set is established on a pixel-based approach. It is
straightforward to modify the above procedure for the boundary macroblocks of an
arbitrary shaped video object (VO) in MPEG-4 [5]. First, the reference value, m, is
calculated after that the repetitive padding is applied to a reference video object plane
(VOP). It is only necessary to compute the expected pixel matching error, peg(n), for
opaque pixelsin the case of a boundary MB. For an index set, N is equal to the number
of pixelsin a MB, such that N =256 for an opaque MB, while N = number of opaque
pixelsin aboundary MB. Second, the partial SAD in (4-2) is rewritten as,

q

z‘lt(x"'kn’y"‘ln)—|t,1(X+kn+u,y+|n+V)‘ (4-10)

p
j=0i=0

SAD, (X, Y; U,Vv) =

where

pe {N| 0,...,a; o = integer divisionof N/16 with truncation toward zero}

CI={15 pro and

N-16xo ,p=«
X isthe set of Natural Number.

The design of our algorithm depends upon the clustering properties of the pixel
matching errors. Hence the approach is general and it is expected to be useful for both
software or hardware realization. Let us consider that for example, most computer
architectures tend to be in favour of regular memory pattern access and execution [129].
It is true for the modern Intel processors, say for example, which provide Multimedia

Extensions (MMX), Streaming Single Instruction Multiple Data Extensions (SSE) and
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SSE2 technologies. These technologies offer a set of instructions for handling a large
quantity of data in parallel efficiently. The MMX and SSE instruction set can compare
eight bytes or eight pixel values from each of two blocks with a single instruction, thus
accelerating the program by almost a factor of four or eight. The SSE2 instruction set
can operate data with 16 pixels at one time effectively.

In order to make use of the advantage of clustering characteristic, we may aso
arrange to sort pixels row by row in a block for SAD, accumulation. By using an
identical reference value, m, we can calculate the expected absolute pixel error of a row

of 16 pixels asfollows, to determine the accumulating order.

Peco =§|It(x,|;)—n1 (4-11)

x=0
Because these instructions demand an increase in memory bandwidth, we have
simulated three different situations to evaluate their performances, i.e. sorting arow of 4,
8 and 16 consecutive pixels in a block designated as CPME-PDS,;, CPME-PDSg and

CPME-PDS; s respectively.

4.3.3 Analysis of the Overhead

From the above description, it is shown that the additional computation
introduced by the CPME-PDS is the process to construct the adaptive index set for each
target MB in the current frame or VOP.

The calculation of the reference value, m, as shown in (4-8) requires 255 additions

and one division. For each opaque pixel, (4-9) shows that each expected absolute pixel
matching error, ‘pap(n)‘ , heeds one absolute operation and one subtraction. Hence, N
absolute operations and N subtractions are required for the calculation of ‘pap(n)‘ for

each target MB. In the case of a boundary MB, 256 additional checkings are needed to

ensure that only the opaque pixels are involved. To obtain the final adaptive index set, S
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a sorting process is required in step 5 of Section 4.3.2. Because the values of ‘pap(n)‘

are integers ranging from 0 to 255, the counting sort [130] which has the complexity of
O(N) is the most appropriate sorting algorithm in this situation. In general, it requires
2xN increment/decrement operations and z-1 additions, where z is the largest integer in
the data set being sorted. For a boundary MB, (4-10) shows that the formulation of
SAD,, is different from that of an opague MB. As shown in (4-10), the computation of «
involves one division, and the computation of g when p =« needs one multiplication
and subtraction.

Note that al multiplications and divisions mentioned above can be implemented
with simple bitwise shift operations. In our analysis, however, each multiplication or

division is counted and assumed to be equivalent to 8 additions for smplicity.

4.4 Experiments

In Section 4.3, we have proposed the CPME-PDS which makes use of the
characteristics of clustered pixel matching errors to improve the searching efficiency of
the conventional PDS. In this section, let us modify the adaptive PDS to become pixel
gradient based adaptive PDS (PG-PDS) in order to compare saving in computation. A
large amount of experimental work has been done. We describe the PG-PDS in brief in
the next part. Approaches using representative pixels and adaptive matching scan
(AMS-PDS) [96], conventional PDS, PG-PDS and Successive Elimination Algorithm

(SEA) [99] were aso implemented for the sake of comparison.

4.4.1 Pixel Gradients based Adaptive PDS (PG-PDS)

In the PG-PDS, an adaptive index set, Sy, is obtained based on the magnitude of

individual pixel gradient.
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For each pixel in an opague MB, let us express the magnitudes of x-directional

gradients, G, and y-directional gradients, G, as,

G, (X y)=[l,(X y)—1,(x+1, wherex=0,1,...,14;y=0,1,...,15
G, (%, V)| =[1,(x y) =1, (x+1, )] y 412

‘Gy(x, y)‘ =[1,(% Y) =1, (%, y+D)| wherey=0,1,...,14:x=0,1,...,15

There are 15x16 = 240 gradient values for each direction. Hence, totally 480 gradient
magnitudes need to be found for an opague MB. These magnitudes are sorted in
descending order with a counting sort. The Sy is then established by extracting the
pixel’s position according to the order of the sorted gradient magnitudes. Obviously,
each pixel must appear only once in Syg. A proper checking procedure is needed to
prevent double extraction of a pixel, because each pixel involves two directional
gradient magnitudes. The adaptive index set, Sy, is applied for the calculation of the
partial SAD in (4-2) during the search in an outward spiral scanning.

There are some differences in the implementation of a boundary MB and an
opaque MB. The total number of gradient magnitudes in a boundary MB depends on the
number of opague pixels and the shape in the MB. In calculating (4-12), if one of the

involved pixel, 1.(-,-), is a transparent pixel, the magnitude of the corresponding

gradient is regarded as zero. We have also used pixel gradients in arow to perform row
based sorting for comparison. Similar to the CPME-PDS, the average gradient of a row
with 4, 8 and 16 consecutive pixels in a block has been used to determine the

accumulating order of different rowsin a SAD..

4.4.2 Experimental Results and Discussion

The analytical result in Section 4.3 suggests that two mean values can be used as

the reference value, m, in the CPME-PDS. These are the mean of pixel values in the
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target MB, my, and the mean of pixel valuesin the candidate MB of theinitial searching
point, my. In addition to these two mean values, we can also choose a third candidate,
mg=128, because we assume that R is a random variable which represents the pixel
vauesinaMB and m=R.

Table 4-1 compares the computational load of the CPME-PDS with these three
reference values. The results show that al three values can successfully improve the
efficiency of the conventional PDS. Among these three values, m, provides the least
computational load. Hence, it confirms our suggestion that the mean of pixel valuesin
the candidate MB of the initia searching point is used as the reference value in the

CPME-PDS.

Table 4-1. Comparison of the average numbers of operations per MB of the CPME-PDS for
different reference values, m.

PDS CPME-PDS
my | m, | ms
Video Sequences
Children 188931 108120 99908 110958
Bream 219654 149539 139461 197122
Arbitrary Shaped Video Objects

Football 299882 256443 232779 268849
Tabletennis 219509 159596 149103 173683

my, = The mean of pixel valuesin the target MB.
m, = The mean of pixel values in the candidate MB of the initial searching point.
m; = 128

To evauate the performance of the clustered pixel matching error for adaptive
partial distortion search (CPME-PDS), we implemented six algorithms: (i) the full-
search algorithm (FSA), (ii) the conventional partial distortion search (PDYS), (iii) the
representative pixels and adaptive matching scan PDS (AMS-PDS), (iv) the pixel
gradients based adaptive PDS (PG-PDS), (v) the Successive Elimination Algorithm
(SEA) and (vi) the proposed CPME-PDS. The outward spiral scan was applied to all six
algorithms to exploit the center-biased motion vector distribution characteristics. In
addition, a median predictor was used as an initial searching centre to exploit the

correlation in the motion field for all tested algorithms. The SEA uses the norm of each
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search point to speed up the processing. The norm of each search point is calculated for
frame-based sequences and opaque MBs of a video object by using a recursive method
suggested in [99]. However, the recursive technique is not suitable for boundary MB of
an arbitrarily shaped object. We need to calculate each norm during the search and the
required operations are counted as computational load for searching in the redlization.
Hence, it is seen that the SEA may require much computation for the motion estimation
of arbitrarily shaped objects in MPEG-4. Because AMS-PDS is an algorithm developed
only suitable for block based motion estimation, experiments which involved arbitrary
shaped video objects did not include AMS-PDS. The computationa efficiency of the
algorithms has been assessed in terms of the number of operations required for the
searching. Each addition, subtraction, absolute or checking operation mentioned above
was considered as one operation. Each multiplication or division was considered to be
equivalent to 8 additions for simplicity. All these operations were counted in runtime
during the experiments. Moreover, non-uniform memory access is the major
disadvantage of these adaptive PDS agorithms. To evaluate the practical performance,
we have also measured the execution time for motion estimation including the required
overheads of al tested algorithms for comparison. We performed the experimental work
on a standard desktop computer. The configuration of the platform was Intel P-IlI
600MHz desktop PC with 256M RAM and Windows 2000.

We used alarge variety of video sequences and video objects for the evaluation.
Sequences “Football”, “Table Tennis’, “Stefan’, “Salesman’, “Foreman’, “Grand
Mother”, “Suzie” and “Trevor” were used as test sequences, while “News’, “ Children”,
“Bream” and “Goldfish” were used to test arbitrary shaped video objects. The format of

the above video sequences and video objects are summarized in Table 4-2.
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Table 4-2. Format of the tested video sequences and video objects.

Video Sequences

Sequence Image format num. of Tested Frames
Football 352x240 209
Table Tennis 352x240 299
Stefan 352x240 299
Salesman 352x288 199
Forman 176x144 299
Grand Mother 176x144 299
Suzie 176x144 149
Trevor 176x144 149

Arbitrary Shaped Video Objects
Video Object Sour ce for mat num. of Tested VOPs

News 352x288 299
Children 352x288 299
Bream 352x288 299
Goldfish 352x288 299

According to the analysis in Section 4.2, we have shown that the prediction of
pixel matching errors based on pixel gradients is only accurate near a minimum
distortion position. Results in Figure 4-4 to Figure 4-6 justify our analysis. These figures
show the average numbers of operations with different distances from the centre of a
search window for the tested algorithms. The average number of operations at distance,
d, is obtained by,

No. of operations 41 ga | No. of operations
> to calculate - > to calculate

Average no. = gup o yiuv) )T D (x, yiu,v)
of operations = 2d +1) - [2(d - 1)+ 1F
at distance, d oy ey
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Figure 4-4. Comparison between the computational saving capability of the tested algorithms at
different distances from the centre of a search window for “ Table Tennis’.
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Figure 4-5. Comparison between the computational saving capability of the tested algorithms at
different distances from the centre of a search window for “Grand Mother”.
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Figure 4-6. Comparison of the computational saving capability of the tested algorithms at different
distances from the centre of a search window for “Bream”.

For our initial analysis, we just counted the number of operations for the realization. All
overheads such as the time for memory access, etc were not considered, since these
overheads are usually machine dependent. Three typical results of the selected
sequences, including the “Table Tennis’, “Grand Mother” and “Bream”, are provided in
Figure 4-4 to Figure 4-6 respectively. In these Figures, algorithms with the least number
of operations per search point at a specified distance, d, are shaded in grey. These
results confirm our prediction that PG-PDS has a better ability to save computation
when a search point is near the minimum distortion position. When the search point
location is extended, the performance of CPME-PDS overrides that of PG-PDS. For the
“Grand Mother” sequence, however, the SEA provides the best efficiency when the
search distance is greater than six. Table 4-3 summarizes the results of all tested
sequences. Entries in Table 4-3 give the search distances in which the corresponding
algorithms have the least numbers of operations. On the whole, we can see that our
approach (the CPME-PDS) always provides the largest range of search distance to have

the best performance. This is particular true for object-based sequences and sequences
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with high motion activities. On the other hand, the PG-PDS gives the largest
computational saving among all tested algorithms with a short search distance, ranging
from O to 4 on average. Furthermore, the SEA has the best performance for sequences
related to video conferencing when the search distance is large enough. The number of
operations of the AMS-PDS is about 4% on average smaller than that of the CPME-
PDS for the sequence “Suzie” when the search range is smaller than 4. For the “Grand
Mother” and “Foreman” sequences, the AMS-PDS is about 3% on average better than
that of the CPME-PDS within a search range of 2. For “Football”, “Salesman” and
“Stefan” sequences, the number of operations of the AMS-PDS is about 2% smaller

than that of the CPME-PDS within a unit search range.

Table 4-3. Summary of the computational saving ability of the tested algorithms for different
sequences. The entries indicate the search distance at which the corresponding algorithms require
theleast number of operations.

Video
Seguences FSA SEA PDS AMSPDS | PG-PDS | CPME-PDS
Football X X X 1-2 3-15
Tabletennis X X X X 1 2-15
Stefan X X X X 1-2 3-15
Salesman X X X 1-3 4-15
Foreman X 15 X X 1-5 6-14
Grand mother X 6-15 X X 1-4 5
Suzie X 9-15 X X 1-3 4-8
Trevor X 10-15 X X 1-4 5-9
Video Objects
News X X X invalid 1-3 4-15
Children X X X invalid 1-2 3-15
Bream X X X invalid 1-2 3-15
Goldfish X X X invalid 1-4 5-15

x — Indicates that the algorithms are not the most efficient one at all search distances.
invalid — AMS-PDS was not designed for the motion estimation of arbitrary shaped video objects.

Let us turn our attention to the overheads, such as sorting processes etc. Table
4-4 lists the average numbers of operations of these overheads for the tested algorithms.

In Table 4-5, we have summarized the average number of total operations per search
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point in a given search range, D, (i.e. =D <u,v< D). In this case, overheads are aso

included. In our implementation, quick sort was used as the sorting approach for AMS-

PDS. Its complexity is O(n log n), where n is equal to 16 in the case of the AMS-PDS

algorithm. The selection of a sorting algorithm affects seriously the performance of an

adaptive PDS especially if the search window is small. In order to prevent an under-

evaluation of the AMS-PDS, the number of operations for its sorting process was not

counted and this assumption is made in al of the latter discussion.

Table 4-4. Comparison of the overheads for different algorithms in terms of the average numbers
of operations per MB.

Video
Sequences FSA SEA PDS | *AMSPDS| PG-PDS | CPME-PDS
Football 0 1158 0 1479 3686 1613
Tabletennis 0 1158 0 1479 3712 1618
Stefan 0 1158 0 1479 3723 1626
Salesman 0 1145 0 1479 3668 1597
Foreman 0 1272 0 1479 3678 1620
Grand mother 0 1272 0 1479 3658 1590
Suzie 0 1272 0 1479 3646 1583
Trevor 0 1272 0 1479 3668 1601
Video Objects
News 0 1711 0 invalid 3373 1562
Children 0 2757 0 invalid 3196 1565
Bream 0 1614 0 invalid 3449 1588
Goldfish 0 1670 0 invalid 3199 1542

* The numbers of operations for sorting in the AMS-PDS were not counted in the experiments.
invalid — AMS-PDS was not designed for the motion estimation of arbitrary shaped video objects.
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Table 4-5. Summary of the computational efficiencies in terms of operations of the tested
algorithms for different sequences. The figures indicate the sizes of search window in which the
corresponding algorithms require the least number of operations.

Video
Seguences FSA SEA PDS *AMS-PDS | PG-PDS | CPME-PDS
Football X X 1-2 X X 3-15
Tabletennis X X 1 X 2-15
Stefan X X 1 X X 2-15
Salesman X X 1-2 X X 3-15
Foreman X X 1-2 X 4-7 3,8-15
Grand mother X 10- 15 1-2 X X 3-9
Suzie X 15 1-2 3 4-14
Trevor X X 1-2 3 4-15
Video Objects
News X X 1 invalid X 2-15
Children X X 1 invalid X 2-15
Bream X X 1 invalid X 2-15
Goldfish X X 1 invalid X 2-15

* The numbers of operations for the sorting in AMS-PDS were not counted in the experiments.

x — Indicates that the algorithms are not the most efficient one at all search distances.
invalid — AMS-PDS was not designed for the motion estimation of arbitrary shaped video objects.

Table 4-5 summarizes the results of agorithms which require the least number of
operations with the indicated search range. Generally speaking, CPME-PDS gives the
best performance in a search range within 2 to 15 for nearly all sequences. The SEA
achieves the best efficiency within a search range from 10 to 15 and 15 for the “Grand
mother” and “Suzie” sequences respectively. It is interesting to point out that the PG-
PDS offered the best efficiency in the middle search range, within 4 to 8, for the
sequence “Foreman”. In Table 4-3, we can see that the PG-PDS gives the best
computational saving for d equal to 0 to 5 in “Foreman”, but it requires the largest
overheads as shown in Table 4-4. Hence, it needs more computational saving to
outperform other agorithms, the situation of which is reflected in the table. The
efficiency of CPME-PDS outperforms that of PG-PDS when the search range is

extended sufficiently. In terms of the total number of required operations, we have
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found that the performance of the PG-PDS is about 1.7% better than the CPME-PDS for
only one sequence (the “Foreman” sequence) in the medium search range.
Table 4-6 demonstrates a comparison between the computational efficiency of

the tested algorithms in a search window of 15 (i.e. -15<u,v <15). The computational

efficiency was compared in terms of the average number of operations per MB and
speed-up ratios. It shows that our agorithm, CPME-PDS, can successfully improve the
computational efficiency of the conventional PDS and is the best among all other
adaptive PDSs. In terms of speed-up ratios, it can achieve a speed-up ranging from 3 to
9 times of the FSA. The SEA gives worse performance as compared to our agorithm,
CPME-PDS, for most sequences but achieves better efficiency for sequences on vide

conferencing, such as the “Grand mother”, and “ Suzie”.

Table 4-6. Average numbers of total operations per MB of thetested algorithmsin a sear ch window
with a search range equal to 15 (i.e. —15<u,v<15).

FSA SEA PDS *AMS-PDS PG-PDS CPME-PDS
Video Speed- Speed- Speed- Speed- Speed- Speed-
No. of up No. of up No. of up No. of up No. of up No. of up

Sequences operation| ratio | operation | ratio | operation | ratio | operation | ratio | operation | ratio | operation | ratio
Football 738048 1.00] 351897 [2.10| 299882 | 2.46| 279341 |2.64| 263057 |2.81] 232779 | 3.17
Tabletennis | 738048 | 1.00| 290482 | 2.54| 219509 | 3.36] 194414 | 3.80| 170269 | 4.33| 149103 | 4.95
Stefan 738048 | 1.00| 304156 |2.43] 241830 | 3.05] 206729 | 3.57| 191230 | 3.86| 169652 | 4.35
Salesman | 738048 1.00| 172550 [4.28] 160614 | 4.60 | 140468 | 5.25] 126625 | 5.83] 111693 | 6.61
Foreman |738048|1.00] 129522 [5.70| 153344 |4.81]123309|5.99| 110916 |6.65] 106310 | 6.94
Grand mother| 738048 | 1.00] 98119 |7.52] 157032 | 4.70| 129139 | 5.72| 126619 | 5.83| 121658 | 6.07
Suzie 738048 | 1.00| 118877 |6.21] 170286 |4.33| 137157 |5.38| 135321 |5.45] 121301 | 6.08
Trevor 738048 |1.00] 82068 |8.99] 110638 | 6.67| 93004 | 7.94| 89113 | 8.28| 81240 | 9.08

Video Obj ectd
News 689274 |1.00] 321915 |2.14| 188931 | 3.65 147191 | 4.68] 138052 | 4.99
Children ] 653006 1.00|] 478403 | 1.36| 188931 | 3.46 116043 | 5.63| 99908 | 6.54
Bream 698661 |1.00|] 464301 |1.50| 219654 | 3.18 155870 | 4.48] 139461 | 5.01
Goldfish 663847 |1.00] 353271 |1.88]| 226663 | 2.93 151615 | 4.38] 140129 | 4.74

Let us evaluate the execution time of al algorithms. The evaluation takes into
the account of both computation loads of the algorithms and their overheads. Thisis, to
some extent, CPU dependent. Table 4-7 and Table 4-8 compare the execution time per

frame or per VOP of the algorithms with a search range of 15. Table 4-7 clearly shows
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that the improvements of all PDS agorithms are reduced. On average, the speedup
ratios in terms of the number of operations are decreased by about 33%, 40%, 52% and
48% for the PDS, AMS-PDS, PG-PDS and the CPME-PDS respectively. The SEA is
only degraded by about 9%. This phenomenon is caused by two factors. The first factor
is that all adaptive PDS algorithms suffer from the problem of non-uniform memory
access. Among these three adaptive PDS, the AMS-PDS has the minimum degradation
because it makes use of pixel gradients to determine the sorting of rows or columnsin a
MB. When the column scanning is used in AMS-PDS, non-uniform memory access
problem is occurred. On the other hand, during the process of row scanning in the
AMS-PDS algorithm, it accumulates pixel errors of consecutive pixelsin arow. In our
experimental work, we used different implementation techniques for these two
situations, such that the non-uniform access problem of AMS-PDS becomes |ess severe.
The second factor occurs in al PDS algorithms. The pipeline structure of modern CPUs
improves greatly the performance of computing consecutive data. However, the pipeline
flow is interrupted when cache misses or exceptions occur. For PDS, it suffers
inherently from branch miss-prediction penalty; say for example it happens in Intel
CPUs. Except the “Table Tennis’ sequence and the VOs, the SEA requires less
computational time as compared to that of the PDS, while the SEA actually requires
more operations. Even though the presence of these two drawbacks, our experimental
results show that the CPME-PDS gives the best performance for sequences containing

high motion activities and the video objects.
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Table 4-7. The execution time (seconds) per frame or per VOP of the tested algorithmsin a search
window with a search range equal to 15 (i.e. -15<u,v<15).

FSA SEA PDS AMSPDS PG-PDS CPME-PDS

Video Execution |Speed-] Execution | Speed-| Execution |Speed-] Execution | Speed-] Execution |Speed-| Execution | Speed-
time up time up time up time up time up time up

Sequences (second) | ratio | (second) | ratio | (second) | ratio | (second) | ratio | (second) | ratio | (second) | ratio
Football 192 |1.00] 095 [202] 096 |2.00] 097 |198] 112 |[1.71] 0.93 |2.06
Tabletennis 192 |1.00] 089 [216] 079 |243]|] 0.77 |249] 086 |223] 0.73 |263
Stefan 192 |1.00] 083 |231] 084 |229] 080 |[240]| 095 |202] 0.78 |2.46

Salesman 230 [1.00] 060 [3.83] 079 [291]|] 077 [299] 097 [237] 077 |299
Foreman 058 |1.00| 011 |527] 019 |305] 018 [322] 023 |252] 017 |341
Grand mother| 058 [1.00] 0.09 |644] 019 |305] 018 [322] 024 |242] 018 |3.22

Suzie 057 |100|] 011 |518] 020 |2.85] 0.19 |300] 024 |(238]| 018 |3.17
Trevor 058 |100] 008 |725] 016 |3.63] 016 |363] 021 [(276] 016 |3.63
Video Objects
News 105 [1.00] 051 [2.05] 045 |232 043 |243] 038 |275
Children 060 |1.00] 043 [139] 027 |221 020 |299] 0.18 |3.32
Bream 0.81 [1.00] 053 |152] 036 |2.24 034 |237] 029 |2.78
Goldfish 151 [1.00] 083 |[1.82] 0.74 |204 0.61 |248] 054 |280

Table 4-8. The execution time (second) per frame or per VOP of the row-based adaptive PDS
algorithmsin a sear ch window with a search range equal to 15 (i.e. -15<u,v<15).

PG-PDS, PG-PDS; PG-PDS;s | CPME-PDS, | CPME-PDS; | CPME-PDSy4
Video Exe_cution Speed- Exepution Speed- Exepution Speed- Exe_cution Speed- Exe_cution Speed- Exepution Speed-
time up time up time up time up time up time up
Sequences (second) | ratio | (second) | ratio | (second) | ratio J (second) | ratio | (second) | ratio | (second) | ratio
Football 088 [218] 091 [211] 086 |223] 080 |240| 083 [231] 0.80 |240
Tabletennis 0.61 |315] 064 |3.00|] 0.62 |3.10] 0.1 |[3.15] 0.64 |3.00] 062 |3.10
Stefan 0.71 (270] 0.74 |259| 0.70 |2.74] 0.64 [3.00] 0.68 |282] 0.65 |2.95
Salesman 066 [348] 069 [3.33] 067 |343] 060 |383] 0.62 [3.71] 0.60 |3.83
Foreman 015 |387] 015 |387] 015 |387] 014 [4124] 024 |414) 014 [4.14
Grand mother 0.16 |(363] 016 |363| 016 |363] 015 [(3.87] 016 |363] 0.15 |3.87
Suzie 016 [356] 0.7 [335] 017 |335] 015 |380) 016 [356] 0.16 |3.56
Trevor 0.13 |[446] 014 |4.14| 013 |446] 0.13 [4.46] 0.13 |446] 0.12 |4.83
Video Objects
News 037 [283] 039 [268] 038 [275] 035 [299] 036 [290] 035 |299
Children 022 |272] 023 [260] 023 |260] 019 [315] 020 [299] 020 |299
Bream 030 |269] 032 |252| 031 |260] 0.28 |288] 029 |278] 0.28 |2.88
Goldfish 059 (256 062 |244| 0.61 |248] 054 |280] 056 |270] 055 |2.75

In addition to the approach using pixel-based sorting, we have also tested the row-
based sorting approach for the adaptive PDS algorithms by making use of pixel-

gradients (PG-PDS) or clustering characteristics (CPME-PDS). This is regarded as a
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compromise between the sorting approach and the problem of non-uniform memory
access. This approach is not valid for other algorithms in our discussion. Table 4-8
summarizes the performances in terms of the execution time per frame or per VOP. The
number of consecutive pixelsin a sorted row isindicated by the subscript r, such as PG-
PDS; and CPME-PDS:;. Note that after this modification, the PG-PDS; is very closed to
the approach of AMS-PDS. Comparing Table 4-8 with Table 4-7, it shows that the row-
based sorting can efficiently improve both PG-PDS and CPME-PDS. It confirms that
the approach using clustering characteristics is more effective than the pixel gradient for
adaptive PDS technique. It gives better performance as compared to the gradient-based
approach for all tested sequences. Table 4-7 aso indicates that the SEA can attain
superior results for video sequences on conferencing. Table 4-8 shows that CPME-PDS,
is able to achieve the best performance for the remaining sequences except the
“Children”, for which the pixel-based CPME-PDS gives the best computationa time.
On average, the SEA and CPME-PDS, provide 3.42 and 3.38 times speedup when
comparing to the FSA. These experimental results confirm that CPME-PDS, is most
suitable for motion estimation of sequences containing high motion activities and

arbitrarily shaped video objects.

45 Conclusions

We have proposed an adaptive partia distortion search algorithm entitled as the
Clustered Pixel Matching Error for adaptive Partial Distortion Search (CPME-PDS).
The algorithm makes use of the phenomenon that pixel matching errors in a MB with
similar magnitude tend to appear together in a cluster in natural video sequences. We
have demonstrated that this is a popular phenomenon for relatively large search
windows. According to this phenomenon, we have found that both mean of pixel values

in a target MB and mean of pixel values in a candidate MB are good references to
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predict the magnitude of each pixel matching error in the target MB. Hence, the mean of
pixel vauesin theinitial candidate MB at the centre of a search window has been used
to caculate a reference value and to construct an adaptive index set. As a result, the
pixel matching error with larger magnitude can be accumulated to the SAD,, sooner than
others and the SAD calculation can be terminated at an early stage. We have evauated
the efficiency of the CPME-PDS in two measures, the total number of operations and
the execution time per frame or per VOP in motion estimation.

In terms of the number of operations, our experimental results show that for a
small maximum allowable search range, such as D = 1 or some cases of D = 2, the
conventional PDS is still the best algorithm due to the overheads of fast algorithms.
However, in areasonably longer maximum allowable search range, D = 2to D = 15, the
computational efficiency of the CPME-PDS outperforms other algorithms for coding
sequences with high motion activities and arbitrarily shaped objects. In the case of a
large search window, D = 15, our experimental results show that the CPME-PDS can
have a speed-up of 3 to 9 as compared with FSA, depending upon the contents of the
coded video sequences. Hence, the proposed CPME-PDS is generally the best among all
algorithms. The major advantages of CPME-PDS are its high efficiency and conceptual
simplicity. Comparing to other adaptive PDS, it requires less overheads.

When motion estimation time per frame or per VOP is used for evauation, the
performance of CPME-PDS is degraded dightly due to the problem of non-uniform
memory access. Nevertheless, the CPME-PDS is still able to provide the best efficiency
for sequences with high motion activities and video object encoding. We have modified
the CPME-PDS into a row-based agorithm in order to remedy the non-uniform
memory access problem. For example, a row of 4 consecutive pixels with larger
prediction errors is accumulated to the SAD, sooner than other rows. Experimental

results show that the conventional SEA provides a speed-up of about 3.42 times when
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comparing to the FSA, and it performs the best for video conferencing sequences.
Meanwhile, our row-based CPME-PDS, CPME-PDS, can speed up the search for about
3.38 times as compared to the FSA on average, and furthermore the CPME-PDS,
outperforms all other tested algorithms (including the SEA) for encoding sequences

with high motion activities and arbitrarily shaped video objects.
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Chapter 5. New Mixed Spatial-DCT-based Coding of
the Motion Prediction Error Frame of Video
Objects and Frames

5.1 Introduction

In the past decade, various waveform coding techniques such as the ones using
the Discrete Cosine Transform (DCT), subband/wavelet and vector quantization have
been developed for video coding. It is well known that subband/wavelet is superior to
DCT in still image coding. DCT based coding is still popular and researchers are in
favour of it for video coding [124]. For example, the DCT is widely used in modern
video compression standards, such as the ITU-T H.263, the ISO MPEG-1, the 1SO
MPEG-2 and the ISO MPEG-4, to achieve high compression efficiency. However,
using the DCT based coding to perform compression, the motion compensated
prediction error is far from optimal. The statistical properties of the errors are different
from that of natural images. The redundancies of errors which are synthetically
generated by the process of motion compensation cannot be exploited successfully by
the DCT [117,118]. Moreover, the BMC assumes that the motion between successive
framesis purely trandlational. Thisis not true for most of the real world video sequences.
All factors including deformation of foreground objects, non-translational motion and
irregular light variation, will make the BMC fail. The prediction error is generaly
concentrated in a clustered portion of the image even if the FSA is employed. It leads to
a scattering of the DCT coefficients and makes the compression inefficient.

To resolve the inefficiency of coding the prediction errors in the DCT domain, in
this chapter, we introduce a new Mixed Spatial-DCT-based Coding technique (MSDC).
The MSDC divides a prediction error MB into two components. Each component is

characterized by its own spatia correlation. One component is then coded by using the
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binary bit plane coding and variable length coding techniques (VLC), and the second
component is coded by using the traditional DCT-based method. Results of our
experimental work show that the MSDC can achieve a better compression efficiency for
the prediction error when compared with the traditional DCT-based coding technique. It
can effectively compress the prediction errors of arbitrary shaped video objects and
video sequences with moderate to high motion activities. Furthermore, enhanced video
codecs can easily be obtained by embedding the MSDC for high quality video
applications.

In the rest of this Chapter, we firstly illustrate and discuss the observation of
spatial characteristics of the motion compensated prediction errors. Problems and
properties related to the Full Search and other fast search algorithms are discussed in
Section 5.2. Making use of our observations, we will develop a new Mixed Spatial-
DCT-based Coding Scheme (MSDCS). Section 5.3 describes the proposed algorithm in
details. The performance of the proposed agorithm is then compared with the
traditional DCT-based coding in terms of the compression efficiency and execution time
using our computer. A large variety of video sequences and video objects have been
used for the evaluation. Section 5.4 gives the details of our experimental results and the

analysis. Finally, some concluding remarks are given in Section 5.5.

5.2 Characteristics of the motion compensated prediction error

Making use of motion compensation, modern video coding standards usually can
attain efficient video compression. In most cases, it is also assumed that the DCT-based
coding is applicable to process the prediction error if proper motion estimation is used
in the encoder side. However, as noted before, a possible failure of BMC comes from

the fact that there is a specia distribution of the prediction error. It destroys the energy
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compaction ability of the DCT. Hence, investigating the distribution of the BMC
prediction error is important to us for improving the compression efficiency of an
encoder.

MPEG-4 supports coding of arbitrary shaped objects with a set of tools. An
arbitrarily shaped video object plane (VOP) is partitioned into a number of MBs. The
MBs, which only partialy filled with opaque pixel values, are called partial MBs. For a
reference arbitrarily shaped VOP, its transparent region must be padded to form a
rectangular shape, such that block-based motion estimation/compensation of the partial
MBs can be processed efficiently. MPEG-4 makes use of arepetitive padding technique
[52] to pad an arbitrarily shaped VOP. The transparent region of the reference VOP is
padded by replicating the boundary pixel values of the VOP towards the exterior. It
results in a special constant intensity line patterns. This technique can effectively
compensate the motion of video objects with low motion activity. However, for objects
with moderate to high motion activities, it is unreliable to use padding to predict the
pixel values of a partial MB. Consequently, the block-based motion compensation is not
efficient and the prediction error concentrates at this padded region. Moreover,
inaccurate video object segmentation may also make the padding inappropriate. A
segmented video object plane which contains part of a moving object and part of a till
background is generaly the result of inaccurate segmentation. Hence, replicating the
wrong edge pixel values in the repetitive padding cannot compensate the motion of
video objects efficiently. Examples of inaccurate video object segmentation are shown
in Figure 5-1. Figure 5-1(a) illustrates a repetitively padded VOP, the “Goldfish”. The
padded region is clearly unable to compensate the motion of the objects due to
luminance variation at the edge region of the video object. Figure 5-1(b) is an example

of inaccurately segmented object in the sequence “Stefan”. The edge of the object is
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segmented with part of the still background and thus inefficient padding result is

available.

(b)

Figure 5-1. Examples of inaccur ate video object segmentation (a) a repetitively padded “ Goldfish”
and (b) an inaccurately segmented object in sequence “ Stefan” .

Figure 5-2(a) depicts a typica example, for which the prediction errors
concentrate at the padded region in a MB. In this simulation we have used a fast full
search agorithm, the partial distortion search (PDS), for motion estimation. The
situation of using other fast search agorithms is even more serious. The prediction
errors of the MB, when MVFAST was used in our simulation, are shown in Figure
5-2(b). It isfound that alarger region that contains clustered prediction errors are found
when compared to that of the result as shown in Figure 5-2(a). Furthermore, the

magnitudes of the errors are also larger in this case.

Pixel
Error

— 100

— 50

(@ FS (b) MVFAST

Figure 5-2. Examples of clustered errors in a motion compensated prediction MB of the video
object “GoldFish” by (a) FSand (b) MVFAST.
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The clustering effect of prediction errors occurs not only in partial MBs. It iswell
known that natural scenes are dominated by low frequency components. Furthermore, a
natural scene often consists of different correlated pixel regions. These low frequency
regions are separated by edges. Motion estimation is a matching of atarget MB with a
reference frame. Hence, prediction errors of motion estimation can be regarded as
regions due to the differences between the smooth parts of the target MB and the
reference MB. In the meantime, the correlated regions are partitioned by the edges of
the two MBs. Hence in this analysis, we can assume that the clustered prediction error is
a characteristic of motion prediction errors. We further make a postulate that an error
MB at a local minimum containing some regions with small errors and other regions
with large errors. On the other hand, the error MB at a global minimum is a MB where
large error regions shrink to some tiny portion or disappeared. However, large clustered
prediction errors aso occur frequently in sequences with high motion activity, even
though full search agorithm is employed. This undesirable result is due to poor
prediction of BMC of irregular motion activities.

Figure 5-3(a) and Figure 5-3(b) are examples of MB’s prediction errors in which
the PDS and MVFAST are used as motion estimation for sequence “Football”,
respectively. These examples demonstrate that the clustered prediction errors give
significant effect for frame based video coding. As mentioned before, the distribution of
these errors scatters the DCT coefficients and increases the bit-rate of DCT based

coding results.
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(@ FS (b) MVFAST

Figure 5-3. Examples of clustered errorsin a motion compensated prediction M B of the sequence
“Football” by (a) FSand (b) MVFAST.

5.3 Proposed Algorithm

The clustered error decreases the efficiency of DCT based compression.
Fortunately, errors join together in clusters. This fact reflects that some spatia
redundancies remain in this prediction error. We make use of these remaining
redundancies to improve the compression efficiency of a DCT-based encoder. In the

following, a detailed description of our proposed algorithm is given.

5.3.1 Separation of the prediction error MB into two components

Our agorithm starts by separating a prediction error into two components. Each
component is then characterized by its own spatial correlation. Hence, we can apply
different compression techniques to these two components based on their spatia
characteristics. According to our discussion in Section 5.2, we know that large
prediction errors tend to cluster together. This clustering property motivated us to
separate large prediction errors from an error block. When the magnitudes of the
remaining error block are small and correlated, the traditiona DCT coding can be
applied directly. Moreover, the clustering property of error components enables us to

treat them as an arbitrary shaped object plane. We suggest using the context-based
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arithmetic encoding (CAE) [45,46], which is a technique included in the MPEG-4 for
binary alpha plane coding, to code separated error components.

A MB consists of four 8x8 pixels blocks. To separate the prediction errors, Ei(x,y)
of each block into two components, Eci(x,y) and Edi(x,y), we use a ssmple approach
which involves a thresholding accompanied with some modulus operations. Let us
define,

E.(x,¥) = Ec (x,y)+Ed (x,y), i=0..3 (5-1)

E.(X,Y) if |E (%, y)|<TS

(E(xy)),, otherwise (5-2)

where Ed,(x,y) = {

Ec (x,y) = E(xy)-Ed/(x,y)
TSis a pre-defined threshold to detect peak errors and acts as a scaling

factor for Eci(x,y).

(-) denotes modulus operator

It is obvious that the absolute values of error components in Ed; (x,y) are smaller
than the pre-defined threshold value, TS. This separation cuts down abrupt peak errors
from E; (x,y), and thus the traditional DCT becomes more efficient to code the resulting
Edi (x,y). We can then separate coding of the second error component, Ec; (X,y) into two
parts, namely (i) shape and position of clustered errors, and (ii) magnitudes of the errors.
The values of Ec (x,y) are multiples of the threshold, TS because of the modulus
operation in egn. (5-2). Hence, we only need to code Ec’(x,y), that is the quotients of
Eci (x,y) divided by TS

or EC(x,y) = Ec (X, ¥)/TS (5-3)

Figure 5-4 demonstrates the shape of a sample Eci(x,y) and it's corresponding

quotients, EC’(x, y), for the coding to be described below.
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Figure 5-4. The decomposition of an example Eci (x,y) into it's shape for CAE and the
corresponding quotients, Ec’i (x,y) for VLC coding.

5.3.2 Compression of the clustering regions with context-based
arithmetic encoding (CAE) and variable length coding (VLC)

co | Cc8 | C7

X X | x| X X | X X | x| X X | X
X X | X | X X | X X | X | X X | X
X X | x| x X | X X | x| x X | x
CG CS C4 C3 CZ X X | x| x X | X X | x| x X | x
X X | x| x X | X X | x| x X | x
X X | x| X X | X X | x| X X | x
C 1 CO 2 X X | x| X X | X X | x| X X | X
* X X | x| X X | X X | x| X X | X
X X | x| X X | X X | x| X X | X
X X | X | X X | X X | X | X X | X
X X | x| x X | X X | x| x X | x
X X | x| x X | X X | x| x X | x
X X | x| x X | X X | x| x X | x
X X | x| X X | X X | x| X X | x
X X | X | X X | X X | x| X X | X

X X X X | X X

(@

Figure5-5. (@) The INTRA template for context construction in CAE. (b) Binary alpha block with
extended border, “x” s denote contents of the shape.

We use context-based arithmetic encoding (CAE) [45,46] to code the shape of the
separated error component, Ec; (x,y), in a MB, which is adopted in MPEG-4 for binary
alpha plane coding. A brief introduction of the CAE is given below. The shape of
Eci(x,y) is compressed with CAE in the intra mode. A block with 16x16 pixels, which

contains the shape of four Ec (x,y) blocks, is called a binary apha block (BAB). A

9
template of ten pixelsis used to define a context number, C = ch x 2* . Figure 5-5(a)

k=0
illustrates the intra template for the context number construction. The context number is

used to index a probability table provided in MPEG-4 for a current pixel. Then, we use
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the indexed probability to drive an arithmetic encoder. When encoding a BAB, a border
of width equal to 2 is extended from the current BAB for context number construction.
The pixel positions in the extended border are padded with zero as depicted in Figure
5-5(b) in our algorithm.

The magnitudes of errorsin Ec; (x,y) are firstly divided by TS as shown in Figure
5-4(c). We encode the quotients with variable length codes, and raster scan is used to
scan the MB from left to right and top to bottom. The code words for our VLC are listed
in Table 5-1. Actualy Table 5-1 is part of the variable length codes for DCT
coefficients in MPEG-2 with the only difference that the meanings of code words have

been modified.

Table5-1. Variable length codesfor E’2(x,y).

E’2(x,y) Variablelength code
1 1s

2 11s

3 0l1s

4 0100 s

5 0101 s

6 0010 1s

7 0011 1s

8 0011 0s

9 0001 10s

10 0001 11s

11 0001 O01s

12 0001 00s

13 0000 110s

14 0000 100s

15 0000 111s

Thelast bit ‘s’ denotesthe sign of a value
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5.3.3 Mode determination between Mixed Spatial-DCT-Based Coding
and traditional DCT-based coding

The proposed Mixed Spatial-DCT-Based Coding technique is away to exploit the
redundancies remained in the error MBs. These redundancies are due to inefficient
block based motion estimation and the repetitive padding technique. The traditional
DCT-based coding is still useful for some MBs. In other words, the MSDC provides an
additional mode to code the motion compensated prediction error for each MB. We add
amode bit to distinguish between the traditional DCT mode and the MSDC mode in the
resulting bitstream.

In order to exploit the benefits from these two modes, one simple method is to test
exhaustively the efficiency of the traditional DCT coding and that of the MSDC for
each MB. Nevertheless, the computational load introduced in this exhaustive
comparison isamajor problem that we need to resolve. It is obvious that we do not need
to test a MB when all pixel errors in the MB are smaller than the threshold, TS.
Experimental results show that this smple technique can save about 21% of the
computational load caused by exhaustive testing.

It is always attractive for us to study the possibility of improving the efficiency of
the MSDC for a MB. If we can predict the possibility accurately, we need only to
perform the efficiency test to MBs that the MSDC can possibly be able to improve the
coding efficiency. The spatia distribution of peak pixel errors and their magnitudes are
factors which affect improvement of the MSDC. It is because these two factors directly
affect the required number of bits of the CAE and variable length coding. This
consideration leads us to simply assume that the possibility of using the MSDC is

proportional to the sum of quantized peak errors, SQPE;, of each block.

SQPE = > S E (x,y)|/TS, 20,3 (5-4)

x=0 y=0
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Hence, only if the corresponding SQPE; is greater than or equal to a speed-up
threshold, p, the block of error, E; (x,y), will be separated into two components using
(5-1) to (5-3). In this case, we can avoid to compute the efficiency comparison between
the DCT-based coding and the MSDC if the condition in (5-5) isfulfilled.

KPE <p Vi (5-5)

Apparently, the decrease in compression efficiency is aresult of increasing p. If p
Isset to 1, thisimplies to obtain identical results as the exhaustive test. The mode which
requires a small number of bits for a MB is the resulting mode in our implementation.
The influence of the speed-up factor p ranging from 1 to 4 has been examined in our

experiments. Details of our experimental work will be described in Section 5.4.

5.3.4 Mixed Spatial-DCT-Based Coding Scheme (MSDCYS)

The above description gives some guidelines for our proposed Mixed Spatial-
DCT-Based Coding Scheme (MSDCS). The scheme makes use of the MSDC to exploit
the redundancies remained in appropriate error macroblocks and the mentioned mode
decision technique to speed up the process. The block diagram of the MSDCS is given

in Figure 5-6. The procedure is summarized as shown below.

Step 1: Code the input motion compensated prediction error, Ej(x,y) inaMB with
traditional DCT-based coding, and count the required number of bits for the
MB as Bpcr.

Step 2: Calculate SQPE; of each block with (5-4). If the condition in (5-5) is satisfied,
go to step 12.

Step 3: Calculate Ed; (x,y) from E;i(x,y) according to (5-2). Set threshold value TSto 16

in our simulation which has been determined experimentally.
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Step 4:
Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

Step 11:

Step 12:

Calculate EC/(x,y) using (5-3).

Create the shape of clustered errors with the four Ec’(x,y)sin the MB.

Code the shape of the clustered errors with CAE, which is described in Section
5.3.2, and count the required number of bits as Bcag.

Code the magnitudes of Ec/(x, y)swith VLC using Table 5-1, and count the
required number of bitsfor the MB as By, c.

Code the Edi; (x,y) with the traditional DCT-based coding, and count the
required number of bits for the MB as Br.pcr.

Calculate the total required number of bits for the MSDC, Busoc

where Busoc = Beae + B + Broper -
If Boer < By » 90 tO step 12.

Set the mode bit to represent MSDC mode, including the mode bit, and use the
results of step 6, 7 and 8 to form the resulting bitstream; then go to step 1 for
next MB.

Set the mode hit to represent the DCT mode, and make use of the result of step 1 for

bitstream formation, and go to step 1 for next MB.
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A motion compensated prediction error MB, E(x,y)

i l

DCT of E|(x,y), encode the
coefficients and count the Calculate SQPE; for the MB,
resulting number of bits for the i=0..3
MB, B,

All the four
SQPE, <p

Calculate Ec’(x,y) and Ed, (x,y),
it SQPE, > p

{

Create shape of clustered error
with the four Ec’, in the MB

I

Encode shape of the clustered
errors with CAE and count the
resulting number of bits, Beae

]

Encode Ec’, (x,y) with VLC and
count resulting number of bits,

Byic

;

DCT of Ed(x,y), encode the
coefficients and count the
resulting number of bits for the

MB, B

'm-DCT

]

Calculate B,

MSDC

y v v
Set the mode bit as MSDC and
send the resulting MSDC
bitstream

Set the mode bit as DCT and
send the traditional DCT bitstream

Figure 5-6. Block diagram of the proposed Mixed Spatial-DCT -based Coding scheme.

5.4 Experiments

In Section 5.3, we have proposed the MSDCS which exploits the redundancies
remained in the error MBs to improve the efficiency of the traditional error coding. In
order to evaluate the coding efficiency of the MSDCS, a large amount of experimental
works have been done. We used alarge variety of video sequences and video objects for
the evaluation. Sequences “Table Tennis’, “Football”, and “Templete” were used as test
sequences, while “Goldfish”, “Weather”, “Segmented Stefan”, and “Children” were
used to test coding performance for arbitrary shaped video objects. The format of the
above video sequences and video objects are summarized in Table 5-2.
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Table 5-2. Format of the tested video objects and sequences

Arbitrary Shaped Video Objects

Video Object Sour ce for mat Number of Tested VOPs
Goldfish 352x288 209
Weather 352x288 299
Segmented Stefan 352x240 299
Children 352x288 299

Video Sequences

Sequence I mage for mat Number of Tested Frames
Table Tennis 352x240 299
Football 352x240 209
Tempete 352%x288 299

The optimization of a coding system is essentially a multi-dimensional problem.
The key issues concerned in this problem are: bit-rate, quality (PSNR), speed-up (or
computational gain), algorithmic complexity, memory size and bandwidth. There is
always a trade-off among al these five key factors. It is the reason that fast motion
estimation algorithms have attracted a lot of attention in the past decade. In order to
evaluate the compatibility of the MSDCS, we have compared the coding results of our
proposed scheme and the traditional DCT-based prediction results of the PDSwhichisa
fast full search agorithm and the MVFAST which is a lossy fast algorithm. For the
optional mode of the MVFAST, no early elimination of search was used in al of our
experiments. Hence, the motion estimation of a MB can only be terminated if a
local/global minimum has reached.

We performed the simulations on a standard desktop computer. The configuration
of the platform was Intel P-1I1 600MHz desktop PC with 256M RAM and Windows
2000. The software platform used and modified was based on MPEG-4 VM 14.0,

Microsoft C++ implementation package [131,132]. The coding type was “IPPP...” for

138



all tested sequences and video objects. Each macroblock in P-Frame/P-V OP was coded
in inter mode with one motion vector only. The motion vector was estimated by the
PDS or MVFAST with half pixel accuracy. In our simulation, no frame skipping was
applied for all experiments.

To determine the value of TS, we have performed a set of experiments to find the
separation of large errors from an error block in order to have the best rate distortion
performance. At the beginning, two thresholds T and S have been used to separate large
errors from an error block and to scale the large error components. The separation is
formulated as shown below,

E(x,y) = Ec(x, y) + Ed(X, Y)
E(X,Y) if [E(x, y)|<T

Ed(xy) = {(E(x, V) -T)g otherwise

Ec(x,y) = E(x,y) - Ed(x,y)

The experiments were done by using with T ranging from 16 to 52 and S ranging
from 16 to 36, all with an increment of 4. We have found that if T and S = 16, this
results in a degradation of about 0.03dB PSNR performance in the best video quality
and the PSNR is49.48dB. However, it provides 10% decrease in bitrate, from about 195
to 177.5 kbits per VOP when comparing to the traditional DCT technique. At a quality
of about 42.8dB PSNR, with T and S = 16 only about 0.2dB PSNR degradation results,
whilst about 13% of the bitrate is saved. The required bitrate reduces from 92 to
81.5kbits per VOP. At avideo quality of about 37.78dB PSNR, the casewith T and S =
16 not only provides about 6% saving in bitrate and it also results in 0.05db PSNB
improvement. Hence, we have grouped T and S to be asingle threshold TS and set it to

16in all of our experiments.
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Table 5-3. Comparison of the additional execution time per frame with different speed up factor p
inthe MSDCS.

Additional computational time of the MSDCS

PDS MVFAST p=0 p=1 p=2 p=3 p=4

Arbitrary Shaped Video Objects

Goldfish 0.334 0.023 0.056 0.043 0.040 0.038 0.036
Weather 0.091 0.008 0.025 0.017 0.014 0.013 0.011
§eg_mented 0.065 0.003 0.008 0.008 0.008 0.008 0.008
Children 0.118 0.008 0.022 0.020 0.018 0.017 0.016

Video sequences

Table Tennis 0.356 0.021 0.078 0.047 0.040 0.036 0.033
Football 0.496 0.025 0.082 0.062 0.056 0.052 0.050
Tempete 0.426 0.026 0.098 0.083 0.076 0.071 0.067

To anayze the proposed mode prediction method, we evaluated the additional
computational load of the MSDCS in terms of execution time with a different speed-up
threshold, p. Table 5-3 summarizes the execution time of the PDS, MVFAST and
additional computation of the MSDC with p ranging from 1 to 4. Note that exhaustive
comparison between the two modes for every MB is performed with p being set to zero.
Our experimental results show that, with p = 1, about 21% of the introduced
computational load can be avoided on average and without any degradation of rate-
distortion performance. More computation can be saved with increasing p. According to
our experiments, on average, by setting p = 4, a further 21% of the introduced
computation can be avoided when comparing to the situation of p = 1, and only about
0.3% of bhit rate was increased, with same PSNR coding quality. The comparison is

depicted in Figure 7 to Figure 11.
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Figure 5-7. Coding performance for the video object “Goldfish” with different quantization
parameter, Qp ranged from 1to 7.
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Figure 5-8. Coding performance for the video object “Weather” with different quantization
parameter, Qp ranged from 1to 7.
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Figure 5-9. Coding performance for the video object “Segmented Stefan” with different
quantization parameter, Qp ranged from 1to 7.
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Figure 5-10. Coding performance for the video aobject “Children” with different quantization
parameter, Qp ranged from 1to 7.
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Figure 5-11. Coding performance for the sequence “Table Tennis’ with different quantization
parameter, Qp ranged from 1to 7.

The coding efficiency was evauated for the luminance component only. We
compared the rate-distortion performance of the DCT-based coding to that of the
MSDCS by varying the quantization parameter, Qp. Figure 5-7 to 5-11 depict the rate-
distortion performances of all tested video objects and sequences. The results show that
the MSDCS can outperform the traditional DCT-based coding especialy in the high
video quality region. This advantage vanishes gradually with increasing value of Qp.
The reason is that the bitstream of MSDC consists of three components, bits of CAE,
VLC and quantized DCT coefficients. Only the last component is a function of Qp. The
bits required for coding CAE and VLC remain fairly constant; hence for low bitrate
situation they dominate the bit rate requirement. However, experimental results as
shown in Figure 5-7 to 5-10 still confirm that for the tested video objects, the MSDCS
can achieve better rate-distortion performance comparing to the traditional method for
Qp ranging from 1 to 6. On average, with the same PSNR, the MSDCS saves about 5%

to 12% of the bitrate, depending upon the contents of the tested video objects. The
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improvement given by the MSDCS in the tested sequences is not as significant as the

situation in the tested video objects. The corresponding bitrate saving ranges from 1% to

6% on average.

49.00 {—{——PDS-MSDCS B
—8— MVFAST-MSDCS, p=1
—&— MVFAST-MSDCS, p=4
47,00 .|~ PDs-DCT
—¥%— MVFAST-DCT
45.00
43.00
o
P4
%]
0.41.00
39.00
37.00
35.00 /
33.00 ; ‘ ‘ ‘ ; ; ; ; ;
500 1500 2500 3500 4500 5500 6500 7500 8500 9500 10500

Bitrate / kbps

Figure 5-12. Coding performance for the sequence “Football” with different quantization
parameter, Qp ranged from 1to 7.
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Figure 5-13. Coding performance for the sequence “Tempete’ with different quantization
parameter, Qp ranged from 1to 7.

Figure 5-11 to 5-13 show that the MSDCS can ill obtain better rate-distortion
performance in high video quality situation, when Qp ranges from 1 to 3. From Figure
5-11, sequence “Table Tennis’ gives the best performance among three tested
sequences. High motion activity and complex background with camera motion in the
“Table Tennis’ are the main reasons of this result. These factors are the causes of
clustered prediction error and thus the DCT-based coding for these error MBs can be
improved by the MSDC. From our simulation results, it is verified that the MSDC
successfully improves the coding efficiency of MBs with clustered prediction errors.
Hence, the proposed MSDCS is very suitable for coding arbitrary shaped objects or
sequences with complex motion activity in high video quality application.

Moreover, it is worth to point out that the MSDCS accompanied with the
MVFAST provides similar, even much better rate-distortion performance when
comparing to the results of PDS with traditional DCT-based coding in al of our

experiments. In addition, the required computational time is reduced significantly. We
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have found that about 80% of computational time and 7% of bitrate saving are

achievable for all tested video objects on average.

5.5 Conclusions

In this Chapter, we have proposed a new agorithm, the Mixed Spatial-DCT-
Based Coding Scheme, for coding motion compensated prediction errors. The algorithm
makes use of the phenomenon that pixel matching errors in some MBs tend to appear
together in a cluster form. The reasons of this phenomenon include inefficient block
based motion estimation, inaccurate segmented video objects, results of repetitive
padding in MPEG-4, and high and complex mation activities. The proposed agorithm
exploits the redundancies remained and caused by these phenomena in an error MB.
Our experimental results show that the algorithm successfully improves the coding
efficiency of the traditional DCT-based coding for MBs with clustered prediction errors.
On average, with reasonable additional computation, the proposed algorithm saves up to
12% of the bit rates comparing to the results of the DCT-based coding when the same
PSNR is used for al testing video objects and sequences with high video quality. The
average required time for additional computation is about 1.9 to 2.4 times of the
execution time for MVFAST. When comparing to the fast full search algorithm, PDS,
only 13% to 19% of the execution time of the PDS is required. It is lesser than the
required execution time if the optima coding performance is used in a traditional
coding system. The mgor advantages of the MSDCS include conceptual simplicity, and
well defined CAE and VLC technique in the modern video codec. This also allows an
easy way to improve an existing video codec by embedding the proposed MSDCS into
it. Generally speaking, the proposed a gorithm is extremely suitable for coding arbitrary
shaped video objects or sequences with complex motion activity for high video quality

coding applications.
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Charter 6. Extended analysis of motion-compensated
frame difference for block-based motion
prediction error

6.1 Introduction

Transform coding method with motion-compensated prediction, abbreviated as
hybrid interframe coding, is one of the most essential methods for modern video coding
standards. In this method, motion-compensated prediction errors in a block are
transform coded by the DCT. To limit the generated amount of bits, a quantizer carries
out quantization to discard some part of transform coefficients.

Most of the work for the design and optimization of the hybrid video codecs is
carried out experimentally. A proper theoretical treatment of motion-compensated video
coding is still valuable for the design of state-of-the-art video codecs, even though it
requires many assumptions and simplifications for the analysis of a complicated system
processing real-world signals. Furthermore, even an approximate theory can provide
useful insights in the underlying mechanisms of the video codecs. In 1987, the first
comprehensive rate-distortion analysis of motion-compensated prediction (MCP) was
presented [20]. This theoretical framework leads motion-compensated video coding
away from heuristics and toward an engineering science. Afterward, a lot of research
activities investigate this subject in depth and develop many different techniques for
efficiency improvement [21, 23-27, 115, 116, 119, 125, 126]. These techniques include
motion-compensation with fractional-pixel accuracy [23], overlapped block motion
compensation [24-27], loop filtering technique [126], etc.

To design an optimal coding algorithm, a signal-source model that is sufficiently
accurate to reflect the practical signal characteristicsis required. The first-order Markov

process has been proven to be a successful model for still image analysis. This model is
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accurate for the correlation relationship for smooth image, and it even works fairly well
for the first few steps in more active images. By using the model, the correlation
coefficient p for natural image is often suggested as 0.95. Hence, we consider that the
DCT isavery close approximation of the optimum KLT and widely employed for video
coding. However, for motion-compensated errors signal, the situation is very different.
It has been observed that the MCP errors at block boundaries tend to be larger than
those at block centers [25]. It means that they are space-dependent and the assumption
of wide-sense stationary (WSS) is not valid. As aresult, it is inaccurate to employ the
simple Markov model for the MCP errors.

In [115], Chen and Pang proposed a compound covariance model (CP model)
theoretically and demonstrated that the DCT performs nearly optimal in intraframe
coding. Nevertheless, this investigation still assumed that the prediction errors are WSS
across a block. For the objective of reduction and equalization of the MCP errors across
a block, overlapped block motion compensation (OBMC) has therefore developed. In
[116], it confirms that means and standard deviations of the errors may change
significantly from block to block. Hence Niehsen and Briinig, proposed another
different compound covariance model (NB model) empirically, which takes the OBMC
into account. According to their experimental results, they claimed that their model
closely fit the characteristic of practical signals. The mgjor disadvantage of thismodel is
it lack theoretical basis, and thus using of this model for other analytical purposes is
limited. To resolve the problem, we assume that a net deformation of pixelsin a block
along a certain direction is a more genera situation. We improve the CP model to
propose a covariance model analytically by making use of this assumption. Our
proposed model reflects the characteristics of practical prediction errors fairly well and
comparable to the empirical model proposed in [116]. Moreover, our model explains the

deviation of the compound model [115].
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The outline of this study is as follow. Section 6.2 presents the derivation of a
mathematical model for autocorrelation of block-based motion prediction error. Our
derivation is originated from a similar direction as that of [125], such that it is easy to
show that the compound model [115] can be obtained from our model analytically. This
work is aso given in Section 6.2. Section 6.3 shows our simulation results, and
comparing to other models. The experimental results given from [115, 116, 125] verify

the accuracy of our model. The last Section 6.4 summarizes and concludes this study.

6.2 Modeling of the autocorrelation of block-based motion
prediction error

The simplicity and analytical tractability make the AR(1) as a popular model in
still image and image sequence processing. Our model is also derived based on a first-
order Markov statistics (or first order Autoregressive AR(1)) model with image
correlation coefficient equal to p.

For a block of pixels fi(i,j)) in a frame at time t, the block-based motion
compensation uses a matched block fi.1(i+u,j+V) in a reference frame at time t-1 for

prediction. Hence, the motion prediction error is given by,

e, )= (i, ) - ful+uj+v) (6-1)
where (u,v) represent the motion vector of the block.
The autocorrelation function, C¢(l, J) of the prediction error isthen given by,

C.(1,J) E[{f.G, ) - fu(i+u, j+Vv)}x (6-2)

{fG+1,j+)—f (+u+1,j+v+I)}]
2C,(1,3)-2C, (I —u,d -v)

where C, (-,-) isthe autocorrelation function of with correlation coefficient p.
C, () isthe cross-correlation function between aframe at time t and the

reference frame at timet-1.
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We assume that the matched block fi.;(i+u,j+Vv) can be approximated to the current
block fi (i, J) with reasonable deformation. That is

fi+m,j+n)=f_(i+u,j+v) (6-3)
The deformation vector (my,ny) represent the deformation of each pixels in the current
block. Note that, in this modeling, the magnitudes of m, and ny are not related to that of
the u and v directly. They only depend on the matching or correlation between the
matched block, fi.1(i+u, j+Vv) and the current block, f; (i, j). By substituting (6-3) into

(6-2), we can have,

C, (1 -ud-v) =E[f(+m,j+n)fi+1,j+3)] =c, ,(1-m,3-n) ©4
The reasons for the block deformation include failure of block-based motion model for
moving parts, light variation, inaccurate of motion compensation (i.e. inaccuracy due to
digitized image), and noise. We regard the deformation vector is a pair of independent

random variables, and the expectation value of the autocorrelation function, Cg( I, J) is

represented as,

Elc,(,3)1=2¢,(1,9)-2€lc, (1 -m, 3-n, )] €9
By applying separable 2-dimensional AR(1) model, we get

C,(1,3)=0,p"p" (6
where O'fz is variance of the pixelsvaluein AR(1) model.

and
Elc, (1-m,3-n,)]= asz[ e pJny} 7

For the sake of simplicity, a separable autocorrelation model is our objective. Hence,

(6-7) dong x-axisis expressed as
elc,, (1 -m,3-n )l=c2Elp' ™1EL ™) 1203=0 (-9

The E[p"‘”‘*‘] can be computed as
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Elp! ™= [ p(m o ™am, (6-9)
where p(my) isthe probability density function (pdf) of my

At this stage, we make an assumption that pixels in a deformed block tend to
deform along a definite direction rather than deformed randomly. In other words, a
mean vector of the deformation vectors (my,ny) is not regarded to be zero according to
our assumption. This assumption is based on the translational nature of part of an object,
partia rotation of a moving part, zooming and inaccurate of motion compensation.

Figure 6-1 illustrates the idea of our assumption using a one-dimensional example.

()] ] B B W[ @] (& [w] e o

|87‘ ‘90‘ ‘100‘ ‘110‘ ‘113‘ ‘126‘ ‘138‘ ‘150|

! E Motion Compensated Block

_________________

D Pixel value at integer pixel location
Q Pixel value at sub-pixel location by interpolation

—_— Motion vector of each pixel

Figure 6-1. lllustration of an assumption that pixelsin a deformed block tend to deform along a

definite direction

It demonstrates that part of a curent block is not predicted accurately enough, because
not all pixelsin the block trandated in the same direction and their moving distances are
not identical. However, they still present some motion tendency. Hence, we refine (6-9)

with the above consideration. Then (6-9) becomes

Elp! ™ ]= [ plm, )0 ™ dm, (6-10

where u, isthe x-component of the mean deformation vector.
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In fact, (6-7) represents the variance-normalized cross-correlation function
between the matched block and the current frame in terms of the image correlation
coefficient, p. It is a matching or correlation measure of the matched block in the

current frame conceptually. The assumed block deformation makes the cross-correlation
function, E[ ( -m,J-n )] and the error autocorrelation function depend on the

direction of the mean deformation vector. However, an error autocorrelation function
must be an even function with respect to I. To remedy this directional dependence, we
only consider the absolute value of pk. Then we further assume that iy is randomly

distributed. It gives

[ [ m] ”

where p(u, ) is probability density function of .

6-11
|/ux qu H - m“dmxdﬂ (6-11)

Without loss of generality, we use Gaussian distributions to represent the

conditional distribution function, p(mx |,UX|) and the pdf, p(x, ). The E[p"‘”‘*‘] is then

given by

—(m \#x\) (6-12)
> 26 J' e 207 H"*mx‘drnxdlux

b ok

where o, isthe standard deviation of the mean deformation vector.
onv IS the standard deviation of the deformation vectors in a single
block.
Assuming that the block deformation in the x- and y- dimension can be modeled
with same standard deviations ¢, and omy, the error autocorrelation function along x-

direction in (6-5) can be expressed as

ElC.(1,9)]=20, {p"‘p“‘ E[p“_m“]E[p‘J_ny‘]}; | >0,J=0 (6-13)
and the variance-normalized autocorrelation function of the block prediction error is
given by
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E[C.(1.0)] _ p"p" - Ev”ﬂﬂﬂpwﬁ. | >0,J=0 (6-14)
Elc,(00]  1_ E[p\mx\]E[p\ny\] ;1 =0,

The result of (6-14) can be obtained by numerical calculation. However, this form is not
convenient for analytical purpose. We have described the derivation of its approximated
form below.

We use an expected value of the mean deformation vector in (6-11), instead of
using the pdf, p(ox) to approximate the autocorrel ation model. The expected value of the

mean deformation vector is

no) -2 [ =y 1z (619
0O,)=—F— e =0,,|—
/ux u O_ﬂ@ o :ux :ux u T

We rewrite (6-12) by using this expected value.

_(W_‘ﬁx‘)z
~ 1 - T+HI\—mx\lnp
E[p‘I ”‘*‘] ~ = Lee 20mi dm,

(mx ‘ﬂ i +HmA1)inp

_ 1 L \ O dm,

O N2 |
- 7(";‘0‘”*‘) (1-mJinp
+ jl‘e ™ dm, (6-16)

These two integration is expressed involving error function, erf(z). Finaly, we have

-, ”” 2L i) -]z |+ 0, Inp
e L Loy

mv

+  plHED {1 erf(m |ﬂ:;|_ﬁ '”PH}

(GmInp)
_ L il gy g M+ om I p
p'e {p {+er( -

nv

. p(ZI#|:]_ erf(m |'u;|-_\/§ lnpﬂ}

= p"R(1, 7,0, P) (6-17)

153



Now, using the 6-17), we can approximate the variance-normalized autocorrelation

function of the block prediction error which given by (6-14) as

E[C.(1,0)] ~C_(10) =p"p° 1- FE(l,ﬁx,UWP)E(O,ﬁx,GWP)
P 1-R(0 4, 0,,, p)RO, &, 0y, )
=p" P R, 3, E 0 ) | (6-18)

Finally, we express a separable 2-D variance-normalized autocorrelation function as,

ElC.(1,0)E[C,(0,3)]
E[C.(00)

= 0,0, R(1 0,72, O £, )9(0,J, B, Oy py) (6-19)

A detailed derivation of (6-19) is shown in Appendix B-B.1.

In fact, the function R(1,J,7Z,,0,,.p) |,_, is equivalent to the role of Aa) in
[125] in 1-D case, which is shown by (2-39).

Moreover, we can show that the compound covariance model, (2-39), proposed in
[125] can be obtained from (6-18). The model of (2-39) is a one-dimensional case that
derived based on atranslational motion model and a composite motion-estimation-error
probability density function (pdf) consisting of auniform pdf for the granular estimation
errors and an impulse pdf for the background regions with zero estimation errors.

To derive the (2-39), we assume that a video sequence with very low motion
activity is under simulation. For this reason, block-based motion model can properly

compensate the motion of each block between successive frames, and thus z, and o,,,

are set equal to zero and 0.5 respectively. Using the properties of erf(z),

2 2\2
ie‘zzz 1+2i+@+-~- if z<<1
erf(2)=4.r 1.3 1.3:5

1 if z>>1

, an approximation of (6-17) can be obtained. For |I| equal to zero, we express the erf ()

in (6-17) as the first term of its expanded series, and for |I| greater or equal to one, the

erf (-) isexpressed as unity. Hence, (6-17) is approximated as
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(O In (omInp)? _(omInp
g[pim] - ml ’ {!“%e( 7
2 —[%T —o,Inp
1--2 m £ _(1- (1
R R
(o Inp)? _(OmInp :
_Ala 2 1 \/Z ( V2 ) I ol
o'le [ e o Inp- (1)) 620
2 7[lenpj
Let ﬂz\/;e V2 In p, and substituted into (6-20). As aresult
& (o) =il Ao )
sl 1= L T
= p'[a+@-ms(i|) (6-21)
(6-22)

Where
B 1_ e(o-m\/lnp)z [1+ ﬂ]
1- e [1+ B
The numerical value of A isequal to 0.497 with p = 0.95 and o, = 0.5. (2-39) is arrived

The detailed mathematical deduction of (2-39) is shown in Appendix B-B.2

In Matrix form,
cie,ﬁX o (O’O) ge,ﬁx,amv (1'0) E_:e,ﬁX e, (N - 1’0) (6-23)
. 0 C.. 0,0 C. . N-20
covo| Canl0  Cu00) o G N-20)
(Ee 11,0, (N _:LO) ~e,*x,0' (N 210) me,[zx,o'rw (O’O)

It is equivalent to the corresponding Toeplitz form of egn. (2-30), which is shown in egn

(2-34).

6.3 Simulation Results
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Let us consider an anaytical treatment of the motion-compensated frame
differences (MCFD). A covariance model that can represent the empirical covariance
result accurate enough is required. Hence, it is necessary to verify a covariance model
by comparing its fitness to empirical results. We made use of the experimenta results
form [115, 116 and 125] to compare the fitness of our model with that of the CP model
and the WNMB model. The empirical result of “Trevor” sequence extracted from [125]
and the result of sequence “Miss America’ in [115] are used to evaluate the accuracy of
our model and compared to the CP model in 2-D situation. Besides, we have compared
the accuracy of our model with that of the WNMB model in 1-D case by using the
statistical result of anumber of standard sequencesin [116].

Figure 6-2 depicts the 3-D plot of an autocorrelation function of MCFD signals
generated from Trevor images [125]. The spatial autocorrelation function of the Trevor

image has a high value with p = 0.99 [125].

e
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p"‘ft:,‘!““!.’

Figure 6-2. Autocorrelation function of M CFD signals generated from Trevor sequence [122].

The result of our improved model is plotted in Figure 6-3(a) by substituting py =
py = 0.99, oy = gy = 1.15, and ux = 1, = 0.75 into (6-19). We have plotted the result of
CP model with px = py = 0.99 in Figure 6-3(b) for comparison. According to the

prediction from CP model, the autocorrelation function is decreasing slowly for 1,J >1.

It deviates significantly from the empirical result. However, the improved model can
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represent the autocorrelation function more accurately when comparing to the original

CP model. It correctly represents the rapidly decreasing autocorrelation for 1,J > 1.

(@) Improved CP model (b) CP model

Figure 6-3. Representation of the autocorrelation function of Trevor’sM CFD signals by separable
models (a) our improved model, (b) original CP model.

Let us use another experimental result, the autocorrelation function of MCFD of
the sequence “Miss America’ in [115], to evaluate the accuracy of our model and that
of the original CP model. The pixel correlation coefficients are 0.88 and 0.80 in the
vertical direction (indicated by arrow J) and horizontal direction (indicated by arrow 1)

[115]. The corresponding autocorrelation function of the MFCD is shown in Figure 6-4.
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Figure 6-4. Autocorrelation function of M CFD of the sequence Miss America.

Figure 6-5(a) illustrates the representation of the autocorrelation function of Miss
America’'s MCFD signals by our improved model with the following parameters py =

0.80, py = 0.88, ox= oy= 1.15, and = 4y = 0 in (6-19). Meanwhile, Figure 6-5(b)
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gives the result of the original CP model with p, = 0.80 and py = 0.88. Figure 6-5 shows
that both models can compare favorably with the experimenta results in Figure 6-4.
Because, the original CP model does not concern practical motion properties of a video
sequence, it assumes that the block based motion estimation can successfully
compensate motion of each pixel in a block. This assumption is only valid in sequence
with very slow motion activities, such as the Miss America. However, we can till find
that, in the I-direction, the CP model shows a sudden drop of autocorrelation value at
=1, which is not correct when compared to the empirical result in Figure 6-4. The
improved model can represent the trend of the autocorrelation function in both

directions correctly.

(a) improved CP model (b) Original CP model

Figure 6-5. Representation of the autocorrelation function of Miss America’'s MCFD signals by
separ able models (a) improved CP model, (b) original CP model.

In [116], the authors used four MPEG test sequences to verify and proposed their
1-D NB model, which empirically fitted in the sense of the |;-norm. Their experimental
results are shown in Figure 6-6. Figure 6-6 gives the maximal, minimal and mean of the
normalized autocorrelation functions of the MFCD at different pixel distances. We use
these results to evaluate the fitness of the original 1-D CP model, the NB model and the
improved CP model. The original 1-D CP model, the NB model and the improved CP

model are given in (2-39), (2-40) and (6-18) respectively. In this simulation, we set py =
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0.95, ox =1, and 4« = 1 in (6-18). We chose these values for oy and u in order to fit the
experimental results close enough. The value of px = 0.95 is chosen identical to the
original CP model.

In Figure 6-6, we can find that the original CP model does not fit accurately the
empirical autocorrelation of the MCFD incorrectly. The CP model decreases slowly
with pixel distances, | >1, which is different from the empirical results significantly.
The NB modé fits the experimental results closely, because the required parameters of
the NB model are chosen to fit the experimental result in the |;,-norm sense. However,
this model is purely empirical and without any theoretical foundation. The usage of this
model for analytical purposes is serioudly limited. On the other hand, the improved CP
model successful represents the autocorrelation function of the MCFD as shown in
Figure 6-6. Moreover, the improved model is derived from the simple first order
Markov model and including the consideration of a net deformation of pixelsin ablock
due to imperfect block-based motion compensation. Hence, the improved CP model is
suitable for analytical design and investigation of signal decomposition algorithms in
motion compensation. For instance, using of ox = 1, and w = 1 indirectly suggests that
the motion compensation errors in a block is not distributed uniformly. It is a property
of the motion compensation error that induces a widely study of the OBMC agorithms
in video coding. Moreover, it also explains the deviation of the CP model from
empirical results, which is due to the lack of concern about practical block-based motion

compensation in an encoder.
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Figure 6-6. Comparison of the predicted autocorrelation function by the tested models to the
experimental results.

6.4 Conclusion

A proper theoretical treatment of motion-compensated video coding is valuable
for the design of most advanced video coding system, even though it requires to have a
number of assumptions and simplifications for the analysis of real-world signals.

In this study, we have shown that the first order Markov model can be used to
derive an approximate separable autocorrelation model for the block based motion
compensation difference signal. In the derivation, we have assumed that a net
deformation of pixels is directional in general situation rather than a uniform error
distribution in a block. We have improved the original CP model by proposing a
covariance model analytically making use of this assumption. Simulation results show

that, the improved CP model can describe the characteristics of the MCFD signals
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accurately. We have also found that the concern of imperfect block-based motion
compensation is one important step to study the motion-compensated coder; otherwise
the autocorrelation function of the MCFD signals cannot be expressed correctly. As a
result, we can utilize this improved model to provide some useful insights for analytical

design and investigation of video signal decomposition algorithms.
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Chapter 7. Conclusion

7.1 Conclusion on this investigation

In this multimedia era, different applications and services require the
communication and interactive functions in the form of text, audio, image and video.
However, the transmission and storage requirements of these multimedia data are very
critical, especialy for the video data. Consequently, these requirements motivate the
rapid development of video compression standards, such asthe ITU-T H.261, the ITU-T
H.263, H.264 the ISO MPEG-1, the ISO MPEG-2 and the ISO MPEG-4. Both types of
standards using block-based motion estimation techniques to exploit the tempora
redundancies from frame to frame in order to achieve the purpose of high compression
ratio. However, the amount of computation for motion estimation may take up to about
90% of the execution time of the whole encoding system on average if the conventional
Full Search Algorithm is employed. Hence, there is a huge need for low computational
complexity motion estimation techniques which do not significantly degrade the image
quality. In addition, the motion estimation and compensation techniques used in MPEG-
4 can be seen as an extension of the standard MPEG block matching techniques for
Image objects with arbitrary shapes. Nevertheless, the situation of motion estimation in
the boundary region of an arbitrary shaped object is more complex. Severe
optimizations are necessary. Hence we concentrate on developing different efficient
motion estimation algorithms for a modern video encoder.

In Chapter 3, we propose a new priority search agorithm (PSA) for motion
estimation in MPEG-4. For an arbitrarily shaped object, we perform motion estimation
on all boundary MBs first in contrast to the conventional raster-scanning approach. The

motivation behind the new search strategy is that opague MBs which are inside a
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moving video object are correlated highly with moving boundary MBs. We estimate
motion vectors (MVs) of the opague M Bs by taking the best-matched MV among all its
neighboring MVs and the zero MV as the initial centre. For searching, we make use of
conventional fast block matching algorithms such as the Diamond Search. Our
experimental results show that this strategy can provide good searching results if the
motion vectors in the boundary MBs truly represent the moving video object. Hence, a
novel fast search algorithm is thus designed for the boundary MBs, which is referred to
as the binary apha-plane assisted search (BAAS). Note that the error surface of a
boundary MB is more complex than that of an opaque MB due to the repetitive padding.
The assumption that a distortion function increases monotonically as the search location
moves away from the global minimum is not valid. However, it is still reasonable for us
to assume that it is monotonic in a small neighborhood around the global minimum. We
use a binary alpha-plane to examine a number of candidate points, which are distributed
uniformly in a search window. We can select alimited number of starting points but this
still provides a high chance of catching the global minimum for the boundary MBs. The
reason for us to incorporate the binary apha-plane in BAAS is to reduce the required
computational load. The information of the binary aphaplane can be exploited by
simple bitwise operations. These operations require less computation as compared to the
operations for Sum of Absolute Difference (SAD). Experimental results show that,
when compared to conventional methods, our PSA coupled with the BAAS can reduce
the heavy computational burden in motion estimation without significantly increasing
the prediction error of the motion-compensated frame. The proposed algorithm can
produce a motion-compensated VOP that are tied more closely to the video object. It is
significantly better than that of the famous DS and substantially improves the accuracy
of block motion estimation for MPEG-4 video objects. On average, the proposed

algorithm can speed up the motion estimation about 23 times in terms of the tota
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number of operations when compared to the FSA. We believe that results of our work
will certainly be useful in the future development MPEG-4 codecs.

Many conventiona fast algorithms including our PSA proposed in Chapter 3
produce some quality degradation of a predicted image. Alternatively, another kind of
fast algorithms that do not introduce any prediction error as compared with the full-
search algorithm have been widely studied in the coding field. The partia distortion
search (PDS) is a well-known technique of this kind of algorithms. In Chapter 4, we
propose an adaptive partial distortion search entitled as the Clustered Pixel Matching
Error for adaptive Partial Distortion Search (CPME-PDS) which significantly improves
the computation efficiency of the origina PDS. In the literature, many researchers
assumed that pixels with larger gradient magnitudes have larger matching errors on
average and make used of this assumption to improve block-matching algorithms. On
the other hand, we have found that on average, pixel matching errors with similar
magnitudes tend to appear in clusters for natural video sequences. Our experimental
results show that, by using this clustering characteristic, the CPME-PDS gives much
better computational efficiency than other algorithms which make use of the pixel
gradients, especially for encoding sequences with high motion activities and arbitrarily
shaped video objects. In the CPME-PDS, we used the mean of pixel valuesin theinitial
candidate MB at the centre of a search window to determine the order of each pixel
matching errors that accumulate to a partial SAD. As a result, pixels matching error
with larger magnitudes can be accumulated to SAD, sooner than others and the SAD
calculation can be terminated at an early stage. We have evaluated the efficiency of the
CPME-PDS in two measures, the total number of operations and the execution time per
frame or per VOP in motion estimation with awide variety of sequences. In terms of the
number of operations, the CPME-PDS and the original PDS can have a speed-up of

3.93 and 5.71 on average as compared with FSA, respectively. When motion estimation
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time per frame or per VOP is used for evauation, the performance of CPME-PDS is
degraded dlightly due to the problem of non-uniform memory access. Hence, we have
modified the CPME-PDS into a row-based algorithm in order to remedy the non-
uniform memory access problem. For example, a row of 4 consecutive pixels with
larger prediction errors is accumulated to the SAD, sooner than other rows.
Experimental results show that our row-based CPME-PDS, and the origina PDS can
speed up the search for about 3.38 times and 2.56 as compared to the FSA on average.
Hence, we conclude that the CPME-PDS improves the original PDS significantly.

After the processes of motion estimation, the motion prediction error is then
coded by using the discrete cosine transform (DCT) to achieve high compression
efficiency. The DCT is widely used in modern video compression standards. A major
merit of the DCT is its capability in high energy compaction for still natural images.
Hence, DCT based coding is popular for video coding. Nevertheless, the motion
prediction error frame is not a natural image but synthetically generated by the process
of motion compensation. This process degrades the energy compaction efficiency of the
DCT. As aresult, using the DCT based coding to perform compression for the motion
prediction error is far from optimal.

In Chapter 5, we study the spatial distribution of the prediction errors resulting
from either the full-search motion estimation or other fast search algorithms. We have
then proposed a new agorithm, the Mixed Spatial-DCT-Based Coding Scheme
(MSDCYS) to resolve the inefficiency of coding the prediction error in the DCT domain.
The algorithm makes use of the phenomenon that pixel matching errors in some MBs
tend to appear together in a cluster form. The reasons of this phenomenon include
inefficient block based motion estimation, inaccurate segmented video objects, results
of repetitive padding in MPEG-4, and high and complex motion activities. The MSDCS

exploits the redundancies remained and caused by these phenomena in an error MB.
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The proposed algorithm divides a prediction error MB into two components. Each
component is characterized by its own spatial correlation. One component is then coded
by using the binary bit plane coding and variable length coding techniques (VLC), and
the second component is coded by using the traditional DCT-based method. Our
experimental results show that the algorithm successfully improves the coding
efficiency of the traditional DCT-based coding for MBs with clustered prediction errors.
On average, with reasonable additional computation, the proposed algorithm saves up to
12% of the bit rates comparing to the results of the DCT-based coding when the same
PSNR is used for all testing video objects and sequences with high video quality. The
average required time for additional computation is about 1.9 to 2.4 times of the
execution time for MVFAST. When comparing to the fast full search agorithm, the
PDS, only 13% to 19% of the execution time of the PDS is required. It is less than the
required execution time, such that the optimal coding performance can be obtained in a
traditional coding system. The major advantages of the MSDCS include conceptual
simplicity, and well defined CAE and VLC techniques for a modern video codec. This
also allows an easy way to improve an existing video codec by embedding the proposed
MSDCS into it. Generally speaking, the proposed agorithm is extremely suitable for
coding arbitrary shaped video objects or sequences with complex motion activity for
high video quality coding applications.

In the past decade, various transform coding techniques such as the one using
DCT, subband/ wavelet and vector quantization have been developed for video coding.
Among these coding techniques, the DCT based coding is still the most popular for
various video coding standards. For a natural image, correlation coefficient p = 0.95 is
often suggested, and the discrete cosine transform (DCT) is often employed for its
energy compaction capability. Because the DCT is a very close approximation of the

theoretically mean-square optimal Karhunen-Loéve Transform for an first order
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autoregressive, AR(1), process with p = 0.95. However, the statistical properties of
motion prediction errors (MPE) are different from that of natural images. Some
researchers are still questioning that there is no theoretical basis that can clearly predict
the suitability of the DCT for encoding the motion prediction errors. Moreover, a proper
theoretical treatment of motion prediction error is valuable for the design of most
advanced video coding system, even though we require making many assumptions and
simplifications for the analysis of the real-world signals.

In 1993, Chen and Pang [115] proposed a compound covariance model (CP model)
theoretically and demonstrated that the DCT performs nearly optimal as the situation in
the intraframe coding. Nevertheless, this investigation assumed that the prediction errors
are wide-sense stationary across a block. It can only describe the characteristics of the
MPE across a block in sequences containing low motion activities. In 1999, Niehsen
and Brinig [116] proposed another compound covariance model (NB model)
empirically and showed that means and standard deviations of the errors may change
significantly from block to block. According to their experimental results, their model
can closely fit the characteristic of practical signals. The mgor disadvantage of this
model that it lacks a theoretical basis, and thus using of this model for other analytical
purposesis limited.

In Chapter 6, we have shown that the first order Markov model can be used to
derive an approximated separable autocorrelation model for the block based motion
compensation difference signal. In the derivation, we assumed that a net deformation of
pixels is directional in genera situation rather than a uniform error distribution in a
block. We have improved the origina CP model to propose a covariance model
analytically by making use of this assumption. Simulation results show that, the
improved CP model can describe the characteristics of the MCFD signals accurately.

We have found that the concern of imperfect block-based motion compensation is one
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important step to study the motion-compensated coder; otherwise the autocorrelation
function of the MCFD signals cannot be expressed correctly. As a result, we can use
this improved model to provide useful insights for an analytical design and investigation

of video signal decomposition agorithm.

7.2 Future research directions

We can classify the results obtained in this research work into two parts. The first
part is a study of fast motion estimation algorithms. The second part relates to the
transform coding of motion prediction errors. However, considering to apply these
techniques to modern coding system or real applications, further study and extension of
our work are necessary.

In Chapter 3, we have proposed alossy fast motion estimation algorithm. Besides,
in Chapter 4, a lossless fast agorithm has also been developed. These agorithms can
significantly speed-up the motion estimation for arbitrarily shaped objects in MPEG-4.
However, the computational requirement of the future video encoder will become more
critical. The newest international video coding standard, H.264/AVC (or MPEG-4 part
10) alows using more than one prior coded picture as reference for motion-
compensated prediction. We may construct a block of prediction signals from a
weighted average of two motion-compensated prediction values. Moreover, the standard
supports to partition a macroblock into smaller block sizes of 16x16, 16x8, 8x8, 8x4
pixels. We expecte that the traditional motion estimation algorithm need to be enhanced
to provide acceptable efficient. Other than using the edge feature that we studied in
Chapter 3 and clustering characteristic used in Chapter 4, we believe that color feature
and object texture are useful properties to develop efficient agorithm for the

H.264/AVC. For instance, we may use a matching condition of texture in a block as a
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criterion to determine the partition of a macroblock and the requirement of weighted
averaging for ablock reconstruction.

In Chapter 5, we have shown that a suitable transform algorithm accompanied
with afast lossy motion estimation algorithm can achieve equivalent or better result in
both rate-distortion and computational efficiency, when comparing to the optimal
performance in a tradition video coding system that uses the full search algorithm. It
suggests that we may treat the optimization of fast motion estimation and transform
coding of the motion prediction error as a whole system. Subsequently, we can
compensate the rate-distortion performance and speed-up factor between a transform
algorithm and a fast motion estimation to optimize a video coding system. We consider
that the contribution of our work in Chapter 5 is indeed significant, but not complete,
because it is not suitable for low bit-rate applications. Hence, it is good to extend our
study into this region.

A signal-source model that is accurate enough to describe the practical signd
characteristics is an important issue for us to fulfill the above purpose. The auto
correlation model for motion prediction error proposed in Chapter 6 provides some
useful insights to analyze a complicated system for real signals. Nevertheless, we need
to further extend the model such that it is more suitable for applicable practical
applications. First, it is needed to exploit the relationship between the model parameters
to obtain results of different motion estimation algorithms. Second, one may study the
coding efficiency of different transform algorithms related to the model parameters.
Hence, a wide variety of further work can be done as a future development of the

present investigation.
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Appendix A:

A.l Solution of the reference value, m, in the clustered pixel
matching error for adaptive partial distortion search algorithm

(CPME-PDS) (Method 1)

n=0

In solving this equation, we have

[Nl[l(n) R~ (1, ()~ m)f | =0 @

n=0

£ > fi,m-RreP - 0,m-mPf |=o0

L n=0

E_Nle[(lt(n)—R(n))z—(lt(n)—m)z]Z(n(n)—m)} =0

| n=0

E| > [(1,(n)? - 21 (R() + R(m)?) (1, () — 2m <n>+m2)](|t(n)—m)}=o

N-1

E > [(R()? — m?)—2(R) +m)1 (m)] (1,(n) - m)} =0

E[ Y [2ml (n)? + 2mi (n)R(n) - 3m?I (n) — 2R(n) 1 () — mR(n)? + R(n)?I (n) + mﬂ -0

E_Nlmﬂ —3E{Nll (n)mz} + E{Nl(ZI (n)? + 21 (n)R(n) — R(n)z)m}

| n=0 n=0 n=0

LN

+ E{N_ (R()?1 () - 2R()1 (n)z)} -0

By substituting R(n) = I,(n) —e(n) into egn. (4-1), finally we can have a cubic equation,
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H

N-1 N-
256m° —3m?»_1(n)+m- E{

n=0 n=0

(21 (m)2 + 21 (M) (1 () — ()~ (|(n)—e(n))2)} (4-2)

H

& 30000100201 - (07 <0

256m° —3m2§I (n)+m- E{Ni(ZI (N)? + 21 (n)* =21 (n)e(n) — 1 (n)* + 21 (n)e(n) — e(n)z)}

n=0 n=0

|
=

+ E{N (1 (n)* =21 (n)?e(n) + I (N)e(n)? — 21 (n)°* + 2 (n)ze(n))} -

m3—3ltm2+(3lt2—e2)m+ l.e-1°2=0

g:iE{fe(n)z}
where A= , and
:NE{ZI (nN)e(n) }

The roots of the cubic equation are either al reals or one rea and two complex

conjugates which depend on the discriminant of the equation.

ai=—3ﬂ:a2=(3lt_2—?):a3=lt2—lf
go3%-al o -s-ol lz_rz)_gz_{ﬁf
9 9 A 5 3
R 928, — 273, ~2a°
54

(ai 312 -&)-27

-1, )— 2(-27)1,°

S’Q’—T

—\6
Discriminant, D=Q*+ R D=Q°+R? = 47(%)

~D<0 = adlrootsarerea and unequal roots
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We look for real roots for (4-2), such that m can be practically useful. The above proof

assumes that natural images are dominated by low frequency components. Hence, we let,

and
These are valid only if the image frame under question consists mainly low frequencies

and the standard deviation of Iy(n) is small enough. Asaresult, it gives

ml=2\/—Q§—%=_t+ e 43)
3 =
%—Z‘QPE“%:“‘é

The first approximated root is the mean of pixel values in the target MB. To use
this mean as the reference value it already gives a better computational saving when
comparing to the PG-PDS, for which we proposed it as a comparison. Intuitively, misa
function of pixel valuesin a candidate MB, i.e. m=m(R(n)). The other roots, Kix/?
can also be obtained by the following approximation.

R=1 —e~T +J&

It indicates that this solution is an approximation of the mean of pixd values in a

candidate MB.
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A.2 Solution of the reference value, m, in the CPME-PDS

(Method 2)

In fact, the solution of M= R can aso be obtained directly by minimizing the

eguation,
N-1
E[ S e - p(nﬂ o
n=0

To minimizing the equation (A2-1), we substituting €n)=1,(n)-R(n) and

p(n) = I (n) —m into the equation,

m= argmln{ {Z[ —R(n))-(1, (n)—m)]z}}

Hence, m is obtained by solving the equation,

a8 3= R~y -0

deg Nz‘l[ot(n)—R<n>>2—z<n<n>—R(n»(n(n)—m)+<|t<n>—m>2]2}=o

| n=0

Ez[z R()- <n<n>—m>1}:o

E_Nz_:l[m— R(n)]} =0

| n=0

N-1
Nm-— E[ > R(n)} =0
n=0
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Appendix B:

B.1 Detailed derivation of the proposed compound covariance

model for motion prediction error

The proposed model is derived based on a first-order Markov statistics (or first
order Autoregressive AR(1)) model with image correlation coefficient equal to p.

For a block of pixels fi(i,)) in a frame a time t, the block-based motion
compensation uses a matched block f.1(i+u,j+V) in a reference frame at time t-1 for
prediction. Hence, the motion prediction error is given by,

e, j)=f(,))-ful+uj+v) (6-1)
where (u,v) represent the motion vector of the block.

The autocorrelation function, C¢(l, J) of the prediction error isthen given by,

C.(1,3) = E[f,G,)-ful+u,j+vx (6-2)
{fG+1,j+)—f (+u+1,j+v+I)}]
= 2C,(1,3)-2C, (1 —u,J-v)

where C,(-;) is the autocorrelation function of a frame with correlation
coefficient p.
C, () isthe cross-correlation function between aframe at time t and the

reference frame at timet-1.

(* Note that, more precisely,

E[{fG, ) - foali+u, j+v)}x
{fG+1,j+)— f G +u+l,j+v+ )]
2C;(1,3)-Cs (1 —u,3=v)=C; (I +u, I +v)

Ce(1,9)

However, if fy(:,-) = fi.;(-,-) and (u, v) isapair of random variable with -ve
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or +ve values, one could expressesit as (6-2). Moreover, these two

different expressions will go to identical result because of even function

characteristics used in (6-6) *)
We assume that the matched block fi.i(i+u,j+Vv) can be approximated to the current
block fi (i, J) with reasonable deformation. That is

fi+m,j+n)="f_(i+u,j+v) (6-3)
Hence, first-order Markov statistics model with correlation coefficient, p , can be
involved. The deformation vector (my,ny) represent the deformation of each pixelsin the
current block. Note that, in this modeling, the magnitudes of m, and ny are not related to
that of the u and v directly. They only depend on the matching or correlation between
the matched block, fi.1(i+u, j+V) and the current block, f; (i, j). By substituting (6-3) into

(6-2), we can have,

Cio(l —u,d—v) =E[fy(i+u, j+Vv)f(i+1,j+J)] =Cflt(l —mX,J—ny) (6-4)

Ci (I -ud-v) = E[f,(i+m, ] +ny)ft(i+l,j+J)] =, (1-m,J —ny)
By regarding (my and ny) is a pair of independent random variables, and the expectation

value of the autocorrelation function, Cg( I, J) isrepresented as,

Elc.(1,9)]=2¢,(1,9)-2E[c, (1 -m, 3 -n, ) ©5)
By applying separable 2-dimensional AR(1) model, we get

C(1,3)=0,*p"p" (66)
where O'fz is variance of the pixelsvaluein AR(1) model.

and
Elc, (1-m,3-n,)]= asz[ e pJny} 7

For the sake of simplicity, a separable autocorrelation model is our objective. Hence,

(6-7) dong x-axisis expressed as

175



Elc, (1 -m.3-n,)]=c?E[p! eI M 120,020 (6-8)

The E[p"‘”‘*‘] can be computed as

Elp" ™= [ p(m,)p"™cim, (6-9)

where p(my) isthe probability density function (pdf) of my

At this stage, we make an assumption that pixels in a deformed block tend to deform
along a definite direction rather than deformed randomly. In other words, a mean vector
of the deformation vectors (my,ny) is not regarded to be zero according to our

assumption. Then (6-9) becomes

Elp! ™ ]= [ plm,)0" ™ dm, (6-10)

where u, isthe x-component of the mean of the deformation vector.

An error autocorrelation function must be an even function with respect to I. To
remedy this directional dependence, we only consider the absolute value of p. Then we

further assume that i is randomly distributed. It gives

-

where p(u, ) is probability density function of .

6-11
|qu /ux H - m“dmxd,u ( )

Without loss of generality, we use Gaussian distributions to represent the

conditional distribution function, p(mX |,ux|) and the pdf, p(w,). The E[p"’m*‘] is then

X

given by

~(m, )* (6-12)

[ [ mx\] - \/_ \/_r 20' j R

where g, isthe standard deviation of the mean deformation vector.

on IS the standard deviation of the deformation vectors in a single

block.
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Assuming that the block deformation in the x- and y- dimension can be modeled
with same standard deviations ¢, and oy, the error autocorrelation function along x-

direction in (6-5) can be expressed as

Elc,(1,3)1=20,2{p " - ELp ELP ] 120,320 (6-13

and the variance-normalized autocorrelation function of the block prediction error is

given by

E[C.0.0]_ p"p" —Elp ™EL™T . | Ly g (6-14)
E[C.(00)]  1_ E[ o™ [ "] T

The result of (6-14) can be obtained by numerical calculation. However, this form is not
convenient for analytical purpose. We have described the derivation of its approximated
form below.

We use an expected value of the mean deformation vector in (6-11), instead of

using the pdf, p(l) to approximate the autocorrel ation model. Hence,

—ﬂ : (6-15)

E[,ux(o'ﬂ] ax(o,) = \/—I e "Zd,uxzo'ﬂ\/g

We rewrite (6-12) by using this expected value.

~(m, \ﬂ\)

#1l-m

- 1
E[ I ”‘x} N N dm
e
\ﬂ )*
1 J,‘ ‘ +(1]-m )'”Pdmx
o, 619
+ .[Me 2 dm,

These two integration is expressed involving error function, erf(2).

2 z _
where ef(2)=— | e *
@)=+ [
1% term of LHS of (6-16)
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1% term of LHS of (6-16)

1 (i finps o Iner | (#d-onnp)
—Ee 1+erf \/_O-mv \/Eo-mv

2" term of LHS of (6-16)

e(#x")'nl”(alznp I (zd+om’Inp)
\/_va V20,

1
Jr
Finally, we have
(O-rmlnp)z — 2
- 1 (1]-1zz,) =l +om Inp
E[ L mx} ~~g 2 W 14 erf
P 5 P GW\/E
- 2
vl | Ml —omInp
T2
(G Inp) _ 2
_ L] a1y | M om S Inp
P p p—c

@) 1 _ gy NNl = om0 p
+ P !1 erf( vaﬁ

:p“‘ﬁ(laﬁx’am\/’p)

(6-17)

where

2 o2

@) e[ Nl = Om N p
+ P [1 erf( O-mv\/z

Now, using the 6-17), we can approximate the variance-normalized autocorrelation

(O Inp) _ )
~ \Om P _ - I
R(I, Zy, Oy, P) :le 2 {Pﬂx{]&erfp | |'uX|+O-mv np}]

function of the block prediction error which given by (6-14) as
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1-R(,4,,0.,,p)RO.Z,, 0.,

1,0) = 2RO PJROF,, O )

1_R(O’lux’o-rrw’p)R(o’,Ux,va,p)
=p'pP%R(1,3,54,,0..,.p) | (6-18)

Finally, we express a separable 2-D variance-normalized autocorrelation function as,

E[C.(1.0)E[C.(0.9)]
E[C.(0.0)f

= 0,0, R(1,0,72,, 0 s 2, R0, B, Gy py) (6-19)

181



B.2 Deduce the compound covariance model, CP Model (2-39),

from (6-18).

To derive the (2-39), we assume that a video sequence with very low motion activity is

under ssimulation, and thus z, and o, are set equal to zero and 0.5 respectively. Using

the properties of erf(z),

2
ie’zzz 1+ 22 +(22) 4 if z<<1
erf(2)=<Jr 1.3 1-3'5

1 if z>>1

, an approximation of (6-17) can be obtained. For |I| equal to zero, we express the erf ()
in (6-17) as the first term of its expanded series, and for |I| greater or equal to one, the

erf (-) isexpressed as unity. Hence, (6-17) is approximated as

O, p) B - 2
E[,,I—mx} H { u[“er{lll |”i+3”§” 'npﬂ
mv

D) 1 | Nl = Om” Inp
+ P {1 erf( O-mv\/i

1,=0, p*! =1 and

|npz
- 2 (O 2
erf(m ||+ Oy Inp]z 2 o, 2 omS Inp5(| 1) +[1- &1 )]

T2 Vr T2

1% term is contributed by | = 0 and the remained terms are for | > 0

similarly ,

o.,np.,
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Hence, for | >0
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Let ﬁ:\/ze[ V2 ]awlnp,and substituted into (6-20).
T

Now, we have

(O Inp)
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Ao L™ " [1+ B] (6-22)
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The numerical value of A isequal to 0.497 with p = 0.95 and oy, = 0.5. And CP Model

isarrived.
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