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I 

Abstract 

A crucial characteristic of an indoor autonomous mobile robot is its ability to 

determine its whereabouts and make sense of its environments. Simultaneous 

localization and mapping (SLAM) is also regarded as an essential behaviour for 

realization of other advanced tasks such as exploration and autonomous navigation. 

SLAM in static environments whereby the mobile robot is the sole moving object 

has been exhaustively studied in the last three decades. Real world, however, is 

generally dynamic, and the states of the objects are versatile over time. In this 

context, it is imperative to study SLAM in such environments. This thesis reports 

research carried out on a robust mapping methodology via robust statistics theory 

and develops a new set of SLAM strategies based on sensor fusion viewpoint by 

distributed fusion technology, Bayesian inference, and information theory. 

Additionally, the data association problem in SLAM is also considered. 

 

At first, occupancy grid-based and segment-based maps are studied along with 

three perception systems involving only ultrasonic sonar, only laser rangefinder and 

sonar plus monocular camera and are validated in both static and dynamic 

environments. The main purpose is to decide an effective map model and sensor 

configurations to be applied in subsequent studies. These studies led to adoption of 

the segment-based map integrated with laser rangefinder and its fusion with vision 

and ultrasonic sensors. This arrangement has been treated as the experimental 

framework for the rest of studies in the thesis. 

 

Estimation algorithms based on the ordinary least square fail to extract the features 

in the presence of moving objects. In this thesis, a robust regression model is 

utilized via a robust estimate called MM-estimate that fits the blurred data well, 

and provides a reasonable segment prediction. This robust regression model is 
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embedded into the Extended Kalman Filter (EKF) SLAM to remove the dynamic 

features which correspond to the moving objects and sensor noise, and enhances 

the performance of SLAM procedure. In the EKF-SLAM, the data association 

problem is revisited and an optimal graph theory based approach is proposed. It is 

mathematically proved that optimally solving the minimum weighted bipartite 

graph matching problem is equivalent to optimally resolve the data association 

problem. 

 

For some special cases, however, the robust regression model does not function 

properly. When the dynamic objects move slowly or momentarily pause for a while, 

they are erroneously regarded as line segments. Hence, an indirect sensor fusion 

strategy is presented, which consists of two aspects. The first is a feature fusion 

based on the Bayesian inference which synthesizes line segments generated by a 

robust regression model from laser rangefinder with static line features extracted 

from a monocular camera. This policy eliminates any pseudo segments that will 

appear from momentary pausing of dynamic objects in laser data. The second is a 

modified multi-sensor point estimation fusion that amalgamates two individual 

EKF-SLAM algorithms: monocular and laser SLAM. It is mathematically proved 

that the covariance of the state variables in fused SLAM is reduced compared with 

those of individual SLAM, and the accuracy of localization is improved. 

Particularly, for monocular SLAM the thesis suggests another data association 

technique based on the homography transformation that relaxes the pleonastic 

computation. 

 

The indirect feature fusion procedure only makes the hypothesis test on the 

removal of pseudo segments. Considering this deficiency, a modified feature fusion 

process named direct fusion management is proposed, which immediately 

combines the homogeneous parameters of segments extracted from sonar, laser 

rangefinder and camera by means of information theory. Also the associative 

features from different sensors are determined by information entropy. The fusion 
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algorithm is a simple and general framework, which borrows the idea of 

information entropy weight in decision analysis discipline. Furthermore, the 

entropy weight is introduced into the parameter covariance fusion processing. That 

is allocating the weight to the related covariance matrix and applying the 

covariance intersection algorithm for these weighted covariance matrices to derive 

an amalgamated reduced covariance matrix. The fused features contribute to the 

EKF-SLAM and decrease the error of robot position compared with the results 

without fusion. 
 

In essence, the thesis presents novel methodologies for SLAM in dynamic settings. 

The above solutions are validated by extensive simulation and experimental 

studies.  
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Chapter 1  Introduction 

It is widely believed that Karel Capek, the celebrated Czech playwright coined the 

term “Robot” in 1920. Almost ninety years passed on, the realm of robotics has 

allured public at large and robots have captivated humans of all walks of life. They 

are used in kindergartens and primary schools, designed in universities and 

research institutions, and employed in many industrial applications. The public 

fascination with robots has generated huge interest in entertainment industry as 

well. The recent Hollywood blockbuster “I, Robot” was a technophobic display of 

a not too distant future where robots were intelligent and could even commit 

crimes. It is plausible that future robots are indeed going to demonstrate 

human-level intelligence and be part of our social settings and even refuse to 

comply with our agreed social norms. However, this thesis objective is far-less 

unassuming and just addresses the relatively less complex problems of “where am 

I?” and “how to make sense of an unknown environment?”. The successful solution 

to these two problems is the precondition to more advanced functions and 

capabilities. The last two decades has witnessed a remarkable body of work 

devoted to provide viable solutions to accomplish these tasks. The literature refers 

to the problem as “SLAM” which stands for Simultaneous Localization and 

Mapping. A particular class of robots identified as Autonomous Mobile Robots 

(AMR) is often employed as a platform for development and research in this area. 

The ideas and designs, however, can readily be applied to humanoid robots as well.  

 

The research reported in this thesis is the contribution of the author in this exciting 

field. In a nutshell, the main objectives of this PhD research are:  

 

 To compare several perception systems and map representations and determine 

a rational configuration for the whole research; 
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 To contrive robust algorithms for handling moving objects in order to improve 

the performance of the mapping process as well as the SLAM in dynamic 

environments; 

 To suggest and develop sensor fusion systems for fusing the information of 

vision and rangefinder sensors including ultrasonic sonar and laser, and hence 

to develop a set of new sensor-fusion-based SLAM strategy; 

 To propose and prove an optimal data association algorithm, and introduce a 

new method of data association in vision-based SLAM. 

1.1 Background and Motivation 

Autonomous mobile robots have already taken up ranks in the human daily life. 

Domestic service robots such as vacuum-cleaners and garden robots relieve us of 

such tedious chores as cleaning, ironing, and peeling vegetables. Another notable 

application of domestic robots has been in the area of home surveillance. Not only 

can robots watch the house like guard dogs, but they can sound an alarm in the 

event of a break-in and take appropriate action in high-risk situations like gas leaks 

or flooding. Especially in Hong Kong, there is much room for applications of 

robots in indoor environments. The first robot service restaurant opened its doors at 

Tseung Kwan O Center in July 20061

The birth of the first mobile robot can be traced back to World War II as a result of 

technical advances on a number of relatively new research fields like computer 

science and cybernetics. However, they were mostly flying bombs. Examples are 

smart bombs that only detonate within a certain range of the target, the use of 

. The restaurateur hired three robots waiters, 

one for welcoming customers, one for dance show, and one for moving in the 

restaurant, taking charge of order dishes and delivering the menus. The extended 

development of AMR focuses on the autonomous vehicles, i.e. smart cars that have 

the capability of correcting the driver error and even taking control of the wheel. 

 

                                                        
1 It is available at http://news.xinhuanet.com/tai_gang_ao/2006-07/18/content_4846755.htm, and the related 
videos are on http://hk.youtube.com/watch?v=r0C7aFzXlq8&feature=related 
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guiding systems and radar control. The ancestor of the real mobile robots is the 

autonomous guided vehicle system developed by Barrett Electronics Co. USA in 

the early 1950s, but it had limited functions and only could navigate in a small and 

within a specified range. In 1995, the programmable mobile robot Pioneer that 

produced by MobileRobots Co. became commercially available at an affordable 

price, triggering an upsurge in robotics research and university study over the next 

decades as mobile robotics became a standard part of the engineering and computer 

science curriculum. 

 

Various amazing abilities of the AMR can be established on the basis of perception 

of environments, localization of the robot position and many other intelligent 

autonomous tasks. However, the primary challenge facing robotics today is that of 

situation awareness. We can build very capable hardware that can perform useful 

tasks under human control, but the hardware can not give the robot the same level 

of awareness as that of a human. Similarly, we can mount sophisticated cameras to 

a robot and send the signal into a computer; however, the ability to convert the 

pixel data into an accurate 3D world model seems to involve substantial real-world 

knowledge. This manifests that nowadays the major problem is not the hardware 

devices but the software design and the embedded intelligence. 

 

To design and implement these different competences in mobile robots require the 

synergy of technologies borrowed from diverse research disciplines. Numerous 

researchers in robotics community devoted themselves to solving the challenging 

problems encountered in the implementation of autonomous tasks. Map building, 

localization, and SLAM are the basic abilities of AMR for advanced capabilities 

such as exploration, navigation, path planning, and even the cooperation among 

multiple robots.  

 

SLAM is defined as the problem of building a map while at the same time 

localizing the robot within that map. In practice, these two problems cannot be 
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solved independent of each other. Before a robot can answer the question of what 

the environment looks like given a set of observations, it needs to know from 

which location those observations have been made. At the same time, it is hard to 

estimate the current position of a vehicle without a map. Therefore, SLAM is often 

referred to as a chicken and egg problem: A good map is needed for localization 

while an accurate pose estimate is needed to build a map, which makes the SLAM 

as an open issue and attracts abundant researchers. The prime study on SLAM 

focused on the operation in static environments where only the AMR was the 

moving object. It is obvious that this assumption is not practical. Recently, the 

research of SLAM permeates the area of dynamic environments based on the 

mature work on static environments. Many researchers have developed various 

methods to solve the problem and enhance the performance of SLAM, but to the 

best of our knowledge few of them have been involved in a more general algorithm 

to concurrently handle miscellaneous moving objects with different dynamic 

degrees, such as rarely moved trash bins, frequently walking people in the office, 

etc.  

 

In this thesis, the author would not attempt finding a general SLAM framework for 

covering very complex dynamic environments but address selected problems in an 

interesting way. The focus is mainly on the SLAM and its associated problems in 

dynamic environments.  

1.2 Research Outline 

The studies undertaken in this thesis can be classified into three phases as 

articulated in Figure 1.1. In Phase I, the proper perception system and map 

representation is determined through comparison of several common sensors and 

methods of map description. To address the moving objects in the environments, a 

robust regression model for mapping is proposed and this model is able to tackle 

most dynamic objects.  
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Figure 1.1 Research outline 

 
On the basis of primary work in Phase I, Phase II concentrates on the application of 

sensor fusion technology for SLAM. It consists of two aspects: indirect and direct 

paradigms. The indirect sensor fusion employs the Bayes theory to remove the 

potential pseudo segments related to dynamic objects and multi-sensor point 

estimation fusion technique to incorporate two individual SLAM procedures so as 

to reduce the errors generated in any single SLAM. The reason why it is called 

indirect is that the parameters of map features are not fused but used for removal of 

erroneous features. However, direct sensor fusion remedies this disadvantage. It 

integrates the feature parameters as well as their covariance via information theory. 

In addition, associative features extracted from different sensors are confirmed also 

by the information entropy. 

 

Phase III focuses on another important problem in SLAM: data association. This 

problem is reviewed from the viewpoint of graph theory and an optimal approach 

based on the minimum weight bipartite perfect matching graph is mathematically 
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proved. As for data association in vision based SLAM, a homography 

transformation based data association method is designed to release the 

computational complexity. 

1.3 Organization of the Thesis 

The rest of the thesis is organized in a sequential fashion and report the findings of 

each phase of the project in a logical yet chronological manner.  

 

Chapter 2 lays the background for the rest of the thesis. It presents a detailed yet 

highly selective literature review on the subject areas relevant to the topics of this 

study. It incorporates various perception systems for autonomous mobile robots, 

the state of art of SLAM in both static and dynamic environments, data association, 

and sensor fusion.  

 

In Chapter 3, on the basis of our group previous work, we compare several 

perception systems and map representation for the map building process in the 

static and dynamic environments. The purpose is to make a rational sensor systems 

and environment representation and to lay a solid foundation for the studies in the 

entire thesis. The determined perception system and mapping method will be 

employed in the SLAM and related topics of following chapters. 

 

A robust regression model is proposed for segment-based mapping in Chapter 4. It 

adopts the MM-estimate to consider the noise of sensor data and the outliers that 

correspond to moving objects in dynamic environments. The MM-estimates are 

interesting as they combine high efficiency and high breakdown point in a simple 

and intuitive way. This robust regression model is integrated with the extended 

Kalman filter (EKF) to implement the SLAM in dynamic circumstances. 

Additionally, we formulate the data association that is a critical aspect in SLAM as 

an equivalent minimum weight bipartite perfect matching problem that can be 
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optimally solved. We also mathematically prove the optimality of the graph 

theoretic approach. 

 

Chapter 5 presents an indirect sensor fusion strategy applied for SLAM in dynamic 

environments. The algorithm design consists of two aspects. One is a feature fusion 

which synthesizes line segments generated by a robust regression model from laser 

rangefinder with static line features extracted from monocular camera. This policy 

eliminates any pseudo segments that will appear from momentary pausing of 

dynamic objects in laser data. The other is a modified multi-sensor point estimation 

fusion (MPEF) that amalgamates two individual EKF-SLAM algorithms: 

monocular and laser SLAM. We mathematically prove that the covariance of the 

state variables in fused SLAM is reduced compared with those of individual 

SLAM, and the accuracy of localization is improved. Also, a new data association 

technique based on the homography transformation for monocular SLAM is 

suggested, which relaxes the pleonastic computation. 

 

We present a novel direct sensor fusion management in Chapter 6. It is formulated 

by concepts in information theory and incorporated into EKF-SLAM for reducing 

the uncertainty of map features and the robot position. We borrow the idea of the 

entropy weight from the decision analysis area and design a simple and general 

entropy weight method which considers the measurements and measurement 

variance to integrate the sensor information from various devices. It directly 

combines the feature parameters represented in the similar form. Similarly, the 

entropy weight is introduced into the covariance intersection (CI). A modified CI 

technique is proposed for fusing measurements covariance matrices of different 

sensors. In addition, an information theoretic algorithm via computing the error 

entropy is developed to confirm the associative features obtained from different 

sensor devices. The proposed method is general, has no extra postulated conditions, 

and its implementation is simple. 

 



Chapter 1 Introduction 

1-8 

Chapter 7 encapsulates the findings of this research work and draws conclusions. It 

also provides some suggestions for further work in this area of research.  

1.4 Statement of Originality 

The original contributions or important findings by the author in this PhD research 

are elaborated in the following statements: 

 

 Design of a robust regression model by MM-estimate for segment based 

mapping and SLAM procedures to remove the features corresponding to 

different dynamic objects; 

 Design of an indirect and a direct sensor fusion methods respectively through 

Bayes theory & MPEF method and information theory; 

 Formulation and proof of an optimal data association scheme via the graph 

theoretic approach, and modified MPEF; 

 Design of a homography transformation based data association for monocular 

based SLAM. 

 Design of a virtual rangefinder model for line extraction from a monocular 

camera. 

1.5 Current Outcomes 

At the time of writing this thesis and based on the findings reported here, two 

international journal papers have been published, another three journal papers have 

been submitted to international robotics journals, and two conference papers were 

presented at IFAC World Congress, one conference paper is under review. These 

papers are listed as: 
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Journal Papers 

1. Zhang, Xinzheng, Rad, A., Wong, Y., Huang, G., Ip, Y., & Chow, K. (2007). A 

Comparative Study of Three Mapping Methodologies. Journal of Intelligent 

and Robotic Systems, 49(4), 385-395. 

2. Zhang, Xinzheng, Rad, Ahmad, & Wong, Yiu-Kwong (2008). A Robust 

Regression Model for Simultaneous Localization and Mapping in Autonomous 

Mobile Robot. Journal of Intelligent and Robotic Systems, 53(2), 183-202. 
 

Journal Papers under Review 

1. Zhang Xinzheng, Rad Ahmad, & Wong Yiu-Kwong (2008). Sensor fusion of 

monocular camera and laser rangefinder for line-based SLAM task in 

autonomous mobile robots. Submitted to Autonomous Robots. 

2. Zhang Xinzheng, Rad Ahmad, & Wong Yiu-Kwong (2008). Sensor Fusion for 

SLAM based on Information Theory. Submitted to Journal of Intelligent and 

Robotic Systems after revision. 

3. LIU, Yan, Zhang, Xinzheng, Rad, A.B., Ren, Xuemei & Wong, Yiu-Kwong 

(2008). Entropy Based Robust Estimator and its application to Line-based 

Mapping. Submitted to Robotics and Autonomous Systems. 
 

Conference Papers 

1. Zhang Xinzheng, Rad Ahmad, & Wong Yiu-Kwong (2008). A Virtual Range 
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Chapter 2  Literature Review 

2.1 Introduction 

With the purpose of setting the scene for the rest of this thesis and an intention to 

present the background and insight to the core of the studies endeavored in this 

research, this chapter aims to convey a thorough yet highly selective review of 

related work by other researchers. 

 

How can an autonomous mobile robot navigate unsupervisely in an unknown and 

uncertain real-world environment to fulfill its tasks? How does the robot learn the 

environment that it is supposed to navigate? Leonard and Durrant-Whyte (1991a) 

summarized these general problems of mobile robot navigation. Such navigation 

strategies began with wire-guidance in the 1970s and progressed in the early 2000s 

to beacon-based triangulation. Current commercial robots autonomously navigate 

based on sensing natural features. The realization of simultaneous localization and 

mapping (SLAM) as the basic ability of an autonomous mobile robot is a crucial 

step for meaningful implementation of navigation, exploration and other advanced 

autonomous tasks. Many researchers devoted themselves to reaching the solution 

for this basic capability. In the early stages, the studies focused on the map building 

or localization separately. Those works assumed that some part of SLAM was 

completed manually. For example, the localization algorithm usually used the 

pre-acquired maps; as well the mapping process was achieved by human-guided 

localization. The explosive research occurred after the pioneering work on SLAM 

(Randall Smith, Self, & Cheeseman, 1988) had been presented. Various 

methodologies have been proposed to address the SLAM problem. The underlying 

difficulties in SLAM were ignored in earlier studies but have been pursued 

relentlessly in the last two decades. Furthermore, some SLAM methodologies are 

incorporated with other advanced autonomous behaviors such as exploration in 
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order to accomplish multiple tasks concurrently. Most recently, with the 

development of computer vision techniques, the algorithms in this field open a new 

area for SLAM and the corresponding research topic is referred to as Structure 

from Motion (SFM) (Dellaert, Seitz, Thorpe, & Thrun, 2000). It attempts the 

process of finding a three-dimensional structure by analyzing the motion of an 

object over time. Figure 2.1 illustrates the essential capabilities required in a fully 

autonomous mobile robot and the associative technologies. It also depicts an 

overview of the main scope of this thesis.  

 

As there is a vast amount of research and writing which is relevant to autonomous 

behaviors in robotics community, in this chapter a few aspects interrelated with this 

thesis will be mainly concentrated on: Section 2.2 describes various perception 

systems applied in robotic area. Section 2.3 states the SLAM implemented in static 

and dynamic environments, as well the SLAM with vision system is discussed. A 

brief literature review in sensor fusion is included in Section 2.4. Section 2.5 

introduces another important problem in SLAM—data association. Finally, Section 

2.6 summaries this chapter. 

2.2 Perception Systems 

Perception systems that are the key requirements for any but the simplest 

behaviors for autonomous mobile robot consist of the diverse sensor devices for 

acquiring the knowledge about the environments. These sensors accompanied by 

algorithms provide the ability of estimating about the current state of the 

circumstances. With different characteristics, they are categorized as two 

predominant paradigms: proprioceptive and exteroceptive sensors which provide 

the interior and exterior information respectively about the robot itself and its 

ambient environments.  
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There are many proprioceptive sensors such as gyroscope, compass, inertial 

measurement unit (IMU), etc. A popular class, odometry measures the information 

of the wheel translation and rotation velocity, acceleration and robot heading; and 

estimates the robot pose by dead reckoning algorithm (Bowditch, 2002). It is a 

simple mathematical procedure of estimating robot current pose based upon a 

previously determined pose, and advancing that pose based on the known speed, 

elapsed time, and the course. However, the main disadvantage induced by dead 

reckoning is its unbounded accumulated errors because of the inherent property of 

integration process. Typical dead-reckoning errors will become so large that the 

robot's internal position estimate may be unacceptably wrong (Gourley & Trivedi, 

1994). Therefore, exteroceptive sensors are considered to continually assist and 

gradually decrease such errors. 

 

Exteroceptive sensors provide the robot with the information on the surrounding 

environment allowing the robot to interact with the world - roughly similar to 

human perception systems. Tactile sensors like bumpers and whiskers, as the name 

implies, sense direct physical contact between the robot and an object of interest. 

They also provide information about forces and torques transferred between the 

robot and other objects. Time of Flight system, encapsulating typical ultrasonic 

sonar and laser rangefinder, regarded as proximity sensors supplies the estimates 

of the distance (range) to objects in the environment. Ultrasonic sonar is the most 

common technique applied in the mobile robotics applications due to the ready 

availability, low cost, and easy interface. It has been used for various tasks in 

robotic field, for example localization, SLAM, exploration and so on. In 

compassion with ultrasonic sonar, laser rangefinder exhibits a much more accurate 

performance and repeatability. It is an effective alternative to other sensing 

technologies for robot pose estimation and the related scan-matching algorithm 

(Diosi & Kleeman, 2005) has been proposed. Humans can acquire massive 

information through their eyes and are able to make exceptionally good estimates 

about their local environment before and while navigating in known and unknown 
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environments. Hence, it is obviously natural to consider the vision system as an 

alternative sensor for a mobile robot. Vision refers to processing data from any 

modality which uses the electromagnetic spectrum to produce an image. The 

sensors for vision usually are CCD or CMOS cameras. These cameras relate 

measurements to scene structure and the computer vision or robot vision 

techniques examine the task of building computer representations of the 

environment from the captured images. Following the development of computer 

vision technology, vision sensors have become strikingly powerful tools for 

variety of autonomous behaviors. Much more presentations on many different 

sensors are explained in the essay (Everett, 1995). 

 

Many of the above sensors either alone or through fusion with others can serve for 

the basic ability of SLAM. In this thesis, we apply the odometry as the 

proprioceptive sensor and ultrasonic sonar, laser rangefinder and monocular & 

stereo cameras as exteroceptive sensors for the experimental studies. 

2.3 Simultaneous Localization and Mapping 

SLAM is a crucial characteristic for a truly autonomous mobile robot. It allows a 

robot navigating from an unknown origin, building the maps of the unknown 

environment from the sensor perception systems and concurrently estimating their 

pose with respect to a certain coordinate system by using those constructed maps. 

This is not as straightforward as it might sound due to inherent uncertainties in 

discerning the robot's relative movement from its various sensors. If the measured 

distance and direction traveled has a slight inaccuracy at the next iteration of map 

building, then any features being added to the map will contain corresponding 

errors. If unchecked, these positional errors build cumulatively, grossly distorting 

the map and therefore the robot's ability to know its precise location. A seminal 

work in SLAM to discuss these challenges is the research of R.C. Smith and P. 

Cheeseman (1987; 1988; 1990) on the representation and estimation of spatial 
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uncertainty. In those works, a feasible solution for SLAM was proposed. Other 

pioneering work in this field was conducted by the research group of Hugh F. 

Durrant-Whyte (1991b) in the early 1990s. 

 

Mapping 

As its name implies, SLAM consists of two operations: mapping and localization. 

An appropriate map representation can actively help implementing the 

localization. There are three major mapping approaches: occupancy grid-based 

maps, topological maps and feature-based maps. Thrun (2003) provides a 

comprehensive survey on these various mapping techniques. The occupancy grid 

mapping employed in the previous work (Chow, Rad, & Ip, 2002) and other 

research work (Thrun, 1998b) describes a map of the environment as an evenly 

spaced field of binary random variables each of which represents the presence of 

an obstacle at that location in the environment. It computes approximate posterior 

estimates for these random variables, therefore this algorithm is rather easy to 

construct and maintain. Topological maps (Remolina & Kuipers, 2004) such as 

Voronoi diagrams (Garrido, Moreno, Abderrahim, & Martin, 2006) are graph-like 

spatial representations. These maps lack scale, and distance and direction are 

subject to change and variation, but the relationship between points is maintained. 

Feature-based maps describe the environment with distinct features including lines 

(Ip, Rad, Chow, & Wong, 2002), landmarks (Thrun, 1998a), arcs (Lee, Cho, 

Chung, Lim, & Kang, 2005), etc. Especially for the indoor environments, the 

feature-based mapping method is much easier than other two paradigms to 

represent the objects. In order to gain insight into attributes of different mapping 

techniques, we compare three mapping algorithms with different configurations of 

the perception systems in Chapter 3. 

 

Among the primitives of numerous features, segment/line is perhaps the simplest 

and can expediently describe most structured indoor environments. Many 
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algorithms have been proposed to extract the line segments from the raw sensor 

data. Arras (2003) presented an algorithm based on linear regression theory. He 

first transformed the line extraction problem into a search problem in model space 

(line parameter domain). Subsequently, he applied the Agglomerative Hierarchical 

Clustering algorithm to construct adjacent line segments. Furthermore, he 

introduced a new feature type: multi-segment lines that exploited the high degree 

of co-linearity of indoor environments and overcame the problems with low 

feature discrimination. Ip, et al. (2002) suggested an enhanced adaptive fuzzy 

clustering (EAFC) algorithm to build a segment-based map in which the noise was 

treated as a special cluster using noise clustering (NC) technique. Split-and-Merge 

originated from computer vision is probably the most popular line extraction 

algorithm. It proceeds iteratively by gradually adding successive sensor readings 

to a line defined by the first few observations. A least square algorithm is used to 

detect whether the point lies on the postulated line. If the error is greater than the 

threshold error, the line is terminated and another line would be initiated (D. C. K. 

Yuen & B. A. MacDonald, 2003; David C. K. Yuen & Bruce A. MacDonald, 2003). 

Xu, Liu and Xiang (2003) developed a modified version named 

split-merge-split-merge phase to build a local map. The line fitting algorithm 

which belongs to another simple strategy referred to incremental algorithm has 

been suggested (Pfister, Roumeliotis, & Burdick, 2003; Xavier, Pacheco, Castro, 

Ruanot, & Nunes, 2005). Hough transform (Fichtner & Grobmann, 2004; 

Muñoz-Salinas, Aguirre, & García-Silvente, 2006; Prez Lorenzo, Vazquez-Martin, 

Nunez, Perez, & Sandoval, 2004) has been successfully applied to detect lines on 

images and is significantly robust. However, it is often influenced by illumination, 

asymmetric background, etc. The most difficult problem in generating the Hough 

transform is selecting the quantization levels for segments parameters. Log Hough 

implementation (Alempijevic & Dissanayake, 2004) has addressed the 

quantization problem whereby the r space is quantized with a log distribution 

utilizing the minimum range r as the shifting parameter. In addition, performing 

the operation in log space also considerably reduces the computational cost of the 
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classic Hough algorithm. Weingarten and Siegwart (2006) adopted the 

3-Dimentional laser sensor to extract the segments which are described by 

SPmodel with the help of Random Sample Consensus (RANSAC) (A. F. Martin & 

Robert, 1981) segmentation paradigm. As a survey study, Nguyen et al. (2005) 

compared six popular line extraction algorithms above including split-and-merge, 

linear regression, incremental algorithm, RANSAC, Hough transform, and 

Expectation-Maximization (EM) algorithm. The results of the comparison 

indicated that the split-and-merge and incremental algorithms were more efficient 

for their superior speed and accuracy. However, correct selection of various 

thresholds such as errors, line length and the inherent recursive nature for these 

two algorithms are among their drawbacks. The common segmentation 

methodology for dynamic environments, RANSAC, is available for robust fitting 

of models in the presence of data outliers, while it takes unbounded time for 

RANSAC to compute the model parameters and this would force the algorithm 

towards a suboptimal model. To address these disadvantages, we propose a robust 

regression model in Chapter 4 to build the segment based maps for both static and 

dynamic environments and integrate this model into the SLAM procedure. 

 

Localization 

Localization task is essentially an attempt by the robot to determine where it is 

located in the map built from the mapping process. It is an important part of the 

autonomous navigation for mobile robots. In a typical indoor environment with a 

flat floor plane, localization becomes a matter of estimating robot pose. It has two 

types: local localization and global localization.  

 

Local localization or pose tracking provides the mobile robot position a new pose 

estimate given the previous information. Probabilistic localization algorithms are 

variants of the Bayes filter. With natural landmarks or artificial beacons, the 

straightforward application of Bayes filters to localization problem is named 
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Markov Localization (D. Fox, Burgard, & Thrun, 1999). It handles uncertainty by 

multi-modal probability densities that are allowed and propagated through the 

motion model and are maintained over the space of all locations of a robot in its 

environment. The extended Kalman filter (EKF) localization algorithm (John J. 

Leonard & Durrant-Whyte, 1992) is a special case of Markov localization, where 

the probability density is uni-modal Gaussian and only mean and covariance need 

to be propagated. Moving away from point features, Lu & Milios (1997) as well as 

Gutmann & Schlegel (1996) introduced the scan matching algorithm which made it 

possible to localize a robot with remarkable accuracy. Bengtsson and Baerveldt 

(2003) presented a new scan-matching algorithm based on the IDC (iterative dual 

correspondence) algorithm, which showed a good localization performance even in 

dynamic environments. 

 

Global localization algorithm considers the case where the robot locates itself 

without knowing the start pose or capitalizing upon information about where it was 

before. In such a situation robot interrupts its normal operation and starts 

wandering through the environment trying to find its pose. Besides Markov 

localization that can be applied, Monte Carlo Localization (MCL) (Dieter Fox, 

Burgard, Dellaert, & Thrun, 1999) and its modified versions (Milstein, Sánchez, & 

Williamson, 2002; Yee & Vermaak, 2005) are in the form of an efficient 

data-dependent proposal that can be used both for initialization and re-initialization 

after tracking failure or robot kidnapping. The global localization also can be 

achieved by matching distinctive scale invariant visual landmarks in the current 

frame to a database map by RANSAC algorithm (Stephen, Lowe, & Little, 2002). 

Different from the passive form above, the active approach makes the robot 

actively interact with the environment and choose the optimal action which 

minimizes the expected future uncertainty. Therefore the active global localization 

strategies are born, including heuristic (Gasparri, Panzieri, Pascucci, & Ulivi, 2007; 

Jensfelt & Kristensen, 2001), geometric (O'Kane, 2006; Rao, Dudek, & Whitesides, 

2007) and entropy-based approaches (Dieter Fox, Burgard, & Thrun, 1998; Porta, 
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Verbeek, & Kröse, 2005).  

 

In this thesis, we would not study the localization problem independently but 

design it within SLAM where only the local localization will be handled. 

 

SLAM 

Durrant-Whyte and Bailey (Bailey & Durrant-Whyte, 2006; Durrant-Whyte & 

Bailey, 2006) provided an overview of SLAM, which is a comprehensive 

introduction including history, the problem structure, computational solution, 

convergence of algorithm, data association, implementation, and open resource. 

The important points of their reports focus on the development and challenges 

which make the SLAM as an interested open problem and captivate the researchers 

of the whole world. 

 

Application of EKF algorithm to the SLAM was first presented in the pioneering 

research work of Smith & Cheeseman and implemented in Leonard and 

Durrant-Whyte (1991b; 2001). After that the EKF algorithm became de-facto in 

many SLAM implementations. Noting the limitations of EKF, many researchers 

investigated modified or alternative techniques for maintaining the accurate pose 

estimates during SLAM. SEIF SLAM (Thrun, et al., 2004) is the use of the sparse 

extended information filter (SEIF) to solve SLAM by maintaining a posterior over 

the robot pose and the map. Similar to GraphSLAM (Thrun & Montemerlo, 2006), 

the SEIF SLAM is a fully solution but an online algorithm. It derives the creation 

of information links between pairs of features from a filtering perspective. Another 

alternative of SLAM algorithms is called FastSLAM which was first proposed by 

Mentemerlo et al. (2002). FastSLAM algorithms were developed based on Particle 

Filter (PF). Condition on these particles the mapping problem is factored into 

separate problems. Therefore, one EKF for each feature is used to update the 

feature estimate. The basic algorithm can be implemented in time logarithmic in 
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the number of landmarks. Hence, FastSLAM offers computational advantages over 

plain EKF implementations and many of its descendants. Furthermore, the 

improved FastSLAM algorithms have been proposed such as FastSLAM 2.0 

(Montemerlo, Thrun, Koller, & Wegbreit, 2003), DP-SLAM (Eliazar & Parr, 2004), 

Unscented FastSLAM (C. Kim, Sakthivel, & Chung, 2008), etc. 

 

Extension of SLAM to dynamic environments has been studied in recent years. 

Burgard et al. (1999) updated a given static map using the most recent sensor 

information to deal with the effect caused by moving people in the environment. 

Fox et al. (1999) proposed a filtering technique to identify range measurements 

that do not correspond to the given world model, and then to update the robot 

position using only those measurements. Montemerlo Thrun and Whittaker (2002) 

employed a Rao–Blackwellized particle filter to solve the simultaneous 

localization and people tracking problem based on a prior accurate map of the 

corresponding static environment, which is similar to FastSLAM. These 

approaches, however, all depend on the existing maps to detect the influence of 

state changes, and then provide respective action. In contrast, EM algorithm 

(Biswas, Limketkai, Sanner, & Thrun, 2002; Hahnel, Triebel, Burgard, & Thrun, 

2003) interleaves the identification of measurements that correspond to dynamic 

objects with a mapping and localization algorithm which can isolate the dynamic 

elements to improve the estimate about spurious measurements and enhance 

localization accuracy in different kinds of dynamic environments. Andrade-Cetto 

and Sanfeliu (2002) combined the landmark strength validation and Kalman 

filtering for map updating and robot position estimation to learn moderately in 

dynamic indoor environments. Hähnel, Schulz and Burgard (2003) presented a 

Sample-based Joint Probability Data Association Filters (SJPDAFs) to map 

populated environments and filter out the people tracking results of which the data 

are obtained with the laser range scanners. Wolf and Sukhatme (2005) proposed an 

online algorithm for SLAM in the dynamic environment which is robust to detect 

dynamic entities both when they move in and out robot’s field of view, although 
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the limitations of moderately dynamic indoor environments and the narrow 

assumption of localization implementation. Wang (2004) established a 

mathematical framework to integrate SLAM and DATMO (Detection and 

Tracking Moving Objects). The idea is to identify and keep track of moving 

objects in order to improve the quality of the map. Also from the viewpoint of 

multi-target tracking (MTT), we addressed the SLAM in dynamic environments in 

the previous works. One approach employed Sequential Monte Carlo methods (G. 

Q. Huang, Rad, Wong, & Ip, 2004) as robust and computationally efficient 

algorithm, where the SLAM procedure made use of Rao-Blackwellized particle 

filter to estimate robot pose and EKF to estimate feature location; and a Hybrid 

Independent/Coupled Sample-based Joint Probability Data Association Filter 

(Hyb-SJPDAF) was applied to solve MTT and data association problem. The other 

method used a hierarchical hybrid method (G. Q. Huang, Rad, & Wong, 2005) to 

solve SLAM locally by Maximum Likelihood with occupancy grid map and 

globally by EKF with feature-based map, and suggested a straightforward Nearest 

Neighborhood (NN) algorithm based on Euclidean metric to address MTT. 

 

Most recently, advances in computer vision have provided robotics researchers 

with efficient and powerful techniques that can be employed in SLAM. Davison 

and his group proposed a real time monocular SLAM algorithm that generated a 

3D trajectory of a previously unknown scene (Civera, Davison, & Montiel, 2008; J. 

Civera, A. J. Davison, & J. M. M. Montiel, 2007a; J. Civera, A. Davison, & J. 

Montiel, 2007b; Andrew J. Davison, Reid, Molton, & Stasse, 2007; Andrew. J. 

Davison, 2003; Montiel, Civera, & Davison, 2006). The core of their approach 

was the online creation of a sparse but persistent map of natural landmarks within 

a probabilistic framework. The 3D position of the landmarks was described by a 

unified inverse depth parameterization algorithm that allowed efficient and 

accurate representation of uncertainty during un-delayed feature initialization 

procedure. Their research made a valuable contribution and opened up a new 

direction in robotics research. Following this pioneering work on monocular 
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SLAM, other researchers studied line-based algorithms. Eade and Drummond 

(2006) proposed an edge-let landmark to depict the line features in images. This 

work, which is their extension of the so-called scalable monocular SLAM (E. Eade 

& T. Drummond, 2006), avoids regions of conflict and deals with multiple 

matches through robust estimation. Gee and Mayol-Cuevas (2006) used fast conic 

extraction to obtain the 2D edges and then estimated the 3D segments with the 

Unscented Kalman filter (UKF). Also Smith, Reid and Davison (2006) applied 

FAST corners to quickly verify that there was an edge between two corners by 

bisecting checks. Besides, other researchers conducted similar studies on line 

based SLAM with a single camera. Lemaire and Lacroix (2007) introduced the 

Plücker coordinates for 3D line description and considered constraints associated 

with Plücker representation during the updating stage of Kalman filter. Folkesson, 

Jensfelt and Christensen (2005) suggested a M-space feature representation similar 

to SP-model. This feature representation is a general and systematic technique that 

makes it possible to change sensors and features without any variation to SLAM 

implementation. Additionally, lines and points can be merged to enhance the 

performance of visual SLAM. Jeong and Lee (2006) constructed the 3D line and 

corner maps. The reconstructed 3D line landmarks improved the performance of 

the robot navigation when robot's pose remained uncertain with only the corner 

information. A six degrees of freedom Hierarchical SLAM (Marzorati, Matteucci, 

Migliore, & Sorrenti, 2007) was used to unify a framework of uncertain projective 

geometry to describe, combine, and estimate various types of geometric elements. 

This SLAM strategy also improved mapping accuracy and pose estimation. To 

enhance the precision of the map, Diosi and Kleeman (2004) combined 

measurements from a laser rangefinder with those from an advanced sonar array. 

In that configuration, the sonar aided laser segmentation, the laser helped good 

sonar point feature selection, and the measurements corresponding to the same 

object in laser and sonar were fused. 

 

Most relevant research on vision SLAM, however, have been implemented in 
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static space or the environments with few moving objects. Additionally, the 

traditional rangefinder sensors, for example laser and sonar, sometimes fail to 

detect the dynamic objects, which may lead to inappropriate robot actions that 

ultimately results in failure to complete the expected tasks. In this study, 

combining with the robust regression model for map representation, we will 

consider the problem of SLAM in dynamic scenarios from a sensor fusion 

viewpoint which incorporates the sensor information of the camera and 

rangefinder sensors in Chapters 5 and 6. 

2.4 Sensor Fusion 

Sensor fusion is also known as multi-sensor data fusion and is a subset of 

information fusion. It is the combination of sensory data from disparate sources 

such that the resulting information is in some sense better than would be possible 

when these sources were used individually. By an efficient scheme, the significant 

profits of sensor fusion concentrate on improving confidence in decisions due to 

the use of complementary and redundancy information, performance to decision 

making and performance in adverse environmental conditions.  

 

With advantages over the use of a single sensor alone, sensor fusion technique has 

frequently been applied to robotic community. Castellanos, Neira and Tardos 

(2001) described a probabilistic technique for validating the individual and joint 

compatibility of measurements acquired from laser rangefinder and monocular 

camera, the benefits of which for SLAM problem is providing partial redundancy 

between sensor observations and increasing both reliability and precision from 

early stages of the processing. EKF as a very prevalent sensor fusion scheme has 

been used to solve several problems such as localization (Lizarralde, Nunes, Liu, 

& Wen, 2003; Roumeliotis & Bekey, 2002) and SLAM in robotics research. This 

classical method is extended by many researchers. Ahn et al. (2008) applied 

EKF-SLAM framework to fuse the features extracted respectively from ultrasonic 
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sonar and stereo camera, which achieved correct data association via the object 

recognition and high frequency update via the sonar features. Tsai, Lin and Lai 

(2005) used the same method to incorporate the information of inertial and 

ultrasonic sensors. Similar to EKF, particle filter, another kind of Bayesian filter, 

is adopted for sensor fusion (Moreira, Machado, Mendonca, & Pereira, 2007; 

Vadakkepat & Jing, 2006), which has ability to deal with the multi-modal 

distribution. The multi-rate EKF and multi-rate UKF (Gemeiner, Einramhof, & 

Vincze, 2007) were used to implement the fusion of inertial and vision data for 

SLAM, which overcame the inherent drawbacks of EKF. On the basis of Bayesian 

theory and EKF framework we also suggest an indirect sensor fusion strategy in 

Chapter 5 to avoid a few of disadvantages existed in EKF so that the performance 

of EKF-SLAM can be improved and additionally some pseudo map features can 

be removed. 

 

The probabilistic method and the series of Bayesian filter belong to the statistical 

fusion techniques while other fusion methodology of uncertainty inference is 

applicable. Dempster-Shafer rules based sensor fusion strategy is proposed to 

integrate two omnidirectional images for solving the problem of sensorial 

construction in mapping procedure (Drocourt, Delahoche, Marhic, & Clerentin, 

2002). The work of fuzzy decision (Matía & Jiménez, 1998) employed an adaptive 

fusion of reactive behaviors to provide emergent behaviors, which has indicated 

that the fusion of heterogeneous sensors in a mobile robot is capable of reducing 

uncertainty in position estimation. A sensor fusion algorithms for mapping was 

presented to evaluate the grid map obtained from a camera, an array of ultrasonic 

sensors and a laser rangefinder by an adaptive fuzzy logic fusion algorithm 

(Kapach & Edan, 2007). Similarly, Huang, Rad, Wong & Ip (2007) also exploited 

the fuzzy system as the heterogeneous multi-sensor fusion algorithm for mapping 

in dynamic environments. Furthermore, Kim et al. (2007) proposed a hierarchical 

hybrid sensor fusion algorithm for map building process, which incorporates three 

fusion methods into three level fusion modules: weighted average of probability, 
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expert rules and Bayesian method.  

 

Sometimes, the prior knowledge required for the methods represented above is 

difficult to obtain. Therefore, a general fusion approach based on information 

theory (Manyika & Durrant-Whyte, 1994) was suggested. In that work, the fusion 

algorithm was a distributed information filter and the measures of the fusion were 

posterior entropy, prior entropy and mutual information. The sensor management 

method made use of information-based utility functions. With the advantage of 

generality of Shannon entropy, a Bayes-Maximum Entropy (Beckerman, 1992) 

formalism for multi-sensor data fusion was introduced, and applied to the fusion of 

ultrasound and visual sensor data robot. A minimum entropy approach (Yifeng & 

Leung, 1997) was presented for multi-sensor data fusion in non-Gaussian 

environments. Also the self-entropy and conditional entropy were merged with 

Markov chain as a robust algorithm named entropy based Markov chain to 

aggregate multiple sensory observations into a consensus output. Recently, an 

Entropy Fusion Model (Fassinut-Mombot & Choquel, 2004) was defined, the 

purpose of which was to reduce the combination space by explicitly resenting the 

notions of source redundancy and source complementarity in the form of entropy 

measures. Unfortunately, this model has been mainly applied to object recognition 

and not spread to SLAM. Following the concept of information theory and 

borrowing the idea of decision analysis, Chapter 6 presents and develops a direct 

sensor fusion management based on information entropy weight, which fuses the 

sensor measurements and related variance to reduce the feature uncertainty. 

2.5 Data Association 

As one of most critical and challenging problems in SLAM, data association 

consists of relating sensor measurements to the features in the existing map. It is 

essential to establish correct correspondences between the sensed and mapped 

features for building a consistent map, because any single mismatching may cause 
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the estimator such as EKF to diverge.  

 

In stochastic mapping, the problem of data association is resolved by widely 

employing the gated nearest neighbor (NN) algorithm (J. J. Leonard & 

Durrant-Whyte, 1991b). The normalized squared innovation test is used to 

determine the compatibility, and the Mahalanobis distance is calculated to select 

the best matching. The most appealing characteristics of NN is its O(mn) 

computational complexity besides its conceptual simplicity. Here m is the number 

of measurements and n is the number of existing landmarks in the map. It 

performs well in the environments with sparse landmarks. However, in the 

surroundings with high density of landmarks, the innovations of matching 

different observations obtained at same locations are correlated, thus, the NN 

algorithm may accept wrong matching, which leads to divergence of the estimator. 

Dezert and Bar-Shalom (1993) proposed a better solution, i.e., joint probabilistic 

data association (JPDA). JPDA associates all of the measurements falling inside a 

suitably chosen validation region of a track to itself by a probabilistic weighting 

procedure and performs relatively well when spurious measurements are relatively 

moderate. The limitation however is that it can be computationally prohibitive in 

terms of calculating weighting probabilities, and the process may corrupt the 

feature recognition or discrimination information. Neira and Tardos (2001) 

proposed using a joint compatibility test based on the branch and bound (JCBB) 

search with an acceptable computational cost in indoor environments. JCBB takes 

groups of feature observation associations into consideration in the context of 

searching for the hypothesis with the maximum number of compatible pairs. 

However, the resultant exponential search space, despite the branch and bound 

pruning, renders the method computationally intensive for real-time 

implementation. Nieto, Guivant, Nebot and Thrun (2003) proposed a real-time 

data association method for FastSLAM by applying the multiple hypotheses 

tracking (MHT) method in a variety of outdoor environments. MHT is the most 

structured approach employing the idea of delay decision for multi-target tracking 
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and data association (Reid, 1979). It forms a number of hard association 

hypotheses from several scans of data, and delays the association decision to a 

later time when more information becomes available. Bailey et al. (2000) 

considered relative distances and angles between points and lines in two laser 

scans and used graph theory to find the largest number of compatible pairings 

between the measurements and existing features. More recently, Zhang, Xie and 

Adams (2005) formulated the problem of data association in SLAM as a linear 

programming (LP) relaxation and thus obtained the suboptimal correspondences 

by solving the LP problem. In the same fashion of formulating data association 

into an optimization problem, Wijesoma, Perera and Adams (2006) introduced a 

multidimensional assignment based method to resolve the problem. To the best of 

our knowledge, however, most methods for solving the data association above are 

suboptimal. In Chapter 4, we revisit this problem by proposing an optimal graph 

approach. 

 

Computer vision technology makes the data association methodology feasible for 

visual SLAM algorithm. One of the methods is based on Scale Invariant Feature 

Transformation (SIFT) (Lowe, 2004). Landmarks are identified by SIFT and 

represented by keypoint descriptors (Miro, Dissanayake, & Weizhen, 2005; Sim, 

Elinas, Griffin, & Little, 2005). These landmarks subsequently are treated as the 

ideal candidates to the robust data association. Gil et al. (2006; 2007) managed the 

data association with the SIFT features from the pattern classification viewpoint, 

and the Mahalanobis distance was established by the average SIFT descriptors and 

a high dimensional covariance matrix. Similarly with pattern recognition 

technology, object-based SLAM (Ahn, Choi, Choi, & Chung, 2006) combined 

advantages of multi-scale Harris corner as a detector and the SIFT descriptor for 

natural object recognition, which provides a correct data association.  

 

In the reference works (Civera, et al., 2007a; Civera, et al., 2007b; Andrew J. 

Davison, et al., 2007; Andrew. J. Davison, 2003; Montiel, et al., 2006; P. Smith, et 
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al., 2006) samples in a window region are used to match the predicted features and 

calculate the innovation. However, the computation pixel by pixel in the 

predefined region is a little bit repetitious. In Chapter 5, we also use SIFT and 

suggest a data association scheme based on the homography transformation matrix. 

With the help of SIFT descriptors, this matrix is estimated by the matched points 

between two images. Compared with the related work above, instead of directly 

applying SIFT descriptors as the natural features, our method emphasizes on using 

SIFT mechanism to determine the matched points between any two images and 

then with these matched points estimates the homography transformation matrix. 

2.6 Summary 

In this chapter, the background materials related to various sensor systems, SLAM 

including mapping and localization, sensor fusion and data association have been 

reviewed, which provides the foundation on the problems to be addressed in the 

subsequent chapters. 

 

The survey on perception sensor systems gives the information on the instruments 

acquiring the environmental knowledge. Some of them will be taken as the 

fundamental devices for our research. The literature on the central topic related to 

this thesis, SLAM including mapping and localization especially in dynamic 

environments, has been revisited. The probable disadvantages in existing 

algorithms were discussed and we will attempt to tackle these problems through 

the robust methodology and sensor fusion viewpoint after checking the essays 

corresponding to the sensor fusion application. Another critical problem in SLAM, 

data association, was also considered. By analysis of the data association methods 

in literature, the sub-optimal characteristic is stated. We will propose and prove an 

optimal approach to handle data association problem. Additionally, a special 

method to address the data association in visual SLAM procedure will also be 

suggested which could release the computational complexity that is induced by 



Chapter 2 Literature Review 

2-20 

some of techniques in literatures.  

 

We will first start by determining a proper perception system and map 

representation for our study in the next chapter. 
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Chapter 3 Comparison of Mapping Methodologies 

3.1 Introduction 

Map building procedure is generally regarded as one of the most important 

problems in the pursuit of realization of a truly autonomous mobile robot. In 

recent years, this field has matured to a point where detailed maps of complex 

environments can be built in real-time, specifically for indoors environments. 

Many existing techniques are robust to noise and can cope with variety of 

structured static and dynamic environments. The integration of localization and 

mapping has led to development of SLAM algorithms which have gained 

considerable attention in the last two decades. Thrun (2003) provided a 

comprehensive introduction and compared various probabilistic mapping 

techniques. Following this extensive survey, the predecessors in our group 

proposed the Enhanced Adaptive Fuzzy Clustering (EAFC) integrating Noise 

Clustering (NC) to build the segment-based map (Ip, et al., 2002) and Fuzzy 

Tuned Grid-Based Map (FTGBM) (Chow, et al., 2002). As for dynamic map 

building, similar to Oriolo’s work (Oriolo, Ulivi, & Vendittelli, 1997; Oriolo, Ulivi, 

& Vendittelli, 1998), by using FTGBM Huang, Rad & Wong (2006) suggested a 

sensor fusion method which used sonar temporal difference (STD) and statistical 

background subtraction (SBS) to detect and track moving objects. Oriolo’s 

algorithm was classified under consistency-based methods realized by monitoring 

a sequence of temporal lattice maps for a certain number of measurement periods 

to detect moving objects by using sonars. In contrast, we employed a background 

subtraction technique and adopted an EM that learned 3-class mixture of 

Gaussians to model the non-stationary background relied on sufficient update 

during mapping process. After finding the moving objects, we proposed a 

fuzzy-tuned integration (FTI) to incorporate the results of motion detection into 

the mapping process. 
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To make a rational environment representation and to lay a solid foundation for the 

rest of this thesis, we devote our attention in this chapter to the mapping problem 

that is the essential element in the process of implementing any localization or 

SLAM algorithm. We compare two predominant mapping paradigms: 

segment-based map and FTGBM with three different perception systems and 

ascertain a proper mapping methodology including the map representation and 

sensor configuration which will be employed in the thesis research. In the 

following section, the perception systems and two map representations are 

reviewed. Section 3.3 describes the experimental results with the distinct mapping 

methodologies. Finally, the comparative results as well as the determined map 

representation and sensor systems are discussed in Section 3.4. 

3.2 Perception Systems and Map Representation 

Mobile robots acquire knowledge about their environments through taking 

measurements using various sensors and then extract meaningful information from 

those measurements. The most common sensors used in mobile robots are optical 

encoders which are classified as proprioceptive sensors and measure the robot 

internal position and its speed by advanced dead-reckoning. To acquire 

information on the robot environment, vision sensors and rangefinders such as 

ultrasonic sonar and laser classified as exteroceptive sensors are generally 

employed. These sensors were mounted on PIONEER II and III mobile robots and 

constitute the basis of experimental studies of this research work. In this chapter, 

we will test the properties of several of these sensors including encoders, sonar, 

laser and integration of various sensors, and formulate the perception systems 

which serve for the whole research. 

 

A comprehensive review of map representation and methods was included in 

Chapter 2. Here, we only briefly present our previous works on map building: 
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segment-based and fuzzy-tuned grid-based map. Interested readers may refer to 

Chow et al. (2002) and Ip et al. (2002) for further information. 

 

Segment-based Map 

The fuzzy clustering algorithms have been used in many applications involving 

data segmentation, and it is suitable for feature detection of linear shapes. 

Therefore, fuzzy clustering facilitates direct extraction of a line segment within the 

data set space. Based on the fundamental fuzzy c-means (FCM) clustering method, 

enhanced adaptive fuzzy clustering (AFC) algorithm was developed in our 

segment-based mapping in which noise is treated as another separate cluster, Noise 

Clustering (NC). The enhanced AFC algorithm is divided into two phases. The 

function of phase I  is to select the cluster centers within the data set by the 

standard FCM algorithm. After obtaining the cluster centers in the data set, the 

phase I I (AFC) is used to calculate the line segments. The previously calculated 

cluster centers are used for initialization of the fuzzy partition matrix of AFC to 

obtain the cluster with linear prototypes, i.e. line segments. After extracting and 

grouping the line segments, with the compatible line segment merging technique, 

we merged the similar basic segments together to form a single line segment. The 

basic segments are discontinuous outlines of the object boundaries in the vicinity 

of the mobile robot trajectory. In order to improve the quality of the map, the 

number of line segments representing the same boundary is merged up by some 

reasonable conditions. Practically, sonar interference definitely affects the 

detection, however, two techniques are considered to eliminate most of 

interferences. One is setting a sonar range cut-off limit (1500mm). All sonar data 

which are over this limit are discarded and not used for feature extraction. The 

other is applying the NC. This special cluster aims to alleviate arbitrary 

distribution of noise in ultrasonic sonar including the interferences. 

 

Fuzzy-Tuned Grid-Based Map (FTGBM) 

In FTGBM, the probability distribution function (pdf) of the sensor model is tuned 
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by a set of fuzzy rules based on the maximum probability of the grid cell within 

the sensor cone. Similar to traditional approaches, the occupancy grid probabilities 

of the state s(Ci) of grid cell Ci for the environmental map P[s(Ci)=occ|x]=0.5 

means unknown or unexplored region. P[s(Ci)=occ|x]=1 means that the grid cell Ci 

is occupied and vice-versa. The fuzzy-tuned sensor model—pdf—considers the 

example of a range sensor characterized by Gaussian uncertainty in both range and 

bearing measurements where some elements in pdf are tuned by fuzzy theory 

under some conditions. This FTGBM alleviates the disadvantage that specular 

reflection and sonar interferences are modeled by traditional Gaussian function. It 

should be noted that the measurement noise is assumed to be white and augmented 

into sensor data as additive noise. After obtaining the sensor model, we used 

Bayesian update rule to update the occupancy probabilities of the grid cells. 

3.3 Experimental Results 

The experimental platform in this thesis was a Pioneer 2DX mobile robot 

equipped with an un-calibrated Canon VCC4 monocular camera with a fixed angle, 

a SICK LMS200 laser rangefinder, a PNI vector module, a pair of bumper and 

sixteen ultrasonic sonar sensors: six at front locations, six at rear, separated by 20° 

each, and four locating at each side. The driving mechanism was by means of two 

reversible DC motors with wheel encoders to update the location. Figure 3.1 

shows the real Pioneer 2DX mobile robot and its diverse sensor systems. This 

platform is the main device employed in this thesis and will not be described more 

in the following chapters. 
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Figure 3.1 Pioneer 2DX and loaded sensors 

 
We intend to illustrate the mapping results of three configurations of perception 

systems: only sonar, only laser, and combination of sonar plus camera with the 

segment-based and grid-based mapping techniques. The environment including 

static and dynamic ones is the corridor outside the Control Research Laboratory 

within the Department of Electrical Engineering building. Figure 3.2 gives the 

hand-measured blueprint of the experimental corridor. The software is written in 

C/C++ language, and Saphira API libraries have been used to obtain the sonar and 

laser data and estimate the current pose of the robot. The navigation is not 

autonomous in the present implementation. The localization procedure applied the 

dead-reckoning mechanism because the mapping process was a short-term. 

Meanwhile, some landmarks were placed on the ground for minimizing the 

localization errors. In all experiments, the robot traveled with an average speed of 

150 mm/s and all sensor data have been transformed into the same coordinate 

frame (Please refer to the Appendix A for coordinate transformation). To compare 

the results conveniently, all mapping processes are implemented offline. 
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Figure 3.2 Hand-measured blueprint of the corridor 

 

Case 1: Mapping with segment-based technique in the static environment 

In this case, no moving objects appeared in the corridor except the mobile robot. 

We built the segment-based maps by EAFC algorithm for sonar and laser readings, 

and through sensor fusion techniques for the incorporated measurements of sonar 

and monocular camera. The results are illustrated in Figure 3.3. Figure 3.3(a) and 

(c) look like similar because there is no moving object in the corridor so that the 

performance of fusing information of sonar and camera is not obvious. As 

numerous data are obtained from laser sensor, the map in Figure 3.3(b) is more 

accurate than those in Figure 3.3(a) & (c). 
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(a)                                    (b) 

 

(c) 

Figure 3.3 Results of the segment-based map in the static corridor. (a) Sonar sensor only; 

(b) Laser sensor only; (c) Combination of sonar and monocular camera. 

 

Case 2: Mapping with FTGBM in the dynamic environment 

There were several persons walking through the corridor where the robot was 

navigating. The size of grid cell was 50 mm. We also made use of our proposed 

sensor fusion algorithm to implement mapping for integration of sonar and camera. 

When using other sensor configurations including sonar and laser only, we applied 

the EM algorithm similar to Biswas et al. (2002) and Hahnel et al. (2003) to deal 

with the spurious data in MATLAB platform. Figure 3.4 shows the final maps 
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without (left column) and with (right column) handling the outliers. In Figure 

3.4(a) & (c), one person stopped near the robot for a moment, and in Figure 3.4(b) 

two persons walked through the corridor: one stood in front of a door and opened 

it (top-right part), the other pushed another door and entered the room (bottom-left 

part). Note that the effect of moving objects on the final map can not be eliminated 

thoroughly by sonar and laser only since the person is treated as a static object 

when he stopped temporarily (right plots of Figure 3.4(a) & (b)). However, with 

the combination of sonar and camera perception system, moving objects can be 

detected, tracked and then filtered out so that the quality of the final map is 

improved (cf. Figure 3.4(c)). 

 

 

(a) 

 

(b) 
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(c) 

Figure 3.4 Results of FTGBM in the dynamic corridor. Black: final map; Pink: preprocessed data 

(a) Sonar sensor only; (b) Laser sensor only; (c) Combination of sonar and monocular camera. 
 

3.4 Discussion 

Table 3.1 summarizes and compares the representation of map and sensor 

configurations employed for the experiments above in different environments. 

Here we do not consider the efficiency of the mapping algorithms but take only 

three indices as criteria of the comparison: one is the map quality, one is the 

memory cost for storing the map features, and the other one is the quantity of 

sensor information. It seems from Table 3.1 that the quality of the map built from 

laser data is better in both static and dynamic environments while the application 

of incorporating the sonar and monocular camera can provide much better maps in 

dynamic situation. It is further demonstrated that the segment-based mapping costs 

less memory space than FTGBM especially when the volume of map increases 

rapidly. Additionally, within any map representation the integration of sonar and 

camera perception system consumes much more memory than any of the others. 

This is because processing image data need more memory space than managing 

simple rangefinder data. The perception system of sensor integration has the most 

quantity of information, laser takes the second place and the information reflected 

in sonar is the least. Considering all the factors manifested in the experimental 

Pink 
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results, we selected the segment-based mapping as the method of environment 

representation, and laser rangefinder and multi-sensor integration as the perception 

systems for the rest of the thesis. Segment-based mapping easily describes most 

indoor environments and requires less memory to save map features. The laser 

rangefinder supports the precise range measurements and sensor integration 

guarantees correct map description in dynamic environments. 

Table 3.1 Comparative results of different map representation and sensor systems 

PERCETION SYSTEMS 

SEGMENT-BASED MAP 

(STATIC ENVIRONMENT) 

FTGBM 

(DYNAMIC ENVIRONMENT) 

Quality 
Memory 

Cost 

Information 

Quantity 
Quality 

Memory 

Cost 

Information 

Quantity 

Ultrasonic Sonar Sensor + + − − − − 
Laser Rangefinder ++ + + + − + 

Sonar and Monocular 

Camera 
+ − ++ +/++ −− ++ 

+: good; −: poor 

 
The main objective of this chapter is to select a proper mapping methodology for 

the studies of SLAM in the next chapters. From this viewpoint, we applied a 

sensible strategy to deal with the localization problem even though it is not 

flawless. To smooth over these disadvantages and make mapping quality as good 

as possible, we placed some landmarks on the turning points where most errors 

occurred. When the mobile robot traveled across these known landmarks, its pose 

was adjusted. The performance of the localization strategy above is equivalent to 

the SLAM with known data association. When implementing mapping for 

dynamic environments, the algorithms for filtering out the outliers corresponding 

to moving objects are not taken as the primary issue. The methods in our previous 

and the work by other researchers are introduced directly to ensure an acceptable 

mapping process. As the core topic of the thesis is the SLAM in dynamic 

environments, we devote much more attention to this problem in the following 

chapters on the basis of the determined map representation and perception system 

in this chapter. 
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Chapter 4  Robust Regression Model for SLAM 

4.1 Introduction 

It is imperative that autonomous mobile robots are outfitted with the capability of 

making sense of the dynamic world around them. Following the mapping 

strategies outlined in the last chapter, we adopt the segment-based map which is 

perhaps the simplest and can expediently describe most structured indoor 

environments. Many algorithms have been proposed to extract the line segments 

from the raw sensor data that contain intrinsic and extrinsic noise patterns. Ip et al. 

(2002) suggested an enhanced adaptive fuzzy clustering (EAFC) algorithm to 

build a segment-based map in which the noise was treated as a special cluster 

using noise clustering (NC) technique. Nguyen et al. (2005) compared six popular 

line extraction algorithms including Split-and-Merge, linear regression, 

incremental algorithm, RANSAC, Hough transform, and EM algorithm. The 

results of the comparison indicated that the Split-and-Merge and incremental 

algorithm were more efficient for their superior speed and accuracy. However, it 

was also commented that the appropriate selection of various parameter thresholds 

such as errors, line length, and the inherent recursive nature for these two 

algorithms were regarded as the main drawbacks of them. In addition, if the data 

obtained from laser scan is noisy or different objects obscure the planes defining 

the map, then the line assembly would fail. In dynamics environments and in the 

presence of moving objects, algorithms based on linear regression theory fail, but 

RANSAC is available for robust fitting of models in the presence of data outliers. 

However, the upper bound on the time that it takes to compute the model 

parameters can not be prefixed in RANSAC as this would force the algorithm 

towards a suboptimal model. Additionally, if more than one model in a particular 

data set exists, RANSAC could fail to converge to either one. Another 

disadvantage of RANSAC algorithm is its dependence on the threshold є, which 
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decides on how close a point-correspondence must be to the computed model to be 

considered as inliers. EM algorithm also has been employed for dynamic 

environments because it provides an iterative procedure to compute a series of 

easier log-likelihood for an incomplete data set as well as the missing information. 

Nevertheless, it sometimes fails to converge or converges very slowly. Especially, 

in some problems the E- or M-steps may be analytically intractable.  

 

In the proposed approach, the concept of robust regression (Maronna, Martin, & 

Yohai, 2006; Rousseeuw & Leroy, 1987) is introduced to extract the segments 

from the dynamic environment, which is referred to as robust regression model. 

This model exploits a MM-estimate for segment parameter estimations, and it 

concurrently removes the sensor noise and the moving objects from the sensor 

data. The MM-estimate combines a high breakdown point (50%) with good 

efficiency as linear regression. With this estimate, the robust regression model 

quickly converges and alleviates the disadvantages of RANSAC and EM 

algorithms. Moreover, this model can separate the distinct models in a group of 

sensor data. In comparison with Split-and-Merge and incremental algorithm, the 

robust regression model adopts less thresholds, which relieves the overall 

difficulty of thresholds selection. 

 

As another critical and challenging problem in SLAM, the data association 

consists of relating sensor measurements to the features in the existing map. It is 

essential to establish correct correspondences between the sensed and mapped 

features for building a consistent map, because any single mismatching may cause 

the estimator such as EKF to diverge. It is intuitive to consider data association as 

a search problem in the space of measurement-feature correspondences. However, 

it is usually intractable to do exhaustive searching, because the complexity of 

finding correspondences between the measurements and the mapped features is 

exponential on the number of measurements. 
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To the best of our knowledge, almost all the existing methods for solving the data 

association is suboptimal, such as the gated nearest neighbor (NN) algorithm (J. J. 

Leonard & Durrant-Whyte, 1991b), joint probabilistic data association (JPDA) 

(Dezert & Bar-Shalom, 1993), joint compatibility test based on the branch and 

bound (JCBB) search (Neira & Tardos, 2001), and multiple hypotheses tracking 

(MHT) method (Nieto, et al., 2003). In this chapter, we revisit the problem by 

proposing an optimal graph approach. Specifically, the data association in SLAM 

is first formulated as a 0-1 integer programming (IP) problem. It is well known 

that optimally solving IP problem generally is NP-hard. Therefore, the relaxation 

technique is usually adopted, for example linear programming relaxation (Zhang, 

et al., 2005), to obtain suboptimal solutions. We algorithmically prove that the IP 

problem is equivalent to a minimum weight bipartite perfect matching problem. 

Hence, we are able to optimally solve the bipartite matching problem and thus 

equivalently optimally resolve the IP problem (i.e., data association). 

 

The remainder of this chapter is structured as follow: After presenting some basic 

definitions and formulations about the robust regression model in Section 4.3, we 

describe the mapping method based on the robust regression model and the related 

EKF-SLAM algorithm. Section 4.4 analyzes the relationship between the data 

association problem and minimum weight bipartite perfect matching and 

mathematically proves the optimality of the suggested algorithm. The 

experimental studies are depicted in Section 4.5. We discuss the test results and list 

some remarks in Section 4.6. 

4.2 Robust Regression Model 

Ordinary least squares (OLS) estimates for regression models are highly sensitive 

to outliers. There are several fundamental assumptions that have to be fulfilled for 

the regression model. When those assumptions are not met, the prediction and 

estimation of the model may become biased. Residuals that may be very large can 
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seriously distort the prediction. Those extremely large residuals are referred to as 

outliers that would inflate the error variance, make the estimation less 

asymptotically consistent, and bias the parameter estimates. The robust approach 

aims at deriving methods that produce reliable parameter estimates even when the 

data set does not exactly follow a prescribed distribution. A more informal 

data-oriented characterization of robust methods is that they fit the bulk of the data 

well. If the data contains no outliers the robust method gives approximately the 

same results as the OLS; whereas if a small proportion of outliers are present, the 

robust method gives approximately the same results as the classical method 

applied to the typical data. As a consequence of fitting the bulk of the data well, 

robust methods provide a very reliable approach of detecting outliers, even in 

high-dimensional multivariate situations. Figure 4.1 shows the fitted line on sensor 

data containing the outliers that correspond to the dynamic object or noise by OLS 

estimate and a robust estimate called MM-estimate respectively. In contrast, the 

robust line fits the bulk of the data well, and is expected to provide a reasonable 

prediction. In this section, a few concepts and formulae applied for mapping are 

discussed. 
 

 

Figure 4.1 Fitted line determined by MM-estimate versus OLS estimate 

for the data with one outlier. 



Chapter 4 Robust Regression Model for SLAM 

4-5 

 
The general linear regression model is formulated as follows: 

u= +y xβ                                (4.1) 

where y is the response, x=[1 x] is the independent variable, β=[b0 b1]T is the 

unknown regression parameters, and u is the random error and independent of x 

and y. The fitted value and residuals corresponding to the vector β are defined 

respectively as ŷ(β) = xβ and r(β) = y − ŷ(β). Assume model (4.1) with fixed x (i.e. 

no noise exists in x) where u has a probability density 

1 ( )uf
σ σ

                                  (4.2) 

where σ is a scale parameter. For the linear model (4.1), y is independent but not 

identically distributed, and y has the probability density 

1 ( )yf
σ σ

− xβ                               (4.3) 

The likelihood function for β assuming a fixed value of σ is 
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Calculating the Maximum Likelihood Estimate (MLE) means maximizing L(β), 

which is equivalent to finding β̂  such that 
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where ρ = –logf. Define regression M-estimate as solutions β̂  to 
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where σ̂  is an error scale estimate. Differentiating (4.6) yields the equation 

1

ˆ( )( ) 0,  where 
ˆ

n
i

i
i

rψ ψ ρ
σ

′

=

= =∑ xβ                (4.7) 

In most situations, σ̂  is computed previously, but it can also be computed 
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simultaneously through a scale M-estimating equation (Maronna, et al., 2006). In 

many practical situations, the choice of ψ function is not critical to obtaining a 

good robust estimate, and many selections will give similar results that offer 

improvements in terms of efficiency and bias over classical estimates in the 

presence of outliers. Theoretically, re-descending ψ functions are to be preferred, 

and Tukey’s biweight (also known as bi-square) function is a popular choice. The 

main advantage of monotone estimates is that all solutions of (4.7) are solutions of 

(4.6).  

 

The approach to robust regression estimates where both x and the y may contain 

outliers is to use the M-estimate β̂  defined by (4.6) with a bounded ρ-function 

and a high breakdown point preliminary scale σ̂ . The further information on the 

requirements of this σ̂  is explained in the reference (Maronna, et al., 2006). If ρ 

has a derivative ψ, it definitely follows (4.7), where ψ has re-descending form. 

Consequently the estimating (4.7) may have multiple solutions corresponding to 

multiple local minima of the function on the right-hand side of (4.6), and generally 

only one of them (the optimal solution) corresponds to the global minimized β̂  

defined by (4.6). ρ and σ̂  may be chosen in order to attain both a high 

breakdown point and a high efficiency. If there is a single stationary point i.e. the 

optimal solution ˆ
oβ , then the solution of (4.7) converges to it so that ˆ

oβ  is also 

the solution of (4.6). Please refer to Rousseeuw and Leroy (1987) for the proof in 

detail. The method to compute the approximated β̂  defined by (4.6) with a 

bounded ρ-function is called an MM-estimate, which refers to the fact that more 

than one M-estimation procedure is used to calculate the final estimate. 

MM-estimate attempts to retain the robustness and resistance of S-estimation, 

whilst gaining the efficiency of M-estimation. The first M means to find a highly 

robust and resistant S-estimate that minimizes an M-estimate of the scale of the 

residuals, and the second M indicates that the estimated scale is held constant 
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whilst a close-by M-estimate of the parameters is located. 

 

The main difference between linear regression and robust regression is that in 

linear regression the parameters β are predicted by OLS algorithm, however for 

robust regression with the MM-estimate, the iteratively re-weighted least squares 

(IRLS) algorithm (Rousseeuw & Leroy, 1987) is employed to find the final 

estimate. The weights accompany with the points [xi, yi] at each iteration are 

calculated by applying a ρ function to the residuals from the previous iteration. 

This IRLS algorithm gives lower weight to points that do not fit well. The results 

are less sensitive to outliers as compared with linear regression based on OLS. 

Concerning the properties of ψ function stated above, in this study we selected the 

bi-square family of functions as the bounded ρ function 

2 3[1 ( / ) ] ,    if  | |
( )

           1          ,    if  | |
x k x k

x
x k

ρ
− − ≤

= 
>

                 (4.8) 

and the derivative ρ'(x) = 6ψ(x)/k2 where 

2 2( ) [1 ( / ) ,    | |]x x x k kxψ = − ≤                      (4.9) 

The relevant weight function is chosen as 

2 2( ) / [1 ( / ) ] , 0
           

,
 

  
  

 | |
( )              ,    0

( )
x

W x
x x x k k x

x x
ψ

ψ ′

= − ≠

=
=

≤



       (4.10) 

 

Considering the advantages of the robust regression, we apply it to our 

segment-based mapping algorithm which will be interpreted in the following 

section. Figure 4.1 shows that the MM-estimate is more efficient than OLS and 

Figure 4.2 illustrates that the result of the MM-estimate almost coincides with that 

of OLS estimate after removal of the outlier data point. 
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Figure 4.2 Fitted line determined by MM-estimate versus OLS estimate 

for the data after removal of the outlier. 

4.3 SLAM Algorithm with Robust Regression Mapping 

4.3.1 Sensor readings grouping based on Robust Regression Model 

The idea of grouping algorithm is similar to incremental algorithm, but with robust 

regression fewer thresholds are used. The equation of the line adopts the Hesse 

standard form. The laser readings with the angular resolution of 1° are processed 

to extract the segment parameters: p and a which are the perpendicular distance of 

the line from the origin and the orientation of this perpendicular line with respect 

to (w.r.t.) robot framework respectively. Besides these two parameters for 

measurement representation, we introduce other two extra parameters: unit 

eigenvector and the variance ratio of slope. Their role will be interpreted in more 

details later. The laser rangefinder provides N positions of points by Cartesian 

coordinates [xp, yp]T in a frame of sensor data. We group these sensor readings into 

a certain segment set Ls through two partition processes. The former is a rough one 

which builds the segment set iteratively, and the latter is a refined one which 

deletes the points with low weight values from the segment set built through the 
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rough process. As the variance of laser reading described in its manual is valid 

when the range is less than or equal to 8 meters, we filtered out the measurements 

which were larger than 8 meters before processing. 

 

In rough grouping, the segment set Ls(i) is initialized by the first two points P1 and 

P2 in a frame of data and the related regression parameters β in (4.1) are obtained 

by OLS based linear regression. When a new point Pnewj is coming into the current 

segment set, β is recomputed with this new point. However, now the 

computational strategy is not linear regression but the robust regression with the 

MM-estimate. After re-computation, the regression parameters as well as another 

important value, the weight W for each point, are obtained. If the wp(j) 

approximates to zero (in this study we use wp(j)=0), then the point Pj is removed 

from the current segment set; otherwise Pj is assigned to current segment set, 

where the Pj can be the new point Pnewj or the one existing in the segment set. 

Particularly, when the point whose wp(j) closes to zero is the last point, except 

deleting it we concurrently put it into a temporal segment set. If such Np (we 

selected 4 in this study) points appear continuously, we build the new segment set 

Ls(i+1) and in the next step the regression parameters and weight values are 

computed based on this new segment set by MM-estimate. This process is 

illustrated in Figure 4.3. 

 

Figure 4.3 The process of building segment set. 
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Figure 4.4 Regression parameters catastrophe 

 

Since the laser rangefinder scans the objects in counterclockwise direction, several 

points have the approximate x or y coordinates. They may probably belong to 

different segments but are wrongly grouped into one segment by robust regression. 

For example in Figure 4.4, P1 to P6 fit the segment represented in red line shown 

in the upper left subfigure. When more points P7, P8 and P9 that have approximate 

y coordinates as P6 are added, they cannot be treated as the outliers and 

misidentified same group (red line) as P1 to P6, which is illustrated in the upper 

right, lower right and lower left subfigures of Figure 4.4. Actually it appears that 

P1 to P6 fit the segment Ls(1) and P7 to P9 match the segment Ls(2) (cf. lower left 

subfigure in Figure 4.4). For this case, it is not sufficient to category the readings 

and extract the segment parameters only by using robust regression. It can be seen 

from Figure 4.4 that the regression parameter β1 (i.e. slope) has a serious change 

before and after P7 inserted but when other two points P8 and P9 are added the 

variance ratio of β1 tends to be smooth. Therefore, we design a parameter called 

variance ratio of slope (VROS) to detect the special case stated above. The 
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expression for VROS is 

1( 1) 1( )( 1) j j

resp

VROS j
t

β β− −
− =

∆
                      (4.11) 

where β1(j−1) and β1(j) are slope parameters before and after the jth point Pj is added 

into computation respectively, Δtresp is the response time interval between 

obtaining the measurements of Pj−1 and Pj. Here we use 13ms which is the 

response time of SICK LMS200 laser. The (j−1) on the left side means the jth 

point Pj is not the real element of the current segment set and only used to checked 

whether it belongs to the current data set. The process for detecting the special 

case by VROS is stated in Table 4.1. 
 

Table 4.1 The process for detecting the special case via VROS 

Step Process 

1° Compute β1(j-1) and β1(j) before and after the checked point Pj added into the 
current segment set, and then compute VROS(j-1); 

2° If VROS(j−1) is larger than Thslop then go to step 4°; 
3° If FlagVROS is TRUE then go to step 4° else go to step 7° 
4° nBuf = nBuf + 1, store VROS(j−1) into VROS buffer and let BufVROS(nBuf) 

equal to VROS(j−1). Let FlagVROS = TRUE; 
5° If nBuf equals to 3 then go to step 6° else go to step 7° 
6° In VROS buffer, BufVROS(1) is surely larger than Thslop and if BufVROS(2) and 

BufVROS(3) are both below Thslop then a new segment set is built i.e. Lnews={j, 
j+1, j+2}. If not both BufVROS(2) and BufVROS(3) are less than Thslop, then it 
means there exists outliers and they can be removed by another condition: 
wp(j) closes to 0. Reset nBuf to 0 and FlagVROS to FALSE. Stop process. 

7° Let β1(j-1) equal to β1(j) and go to step 1° 
where nBuf is the number of VROS buffer, FlagVROS is the flag which identifies the 
event that the severe change of slope occurred. Thslop is determined through testing 
on numerous sensor data which were obtained in different corridors. 

 
For example in Figure 4.4, before P7 is coming, β1(6) is 6.479; when P7 is checked, 

β1(7) is -0.1913, so the VROS(6) is 513. Assuming Thslop is 102, VROS(6) is over 

Thslop hence store it into BufVROS(1). Similarly, VROS(7)=6.05 and VROS(8)=2.05 

are also saved into BufVROS(2) and BufVROS(3). Obviously, VROS(7) and VROS(8) 

are less than Thslop, therefore P7, P8 and P9 consist of the new segment set Ls(2). 
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When a frame of sensor data was grouped into different segment sets Ls (some 

data were removed as the outliers), it is necessary for these sets to undergo another 

refined process in order to ensure that the points with low weights do not influence 

the parameter extraction in the next phase. This refinement is also the robust 

regression process similar to the rough partition; but the implementation is only 

one step not an iteration routine. 

4.3.2 Computation of Segment Parameters 

After the segment set Ls has been identified, the segment parameters p and a w.r.t. 

local framework are computed by all points that belong to Ls. The cost function of 

parameters extraction is same as the formula described by Garulli et al. (2005). 

Denoting the jth points in the ith set Ls(i) as [ , ]i i
j j

i T
jP x y= , the cost function is 

,

1

[ , ] arg min ( , )

where ( , ) ( cos sin )
i

i i p

n
i i
j j

j

p a E p a

E p a p x a y a

α

=

=

= − −∑
            (4.12) 

ni is the number of points in segment set Ls(i). The covariance of R for parameters p 

and a is also provided, which is calculated as Garulli’s method (Garulli, et al., 

2005). 

 

Besides these two parameters for implementing SLAM, we also compute another 

parameter referred to as unit eigenvector for merging the compatible segments. We 

borrowed the idea of weight computation in split-merge-split-merge mapping 

method (Xu, et al., 2003) to compute a modified covariance matrix. From this 

matrix we derived the unit eigenvector. For the point Pj of each segment set Ls(i), 

define Dfor and Dbac as the distances from the jth point to (j−1)th point and from 

the jth point to (j+1)th point respectively, then take (Dfor+Dbac) as the weight i
jw  

of Pj. Note that the first and last points only have the Dbac and Dfor which are 
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regarded as the related weights. All these weights consist of a weight vector WLs(i) 

for segment Ls(i). After standardizing this weight vector, we compute modified 

covariance matrix as follows 

2

1 1 1
,  ,  ( )

i i in n n
i i i i i i

x j j y j j xx j j x
j j j

m w x m w y S w x m
= = =

′ ′ ′ ′= = = −∑ ∑ ∑  

2

1 1
( ) ,  ( )( )

i in n
i i i i i

yy j j y xy j j x j y
j j

S w y m S w x m y m
= =

′ ′ ′ ′ ′= − = − −∑ ∑  

xx xy

xy yy
m

S S
C

S S
′ ′ 

=  ′ ′ 
                             (4.13) 

From modified covariance matrix Cm, the maximal eigenvalue and corresponding 

unit eigenvector labeled as λm and φm can be determined. With the unit 

eigenvector obtained from (4.13), we merged compatible line segments, of which 

the technique is the same as the predecessor work (Ip, et al., 2002). Note that after 

this merging process, the parameters of new segment should be re-computed via 

robust regression process. 

4.3.3 Extended Kalman Filter based SLAM (EKF-SLAM) 

As the mobile robot does not have prior knowledge of the environment, the 

research on SLAM seeks to enable the robot to move through its environment and 

build a consistent map of its surroundings as well as an estimate of its own 

trajectory using only onboard sensors. In this thesis, the most influential and 

popular algorithm, Extended Kalman filter (EKF) (Thrun, Burgard, & Fox, 2005), 

is applied to SLAM with graph theory based data association which will be 

presented in the next section. Let the robot position at time zero as the origin of the 

world coordinate system, i.e. xR(0)=[xR(0),yR(0),φR(0)]T. Figure 4.5 gives the 

geometric relationship between the robot and segment in local and global 

framework. 
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Figure 4.5 Measurement model and the geometric relationship between the robot and features 

 
Given at time k, the kinematical equation describing the robot motion w.r.t. the 

global framework is 
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  (4.14) 

where vtr(k) is the translational velocity and ωrot(k) is the angular velocity, and they 

contribute to control variable u(k)=[s(k), a(k)]T, where s(k)=vtr(k)Δt, a(k)=ωrot(k)Δt. 

u(k) is assumed to be corrupted by a zero-mean and variance var(u(k)) Gaussian 

noise process. There are three types of movement errors: kR is range error factor 

(unit: mm2/m), kθ is turn error factor (unit: deg2/deg) and kD is drift error factor 

(unit: deg2/m). The variance of u(k) is  

var( ( )) ([var( ( ), var( ( )])
              ([ | ( ) |, | ( ) | | ( ) )|]R D

u k diag s k a k
diag s k k a k k sk kθ

=
= +

              

Hence the covariance for the process noise v(k) is 

2

2
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) 0

0 0
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When the robot is moving, it is able to measure the information about the segment 
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from its current pose xR(k). Let zi(k)=[pi(k), ai(k)]T, i=1, …, n denote the parameter 

of the ith feature in the local reference frame. Then, from Figure 4.5, it can be 

expressed as a function of the current robot pose xR(k) and the parameters 

lfi=[rfi,γfi]T of the sensed feature in the global reference frame. The measurement 

model is 

( ) (

( ) cos ( )sin
( ),   ( ) ~ (0, ( ))

                

( ), ) ( )

        
    ( )

i R fi i

fi fi fi
i i i

fi R

R R

k h x

r x k y

k l w k

k
w k w k N R k

k
γ γ

φγ

=

− − 
= + 
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+z

 (4.15) 

where wi(k) represents measurement noise. It is also assumed to be a zero-mean 

Gaussian with covariance Ri(k) that is calculated from last subsection. 

 

With the motion model (4.14), measurement model (4.15) and initial conditions: 

xR(0), P(0), Q(0) and R(0), the time update equations are 
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where Ak and Wk are the process Jacobian matrix w.r.t. robot pose and control 

variable respectively at step k. They are given as 
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Once measurements zk become available the Kalman gain matrix Kk is computed 

and used to incorporate the measurement into the state estimate. The state error 

covariance for the updated state estimate Pk is also computed using the following 

measurement update equations 

1( )T T
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( )k k k k
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where zk is the observation obtained from laser readings, and ,( ˆ )k fh l−x  is the 

predicted features. Hk is the measurement Jacobian matrix w.r.t. robot pose and 

map features at step k. It is 
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It should be noted that we still applied the fuzzy tuning strategy (Ip, Rad, & Wong, 

2004) to cope with the process covariance matrix Q(k) of which the kR, kθ and kD 

are adjusted by a series of fuzzy rules. For invisible segments, p will be negative 

and a is added by π; further the related elements in Hk have to be affixed with a 

minus. 

4.4 Graph Theory based Data Association 

Data association in SLAM is a decision process of associating measurements with 

existing features in the stochastic map. We start by formulating the problem as a 

0-1 integer programming (IP) or 2D assignment problem.  

4.4.1 Formulation of IP Problem 

At time step k, denote a set of measurements collected in the latest scan by Z(k) 

and a set of features (here we use landmarks to make an explanation) existing in 

the map so far by F(k), i.e., 

( ) : 1, 2,...,( ) { }i kk i nk z =Z                    (4.21) 

( ) : 1, 2,...,( ) { }j kk j mk l =F                    (4.22) 

where nk is the number of actual measurements at time k and mk the number of 

existing landmarks in the map up to time k. Note that z0(k) and l0(k) are the dummy 

elements in the case of a false alarm or new landmark is detected. Next, we 

introduce a 0-1 decision variable. 

1, if ( ) associated with ( )
0, otherwise

i j
ij

z k l k
x 




           (4.23) 

Two special cases shall be emphasized here: 0 1k
ix =  stands that ith measurement 

can not be assigned to any of the existing landmarks in the map and therefore 

assigned with a dummy one which may be false alarm or new landmark; 0 1k
jx =  
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implies that jth landmark in the map does not have any possible measurement 

associated with it in the current scan. It should be noted that in tracking typically 

we do not define the j=0 case. We do so in order to get all equality constraints 

which will be become much clearer after the discussion below. 

 

There are two important physical constraints imposed on the data association 

problem as Li, Luo, Wong and Bosse (1999) discussed. (i) Single source constraint: 

Each actual measurement zi(k) (i=1,2,...,nk) can be assigned to at most one 

landmark. However, the dummy measurement z0(k) can be assigned to multiple 

landmarks in the case of false detection or new detected landmark. We therefore 

set it free to have the following equality constraint. 

0
( ) 1, 1, 2,...,

km

ij k
j

x k i n
=

= ∀ =∑                      (4.24) 

and (ii) Single return constraint: Each landmark lj(k) (j=1,2,...,mk) can produce at 

most one measurement in current scan. Clearly not all landmarks can return 

measurements. In other words, some existing landmarks are undetected in current 

scan and hence we assign these undetected landmarks dummy reports. 

0
( ) 1, 1, 2,...,

kn

ij k
i

x k j m
=

= ∀ =∑                       (4.25) 

Our objective is to exactly match the sensor observations with the existing 

landmarks in the map. Similar to the multi-target tracking problem(Li, et al., 1999), 

the cost of a feasible association of measurement with existing landmark or new 

landmarks (or false alarm) is as the negative logarithm of the normalized joint 

probability of such an association. Define the set of all possible association pairs at 

current time step ( ) {( , ) : ( ) ( ); ( ) ( ); , 0}i jk i j z k k l k k i jΩ ∈ ∈ ≠ Z F , and a partition 

of the set ω={ωT, ωF}, where ωT denotes the set of measurements associated with 

existing landmarks in the map while ωF is the set of measurements associated with 

new landmarks or false alarms. Note that we do not distinguish the cases of new 

landmark and false alarm. We instead assume all measurements not associated in 
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current scan are new landmarks, because if spurious landmarks are detected, they 

will be removed from the map if they do not appear in the following scans. Thus, 

ωF only stands for the case of association with new landmarks. Therefore, the 

likelihood of detecting new landmarks is simply approximated with 1, i.e. 

Λ(ωF)=1. For the true associations, we have 

( , )

) ( )(
Ti j

T q zl
ω

ω
∈

Λ = ∏                        (4.26) 

where zl denotes the true association of zi(k) and lj(k), and q(zl) is a Gaussian 

probability density function of the measurement variable zi(k), i.e. 

ˆ( ) : ( | 1), () )( ( )i j ik z k k Sq zl N z k−                (4.27) 

where ˆ ( | 1)jz k k −  is the estimate of landmark lj(k), and Si(k) is the covariance 

matrix of the residual ˆ( ) ( | 1)i jz k z k k− − . Both quantities are obtained in the 

update step in EKF-SLAM. Therefore, the likelihood of the partition ω can be 

calculated as follows (the time index is temporarily dropped to preserve the clarity 

of the presentation): 

( , )

1

( , )

( ) ( ) ( ) ( )

1 1 ˆˆ       exp{ ( ) ( )}
2det(2 )

T

T

T F
i j

T
i j i i j

i j i

q zl

z z S z z
S

ω

ω

ω ω ω

π

∈

−

∈

Λ = Λ Λ =

= − − −

∏

∏
      (4.28) 

In order to ensure the likelihood is consistent, normalization of Λ(ω) is necessary. 

Our objective is rephrased to find the one with maximum likelihood Λ(ω) among 

all possible partitions ω, which is equivalent to minimizing the negative 

log-likelihood − lnΛ(ω), i.e. ( , )( ln () ln )( ) i jJ q zlωω ω ∈Λ = −Σ− . By defining the 

cost coefficient 

0, ( , )
( )

ln ( ), ( , )
F

ij
T

i j
k

q zl j
c

i
ω
ω

∈
− ∈

                     (4.29) 

the data association of SLAM can be formulated as the following 0-1 IP problem: 
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1
( , )

( ) ( ): min ij ij
i j

c k x k
ω∈

∑Π  

                     s.t. Equation (4.23), (4.24) and (4.25)         (4.30) 

Notice that any solution to this IP corresponds to a matching and therefore this is a 

valid formulation of the minimum weight perfect matching problem in bipartite 

graphs (West, 2001), which will be elaborated in subsection 4.4.3. 

4.4.2 Formulation of LP Relaxation 

Consider now the linear programming (LP) obtained by simply dropping the 

integrality constraints: 

( , )
2 ( ) ( ): min ij ij

i j
c k x k

ω∈
∑Π  

s.t. xij ≥ 0, Equation (4.24) and (4.25)          (4.31) 

This is the LP relaxation of the above IP problem (Π1), which has been explored 

by Zhang et al. (2005). In an LP, the variables can take fractional values and 

therefore there are many feasible solutions to the set of constraints above which do 

not correspond to matching. But we only care about the optimum solutions. The 

set of feasible solutions to the constraints in Π2 forms a polytope, and when we 

optimize a linear constraint over a polytope, the optimum will be attained at one of 

the corners or extreme points of the polytope. In general, even if all the 

coefficients of the constraint matrix in an LP are either 0 or 1, the extreme points 

of an LP are not guaranteed to have all coordinates integral (This is of no surprise 

since the general IP problem is NP-hard, while LP is polynomially solvable). As a 

result, there is no guarantee that the optimum solution of IP (Π1) is equal to 

optimum solution of its LP relaxation (Π2). However, Π2 provides a lower bound 

of Π1. Moreover, the following lemma is easy to prove. 

Lemma 1 . If an optimum solution to Π2 is integral, then it must also be an 

optimum solution to Π1. 

Proof. The integral optimum solution to Π2 satisfies all the constraints of Π1.   ■ 
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4.4.3 Minimum Weight Bipartite Perfect Matching 

By assigning infinite costs to the edges not present, we assume that the bipartite 

graph is complete. The minimum cost (or weight) perfect matching problem is 

often described by the following account: There are n jobs to be processed on n 

machines and one would like to process exactly one job per machine such that the 

total cost of processing the jobs is minimized. Analogue to this story, with help of 

the dummy variables, the IP formulation of data association in SLAM, Π1, can be 

considered as a minimum weight bipartite perfecting matching problem. Instead of 

using optimization method directly to solve the data association problem, we shall 

employ graph approaches to solve the equivalent bipartite matching problem. In 

the case of the perfect matching problem, the constraint matrix has a very special 

form and one can show that the optimality of the solutions can be preserved. To do 

so, we start by stating a very crucial result—Lemma 2—in the following, and also 

describe the purely algorithmic proof. 

Lemma 2. Any extreme point of the polytope of Π2 is a 0-1 vector and, hence, is 

the incidence vector of a perfect matching.  

Proof. To prove algorithmically, we construct a primal-dual algorithm for solving 

the minimum weight perfect matching problem. Suppose in a specific case of the 

bipartite matching problem, we have measurement ui and landmark vj such that 

ui+vj≤cij. The dual of the LP relaxation, Π2, can be obtained as follows: 

( , )
3 : max ( )i j

i j
vu

ω∈

+∑Π  

s.t. ui+vj≤cij                             (4.32) 

The dual constraints can be interpreted as wij≥0, where wij=cij−ui−vj. If, for any 

instance, we could always find a feasible solution u, v to the dual Π3 and hence a 

perfect matching such that equalities in Equation (4.23) hold (i.e. the cost of the 

perfect matching is equal to the value of the dual solution). Thus, we would know 

that the matching found is optimum. Given a solution u, v to the dual, a perfect 

matching would satisfy equality if it contains only edges (i, j) such that 
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wij=cij−ui−vj=0. This is what is referred to as complementary slackness. However, 

for a given u & v, we may not be able to find a perfect matching among the edges 

with wij=0. The algorithm performs a series of iterations. It always maintains a 

dual feasible solution and tries to find an almost primal feasible solution satisfying 

complementary slackness. The fact that complementary slackness is imposed is 

crucial in any primal-dual algorithm. 

 

More precisely, the algorithm works as follows. It first starts with any dual feasible 

solution, say ui=0 for all i and vj=mini∈ω cij for all j. In a given iteration, the 

algorithm has a dual feasible solution (u, v) or say (u, v, w). Imposing 

complementary slackness means that we are interested in matchings which are 

subgraphs of B={(i, j): wij=0}. If B has a perfect matching then the incidence 

vector of that matching is a feasible solution in Π2 and satisfies complementary 

slackness with the current dual solution and, hence, must be optimal. To check 

whether B has a perfect matching, one can use the cardinality matching method. If 

the maximum matching output is not perfect, then the algorithm will use 

information from the optimum vertex cover C∗ to update the dual solution in such 

a way that the value of the dual solution increases. Recall that we are maximizing 

the dual. 

 

Let the set L (for labeling) of vertices which can be reached by a directed path 

from an exposed vertex in measurement set Z. In particular, there is then no edge 

of B between Z∩L and F∩L, where we remind that F is the mapped feature set. 

In other words, for every i∈(Z∩L) and every j∈(F−L), we have wij> 0. Let 

δ=mini∈(Z∩L),j∈(F−L ) wij. By the above argument, δ>0. The dual solution is updated 

as follows: 

,
,i

i
i

u i Z L
u i Z

u
Lδ

∈ −
=  + ∈ ∩

                      (4.33) 
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,
,j

j
j

v j F L
j F

v
v Lδ

∈ −
=  ∈ ∩−

                     (4.34) 

One easily check that this dual solution is feasible, in the sense that the 

corresponding vector w satisfies wij≥ 0 for all i and j. The difference between the 

values of the new dual solution and the old dual solution is equal to: 

(| | | |) (| | | | | | | |)
                                 ( | |)

Z L F L Z L Z L Z L F L
n C

δ δ

δ ∗

∩ − ∩ = ∩ + − − − − ∩

= −
    (4.35) 

where Z has size of n and C∗ is the optimum vertex cover for the bipartite graph 

with edge set B. But by assumption |C∗|<n, implying that the value of the dual 

solution strictly increases. 

 

This procedure is repeated until the algorithm terminates. At that point, we have an 

incidence vector of a perfect matching and also a dual feasible solution which 

satisfy complementary slackness. They must therefore be optimal and this proves 

the existence of an integral optimum solution to Π2. Since, by carefully choosing 

the cost function, one can make any extreme point be the unique optimum solution 

to the linear program. Now we need to prove that the algorithm indeed terminates. 

Notice that at least one more vertex of F must be reachable from an exposed 

vertex of Z (and no vertex of F becomes unreachable), since an edge e=(i, j) with 

i∈(Z∩L) and j∈(F−L) now has wij=0 by our choice of δ. This also gives an 

estimate of the number of iterations. In at most n iterations, all vertices of F are 

reachable or the matching found has increased by at least one unit. Therefore, after 

O(n2) iterations, the matching found is perfect.                           ■  

 

Now we reach the core of our findings, which is the equivalence between IP 

problem and minimum weight bipartite perfect matching problem. 

Lemma 3.  Solving Π1 is equivalent to solve a corresponding minimum weight 

bipartite perfect matching. 

Proof. With Lemma 1 and 2, the optimum solution of the minimum weight 
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bipartite perfect matching is also optimum solution to Π1.                   ■ 

Therefore, instead of solving the original IP problem (i.e. Π1) directly, we resolve 

the minimum weight bipartite perfect matching problem to obtain the optimum 

solution to the data association. 

4.4.4 Algorithm based on Weighted Bipartite Matching 

In this subsection, we focus on finding the minimum weight matching in the 

bipartite matching. The general idea is straightforward: start with any empty 

matching, and repeatedly discover augmenting paths. The weight is computed 

from the Mahalonobis distance that is  

1ˆˆ[ ( , )] ( ) ( , )[ ]T T
M k k f k k k k k k fd h l h l− − − −− + −= z x H P H R z x  

 

Several essential definitions are first delivered (West, 2001). Given a matching M 

in a bipartite graph G=(V, E), a simple path in G is called an augmenting path w.r.t. 

M if its two vertices are both unmatched and its edges are alternative in E−M and 

M. Let pap be an augmenting path w.r.t. M, and P denote the set of edges in path 

pap, then ( ) ( )P M PM P M⊕ − ∪ −  is called symmetric difference of M and P. 

One can verify the following properties of M∪P: (i) it is a matching, and (ii) |M∪

P|=|M|+1. The total weight of matching M is w(M)=∑e∈M w(e). Suppose M’ be a 

set of edges. An incremental weight ΔM’ is defined as ΔM’=w(M’∩M)−w(M’−M). 

From this definition, for an augmenting path pap w.r.t. M, ΔP gives the net change 

in the weight of the matching after augmenting pap, i.e. 

w(M∪P) = w(M) +ΔP                     (4.36) 

 

The minimum weight matchings are found iteratively. Specifically, the matching 

M is initialized to be empty. At each iteration, M is increased by finding an 

augmenting path of minimum weight. The procedure stops till no augmenting path 

w.r.t. M can be found. Johnson and Mcgeoch (1993) already proved that the 
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process yields a minimum weight matching if repeatedly performing 

augmentations by using augmenting paths of minimum incremental weight. In 

order to search augmenting paths w.r.t. matching M systematically and efficiently, 

a search starts by constructing alternating paths from the unmatched points. As an 

augmenting path must have one unmatched endpoint in Z and the other in F, in 

general, the search starts by growing alternating paths only from unmatched 

vertices of Z, and may search for all possible alternating paths from unmatched 

vertices of Z simultaneously in a breadth-first manner. In this work, the approach 

proposed by Johnson and Mcgeoch (1993) is employed to compute the minimum 

weight matching in the bipartite graph, which consists of two basic steps: (i) 

finding a shortest path augmentation from a subset of vertices in Z to a subset of 

vertices in F, and (ii) performing the shortest augmentation.  

4.5 Experimental Studies 

We evaluate our proposed data association approach through simulation and the 

robust regression model for EKF-SLAM via the experiments in static and dynamic 

environments. Notice that the latter experiments have incorporated the data 

association algorithm validated in former simulations. 

4.5.1 Validation of Graph Theoretic Data Association Algorithm 

We implemented the simulation experiments based on the simulator written by 

Bailey1

                                                        
1 It is available online http://www-personal.acfr.usyd.edu.au/tbailey/software/slam_simulations.htmm 

. To demonstrate the capability of the proposed graph approach to improve 

the accuracy of the data association and thus the estimation, we particularly 

compared the performance with NN data association, which is one of most widely 

used methods in EKF-SLAM. Two different scenarios were considered: one is 

with sparse landmarks, the other has relatively denser landmarks (cf. Figure 4.6). 

The velocity of the robot is kept constant at vtr=2m/sec, while its rotational 

velocity is obtained by calculating the changing rate of the orientation from the 
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current location to the next one in order to best fit the generated trajectory. The 

robot pose has zero initial uncertainty. The standard deviation of the velocity 

measurement noise is σvtr=0.1m/sec and the standard deviation of the errors in the 

orientation estimates is σω=0.0524rad/sec. Similarly, the standard deviations of the 

exteroceptive measurement noise (i.e., range and bearing) are σr =0.1m and 

σb=0.0524rad. The maximum sensing range of the sensor is set to 5m.  

 

 
(a) 
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 (b) 

Figure 4.6 Simulation setup. A robot equipped with range bearing senor moves  

on the planned trajectory at constant velocity of v = 2 m/sec. 

 (a) Sparse landmarks; (b) Dense landmarks. 

 

The resulting estimation errors of robot pose are shown in Figure 4.7 and 4.8, 

respectively. Figure 4.9 and 4.10 depict the estimation errors of the landmarks. As 

seen from these figures, the bipartite matching data association performs 

consistently, since the estimation errors are all well bounded within the 3σ regions, 

thus validating the effectiveness of the proposed algorithm. Moreover, in terms of 

the accuracy, the proposed graph approach attains better results, in that it has 

smaller covariance than NN, especially in the dense environment. 
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(a) Error of xR 

 
(b) Error of yR 

 

 (c) Error of φR 

Figure 4.7 Estimation errors of robot pose in the environment with sparse landmarks 

NN 

Bipartite 

NN 

Bipartite 

NN 

Bipartite 
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(a) Error of xR 

 
(b) Error of yR 

 

 (c) Error of φR 

Figure 4.8 Estimation errors of robot pose in the environment with dense landmarks 

NN 

Bipartite 

NN 

Bipartite 

NN Bipartite 
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(a) Error of xm 

 
 (b) Error of ym 

Figure 4.9 Estimation errors of landmarks in the environment with sparse landmarks 

 
(a) Error of xm 
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 (b) Error of ym 

Figure 4.10 Estimation errors of landmarks in the environment with dense landmarks 

4.5.2 Validation of Robust Regression Model for SLAM 

To evaluate the performance of the robust regression model for SLAM, we 

conducted extensive experiments in the corridor outside the Control Research 

Laboratory. We tested our proposed algorithm in static as well as dynamic 

environments. Figure 4.11 shows a hand-measured map of the corridor. We 

collected the laser sensor data when the robot traveled every 300 mm with an 

average speed of 100 mm/s. After that, the algorithm was implemented on 

MATLAB with the help of the CAS Robot Navigation Toolbox1.  
 

 
Figure 4.11 Hand-measured map of the corridor 

                                                        
1 It is available online http://www.cas.kth.se/toolbox/ 
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In static environment, there were no other moving objects except the mobile robot. 

The local maps including 1Ts, 8Ts, 14Ts, 20Ts and 32Ts are shown in Figure 4.12. 

Circles indicate the laser raw readings, and Ts denotes sample time. Figure 4.13 

gives the result of SLAM, which elucidates that robust regression model suits for 

static environments.  
 

 
(a) 1Ts                                  (b) 8Ts 

 
(c) 14Ts                                (d) 20Ts 

 

 (e) 32Ts 

Figure 4.12 A sequence of local maps for static corridor 
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Figure 4.13 Final result of SLAM in static environment 

 
As for dynamic environment, there was one person walking through the corridor 

with a normal speed. Figure 4.14 illustrates the mapping process for the local 

results of 5Ts, 10Ts, 21Ts, 28Ts and 36Ts. The subplots on the left side are the raw 

data and those on the right side are the extracted segment local maps. The raw data 

w.r.t. global framework and final results of SLAM are displayed in Figure 4.15. 

The laser data representing the walking person in Figure 4.14 (b), (d) and (e) are 

removed from the local maps and it is clear from Figure 4.15 that the results of 

SLAM in dynamic environment is similar to those obtained in static environment. 

This also states that the robust regression model can deal with the outliers 

corresponding to the dynamic objects as well as noise. 

 

 
(a) 5Ts 
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(b) 10Ts 

 
(c) 21Ts 

 
(d) 28Ts 

 

 (e) 36Ts 

Figure 4.14 A sequence of local raw laser data and local maps for dynamic corridor 
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(a) 

 

 (b) 

Figure 4.15 Global raw laser data and final result of SLAM in dynamic environment 

 

Compared with RANSAC, the robust regression model has a similar accuracy (cf. 

Figure 4.16) but requires less time to acquire the estimate of the regression 

parameters. We tested the computational time for RANSAC and MM-estimate by 

the computer with Pentium P4 3.20GHz CPU and 1G RAM. The normal elapsed 

time was 0.848280 seconds for RANSAC and 0.098378 seconds for MM-estimate. 

The minimum elapsed time was 0.630992 and 0.022483 seconds respectively. It is 

evident that even the minimum computational time for RANSAC is much larger 

than MM-estimate for parameter estimation. This is because that the subset of the 

original data for hypothesis test in RANSAC is selected randomly. 
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Figure 4.16 Fitted lines estimated by RANSAC and MM-estimator 

where breakdown point is 50% 

4.6 Discussion 

In this chapter, we proposed a robust regression model for mapping that discards 

the dynamic objects, and incorporated this model with the EKF-SLAM so that the 

moving objects can be avoided in the extracted map features. Experimental results 

have demonstrated the performance of outlier detection for not only in the 

presence of sensor data noise but also the dynamic environment. In our previous 

work, we designed a fuzzy strategy to represent the sensor noise as a separate 

cluster, noise cluster, in static environment. However this cluster did not consider 

the moving objects and related fuzzy membership functions did not suit for the 

dynamic environments. The robust regression model in this chapter addresses the 

sensor noise and dynamic items concurrently without requiring any special 

functions for noise and dynamic properties. Compared with the Split-and-Merge or 

incremental algorithm, the number of thresholds applied in those two methods has 
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been reduced to only two (i.e. Thslop and Np), so that the difficulty of thresholds 

selection is significantly alleviated. As well, with this robust regression model it 

takes less time to extract the feature parameters than RANSAC and can obtain the 

optimal estimate. Furthermore, when there are several similar segment models, for 

example L3 and L5 in Figure 4.15 (b), fitting the laser readings, it is easy to 

separate them by our proposed method but it may not be possible by using 

RANSAC. Despite their superior performance over least squares estimation in 

many situations, robust methods for regression are still not widely used. One 

possible reason is that the robust estimate is much more computationally intensive 

than the least squares estimation. In recent years however, this objection has 

become less relevant as computing power has drastically increased.  

 

Unfortunately, there is an inherent restraint that is the maximum breakdown point 

is 50%. If the proportion of incorrect observations preponderates over 50%, as is 

shown in Figure 4.17, the robust regression model fails to represent the correct 

segment features. The fitted line described by MM-estimate is similar to the result 

of OLS. The reason is there is not useful information enough to support the robust 

regression for feature extraction. We hardly encounter the case that the proportion 

of outliers exceeds 50% in this thesis study. From this viewpoint, we may claim 

that the robust regression model can apply to most of dynamic environments. 

Additionally, only with robust regression models, momentary stopping of moving 

people or other robots in the vicinity of the autonomous robot probably are treated 

as the segments, for example in Figure 4.18 there was a person standing in front of 

the robot, and the segment 4 was the extracted segment that related to the stopped 

person. It is apparent that this segment is a pseudo feature and will weaken the 

performance of the mapping even for SLAM. To counter this problem, we 

suggested a sensor fusion method in the next chapter to combine the lines 

extracted from the monocular vision system with the segments from laser 

rangefinder to eliminate those pseudo features. 
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Figure 4. 17 Fitted lines estimated by RANSAC, MM-estimator and OLS 

where breakdown point is 75% 

 

 

Figure 4.18 Pseudo segment extraction case 
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Concerning the data association problem, we formulated it as an equivalent 

minimum weight bipartite perfect matching problem which can be optimally 

solved, thus obtaining the optimal solution to the data association problem. We 

mathematically prove the optimality of the graph theoretic approach. Compared 

with the prevalent NN method, the proposed method has smaller errors, and 

reduces covariance for robot pose and feature positions. Obviously, it is limited to 

analyze the performance between the NN method and graph approach and more 

thorough comparison studies with the existing methods in the literature are to be 

studied. In this chapter we expected providing an optimal data association 

approach, therefore we tentatively discarded the performance of the algorithm for 

weighted bipartite matching and we applied the classical implementation. The 

computational complexity for bipartite approach is O(V2logV+VE) where V is the 

number of the vertex and E is the number of the edges. It is much more complex 

than that of NN algorithm of which the computational complex is O(mn). 
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Chapter 5  Sensor F usion f or P seudo F eatures 

Elimination 

5.1 Introduction 

The robust regression model eradicates most features corresponding to dynamic 

objects provided that these objects keep the movement status. Unfortunately, this 

assumption can not be satisfied in practice. A general scenario in many indoor 

dynamic environments includes moving objects such as people walking around or 

standing at any place. When moving people momentarily stop for a while, the 

robust regression model can not remove these dynamic elements and may 

misidentify them as the static segments. Obviously, these are pseudo features and 

can not be introduced into the SLAM procedure. In this chapter, we dispose the 

temporary stationary objects with the assistance of a monocular camera. 

 

Monocular camera as a low cost sensor has been widely used in numerous robotic 

applications in recent decades. It provides the autonomous mobile robot with 

abundant information that facilitates intuitive interpretation and comprehension of 

the environment better than other scanning sensors. Advances in computer vision 

have provided researchers with efficient and powerful techniques that can be 

employed in variety of autonomous tasks. Davison and his group proposed a real 

time monocular SLAM algorithm that generated a 3D trajectory of a previously 

unknown scene (Civera, et al., 2007a; Civera, et al., 2007b; Andrew J. Davison, et 

al., 2007; Andrew. J. Davison, 2003; Montiel, et al., 2006). The core of their 

approach was the online creation of a sparse but persistent map of natural 

landmarks within a probabilistic framework. The 3D position of the landmarks 

was described by a unified inverse depth parameterization algorithm that allowed 

efficient and accurate representation of uncertainty during un-delayed feature 
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initialization procedure. Their research made a valuable contribution and opened 

up a new direction in robotics research. Following this pioneering work on 

monocular SLAM, other researchers studied line-based algorithms. Eade and 

Drummond (2006) proposed an edge-let landmark to depict the line features in 

images. This work, which is the extension of the so-called scalable monocular 

SLAM (E. Eade & T. Drummond, 2006), avoids regions of conflict and deals with 

multiple matches through robust estimation. Gee and Mayol-Cuevas (2006) used 

fast conic extraction to obtain the 2D edges and then estimated the 3D segments 

with the Unscented Kalman filter (UKF). Also Smith Reid and Davison (2006) 

applied FAST corners to quickly verify that there was an edge between two 

corners by bisecting checks. 

 

Much of relevant research above, however, implemented SLAM in static space or 

within environments with few moving objects. The dynamic objects induce 

spurious features and make it difficult to obtain the correct estimates of the state 

variables. Furthermore these dynamic objects may lead to inappropriate robot 

actions that ultimately results in failure to complete the expected tasks.  

 

To discard the dynamic objects correctly, we present a sensor fusion strategy for 

line-based SLAM applied in dynamic environments. The algorithm fuses the 

sensor information of a monocular camera and a laser rangefinder. It includes two 

modules: One is a feature fusion that integrates the lines extracted respectively 

from a single camera and a laser to remove the erroneous features corresponding 

to dynamic objects; the other is referred to as a modified multi-sensor point 

estimation fusion (MPEF) which incorporates two separate EKF-SLAM 

frameworks: (a) monocular SLAM and (b) laser SLAM represented in Chapter 4. 

By this modified MPEF, the robot pose covariance is reduced compared with the 

corresponding value in each individual SLAM. 

 

Computer vision technology also makes feasible to address the data association 
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problem based on visual information. One of methods is on the basis of 

Scale-invariant feature transform (SIFT) algorithm (Lowe, 2004). Landmarks are 

identified by SIFT and represented by keypoint descriptors (Miro, et al., 2005; Sim, 

et al., 2005). These landmarks subsequently are treated as the ideal candidates to 

the robust data association. Gil et al. (2006; 2007) managed the data association 

with the SIFT features from the pattern classification viewpoint, and the 

Mahalanobis distance was established by the average SIFT descriptors and a high 

dimensional covariance matrix. Similarly with pattern recognition technology, 

object-based SLAM (Ahn, et al., 2006) combined advantages of multi-scale Harris 

corner as a detector and the SIFT descriptor for natural object recognition, which 

provides a correct data association. Different from these works, without using the 

SIFT descriptor directly, the suggested data association technology in this chapter 

employs the homography transformation matrix (Hartley & Zisserman, 2003) 

estimated by the matched points located in two images. These matched points are 

determined by SIFT descriptors 

 

The structure of this chapter is as follow. A description of the modeling and 

measurements equations of line based EKF monocular SLAM is introduced in 

Section 5.2. In Section 5.3, the homography transformation based data association 

algorithm is stated. The overall structure of sensor fusion scheme is presented in 

Section 5.4. A detailed description of experimental studies is included in Section 

5.5. Finally, the discussion is expressed in Section 5.6. 

5.2 Line based EKF Monocular SLAM 

As the laser SLAM procedure is same as the presentation in Chapter 4, it suffices 

here to discuss the outline of the line-based monocular SLAM framework. We 

simply convert the camera model proposed in Davison’s and his extended work to 

2D formation, and embed the parameters of line features extracted from images 

into state vectors for the SLAM. 
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5.2.1 Motion Model of the Monocular Camera/Robot 

The Canon VCC4 camera is fixed on the robot platform which moves in a 2D 

plane, and the translational and rotational velocity can be directly achieved from 

the odometry sensors. For convenience, we assume the origins of the robot and the 

camera reference systems are identical. Therefore we obtain a simplified 

camera/robot motion model 
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ah is the constant height of the camera from the ground plane; vxk and vzk are the 

sub-translation velocity along x- and z-axis at time k; ωky is exact rotational 

velocity at time k and qWR is the orientation quaternion similar to the definition of 

Davison’s work (Civera, et al., 2007a; Civera, et al., 2007b; Andrew J. Davison, et 

al., 2007; Andrew. J. Davison, 2003; Montiel, et al., 2006). v(k) is the process 

noise with zero mean and covariance Q. In Figure 5.1(a), the global and the 

camera/local references are shown in red and black respectively. It is important to 

note that the local reference has a little difference from the traditional one 

displayed in the lower plot of Figure 5.1(b). The camera pose is represented in z-x, 

which is plotted in upper subfigure of Figure 5.1(b), not x-y coordinates. This 

stems from the original application domain in computer vision, where the z axis of 

coordinate frames are aligned with the optic axis of cameras and for a robot with a 

forward-facing camera, this makes z horizontal. 
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Figure 5.1 The global and camera reference systems 

 
Since the laser based SLAM uses the traditional coordinates to predict and update 

the robot pose, to fuse both state variables rationally, it is necessary to convert the 

pose coordinates from our definition to the traditional representation. The upper 

plot of Figure 5.1(b) is the top view of Figure 5.1(a). Triple WV[zR, xR, φR]T 

specifies the Cartesian coordinates of our reference system. The relationship 

between our and conventional reference system is 

[ ] [ ], , , ,WC WVT T
R R R R R Rx y z xφ φ=                      (5.2) 

The superscripts WC and WV mean the traditional and our vision system frames 

represented in global coordinate system respectively. It should be noted that the 

angle φR is computed from the angular velocity ωW and is restricted within the 

range –π < φR ≤ π  

( 1) ( 1)
arcc arccosos ( )

k k k k

W
R R k R yt tφ φ ω φ ω

− −
= + ∆ ∆+‖‖=           (5.3) 

5.2.2 Line Extraction and Measurement Model 

Line extraction is actually an edge detection operation in the image processing 

terminology. Most of the edge features in the literature are extracted by using 

Canny operator (Ethan Eade & Tom Drummond, 2006; Gee & Mayol-Cuevas, 
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2006). In this current study, we employed another first-order edge detector: Sobel 

operator combined with thresholding technique for edges extraction in a region of 

interest (ROI). The ROI we selected is a rectangle window defined as 40<v≤240 

and 0<u≤320 (cf. Figure 5.2(a)). This is because  
 

   
(a)                                     (b) 

  

(c)                                     (d) 

Figure 5.2 Line feature extraction from image. (a) The region of interest (ROI); (b) Detected edges 

without morphological operation; (c) Detected edges after morphological operation; (d) Selected 

line features whose length is greater than the threshold. 

 
we just consider the horizontal static edges in this ROI, nor focus on tracking the 

dynamic targets. However, not all of the moving objects can be eliminated from 

the selected region, which is illustrated in Figure 5.2(b). It seems that some 

extracted edges probably correspond to the dynamic objects (i.e. the person here). 

To withdraw these potential outliers, we firstly carried out the shrink and clean 

morphological operations on all edges. The shorter and thinner edges, which 

usually relate to the parts of dynamic objects, are taken out; and for these 

processed edges, if the length of anyone is less than 35 pixels we also rejected it. 

This operation ensures to wipe away spurious edges that were not removed in 
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shrink and clean process. Finally we did the thicken operation to recover the 

interested edges as displayed in Figure 5.2(c)&(d), which will prepare for edge 

parameter extraction in the next step. 

 

We divided the parameters for edge representation into two parts. One was used in 

measurement model; the other was for data association and sensor fusion. In this 

subsection, we mainly discuss the parameters for measurement model. Similar to 

Gee and Mayol-Cuevas (2006) and Smith et al. (2006), we employed image 

coordinates of the lines ends to build a couple representation, i.e. [ps, pe]T. We 

borrowed the idea of Davison’s work and the measurement model is 

( ,  )i vk iik h=z x y                                       (5.4) 
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where yi=[xi, yi, zi, θi, φi, ρi]T is the 3D position of the line ends, which is depicted 

in inverse depth parameters (Montiel, et al., 2006) (yi is the element of state 

variable); Rk
RW is the rotation matrix associated with quaternion qk

WR; Equation 

(5.5) is the position of the ends relative to the camera and equation (5.6) is the 

position [u, v] at which the ends would be expected to be found in the image; fku, 

fkv, u o and vo are the standard camera calibration parameters. Note that the ends 

initialization is same as Montiel et al. (2006).  
 

Besides the ends for measurement model, we also considered several additional 

parameters including mid-point pmp of the lines and the line descriptor in Hough 

space (Wong, Shi, & Chan, 1997) [dH, αH]T (usually it is written as [ρ, θ]T and here 

we use a different notation just to distinguish it with the components in yi). They 
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are applied as the auxiliary parameters for our proposed data association and 

sensor fusion strategies, and we will concentrate on these topics in the following 

sections. 
 

A step-by-step procedure for the complete line extraction algorithm follows: 

Step1: Pre-process the acquired image to filter out different noise signals;  

Step2: Select the region of interest (ROI); 

Step3: In the ROI, detect the horizontal edges by the Sobel operator combined 

with thresholding;  

Step4: shrink and clean morphological operations on all edges to eliminate the 

ones corresponding to dynamic objects; 

Step5: Remove the edges whose length is less than 35 pixels; 

Step6: thicken operation to recover the interested edges; 

Step7: Extract the image coordinates of line ends and mid-point, and descriptors in 

Hough space. 

5.2.3 EKF based Monocular SLAM 

The extended Kalman filter algorithm is also considered as the dominant approach 

for monocular SLAM. The time update and measurement update procedures are 

similar to Chapter 4. Hence, we only explain the essential differences in this 

section. 

 

Current estimates of the state of the robot and the scene features which are known 

about are stored in the system state vector x̂  and the uncertainty of the estimates 

in the covariance matrix P. x̂  and P will change in size dynamically as features 

are added to or deleted from the map. They are partitioned as follows: 
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The predicted covariance of the state vector is 
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∂ ∂u uPQ , Pn is the covariance of control vector uk. ∂fv/∂xv 

and ∂fv/∂uk are Jacobian matrices whose calculations are much more complicated 

but a tractable matter of differentiation; and we do not present the derivation 

results here. Analogous to time update process, the measurement update equations 

on Kalman gain are 
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Other formulae are same as those in Chapter 4. Si, the covariance of innovation, is 

a complicated calculation. Si has a further role in active search; it is a measure of 

the information content expected of a measurement. Each feature stores an 11×11 

image patch as a descriptor, and correlation is performed between this patch and 

the pixels in the search region to determine the actual feature measurement in the 
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image. Feature searches with high Si will provide more information about 

estimates of camera and feature positions. In an implementation of vision-based 

SLAM for a robot with maneuverable cameras this led directly to active control of 

the viewing direction towards profitable measurements. This is the idea of 

Davison. Actually, in our case the active vision system is invalid and the matching 

algorithm on Si may not be exploited. Additionally, the search engine is a little bit 

redundant. To concern these problems, we suggest a data association method to be 

presented in next section. 

5.3 Homography Transformation based Data Association 

Sampling is considered very important in nearest neighbor data association 

methods. In the reference works (Civera, et al., 2007a; Civera, et al., 2007b; 

Andrew J. Davison, et al., 2007; Andrew. J. Davison, 2003; Montiel, et al., 2006; 

P. Smith, et al., 2006) samples in a window region are used to match the predicted 

features and calculate the innovation. However, the computation pixel by pixel in 

the predefined region is a little bit repetitious. Since each 3D point has only one 

projection in the image plane, to determine the matched points in 3D space is 

equivalent to find the identical 2D image points. From this viewpoint, in this 

section, we suggest a data association scheme based on the homography 

transformation matrix (HTDA). With the help of SIFT descriptors, this matrix is 

estimated by the matched points between two images. Compared with the related 

work stated in Section 5.1, instead of directly applying SIFT descriptors as the 

natural features, our method emphasizes on using SIFT mechanism to determine 

the matched points between any two images and then with these matched points 

estimates the homography transformation matrix. Figure 5.3 shows the matched 

points. Obviously they are unsusceptible to the moving object (the person). 

Therefore it is reasonable to treat them as the stable points to determine the 

homography matrix M and its covariance ΣM by MLE technique (Hartley & 

Zisserman, 2003). Our data association algorithm is implemented on the basis of 
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M and ΣM. 
 

 

Figure 5.3 Matched points determined by SIFT descriptors 

 
The predicted pixel coordinates of line ends and mid-point are expressed as 

ˆ mfp p= M                                           (5.12) 

where pm is the pixel coordinates of the line ends and mid-point stored in the map 

(note that mid-point is not the component of the state variable). The observation of 

the captured feature in the image is marked as pf, and the definition of 

Mahalanobis distance is 

1ˆˆ (( ) )T
m f f M f fd p ppp −= − −Σ                    (5.13) 

Compared with the formula in Gil’s work (A. Gil, et al., 2006), the main 

differences are the Mahalnobis distance in (5.13) is constructed by ΣM and the 

pixel coordinates without any SIFT descriptor. As any two images used for M and 

ΣM estimation imply the information of the camera motion, we regard the 

uncertainty induced by motion as the potential elements involved in ΣM. Also for 

calculation of M and ΣM, we have considered the pixel error in both images as 

well as the propagation in equation (5.12). Therefore the covariance in observation 

and prediction can be regarded as being led by the covariance of M. That is why 

here we use ΣM for the distance computation. If at least two of dm values which 

belong to same line features are less than a threshold (usually a χ2 distribution 

value), then the observed line is associated with the one stored in the map, labeled 

as 1, otherwise the line is a new feature, marked as 0. Note that once the 
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corresponded 2D image points have been ascertained the matched 3D points are 

also known. Therefore, those 3D points not 2D image points have to be used for 

innovation computation in measurement update procedure of EKF. 
 

Practical considerations on data association 

Sometimes the predicted line ends may locate outside the image range, and we 

probably cannot match the lines via two ends or one-end-one-midpoint. For this 

particular situation, we can employ the auxiliary Hough space parameters designed 

in previous section for data association. We adopt an alternative way to test 

whether the predicted ends lie on the observed lines. The homogeneous 

representation for observed lines represented by the Hough space parameters is 

lm=(cosαH, sinαH, -dH)T, and homogenous coordinate for predicted ends is 

ˆˆ ,ˆ ),( 1 T
u vp pp = . The ends lie on the lines if and only if pTlm=0. We relax this 

condition practically as 

T
mp l ε<                                          (5.14) 

where ε is an arbitrarily small positive quantity. 

 

It is impractical and time consuming to compute all M and ΣM between the most 

recent image and all the previous ones. In this study, we captured an image per 

second and calculated M, ΣM by using the newest grabbed image and the four 

latest ones, because the robot moves in 300mm/s and after 5 seconds some 

features stored in the map could probably disappear in current image. Hence, it is 

not reasonable to use these features for the purpose of feature prediction. Figure 

5.4 illustrates our HTDA algorithm. 
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Figure 5.4 HTDA algorithm 

 

HTDA ALGORITHM 

// INPUT: observed lines parameters, the 5 most recent images 

// OUTPUT: DA matrix 

 

[ desCur, locCur ] = sift(CurrentImg ); // Find SIFT keypoints for each image. The outputs  

// are des: descriptor for the keypoint;  

// loc: keypoint location 

for each observed line i 

for k = 4:-1:1 

[ desK, locK ] = sift( Img( k ) ); 

// Estimating M and ΣM  

[ M( k ), ΣM( k ) ] = HomographyEstimation( locCur, locK, σC ); 

// Observation prediction 

for each line feature j stored in map 

EndsPred ( j ) = M( k )EndsMap( j ); 

dm = ( EndsObs( i ) – EndsPred( j ) ) ⋅ (ΣM( k ))-1 ⋅ (EndsObs( i ) – EndsPred( j ))T; 

if ( dm <= χ2 value ) 

             DA( i, j, k ) = 1; 

else if isPredEndsOnObsLine( EndsPred( j ), ObsLineHoughPara( i ) ) 

             DA( i, j, k ) = 1; 

else 

             DA( i, j, k ) = 0; 

end 

    end 

    if ~isZero( DA( i, :, : ) ) 

       continue; 

    end 

end 
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5.4 Sensor Fusion Techniques 

As was mentioned in Chapter 4, we used the robust regression model to extract the 

segments from the raw laser rangefinder data (we call them as laser segments), and 

eliminated most of the outliers related to moving objects. However, if these 

dynamic objects momentary start and stop several times, they could probably be 

treated as segment features which deteriorates the performance of SLAM. Since 

the lines extracted from the monocular camera are almost static features, we 

combine these lines with laser segments and adopt Bayesian decision as the 

feature fusion strategy to remove those pseudo segments. Furthermore, we suggest 

a modified MPEF to incorporate the individual state estimates of the monocular 

and laser SLAM. With modified MPEF, the covariance of the robot pose is 

reduced so that the accuracy of the localization can be improved. 

5.4.1 Line Features Fusion 

As the limit of the horizontal field of view (FOV) of the monocular camera is 

about 48º, it is feasible to extract the laser segments within 67º to 114º, i.e. -24º to 

24º converted into the robot reference. After receiving a line feature from an 

image, by parameter vector yi we can respectively compute approximate angles of 

the two ends from robot head (i.e. the z-axis of robot frame) as well as determine 

the angular interval [ζ1, ζ2]⊆[-24º,24º] for this line. Within this angle boundary, we 

extract the laser segments and then employ the Bayesian decision (Zhu, 2003) to 

fuse the features. The decision rule is 

1 1
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中              (5.15) 

where Cij, i=0,1, j=0,1, represents the cost of declaring Hi true when Hj is actually 

true. Generally, the monotonically increasing natural logarithm rule is considered, 

that is 
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1

0

ln ( ) lnLR η
H

H
y ¤                                (5.16) 

 

In this study we choose [zC, zL]T=[sC+vC, vL]T as the null hypothesis H0 and 

relevant alternative hypothesis H1 is [zC, zL]T=[sC+vC, sL+vL]T. vC and vL are 

mutually independent additional sensor noises of the camera and laser. They have 

zero mean and covariance 2
Cσ and 2

Lσ . sC and sL are the lines parameters extracted 

from the camera and laser with the covariance RC and RL. Noted that the parameter 

sC for lines representation in images is [dH, αH]T of Hough space, and RC is the 

covariance of [dH, αH]T. As for sL and RL, they are the parameters of laser 

segments and relevant covariance, the calculation of which are stated in Chapter 4. 

 

Suppose that p(H0)=p(H1)=0.5, C01=C10=1 and C00=C11=0, which means that the 

cost for mistaken decision is much more than that for correct decision. Let 

y=[zC,zL]T, then p(y|H0)~N(0,Σ0) and p(y|H1)~N(0,Σ1). Here 
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and the decision rule (5.16) is equal to 
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With rule (5.18), we validate all the laser segments located in [ζ1, ζ2]. If H0 is 

accepted then the laser segment is the outlier, otherwise if H1 is accepted then it is 

the real static feature. 

5.4.2 Modified Multi-sensor Point Estimation Fusion 

A framework of MPEF for Kalman filter was proposed by Zhu (2003). It led to a 

lower covariance for fused state estimates compared with each individual one, as 

well maintaining the optimal estimation. We have extended the idea of MPEF in 
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this subsection to EKF-SLAM and mathematically proved that the covariance of 

the fused state variables decreased even though the fused estimation could not be 

kept at an optimal value when the fused state variables were propagated backward 

to the individual EKF-SLAM. Please refer to Appendix B for more details on 

theoretical derivation, and here we directly apply the derivational results. The 

purpose of modified MPEF is to improve the accuracy of localization. We 

sketched our fusion SLAM algorithm in Figure 5.5. The superscript i indicates the 

type of the sensor, 1 for monocular camera and 2 for laser; f means fusion and b 

stands for back propagation. 
 

FUSION SLAM BASED ON MODIFIED MPEF ALGORITHM 

// Robot pose initialization 

[ xv0_C, Pv0_C ] = PoseInitialization( Camera ); 

σC = getSensorError( Camera ); 

[ xv0_L, Pv0_L ] = PoseInitialization( Laser ); 

[ σrange, σbearing ] = getSensorError( Laser ); 

Q = createQ(σtra, σrot ); 

// Line Feature initialization 

SegC = HorizontalEdge( image ); // Line extraction 

[ y0_C, Py0_C, RC ] = intializeNewFeature( SegC, camPar, xv0_C, Pv0_C, σC ); 

X0_C = createX( xv0_C, y0_C ); P0_C = cerateP( Pv0_C, Py0_C ); 

SegL = LineExtraction( laserdata ); // Line extraction 

[ y0_L, Py0_L, RL ] = intializeNewFeature( SegL, xv0_L, Pv0_L, σrange, σbearing ); 

X0_L = createX( xv0_L, y0_L ); P0_L = cerateP( Pv0_L, Py0_L ); 

// Fused robot pose initialization 

0 _0 0 0_ ;f
v v L v v LP P= =x x ; 

// Main loop 

k = 1; 

while isRobotRunning() 

      uk = getControl( k ); 

      [ Xk|k_C, Pk|k_C, Xk|k-1_C, Pk|k-1_C ] = MonoSLAM( Xk-1_C, Pk-1_C, uk, Q, RC, …, 

getObservation( imagek ) ); 
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      [ Xk|k_L, Pk|k_L, Xk|k-1_L, Pk|k-1_L ] = LaserSLAM( Xk-1_L, Pk-1_L, uk, Q, RL,… 

                                            getObservation( laserk ) ); 

      // Do MPEF procedure 

      
1

| | 1 | | | | 1
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| | 1 | | 1
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// Propagate backward the MPEF results to each individual SLAM 

| 1 | 1 | 1 | 1; ;  // 1, 2i f i f
k k k k k k k kP P i− − − −= ==x x  

// Update individual covariance 

| | | 1 | 1
_

| | |update( , , ); // , 1, 2i f i i f b i
k k k k k k k k k k k k k kP P P P P P P i− −= = ≤ =  

k = k + 1; 

end 

Figure 5.5 Modified MPEF algorithm. 

5.5 Experimental Studies 

The camera was calibrated by the Calibration Toolbox written by Bouguet1

                                                        
1 It is available online. http://www.vision.caltech.edu/bouguetj/calib_doc/index.html 

 and 

the intrinsic parameters are listed in Table 5.1. By ARIA and OpenCV class 

library a sequence of images as well a frame of laser data were collected when the 

mobile robot was moving with an average speed of 300mm/s. The environment is 

the corridor outside the Control Lab. There were several people walking through 

the corridor with normal speed around the robot. Sometimes they slowed down or 

stopped completely at some place. After obtaining sensor data, we implemented 

the SLAM and sensor fusion offline in MATLAB environment. The experiments 

were designed to validate our sensor fusion strategy and data association 

algorithm. 
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Table 5.1 Intrinsic Parameters of Canon VCC4 

Item Value 

Focal length fc = [ 365.12674   365.02905 ] 
Principal point cc = [ 145.79917   114.50956 ] 
Screw factor alpha_c = 0.000 
Distortion factor kc = [ -0.22776, 0.36413, -0.00545, -0.00192, 0.000 ] 
Pixel std err = [ 0.10083   0.10936 ] 

 

5.5.1 Testing the Feature Fusion Strategy 

In this experiment, a person stood in front of the robot for few minutes, and only 

with laser sensor some pseudo segments could not be removed. As it is displayed 

in Figure 5.6(c), segment 4 is the one corresponding to the person. Using our line 

feature fusion method, we incorporated the image lines, which were extracted 

from the raw image Figure 5.6 (a) and labeled in numbers in Figure 5.6 (b), with 

the laser segments and listed the hypothesis test results of fusion in Table 5.2. 

Segment 4 did not match any image line and it can be eliminated from the laser 

segment map shown in Figure 5.6 (d). Segment 3 correlated with line 4 and 5 

because it located respectively in the angle interval determined by line 4 and 5. 

However, segment 3 only related to line 5 after feature fusion. With this 

experiment, our feature fusion method is competent for disposing pseudo and 

confused features. 

 

  
(a)                                       (b) 
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 (c)                                     (d) 

Figure 5.6 Local mapping results at the 33rd sample time. (a) The original captured image. A person 

stood in front of the robot for a moment. (b) The extracted static lines. (c)There is a pseudo 

segment (segment 4) related to standing person only by using laser sensor. (d) After integrating the 

lines information extracted from images, the incorrect feature was removed. 

 

Table 5.2 The hypothesis test of feature fusion 

Number of Segments 
from laser 

Number of lines in image 

1      2       3       4       5       6 

1 H1    ×      ×      ×      ×      × 
2 ×     ×      H1     ×      ×      × 

3 ×     ×      ×      H0     H1     × 
4 ×     ×      ×      ×      ×      × 
5 ×     ×      ×      ×      ×      H1 

×: outside the angle boundary 

 
The SLAM result after feature fusion is shown in Figure 5.7. The map drawn by 

the software of Mobilerobots Co. is overlaid in light gray color for comparison. 

Except those lines disappearing in the camera view, most of segments are 

identical; however, few of them are lost. This is because the assumptions of our 

Bayesian fusion rule are slightly tight so that a segment related to the real static 

object is deleted as the pseudo one. 
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Figure 5.7 The fusion SLAM results. Orange segments are the map of the fusion SLAM,  

And gray lines are drawn by the software of Mobilerobots Co. 

 

5.5.2 Testing the Fusion SLAM based on Modified MPEF 

We ran two individual EKF-SLAM procedures in parallel, computed the values of 

the fused state variables, and then propagated these fused state variables back to 

monocular and laser SLAM. Figure 5.8 illustrates the covariance of the fused and 

individual robot states. It can be seen that the covariance of the position: xR and yR 

is obviously reduced after fusion. However, the value of the orientation is similar 

to the covariance of laser SLAM, but it is more efficient than that of the 

monocular SLAM. In this point, the modified MPEF method could decrease the 

covariance of robot orientation. Figure 5.9 gives the results of covariance on one 

of the line features. Noted that these line features are those existed in a sequence 

images. In this experiment, we selected 5 lines which always appear in 40 

consistent images, and plotted covariance for the end of one feature in Figure 5.9. 

It seems that the covariance after sensor fusion is also reduced. With these 

experiments, we may state that the modified MPEF makes the covariance of state 

variables less and increase the accuracy of localization. 
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Figure 5.8 The estimate covariance of fused and individual robot state. Red line: covariance 

predicted in laser SLAM; Green line: covariance predicted in monocular SLAM; 

Blue lines: fused covariance by MPEF. 

 

 

Figure 5.9 The estimate covariance of fused and individual features. Red line: covariance  

predicted in laser SLAM; Green line: covariance predicted in monocular SLAM;  

Blue lines: fused covariance by MPEF. 
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5.5.3 Testing the HTDA 

We first compute M and ΣM from the current captured image (labeled as image 2) 

and the 4th image (labeled as image 1) stored in image sequence buffer. After that 

we selected one pair of lines to demonstrate our data association method. As 

shown in Figure 5.10, we marked ends and midpoint of the existed line of the map 

as 1, 2, 3, and those of captured line as 1’, 2’, 3’. According to (5.12), we obtained 

the predictions of 1’, 2’ and 3’, and stressed in red cross in image 2. To make it 

clear, as is shown in image 1 of Figure 5.10 we also stressed the corresponding 

stored points in red cross. In this case, the prediction of 2’ almost coincides with 

the 2’, but the prediction of 3’ is far from 3’, the reason of which is for the lines 

with different lengths the midpoints are probably not identical. In addition, the 

prediction of end 1’ is out of the bound of image 2. For these two special 

situations, we used the alternative method stated in Section 5.3 and tested whether 

the predictions lie on the captured line by (5.14), and obviously they did. 

Therefore, we can decide the predicted line in image 2 matched the stored line in 

image 1. 

 

 

Figure 5. 10 The example of HTDA. The image on the left is captured at the 57th sample time  

and the right one is at the 58th sample time. 

 

Figure 5.11 shows the true errors of HTDA for the known line end 2 shown in the 

1’ 
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left image of Figure 5.10. Because there is no device in our present experimental 

conditions for detecting the ground truth of the features, we provisionally 

measured the end of a line by hand as accurate as possible, which follows the 

similar process presented by Wijesoma, Perera and Adams (2006). This end 

appears in 20 sequential images. As displayed in Figure 5.11, the actual feature 

estimation errors are bounded within the 3σ bound, demonstrating the 

effectiveness and consistency of the HTDA.  

 

 
Figure 5.11 Difference between the actual and estimated location of end 2 from 40th to 60th sample 

time. The 99% confidence limit is shown in red line. 

 

5.6 Discussion 

The sensor fusion method suggested for the SLAM in dynamic environments 

consists of the feature fusion and modified MPEF components. Feature fusion 

policy incorporates the static line features extracted from monocular camera with 

the segments represented by robust regression model from laser sensor, the 

purpose of which is to remove the potential pseudo segments corresponding to the 

moving objects in laser information. In addition, the modified MPEF, which 



Chapter 5 Sensor Fusion for Pseudo Features Elimination 

5-24 

combines distinct state estimates of the individual SLAM procedure (monocular 

and laser SLAM), reduces the covariance of the state variables and improves the 

accuracy of localization.  

 

In current study, the lines extracted from the camera are limited in a ROI. In the 

predefined ROI, objects almost maintain the static status. Therefore, in the 

proposed feature fusion module the lines detected from the images play a primary 

role for removing the pseudo segments generated from the laser data. Actually, 

even without the ROI, the camera also can detect the moving objects with the 

target tracking technique, which is presented in our previous work. However, in 

this research we do not use the target tracking to detect moving objects but mainly 

focus on applying the static elements existing in the image to help to find the 

spurious features and then remove them. The main advantage of this way is that 

the cost of time on image processing is less than that consuming in target tracking.  

 

Other sensors, to the best of our knowledge, could not be used for detecting the 

moving objects when these sensors are employed to extract the segment in 

dynamic environments, because there is no clear difference between the 

measurements of dynamic and static objects. However, if the measurements from 

these sensors such as laser rangefinder are not considered to present the segment 

based map, they can be adopted to detect the moving objects through efficient 

algorithms. Some research work have implemented the SLAM in dynamic 

environment with non-vision sensor systems, in which the maps are not segment 

based map but other type of map for example grid based map.  

 

Compared with other non-vision sensors, the dominant advantages of vision 

sensors are it has abundant information and with these sufficient information it is 

easy to implement various tasks such as target tracking. So far the disadvantages 

of vision system are on the information processing and information understanding. 

The image processing needs more resource of the computer. Fortunately, with the 
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development of the computer techniques, it is not a serious problem. The challenge 

nowadays is on the software design for implementing the information 

understanding just like the ability of human beings. 

 

Additionally, for monocular SLAM we presented a data association method based 

on homography transformation between any two images. It relaxes pleonastic 

computation. However, the proposed sensor fusion just makes use of the feature 

parameters to eliminate the pseudo segments according to Bayesian criteria, which 

is an indirect policy and does not combine the parameters of line features extracted 

from laser and camera but fuses the state variables existed in each individual 

EKF-SLAM only. In a sense, we call this strategy as indirect sensor fusion or 

semi-direct sensor fusion. When verifying the validation of the features, we 

limited the laser data within the FOV of the camera. Most of laser information is 

derelict and the useful laser measurements are not considered for fusion. As 

analysis in experimental study, the suppositions for Bayesian fusion rule are so 

tight that few of static segments are deleted erroneously as the pseudo ones. 

Additionally, the parameters for image lines are based on the ends and it is poor 

for this form of representation that the volumes of the state vector and covariance 

matrix become enormous when the number of the features grows.  

 

We will suggest a direct sensor fusion management based on the information 

theory, which integrates the parameters of the segments extracted respectively 

from camera and rangefinder sensors in a straightforward style in the next chapter. 

The parameters for describing the segments are not the coordinates of the end but 

a compact form similar to Hesse standard form. The purpose of all these schemes 

above is to cover the shortages existed in the sensor fusion presented in this 

chapter. 
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Chapter 6  Direct Sensor Fusion Management 

6.1 Introduction 

The sensor fusion strategy presented in Chapter 5 is an indirect method which only 

applies the feature parameters to eliminate the pseudo segments according to 

Bayesian criteria without integrating each individual segment measurement. In this 

chapter, a direct sensor fusion management is to be suggested. 

 

A very prevalent direct sensor fusion scheme EKF and its extension have been used 

to solve several problems in robotics research (Ahn, et al., 2008; Lizarralde, et al., 

2003; Roumeliotis & Bekey, 2002; Tsai, et al., 2005). Similar to EKF, particle filter, 

another kind of Bayesian filter, is adopted for sensor fusion (Moreira, et al., 2007; 

Vadakkepat & Jing, 2006), which has ability to deal with the multi-modal 

distribution. The series of Bayesian filters belongs to the statistical fusion 

techniques, and other fusion methodologies based on uncertainty inference are also 

applicable such as Dempster-Shafer rules (Drocourt, et al., 2002) and fuzzy logic 

theory (Cohen & Edan, 2005; Matía & Jiménez, 1998) are employed to combine 

the different sensor measurements. 

 

Most methods represented above required a priori knowledge, for example the 

prior probability in the Bayesian fusion method, for implementation of sensor 

fusion. However, sometimes it is difficult to obtain this information. To address 

this problem, a general fusion approach based on information theory was 

suggested (Manyika & Durrant-Whyte, 1994). In that work, the fusion algorithm 

was a distributed information filter and the measures of the fusion were posterior 

entropy, prior entropy and mutual information. The sensor management method 

made use of information-based utility functions. With Shannon’s entropy, an 

Entropy Fusion Model (Fassinut-Mombot & Choquel, 2004) was defined the 
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purpose of which was to reduce the combination space by explicitly resenting the 

notions of source redundancy and source complementarity in the form of entropy 

measures. Unfortunately, this model has been mainly used for object recognition 

and not applied to SLAM. Following the concept of information theory and 

borrowing the idea of decision analysis, this chapter presents and develops a direct 

sensor fusion management based on information entropy weight, which fuses the 

parameters of the features obtained from various sensor measurements and related 

variance to reduce the uncertainty. Furthermore, the fused features are 

consolidated into the EKF-SLAM framework and the uncertainty of the robot pose 

evidently decreased in comparison of the results without considering the sensor 

fusion. In addition, as for determination of associative features extracted from 

different sensors, we also suggest an algorithm based on information theory which 

focuses on computing the error entropy and confirm the relevant features through 

this error entropy. The advantages of this sensor fusion strategy are no extra 

postulated conditions, generality and simple implementation. 

 

The rest of this chapter is organized as follows: the segment parameter extraction 

from rangefinders is presented in Section 6.2. Section 6.3 describes the acquisition 

of Plücker coordinates of lines obtained from monocular and stereo vision 

systems. The proposed direct sensor fusion management is presented in section 

6.4. Elaborate experimental studies are implemented in Section 6.5. The 

discussion is expressed in Section 6.6. 

6.2 Feature Extraction from Rangefinder Sensors 

Following the procedure presented in Chapter 4, we apply the robust regression 

model to extract the segments for the Hessian line model from the data of laser 

rangefinder and extend this model to ultrasonic sonar data. In contrast to earlier 

work (Ip & Rad, 2004), in this study the sonar data are categorized by linear group 

algorithm (LGA) (Van Aelst, Wang, Zamar, & Zhu, 2006), in which the number 
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of classes is determined by gap statistic (Tibshirani, Walther, & Hastie, 2001; Van 

Aelst, et al., 2006). After that, for these clustered sonar data, we employ the robust 

regression algorithm to estimate the parameters of segments. As the segments 

extraction from laser readings have been explained in Chapter 4, only the 

algorithm of feature representation for sonar measurements is depicted here. 

 

For feature extraction from ultrasonic sonar, we applied the LGA algorithm to 

group the sensor readings after determining the number of clusters via gap 

statistic. To make this chapter self-contained, the concepts and formulas on LGA 

and gap statistic are to be briefly introduced. Interested reader can refer to the 

related material (Tibshirani, et al., 2001; Van Aelst, et al., 2006) for more detail. 

 

LGA uses orthogonal regression to identify the linear relationships and iterative 

optimization similar to K-means to converge to a local minimum. Suppose a data 

set of size n in d dimensions and k is the number of groups which is estimated via 

gap statistic, the aim is to minimize the within sum of squares that is the 

aggregated sum of the squared orthogonal residuals within each group. This can be 

written as 

 
1

2

,..., 1
min

k
j

k

iI
i Ij

I
r

 
  (6.1) 

where the minimization is over all size k partitions I1,...,Ik of {1,...,n}. For each 

group Ij the corresponding residuals ri of the observations in that group are the 

orthogonal residuals, i.e. the distance between the observation and the orthogonal 

regression hyperplane through the points in the group. LGA tries to find the 

optimum of (6.1) following 5 steps (Van Aelst, et al., 2006). 

 

To estimate the number of cluster, Tibshirani et al. (2001) proposed the gap 

statistic which uses the output of any clustering algorithm, comparing the change 

in within-cluster dispersion with that expected under an appropriate reference null 
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distribution. Applied for LGA, the gap statistic is 

 
1

1 log( ( )) log( )( )
B

k k
b

SSR bGAP k SSR
B 

   (6.2) 

where SSRk is the aggregated sum of squared orthogonal distance for the original 

data set separated into k clusters, and SSRk(b), b=1,…,B is the aggregated sum of 

squared orthogonal distance for a data set generated from the reference distribution 

and separated into k clusters. The optimal number of cluster is the smallest k such 

that GAP(k) ≥ GAP(k+1)−sk+1, where 1 1 1 1/k ks s Btd   , stdk+1 is the standard 

deviation of the SSRk(b). 

 

In our case, the robot platform is the Pioneer 2DX and 3DX mobile robots 

equipped with a 16-sonar array. We store 20 robot sampling steps (each robot 

sampling time is 250ms) of sonar data into an overlapping sliding window sonar 

buffer using first-in-first-out strategy different from the work of Ip & Rad (2004) 

where the first-in-last-out was employed. As is shown in Figure 6.2(a), we firstly 

filter out the sonar data which are over the sonar range cut-off limit (1500mm), 

and after that use gap statistic to decide the number of groups, then cluster these 

preprocessed sonar data through LGA. Finally, the robust regression model is 

adopted to extract the parameters of categorized segments. This parameter 

computation procedure is a one-step implementation not iteration routine because 

the cluster has been determined, which is different from the case in Chapter 4. It 

should be noted that we select 5 as the maximum possible number of clusters k. 

This is because there are only 16 sets of sonar data which are not as dense as laser 

rangefinder especially after measurements filtering, and the available number of 

segment features is probably not more than five. Figure 6.1 illustrates the flow 

chart for feature extraction from the sonar data, and Figure 6.2 exhibits an example 

for some blocks of Figure 6.1. We can catch from Figure 6.2(b) that the gap 

statistic computation stopped at k=3 even though the maximum cluster number 

was assigned as the input argument. It is obvious that the gap statistic is the 



Chapter 6 Direct Sensor Fusion Management 

6-5 

maximum when k=2. Figure 6.2(c) is the results of LGA with k=2. 
 

Segment Extraction from Sonar Process Flowchart

20 Robot
Sampling Steps

Raw Data
Preprocessing

Group Number
Determination

by Gap statistic

Parameter Extraction by
Robust Regression Model

Clustering
by LGA

 
Figure 6.1 Segment extraction process for sonar data 
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Figure 6.2 An example of segment extraction from sonar data. (a) Raw and filtered sonar data; 

(b) Gap statistic computation; (c) The results of LGA 

6.3 Feature Extraction from Vision Systems 

For the line reflected in vision system, the minimal representation is with four 

parameters (e.g. Denavit-Hartenberg line coordinates) in 3D Euclidean space but it 

may be ineffective in some robotic research topics. There are several non-minimal 

representation for the 3D line, such as ends of the line (P. Smith, et al., 2006) 

which has been used in Chapter 5, center and unit direction vector of the line 

(Ethan Eade & Tom Drummond, 2006), two ends plus unit direction vectors (Gee 

& Mayol-Cuevas, 2006), and a powerful tool in vision and graphics referred to as 

Plücker coordinates (Lemaire & Lacroix, 2007). In this study, we also describe the 

lines in a non-minimal representation by using Plücker coordinates because the 

advantages of it are this presentation is homogenous and suitable for the projection 

through a pinhole camera. 
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6.3.1 Representation for Lines Obtained from Monocular Camera 

A monocular camera has few limitations one of which is depth extraction. This 

makes the calculation of Plücker coordinates a bit more difficult. Fortunately, the 

depth can be approximately retrieved by a sequence of images. Saxena, Chung and 

Ng (2005) applied the supervised learning to predict the depth-map with a function 

of the image by integrating multi-scale local and global image features. Murphey 

et al. (2000) designed a DepthFinder to detect the distances of the objects through 

at least two images, which acts like a stereo vision system. The errors of this 

model, however, are serious when the camera motion is unparallel, that is, the 

ambiguity of image points affects the accuracy. To eliminate variety of ambiguity, 

Martin (2006) introduced several powerful domain specific constraints and 

presented an evolving visual sonar, but some of these constraints may generate the 

improper bound and confuse the robots to perceive the pseudo obstacles. These 

disadvantages may also affect the Plücker coordinates computation. 

 

Concerning these problems, for the segments that locate in the ROI (defined in 

Chapter 5) we suggested a virtual rangefinder model for extracting the Plücker 

measurements of the interested lines, which is to be explained more in the 

following paragraphs. This model relaxes the constraint that the motion of the 

optical axis. In comparison with the work of Lemaire and Lacroix (2007) where 

they treated Plücker coordinates a Gaussian sum approximation process for the 

feature initial state, our suggested model is an un-delayed method to recover the 

depth information and is the simple geometric calculation without another Kalman 

filter that serves for the features initialization via considering constraints 

associated with the Plücker representation during the update step. 

 

The overview of geometric relationship among four main coordinate references is 

displayed in Figure 6.3(a). The subscript L refers to robot or local frame and the 

related plane is ΠL. Similarly, C denotes camera reference, I refers to the image 
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frame and W expresses world or global coordinate system. For convenience, as 

shown in Figure 6.3(b) we assume that the origins of local and camera coordinate 

frame (OL and C) are identical. Given a world point P1 and P2 that are the ends of 

one segment on the ground plane (to make a simplified introduction we only use 

end P1 marked as P for the following presentation), P’ is the projection of P on 

line GE that is the projection of optical axis on the ground. Here E is the 

intersection of the optical axis with the ground plane. The images of P and P’ in 

ΠI are p and p’. The height g of the optical center from the ground plane and the 

tilt angle  of the optical axis from the XL axis are hand-measured (cf. Figure 

6.3(c)). We can recover the range l which is the distance from the robot to the end 

P following the equations (6.3)~(6.6). 

 arctan , arctan
( ) /

p o p o

v p o
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 
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where fku and fkv are the focal length at the direction of U and V axis respectively; 

up and vp are the pixel coordinates of p; uo and vo are those of principal point. With 

the same technique, in Figure 6.3(c) we can also retrieve the distance dpj from the 

robot to the projection point P’ according to 
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Therefore, the bearing of P from the XL axis is 
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Here the sign function w.r.t. up and uo manifests that the bearing is converted into 

the robot reference system. Equation (6.6) and (6.8) are the virtual range and 

bearing measurements extracted from one image. 

 

After the ranges and bearings of the ends P1 and P2 are obtained, we solve the 

equation 

 1

2 2

1 cos( )
cos( )

h l

h l

 
 


 


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 (6.9) 

and the Plücker coordinates representation is 
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 (6.10) 

where u represents the direction of the line, n is the moment of the line i.e. the 

normal to the plane containing the line and the origin of the reference frame, h is 

the distance between the origin and the line, and u, n are unit vector of u and n 

respectively. 
 

 

(a) 
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(b) 

    
 (c)                                    (d) 

Figure 6.3 Geometric relationship on various coordinate references. (a) The overview of the 

coordinate systems; (b) The projection between the world points and image points; (c) The front 

view of the camera and local references; (d) The top view of the local and global references. 

6.3.2 Representation for Lines Obtained from Stereo Camera 

In comparison with the monocular camera, it is much easier to access to the 

Plücker parameters because the depth can be calculated from the stereo camera. 

The procedure of 3D line extraction and the computation of Plücker coordinates 

are specified as follow. 

 



Chapter 6 Direct Sensor Fusion Management 

6-11 

After the rectification is processed for the raw images acquired from the stereo 

camera, as the standard method Sobel operator combined with thresholding 

technique are adopted on the reference image (i.e. the one obtained from the right 

camera) to detect the horizontal edges. Note that we do not limit the edges within 

ROI in this case. To withdraw the potential outliers corresponding to moving 

objects and noise, the appropriate morphological operations have to be carried out 

on these detected edges. This edge detection process is similar to that represented 

in Chapter 5. Figure 6.4(a) shows the results of edge detection and it can be seen 

that the extracted edges are almost corresponding to static objects. For each edge, 

two pixel ends [pe1, pe2]T can be obtained. According to the calculated disparity 

between the images of two cameras in stereo vision system, they are projected into 

the 3D Euclidean space and the relevant 3D ends are [Pe1, Pe2]T (As for the 

algorithms of disparity computation and transformation between disparity and 

depth, please refer to the Bumblebee2 stereo camera SDK manual). With this pair 

of 3D ends coordinates, the 3D line is determined and therefore the related Plücker 

representation is described as 

 2 1 1

1 2

(
,

)e e e
pl

e e
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    
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 (6.11) 

Note that before the computation of Plücker representation the 3D coordinates of 

the ends have to be converted into the local frame. Please refer to Appendix A on 

coordinate transformation of stereo camera for more detail. 

 

Figure 6.4(b)&(c) display the extracted 3D segments from the 2D edges. After 

comparison of Figure 6.4(a) and Figure 6.4(b)&(c), it is evident that not all edges 

in images can be converted to a 3D lines. The reason is that the related disparity 

ranges between the left and right images exceed the predefined threshold. It is 

remarked that all 3D points have been transformed into the local coordinate 

system. 
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(a) 

 

(b)                                           (c) 
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 (d) 

Figure 6.4 An example of segment extraction from stereo camera. (a) Results of edge detection by 

using Sobel operator and morphological operation; (b) and (c) Results of 3D points cloud and 3D 

lines corresponding to the edges in images; (d) Plücker coordinates representation for one of the 3D 

lines. Black: local coordinate reference. Green: solid is the direction (from Pe2 to Pe1) of the 

line.Dash is the extension of the line. Red: distance from origin of reference to the line. Blue: 

normal vector. 

6.4 Direct Sensor Fusion Management Based on 

Information Theory 

Sensor fusion aims to integrate the measurements from distinct sensors loaded in 

one or distributed platform in order to decrease the feature uncertainty. The more a 

measurement from a certain sensor approximates to the true value, the more it has 

to be revealed more in other sensors. From this viewpoint, we borrow the idea of 

the decision analysis area (Ding & Shi, 2005; Zhou & Zhao, 2007), and develop a 

sensor fusion management based on information entropy weight, which fuses the 

sensor measurements, i.e. the parameters of Hessian line model and Plücker 

coordinates, and related variance of these parameters. The advantages of this 

strategy are no extra postulated conditions, generality and simple implementation. 

Pe1 Pe2 
distance 

norm vector 
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The reason we called the suggested fusion policy as direct is that the parameters of 

segments (obtained from rangefinder sensors) and lines (acquired from vision 

systems) straightforwardly contribute to compute the fused feature parameters, 

which is different from the strategy depicted in Chapter 5. We will use these fused 

features to serve for EKF-SLAM. For convenience, the fused feature parameters 

are marked as [rfs, fs]T. As for the basic concepts of information entropy, please 

refer to Appendix C. 

6.4.1 Information Entropy Based Associated Features 

Determination 

Before implementation of proper sensor fusion, the associated segment features 

have to be determined. Because 20 robot sampling steps of sonar data have been 

stored into the sonar buffer, to make the laser measurements and camera images 

identical with the sonar data, it is necessary to carefully select the sampling time 

for getting the laser data and images. With reference to the data in sonar buffer, we 

select the sampling time for laser data and images acquisition as 2 seconds, i.e. 8 

robot sampling times. As is shown in Figure 6.5(a), the various sensor 

measurements corresponding to the walls, doors and person are almost identical. 

Noted that the sonar data of 1st, 3rd~5th seconds in sonar buffer has to be 

transformed into the coordinate system where the robot pose is obtained at the 2nd 

second. 

 

When sonar data update, in contrast to the earlier studies (Ip & Rad, 2004), we do 

not use feature tracking algorithm for consistent mapping but treat the buffered 

sonar data as a virtual laser rangefinder. As displayed in Figure 6.5(b), we move 

the sonar data located in the first three seconds out of the buffer and those in the 

latest three seconds into the buffer, which makes a new buffered data, and then we 

use this new buffered data to fuse with new sampled laser readings and the images. 

To make the explicit comparison, we also plotted the sonar data of previous 
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sampling time and those obtained by using two-out-two-in updated strategy. It can 

be seen that the sonar data updated by three-out-three-in updated scheme coincide 

with laser data better. From Figure 6.5, we can find our selected sampling time for 

laser and camera data almost maintains the data to coincide with sonar 

measurements, so does for sensor readings update strategy. 
 

 

 
(a) 
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 (b) 

Figure 6.5 Identical sensor data in different sampling time. (a) 20 robot sampling sonar data and 8 

robot sampling laser data; (b) updated sensor data in different sampling time. Red: previous 

sampling sonar; Green: Two-out-two-in sonar data of updated sonar buffer; Black: 

Three-out-three-in sonar data of updated sonar buffer; Blue: laser data. 

 

After obtaining the sensor readings of the same moment, it is important to find the 

corresponding segments represented by sonar, laser and camera measurements so 

that the sensor fusion management can be implemented correctly. In this study, we 

design an associative segments determination algorithm based on information 

entropy, which can find the matched features from distinct sensors. The detailed 

algorithm is to be stated in the following paragraphs. 
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The calculation of the parameters for the segments extracted from different sensors 

has been depicted in Chapter 4 and previous sections of this chapter. We assume 

that these parameters have been converted in a proper form in the world coordinate 

reference and define them as Ps. Subscript s stands for sensor type, the available 

values of which in current study are sn (sonar), ls (laser) and ca (camera). We 

compute a set of distances of the parameters between one segment extracted from 

one sensor and all segments obtained from other two sensors. For example, we 

randomly select a segment extracted from sonar and we calculate two sets of 

distances. One is from this selected sonar segment to all segments extracted from 

laser rangefinder; the other is from this selected sonar segment to all from camera. 

Note that these two sets of distances are those of feature parameters. We name this 

type of distance as parameter error, and the set of errors for a certain sensor is 

 : { |, ; 1,..., }, 1,...| ,ij i j
s s lss l

i P P se e s j m i n
      (6.12) 

where nl is the number of features extracted from one sensor, and ml is those from 

another sensor. The probability for each distance in es
i is estimated by Parzen 

window non-parametric estimator (Duda, 2001; Erdogmus & Principe, 2002) for 

2-dimensional random variable. That is 
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N is the number of elements in set es
i, k(·) is the bivariate kernel function, usually 

the bivariate Gaussian kernel function is selected i.e. 
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where hx, hy are optimal bandwidths for the widths of Parzen window which are 

selected by the algorithm of Botev and Kroese (2008), and ρ is the correlation. 

When getting the probabilities sets, we can obtain the entropy for these errors as 
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It is clear that removing an element es
ij randomly from the error set es

i will make 

the probability estimated from the rest of error elements definitely different. 

Following this idea, calculating the new probabilities with the same procedure for 

those remaining errors after removal of any one error, we can get a new entropy 

Hk(es
i). Therefore, the variation of the entropy is 

 ( ) | ( ) ( ) |i i i
k s s k sH e H e H e    (6.16) 

Repetition of computation for variation of entropy until all of elements in es
i have 

been removed once in turn, we collect a set of variation of entropy ΔH={ΔH1, …, 

ΔHk}. The matched features are ones that make the following inequality satisfied 

 thH H  (6.17) 

Hth is a threshold. This error entropy explains that the most approximate features 

in different sensors possess the most information on similarity. 

6.4.2 Entropy Weight Fusion Management for Sensor 

Measurements and Variance 

Suppose each of n sensors provides m measurements, and expressed as 

Si=[si1,…,sim]T, i=1,…,n. Assume that the representations of these measurements 

have same form, i.e. Hessian line model parameter: r and γ and Plücker 

coordinates: h and u. We establish the fuzzy relation matrix according to min-max 

rule for these n×m sensor readings as 
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 (6.18) 

∧ and ∨ mean minimum and maximum operation respectively. It is clear that 

each element of R falls into [0,1] and R is a normalized matrix. Following the 

definition (Qiu, 2002), we calculate another type of entropy for ith sensor as 



Chapter 6 Direct Sensor Fusion Management 

6-19 

 
1

,   1, 2,.. ,n .l
n

i ij ij
j

fH i nk f


    (6.19) 

where 
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and assume that when fij = 0, fijlnfij = 0. The difference between entropy (6.15) and 

(6.19) is on the probability calculation. The probability in equation (6.15) is 

estimated through Parzen window while that in equation (6.19) is computed by fij 

which is a ratio or frequency. These two formats of entropies are the distinct 

variants of the entropy definition (Cover, 2006). Furthermore, we obtain the 

entropy weight of ith sensor via 
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and standardize (6.20) 
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Equation (6.21) is the entropy weight for the measurements of each sensor. 

 

Concerning the precision of the measurements for each sensor, we design a 

subjective index Λ' which related to the variance of sensor measurements and has a 

larger value when the variance is smaller. To eliminate the influence induced by 

the difference of various quantity grade, we first normalize those variance and 

project them into [τ2, τ1], 0<τ1<τ2<1 before computing Λ'. It should be noted that 

the projective space [τ2, τ1] is designed for cost type index because the variance 

represents the accuracy of the measurements. After that Λ' is calculated as the 

solution of 
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where 
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ς is the normalized variance matrix, and ρmax is the maximum single positive 

eigenvalue of matrix ςTς; ς is the positive eigenvector corresponding to ρmax. The 

equation (6.23) is the object function of Group Eigenvalue Method (Qiu, 2002), 

and it interprets that the expected Λ is equivalent to the optimal ς. 

 

We combine this index with the entropy weight of sensor measurements ωi and 

derive a synthetic entropy weight for sensor measurements as 
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Therefore, the hybrid entropy weight vector for sensor measurements is 

Λ=[λ1,…,λn]T, and the fused sensor measurements are  

Sf=S(m×n)Λ                         (6.25) 

In accordance with equation (6.21) and the principal theory of information 

entropy, the smaller the entropy of a sensor, the larger the entropy weight is, and it 

claims that the sensor contributes more important and useful information for 

sensor fusion. The reason why the effect of the variance for sensor readings is 

incorporated with entropy weight of sensor measurements (cf. equation (6.24)) is 

that the variance is taken as a kind of evaluation index and reflects the quality of 

the sensor information. This strategy also seems like the integration of a subjective 

expert index with an objective index in the view of decision analysis. 

 

As for the fusion of measurements variance, we develop a modified covariance 
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intersection (CI) on the basis of Julier and Uhlmann’s work (Julier & Uhlmann, 

2001), which draws the entropy weight λi into the basic CI. The relevant optimal 

problem becomes 
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Hence, the new variance after fusion is 
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Similarly, the modified CI management for variance fusion simultaneously 

considers the measurement contribution and the quality of the sensor information 

and in a sense avoids the loss of information in each local sensor. Additionally, the 

proposed sensor fusion management prevents the case of sensor failure, for 

example when detecting a glass object the laser and camera may lost the data but 

the sonar works as well as normal situation. In this case, the synthetical entropy 

weights corresponding to invalid sensors, such as laser or camera when detecting 

glass objects, approximate to zero which is induced by the objective or subjective 

index. Therefore, the measurements from these invalid sensors would not be 

considered into the fusion process. We will explain more about this idea in the 

following experiments. 

6.4.3 Practical considerations 

It is common that the 3D lines extracted from stereo camera do not locate within 

the same plane as the segments extracted from ultrasonic sonar and laser 

rangefinder. To make a reasonable sensor fusion, it is necessary to convert the 

parameters of 3D lines to those described in the plane which the sonar and laser 

segments lie in. This conversion is a simple geometrical transformation problem, 
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and if the 3D line exactly falls in the same plane as sonar and laser segments the 

converted parameters respectively are h and one sub-vector of direction vector u. 

 

The computation of the covariance of parameters for the 3D stereo vision lines is a 

elaborate process because each 3D point [xP, yP, zP]T has its own variance which is 

calculated as 

 ,   ,   pz fBas fBas
x y z z d

f d m z
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
 (6.28) 

where p is the calibration accuracy, m is the matching accuracy, f is the focal 

length in pixels, Bas is the base line in meters of the stereo camera and d is the 

disparity in pixels. After obtaining these variances for each coordinate, we use 

Taylor series expansion to calculate the covariance of the Plücker coordinates and 

related converted parameters, which is a little bit complex computation but 

tractable. The similar procedure of the covariance computation is applied for the 

parameters of the line obtained from monocular camera. For another covariance 

computation of laser segments, we firstly filter out the data of which the range is 

over 8 meters, then extract the Hessian line model parameters, and derive the 

corresponding covariance. This is because the variance for laser reading is 

measured under the condition that range is less and equal to 8 meters. 

 

There exists a similar situation as stated in Chapter 5, i.e. it is inevitable to extract 

the pseudo segments from laser readings or buffered sonar data. Fortunately, in 

accordance with the proposed algorithm of associative features determination in 

Section 6.4.1, the plausible segments may be excluded. This is because the error 

entropy produced by those features may not surpass the configured threshold. In 

current study, only the features existing concurrently in three sensors are applied 

for subsequent sensor fusion. 
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6.5 Experimental Studies 

We divided the experimental studies into two scenarios. Firstly the virtual 

rangefinder model is tested and then the sensor fusion management for SLAM in 

both simulation and real environments is validated.  

6.5.1 Validation on Virtual Rangefinder Model 

The intrinsic parameters of the Canon VCC4 monocular camera were listed in 

Table 5.1. With these calibration parameters and equations (6.6) & (6.8), we 

extracted the ranges and bearings of some randomly selected points in the control 

lab of Department of Electrical Engineering. Figure 6.6 shows the positions of the 

numbered points. Table 6.1 enlists the results compared with the hand-measured 

data. It can be seen from Table 6.1 that the errors of the range are within 5% 

wherever these points located. However, the deviation on bearings is slightly 

higher, around 10%. This is because the bearing is not directly detected but 

computed by measuring the two sides of the angle. This error will not severely 

affect the Plücker coordinates calculation. To manifest this idea, we did another 

experiment for computing the Plücker coordinates from the range and bearing 

data. The place is the corridor outside the control lab and four segments were 

extracted from the image, which is displayed in Figure 6.7. The range and bearing 

of each segment end were computed according to the virtual rangefinder model 

and the relevant parameters for computing Plücker coordinates are listed in Table 

6.2. Compared with the hand-measured data, the error of the distance h is around 

3.5% which closes to the error of virtual ranges and the maximal error for the 

angle α approximates to 5% that is smaller than that of the virtual bearing.  
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Figure 6.6 Positions of measured points in control lab 

 
Table 6.1 Range and Bearing Comparison 

Point 
Measured Calculated Deviation 

l(m)  (rad) l(m)  (rad) l(%) (%) 

1 1.29 0.330 1.28 0.314 0.7 4.8 

2 1.91 0.261 1.82 0.236 4.7 9.6 

3 2.13 0.266 2.03 0.240 4.7 9.7 

4 1.20 0 1.17 -0.02 2.5 ≈ 0 

5 1.52 -0.305 1.54 -0.330 1.3 8 

 

 

Figure 6.7 Obtained lines from the monocular camera outside the control lab 

 
Table 6. 2 Lines parameters comparison 

Line 
Measured Calculated Deviation 

h(m) α(rad) h(m) α(rad) h(%) α(%) 

1 0.74 /2 0.7642 1.6407 3.3 4.5 

2 0.74 -/2 0.7616 -1.6206 2.9 3.1 

3 0.86 -/2 0.8878 -1.6228 3.2 3.3 
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6.5.2 Validation on Direct Sensor Fusion Management 

The robot platform applied in the following experiments is different from the 

previous chapters. It is the Pioneer 3DX mounted with a Bumblebee2 stereo 

camera, a SICK LMS200 laser rangefinder and a 16-sonar array. The mobile robot 

was wandering in the environments with an average speed of 300mm/s. SICK 

LMS200 has a maximum measurement range of 80 m, a range resolution of 10 

mm and a statistical error standard deviation of 5 mm at normal reflectivity 

condition (for one sigma value). For technical specification detail, please refer to 

the Technical Information LMS200/291. SICK, Inc. In our experiments, we use a 

maximum scan range of 8.0 m, an angular resolution of 1◦. For the sonar, the range 

deviation is on the order of 25cm (for one sigma value), but can vary with 

temperature, so it is best to give a larger value. Generally this deviation is set to be 

about 70 cm. The SLAM algorithm is still EKF and the relevant time update and 

measurement update equations have been explained in Chapter 4. It has to be 

noted that the state variables and covariance of the measurement are the fused 

form, i.e. equation (6.25) and (6.27). Other parameters for experimental studies are 

listed in Table 6.3. 
 

Table 6.3 Parameters in experimental studies 

Item Value 

Robot sampling time 250ms 
Sonar range cut-off limit 1.5m 

Sonar buffer size 20 robot sampling time (5s) 
laser range cut-off limit 8m 

laser & camera sampling time 8 robot sampling time (2s) 
p 0.04 
m 0.05 
f 245.714 

Bas 0.12m 

 

Case 1 Validation on sensor fusion management in simulated environment 

We tested our sensor fusion method only for sonar and laser readings in this 
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simulation. The simulated environment is a simple office with width 5m, length 

7m and the origin (1,1), in which there is only one separator with length 1.5m and 

origin (3.15,5) and no other moving object except the mobile robot, which is 

illustrated in Figure 6.8(a). The robot simulator is the MobileSim provided by 

MobileRobots Co. and ran one loop (cf. Figure 6.8(b)). The origin of the world 

coordinate is (0,0). There are 5 segments in this simulated office and as is shown 

in Figure 6.8(a) they are marked in numbers. The feature parameters and variance 

before and after sensor fusion are listed in Table 6.4, where the fused information 

is calculated by equation (6.25) and (6.27). All the segment parameters have been 

transformed into the world reference. It can be seen that more information of laser 

data are reflected in the fused parameters and variance. This is because that the 

precise laser data have larger entropy weight according to our proposed fusion 

management. In comparison with the true parameters of segments, it is obvious 

that the fused parameters close to the true value and almost have smaller variance 

than that of each sensor especially better than the results obtained from sonar data. 

For segment 4 and 5, the measured angle is around –π which is different from the 

true value. Actually, it is just a transformation of angle range, and we maintain the 

original results here for this explanation. 

  
(a)                                     (b) 

Figure 6.8 EKF SLAM based on proposed sensor fusion strategy in simulated environment. 

(a) Simulated environment with numbered segments; (b) One closed loop trajectory. 
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Table 6.4 Results before and after sensor fusion 

segment true value sonar [r, γ]T laser [r, γ]T fused [rfs, γfs]T 
NO. (m, rad) para var para var para var 

1 
1 
π/2 

0.9394 
1.6234 

0.2597 
0.0454 

0.9421 
1.6236 

0.0016 
0.0002 

0.9415 
1.6236 

1.59E-4 
1.996E-5 

2 
6 
0 

6.0230 
0.0572 

0.3091 
0.0797 

6.0436 
0.0530 

0.0005 
0.00003 

6.0395 
0.0538 

0.4789E-3 
0.0303E-3 

3 
8 
π/2 

8.5759 
1.4558 

0.2789 
0.1462 

8.5929 
1.4503 

0.0033 
0.0003 

8.5895 
1.4514 

0.0033 
0.0003 

4 
1 
0 

1.5194 
-3.0212 

0.7315 
0.3035 

1.1874 
-3.0225 

0.0117 
0.0011 

1.2538 
-3.0222 

0.01165 
0.01089 

5 
4.15 

0 
4.1694 
-3.0240 

0.1774 
0.125 

4.1485 
-3.0229 

0.0003 
2e-5 

4.1527 
-3.0231 

0.2824E-3 
0.0289E-3 

 
We incorporated the sensor fusion results into the EKF-SLAM procedure and 

compare the results with only one sensor. To make the comparative results clearly, 

here we applied sonar array as the perception system for SLAM. Figure 6.9(a)&(b) 

shows the results of the covariance for robot pose and features without and with 

sensor fusion strategy, which obviously demonstrates the covariance decreases 

after implementation of sensor fusion. Figure 6.9(c) also indicates that the 

consistency of robot pose is almost maintained when the sensor fusion is 

employed. 

 

(a) 
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(b) 

 

 (c) 

Figure 6.9 Comparison on the covariance of robot pose and feature parameters, and consistent 

validation for robot pose when using proposed sensor fusion management. (a) Comparison results 

on covariance of robot pose; (b) Comparison results on covariance of feature parameters; (c) 

Consistent validation on robot pose. 

 

We used the laser readings of the 54th laser sampling time and related sonar 
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measurements to interpret our associative feature determination strategy. Figure 

6.10 displays the raw readings of two sensors in the local reference framework at 

the 54th laser sampling time, in which there exist segments 1, 3, 4 and 5. Sonar 

data depict segments 3, 4 and 5, and laser data have segments 1, 3, 4 and 5. As an 

example, we selected segment 5 in sonar reading and attempted to find the 

matched segment in laser data. After the feature parameters are transformed into 

world framework, the errors between segment 5 in sonar data and all segments in 

laser data are listed in Table 6.5, and the total entropy and other entropy without 

any one of errors are computed following equation (6.15) and shown in Figure 

6.11. It can be seen from Figure 6.11 that the change of entropy is [0.2915, 0.6071, 

2.995, 0.4587]. If the threshold for the entropy variance is set to be 1, ΔH3 is 

selected. That means without 55
sne  the entropy changes most seriously, which 

claims that the sonar segment 5 is associated with laser segment 5. 

 

 

Figure 6.10 The sonar and laser readings at the 54th laser sampling time. 

 

Table 6. 5 Errors between sonar segment 5 and all laser segments 

 53
sne  55

sne 54
sne 51

sne  

r 3.9236 0.0209 2.1820 3.0602 
 4.4743 0.0012 0.0015 4.4757 

 

errorpara
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Figure 6. 11 The entropy comparison bar. Blue: total entropy; Red: the entropy without   ; 

Green: the entropy without   ; Yellow: the entropy without   ; Orange: the entropy without  

 
Case 2 Validation on sensor fusion management in real environment 

It reveals from the simulation results in Case 1 that even for the sensors whose 

measurements have large errors the suggested sensor fusion management can still 

provide a reasonable results. It is feasible to believe that the sensor fusion policy 

may efficiently incorporate the feature parameters acquired from the monocular 

camera with those obtained from other sensors. Therefore, in the following 

experimental validation, we will mainly focus on the integration of stereo vision 

system with other rangefinder sensors because obtaining the depth is much easier. 

We tested our sensor fusion management in a narrow corridor outside Robotics 

and Automation Lab, and a wide corridor with several glass walls on 4th floor in 

Simon Fraser University Surrey Campus. Several persons walked in the corridors 

at average speed when the robot was moving. The mobile robot also wandered a 

closed loop. After collecting and preprocessing the various sensor data, we 

validated our method in MATLAB platform. 

 

Similar to the simulation experiments, we also test the sensor fusion management 

for sonar, laser and camera readings. As an example, we selected the laser data, 

images and related sonar data which are obtained in narrow corridor at the 2nd 

laser sampling time for fusion. Figure 6.12 illustrates the labeled segments 

extracted from sonar and laser measurements. The lines extracted from images 

51
sne

54
sne 55

sne 53
sne

blue red 
green 

orange 
yellow 
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have been numbered in Figure 6.4(b)&(c). The parameters for these features are 

listed in Table 6.6 and they are represented in local framework. Note that some 

laser segments have been merged following the criteria represented in the work of 

Ip et al. (2002). Figure 6.13 illustrates the schematic diagram for matching feature 

procedures according to our proposed criteria. It can be seen that some segments 

represented in images are merged firstly and then these merged features are 

considered as the proper ones for feature matching. We can also find that some 

features reflected in laser and camera measurements are not matched. This is 

because some of them are false features such as in laser data segments 3, 5 and 6 

representing the objects behind the glass door, which can not be used for SLAM. 

Another reason is that the complementary information between distinct sensors is 

not applied for example the segment 4 and 7 reflected in images. In current study, 

we applied a plain way to handle those features in images, i.e. treat them as 

available features for SLAM. The topic of processing complementary information 

will be further studied in the future work. Table 6.7 catalogues the results of 

sensor fusion. 
 

  

                 (a)                                    (b) 

Figure 6.12 Segments obtained from sonar and laser. (a) Sonar segments; (b) Laser segments 
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Table 6.6 Parameters for the segments from different sensors 

Segment sonar [r, γ]T Segment laser [r, γ]T Segment camera[h, u]T 
NO. para var NO. para var NO. para var 

1 
0.8372 0.1824 

1 
0.8379 8.89E-04

1 
0.8026 1.63E-07 

1.8175 0.0521 1.8041 7.23E-05 1.5534 1.20E-06 

2 
0.5617 0.0455 

2 
0.5702 4.13E-04

2 
0.7624 3.67E-06 

-1.7769 0.0127 -1.525 7.13E-05 1.4339 3.62E-05 
   

3 
2.6625 0.5588 

3 
0.8618 1.40E-05 

   1.7471 0.1151 1.6729 9.57E-06 
   

4 
0.9106 0.003 

4 
0.4223 1.64E-05 

   1.8063 0.0006 1.3469 1.16E-05 
   

5 
2.5389 0.0296 

5 
0.7691 1.04E-05 

   0.3947 0.0034 1.4729 4.17E-05 
   

6 
1.9314 0.0198 

6 
0.4925 4.40E-05 

   0.1693 0.0013 -1.4297 4.95E-05 
   

7 
0.7338 0.0033 

7 
0.554 6.90E-06 

   -1.8416 0.0003 -1.3329 2.33E-04 
      

8 
3.2015 2.81E-05 

      -0.1789 3.59E-05 
      

9 
0.6611 1.39E-06 

      -1.5807 3.24E-05 
      

10 
0.5436 1.00E-07 

      -1.4374 1.08E-04 
      

11 
0.5796 1.18E-05 

      -0.2063 1.53E-05 

 

 

Figure 6.13 Associative features 
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Table 6.7 Fused parameters 

Segment NO. 1 (1sn, 1ls, 1ca) 2 (2sn, 2ls, 6ca) 3 (4ls, 3ca) 4 (7ls, 9ca) 

para 
0.8191 0.5522 0.8813 0.6756 
1.6725 -1.4998 1.7263 -1.6329 

var 
0.0326e-5 0.8107e-4 0.1426e-4 0.014e-4 
0.2369e-5 0.6362e-4 0.0948e-4 0.3238e-4 

 

Another case usually occurs in the indoor environments. As is shown in Figure 

6.14(a), there is a glass wall in front of the robot when it was moving in the wide 

corridor of the 4th floor of SFU Surrey campus. Several edges can be detected 

from the reference image (cf. Figure 6.14(b)), but the camera can not detect any 

useful depth information (cf. Figure 6.14(c)). This is because there is hardly any 

disparity corresponding to the detected edges. In addition, all laser readings are 

zeros or default maximum as the light passes through the glass. In our current 

case, the laser readings are zeros. However, the sonar measurements survive and 

can still percept the glass objects which is shown in Figure 6.14(d). This is also a 

kind of complementary measurements. To use the entropy weight fusion method 

correctly, we assign the Nsn weights of measurements from camera and laser as 0 

where Nsn is the number of features extracted from sonar data, and the weight for 

the sonar readings in this case is 1. That means the features extracted from sonar 

are incorporated into SLAM directly. From this viewpoint, the proposed sensor 

fusion management can dispose the situation in which the sensor is invalid.  

 

The complemented maps are displayed in Figure 6.15 where the glass walls can be 

detected by sonars and they make the maps completeness. We also compared the 

covariance of robot pose before and after the implementation of sensor fusion. We 

carried out the EKF-SLAM by only using laser data, and it is obvious that the 

covariance of robot pose increase when the laser detected the glass objects which 

is shown around at the 40th, 100th and 140th sampling time in Figure 6.16(a), at the 

100th-150th and 220th-260th sampling time in Figure 6.16(b). While by applying the 

sensor fusion management, the covariance avoids growing. This is because the 



Chapter 6 Direct Sensor Fusion Management 

6-34 

sonar can correctly measure the glass objects. 

  

(a)                                       (b) 

  

 (c)                                       (d) 

Figure 6.14 A wide glass wall in front of the robot in the wide corridor, and can not be detected by 

camera but can be done by sonar. (a) The raw image of glass wall; (b) The detected edges; 

(c) The depth information for the glass wall; (d) The measurement in sonar buffer. 

 

Figure 6.15 The final map after combing the measurements of sonar, laser and camera. To make 

the results readable, we folded two layers for map representation. The bottom layer is the raw laser 

and sonar data in light gray, the upper layer is the segments incorporating sonar, laser and camera 

readings (green lines) and the complementary sonar segments related to the glass walls (blue lines, 
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red points are raw sonar data). 

 

 
(a) 

 
 (b) 

Figure 6.16 Comparison on the covariance of robot pose. (a) In the narrow corridor;  

(b) In the wide corridor. 
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6.6 Discussion 

A direct sensor fusion management is formulated on the basis of information 

theory. We borrow the idea of the entropy weight from the decision analysis area 

and design a simple and general entropy weight method which considers the 

measurements and measurement variances to integrate the sensor information from 

various devices. It directly combines the feature parameters represented in the 

similar form i.e. Hessian line model for segments extracted from rangefinders and 

Plücker coordinates for the lines from vision systems. Similarly, the entropy 

weight is introduced into the covariance intersection. A modified CI technique is 

proposed for fusing measurements covariance matrices of different sensors. These 

fused features and relevant covariance matrices are incorporated into EKF-SLAM 

procedure to reduce the uncertainty of the features furthermore improve the 

efficiency of the SLAM especially for the case that some of sensors are invalid. A 

possible disadvantage of this fusion management is the ingenuous strategy of 

complementary information processing. In this study, this information reflected in 

camera is simply added into the SLAM procedure as the available features, which 

may import the potential invalid features. The topic of how to apply the 

complementary information appropriately will be studied in future. We also 

exploited the information entropy to design an associative feature determination 

strategy via calculating the error entropy to find the matched features. However, 

this method has enormous computation when the number of features to be 

matched is significant. The future works will focus on releasing the computational 

complex or developing another proper information entropy index. 

 

When the objects are constructed by glass, the camera and laser can not detect 

anything but only sonar can reflect the useful measurements. That is why the 

combination has to include the sonar data. The sensor fusion algorithm in this 

chapter is the improvement of that presented in Chapter 5. These improvements 

are: All laser measurements are used for sensor fusion without considering the 
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limit of FOV; the representation for the features extracted from the camera is a 

compact form; when the implementation of feature fusion, no extra prior 

knowledge such as the prior probability in the Bayesian fusion method is required; 

the computational complexity of modified MPEF is relaxed. In Chapter 5, the 

modified MPEF has to implement two individual EKF-SLAM procedure and 

concurrently several previous state variables and covariance should be saved for 

fusion, and the fused values have to be stored and propagated backward to each 

individual EKF-SLAM. Additionally, for laser SLAM before measurement update, 

the laser segments have to be updated by feature fusion to remove the pseudo 

segments. Those procedures above are a little bit laborious. However the sensor 

fusion method described in this chapter releases the computational complexity. It 

directly fuses the feature parameters and adopts only one EKF-SLAM procedure 

which is similar to the presentation in Chapter 4. Although we have not done the 

experiments with the same sensory system of Chapter 5 separately, through other 

experiments in this chapter and the improvements above the direct sensor fusion 

method based on information theory probably provide a better performance. 

 

As for Plücker coordinates computation for the lines extracted from the monocular 

camera, a virtual rangefinder model is proposed. This model alleviates the 

deviation problem caused by unparallel motion of the optical axis. However, the 

limitation of the proposed model is that the features should be on the flat-floor and 

the external knowledge on the camera installation has to be required. In future 

research, we will relax these constraints by employing such as active vision 

mechanism in computer vision community. 
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Chapter 7  Conclusions 

The preceding chapters reported the author’s contribution in the field of 

autonomous mobile robots. The main objective of this research was to investigate 

the problem of simultaneous localization and mapping (SLAM) in dynamic 

environments. The author has proposed viable solutions to this problem by 

borrowing concepts from robust regression, graph theory, computer vision, sensor 

fusion, and information entropy methodologies. The proposed algorithms eliminate 

the unexpected effects caused by dynamic objects and improve the performance of 

the EKF based SLAM. The first stage of the research identified an appropriate 

perception system, formulated the model of the environmental representation, and 

arrived at a proper mapping methodology by comparing existing methods. The 

robust regression model has been exploited to remove most of the features 

corresponding to moving objects. As for removal of those pseudo features related 

to temporary stationary dynamic elements, the indirect sensor fusion strategy has 

been employed. Meanwhile, the direct sensor fusion management enhanced the 

efficiency of the indirect strategy by integrating the feature parameters 

straightforwardly based on information entropy. In addition, the mathematical 

proof of optimal data association approach that also enhances the accuracy of 

SLAM in dynamic environments is provided. 

 

In this chapter, we reflect on the findings and provide a brief summary of this 

research work along with major contributions. The author will conclude the chapter 

by providing some suggestions on possible extensions and future developments of 

this research. 

7.1 Major Contributions 

The author provided an applicable solution to SLAM in dynamic environments 
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through robust technique and sensor fusion viewpoint. Major contributions that 

deserve consideration in this research work are outlined as: 

 

 A robust regression model for mapping to manage most dynamic objects was 

proposed in Chapter 4. This model applied the MM-estimate that combines a 

high breakdown point with good efficiency to address the sensor noise and 

dynamic items concurrently without requiring any special functions for noise 

and dynamic properties. This robust regression model alleviates the difficulty 

of thresholds selection for clustering and requires less time to extract the 

feature parameters. 

 

 An indirect sensor fusion strategy including feature fusion and a modified 

Multi-sensor Point Estimation Fusion (MPEF) was synthesized in Chapter 5. 

Feature fusion policy incorporates the static line features extracted from 

monocular camera with the segments represented by robust regression model 

from laser sensor, the purpose of which is to delete the potential pseudo 

segments corresponding to moving objects in laser measurements. The 

parameters describing the features obtained from distinct sensors were 

imported into the fusion center to determine misidentified laser segments 

through Bayesian fusion rule. After removal of those pseudo laser features, the 

modified MPEF was employed to integrate two individual SLAM procedures 

— monocular and laser SLAM — and feedback the fused state estimates to 

each SLAM. The aim was to reduce the covariance of the state variables and 

improve the accuracy of localization. 

 

 The author also proposed a direct sensor fusion management based on 

information entropy weight in Chapter 6. Different from the indirect strategy, 

the proposed technique combines the parameters of the features as well as 

related parameters variances obtained from various sensor measurements in a 

straightforward fashion in order to reduce the feature uncertainty. The fused 
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features are consolidated into the EKF-SLAM framework and the uncertainty 

of the robot pose evidently decreased in comparison of the results without 

considering the sensor fusion. As a part of the direct sensor fusion 

management, the method for the determination of associative features 

extracted from different sensors is also on the basis of information theory. It 

concentrates on computing the error entropy and confirms the relevant features 

through this error entropy. The advantages of this sensor fusion strategy are no 

extra postulated conditions, generality and simple implementation. 

 

 The data association problem was revisited by presenting an optimal graph 

approach in Chapter 4. It is first formulated as a 0-1 integer programming (IP) 

problem, and then is mathematically proved that the IP problem is equivalent 

to a minimum weight bipartite perfect matching problem which can be 

optimally solved. Hence obtaining the optimal solution of the minimum 

weight bipartite perfect matching means optimally solving the data association 

problem. As for the data association in monocular SLAM, in Chapter 5 we 

suggested a technology using the homography transformation matrix (HTDA) 

estimated by the matched points in two images. These matched points are 

determined by SIFT descriptors. This method is generated from the idea that 

each 3D point has only one projection in the image plane, and to confirm the 

matched points in 3D space is equivalent to find the identical 2D image points. 

HTDA relaxes the repetitious process induced by the computation pixel by 

pixel in the predefined region. 

 

 A virtual rangefinder model was introduced in Chapter 6 for extracted lines 

from a monocular camera. This model alleviates the deviation problem caused 

by unparallel motion of the optical axis, as well its simple geometric 

calculation makes it as an un-delayed method to recover the depth 

information. 
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7.2  Suggestions for Future Research 

It is certainly impossible to address all the problems associated with the SLAM in 

dynamic environments within the limited scope of this research study. The 

research findings, however, has opened new path to follow. Here is some direction 

to future research in this field: 

 

 The clustering algorithm for robust regression model can be studied further. 

One of the proposed clustering methods applied the variance ratio of slope 

(VROS) to detect the generation of a new cluster. This could produce the 

incorrect class when the sensor data are scrambled which is the case that 

numerous dynamic objects such as a crowd movement in the environment. 

Additionally, the inherent disadvantage of robust regression model is that the 

breakdown point can not exceed 50%, which makes this model may not 

dispose the mapping for considerably complex dynamic environments. 

Therefore the incorporation of robust regression model with other more robust 

techniques can be explored. 

 

 The improved approach on solving the minimum weighted bipartite matching 

for graph theory based data association algorithm can be further studied. The 

way employed in this thesis is the Johnson’s algorithm whose running time is 

O(V2logV+VE), where the V and E mean the numbers of vertices and edges. 

When the capacity of the vertex and edge becomes enormous, Johnson’s 

method has low efficiency. To address this problem, the fast algorithm will be 

investigated. Furthermore, to reveal the performance of the proposed data 

association algorithm, more methods will be compared with the graph 

theoretic approach. 

 

 A sensible module on processing the complementary information that exists in 

different sensor devices has to be developed and incorporated into the 
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proposed information theory based sensor fusion management. This makes the 

fusion results much more practical. Meanwhile, the suggested sensor fusion 

strategy based on information entropy could be extended to other area of 

autonomous robots such as exploration, navigation, distributed sensor fusion 

of multiple mobile robots, etc. 

 

 The computer vision techniques will be considered to serve for the 3D 

information recovery from the monocular vision system. In this thesis, we 

assumed that the features have to locate at the flat floor with prior known 

external parameters of the camera when we extracted the lines from the 

monocular camera. In practice, these assumptions lead to lost more 

information reflected in the images, and could not always maintain. To 

considerably make use of abundant image information, the methodology in 

computer vision community such as active vision and structure from motion 

could be applied for implementing the autonomous tasks of mobile robots only 

with monocular vision system. 

7.3 Closing Remarks 

As a central ability of autonomous machines, SLAM plays an important role for 

autonomous robots to implement various advanced tasks in unstructured dynamic 

environments without continuous human supervision. The thesis has attempted to 

add value to the research on this open topic, and the author hopes that his modest 

efforts in the design of the method for SLAM in dynamic environments could be a 

contribution towards achieving autonomous tasks. An autonomous robot has a 

high degree of self-sufficiency and is able to explore and seek information about 

its environment; work for an extended period without human intervention; move 

either all or part of itself throughout its operating environment without human 

assistance; avoid situations that are harmful to people, property, or itself unless 

those are part of its design specifications. It may also learn or gain new capabilities 
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like adjusting strategies for accomplishing its task(s) or adapting to changing 

surroundings. Maybe in future, autonomous machines might even have emotions, 

could speak fluently and learn to live alongside humans. The movie “I, R obot” 

echoed concerns and fear of a world where man and intelligent humanoids 

co-exist. However, as man is writing the script, let us hope that autonomous 

machines are going to be used for the benefit of mankind. 
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Appendix 

A. Coordination Reference Systems and Transformation 

Mobile robots, by definition, move any place of their environments and acquire 

the knowledge about the world via their perception systems. This naturally leads to 

a need for representing the positions and orientation of the robots, of map features 

and of the motion itself. To define and manipulate mathematical quantities which 

describe the position and orientation, we have to elucidate the coordinate systems 

and develop the transformation among these distinct reference frameworks. These 

coordinate systems consist of the global/world, the local/robot, the rangefinder 

including sonar and laser, and the monocular and stereo cameras. 

 

Robot

{G}

{L}

X

Y

X

Y detected range

P LORG

ρ s

θ s
Rφ sonar

laser

 
Figure A.1 The coordinate systems of global, robot and rangefinders. 

 

Figure A.1 plots the coordinate references of the global, robot and rangefinders. 

Practically, different from the robot coordinate system, each sensor has its own 

reference and the data are also measured within this individual framework. To 

integrate features into the SLAM process, the measurements have to be 
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transformed into the robot coordinate reference. For convenience, we assume that 

the ultrasonic sonar and laser rangefinder have the same coordinate system as the 

robot and name it as local framework {L}, where X-axis is the heading of the 

robot and Y-axis is perpendicular to X-axis and points to left. This is because all 

the sensors are almost fixed on the center of robot console. Similarly, {G} means 

the global frame. The gray sector denotes the sensing range for one ultrasonic 

sonar device, and the shadow area is for the laser. We define the robot pose as 

[xR,yR,φR]T, where xR,yR are the robot position and φR is the orientation with 

respect to the X-axis of the global framework. The measurement of rangefinders is 

[ρs, θs]T where ρs is the detected range of the map features from the robot and θs is 

the orientation with respect to the X-axis of the local reference. The measurement 

in Cartesian format is computed as, 
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and converted into the global coordinate through 
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G
L R  is the rotation matrix describing local frame relative to global frame, and 

GPLORG is the translation vector that locates the origin of the local frame. It is noted 

that the format of the local measurement in (A.2) is the homogenous 

representation. 

 

The model for describing the monocular and stereo cameras is the ideal pinhole 

camera model. The geometry related to the mapping of a pinhole camera is 
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illustrated in Figure A.2. A 3D orthogonal coordinate system with its origin at C is 

the camera aperture labeled as {C}. The three axes of the coordinate system are 

referred to as X, Y and Z. Axis Z is pointing in the viewing direction of the camera 

and is referred to as the optical axis. The 3D plane which intersects with axes X 

and Y is the principal plane. An image plane remarked as {I} where the 3D world 

is projected through the aperture of the camera is parallel to axes X and Y and is 

located at distance f from the origin C in the negative direction of the Z axis. A 

practical implementation of a pinhole camera implies that the image plane is 

located such that it intersects the Z axis at coordinate -f where f > 0. f is referred to 

as the focal length of the pinhole camera. A point R at the intersection of the 

optical axis and the image plane is referred to as the principal point or image 

center. The relationship between the image point Q and the world point P is 

 

xf
yz
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 

= 
 
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 
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Figure A.2 Ideal pinhole camera model. 

 

If the camera is un-calibrated for example the Canon VCC4 monocular camera load 

on Pioneer 2DX, we do not know the intrinsic parameters of the camera such focal 

length and distortion ratio. It is impossible to obtain an analytical transformation 

between image frame and robot frame, i.e. the image pixel coordinate can not be 

described in terms of metric coordinate according to (A.3). We can only obtain the 
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approximate pixel transformation. And that is one reason why we employ fuzzy 

logic in our previous work (G. Q. Huang, et al., 2006) to fuse sonar and vision 

information. However, even through the calibration parameters are obtained, it is 

also complex for monocular camera to extract the 3D information for a map feature. 

The common method is to make a parallel or similar motion for the camera to 

generate a parallax so that the depth information can be recovered approximately. 

This strategy looks like deliberately constructing a stereo vision system. 

 

For the stereo camera, it is easy to extract the 3D information. There is a little bit 

difference on the coordinate system between the stereo camera applied in this 

thesis and the ideal pinhole camera. As shown in Figure A.3, the origin of the 

system is the optical center of the lens of the reference camera, X axis points to the 

right of the camera (from the camera's point of view), Y axis points towards the 

ground, and Z axis points forward from the camera. Please refer to the green 

reference framework in Figure A.3. The pink one is the local framework depicted 

in 3D format, where the origin is the center of emitting laser light, X axis is 

perpendicular to the paper and directs outside, Y axis points to the left of the laser 

and Z axis orientates to ceiling. When we get a pixel coordinate of a point, the 

relevant 3D position is  

 , ,fBas uz vzxz y
d f f

= ==  (A.4) 

where f is focal length in pixels, Bas is the baseline of the camera in meters and d 

is the disparity in pixels. It is noted that the f and other calibration parameters have 

been obtained from the pre-saved configuration of the camera.  

 

As the coordinate system of stereo camera is different from the local framework, 

when the 3D position of one feature is obtained which is described in camera 

system as C[Px, Py, Pz]T, it is required to transform it to local reference with the 

following formulas: 
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L’ means a virtual local coordinate reference which is generated through only 

rotating the camera reference by π (cf. Figure A.4). CP is the 3D position of a point 

measured by stereo camera and L’P is the position in virtual frame. L’PCORG is the 

translation vector that locates the origin of the camera frame, and 'L
C R  is the 

rotation matrix describing camera frame relative to virtual frame. This step is 

illustrated in process 1 of Figure A.4.  

 

The second step of the transformation is to calculate the related coordinates in 

local reference from the virtual local framework. As is shown in process 2 of 

Figure A.4, this step is easy to implement, that is the local coordinates LP is 

obtained by exchanging the elements order of L’P, i.e. 

L L L L
z x yP P P P′ ′ ′=                         (A.6) 
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Figure A.3 Various coordinate systems for Pioneer 3DX 
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Figure A. 4 Transformation from camera frame to virtual local frame 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

A-7 

B. T he De rivation o f M odified M ulti-sensor P oint 

Estimation Fusion 

We can easily transform equation (5.1) into a 2D version because the robot only 

moves in the flat plane. Therefore the motion models for the two sensor distributed 

systems are identical and represented as 

1 ( , ) ; 0,1, ,k k k kf v k+ = + =x x u                       (B.1) 

and the observation model for two different sensors is 

( ) ; 1, 2; 0,1, ,i i i
k k kh w i k= + = =y x                    (B.2) 

where the motion noise vk and measurement noise wk are both zero mean random 

variables independent of each other and are not cross correlated. Their covariance 

matrices are Qk and i
kR  respectively. i=1,2 has the same meaning as stated in 

Chapter 5. For convenience, we temporarily scrape off the subscript C and L, and 

superscript f and b in the following equations. To compare performances between 

fused and distributed filtering, the stacked measurement equation is  

( ) ; 1, 2; 0,1, ,k k kh w i k= + = =y x                      (B.3) 

where 

1
1

2
2 1 2( )

) , ( ] , ( ) , , ]
(

[( ) [( )
)

) (kT T T T T T
k k k k k k k

k

w w
h

h w
h

 
=  
  

= =
x

y y y x
x

 

and the covariance of the noise wk is given by 

1 2( ( , ) , () )i i
k k k k k kCov w diag R R Cov w RR= = =  

 

Each individual EKF SLAM is  

| | 1 | 1

| 1 | 1

[ ( )]

     ( )

i i i i i i
k k k k k k k k

i i i i i i
k k k k k k k

K h

K h K
− −

− −

= + −

= − +

x x y x

x x y
                      (B.4) 
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1
| 1 | 1( ( ,) ) )(i i i T i i i i i T i

k k k k k k k k k k kK P H S S H P H R−
− −== +            (B.5) 

| | 1 | 1 1| 1) ,(i i i i i i T
k k k k k k k k k k k k kP P PI K H F P F Q− − − −= − = +             (B.6) 

where Fk and i
kH are the Jacobian matrix with respect to the state variable xk. From 

(B.5)-(B.6), we have 

1
| ( ) )(i i i T i

k k k k kK RHP −=                           (B.7) 

1 1 1
| | 1( ) ) )( )( (i i i T i i

k k k k k k kP H R HP− − −
− +=                (B.8) 

The fused EKF SLAM has similar formulas 

| | 1 | 1

| 1 | 1

[ ( )]
     ( )

k k k k k k k k

k k k k k k k

K h
K h K

− −

− −

= + −

= − +

x x y x
x x y

                  (B.9) 

1
|

T
k k k k kK HP R−=                               (B.10) 

where 1 2[( ,) ( ) ]T T T
k k kH H H= . Also the covariance of fused filter is deduced as 

1 1
| | 1

1 1
| 1

1

2

1
     ( ) ( )

T
k k k k k k k

i T i i
k

T

k k
i

k k

P P H H

H H

R

P R

− −
−

−

=
−

−

−

+

= +

=

∑
                  (B.11) 

According to (B.8) and (B.11), Pk|k can be represented by |
i

k kP , i.e. 

1 1
| | 1

1 1
|

2
1

1
2

1
| 1

( ) (

                 

)

[( ])()

i T i i
k k k k k k k

i i
k k

i

i
k k

P P R

P

H H

P

− −
−

=

−
=

− −

− − =

= −

∑

∑
                (B.12) 

 

Multiplying yk at both side of (B.10), we have 

|

2
1 1

1
| ( ()T i T i

k k k k k k k k k
i

k k k
i

P R PK H H R
=

−−= = ∑y y ) y           (B.13) 

and by (B.4) we obtain 

| | 1 | 1

1
| | | 1 | 1

1 1
| | | 1 | 1

[ ( )]

( ( [) )

) )

( )]

( ( ( ) ( [ ( )])

i i i i i i i
k k k k k k k k k

i i T i i i i i i i
k k k k k k k k k k k k

i T i i i i i i i i
k k k k k k k k k k k k

K K h

P H R K h

H R P K h

− −

−
− −

− −
− −

= − − ⇒

= − − ⇒

= − −

y x x x

y x x x

y x x x

     (B.14) 
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Substituting (B.14) into (B.13), and then substituting (B.13) and (B.10) into (B.9)

, we find 

1 1 1

2

1

| | | | 1 | 1

1
| | | 1 | 1

( )

              ( ) )( ]( [ )

T
k k k k k k k k k k k k

i i i i i i
k k k k k

i
k k k k

P P H R h

P hK

− − −
− −

−
− −

=

−+ −

= −

∑

x x x

x x x
     (B.15) 

Actually in each iteration, h(xk|k-1) and hi(xk|k-1) are constant matrix calculated by 

xk|k-1, and therefore 1
| 1( )T

k k k kH R h−
−x  and 1

| 1( ) ( ) ( )i T i i
k k k kH R h−

−x  are linear items. With 

these properties of linearity, we may determine 

1 1
| 1 | 1

2

1
( ) ( ) ( ) ( )T i T i i

k k k k k k k k
i

H R h H R h− −
− −

=

=∑x x            (B.16) 

By (B.16) and (B.7), (B.15) is rewritten as 

1
| | 1 | | | | 1

2

1
( ) )(i i i

k k k k k k k k k k k k
i

P P −
− −

=

−= + ∑x x x x              (B.17) 

It is necessary to note that (B.12) and (B.17) manifest the relationship of the state 

variable vector between the fused and individual EKF SLAM as well as the 

covariance matrix. From (B.17), the weight matrix for each individual state 

variable vector can be determined. That is  

1 1

2

1 1
| | | |

1 1
| |

2
| |

[ , ( ) , ( ) ,

             ( ) , ( ) ]
k k k k k k k k

k k k k k k k k

I P P P P

P P P P

− −

− −

= −

−

W                   (B.18) 

 

If the latest fused state estimate xk|k is broadcasted to every individual state 

estimate as the back propagation (we call it feedback), we can prove that the 

covariance of state variable is reduced with this feedback but the performance of 

the fused EKF SLAM is unchanged with and without the feedback. 

 

To maintain the identity with (Zhu, 2003), we apply the same symbols and 

assumptions. Concerning the feedback, the individual and fused one-step 

predictions are  

| 1 1| 1 1 | 1ˆ( , )i
k k k k k k kf− − − − −= =x x u x , | 1 | 1

ˆ î
k k k kP P− −=            (B.19) 
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Rewriting (B.12) and (B.17) by using (B.19) as 

2 1
| | | 1
1

1
1ˆˆˆ ( ( )) 1 , 2i

k k i k k k kP P l P l− −
−

−
=

= − − =∑                 (B.20) 

2 21 1
1 1

1 1
| | | | | | | 1

ˆˆˆˆ ˆˆ( ) ( )i i i
k k k k k k k k k k ki k k ki

P P P P− −−
= −

−
=

 = − − ∑ ∑x x x      (B.21) 

Suppose that the initial values of state variable vector and covariance for fused and 

individual EKF SLAM are same, i.e. 

0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0, ˆˆˆˆ i i i iP P P P= = = = ==x x x x         (B.22) 

And we also employ the assumptions listed in (Zhu, 2003) 

1| 1 1| 1 | 1 | 1

| 1 1 1| 1 | 1 | 1

ˆˆ ,
ˆˆ ,

k k k k k k k k

k k k k k k k kP P P P
− − − − − −

− − − − − −

= =

= =

x x x x
                  (B.23) 

At step k, substituting (B.23) into (B.20), we have 

1 1 1
| | 1 | |

21
1 1

ˆˆ ( )i
k k k k k ki k kP P P P− − −

− −
−

=
 = + − ∑               (B.24) 

Similar to (B.8), we can get 

(31)

1 1 1
| | 1

1 1
| 1

ˆˆ( ) ) ( ) (

     

(

      ( ) (

)

)

i i i T i i
k k k k k k k

i T i i
k k k k k

P P R

P R

H H

H H

− − −
−

− −
−

+

= +

=
              (B.25) 

Substituting (B.25) into (B.24), we obtain 

1 1
| | 1

2
1

1
)ˆ ( ) (i T i i

k k k k k k
i

kH HP P R− − −
−

=

= +∑                  (B.26) 

In comparison with (B.12), we claim that  

1 1
| |k̂ k k kP P− −=                                   (B.27) 

 

On the other hand, we get the following equations by substituting (B.7) into (B.4)

,  

1 1 1
| | | | 1

1
| 1

ˆˆ ˆ( ( ( ) ( )

                     ( ) ( ) ( )

i T i
k k k k k k k k k k k

T

i i

i
k k

i

k

i

i
k

i

P P H R

H R h

− − −
−

−
−

= +

−

) x ) x y

x
           (B.28) 

and (B.10) into (B.9), 
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1 1 1 1

21
1

| | | | 1 | 1

1
| | 1

1
| 1

ˆ ( )

           ( ) ( )

               ( ) ( ) ( )

k k k k k k k k k k k k k k k

T i
k k k

T T

k k k k

T i
k k

i i
i

i
k

i
k

P P H R H R h

P H R

H R h

− − − −

−
=

− −

−
−

−
−

= + −

= + 
− 

∑
x x y x

x y

x

          (B.29) 

With replacing the related item in (B.21) by (B.28), and considering the conditions 

(B.23), the following derivation is obtained. 

1
| | | | 1

1

21 1

| 1

1
ˆ ( ) ( )

               ( ) ( ) ( )

T i
k k k k k k k k k k k

T i
k k k k

i i
i

i i

P P H R

H R h

− −
=

−
−

−
−

= + 
− 

∑x x y

x
                    

1 1
| |k̂ k k kP P−− =

⇒  
21 1

1
1

| | | | 1

1
| 1

( ) ( )

               ( ) ( ) ( )

T i
k k k k k k k k k k k

T i

i i
i

i i
k k k k

P P H R

H R h

− −
=

−
−

−
−

= + 
− 

∑x x y

x
         (B.30) 

Comparing (B.29) and (B.30), we assert that  

| |ˆ k k k k=x x                                (B.31) 

 

It is obvious from (B.27) and (B.31) that the performance of fused EKF SLAM 

does not change in the presence or absence of feedback. However, when the 

feedback is allowed into the individual EKF SLAM, the fused covariance of the 

state vector is decreased. This result is verified as follow. By (B.8) and (B.26) we 

have the equation 

1 1 1
| | 1 | | 1

1 1 1
| | | 1 | 1

1 1
1 | 1 1

1

1 |

1

1 1

ˆ( ) ) ( )
ˆ( ) ( ) )

    

(

    ( (

(

) )

i i i
k k k k k k k k

i i i
k k k k k k k k

T i T
k k k k k k k k k k

P P P P

P P P P

F P F Q F P F Q

−

−

− − −
− −

− − −
− −

− −
− − − − − −

− −

−

= ⇒

=

+ +

−

= −

      (B.32) 

It is easy to prove that (B.32) is equal and larger than zero because 

1| 1 1| 1, 2,3, ,i
k k k kP P k− − − −≤ =   (cf. (Zhu, 2003)). Therefore, we have 

1 1 1
| | | 1 | 1

1ˆ( ( )() ) 0i i i
k k k k k k k kP P P P− −−−

− −=− ≥− , that is 

| | | 1 | 1
ˆ ,i i i
k k k k k k k kP P P P− −≤ ≤                         (B.33) 

and also  

| | |
ˆ i

k k k k k kP P P= ≤                            (B.34) 
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which derives from (B.8), (B.26) and (B.27) if and only if 

1)( ) ( 0j j j
j i

T
r r rH HR −

≠
>∑ , for some r≤ k-1. Please refer to (Zhu, 2003) for this 

condition in detail. 

 

It can be concluded that (B.33) and (B.34) suggest that under a certain constraint 

the fused covariance of the state variable is reduced with the feedback. And when 

we use this fused state variables in SLAM, it will reduce the error of the 

localization and map features without changing the performance of individual 

EKF SLAM. 
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C. Information Entropy  

The concept of entropy term by itself usually refers to the Shannon’s entropy, 

which is a measure of the uncertainty of a random variable. Let X be a discrete 

random variable with alphabet X and probability mass function p(x) = Pr{X = x}, 

x∈X. 

Definition The entropy H(X) of a discrete random variable X is defined by 

 lo( g) (( ) )
x

pH X p x x
χ∈

= −∑  (C.1) 

The log is to the base 2 and entropy is expressed in bits. If the base of the 

logarithm is b, we denote the entropy as Hb(X). If the base of the logarithm is e, 

the entropy is measured in nats. Note that entropy is a functional of the distribution 

of X. It does not depend on the actual values taken by the random variable X, but 

only on the probabilities. For more explanation on information entropy, please 

refer to the monograph (Cover, 2006).  
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