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Abstract 
 
 
 

Block-based motion estimation is widely used for exploiting temporal 

redundancies in arbitrarily shaped video objects, which is computationally the most 

demanding part within the MPEG-4 standard. One of the main differences of MPEG-4 

video in comparison to previously standardized video coding schemes is the support of 

arbitrarily shaped video objects for which the numerous existing fast motion estimation 

algorithms are not suitable. The conventional fast motion estimation algorithm works 

well for the opaque macroblocks. This is not the case for boundary macroblocks which 

contain a large number of local minima on their error surfaces. In view of this, we 

propose a fast search algorithm which incorporates the binary alpha-plane to accurately 

predict the motion vectors of boundary macroblocks. Besides, these accurate motion 

vectors can be used to develop a novel priority search algorithm which is an efficient 

search strategy for the remaining opaque macroblocks. Experimental results show that 

our approach requires simple computational complexity, and it gives a significant 

improvement in accuracy on motion-compensated video object planes as compared with 

conventional algorithms, such as the diamond search. Numerically, a speed-up of about 

27 times as compared with the full search algorithm is obtained in our tested VOs. 

Although many fast search algorithms can achieve low computational load and 

acceptable encoding quality requirement, it is always desirable to look for identical 

searching results as compared with that of the conventional full search algorithm. For 

instance, high quality digital video product and object tracking applications need to 

estimate motion activities accurately. To develop a fast full search algorithm, we have 

made use of our observation that pixel matching errors with similar magnitudes tend to 

appear in clusters for natural video sequences on average. Subsequently an adaptive 
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partial distortion search algorithm has been proposed. The algorithm significantly 

improves the computation efficiency of the original partial distortion search. In terms of 

the number of operations, our experimental results show that the computational 

efficiency of the algorithm outperforms other algorithms. The algorithm can have a 

speed-up of 3 to 9 as compared with the Full Search Algorithm (FSA). In terms of real-

time measurement, our algorithm can speed up the search for about 3.38 times as 

compared to the FSA on average, which is again better than other tested algorithms 

including Successive Elimination Algorithm  for encoding sequences with high motion 

activities and arbitrarily shaped video objects.  

Discrete Cosine Transform (DCT) is widely used in modern video compression 

standards including the ISO MPEG-4, to achieve high compression efficiency. The 

DCT domain scheme works very well for intraframe coding. On the other hand, block-

based compensation typically results in a peaky distribution of errors. It leads to a 

scattering of DCT coefficients and makes the DCT coding inefficient. This disadvantage 

motivates us to study the spatial distribution of prediction errors resulting from either 

the full-search motion estimation or other fast search algorithms. As a result, we 

propose a Mixed Spatial-DCT-based Coding Scheme to code the prediction errors. The 

scheme divides prediction errors in a block into two components. One component is 

coded in the spatial domain with the arithmetic coding technique while the other is 

coded with the traditional DCT method. The coding scheme can improve the rate-

distortion performance of the traditional DCT-based coding for high quality video 

applications. The proposed scheme is especially suitable for arbitrary shaped video 

objects and, video sequences which contain moderate to high motion activities. 

In order to find a possible optimal coding system, a signal-source model has been 

used, which hopefully can be sufficiently accurate enough to reflect the characteristics 

of practical signals. The first-order Markov process has been found to be a successful 
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model for intraframe coding. However, for motion-compensated error signals, the 

situation is very different. It has been observed that the motion compensation prediction 

(MCP) errors are space-dependent and the assumption of wide-sense stationary (WSS) 

is not valid. As a result, it is inaccurate to employ a simple Markov model for the MCP 

errors. Hence, we have studied a covariance model analytically from the first order 

Markov model by making use of the space-dependent characteristics. Consequently, we 

derive an approximated and separable autocorrelation model for the block based motion 

compensation difference signal. Experimental results show that the proposed model 

reflects the autocorrelation characteristics of practical prediction errors accurately. 

Furthermore, this model can provide some very useful insights for an analytical design 

of the coding system and make possible the investigation of various video signal 

decomposition algorithms. This is a fruitful direction of further research. 
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Statements of Originality 
 
 
The following contributions reported in this thesis are claimed to be original. 

1. A new search technique is introduced for the motion estimation of boundary 

macroblocks (MBs) of an MPEG-4 arbitrarily shaped video object (VO). We 

incorporate the shape information provided in a binary alpha-plane of the VO to 

predict accurately the motion vectors of boundary MBs. Furthermore, these 

motion vectors can be used to assist the estimation of the remaining opaque MBs 

of the VO. More details can be found in section 3.3. 

 

2. A new priority search algorithm (PSA) is introduced for the motion estimation of 

a VO. In this algorithm, we recognize that motion activities in opaque MBs are 

highly correlated with the neighboring boundary MBs. Hence, we perform motion 

estimation on all boundary MBs first in contrast to the conventional raster-

scanning approach. Experimental results show that this strategy works well if the 

motion vectors in the boundary MBs truly represent the moving video object. 

After all motion vectors of the boundary MBs are found, we compute a motion 

vector for each opaque MB by taking the best-matched one among all of its 

neighboring motion vectors and the zero motion vector (0,0) as the initial centre.  

A conventional fast block matching algorithm is then employed. On average, the 

proposed algorithm can speed up the motion estimation process by about 23 times 

in terms of the total number of operations when compared to the Full Search 

Algorithm (FSA). More details can be found in section 3.4 and 3.5. 
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3. We have found that on average, pixel matching errors with similar magnitudes 

tend to appear in clusters for natural video sequences during the motion 

estimation. It is different from the past study in the literature, in which most, if 

not all, researchers made an assumption that pixels with larger gradient 

magnitudes have larger matching errors on average. More details can be found in 

section 4.2. 

 

4. We have made use of the observed clustering characteristic to introduce an 

adaptive Partial Distortion Search (PDS) for the motion estimation of both 

boundary MBs and opaque MBs in a VO.  The clustering characteristic leads us 

to construct an adaptive index set, and thus a pixel with greater matching error 

can be firstly computed, and this error is accumulated to the Sum of Absolute 

Difference (SAD) earlier than other pixels. As a result, the SAD calculation can 

be terminated sooner.  We have analytically found that both mean of pixel values 

in a target MB and mean of pixel values in a candidate MB are good references to 

predict the magnitude of each pixel matching error in the target MB. In the study, 

we have proved that the mean of pixel values in the initial candidate MB at the 

centre of a search window is the best candidate to explore the clustering 

characteristic. Hence, it is used to calculate a reference value and to construct the 

adaptive index set. Our experimental results show that the proposed adaptive PDS 

can have a speed-up of 3 to 9 as compared with the FSA. More details can be 

found in section 4.3 and 4.4. 

 

5. Another row-based adaptive PDS is developed in order to remedy the non-

uniform memory access problem. We have modified the original adaptive PDS 

algorithm into a row-based algorithm, in which a row of 4 consecutive pixels with 
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larger prediction errors is accumulated to a partial SAD sooner than other rows. 

Experimental results show that the row-based adaptive PDS outperforms all other 

tested algorithms for encoding sequences with high motion activities and 

arbitrarily shaped video objects. More details can be found in section 4.3 and 4.4. 

 

6. A New Coding scheme for coding Motion Prediction Error Frames of Video 

Objects and Frames is proposed. In this algorithm, we make use of the 

phenomenon that pixel matching errors in some MBs tend to appear together in a 

cluster form. The algorithm divides a prediction error MB into two components. 

Each component is characterized by its own spatial correlation. One component is 

then coded by using the context-based arithmetic encoding (CAE) and variable 

length coding techniques (VLC), and the second component is coded by using the 

traditional DCT-based method. Our experimental results show that the algorithm 

successfully improves the coding efficiency of the traditional DCT-based coding 

for MBs with clustered prediction errors. More details can be found in section 5.2 

and 5.3. 

 

7. An approximated separable autocorrelation model for the block based motion 

compensation frame difference (MCFD) signal has also been derived. In this 

study, we have made use of the first order Markov model to derive the 

approximated autocorrelation model. The major assumption we made in the 

derivation is that a net deformation of pixels is directional in general rather than a 

uniform error distribution in a block. Simulation results show that, the derived 

model can describe the statistical characteristics of the MCFD signals accurately. 

The model proves that the concern of imperfect block-based motion 
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compensation is an important step to study the motion-compensated coder; and 

thus the autocorrelation function of the MCFD signals can be expressed correctly. 
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Chapter 1. Introduction 

 
 

With the development of communication and information processing technologies, 

the demand for efficient transmission and storage of a video signal for many 

applications and services has increased rapidly. From simple calculation, we know that 

a large amount of bits is required for video signal. For example suppose the a video 

sequence is digitized as discrete arrays with 640 pixels per raster line and 480 lines per 

frame, which is a resolution very typical in real situation. Assuming each pixel consists 

of three color components (i.e. the three primaries, red, green, and blue) for each frame. 

And each color component for a pixel is sampled with 8-bit precision. The storage 

capacity of each frame requires approximately 340KBytes. If this video sequence is 

transmitted at 24 frames/second without compression, the raw data rate for the video 

signal is about 170 Mbit/s. Hence, the need to find an efficient compression and coding 

technique urge on the people to develop some video compression standards. 

 

1.1 History and Development Video Coding Standards 
 

1.1.1 H.261 
 

Digital compression standards for video conferencing were developed in the 

1980s by the International Telegraph and Telephone Consultative Committee (CCITT), 

which is now known as the ITU Telecommunications Standardization Sector (ITU-T). 

The ITU-T is a permanent organ of the International Telecommunications Union (ITU) 

and is responsible for studying technical and operating questions and issuing 

Recommendations with a view to standardizing worldwide telecommunications. The 

ITU-T was formed from the CCITT as part of the ITU reorganization in 1993. In early 
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1991, the CCITT finalized a set of coding standards known as H.320 or sometimes 

P×64 to indicate that it operates at multiple of 64 kbits/s. The video coding part is called 

H.261 [1]. This standard targeted to code pictures at a Common Intermediate Format 

(CIF) 352×288 pixels. A lower resolution called Quarter CIF (QCIF) with picture size 

176×144 pixels is supported for sending videotelephone or videoconference pictures on 

integrated services digital network (ISDN) facilities. 

It is the first widespread practical successful video standard. It was also the first 

standard using the basic video coding structure that many current standards still keep 

using. For instance, H.261 has already utilized 16×16 MB for motion compensation. 

Moreover, 8×8 block-based DCT, scalar quantization and two-dimensional run-level 

variable length entropy coding have been employed in H.261. 

 

1.1.2 MPEG-1 
 

In 1988, a working group in charge of the development of standards for coded 

representation of digital audio and video, was established. The group is named as 

Moving Picture Experts Group (MPEG). The MPEG working group is formed under the 

auspices of the International Organization for Standardization (ISO) and the 

International Electrotechnical Commission (IEC). In this year, the working group 

started the moving picture standardization process with a strong emphasis on real-time 

decoding of compressed data stored on digital storage devices such as CD-ROMs. Their 

first standardization product is the ISO/IEC 11172. This international standard is the 

MPEG-1 and its second part, ISO/IEC 11172-2 [2], is the well-known MPEG-1 video. 

The ISO/IEC 11172 is officially entitled “Information technology – Coding of moving 

pictures and associated audio for digital storage media up to 1.5Mbit/s”. As indicated by 

the title, MPEG-1 is concerned with coding of digital audio and digital video. And 

because of the primarily target bit rates is set around 1.5 Mbit/s, it is particular suitable 
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for storage media applications such as CD-ROM retrieval. Consequently, it is a widely 

successfully video codec capable of approximately VHS videotape quality are better at 

about 1.5 Mbit/s and covering a bit rate range of about 1-2 Mbit/s. The MPEG-1 video 

(ISO 11172-2) was finally approved in 1993. 

In terms of technical features, it added bi-directionally predicted frames, half-

pixel motion compensation and including the H.261 compression techniques. In fact, 

half-pixel motion had been proposed during the development of H.261, but it was 

apparently thought to be too complex at the time. When comparing to the H.261, 

MPEG-1 provides superior quality than H.261 when operated at higher bit rates. On the 

other hand, H.261 performs better at bitrates below 1 Mbit/s, as MPEG-1 was not 

designed to be capable of operation in this range. 

 

1.1.3 MPEG-2 
 

In the moment of the technical development of MPEG-1 was nearly complete, the 

MPEG working group started another new project to target higher bits rates and better 

quality for applications such as broadcast TV in 1992. That is the MPEG-2 and formally 

referred to as ISO/IEC 13818. MPEG-2 is aimed at more diverse applications such as 

television broadcasting, digital high-definition TV (HDTV), and communication. Some 

of the possible applications listed in the MPEG-2 video standard (ISO/IEC 13818-2 / 

ITU-T H.262) [3] are: broadcast satellite service (BSS) to the home; cable TV (CATV) 

distribution on optical and copper wire networks; interactive storage media (ISM) such 

as optical disks; interpersonal communications (IPC) such as videoconferencing and 

videophone; etc. MPEG-2 offers little benefit over MPEG-1 for programming material 

that was initially recorded on film. One difference between MPEG-2 and MPEG-1 is the 

MPEG-2 provides a more efficient method to code interlaced video signals. MPEG-2 

video syntax was frozen in April 1993. Two years later, in 1995, the three primary 
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documents (systems, video, audio) that comprise the MPEG-2 standard finally reached 

international standard status.  

MPEG-1 video was intended only for progressive video pictures but not interlaced 

format. MPEG-2 is not only limited to focus on interlaced video coding. It was designed 

to encompass MPEG-1 and to also provide high quality at much higher bit rates with 

interlaced video sources, such as the initially recorded programming material on film. 

Although usually thought of as an ISO/IEC standard, MPEG-2 video was developed as 

an official joint project of both the ISO/IEC and ITU-T organizations. Its primary new 

technical features are efficient handling of interlaced-scan pictures. It adds the support 

of hierarchical bit-usage scalability, such as spatial scalability, temporal scalability, 

SNR scalability and data partitioning. Its target bit-range was approximately 4-30 

Mbit/s.  

 

1.1.4 H.263 and H.263+ 
 

H.263 (version 1) [4] is the first codec designed specially to handle very low-bit-

rate video. It consists of different video compress techniques that are more advance 

when comparing to the MPEG-2 video. H.263 is the most dominant standards for 

practical video telecommunication nowadays. The ITU-T is responsible for the 

standardization process of H.263 (version 1) and the H.263 was approved in early 1996 

(with technical content completed in 1995). The original target bit-range of H.263 was 

about 10-30 Kbit/s, but this was broadened during development to perhaps at least 10-

2048 Kbit/s as it become apparent that it could be superior to H.261 at any bitrate. 

The significant coding improvement by H.263 is due to several new technical 

features. They were 8×8 block-size motion compensation, overlapped block motion 

compensation, allowing motion vectors pointing outside of a frame (unrestricted motion 

compensation), three-dimensional run-level-last variable-length coding, median motion 
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vector prediction for differential coding, and more efficient header information 

signaling. Comparing to H.261, H.263 also includes arithmetic coding, half-pixel 

motion compensation, and bi-directional prediction. Note that these techniques were 

previously employed in different international standard but not firstly find in H.263. At 

very low bitrate, such as below 30 Kbit/s, H.263 can code with the same quality as 

H.261 using half or less than half the bitrate. At bit rates above 80 Kbit/s, it can provide 

a more moderate degree of performance superiority over H.261.  

H.263 (the second version) [4] is officially known as H.263+. The H.263+ project 

added a number of new optional features to H.263. It extends the effective bitrate range 

of H.263 to essentially any bitrate and support both progressive and interlaced picture 

formats and any frame rates. H.263+ is targeted to outperform any existing standards 

over this entire range. In order to support telecommunication in error prone 

environments, the H.263+ is the first video coding standard that offers a high degree of 

error resilience for wireless or packet-based transport networks. H.263+ also added a 

number of improvements in compression efficiency, which is custom and flexible video 

formats and scalability supporting. The ITU-T approved H.263+ in early of 1998 (with 

technical content completed in September 1997).  

 

1.1.5 MPEG-4 
 

After the successful development and achievement of the MPEG-1 and MPEG-2, 

the MPEG working group initiated the standardization phase of MPEG-4 in 1994. 

MPEG-4, with formal as ISO/IEC designation “ISO/IEC 14496” was finalized in 

October 1998. In early 1999, MPEG-4 became an international standard. The fully 

backward compatible extensions under the title of MPEG-4 Version 2 were frozen at the 

end of 1999, to acquire the formal International Standard Status early in 2000. 
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Originally, the objective of the MPEG-4 was to develop advanced coding for very 

low bit-rates (below 64 kbit/s) applications. However, In July 1994 its target was 

expanded to coding of a scene as a collection of individual Audio-Visual-Object (AVO) 

and to provide a set of tools for these AVOs, so as to fulfill the requirements of future 

interactive multimedia applications and services. In order to provide the solutions for 

these objectives, a set of “tools” and “algorithms” for audio-visual data have been being 

developed in the MPEG-4 project. Consequently, it will provide significantly superior 

compression performance and new object-oriented capabilities for artificially generated 

scene situations. A user can access arbitrarily shaped objects in the scene and 

manipulate these AVOs in client side terminal. In the future, the MPEG-4 standard 

should provide the features including universal accessibility and robustness in extremely 

error prone environments; new interactive functionalities for users when presenting 

audio-visual material; hybrid coding of natural and synthetic AVOs; increased 

compression efficiency compared to previously standardized methods; the possibility of 

“downloading” decoder tools; integration of real-time applications and non-real-time 

(stored) applications. 

MPEG-4 visual which is officially named as ISO/IEC 14496-2 [5] will includes 

most technical features of the prior video and still-picture coding standards and will also 

include a number of new coding features such as, shape coding of segmented objects 

with context-based arithmetic coding, shape-adaptive DCT and padding techniques for 

arbitrarily shaped texture coding. Hence, it can achieve efficient coding of hybrids of 

synthetic and natural video-content. In addition, it uses wavelet coding of still pictures, 

global motion compensation and sprite generation to increase compression efficiency. 

Reversible variable length coding is applied for robust video coding in error prone 

environments. It also extends half-pixel motion compensation to quarter-pixel accuracy 

by using wiener filter for interpolation. MPEG-4 aims to cover essentially all bitrate 
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ranges, picture formats and frame rates, including both interlaced and progressive-scan 

video pictures. In generally speaking, it employs similar techniques of H.263 for 

predictive coding of normal camera-view video content for non-interlaced video and 

utilizes MPEG-2 approaches for interlaced sources. 

 

1.1.6 H.264 
 

In early 1998, a “long-term” effort proposed by the Video Coding Experts Group 

(VCEG) to develop a new standard for low bitrate visual communications. The proposal 

led to the draft “H.26L” standard, which targeted to double the coding efficiency in 

comparison to any other existing video coding standards for a broad variety of 

applications. The VCEG working group adopted a first draft design for that new 

standard in October 1999. In December 2001, VCEG and the Moving Picture Experts 

Group (MPEG) formed a Joint Video Team (JVT) to finalize the draft of this new video 

coding standard. In March 2003, it was approved by ITU-T as Recommendation H.264 

and by ISO/IEC as International Standard 14496-10 (MPEG-4 part 10) Advanced Video 

Coding (AVC) [6]. It is often abbreviated as H.264/AVC. 

In terms of technical features, it employs, generalizes and improves the prediction 

techniques in previous standards. It supports flexible selection of block sizes down to 

4×4 pixels for motion compensation. Similar to the MPEG-4 visual, it allows motion 

vector with quarter-pixel accuracy, but reduces the complexity of interpolation filter 

from 8 taps to 6 taps. Furthermore, it enable efficient coding by allowing selection of 

reference frames among a larger number of pictures that have been decoded and stored 

in the decoder for motion compensation purposes. Improved skip-mode and direct-mode 

in prior standards are also included, which obtain better coding performance for video 

with global motion contents and bidirectionally predictive frames respectively. Some 

previous standards allow prediction coding for intra-coded blocks. H.264/AVC, 
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however, carries out the prediction in spatial domain. It also makes use of loop-

deblocking filter to improve both objective and subjective quality for motion 

compensation. In addition to the above progresses, some significant improvements of 

the DCT transform are found in this new standard, which includes 4×4 block size 

transform and adaptive block-size transform. Because of the improved transforms, 

H.264/AVC is the first standard to realize exact-match of inverse transform in all 

decoders. Furthermore, two advanced entropy coding methods using arithmetic coding 

are included in H.264/AVC [7].  

1.2 Literature Review 
 

The developments of these video compression standards have spanned more than 

two decades and built upon a large number of experimental works and in depth 

theoretical studies. The huge successes were results of dedication by hundreds of 

researchers and engineers from all over the world. 

Motion compensation is one key technique to attain the effectiveness of most 

video coding standards. Different motion representations have been widely investigated 

in the research. Jain and Jain [8] studied interframe Hybrid Coding involving block-

based motion compensation, in which block size is fixed. The major advantages of the 

block-based motion model are its effective prediction for translational motion and lesser 

hardware complexity. Fixed block size model suffers the problem of inaccurate 

matching for complex motions. The natural variation is variable block size techniques 

[9-11], such that blocks with smaller size will compensate complex motions. Peter 

Strobach [9], Li, Lin and Wu [10],  and Sullivan and Baker [11] used quadtree structure 

to represent the variable block size model for compression improvement. Instead of 

using rectangular block-based representation, Mahmoud and Bayoumi [12] suggested to 

partition a frame into equilateral triangle blocks. The division is represented by a 

quadtree structure. A scene often contains foreground objects with complex action and a 
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relative static background. Supporting interactive application in MPEG-4 is due to its 

exploitation of object-oriented model. Musmann, Hötter and Ostermann [13] proposed a 

description of objects by means of motion, shape and color of the objects. The Object-

oriented approaches for motion compensation can be classified into three main 

categories. The first category describes the objects in terms of segmented region similar 

to the method proposed by Yokoyama, Miyamoto and Ohta [14]. The second category 

applies the parametric model for object motion description. For instance, both [15,16,17] 

use spatial transform to represent spatial distortion between two successive frames. 

Nakaya and Harashima [15] studied the use of affine transform, bilinear transform and 

perspective transform involving triangular grids motion compensation. The 

corresponding performance is evaluated theoretically and experimentally. Ghanbari, 

Faria, Goh and Tan, [16] investigated the compensation of block-based distortion by 

using bilinear transform and bilinear interpolation. Tekalp, Altunbasak, and Bozdagi [17] 

showed that a triangular mesh model with affine or perspective transform can capture 

almost all capabilities of 3-dimensional (3-D) object-based model. The major drawback 

of this category is the problem in mismatching of the model with complex motion. The 

third category [18,19] makes use of dense motion field to overcome this difficulty. A 

dense motion field employs at least one motion vector per pixel to provide improved 

motion compensation such as the works of Stiller [18] and Han and Podilchuk [19]. 

A proper theoretical treatment of motion-compensated video coding is valuable 

for the design of state-of-the-art video codecs, even though it requires many 

assumptions and simplifications for the analysis of a complicated system processing 

real-world signals. In 1987, Girod [20] presented the first comprehensive rate-distortion 

analysis of motion-compensated prediction (MCP). This theoretical framework leads 

motion-compensated video coding away from heuristics and toward an engineering 

science. Girod [21] presented a theoretical analysis of multi-hypothesis motion-
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compensated prediction for hybrid video coders. When more than one prediction values 

are weighted to generate a pixel value, the approach is generally defined as multi-

hypothesis technique. The bidirectionally prediction frame is a kind of the multi-

hypothesis prediction. MPEG-4 employs Wiener filter interpolation to extend the half-

pixel motion compensation to quarter-pixel accuracy [22]. Quantitative analysis about 

the dedication of factional-pixel accuracy for coding performance was given by Girod in 

[23]. He studied the effect of fractional-pixel accuracy on the efficiency of motion-

compensation by using various spatial predictions and interpolation filters and found 

that quarter-pixel accuracy is suitable enough for typical broadcast TV signals. 

Overlapped block motion compensation (OBMC) is another kind of multi-hypothesis 

technique employed in the modern video standards. The propose of OBMC proposed by  

Nogaki and Ohta [24] is originally to remove blocking artifacts of motion prediction 

error. Orchard and Sullivan [25] presented an approach that combines an optimized 

overlapping window design technique with optimized motion estimation. They also 

studied the influence of two shapes of the window support to their motion estimation, 

which involved a diamond shaped support and a square of 32×32 pixel support. Tao and 

Orchard [26] statistically modeled the motion field, the field of motion estimation and 

their relationship for formulating a parametric solution of an optimal OBMC window. 

In 2002, Zheng et al. [27] investigated thoroughly the theoretical aspects of OBMC by 

applying a statistical motion distribution model. Moreover, he used the statistical model 

to interpret the space-dependent characteristics of motion-compensated frame 

differences. 

MPEG-4 introduces the concept of Video Objects (VOs) to support access of 

individual semantic objects in visual contents. A temporal instance of a VO is 

represented by its texture value and shape information [28]. In natural scenes, VOPs are 

obtained by semi-automatic or automatic segmentation. The MPEG-4 visual has 



 11

suggested a framework of segmentation for VOP generation. The framework aims at an 

appropriate combination of temporal and spatial segmentation strategies. Two kinds of 

algorithm for temporal segmentation are used in the framework. The first one is 

temporal segmentation based on change detection, which is proposed by Mech and 

Wollborn [29]. For this algorithm, Aach, Kaup and Mester [30] smooth the boundaries 

of changed image areas by a relaxation technique using local adaptive thresholds. The 

second temporal segmentation algorithm is based on higher order moments and motion 

tracking. Neri, Colonnese and Russo [31] produce a segmentation map of each frame of 

a sequence by processing a group of frames, which involves higher order Statistics. The 

framework uses watershed algorithm for the spatial segmentation. Salembier and Pardàs, 

[32] had simplified the images for easier processing, before calculating the spatial 

gradient of an image. Both of the image simplification and spatial gradient calculation 

make use of morphological operators. The spatial gradients were used by Vincent and 

Soille [33] as an input of a watershed algorithm to partition an image into homogeneous 

intensity regions. The European-Algorithmic Group COST211 proposes another 

platform for video object segmentation. The Group COST211 is a forum and research 

network on video analysis. During their 5th framework, this forum has focused on video 

segmentation based on a test model, called COST 211 Analysis Model (AM) [34]. The 

COST 211 meeting in October 1996 witnessed the definition of the 1st AM, which 

consists of a full description of tools and algorithms for automatic and semiautomatic 

image sequence segmentation, object detection, extraction and tracking. In image 

segmentation problem, Active contour models, or snakes proposed by Kass, Witkin, and 

Terzopoulos [35], have also been extensively studied and applied for video 

segmentation in the past decade. Gastaud and Barlaud, [36] proposed a video 

segmentation using active contours on a group of frames, which was robust to light 

variations, noise and camera motion, etc. Sun, Haynor and Kim, [37] recommended a 
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new class of active contour approaches and named it as Vsnakes. The VSnakes 

algorithm defines a differential contour energy, which reflects the difference between 

successive contours. 

MPEG-4 needs to code shape information of a segmented object for purposes of 

interactive applications. Within MPEG-4, two different categories of shape coding 

algorithms have been evaluated. The first one is contour-base shape coding [38-43]. 

Yamaguchi, Ida and Watanabe, [38] modified the normal MMR for arbitrarily shaped 

coding. The full name of MMR is “Modified Modified Read”, which is the standard 

method for the G4 facsimile compression. Lee et al. [39] described the contour of a 

binary shape by tracing a 1-dimensional baseline and turning points. Ma, Chen and 

Cheng proposed a selection scheme [40], which could reduce the turning point of the 

boundary for lossless coding. Hwang, Wang and Wang [41] made use of a differential 

chain coding technique for shape  coding. While Zaletelj and Tasič, [42] approximated 

an object shape with cubic B-splines technique. The second category is bitmap-based 

approach [44-48], such as the Context-based Arithmetic Encoding (CAE) that adopted 

by MPEG-4. Bossen, and Ebrahimi, and Brady, Bossen, and Murphy [44, 45] proposed 

a shape coding technique based on the JBIG algorithm in both lossless and lossy modes. 

The Joint Bi-level Image experts Group (JBIG) is a group of experts who work for 

standardization of bi-level image coding. Instead of using CAE technique, Chen, Hsieh 

and Wang [47] studied the utilization of quadtree-based decomposition to obtain a shape 

representation at different resolution levels. Furthermore, Liu, Shieh and Lee, [48] 

presented their study about the efficiency of hardware architecture for binary shape 

coding. In the reference [46, 49], Ostermann and, Katsaggelos, Kondi, Meier and 

Schuster, introduced the above techniques developed for shape coding within MPEG-4 

standardization effort and compared their performance in terms of rate-distortion, 

computational complexity and scalability. Note that, the CAE can also involve in rate-
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control algorithm by using lossy coding and efficient entropy coding. Marpe, 

Blättermann, Heising, and Wiegand [50] developed a context model for efficient 

prediction of the coding symbols, in which this approach has been integrated into the 

ITU-T H.26L test model. On the other hand, Lee, Cho, and Eleftheriadis [51] 

formulated a buffer-constrained adaptive quantization problem for shape coding, and 

then proposed an algorithm for the optimal solution under buffer constraints. 

MPEG-4 extends the conventional block-based techniques for object-based 

coding. Especially for boundary regions (boundary macroblock) of an arbitrarily shaped 

object, a wide variety of techniques have been studied to improve these conventional 

techniques. Chen, Gu and Lee [52] proposed two padding technique, which is the 

repetitive and morphological padding, for motion compensation of the object’s 

boundary macroblock (MB). Edirisnghe, Jiang and Grecos [53] make use of variation 

trend of boundary pixels to develop another padding technique for motion compensation. 

Chen and Liu, [54] suggested motion estimation of the boundary MB in transform 

domain, such that padding processes will be prevented. In addition, padding of the 

boundary MB is also necessary for intra-mode coding. Kaup [55, 56] employed a low-

pass padding technique to handle the discontinuity problem at an object boundary. 

Hence, traditional block-based DCT can be utilized directly. Shen, Zeng, and Liou [57] 

developed a new padding technique that guarantees the number of nonzero transformed 

coefficient after traditional DCT be equal to the number of opaque pixels in a boundary 

MB. Other researchers focused on designs of non-block-based transforms. In 1989, 

Gilge, Engelhardt and Mehlan, [58] used an orthogonalization schemes to obtain a set of 

basis functions which is orthogonal with respect to the shape of the segmented object, 

thus shape adaptive transform can be realized. Afterward, a lot of researchers [59-63] 

studied and improved a shape-adaptive DCT algorithm (SA-DCT). Sikora and Makai 

[59] was the group who developed the SA-DCT, in which the SA-DCT involves a 
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predefined orthogonal sets of DCT basis function. Shishikui and Sakaida [64] proposed 

a Region Support DCT (RS-DCT). The major features of the transform are that it is 

designed based on conventional 2-DCT but the basis is not orthogonal, so that an 

iteration processes was suggested. Another special algorithm used to enhance the 

traditional DCT for boundary MB was investigated by Moon, Kweon and Kim [65]. 

This algorithm merges two boundary blocks together before the block-based DCT, 

which is called Boundary Block-Merging technique (BBM). 

The simplest block matching motion estimation algorithm is the full search 

algorithm (FSA). The FSA exhaustively compares a matching criterion [66-72] between 

the target MB and every candidate MOBs in a searching window, W. Hence, it can give 

the optimum solution. However, heavy computational load is its major disadvantage. 

Consequently, it attracts a lot of researchers to investigate different fast approaches. 

These fast search algorithms can be classified into six categories. 1) The fast search 

algorithms in this category seek for a way to select a subset of the candidate MB in W to 

reduce the computational time [8, 69, 73-86]. A lot of famous algorithms belong to this 

group, such as the 2D-Logarithmic Search by Jain and Jain [8], Three-Step Search (TTS) 

by Koga et al. [73], Genetic Search Algorithm by Chow and Liou [77], Diamond Search 

by Tham, Ranganath, Ranganath and Kassim [81], Four-Step Search by Po and Ma [82], 

and Motion Vector Field Adaptive Fast Motion Estimation by Hosur and Ma, [85], etc. 

2) The algorithms [73, 89-98] in the second category use a reduced complexity 

distortion measure to save computation. For instance, Koga et al. [73] and Chan and Siu 

[90] used pixel decimation for speed up purpose; the partial distortion search adopted in 

H.263 test model [92] and adaptive PDS by Kim and Choi, [96]; Winner-Update 

Strategy by Chen, Hung and Fuh [98] are all fall in this category. 3). The third category 

[99-103] make use of mathematical inequalities to reduce the computational load. The 

most representative one may be the Successive Elimination Algorithm (SEA) suggested 
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by Li and Salari [99]. 4) Chan and Siu [104, 105], and Tao and Orchard [106] studied 

the employing of different image features to reduce computational burden in motion 

estimation, and the edges are the feature that they have investigated. This feature based 

techniques are the fourth category. 5) A performance analysis of MPEG-4 codec [107] 

showed that motion estimation will remain as a computationally intensive step in object-

based coding. The fifth category focused on developing object based motion estimation, 

such as the study by Panusopane and Chen, [108]. 6) The emerging of H.264/AVC also 

directs the study of motion estimation into another direction, such as Wiegand, Zhang, 

Girod, Lincoln and Steinbach [109-111] investigated long-term memory motion-

Compensated prediction in depth. 

Transform coding scheme has proven to be an effective technique for image 

compression and video coding. In terms of compression efficiency, the objective of a 

transform is to decorrelate the original signal, and this decorrelation generally results in 

the signal energy being redistributed among only a small set of transform coefficients. 

The most efficient transform that can maximize energy packing capability is the 

Karhunen-Loève Transform (KLT) [112]. Unfortunately, the KLT basis functions are 

source-dependent. The Discrete Cosine Transform (DCT) is the one widely used in the 

modern video standards, because it is shown that for the case of the first-order Markov 

source, the DCT is asymptotically equivalent to KLT as the adjacent element correlation 

coefficient tends to unity [112, 113]. However, after the motion compensation, Kaneko, 

Hatori and Koike [114] claimed that the correlation between adjacent prediction errors 

are far from unity and in fact ranges from 0.3 to 0.5. To study suitability of the original 

DCT for the prediction errors, Chen and Pang [115] proposed a compound covariance 

model for motion-compensated frame differences and demonstrated that DCT performs 

nearly optimally. In 1999, Niehsen and Brünig, [116] found that means and standard 

deviations may change significantly from block to block and another compound 
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covariance model that closely fits the empirical covariance sequence was introduced. By 

using the this model, they again confirmed that DCT is still suitable for video coding 

when only a single transform is supported in a codec.  

 

1.3 Organization of the thesis 
 

The rest of the thesis is organized as follows. In Chapter 2 we make a brief review 

on the modern video coding techniques, which including block-based motion 

compensation, arbitrary shaped object coding, block-based motion estimation and 

transform coding technique theory. 

In chapter 3, we investigate a new priority search algorithm (PSA) for motion 

estimation of arbitrarily shaped object in MPEG-4 by studying the characteristics of 

different types of macroblocks in the bounding box of a VOP. 

In chapter 4, we explain and illustrate the characteristics of the pixel errors that 

tend to form clusters. We apply these characteristics to develop a new clustered pixel 

matching error for adaptive partial distortion search algorithm (CPME-PDS). Moreover, 

we establish an analysis to determine an adaptive index set required for the CPME-PDS. 

In chapter 5, we illustrate and discuss the observation of spatial characteristics of 

the motion compensated prediction errors. Making use of our observations, we develop 

a new Mixed Spatial-DCT-based Coding Scheme (MSDCS). 

Chapter 6 presents the derivation of a mathematical model for autocorrelation of 

block-based motion prediction error. We use a variety of simulation results to compare 

our model with others. 

We give the conclusion of our work in Chapter 7, where some suggestions for 

further development can also be found. 
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Chapter 2. Technical Review 

 

 

2.1 Modern video coding standard review 
 

The modern video coding standards including H.263 [4], MPEG-1 [2], MPEG-2 

[3], and MPEG-4 [5], achieve high compression performance for different applications 

by exploiting the spatial and temporal redundancies remaining in video sequences. 

These video standards exploited the redundancies by using several common 

compression techniques. Figure 2-1 depicts a simplified block diagram of an hybrid 

video encoder and decoder, which shows some common functional blocks of various 

video standards. 
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MC:Motion Compensation
FB:Frame Buffer
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Figure 2-1. Simple block diagram of video encoder and decoder 
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In the decoder side, the functional block “MC”, for block-based motion 

compensation, is responsible for the reduction of the temporal redundancies between 

successive frames. The temporal correlation is utilized by using motion information of a 

past frame to predict the current frame causally, or predict the current frame from past 

and future frames by non-causal and interpolative methods. In 70s, some researchers 

investigated the motion properties inherent in video sequences that can be used to 

improve the performance of a coding system. After a wide variety of experiments, it has 

been considered that much of the motion in video sequences is pure translation, i.e. a 

foreground object moves across a nearly still background in an arbitrary direction, but 

without rotation, size change or any irregular shape transformation. This property is 

extremely plausible provided that the motion is not too violent in the short time interval 

between successive frames. The video standards divided a current frame into a number 

of non-overlapped blocks with M × N pixels. A decoder uses one or more than one 

block/s of pixels in the previous decoded frames to compensate each of these blocks in 

the current frame. The errors between the current block and the compensated block are 

then compressed using the discrete cosine transform (DCT) to remove the remaining 

spatial correlation. 

 The functional block DCT in Figure 2-1 is responsible for the transform coding 

of intraframes and interframes. Intraframe compression in these standards makes use of 

the compression techniques for still images, such as photographs and diagrams to 

compress individual frames in a video sequence. An intraframe is coded by transform 

coding without any reference to previously coded frame. On the other hand, an 

interframe is coded using previously coded frames for motion-compensation prediction. 

After this prediction process is finished, a video coder compresses the prediction errors 

using the transform coding. Transform coding is an image conversion process that 

transforms an image from the spatial domain to the frequency domain. The most 
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popular transform used in the video standards is the Discrete Cosine Transform (DCT). 

All traditional DCT-based coding partition a large images into non-overlapping 8×8 

square blocks and transform each block separately. The DCT represents any input data 

as 64 2-dimension (2D) cosine functions with different weighting factors. The resulting 

weighting factors are represented as a matrix of DCT coefficients. Although the DCT 

does not in itself result in compression, the transform coefficients tend to be good 

candidates for compression using run length encoding and predictive coding when it is 

read inside the system in an appropriate order. 

Quantization is the next process after the DCT coding. The DCT coefficients are 

quantized in an irreversible process that discards the less important information. 

Although quantization seems to be a simple process, an efficient quantization algorithm 

involves in-depth studies of distributions of coefficients energy, its relation to that in the 

data domain, processing of the coefficients in the context of the human visual response 

and relation to the rate-distortion theory. An appropriate quantization must minimize the 

distortion of the input data after reconstruction, for a given data rate. Some objective 

distortion performance measures, such as peak-signal to noise ratio (PSNR) and 

subjective distortion evaluation, i.e. the perceptibility of the human visual system to the 

distortion must be considered in the design of a quantization process. 

The quantized DCT coefficients and the information for motion compensation are 

finally entropy coded by a variable-length coding scheme, the Huffman coding. Under 

the constraints that each source message is mapped to a unique codeword, Huffman 

coding can provide an optimal statistical coding procedure that approaches the 

theoretical entropy limit. The variable-length code words used in the standards are 

derived according to a priori knowledge of the probability of all possible events. Thus, 

instead of using fixed-length code words for all symbols, relatively short code words are 

assigned to represent events with the highest probability of occurrence. In the decoder 
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side, we maintain an identical code book, such that the Huffman coding preserves the 

coded information. 

In the following sub-sections, we will introduce the basic concepts and techniques 

for the conventional block-based motion compensation. The modern video standards 

use motion vectors to describe the motion information between successive frames. It is 

coded differentially in an encoder. The algorithm used to obtain a prediction motion 

vector is described in Section 2.1.1.1. Section 2.1.1.2 describes the procedure and some 

studies about the half-pixel interpolation scheme, which is supported in MPEG 

standards. Both H.263 and MPEG-4 support the Overlapped Block Motion 

Compensation. The details of its operation are introduced in Section 2.1.1.3. 

Furthermore, the basic tools of arbitrarily shaped object coding in MPEG-4 will also be 

presented. These techniques include how to represent a video object planes, content-

based arithmetic encoding for shape information coding and padding techniques that 

extend an arbitrarily shaped object data to rectangular support. Section 2.1.2 describes 

the details of these techniques. 

2.1.1 Block-based motion compensation 
 

We can improve video coding efficiency significantly if the frame-to-frame 

temporal redundancy is taking into account. A lot of researchers have proposed many 

different motion representations [8-19] to exploit this temporal information. The block-

based motion compensation is the one widely adopted in the modern video standards for 

compression. The major advantages of the block-based motion compensation are its 

effective prediction for translational motion, lesser hardware complexity and simple 

implementation. 

The H.263, MPEG-1, MPEG-2, and MPEG-4 support two types of prediction 

frames, the Predictive Frame (P-Frame) and Bidirectionally Predictive Frame (B-Frame). 

A P-Frame is coded by a prediction causally from an immediate previous intraframe (I-
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Frame) or P-Frame. A B-Frame is non-causally predicted from a previous reference 

frame or next reference frame or both these frames. A theoretical analysis of multi-

hypothesis motion compensation for hybrid video coder [21] explains the role of B-

Frame in a video coder. A reference frames must be coded as either an I-Frame or a P-

Frame. Note that it is not allowed to code a P-Frame or a B-Frame with reference to any 

B-Frame. 

2.1.1.1 Motion Vectors 
 

To perform the block-based motion compensation, a current frame is divided into 

a number of non-overlapped M × N pixels blocks. In the industrial standards, we name 

the block as a Macroblock (MB) and a block with a size of 16×16 pixels, and 8×8 pixels 

respectively. MPEG-2 and MPEG-4 supports the coding of interlaced frame, and thus 

an interlaced MB consists of 16×8 pixels. 

The industrial standard allows a MB in a P-Frame to be coded with different 

modes, such as intra-mode (I) and inter-mode (P). The basic idea of block-based 

compensation is illustrated in Figure 2-2. When a MB in a P-Frame is coded as a P-MB, 

a forward motion vector is transmitted. The forward motion vector represents a 

displacement between the MB in the current frame at time t and the matched MB in a 

past reference frame at time t-m, m is greater than or equal to 1 in general situation. A 

predictive MB in a B-Frame is named as B-MB. For a B-MB, its forward, or backward, 

or both of these two motion vectors has to be transmitted. The displacement of the 

matched block in a reference at time t+n is denoted as a backward motion vector. 

Similar to the forward case, n is generally greater than or equal to 1. 
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Current Frame at 
time t

Past Frame at time 
t-m

Future Frame at 
time t+n

Forward motion vector Backward motion vector

 
 

Figure 2-2. Illustration of block-based motion compensation in a P-Frame or a B-Frame 

 

Both H.263 and MPEG-4 do not only support coding of one motion vector per 

MB, but also include an advanced prediction mode that subdivides a MB into four 

blocks in P-Frame or P-VOP. The codec compensate a MB with four motion vectors for 

the four blocks. 

The pixel errors between the current frame and the motion compensated frame are 

called the prediction errors. For a B-MB, the matched MB from a past frame, or the 

other matched MB form a future frame, or an average of both can be used as the 

compensated MB. Consequently, the resulting prediction errors for a P-MB or B-MB 

involving either a forward or a backward motion vector are expressed as 

 ( ) ( )vjyuixfjyixfjiyxe nmtt ++++−++= ± ,,),;,( ,  

where (x, y) indicates the location of a MB in the current frame, ),( ⋅⋅tf , 

 (i, j) is the coordinate of a pixel in the MB, and 

 (u,v) is a forward or backward motion vector.  

(2-1) 

 

When both motion vectors are used, the prediction errors are given by 
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where (uf, vf) is a forward motion vector. 

 (ub,vb) is a backward motion vector. 

(2-2) 

 

These motion vectors are differentially coded in the standards [4-5], and thus the 

motion correlation between adjacent blocks can be utilized for compression. That is 

using values of previously transmitted motion vectors to obtain a prediction motion 

vector. The difference between the motion vectors and the corresponding prediction 

motion vector is encoded and transmitted. We calculate the horizontal and vertical 

components of a predictor separately. In [4, 5], a median filter is used for three 

candidate prediction motion vectors to form a predictor. The three candidate predictors, 

(MVi, i = 1, 2, 3), are obtained from the spatial neighborhood macroblocks or blocks 

that already coded. Figure 2-3 clearly defines the positions of the candidate predictors 

for each block’s motion vector in the advanced prediction mode. In the case of one 

motion vector per macroblock, the top-left case in Figure 2-3 is applied. The following 

four decision rules are applied to obtain the value of the three candidate predictors: 

1. Let MV0 be the motion vector found by normal motion estimation. A candidate 

prediction motion vector is not considered to be valid, if this candidate predictor 

MVi is sited outside of a Frame or a VOP, or in a transparent MB or block. 

Otherwise, such as MV1, MV2 and MV3 can be used as valid candidate MV for 

further coding. 

2. If one and only one candidate predictor (either MV1, MV2 or MV3) is not valid (e.g. 

it is sited outside the frame, etc), it is set to zero.  

3. If two and only two candidate predictors are not valid, they are set equal to the 

third candidate predictor. 

4. If all three candidate predictors are not valid, they are set to zero. 
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The median value of the three candidates for the same component is computed as 

predictor, denoted by Px and Py: 

 
( )
( )yMVyMVyMVMedianPy

xMVxMVxMVMedianPx
3,2,1
3,2,1

=
=

 (2-3) 
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Figure 2-3. Definition of the candidate predictors MV1, MV2 and MV3 for each of the luminance 
blocks in a macroblock. 

2.1.1.2 Half-pixel accuracy 
 

In fact, the true physical motion of a moving object between successive frames is 

not limited to our spatial sampling frequency or the sampling grid. It leads us to expect 

that we can improve the motion-compensation efficiency with fractional-pixel accuracy.  

MPEG standards support motion vector with half-pixel accuracy for 16×16 MB 

and for 8×8 block as well as for 16×8 field block in case of interlaced video. Since 

decoder prefers a simple interpolation to a complex one, a bilinear interpolation 

technique is a suitable choice. The interpolation scheme used in the MPEG-4 is shown 

in Figure 2-4. 
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c d

Integer pixel position

Half pixel position

C D
 

 
a = A,  
b = (A + B + 1 - rounding_control) / 2 
c = (A + C + 1 - rounding_control) / 2,  
d = (A + B + C + D + 2 - rounding_control) / 4 
where rounding_control is equal to 1 or 0. 

 
Figure 2-4. Bilinear interpolation scheme. 

 
Motion-compensation with quarter-pixel accuracy is supported in MPEG-4 version 2. 

The main target of Quarter Pixel Motion Compensation is to enhance the resolution of 

the motion compensation scheme with only small syntactical and computational 

overhead, leading to more accurate motion description and less prediction error to be 

coded [22]. 

The author of [23] has studied and analysed theoretically and experimentally the 

contribution gained from motion-compensation with fractional-pixel accuracy. In the 

theoretical analysis, the power spectral density of the prediction error is related to the 

probability density function of the displacement error. It predicts that the possibility of 

further improving prediction by more accurate motion-compensation is small if a 

critical accuracy is exceed. According to his analysis and experimental results, for a 

motion-compensation block size of 1616×  and typical broadcast TV signals, quarter-

pixel accuracy is sufficient, while for videophone signals, half-pixel accuracy is 

desirable. Moreover, in views of different interpolation schemes, bilinear interpolation 

is as good as, or better than sinc-interpolation. 
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2.1.1.3 Overlapped Block Motion Compensation [5] 
 

We can improve the inefficiency of block-based motion compensation due to 

variation of motion within a block, quantization of motion vectors, model mismatched 

such as uncovered background, etc, improved by using overlapped block motion 

compensation (OBMC). OBMC and its theoretical basis have been studied and 

proposed in the literature [24-27]. Several video coding standards, such as the H.263 

and MPEG-4 also incorporate various forms of OBMC. The following description 

briefly presents the OBMC scheme in the MPEG-4. 

When OBMC is enabled, each pixel in a 88×  luminance block is a weighted sum 

of three prediction values, divided by 8 with rounding. In order to obtain the three 

prediction values, three motion vectors, MV0, MV1 and MV2 are used: 

1. the motion vector of the current luminance block, MV0 , 

2. the motion vector of the block above or below the current luminance block, MV1, 

and 

3. the motion vector of the block at the left or right side of the current luminance 

block, MV2. 

For pixels in the current block, the motion vectors of blocks at the two nearest block 

borders are used. We name these motion vectors as remote MVs. For instance, MV1above 

and MV2left are the remote MVs for the pixels in top-left quarter of the current block. 

Figure 2-5 shows an example of a top left block in a MB and depicts the used remote 

MVs for the pixels within each quarter. Moreover, if one of the surrounding blocks was 

not coded, the corresponding remote MV is set to zero. If one of the surrounding blocks 

was coded in intra mode, the motion vector for the current block replaces the 

corresponding remote MV. If the current block is at the border of a frame or a VOP, the 

current motion vector replaces the corresponding remote MV. In addition, if the current 

block is at the bottom of the MB, the remote motion vector corresponding with a 88×  
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luminance block in the MB below the current MB is replaced by the motion vector for 

the current block. 

MV1above

MV2left MV2right

MV1below

MV0

 

Figure 2-5. Illustration of the used remote motion vectors for the pixels within each quarter of a 
current block. (Solid line – MB; Thin line – 88×  block; Dashed line – Partition of the pixels to four 
quarters in the current block) 

 

The pixel values in the OBMC block shown in the example of Figure 2-5 are 

governed by the following equation 

 ( ) 8/4),(),(),(),(),(),(),( 221100 +×+×+×= jiHjifjiHjifjiHjifjif  

where ( )yx MVjMVifjif 000 ,),( ++=  

 ( )beloworaboveybeloworabovex MVjMVifjif ,,1 1,1),( ++=  

 ( )rightorleftyrightorleftx MVjMVifjif ,,1 2,2),( ++= . 

 subscript x,y denotes component of a motion vector.   

(2-4) 

 

The weighting matrices or OBMC windows, H0(i, j) , H1(i, j) and H2(i, j) are defined in 

Figure 2-6. 
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(c) 
Figure 2-6. The weight matrices H0(i,j), H1(i,j) and H2(i,j) defined in the H.263 and MPEG-4. 

 

2.1.2 Arbitrary shaped object coding 

Nowadays, content browsing in the World-Wide Web becomes part of our daily 

life due to the successful and rapidly growth of Internet activities. Text-based and still 

image type interactive operations are already familiar to all Internet users. Demands of 

other interactive functionalities involving various contents, such as audio and video will 

increasing. In 1993, MPEG (Moving Pictures Experts Group) launched the MPEG-4 

work item, which officially called "Coding of audiovisual objects". In addition to 

increasing compression efficiency for storage and transmission, one major characteristic 

of the MPEG-4 different from its predecessor is that it offers the capability of video and 

audio manipulation in multimedia environments. In order to provide the solutions for 

these objectives, a set of “tools” and “algorithms” for audio-visual data, called audio-

visual objects (AV objects or AVOs) are being developed. 

The MPEG-4 introduces the concept of Video Objects (VOs) to support access of 

individual semantic objects in visual contents. A temporal instance of a VO is named as 

a Video Object Plane (VOP). It is represented by its texture value (i.e. pixels luminance 

and chrominance values) and shape information [28]. In natural scenes, VOPs are 

obtained by semi-automatic or automatic segmentation [29-37], and the resulting shape 

information is represented as a binary alpha plane. On the other hand, for hybrid (of 

natural and synthetic) scenes generated by blue screen composition, shape information 

is represented by an 8-bit component, referred to as greyscale alpha plane. 
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An object-based coder is mainly composed of two parts, namely shape coder, and 

motion and texture coder. The emerging of the MPEG-4 attracted a number of 

researchers to study different approaches for shape coding [38-43], including the 

Context-based arithmetic encoding (CAE) [44-48]. The MPEG-4 adopts the CAE to 

code the shape of a VOP in the shape coder [49]. 

For a VOP, it is represented by means of a bounding rectangle, in which the 

rectangle can be defined as the minimum number of macroblocks that contain the object. 

There are three kinds of macroblocks within a bounding rectangle: the transparent MB, 

the boundary MB and the opaque MB. The boundary and opaque MBs include the 

pixels belonging to the object, and the transparent MB lies completely outside the object 

area. For different kinds of MBs, different coding techniques are used in MPEG-4. 

MPEG-4 employs the CAE to code arbitrary shape in a boundary MB. Similar to the 

frame-based situation, we can use inter-mode and intra-mode for the coding of a 

boundary MB with the CAE. 

The MPEG-4 codes the texture information of a VOP by using similar techniques 

of the traditional video coding. We code an opaque MB as a normal MB in the fame-

based coding. The transparent MB is not necessary to be coded since it has not 

contained any object pixels. Because of the coding efficiency, it is not suitable for us to 

apply traditional block-based coding techniques to the boundary MBs directly. We must 

handle the discontinuity condition at an object boundary carefully, otherwise resulting a 

degradation of rate-distortion and compression performance. A lot of researchers have 

been proposing many different approaches to improve the coding efficiency for a 

boundary MB [52-65] in the past decade. 

Padding is one of the studied techniques in the course of the MPEG-4 

standardization process. It aims at extending an arbitrarily shaped block to a regular 

block such that traditional hybrid block-based coding techniques can be applied. Two 
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padding techniques [52] have been proposed in 1997 for motion estimation and 

compensation of the boundary MBs. The MPEG-4 adopts the Repetitive padding for 

object-based video coding. With the repetitive padding, object shape information and 

prediction error, a boundary MB can be reconstructed as usual. The author in [55,56] 

proposed an Adaptive low-pass extrapolation padding technique for intra-mode coding, 

which increases the PSNR of boundary blocks by an average of 2dB. For inter-mode, 

padding the prediction errors outside the object with zeros gives good efficiency.  

In additional to the padding techniques, shape adaptive transformations have been 

proposed in the literature [56, 58-64]. The Shape-Adaptive DCT (SA-DCT) has been 

suggested in the MPEG-4 to improve the coding efficiency of boundary MBs.  

2.1.2.1 Forming of the bounding rectangle 

According to the following procedure, a bounding rectangle with the minimum 

number non-transparent MBs will be obtained to bound the whole object as shown in 

Figure 2-7. 

1. Generate a tightest rectangle with even numbered top left position. 

2. If the top left position of this rectangle is the same as the origin of the image 

frame, extend the right bottom corner of the rectangle to form a final bounding 

rectangle that consists of multiples of 1616×  MBs. 

3. Otherwise, form a control MB at the top left corner of the tightest rectangle. Note 

that the top left position of the control MB cannot site outside of the image.  

4. Count the number of MBs that completely contain the object, starting at each 

even numbered point of the control MB. Details are as follows: 

a. Generate a bounding rectangle from the control point to the right bottom side 

of the object, which consists of multiples of 1616×  blocks. 
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b. The control point and the corresponding right bottom corner that resulting in 

the smallest number of the MBs for the given object is the coordinates of the 

bounding rectangle. 

 
...

Control MB

Tightest Rectangle

Extended 
Bounding 
Box 

Intelligently generated VOP

: control point 

...

Object

 

Figure 2-7. Formation of Bounding rectangle according to the procedure in the MPEG-4 VM [22]. 

 

2.1.2.2 Context-based arithmetic encoding 

There are two major approaches in shape coding. The first one is contour-based 

shape coding, such as [38-43], which extracts and then codes a description of the closed 

contour enclosing the shape. Its advantages include scalability and having semantic 

representation, but complex treatments of intercepted contours and objects with holes 

are required. The second one is a bitmap-based approach, which encodes the bitmap of 

the binary alpha plane directly. It can achieve reasonable compression efficiency. 

However, this kind of approaches lacks direct semantic information about the coded 

object comparing to the previous approach. The techniques proposed in [44-48] belongs 

to this category. 

MPEG-4 accepts a bitmap approach, which is the Context-based Arithmetic 

Encoding (CAE), to code an object shape. In CAE, it is assumed that a high degree of 

local correlation exists in the shape of a boundary MB. We name the shape of the MB as 

a Binary Alpha Block (BAB) in MPEG-4. Several coding modes are available including 

intra-mode and inter-mode. In intra-mode, a template of 10-pixels shown in Figure 
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2-8(a) is used to calculate a context number and defines the causal context for predicting 

the shape value of the current pixel. The context number is computed as ∑
=

×=
9

0
2

k

k
kcC , 

where ck indicates the corresponding binary pixel value according to the template in 

Figure 2-8(a). It is used to access a probability table, which contains 1024 different 

contexts. For encoding the context state, a context-based arithmetic encoder is used. 

C9 C8 C7

C5 C4 C3C6 C2

*C0C1

* denotes current pixel position  
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(a) (b) 
Figure 2-8. (a) The template for intra-mode context construction (b) Current bordered BAB. 

When encoding a BAB, a border of width equal to 2 is extended from the current 

BAB for context number construction. The following rules must be obeyed to construct 

a current bordered BAB [22].  

• Any pixels outside the bounding rectangle of a current VOP to the left and above 

are assumed to be zero. 

• The template may cover pixels from BABs, which are not known at decoding 

time (value marked as “?” in Figure 2-8(b)). These unknown pixels are therefore 

estimated by template padding. 

• For the intra-mode, the following steps are taken in the sequence 

1. if (c7 is unknown) c7=c8, 

2. if (c3 is unknown) c3=c4, 

3. if (c2 is unknown) c2=c3. 

• For the inter-mode, if (c1 is unknown) c1=c2. 
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For inter-mode, temporal redundancy is exploited by taking advantage of the high 

correlation between two successive alpha planes. A reference BAB in a previous binary 

alpha plane is obtained by means of a motion vector. This BAB is regarded as a Motion 

Compensation BAB (MC BAB) in Figure 2-9(b). Similar to the situation of intra-mode, 

we calculate a 9-pixel context number, ∑
=

×=
8

0
2

k

k
kcC  using an inter-mode template in 

Figure 2-9(a) to access the probability table. 
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(a) (b) 
Figure 2-9. (a) The template for inter-mode context construction. (b) Bordered MC BAB. 

 
A lot of shape-coding algorithms, including different bitmap-based and contour-

based shaper, were thoroughly investigated in [49] with respect to their coding 

efficiency, subjective quality for lossy shape coding, hardware and software complexity, 

and performance in scalable shape coders. With the consideration of the required 

bandwidth for off-chip memory access and caching, MPEG-4 focused on optimizing the 

selected CAE for shape coding. 

Furthermore, a context-based arithmetic coding is not limited for the purpose of 

shape coding. It can also serve for symbol coding, such as the study in [50]. MPEG-4 

may also involves the CAE in rate control [51] by lossy shape coding. 
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2.1.2.3 Padding for arbitrarily shaped object coding 

Image padding refers to enlarging the area of an image by filling additional pixel 

values in the enlarged area. For arbitrarily shaped object coding, a padding operation 

extends the object shape to a rectangle, such that traditional video coding algorithms can 

be employed. Clearly, a specific padding algorithm should be designed to deal with a 

particular application. 

MPEG-4 treats the boundary MB as a regular MB and encodes the texture of each 

block using an 88×  DCT. A decoder decodes the texture and discards all pixel values 

that outside of the object shape. In order to increase the coding efficiency, an encoder 

must pad the pixels outside of the object adaptively such that the bitrate is minimized. 

For intra-mode, MPEG-4 makes use of a low-pass extrapolation padding [55,56] to 

achieve this purpose. 

2.1.2.3.1 The Low-pass Extrapolation Padding 
 

For a boundary MB which is coded in intra-mode, it is preferred to pad the given 

image data to a rectangular area such that conventional block-based DCT coding can be 

applied. The authors of references [55,56] proposed the low-pass extrapolation (LPE) 

padding for the intra-mode coding. The LPE aims at seeking for a computationally 

simple extrapolation method which is operated completely in the spatial domains. 

Moreover, the padding result must fulfill the following two criteria. 1) The signal 

extension should be smooth enough, i.e. it should have a low-pass characteristic. 2) 

Discontinuities at the border between given and extrapolated image data should be 

avoided. To resolve this problem, it can be regarded as solving the variational problem 

of Dirichlet. It is identical to the task of solving the differential equation under a given 

boundary conditions. 
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 0=+=∆ yyxx fff  

where ∆f is gradient of an image function, f. 

 fxx is the second derivate of f  with respect to x. 

 fyy is the second derivate of f  with respect to y. 

(2-5) 

The above equation can be approximated by finite differences using Laplacian operator 

for a digitized image. We let i and j are the variables in x and y direction respectively. 

 ( ) ( ) ( ) ( ) ( ) ( )jifjifjifjifjifjif ,4,11,,11,, −++++−+−=∆ . (2-6) 

 Since a direct solution of this equation is not possible in general, the author adopted a 

relaxation method for determining the function f. This leads to a simple averaging 

operation, which is applied iteratively to all transparent pixels in a boundary MB. 

 ( ) ( ) ( )jifjifjif kkk ,
4
1,,1 ∆+=+  

where k indicates stages of the iteration. 

(2-7) 

If one or more of the four pixels are outside of an image block during the averaging 

operation, the corresponding pixels are not considered. Hence, the averaging processes 

can be equated as equivalent to a convolution process applying iteratively to an image 

block. Let us represent the image block as elements of a matrix [ ]kF , i.e. ( )jifF kk
ji ,= . 

Result of the processes is given by 
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According to the experimental results [56], the author claimed that the first iteration 

could already provide enough smoothing effect for efficient DCT coding. Hence, it is 



 36

sufficient to restrict the LPE padding to a single iteration for the sake of lower 

computational load. 

2.1.2.3.2 The Repetitive Padding 
 

Block-based motion estimation and compensation requires an arbitrarily shaped 

object to be padded properly so that motion prediction coding can be efficient. MPEG-4 

accepts the repetitive padding proposed in [52]. In the repetitive padding, a boundary 

MB is padded by replicating the boundary samples of the VOP towards the exterior. 

First, this replicating process is divided into two stages, which are the horizontal 

repetitive padding and vertical repetitive padding. If a value lies between two pixels in a 

row or column, an average value is assigned to this pixel. Second, since this repetitive 

padding puts a significant computational burden on the decoder, we use an extended 

padding to pad the remaining MBs that are completely outside the object. 

In the horizontal repetitive padding, we fill each transparent pixel in a boundary 

MB by replicating each pixel at the edge of a VOP horizontally to the left and/or right 

direction. If there are two edge pixels values for filling a transparent pixel outside of a 

VOP, we average the two edge pixels values. Figure 2-10(a) demonstrates an example 

of the horizontal padding in a boundary MB. Afterward, the remaining unfilled 

transparent region in the MB is padded by a similar manner as the horizontal process 

but in the vertical direction. Pixels already filled in the horizontal repetitive padding are 

regarded as if they were the video object pixels for the purpose of this vertical stage. 

Figure 2-10(b) and (c) shows the vertical repetitive padding and the repetitive padded 

boundary MB respectively. 
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(a) (b) (c) 
Figure 2-10. (a) Horizontal repetitive padding by replicating pixels at the edge of a VOP 
horizontally to the left. In the thirteen row, averaging of two edge pixels values is used to fill the 
transparent pixel values lied between. (b) Processes of the vertical repetitive padding. (c). The 
resulting boundary MB after the repetitive padding. 

 
The macroblocks immediately next to boundary MBs are named as exterior MB 

in the padding processes. They are filled by horizontally or vertically replicating the 

pixel values at the border of their surrounding boundary MBs in the extended padding. 

If an exterior MB is surrounded by more than one boundary MBs, we shall pick one of 

these MBs according to the priority stated in Figure 2-11 for this padding. The boundary 

MBs with the largest priority number is used for the extended padding of an exterior 

MB. The remaining unfilled MBs in the bounding rectangle are filled with mean of all 

possible pixel value. We assume that probability of occurrence of each pixel value is 

uniform. For 8-bit pixel representation, they are filled with 128. 

Exterior MB
Repetitively

padded boundary

MB (Priority 1)

Repetitively
padded boundary

MB (Priority 2)

Repetitively
padded boundary

MB (Priority 3)

Repetitively
padded boundary

MB (Priority 0)

 

Figure 2-11. Priority of boundary MBs surrounding an exterior MB for the extended padding.  
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The author [52] claimed that efficient motion estimation and compensation for the 

object boundary is most critical to the performance of object-based video coding. 

Moreover, the discontinuity at object boundary could degrade the coding performance 

seriously if not handled properly. Comparing to the non-padded case, the repetitive 

padding improves the rate-distortion performance of motion prediction for about 20%. 

2.1.2.4 Motion compensation for arbitrarily shaped object 

After a reference VOP has been repetitively padded, motion compensation can be 

performed for a VOP reconstruction. A special treatment should be done for a boundary 

MB in MPEG-4. Using the coded motion vector and shape information, we can 

reconstruct a boundary MB according to the following equation. 

 ( ) ( ) ( )[ ] ( )jiAlphajievjyuixfjif codedcodedrefc ,,,, ×+++++=  

where ( )⋅⋅,cf  and ( )⋅⋅,reff  is a reconstructed MB and reference VOP respectively 

 ( )⋅⋅,codede  is the coded prediction error. 

 ( )⋅⋅,codedAlpha  is the coded alpha plane. 

 (x,y) denotes location of a current MB. 

 (i,j) is coordinate of each pixel in a MB. 

 (u,v) is the motion vector. 

(2-9) 
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2.2 Block-based motion estimation review 
 

In the Block-based compensation scheme, we use motion vectors to represent 

motion activities of objects between the current frame and reference frames. Although 

industrial standards do not specify a particular motion estimation technique, block-

based motion estimation is a natural selection for video encoding. 

Estimated Motion vector

Search Window

Reference Frame

Current target MB  

Figure 2-12. Block-based motion estimation. 

 

A motion estimation process in an encoder obtains a motion vector by the using 

block-based matching technique. The motion estimation detects the interframe motion 

with the use of a cost function between a target MB in the current frame and a candidate 

MB within a search window in a reference frame. The displacement between the most 

suitable candidate MB and the target MB is defined as the resulting motion vector, 

( )vu ˆ,ˆ . A variety of cost functions have been investigated in the literature. One such 

function is the cross-correlation function, (CCF) which is mentioned in [69] and defined 

as 
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Where ),( ⋅⋅tf  is a target MB in the current frame at time t. 

  ( )⋅⋅,reff  is a candidate MB in a reference frame with a motion vector (u,v). 

(2-10) 
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However, the authors in [8] claimed that correlation method is not suitable for small 

block size condition, and a mean distortion function was subsequently proposed. In fact, 

this distortion function is a mean of squared l2-norm distance. An l2-norm of a vector 

A=[a1,a2,…,an] is defined by ∑
=

n

i
na

1

2 . The squared l2-norm distance for the prediction 

errors of a MB between a target MB at position (x,y) in the current frame, ft, and a 

candidate MB at position (x+u, y+v), in a reference frame, fref, is defined as below, 

 ( ) ( ) ( )∑∑
= =

× ++++−++=
N

i

M

j

n
reftNM vjyuixfjyixfvuyxSSD

0 0

,,,;,  

where n = 2 and N = M = 16. 

(2-11) 

It is also called the Sum of Squared Difference (SSD). Block matching with l2-norm 

minimizes the energy of the prediction errors, and for Gaussian signals, it minimizes the 

bitrate required to encode the errors. In practice, block matching with l1-norm distance 

is often used due to its lower complexity for hardware implementation. The l1-norm is 

defined by (2-11) with n = 1. It is normally named as Sum of Absolute Difference 

(SAD). The SAD can be viewed as an approximation to block matching with l2-norm 

distance. Furthermore, some researchers have studied other cost functions, including the 

Pixel Difference Classification (PDC) [66], the Minimized Maximum Error (MME) [67] 

and the Geometric Mean of the DCT coefficient variances (GMDCT) [68]. The former 

two methods were explored when the consideration of hardware realization is taken. For 

the GMDCT, the authors developed the criterion by considering a spatial domain coder, 

when the coder is based on DCT and dynamic bit allocation. When the problem of 

optimally allocating a limited bitrate to the displacement vector field and the motion 

compensation prediction error is addressed, a rate-constrained motion estimation 

theoretical framework was introduced in [70]. The authors [71,72] introduce a 

Lagrangian cost function by making use of the Lagrange multiplier for the rate-

constrained motion estimation. 
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 Instead of being as a matching criterion, we often use SSD or its mean value to 

evaluate the searching ability between different motion estimation algorithms. Another 

frequently used metric for performance evaluation is the peak signal-to-noise ratio 

(PSNR), which is defined as follows, 
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where N and M are the width and height of a frame respectively, in frame-based 

situation, 

 ( )⋅⋅,tf  and ( )⋅⋅,recf  are the current and compensated frame respectively. 

(2-12) 

 

When the SAD is used for block matching criteria, the motion vector of the best 

matched block, $( , )u v$ is given by, 

 ( )
( )

( )vuyxSADvu
Wvu

,;,minargˆ,ˆ
, ∈

≡   

where  { }( , ) ,W u v D u v D= − ≤ ≤  is a set of all possible locations in a search 

window and D is the maximum possible displacement of the motion 

vector (u,v). 

(2-13) 

 

The simplest block matching motion estimation algorithm is the full search algorithm 

(FSA). This algorithm can give an optimum solution by exhaustively examining all 

possible locations within the search window. In addition to its optimum result, the 

advantages of block-based FSA in video-coding application are its regularity and 

simplicity. It is suitable for a simple hardware realization. However, its heavy 

computational load for a large search range can be a significant problem in real-time 

applications. For example, a search window for a maximum possible displacement, D, 
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will require ( )212 +D  number of calculation of SAD. Equation (2-11) shows that a SAD 

involves M × N absolute operations and M × N – 1 additions for a block. In order to 

resolve this difficulty, many fast search algorithms have been developed in the past. 

Basically, the factors that determine the performance of a block matching motion 

estimation algorithms are matching criteria, search schemes and the search area. A lot of 

researchers make use of these factors to investigate a large variety of fast algorithms in 

the past [8, 69, 73-108]. These fast search algorithms can be classified into the 

following categories. 1) In the first category, the fast search algorithms seek for a way 

to select a subset of the candidate MB in W to reduce the computational time [8, 69, 73-

86]. The most challenging part of these algorithms is to determine the subset of W for 

searching. Because these algorithms can easily be trapped into local minima, 

degradation in predicted images is an inevitable result on average. Many researchers 

select an initial searching point by studying the motion field to reduce the probability of 

being trapped in local minima. Another approach to find a good initial point is 

hierarchical or multiresolution techniques [87, 88]. 2) The algorithms [73, 89-98] in this 

category use a reduced complexity distortion measure to save computation, such as 

pixel decimation [73, 89-91] and partial distortion (PDS) techniques [92-96]. The pixel 

decimation techniques subsample the pixels in a target MB and the candidate MBs 

within the computation of the SAD. Hence, the computation for each SAD can be 

reduced. The PDS reduces the computation complexity by terminating the SAD 

calculation early when it finds that a partial SAD is already greater than the minimum 

SAD encountered so far in the search. In general, PDS is regarded as a fast full search 

algorithm because it has identical prediction quality as that of the FSA. 3). The 

algorithms [99-103] in the third category make use of mathematical inequalities to 

reduce the computational load; this includes the Successive Elimination Algorithm 

(SEA) [99-101]. By making use of the Minkowski’s inequality, the SEA eliminates an 
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impossible candidate MB without calculating the SAD. 4) Edges are the most prominent 

feature in image processing. They are also frequently used to predict pixel matching 

errors in motion estimation. The fourth category [104, 105] uses information of edges in 

a block to reduce computational burden in motion estimation. 5) Moreover, a 

performance analysis of MPEG-4 decoder and encoder [107] shows that motion 

estimation will remain as a computationally intensive step in MPEG-4 arbitrarily shaped 

VOs encoding. Object based motion estimation is a new direction in this field [108]. 

Many other algorithms combine the above techniques together in order to further 

improve the coding efficiency. 

In addition to the above classification, another frequently used classification is to 

compare the quality of a motion compensated frame by a motion estimation to that of 

the FSA. If a searching technique can produce identical quality as the FSA, The motion 

estimation is regarded to be a lossless algorithm. Otherwise, it is a lossy one. The 

algorithms proposed in [96-101, 103] are categorized as lossless algorithms, which 

search all candidate positions in W and save the computational load by making use of 

the Minkowski’s inequality or partial distortion in a SAD. Other algorithms introduced 

are lossy because they do not search all of possible locations in W and involve 

subsampling of pixels or approximation of mathematical inequalities in the calculation 

of matching criteria.  

One of the differences between the H.264/AVC [6] and previous video standards 

is that it increases the coding efficiency by allowing an encoder to select reference 

pictures for motion compensation among a larger number of pictures. These reference 

pictures have been decoded and stored in the decoder. The studies in [109-111] have 

investigated the subject of this new motion compensation and estimation problems. 

Among these wide variety of motion estimation techniques, four fast algorithms 

are going to be discussed in detail. Section 2.2.1 introduces the major ideas of lossy 
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motion estimation. The discussions mainly focus on the Partial Distortion Search (PDS) 

algorithm and its modification, Normalized PDS. In Section 2.2.2, a simple idea that can 

improve the efficiency of the traditional PDS is illustrated. Two adaptive PDS 

algorithms, which utilize this technique, are presented. Their basic idea is explained in 

details. Section 2.2.3 gives the procedure of the Diamond Search (DS). We shall present 

the explanation about the success of the DS. Another algorithm making use of the 

mechanism is also introduced and compared. Section 2.2.4 concentrates on the 

introduction of the Motion Vector Field Adaptive Search Technique (MVFAST) and its 

generalization, the Predictive MVFAST (PVMVFAST). It gives the step by step 

implementation of the MVFAST. Note that MPEG-4 has already accepted these two 

algorithms in its optimization model. 

2.2.1 Partial Distortion Search 
 

Using Partial Distortion or the Minkowski’s inequality are two major approaches, 

which are mostly utilized to develop different lossless motion estimation algorithms or 

fast Full Search Algorithm. 

The l1-norm version of the Minkowski’s inequality gives a relation between two 

arbitrarily sets of non-negative real numbers. For two given sets { }110 ,...,, −= NaaaA  and 

{ }110. ,...,, −= NbbbB  which have same number of elements, they obey the following 

inequality, 

 BABA −≥− . (2-14) 

When (2-14) is applied involving SAD, it is expressed as  
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It means that an absolute different between l1-norm of a reference block and that of a 

target MB is always smaller or equal to their SAD. The Successive Elimination 

Algorithm (SEA) compares the norm differences to the encountered minimum SAD, 

SADtemp_min. The intensive computations of SAD are not necessary if the norm 

differences are greater than the SADtemp_min. 

The basic idea of the PDS algorithm is described as follows. For a given reference 

MB and a target MB, a partial distortion is defined as a part of the total distortion. The 

p-th accumulated partial distortion in the traditional PDS algorithm is given by (2-16) 

 ( ) ( ) ( )∑∑
= =

++++−++=
p

0j

15

0i
reftp vjyu,ixIjyi,xIvuyxSAD ,;, . (2-16) 

The value p indicates the number of rows accumulated into the p-th partial distortion as 

shown in Figure 2-13(a). If the p-th accumulated partial distortion, SADp, is greater than 

the SADtemp_min, the coder can simply rejects this candidate without calculating the 

remaining partial distortion. This algorithm can greatly reduce computation of the 

distortion calculation if the saving of computation in the remaining partial distortion can 

compensate the additional comparison operations. 

0 0

1

2

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4 4

5

6

4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

8 8

9

10

8 8 8 8 8 8 8 8 8 8 8 8 8 8

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

12

13

14

15

12

13

14

15

12

13

14

15

12

13

14

15

12

13

14

15

12

13

14

15

12

13

14

15

12

13

14

15

12

13

14

15

12

13

14

15

12

13

14

15

12

13

14

15

12

13

14

15

12

13

14

15

12

13

14

15

12

13

14

15  

0 1228

10 6144

3 9113

15 5117

0 1228

10 6144

3 9113

15 5117

0 1228

10 6144

3 9113

15 5117

0 1228

10 6144

3 9113

15 5117

0 1228

10 6144

3 9113

15 5117

0 1228

10 6144

3 9113

15 5117

0 1228

10 6144

3 9113

15 5117

0 1228

10 6144

3 9113

15 5117

0 1228

10 6144

3 9113

15 5117

0 1228

10 6144

3 9113

15 5117

0 1228

10 6144

3 9113

15 5117

0 1228

10 6144

3 9113

15 5117

0 1228

10 6144

3 9113

15 5117

0 1228

10 6144

3 9113

15 5117

0 1228

10 6144

3 9113

15 5117

0 1228

10 6144

3 9113

15 5117  

(a) (b) 
Figure 2-13. Order of calculation of the partial distortions. 
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Instead of define the partial distortion in row-by-row manner, the author who 

proposed the Normalized Partial Distortion Search (NPDS) [95] using a uniform pattern 

to define the order of partial distortion calculation. The recommended order of 

calculation is depicted in Figure 2-13(b). Afterward, they normalize the accumulated 

partial distortion and the SADtemp_min before comparison. The probability of early 

rejection of non-possible candidate MB is thus increased. 

Every location in the search window is searched one by one with normal raster 

scanning order from left to right and top to bottom in the traditional PDS. However, it is 

well know that most real-world sequences have a centrally biased motion vector 

distribution. The motion vectors tend to concentrate at the central region of a search 

window. We can use spiral scanning path to exploit this motion-vector distribution 

characteristics. The spiral scanning begins the searching at the center of a search 

window and then moves outwards with a spiral manner as shown in Figure 2-14. This 

order of scanning will increase the probability of meeting the global minimum and thus 

rejects the impossible candidate MBs earlier. 
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Figure 2-14. Spiral scanning path in a search window with D=7. 

 
The Minkowski’s inequality and partial distortion can be used to reduce 

computation required for the calculation of SAD. If we examine all possible candidates 

in a search window, identical result as the FSA can be obtained. The overhead 
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introduced by the SEA is the calculation and comparison of the sum norm. The authors 

[99] reduce the computation required for the sum norm by using a recursive technique. 

Hence, all sum norms are pre-calculated and stored in a memory buffer. The 

computational saving of the SEA and spiral-PDS have been evaluated in [96]. The 

results shows that performance of the SEA and spiral-PDS are comparable but the PDS 

does not require additional preprocessing. Note that the normalized PDS is not a lossless 

algorithm although it scans all possible candidate MBs. Moreover, the partial distortion 

of pixels is accumulated in a uniform pattern; such that rejection of impossible 

candidates by normalize partial distortion is more accurate. However, for a hardware 

implementation, uniform pattern may not be desirable as it results in more irregular 

memory access. 

2.2.2 Adaptive Partial Distortion Search 
 

The capability of eliminating an impossible candidate MB by conventional PDS 

depends on the comparison between SADp and SADtemp_min. If one can eliminate the 

candidates at lower p-th accumulated partial distortion, the saving of computation can 

be increased. We can develop different Adaptive Partial Distortion Searches based on 

this idea. 

The algorithm [96], “Fast Full-Search Motion-Estimation Algorithm Using 

Representative Pixels and Adaptive Matching Scan”, (AMS-PDS) is one of these 

adaptive approaches. The authors approximated the gradient magnitude of an image, 

( )[ ]yxIG , , by the following representation, 
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They used Taylor series expansion to formulate a predicting function of an image at 

some position, αt+1, in terms of the image function and its spatial derivative at a nearby 

position αt as given below, 
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where αt indicates the position (x,y) of the t-th frame.   

(2-18) 

After that, they approximately described the relation between a current frame at time 

t+1 and a reference frame at time t using (2-18). Let et+1(α) be the prediction error and 

given by 

 ( ) ( ) ( )cmvIIe ttt +−= ++ ααα 11  

where cmv is a candidate motion vector, (cmvx, cmvy), 

(2-19) 

assuming that It+1(α) = It(α+mv), where mv=(mvx, mvy) is the true motion vector of a 

pixel at position α. By substituting mv+=′ αα  and cmv+=′′ αα  into (2-18), we have 

 ( ) ( )( )
α

αα mvcmvcmvIe t
t

−+∂≈+1  (2-20) 

According to the approximation of the gradient magnitude defined in (2-17), the authors 

claimed that the matching distortion at position α is proportional to the gradient 

magnitude of reference block in the current frame. Another researcher [106] also 

derived this relation by different approach. 

The development of AMS-PDS is based on the above relation. Authors of the 

AMS-PDS used adaptive block-matching-scan instead of the conventional raster 

matching scan to calculate the SADp. They use the image’s gradient magnitude to 

determine the scanning direction and order. Two approaches have been developed in 

[96]. We only describe the details of the one with the best performance in the following 

paragraph. 
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The AMS-PDS, first calculates magnitudes of pixel gradient in a MB by using the 

finite difference from (2-17). Second it sums up gradient magnitudes of four blocks as 

labeled in Figure 2-15(a). Let us define the sum of gradient magnitudes of block (i) to 

be |block(i)|. Then, results of four cases, |block(i)|+|block(ii)|, |block(iii)|+|block(iv)|, 

|block(i)|+|block(iii)| and |block(ii)|+|block(iv)| are evaluated to find the maximum value. 

These results are used to decide horizontal-matching or vertical-matching scan. 

Conceptually, the AMPDS assumes that the sum of gradient magnitudes of two aligned 

blocks is maximum, the larger errors tends to line up along the same direction. It makes 

the decision according to the following rules: 1) Horizontal-matching scan if 

|block(i)|+|block(ii)| or |block(iii)|+|block(iv)| has maximum value. 2) Vertical-matching 

scan if |block(i)|+|block(iii)| or |block(ii)|+|block(iv)| has maximum value. With the 

selected scanning direction, it sorts the gradient magnitudes of rows or columns in the 

MB as illustrated in Figure 2-15(b) and (c) respectively. Finally, the SADp is 

accumulated with the sorted order. For instance, the numbers indicated in Figure 2-15(b) 

and (c) determines the order of a row or column that sum up to the SADp. 

(iv)(iii)

(ii)(i)
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(a) (b) (c) 
Figure 2-15. The AMS-PDS scheme. (a) Block division for determination of rows or columns 
scanning. (b) Horizontal matching scan by sorted row gradient magnitudes. (c) Vertical matching 
scan by sorted column gradient magnitudes. 

 
Another researchers [97] also proposed a different adaptive PDS using the same 

relation (2-19). They determined the accumulation order of pixel matching errors to 

SADp in a more detailed way. Gradient magnitudes of a set of nearby pixel pairs are 
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used to determine the accumulation order. Besides, they suggest using the Hilbert scan 

[123] to further reduce the computational complexity of the PDS. The Hilbert scan 

illustrated in Figure 2-16 preserve some of the 2-dimension spatial coherence of the 

scanned data-space on a single dimensional sequence formed by the scan. They 

calculated the gradient along the Hilbert scanned sequence and sorted the results. 

 

Figure 2-16. The Hilbert scan in a MB. 

 
In this algorithm, a total of 255 gradient magnitudes need to be sorted and a 

conventional Count Sort algorithm is used. An outline of the Count Sort is expressed 

here. For a given positive integer data set, { }10 ,...,,..., −= Nn aaaA , the algorithm counts 

the number of elements in A not exceeding an for every n. By using the element values 

to indexing an array of counter which is declared as C[m], m=0,…,max{A}, the 

counting results are kept in the array. At the end of the counting, the array, C[m], carries 

the required complete information to form the sorted A. (need a simple illustration?) 

Accumulating the matching errors adaptively to SADp is a simple and efficient 

method for improving the performance of the partial distortion search. All of these two 

algorithms provide significant progress. It must be point out that irregular memory 

access is its major disadvantage for a hardware implementation. In addition, the relation 

formulated by (2-19) is only valid in a region close enough to the best matching position 

due to the limitation of the Taylor expansion series. In a practical search window, a lot 

of candidate motion vectors are far from the best one. As a result, gradient-based 
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adaptive technique limits the improvement of the PDS. Moreover, these two algorithms 

do not suitable for coding of boundary MBs in arbitrarily shaped objects, unless 

modification is applied. 

2.2.3 Diamond Search Algorithm 
 

Lossy motion estimation development attracts much attention in the field of video 

coding, although different fast lossless algorithms have been proposed in the literature. 

The computational requirement of these lossless techniques is still not suitable for real 

time applications such as video conferencing and visual telephony sequences. 

Fortunately, it is observed that the locally changed areas usually small and restricted 

especially for sequences with low motion activities. Moreover, empirical experiences 

show that error surfaces encountered during motion estimation are often decreasing 

monotonically. These characteristics motivate the design of any fast search algorithms 

that searching only a subset of the candidate MB in a search window. 

The MPEG-4 verification model, VM14 [120] has adopted the Diamond Search 

algorithm [80] for the motion estimation. In the proposition of the Diamond Search 

(DS), the authors stated that the shape and size of search patterns jointly determine not 

only the error performance of fast block matching algorithms but also their search speed. 

The authors using several commonly used test image sequences to investigate the 

motion vector distribution probabilities based on the FSA with the mean-square 

difference (MSD) matching criterion. Their results indicated that about 53% (in large 

motion case) to 99% (in small motion case) of the motion vectors are enclosed in a 

circular support with radium of 2 pixels and obey the centrally biased motion vector 

distribution. Furthermore, the displacement of real-world video sequences could be in 

any direction but mainly in horizontal and vertical directions due to camera panning. 

Based on these two observations, the author advised using the search points within a 
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circle of radius equal to 2 pixels units to compose the search pattern. These search 

points are indicated by “×” in Figure 2-17(a) within a dotted-line circle (radius = 2). 

 

   

(a) (b) (c) 
Figure 2-17. (a) The appropriate search pattern support proposed in Diamond Search. (b) Large 
diamond search pattern (LDSP), and (c) Small diamond search pattern (SDSP) 

 
The DS algorithm employs two search patterns as illustrated in Figure 2-17(b) and 

(c) which are derived from the crosses “×” marked in Figure 2-17(a). The first pattern, 

called large diamond search pattern (LDSP), comprises of 9 checking points from which 

eight points surround the center one to compose a diamond shape. The second pattern 

consisting of 5 checking points forms a smaller diamond shape, called small diamond 

search pattern (SDSP). During the search, LDSP is repeatedly used until the step in 

which the minimum block distortion occurs at the center point. The search pattern is 

then switched from LDSP to SDSP as reaching to the final search stage. Among the five 

checking points in SDSP, the position yielding the MBD provides the motion vector of 

the best matching block. Note that a maximum overlapping region is chosen such that 

number of search points at each next step will be minimized. The SAD values of the 

search points obtained in the previous stage were stored in the memory, and thus re-

computation is not necessary. In addition, DS algorithm does not restrict the number of 

search range. However, since all the SAD values found along the search path are always 

in a decreasing order, the search path is impossible to form a closed search loop. 

Therefore, the convergence of DS algorithm is guaranteed. 
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In 2002, the authors [84] investigated the principle of the diamond shape pattern 

that its speed improvement outperforms other square-shaped search pattern. Hence, they 

proposed a Hexagon-Based Search Algorithm (HEXBS) that can achieve substantial 

speedup comparing to the DS with similar MAD performance. 

The authors found that the LDSP can arrive a far minimum position with fewer 

search points and also have lesser probability to be trapped in local minima due to its 

relatively large step size in both horizontal and vertical directions. Nevertheless, the 

authors pointed out that the advancing speed of the DS is 2 pixels/step horizontally and 

vertically but 2  diagonally as illustrated in Figure 2-18(a). It means that speedup 

performance of the DS is sensitive to motion vectors in different directions. In order to 

remedy this disadvantage, it prefers to have a search pattern approximate enough to a 

circle. Hence, each search point can be utilized with maximum efficiency. The authors 

proposed a large and small hexagonal search patterns, which depicted in Figure 2-18(b) 

and (c) respectively.  

2
2

 

2

2

  

(a) (b) (c) 
Figure 2-18. (a) Search Step size of Large diamond search pattern, (b) proposed large HEXBS 
pattern and (c) small HEXBS pattern. 

 
The DS and HEXBS have much better performance when comparing to other 

square-based searching algorithms, such as the [73, 75, 78 and 82]. Comparison 

between the DS and HEXBS shows that the speed improvement rates of HEXBS over 

DS are as high as about 40% with similar distortion performance. Because these 

algorithms assume monotonically decreasing error surface, the major disadvantage is 
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trapping in local minima. This problem often occurs in sequences with high motion 

activities and boundary MBs of video objects, in which complex error surface happens 

frequently. 

2.2.4 Motion Vector Field Adaptive Search Technique 
 

The Motion Vector Field Adaptive Search Technique (MVFAST) [85] is regarded 

as an enhancement of the DS. It can get higher search speed with better PSNR 

performance. The significant improvement of search efficiency is due to the application 

of the large and small diamond patterns adaptively. The main idea is to select an 

appropriate initial search point, while the point has high probability to close to the 

global minimum. Then it performs the searching starting from the initial point with 

different search pattern according to the motion activity. Details of the MVFAST are 

described in the following. 

Determination of local motion activity is the first step of the algorithm. A local 

motion vector field at a macroblock position is defined as the set of motion vectors in a 

region of support (ROS) of that MB.  The ROS of a MB defined in MVFAST includes 3 

neighborhood MBs as shown in Figure 2-19. 

MB1 MB0

MB2 MB3

 

Figure 2-19.  Region of support (ROS) for the current MB consists of MB1, MB2 and MB3. 

 
Let { }3,2,1, MVMVMVMVV zero=  

where  ( )0,0=zeroMV , and MVi  (i=1,…,3) is the motion vector of MBi in  the 

 ROS. 

(2-21) 
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We define sum of each component’s length of a motion vector as a MV-length. A MV-

length of a motion vector ( )iii vuMV ,=  is thus given by iiv vul
i

+= . By using MV-

lengths of the MVi, the motion activity at the current MB position is defined as follows. 

Let  { }
ivlL max=  for all MVi.  

 
; ifHigh,
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; if Low, ActivityMotion 

2
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LL
LLL
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where L1=1 and L2=2 are the greatest distance from the centre point of the DS patterns 

to any point on the small and large search pattern (Figure 2-17(b) and (c))  

respectively. 

 The second step is the selection of the search center. A search center is the initial 

search point in motion estimation. The choice of the search center depends on the local 

motion activity at the current MB position. If the motion activity is low or medium, the 

search center is the origin. Otherwise, the MV that yields the minimum SAD is chosen as 

the search center. 

With the determined motion activity, different searching is performed around the 

search center. The MVFAST uses the original diamond search if the motion activity is 

medium. On the other hand, it uses small diamond search pattern for the local search 

and the resulting motion vector is obtained if center point yields the minimum SAD. 

The MVFAST also includes an optional mode, early elimination of search. It 

terminates a local search immediately when the SAD(0,0) is less than a threshold T=512. 

The resulting motion vector is assigned as (0,0). 

Another new algorithm, named Predictive Motion Vector Field Adaptive Search 

Technique (PMVFAST) [86], which generalize the predictor (search center) selection 

and use adaptive thresholding techniques. PMVFAST is a median motion vector biased 

algorithm. The author [86] found that median vector have a much higher correlation 
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with the optimal one than the MV0 for different test sequences. A brief description of 

PMVFAST is given below. 

In additional to the set V defined in (2-21), two more motion vector predictors are 

involved in the PMVFAST. They are the median of the ROS motion vectors (MVm) and 

motion vector of the collocated MB in the reference frame (MVcol). The PMVFAST 

computes the SAD of the MVm, and the termination depends on the following criteria. 
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After that, the PMVFAST computes the SAD of MVm, MVcol, and the MVi in Set V and 

uses early elimination technique again by these criteria,  
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Then the MV associated with SADmin is used for searching with the search pattern of 

MVFAST. If MV = MV0 or an adaptive threshold, ThresB greater than 1535, the large 

diamond search pattern is applied. On the hand, if the MVi and MVcol are identical to 

each other, small diamond search is applied only once to find the best MV. Otherwise, 

the small diamond search of MVFAST is applied. Please refer to [121] for the 

definitions of the adaptive thresholds, ThresA and ThresB. 

Part 7 of the MPEG-4 [121, 122] have already accepted the MVFAST and 

PMVFAST after extensive experiments. These two algorithms attain great speedup 

performance and maintain the best PSNR when comparing to different lossy algorithms. 

The PMVFAST is faster than MVFAST at the expense of higher hardware complexity. 

Both the MVFAST and PMVFAST apply the ‘stop when good enough’ spirit, and the 

spatial and temporal correlation between neighboring motion vectors to achieve such 

significant improvement. 
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2.3 Transform coding techniques for intraframe and interframe 
 

Transform coding scheme has proven to be an effective technique for image 

compression and video coding. A transform operation can be considered as using a set 

of basis functions to synthesize an image given its corresponding transform coefficients. 

Hence, a forward transform decomposes the original data into transform coefficients for 

a given set of basis function. In terms of compression efficiency, the objective of a 

transform is to decorrelate the original signal, and this decorrelation generally results in 

the signal energy being redistributed among only a small set of transform coefficients. 

As a result, many coefficients can be discarded after a certain quantization scheme and 

for further encoding. 

The most efficient transform that can maximize energy packing capability is the 

Karhunen-Loève Transform (KLT). Unfortunately, the KLT basis functions are source- 

or image-dependent and require an estimate of the image covariance function for basis 

functions generation. These drawbacks make the KLT less than ideal for image and 

video coding. 

In the fields of image processing and video coding, the first-order Markov model 

is often used due to it simplicity for theoretical analysis. For the KLT, some researchers 

made use of the first-order Markov model to analyze the KLT. At this simplified 

situation, determination of the basis vectors of the KLT is not still data-dependent. 

Hence, this model can be used for transform comparison. 

The Discrete Cosine Transform (DCT) is the one widely used in the modern video 

standards due to its fine decorrelation and energy compaction properties. In fact, one 

can show that, for the case of the first-order Markov source, the DCT is asymptotically 

equivalent to KLT as the adjacent element correlation coefficient tends to unity 

[112,113]. 
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The analytical results show that the DCT is near optimal for intraframe coding. 

However, modern video codecs apply the DCT to frames in both intra- and inter-mode 

coding. It is well known that, after motion-compensation, the correlation between 

adjacent prediction errors is less than those in the original image [114]. This observation 

motivates different researchers to consider the role of the DCT in inter-mode coding. 

For this reason, using the simple first-order Markov model to describe the statistical 

properties of prediction errors is inaccurate and insufficient. Ref. [115] proposes a 

compound covariance model for an analysis of the motion-compensated frame 

difference. In [116], another compound covariance model was introduced to fit the 

empirical covariance sequence.  

The above issues shall be discussed with the following organization. First-order 

Markov model plays an important role for still image and video sequence analysis. This 

model is included in Section 2.3.1. Section 2.3.2 review the basic concept of the 

optimum transform for coding, KLT. The relation between the KLT and the DCT will 

also be discussed. Section 2.3.3 expresses the transform coding scheme of modern video 

coding standards. This coding scheme involves the DCT for signal transform. It can be 

shown that this scheme is designed extremely suitable for intraframe coding. Utilizing 

the DCT for both intra- and inter-mode coding in the video codec is supported 

empirically. Lack of theoretical basis motivates the research in this problem. The 

analytical works for this purpose are illustrated in Section 2.3.4. Moreover, Section 

2.3.4 also gives the conclusions drawn by these analytical models.  

2.3.1 First order Markov model for Image Processing 
 

The interdependence of data-source lies at the heart of any statistical data 

compression scheme, and thus the correlation properties of images are of considerable 

importance in the development of transform processing techniques. 
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By regarding a one-dimensional frame as a set of random variable denoted as, fn, 

where n is index or position of a frame element, we may express its autocovariance 

matrix as, 
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(2-22) 

where 

 ( )( )[ ]nnmm ffffE
mn

−−=2σ  

 mf  is the mean of random variable, fm 

 

(2-23) 

 

If we assume the data is wide-sense stationary (WSS), the mean and variance can 

be treated as constant and the covariance is a function of relative displacement only. 

Hence, we do not need to consider the direction of displacement, d, between two 

elements in (2-23), i.e. 22
dmn σσ =  where d=m-n. Another important approximation for 

an image field is that we frequently assume the value of 2
dσ  is related to the correlation 

coefficient at distance one by d
d 1
2 ρσ ∝  and ρρ =1 .  After normalization, we may 

rewrite (2-22) to 
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(2-24) 
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It is the correlation (normalized covariance) matrix of the stationary first-order Markov 

process.  

2.3.2 The Karhunen-Loève Transform 
 

The Karhunen-Loève Transform is a decorrelating transform for wide sense 

stationary processes when the second order statistics (covariances) are known. For the 

random variables Fn, its autocovariance matrix defined in (2-22) is symmetric and 

nonnegative definite. All of its eigenvalues are greater or equal to zero. Let T be a 

NN × transform matrix which is unitary. The transformed F is given by Y=TF. The 

autocovariance of Y is 

 ( ) [ ] [ ] [ ]
( )TFTCOV

TFFTETFTFEYYEYCOV
=

=′′=′= '  

where “’ ” is stand for a transpose. 

(2-25) 

For efficient compression, we would like to obtain uncorrelated transform coefficients, 

such that their covariance has to be zero. That means the COV(Y) is diagonal after an 

optimum transform. Let vn be the eigenvector of COV(F) corresponding to the 

eigenvalue λn. With the following ordering of the λn, 

 Nλλλ ≥≥≥ L21 .  

We obtain a complete set of orthonormal eigenvectors. These eigenvectors form the 

rows of the transform matrix required for the KLT. 

 [ ]′= NvvvT ,,, 21 L  (2-26) 

 To show that the KLT has the optimum energy packing capability (i.e. minimum mean 

square error performance can be obtained by retain only most important M out of the N 

transform coefficients), we may represent F by using only M preceding basis vectors 

instead of totally N. By minimizing the resulting error energy, one will find that the 

KLT achieves the optimal performance. Detailed derivation please refers to [112, 113]. 
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The above description apparently shows that the KLT is source-dependent. This 

problem makes it not ideal for compression usage. For theoretical analysis, researchers 

therefore take the alternative approach and employ the first-order Markov model. In this 

case, the solutions of these basis vectors are expressed involving the eigenvalues, 

λn(ρ,wn), where wm are real positive roots of a transcendental equation. Consequently, it 

can be illustrated that the DCT is asymptotically equivalent to KLT for the Markov 

model as ρ tends to unity [112, 113]. 

2.3.3 Discrete Cosine Transform for Video Coding 
 

The separable 2-dimensional Discrete Cosine Transform used in the industrial 

video standard is defined as, 
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where i, j are spatial coordinates in a block. 
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(2-27) 

The most useful property of DCT coded blocks is that the coefficients can be 

coarsely quantized without seriously affecting the quality of the image that results from 

an inverse DCT of the quantized coefficients. In MPEG standards, the lowest spatial 

frequency coefficients, which generally possess the greatest energy, are quantized most 

finely, and the highest spatial frequency coefficients are quantized coarsely. The 

quantized coefficients are stored in a register according to a predefined scanning order. 

MPEG-4 defines a zigzag scan and other two alternative scans which are depicted in 

Figure 2-20. 
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(a) (b) (c) 

Figure 2-20. (a) Zigzag scan, (b) Alternate-Horizontal scan, and (c) Alternate-Vertical scan. 

 
The scanned coefficients are then entropy coded. It is well know that natural images are 

dominated by low frequency components. These scanning orders favor the coding of 

natural images. Because the quantized high frequency coefficients often equal zero, and 

thus this long tailing zeros do not need to be coded. 

The above coding scheme is well designed for intraframe coding. Some 

researchers claimed that most of the performance gain of a coding scheme is obtained 

by carefully designing quantizers that are tailored to the transform structure [124]. 

Nevertheless, this benefit is not obvious for coding of inter-mode. First, the lower 

correlation between adjacent prediction errors predicted that among all famous 

orthogonal transform, such as the Discrete Sine Transform (DST), Discrete Fourier 

Transform (DFT) and DCT etc, the DCT may not again be the one closest to the KLT. 

Second, it is observed that block-based compensation typically results in a peaky 

distribution of the errors, with high residual concentration at block edges and image 

edges [117, 118]. It leads to a scattering of the DCT coefficients and makes the 

scanning order inappropriate. However, experimental results support using the DCT for 

both intra- and inter-mode coding. It is because the difference between other transform 

and the DCT is so marginal for the prediction error coding [115, 116]. It would be 

simpler to employ a single transform in a practical coder. 
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2.3.4 Theoretical analysis about the using of DCT for inter-mode 
coding 

 
Analytical investigation of transform coding algorithms requires a simple but 

sufficiently accurate signal-source description for analytical treatment and to reflect the 

practical signal characteristics. The first-order Markov-process satisfies these criteria, 

and thus is widely used for still image analysis. However, statistical behaviors of the 

motion-compensated errors is very different from that of natural image. The results 

predicted from the simple Markov model did not persuade other researchers [115] of its 

accuracy. Beside, they are unsatisfying the lack of theoretical basis about the suitability 

of utilizing the DCT for encoding the prediction error. They proposed a compound 

covariance model for the motion-compensated frame difference and demonstrated that 

the DCT performs nearly optimally as the intraframe coding. A difference covariance 

model, which takes overlapped block motion compensation into account, was derived in 

[116] empirically. 

To derive the compound covariance model [115], the authors started from the 

definition of autocorrelation function. For the motion-compensated prediction error, its 

autocorrelation function is given by 
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where ( )⋅⋅+ ,1tf  is an incoming frame. 

 ( )⋅⋅+ ,ˆ
1tf  is a predicted frame with motion vector (u,v). 

(2-28) 

Due to the inaccuracy of motion estimation, by defining the true motion vector as 

( )ji ∆∆ , , error of the quantization of the motion vector to an integer pixel unit is known 

as 

 ( ) ( )vjuiji −∆+∆= ,,δδ   
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 The author assumed that δi and δj is a pair of independent identical random variables 

with a uniform distribution in the interval [-a, a]. The parameter a represents inaccuracy 

of the motion estimation, with a typical value of 0.5. 

 Hence, it can be shown [115] that the variance-normalized autocorrelation 

function, Ce(I,J), of the motion-compensated frame difference (MCFD) can be 

expressed as 
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when 0< a ≤ I,J 

where ρ is correlation coefficient 

(2-29) 

To simplify the problem, the author further assumed that the autocorrelation function 

for the MCFD is separable. For instance, along the x-axis, the autocorrelation function is 

derived as 
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(2-31) 

The value of function A(a, ρ) is very close to 0.5 over a wide range of values by a 

and ρ. The 2-dimensional separable autocorrelation function for the MCFD is thus given 

by 
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The aim of transform coding is to decorrelate the signals and thereby compress 

the bitrate further. The heart of the KLT is the autocorrelation function of a data-source. 

The authors used the proposed model to investigate transform gains of different 

orthogonal transform coding, including the KLT, DCT, Discrete Fourier Transform 

(DFT) and Discrete Sine Transform (DST) for the MCFD signals. Considering the 

MCFD signals in a single direction with a ≤ 1, its normalized autocorrelation matrix in 

Toeplitz form is shown as below. 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) 





















−−−

−
−
−

=

1321

3112
2111
1211

)(

L

MOMMM

L

L

L

NCNCNC

NCCC
NCCC
NCCC

ICOV

eee

eee

eee

eee

 

(2-33) 

Replacing Ce(I) by ρIA(a, ρ) as derived in (2-30), we have 
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(2-34) 

(2-34) was used to evaluate the transform gains of the four transform coding. The 

results proved that the DCT appears to be closest to the KLT. The difference between 

the DCT and other transforms are only marginal. In fact, the COV(I) in (2-34) can be 

separated into two parts, 
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where [I] is an identity matrix 

(2-35) 
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The first matrix Re1 in (2-35) represents the autocorrelation matrix of a first-order 

Markov process e1 with the correlation coefficient ρ. The second one is a diagonal 

matrix. It reflects that the second component e2 is white noise with a flat power 

spectrum. When we employ the KLT to (2-34), we have 
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Consequently, the author concluded that the KLT for the first-order Markov model is 

also the KLT for COV in (2-34) and the DCT remains a near optimal transform for 

MCFD signal. 

However, other researchers [116] studied the covariance of inter-coded blocks of 

four MPEG test sequences. According to their experimental results, they claimed that 

the covariance model (2-34) do not appropriately fit the empirical covariance results. 

Therefore, they proposed two empirical models, which are autoregressive covariance 

models and a compound covariance model, to fit their requirements. 

Autoregressive (AR) process may be used as a parametric description of a random 

signal. An p-th order autoregressive process, AR(p), is defined by the following 

stochastic difference equation 

 I
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m
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where wI denotes a write noise process with zero mean and variance 2
wσ . 

(2-36) 

An AR(1) process represents the first-order Markov process by the difference equation 

 )(11 IXas II δ=+ −  

where a1 = - ρ. 

 δ(I) is a delta function. 

(2-37) 

The covariance Cs (I) of a zero-mean WSS process XI satisfies the Yule-Walker 

equations 
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The authors proposed an autoregressive covariance models with p ≤ 4 using (2-38). The 

corresponding parameter am for (2-38) are listed in the Table 2-1. 

Table 2-1. AR(p) models for parametric description of the empirical covariance of MCFD [116]. 

p a1 a2 a3 a4 

1 -0.4683 - - - 

2 -0.5080 0.0848 - - 

3 -0.5205 0.1595 -0.1471 - 

4 -0.5217 0.1608 -0.1514 0.0081 

 

They also pointed out that the compound covariance model (2-34) is equivalent to 

the equation, 

 ( ) ( ) ( )IAAIC I
e δρ −+= 1  ;  I ≥ 0 

where A= A(a, ρ) ≈ 0.5, with a and ρ is equal to 0.5 and 0.95 respectively. 

(2-39) 

However, this model deviates significantly from their experimental results. Hence, they 

proposed another compound covariance model 

 ( ) ( ) 2

10 1 II
e ccIC ρρ −+=  

where c , ρ0  and  ρ1 are model parameters. 

(2-40) 

The model parameters, c=0.17, ρ0=0.91 and ρ1=0.38, were chosen to fit the empirical 

covariance in the l1-norm sense. 

This compound model was then used for transform gain comparison. For a block 

size equal to 8, the coding gain of the DST and KLT is negligible comparing to that of 

the DCT. This negligible loss and the superiority of the DCT for intraframe transform 

coding explain the suitability of the DCT for both intra- and inter-mode transform 

coding. With respect to the energy compaction performance for nonzero-mean signals, a 

further advantage of the DCT compared to the DST is that the DC component of the 
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signal is compactly represented by the first DCT coefficient whereas the DC component 

is distributed over the even indexed DST coefficients. 

The close fit to empirical results and simplicity make the compound model (2-40) 

very suitable for the analysis of block-based MCFD signal. On the other hand, this 

model is pure empirical and the physical mean behind the model is still mystery to us. 

The using of this model for other analytical purposes is so limited. 
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Chapter 3. Fast motion estimation of arbitrarily shaped 
video objects in MPEG-4 

 
 

3.1 Introduction 
 

MPEG-4 is an international standard which provides a coding scheme for 

arbitrarily shaped video objects (VOs) [5, 120]. Each VO is composed of its temporal 

instances, video object planes (VOPs), which is the central concept of MPEG-4 video. 

Block-based motion estimation is also used for exploiting temporal redundancies in 

arbitrarily shaped video objects, which is computationally the most demanding part 

within the MPEG-4 standard. The support of arbitrarily shaped video objects makes 

most of the existing fast motion estimation algorithms unsuitable. 

 In the past, much work such as the Motion Vector Field Adaptive Search 

Technique (MVFAST) in the Part 7 of MPEG-4 [122], the Diamond Search (DS) [80] 

and many other searching techniques [8, 69, 73-108] were reported for reducing the 

complexity of motion estimation. It is known that motion estimation remains as a very 

computationally intensive step in MPEG-4 arbitrarily shaped VOs encoding [104, 127]. 

Hence, It is highly desirable to reduce the computational requirement of motion 

estimation. In MPEG-4, motion estimation is performed on two kinds of macroblocks: 

the boundary macroblock (MB) and the opaque MB. Since the motion activities in 

opaque MBs are highly correlated with the neighboring boundary MBs, a new priority 

search algorithm (PSA) for motion estimation is proposed in this chapter, which 

performs motion estimation on all boundary macroblocks first in contrast to the 

conventional raster-scanning approach. This search strategy works well if the motion 

vectors in the boundary macroblocks truly represent the moving video object. 

Consequently, the full search algorithm (FSA) is applied to the boundary MB in order to 
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ensure its accuracy. However, the computational burden of motion estimation of the 

boundary MBs must be reduced. Fast search algorithms proposed in the past tend to 

reduce the amount of computation by limiting the number of locations to be searched. 

Nearly all of these algorithms assume that the distortion function increases 

monotonically as the search location moves away from the global minimum. 

Unfortunately, this is usually not true in boundary MBs. We can reasonably assume that 

it is monotonic in a small neighborhood around the global minimum. Consequently, one 

simple strategy, but perhaps the most efficient and reliable one, is to place the checking 

point as close as possible to the global minimum. In this charter, we also propose a fast 

search algorithm, which incorporates the binary alpha-plane to predict accurately the 

motion vectors of boundary MBs such that these motion vectors can be used in the PSA. 

Experimental results show that, when compared to conventional methods, our approach 

requires low computational complexity and provides significant improvement in terms 

of accuracy in motion-compensated video object planes. The proposed algorithm 

incorporates the binary alpha-plane to accurately predict the motion vectors of boundary 

MBs such that the motion-compensated VOPs are tied more closely to the video object. 

Besides, these accurate motion vectors can be used to develop an efficient motion 

estimation algorithm for the remaining opaque MB. 

In Section 3.2, the characteristics of different types of macroblocks in the 

bounding box of a VOP are studied. According to these characteristics, a new priority 

search algorithm (PSA) is introduced. This section also shows that the accuracy of the 

motion vectors of boundary macroblocks is critical in the performance of the proposed 

PSA. In section 3.3, we present an in-depth study of the correlation between the SAD 

error surface and shape information of alpha-plane, and then formulate a reliable search 

algorithm for boundary macroblock. Section 3.4 describes the details of the proposed 
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PSA with the new search algorithm for boundary macroblock. Experimental results are 

then presented in Section 3.5. Finally a conclusion is drawn in Section 3.6. 

 

3.2 Priority Search Algorithm (PSA) on Arbitrarily Shaped 
Video Objects 

 
A VOP can be fully described by texture variations and shape representation, as 

shown in Figure 3-1. The shape information is represented as a binary alpha-plane. The 

alpha-plane contains the information to identify pixels which are inside an object (value 

of alpha-plane = 1), and pixels which are outside the object (value of alpha-plane = 0), 

as depicted in Figure 3-1(b). For efficient block motion estimation, it is important to 

know the characteristics of different types of macroblocks. MPEG-4 defines an 

arbitrarily shaped VOP by means of a bounding box, in which details of the definition 

of a bounding box have been introduced in Charter 2, Section 2.1.2.1. In Figure 3-1, 

three types of macroblocks exist in the bounding box of the VOP. Their corresponding 

motion search strategies are summarized as follows. 

Transparent
macroblock

Boundary
macroblock

Opaque
macroblock

Bounding
Box

d
c

f

a

e

b

 
(a) 
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(b) 

Figure 3-1. Representation of the VOP. (a) Image of original “Bream” VOP. (b) Binary alpha-plane 
of “Bream” VOP. 

 
• Transparent macroblocks: They are not coded and recovered at the decoder side 

from the shape information. Thus no motion search is required. 

• Boundary macroblocks: This type of MB partially includes object pixels, and 

polygon matching is employed to adopt arbitrarily shaped moving video objects. 

The human visual system is very sensitive to poor motion-compensated 

prediction along the moving contours of video objects, which are located on 

boundary macroblocks. A correct motion estimation of boundary macroblocks is 

critical to the development of an efficient motion estimation algorithm for 

arbitrarily shaped moving video objects. 

• Opaque macroblocks: The opaque MB is coded using the conventional block 

matching motion estimation algorithm. Usually the motion activities within the 

video object are consistent; hence the motion activities in these MBs are highly 

correlated with the neighboring boundary MBs provided that the motion vectors 

in the boundary MBs truly represent the moving video object. For example, the 

motion vector of the opaque macroblock, MBe, in Figure 3-1 is correlated highly 

with those of the boundary macroblocks, MBa, MBb, MBc, MBd and MBf. Thus, 

the motion vectors of the boundary MBs can play a significant role in motion 

estimation for the opaque MB. 
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The characteristics of different types of MBs described above inspired to develop 

a new priority search algorithm (PSA) which performs motion estimation on all 

boundary MBs first within the bounding box of a VOP in contrast to the conventional 

raster-scanning approach (scanning MBs in the order of top-to-bottom and left-to-right). 

The idea behind the new search strategy is that the opaque MBs which are inside of 

moving video objects are correlated highly with the moving boundary MBs. For each 

opaque MB, if all motion vectors of its neighboring boundary MBs have already been 

computed, the current opaque MB can take the best-matched one among all its 

neighboring motion vectors as the initial centre and employ a conventional fast block 

matching algorithm such as the Diamond Search (DS) [80] to compute its motion vector 

for a reduction of the computational complexity. It is likely that the global minimum 

can be found by a local search such as using the DS if the initial centre is close enough 

to the global minimum. Hence, the computations for finding the motion vectors of 

opaque MBs will be postponed until all motion vectors of the boundary MBs are 

available. The advantage of this new search strategy is that it avoids unnecessary 

computations of the opaque MB so that the motion search can be conducted more 

efficiently. 

In order to ensure the accuracy of the motion vectors of the boundary MBs, a full 

search algorithm (FSA) which evaluates the SAD at all possible locations of the search 

window is employed. By using the accurate motion vectors of the boundary MBs, the 

motion vectors of the opaque MBs can be found by the DS. This PSA produces smaller 

motion compensation errors, and has a lower computational complexity as compared 

with the traditional raster-scanning motion estimation. Figure 3-2 depicts the 

performance of the PSA in encoding the “Bream” video object. The figure plots the 

mean square errors (MSE) between the original VOP and the motion-compensated VOP 

of the PSA with the FSA performing on boundary macroblocks and the DS on opaque 
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MBs using the best-matched motion vector among all its neighboring motion vectors as 

the initial centre (PSA(FSA+DS)) and compares the results with those of the full search 

algorithm (FSA). The results show that the MSE performance of the PSA(FSA+DS) is 

very close to the FSA. Details on the simulation environment are described in Section 

3.5. 
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Figure 3-2. MSE performance of PSA for “Bream” video object. 

  
As mentioned above, the accuracy of the motion information of boundary 

macroblocks is critical to PSA(FSA+DS). Consequently, the FSA is used to ensure its 

accuracy. Overall speaking, over 90% of the total search points required that the whole 

motion estimation process are performed for the boundary macroblocks. In order to 

increase the flexibility and practicability of the PSA(FSA+DS), the computational 

burden of the motion estimation of the boundary macroblocks must be reduced. In 

Figure 3-2, we also analyze the MSE performance of the PSA by using the DS for both 

the boundary macroblocks and the opaque macroblocks (PSA(DS+DS)), in which the 
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best-matched motion vector among all of its neighboring motion vectors obtained by the 

DS act as an initial centre for performing the DS on opaque MBs. Figure 3-2 shows that 

there is a big prediction error in PSA(DS+DS) as compared with that of the FSA. This is 

because the probability of encountering the local minimum problem is more often in the 

boundary MB. This phenomenon could achieve our desire to develop a fast and efficient 

search algorithm for the boundary MB, which is described in the following section. 

 

3.3 Binary Alpha-plane Assisted Search algorithm (BAAS) of 
the Boundary Macroblock 

 
In traditional block based motion estimations, the error measure criterion such as 

the sum of absolute differences (SAD) for block matching motion estimation is 

calculated using all pixels. This conventional block matching approach is applied to the 

opaque MB. But, on the boundary MB, the binary alpha-plane for the VOP is used to 

exclude the pixels of the MB that are outside of the VOP. This forms a polygon 

matching instead of block matching for the motion estimation of the boundary MB. The 

SAD matching criterion used in the boundary MBs is a measure of the error between a 

MB of the present frame and a MB with displacement (u,v) of the previous frame with a 

block size of N×N pixels, and is calculated only on the pixels inside the object, and can 

be written as 
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where ft(i,j) is the intensity of the pixel at location (i,j) within the macroblock in 

the t th  frame. 

(3-1) 

 

From (3-1), the maximum motion in the vertical and horizontal directions is ±D. 

There are thus (2D+1)2 candidates in total to be checked if the full search algorithm is 
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used, each corresponding to a checking point in the search window. The SAD values 

that result from these checking points form an error surface. 

The statistical behavior of an error surface has a significant impact on the 

performance of a fast search algorithm. For the surface of the boundary MB as shown in 

Figure 3-3(a), it contains a large number of local minima due to the repetitive padding 

[52] of an arbitrarily shaped video object. Almost all conventional fast algorithms have 

assumed explicitly or implicitly [8] that the error surface is unimodal over the search 

window. As a consequence, it is unlikely that conventional fast search algorithms would 

converge to the global minimum when performing motion estimations on the boundary 

MB. In other words, the search would easily be trapped into a local minimum. 

Without loss of generality, we employ the Diamond Search algorithm (DS) as an 

example to illustrate the problem of conventional fast search algorithms on the 

boundary macroblock. Let us recall that, the original diamond pattern as shown in 

Figure 2-17(b) is a basic searching pattern of the DS. It consists of nine candidate search 

points. For each of the nine candidate search points, the SAD is computed. If the 

minimum SAD is found at the centre of the diamond pattern, a shrunk diamond pattern 

as shown in Figure 2-17(c) is used with the same centre and the candidate point that 

gives the lowest SAD is chosen as the estimated motion vector. Otherwise, the minimum 

SAD point in the previous search step could be regarded as a new centre of the original 

diamond pattern for a next search step. Of course, the DS relies on the assumption that 

the SAD measure decreases monotonically as the search point moves closer to the 

optimal point. It can easily be trapped into the local minimum in cases where the error 

surface looks like the one in Figure 3-3(a). 
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Figure 3-3(a) 

 
Figure 3-3 (b) 

Figure 3-3. The relationship between (a) the error surface and (b) the proposed BAMS surface of 
the boundary macroblock. 
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Figure 3-4 (a) 
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Figure 3-4 (b) 
Figure 3-4. A nonumimodal error surface tested by a checking block. (a) The checking block starts 
at the origin and a false checking results, hence a local minimum is found. (b) If the initial checking 
block is close enough to the global minimum, the global minimum can be successfully found. 

 
Let us use Figure 3-4 to give a clearer account of this phenomenon. Figure 3-4(a) 

shows a nonunimodal surface of a boundary macroblock. The initial step of the DS 

starts at the origin of the error surface, the centre point in the checking block wins. It 

stops the search process and a local minimum will be found. However, it is seen that the 

global minimum is located at the far side of the winning point and the SAD value of the 

winning point is significantly larger than that of the global minimum. This will affect 

the accuracy of the motion vector of the boundary macroblock. 

Despite the error surface exhibiting uncertainties in a large spatial scale, we can 

reasonably assume that it is monotonic in a small neighborhood around the global 

minimum. In the existence of local minima, one simple strategy, but perhaps the most 

efficient and reliable, is to place the starting diamond pattern as close as possible to the 

global minimum, as depicted in Figure 3-4(b). If the initial diamond pattern is close 

enough to the global minimum, it will likely be able to find it through a local search. 

One possible solution to prevent the problem of trapping to a local minimum is to test 

more starting points which spread across the search window.  
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Figure 3-5. Regular SPP 

 
Figure 3-5 shows one of the starting point patterns (SPP) in which the starting points 

(SP) are distributed evenly over the search window. However, it is inefficient to use so 

many of the starting points in this regular SPP. It is obvious that if the number of 

starting points is reduced as much as possible and the starting point is as close as 

possible to the true motion vector, the search algorithm becomes efficient. Hence, we 

have to adjust the regular SPP so that the limited SPs have a higher chance of catching 

the global minimum. In this study, we try to employ the binary alpha-plane of an 

arbitrarily shaped video object for the adjustment of the regular SPP. It generally 

includes a matching process for tracking a polygon shape in the separated VOPs and we 

will refer it to as a Binary Alpha-plane Assisted Search algorithm (BAAS). The 

proposed algorithm first estimates an initial probability of being the global minimum for 

each possible matching pair between the current boundary macroblock and the 

macroblock at the regular SPP which is updated based on the shape information. In the 

following, we highlight the main steps of our BAAS. 

• Step 1: Adjustment of the regular SPP 

In order to evaluate the similarity of arbitrary shapes between two macroblocks, 

we define a cost function which should have a small value or be zero only if the two 
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macroblocks have identical shapes. A binary alpha-plane matching score (BAMS) is 

introduced to measure the shape similarity between a boundary macroblock of the 

present VOP and a macroblock with displacement (u,v) of the previous VOP with a 

block size of N×N pixels. 

 ∑∑
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where BAn(⋅,⋅) and BAn-1(⋅,⋅) are the values of the binary alpha-plane of the current 

boundary macroblock at the tth VOP and the reference macroblock at the (t-1)th VOP 

that are to be compared respectively, and ⊗ denotes the exclusive-or operation.  

The adjustment of the regular SPP is based on the measure of how high the 

probability of it being the global minimum of each possible matching pair between the 

current target MB and the MB at the regular SPP. The BAMS is used to determine if the 

polygon shapes in the two boundary macroblocks are similar. Hence, the macroblock in 

the regular SPP has a high probability of being closest to the global minimum. Figure 

3-3 plots the error surfaces and the BAMS surfaces of a boundary MB. We have found 

that the correlation between these two surfaces is very high and it further ensures that 

the motion search algorithm can be guided by the BAMS. Thus a macroblock in the 

regular SPP whose BAMS is less than a pre-defined threshold, TBAMS, is good enough to 

be an interested SP. In other words, this SP is reserved in the updated SPP. In order to 

normalize thresholding, the TBAMS must be proportional to the number of opaque pixels 

of the current macroblock. That is, 
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where α is a proportional constant. 

(3-3) 

 

• Step 2: The formation of the final SPP 
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In order to reduce further the computational complexity, the updated SPP can be 

refined by using the image intensity. A simple way is to employ the SAD polygon 

matching criterion. Selection of the best-matched SP as compared to other SPs in the 

updated SPP is based upon the SAD values, and it is defined as 

 ated_SPPmin_in_updSADSADG kk −=  (3-4) 

where k means to cover all selected SPs of the updated SPP, except the SP with the 

smallest value of SAD in the updated SPP, SADmin_in_updated_SPP is the smallest value in 

the updated SPP and  SADk is the value of the SAD from the SP in the updated SPP. 

Two major criteria are used to form the final SPP. First, the SP with the smallest value 

must be reserved as the final SPP. Second, the value of Gk is used to establish the final 

SPP. If the value of Gk is small enough (smaller than β × SADmin_in_updated_SPP, where β is 

another constant of proportionality), it implies that the probability of this SP being the 

global minimum is high. In other words, this SP must be included in the final SPP; 

otherwise, this SP is eliminated from the updated SPP. After examining all the SPs in 

the updated SPP, the final SPP is formed. 

• Step 3: Motion vector estimation using the final SSP as the starting point 

After the establishment of the final SPP, each SP in the final SPP serves as the 

starting point for one of the conventional fast searching algorithms, such as the DS. 

Finally, a search is conducted to find the minimum value of the SAD. 

 

3.4 The proposed PSA with the BAAS performing on the 
Boundary Macroblock, PSA(BAAS+DS) 

 
In this section, a fast motion estimation algorithm for arbitrarily shaped video 

objects is described and this new algorithm employs both PSA and BAAS as mentioned 

above. The proposed algorithm is mainly divided into two stages. The first stage 

involves a fast motion estimation of boundary MBs with the help of the alpha-plane 
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(BAAS) while the second stage estimates the motion of opaque macroblocks through 

motion vectors of its neighboring boundary MBs (PSA). In other words, the boundary 

MBs employ the BAAS to ensure accuracy of their motion vectors. While the motion 

vectors of opaque MBs can be found by the DS through the help of the accurate motion 

vectors of boundary macroblocks. Some details of the proposed algorithm are given 

below. 

1. To estimate the motion vectors of boundary macroblocks: By using the binary 

alpha-plane, the macroblocks of a VOP can be easily classified into three types: 

transparent macroblocks, boundary macroblocks, and opaque macroblocks. Only 

motion estimation of the boundary macroblocks is handled in this stage by using 

the BAAS as mentioned in Section 3.3, and motion estimation of opaque 

macroblocks is postponed to the second stage. 

2. To estimate the motion vectors of opaque macroblocks: The opaque MBs inside a 

video object correlate highly with the neighboring MBs. Thus, if there are 

neighboring MBs for which the motion vectors have already been computed, the 

current MB will select one of these motion vectors as the initial centre of the DS. 

Besides, the zero motion vector, (0,0) is also considered as an initial candidate 

centre. It can exploit the center-biased motion-vector distribution characteristics 

of real-world video sequences and avoid incorrect predictions if all neighboring 

MB motion vectors fail. In the following, the process of motion estimation of the 

remaining opaque macroblocks is described as shown below. 

a) Determination of the initial search centre:  Since the correlation between 

the opaque macroblock and its corresponding macroblocks is high in 

general as shown in Figure 3-6, the initial search centre of the opaque 

macroblock is the best-matched motion vector among all of its 

neighbouring macroblocks and it is given by 
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 ),(minarg ),( vuSADSC vuinit ====  

where (u,v) ∈ {estimated motion vectors of neighbouring macroblocks, (0,0)} 

(3-5) 

 

b) SC  is then regarded as the initial search centre to perform the DS. 

 
 
Figure 3-6. Example of high correlation between the motion vectors of opaque macroblock and 
those of the boundary macroblocks. 

 

3.5 Simulation Results 
 

3.5.1 Quality comparison 
 

A series of computer simulations have been conducted to evaluate the 

performance of the proposed algorithm. It is obvious that quality of the provided binary 

alpha-plane of a video object seriously affects our proposed BAAS algorithm. Hence, 

we generally look for sequences with available binary alpha planes for video objects, 

such as the “Goldfish”, “Children”, “Bream”, etc for our experimental work. However, 

we have also included a segmented video object in the “Stefan” sequence in our 

simulation to test this kind of situation. Note that the sequence “Stefan” contains some 

fast moving objects and fast camera motion. A moving object of the “Stefan” sequence 

is depicted in Figure 3-7 and the alpha plane of which was obtained from private 

communications. In our simulation, the maximum allowable displacement in both 
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horizontal and vertical directions is 15 with a block size of 16×16. The mean square 

error (MSE) is used to compare the performance of the proposed algorithm with some 

related techniques reported in the literature. For our proposed PSA(BAAS+DS) 

algorithm, α and β  were set to 0.3 and 0.25, respectively. Table 3-1 lists the 

experimental results to determine the values of α and β. The case with α = 0.3 and β = 

0.5 is the optimal setting that obtains the minimum MSE result for our tested video 

objects. In order to minimize the required computational load, we have decreased α and 

β to 0.25 separately. It is because decreasing α and β can reduce the number of 

interested starting points (SP) in the regular starting point patterns (SPP). Moreover, we 

can use a bitwise shift operation to replace the floating-point multiplication of 0.25. We 

have found that if α = 0.3 and β = 0.25, it becomes the best setting to trade off the 

required number of operators and MSE performance. 

 
(a) VOP at Frame 87 

 
(b) VOP at Frame 88 

Figure 3-7. Examples of the video object plane in segmented "Stefan". 
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Table 3-1. Experimental results to determine α and β. 

 Number of Addition Number of Absolute operation MSE 
α = 0.3 ; β = 0.5 

Bream 3174676 1126172 173.1 
Children 3733316 1531701 101.6 
Goldfish 8874788 3555965 116.5 

α = 0.25 ; β = 0.5 
Bream 2991453 1025084 173.7 

Children 3547168 1431670 101.8 
Goldfish 8424077 3312306 117.5 

α = 0.3 ; β = 0.25 
Bream 2620971 839357 173.1 

Children 2982690 1148788 101.9 
Goldfish 7159290 2678477 116.8 

 
 
Figure 3-8 compares the results of the MSE of the motion-compensated video 

object of the proposed PSA(BAAS+DS) algorithm together with the results of other 

approaches, including the FSA, the DS,  the PSA(FSA+DS), and the PSA(DS+DS). It 

shows that there is a big increment in prediction error for the PSA(DS+DS) and the 

conventional DS as compared to that of the FSA. This is because the probability of 

having complex error surfaces as shown in Figure 3-3(a) is large for boundary 

macroblocks with fast moving objects, especially after the transparent pixels in a 

bounding box are padded using the repetitive padding process defined in MPEG-4. This 

situation causes an unreliable stop in the search for using the conventional DS, and it 

implies that these kinds of algorithms can be trapped in a local minimum easily. 

However, our BAAS can resolve this problem by placing one of the starting points 

closest to the global minimum which is obtained by making use of the binary alpha-

plane. For the video sequence, “Stefan”, the object is not perfectly represented by its 

segment mask (Figure 3-7). However, shape correlation between masks of successive 

VOPs can provide useful shape information for our BAAS to assist the boundary 

macroblock motion estimation in a VOP. The evidence is shown in Figure 3-9 and 

Table 3-2. Figure 3-9 compares the performance of different search algorithms 
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including the BAAS, DS and FSA when they are applied to process boundary 

macroblocks only. Table 3-2 summarizes the average peak signal to noise ratios (PSNR) 

and Mean Square Errors (MSE) of different kinds of macroblocks with different search 

algorithms. The proposed BAAS is significantly better than that of the DS, which 

provides about 0.5dB PSNR improvement in the boundary macroblock. Moreover, 

Figure 3-10 compares the PSNR performance of the algorithms for boundary 

macroblocks of Video objects with high motion activity, such as “Bream” and 

“Segmented Stefan”. We can find that up to about 4dB PSNR improvement can be 

achieved by the BAAS, while the human visual system is very sensitive to the defeat at 

object edge regions.  

 
Table 3-2. Comparison of average PSNR and MSE for various algorithms per VOP and in 
differnent types of macroblock. 

Algorithms PSNR (db) 
of VOP 

MSE of 
VOP 

PSNR (dB) of 
boundary 

macroblock 

MSE of 
boundary 

maccroblock 

PSNR (dB) 
of opaque 

macroblock 

MSE of 
opaque 

macroblock 
Children (Average Num. of boundary MB : Average Num. of Opaque MB = 74 : 20) 

FSA 26.0 169.9 27.0 133.1 23.5 306.9 
DS 25.6 189.9 26.6 151.8 23.3 330.7 

PSA(BAAS+DS) 25.9 173.1 27.0 136.1 23.5 310.0 
Bream (Average Num. of boundary MB :Average  Num. of Opaque MB = 54 :78) 

FSA 28.7 98.5 32.3 41.8 27.4 130.0 
DS 27.6 128.4 31.5 53.0 26.3 170.7 

PSA(BAAS+DS) 28.6 101.9 32.0 44.7 27.3 133.8 
Goldfish (Average Num. of boundary MB : Average Num. of Opaque MB = 141 : 106) 

FSA 28.1 106.2 27.3 125.2 29.5 78.9 
DS 27.1 132.3 26.3 159.9 28.8 93.6 

PSA(BAAS+DS) 27.7 116.8 26.9 137.8 29.1 85.4 
Segmented Stefan(Average Num. of boundary MB : Average Num. of Opaque MB = 28 :6) 

FSA 22.6 381.6 22.9 358.7 21.8 505.7 
DS 21.8 462.1 22.0 442.7 21.4 562.8 

PSA(BAAS+DS) 22.4 401.9 22.6 378.8 21.7 525.7 

 

The PSNR of opaque MBs by using DS to process video objects in  “Children”, 

“Bream”, “Goldfish” and “Stefan” are 23.3dB, 26.3dB, 28.8dB and 21.4dB respectively. 

Results of using PSA(BAAS+DS) are 23.5dB, 27.3dB, 29.1dB and 21.7dB for the 
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above video objects respectively. This shows that the PSA coupled with the BAAS can 

provide about 0.45dB PSNR improvement for coding the opaque macroblocks in our 

tested sequences. The above results show that an accurate estimation of motion vectors 

of boundary macroblocks making use of the BAAS and the PSA can successfully 

provide motion estimation for the opaque macroblock of VOs. 

The average PSNR performance per VOP of the PSA(BAAS+DS) is about 

22.4dB. It is very close to the average PSNR of the FSA which is about 22.6dB for the 

tested sequences. 
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Figure 3-8. MSE performance comparison of MPEG-4 video objects. (a) “Goldenfish”, (b) 
“Children”,  (c) “Bream” and (d) Segmented “Stefan” 
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Figure 3-9. MSE performance comparison of boundary macroblocks. (a) “Goldfish”, (b) 
“Children”, (c) “Bream” and (d) Segmented “Stefan”. 
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Figure 3-10(b) Segmented “Stefan” 

Figure 3-10. PSNR performance comparison of boundary macroblocks. (a) “Bream” and (b) 
Segmented “Stefan”. 

 

3.5.2 Complexity analysis 
 

In this section, the computational complexity of our proposed algorithm is 

compared with that of the conventional algorithms including the FSA, the DS and that 

of the PSA(FSA+DS) and the PSA(DS+DS). In general, several factors are needed to be 

taken into account in comparing the cost associated with various algorithms. These 

factors include speed, chip area and power, and a trade off among these factors can be 

made depending upon the architecture to be used, hence a comparison of the costs 

associated with various algorithms is not an easy task. However, it is possible to choose 

a simple way of defining complexity. In comparing 8-bit fixed point implementations, it 

is assumed that the cost of an 8-bit addition is 16 times more than that of bitwise 

manipulation [128]. 
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The fixed-point implementation of the proposed algorithm is now compared with 

that of the FSA, that of the DS, that of the PSA(FSA+DS) and that of the PSA(DS+DS). 

The matching criterion as shown in (3-1) requires two-dimensional operations; i.e. 

Nopaque-1 additions, Nopaque subtractions, and Nopaque absolute conversions per search 

point are needed; where Nopaque is the number of opaque pixels in the MB. Therefore, for 

its 961 search points in the search range of the FSA, each MB requires 961×(Nopaque-1) 

additions, 961×(Nopaque) subtractions, and 961×(Nopaque) absolute conversions. For the 

DS and the search algorithms with the help of our proposed PSA and BAAS, only the 

average number of search points per MB for the entire sequence is reported. For the 

conventional DS and the proposed BAAS, the number of search points required depends 

on whether the stop criterion is fulfilled. 

Our proposed BAAS employs multiple initial search points to enhance the 

accuracy of the motion vectors of boundary MBs. Apart from calculating the matching 

criterion, the formation of the final SPP for providing multiple initial search points is 

the major overhead of our proposed BAAS. Its computational complexity is now 

examined. Step (2) in the BAAS is not considered as overhead since its major 

computation has been taken into account in the required search points as mentioned 

above and it just requires one additional multiplication for the calculation of b ´ 

SADmin_in_updated_SPP. To adjust the regular SPP, a computational effort which is 

equivalent to 49 times of that required for BAMS calculation and selection process, as 

shown in (3-3) and (3-4), is required in the boundary macroblock. From (3-3), it is 

obvious that the BAMS can be easily implemented by a simple circuitry containing an 

‘XOR’ logic gate and a counter. The major advantage in using this binary alpha-plane is 

its simplicity, which requires 256 bitwise operations per search point and it is equivalent 

to 16 additions per search point. The selection process involves the calculation of TBAMS, 
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as shown in (3-4). Again, the calculation of TBAMS is simply implemented by a counter 

and one multiplication. 

In the PSA algorithm, the initial search centre for an opaque MB is determined by 

finding the best-matched motion vector in a set of candidate initial centres which 

include all estimated neighboring motion vectors and the zero motion vector, (0,0). The 

determination is just considered as the additional search points. Combining all these, 

Table 3-3 shows a comparison of the operational complexity of the proposed PSA with 

different combinations of using the new BAAS, the DS and the FS, the conventional DS 

and the conventional FSA. The table shows that the PSA(BAAS+DS) requires more 

computational effort as compared with the DS and the PSA(DS+DS). This is because 

BAAS can avoid the serious local minimum problem of the DS by involving a 

reasonable number of starting points in the boundary MBs, which have a high degree of 

similarity of arbitrary shapes between the current MB and the MB in the search window. 

However, the proposed PSA(BAAS+DS) is fast compared with the PSA(FSA+DS), and 

it is more significant in the case of the FSA. On average, the PSA(BAAS-DS) can speed 

up the motion estimation about 15 and 23 times in terms of the total number of  

operations when compared to the PSA(FS+DS) and the FSA respectively. 
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Table 3-3. Comparison of computational complexity and average MSE for various algorithms. 

Algorithms Average 
Num. of 

additions per 
VOP 

Average 
Num. of 
absolute 

conversions 
per VOP 

Average Num. 
of bitwise XOR 

per VOP 
(equivalent to 

8-bit additions) 

Average 
Num. of 

multiplication 
per VOP 

Average 
MSE 

Average 
PSNR 

Children 
FSA 45,835,483 22,962,590 – – 169.9 26.0 
DS 804,671 403,123 – – 189.9 25.6 

PSA(FSA+DS) 36,405,768 18,238,441 – – 170.7 26.0 
PSA(DS+DS) 829,356 415,425 – – 185.5 25.6 

PSA(BAAS+DS) 1,680,712 839,357 57,817 
(925,068/16)  

147 173.1 25.9 

Bream 
FSA 64,836,153 32,481,517 – – 98.5 28.7 
DS 1,278,221 640,361 – – 128.4 27.6 

PSA(FSA+DS) 27,066,110 13,559,355 – – 100.7 28.6 
PSA(DS+DS) 1,213,546 607,777 – – 105.2 28.4 

PSA(BAAS+DS) 2,297,516 1,148,788 42,132 
(674,104/16) 

108 101.9 28.6 

Goldfish 
FSA 121,509,689 60,873,738 – – 106.2 28.1 
DS 2,931,646 1,468,692 – – 132.3 27.1 

PSA(FSA+DS) 70,485,018 35,311,215 – – 109.6 27.9 
PSA(DS+DS) 2,709,257 1,357,018 – – 129.2 27.2 

PSA(BAAS+DS) 5,356,807 2,678,477 110,835 
(1,773,361/16) 

283 116.8 27.7 

Stefan 
FSA 16,443,488 8,237,833 - - 381.6 22.6 
DS 434,657 120,396 - - 462.1 21.8 

PSA(FSA+DS) 14,164,687 6,855,377 - - 385.2 22.6 
PSA(DS+DS) 426,708 120,092 - - 456.0 21.9 

PSA(BAAS+DS) 1,226,416 355,775 21,748 
(347,960/16) 

56 401.9 22.4 

 

3.6 Conclusions 
 

In this charter, a fast search algorithm for block motion estimation of arbitrarily 

shaped video objects in MPEG-4 has been proposed. By considering the correlation 

between the boundary macroblock (MB) and the opaque MB, a priority search 

algorithm (PSA) for arbitrarily shaped video objects has been proposed. The PSA 

initially performs motion estimation on all boundary MBs within the bounding box of a 

VOP. This is in contrast with the conventional raster-scanning approach. The 

motivation behind the new search strategy is that the opaque MBs which are inside of 
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moving video objects are correlated highly with the moving boundary MBs. For each 

opaque MB, if all motion vectors of its neighboring boundary MBs have already been 

computed, the current opaque MB can take the best-matched one among all its 

neighboring motion vectors and the zero motion vector (0,0) as the initial centre and 

employ a conventional fast block matching algorithm. We have also demonstrated that 

obtaining accurate motion information about boundary MBs is important to improve the 

performance of the proposed motion estimation algorithm for VOP. 

A fast and efficient algorithm for estimating the motion vectors of boundary MBs 

is suggested, which is referred to as the binary alpha-plane assisted search (BAAS) in 

this paper. The binary alpha-plane is used for the adjustment of the starting point 

patterns of the search windows such that a limited number of starting points can still 

provide a high chance of catching the global minimum in the boundary MBs. 

Experimental results show that our PSA coupled with the BAAS can reduce the heavy 

computational burden of the FSA without significantly increasing the prediction error of 

the motion-compensated frame. The proposed algorithm is significantly better than that 

of the famous DS and substantially improves the accuracy of the block motion 

estimation for MPEG-4 video objects.  

However, because the BAAS and the PSA are not highly regular, hardware 

implementation is difficult. On the other hand, as general-purpose processors are 

becoming more and more powerful, software encoding will likely be possible, since this 

is a trend in video processing. As a concluding remark, we believe that the results of our 

work will certainly be useful in the future development of software MPEG-4 codecs. 
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Chapter 4. New Adaptive Partial Distortion Search 
Using Clustered Pixel Matching Error 
Characteristic 

 
 

4.1 Introduction 
 

In order to reduce the computation load, many conventional fast block-matching 

algorithms have been developed to reduce the set of possible searching points in the 

search window. All of these algorithms produce some quality degradation of a predicted 

image. Alternatively, another kind of fast block-matching algorithms which do not 

introduce any prediction error as compared with the full-search algorithm is to reduce 

the number of necessary matching evaluations for every searching point in the search 

window. The partial distortion search is a well-known technique of the second kind of 

algorithms. In the literature, many researches tried to improve both lossy and lossless 

block-matching algorithms by making use of an assumption that pixels with larger 

gradient magnitudes have larger matching errors on average. Base on a simple analysis, 

it is found that on average, pixel matching errors with similar magnitudes tend to appear 

in clusters for natural video sequences. By using this clustering characteristic, we 

propose an adaptive partial distortion search algorithm which significantly improves the 

computation efficiency of the original partial distortion search. This approach is much 

better than other algorithms which make use of the pixel gradients. Furthermore, the 

proposed algorithm is most suitable for motion estimation of both opaque and boundary 

macroblocks of an arbitrary shaped object in MPEG-4 coding. 

Block-based motion compensation technique has been widely used in many 

modern video coding standards [3, 4]. It is used to reduce the redundancy between 

successive frames in a video. Motion estimation process is to obtain a motion vector for 

a target macroblock by using the block matching technique, which minimizes a measure 
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of matching distortion between the target MB in the current frame and a candidate MB 

within a search window in a reference frame. The displacement between the candidate 

MB with the smallest distortion and the target MB will be selected as the resulting 

motion vector. One of the most frequently used criteria to measure the matching 

distortion is the sum of absolute difference (SAD). The SAD between a target MB at 

position (x,y) in the current frame, ft, and a candidate MB at position (x+u, y+v), in the 

reference frame, ft-1, is defined as below. 

 ( ) ( ) ( )∑∑
= =

− ++++−++=
M

j

M

i
tt vjyuixfjyixfvuyxSAD

0 0
1 ,,,;,  (4-1) 

where M×M is size of a block and M is equal to 16 for our consideration; ( )⋅⋅,tf  and 

( )⋅⋅− ,1tf  represent pixels intensity in the current frame and the reference frame 

respectively. This equation is identical to the l1-norm defined in (2-11) with n = 1. 

The simplest block matching motion estimation algorithm is the full search 

algorithm (FSA). This algorithm can give an optimal solution by exhaustively searching 

all possible locations within a search window, W. The resulting best motion vector,  

$( , )u v$ , is defined in (2-13). However, this algorithm suffers from heavy computational 

load. In order to resolve this difficulty, many fast search algorithms have been 

developed in the past. 

In this study, we have investigated and compared the performance of two 

categories of fast lossless search algorithms. 1) Algorithms in the first category use a 

reduced complexity distortion measure to save computation, such as partial distortion 

(PDS) techniques [92, 93]. The PDS [92] reduces the computation complexity by 

terminating the SAD calculation early when it finds that a partial SAD is already greater 

than the minimum SAD encountered so far in the searching. In general, the PDS is 

regarded as a fast full search algorithm because it has identical prediction quality as that 

of the FSA. 2) The second category makes use of mathematical inequalities to reduce 
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the computational load; this includes the Successive Elimination Algorithm (SEA) [13]. 

By making use of the Minkowski’s inequality, the SEA eliminates an impossible 

candidates MB without calculating the SAD. 

In addition, we suggest further techniques to improve the searching efficiency of 

the PDS. Its efficiency also comes from an early termination of the partial SAD. Let us 

define a generalized form of the partial SAD as shown below, 

 ( ) ( ) ( )∑∑
= =

− ++++−++=
p

j j
nntnntp vlyukxflykxfvuyxSAD

0

15

0
1 ,,,;,  (4-2) 

where ( ){ }, 0,..., 16 ,..., 256n nk l n j i= × +   is an index set of all pixels in a MB, and p = 

0,…,15 which specifies the number of elements for producing the sum of errors for a 

partial SAD. For a given p, there are 16×(p+1) pixels to be accumulated to SADp. The 

index set determines the coordinates and orders of the pixel matching errors to be 

accumulated to the SADp. One simple idea to improve the PDS is to design an adaptive 

index set such that a pixel with greater matching error is firstly computed, and this error 

is accumulated to the SADp earlier than other pixels. As a result, the SAD calculation 

can be terminated sooner. In the literature, many researches [96, 106] indicated that 

pixels with larger gradient magnitudes have larger matching errors on average. They 

made use of this hypothesis to develop their searching algorithms. An approach is to 

make use of representative pixels and adaptive matching scan PDS (AMS-PDS)[96] to 

determine the index set by sorting the gradient magnitude of rows or columns in the 

target MB of the current frame in descending order. As a result, pixels of a row or 

column with greater gradient magnitudes will be used to calculate the SADp prior to 

other rows or columns in the MB. However, it can be shown that pixel matching errors 

with similar magnitudes tend to appear in clusters in natural video sequences. This 

characteristic is illustrated in Figure 4-3 and discussed in the next Section. In this 

chapter, we propose an adaptive partial distortion search algorithm by using the 



 100

characteristics of these clustered pixel matching errors. This approach is significantly 

more efficient as compared to algorithms which make use of pixel gradient properties in 

an adaptive partial distortion search. 

In the rest of this charter, we firstly explain and illustrate the characteristics of the 

pixel errors that tend to form clusters in Section 4.2. Section 4.3 applies these 

characteristics to develop a new clustered pixel matching error for adaptive partial 

distortion search algorithm (CPME-PDS). In Section 4.3.1, we establish an analysis to 

determine an adaptive index set required for the CPME-PDS. Then our proposed 

CPME-PDS is described in details in Section 4.3.2. It is unavoidable to have a certain 

amount of overheads for the establishment of the adaptive index set. These overheads 

are described in Section 4.3.3. Section 4.4 gives the details of our experiments and 

results. In order to compare the performance of the adaptive PDS based on the cluster 

pixel matching error characteristic and based on the pixel gradient characteristic, we 

have also designed another adaptive PDS, the pixel gradients based adaptive partial 

distortion search algorithm (PG-PDS). The details of the PG-PDS are described in 

Section 4.4.1. Section 4.4.2 presents the results and analysis of the CPME-PDS 

comparing to other fast algorithms including the PG-PDS. Finally, concluding remarks 

are given in Section 4.5. 

 

4.2 The characteristic of clustered pixel matching error 
 

The major idea of our proposed CPME-PDS is to design an adaptive index set 

such that a pixel with greater matching error can be accumulated to the SADp sooner 

than other pixels according to the order indicated by the index set. 

For this reason, it is necessary for us to investigate possible spatial distributions of 

pixel matching errors in a MB. We have found that errors with similar magnitude tend 

to appear together in clusters. It is because natural images are dominated by low 
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frequency components. The matching errors of low frequency regions between a target 

MB and a candidate MB have similar magnitudes and are partitioned by edge pixels of 

these two MBs. This phenomenon is demonstrated in Figure 4-1. Figure 4-1(a) depicts 

the matching of a one dimensional (1-D) target MB (thick continuous line) within a 1-D 

search window (thin dotted line). The corresponding pixel matching errors appear in a 

cluster form as shown in Figure 4-1(b). 
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Figure 4-1. (a) Matching of a 1-D target MB within a 1-D search window. (b) Corresponding pixel 
matching error of the target MB at the current position. 

 
Edges are the most prominent feature in image processing. They are also 

frequently used to predict pixel matching errors in motion estimation. The prediction is 

accurate especially near a minimum distortion position. Figure 4-2(b) shows that 

locations with large pixel matching errors (the hatched region) can be detected by using 

pixel gradients when the target MB is located near a good candidate MB. However, the 

result is not good enough in general. In Figure 4-1(b), only pixel matching errors in the 

hatched region are found, while matching errors outside the hatched region are 

underestimated. Figure 4-3(a) and (b) are examples of prediction errors in two motion 
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compensated MBs, which are extracted from the sequence “Football” and video object 

“Goldfish”, respectively. These examples demonstrate the clustered prediction errors 

during motion estimation. 
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Figure 4-2. (a) Matching of a 1-D target MB within a 1-D search window near a minimum 
distortion location. (b) Corresponding pixel matching error of the target MB at the current position. 
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Figure 4-3. Examples of clustering errors in a motion compensated prediction MB of (a) the 
sequences “Football” and (b) the video object “Goldfish”. 
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According to the above analysis, we can predict that clustered pixel matching 

error characteristic can be used to achieve greater advantage in an adaptive partial 

distortion search. 

 

4.3 Proposed Algorithm 
 

4.3.1 Determination of an adaptive index set 
 

For a given target MB, the positions of pixels are represented by an index set, 

( ){ }, 0,..., 1n nS k l n N= = − , where N is the number of pixels in a MB. For a single pixel 

at ( , )n n ns k l= , ns S∈ , its matching error is, ( ) ( ) ( )n t n ne s I s R s= − , where ( )nR s  is a 

random variable which represents the pixel value at sn of a candidate MB. In the 

following discussion, the notation for properties relating to the pixel at sn is indicated by 

the argument n, and the MB location (x,y) and motion vector (u,v) are dropped for 

simplicity. Hence, the pixel matching errors are represented by,  

 ( ) ( ) ( )te n I n R n= −  (4-3) 

To improve the saving in computation of a PDS, pixel matching errors with an 

ideal index set must have the following relation, 

2 2 2(0) ... ( ) ... ( 1)e e n e N≥ ≥ ≥ ≥ −  

To fulfill the above objective, we have to predict the pixel matching error of each 

p(n) at location sn. Hence, the expected values of p(n) must fulfill the following criterion,   

 2 2 2(0) ... ( ) ... ( 1)E p E p n E p N     ≥ ≥ ≥ ≥ −       (4-4) 

Let us define ( ) ( )tp n I n m= − , where m is a reference value to be used to obtain 

the predicted pixel matching errors. One possible solution of m is to minimize the 

expected value of the sum of squares of the differences between e(n)2 and p(n)2, 
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i.e. 
( ) ( )

1 22 2

0
arg min ( ) ( ) ( )

N

t tm n
m E I n R n I n m

−

=

   = − − −     
∑

 

In solving this equation, we have 

 ( ) ( )
1 22 2

0
( ) ( ) ( ) 0

N

t t
n

d E I n R n I n m
dm

−

=

  − − − =   
∑  (4-5) 

By substituting ( ) ( ) ( )tR n I n e n= −  into eqn. (4-5), finally we can have a cubic equation, 

 ( )3 2 2 2 2 33 3 0t t t tm I m I e m I e I− + − + − =  (4-6) 

where  

1
2 2

0

1 ( )
N

n
e E e n

N

−

=

 =  
 
∑

, and 

 

1
2 2

0

1 ( ) ( )
N

t t
n

I e E I n e n
N

−

=

 =  
 
∑

, 

The roots of the cubic equation are either all reals or one real and two complex 

conjugates which depend on the discriminant of the equation. We look for real roots for  

(4-6), such that m can be practically useful. Let us assume that natural images are 

dominated by low frequency components. Hence, let, 

 
a a

t tI I≈ , 

and 
2 2

t tI e I e≈  

These are valid only if the image frame under question consists mainly low frequencies 

and the standard deviation of It(n) is small enough. As a result, it gives 

 
2

t

t

I
m

I e

≈ 
±

 (4-7) 

Mathematical detail is shown in Appendix A. The first approximated root is the 

mean of pixel values in the target MB. To use this mean as the reference value it already 

gives a better computational saving when comparing to the PG-PDS, for which we 

proposed it as a comparison. Intuitively, m is a function of pixel values in a candidate 
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MB, i.e. ( )( )m m R n= . The other roots, 2
tI e±  can also be obtained by the following 

approximation. 

2
t tR I e I e= − ≈ ±  

It indicates that this solution is an approximation of the mean of pixel values in a 

candidate MB. Note that our assumption is not always true. However, a shifting of m 

would not affect the criterion in (4-4) dramatically. In fact, the solution of Rm =  can 

also be obtained directly by minimizing the equation, ( )[ ] 






 −∑
−

=

1

0

2)(
N

n
npneE (see 

appendix A). Hence, this result is used to determine an adaptive index set for the 

CPME-PDS. 

 
 

4.3.2 Clustered Pixel Matching Errors for Adaptive Partial Distortion 
Search (CPME-PDS) 

 
There is another factor which affects the ability of a PDS to reject impossible 

candidates. The earlier the global minimum is met in a search, the earlier the PDS can 

terminate a partial SAD to reject the candidates. To achieve this purpose, we use two 

strategies as shown below. 

1. The outward spiral scanning is used to exploit the center-biased motion vector 

distribution characteristics of the real world video sequence [75]. 

2. The correlation in the motion field is exploited by using a median predictor of 

three adjacent blocks, left, top and top right blocks to the current position as the 

initial searching point of the spiral scanning. We have used the median predictor 

described in [5]. 
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According to the above considerations and our analytical results, we suggest to 

use the mean of pixel values in the candidate MB of the initial searching point to 

compute the reference value, m, because we can assume that 

 1( , ) ( , )t med med tI i u j v I i j− + + ≈  

where ( , )med medu v = the median predictor. The expected pixel matching error, pexp(n), of 

each pixel in the target MB is calculated with m. The required adaptive index set, S, is 

given by sorting ( )expp n  in descending order. The partial SAD in (4-2) is calculated 

with S during the searching in an outward spiral scanning. The CPME-PDS approach 

can be summarized as follows: 

CPME-PDS: 
 
Note that all division operations in the following description are integer division with 

truncation toward zero for the sake of lower complexity. 

Step 1) Determine the median predictor, (umed, vmed), of the three adjacent blocks. 

Step 2) Calculate the reference value, m, with the median predictor, (umed, vmed). 

 
15 15

1
0 0

1 ( , )
256 t med med

j i
m I x u i y v j−

= =
= + + + +∑∑  (4-8)

Step 3) Initialize an index set, ( ){ }' ' , ' 0,..., 1n nS k l n N= = − , which represents all pixels 

of the target MB 

Step 4) Calculate the expected absolute pixel matching error, ( )expp n , of each pixel in 

the target MB. 

 ( ) ( )' , 'exp t n np n I k l m= −  (4-9) 

Step 5) Rearrange the order of set 'S  to obtain an adaptive index set S by sorting the 

expected absolute pixel matching error, ( )expp n , in descending order, such that, 

 ( ){ }, 0,..., 1n nS k l n N= = −  
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 The pexp(n) corresponding to the order of the sorted index set, S, has the 

following feature, 

 ( ) ( ) ( )10 expexpexp −≥≥≥≥ Npnpp KK  

Step 6) Apply the adaptive index set, S, to calculate the partial SAD in (4-2) during the 

searching in an outward spiral scanning. 

Note that the adaptive index set is established on a pixel-based approach. It is 

straightforward to modify the above procedure for the boundary macroblocks of an 

arbitrary shaped video object (VO) in MPEG-4 [5]. First, the reference value, m, is 

calculated after that the repetitive padding is applied to a reference video object plane 

(VOP). It is only necessary to compute the expected pixel matching error, pexp(n), for 

opaque pixels in the case of a boundary MB. For an index set, N is equal to the number 

of pixels in a MB, such that 256N =  for an opaque MB, while N = number of opaque 

pixels in a boundary MB. Second, the partial SAD in (4-2) is rewritten as, 

 ( ) ( )1
0 0

( , ;  , ) , ,
p q

p t n n t n n
j i

SAD x y u v I x k y l I x k u y l v−
= =

= + + − + + + +∑∑  

where 

 { }zero ardcation tow with trun/16 ofdivision integer ;,...,0 Np =ℵ∈ αα

 15 ,
16 ,

p
q

N p
α

α α
≠

=  − × =
 and 

 ℵ  is the set of Natural Number. 

(4-10) 

The design of our algorithm depends upon the clustering properties of the pixel 

matching errors. Hence the approach is general and it is expected to be useful for both 

software or hardware realization. Let us consider that for example, most computer 

architectures tend to be in favour of regular memory pattern access and execution [129]. 

It is true for the modern Intel processors, say for example, which provide Multimedia 

Extensions (MMX), Streaming Single Instruction Multiple Data Extensions (SSE) and 
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SSE2 technologies. These technologies offer a set of instructions for handling a large 

quantity of data in parallel efficiently. The MMX and SSE instruction set can compare 

eight bytes or eight pixel values from each of two blocks with a single instruction, thus 

accelerating the program by almost a factor of four or eight. The SSE2 instruction set 

can operate data with 16 pixels at one time effectively. 

In order to make use of the advantage of clustering characteristic, we may also 

arrange to sort pixels row by row in a block for SADp accumulation. By using an 

identical reference value, m, we can calculate the expected absolute pixel error of a row 

of 16 pixels as follows, to determine the accumulating order. 

 ∑
=

−′=
15

0
exp ),(

x
nt mlxIp  (4-11) 

Because these instructions demand an increase in memory bandwidth, we have 

simulated three different situations to evaluate their performances, i.e. sorting a row of 4, 

8 and 16 consecutive pixels in a block designated as CPME-PDS4, CPME-PDS8 and 

CPME-PDS16 respectively. 

 

4.3.3 Analysis of the Overhead 
 

From the above description, it is shown that the additional computation 

introduced by the CPME-PDS is the process to construct the adaptive index set for each 

target MB in the current frame or VOP. 

The calculation of the reference value, m, as shown in (4-8) requires 255 additions 

and one division. For each opaque pixel, (4-9) shows that each expected absolute pixel 

matching error, ( )expp n , needs one absolute operation and one subtraction. Hence, N 

absolute operations and N subtractions are required for the calculation of ( )expp n  for 

each target MB. In the case of a boundary MB, 256 additional checkings are needed to 

ensure that only the opaque pixels are involved. To obtain the final adaptive index set, S, 
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a sorting process is required in step 5 of Section 4.3.2. Because the values of ( )expp n  

are integers ranging from 0 to 255, the counting sort [130] which has the complexity of 

O(N) is the most appropriate sorting algorithm in this situation. In general, it requires 

2×Ν increment/decrement operations and z-1 additions, where z is the largest integer in 

the data set being sorted. For a boundary MB, (4-10) shows that the formulation of 

SADp is different from that of an opaque MB. As shown in (4-10), the computation of α 

involves one division, and the computation of q when p α=  needs one multiplication 

and subtraction. 

Note that all multiplications and divisions mentioned above can be implemented 

with simple bitwise shift operations. In our analysis, however, each multiplication or 

division is counted and assumed to be equivalent to 8 additions for simplicity. 

 

4.4 Experiments 
 

In Section 4.3, we have proposed the CPME-PDS which makes use of the 

characteristics of clustered pixel matching errors to improve the searching efficiency of 

the conventional PDS. In this section, let us modify the adaptive PDS to become pixel 

gradient based adaptive PDS (PG-PDS) in order to compare saving in computation. A 

large amount of experimental work has been done. We describe the PG-PDS in brief in 

the next part. Approaches using representative pixels and adaptive matching scan 

(AMS-PDS) [96], conventional PDS, PG-PDS and Successive Elimination Algorithm 

(SEA) [99] were also implemented for the sake of comparison. 

 

4.4.1 Pixel Gradients based Adaptive PDS (PG-PDS) 
 

In the PG-PDS, an adaptive index set, Spg, is obtained based on the magnitude of 

individual pixel gradient. 
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For each pixel in an opaque MB, let us express the magnitudes of x-directional 

gradients, Gx, and y-directional gradients, Gy, as, 

 

 ( , ) ( , ) ( 1, )x t tG x y I x y I x y= − +  where x = 0,1,…,14 ; y = 0,1,…,15 

 ( , ) ( , ) ( , 1)y t tG x y I x y I x y= − +  where y = 0,1,…,14 ; x = 0,1,…,15

(4-12)

There are 15×16 = 240 gradient values for each direction. Hence, totally 480 gradient 

magnitudes need to be found for an opaque MB. These magnitudes are sorted in 

descending order with a counting sort. The Spg is then established by extracting the 

pixel’s position according to the order of the sorted gradient magnitudes. Obviously, 

each pixel must appear only once in Spg. A proper checking procedure is needed to 

prevent double extraction of a pixel, because each pixel involves two directional 

gradient magnitudes. The adaptive index set, Spg, is applied for the calculation of the 

partial SAD in (4-2) during the search in an outward spiral scanning. 

There are some differences in the implementation of a boundary MB and an 

opaque MB. The total number of gradient magnitudes in a boundary MB depends on the 

number of opaque pixels and the shape in the MB. In calculating (4-12), if one of the 

involved pixel, ( , )tI ⋅ ⋅ , is a transparent pixel, the magnitude of the corresponding 

gradient is regarded as zero. We have also used pixel gradients in a row to perform row 

based sorting for comparison. Similar to the CPME-PDS, the average gradient of a row 

with 4, 8 and 16 consecutive pixels in a block has been used to determine the 

accumulating order of different rows in a SADp. 

 

4.4.2 Experimental Results and Discussion 
 

The analytical result in Section 4.3 suggests that two mean values can be used as 

the reference value, m, in the CPME-PDS. These are the mean of pixel values in the 
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target MB, m1, and the mean of pixel values in the candidate MB of the initial searching 

point, m2. In addition to these two mean values, we can also choose a third candidate, 

m3=128, because we assume that R is a random variable which represents the pixel 

values in a MB and Rm = .  

Table 4-1 compares the computational load of the CPME-PDS with these three 

reference values. The results show that all three values can successfully improve the 

efficiency of the conventional PDS. Among these three values, m2 provides the least 

computational load. Hence, it confirms our suggestion that the mean of pixel values in 

the candidate MB of the initial searching point is used as the reference value in the 

CPME-PDS. 

Table 4-1. Comparison of the average numbers of operations per MB of the CPME-PDS for 
different reference values, m. 

CPME-PDS  PDS 
m1 m2 m3 

Video Sequences 
Children 188931 108120 99908 110958 
Bream 219654 149539 139461 197122 

Arbitrary Shaped Video Objects 
Football 299882 256443 232779 268849 

Tabletennis 219509 159596 149103 173683 
m1 = The mean of pixel values in the target MB. 
m2 = The mean of pixel values in the candidate MB of the initial searching point. 
m3 = 128 

  

To evaluate the performance of the clustered pixel matching error for adaptive 

partial distortion search (CPME-PDS), we implemented six algorithms: (i) the full-

search algorithm (FSA), (ii) the conventional partial distortion search (PDS), (iii) the 

representative pixels and adaptive matching scan PDS (AMS-PDS), (iv) the pixel 

gradients based adaptive PDS (PG-PDS), (v) the Successive Elimination Algorithm 

(SEA) and (vi) the proposed CPME-PDS. The outward spiral scan was applied to all six 

algorithms to exploit the center-biased motion vector distribution characteristics. In 

addition, a median predictor was used as an initial searching centre to exploit the 

correlation in the motion field for all tested algorithms. The SEA uses the norm of each 
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search point to speed up the processing. The norm of each search point is calculated for 

frame-based sequences and opaque MBs of a video object by using a recursive method 

suggested in [99]. However, the recursive technique is not suitable for boundary MB of 

an arbitrarily shaped object. We need to calculate each norm during the search and the 

required operations are counted as computational load for searching in the realization. 

Hence, it is seen that the SEA may require much computation for the motion estimation 

of arbitrarily shaped objects in MPEG-4. Because AMS-PDS is an algorithm developed 

only suitable for block based motion estimation, experiments which involved arbitrary 

shaped video objects did not include AMS-PDS. The computational efficiency of the 

algorithms has been assessed in terms of the number of operations required for the 

searching. Each addition, subtraction, absolute or checking operation mentioned above 

was considered as one operation. Each multiplication or division was considered to be 

equivalent to 8 additions for simplicity. All these operations were counted in runtime 

during the experiments. Moreover, non-uniform memory access is the major 

disadvantage of these adaptive PDS algorithms. To evaluate the practical performance, 

we have also measured the execution time for motion estimation including the required 

overheads of all tested algorithms for comparison. We performed the experimental work 

on a standard desktop computer. The configuration of the platform was Intel P-III 

600MHz desktop PC with 256M RAM and Windows 2000. 

We used a large variety of video sequences and video objects for the evaluation. 

Sequences “Football”, “Table Tennis”, “Stefan”, “Salesman”, “Foreman”, “Grand 

Mother”, “Suzie” and “Trevor” were used as test sequences, while “News”, “Children”, 

“Bream” and “Goldfish” were used to test arbitrary shaped video objects. The format of 

the above video sequences and video objects are summarized in Table 4-2. 
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Table 4-2. Format of the tested video sequences and video objects. 

Video Sequences 
Sequence Image format num. of Tested Frames 
Football 352×240 209 

Table Tennis 352×240 299 
Stefan 352×240 299 

Salesman 352×288 199 
Forman 176×144 299 

Grand Mother 176×144 299 
Suzie 176×144 149 

Trevor 176×144 149 
Arbitrary Shaped Video Objects 

Video Object Source format num. of Tested VOPs 
News 352×288 299 

Children 352×288 299 
Bream 352×288 299 

Goldfish 352×288 299 
 

According to the analysis in Section 4.2, we have shown that the prediction of 

pixel matching errors based on pixel gradients is only accurate near a minimum 

distortion position. Results in Figure 4-4 to Figure 4-6 justify our analysis. These figures 

show the average numbers of operations with different distances from the centre of a 

search window for the tested algorithms. The average number of operations at distance, 

d, is obtained by, 
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Figure 4-4. Comparison between the computational saving capability of the tested algorithms at 
different distances from the centre of a search window for “Table Tennis”. 
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Figure 4-5. Comparison between the computational saving capability of the tested algorithms at 
different distances from the centre of a search window for “Grand Mother”. 
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Figure 4-6. Comparison of the computational saving capability of the tested algorithms at different 
distances from the centre of a search window for “Bream”. 

 
For our initial analysis, we just counted the number of operations for the realization. All 

overheads such as the time for memory access, etc were not considered, since these 

overheads are usually machine dependent. Three typical results of the selected 

sequences, including the “Table Tennis”, “Grand Mother” and “Bream”, are provided in 

Figure 4-4 to Figure 4-6 respectively. In these Figures, algorithms with the least number 

of operations per search point at a specified distance, d, are shaded in grey. These 

results confirm our prediction that PG-PDS has a better ability to save computation 

when a search point is near the minimum distortion position. When the search point 

location is extended, the performance of CPME-PDS overrides that of PG-PDS. For the 

“Grand Mother” sequence, however, the SEA provides the best efficiency when the 

search distance is greater than six. Table 4-3 summarizes the results of all tested 

sequences. Entries in Table 4-3 give the search distances in which the corresponding 

algorithms have the least numbers of operations. On the whole, we can see that our 

approach (the CPME-PDS) always provides the largest range of search distance to have 

the best performance. This is particular true for object-based sequences and sequences 
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with high motion activities. On the other hand, the PG-PDS gives the largest 

computational saving among all tested algorithms with a short search distance, ranging 

from 0 to 4 on average. Furthermore, the SEA has the best performance for sequences 

related to video conferencing when the search distance is large enough. The number of 

operations of the AMS-PDS is about 4% on average smaller than that of the CPME-

PDS for the sequence “Suzie” when the search range is smaller than 4. For the “Grand 

Mother” and “Foreman” sequences, the AMS-PDS is about 3% on average better than 

that of the CPME-PDS within a search range of 2. For “Football”, “Salesman” and 

“Stefan” sequences, the number of operations of the AMS-PDS is about 2% smaller 

than that of the CPME-PDS within a unit search range. 

 

Table 4-3. Summary of the computational saving ability of the tested algorithms for different 
sequences. The entries indicate the search distance at which the corresponding algorithms require 
the least number of operations. 

Video 
Sequences FSA SEA PDS AMS-PDS PG-PDS CPME-PDS

Football x x x x 1 - 2 3 - 15 
Tabletennis x x x x 1 2 - 15 

Stefan x x x x 1 - 2 3 - 15 
Salesman x x x x 1 - 3 4 - 15 
Foreman x 15 x x 1 - 5 6 - 14 

Grand mother x 6 - 15 x x 1 - 4 5  
Suzie x 9 - 15 x x 1 - 3 4 - 8 

Trevor x 10 - 15 x x 1 - 4 5 - 9 

Video Objects  
News x x x invalid 1 - 3 4 - 15 

Children x x x invalid 1 - 2 3 - 15 
Bream x x x invalid 1 - 2 3 - 15 

Goldfish x x x invalid 1 - 4 5 - 15 
x – Indicates that the algorithms are not the most efficient one at all search distances. 
invalid – AMS-PDS was not designed for the motion estimation of arbitrary shaped video objects.  

   

 Let us turn our attention to the overheads, such as sorting processes etc. Table 

4-4 lists the average numbers of operations of these overheads for the tested algorithms. 

In Table 4-5, we have summarized the average number of total operations per search 
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point in a given search range, D, (i.e. ,D u v D− ≤ ≤ ). In this case, overheads are also 

included. In our implementation, quick sort was used as the sorting approach for AMS-

PDS. Its complexity is O(n log n), where n is equal to 16 in the case of the AMS-PDS 

algorithm. The selection of a sorting algorithm affects seriously the performance of an 

adaptive PDS especially if the search window is small. In order to prevent an under-

evaluation of the AMS-PDS, the number of operations for its sorting process was not 

counted and this assumption is made in all of the latter discussion. 

 

Table 4-4. Comparison of the overheads for different algorithms in terms of the average numbers 
of operations per MB. 

 Video 
Sequences FSA SEA PDS *AMS-PDS PG-PDS CPME-PDS

Football 0 1158 0 1479 3686 1613 
Tabletennis 0 1158 0 1479 3712 1618 

Stefan 0 1158 0 1479 3723 1626 
Salesman 0 1145 0 1479 3668 1597 
Foreman 0 1272 0 1479 3678 1620 

Grand mother 0 1272 0 1479 3658 1590 
Suzie 0 1272 0 1479 3646 1583 

Trevor 0 1272 0 1479 3668 1601 

Video Objects  
News 0 1711 0 invalid 3373 1562 

Children 0 2757 0 invalid 3196 1565 
Bream 0 1614 0 invalid 3449 1588 

Goldfish 0 1670 0 invalid 3199 1542 
* The numbers of operations for sorting in the AMS-PDS were not counted in the experiments. 
invalid – AMS-PDS was not designed for the motion estimation of arbitrary shaped video objects. 
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Table 4-5. Summary of the computational efficiencies in terms of operations of the tested 
algorithms for different sequences. The figures indicate the sizes of search window in which the 
corresponding algorithms require the least number of operations. 

Video 
Sequences FSA SEA PDS *AMS-PDS PG-PDS CPME-PDS 

Football x x 1 - 2 x x 3 - 15 
Tabletennis x x 1 x x 2 - 15 

Stefan x x 1 x x 2 - 15 
Salesman x x 1 - 2 x x 3 - 15 
Foreman x x 1 - 2 x 4 - 7 3, 8 - 15 

Grand mother x 10 - 15 1 - 2 x x 3 - 9 
Suzie x 15 1 - 2 3 x 4 - 14 

Trevor x x 1 - 2 3 x 4 - 15 

Video Objects  
News x x 1 invalid  x 2 - 15 

Children x x 1 invalid x 2 - 15 
Bream x x 1 invalid x 2 - 15 

Goldfish x x 1 invalid x 2 - 15 
* The numbers of operations for the sorting in AMS-PDS were not counted in the experiments. 
x – Indicates that the algorithms are not the most efficient one at all search distances. 
invalid – AMS-PDS was not designed for the motion estimation of arbitrary shaped video objects. 

 

Table 4-5 summarizes the results of algorithms which require the least number of 

operations with the indicated search range. Generally speaking, CPME-PDS gives the 

best performance in a search range within 2 to 15 for nearly all sequences. The SEA 

achieves the best efficiency within a search range from 10 to 15 and 15 for the “Grand 

mother” and “Suzie” sequences respectively. It is interesting to point out that the PG-

PDS offered the best efficiency in the middle search range, within 4 to 8, for the 

sequence “Foreman”. In Table 4-3, we can see that the PG-PDS gives the best 

computational saving for d equal to 0 to 5 in “Foreman”, but it requires the largest 

overheads as shown in Table 4-4. Hence, it needs more computational saving to 

outperform other algorithms, the situation of which is reflected in the table. The 

efficiency of CPME-PDS outperforms that of PG-PDS when the search range is 

extended sufficiently. In terms of the total number of required operations, we have 
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found that the performance of the PG-PDS is about 1.7% better than the CPME-PDS for 

only one sequence (the “Foreman” sequence) in the medium search range. 

Table 4-6 demonstrates a comparison between the computational efficiency of 

the tested algorithms in a search window of 15 (i.e. 15 , 15u v− ≤ ≤ ). The computational 

efficiency was compared in terms of the average number of operations per MB and 

speed-up ratios. It shows that our algorithm, CPME-PDS, can successfully improve the 

computational efficiency of the conventional PDS and is the best among all other 

adaptive PDSs. In terms of speed-up ratios, it can achieve a speed-up ranging from 3 to 

9 times of the FSA. The SEA gives worse performance as compared to our algorithm, 

CPME-PDS, for most sequences but achieves better efficiency for sequences on vide 

conferencing, such as the “Grand mother”, and “Suzie”. 

Table 4-6. Average numbers of total operations per MB of the tested algorithms in a search window 
with a search range equal to 15 (i.e. 15 , 15u v− ≤ ≤ ). 

FSA SEA PDS *AMS-PDS PG-PDS CPME-PDS 
 Video 

Sequences 
No. of 

operation 

Speed-
up 

ratio 
No. of 

operation 

Speed-
up 

ratio 
No. of 

operation 

Speed-
up 

ratio 
No. of 

operation

Speed-
up 

ratio 
No. of 

operation 

Speed-
up 

ratio 
No. of 

operation

Speed-
up 

ratio 

Football 738048 1.00 351897 2.10 299882 2.46 279341 2.64 263057 2.81 232779 3.17
Tabletennis 738048 1.00 290482 2.54 219509 3.36 194414 3.80 170269 4.33 149103 4.95

Stefan 738048 1.00 304156 2.43 241830 3.05 206729 3.57 191230 3.86 169652 4.35
Salesman 738048 1.00 172550 4.28 160614 4.60 140468 5.25 126625 5.83 111693 6.61
Foreman 738048 1.00 129522 5.70 153344 4.81 123309 5.99 110916 6.65 106310 6.94

Grand mother 738048 1.00 98119 7.52 157032 4.70 129139 5.72 126619 5.83 121658 6.07
Suzie 738048 1.00 118877 6.21 170286 4.33 137157 5.38 135321 5.45 121301 6.08

Trevor 738048 1.00 82068 8.99 110638 6.67 93004 7.94 89113 8.28 81240 9.08

Video Objects  

News 689274 1.00 321915 2.14 188931 3.65   147191 4.68 138052 4.99
Children 653006 1.00 478403 1.36 188931 3.46   116043 5.63 99908 6.54
Bream 698661 1.00 464301 1.50 219654 3.18   155870 4.48 139461 5.01

Goldfish 663847 1.00 353271 1.88 226663 2.93   151615 4.38 140129 4.74
 

Let us evaluate the execution time of all algorithms. The evaluation takes into 

the account of both computation loads of the algorithms and their overheads. This is, to 

some extent, CPU dependent. Table 4-7 and Table 4-8 compare the execution time per 

frame or per VOP of the algorithms with a search range of 15. Table 4-7 clearly shows 
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that the improvements of all PDS algorithms are reduced. On average, the speedup 

ratios in terms of the number of operations are decreased by about 33%, 40%, 52% and 

48% for the PDS, AMS-PDS, PG-PDS and the CPME-PDS respectively. The SEA is 

only degraded by about 9%. This phenomenon is caused by two factors. The first factor 

is that all adaptive PDS algorithms suffer from the problem of non-uniform memory 

access. Among these three adaptive PDS, the AMS-PDS has the minimum degradation 

because it makes use of pixel gradients to determine the sorting of rows or columns in a 

MB. When the column scanning is used in AMS-PDS, non-uniform memory access 

problem is occurred. On the other hand, during the process of row scanning in the 

AMS-PDS algorithm, it accumulates pixel errors of consecutive pixels in a row. In our 

experimental work, we used different implementation techniques for these two 

situations, such that the non-uniform access problem of AMS-PDS becomes less severe. 

The second factor occurs in all PDS algorithms. The pipeline structure of modern CPUs 

improves greatly the performance of computing consecutive data. However, the pipeline 

flow is interrupted when cache misses or exceptions occur. For PDS, it suffers 

inherently from branch miss-prediction penalty; say for example it happens in Intel 

CPUs. Except the “Table Tennis” sequence and the VOs, the SEA requires less 

computational time as compared to that of the PDS, while the SEA actually requires 

more operations. Even though the presence of these two drawbacks, our experimental 

results show that the CPME-PDS gives the best performance for sequences containing 

high motion activities and the video objects. 
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Table 4-7. The execution time (seconds) per frame or per VOP of the tested algorithms in a search 
window with a search range equal to 15 (i.e. 15 , 15u v− ≤ ≤ ). 

FSA SEA PDS  AMS-PDS PG-PDS CPME-PDS 
 Video 

Sequences 
Execution 

time 
(second) 

Speed-
up 

ratio 

Execution 
time 

(second) 

Speed-
up 

ratio 

Execution 
time 

(second) 

Speed-
up 

ratio 

Execution 
time 

(second) 

Speed-
up 

ratio 

Execution 
time 

(second) 

Speed-
up 

ratio 

Execution 
time 

(second) 

Speed-
up 

ratio 

Football 1.92 1.00 0.95 2.02 0.96 2.00 0.97 1.98 1.12 1.71 0.93 2.06
Tabletennis 1.92 1.00 0.89 2.16 0.79 2.43 0.77 2.49 0.86 2.23 0.73 2.63

Stefan 1.92 1.00 0.83 2.31 0.84 2.29 0.80 2.40 0.95 2.02 0.78 2.46
Salesman 2.30 1.00 0.60 3.83 0.79 2.91 0.77 2.99 0.97 2.37 0.77 2.99
Foreman 0.58 1.00 0.11 5.27 0.19 3.05 0.18 3.22 0.23 2.52 0.17 3.41

Grand mother 0.58 1.00 0.09 6.44 0.19 3.05 0.18 3.22 0.24 2.42 0.18 3.22
Suzie 0.57 1.00 0.11 5.18 0.20 2.85 0.19 3.00 0.24 2.38 0.18 3.17
Trevor 0.58 1.00 0.08 7.25 0.16 3.63 0.16 3.63 0.21 2.76 0.16 3.63

Video Objects  

News 1.05 1.00 0.51 2.05 0.45 2.32   0.43 2.43 0.38 2.75
Children 0.60 1.00 0.43 1.39 0.27 2.21   0.20 2.99 0.18 3.32
Bream 0.81 1.00 0.53 1.52 0.36 2.24   0.34 2.37 0.29 2.78

Goldfish 1.51 1.00 0.83 1.82 0.74 2.04   0.61 2.48 0.54 2.80
 

 

Table 4-8. The execution time (second) per frame or per VOP of the row-based adaptive PDS 
algorithms in a search window with a search range equal to 15 (i.e. 15 , 15u v− ≤ ≤  ). 

PG-PDS4 PG-PDS8 PG-PDS16 CPME-PDS4 CPME-PDS8 CPME-PDS16

 Video 
Sequences 

Execution 
time 

(second) 

Speed-
up 

ratio 

Execution 
time 

(second) 

Speed-
up 

ratio 

Execution 
time 

(second) 

Speed-
up 

ratio 

Execution 
time 

(second) 

Speed-
up 

ratio 

Execution 
time 

(second) 

Speed-
up 

ratio 

Execution 
time 

(second) 

Speed-
up 

ratio 

Football 0.88 2.18 0.91 2.11 0.86 2.23 0.80 2.40 0.83 2.31 0.80 2.40
Tabletennis 0.61 3.15 0.64 3.00 0.62 3.10 0.61 3.15 0.64 3.00 0.62 3.10

Stefan 0.71 2.70 0.74 2.59 0.70 2.74 0.64 3.00 0.68 2.82 0.65 2.95
Salesman 0.66 3.48 0.69 3.33 0.67 3.43 0.60 3.83 0.62 3.71 0.60 3.83
Foreman 0.15 3.87 0.15 3.87 0.15 3.87 0.14 4.14 0.14 4.14 0.14 4.14

Grand mother 0.16 3.63 0.16 3.63 0.16 3.63 0.15 3.87 0.16 3.63 0.15 3.87
Suzie 0.16 3.56 0.17 3.35 0.17 3.35 0.15 3.80 0.16 3.56 0.16 3.56
Trevor 0.13 4.46 0.14 4.14 0.13 4.46 0.13 4.46 0.13 4.46 0.12 4.83

Video Objects   

News 0.37 2.83 0.39 2.68 0.38 2.75  0.35 2.99 0.36 2.90 0.35 2.99
Children 0.22 2.72 0.23 2.60 0.23 2.60  0.19 3.15 0.20 2.99 0.20 2.99
Bream 0.30 2.69 0.32 2.52 0.31 2.60  0.28 2.88 0.29 2.78 0.28 2.88

Goldfish 0.59 2.56 0.62 2.44 0.61 2.48  0.54 2.80 0.56 2.70 0.55 2.75
 

In addition to the approach using pixel-based sorting, we have also tested the row-

based sorting approach for the adaptive PDS algorithms by making use of pixel-

gradients (PG-PDS) or clustering characteristics (CPME-PDS). This is regarded as a 
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compromise between the sorting approach and the problem of non-uniform memory 

access. This approach is not valid for other algorithms in our discussion. Table 4-8 

summarizes the performances in terms of the execution time per frame or per VOP. The 

number of consecutive pixels in a sorted row is indicated by the subscript r, such as PG-

PDSr and CPME-PDSr. Note that after this modification, the PG-PDSr is very closed to 

the approach of AMS-PDS. Comparing Table 4-8 with Table 4-7, it shows that the row-

based sorting can efficiently improve both PG-PDS and CPME-PDS. It confirms that 

the approach using clustering characteristics is more effective than the pixel gradient for 

adaptive PDS technique. It gives better performance as compared to the gradient-based 

approach for all tested sequences. Table 4-7 also indicates that the SEA can attain 

superior results for video sequences on conferencing. Table 4-8 shows that CPME-PDS4 

is able to achieve the best performance for the remaining sequences except the 

“Children”, for which the pixel-based CPME-PDS gives the best computational time. 

On average, the SEA and CPME-PDS4 provide 3.42 and 3.38 times speedup when 

comparing to the FSA. These experimental results confirm that CPME-PDS4 is most 

suitable for motion estimation of sequences containing high motion activities and 

arbitrarily shaped video objects. 

 

4.5 Conclusions 
 

We have proposed an adaptive partial distortion search algorithm entitled as the 

Clustered Pixel Matching Error for adaptive Partial Distortion Search (CPME-PDS). 

The algorithm makes use of the phenomenon that pixel matching errors in a MB with 

similar magnitude tend to appear together in a cluster in natural video sequences. We 

have demonstrated that this is a popular phenomenon for relatively large search 

windows. According to this phenomenon, we have found that both mean of pixel values 

in a target MB and mean of pixel values in a candidate MB are good references to 
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predict the magnitude of each pixel matching error in the target MB. Hence, the mean of 

pixel values in the initial candidate MB at the centre of a search window has been used 

to calculate a reference value and to construct an adaptive index set. As a result, the 

pixel matching error with larger magnitude can be accumulated to the SADp sooner than 

others and the SAD calculation can be terminated at an early stage. We have evaluated 

the efficiency of the CPME-PDS in two measures, the total number of operations and 

the execution time per frame or per VOP in motion estimation. 

In terms of the number of operations, our experimental results show that for a 

small maximum allowable search range, such as D = 1 or some cases of D = 2, the 

conventional PDS is still the best algorithm due to the overheads of fast algorithms. 

However, in a reasonably longer maximum allowable search range, D = 2 to D = 15, the 

computational efficiency of the CPME-PDS outperforms other algorithms for coding 

sequences with high motion activities and arbitrarily shaped objects. In the case of a 

large search window, D = 15, our experimental results show that the CPME-PDS can 

have a speed-up of 3 to 9 as compared with FSA, depending upon the contents of the 

coded video sequences. Hence, the proposed CPME-PDS is generally the best among all 

algorithms. The major advantages of CPME-PDS are its high efficiency and conceptual 

simplicity. Comparing to other adaptive PDS, it requires less overheads. 

When motion estimation time per frame or per VOP is used for evaluation, the 

performance of CPME-PDS is degraded slightly due to the problem of non-uniform 

memory access. Nevertheless, the CPME-PDS is still able to provide the best efficiency 

for sequences with high motion activities and video object encoding. We have modified 

the CPME-PDS into a row-based algorithm in order to remedy the non-uniform 

memory access problem. For example, a row of 4 consecutive pixels with larger 

prediction errors is accumulated to the SADp sooner than other rows. Experimental 

results show that the conventional SEA provides a speed-up of about 3.42 times when 
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comparing to the FSA, and it performs the best for video conferencing sequences.  

Meanwhile, our row-based CPME-PDS, CPME-PDS4 can speed up the search for about 

3.38 times as compared to the FSA on average, and furthermore the CPME-PDS4 

outperforms all other tested algorithms (including the SEA) for encoding sequences 

with high motion activities and arbitrarily shaped video objects. 
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Chapter 5. New Mixed Spatial-DCT-based Coding of 
the Motion Prediction Error Frame of Video 
Objects and Frames 

 
 

5.1 Introduction 
 

In the past decade, various waveform coding techniques such as the ones using 

the Discrete Cosine Transform (DCT), subband/wavelet and vector quantization have 

been developed for video coding. It is well known that subband/wavelet is superior to 

DCT in still image coding. DCT based coding is still popular and researchers are in 

favour of it for video coding [124]. For example, the DCT is widely used in modern 

video compression standards, such as the ITU-T H.263, the ISO MPEG-1, the ISO 

MPEG-2 and the ISO MPEG-4, to achieve high compression efficiency. However, 

using the DCT based coding to perform compression, the motion compensated 

prediction error is far from optimal. The statistical properties of the errors are different 

from that of natural images. The redundancies of errors which are synthetically 

generated by the process of motion compensation cannot be exploited successfully by 

the DCT [117,118]. Moreover, the BMC assumes that the motion between successive 

frames is purely translational. This is not true for most of the real world video sequences. 

All factors including deformation of foreground objects, non-translational motion and 

irregular light variation, will make the BMC fail. The prediction error is generally 

concentrated in a clustered portion of the image even if the FSA is employed. It leads to 

a scattering of the DCT coefficients and makes the compression inefficient. 

To resolve the inefficiency of coding the prediction errors in the DCT domain, in 

this chapter, we introduce a new Mixed Spatial-DCT-based Coding technique (MSDC). 

The MSDC divides a prediction error MB into two components. Each component is 

characterized by its own spatial correlation. One component is then coded by using the 
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binary bit plane coding and variable length coding techniques (VLC), and the second 

component is coded by using the traditional DCT-based method. Results of our 

experimental work show that the MSDC can achieve a better compression efficiency for 

the prediction error when compared with the traditional DCT-based coding technique. It 

can effectively compress the prediction errors of arbitrary shaped video objects and 

video sequences with moderate to high motion activities. Furthermore, enhanced video 

codecs can easily be obtained by embedding the MSDC for high quality video 

applications. 

 In the rest of this Chapter, we firstly illustrate and discuss the observation of 

spatial characteristics of the motion compensated prediction errors. Problems and 

properties related to the Full Search and other fast search algorithms are discussed in 

Section 5.2. Making use of our observations, we will develop a new Mixed Spatial-

DCT-based Coding Scheme (MSDCS). Section 5.3 describes the proposed algorithm in 

details. The performance of the proposed algorithm is then compared with the 

traditional DCT-based coding in terms of the compression efficiency and execution time 

using our computer. A large variety of video sequences and video objects have been 

used for the evaluation. Section 5.4 gives the details of our experimental results and the 

analysis. Finally, some concluding remarks are given in Section 5.5. 

 

5.2 Characteristics of the motion compensated prediction error 
 
 

Making use of motion compensation, modern video coding standards usually can 

attain efficient video compression. In most cases, it is also assumed that the DCT-based 

coding is applicable to process the prediction error if proper motion estimation is used 

in the encoder side. However, as noted before, a possible failure of BMC comes from 

the fact that there is a special distribution of the prediction error. It destroys the energy 
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compaction ability of the DCT. Hence, investigating the distribution of the BMC 

prediction error is important to us for improving the compression efficiency of an 

encoder. 

MPEG-4 supports coding of arbitrary shaped objects with a set of tools. An 

arbitrarily shaped video object plane (VOP) is partitioned into a number of MBs. The 

MBs, which only partially filled with opaque pixel values, are called partial MBs. For a 

reference arbitrarily shaped VOP, its transparent region must be padded to form a 

rectangular shape, such that block-based motion estimation/compensation of the partial 

MBs can be processed efficiently. MPEG-4 makes use of a repetitive padding technique 

[52] to pad an arbitrarily shaped VOP. The transparent region of the reference VOP is 

padded by replicating the boundary pixel values of the VOP towards the exterior. It 

results in a special constant intensity line patterns. This technique can effectively 

compensate the motion of video objects with low motion activity. However, for objects 

with moderate to high motion activities, it is unreliable to use padding to predict the 

pixel values of a partial MB. Consequently, the block-based motion compensation is not 

efficient and the prediction error concentrates at this padded region. Moreover, 

inaccurate video object segmentation may also make the padding inappropriate. A 

segmented video object plane which contains part of a moving object and part of a still 

background is generally the result of inaccurate segmentation. Hence, replicating the 

wrong edge pixel values in the repetitive padding cannot compensate the motion of 

video objects efficiently. Examples of inaccurate video object segmentation are shown 

in Figure 5-1. Figure 5-1(a) illustrates a repetitively padded VOP, the “Goldfish”. The 

padded region is clearly unable to compensate the motion of the objects due to 

luminance variation at the edge region of the video object. Figure 5-1(b) is an example 

of inaccurately segmented object in the sequence “Stefan”. The edge of the object is 
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segmented with part of the still background and thus inefficient padding result is 

available. 

 

 

(a) (b) 

Figure 5-1. Examples of inaccurate video object segmentation (a) a repetitively padded “Goldfish” 
and (b) an inaccurately segmented object in sequence “Stefan”. 

 
Figure 5-2(a) depicts a typical example, for which the prediction errors 

concentrate at the padded region in a MB. In this simulation we have used a fast full 

search algorithm, the partial distortion search (PDS), for motion estimation. The 

situation of using other fast search algorithms is even more serious. The prediction 

errors of the MB, when MVFAST was used in our simulation, are shown in Figure 

5-2(b). It is found that a larger region that contains clustered prediction errors are found 

when compared to that of the result as shown in Figure 5-2(a). Furthermore, the 

magnitudes of the errors are also larger in this case. 

 

Pixel
Error

 

Pixel
Error

 
(a) FS (b) MVFAST 

Figure 5-2. Examples of clustered errors in a motion compensated prediction MB of the video 
object “GoldFish” by (a) FS and (b) MVFAST. 
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The clustering effect of prediction errors occurs not only in partial MBs.  It is well 

known that natural scenes are dominated by low frequency components. Furthermore, a 

natural scene often consists of different correlated pixel regions. These low frequency 

regions are separated by edges. Motion estimation is a matching of a target MB with a 

reference frame. Hence, prediction errors of motion estimation can be regarded as 

regions due to the differences between the smooth parts of the target MB and the 

reference MB. In the meantime, the correlated regions are partitioned by the edges of 

the two MBs. Hence in this analysis, we can assume that the clustered prediction error is 

a characteristic of motion prediction errors. We further make a postulate that an error 

MB at a local minimum containing some regions with small errors and other regions 

with large errors. On the other hand, the error MB at a global minimum is a MB where 

large error regions shrink to some tiny portion or disappeared. However, large clustered 

prediction errors also occur frequently in sequences with high motion activity, even 

though full search algorithm is employed. This undesirable result is due to poor 

prediction of BMC of irregular motion activities. 

Figure 5-3(a) and Figure 5-3(b) are examples of MB’s prediction errors in which 

the PDS and MVFAST are used as motion estimation for sequence “Football”, 

respectively. These examples demonstrate that the clustered prediction errors give 

significant effect for frame based video coding. As mentioned before, the distribution of 

these errors scatters the DCT coefficients and increases the bit-rate of DCT based 

coding results. 

 



 130

x

y

Pixel
Error

 

Pixel
Error

 
(a) FS (b) MVFAST 

Figure 5-3. Examples of clustered errors in a motion compensated prediction MB of the sequence 
“Football” by (a) FS and (b) MVFAST. 

 

5.3 Proposed Algorithm 
 
The clustered error decreases the efficiency of DCT based compression. 

Fortunately, errors join together in clusters. This fact reflects that some spatial 

redundancies remain in this prediction error. We make use of these remaining 

redundancies to improve the compression efficiency of a DCT-based encoder. In the 

following, a detailed description of our proposed algorithm is given. 

 

5.3.1 Separation of the prediction error MB into two components 
 

Our algorithm starts by separating a prediction error into two components. Each 

component is then characterized by its own spatial correlation. Hence, we can apply 

different compression techniques to these two components based on their spatial 

characteristics. According to our discussion in Section 5.2, we know that large 

prediction errors tend to cluster together. This clustering property motivated us to 

separate large prediction errors from an error block. When the magnitudes of the 

remaining error block are small and correlated, the traditional DCT coding can be 

applied directly. Moreover, the clustering property of error components enables us to 

treat them as an arbitrary shaped object plane. We suggest using the context-based 
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arithmetic encoding (CAE) [45,46], which is a technique included in the MPEG-4 for 

binary alpha plane coding, to code separated error components. 

A MB consists of four 8×8 pixels blocks. To separate the prediction errors, Ei(x,y) 

of each block into two components, Eci(x,y) and Edi(x,y), we use a simple approach 

which involves a thresholding accompanied with some modulus operations. Let us 

define, 

 ),(),(),( yxEdyxEcyxE iii += , i = 0 … 3 (5-1) 

where 

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 ),(),(),( yxEdyxEyxEc iii −=  

 TS is a pre-defined threshold to detect peak errors and acts as a scaling 

factor for Eci(x,y). 

 ⋅  denotes modulus operator 

(5-2) 

 

It is obvious that the absolute values of error components in Edi (x,y) are smaller 

than the pre-defined threshold value, TS. This separation cuts down abrupt peak errors 

from Ei (x,y), and thus the traditional DCT becomes more efficient to code the resulting 

Edi (x,y). We can then separate coding of the second error component, Eci (x,y) into two 

parts, namely (i) shape and position of clustered errors, and (ii) magnitudes of the errors. 

The values of Eci (x,y) are multiples of the threshold, TS, because of the modulus 

operation in eqn. (5-2). Hence, we only need to code ( )yxcE i ,′ , that is the quotients of 

Eci (x,y) divided by TS. 

or TSyxEcyxcE ii /),(),( =′  (5-3) 

 

Figure 5-4 demonstrates the shape of a sample Eci(x,y) and it’s corresponding 

quotients, ( )yxcE i ,′ , for the coding to be described below. 
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(a) Eci (x,y) (b) Shape of Eci (x,y) (c) Ec’i (x,y) 
Figure 5-4. The decomposition of an example Eci (x,y) into it’s shape for CAE and the 
corresponding quotients, Ec’i (x,y) for VLC coding. 

 

5.3.2 Compression of the clustering regions with context-based 
arithmetic encoding (CAE) and variable length coding (VLC) 
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?
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(a) (b) 
Figure 5-5. (a) The INTRA template for context construction in CAE. (b) Binary alpha block with 
extended border, “x”s denote contents of the shape. 

 
We use context-based arithmetic encoding (CAE) [45,46] to code the shape of the 

separated error component, Eci (x,y), in a MB, which is adopted in MPEG-4 for binary 

alpha plane coding. A brief introduction of the CAE is given below. The shape of 

Eci(x,y) is compressed with CAE in the intra mode. A block with 16×16 pixels, which 

contains the shape of four Eci (x,y) blocks, is called a binary alpha block (BAB). A 

template of ten pixels is used to define a context number, ∑
=

×=
9

0
2

k

k
kcC . Figure 5-5(a) 

illustrates the intra template for the context number construction. The context number is 

used to index a probability table provided in MPEG-4 for a current pixel. Then, we use 
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the indexed probability to drive an arithmetic encoder. When encoding a BAB, a border 

of width equal to 2 is extended from the current BAB for context number construction. 

The pixel positions in the extended border are padded with zero as depicted in Figure 

5-5(b) in our algorithm. 

The magnitudes of errors in Eci (x,y) are firstly divided by TS as shown in Figure 

5-4(c). We encode the quotients with variable length codes, and raster scan is used to 

scan the MB from left to right and top to bottom. The code words for our VLC are listed 

in Table 5-1. Actually Table 5-1 is part of the variable length codes for DCT 

coefficients in MPEG-2 with the only difference that the meanings of code words have 

been modified. 

Table 5-1. Variable length codes for E’2(x,y). 
E’2(x,y) Variable length code 

1 1s 

2 11s 

3 011s 

4 0100 s 

5 0101 s 

6 0010 1s 

7 0011 1s 

8 0011 0s 

9 0001 10s 

10 0001 11s 

11 0001 01s 

12 0001 00s 

13 0000 110s 

14 0000 100s 

15 0000 111s 

The last bit ‘s’ denotes the sign of a value 
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5.3.3 Mode determination between Mixed Spatial-DCT-Based Coding 
and traditional DCT-based coding 

 
The proposed Mixed Spatial-DCT-Based Coding technique is a way to exploit the 

redundancies remained in the error MBs. These redundancies are due to inefficient 

block based motion estimation and the repetitive padding technique. The traditional 

DCT-based coding is still useful for some MBs. In other words, the MSDC provides an 

additional mode to code the motion compensated prediction error for each MB. We add 

a mode bit to distinguish between the traditional DCT mode and the MSDC mode in the 

resulting bitstream. 

In order to exploit the benefits from these two modes, one simple method is to test 

exhaustively the efficiency of the traditional DCT coding and that of the MSDC for 

each MB. Nevertheless, the computational load introduced in this exhaustive 

comparison is a major problem that we need to resolve. It is obvious that we do not need 

to test a MB when all pixel errors in the MB are smaller than the threshold, TS. 

Experimental results show that this simple technique can save about 21% of the 

computational load caused by exhaustive testing. 

It is always attractive for us to study the possibility of improving the efficiency of 

the MSDC for a MB. If we can predict the possibility accurately, we need only to 

perform the efficiency test to MBs that the MSDC can possibly be able to improve the 

coding efficiency. The spatial distribution of peak pixel errors and their magnitudes are 

factors which affect improvement of the MSDC. It is because these two factors directly 

affect the required number of bits of the CAE and variable length coding. This 

consideration leads us to simply assume that the possibility of using the MSDC is 

proportional to the sum of quantized peak errors, SQPEi, of each block. 

 ∑∑
= =

=
8

0

8

0

/),(
x y

ii TSyxESQPE ,    i = 0…3 (5-4) 
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Hence, only if the corresponding SQPEi is greater than or equal to a speed-up 

threshold, p, the block of error, Ei (x,y), will be separated into two components using 

(5-1) to (5-3). In this case, we can avoid to compute the efficiency comparison between 

the DCT-based coding and the MSDC if the condition in (5-5) is fulfilled. 

 ipSQPEi ∀<  (5-5) 

 

Apparently, the decrease in compression efficiency is a result of increasing p. If p 

is set to 1, this implies to obtain identical results as the exhaustive test. The mode which 

requires a small number of bits for a MB is the resulting mode in our implementation. 

The influence of the speed-up factor p ranging from 1 to 4 has been examined in our 

experiments. Details of our experimental work will be described in Section 5.4.  

 

5.3.4 Mixed Spatial-DCT-Based Coding Scheme (MSDCS) 
 

The above description gives some guidelines for our proposed Mixed Spatial-

DCT-Based Coding Scheme (MSDCS). The scheme makes use of the MSDC to exploit 

the redundancies remained in appropriate error macroblocks and the mentioned mode 

decision technique to speed up the process. The block diagram of the MSDCS is given 

in Figure 5-6. The procedure is summarized as shown below. 

 

Step 1: Code the input motion compensated prediction error, Ei(x,y) in a MB with 

traditional DCT-based coding, and count the required number of bits for the 

MB as BDCT. 

Step 2: Calculate SQPEi of each block with (5-4). If the condition in (5-5) is satisfied, 

go to step 12. 

Step 3: Calculate Edi (x,y) from Ei(x,y) according to (5-2). Set threshold value TS to 16 

in our simulation which has been determined experimentally. 
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Step 4: Calculate ( )yxcE i ,′  using (5-3). 

Step 5: Create the shape of clustered errors with the four ( )yxcE i ,′ s in the MB. 

Step 6: Code the shape of the clustered errors with CAE, which is described in Section 

5.3.2, and count the required number of bits as BCAE. 

Step 7: Code the magnitudes of ( )yxcE i ,′ s with VLC using Table 5-1, and count the 

required number of bits for the MB as BVLC. 

Step 8: Code the Edi (x,y) with the traditional DCT-based coding, and count the 

required number of bits for the MB as Bm-DCT. 

Step 9: Calculate the total required number of bits for the MSDC, BMSDC 

DCTmVLCCAEMSDC BBBB −++=where . 

Step 10: If MSDCDCT BB ≤ , go to step 12. 

Step 11: Set the mode bit to represent MSDC mode, including the mode bit, and use the 

results of step 6, 7 and 8 to form the resulting bitstream; then go to step 1 for 

next MB. 

Step 12: Set the mode bit to represent the DCT mode, and make use of the result of step 1 for 

bitstream formation, and go to step 1 for next MB. 
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A motion compensated prediction error MB, E(x,y)

DCT of Ei(x,y), encode the
coefficients and count the

resulting number of bits for the
MB, BDCT

Calculate Ec`i(x,y) and Edi (x,y),
if SQPEi ≥ p

Create shape of clustered error
with the four Ec`i in the MB

All the four
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Encode shape of the clustered
errors with CAE and count the
resulting number of bits, BCAE

Encode Ec`I (x,y) with VLC and
count resulting number of bits,

BVLC

DCT of Edi(x,y), encode the
coefficients and count the

resulting number of bits for the
MB, Bm-DCT

Calculate BMSDC

BMSDC < BDCT ?

Set the mode bit as MSDC and
send the resulting MSDC

bitstream

Set the mode bit as DCT and
send the traditional DCT bitstream

y

n

n y

Calculate SQPEi for the MB,
i  = 0 … 3

 
Figure 5-6. Block diagram of the proposed Mixed Spatial-DCT-based Coding scheme. 

 

5.4 Experiments 
 

In Section 5.3, we have proposed the MSDCS which exploits the redundancies 

remained in the error MBs to improve the efficiency of the traditional error coding. In 

order to evaluate the coding efficiency of the MSDCS, a large amount of experimental 

works have been done. We used a large variety of video sequences and video objects for 

the evaluation. Sequences “Table Tennis”, “Football”, and “Templete” were used as test 

sequences, while “Goldfish”, “Weather”, “Segmented Stefan”, and “Children” were 

used to test coding performance for arbitrary shaped video objects. The format of the 

above video sequences and video objects are summarized in Table 5-2. 
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Table 5-2. Format of the tested video objects and sequences 

Arbitrary Shaped Video Objects 

Video Object Source format Number of Tested VOPs  

Goldfish 352×288 209 

Weather 352×288 299 

Segmented Stefan 352×240 299 

Children 352×288 299 

Video Sequences 

Sequence Image format Number of Tested Frames 

Table Tennis 352×240 299 

Football 352×240 209 

Tempete 352×288 299 

 

 

The optimization of a coding system is essentially a multi-dimensional problem.  

The key issues concerned in this problem are: bit-rate, quality (PSNR), speed-up (or 

computational gain), algorithmic complexity, memory size and bandwidth.  There is 

always a trade-off among all these five key factors. It is the reason that fast motion 

estimation algorithms have attracted a lot of attention in the past decade. In order to 

evaluate the compatibility of the MSDCS, we have compared the coding results of our 

proposed scheme and the traditional DCT-based prediction results of the PDS which is a 

fast full search algorithm and the MVFAST which is a lossy fast algorithm. For the 

optional mode of the  MVFAST, no early elimination of search was used in all of our 

experiments. Hence, the motion estimation of a MB can only be terminated if a 

local/global minimum has reached. 

We performed the simulations on a standard desktop computer. The configuration 

of the platform was Intel P-III 600MHz desktop PC with 256M RAM and Windows 

2000. The software platform used and modified was based on MPEG-4 VM14.0, 

Microsoft C++ implementation package [131,132]. The coding type was “IPPP…” for 
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all tested sequences and video objects. Each macroblock in P-Frame/P-VOP was coded 

in inter mode with one motion vector only. The motion vector was estimated by the 

PDS or MVFAST with half pixel accuracy. In our simulation, no frame skipping was 

applied for all experiments. 

To determine the value of TS, we have performed a set of experiments to find the 

separation of large errors from an error block in order to have the best rate distortion 

performance. At the beginning, two thresholds T and S have been used to separate large 

errors from an error block and to scale the large error components. The separation is 

formulated as shown below, 

),(),(),(
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),(),(

),(

),(),(),(

yxEdyxEyxEc

otherwiseTyxE
TyxEifyxE

yxEd

yxEdyxEcyxE

S

−=







−
≤

=

+=

 

The experiments were done by using with T ranging from 16 to 52 and S ranging 

from 16 to 36, all with an increment of 4. We have found that if T and S = 16, this 

results in a degradation of about 0.03dB PSNR performance in the best video quality 

and the PSNR is 49.48dB. However, it provides 10% decrease in bitrate, from about 195 

to 177.5 kbits per VOP when comparing to the traditional DCT technique. At a quality 

of about 42.8dB PSNR, with T and S = 16 only about 0.2dB PSNR degradation results, 

whilst about 13% of the bitrate is saved. The required bitrate reduces from 92 to 

81.5kbits per VOP. At a video quality of about 37.78dB PSNR, the case with T and S = 

16 not only provides about 6% saving in bitrate and it also results in 0.05db PSNB 

improvement. Hence, we have grouped T and S to be a single threshold TS and set it to 

16 in all of our experiments. 
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Table 5-3. Comparison of the additional execution time per frame with different speed up factor p 
in the MSDCS. 

Additional computational time of the MSDCS  

PDS MVFAST p = 0 p = 1 p = 2 p = 3 p = 4 

Arbitrary Shaped Video Objects 

Goldfish 0.334 0.023 0.056 0.043 0.040 0.038 0.036 

Weather  0.091 0.008 0.025 0.017 0.014 0.013 0.011 

Segmented 
S f

0.065 0.003 0.008 0.008 0.008 0.008 0.008 

Children 0.118 0.008 0.022 0.020 0.018 0.017 0.016 

Video sequences 

Table Tennis 0.356 0.021 0.078 0.047 0.040 0.036 0.033 

Football 0.496 0.025 0.082 0.062 0.056 0.052 0.050 

Tempete 0.426 0.026 0.098 0.083 0.076 0.071 0.067 

 

To analyze the proposed mode prediction method, we evaluated the additional 

computational load of the MSDCS in terms of execution time with a different speed-up 

threshold, p. Table 5-3 summarizes the execution time of the PDS, MVFAST and 

additional computation of the MSDC with p ranging from 1 to 4. Note that exhaustive 

comparison between the two modes for every MB is performed with p being set to zero. 

Our experimental results show that, with p = 1, about 21% of the introduced 

computational load can be avoided on average and without any degradation of rate-

distortion performance. More computation can be saved with increasing p. According to 

our experiments, on average, by setting p = 4, a further 21% of the introduced 

computation can be avoided when comparing to the situation of p = 1, and only about 

0.3% of bit rate was increased, with same PSNR coding quality. The comparison is 

depicted in Figure 7 to Figure 11. 
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Figure 5-7. Coding performance for the video object “Goldfish” with different quantization 
parameter, Qp ranged from 1 to 7. 
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Figure 5-8. Coding performance for the video object “Weather” with different quantization 
parameter, Qp ranged from 1 to 7. 
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Figure 5-9. Coding performance for the video object “Segmented Stefan” with different 
quantization parameter, Qp ranged from 1 to 7. 
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Figure 5-10. Coding performance for the video object “Children” with different quantization 
parameter, Qp ranged from 1 to 7. 
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Figure 5-11. Coding performance for the sequence “Table Tennis” with different quantization 
parameter, Qp ranged from 1 to 7. 

 
The coding efficiency was evaluated for the luminance component only. We 

compared the rate-distortion performance of the DCT-based coding to that of the 

MSDCS by varying the quantization parameter, Qp. Figure 5-7 to 5-11 depict the rate-

distortion performances of all tested video objects and sequences. The results show that 

the MSDCS can outperform the traditional DCT-based coding especially in the high 

video quality region. This advantage vanishes gradually with increasing value of Qp. 

The reason is that the bitstream of MSDC consists of three components, bits of CAE, 

VLC and quantized DCT coefficients. Only the last component is a function of Qp. The 

bits required for coding CAE and VLC remain fairly constant; hence for low bitrate 

situation they dominate the bit rate requirement. However, experimental results as 

shown in Figure 5-7 to 5-10 still confirm that for the tested video objects, the MSDCS 

can achieve better rate-distortion performance comparing to the traditional method for 

Qp ranging from 1 to 6. On average, with the same PSNR, the MSDCS saves about 5% 

to 12% of the bitrate, depending upon the contents of the tested video objects. The 
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improvement given by the MSDCS in the tested sequences is not as significant as the 

situation in the tested video objects. The corresponding bitrate saving ranges from 1% to 

6% on average. 
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Figure 5-12. Coding performance for the sequence “Football” with different quantization 
parameter, Qp ranged from 1 to 7. 
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Figure 5-13. Coding performance for the sequence “Tempete” with different quantization 
parameter, Qp ranged from 1 to 7. 

 
Figure 5-11 to 5-13 show that the MSDCS can still obtain better rate-distortion 

performance in high video quality situation, when Qp ranges from 1 to 3. From Figure 

5-11, sequence “Table Tennis” gives the best performance among three tested 

sequences. High motion activity and complex background with camera motion in the 

“Table Tennis” are the main reasons of this result. These factors are the causes of 

clustered prediction error and thus the DCT-based coding for these error MBs can be 

improved by the MSDC. From our simulation results, it is verified that the MSDC 

successfully improves the coding efficiency of MBs with clustered prediction errors. 

Hence, the proposed MSDCS is very suitable for coding arbitrary shaped objects or 

sequences with complex motion activity in high video quality application. 

Moreover, it is worth to point out that the MSDCS accompanied with the 

MVFAST provides similar, even much better rate-distortion performance when 

comparing to the results of PDS with traditional DCT-based coding in all of our 

experiments. In addition, the required computational time is reduced significantly. We 
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have found that about 80% of computational time and 7% of bitrate saving are 

achievable for all tested video objects on average. 

5.5 Conclusions 
 

In this Chapter, we have proposed a new algorithm, the Mixed Spatial-DCT-

Based Coding Scheme, for coding motion compensated prediction errors. The algorithm 

makes use of the phenomenon that pixel matching errors in some MBs tend to appear 

together in a cluster form. The reasons of this phenomenon include inefficient block 

based motion estimation, inaccurate segmented video objects, results of repetitive 

padding in MPEG-4, and high and complex motion activities. The proposed algorithm 

exploits the redundancies remained and caused by these phenomena in an error MB. 

Our experimental results show that the algorithm successfully improves the coding 

efficiency of the traditional DCT-based coding for MBs with clustered prediction errors. 

On average, with reasonable additional computation, the proposed algorithm saves up to 

12% of the bit rates comparing to the results of the DCT-based coding when the same 

PSNR is used for all testing video objects and sequences with high video quality. The 

average required time for additional computation is about 1.9 to 2.4 times of the 

execution time for MVFAST. When comparing to the fast full search algorithm, PDS, 

only 13% to 19% of the execution time of the PDS is required. It is lesser than the 

required execution time if the optimal coding performance is used in a traditional 

coding system. The major advantages of the MSDCS include conceptual simplicity, and 

well defined CAE and VLC technique in the modern video codec. This also allows an 

easy way to improve an existing video codec by embedding the proposed MSDCS into 

it. Generally speaking, the proposed algorithm is extremely suitable for coding arbitrary 

shaped video objects or sequences with complex motion activity for high video quality 

coding applications. 
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Charter 6. Extended analysis of motion-compensated 
frame difference for block-based motion 
prediction error 

 

6.1 Introduction 
 

Transform coding method with motion-compensated prediction, abbreviated as 

hybrid interframe coding, is one of the most essential methods for modern video coding 

standards. In this method, motion-compensated prediction errors in a block are 

transform coded by the DCT. To limit the generated amount of bits, a quantizer carries 

out quantization to discard some part of transform coefficients. 

Most of the work for the design and optimization of the hybrid video codecs is 

carried out experimentally. A proper theoretical treatment of motion-compensated video 

coding is still valuable for the design of state-of-the-art video codecs, even though it 

requires many assumptions and simplifications for the analysis of a complicated system 

processing real-world signals. Furthermore, even an approximate theory can provide 

useful insights in the underlying mechanisms of the video codecs. In 1987, the first 

comprehensive rate-distortion analysis of motion-compensated prediction (MCP) was 

presented [20]. This theoretical framework leads motion-compensated video coding 

away from heuristics and toward an engineering science. Afterward, a lot of research 

activities investigate this subject in depth and develop many different techniques for 

efficiency improvement [21, 23-27, 115, 116, 119, 125, 126]. These techniques include 

motion-compensation with fractional-pixel accuracy [23], overlapped block motion 

compensation [24-27], loop filtering technique [126], etc. 

To design an optimal coding algorithm, a signal-source model that is sufficiently 

accurate to reflect the practical signal characteristics is required. The first-order Markov 

process has been proven to be a successful model for still image analysis. This model is 
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accurate for the correlation relationship for smooth image, and it even works fairly well 

for the first few steps in more active images. By using the model, the correlation 

coefficient ρ for natural image is often suggested as 0.95. Hence, we consider that the 

DCT is a very close approximation of the optimum KLT and widely employed for video 

coding. However, for motion-compensated errors signal, the situation is very different. 

It has been observed that the MCP errors at block boundaries tend to be larger than 

those at block centers [25]. It means that they are space-dependent and the assumption 

of wide-sense stationary (WSS) is not valid. As a result, it is inaccurate to employ the 

simple Markov model for the MCP errors. 

In [115], Chen and Pang proposed a compound covariance model (CP model) 

theoretically and demonstrated that the DCT performs nearly optimal in intraframe 

coding. Nevertheless, this investigation still assumed that the prediction errors are WSS 

across a block. For the objective of reduction and equalization of the MCP errors across 

a block, overlapped block motion compensation (OBMC) has therefore developed. In 

[116], it confirms that means and standard deviations of the errors may change 

significantly from block to block. Hence Niehsen and Brünig, proposed another 

different compound covariance model (NB model) empirically, which takes the OBMC 

into account. According to their experimental results, they claimed that their model 

closely fit the characteristic of practical signals. The major disadvantage of this model is 

it lack theoretical basis, and thus using of this model for other analytical purposes is 

limited. To resolve the problem, we assume that a net deformation of pixels in a block 

along a certain direction is a more general situation. We improve the CP model to 

propose a covariance model analytically by making use of this assumption. Our 

proposed model reflects the characteristics of practical prediction errors fairly well and 

comparable to the empirical model proposed in [116]. Moreover, our model explains the 

deviation of the compound model [115]. 
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The outline of this study is as follow. Section 6.2 presents the derivation of a 

mathematical model for autocorrelation of block-based motion prediction error. Our 

derivation is originated from a similar direction as that of [125], such that it is easy to 

show that the compound model [115] can be obtained from our model analytically. This 

work is also given in Section 6.2. Section 6.3 shows our simulation results, and 

comparing to other models. The experimental results given from [115, 116, 125] verify 

the accuracy of our model. The last Section 6.4 summarizes and concludes this study. 

6.2 Modeling of the autocorrelation of block-based motion 
prediction error 

 
The simplicity and analytical tractability make the AR(1) as a popular model in 

still image and image sequence processing. Our model is also derived based on a first-

order Markov statistics (or first order Autoregressive AR(1)) model with image 

correlation coefficient equal to ρ.  

For a block of pixels ft(i,j) in a frame at time t, the block-based motion 

compensation uses a matched block ft-1(i+u,j+v) in a reference frame at time t-1 for 

prediction. Hence, the motion prediction error is given by, 

 ),(),(),( 1 vjuifjifjie tt ++−= −  

where ( )vu,  represent the motion vector of the block. 

(6-1) 

The autocorrelation function, Ce(I, J) of the prediction error is then given by, 
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where ( )⋅⋅,fC  is the autocorrelation function of with correlation coefficient ρ. 

 ( )⋅⋅,,tfC  is the cross-correlation function between a frame at time t and the 

 reference frame at time t-1.  

(6-2) 
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We assume that the matched block ft-1(i+u,j+v) can be approximated to the current 

block  ft (i, j) with reasonable deformation. That is 

 ( )vjuifnjmif tyxt ++≈++ − ,),( 1  (6-3) 

The deformation vector (mx,ny) represent the deformation of each pixels in the current 

block. Note that, in this modeling, the magnitudes of mx and ny are not related to that of 

the u and v directly. They only depend on the matching or correlation between the 

matched block, ft-1(i+u, j+v) and the current block, ft (i, j). By substituting (6-3) into  

(6-2), we can have, 

 ( ) ( ) ( )[ ] ( )yxtftyxttf nJmICJjIifnjmifEvJuIC −−=++++≈−− ,,,, ,,  (6-4) 

The reasons for the block deformation include failure of block-based motion model for 

moving parts, light variation, inaccurate of motion compensation (i.e. inaccuracy due to 

digitized image), and noise. We regard the deformation vector is a pair of independent 

random variables, and the expectation value of the autocorrelation function, Ce( I, J ) is 

represented as, 

 ( )[ ] ( ) ( )[ ]yxtffe nJmICEJICJICE −−−= ,2,2, ,  (6-5) 

By applying separable 2-dimensional AR(1) model, we get 

 ( ) JI
ff JIC ρρσ 2, =  

where 2
fσ  is variance of the pixels value in AR(1) model. 

(6-6) 

and 

 ( )[ ] 



=−− −− yx nJmI

fyxtf EnJmICE ρρσ 2
, ,  (6-7) 

For the sake of simplicity, a separable autocorrelation model is our objective. Hence, 

(6-7) along x-axis is expressed as 

 ( )[ ] ][][, 2
,

yx nJmI
fyxtf EEnJmICE −−=−− ρρσ ; I  ≥ 0, J = 0 (6-8) 

The [ ]xmIE −ρ  can be computed as 



 151

 [ ] ( )∫ −− = x
mI

x
mI dmmpE xx ρρ  

where p(mx) is the probability density function (pdf) of mx. 

(6-9) 

At this stage, we make an assumption that pixels in a deformed block tend to 

deform along a definite direction rather than deformed randomly. In other words, a 

mean vector of the deformation vectors (mx,ny) is not regarded to be zero according to 

our assumption. This assumption is based on the translational nature of part of an object, 

partial rotation of a moving part, zooming and inaccurate of motion compensation. 

Figure 6-1 illustrates the idea of our assumption using a one-dimensional example. 
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Current Block

Motion Compensated Block

Pixel value at integer pixel location

Pixel value at sub-pixel location by interpolation

Motion vector of each pixel

Figure 6-1. Illustration of an assumption that pixels in a deformed block tend to deform along a 

definite direction 

It demonstrates that part of a curent block is not predicted accurately enough, because 

not all pixels in the block translated in the same direction and their moving distances are 

not identical.  However, they still present some motion tendency. Hence, we refine (6-9) 

with the above consideration. Then (6-9) becomes 

 [ ] ( )∫ −− = x
mI

xx
mI dmmpE xx ρµρ ,  

where xµ  is the x-component of the mean deformation vector. 

(6-10) 
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In fact, (6-7) represents the variance-normalized cross-correlation function 

between the matched block and the current frame in terms of the image correlation 

coefficient, ρ. It is a matching or correlation measure of the matched block in the 

current frame conceptually. The assumed block deformation makes the cross-correlation 

function, ( )[ ]yxtf nJmICE −− ,,  and the error autocorrelation function depend on the 

direction of the mean deformation vector. However, an error autocorrelation function 

must be an even function with respect to I. To remedy this directional dependence, we 

only consider the absolute value of µx. Then we further assume that µx is randomly 

distributed. It gives 
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mI ddmpmpE xx µρµµρ ∫∫

−− =  

where ( )xp µ  is probability density function of µx. 

(6-11) 

Without loss of generality, we use Gaussian distributions to represent the 

conditional distribution function, ( )xxmp µ  and the pdf, ( )xp µ . The [ ]xmIE −ρ  is then 

given by 
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where σµ  is the standard deviation of the mean deformation vector. 

 σmv is the standard deviation of the deformation vectors in a single 

 block. 

(6-12) 

Assuming that the block deformation in the x- and y- dimension can be modeled 

with same standard deviations σµ  and σmv, the error autocorrelation function along x-

direction in (6-5) can be expressed as 

 ( )[ ] { }][][2, 2 yx nJmIJI
fe EEJICE −−−= ρρρρσ ;  I  ≥ 0, J = 0 (6-13) 

and the variance-normalized autocorrelation function of the block prediction error is 

given by 
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The result of (6-14) can be obtained by numerical calculation. However, this form is not 

convenient for analytical purpose. We have described the derivation of its approximated 

form below. 

We use an expected value of the mean deformation vector in (6-11), instead of 

using the pdf, p(σx) to approximate the autocorrelation model. The expected value of the 

mean deformation vector is 
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(6-15) 

We rewrite (6-12) by using this expected value.  
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(6-16) 

These two integration is expressed involving error function, erf(z). Finally, we have 
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(6-17) 
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Now, using the 6-17), we can approximate the variance-normalized autocorrelation 

function of the block prediction error which given by (6-14) as 
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(6-18) 

Finally, we express a separable 2-D variance-normalized autocorrelation function as, 
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A detailed derivation of (6-19) is shown in Appendix B-B.1. 

In fact, the function ( )
0

,,,,
=

ℜ
JmvxJI ρσµ  is equivalent to the role of A(a) in 

[125] in 1-D case, which is shown by (2-39).  

Moreover, we can show that the compound covariance model, (2-39), proposed in 

[125] can be obtained from (6-18). The model of (2-39) is a one-dimensional case that 

derived based on a translational motion model and a composite motion-estimation-error 

probability density function (pdf) consisting of a uniform pdf for the granular estimation 

errors and an impulse pdf for the background regions with zero estimation errors. 

To derive the (2-39), we assume that a video sequence with very low motion 

activity is under simulation. For this reason, block-based motion model can properly 

compensate the motion of each block between successive frames, and thus xµ  and mvσ  

are set equal to zero and 0.5 respectively. Using the properties of erf(z), 
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, an approximation of (6-17) can be obtained. For |I| equal to zero, we express the )(⋅erf  

in (6-17) as the first term of its expanded series, and for |I| greater or equal to one, the 

)(⋅erf  is expressed as unity. Hence, (6-17) is approximated as 



 155

 

[ ] ( )
( ) ( )( )

( )( )

( )
( )














⋅+=




















−−−⋅−+




















−++≈







−







 −−







−

−

Iee

Ie

IIeeE

mv
I

mv

mvImI

mvmv

mv

mvmv
x

δρσ
π

ρ

δρσ
π

δδρσ
π

ρρ

ρσρσ

ρσ

ρσρσ

ln21

1
2
ln21

1
2
ln21

2
1

22

2

22

2
ln

2
ln

2
ln

2
ln

2
ln

 

(6-20) 

Let ρσ
π

β
ρσ

ln2
2

2
ln

mv

mv

e






−

= , and substituted into (6-20). As a result, 

 
( )

( ) ( )[ ] [ ]
( ) [ ]

( )[ ]IAA
e

Ie
IC

I

I
e

mv

mv

mvx

δρ
β

ββδ
ρ

ρσ

ρσ

σµ

)1(
11

111
0,~

2ln

ln

,, 2

2

−+=
+−

+⋅+−
≈

 
(6-21) 

Where 
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The numerical value of A is equal to 0.497 with ρ = 0.95 and σmv = 0.5. (2-39) is arrived. 

The detailed mathematical deduction of (2-39) is shown in Appendix B-B.2. 

In Matrix form, 
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(6-23) 

 

It is equivalent to the corresponding Toeplitz form of eqn. (2-30), which is shown in eqn. 

(2-34). 

 

6.3 Simulation Results 
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Let us consider an analytical treatment of the motion-compensated frame 

differences (MCFD). A covariance model that can represent the empirical covariance 

result accurate enough is required. Hence, it is necessary to verify a covariance model 

by comparing its fitness to empirical results. We made use of the experimental results 

form [115, 116 and 125] to compare the fitness of our model with that of the CP model 

and the WNMB model. The empirical result of “Trevor” sequence extracted from [125] 

and the result of sequence “Miss America” in [115] are used to evaluate the accuracy of 

our model and compared to the CP model in 2-D situation. Besides, we have compared 

the accuracy of our model with that of the WNMB model in 1-D case by using the 

statistical result of a number of standard sequences in [116]. 

Figure 6-2 depicts the 3-D plot of an autocorrelation function of MCFD signals 

generated from Trevor images [125]. The spatial autocorrelation function of the Trevor 

image has a high value with ρ = 0.99 [125].  

 
Figure 6-2. Autocorrelation function of MCFD signals generated from Trevor sequence [122]. 

 
The result of our improved model is plotted in Figure 6-3(a) by substituting ρx = 

ρy = 0.99, σx = σy = 1.15, and µx = µy = 0.75 into (6-19). We have plotted the result of 

CP model with ρx = ρy = 0.99 in Figure 6-3(b) for comparison. According to the 

prediction from CP model, the autocorrelation function is decreasing slowly for 1, ≥JI . 

It deviates significantly from the empirical result. However, the improved model can 
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represent the autocorrelation function more accurately when comparing to the original 

CP model. It correctly represents the rapidly decreasing autocorrelation for 1, ≥JI . 

 

  
(a) Improved CP model (b) CP model 

Figure 6-3. Representation of the autocorrelation function of Trevor’s MCFD signals by separable 
models (a) our improved model, (b) original CP model. 

 Let us use another experimental result, the autocorrelation function of MCFD of 

the   sequence “Miss America” in [115], to evaluate the accuracy of our model and that 

of the original CP model. The pixel correlation coefficients are 0.88 and 0.80 in the 

vertical direction (indicated by arrow J) and horizontal direction (indicated by arrow I) 

[115]. The corresponding autocorrelation function of the MFCD is shown in Figure 6-4. 

 

 
Figure 6-4. Autocorrelation function of MCFD of the sequence Miss America. 

 
Figure 6-5(a) illustrates the representation of the autocorrelation function of Miss 

America’s MCFD signals by our improved model with the following parameters ρx = 

0.80, ρy = 0.88, σx = σy = 1.15, and µx = µy = 0 in (6-19). Meanwhile, Figure 6-5(b) 
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gives the result of the original CP model with ρx = 0.80 and ρy = 0.88. Figure 6-5 shows 

that both models can compare favorably with the experimental results in Figure 6-4. 

Because, the original CP model does not concern practical motion properties of a video 

sequence, it assumes that the block based motion estimation can successfully 

compensate motion of each pixel in a block. This assumption is only valid in sequence 

with very slow motion activities, such as the Miss America. However, we can still find 

that, in the I-direction, the CP model shows a sudden drop of autocorrelation value at 

I=1, which is not correct when compared to the empirical result in Figure 6-4. The 

improved model can represent the trend of the autocorrelation function in both 

directions correctly.  

 

  
(a) improved CP model (b) Original CP model 

Figure 6-5. Representation of the autocorrelation function of Miss America’s MCFD signals by 
separable models (a) improved CP model, (b) original CP model. 

 
In [116], the authors used four MPEG test sequences to verify and proposed their 

1-D NB model, which empirically fitted in the sense of the l1-norm. Their experimental 

results are shown in Figure 6-6. Figure 6-6 gives the maximal, minimal and mean of the 

normalized autocorrelation functions of the MFCD at different pixel distances. We use 

these results to evaluate the fitness of the original 1-D CP model, the NB model and the 

improved CP model. The original 1-D CP model, the NB model and the improved CP 

model are given in (2-39), (2-40) and (6-18) respectively. In this simulation, we set ρx = 
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0.95, σx = 1, and µx = 1 in (6-18). We chose these values for σx and µx  in order to fit the 

experimental results close enough. The value of ρx = 0.95 is chosen identical to the 

original CP model. 

In Figure 6-6, we can find that the original CP model does not fit accurately the 

empirical autocorrelation of the MCFD incorrectly. The CP model decreases slowly 

with pixel distances, 1≥I , which is different from the empirical results significantly. 

The NB model fits the experimental results closely, because the required parameters of 

the NB model are chosen to fit the experimental result in the l1-norm sense. However, 

this model is purely empirical and without any theoretical foundation. The usage of this 

model for analytical purposes is seriously limited. On the other hand, the improved CP 

model successful represents the autocorrelation function of the MCFD as shown in 

Figure 6-6. Moreover, the improved model is derived from the simple first order 

Markov model and including the consideration of a net deformation of pixels in a block 

due to imperfect block-based motion compensation. Hence, the improved CP model is 

suitable for analytical design and investigation of signal decomposition algorithms in 

motion compensation. For instance, using of σx = 1, and µx = 1 indirectly suggests that 

the motion compensation errors in a block is not distributed uniformly. It is a property 

of the motion compensation error that induces a widely study of the OBMC algorithms 

in video coding. Moreover, it also explains the deviation of the CP model from 

empirical results, which is due to the lack of concern about practical block-based motion 

compensation in an encoder. 
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Figure 6-6. Comparison of the predicted autocorrelation function by the tested models to the 
experimental results. 

 
 
 

6.4 Conclusion 
 

A proper theoretical treatment of motion-compensated video coding is valuable 

for the design of most advanced video coding system, even though it requires to have a 

number of assumptions and simplifications for the analysis of real-world signals. 

In this study, we have shown that the first order Markov model can be used to 

derive an approximate separable autocorrelation model for the block based motion 

compensation difference signal. In the derivation, we have assumed that a net 

deformation of pixels is directional in general situation rather than a uniform error 

distribution in a block. We have improved the original CP model by proposing a 

covariance model analytically making use of this assumption.  Simulation results show 

that, the improved CP model can describe the characteristics of the MCFD signals 
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accurately. We have also found that the concern of imperfect block-based motion 

compensation is one important step to study the motion-compensated coder; otherwise 

the autocorrelation function of the MCFD signals cannot be expressed correctly. As a 

result, we can utilize this improved model to provide some useful insights for analytical 

design and investigation of video signal decomposition algorithms. 
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Chapter 7. Conclusion 
 
 

7.1 Conclusion on this investigation 
 

In this multimedia era, different applications and services require the 

communication and interactive functions in the form of text, audio, image and video. 

However, the transmission and storage requirements of these multimedia data are very 

critical, especially for the video data. Consequently, these requirements motivate the 

rapid development of video compression standards, such as the ITU-T H.261, the ITU-T 

H.263, H.264 the ISO MPEG-1, the ISO MPEG-2 and the ISO MPEG-4. Both types of  

standards using block-based motion estimation techniques to exploit the temporal 

redundancies from frame to frame in order to achieve the purpose of high compression 

ratio. However, the amount of computation for motion estimation may take up to about 

90% of the execution time of the whole encoding system on average if the conventional 

Full Search Algorithm is employed. Hence, there is a huge need for low computational 

complexity motion estimation techniques which do not significantly degrade the image 

quality. In addition, the motion estimation and compensation techniques used in MPEG-

4 can be seen as an extension of the standard MPEG block matching techniques for 

image objects with arbitrary shapes. Nevertheless, the situation of motion estimation in 

the boundary region of an arbitrary shaped object is more complex. Severe 

optimizations are necessary. Hence we concentrate on developing different efficient 

motion estimation algorithms for a modern video encoder.  

In Chapter 3, we propose a new priority search algorithm (PSA) for motion 

estimation in MPEG-4. For an arbitrarily shaped object, we perform motion estimation 

on all boundary MBs first in contrast to the conventional raster-scanning approach. The 

motivation behind the new search strategy is that opaque MBs which are inside a 
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moving video object are correlated highly with moving boundary MBs. We estimate 

motion vectors (MVs) of the opaque MBs by taking the best-matched MV among all its 

neighboring MVs and the zero MV as the initial centre. For searching, we make use of  

conventional fast block matching algorithms such as the Diamond Search. Our 

experimental results show that this strategy can provide good searching results if the 

motion vectors in the boundary MBs truly represent the moving video object. Hence, a 

novel fast search algorithm is thus designed for the boundary MBs, which is referred to 

as the binary alpha-plane assisted search (BAAS). Note that the error surface of a 

boundary MB is more complex than that of an opaque MB due to the repetitive padding. 

The assumption that a distortion function increases monotonically as the search location 

moves away from the global minimum is not valid. However, it is still reasonable for us 

to assume that it is monotonic in a small neighborhood around the global minimum. We 

use a binary alpha-plane to examine a number of candidate points, which are distributed 

uniformly in a search window. We can select a limited number of starting points but this 

still provides a high chance of catching the global minimum for the boundary MBs. The 

reason for us to incorporate the binary alpha-plane in BAAS is to reduce the required 

computational load. The information of the binary alpha-plane can be exploited by 

simple bitwise operations. These operations require less computation as compared to the 

operations for Sum of Absolute Difference (SAD). Experimental results show that, 

when compared to conventional methods, our PSA coupled with the BAAS can reduce 

the heavy computational burden in motion estimation without significantly increasing 

the prediction error of the motion-compensated frame. The proposed algorithm can 

produce a motion-compensated VOP that are tied more closely to the video object. It is 

significantly better than that of the famous DS and substantially improves the accuracy 

of block motion estimation for MPEG-4 video objects. On average, the proposed 

algorithm can speed up the motion estimation about 23 times in terms of the total 
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number of operations when compared to the FSA. We believe that results of our work 

will certainly be useful in the future development MPEG-4 codecs. 

Many conventional fast algorithms including our PSA proposed in Chapter 3 

produce some quality degradation of a predicted image. Alternatively, another kind of 

fast algorithms that do not introduce any prediction error as compared with the full-

search algorithm have been widely studied in the coding field. The partial distortion 

search (PDS) is a well-known technique of this kind of algorithms. In Chapter 4, we 

propose an adaptive partial distortion search entitled as the Clustered Pixel Matching 

Error for adaptive Partial Distortion Search (CPME-PDS) which significantly improves 

the computation efficiency of the original PDS. In the literature, many researchers 

assumed that pixels with larger gradient magnitudes have larger matching errors on 

average and make used of this assumption to improve block-matching algorithms. On 

the other hand, we have found that on average, pixel matching errors with similar 

magnitudes tend to appear in clusters for natural video sequences. Our experimental 

results show that, by using this clustering characteristic, the CPME-PDS gives much 

better computational efficiency than other algorithms which make use of the pixel 

gradients, especially for  encoding sequences with high motion activities and arbitrarily 

shaped video objects. In the CPME-PDS, we used the mean of pixel values in the initial 

candidate MB at the centre of a search window to determine the order of each pixel 

matching errors that accumulate to a partial SAD. As a result, pixels matching error 

with larger magnitudes can be accumulated to SADp sooner than others and the SAD 

calculation can be terminated at an early stage. We have evaluated the efficiency of the 

CPME-PDS in two measures, the total number of operations and the execution time per 

frame or per VOP in motion estimation with a wide variety of sequences. In terms of the 

number of operations, the CPME-PDS and the original PDS can have a speed-up of 

3.93 and 5.71 on average as compared with FSA, respectively. When motion estimation 
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time per frame or per VOP is used for evaluation, the performance of CPME-PDS is 

degraded slightly due to the problem of non-uniform memory access. Hence, we have 

modified the CPME-PDS into a row-based algorithm in order to remedy the non-

uniform memory access problem. For example, a row of 4 consecutive pixels with 

larger prediction errors is accumulated to the SADp sooner than other rows. 

Experimental results show that our row-based CPME-PDS4 and the original PDS can 

speed up the search for about 3.38 times and 2.56 as compared to the FSA on average. 

Hence, we conclude that the CPME-PDS improves the original PDS significantly. 

  After the processes of motion estimation, the motion prediction error is then 

coded by using the discrete cosine transform (DCT) to achieve high compression 

efficiency. The DCT is widely used in modern video compression standards. A major 

merit of the DCT is its capability in high energy compaction for still natural images. 

Hence, DCT based coding is popular for video coding. Nevertheless, the motion 

prediction error frame is not a natural image but synthetically generated by the process 

of motion compensation. This process degrades the energy compaction efficiency of the 

DCT. As a result, using the DCT based coding to perform compression for the motion 

prediction error is far from optimal. 

In Chapter 5, we study the spatial distribution of the prediction errors resulting 

from either the full-search motion estimation or other fast search algorithms. We have 

then proposed a new algorithm, the Mixed Spatial-DCT-Based Coding Scheme 

(MSDCS) to resolve the inefficiency of coding the prediction error in the DCT domain. 

The algorithm makes use of the phenomenon that pixel matching errors in some MBs 

tend to appear together in a cluster form. The reasons of this phenomenon include 

inefficient block based motion estimation, inaccurate segmented video objects, results 

of repetitive padding in MPEG-4, and high and complex motion activities. The MSDCS 

exploits the redundancies remained and caused by these phenomena in an error MB. 
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The proposed algorithm divides a prediction error MB into two components. Each 

component is characterized by its own spatial correlation. One component is then coded 

by using the binary bit plane coding and variable length coding techniques (VLC), and 

the second component is coded by using the traditional DCT-based method. Our 

experimental results show that the algorithm successfully improves the coding 

efficiency of the traditional DCT-based coding for MBs with clustered prediction errors. 

On average, with reasonable additional computation, the proposed algorithm saves up to 

12% of the bit rates comparing to the results of the DCT-based coding when the same 

PSNR is used for all testing video objects and sequences with high video quality. The 

average required time for additional computation is about 1.9 to 2.4 times of the 

execution time for MVFAST. When comparing to the fast full search algorithm, the 

PDS, only 13% to 19% of the execution time of the PDS is required. It is less than the 

required execution time, such that the optimal coding performance can be obtained in a 

traditional coding system. The major advantages of the MSDCS include conceptual 

simplicity, and well defined CAE and VLC techniques for a modern video codec. This 

also allows an easy way to improve an existing video codec by embedding the proposed 

MSDCS into it. Generally speaking, the proposed algorithm is extremely suitable for 

coding arbitrary shaped video objects or sequences with complex motion activity for 

high video quality coding applications. 

In the past decade, various transform coding techniques such as the one using 

DCT, subband/ wavelet and vector quantization have been developed for video coding. 

Among these coding techniques, the DCT based coding is still the most popular for 

various video coding standards. For a natural image, correlation coefficient ρ = 0.95 is 

often suggested, and the discrete cosine transform (DCT) is often employed for its 

energy compaction capability. Because the DCT is a very close approximation of the 

theoretically mean-square optimal Karhunen-Loève Transform for an first order 
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autoregressive, AR(1), process with ρ = 0.95. However, the statistical properties of 

motion prediction errors  (MPE) are different from that of natural images. Some 

researchers are still questioning that there is no theoretical basis that can clearly predict 

the suitability of the DCT for encoding the motion prediction errors. Moreover, a proper 

theoretical treatment of motion prediction error is valuable for the design of most 

advanced video coding system, even though we require making many assumptions and 

simplifications for the analysis of the real-world signals. 

In 1993, Chen and Pang [115] proposed a compound covariance model (CP model) 

theoretically and demonstrated that the DCT performs nearly optimal as the situation in 

the intraframe coding. Nevertheless, this investigation assumed that the prediction errors 

are wide-sense stationary across a block. It can only describe the characteristics of the 

MPE across a block in sequences containing low motion activities. In 1999, Niehsen 

and Brünig [116] proposed another compound covariance model (NB model) 

empirically and showed that means and standard deviations of the errors may change 

significantly from block to block. According to their experimental results, their model 

can closely fit the characteristic of practical signals. The major disadvantage of this 

model that it lacks a theoretical basis, and thus using of this model for other analytical 

purposes is limited. 

In Chapter 6, we have shown that the first order Markov model can be used to 

derive an approximated separable autocorrelation model for the block based motion 

compensation difference signal. In the derivation, we assumed that a net deformation of 

pixels is directional in general situation rather than a uniform error distribution in a 

block. We have improved the original CP model to propose a covariance model 

analytically by making use of this assumption.  Simulation results show that, the 

improved CP model can describe the characteristics of the MCFD signals accurately. 

We have found that the concern of imperfect block-based motion compensation is one 
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important step to study the motion-compensated coder; otherwise the autocorrelation 

function of the MCFD signals cannot be expressed correctly. As a result, we can use 

this improved model to provide useful insights for an analytical design and investigation 

of video signal decomposition algorithm. 

 

7.2 Future research directions 
 

We can classify the results obtained in this research work into two parts. The first 

part is a study of fast motion estimation algorithms. The second part relates to the 

transform coding of motion prediction errors. However, considering to apply these 

techniques to modern coding system or real applications, further study and extension of 

our work are necessary. 

In Chapter 3, we have proposed a lossy fast motion estimation algorithm. Besides, 

in Chapter 4, a lossless fast algorithm has also been developed. These algorithms can 

significantly speed-up the motion estimation for arbitrarily shaped objects in MPEG-4. 

However, the computational requirement of the future video encoder will become more 

critical. The newest international video coding standard, H.264/AVC (or MPEG-4 part 

10) allows using more than one prior coded picture as reference for motion-

compensated prediction. We may construct a block of prediction signals from a 

weighted average of two motion-compensated prediction values. Moreover, the standard 

supports to partition a macroblock into smaller block sizes of 16×16, 16×8, 8×8, 8×4 

pixels. We expecte that the traditional motion estimation algorithm need to be enhanced 

to provide acceptable efficient. Other than using the edge feature that we studied in 

Chapter 3 and clustering characteristic used in Chapter 4, we believe that color feature 

and object texture are useful properties to develop efficient algorithm for the 

H.264/AVC. For instance, we may use a matching condition of texture in a block as a 
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criterion to determine the partition of a macroblock and the requirement of weighted 

averaging for a block reconstruction. 

 In Chapter 5, we have shown that a suitable transform algorithm accompanied 

with a fast lossy motion estimation algorithm can achieve equivalent or better result in 

both rate-distortion and computational efficiency, when comparing to the optimal 

performance in a tradition video coding system that uses the full search algorithm. It 

suggests that we may treat the optimization of fast motion estimation and transform 

coding of the motion prediction error as a whole system. Subsequently, we can 

compensate the rate-distortion performance and speed-up factor between a transform 

algorithm and a fast motion estimation to optimize a video coding system. We consider 

that the contribution of our work in Chapter 5 is indeed significant, but not complete, 

because it is not suitable for low bit-rate applications. Hence, it is good to extend our 

study into this region. 

A signal-source model that is accurate enough to describe the practical signal 

characteristics is an important issue for us to fulfill the above purpose. The auto 

correlation model for motion prediction error proposed in Chapter 6 provides some 

useful insights to analyze a complicated system for real signals. Nevertheless, we need 

to further extend the model such that it is more suitable for applicable practical 

applications. First, it is needed to exploit the relationship between the model parameters 

to obtain results of different motion estimation algorithms. Second, one may study the 

coding efficiency of different transform algorithms related to the model parameters. 

Hence, a wide variety of further work can be done as a future development of the 

present investigation. 
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Appendix A: 
 

A.1 Solution of the reference value, m, in the clustered pixel 

matching error for adaptive partial distortion search algorithm 

(CPME-PDS) (Method 1) 
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By substituting ( ) ( ) ( )tR n I n e n= −  into eqn. (4-1), finally we can have a cubic equation, 



 171

( ) ( )( )






 −−−+⋅+− ∑∑
−

=

−

=

1

0

22
1

0

22 )()()()()(2)(2)(3256
N

n

N

n
nenInenInInIEmnImm  

 ( ) ( )( ) 0)()()(2)()()(
1

0

22 =






 −−−+ ∑
−

=

N

n
nInenInInenIE  

( )






 −+−−+⋅+− ∑∑
−

=

−

=

1

0

2222
1

0

22 )()()(2)()()(2)(2)(2)(3256
N

n

N

n
nenenInInenInInIEmnImm  

 ( ) 0)()(2)(2)()()()(2)(
1

0

23223 =






 +−+−+ ∑
−

=

N

n
nenInInenInenInIE  

 ( )3 2 2 2 2 33 3 0t t t tm I m I e m I e I− + − + − =  

(4-2) 

where  

1
2 2

0

1 ( )
N

n
e E e n

N

−

=

 =  
 
∑

, and 

 

1
2 2

0

1 ( ) ( )
N

t t
n

I e E I n e n
N

−

=

 =  
 
∑

, 

The roots of the cubic equation are either all reals or one real and two complex 

conjugates which depend on the discriminant of the equation. 
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We look for real roots for  (4-2), such that m can be practically useful. The above proof 

assumes that natural images are dominated by low frequency components. Hence, we let, 

a a
t tI I≈ , 

and 
2 2

t tI e I e≈  

These are valid only if the image frame under question consists mainly low frequencies 

and the standard deviation of It(n) is small enough. As a result, it gives 
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(4-3) 

 

The first approximated root is the mean of pixel values in the target MB. To use 

this mean as the reference value it already gives a better computational saving when 

comparing to the PG-PDS, for which we proposed it as a comparison. Intuitively, m is a 

function of pixel values in a candidate MB, i.e. ( )( )m m R n= . The other roots, 2
tI e±  

can also be obtained by the following approximation. 

2
t tR I e I e= − ≈ ±  

It indicates that this solution is an approximation of the mean of pixel values in a 

candidate MB.  
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A.2 Solution of the reference value, m, in the CPME-PDS 

(Method 2) 

In fact, the solution of Rm =  can also be obtained directly by minimizing the 

equation,  
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To minimizing the equation (A2-1), we substituting ( ) )()( nRnIne t −=  and 
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Appendix B: 
 

B.1 Detailed derivation of the proposed compound covariance 

model for motion prediction error 

 

The proposed model is derived based on a first-order Markov statistics (or first 

order Autoregressive AR(1)) model with image correlation coefficient equal to ρ.  

For a block of pixels ft(i,j) in a frame at time t, the block-based motion 

compensation uses a matched block ft-1(i+u,j+v) in a reference frame at time t-1 for 

prediction. Hence, the motion prediction error is given by, 

 ),(),(),( 1 vjuifjifjie tt ++−= −  

where ( )vu,  represent the motion vector of the block. 

(6-1) 

The autocorrelation function, Ce(I, J) of the prediction error is then given by, 
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where ( )⋅⋅,fC  is the autocorrelation function of a frame with correlation 

 coefficient ρ. 

 ( )⋅⋅,,tfC  is the cross-correlation function between a frame at time t and the 

 reference frame at time t-1.  

 (* Note that, more precisely,  
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 However, if ft(·,·) ≈ ft-1(·,·) and (u, v) is a pair of random variable with -ve 

(6-2) 
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or +ve values, one could expresses it as (6-2). Moreover, these two 

different expressions will go to identical result because of even function 

characteristics used in (6-6) *) 

We assume that the matched block ft-1(i+u,j+v) can be approximated to the current 

block  ft (i, j) with reasonable deformation. That is 

 ( )vjuifnjmif tyxt ++≈++ − ,),( 1  (6-3) 

Hence, first-order Markov statistics model with correlation coefficient, ρ , can be 

involved. The deformation vector (mx,ny) represent the deformation of each pixels in the 

current block. Note that, in this modeling, the magnitudes of mx and ny are not related to 

that of the u and v directly. They only depend on the matching or correlation between 

the matched block, ft-1(i+u, j+v) and the current block, ft (i, j). By substituting (6-3) into  

(6-2), we can have, 
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(6-4) 

By regarding (mx and ny) is a pair of independent random variables, and the expectation 

value of the autocorrelation function, Ce( I, J ) is represented as, 
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By applying separable 2-dimensional AR(1) model, we get 
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where 2
fσ  is variance of the pixels value in AR(1) model. 

(6-6) 

and 
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For the sake of simplicity, a separable autocorrelation model is our objective. Hence, 

(6-7) along x-axis is expressed as 
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The [ ]xmIE −ρ  can be computed as 
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where p(mx) is the probability density function (pdf) of mx. 

(6-9) 

At this stage, we make an assumption that pixels in a deformed block tend to deform 

along a definite direction rather than deformed randomly. In other words, a mean vector 

of the deformation vectors (mx,ny) is not regarded to be zero according to our 

assumption. Then (6-9) becomes 
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where xµ  is the x-component of the mean of the deformation vector. 

(6-10) 

An error autocorrelation function must be an even function with respect to I. To 

remedy this directional dependence, we only consider the absolute value of µx. Then we 

further assume that µx is randomly distributed. It gives 
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where ( )xp µ  is probability density function of µx. 

(6-11) 

Without loss of generality, we use Gaussian distributions to represent the 

conditional distribution function, ( )xxmp µ  and the pdf, ( )xp µ . The [ ]xmIE −ρ  is then 

given by 
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where σµ  is the standard deviation of the mean deformation vector. 

 σmv is the standard deviation of the deformation vectors in a single 

 block. 

(6-12) 
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Assuming that the block deformation in the x- and y- dimension can be modeled 

with same standard deviations σµ  and σmv, the error autocorrelation function along x-

direction in (6-5) can be expressed as 

 ( )[ ] { }][][2, 2 yx nJmIJI
fe EEJICE −−−= ρρρρσ ;  I  ≥ 0, J = 0 (6-13) 

and the variance-normalized autocorrelation function of the block prediction error is 

given by 
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The result of (6-14) can be obtained by numerical calculation. However, this form is not 

convenient for analytical purpose. We have described the derivation of its approximated 

form below. 

We use an expected value of the mean deformation vector in (6-11), instead of 

using the pdf, p(µx) to approximate the autocorrelation model. Hence,  
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We rewrite (6-12) by using this expected value.  
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(6-16) 

These two integration is expressed involving error function, erf(z). 
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1st term of LHS of (6-16) 
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2nd term of LHS of (6-16) 

( ) ( )

























 +
−−=

+−

mv

mvx

mv

I I
erfe

mv
x

σ
ρσµ

σπ

ρσρµ

2
)ln(

2
11 2

2
ln

ln
2

 

 

Finally, we have 

 

( )
( )

( )

( )

( )

( )ρσµρ

σ
ρσµ

ρ

σ
ρσµ

ρρ

σ
ρσµ

ρ

σ
ρσµ

ρρ

µ

µ
ρσ

µ

µ
ρσ

,,,~
2

ln
1

2
ln

1
2
1

2
ln

1

2
ln

1
2
1

2
2

2
2
ln

2

2
2
ln

2

2

mvx
I

mv

mvxI

mv

mvxI

mv

mvxI

mv

mvxImI

IR

I
erf

I
erfe

I
erf

I
erfeE

x

x

mv

x

x

mv

x

=































 −−
−+































 +−
+=































 −−
−+































 +−
+≈





−−

−−

−−

 

where 

 

( )
( )

( )






























 −−
−+































 +−
+=

−−

2
ln

1

2
ln

1
2
1,,,~

2
2

2
2
ln 2

mv

mvxI

mv

mvx
mvx

I
erf

I
erfeIR

x

x

mv

σ
ρσµ

ρ

σ
ρσµ

ρρσµ

µ

µ
ρσ

 

(6-17) 

Now, using the 6-17), we can approximate the variance-normalized autocorrelation 

function of the block prediction error which given by (6-14) as 
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Finally, we express a separable 2-D variance-normalized autocorrelation function as, 
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B.2 Deduce the compound covariance model, CP Model (2-39), 

from (6-18).  

 
To derive the (2-39), we assume that a video sequence with very low motion activity is 

under simulation, and thus xµ  and mvσ  are set equal to zero and 0.5 respectively. Using 

the properties of erf(z), 
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, an approximation of (6-17) can be obtained. For |I| equal to zero, we express the )(⋅erf  

in (6-17) as the first term of its expanded series, and for |I| greater or equal to one, the 
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1st term is contributed by I = 0 and the remained terms are for I > 0 
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for the 2nd middle bracket term in the braces, 
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Where 
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The numerical value of A is equal to 0.497 with ρ = 0.95 and σmv = 0.5. And CP Model 

is arrived. 



 186

References 

[1] ITU-T, “Video Codec For Audiovisual Services At P×64 Kbit/s”, ITU-T 
Recommendation H.261, March 1993.  

[2] ISO/IEC, “Information technology -- coding of moving pictures and associated audio for 
digital storage media at up to about 1,5 Mbit/s -- part 2: video”, ISO/IEC 11172-2 
(MPEG-1), March 1993.  

[3] ITU-T and ISO/IEC, “Information technology -- generic coding of moving pictures and 
associated audio information: video”, ITU-T Recommendation H.262 - ISO/IEC 13818-2 
(MPEG-2), November 1994. 

[4] ITU-T, “Video coding for low bit rate communication”, ITU-T Recommendation H.263, 
Version 1, November 1995; Version 2, January 1998. 

[5] ISO/IEC, “Information technology -- coding of audio-visual objects: Part 2 visual”, 
ISO/IEC 14496-2 (MPEG-4), October 1998. 

[6] Draft ITU-T Recommendation and Final Draft International Standard of Joint Video 
Specification (ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC) 

[7] Thomas Wiegand, Gary J. Sullivan, Gisle Bjøntegaard and Ajay Luthra, “Overview of 
the H.264/AVC Video Coding Standard”, IEEE Transactions on Circuits and Systems for 
Video Technology, Vol. 13, No. 7, July 2003. 

[8] Jaswant R. Jain, Anil K. Jain, “Displacement Measurement and Its Application in 
Interframe Image Coding”, IEEE Transactions on Communications, Vol. COM-29, 
pp1799-1808, December 1984. 

[9] Peter Strobach, “Tree-Structured Scene Adaptive Coder”, IEEE Transactions on 
Communications, Vol. 38, No. 4, pp. 477-486, April 1990. 

[10] Li Jin, Lin Xinggang and Wu Youshou, “Color image sequence coding with variable 
block size motion compensation”, Proceedings, 1993 IEEE Region 10 Conference on 
Computer, Communication, Control and Power Engineering, TENCON '93. Vol. 2, Issue: 
0, pp. 974-977 , October 1993. 

[11] Gary J. Sullivan and Richard L. Baker, “Efficient Quadtree Coding of Images and 
Video”, IEEE Transactions on Image Processing, Vol. 3, No. 3, pp. 327-331, May 1994.  

[12] Hanan A. Mahmoud and Magdy A. Bayoumi, “An efficient low-bit rate adaptive mesh-
based motion compensation technique”, 2000 The 7th IEEE International Conference on 
Electronics, Circuits and Systems, ICECS 2000. Vol. 1, pp. 491-494, December 2000.  

[13] Hans Georg Musmann, Michael Hötter and Jörn Ostermann, “Object-oriented Analysis-
synthesis Coding of Moving Images”, Signal Processing: Image Communication 1, 
pp.117-138, 1989.  

[14] Yutaka Yokoyama, Yoshihiro Miyamoto and Mutsumi Ohta, “Very Low Bit Rate Video 
Coding Using Arbitrarily Shaped Region-Based Motion Compensation”, IEEE 
Transactions on Circuits and Systems for Video Technology, Vol. 5, No. 6, pp. 500-507, 
December 1995. 

[15] Yuichiro Nakaya and Hiroshi Harashima, “Motion compensation based on spatial 
transformations”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 
4,  3 , pp. 339 -356, 366-7, June 1994.  

[16] M. Ghanbari, S. de Faria, I. N. Goh and K. T. Tan, “Motion Compensation for Very Low 
Bit-Rate Video”, Signal Processing: Image Communication, Vol. 7, pp. 567-580, 1995. 

[17] A. Murat Tekalp, Yucel Altunbasak, and Gozde Bozdagi, “Two- Versus Three-
Dimensional Object-Based Video Compression”, IEEE Transactions on Circuits and 
Systems for Video Technology, Vol. 7, No. 2, pp. 391-397, April 1997. 



 187

[18] Christoph Stiller, “Object-Based Estimation of Dense Motion Fields”, IEEE Transactions 
on Image Processing, Vol. 6, No. 2, pp. 234-250, February 1997. 

[19] Soo-Chul Han and Christine I. Podilchuk, “Video Compression With Dense Motion 
Fields”, IEEE Transactions on Image Processing, Vol. 10, No. 11, pp. 1602-1612, 
November 2001.  

[20] Bernd Girod, “The Efficiency of Motion-Compensating Prediction for Hybrid Coding of 
Video Sequences”, IEEE Journal on Selected Areas in Communications, Vol. SAC-5, No. 
7, pp. 1140-1154, August 1987. 

[21] Bernd Girod, “Why B-Pictures Work: A Theory of Multi-Hypothesis Motion-
Compensated Prediction”, Proceedings, International Conference on Image Processing 
1998, ICIP 98., Vol. 2, pp. 213-217,October 1998. 

[22] ISO/IEC JTC1/SC29/WG11 N3908, “MPEG-4 Video Verification Model version 18.0”, 
January 2001. 

[23] Bern Girod, “Motion-Compensation Prediction with Fractional-Pel Accuracy”, IEEE 
Transactions on Communications, Vol. 41, pp. 604-612, April 1993. 

[24] S. Nogaki and M. Ohta, “An overlapped block motion compensation for high quality 
motion picture coding”, Proceedings, International Symposium on Circuits and Systems, 
Vol. 1, pp. 184-187, May 1992. 

[25] Michael T. Orchard and Gary J. Sullivan, “Overlapped block motion compensation: An 
estimation-theoretic approach”, IEEE Transaction on  Image Processing, Vol. 3, pp. 693-
699, May 1994. 

[26] Bo Tao and Michael T. Orchard, “A parametric Solution Optimal Overlapped Block 
Motion Compensation”, IEEE Transactions on Image Processing, Vol. 10, No. 3, pp. 
341-350, March 2001. 

[27] Wentao Zheng, Yoshiaki Shishikui, Masahide Naemura, Yasuaki Kanatsugu, and 
Susumu Itoh, “Analysis of Space-Dependent Characteristics of Motion-Compensated 
Frame Differences Based on a Statistical Motion Distribution Model”, IEEE Transactions 
on Image Processing, Vol. 11, pp. 377-386, April 2002. 

[28] Barry G. Haskell, Atul Puri, and Arun N. Netravali, “Digital video: an introduction to 
MPEG-2”, New York, N.Y. : Chapman & Hall, 1997. 

[29] Roland Mech and Michael Wollborn, “A Noise Robust Method for Segmentation of 
Moving Objects in Video Sequences”, Proceedings, International Conference on 
Acoustic, Speech and Signal, Munich, pp. 2657-2660, April 1997. 

[30] Til Aach, André Kaup and Rudolf Mester, “Statistical model-based change detection in 
moving video”, Signal Processing, Vol. 31, No. 2, pp. 165-180, March 1993. 

[31] A. Neri, S. Colonnese, G. Russo, “Video Sequence Segmentation for Object-based 
Coders using Higher Order Statistics”, ISCAS ‘97, Hongkong, June 1997.   

[32] Philippe Salembier and Montse Pardàs, “Hierarchical Morphological Segmentation for 
Image Sequence Coding”, IEEE Transactions on Image Processing, Vol.3, No.5, pp. 639-
651, September 1994. 

[33] Luc Vincent and Pierre Soille, “Watersheds in digital spaces: an efficient algorithm based 
on immersion simulations“, IEEE Transactions on PAMI, Vol.13, No. 6, pp. 583-598, 
June 1991. 

[34] Aydin Alatan, Levent Onural, Michael Wollborn, Roland Mech, Ertem Tuncel and 
Thomas Sikora, “Image Sequence Analysus for Emerging Interactive Multimedia 
Services – The COST 211 Framework”, IEEE Transactions on Circuits and Systems for 
Video Technology, Vol. 8, No.7, pp. 802-813, November 1998. 

[35] Michael Kass, Andrew Witkin, and Demetri Terzopoulos, “Snakes: Active Contour 
Models”, Internalional Journal of Computer Vision, Vol. 1, pp. 321-331, January 1988.  



 188

[36] Muriel Gastaud and Michael Barlaud, “Video segmentation using active contours on a 
group of pictures”, Image Processing, 2002, Proceedings, 2002 International Conference 
on, Vol. 2, pp. 81 – 84, 22-25 Sept. 2002. 

[37] Shijun Sun, David R. Haynor, and Yongmin Kim, “Semiautomatic Video Object 
Segmentation Using VSnakes”, IEEE Transactions on Circuits and Systems for Video 
Technology, Vol. 13, pp. 75 – 82, Jan. 2003. 

[38] Noboru Yamaguchi, Takashi Ida and Toshiaki Watanabe, “A binary shape coding 
method using modified MMR”, Proceedings, International Conference on Image 
Processing 1997, Vol. 1, pp. 504-507, Oct. 1997. 

[39] Shi Hwa Lee, Dae-Sung Cho, Yu-Shin Cho, Sehoon Son, E.S. Jang, Jae-Seob Shin, and 
Yang Seok Seo, “Binary shape coding using 1-D distance values from baseline”, 
Proceedings, International Conference on Image Processing 1997, Vol. 1, pp. 508-511, 
Oct. 1997. 

[40] Chil-Cheang Ma, Mei-Juan Chen, and Po-Yuen Cheng, “Efficient shape coding 
algorithm for object-oriented video in MPEG-4”, International Conference on Consumer 
Electronics 1999, ICCE 1999, pp. 174-175, June 1999.  

[41] Yin-Tsung Hwang, Yun-Chiang Wang, and Shi-Shen Wang, “An efficient shape coding 
scheme and its codec design”, IEEE Workshop on Signal Processing Systems 2001, pp. 
225-232, Sept. 2001. 

[42] Janez Zaletelj, and Jurij F. Tasič, “B-spline optimization and its application to video 
object shape coding”, Proceedings of the 2nd International Symposium on Image and 
Signal Processing and Analysis 2001, ISPA 2001, pp. 80-85, June 2001. 

[43] Huitao Luo, “Efficient Image-Dependent Object Shape Coding”, Proceedings, 
International Conference on Image Processing 2002, Vol. 1, pp. 169-172, Sept. 2002. 

[44] Frank Bossen, and Touradi Ebrahimi, “A simple and efficient binary shape coding 
technique based on bitmap representation”, IEEE International Conference on Acoustics, 
Speech, and Signal Processing 1997, ICASSP-97, Vol. 4, pp. 3129-3132 ,April 1997. 

[45] N. Brady, F. Bossen, and N. Murphy, “Context-based arithmetic encoding of 2D shape 
sequences”, Proceedings, International Conference on Image Processing 1997, Vol. 1, pp. 
29-32, Oct. 1997. 

[46] Jörn Ostermann, “Efficient encoding of binary shapes using MPEG-4”, Proceedings, 
International Conference on Image Processing 1998, ICIP 98, Vol. 1, pp. 295-298, Oct. 
1998. 

[47] Mei-Juan Chen, Yuan-Pin Hsieh, and Yu-Pin Wang, “Multi-resolution shape coding 
algorithm for MPEG-4”, IEEE Transactions on Consumer Electronics, Vol. 46, Issue: 3, 
pp. 505-513, Aug. 2000. 

[48] Tzu-Ming Liu, Bai-Jue Shieh and Chen-Yi Lee, “An efficient modeling codec 
architecture for binary shape coding”, IEEE International Symposium on Circuits and 
Systems 2002, ISCAS 2002, Vol. 2, pp. 316-319, May 2002.  

[49] Aggelos K. Katsaggelos, Lisimachos P. Kondi, Fabian W. Meier, Jörn Ostermann, and 
Guido M. Schuster, “MPEG-4 and Rate-Distortion-Based Shape-Coding Techniques”, 
Proceedings of the IEEE, Vol. 86, No. 6, pp. 1126-1154, June 1998. 

[50] Detlev Marpe, Gabi Blättermann, Guido Heising, and Thomas Wiegand, “Video 
Compression Using Context-Based Adaptive Arithmetic Coding”, Proceedings, 
International Conference on Image Processing, 2001, Vol. 3, pp. 558-561,October 2001. 

[51] Jae-Beom Lee, Jin-Soo Cho, and Alexandros Eleftheriadis, “Optimal Buffered 
Compression and Coding Mode Selection for MPEG-4 Shape Coding”, IEEE 
Transactions On Image Processing, Vol. 10, No. 5, pp. 686-700, May 2001. 



 189

[52] Wei-Ge Chen, Chuang Gu, Ming-Chieh Lee, “Repetitive and morphological padding for 
object-based video coding”, Proceedings of International Conference on Image 
Processing, ICIP'97, Vol. 1, pp. 373-376, Oct. 1997.  

[53] E. A. Edirisnghe, J. Jiang and C. Grecos, “Shape Adaptive Padding for MPEG-4”, IEEE 
Transactions on Consumer Electronics, Vol. 46, No.3, pp. 514-520,August 2000. 

[54] Jie Chen and K. J. Ray Liu, “Transform Domain Motion Estimation without Macroblock-
based Repetitive Padding for MPEG-4 Video”, Proceedings of the 1998 IEEE 
International Symposium on Circuits and Systems, 1998, ISCAS '98, Vol. 4, pp. 130-133, 
31 May-3 June 1998. 

[55] André Kaup, “Adaptive low-pass extrapolation for object-based texture coding of 
moving video”, Proceeding, Visual Communications and Image Processing ‘97, SPIE, 
Vol. 3024, pp. 731–741, February 1997. 

[56] André Kaup, “Object-Based Texture Coding of Moving Video in MPEG-4”, IEEE 
Transactions on Circuits and Systems for Video Technology, Vol. 9, No. 1, pp. 5-15, 
February 1999.  

[57] Guobin Shen, Bing Zeng, and Ming Lei Liou, “Arbitrarily Shaped Transform Coding 
Based on a New Padding Technique”, IEEE Transactions on Circuits and Systems for 
Video Technology, Vol. 11, pp. 67-79, January 2001. 

[58] Michael Gilge, Thomas Engelhardt, and Ralf Mehlan, “Coding of arbitrarily shaped 
image segments based on a generalized orthogonal transform”, Signal Processing: Image 
Communication, Vol. 1, pp. 153–180, October 1989. 

[59] Thomas Sikora and Béla Makai, “Shape-Adaptive DCT for Generic Coding Video”, 
IEEE Transactions on Circuits and Systems for Video Technology, Vol. 5, No. 1, pp. 59-
62, February 1995. 

[60] Thomas Sikora, Sven Bauer, and Béla Makai, “Efficiency of Shape-Adaptive 2-D 
Transforms for Coding of Arbitrarily Shaped Image Segments”, IEEE Transactions on 
Circuits and Systems for Video Technology, Vol. 5, No. 3, pp. 254-258, June 1995.  

[61] M. Bi, S. H. Ong and Y. H. Ang, “Comment on “Shape-Adaptive DCT for Generic 
Coding of Video””, IEEE Transactions on Circuits and Systems for Video Technology, 
Vol. 6, No.6, pp. 686-688,December 1996. 

[62] Peter Kauff, Béla Makai, Stefan Rauthenberg, Ulrich Gölz, Jan L. P. De Lameillieure, 
and Thomas Sikora, “Functional Coding of Video Using a Shape-Adaptive DCT 
Algorithm and an Object-Based Motion Prediction Toolbox”, IEEE Transactions on 
Circuits and Systems for Video Technology, Vol. 7, No. 1, pp. 181- 196, February 1997.  

[63] Peter Kauff and Klaas Schüür, “Shape-Adaptive DCT with Block-Based DC Separation 
and DC Correction”, IEEE Transactions on Circuits and Systems for Video Technology, 
Vol. 8, No. 3, pp. 237-242, June 1998. 

[64] Yoshiaki Shishikui and Shinichi Sakaida, “Region Support DCT (RS-DCT) for Coding 
of Arbitrarily Shaped Texture”, IEEE Transactions on Circuits and Systems for Video 
Technology, Vol. 12, No. 5, pp. 320-330, May 2002. 

[65] Joo-Hee Moon, Ji-Heon Kweon, and Hae-Kwang Kim, “Boundary Block-Merging 
(BBM) Technique for Efficient Texture Coding of Arbitrarily Shaped Object”, IEEE 
Transactions on Circuits and Systems for Video Technology, Vol. 9, No. 1, pp. 35-43, 
February 1999. 

[66] H. Gharavi and Mike Mills, “Blockmatching Motion Estimation Algorithms – New 
Result”, IEEE Transactions on Circuits and Systems, Vol. 37, No. 5, pp. 649-651, May 
1990. 

[67] Mei-Juan Chen, Liang-Gee Chen, Tzi-Dar Chiueh, and Yung-Pin Lee, “A New Block-
Matching Criterion for Motion Estimation and its Implementation”, IEEE Transactions 
on Circuits and Systems for Video Technology, Vol. 5, No. 3, pp. 231-236, June 1995. 



 190

[68] Arild Fuldseth and Tor A. Ramstad, “A New Error Criterion for Block Based Motion 
Estimation”, Proceedings, International Conference on Image Processing 1995, Vol. 3, 
pp. 188-191, October 1995. 

[69] S. Kappagantula and K. R. Rao, “Motion Compensated Interframe Image Prediction”, 
IEEE Transaction on Communications, Vol. COM-33, No. 9, pp. 1011-1015, September 
1985. 

[70] Bern Girod, “Rate-Constrained Motion Estimation”, Proceedings of the SPIE Conference 
on Visual Communications and Image Processing, pp.1026-1034, September 1994. 

[71] Yair Shoham, Allen Gersho, “Efficient bit allocation for an arbitrary set of quantizers 
[speech coding]”, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 
36, Issue: 9, pp. 1445-1453, September 1988. 

[72] Gary J. Sullivan and Thomas Wiegand, “Rate-distortion optimization for video 
compression”  IEEE Signal Processing Magazine, Vol. 15, Issue: 6, pp. 74-90, November 
1998. 

[73] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion compensated 
interframe coding for video conferencing,” Proceedings. National Telecommunication 
Conference, pp. G5.3.1-5.3.5, November 29-December 3, 1981. 

[74] Ram Srinivasan and K. R. Rao, “Predictive Coding Based on Efficient Motion 
Estimation,” IEEE Transactions on Communications, Vol. COM-33, pp. 888-896, 
September 1985. 

[75] Reoxiang Li, Bing Zeng and Liou, M.L., “A New Three-Step Search Algorithm for 
Block Motion Estimation”, IEEE Transactions on Circuits and Systems for Video 
Technology, Vol. 4, No. 4, pp. 438-442, August 1994. 

[76] A. Puri, H. M. Hang, and D. L. Schilling, “An efficient block-matching algorithm for 
motion compensated coding,” Proceedings. IEEE ICASSP 1987, pp. 25.4.1-25.4.4., 1987. 

[77] Keith Hung-Kei Chow and Ming L. Liou, “Genetic Motion Search Algorithm for Video 
Compression”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 3, 
No. 6, pp. 440-445, December 1993. 

[78] Lurng-Kuo Liu and Ephraim Feig, “A Block-Based Gradient Descent Search Algorithm 
for Block Motion Estimation in Video Coding”, IEEE Transactions on Circuits and 
Systems for Video Technology, Vol. 6, No. 4, pp. 419-422, August 1996. 

[79] Mohammed E. Al-Mualla, C. Nishan Canagarajah and David R. Bull, “Simplex 
Minimization for Single- and Multiple-Reference Motion Estimation”, IEEE 
Transactions on Circuits and Systems for Video Technology, Vol. 11, No. 12, pp. 1209-
1220, December 1998. 

[80] Shan Zhu and Kai-Kuang Ma, “A New Diamond Search Algorithm for Fast Block 
Matching Motion Estimation”, Proceedings, International Conference on Information, 
Communication and Signal Processing  (ICICS’97), pp. 292-296, September. 1997. 

[81] Jo Yew Tham, Surendra Ranganath, Maitreya Ranganath and Ashraf Ali Kassim, “A 
Novel Unrestricted Center-Biased Diamond Search Algorithm for Block Motion 
estimation”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 8, 
No. 4, pp. 369-377, August 1998. 

[82] Lai-Man Po and Wing-Chung Ma, “A Novel Four-Step Search Algorithm for Fast Block 
Motion Estimation”, IEEE Transactions on Circuits and Systems for Video Technology, 
Vol. 6, No. 3, pp. 313-317, June 1998. 

[83] Fang-Hsuan Cheng and San-Nan Sun, “New Fast and Efficient Two-Step Search 
Algorithm for Block Motion Estimation”, IEEE Transactions on Circuits and Systems for 
Video Technology, Vol. 9, No. 7, pp. 977-983, October 1999. 



 191

[84] Ce Zhu, Xiao Lin and Lap-Pui Chau, “Hexagon-Based Search Pattern for Fast Block 
Motion Estimation”, IEEE Transactions on Circuits and Systems for Video Technology, 
Vol. 12, No. 5, pp. 349-355, May 2002. 

[85] Prabhudev Irappa Hosur and Kai-Kuang Ma, “Motion Vector Field Adaptive Fast 
Motion Estimation,” Second International Conference on Information, Communications 
and Signal Processing  (ICICS ’99), December 1999. 

[86] Alexis M. Tourapis, Oscar C. Au and Ming L. Liou, “Highly Efficient Predictive Zonal 
Algorithms for Fast Block-Matching Motion Estimation”, IEEE Transactions on Circuits 
and Systems for Video Technology, Vol. 12, No. 10, pp. 934-947, October 2002. 

[87] M. Bierling, “Displacement estimation by hierarchical block matching” Proceedings, 
VCIP’88, Vol. 1001, pp. 942–951, 1988. 

[88] K. Metin Uz, Martin Vetterli, and Didier J. LeGall, “Interpolative multiresolution coding 
of advanced television with compatible subchannels” IEEE Transactions on Circuits and 
Systems for Video Technology, Vol. 1, No. 1, pp. 86–99, March 1991. 

[89] Bede Liu and André Zaccarin, “New Fast Algorithm for the Estimation of Block Motion 
Vectors”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 3, No. 
2, pp. 148-157, April 1993. 

[90] Y. L. Chan and W. C. Siu, “New Adaptive Pixel Decimation for Block Motion Vector 
Estimation”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 6, 
No. 1, pp. 113-118, February 1996. 

[91] Yankang Wang, Yanqun Wang, and Hideo Kuroda, “A Globally Adaptive Pixel-
Decimation Algorithm for Block-Motion Estimation”, IEEE Transactions on Circuits and 
Systems for Video Technology, Vol. 10, No. 6, pp.1006-1011, September 2000. 

[92] ITU-T recommendation H.263 software implementation, Digital Video Coding Group, 
Telenor R&D, 1995. 

[93] S. Eckart and C. Fogg, ISO/IEC MPEG-2 software video codec, Proceedings SPIE 2419, 
pp. 100-118, 1995. 

[94] Chok-Kwan Cheung and Lai-Man Po, “A Hierarchical Block Motion Estimation 
Algorithm Using Partial Distortion Measure”, Image Processing, 1997. Proceedings., 
International Conference on, Vol. 3, pp. 606-609, 1997. 

[95] Chok-Kwan Cheung and Lai-Man Po, “Normalized Partial Distortion Search Algorithm 
for Block Motion Estimation”, IEEE Transactions on Circuits and Systems for Video 
Technology, Vol. 10, No. 3, pp. 417-422, April 2000. 

[96] Jong-Nam Kim and Tae-Sun Choi, “A Fast Full-Search Motion Estimation Algorithm 
Using Representative Pixels and Adaptive Matching Scan”, IEEE Transactions on 
Circuits and Systems for Video Technology, Vol. 10, No. 7, pp. 1040-1048, October 
2000. 

[97] Yui-Lam Chan, Wan-Chi Siu and Ko-Cheung Hui, “Block Motion Estimation Using 
Adaptive Partial Distortion Search”, Proceedings, the 2002 IEEE International 
Conference on Multimedia and Expo, ICME 2002, Vol. I, pp. 477-480, August 2002. 

[98] Yong-Sheng Chen, Yi-Ping Hung and Chiou-Shann Fuh, “Fast Block Matching 
Algorithm Based on the Winner-Update Strategy”, IEEE Transactions on Image 
Processing, Vol. 10, No. 8, pp. 1212-1222, August 2001. 

[99] W. Li and E. Salari, “Successive Elimination Algorithm for Motion Estimation”, IEEE 
Transactions on Image Processing, Vol. 4, No. 1, pp.105-107, January 1995. 

[100] Jing-Yi Lu, Kuang-Shyr Wu and Ja-Chen Lin “Fast Full Search in Motion Estimation by 
hierarchical use of Minkowski’s inequality”, Pattern Recognition, Vol. 31, No. 7, pp. 
945-952, 1998. 



 192

[101] X. Q. Gao, C. J. Duanmu, C. R. Zou and Z. Y. He, "Multi-level successive elimination 
algorithm for motion estimation in video coding", Proceedings, 1999 IEEE International 
Symposium on Circuits and Systems, ISCAS '99, Vol. 4, pp.227 -230, 1999. 

[102] Ken Sauer and Brain Schwartz, “Efficient block motion estimation using integral 
projections”, IEEE Transactions on Image Processing, Vol. 6, No. 5, pp. 513-518, 
October 1996. 

[103] Yih-Chuan Lin and Shen-Chuan Tai, “Fast Full-Search Block-Matching Algorithm for 
Motion-Compensated Video Compression”, IEEE Transactions on Communications, Vol. 
45, No. 5, pp. 527-531, May 1997.  

[104] Yui-Lam Chan and Wan-Chi Siu, “Edge Oriented Block Motion Estimation for Video 
Coding”, IEE Proceedings - Vision, Image and Signal Processing, Vol. 144, No. 3, 
pp.136-144, June 1997. 

[105] Yui-Lam Chan and Wan-Chi Siu, “An Efficient Search Strategy for Block Motion 
Estimation Using Image Features”, IEEE Transactions on Image Processing, Vol. 10, No. 
8, pp. 1223-1238, August 2001.  

[106] Bo Tao and Orchard M.T., "Gradient-based residual variance modeling and its 
applications to motion-compensated video coding", IEEE Transactions on Image 
Processing, Vol. 10, No. 1, pp. 24 -35, January 2001. 

[107] Fabio Cavalli, Rita Cucchiara, Massimo Piccardi and Andea Prati, “Performance 
Analysis of MPEG-4 Decoder and Encoder”, IEEE Region 8 International Symposium 
on Video / Image Processing and Multimedia Communications, pp. 227-231, June 2002. 

[108] Krit Panusopane and Xuemin Chen, “A fast motion estimation method for MPEG-4 
arbitrarily shaped objects”, Proceedings, 2000 International Conference on Image 
Processing, ICIP 2000, Vol. 3, pp. 624-627, September 2000. 

[109] Thomas Wiegand, Xiaozheng Zhang and Bernd Girod, “Long-Term Memory Motion-
Compensated Prediction”, IEEE Transactions On Circuits And Systems For Video 
Technology, Vol. 9, No. 1, pp. 70-84, February 1999. 

[110] Thomas Wiegand, Bo Lincoln and  Bernd Girod, “Fast Search for Long-Term Memory 
Motion-Compensated Prediction”, Proceedings, International Conference on Image 
Processing 1998, Vol. 3, pp. 619-622,1998.  

[111] Thomas Wiegand, Eckehard Steinbach and Bern Girod, “Long-Term Memory Prediction 
Using Affine Motion Compensation”, Proceedings, International Conference on Image 
Processing 1999, Vol. 1, pp.51-55, 1999.  

[112] R. J. Clarke, “Transform Coding of Images”, Academic Press, 1985. 

[113] K. R. Rao and P. Yop, “Discrete Cosine Transform Algorithms, Advantages, 
Applications”, Academic Press, 1990. 

[114] Masahide Kaneko, Yoshinori Hatori and Atsushi Koike, “Improvements of Transform 
Coding Algorithm for Motion-Compensated Interframe Prediction Errors-DCVT/SQ 
Coding”, IEEE Journal on Selected Areas in Communications, Vol. SAC-5, No. 7, pp. 
1068-1078, August 1987.  

[115] Chi-Fa Chen and K. K. Pang, “The Optimal Transform of Motion-Compensated Frame 
Difference Images in a Hybrid Coder”, IEEE Transactions on Circuits and Systems-II: 
Analog and Digital Signal Processing, Vol. 40, No. 6, pp. 393-397, June 1993. 

[116] Wolfgang Niehsen and Michael Brünig, “Covariance Analysis of Motion-Compensated 
Frame Difference”, IEEE Transactions on Circuits and Systems For Video Technology, 
Vol. 9, No. 4, pp. 536-539, June 1999.  

[117] S.M.M. de Faria and M. Ghanbari, "Low bit-rate video coding with spatio-temporal 
geometric transforms ", IEE Proceedings-Vision, Image and Signal Processing, Vol. 143, 
No. 3, pp. 164-170, June 1996. 



 193

[118] Seung Chul Yoon, Krishna Ratakonda and Narendra Ahuja, “Low bit-rate video coding 
with implicit multiscale segmentation”, IEEE Transactions on Circuits and Systems for 
Video Technology, Vol. 9, No. 7, pp. 1115-1129, Oct. 1999.  

[119] Bo Tao and Michael T. Orchard, “Prediction of second-order statistics in motion-
compensated video coding”, Proceedings, 1998 International Conference on Image 
Processing, ICIP 98, Vol. 3, pp. 910-914, October 1998. 

[120] ISO/IEC JTC1/SC29/WG11 5477, “MPEG-4 Video Verification Model version 14.0”, 
December 1999. 

[121] ISO/IEC JTC1/SC29/WG11 N3675, “Draft of MPEG-4 Optimization Model Version 
2.0”, October 2000. 

[122] ISO/IEC TR 14496-7, Information technology -- Coding of audio-visual objects -- Part 7: 
Optimized reference software for coding of audio-visual objects.  

[ 123 ] R. J. Stevens, A. F. Lehar and F. H. Preston, “Manipulation and Presentation of 
Multidimensional Image Data Using the Peano Scan”, IEEE Transactions on Pattern 
Analysis and Machine Intelligence, Vol. PAMI-5, No. 5, pp. 520-526, September 1983. 

[124] Zixiang Xiong, Kannan Ramchandran, Michael T. Orchard and Ya-Qin  Zhang, “A 
Comparative Study of DCT and Wavelet Based Coding”, Proceedings, 1998 IEEE 
International Symposium on Circuits and Systems, ISCAS '98., Vol. 4, pp. 273-276 , 31 
May-3 June 1998.  

[125] Chi-Fa Chen and K. K. Pang, “Hybrid Coders with Motion Compensation”, 
Multidimensional Systems and Signal Processing, Vol. 3, No. 3, pp. 241-266, 1992.   

[126] Yung-Lyul Lee, Hyun Wook Park, “Loop filtering and post-filtering for low-bit-rates 
moving picture coding”, Signal Processing: Image Communication 16, pp. 871-890, 
2001. 

[127] Peter Kuhn, “Algorithms, complexity analysis and VLSI architectures for MPEG-4 
motion estimation”, Kluwer Academic Publishers, London, 1999. 

[128] M. I. Sezan and R L. Lagendijk. Motion analysis and image sequence processing, Kluwer 
Academic Publishers, London, 1990. 

[129] Peter Kuhn, “Algorithms, Complexity Analysis and VLSI Architectures for MPEG-4 
Motion Estimation”, Kluwer Academic Publishers, 1999. 

[130] Hosam M. Mahmoud, “Sorting: A Distribution Theory”, John Wiley & Sons, 2000. 

[131] http://www.iso.ch/iso/en/ittf/PubliclyAvailableStandards/14496-
5_Compressed_directories/ 

[132] http://megaera.ee.nctu.edu.tw/mpeg/ 

 


