

The Hong Kong Polytechnic University

Department of Computing

CLEANING AND QUERYING LARGE UNCERTAIN

DATABASES

by

JINCHUAN CHEN

A thesis submitted in partial fulfillment

of the requirements

for the Degree of Doctor of Philosophy

December 2008

Abstract

The management of uncertain databases has recently attracted

tremendous interest from both industry and academy communities.

In particular, there is a need to handle uncertain data in many emerg-

ing applications, such as the wireless sensor network, biometric and

biological databases, location-based services, and data stream appli-

cations. To obtain meaningful results over these uncertain data, prob-

abilistic queries are proposed, which augment query results with con-

fidence. Although probabilistic queries are useful, evaluating them

is costly, in terms of both I/O and computation. Moreover, the cal-

culation of answer probabilities involves expensive numerical integra-

tions. Therefore the efficient evaluation of probabilistic queries is a

challenge for uncertain database management. In this thesis, we re-

port our works for speeding up the evaluation performance of three

kinds of important probabilistic queries – nearest-neighbor queries,

k-nearest-neighbor queries, and imprecise location-dependent queries.

New approaches are proposed to improve the efficiency in both I/O

and computation, and they are evaluated by extensive simulations

over real and synthetic data sets.

Another important issue that we consider in this thesis is the clean-

ing of uncertain data with the goal of achieving higher quality. Since

the applications handling imprecise data have resource limitation, the

cleaning process must optimize the use of resources. We study theo-

retically and experimentally on how the result quality could be maxi-

mized with constrained resources, with the use of entropy-based met-

rics. We also outline the future directions of our work.

iii

Publications arising from the thesis

1. J. Chen and R. Cheng. Efficient evaluation of imprecise location-

dependent queries. In ICDE’07: Proceedings of the 23rd International

Conference on Data Engineering, pages 586-595, 2007.

2. R. Cheng, J. Chen, M. F. Mokbel, and C.-Y. Chow. Probabilistic ver-

ifiers: Evaluating constrained nearest-neighbor queries over uncertain

data. In ICDE’08: Proceedings of the 24th International Conference

on Data Engineering, pages 973-982, 2008.

3. J. Chen and R. Cheng. Quality-aware probing of uncertain data with

resource constraints. In SSDBM’08:Proceedings of the 20th Interna-

tional Conference on Scientific and Statistical Database Management,

pages 491-508, 2008.

4. R. Cheng, J. Chen, and X. Xie. Cleaning uncertain data with quality

guarantees. In VLDB’08: Proceedings of the 34th International Con-

ference on Very Large Data Bases, pages 722-735. VLDB Endowment,

2008.

5. R. Cheng, L. Chen, J. Chen, and X. Xie. Evaluating probability

threshold k-nearest-neighbor queries over uncertain data. In EDBT’09:

the 12nd International Conference on Extending Database Technology,

pages 672-683, 2009.

6. R. Cheng and J. Chen. Probabilistic Spatial Queries. In the Ency-

clopedia of Database Systems, L. Liu and T. Ozsu (eds.), ISBN 978-

0387355443, Springer-Verlag, 2009.

7. J.Chen, R. Cheng, Y. Zhang and J. Jian. A Probabilistic Filter Pro-

iv

tocol for Continuous Queries. To appear in QuaCon’09: First Interna-

tional Workshop on Quality of Context, 2009.

8. J.Chen, R.Cheng, M. F. Mokbel, and C.-Y. Chow. Scalable Process-

ing of Snapshot and Continuous Nearest-Neighbor Queries over One-

Dimensional Uncertain Data. Submitted to VLDBJ for consideration.

v

Acknowledgements

The work presented here is not possible without the help of many people, to

whom I would like to express my deep appreciation.

I would like to give my sincere respect and thanks to my supervisor, Dr.

Reynold C.K. Cheng. Dr. Cheng provides me the rare chance of admission.

He has been more than available throughout my research, implementation,

and writing of research papers. His input and direction was invaluable in the

creation of this thesis, and the research in contains. Without his help, this

thesis would not exist.

I would like to thank Prof. Jiannong Cao, who gives me countless help in

my research. His guidance and constructive criticism benefited me a lot. His

care, patience and strict working style impress me very much. Appreciation

also goes to Dr. Mohamed F. Mokbel and Dr. Lei Chen, for their guidance

and suggestions.

Words are never enough to express my deep love and thanks to my parents

who give me life and encourage me to face difficulties on my way of growing

up. Gratefulness and love also go to my dear wife, Zhao Na, whom I owe so

much to, for her unwavering supporting, understanding and encouragement.

The financial support given to my Ph.D. study by the Hong Kong Poly-

technic University is also gratefully acknowledged. Last but not least, I would

like to thank my friends in Hong Kong, Xike Xie, Yirong Chen, and Fei Dong

etc., who create a harmonious atmosphere around me and share a happy time

with me.

vi

Contents

Abstract iii

Publications arising from the thesis iv

Acknowledgements vi

List of Tables xii

List of Figures xv

1 Introduction 1

1.1 Uncertain Data Models . 1

1.2 Querying Uncertain Data . 3

1.3 Cleaning Uncertain Data . 5

1.4 Organization of This Thesis 6

2 Literature Review 7

2.1 Attribute-Uncertainty Models 7

2.2 Queries over Uncertain Database 10

2.2.1 Probabilistic Nearest-Neighbor Query 10

2.2.2 Probabilistic k-Nearest-Neighbor Query 11

2.2.3 Imprecise Location-Dependent Query 13

2.3 Other Uncertainty Models . 15

2.4 Cleaning Uncertain Databases 16

3 Probabilistic Nearest-Neighbor Queries 18

3.1 Introduction . 18

3.1.1 Solution Overview . 20

3.2 A Solution Framework for C-PNN 23

vii

3.2.1 Attribute-Uncertainty Model 23

3.2.2 Definition of C-PNN 24

3.2.3 The Verification Framework 26

3.3 Verification and Refinement 29

3.3.1 Computing Subregion Probabilities 29

3.3.2 The Rightmost-Subregion Verifier 33

3.3.3 The Lower- and Upper- Subregion Verifiers 35

3.3.4 Result-based Verifiers 41

3.3.5 Incremental Refinement 43

3.4 Experimental Results . 44

3.4.1 Experimental Setup . 44

3.4.2 Results . 45

3.5 Chapter Summary . 49

4 Probabilistic k-Nearest-Neighbor Queries 51

4.1 Introduction . 51

4.1.1 Solution Overview . 54

4.2 Preliminaries . 58

4.2.1 Definition of T -k-PNN 58

4.2.2 Basic Evaluation of T -k-PNN 59

4.3 Generating k-subsets . 61

4.3.1 k-bound Filtering . 61

4.3.2 Probabilistic Candidate Selection 63

4.3.3 A Storage-Efficient Compression Method 67

4.4 Verification and Refinement 69

4.5 Experimental Results . 74

4.5.1 Experimental Setup . 75

4.5.2 Results . 75

viii

4.6 Chapter Summary . 81

5 Imprecise-Location Dependent Queries 82

5.1 Introduction . 82

5.2 Problem Definition . 85

5.2.1 Imprecise Location-Dependent Range Queries 85

5.2.2 Basic Evaluation Methods 87

5.3 Efficient Evaluation of Imprecise Queries 88

5.3.1 Query Expansion . 89

5.3.2 Query-Data Duality 90

5.3.3 Calculation of Qualification Probabilities 93

5.3.4 An Efficient I/O Solution 96

5.4 Constrained Imprecise Queries 96

5.4.1 Pruning Point Objects for C-IPQ 97

5.4.2 Pruning Uncertain Objects for C-IUQ 100

5.4.3 Efficient I/O Solutions 103

5.5 Experimental Results . 104

5.5.1 Experiment Setup . 104

5.5.2 Results . 106

5.6 Chapter Summary . 108

6 Cleaning Attribute-Uncertainty Data 110

6.1 Introduction . 110

6.2 System Architecture . 114

6.3 Quality and Resource Budget of Probabilistic Queries 116

6.3.1 Quality Score . 116

6.3.2 Resource Budget . 118

6.4 Maximizing Quality with Limited Resources 119

ix

6.4.1 Single Query (SQ) . 120

6.4.2 Algorithm DP. 121

6.4.3 Multiple Queries with Shared Budget (MQSB) 123

6.4.4 Approximate Solutions 124

6.4.5 Random and MaxVal 125

6.5 Experimental Results . 126

6.5.1 Experimental Setup . 127

6.5.2 Results . 127

6.6 Chapter Summary . 129

7 Cleaning Tuple-Uncertainty Data 130

7.1 Introduction . 130

7.2 Data and Query Models . 137

7.2.1 The Probabilistic Database Model 137

7.2.2 Queries . 138

7.3 The PWS-Quality . 140

7.3.1 Evaluating the PWS-Quality 141

7.3.2 The x-Form of the PWS-Quality 142

7.3.3 Deriving the x-Form for PRQ 145

7.3.4 Deriving the x-Form for PMaxQ 147

7.4 Cleaning Uncertain Data . 150

7.4.1 Problem Definition . 150

7.4.2 Evaluating Quality Improvement 153

7.4.3 An Optimal and Efficient Data Cleaning Algorithm . . 155

7.4.4 Heuristics for Data Cleaning 157

7.4.5 Incremental Query Processing 158

7.5 Results . 159

7.5.1 Experimental Setup . 159

x

7.5.2 Results . 162

7.6 Chapter Summary . 168

8 Conclusions and Future Works 169

8.1 Future Works . 170

References 172

xi

List of Tables

3.1 Symbols for C-PNN. 27

3.2 Symbols for verifiers. 34

3.3 Complexity of Verifiers. 44

5.1 Symbols for IPQ and IUQ. 87

5.2 Regions and Corresponding Q(x, y) 95

5.3 Parameters and baseline values. 106

6.1 Symbols for Cleaning Attribute-Uncertainty Data 119

6.2 Complexity of Four Algorithms (SQ) 126

6.3 Complexity of Four Algorithms (MQSB) 126

7.1 Uncertain database example. 132

7.2 Results of the MAX query on Table 7.1. 132

7.3 A partially-cleaned instance of Table 7.1. 132

7.4 Results of the MAX query on Table 7.3. 133

7.5 Symbols for cleaning probabilistic databases. 139

xii

List of Figures

1.1 Uncertainty of (a) location and (b) sensor value. 2

1.2 Examples of Probabilistic Queries. 3

3.1 Probabilistic NN Query (PNN). 19

3.2 Solution Framework of C-PNN. 22

3.3 A C-PNN with T = 0.8 and ∆ = 0.15. 24

3.4 The Verification Framework. 28

3.5 Distance pdf and cdf . 30

3.6 Histogram pdf. 31

3.7 Illustrating the distance pdfs and subregion probabilities. . . . 32

3.8 Correctness proof for L-SR and U-SR. 39

3.9 Basic vs. Filtering. 45

3.10 Time vs. T . 45

3.11 Time Breakdown. 47

3.12 Relative error vs. pdf precision. 48

3.13 Gaussian pdf. 48

3.14 Effectiveness of Verifiers. 49

3.15 Effect of ∆. 49

4.1 Probabilistic k-NN Query (k-PNN) with k = 3. 52

4.2 Solution Framework of T -k-PNN. 57

4.3 Step-by-step generating candidate subsets based on CP 65

4.4 Compressed candidate subsets based on CP 69

4.5 Illustrating the distance pdfs and partition probabilities (for

k = 2). 70

4.6 Correctness proofs for pj(S).l and pj(S).u. 73

4.7 # of Loaded Data Objects. 75

4.8 Basic vs. GVR. 75

xiii

4.9 Generating k-subsets. 76

4.10 Effect of T on PCS (k = 6). 76

4.11 Seed Pruning (# k-Subsets). 76

4.12 Seed Pruning (Response Time). 76

4.13 Efficient Storage of k-subsets. 77

4.14 Effect of Verification. 77

4.15 LB vs. UB. 80

4.16 Time Analysis (with T=0.1) . 80

4.17 Time Analysis (with k=6). 80

4.18 Various T on Gaussian Distribution 80

5.1 Evaluating IPQ and IUQ. 86

5.2 Illustrating the evaluation of IPQ. The thick line is the expanded

query using the Minkowski Sum. 90

5.3 The Duality of Query and Data. 92

5.4 Region 0 . 94

5.5 Region 1 . 94

5.6 Region 2 . 94

5.7 Illustrating the p-bound of oi. 98

5.8 Pruning si for C-IPQ. 98

5.9 Pruning oi for C-IUQ (a) using the ri(T) bound of oi; (b) using

the T -expanded-query. 100

5.10 Pruning oi for C-IUQ using both bounding box information of oi

and the expanded query. 103

5.11 Basic vs. Enhanced (IUQ) . 105

5.12 T ime vs. c (IPQ) . 105

5.13 T ime vs. c (IUQ) . 106

5.14 T ime vs. T (C-IPQ) . 106

xiv

5.15 T ime vs. T (C-IUQ) . 107

5.16 T ime vs. T (C-IPQ) . 107

6.1 Probing of Sensor Data for Uncertainty Reduction. 111

6.2 System Architecture . 115

6.3 An Example of Probabilistic Range Query 116

6.4 Quality Improvement vs. Resource Budget (SQ) 126

6.5 Quality Improvement vs. Resource Budget (MQSB) 126

6.6 Time Spent in Different Phases during Query Processing (SQ). . . 128

6.7 Decision Time vs. Resource Budget (SQ) 128

6.8 Scalability of MQSB (Greedy). 129

7.1 The framework of our solution. 136

7.2 PWS and PWS-Quality. 140

7.3 Quality vs. z. 160

7.4 Quality vs. Database Size. 160

7.5 The x-Form (PRQ). 161

7.6 Query vs. Quality Evaluation Time. 161

7.7 Evaluation Time of Quality Improvement. 163

7.8 Time for selecting x-tuples (PMaxQ). 163

7.9 I vs. C (PRQ). 165

7.10 I vs. C (PMaxQ). 165

7.11 PRQ vs. PMaxQ (I/|S|). 167

7.12 Results on Real Data Set . 168

xv

1 Introduction

Data uncertainty is an intrinsic property for many emerging applications.

This presents a significant challenge for traditional database management

systems (DBMS) where data values are usually assumed to be precise and

exact. The topics of effective and efficient management of uncertain data

attract attentions from both academic and industry communities in recent

years. In this thesis, we focus on query processing and quality-aware data

cleaning aspects of uncertain databases. Section 1.1 first briefly introduces

the uncertain data model we used. We then summarize the concept of prob-

abilistic queries over uncertain databases in Section 1.2. In Section 1.3 we

present the problem of cleaning uncertain databases. Section 1.4 illustrates

the organization of this thesis.

1.1 Uncertain Data Models

Traditional database systems assume data values to be precise and correct.

However, in many arising applications, the data is intrinsically uncertain.

Consider a monitoring system which employs a wireless sensor network to

obtain readings from external environments. Due to the imperfection of

physical devices, as well as limited battery power and network delay, it is

impossible to obtain an accurate data reading at every point in time. As a

result, the data readings acquired can be contaminated with errors [23, 33].

As another example, a location-based service (LBS) answers queries over

moving objects whose locations are collected by the Global Positioning Sys-

tem (GPS). These location data are inherently imprecise due to measurement

error, sampling error and network latency [87, 24]. Moreover, some people

may want to blur their location data in order to protect their privacy [8].

1

These factors of “uncertainty” need to be considered carefully, or else the

query results can be incorrect.

(a) (b)

pdf
(Gaussian)

uncertainty
region

location
(in database)

distance
threshold

10oC

pdf
(histogram)

temp.

uncertainty
region

20oC

Figure 1.1: Uncertainty of (a) location and (b) sensor value.

A well-studied uncertainty model, called attribute-uncertainty, assumes

that the actual data value is located within a closed region, called the uncer-

tainty region. In this region, a non-zero probability density function (pdf)

of the value is defined, such that the integration of pdf inside the region is

equal to 1. That is, the value of the pdf outside the uncertainty region is

zero. In an LBS where the dead-reckoning approach is used, a normalized

Gaussian distribution is used to model the measurement error of a location

stored in a database [70, 87] (Figure 1.1(a)). The distribution parameters

could be derived based on the application scenario like network reliability

and transmission delay [87]. Gaussian distributions are also used to model

values of a feature vector in biometric databases [12]. Figure 1.1(b) shows

another example, which illustrates the histogram of temperature values in a

geographical area observed in a week. The pdf, represented as a histogram, is

an arbitrary distribution between 10oC and 20oC, which could be estimated

by historical records [33]. Unless stated otherwise, in this thesis we will

assume the attribute-uncertainty model. We will review other uncertainty

models such as tuple-uncertainty and incomplete information databases in

2

Section 2.

1.2 Querying Uncertain Data

Since data are uncertain, querying on them may generate imprecise results.

To represent this imprecision, the probabilistic queries extend query answers

with probabilistic confidences. Nowadays, many kinds of probabilistic queries

are proposed for different applications, including range query [87], nearest-

neighbor [24, 55], skyline [69, 58], and Min/Max [23] etc. Particularly, in

this thesis we focus on three important kinds of probabilistic queries as listed

in the following.

o1 o2

qo3

o4

2 miles

Results for the PNN:
(o1,0.7),(o2,0.2),(o3,0.02),(o4,0.08)

Results for the 2-PNN:
<(o1,o2),0.35>,<(o1,o3),0.16>,

<(o1,o4),0.21>,<(o2,o3),0.06>,
<(o2,o4),0.18>,<(o3,o4),0.04>

Results for the ILDR:
(o1,0.9),(o2,8),(o3,0.4),(o4,0.5)

q'
2 miles

Figure 1.2: Examples of Probabilistic Queries.

• The Probabilistic Nearest-Neighbor (PNN) query returns the non-zero

probability of each object for being the nearest-neighbor of a given

query point.

• The Probabilistic k-Nearest-Neighbor (k-PNN) query returns the non-

zero probability of each set of k objects for being the nearest-neighbor

of a given query point.

3

• The Imprecise Location-Dependent Range (ILDR) query retrieves a set

of objects and their probabilities for locating inside a fixed-size range

centered at the query issuer’s position.

Figure 1.2 illustrates the examples of a PNN, a 2-PNN and an ILDR.

The solid-line circles denote the uncertainty regions of the objects o1 . . . o4.

The query point for the PNN and the 2-PNN is q. The query issuer of the

ILDR asks for the objects within 2 miles of his/her position. Notice that

the location of the query issuer is also imprecise and bounded by the shaded

circle. As an example, Figure 1.2 only shows two possible locations, q and

q′, of the query issuer and the corresponding query ranges, i.e. the dashed

and the dotted circles. In fact the query issuer’s location could be each

point inside the shaded circle. The results for these queries are listed on

the side of Figure 1.2. The confidence values indicate the chances that the

object(s) satisfy the queries, namely qualification probabilities. For instance,

the answer (o1, 0.7) for the PNN query means that the probability that o1 is

the nearest-neighbor of q is 0.7.

Evaluating these probabilistic queries is not an easy task. Firstly, ex-

pensive numerical integration is required for computing qualification proba-

bilities. Furthermore, the processing of ranking-based queries such as PNN

and k-PNN needs to calculate integrals over complex functions, since the

ordering relationships between the uncertain data objects will be incorpo-

rated into the probability calculation. For k-PNN queries, the size of their

query results may be exponentially large, since each set of cardinality k is

a possible answer, e.g. there are C4
2 = 6 of result sets for the 2-PNN query

in Figure 1.2. Finally, the evaluation of the imprecise location-dependent

range query requires processing a range query for each possible location of

the query issuer, greatly exacerbating the burden of the DBMS.

4

To address these challenges, in this thesis we discuss how to improve the

evaluation efficiency for probabilistic queries. We observe that many query

issuers may be not interested in the whole answers, and they may only need

the answers with high confidences. In such case, we only need to return the

answers whose qualification probabilities larger than a given threshold to the

query issuer. With this observation, we thus propose efficient solutions for

answering probabilistic queries with thresholds.

1.3 Cleaning Uncertain Data

As mentioned before, the queries over uncertain database may produce im-

precise answers with probabilistic guarantees. The query issuers may require

better answers, i.e. less ambiguity in the answers. Therefore, another impor-

tant issue about the management of the uncertain data is to improve query

quality, through the means of reducing the ambiguity of the database. The

data ambiguity could be alleviated in many ways. As an example, in wireless

sensor network, the sensor readings could be imprecise due to sampling error

and/or network latency. The remote sensors could be “probed” in order to

obtain their latest readings [87, 61, 33]. The cleaning actions need to cost

some kind of resources, e.g. network bandwidth. It is therefore necessary

to selectively clean some uncertain data in order to optimally utilize the re-

sources. For this purpose, we need to know how good the query answer is,

and how much the answer quality could be improved if some data are cleaned.

We address these issues and propose optimal algorithms to obtain the best

query answer by cleaning attribute-uncertainty data withing a given resource

constraint. We also extend the techniques for data with tuple-uncertainty.

5

1.4 Organization of This Thesis

The rest of this thesis is organized as follows. We discuss the related works

in Section 2. We then report our works for efficiently processing of the proba-

bilistic nearest-neighbor queries, the probabilistic k-nearest-neighbor queries,

and the imprecise location-dependent queries in Section 3, 4 and 5 respec-

tively. In Section 6, we propose a set of optimal algorithms and heuristics for

cleaning attribute-uncertainty data in order to maximize query result qual-

ity. We then extend these techniques for cleaning of uncertain data under

tuple-uncertainty in Section 7. Section 8 concludes this thesis and outlines

some possible future works.

6

2 Literature Review

We present a brief survey on the related works in this chapter. We dis-

cuss different models of the attribute-uncertainty in Section 2.1. Section 2.2

summarizes the works about the query evaluation over the uncertain data.

We then discuss some other uncertainty models in Section 2.3. Finally, Sec-

tion 2.4 introduces the works related to the cleaning of uncertain data.

2.1 Attribute-Uncertainty Models

Wolfson et al. utilize a dead-reckoning policy for bounding the imprecise lo-

cations of the moving objects [87]. A moving object periodically updates its

location with the help of GPS, and it is aware of its location in the database.

Whenever the distance between the actual location of a moving object and

its database location exceeds a given threshold, a location update is reported

to the database. An object may move on a predefined route, e.g. in a road.

In this case this object’s actual location is modeled as a route segment with

the threshold as its half-width and the database position as its middle point.

Rather than on routes, an object may also move freely in space, and its loca-

tion is then bounded by a circle around the database location with the radius

of the threshold. Besides the uncertainty region, a density function is gen-

erated to indicate the distribution of the moving object’s location, based on

the database location and the uncertainty. This uncertainty model is further

extended to a 3D cylindrical body for representing the uncertain trajectories

of the moving objects in [83]. At each point of time, the actual location

of an object cannot deviate from its database location by a given thresh-

old. Hence the possible trajectory of this object is bounded by a trajectory

volume around its expected trajectory.

7

Pfoser et al. indicate two kinds of error sources, i.e. the measurement er-

ror and the sampling error, which bring uncertainty into the moving objects’

locations [70]. The measurement error is introduced by the inaccurate mea-

surements. A probability function such as Gaussian can be used to describe

the measurement error. The sampling error comes from the fact that the

database cannot constantly sample the locations of a moving object, intro-

ducing the uncertainty about the object’s location in-between the sampling

measurements. Based on the maximum speed of the object, its locations

in-between two consecutive position samples could be bounded in an ellipse,

called error ellipse, with the two sample points as its foci. They also compare

the two kind of error sources and find that the measurement error is small

compared to the sampling error.

Another important source of generating uncertain data is the wireless

sensor network, where the sensor readings cached at the database are usu-

ally imprecise due to sampling error, measurement error and network delay.

Olston et al. model the value of a sensor attribute as an interval, which is

around its last record and has a width smaller than a given precision thresh-

old [67]. An update will be sent to the database whenever the actual reading

exceeds this interval. In order to achieve a good trade-off between precision

and resource consumption, a dynamic scheme for shrinking and expanding

the intervals is proposed. Later on, a probabilistic model is proposed for

describing the imprecise sensor values in [33]. In this work, the actual value

is regarded as a random variable. Historical records are utilized to estimate

its distributions. Moreover, the correlations among different attributes are

taken into account. For example, the sensor’s temperature is probably high

when its voltage is large. They build a multi-dimension Gaussian as the

joint distribution for the imprecise values of multiple attributes of an object.

8

Based on this model, an optimal algorithm is proposed for selectively pulling

the remote sensors to satisfy the query precision requirement with minimum

resource cost.

Data uncertainty also appears in other applications like biometric [12, 62],

and video clips [11]. Böhm et al. aim to solve the identification problems

over the imprecise data which are represented by probabilistic feature vectors,

where the conventional feature values are replaced by Gaussian probability

distribution functions [12]. In [62], the authors notice some special distribu-

tions, e.g. mixture Gaussians, in the biomedical fields.

Although the uncertain data may be generated from different applica-

tions, and be captured with different mechanisms, their representation mod-

els generally contain two parts, i.e. an uncertainty region which bounds the

imprecision, and a probability density function which provides the distribu-

tion information of the actual value, as we have discussed in Section 1.1.

Unless otherwise announced, we assume in this thesis the database has the

information about the imprecise data in the form of this attribute-uncertainty

which could be generated with some existing techniques in former works.

In some applications, the distribution of an imprecise data is better rep-

resented as discrete samples. Kriegel et al. model an uncertain spatial object

as a sample set [55]. Pei et al. regard the unstable performance of a basket-

ball player as a group of game-by-game performance data [69]. In these two

works, all samples are assumed to have equal chances to be the actual entity.

Compared to the aforementioned uncertainty model, the models in [55, 69]

adopt the discrete distribution instead of the continuous one.

9

2.2 Queries over Uncertain Database

The notion of probabilistic queries first appeared in [87, 70], where proba-

bilistic confidence guarantees are appended to query answers. Cheng et al.

propose a set of probabilistic queries, and develop algorithms for evaluat-

ing them [23]. There are also other attempts for the efficient evaluation of

different kinds of probabilistic queries.

2.2.1 Probabilistic Nearest-Neighbor Query

Given a query point, the Probabilistic Nearest-Neighbor Query returns ob-

jects which are possible to be the closest one to the query point as well as

their probabilities [20]. An R-tree-based solution for probabilistic nearest-

neighbor queries has been presented in [24, 25]. The main idea is that objects

with zero probabilities can be filtered, based on the fact that these objects’

uncertainty regions must not overlap with an object’s uncertainty region

whose maximum distance from the query point is the smallest among all the

objects. They also discuss the calculation of qualification probability values

for objects that cannot be pruned by the R-tree. The main approach is to

convert each uncertainty region to two functions: pdf and cdf (cumulative

density function) of the distance of the object from the query point. They

show how this conversion can be done for 1D space (intervals) and 2D space

(circle and line uncertainty). The qualification probabilities are then derived

by evaluating an integral of a complicated function of distance pdfs and cdfs.

The cost of these solutions is quite high, since they require numerical inte-

gration over some aggregate functions of arbitrary pdfs. Our solution also

employs the distance pdfs and cdfs. However, we avoid integration for most

of the objects involved, thus saving significant amount of computation time.

Another method to evaluate the exact values of qualification probabili-

10

ties for probabilistic nearest neighbor queries is proposed in [55], where each

uncertain object is represented as a set of sample points which are grouped

in several clusters. The qualification probability of an object is obtained

by summing up the chances that each of its member samples is the nearest-

neighbor. The main idea is to avoid the unnecessary pair-comparisons among

the sample points based on the fact that a cluster is not needed to be ex-

panded if it must be further to the query point than a sample point of other

objects. Compared with that work, our solution is tailored for a constrained

version of the probabilistic nearest-neighbor queries, where threshold and tol-

erance conditions are used to avoid computation of exact probabilities. Also,

we do not need the additional work of converting the pdf of each object to

points first. Moreover, this conversion could introduce sampling error if there

are not enough samples.

There are also some other related works concerning different variants of

the probabilistic nearest-neighbor queries, such as the probabilistic group

nearest neighbor query [59], the top-k probable nearest neighbors [10], and

the probabilistic reverse nearest neighbor queries [17]. Recently, an indexing

method is proposed for processing probabilistic nearest-neighbor threshold

queries [72].

2.2.2 Probabilistic k-Nearest-Neighbor Query

The k-PNN [22] can be considered as a version of the k-nearest neighbor

query (k-NN) evaluated on uncertain data. There are lots of attempts for

answering k-NN queries [50, 39, 37, 54]. These works about k-NN queries

assume that the data being queried is precise. On the contrast, our work

addresses the k-PNN query over uncertain data.

To our best knowledge, few work has addressed k-NN queries over un-

11

certain data. Beskales et al. [10] proposed a top-k query that ranks the

probability that each object is the nearest neighbor of q, and returns the

k objects with the highest probabilities. Notice that the ranking criterion

is based solely on each object’s probability of being the nearest-neighbor of

q. This is not the probability that all objects returned in the query an-

swer are the k nearest neighbors of q (by considering all the possible cases).

On the other hand, the query studied in this thesis is a “true” k-nearest-

neighbor query, where we consider the probability that a set of objects are

the k nearest neighbors of q. It expands the aggregated results returned by

top-k queries and provides query issuer more information about the actual

result. For example, suppose a user issues a 2-NN query over the uncer-

tain objects in Figure 1.2. Following the semantic in [10], the result will be

{o1, o2} since these two objects have the highest qualification probabilities

to be nearest-neighbor of q. However, according to Figure 1.2, {o1, o4} also

has high chances to be the real answer for this 2-NN query, and is missed

in the result. Furthermore, although top-k query places more emphasis on

the relative importance of the results, it misses the absolute probabilistic

confidence levels. For instance, a top-k query may receive k objects each of

which has a very low qualification probability, if the query point is located

in a very dense area. The qualification probabilities of these k objects may

be too low to be interesting for the query issuer, and computing them is a

waste of resources. This problem could be easily solved in k-PNN, where a

user specified probability threshold will avoid the cost of computing results

with low qualification probabilities.

In [62], Ljosa et al. proposed an efficient index structure, called APLA-

tree, for evaluating k-NN queries. They used the expected distance (under

L1-norm) of an object’s uncertainty pdf from q as a ranking criterion. Thus,

12

their k-NN query is based on the expected distance, and does not have prob-

abilities in their answers. Different to these works, our goal is to investigate

efficient methods for evaluating k-NN queries for uncertain databases. Com-

pared to 1-PNN, i.e. PNN [20], the evaluation of k-PNN faces the additional

problem of examining a large number of k-subsets. To handle this problem,

we develop new methods to significantly reduce the number of candidate

k-subsets.

2.2.3 Imprecise Location-Dependent Query

An important piece of work in this thesis is to efficiently answer the im-

precise location-dependent queries [18]. A location-based service (LBS) is

an information service which makes use of the geographical information to

serve a mobile user. A typical example of LBS is the the E-911 system

mandated by the U.S., which requires cell phone companies to provide an

accurate location of a cell phone user who calls for emergency help [86]. The

Location-Dependent Queries have been a subject of research interest in these

few years. This kind of queries decide the content of query results depending

on the location of the query issuer [57, 40]. In [57], a survey of research prob-

lems related to location-dependent information services has been presented.

The problem of managing location queries in a distributed manner has been

studied in [40], where the MobiEyes system is developed to answer queries

efficiently. In [47], the authors define location-dependent query operators so

that more complex queries can be constructed. They also study how mobile

agents can be used to support distributed query processing.

As mentioned in Section 1.1, the location data is intrinsically imprecise.

For imprecise location-dependent queries, the location of the query issuer can

also be uncertain, which may affect the validity of the query answer. Song

13

et al. [78] study the evaluation of a a continuous nearest-neighbor query

for retrieving the nearest neighbors for all points on a line segment. Their

algorithm is further improved in [80]. In [46], the range nearest-neighbor

query is proposed, which retrieves the nearest neighbor for every point in

a multi-dimensional rectangular range. In these works, although the query

issuer’s location is imprecise, the data being queried has no uncertainty.

Furthermore, they do not consider the problem of computing qualification

probabilities.

To the best of our knowledge, none of the previous work address the issue

of providing probability guarantees for imprecise location-dependent queries.

In [27], the authors study the trade-off of location privacy, service quality,

and the uncertainty of location-dependent range queries. A service quality

metric based on the objects’ qualification probabilities is proposed. In this

thesis we address the efficiency issues of evaluating this type of queries.

Particularly, we focus on processing probabilistic range queries depending

on imprecise location of the query issuer, i.e. imprecise location-dependent

range queries. The probabilistic range queries return objects whose val-

ues fall into a predefined query window and their qualification probabili-

ties [87, 23, 70]. An indexing method, called PTI, computes and stores his-

tograms of data objects in the index in order to estimate the upper bounds

of the result qualification probabilities with respect to a probabilistic range

query [26]. Once the upper bounds are smaller than a predefined threshold,

the corresponding data objects can be pruned without being loaded from hard

disks. In consequence, many I/O and computation cost could be saved. This

indexing technique is extended for handling the objects in multi-dimensions,

with a compact structure to improve the storage efficiency [79, 81]. In our

work, PTI is utilized to improve the performance of evaluating the imprecise

14

location-dependent range queries.

2.3 Other Uncertainty Models

Besides the attribute-uncertainty, there is another popular model for rep-

resenting uncertain data, i.e. the tuple-uncertainty, which is also called

probabilistic database. Cavallo et al. propose the notion of probabilistic

database [14], where each tuple is attached with a probability to indicate

the chances it is in the relation, and all such tuple probabilities in a relation

should sum up to one. This model requires all tuples in a relation to be

disjoint events. Barbará et al. extend this model by replacing the general

constraint in a relation with local constraints, i.e. only the tuples belong-

ing to the same physical entity should be disjoint events [6]. This model

is followed by many works [38, 3, 30, 21]. Recently, efficient query algo-

rithms for uncertainty of categorical data are studied [75]. In [7], the ULDB

model is presented, which combines the properties of probabilistic and lin-

eage databases. In Section 7, we will discuss how to clean tuple-uncertainty

data in order to achieve best result quality.

The incomplete information database attracts many attentions in the last

two decades, which comes from the needs for handling the null values. This

kind of values provide no information except the attribute domain. There are

many attempts to return semantically correct response to the queries over

tables containing null values [44, 15, 28, 85, 88, 48, 43, 49]. There are two

representing systems for incomplete information database. The first one is

proposed by Codd [28], where all null values are marked by a single symbol,

and each null value is a variable within its domain. The V-table concerns the

correlations among multiple tuples, which requires the null values be denoted

by multiple symbols, and the null values sharing the same symbol stand for

15

the same variable [15]. The V-table is also extended to the conditioned table

which includes an additional column to further prescribe the conditions the

variables should follow [48, 2].

Different from the probabilistic queries, the queries over incomplete in-

formation database are returned with precise results. This is obtained by

extending the relational operators. In [28], a three-valued logic is utilized to

process the operators, e.g. the null value is not equal to any non-null value.

Imieliński and Lipski propose a condition which should be satisfied so that

the results for a query over incomplete information system can be semanti-

cally correct [48]. The condition is to ensure that the answer for the query

should contain enough information to decide all tuples that must be inside

the results of evaluating the same query over all possible database instances.

A recent work proposes an extended language, the I-SQL, on incomplete

information, to support the “what if” queries [5].

There is also another representation model for the uncertain data, i.e.

the fuzzy databases. It is based on the fuzzy set theory. Instead of the

probabilities, it collects and stores the possibility distribution of an uncertain

data [13, 71, 89]. Note that the values of a possibility distribution do not

have to sum up to one.

2.4 Cleaning Uncertain Databases

In applications like sensor network monitoring, it is important for a sys-

tem to generate a probing plan that only requests relevant sources to report

their data values, in order to optimize the use of resources. In [68], efficient

algorithms are derived to fetch remote data items in order to generate a satis-

factory result quickly. Liu et al. [61] propose an optimal algorithm to find the

exact result for minimum and maximum queries by probing the smallest set

16

of data sources. The uncertainty model of a data item considered in these

two work is simply a one-dimensional interval. Since the pdf of the value

within the interval is not considered, the query results are “qualitative”, i.e.

they are not be augmented with probabilistic guarantees. Our work, on the

other hand, defines quality metrics for probabilistic query answers, and use

the measures to devise probing sets. Although Madden et al. [33] consider the

pdf of data values in their uncertainty models, their methods do not consider

the strict resource constraints imposed on the system (e.g., the maximum

amount of resources that can be spent on a query). The quality metric they

consider is based on a simple probability threshold (e.g., the probability of

the object should be higher than 95%). Our work aims at achieving the high-

est quality under limited resource constraints. Our solutions can be applied

to multi-dimensional uncertain data with artibtrary pdfs.

Previously, a number of quality measures have been studied. In [33, 26], if

the qualification probability of a result is higher than a user-defined threshold,

then the query result is considered to be satisfactory. In [74], the quality of a

top-k query is given by the fraction of the true top-k values contained in the

query results. In [23], different metrics are defined for range queries, nearest-

neighbor queries, AVG and SUM queries. In these works, quality metrics are

designed for specific query types. Our metrics, on the other hand, measure

the amount of information gain (i.e. entropy) contained in the query result,

which provide a fair comparison of quality among the answers from different

queries. We also propose efficient solutions to compute the metrics. Another

quality metric, called the query reliability, is defined in [32, 42]. However, this

metric was not studied in the context of probabilistic databases. Moreover,

it is not clear how they can be applied to the problem of data cleaning.

17

3 Probabilistic Nearest-Neighbor Queries

As mentioned before, data uncertainty prevails in many applications. The

evaluation of queries over uncertain database encounters many challenges.

We now present our works about efficient evaluation of an important query

class for uncertain data, i.e. the Probabilistic Nearest-Neighbor Query (PNN).

Evaluating this query is computationally expensive, since it involves integra-

tion operations over complex functions. By observing that a user is interested

only in answers with high probability values and can tolerate a controlled de-

gree of error, we propose a variant of PNN known as the Constrained Proba-

bilistic Nearest-Neighbor Query (C-PNN). To answer C-PNN accurately and

efficiently, we develop a series of algorithms known as probabilistic verifiers.

These verifiers can support a variety of pdfs. We discuss the data structure

and run time issues for these verifiers. Experiments on both synthetic and

real-time data sets show that these verifiers can significantly reduce the cost

of evaluating a C-PNN.

3.1 Introduction

An important query for uncertain objects is the Probabilistic Nearest Neigh-

bor Query (PNN in short) [23]. This query returns the non-zero qualification

probability of each object for being the nearest neighbor of a given point q.

The qualification probability augmented with each object allows us to place

confidence onto the answers. Figure 3.1 illustrates an example of PNN on

four uncertain objects (A, B, C and D). Also shown in the figure is the query

point q and the qualification probability of each object. A PNN could be used

in a scientific application, where sensors are deployed to collect the temper-

ature values in a natural habitat. For data analysis and clustering purposes,

18

one may execute a PNN on the sensor data to find out which district(s)

possess temperature(s) that are the closest to a given centroid. Another ex-

ample is to find the IDs of sensor(s) that yield the minimum (maximum)

wind-speed from a given set of sensors [23, 33]. It is worth notice that a

minimum (maximum) query can be characterized as a PNN by setting q to

a value of −∞ (respectively ∞).

q

A (20%)

B (41%)

D (29%)

C (10%)

Figure 3.1: Probabilistic NN Query (PNN).

Although PNN is useful, evaluating it is not an easy task. In particular,

since the exact value of a data item is not known, one needs to consider

the item’s possible values in its uncertainty region. Furthermore, an object’s

qualification probability depends not just on its own value, but also the rela-

tive values of other objects. If the uncertainty regions of the objects overlap,

then their pdfs must be considered in order to derive their corresponding

probabilities. In Figure 3.1, for instance, evaluating A’s qualification proba-

bility (20%) requires us to consider the pdfs of the other three objects, since

each of them has some chance of overtaking A as the nearest neighbor of q.

To our best knowledge, currently there are two major techniques for com-

puting the exact values of qualification probabilities. The first method is to

derive the pdf and cdf of the distance of each object from q. The qualification

19

probability of an object is then computed by integrating a function of multi-

ple objects’ distance pdf’s and cdf’s over the uncertainty region [23, 24, 33].

Another method is to use the Monte-Carlo method, where the pdf of each

object is sampled and represented as a set of points. The qualification prob-

ability is evaluated by considering the portion of points that could be the

nearest neighbor of q [55]. The cost of these solutions is quite high, since

they either require numerical integration over some aggregate functions of

arbitrary pdfs, or the handling of samples that has to be acquired from each

object. Furthermore, the accuracy of the answers depends on the precision

of numerical integration or number of samples used. Notice that there exists

indexing solutions for pruning objects with zero qualification probabilities for

PNN [24, 25]. In some situations, however, the computation time of qualifi-

cation probabilities is at least the amount of time needed for index retrieval.

Hence, there is a genuine need for reducing the computation time.

3.1.1 Solution Overview

As explained, the cost of evaluating the exact value of qualification probabil-

ity for PNN queries could be quite expensive. However, in some situations

query users may not be interested in the precise value of qualification prob-

abilities. For example, a user may only be just interested in answers with

confidence higher than a predefined threshold. He/She may also be satis-

fied with answers within some degree of approximation error. Consider the

example in Figure 3.1 again. A user may only be interested with uncertain

objects with qualification probabilities higher than a lower bound of 30%.

If the user further allows a maximum error of ±2% for calculating proba-

bilities, then both objects B and D would be the answer. In this example,

the threshold (30%) and tolerance(±2%) are additional requirements or con-

20

straints imposed on the answers of a PNN. We denote this modified version of

the PNN as the Constrained Probabilisitc Nearest-Neighbor Query

(or C-PNN in short). The C-PNN has additional advantage over its PNN

counterpart, since it succinctly captures the needs of the query user, and

facilitates the user to interpret the probabilistic guarantees of the answers

more easily. In our example, the C-PNN returns only two objects (B,D) as

the answer, as opposed to the PNN, where the qualification probabilities of

all the four objects are returned.

The use of the C-PNN has another implication – its answers can be gen-

erated in an efficient manner. By exploiting the threshold and tolerance

constraints, we show that it is possible to avoid costly operations like inte-

gration and Monte-Carlo methods. Specifically, we have developed a number

of testing criteria, known as probabilistic verifiers, for making decisions on

whether an object should be included into, or excluded from, the final an-

swer. Probabilistic verifiers are efficient because they only derive the lower

or upper bound of qualification probabilities with simple algebraic opera-

tions. For example, the U-SR verifier (to be described in this chapter) uses

the objects’ uncertainty regions to deduce that the qualification probability

of object A in Figure 3.1 cannot be higher than 25%. If the threshold is

30% and tolerance is ±2%, we can immediately exclude A from the C-PNN’s

answer set, without calculating A’s exact probability (20%).

Figure 3.2 shows the role of probabilistic verifiers played in our solution.

There are three major stages. The first step is to prune or filter objects that

have no chance of being the nearest neighbor of q, using an R-tree based

solution [25]. The objects with non-zero qualification probabilities (shaded)

are then passed to the verification stage, where probabilistic verifiers are

used to determine whether an object satisfies or fails the C-PNN. In the

21

Filtering

Verification

Refinement

q

Remove objects with
zero qualification

probabilities (marked)

5 verifiers for identifying

objects that satisfy ()

or fail () the C-PNN

Calculate qualification
probabilities of the
remaining objects

?

?

q

0.4

0.1

q

Figure 3.2: Solution Framework of C-PNN.

figure shown, two objects have been determined (one satisfies and the other

fails the C-PNN). Objects that cannot be determined by the verifiers are

then passed to the refinement stage, where the numerical integration will

be utilized for making final decision. In this example, since the threshold

is 0.3, the object with probability 0.4 will be included, while the one with

probability 0.1 is excluded.

In this chapter, we focus on the verification and refinement stages. Par-

ticularly, we present the main ideas of five probabilistic verifiers. These

verifiers can be classified into two groups. The first type of verifiers, known

as result-based verifiers, exploits the relationship between the qualification

probabilities of objects. The second type, called subregion-based verifiers,

requires more information than the first group, but is also more powerful.

It utilizes the information of uncertainty regions and pdfs of the objects in

22

order to facilitate verification. All these verifiers can handle arbitrary pdfs

in the form of histograms. We propose a paradigm that strings these veri-

fiers together in order to provide an efficient solution. We demonstrate that

even if the verifiers cannot successfully decide on the object, the information

they have computed can still be used to accelerate the refinement process.

As shown in our experiments for both real and synthetic datasets, this ap-

proach only adds a small run-time and space overhead. The price paid for

deploying the verifiers is justified by the fact the cost of refinement is largely

reduced. This results in significant improvement in response time – the query

execution time ranges from two to forty times better than if no verifiers are

used.

The rest of this chapter is organized as follows. In Section 3.2, we present

the solution framework for C-PNN. We present the probabilistic verifiers in

Section 3.3. Experimental results are presented in Section 3.4. We conclude

the chapter in Section 3.5.

3.2 A Solution Framework for C-PNN

In this section we describe the data uncertainty model (Section 3.2.1), and

present the formal semantics of C-PNN (Section 3.2.2). We then outline our

solution in Section 3.2.3.

3.2.1 Attribute-Uncertainty Model

We assume an uncertain object, namely oi, is associated with an imprecise

attribute, e.g. temperature, humidity, and location etc. For notational con-

venience, we also use oi to denote its imprecise attribute. In Section 1.1, we

have mentioned the attribute-uncertainty model to capture data uncertainty.

Formally, this uncertainty model consists of two components:

23

Definition 3.1 The uncertainty region of oi, denoted by ui, is a closed

region which bounds the imprecise value of oi.

Definition 3.2 The uncertainty probability density function (pdf) of

object oi, denoted by fi(•), is a pdf of oi, that has a value of 0 outside ui.

The formula for the uncertain pdf is application-specific. Wolfson et al.

propose that the object location follows the Gaussian distribution inside the

uncertainty region [76]. An important case of uncertainty pdf is a uniform

distribution [70], that is, fi(•) = 1
|ui|

; essentially, this implies a “worst-case”

scenario where we have no knowledge of which point in the uncertainty region

possesses a higher probability.

Next, we will present the formal semantics of C-PNN.

3.2.2 Definition of C-PNN

0.96

0.8
0.85

0.75

P=0.8

(a) (b)

0.1

0.78

0.7

(c)

0.85

(d)

0.2

0.65

0.16

0.08

Figure 3.3: A C-PNN with T = 0.8 and ∆ = 0.15.

Let D be a set of uncertain objects in 1D space (i.e., an arbitrary pdf

defined inside a closed interval), and let oi be the ith item of D (where

24

i = 1, 2, . . . , |D|). Let q ∈ ℜ be the query point of PNN, and pi ∈ [0, 1], be the

qualification probability (i.e., the probability that oi is the nearest neighbor

of q). We suppose pi.l, pi.u ∈ [0, 1], such that pi.l ≤ pi.u, and pi ∈ [pi.l, pi.u].

Intuitively, [pi.l, pi.u] is the range of the qualification probability pi, and

pi.u− pi.l is the error in estimating the actual value of pi. For convenience,

we call this range probability bound. The C-PNN is then defined as follows.

Definition 3.3 A Constrained Probabilistic Nearest Neighbor Query

(C-PNN) returns a set {oi|i = 1, 2, . . . , |D|} such that pi satisfies both of

the following conditions:

• pi.u ≥ T

• pi.l ≥ T , or pi.u− pi.l ≤ ∆

where T ∈ (0, 1] and ∆ ∈ [0, 1].

Here, T is called the threshold of a C-PNN. It allows an uncertain object

to be returned as an answer, only if its qualification probability is not less

than T . We also define the parameter tolerance (∆ in short), which limits the

amount of error allowed in the qualification probability (pi). Figure 3.3 il-

lustrates the semantics of C-PNN. It shows the probability bound [pj .l, pj .u]

of some object oj (shaded) in four different scenarios. Let us assume the

C-PNN has a threshold T = 0.8 and tolerance ∆ = 0.15. Case (a) shows

that the actual qualification probability pj of some uncertain object oj (i.e.,

pj) is within a closed bound of [pj .l, pj .u]=[0.8, 0.96]. Since pj must be not

smaller than T , according to Definition 3.3, oj is an answer to this C-PNN.

In scenario (b), oj is also a valid answer since the upper bound of pj (i.e.,

pj .u), equals to 0.85 and is larger than T . Moreover, the error of estimating

pj (i.e., 0.85-0.75), is 0.1, which is less than ∆ (0.15). Thus the two condi-

tions of Definition 3.3 are satisfied. For (c), oj could not the answer, since

25

the upper bound of pj (i.e., 0.78) is less than T , and so the first condition

of Definition 3.3 is violated. In (d), although object oj satisfies the first re-

quirement (pj.u = 0.85 ≥ T), the second condition is not met. According to

Definition 3.3, it is not an answer to the C-PNN. However, if the probability

bounds could later be “shrinked” (e.g., by probabilistic verifiers), then the

conditions can be checked again. For instance, if pj.l is later updated to 0.81,

then oj will be the answer. Table 3.1 summarizes the symbols used in the

C-PNN problem.

The use of ∆ is to represent a query issuer’s tolerance to the error con-

tained in the result probabilities, which cannot be achieved by simply reduc-

ing the probability threshold. To see this, let us use a “lower probability

bound l” instead of the probability tolerance ∆, by setting l = T −∆. Then,

we use the pair [l, T] to test the answer probability bounds. In Figure 3.3,

for example, if T = 0.8 and ∆ = 0.15, then l = 0.8−0.15 = 0.65. With some

slight adjustment in the testing procedure, we can achieve the same effect of

using ∆. In case (c), for instance, we need to test that the upper probability

bound is less than T , whereas in (d), the undetermined case happens when

the width of the probability bound is higher than T − l (i.e., ∆). Note that

in both of these cases, it is not sufficient to use l alone - we also have to use

T in doing the testing. In other words, we still need to use two values ((l, T)

instead of (T, ∆)) to perform the testing. Since ∆, which represents the

amount of tolerance in the probability error, may be easier to understand,

we suggest to use ∆ instead of l.

3.2.3 The Verification Framework

Recall that uncertain objects that cannot be pruned in the filtering stage

(shaded in Figure 3.2) are passed to the verification and refinement phases.

26

Symbol Meaning

oi An uncertain object (i = 1, . . . , |D|)
ui Uncertainty region of oi

fi(•) Uncertainty pdf of oi

q Query point
pi Prob. that oi is the NN of q (qualification prob.)

[pi.l, pi.u] Lower & upper bounds of pi

T Threshold
∆ Tolerance

Table 3.1: Symbols for C-PNN.

We use the term candidate set (C in short) to denote this group of objects.

Let us now describe how objects in a candidate set are verified and refined.

As discussed before, probabilistic verifiers (or “verifiers” in short) are used

to decide whether an uncertain object satisfies a given C-PNN. More specif-

ically, a verifier is an algorithm that produces a list of probability bounds

of the objects in the candidate set. This list is passed to a classifier, which

assigns a label to an uncertain object by checking its probability bounds

against the two conditions in Definition 3.3. The object is marked satisfy if

it qualifies as the answer to the C-PNN (Figures 3.3(a), (b)). It is labeled

fail if it surely does not satisfy the C-PNN (Figure 3.3(c)). Otherwise, the

object is marked unknown (Figure 3.3(d)). Note that this labeling task can

be done easily by checking an object’s probability bounds against the two

conditions in Definition 3.3.

Figure 3.4 shows the five verifiers (in shaded boxes) and the classifier.

Notice the L-PB verifier is used twice. During initialization, all the objects

in the candidate set are labeled unknown, and their probability bounds are

set to [0, 1]. Other essential information such as distance pdf and cdf are also

precomputed for the candidate set objects. The candidate set is then passed

to the first verifier (RS) for processing. The RS produces the newly computed

27

U-PB

Result-
based

Verifiers

L-PB

Initialization

Candidate set (from filtering)

Sorted

candidate set

Incremental

Refinement

L-SR

RS

U-SR
L-PB

Subregion-based
Verifiers

Classifier

Label objects
for each
verifier

Figure 3.4: The Verification Framework.

probability bounds for the objects in the candidate sets, and passes this list to

the classifier to label the objects. Any objects that are labeled unknown are

passed to the next verifier (L-PB), and so on, until all the objects are either

labeled satisfy or fail. When this happens, all the objects that are marked

satisfy are returned to the user, and thus the query is finished. Thus, it is

not always necessary for all the verifiers to be executed.

Notice that a verifier only adjusts the probability bound of an unknown

object if this new bound is smaller than the one computed previously. Also,

the verifiers are arranged in the order of their running times, so that if a low-

cost verifier (e.g., the RS verifier) can successfully determine all the objects,

there is no need to trigger the execution of a more costly verifier (e.g., the

L-SR verifier). In the end of verification, any objects that are still labeled

unknown are passed to the refinement stage for performing computing their

exact probabilities. We discuss a faster technique to improve this process in

28

Section 3.3.5. Now let us examine the details of the verifiers.

3.3 Verification and Refinement

From Figure 3.4, we can see that the verifiers are classified into subregion-

based and result-based. The main difference between these two classes of

verifiers lies in the way they derive probability bounds. Subregion-based ver-

ifiers uses the information of subregions to compute the probability bounds.

A subregion is essentially a partition of the space derived from the uncer-

tainty regions of the candidate set objects. This information is used by the

RS, L-SR and U-SR verifiers. On the other hand, the result-based verifiers

(i.e., U-PB and L-PB) uses results derived by the subregion-based verifiers

to infer the bounds. For example, the U-PB verifier uses the lower-bound

information derived by the L-SR verifier. As we will explain, a subregion-

based verifier is more powerful than a result-based verifier, but are also more

costly to use.

The rest of this section is organized as follows. Section 3.3.1 discusses how

subregions are produced. We then present the RS-verifier in Section 3.3.2,

followed by the L-SR and U-SR verifiers in Section 3.3.3. In Section 3.3.4

we examine the result-based verifiers. We then describe the “incremental

refinement” method, which uses the verifiers’ information to improve the

refinement process, in Section 3.3.5.

3.3.1 Computing Subregion Probabilities

The initialization phase in Figure 3.4 performs two tasks: (1) computes dis-

tance pdf and cdf for each object in the candidate set, and (2) derives sub-

region probabilities.

We start with the derivation of distance pdf and cdf. Let Ri ∈ ℜ be the

29

ul

pdf

x

1

u l

q1q2

0

r

1

u l

q1-l

2

u l

1

(b) q=q1

0
f1=u-q2

r

1

u l

n1=l-q2

1

(c) q=q2

(a) Uncertain object (uniform pdf)

d1(r)D1(r) D1(r)

f1=u-q1n1=0

U1 U1

d1(r)

Figure 3.5: Distance pdf and cdf

absolute distance of an uncertain object oi from q. That is, Ri = |oi − q|.

We assume that Ri takes on a value r ∈ ℜ. Then, the distance pdf and cdf

of oi are defined as follows [23, 24]:

Definition 3.4 Given an uncertain object oi, its distance pdf, denoted by

di(r), is a pdf of Ri; its distance cdf, denoted by Di(r), is a cdf of Ri.

Figure 3.5(a) illustrates an uncertain object o1, which has a uniform pdf

with a value of 1
u−l

in an uncertainty region [l, u]. Two query points (q1

and q2) are also shown. Figure 3.5(b) shows the corresponding distance pdf

(shaded) of R1 = |o1− q1|, with q1 as the query point. Essentially, we derive

the pdf of o1’s distance from q1, which ranges from 0 to u− q1. In [0, q1 − l],

the distance pdf is obtained by summing up the pdf on both sides of q1, which

equals to 2
u−l

. The distance pdf in the range [q1 − l, u − q1] is simply 1
u−l

.

30

q

pdf of oi distance pdf (di(r))

0
(a) (b)

0

Figure 3.6: Histogram pdf.

Figure 3.5(c) shows the distance pdf for query point q2. For both queries,

we draw the distance cdf in solid lines. Notice that the distance cdf can be

found by integrating the corresponding distance pdf. From Figure 3.5, we

observe that the distance pdf and cdf for the same uncertain object vary, and

depend on the position of the query point.

We represent the distance pdf of each uncertain object as a histogram.

Note that this distance pdf/cdf can conceptually be found by first decompos-

ing the histogram into a number of “histogram bars”, where the pdf in the

range of each bar is the same. We can then compute the distance pdf/cdf

of each bar using the methods (for uniform pdf) described in the previous

paragraph, and combine the results to yield the distance pdf/cdf for the his-

togram. Figure 3.6(a) illustrates the histogram pdf of an uncertain object,

and its corresponding distance pdf (in (b)). The corresponding distance cdf

is a piecewise linear function. In practice, we store a histogram as an array of

the histogram bars’ end-points and their corresponding pdfs. Then, given a

query q, we split the histogram into two halves (as shown in the two shaded

parts in Figure 3.6). A merge sort is then performed on these end-points,

during which their distance pdfs and cdfs are computed. If there are a total

of h end-points in a histogram pdf, the process of generating distance pdfs

and cdfs can be done in O(h) times.

31

0.2 0.2
0.1 0.2

0.3 0.3

0.1

s22 s23

0.4

0.2

0.4
0.3

vmin
s24

v1

n2

n3

v2

v3

vmax

0.1

0.2

n1

R1

R2

R3

0.3,0 0.2,0.3 0.1,0.5 0.2,0.8

0.3,0 0.3,0.3

0.3,0.7

0.4,0.6

0.2,0.6

0.4,0.30.3,0

S1 S2 S3 S4 S5

(a) (b)

Rightmost
Subregion

s35 , D3(e5)

e3 e4 e5e2e1 e6

s11=0.3

S1 S2 S3 S4 S5

R1

R2

R3

q

Figure 3.7: Illustrating the distance pdfs and subregion probabilities.

Note that although we focus on 1D uncertainty, our solution only needs

distance pdfs and cdfs. Thus, our solution can be extended to 2D space, by

computing the distance pdf and cdf from the 2D uncertainty regions, using

the formulae discussed in [24].

Now, let us describe the definitions of near and far points of Ri, as defined

in [23, 24]:

Definition 3.5 A near point of Ri, denoted by ni, is the minimum value

of Ri. A far point of Ri, denoted by vi, is the maximum value of Ri.

We use Ui to denote the interval [ni, vi]. Figure 3.5(b) shows that when

q1 is the query point, n1 = 0, v1 = u−q1, and U1 = [0, u−q1]. When q2 is the

query point, U1 = [l − q2, u− q2] (Figure 3.5(c)). We also let vmin and vmax

be the minimum and maximum values of all the far points defined for the

candidate set objects. We assume that the distance pdf of oi has a non-zero

value at any point in [ni, vi].

Subregion Probabilities. Upon generating the distance pdfs and cdfs

of the candidate set objects, the next step is to generate subregions. Let us

first sort these objects in the ascending order of their near points. We also

32

rename the objects as o1, o2, . . . , o|C|, where ni ≤ nj iff i ≤ j. Figure 3.7(a)

illustrates three distance pdfs with respect to a query point q, presented

in the ascending order of their near points. The number above each range

indicates the probability that an uncertain object has that range of distance

from the query point.

In Figure 3.7(a), the circled values are called end-points. They include all

the near points (e.g., e1, e2 and e3), the minimum and maximum of far points

(e.g., e5 and e6), and the point at which the distance pdf changes (e.g., e4).

No end points are defined between (e1, e2) and (e5, e6). We use ej to denote

the j-th end-point, where j ≥ 1 and ej < ej+1. Moreover, e1 = n1.

The adjacent pairs of end-points form the boundaries of a subregion. We

label each subregion as Sj, where Sj is the interval [ej , ej+1]. Figure 3.7(a)

shows five subregions, where S1 = [e1, e2], S2 = [e2, e3], and so on. The

probability that Ri is located in Sj is called the subregion probability, denoted

by sij . Figure 3.7(a) shows that s22 = 0.3, s11 = 0.1+0.2 = 0.3, and s31 = 0.

For each subregion Sj of an object oi, we evaluate the subregion prob-

ability sij , as well as the distance cdf of Sj’s lower end-point (i.e., Di(ej)).

Figure 3.7(b) illustrates these pairs of values extracted from the example

in (a). For example, for R3 in S5, the pairs s35 = 0.3 and D3(e5) = 0.7

are shown. These number pairs help the verifiers to develop the probability

bounds. Table 3.2 presents the symbols used in our solution. Let us now

examine how the verifiers work.

3.3.2 The Rightmost-Subregion Verifier

The Rightmost-Subregion (or RS) verifier uses the information in the

“rightmost” subregion. In Figure 3.7(b), S5 is the rightmost subregion. If

we let M ≥ 2 be the number of subregions for a given candidate set, then

33

Symbol Description

C {oi ∈ D|pi > 0} (candidate set)
Ri |oi − q|

di(r) pdf of Ri (distance pdf)
Di(r) cdf of Ri (distance cdf)
ni, vi Near and far points of distance pdf
Ui The interval [ni, vi]

vmin, vmax min. and max. of far points
ek The k-th end point
Sj The j-th subregion, where Sj = [ej , ej+1]
M Total no. of subregions
cj No. of objects with distance pdf in Sj

sij Pr(Ri ∈ Sj)
qij Qualification prob. of oi, given Ri ∈ Sj

[qij.l, qij .u] Lower & upper bounds of qij

Table 3.2: Symbols for verifiers.

the following specifies an object’s upper probability bound:

Lemma 3.1 The upper probability bound, pi.u, is at most 1 − siM , where

siM is the probability that Ri is in SM .

The subregion SM is the rightmost subregion. In Figure 3.7(b), M = 5.

The upper bound of the qualification probability of object o1, according to

Lemma 3.1, is at most 1− s15, or 1− 0.2 = 0.8.

To understand this lemma, notice that any object with distance larger

than vmin cannot be the nearest neighbor of q. This is because vmin is the

minimum of the far points of the candidate set objects. Thus, there exists

an object ok such that ok’s far point is equal to vmin, and that ok is closer

to q than any objects whose distances are larger than vmin. If we also know

the probability of an object located beyond a distance of vmin from q, then

its upper probability bound can be deduced. For example, Figure 3.7(a)

shows that the distance of o1 from q (i.e., R1) has a 0.2 chance of being more

than vmin. Thus, o1 is not the nearest neighbor of q with a probability of

34

at least 0.2. Equivalently, the upper probability bound of o1, i.e., p1.u, is

1 − 0.2 = 0.8. Note that 0.2 is exactly the probability that R1 lies in the

rightmost subregion S5, i.e., s15, and thus p1.u is equal to 1 − s15. This

result can be generalized for any object in the candidate set, as shown in

Lemma 3.1.

Notice that the RS verifier only handles the objects’ upper probability

bounds. To improve the lower probability bound, we need the L-SR verifier,

as described next.

3.3.3 The Lower- and Upper- Subregion Verifiers

The Lower-Subregion (L-SR) and Upper-Subregion (U-SR) Verifiers uses

subregion probabilities to derive the objects’ probability bounds. For each

subregion the L-SR (U-SR) verifier computes the lower (upper) probability

bound of each object.

We define the term subregion qualification probability (qij in short), which

is the chance that oi is the nearest neighbor of q, given that its distance

from q, i.e., Ri, is inside subregion Sj . We also denote the lower bound of

the subregion qualification probability as qij .l. Our goal is to derive qij .l for

object oi in subregion Sj . Then, the lower probability bound of oi, i.e., pi.l,

is evaluated. Suppose there are cj(cj ≥ 1) objects with non-zero subregion

probabilities in Sj . For example, c3 = 3 in Figure 3.7(a), where all three

objects have non-zero subregion probabilities in S3. The following lemma is

used by the L-SR verifier to compute qij.l.

Lemma 3.2 Given an object oi ∈ C, if ej ≤ Ri ≤ ej+1 (j = 1, 2, . . . , M−1),

35

then

qij.l =
1

cj

∏

Uk∩Sj 6=∅∧k 6=i

(1−Dk(ej))

+(1−
1

cj
)

∏

Uk∩Sj 6=∅∧k 6=i

(1−Dk(ej+1)) (3.1)

Lemma 3.2 calculates qij .l for object oi by using the distance cdfs of

all objects with non-zero subregion probabilities in Sj. We will prove this

lemma soon. To illustrate the lemma, Figure 3.7(a) shows that q11.l (for o1

in subregion S1) is equal to 1, since c1 = 1. On the other hand, q23.l (for o2

in S3) is (1−0.5)(1−0)
3

+ (1− 1
3
)(1− 0.3)(1− 0.6), or 0.35.

Next, we define a real constant Yj, where

Yj =
∏

Uk∩Sj 6=∅

(1−Dk(ej)) (3.2)

Then, Equation 3.1 can be rewritten as:

qij.l =
Yj

cj(1−Di(ej))
+ (1−

1

cj
)

Yj+1

1−Di(ej+1)
(3.3)

By computing Yj first, the L-SR can use Equation 3.3 to compute qij .l

easily for each object in the same subregion Sj.

After the values of qij .l have been obtained, the lower probability bound

(pi.l) of object oi can be evaluated by:

pi.l =
M−1
∑

j=1

sij · qij.l (3.4)

The product sij · qij .l is the minimum qualification probability of oi in

subregion sij , and Equation 3.4 is the sum of this product over the subregions.

36

Note that the rightmost subregion (SM) is not included, since the probability

of any object in SM must be zero.

The U-SR verifier uses Lemma 3.3 to evaluate the upper subregion prob-

ability bound (qij.u) of object oi in subregion Sj:

Lemma 3.3 Given an object oi ∈ C, if ej ≤ Ri ≤ ej+1 (j = 1, 2, . . . , M−1),

then

qij .u =



















1 if j = 1

1
2
· (

∏

Uk∩Sj+1 6=∅∧k 6=i(1−Dk(ej+1))

+
∏

Uk∩Sj 6=∅∧k 6=i(1−Dk(ej))) if j > 1

(3.5)

Similar to L-SR, Equation 3.5 can be simplified to:

qij .u =







1 if j = 1

1
2
(

Yj

1−Di(ej)
+

Yj+1

1−Di(ej+1)
) if j > 1

(3.6)

where Yj and Yj+1 are given by Equation 3.2. Thus, if the Yj’s are known,

we can conveniently compute qij .u with Equation 3.6. The upper probability

bound (pi.u) can be computed by replacing qij .l with qij .u in Equation 3.4.

Next, we present the correctness proofs of the L-SR and U-SR verifiers.

Correctness of L-SR and U-SR.

We first state a claim about subregions: if there exists a set K of objects

whose distances from q (i.e., Ri) are certainly inside a subregion Sj , and all

other objects (C −K)’s distances are in subregions j + 1 or above, then the

qualification probability of each objects in K is equal to 1
|K|

. This is because

all objects in C−K cannot be the nearest neighbor of q, and all objects in K

must have the same qualification probability. In Figure 3.7(a), for example,

37

if the distances R1 and R2 are inside S2 = [e2, e3], then p1 = p2 = 1
2
, and

p3 = 0. The following lemma states this formally.

Lemma 3.4 Suppose there exists a nonempty set K(K ⊆ C) of objects such

that ∀oi ∈ K, ej ≤ Ri ≤ ej+1. If ∀om ∈ C − K, Rm > ej+1, then for any

oi ∈ K, pi = 1
|K|

, where |K| is the number of objects in K.

Proof : Let us consider an object oi ∈ K. When |K| = 1, pi = 1.

This is because the distances of other C − 1 objects must be larger than Ri.

Therefore, oi must be the nearest neighbor, and the lemma is proved.

Now consider |K| > 1. According to [23], pi can be obtained by

pi=

∫ vi

ni

Pr(Ri = r)

|C|
∏

k=1∧k 6=i

Pr(Rk > r)dr

=

∫ vi

ni

di(r) ·

|C|
∏

k=1∧k 6=i

(1−Dk(r)) dr (3.7)

Since di(r) is a uniform distribution, and Ri ∈ [ej , ej+1], we have di(r) =

1
ej+1−ej

for r ∈ [ej , ej+1]. Moreover, for any ok ∈ K, Dk(r) =
r−ej

ej+1−ej
. The

remaining |C −K| objects cannot be the nearest neighbor, since they must

be farther than oi from q. Hence pi can be calculated by considering only

the objects in K. Substituting into Equation 3.7, we then have

pi =

∫ vi

ni

1

ej+1 − ej
·

∏

ok∈K∧k 6=i

(1−
r − ej

ej+1 − ej
) dr

=

∫ ej+1

ej

1

ej+1 − ej
· (

ej+1 − r

ej+1 − ej
)|K|−1 dr (3.8)

38

ej ej+1

oiok

FF

EE

Sj

E F=FE F=E-F

Figure 3.8: Correctness proof for L-SR and U-SR.

Note that we can change the integration bounds from [ni, vi] to [ej, ej+1],

since we only consider the objects in K, which are known to be within

[ej , ej+1]. Equation 3.8 will lead to the result pi = 1
|K|

and prove the lemma.

We can now prove the correctness of L-SR and U-SR. Let us examine when

cj , the number of objects with non-zero subregion probabilities in subregion

Sj , is equal to 1. In fact, this scenario happens to subregion S1, i.e., j = 1,

since only this region can accommodate a single distance pdf (e.g., d1(r) in

Figure 3.7). If we also know that distance Ri is in subregion Sj, then oi

must be the nearest neighbor. Thus, both the lower and upper subregion

qualification probability bounds (qij .l and qij .u) are equal to 1, as shown in

Equations 3.5.

For the case cj > 1, we derive the subregion qualification probability, qij .

Let E denote the event that “all objects in the candidate set C have their

actual distances from q not smaller than ej”. Also, let Ē be the complement

of event E, i.e., “there exists an object whose distance from q is less than

ej”. We also let F be the event “∀ok ∈ C, where k 6= i, Rk ≥ ej+1”, and F̄

39

be the event “∃ok ∈ C s.t. k 6= i ∧ Rk < ej+1”. Figure 3.8 illustrates these

four events.

If Pr(E) denotes the probability that event E is true, then Pr(E) =

1− Pr(Ē). We also have Pr(F) = 1− Pr(F̄). Let N be the event “Object

oi is the nearest neighbor of q”. Then, using the law of total probability, we

have:

qij = Pr(N |E) · Pr(E) + Pr(N |Ē) · Pr(Ē) (3.9)

If Ē is true, there is at least one object ok whose distance Rk is not larger

than ej (Figure 3.8). Since Rk < Ri, object ok must be closer to q than

object oi. Consequently, Pr(N |Ē) = 0, and Equation 3.9 becomes:

qij = Pr(N |E) · Pr(E) (3.10)

which again, by using the law of total probability, can be rewritten as

qij = Pr(N |E ∩ F) · Pr(E ∩ F) + Pr(N |E ∩ F̄) · Pr(E ∩ F̄) (3.11)

If E ∩F is true, then all objects except oi have their distances from q not

smaller than ej+1. Since Ri ≤ ej+1, it must be the nearest neighbor. Thus,

Pr(N |E ∩ F) = 1. We also have E ∩ F = F since F ⊂ E. So Equation 3.11

is reduced to:

qij = Pr(F) + Pr(N |E ∩ F̄) · Pr(E ∩ F̄) (3.12)

Next, suppose E ∩ F̄ is true. Then, in addition to oi, m ≥ 1 other

object(s) is (are) on the left of ej+1. Since E is also true, the values of Rk

for all these m objects must also be in in Sj . Using Lemma 3.4, we can then

deduce that Pr(N |E ∩ F̄) = 1
m+1

. The minimum value of Pr(N |E ∩ F̄) is

1
cj

, which happens when ∀ok ∈ C, where k 6= i and skj > 0, ok ∈ Sj . The

40

maximum value of Pr(N |E ∩ F̄) is 1
2
, which happens when m = 1. Thus we

have

1

cj
≤ Pr(N |E ∩ F̄) ≤

1

2
(3.13)

Notice that:

Pr(E ∩ F̄) = Pr(E)− Pr(F) (3.14)

Thus, the final steps are to obtain Pr(E) and Pr(F). To obtain Pr(E),

note that the probability that an object ok’s distance is ej or more is simply

1−Dk(ej). We then multiply all these probabilities, as
∏

Rk≥ej∧k 6=i(1−Dk(ej)). This can be simplified to:

Pr(E) =
∏

Uk∩Sj 6=∅∧k 6=i

(1−Dk(ej)) (3.15)

since any object whose subregion probability is zero in Sj must have the

distance cdf at ej , i.e.,Dk(ej), equal to zero.

Similarly, Pr(F) =
∏

Uk∩Sj+1 6=∅∧k 6=i(1−Dk(ej+1)).

Combining Equations 3.12, 3.13, 3.15, and 3.14, we can obtain the lower

and upper bounds of qij , i.e., qij.l and qij .u, as stated in Equations 3.1 and

3.5.

3.3.4 Result-based Verifiers

This class of verifiers makes use of the information deduced by the subregion-

based verifiers. The intuition is that if we know the maximum qualification

probabilities of any of the |C|−1 objects in C, we can easily derive the lower

probability bound of the remaining object in C. Specifically, given an object

41

oi, its lower probability bound, pi.l, can be computed as:

pi.l = max(1−
∑

Tk∈C∧k 6=i

pk.u, 0) (3.16)

This is because the total qualification probability values of the |C| − 1

objects (apart from oi) is at most
∑

ok∈C∧k 6=i pk.u. Since the sum of qualifi-

cation probabilities of all objects in C is equal to 1, pi.l can be deduced by

Equation 3.16.

By using this principle, the Lower Probability Bound (L-PB) verifier re-

freshes the objects’s lower probability bounds. It makes use of the new upper

bound information yielded by the U-SR verifier (Figure 3.4). To implement

L-PB, note that Equation 3.16 can be written as

pi.l = max(1− ptotal + pi.u, 0) (3.17)

where ptotal =
∑

ok∈C pk.u.

Thus, we can compute ptotal first (in O(|C|) times), and then use Equa-

tion 3.17 to derive the probability lower bound for every object in C (also in

O(|C|) times). The total complexity for L-PB is thus equal to O(|C|).

The other result-based verifier, namely, the Upper Probability Bound (U-

PB) verifier, derives an object’s upper probability bound by using the lower

probability bounds of other objects. It is used after the L-SR verifier, which

yields lower bound information (see Figure 3.4). The basic principle is the

same as that of L-PB and so their details are not discussed here.

Why is the L-PB verifier not used after the RS verifier, which also yields

objects upper probability bounds? The reason is that in our experiments,

not many objects’ upper bounds can be reduced by the RS. Consequently,

most of the lower probability bounds derived by L-PB are equal to zero.

42

Therefore, we use L-PB only after the execution of U-SR.

3.3.5 Incremental Refinement

As discussed in the beginning of Section 3.3, some objects may still be un-

classified after all verifiers have been applied. The exact probabilities of

these objects must then be computed or “refined’. This can be expensive,

since numerical integration has to be performed over the object’s distance

pdf [23]. This process can be performed faster by using the information pro-

vided by the verifiers. Particularly, the probability bounds of each object in

each subregion (i.e., [qij .l, qij .u]) have already been computed by the verifiers.

Therefore, we can decompose the refinement of qualification probability into

a series of probability calculations inside subregions. Once we have computed

the probability qij for subregion Sj, we collapse [qij.l, qij .u] into a single value

qij , update the probability bound [pi.l, pi.u], and test this new bound with

classifier. We repeat this process with another subregion until we can clas-

sify the object. This “incremental refinement” scheme is usually faster than

directly computing qualification probabilities, since checking with a classifier

is cheap, and performing numerical integration on a subregion is faster than

on the whole uncertainty region, which has a larger integration area than a

subregion. The time complexity of incremental refinement has a worst-case

complexity of O(|C|2M), as detailed in [23].

Let us now discuss the implementation issues. We store the subregion

probabilities (sij) and the distance cdf values (Di(ej)) for all objects in the

same subregion as a list. These lists are indexed by a hash table, so that the

information of each subregion can be accessed easily. The space complexity

of this structure is O(|C|M). It can be extended to a disk-based structure

by partitioning the lists into disk pages. The complexities of the verifiers are

43

Verifier Probability Bound Cost

Subregion-based

RS Upper O(|C|)
L-SR Lower O(|C|M)
U-SR Upper O(|C|M)

Result-based

L-PB Lower O(|C|)
U-PB Upper O(|C|)

Table 3.3: Complexity of Verifiers.

shown in Table 3.3. The subregion-based verifiers (RS, L-SR and U-SR), as

shown in Figure 3.4, are arranged in the ascending order of these running

costs. The result-based verifier, L-PB (U-PB) are executed after U-SR (cor-

respondingly U-SR). The complexity of verification (including initialization

and sorting of candidate set objects) is O(|C|(log |C| + M)), and is lower

than the evaluation of exact probabilities (O(|C|2M)).

3.4 Experimental Results

We have performed experimental evaluation on the effectiveness of our ap-

proaches. We first present our simulation model in Section 3.4.1. The de-

tailed results are discussed in Section 3.4.2.

3.4.1 Experimental Setup

All experiments are run on a PC with an Intel T2400 1.83GHz CPU, 1024MB

main memory and Windows XP. We implement the filtering phase with an

R-tree index proposed in [24]. The R-Tree is developed in the Spatial Index

Library version 0.44.2b [63].

We have used a real dataset called the Long Beach1. This dataset con-

tains 53,144 rectangles, distributed in a 10K × 10K space. Each rectangle

1Available at http://www.census.gov/geo/www/tiger/.

44

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Total Set Size

F
ra

c
ti
o

n
 o

f
T

im
e

 C
o

s
t

Filtering

Basic

Figure 3.9: Basic vs. Filtering.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

Threshold

T
im

e
 (

m
s
)

Basic

Refine

VR

Figure 3.10: Time vs. T .

represents a region in the Long Beach. We treat these rectangles as imprecise

data items. The uncertainty pdf is assumed to be uniform. We also consider

Gaussian uncertainty pdf in some cases.

Each C-PNN is characterized by two parameters: Threshold (T) and

Tolerance (∆), with default values 0.3 and 0.01 respectively. Moreover, T >

0.1, since we assume a C-PNN user is not interested in very small qualification

probabilities. The query points are randomly generated inside the data space.

Each experimental result is obtained as an average of over 100 queries.

We compare three strategies of evaluating qualification probabilities. The

first method, called Basic, uses numerical integration directly. The second

one, called VR, probabilistic verifiers, as well as incremental refinement (to

handle tuples that remain unclassified after verification). The third one,

called Refine, skips verification and performs incremental refinement directly.

All these strategies assume that filtering has been used to create the candi-

date set C for them.

3.4.2 Results

1. Cost of the Basic Method. We first compare the time spent on the

45

Basic with filtering. Figure 3.9 shows that the fraction of total time spent

in these two operations on synthetic data sets with different candidate set

sizes. As the size of the total data set O increases, the time spent on the

Basic solution increases more than filtering, and so its running time starts

to dominate the filtering time data set size is larger than 5000. As we will

show next, other methods can alleviate this problem.

2. Effectiveness of Verification. Now we compare the computation

time required by the three methods: Basic, Refine, VR with different values of

T . As shown in Figure 3.10, both Refine and VR perform better than Basic.

When T = 0.3, the time cost for Refine and VR is about 80% and 16% of that

of Basic. Also, Basic is insensitive to the change of T . However, both Refine

and VR benefit from the increase of T . This is because they can exploit the

threshold constraint and finish query processing once no ’unknown’ tuples

remain in C. For large values of T , most tuples can be identified as ’rejected’

quickly when their pi.u’s are detected to be smaller than T .

Moreover, VR performs better than Refine. For example, VR is five times

faster than Refine at T = 0.3, and 40 times faster at T = 0.7! To understand

why, let us look at Figure 3.11, which shows the time breakdown of the three

phases in the evaluation process, i.e., filtering, verification, and refinement.

The filtering time is fixed regardless of the threshold. The time spent on

verification is just 1ms on average, but has a positive effect on refinement.

As T increases, more queries are completed during verification, and so the

amount of refinement time is reduced. In fact, when T > 0.3, no more

tuples need to be refined. Thus, the use of verifiers allows VR to shorten its

refinement time significantly, resulting in a higher performance.

We now examine the effect of using a Gaussian distribution as the uncer-

tainty pdf for each object. Each Gaussian pdf, has a mean at the center of

46

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Threshold

T
im

e
 (

m
s
)

Filtering

Verification

Refinement

Figure 3.11: Time Breakdown.

its range, and a standard deviation of 1/6 of the width of the uncertainty re-

gion. Since we approximate a Gaussian pdf as a histogram, we first conduct

a sensitivity test to see how precise a Gaussian pdf should be represented (in

terms of the number of histogram bars). We notice that the result qualifi-

cation probabilities become stable when more than 300 histogram bars are

used. Hence we consider this qualification probability as the “true” answer.

In Figure 3.12, we can see that as more histogram bars are used, a smaller

relative error (compared with the true probability) is attained. However, it

also takes a longer time to obtain the answer. When a pdf is represented as

20 histogram bars, the average relative error is less than 5%, and the time

required is about 10 seconds. Hence, we adopt this setting for Gaussian pdf.

Figure 3.13 shows the probability computation time for Gaussian pdf.

Again, VR outperforms the other two methods. The saving is more significant

than when uniform pdf is used. This is because the relatively more expensive

evaluation of Gaussian pdf can be effectively avoided by the verifiers. Hence,

our method also works well with Gaussian pdf.

3. Effectiveness of Probabilistic Verifiers. We now compare the

performance of different verifiers presented in Section 3.3.

47

5 10 20 50 100

0.01

0.05

0.1

0.2

A
v
g

.
R

e
la

ti
v
e

 E
rr

o
r

of Histogram Bars
0 20 40 60 80 100

0.2
0.4

1

2

4

x 10
4

T
im

e
 (

m
s
)

Avg. Relative Error Time (ms)

Figure 3.12: Relative error vs. pdf
precision.

0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

Threshold

T
im

e
 (

m
s
)

Basic
Refine
VR

Figure 3.13: Gaussian pdf.

Figure 3.14 shows the fraction of tuples labeled unknown that are left

in C after the execution of each verifier, according to the order shown in

Figure 3.4. This fraction reflects the amount of verification/refinement work

that needs to be done. At T = 0.1, about 75% unknown tuples are in C

after RS finishes. Then, 7% more tuples are removed by L-SR. After U-SR

is completed, there are only 15% unknown tuples. It is worth notice that RS

and U-SR work better under large threshold values. This is because RS and

U-SR are responsible for reducing the value of pi.u. When T is larger, it is

easier for pi.u to be smaller than T , allowing oi to be labeled as fail. L-SR

works better in lower threshold values, as can be seen from the gap between

the RS and the L-SR curve. Notice that L-SR tends to increase pi.l. When

T is small, pi.l has a better chance of being higher than it; correspondingly,

oi is easier to be labeled as satisfy.

4. Effect of Tolerance. In the final experiment, we study the effect

of tolerance on the verifiers. We measure the fraction of queries completed

during the verification stage. As shown in Figure 3.15, when ∆ increases

from 0 to 0.2, more queries will be stopped. When ∆ = 0.16, about 10%

more queries will be completed than when ∆ = 0. Thus, the introduction of

48

0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Threshold

F
ra

c
ti
o

n
 o

f
'U

n
k
n

o
w

n
'
T

u
p

le
s

RS

L-SR

U-SR

Figure 3.14: Effectiveness of Veri-
fiers.

0 0.05 0.1 0.15 0.2
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Tolerance

F
ra

c
ti
o

n
 o

f
C

o
m

p
le

te
d

 Q
u

e
ri
e

s

Figure 3.15: Effect of ∆.

tolerance can improve the performance of verification.

3.5 Chapter Summary

Uncertainty management is an emerging and important topic, and has re-

cently attracted a lot of research interest. We identified the problem of high

computational complexity for PNN evaluation, and proposed to study the

C-PNN, a variant of PNN. We developed probabilistic verifiers to reduce

the chance of calculating qualification probabilities, and the incremental re-

finement algorithm for facilitating probability computation. As shown by

our experiments, the overall query performance is significantly improved by

the use of these verifiers. Moreover, they only introduce a small time/space

overhead, and are scalable with large data set size.

In the future, we will incorporate probabilistic verifiers in a system pro-

totype (e.g.,[1]), and consider to extend our techniques to support other

variants of the NN queries. For example, instead of threshold, query issuers

may want to know the objects with k highest qualification probabilities, i.e.

top-k queries [10, 77]. Compared to C-PNN, the top-k queries place more

emphasis on the relative importance between results, and discard the abso-

49

lute probabilistic confidence levels. Although these two semantics are quite

different, it is still possible to extend our proposed techniques for solving

top-k queries. Notice that the key point for answering top-k queries is to

distinguish the two objects whose qualification probabilities are the kth and

k+1th highest respectively. With probabilistic verifiers, we can find the lower

and upper bounds of all objects’ qualification probabilities. Hence possibly

we may be able to obtain the top-k set based on the probability bounds. If

these bounds are not precise enough, we can further refine the qualification

probability bounds by incremental refinement until the top-k set is found.

We will conduct this extension in our follow-up works.

50

4 Probabilistic k-Nearest-Neighbor Queries

This chapter addresses the Probabilistic k-Nearest-Neighbor Query (k-PNN),

which computes the probabilities of sets of k objects for being the closest to a

given query point. The evaluation of this query can be both computationally-

and I/O- expensive, since there is an exponentially large number of k object-

sets, and numerical integration is required. Often a query issuer only needs

answers that have sufficiently high confidences. We thus propose the Proba-

bilistic Threshold k-Nearest-Neighbor Query (T -k-PNN), which returns sets

of k objects whose probabilities for satisfying the query are higher than some

threshold T . Three steps are proposed to handle this query efficiently. In the

first stage, objects that cannot constitute an answer are filtered with the aid

of a spatial index. The second step, called probabilistic candidate selection,

significantly prunes a number of candidate sets to be examined. The remain-

ing sets are sent for verification, which derives the lower and upper bounds of

answer probabilities, similarly as the verifiers do in Section 3. By verification,

a candidate set can be quickly decided on whether it should be included in

the answer. We also examine spatially-efficient data structures that support

these methods. Our solution can be applied to uncertain data with arbitrary

probability density functions. We have also performed extensive experiments

to examine the effectiveness of our methods.

4.1 Introduction

As stated in previous sections, uncertainty is inherent in many emerging

applications. To deal with the increasing needs of managing data uncertainty

and providing high-quality services, researchers have recently proposed the

use of probabilistic queries, which produces answers with probabilistic and

51

o1

o3
o2

q

o6
0.1

o5

0.2

o40.5

k-bound

o7

o8

Figure 4.1: Probabilistic k-NN Query (k-PNN) with k = 3.

statistical guarantees [6, 23, 30, 3]. In this chapter, we study the Probabilistic

k-Nearest Neighbor Query (k-PNN) for databases with attribute uncertainty.

This query returns the non-zero qualification probability of each set of k

objects for being the nearest neighbor of a given point q. Given an uncertain

database D of n uncertain objects, where D = {o1, ..., on}, the k-PNN query

can be defined as follows:

Definition 4.1 A Probabilistic k-NN Query (k-PNN) returns a list of

answers {(S, p(S))}, where S is a subset of D of cardinality k, and p(S) is

the non-zero probability that S consists of the k nearest neighbors of q.

Figure 4.1 shows an example of k-PNN, evaluated over eight uncertain

objects (o1, . . . , o8). If k = 3, then the query returns a set of 3-ary tuples, to-

gether with their chances for satisfying the query. In this example, {o1, o2, o5}

and {o1, o2, o3} have qualification probabilities of 0.05 and 0.3 respectively.

Notice in this definition, the number of k-subsets that satisfy the query may

be exponential, and it may be necessary to have additional constraints (e.g.,

52

return objects whose probabilities are higher than some threshold) in order

to limit the size of the answer set.

The k-PNN can be considered as a version of the k-nearest neighbor query

(k-NN) evaluated on uncertain data. The k-NN query has been widely used in

different applications, including location-based services [50], natural habitat

monitoring [33], network traffic analysis [39], knowledge discovery [37], and

CAD/CAM systems [54]. For example, in mobile e-commerce, a driver is

supplied with the location information of the nearest gas stations. A CAM

system uses k-NN queries to discover similar patterns over multi-dimensional

data obtained from sensors installed in production lines [54]. A k-NN query

can also be used to answer other ranking queries, such as k-min and k-max

queries. For one-dimensional data, a k-min (k-max) query can be considered

as a k-NN query by setting q to −∞ (respectively +∞). Such queries can

be used in scientific monitoring applications to answer questions like: “What

are the k bird nests that yield the highest temperature?” [33].

Most works about k-NN queries assume that the data being queried is

precise. However, as we can see from the applications mentioned before, data

on which k-NN is evaluated (e.g., locations of moving objects and sensor

values) are often imprecise.

The methods for processing 1-PNN queries in Section 3 are not readily

used by a k-PNN (with k > 1) for three reasons. First, the evaluation of k-

PNN faces the additional problem of examining a large number of k-subsets.

To handle this problem, we develop new methods to significantly reduce the

number of candidate k-subsets. Secondly, the probability bound verification

is designed for 1-PNN queries only. We develop new lower/upper bound

computation methods for k-PNN queries. Thirdly, the solution in Section 3

can only be used to handle distance pdfs of the candidate objects represented

53

as arbitrary histograms. The techniques in this chapter, on the other hand,

are not restricted to histogram pdfs.

Computing a k-PNN is usually more complex than its precise counterpart.

Consider, for example, the computation of the probability that {o1, o2, o5}

are the three closest neighbors to q in Figure 4.1. Since each object’s value

is not exactly known, we need to consider the values in its uncertainty re-

gion. Moreover, the qualification probability of {o1, o2, o5} depends not just

on the three objects’ values, but also on the relative values of other objects

(e.g., o3). If there is a chance that two objects have the same distance from

q (e.g., o2 and o3), then their pdfs must be considered in order to derive

the probabilities. The problem is further aggravated by the large number

of combinations of objects. For example, for a 3-PNN evaluated over eight

objects in Figure 4.1, we may have to compute the probabilities for C8
3 = 56

possible answers. The number of answers that satisfy the query can also be

exponential. Clearly, we need better semantics and methods to handle this

query.

4.1.1 Solution Overview

We observe that a query user may not always be interested in getting the

precise probability values. He/She may only require answers with confidence

that meets some predefined condition. For example, a user may only require

answers with confidence higher than some fixed value. In Figure 4.1, for

instance, if an answer with at least 20% probability is needed, then the

sets {o1, o2, o3} and {o1, o2, o4} would be the only answers. We term the

variant of k-PNN with a probability threshold constraint, T (e.g., 20%), as

54

the Probability Threshold k-Nearest-Neighbor Query (or T -k-PNN in short).

The threshold constraint allows the user to control the desired confidence

required in a query answer. In Figure 4.1, for example, a 0.2-3-PNN returns

{o1, o2, o3} and {o1, o2, o4} as the query answer. Such a query answer also

allows a user to extract some useful information (e.g., o1 and o2 appear in

both 3-subsets in this example). Notice that with a moderate value of T , the

number of k-subsets returned is quite small in practice. For instance, in our

experiments, at T = 0.1, two k-subsets are returned on average.

Moreover, we present three methods to efficiently process a T -k-PNN

query. The first method, called k-bound filtering, effectively removes all ob-

jects that have no chance to be a query answer. Let us consider Figure 4.1

again, which shows the “k-bound” (as a dotted circle centered at q) that com-

pletely encloses the three objects o1, o2 and o3. The radius of the 3-bound is

defined as the third minimum of the maximal distances of the objects from

q (in this example, the maximum distance of o3 from q). With the k-bound,

objects o7 and o8 can be pruned immediately, since they have no chance to

overtake any of the objects o1, o2 or o3 to become part of the answer to the

3-PNN query. Generally, with the k-bound, a lot of objects can be removed,

and as we show in the chapter, its usage can be easily leveraged to a spatial

index (e.g., R-tree). For convenience, we call the objects that are not pruned

by the k-bound filtering (i.e., those that overlap the k-bound) the candidate

objects.

After k-bound filtering, we still need to consider the k-subsets of the

candidate objects. In Figure 4.1, for instance, C6
3 = 20 of sets of cardi-

nality 3 may need to be considered. To further reduce the search space,

we propose the second method, namely Probabilistic Candidate Selection (or

PCS), which can efficiently detect k-subsets (i.e., subsets of database D with

55

cardinality k) whose qualification probabilities are less than T , also called un-

qualified k-subsets. While k-bound filtering utilizes distance information for

pruning, the PCS makes use of the probability information of uncertain data

to remove unqualified k-subsets. The rationale behind PCS is that given

the probability of a candidate object that lies within the k-bound (called

cutoff probability), the qualification probability of a k-subset must be lower

than the product of the cutoff probabilities of its subsets. In Figure 4.1,

for example, the cutoff probabilities of o4, o5, and o6 are 0.5, 0.2 and 0.1

respectively (shown as the shaded area). The qualification probability of

the 3-subset {o2, o4, o5} must be lower than the product of the cutoff prob-

abilities of {o4, o5}, or 0.5 × 0.2 = 0.1. If T = 0.2, then {o2, o4, o5} can be

pruned. Based on this useful fact, the PCS algorithm constructs k-subsets

by growing the list of the i-subsets with respect to i (where i = 1, 2, .., k).

At each iteration i, the product of the cutoff probabilities of each i-subset

are checked on whether it is less than T , and the i-subset is pruned if that is

true. In addtion, we also design a technique, called “seed-pruning”, to fur-

ther improve the performance of PCS by removing the unqualified k-subsets

with the “seeds” – objects that are located within the k-bound. Moreover,

an efficient data compression method that suppresses the amount of interme-

diate storage overhead required by PCS is presented. Our experiments show

that PCS reduces a significant portion of k-subsets to be examined.

The third method, called verification, is useful for handling k-subsets that

are not filtered by the previous two methods. This technique determines

whether a k-subset is a query answer, by making use of the uncertainty pdf

of objects returned by k-bound filtering. We propose two kinds of verifica-

tion: lower-bound and upper-bound verification, which quickly computes the

lower and upper bounds of qualification probabilities of k-subsets. These

56

2. Probabilistic Candidate

Selection

4. Refinement

k-subset

Verification

and

Refinement

k-subset

Generation

Upper-
bound

Candidate

objects

k-subsets

rejected

k-subsets

Lower-
bound

accepted

k-subsets

3.

1. k-bound Filtering

Figure 4.2: Solution Framework of T -k-PNN.

bounds can then be used to determine how the k-subset should be handled.

For example, a k-subset can be removed if its upper bound probability is

smaller than T ; it should be included in the query answer if its lower bound

probability is higher than T . We will show the detailed design, complexity

analysis, as well as correctness proofs for these methods.

Figure 4.2 depicts the framework of our solution, which consists of four

steps. First, the k-bound filtering removes objects that must not be part of

the k-nearest neighbor of q. All candidate objects are then passed to the

PCS, which derives k-subsets based on the cutoff probability information.

Next, the lower (upper) bounds of the qualification probabilities of the k-

subsets are used to accept (reject) the k-subsets. Those that still cannot be

determined are sent for refinement, whose exact probabilities are computed.

While refinement is expensive, it can utilize the information generated dur-

ing verification. Thus this is still faster than computing the qualification

57

probability of k-subsets directly.

To summarize, we propose a computationally- and I/O- efficient solution

for evaluating a T -k-PNN query. Our solution reduces I/O overhead by using

a spatial index (e.g., R-tree) to prune away a large number of objects. To

alleviate the large computational overhead, we propose PCS for reducing the

number of k-subsets to be examined, as well as verification/refinement for

avoiding exact probability computation. We propose a framework to con-

nect these techniques in order to provide an efficient solution. We further

investigate storage-efficient data structures to support our solution. Our ex-

periments show that our approach can significantly improve the performance

of query evaluation. For example, at T = 0.1 and k = 5 the time required

by our method is only 1.6% of the time needed by calculating qualification

probabilities directly.

The rest of this chapter is organized as follows. We present the for-

mal semantics of the T -k-PNN, and our solution framework in Section 4.2.

Section 4.3 explains the filtering and the probabilistic candidate selection

process. The details of verification and refinement are developed in Sec-

tion 4.4. We present the experimental results in Section 4.5, and summarize

this chapter in Section 4.6.

4.2 Preliminaries

We now present the semantics of the T -k-PNN query (Section 4.2.1). Then

we explain a simple solution for this query (Section 4.2.2).

4.2.1 Definition of T -k-PNN

Let p(S) ∈ [0, 1] be the probability that the elements of a k-subset S are the

k nearest neighbors of query point q (i.e., qualification probability). Then, a

58

T -k-PNN can be defined as follows.

Definition 4.2 A Probability Threshold k-NN Query (T -k-PNN) re-

turns a set {S|S ⊆ D ∧ |S| = k} such that p(S) ≥ T , where T ∈ (0, 1].

We call T the threshold parameter. A k-subset S is allowed to be returned

as an answer if its qualification probability is not less than T . Compared with

k-PNN (Definition 4.1), this query does not return the actual qualification

probability of S to the user. Also, we can further use other constraints (e.g.,

the maximum number of answers) to limit the number of k-subsets returned

to the user.

4.2.2 Basic Evaluation of T -k-PNN

Let us now present a simple solution for answering the T -k-PNN, which

forms the basis for further discussions. This method utilizes the probability

distribution of each object’s distance from q. Formally, let Ri ∈ ℜ be the

absolute distance of an uncertain object oi from q. That is, Ri = |oi − q|.

We assume that Ri takes on a value r ∈ ℜ.

Based on the distance pdf and cdf of each object (please refer to Defini-

tion 3.4 in page 30), the qualification probability of a k-subset S (i.e., p(S))

can be computed. The probability, p(S), is then used to compare against T ;

if p(S) ≥ T , then S becomes an answer. Now let us take a look at how p(S)

is computed:

p(S) =
∑

oi∈S

∫ +∞

0

di(r)
∏

oj∈S∧oj 6=oi

Dj(r)
∏

oh∈D−S

(1−Dh(r))dr (4.1)

To understand Equation 4.1, observe that for S to be a query answer, the

distance of any object oh (where oh /∈ S) from q must be greater than that

59

of oi (where oi ∈ S). Now, at distance r, the pdf that object oi ∈ S has the

k-th shortest distance from q is the product of the following factors:

• the pdf that oi has a distance of r from q, i.e., di(r);

• the probability that all objects in S other than oi have shorter distances

than r, i.e.,
∏

oj∈S∧oj 6=oi
Dj(r); and

• the probability that objects in D−S have longer distances than r, i.e.,
∏

oh∈D−S (1−Dh(r)).

The integration function in Equation 4.1 is essentially the product of the

above three factors. By integrating this function over (0, +∞), we obtain

the probability that S contains the k nearest neighbors with oi as the k-

th nearest neighbor. Finally, by summing up this probability value for all

objects oi ∈ S, Equation 4.1 is obtained.

Equation 4.1 is inefficient to evaluate. First, the distance pdf and cdf of

each object has to be computed. Secondly, Equation 4.1 involves costly nu-

merical integration, and has to be performed over a large range. Thirdly, the

probability of each k-subset S has to be computed, and the number of these

k-subsets is exponential. However, we found that T -k-PNN can be handled

in a better way. Specifically, later, in Section 4.3, we exploit the extent of the

objects’ uncertainty regions and probability threshold to significantly prune

the number of k-subsets to be examined. Then, in Section 4.4, we derive the

lower and upper bounds of k-subsets’ qualification probabilities, so that the

decision of whether a k-subset should be accepted as a query answer can be

made without computing its actual probability.

60

4.3 Generating k-subsets

In this section, we examine two efficient methods for generating k-subsets

that can potentially satisfy the T -k-PNN queries. Section 4.3.1 discusses the

design and implementation of k-bound filtering. We then present the Proba-

bilistic Candidate Selection (PCS) process in Section 4.3.2. We investigate a

spatially-efficient compression method for supporting PCS in Section 4.3.3.

4.3.1 k-bound Filtering

Given a query point, a naive solution is to enumerate all possible combi-

nations of sets of size k from the uncertain database D and compute their

probabilities according to Equation 4.1. If the probability is greater than T ,

the set will be returned as a result. Clearly, this is an inefficient approach

with respect to computation and I/O costs. In fact, given a T -k-PNN, we

can first utilize the distance information of the objects to prune those that

are not qualified for the answers. Specifically, we propose an efficient filter

based on the k-th minimum of maximal distance fk, called k-bound filter,

to remove objects that have zero probability to be the answers of T -k-PNN.

The rationale behind the k-bound filter is stated in the following Lemma.

Lemma 4.1 Given an object oi ∈ D, a query point q, if min(Ri) > fk, then

oi will not appear in any answer data set, where fk is the kth minimum of

maximal distance (k-bound) among all Rj’s (j = 1, ..., n).

Proof : If min(Ri) > fk holds, oi cannot belong to the k nearest neighbors

of q since there always exist at least k objects with distances smaller than

or equal to fk. Therefore, no answer set S contain such an oi according to

the T -k-PNN definition. In other words, the fact that S is the k nearest

neighbors of q implies min(Ri) ≤ fk(∀oi ∈ S).

61

Lemma 4.1 offers a filtering method based on the k-bound. Consider

again the example in Figure 4.1, with k-bound filtering, objects o7 and o8’s

minimum distances to q are larger than the bound, and so they can be

excluded for further consideration. The rest of the objects that overlap with

or are contained in the k-bound are used to generate k-subsets. Another

advantage of k-bound filtering is, after filtering, probability computation

is easier (compared to Equation 4.1), since the integration range [0,∞] is

reduced to [0, fk] for numerical integration.

input : R-tree I constructed over D
input : q: the query point
input : k
output: the candidate object set C and fk

initialize min-heap H accepting entries in the form (v, key);1

C ← ∅;2

fk ← +∞;3

insert (root(I), 0) into heap H;4

while H is not empty do5

(v, key)← de-heap H;6

if key < fk then7

if v is an uncertain object then8

insert v into C;9

else10

for each entry vi contained in v do11

compute key ← min(dist(q, vi));12

if key < fk then13

insert(vi, key) to H;14

update fk according to key;15

return C, fk;16

Algorithm 1: k-bound Processing

The performance of k-bound filtering can be sped up with the help of

a spatial index structure. In this work we index the uncertainty region of

62

each data object in the R-tree [45], on which the k-bound filtering can be

conducted. The reason we choose R-tree is due to its popularity. However

other spatial index structures can also be used. The R-tree recursively groups

uncertain data objects with minimum bounding rectangles (MBRs) until one

final node (root) is obtained. The process of filtering over R-tree is detailed in

Algorithm 1 (k-bound Processing). The algorithm maintains a minimum heap

H which contains the entry of form (v, key), where key is the min(dist(q, v)).

H is first initialized (line 1). The candidate object set is emptied and fk is

set as infinity (lines 2 and 3). Then, the root node is loaded and stored in

H (line 4). Each time we pop out an entry (v, key) from heap H (line 6),

and check whether key is smaller than fk (line 7). If the answer is negative,

this entry is discarded (Lemma 4.1). Otherwise, we then check whether v is

a leaf node (line 8). If the answer is yes, we insert this founded candidate

object into C (line 9). If v is an intermediate node, for each entry vi in v,

we compute its minimum distance from q (lines 11 and 12). If this minimum

distance is also smaller than fk, we insert vi into the heap H and update fk

if necessary (lines 13 to 15). This process repeats until the queue is empty.

4.3.2 Probabilistic Candidate Selection

After k-bound filtering, assume we obtain m ∈ [k, n] objects, i.e. C =

{o1, ..., om}, there could still be Cm
k possible k-subset answers. Directly com-

puting these answer sets will result in exponential cost in both memory and

computation. In fact, it is not necessary to generate all the k-subsets. In this

section, we propose a candidate set generation method based on the probabil-

ity information, namely probabilistic candidate selection (PCS). Specifically,

we make use of the probability of an object that lies within the k-bound,

called cutoff probability (CP) (shown in Figure 4.3(a)) and the fact that the

63

qualification probability of a k-subset must be less than the product of the

cutoff probabilities of its members. The following lemma states this fact.

Lemma 4.2 p(S) ≤ UBProb(S ′) , ∀S ′ ⊆ S,

where UBProb(S ′) =
∏

oi∈S′ Pr(Ri ≤ fk)

Proof : According to Lemma 4.1, the fact “S contains k nearest neighbors”

requires that all member objects of S to have distances from q not larger than

fk. That means p(S) must not be larger than
∏

oi∈S Pr(Ri ≤ fk), i.e. the

product of the cutoff probabilities of its member objects. Since the cutoff

probabilities are always smaller than or equal to 1, UBProb(S ′) gives an

upper bound of
∏

oi∈S Pr(Ri ≤ fk). Thus Lemma 4.2 is proved.

input : C = {o1, ..., om}, q, k, T
output: Ck: the set of candidate object sets

C1 ← {{o1}, ..., {om}};1

for i← 1 to k − 1 do2

Ci+1 ← ∅;3

for each S ∈ Ci do4

z ← maxoi∈S(i) ;5

for j ← z + 1 to c do6

if oj /∈ S then7

S ′ ← S ∪ {oj};8

if S ′ /∈ Ci+1 then9

if UBProb(S ′)≥ T then10

Ci+1.add(S ′)11

else12

break;13

return Ck14

Algorithm 2: Prob Cand Sel

Based on the cutoff probability of each candidate object within the k-

bound, the PCS algorithm constructs k−subsets by growing the list of i-

64

1-subset CP
{o1} 1
{o2} 1
{o3} 1
{o4} 0.5
{o5} 0.2
{o6} 0.1

(a) Round 1

2-subset CP
{o1, o2} 1
{o1, o3} 1
{o1, o4} 0.5
{o1, o5} 0.2
{o2, o3} 1
{o2, o4} 0.5
{o2, o5} 0.2
{o3, o4} 0.5
{o3, o5} 0.2
{o4,o5} 0.1

(b) Round 2

3-subset CP
{o1, o2, o3} 1
{o1, o2, o4} 0.5
{o1, o2, o5} 0.2
{o1, o3, o4} 0.5
{o1, o3, o5} 0.2
{o1,o4,o5} 0.1
{o2, o3, o4} 0.5
{o2, o3, o5} 0.2
{o2,o4,o5} 0.1
{o3,o4,o5} 0.1

(c) Round 3

Figure 4.3: Step-by-step generating candidate subsets based on CP

subsets with respect to i (where i = 1 to k − 1). The steps of PCS are

listed in Algorithm 2. First, the algorithm generates 1-subsets based on the

candidate set C (line 1). Then, the (i+1)-subsets are generated by unioning

i-subsets and C (lines 2 to 13). The value of UBProb(S ′) could be obtained

by Lemma 4.2 (line 10). All those subsets with UBProb(S ′) smaller than

the threshold will be pruned (line 11). Therefore, many intermediate subsets

are pruned, and the number of k-subsets will be greatly reduced. When we

extend S to S ′ by adding oj, and find that S ′ should be pruned, then it is no

need to check the extensions with oj+1, ..., om (line 13), since the data objects

are sorted in descending order of their cutoff probabilities.

Figures 4.3(a)-(c) show an example of generating candidate k−subsets

based on the cutoff probability of each candidate object within the k-bound.

Figure 4.3(a) lists the cutoff probability (CP) of each object. We can safely

remove candidate object o6 since its CP is less than the threshold T = 0.2.

Then, in the second round, as shown in Figure 4.3(b), the subset {o4, o5}

can be removed. Similarly, in the third round (Figure 4.3(c)) the candidate

subsets {o1, o4, o5}, {o2, o4, o5} and {o3, o4, o5} can be safely removed.

65

In the previous discussions, in each round i, we have used CP and T

to determine whether the generated i-subset should be kept for further ex-

tension. Here we propose an enhancement that utilizes the i-th minimum

maximum distance (i.e., fi) to further remove the unqualified subsets gener-

ated in each round. We can obtain these fi values by slightly changing the

Algorithm k-bound Processing to return all the fi values. Next, we suppose

all candidate objects have been sorted in ascending order of their maximum

distances from q. We put the objects with the k lowest values of maximum

distance into an array called seeds, and derive the following lemma.

Lemma 4.3 If the lower bound of Rj of data object oj is larger than fi (i-

th minimum maximum distance of seeds[i]), any k-subset S containing oj

cannot be the answer to the T -k-PNN if ∃ot ∈ {seeds[1], ..., seeds[i]} and

ot /∈ S.

Proof : The fact that “the lower bound of Rj is larger than the fi” implies

that all objects in {seeds[1], ..., seeds[i]} must have shorter distances than

Rj . Therefore, if oj happens to be inside a probabilistic k-nearest neighbors

answer set, say S, all objects in {seeds[1], ..., seeds[i]} must also be contained

in S.

Lemma 4.3 indicates that a qualified k-subset should contain some specific

seeds to become a valid result. This rule can help us prune many unqualified

subsets without estimating their qualification probabilities. The detailed

steps are listed in Algorithm 3 (Seed Pruning). In order to use seed pruning

method to remove unqualified intermediate subsets generated in each round

of PCS, we can invoke Algorithm Seed Pruning immediately after line 4 of

Algorithm Prob Can Sel.

66

input : seeds, S and fi, . . . , fk.
output: A boolean value indicating whether S is a possible result.

for each oj ∈ S do1

if min(Rj) < f1 then2

γ ← 0;3

else4

γ ← the largest i satisfying min(Rj) ≥ fi;5

if γ > 0 then6

if not {seeds[1], . . . , seeds[γ]} ⊆ S then7

return False8

return True9

Algorithm 3: Seed Pruning

4.3.3 A Storage-Efficient Compression Method

The PCS algorithm can be quite expensive in terms of memory consumption,

since in each round i, we have to store all the i-subsets whose CPs are greater

than T , and the number of such i-subsets could be exponentially large.

To reduce the memory cost we propose a simple but effective compres-

sion method. We first present our observations on the i-subsets generated

by the PCS algorithm which forms the basis of our discussions. As shown

in Figures 4.3(a)-(c), the elements of the generated subsets in each round

using Algorithm 2 (Prob Cand Set) are sorted in the descending order of

their CPs. In addition, we can also find that many subsets of the same size

share a common prefix. For example, in Figure 4.3(b), the first four 2-subsets

share the common prefix {o1}. Similarly, in Figure 4.3(c), the first three

3-subsets share the common prefix {o1, o2}. Based on these observations, we

propose to compress the subsets of the same size that share a common prefix.

Specifically, for the subsets of the same size, we store the common prefix of

the subsets and the last element of the subset that has the minimum product

67

of cutoff probability greater than T . We also call this element a boundary

element. For example, given the first four 2-subsets in Figures 4.3(b), after

compression, we only store {o1, o5} as shown in the first entry of compressed

storage in Figure 4.4(b). In this entry {o1} is the common prefix and o5 is

the last element of subset {o1, o5}, whose subset has the minimum product

probability among first four 2-subsets in Figure 4.3(b). As shown in Fig-

ure 4.4(b), in addition to the compressed item {o1, o5}, we also store the

product probability of the common prefix, here it is {o1}’s CP , which is

1. Thus, in our compression scheme, for each compressed entry, we store

the common prefix, the boundary element, and the product probability of

the prefix. As another example, the first three 3-subsets in Figure 4.3(c)

are compressed into {o1, o2, o5}, as shown in Figure 4.4(c). The whole com-

pressed entry is {{o1, o2, o5}, 1}, where 1 is the product probability of prefix

{o1, o2}. Figures 4.4(a)-(c) show the whole compressed results of subsets in

Figures 4.3(a)-(c). Note that entries in bold fonts of Figures 4.3(a)-(c) are

unqualified entries.

Whenever it is necessary to decompress an compressed entry, we can

generate the uncompressed subsets by appending all the possible elements

starting from the immediate successor of the last element in the prefix to

the bounding element. Let us use Figure 4.3(b) as an example. Given the

compressed entry {{o1, o5}, 1}, the prefix is {o1}, the bounding element is

o5, the immediate successor element of o1 is o2, as all the candidate objects

are sorted in the descending order according to their CPs. Then the decom-

pressed set is {o1, o2}, {o1, o3}, {o1, o4}, and {o1, o5}. The corresponding CP

of each decomposed subset is the product of the compressed entry’s CP (now

is 1) and the appended element’s CP. Similarly, for the compressed entry

{{o1, o2, o5}, 1} shown in Figure 4.4(c), o3 is the immediate successor of last

68

Size-1 Set CP
{o1} 1
{o2} 1
{o3} 1
{o4} 0.5
{o5} 0.2

(a) Round 1

Size-2 Set CP
{o1, o5} 1
{o2, o5} 1
{o3, o5} 1

(b) Round 2

Size-3 Set CP
{o1, o2, o5} 1
{o1, o3, o5} 1
{o2, o3, o5} 1

(c) Round 3

Figure 4.4: Compressed candidate subsets based on CP

element in prefix {o1, o2}, so we can generate {o1, o2, o3}, {o1, o2, o4}, and

{o1, o2, o5}, the corresponding CPs for these decompressed entries are: 1 ∗ 1,

1 ∗ 0.5, and 1 ∗ 0.2 respectively. Our experiments show that this compression

scheme reduces the storage required in this phase significantly.

4.4 Verification and Refinement

Based on the k-subsets generated by PCS, we now present efficent techniques

for handling the k-subsets. These techniques are based on our solutions

for answering C-PNN (Section 3). We summarize the general process and

highlight the extensions in this section. For details, please refer to Section 3.3.

Partitions. Like the subregions in Section 3, the range between the

closest distance of all objects from q and the point fk, i.e. the k-th minimum

of maximal distance, is subdivided into non-overlapping fragments called

partitions. Figure 4.5(a) illustrates three distance pdfs with respect to q,

where k = 2. As illustrated, the range between e1 (i.e., the closest distance

of all objects from q) and the point f2 obtained from k-bound filtering (i.e.,

e5) is subdivided into non-overlapping fragments called partitions. We call

each fragment Pj, where Pj is embraced by two end-points, namely, ej and

ej+1, circled in the figure. In this example, there are four partitions, e.g.,

P1 = [e1, e2], P2 = [e2, e3].

69

0.3 0.3
0.1

0.3
0.7

0.3
0.7

R1

R2

R3

0.3 0.5 0.8

0.3 1

0.9

10.7

P1 P2 P3 P4

(a) (b)

D1(e4)

e2 e3 e4e1

P1 P2 P3

R1

R2

R3

q

e5

f2

0.1

P4

0.2

Figure 4.5: Illustrating the distance pdfs and partition probabilities (for
k = 2).

The subregions in Section 3 can only handle distance pdfs of the can-

didate objects represented as arbitrary histograms, and the ranges of the

subregions are depended on the end-points of the histograms. The partitions

are not restricted to histogram pdfs, and can have variable sizes. Thus, the

system has flexibility in deciding the number of partitions to be used. The

more partitions are defined, the more accurate will be the lower and upper

verification, with the need of more overhead for storing the partition informa-

tion and prolonging the verification process. We found that the verification

performs well when the boundaries of the objects’ distance pdfs are used as

end-points.

For each partition Pj of an object oi, we evaluate the distance cdf of oi

on Pj’s upper end-point (i.e., Di(ej+1)). In general, the distance cdf of Pj ’s

lower end-point is the same as that of Pj−1’s upper end point. For partition

P1, its lower end-point has a distance pdf of zero. We store the values of

Di(ej+1) in a two-dimensional array of dimensions |C| ×M , where M is the

number of partitions, so that they can be accessed in O(1) times. The time

for sorting and initializing this array is O(|C| log |C|+ M |C|).

70

Verification Process. We now demonstrate how partitions can be used

to efficiently derive lower and upper bounds of each k-subset’s qualification

probability (i.e., p(S)). Let [p(S).l, p(S).u] be the lower and upper bounds

of p(S). Let X be the data structure that stores the partition information,

and Q be the set of k-subsets generated from the PCS algorithm. Given

these inputs, the verification algorithm (Algorithm 4 judges whether a k-

subset S should be considered as a query answer, just like the classifier

does (Figure 3.4). It produces an answer set A (i.e., k-subsets that satisfy

the query) and a refinement set U (i.e., k-subsets that need to be further

investigated). The UB (LB) is to find the the upper(lower) bound of S’s

qualification probability, i.e., p(S).u (p(S).l).

input : Partition info. X, set Q of k-subsets
output: set A of answers, set U of k-subsets to be refined

A← ∅; U ← ∅;1

for each S ∈ Q do2

if UB(X, S) ≥ T then3

if LB (X, S) ≥ T then4

insert S into A;5

else6

insert S into U ;7

return A, U8

Algorithm 4: Verification.

It is worth mention that in Step 3 of Algorithm 4, we put UB before

LB. This is because in our experiments, a large number of k-subsets can be

pruned by UB (in Step 3). By testing the k-subsets with UB first, we avoid

applying the LB test to the k-subsets, which have to be pruned anyway. We

will revisit this issue in Section 4.5.

We now explain the design of LB and UB, which returns p(S).l and p(S).u.

71

Suppose m(S) is the maximum distance between all objects in S and q, i.e.,

max({ri|oi ∈ S}). Let yj(m(S)) be the probability that m(S) is within the

partition Pj = [ej , ej+1]. Let pj(S) be the qualification probability of p(S),

given that m(S) lies in Pj . Let [pj(S).l, pj(S).u] be the lower and upper

bounds of pj(S). If there are M partitions, we have:

p(S).l =

M
∑

j=1

pj(S).l · yj(m(S)) (4.2)

p(S).u =
M

∑

j=1

pj(S).u · yj(m(S)) (4.3)

Moreover,

yj(m(S)) =
∏

oi∈S

Di(ej+1)−
∏

oi∈S

Di(ej) (4.4)

This is because the term
∏

oi∈S Di(ej+1) is the probability that all objects in

S have distance from q not larger than the end-point ej+1. By subtracting
∏

oi∈S Di(ej) from it, we obtain the probability that at least one object is

located inside Pj = [ej , ej+1]. This is also the chance that the maximum

distance of all objects in S (i.e., m(S)) is within Pj , as shown in Equation 4.4.

The following describes the formulas for pj(S).l and pj(S).u.

Lemma 4.4 Given that m(S) ∈ Pj, the lower and upper bounds of qualifi-

cation probabilities of k-subset, S, are:

pj(S).l ≥
∏

oi∈C−S

(1−Di(ej+1)) (4.5)

pj(S).u ≤
∏

oi∈C−S

(1−Di(ej)) (4.6)

Proof : Equation 4.5: Since the maximum distance of all objects in S

from q is less than ej+1, S must be the answer if all other objects in C−S have

72

ej

Partition Pj

ej+1q

S (5 objects)

m(S)

C-S

Figure 4.6: Correctness proofs for pj(S).l and pj(S).u.

distances more than ej+1. For example, Figure 4.6 shows that S, a 5-subset,

has a maximum distance (m(S)) not more than ej+1. If the remaining objects

(C − S) are on the right of ej+1 (circled), then S must constitute a query

answer. The probability that this event happens is
∏

oi∈O−S(1 − Di(ej+1))

(the right side of Equation 4.5), which is also the lower bound of pj(S).

Equation 4.6: If any object in C − S has distance from q shorter than

ej , then S could not be the set of k closest neighbors of q. In Figure 3.8, for

example, since an object (colored black) is on the left of ej , it is certainly

closer to q then at least one object in S. So, S cannot be a query answer for

k = 5. The event that all objects in C − S have distance from q more than

ej is thus a precondition for S to be the query answer. The probability that

this event happens, i.e.,
∏

oi∈O−S(1−Di(ej)) (the right side of Equation 4.6),

is therefore the upper bound of pj(S).

With Equation 4.4 and Lemma 4.4, the lower and upper bounds of p(S)

(i.e., Equations 4.2 and 4.3) can be estimated. If the partition data struc-

ture presented earlier is used, retrieving Di(ej) (given i and j) needs O(1)

times. Evaluating Equation 4.4 thus needs O(k) times. Computation of

73

Equations 4.5 and 4.6 both requires O(|C|) times. Thus the LB and UB

functions have a complexity of O(kM |C|). The total complexity of the veri-

fication algorithm is O(kM |C||Q|)).

Incremental Refinement. After verification, objects stored in the set U

(Step 3 of Algorithm 4) require further processing, whose exact qualification

probabilities need to be computed. This can be expensive, since numerical

integration may be needed (see Equation 4.1). With the idea of incremental

refinement (Section 3.3.5), we can speed up this process with the information

obtained during verification. The main idea of incremental refinement is to

treat the probability of an object as a sum of qualification probabilities inside

partitions. By using the bound information of probabilities in each partition,

the answer probabilities can be gradually computed.

Specifically, observe that the probability bounds of each k-subset S in

each partition Pj (i.e., [pj(S).l, pj(S).u]) have been obtained during verifi-

cation. For each Pj, once we get the value of pj(S) (by Equation 4.1), we

can collapse [pj(S).l, pj(S).u] into pj(S), update the probability bound of

p(S) (i.e., [p(S).l, p(S).u]), and test this new bound against the threshold T .

This process is repeated for the next partition until we can decide whether S

should be included in the answer. As shown in our experiments, “incremental

refinement” is usually faster than computing probabilities directly, since per-

forming numerical integration on a partition is faster than on [0, fk], which

has a larger area of integration.

4.5 Experimental Results

We have performed extensive experiments on a real data set to examine the

effectiveness of our solution. We first describe the experimental setup in

Section 4.5.1. Then we present the results in Section 4.5.2.

74

1 2 3 4 5 6 7 8 9
5

10

15

20

25

k

of

 lo
ad

ed
 d

at
a

ob
je

ct
s

Figure 4.7: # of Loaded Data Ob-
jects.

1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

k

re
sp

on
se

 ti
m

e
(m

s)

Basic
GVR

Figure 4.8: Basic vs. GVR.

4.5.1 Experimental Setup

We use the Long Beach dataset2 which includes 53,144 rectangles, distributed

in the two-dimension space of 10K×10K units. Each rectangle is treated as

an uncertainty region, with a uniform pdf as the default. We also perform

experiments on Gaussian pdf (represnted as a histogram). For each T -k-

PNN query, the default values of probability threshold (T) and k are 0.1

and 6 respectively. The query point is randomly chosen from the 2D space.

Each data point is an average of results for 50 runs. Under these settings, a

T -k-PNN query produces two k-subsets as answers on average.

The experiments, written in Java, are executed on a PC with an Intel

2.66GHz CPU and 2GB of main memory. We have also implemented the

k-bound filtering with the R-tree library in the Spatial Index Library [63].

4.5.2 Results

1. k-bound Filtering. In the first experiment, we examine the effective-

ness of the k-bound filtering in pruning away unqualified objects. Fig. 4.7

illustrates the number of loaded data objects returned by k-bound filtering

with an R-tree. As we can see, when k varies from one to nine, the size of

2Available at http://www.census.gov/geo/www/tiger/.

75

1 2 3 4 5 6 7 8 9
10

0

10
2

10
4

10
6

k

of

 c
an

di
da

te
 k

−
su

bs
et

s

T=0.05
T=0.1
T=0.5
T=0.9
Brute−Force

Figure 4.9: Generating k-subsets.

0.1 0.5 0.9
10

1

10
2

10
3

10
4

T

of

 c
an

di
da

te
 k

−
su

bs
et

s

Figure 4.10: Effect of T on PCS (k =
6).

1 2 3 4 5 6 7 8 9
10

0

10
1

10
2

10
3

10
4

10
5

k

of

 g
en

er
at

ed
 k

−
su

bs
et

s

Without Seeds Pruning
With Seeds Pruning

Figure 4.11: Seed Pruning (# k-
Subsets).

1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

k

re
sp

on
se

 ti
m

e
(m

s)

Without Seeds Pruning
With Seeds Pruning

Figure 4.12: Seed Pruning (Response
Time).

the candidate object set increases smoothly. This is because the size of the

k-bound increases with k. Consequently, the k-bound has overlap with more

objects, and so more candidates need to be investigated. Another observa-

tion is that the number of candidate objects is small. In fact, the average

fraction of the total database size to be examined is less than 0.04%. Thus,

the pruning power of k-bound filtering is quite impressive.

On the other hand, although only a small fraction of objects are returned

by k-bound filtering, the number of k-subsets generated by the candidate

object set can still be very large. At k = 9, for instance, 22 objects are

left. Out of these objects, a total of C22
9 (around 375K) k-subsets need

to be examined. This renders a huge computational effort. To alleviate

76

this problem, we need k-subset Generation (with PCS), Verification, and

Refinement techniques. Let us call these techniques collectively as the GVR

method, and examine its effectiveness.

2. Performance of GVR. Here we compare the performance of GVR

with that of Basic evaluation (described in Section 4.2.2). We assume that

k-bound filtering has been applied first for both methods. As shown in

Figure 4.8, the time required by Basic rises sharply with k, since the increase

in k makes Equation 4.1 more expensive to compute. On the other hand,

the query response time of GVR is an order of magnitude less than Basic.

For example, when k = 5, GVR spends only 1.6% of the time required by

Basic. We can thus see that GVR is important for improving the query

performance. Next, let us investigate individual methods of GVR.

1 2 3 4 5 6 7 8 9
10

1

10
2

10
3

10
4

10
5

10
6

k

st
or

ag
e

co
st

 (
by

te
)

Not Compressed
Compressed

Figure 4.13: Efficient Storage of k-
subsets.

1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

k

re
sp

on
se

 ti
m

e
(m

s)

Without Verification
With Verification

Figure 4.14: Effect of Verification.

3. k-subset Generation. In this experiment, we study the performance

of the PCS algorithm in generating k-subsets. Figure 4.9 shows the number

of k-subsets produced by different techniques, in log scale. Compared with

the “brute-force” method (i.e., enumerating all possible k-subsets from the

candidate objects), PCS consistently generates less k-subsets under a wide

range of T values. The savings are significant; at k = 9, for example, the

improvement of PCS over the brute-force method is 90% (for T = 0.05) and

77

99% (for T = 0.5). Figure 4.10 shows that when T increases, the number

of candidate k-subsets decreases sharply. Thus, the effectiveness of PCS

improves with a higher value of T . It also shows that PCS can exploit the

probability threshold to provide better performance.

To further enhance PCS, we have proposed seed pruning (in Section 4.3.3).

As shown in Figure 4.11, this technique reduces the number of k-subsets pro-

duced over a wide range of k. For example, at k = 9, the improvement is

about 80%. Figure 4.12 shows the corresponding effect on query response

time, which addresses a saving of 69% at k = 9. Thus, seed pruning improves

the performance of PCS significantly.

In view of the potentially large number of k-subsets generated during

and after the execution of the PCS algorithm, we have designed an effective

compression as discussed in Section 4.3.3. Figure 4.13 compares the storage

cost with and without using this compression method (in log scale). We ob-

serve that under a wide range of values of k, after compression, we only need

one-third of the storage that is used to store the raw k-subsets. Therefore,

our compression method can greatly reduce the amount of storage required

to record k-subsets for further processing.

4. Verification and Refinement. Next, we investigate the advantage

of verification and refinement over direct computation of qualification prob-

abilities. Figure 4.14 shows that the use of this technique yields significant

improvement over different values of k. For example, at k = 6, verification

and refinement reduces the query response time by about 90%.

We further examine the effectiveness of lower- and upper-bound verifica-

tion. The lower (upper) bound verification method attempts to determine

whether a k-subset should be accepted (rejected). Figure 4.15 shows that the

number of k-subsets classified by UB is much larger than that classified by

78

LB. The reason is that in the dataset we have tested, many k-subsets have

small qualification probabilities. Thus, they are more likely to be rejected

through upper-bound verification. Due to this reason, we have also arranged

the UB subroutine to be executed before LB in the verification algorithm, as

shown in Algorithm 4.

5. Time Analysis. To get a clearer picture about the performance

of each part of our solution, we measure the time costs of k-bound filter-

ing (shown as “Index” in Figures 4.16 and 4.17), k-subset generation (with

PCS), verification, as well as refinement. Figures 4.16 show the result under

different values of k. In general, most of the time is spent on refinement.

This is hardly surprising, because refinement, which performs numerical in-

tegration on Equation 4.1, is an expensive process. However, this is already

better than doing numerical integration alone (c.f. Figure 4.14). The price

to pay for this time drop is to verify the k-subsets before their probabilities

are actually evaluated. Although the time spent on verification also increases

with k, the time spent is still less than pure numerical integration (c.f. Fig-

ure 4.14). We also notice that that k-bound filtering and PCS require the

least amount of the time. These two steps add little overhead to the overall

query performance. However, their gain, as reflected by Figures 4.7 and 4.9,

is significant.

Figure. 4.17 shows the time breakdown of the components for different

values of T . Again, the time costs required by k-bound filtering and PCS are

the least. For all the methods, their performance improves with an increase of

T . This shows that our methods can effectively exploit the query probability

threshold.

6. Gaussian Distribution. In the final experiment, we use a Gaussian

distribution as the uncertainty pdf for the dataset. For each object, the

79

1 2 3 4 5 6 7 8 9
10

−1

10
0

10
1

10
2

10
3

10
4

k

of

 c
la

ss
ifi

ed
 k

−
su

bs
et

s

LB
UB

Figure 4.15: LB vs. UB.

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

k

tim
e

co
st

(m
s)

Index
Subset Generation
Verification
Refine

Figure 4.16: Time Analysis (with
T=0.1)

0 0.1 0.5 0.9
0

10

20

30

40

50

60

70

T

tim
e

co
st

(m
s)

Index
Subset Generation
Verification
Refine

Figure 4.17: Time Analysis (with
k=6).

0 0.1 0.5 0.9
100

200

300

400

500

600

700

800

900

T

re
sp

on
se

 ti
m

e
(m

s)

Figure 4.18: Various T on Gaussian
Distribution

uncertainty pdf has a mean equal to the center of the uncertainty region,

and a variance set to be the square of one-sixth of the edge length, in both

x and y dimensions. Each uncertainty pdf is represented by 10 × 10 = 100

histogram bars, and the probability of each bar is the integration of the pdf

over the area covered. Figure 4.18 illustrates the result of the GVR method

for various values of T . We observe that GVR shows a similar trend as

that of the uniform pdf (c.f. Figure 4.8). More time is spent on Gaussian

pdf, because more histograms are used to model the pdf, which subsequently

increases the time for verification and refinement. We have also performed

other experiments for Gaussian pdf, and they also reflect similar trends. We

thus omit them in this thesis. From these experiments, we can see that our

80

solution is robust with respect to different types of uncertainty pdfs.

4.6 Chapter Summary

Due to the popular usage of uncertain data in many real applications, un-

certainty management has become an important topic in the database com-

munity. We studied a useful query, namely, the probability threshold k-

NN Query (T -k-PNN) for uncertain databases. Different from the exact

database, evaluating T -k-PNN requires probability information, and per-

forms expensive numerical integration. Thus, we proposed various pruning

techniques with consideration of both distance and probability constraints.

As shown by our experimental results, with the k-bound filtering technique,

a lot of unqualified objects can be pruned. The number of k-subsets can

be significantly reduced by the PCS algorithm. We further demonstrated

the efficient computation of lower and upper bounds of probabilities with

the aid of partition information. We will study how these techniques can be

extended to support other queries, e.g., reverse-neighbor and skyline queries.

81

5 Imprecise-Location Dependent Queries

In this chapter, we present our works about efficient evaluation of imprecise

location-dependent queries. In LBS, the “location-dependent range query” is

quite common, where the user’s location is at the center of the query range.

Very often, the query issuer’s location is imprecise due to measurement error,

sampling error, or message delay. He/She may also want to protect his/her

privacy by providing a less precise location. In this chapter, we study the

efficiency of queries that return probabilistic guarantees for location data with

uncertainty. We develop three methods to improve the computational and

I/O performance. Experimental simulation over a realistic dataset reveals

that our approaches improve the query performance significantly.

5.1 Introduction

In recent years, positioning technologies like GPS, GSM, RF-ID and the

Wireless LAN have undergone rapid development [86]. These technologies

allow locations of users to be determined accurately, and enable a new class

of applications known as location-based services (LBS). An important LBS is

the E-911 system mandated by the U.S. (correspondingly E-112 in Europe),

which requires cell phone companies to provide an accurate location (i.e.,

within a few hundred feet) of a cell phone user who calls for emergency

help [86]. Other LBS applications include downloading driving directions to

a gas station, receiving an alarm when a military adversary has crossed the

border, retrieving the current locations of family members, and displaying

the user’s location on the map. All these applications require extensive use

of location data [57].

An important issue concerning the LBS is the uncertainty of location

82

data. In particular, location data obtained from physical devices are in-

herently imprecise due to measurement error, sampling error and network

latency [76, 70, 24]. Some recent works (e.g., [8, 27, 41]) have suggested

that location privacy can be protected by injecting a controlled degree of

spatial uncertainty into location data, so that the actual location is hidden.

In many situations, therefore, it is often impossible for the query processing

server to get an accurate location value. It is thus reasonable to use a loca-

tion uncertainty model to describe the imprecision of the data values, and

evaluate the location uncertainty in order to provide probabilistic guarantees

over the validity of the query answers. A common model for characterizing

location uncertainty of an object is a closed region together with a proba-

bility distribution of the object in the region [76, 70], as we have illustrated

in Section 1.1. Some previous work, such as [76, 70, 24], used this model to

compute probabilities of each location object for satisfying a query, includ-

ing the range and nearest-neighbor queries. The probability values provide

confidence guarantees about the query answer, and allow quality of service

metrics to be defined [23, 27].

In this chapter, we study the effect of uncertainty on location-dependent

queries, which takes into account the location of the user who issues the

query (called “query issuer”) in order to decide the query result [57, 40, 47].

For example, the user may want to know the available cabs within two miles

of his/her current location. In addition to the uncertainty of the data being

queried, the imprecision of the query issuer’s location further affects the

validity of the query answer. Our goal is to attempt to quantify the query

answer validity by efficiently computing the qualification probability of an

object for satisfying this type of query. To our best knowledge, this has not

been studied before.

83

Specifically, we study the imprecise version of the location-dependent

range query. Based on the location information of the query issuer, together

with a range region centered at the query issuer’s location, the query returns

the identities of all objects that fall within the region. We propose efficient

algorithms to compute qualification probabilities. Furthermore, we introduce

a set of novel filtering methods to determine the area that can contain candi-

date objects matching the query. We classify the query according to whether

the location data being accessed is (1) precise (e.g., locations of gas stations,

schools etc.), or (2) uncertain (e.g., locations of moving objects). Based on

this classification, we develop three fundamental concepts to enhance the

evaluation of the qualification probabilities:

• Query expansion: Incorporate the uncertainty information of the

query issuer’s location into the query range by using computational

geometry techniques, so that query evaluation can take advantage of

traditional query processing methods.

• Query-Data duality: By interchanging the role of the query issuer

and that of the location object, simplify the qualification probability

formula and thus save the query evaluation cost.

• Use of the probability threshold constraint: By exploiting the

assumption that users are only concerned about answers with high

qualification probabilities, special data constructs are pre-computed

for uncertain objects in order to facilitate pruning.

The aforementioned methods can be executed efficiently. They can also deal

with any type of probability distribution about the object’s location. We

perform detailed experimental evaluations to examine our approaches.

84

The rest of this chapter is organized as follows. Section 5.2 gives a formal

definition of the problems. In Section 5.3 we discuss how to improve the per-

formance of imprecise location-dependent queries. Section 5.4 then presents

algorithms that exploit the probability threshold constraint. In Section 5.5

we report our experimental results. Section 5.6 concludes the chapter.

5.2 Problem Definition

In this section we formally define the queries studied in this chapter. We also

investigate preliminary solutions for these queries.

5.2.1 Imprecise Location-Dependent Range Queries

In this chapter, we focus on a type of snapshot, location-dependent query –

the location-dependent range query. Without loss of generality, we denote

o0 as the identity of the query issuer, and o1, . . . , on as the identities of the

objects being queried. We also assume the uncertainty region is an axis-

parallel rectangle. For objects with no uncertainty (called point objects), we

denote them s1, . . . , sm. In particular, object si’s location is exactly a point

(xi, yi) (e.g., a non-moving user or a building).

Therefore, given an axis-parallel rectangle R(x, y) with center (x, y), half-

width w and half-height h, two types of queries can be defined:

Definition 5.1 An Imprecise Location-Dependent Range Query over Point

Objects (IPQ) returns a set of tuples {(si, pi)|i ∈ [1, m]} where pi > 0 is the

non-zero probability that si’s location, (xi, yi), is inside R(x, y), with (x, y) ∈

u0.

Definition 5.2 An Imprecise Location-Dependent Range Query over Uncer-

tain Objects (IUQ) returns a set of tuples {(oi, pi)|i ∈ [1, n]} where pi > 0 is

85

(x0, y0)
w

h

s1(x1, y1)

o1

IPQ over s1

IUQ over o1 Query Issuer

Uncertainty Region

of Query Issuer (u0)

Figure 5.1: Evaluating IPQ and IUQ.

the non-zero probability that oi is located within R(x, y), with (x, y) ∈ u0.

Figure 5.1 illustrates the IUQ and IPQ. For convenience, we may use R

to represent R(x, y).

Sometimes users are more concerned about answers with sufficiently high

probability values. In fact, it is useful to define a “probability threshold

constraint”, which restricts queries to return answers with probability values

higher than a certain pre-defined value. We call this parameter the probability

threshold (T in short), which is a real value between 0 and 1. The following

queries can then be defined:

Definition 5.3 A Constrained Imprecise Range Query over Point Objects

(C-IPQ) returns a set of tuples {si|i ∈ [1, m]} such that pi ≥ T , where pi is

the qualification probability of si for satisfying the corresponding IPQ.

Definition 5.4 A Constrained Imprecise Range Query over Uncertain Ob-

jects (C-IUQ) returns a set of tuples {oi|i ∈ [1, n]} such that pi ≥ T , where

pi is the qualification probability of oi for satisfying the corresponding IUQ.

86

Later we will show how to use the probability threshold to improve query

performance. Table 5.1 describes the notations used for defining the location-

dependent queries.

Symbol Meaning

o0 Query issuer (an uncertain object)
fi(x, y) Uncertainty pdf of oi

si A point object
(xi, yi) Position of si

R(x, y), w, h Range query with half-width w and half-height h,
centered at (x, y)

Table 5.1: Symbols for IPQ and IUQ.

5.2.2 Basic Evaluation Methods

Let us now present a basic solution for evaluating IPQ and IUQ. They form

the foundation for further discussions.

For IPQ, the qualification probability of si can be obtained by concep-

tually examining every point (x0, y0) ∈ u0, and then checking whether the

location of si is within R(x0, y0). Figure 5.1, for example, illustrates that s1

satisfies R(x0, y0). The final result can be obtained by integrating the uncer-

tainty pdf of all the points (x, y) in u0 at which si satisfies R(x, y). Formally,

we define a boolean function, bi(x, y) (for i = 1, . . . , n), as follows:

bi(x, y) =







1 if si is inside R(x, y)

0 otherwise
(5.1)

The qualification probability of si for satisfying the IPQ is then given by

pi =

∫

u0

bi(x, y)f0(x, y)dxdy (5.2)

For IUQ, we examine the probability that an uncertain object oi satisfies

87

the query at each point in u0. This is given by integrating the uncertainty

pdf of oi in the overlapping area of ui and R(x, y), i.e.,

pi(x, y) =

∫

ui∩R(x,y)

fi(x, y)dxdy (5.3)

Figure 5.1 shows that the probability of o1 satisfying R(x0, y0), given

that o0 is at point (x0, y0), is the integral of f1(x, y) over the shaded region.

Considering the uncertainty pdf of o0, the following gives the general formula

for computing pi.

pi =

∫

u0

pi(x, y)f0(x, y)dxdy (5.4)

In practice, Equations 5.2 and 5.4 are costly to implement. Both equa-

tions may necessitate the use of numerical integration. For example, in order

to obtain pi in Equation 5.2, u0 is first represented by a set of sampling

points; for each sampling point, Equation 5.2 is evaluated. A large number

of sampling points will be needed to produce an accurate answer. This is

required even if the uncertainty pdf is as simple as a uniform distribution.

Let us investigate how this situation can be improved.

5.3 Efficient Evaluation of Imprecise Queries

We just see that straightforward computation of probabilities for IPQ and

IUQ can lead to expensive integral operations. This section illustrates how

such operations can be avoided, by (1)expanding the range query, and (2)

exploiting the duality between the locations of the query issuer and data

being queried. We also examine indexing techniques for these queries.

88

5.3.1 Query Expansion

The first technique performs an inexpensive filtering over objects that have

no chance of being included in the query answer. The main idea is to expand

the query range R with the query issuer’s position information. Any object

that does not touch this expanded query range (called the Minkowski Sum [9])

can be pruned.

Lemma 5.1 The qualification probability of a point object (an uncertain ob-

ject) is non-zero if and only if its location (uncertainty region) lies within

(overlaps) the Minkowski Sum of R(0, 0) and u0.

To explain the above lemma, let us consider the IUQ (similar arguments

can be applied to IPQ). First, notice that the Minkowski Sum is defined as

follows:

A⊕ B = {x + y|x ∈ A, y ∈ B}

where A and B are two given polygons, and x and y are points [9]. Concep-

tually, the Minkowski Sum is the union of all translations of A by a point y

located in B. We can view the Minkowski Sum of the query range R(0, 0)

and the uncertainty region u0, that is, R(0, 0)⊕ u0, as the union of all range

queries, by considering all the possible positions of o0 who resides somewhere

in u0. Notice that here we should use R(0, 0) instead of a rectangle centered

at the query issuer’s location, e.g. R(x, y) with (x, y) ∈ u0, because the re-

gion R(x, y)⊕ u0 may be shifted away from u0. If the uncertainty region of

any object being queried does not overlap R(0, 0) ⊕ u0, we can be assured

that this object does not have any chance of satisfying any range query is-

sued at any position in u0. Thus we can use R(0, 0) ⊕ u0 as a query range

to obtain objects that have non-zero qualification probability of satisfying

89

the IUQ (i.e., their uncertainty regions overlap with the query range). For

illustration convenience, we will use R to denote R(0, 0) in the following text.

Figure 5.2 illustrates the Minkowski Sum of R and u0, which can simply

be obtained by extending u0 by w on the left and right, and by h on the top

and bottom.3 Hence, the Minkowski Sum can be derived in a linear time.

As shown in the same figure, the expanded query range allows objects with

zero qualification probability (i.e., objects O1) to be pruned immediately.

u0

o1w

h

R(xi,yi)

w
h R u0

si(xi,yi)

Figure 5.2: Illustrating the evaluation of IPQ. The thick line is the expanded
query using the Minkowski Sum.

5.3.2 Query-Data Duality

The second method exploits the fact the role of the query issuer and the

data being queried can be changed. Specifically, the following observation

describes this “query-data duality” property:

Lemma 5.2 Query-Data Duality Given two point objects si and sq (with

locations (xi, yi) and (xq, yq) respectively), si satisfies R(xq, yq) if and only if

sq satisfies R(xi, yi).

3If u0 and R are m-sided and n-sided polygons, the Minkowski Sum is a convex polygon
with at most m + e edges, which requires O(m + e) time to compute [9].

90

Proof : Construct a rectangle with vertices M, si, N , and sq, as shown in

Figure 5.3. If si satisfies R(xq, yq), then |siM | ≤ w and |siN | ≤ h. This

implies |sqN | ≤ w and |sqM | ≤ h. Hence sq must satisfy the query R(xi, yi).

Conversely, if sq satisfies R(xi, yi), we can construct the same rectangle and

prove that |siM | ≤ w and |siN | ≤ h. Hence si must also satisfy R(xq, yq).

In other words, if a point object si satisfies the range query issued by sq,

then sq must also satisfy the range query issued by si. This leads us to the

following result.

Lemma 5.3 The qualification probability pi of a point object si for satisfying

an IPQ can be computed by

∫

R(xi,yi)∩u0

f0(x, y)dxdy (5.5)

Proof : Consider the overlapping region of u0 and the range query R(xi, yi)

issued by si, as shown in the shaded area in Figure 5.2. Obviously, any point

(xe, ye) ∈ u0 ∩ R(xi, yi) satisfies the query R(xi, yi). Using Lemma 5.2, si

also satisfies the range query R(xe, ye). Moreover, si does not satisfy any

range queries centered at points outside the overlapping region. Hence only

the queries issued at points (xe, ye) can have si in their answer, and the

qualification probability of si is simply the integration of the uncertainty pdf

of O0 in the overlapping region, i.e.,
∫

R(xi,yi)∩u0
f0(x, y)dxdy.

Compared with the original formula for IPQ (i.e., Equation 5.2), we can

see that Equation 5.5 is simpler to evaluate. This is because now we do not

need to form a query at each point in u0 and test whether si satisfies the

query at that point, as in Equation 5.2. More importantly, if the uncertainty

pdf of the query issuer is a simple function, the integration operation of

91

R xi, yi

M

N

si xi,yi

R xq, yq

sq xq,yq

h

w

Figure 5.3: The Duality of Query and Data.

Equation 5.2 can be eliminated. As an important example, if f0(x, y) is a

uniform distribution, pi is simply the fraction of u0 that overlaps R(xi, yi),

i.e.,

pi =
Area(R(xi, yi) ∩ u0)

Area(u0)
(5.6)

When the position of si is at different positions relative to u0, the exact for-

mula for calculating the overlapping region u0 ∩ R(xi, yi) (and hence Equa-

tion 5.6) can also vary. In particular, the 2D space can be partitioned into

nine regions, and depending on which regions that si is located, a differ-

ent algebraic expression is needed. The details will be illustrated soon in

Section 5.3.3.

Lemma 5.3 can also be used to compute the qualification probability of an

uncertain object oi for satisfying the IUQ. We can conceptually treat every

point (x, y) ∈ ui as a point object, and compute the qualification probability

of each individual point (x, y) for satisfying the IPQ (termed Q(x, y)), with

Lemma 5.3. The qualification probability of oi is then simply equal to the

integral of all these Q(x, y) values, weighted by the uncertainty pdf of oi at

(x, y), i.e.,

pi =

∫

ui

fi(x, y) ·Q(x, y)dxdy (5.7)

92

Hence, Equation 5.7 provides an alternative to Equation 5.4 for computing

IUQ. Although it is not immediately clear which method is better, we note

that the performance of Equation 5.7 can be further improved when combined

with our results about query expansion.

Lemma 5.4 The qualification probability pi of an uncertain object oi for

satisfying an IUQ can be computed by

pi =

∫

ui∩(R⊕u0)

fi(x, y) ·Q(x, y)dxdy (5.8)

The only difference between this equation and Equation 5.7 is that ui is

replaced by ui ∩ (R⊕ u0) – which potentially produces a smaller integration

region and better computational performance. How is this possible? Observe

that for any point (xt, yt) ∈ ui − (R⊕ u0), Q(xt, yt) must be zero, according

to Lemma 5.1. Hence it is fine to focus on the portion of ui that overlaps

the expanded query region. Figure 5.2 illustrates an example, in which the

shaded part of u2 is the region of integration for Equation 5.8.

5.3.3 Calculation of Qualification Probabilities

We have introduced Equation 5.6 to compute the overlapped ratio Area(u0∩

R(xi, yi))/Area(u0), which is the basic part of calculating the qualification

probability . The exact formula of calculating the overlapped region u0 ∩

R(xi, yi) (and hence Equation 5.6) will vary at different positions relative

to u0. In particular, the region of Minkowski Sum can be partitioned into

nine regions, and depending on which region that si is located, a different

algebraic expression is needed. Here we will discuss how to get the nine

regions and the formulas of Equation 5.6 in each region.

Figure 5.4 depicts the shapes of these nine regions. The small rectangle is the

93

lw
lh

(xi,yi)

U0

Figure 5.4: Region 0

(xi,yi)

U0

lw
lh

Figure 5.5: Region 1

(xi,yi)

U0lwlh

Figure 5.6: Region 2

cloaked location of the query issuer and the big rectangle is the Minkowski

Sum. A precise object (the black point) with its transformed range query

R(x, y) (the dashed square) is located in region 0. The Minkowiski Sum is

divided (by the dotted line) into 9 regions (labeled by the numeric values

0 to 8). lw is the width of the overlapped region (u0 ∩ R(xi, yi)) and lh is

the height of this overlapped region. Thus Equation 5.6 is exactly equal to

lw∗lh
Area(u0)

.

Suppose (x0,y0) is at the center of u0, and the width (height) of u0 is

2w0 (2h0).When the position of the precise object (the black point) varies,

the formulas of lw and/or lh will change. For example, in region 0, lw =

xi + w − (x0 − w0) and lh = (y0 + h0) − (yi − h). While in region 1, lw is

2w0 (see Figure 5.5), and the boundary between region 0 and region 1 given

by the vertical line is x = x0 + w0 − w. In region 2, lw will change again

to x0 + w0 − (xi − w) (see Figure 5.6). The boundary between region 1 and

region 2 is x = x0 − w0 + w.

Thus depends on the x-coordinate of the point, lw will have three different

formulas, xi +w−(x0−w0), 2w0 and x0 +w0−(xi−w). Similarly, lh will also

94

Region# Boundaries (L, R, T, B) Q(x, y)

0 x = xl − w, x = xu − w,
y = yl + h, y = yu + h

−xy+(yu+h)x+(xl
−w)y+(w−xl)(yu+h)

Area(u0)

1 x = xu − w, x = xl + w,
y = yl + h, y = yu + h

−w0y+w0(y
u+h)

Area(u0)

2 x = xl + w, x = xu + w,
y = yl + h, y = yu + h

xy−(yu+h)x+(xu+w)y+(w+xu)(yu+h)
Area(u0)

3 x = xl − w, x = xu − w,
y = yu − h, y = yl + h

h0x+h0(w−xl)
Area(u0)

4 x = xu − w, x = xl + w,
y = yu − h, y = yl + h

w0h0

Area(u0)

5 x = xl + w, x = xu + w,
y = yu − h, y = yl + h

−h0x−h0(x
u+w)

Area(u0)

6 x = xl − w, x = xu − w,
y = yl − h, y = yu − h

xy+(h−yl)x+(w−xl)y+(w−xl)(h−yl)
Area(u0)

7 x = xu − w, x = xl + w,
y = yl − h, y = yu − h

w0y+w0(h−yl)
Area(u0)

8 x = xl + w, x = xu + w,
y = yl − h, y = yu − h

−xy−(h−yl)x+(xu+w)y+(xu+w)(h−yl)
Area(u0)

Table 5.2: Regions and Corresponding Q(x, y)

have three different formulas, yi + h− (y0 − h0), 2y0, and y0 + h0 − (yi − h).

So finally we get 3*3=9 regions.

In Table 5.2, we list the boundaries of the regions and corresponding formulas

of pi (Equation 5.6). For the ease of presentation, we use xl = x0 −w0, x
u =

x0 +w0 and yl = y0−h0, y
u = y0 +h0. Notice that the formulas we discussed

above are generated based on the condition w >= w0 ∧ h >= h0. And lw

will be 2w in region 1 if w < w0. That is, based on the relationships of

w and w0, and h and h0, there are totally 4 cases, w >= w0 ∧ h >= h0,

95

w >= w0 ∧ h < h0, w < w0 ∧ h >= h0 and w < w0 ∧ h < h0. However,

we don’t have to calculate the formulas for all the 4 cases. For example, in

region 2, if R(x, y) is smaller than u0, then we can actually switch their roles

– consider R(x, y) as u0 and u0 as R(x, y), and use the formula in region 8

instead. Thus here we just list the boundaries and formulas (of pi) for one

case(w >= w0∧h >= h0). In other three cases, there is only little difference.

5.3.4 An Efficient I/O Solution

To improve the I/O performance of query processing, spatial data indexes

such as the R-tree [45] and the grid file [65] are often used. In order to

utilize these indexes for processing imprecise queries, we first construct an

expanded query range online (i.e., find the Minkowski Sum of R and u0).

This expanded query range is then used to query the spatial index. All the

point objects or uncertain objects that lie completely outside the expanded

range can be pruned. The qualification probabilities of the remaining objects

can then be computed by using the lemmas described in Section 5.3.2.

5.4 Constrained Imprecise Queries

So far we have addressed imprecise queries that produce answers with non-

zero probabilities. In this section we study how query performance can be

improved by only allowing objects with qualification probabilities higher than

a pre-defined threshold value to be returned. These queries, called C-IPQ and

C-IUQ, are the constrained version of IPQ and IUQ, as defined in Section 5.2.

Our main idea is to use pre-computed boxes for uncertain objects, based on

their uncertainty pdf, in order to achieve better pruning effects. In particular,

we employ the concept of the p-bound [26, 79], as described next.

96

5.4.1 Pruning Point Objects for C-IPQ

A p-bound of an uncertain object oi is a function of p, where p ∈ [0, 0.5]. It

is composed of four line segments, namely li(p), ri(p), ti(p), bi(p) in 2D space,

as illustrated by the hatched region in Figure 5.7. The requirement of li(p) is

that the probability of the location of oi on the left of li(p) has to be exactly

equal to p (as shown by the shaded area). Similarly, the probability of oi on

the right of the line ri(p) is exactly equal to p. The remaining line segments

(ti(p) and bi(p)) are defined analogously. Notice that based on this definition,

the boundary of ui can be represented by li(0), ri(0), ti(0) and, bi(0). We will

show that if p-bounds have been pre-computed and stored for any value of

p, better pruning power can be achieved.

In practice, it is not possible to pre-compute a p-bound for each value of

p. Instead, a ”U -catalog” is created for each object, which is a table of a

small fixed number of tuples {v, v-bound}, where v ∈ [0, 1] [79]. The tuples

in the U -catalog can then used for query pruning. For ease of discussions, we

assume that p-bound is created for each object, for any value of p. However,

we will revisit the issue of U -catalog whenever appropriate.

Next, we define the p-expanded-query as follows:

Definition 5.5 A p-expanded-query is a rectangular region such that any

point object lying outside it has a qualification probability of less than p for

satisfying the IPQ.

Figure 5.8 illustrates a p-expanded-query, where by definition sj has a

probability of less than p of satisfying the IPQ. Notice that the Minkowski

Sum of R and u0 is equivalent to a 0-expanded-query, outside which no object

has a qualification probability of more than zero. Also for any p0 > 0, the

p0-expanded-query is always enclosed by the 0-expanded-query. In general,

97

li(p)

Ui

ri(p)

ti(p)

bi(p)

li(0)

p-boundp

Figure 5.7: Illustrating the p-bound of oi.

pj ≥ pk if and only if the pj-expanded-query is enclosed by the pk-expanded-

query.

u0

si

w d
d

R u0

l0(p)

v=lcb(p)

w

lcb(0)

w

R(xi,yi)

sj
p-expanded-

query

0-expanded-

query

Figure 5.8: Pruning si for C-IPQ.

Let us use lcb(p) to denote the left side of a p-expanded-query. The

following lemma states an important property of lcb(p).

Lemma 5.5 lcb(p) is d units from the right of lcb(0), where d is the distance

between the two lines l0(0) and l0(p) of u0.

98

Proof : Consider a point si, which is w units on the left of l0(p) (Figure 5.8).

If an IPQ is issued by O0, the qualification probability pi of si must be

less than or equal to p. This is because the integration of f0(x, y) over

the (shaded) common region of R(xi, yi) and u0 cannot be larger than p,

and according to Lemma 5.3 this is exactly equal to pi. Next, consider the

vertical line v intersecting si. We claim that line v is lcb(p). This is because

for any object sj lying on v or on the left of v, either (1) Ri(x, y) does not

touch u0 at all, or (2) Rj(x, y) ∩ u0 is a portion of the shaded region. Using

Lemma 5.3,

pj =

∫

Rj(x,y)∩u0

f0(x, y)dxdy (5.9)

≤

∫

shaded region
f0(x, y)dxdy (5.10)

= p (5.11)

Therefore, any point object on the left of the line v must have a qualification

probability less than or equal to v. Hence v = lcb(p). Moreover, as shown in

Figure 5.8, lcb(p) is d units from lcb(0). Hence the lemma holds.

By using Lemma 5.5, we can construct a p-expanded-query easily. As

shown in Figure 5.8, lcb(p) is simply the vertical line with a distance of w

units from l0(p). The other sides of the p-expanded-query can be obtained

analogously.

The p-expanded-query can be used to prune point objects for C-IPQ.

Specifically, we first construct a T -expanded query (where T is the proba-

bility threshold of C-IPQ). Then, a point object si can be pruned if it lies

outside the T -expanded query, since it is guaranteed to have a qualification

probability less than T . We note that this pruning is often better than using

the Minkowski Sum as described in Section 5.3.1, since the p-expanded-query

99

usually has a smaller range.

If the U -catalog has to be used to find the p-expanded-query, we can

use the maximum value of M in the U -catalog such that M ≤ T . The

M-expanded-query, which encloses T -expanded-query, can then be used for

pruning: any object pruned by the M-expanded-query must also be pruned

by the T -expanded-query.

5.4.2 Pruning Uncertain Objects for C-IUQ

ui

ri(Qp)

lcb(0)

R u0

ui

T-expanded-query

u0

R u0

(a) (b)

Figure 5.9: Pruning oi for C-IUQ (a) using the ri(T) bound of oi; (b) using the
T -expanded-query.

We now investigate how the concept of p-bound and p-expanded-query

can be used to facilitate pruning of an uncertain object oi for C-IUQ. Three

pruning strategies are possible.

• Strategy 1: Use the p-bound of oi. Observe that we can prune oi if

the common region of ui and R⊕ u0 is on the right of ri(T). As shown

in Figure 5.9(a), we can be sure that
∫

ui∩(R⊕u0)
fi(x, y)dxdy ≤ T . From

100

Lemma 5.4, we have

pi =

∫

ui∩(R⊕u0)

fi(x, y) ·Q(x, y)dxdy (5.12)

≤

∫

ui∩(R⊕u0)

fi(x, y)dxdy (5.13)

≤ T (5.14)

Therefore, oi can be removed from the result. If ri(T) cannot be found,

then we find the maximum value M in the U -catalog of oi such that

M ≤ T , and then use ri(M) instead of ri(T). Notice that ri(M) is on

the right side of ri(T), so it may be possible that the shaded region

crosses ri(M) but not ri(T). The same idea can be applied to other

dimensions. For example, if ui ∩ (R⊕ u0) is at the lower part of bi(T),

ui can be pruned.

• Strategy 2: Use the p-expanded-query. oi can be pruned if ui

is completely outside the T -expanded-query (Figure 5.9(b)). Recall

from Definition 5.5 that any point object outside the p-expanded-query

cannot have a qualification probability higher than p. Therefore, by

Lemma 5.4,

pi =

∫

ui∩(R⊕u0)

fi(x, y) ·Q(x, y)dxdy (5.15)

≤ T

∫

ui∩(R⊕u0)

fi(x, y)dxdy (5.16)

≤ T (5.17)

If U -catalog is to be used, the M-expanded-query should be chosen,

where M is the maximum value in the catalog such that M ≤ T .

Notice that this query range may be larger than that of T -expanded-

101

query, resulting in less efficient pruning.

Notice that both methods create more pruning opportunities than the

query expansion technique described in Section 5.3.1, since oi can be

pruned even if they overlap with the Minkowski Sum of R and u0.

• Strategy 3: Use both the p-bound and the p-expanded query.

The third pruning strategy can be used when both Strategy 1 and

Strategy 2 do not work. An example scenario is shown in Figure 5.10,

where R ⊕ u0 crosses the ri(T) line, and ui crosses the lcb(T) line.

Hence, both pruning methods cannot be applied. We now show that

it is still possible for oi to be pruned. Let dmin be the minimum value

in the U -catalog of oi such that dmin ≥ T and R ⊕ u0 is on the right

of ri(dmin). Also let qmin be the minimum value in the U -catalog of

O0 such that qmin ≥ T and ui is on the outside of the qmin-expanded

query. By using Lemma 5.4, we have

pi =

∫

ui∩(R⊕u0)

fi(x, y) ·Q(x, y)dxdy (5.18)

≤ qmin

∫

ui∩(R⊕u0)

fi(x, y)dxdy (5.19)

≤ qmin · dmin (5.20)

Therefore, if the product of qmin and dmin is smaller than T , oi can be

pruned.

The three strategies just described involve some simple condition testing,

and the size of an object’s U -catalog is usually small (for example, in our

experiments, we store six probability values and their p-bounds). Hence these

methods can be used to prune uncertain objects efficiently.

102

ri(Qp)

ui

lcb(Qp)
R u0qmin-expanded-query

ri(dmin)

T-expanded-query

Figure 5.10: Pruning oi for C-IUQ using both bounding box information of oi

and the expanded query.

5.4.3 Efficient I/O Solutions

To improve the I/O performance of constrained imprecise queries, the steps

presented for Section 5.3.4 can be readily used. The only difference is that

the expanded query range (i.e., the Minkowski Sum of R and u0) is replaced

by the T -expanded-query. The performance of query pruning is potentially

better, since the T -expanded-query is usually smaller than R⊕ u0.

The performance of C-IUQ can be further improved by using a data

structure designed for storing uncertain data. Called Probability Threshold

Index (PTI) in [26], the U -catalog information of uncertain objects under the

same parent node of the R-tree is summarized . In each intermediate node,

the minimum bounding rectangle (MBR(m)) for each probability value of m

in the U -catalog is stored. This MBR(m) should be tight and enclose all the

m-bounds for all children in the node. For example, suppose a node X that

consists of two objects, O1 and O2, and in their U -catalogs the 0.3-bounds are

stored. The left sides of their 0.3-bounds are l1(0.3) and l2(0.3) respectively.

103

If l2(0.3) is on the left of l1(0.3), then l2(0.3) is assigned to be the 0.3-bound

for the node X.

With the aid of the PTI, we can apply the pruning techniques described in

Section 5.4.2 in the index level. As described in Section 5.4.2, the U -catalog

of an object can be used for pruning. We can use the same techniques with

the U -catalog that resides in the intermediate node. This is because every

p-bound stored in this U -catalog must enclose the p-bounds for each children.

Moreover, our pruning techniques rely on the fact that the uncertainty region

of the objects lie outside the p-bound. In Figure 5.9, for example, if R⊕u0 is

on the right side of the m-bound of the U -catalog in the intermediate node,

R ⊕ u0 must also be on the right side of ri(T), assuming ui is stored under

that intermediate node. In other words, if the p-bound in the intermediate

node level satisfy the pruning condition, so does its children.

5.5 Experimental Results

We have performed experimental evaluation on the effectiveness of our ap-

proaches. We first present our simulation model, followed by the detailed

results.

5.5.1 Experiment Setup

In our experiments, we use two realistic data sets, namely California and

Long Beach.4 The California data set contains 62K points. The Long Beach

data set contains 53K rectangles. The objects in both data sets occupy a 2D

space of 10, 000 × 10, 000 units. We use the California data set as a point

object database, and the Long Beach data as an uncertain object database.

One scenario could be that a police wants to find the suspect vehicles within

4Available at http://www.census.gov/geo/www/tiger/.

104

some distance from him. We also assume that the uncertainty pdf of any

uncertain object (including the query issuer) is a uniform distribution. Each

uncertain object is associated with a U -catalog, which consists of ten p-

bounds for the probability values 0, 0.1, . . . , 1. The size of an R-tree node is

4K. Unless stated otherwise, R-tree is used for data indexing.

For each imprecise query tested here, both the uncertainty region of the

query issuer (u0) and the range query (R) have square shapes. For conve-

nience, we denote the size of u0 and R as u and w. Here, the term ”size”

refers to the half of the length of a square. By default, u = 250 and w = 500.

The center point of u0 is uniformly distributed in the data space. We also

assume the probability threshold of an imprecise query is 0 (i.e., T = 0).

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

1800

Uncertainty Region Size

A
v
g
.

R
e
s
p
o
n
s
e
 T

im
e
(m

s
)

Enhanced Method

Basic Method

Figure 5.11: Basic vs. Enhanced (IUQ)

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

Uncertainty Region Size

A
v
g
.

R
e
s
p
o
n
s
e
 T

im
e
(m

s
)

Range Size=500

Range Size=1000

Range Size=1500

Figure 5.12: T ime vs. c (IPQ)

The performance metric used here is the total amount of time for execut-

ing a query (called “response time”, T ime in short). Each data point is an

average over 500 runs. All our experiments are run on a sunfire4800 server

with four US-III+900MHz CPUs and 4096MB of memory. We use the R-tree

provided by the Spatial Index Library version 0.44.2b [63].We also use this

library to implement the PTI. Our simulation is written in j2sdk1.4.2 11.

Table 5.3 summarizes the parameters used in the experiments.

105

Param Default Meaning

u 250 Size of u0

w 500 Size of range query
fi(x, y) 1/|ui| oi’s uncertainty pdf (uniform)
T 0 Probability threshold
T ime −− Query response time

Table 5.3: Parameters and baseline values.

5.5.2 Results

Comparison with the basic solution. We first compare the per-

formance of the basic solution described in Section 5.2.2, with our other

techniques. Our experiments reveal that the basic solution is much more

costly. Figure 5.11, for example, illustrates that the basic solution for calcu-

lating qualification probability (Equation 5.4) performs much worse than our

solution (Equation 5.8). Similar results can be concluded for other queries.

Next, we focus on the methods developed in Sections 5.3 and 5.4.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

Uncertainty Region Size

A
v
g

.
R

e
s
p

o
n

s
e

 T
im

e
(m

s
)

Range Size=500

Range Size=1000

Range Size=1500

Figure 5.13: T ime vs. c (IUQ)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Probability Threshold

A
v
g

.
R

e
s
p

o
n

s
e

 T
im

e
(m

s
) p-Expanded-Query

Minkowski Sum

Figure 5.14: T ime vs. T (C-IPQ)

IPQ and IUQ. Let us examine the performance of IPQ using the

methods developed in Section 5.3. Figure 5.12 presents the relationship be-

tween T ime and u, under different values of w. We observe that T ime varies

from 20 to 220 ms, under a wide range of values of u and w. Also, T ime

106

increases with both parameter values. Recall that the expanded query range

is essentially the Minkowski Sum of R and u0. It is enlarged when either w

or u increases. As a result, more candidates are captured by the expanded

query and more probability computations are required. Figure 5.13 shows a

similar behavior for IUQ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

10

15

20

25

30

Probability Threshold

A
v
g
.
R

e
s
p
o
n
s
e
 T

im
e
(m

s
)

p-expanded-query

Minkowski Sum

Figure 5.15: T ime vs. T (C-IUQ)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

150

200

250

300

350

400

450

500

550

600

Probability Threshold

A
v
g

.
R

e
s
p

o
n

s
e

 T
im

e
(m

s
)

p-Expanded-Query

Minkowski Sum

Figure 5.16: T ime vs. T (C-IPQ)

C-IPQ and C-IUQ. Next, we compare the performance of C-IPQ,

using (1) the Minkowski-Sum, and (2) the p-expanded-query, which takes

into account the probability threshold (T) of the C-IPQ. Figure 5.14 shows

the performance under different values of T . In general, the performance

of p-expanded-query improves with an increasing value of T . As discussed

in Section 5.4.1, the p-expanded-query shrinks with a higher value of T .

Hence the number of candidates that satisfy the p-expanded-query decreases,

rendering a much better performance than using the Minkowski Sum alone

(e.g., three times of improvement at T = 0.6).

In Figure 5.15 we investigate the performance of C-IUQ. The R-tree is

used with the Minkowski Sum, while the PTI is used with the p-expanded-

query. Again, we see the benefits of using p-expanded-query and PTI over

methods that do not utilize probability threshold constraints, because they

107

allow much more data pruning for all values of T . For example, at T =

0.6, the performance gain is around 60%. Notice that this gain is smaller

compared to C-IPQ. The reason is that it is usually harder to prune uncertain

objects, whose uncertainty regions may occupy large amount of space, than

point objects.

Non-Uniform Distribution. Finally, we examine the performance of

queries when the uncertainty pdf is not uniform. We choose the Gaussian

distribution, which is a common distribution used in modeling location un-

certainty [76, 26]. For each object, the mean of the Gaussian distribution is

the center of its uncertainty region, while the variance is one-sixth of the size

of its uncertainty region.

When the uncertainty pdf is non-uniform, it is more expensive to evaluate

than uniform distribution. In particular, Equations 5.5 and 5.8 may not have

closed-form solutions, and numerical techniques are often required. We have

used the Monte-Carlo technique for evaluation, where the positions of the

query issuer and uncertain objects are sampled for a number of times, and

the average result is obtained. In order to achieve an accurate result, we have

performed a sensitivity analysis: we need at least 200 samples for evaluating

a C-IPQ, and 250 samples for C-IUQ. Figure 5.16 shows the result for C-IPQ.

We again see that the use of p-expanded-query achieves a better performance

by exploiting the probability threshold constraint.

5.6 Chapter Summary

Computing qualification probabilities for imprecise location-dependent queries

by using their definitions directly can be expensive. In this chapter, we pro-

posed several techniques for improving the query performance. The use of

the Minkowski Sum as the expanded query range enables pruning techniques

108

developed for traditional range query processing (such as pruning with a

R-tree) to be used. The Query-Data Duality Theorem simplifies the cost

of computing qualification probabilities for both IPQ and IUQ. When the

Minkowski Sum and the Query-Data Duality Theorem is combined appro-

priately with the probability threshold constraint, more pruning opportuni-

ties can be created. In particular, if the probability information about the

uncertain objects is pre-computed and stored in the PTI, pruning based on

the objects’ uncertainty information can be done in the index level.

In our future work, we will study how the proposed techniques could be

extended for queries and uncertainty regions with non-rectangle shapes. Here

we just give some comments on this possible extension. First of all, the Basic

solution in Section 5.2.2 can work for queries and uncertainty regions with

arbitrary shapes. For our efficient solutions, the query expansion method in

Section 5.3.1 applies the Minkowski Sum of query region R and user location

u0, which is actually not restricted to the geometric shapes of R or u0. The

query-data duality property (Section 5.3.2) also exists for queries with non-

rectangle shapes. For example, suppose R is the query issued by a user related

to his/her location, we can generate a region R′ wich is symmetrical to R with

respect to the middle point of the line segment connecting the user location

and the concerned data. Lemma 5.2 will still hold. The only change will

come from Section 5.3.3, where most equations are based on rectangle shape.

We will investigate how this part could be generalized in the near future.

Finally, the efficient solutions for processing constrained C-IPQ and C-IUQ

in Section 5.4 can be easily extended for queries and uncertainty regions

with non-rectangle shapes, by simply approximating the orginal queries and

uncertainty regions with appropriate MBR. All the pruning methods in that

part can still work.

109

6 Cleaning Attribute-Uncertainty Data

We have presented our work for improving the efficiency of evaluating prob-

abilistic queries over uncertain data. Now we begin to address the issues on

optimizing query answer quality by reducing data uncertainty. In particular,

we focus on cleaning uncertain data under the attribute-uncertainty model in

this chapter. We will also disscuss how to clean tuple-uncertainty data in next

chapter. In applications like sensor network monitoring and location-based

services, due to limited network bandwidth and battery power, a system can-

not always acquire accurate and fresh data from the external environment.

To capture data errors in these environments, recent researches have pro-

posed to model uncertainty as a probability distribution function. In this

chapter, we present an entropy-based metric to quantify the degree of ambi-

guity of probabilistic query answers due to data uncertainty. Based on this

metric, we develop a new method to improve the query answer quality. The

main idea of this method is to acquire (or probe) data from a selected set of

sensing devices, in order to reduce data uncertainty and improve the quality

of a query answer. Given that a query is assigned a limited number of prob-

ing resources, we investigate how the quality of a query answer can attain an

optimal improvement. To improve the efficiency of our solution, we further

present heuristics which achieve near-to-optimal quality improvement. We

generalize our solution to handle multiple queries. An experimental simula-

tion over a realistic dataset is performed to validate our approaches.

6.1 Introduction

In many emerging and important applications like wireless sensor networks

and location-based applications, the data obtained from the sensing devices

110

o1

o2

o3

o4

o1

o4

c1=3

c4=9

o2

c2=6

o3

c3=2

Figure 6.1: Probing of Sensor Data for Uncertainty Reduction.

are often imprecise [33, 67, 62]. To process uncertain data, probabilistic

queries have been proposed, which produce imprecise results. For example,

a probabilistic range query, inquiring which of the four sensor data values

in Figure 6.1 have non-zero probabilities of being inside a specified range

[10oC, 20oC], may produce an answer like: {(o1, 0.9), (o2, 0.5)}. This answer

indicates that o1 (o2) has a chance of 0.9(respectively 0.5) for having a value

between [10oC, 20oC].

How can we interpret the probability values of these query answers? In-

tuitively, these values reflect the ambiguity of a query result, due to the

imprecision of the data being evaluated. In the previous example, since o1

has a chance of 0.9 for satisfying the query, we know that o1 is very likely to

be located inside [10oC, 20oC]. The case of o2 is more vague: it could either

be inside or outside the specified range, with equal probabilities. In general,

a query answer may consists of numerous probability values, making it hard

for a query user to interpret the likelihood of their answers. A quality met-

ric is desired, which computes a real-valued score for a probabilistic query

111

answer [23, 56]. This metric serves as a convenient indicator for the user to

understand how vague his/her answer is, without the need of interpreting all

the probabilities present in the answer. For example, if the score of his/her

query answer is high, the user can immediately understand that the quality

of his/her answer is good. In this chapter, we define a quality score for a

probabilistic range query based on the definition of entropy [73]. This metric

quantifies the degree of query answer uncertainty by measuring the amount

of information presented in a query.

More importantly, the quality score definition enables us to address the

question: “how can the quality of my query answer be improved?” Let us

consider the sensor network example in Figure 6.1 again. Suppose that the

sensors have not reported their values for a long time. As a result, the sensor

data kept in the server have a large degree of uncertainty. Consequently, the

query answer quality is low (i.e., the query answers are vague), and a user may

request the server to give him/her an answer with a higher quality. To satisfy

the user’s request, the system can acquire (or probe) the current data from

the sensors, in order to obtain more precise information (i.e., possibly with

a smaller uncertainty interval). A higher quality score for the query user’s

answer can then potentially be attained. In fact, if all the items (o1, . . . , o4)

are probed, then the server will have up-to-date knowledge about the external

world, thereby achieving the highest query quality.

In reality, it is unlikely that a system can always maintain an accurate

state of the external environment, since probing a data item requires precious

resources (e.g., network bandwidth and energy). It is thus not possible for

the system to probe the data from all the sources in order to improve the

quality of a query request. A more feasible assumption is that the system

assigns to the user a certain amount of “resource budget”, which limits the

112

maximum amount of resources invested for a particular query. The question

then becomes “how can the quality of a probabilistic query be maximized

with probing under tight resource constraints?” To illustrate, let us consider

Figure 6.1, where c1, . . . , c4 are the respective costs for probing o1, . . . , o4.

The cost value of each sensor may represent the number of hops required

to receive a data value from the sensor. Let us also assume that a query

is associated with a resource budget of 8 units. If we want to improve the

quality for this query, there are five probing sets, namely {o1}, {o2}, {o3},

{o1, o2} and {o2, o3}. Each of these sets describe the identities of the sensors

to be probed. Moreover, the total sum of their probing costs is less than 8

units. Now, suppose the probing of o2 and o3 will yield the highest quality

improvement. Then the system only needs to probe these two sensors, to

ensure the maximum benefit.

Since testing the possible candidates in a brute-force manner requires an

exponential-time complexity, we propose a polynomial-time solution based

on dynamic programming. We also present a greedy solution to enhance

scalability. Our experimental results show that the greedy solution achieves

almost the same quality as the dynamic-programming solution. We study this

problem for probabilistic range queries, which return the items within a user-

defined region. This query is one of the most important queries commonly

found in location-based services and sensor applications. Our solution can

generally be applied to any multi-dimensional uncertain data, where the pdf’s

are arbitrary.

The problem studied in this chapter addresses the balance between query

quality and the amount of system resources consumed. A few related prob-

lems have been studied in [33, 61], where probing plans are used to direct

the server to acquire the least number of data items required to achieve the

113

highest quality. However, these work do not consider the issue of maximizing

quality under limited system resources allocated to a user. We further con-

sider the scenario in which a group of query users share the same resource

budget. This represents the case when a system allocates its resources to

users with the same priority. We explain how our basic solution (tailored for

a single query) can be extended to address this. To our understanding, this

has not been studied before.

To summarize, our major contributions are:

1. We propose an entropy-based quality metric for probabilistic range

queries.

2. We develop optimal and approximate solutions that maximize the qual-

ity of a probabilistic query under limited resource constraints.

3. We extend our solution to handle the case where multiple query users

share the same resource budget.

4. We conduct extensive experiments with realistic datasets to validate

the performance of our algorithms.

The rest of this chapter is organized as follows. Section 6.2 illustrates the

system architecture. We discuss the details of quality and resource budget

for probabilistic range queries in Section 6.3. Then we give our solutions in

Section 6.4. We report our experimental results in Section 6.5. Section 6.6

concludes the chapter.

6.2 System Architecture

Figure 6.2 describes the architecture of the system used in this chapter.

The Data Manager caches the value ranges and corresponding pdf of remote

114

Central Server

Data

Manager

probing

messages

Query

Evaluator

Query

Register

Probing

Scheduler

Sensors / Mobile Devices

queries with

requirements

results

data reports

A

B

C

D

E

Figure 6.2: System Architecture

sensors. The Query Register receives queries from the users. The Query

Evaluator evaluates the queries based on the information stored in the Data

Manager. The Probing Scheduler is responsible for generating a probing set

for each query – essentially the set of sensors to be probed. The benefits and

costs of probing actions will be taken into account by the Probing Scheduler

in deciding the what sensors to be consulted. More specifically, a user query

is handled in four major steps:

• Step 1. The query is evaluated by the Query Evaluator based on the

data cached in the Data Manager.

• Step 2. The Probing Scheduler decides the content of probing set.

• Step 3. The Probing Scheduler sends probing commands to the sensors

defined in the probing set.

• Step 4. The Query Evaluator reevaluates the query based on the re-

freshed data returned to the Data Manager, and returns results to the

query issuer.

We assume after probing, the value of the data item becomes “precise”

(i.e., has a pdf value equal to one inside an infinitesimally-thin uncertain

115

region). For simplicity, we illustrate our solution with an uncertainty model

for one-dimensional data, but our methods can easily be extended to handle

multi-dimensional data.

6.3 Quality and Resource Budget of Probabilistic Queries

In this section, we present the notion of Quality Score for probabilistic range

query, the query that we extensively study in this chapter. In Section 6.3.1

we present a quality metric for probabilistic range queries. Section 6.3.2 then

discusses the metric of resource constraints, called Resource Budget, which is

assigned to each query as the maximum amount of resources allowed in the

process of query evaluation.

A

B

C

25%

50%

75%

CA = 3

CB=4

CC=2

Query Range

of Q1

Q1

Query Range

of Q2

25%

Q2

D

Figure 6.3: An Example of Probabilistic Range Query

6.3.1 Quality Score

The Probabilistic Range Query (PRQ)[23] returns a set of data objects, with

the probabilities that their attribute values are in the specified range. To

illustrate, Figure 6.3 shows two PRQ’s on data items A, B, C and D. The

uncertainty region of each item is shown. For query Q1, three items (A, B and

116

C) are included in the result; item D is excluded since its uncertainty region

does not overlap with the query range, yielding zero qualification probability.

Let us now present a metric to measure the quality of the answer of a

probabilistic range query. This metric is based on the notion of information

entropy[73]. As a brief review, the information entropy measures the average

number of bits required to encode a message, or the amount of information

carried in the message:

Definition 6.1 Entropy: Let X1, ..., Xn be all possible messages, with

respective probabilities p(X1), ..., p(Xn) such that
∑n

i=1 p(Xi) = 1. The

entropy of a message X ∈ {X1, ..., Xn} is:

H(X) = −
n

∑

i=1

p(Xi)log2p(Xi) (6.1)

Recall that in the answer of PRQ, each value pi describes the probability

that object oi satisfies it. Thus there are two possible events: (1) oi satisfies

the PRQ with a probability as pi; (2) oi does not satisfy the PRQ with a

probability of 1− pi. Therefore, the ambiguity of oi for satisfying a PRQ is

gi = −pilog2pi − (1− pi)log2(1− pi) (6.2)

We then use the sum of the nagative entropy values for all the objects

that satisfy the PRQ with non-zero probabilities as the quality metric. More

specifically, for a result containing n answers (o1, p1), · · · , (on, pn), the quality

score, denoted by H , of this result is defined by

H =

n
∑

i=1

(pilog2pi + (1− pi)log2(1− pi)) (6.3)

117

By substituting Equation 6.2 into Equation 6.3, we have

H = −
n

∑

i=1

gi (6.4)

A lower value of H implies a lower quality. In particular, H is equal to

zero if the result is precisely known, which happens when all the pi’s are

equal to zero or one. The range of H is [0, n]. Notice that after probing item

oi, its uncertainty region shrinks to a point, and the server knows exactly

whether oi satisfies the range query. Thus, pi equals to either zero or one.

The corresponding ambiguity caused by the answer (oi, pi) is then “removed”,

and the entropy of the overall query result is reduced by an amount given by

Equation 6.2 . We denote this amount of quality improvement as the gain

of probing oi, denoted by gi. As shown in Equation 6.2 the value of gi only

depends on the qualification probability of a single object oi. Moreover, the

gain is only non-zero for we choose items that have qualification probabilities

in (0,1), and the gain of probing a set of items is simply equal to the sum of

their gains.

6.3.2 Resource Budget

We now present the resource budget model of a query, which limits the amount

of resources that can be used to probe the sensing devices for this query.

In general, there are several types of important resources for a wireless

sensor network, such as network bandwidth and the battery power used to

transmit data. Here we use a single metric, namely the number of trans-

mitted messages, to measure the cost. The number of transmitted messages

for probing an item is the major source of consumption of the important re-

sources. The more number of times the sensors are probed, the more amount

118

Symbol Description

Q Probabilistic range query
C Resource constraint assigned to Q
c # of messages for probing o
H Precision quality (entropy)
gi The benefit of probing oi (i = 1 · · ·n)

Table 6.1: Symbols for Cleaning Attribute-Uncertainty Data

of network bandwidth and battery power is required. Thus, we assume the

server assigns to a query the maximum number of transmitted messages al-

lowed as its resource budget, denoted as C.

The transmission cost of a data item can vary among the sensors. For

example, a message generated from a sensor may need different number of

hops to reach the base station. Figure 6.2 shows that four hops are required

for probing item E (the dashed path), whereas only one hop is needed to

probe item A. Thus probing E will cost more than A. We assume the server

knows how many messages are needed for probing an item. We also use ci

to denote the number of messages for probing oi. We list the notations used

in this chapter in Table 6.1.

6.4 Maximizing Quality with Limited Resources

As we have mentioned in Section 6.3.1, probing items that have non-zero

qualification probabilities can often improve the quality of a query result. In

general, there can be a tremendous number of objects present in the answer.

Moreover, the amount of resource budget available probing is limited. In

this section, we discuss how query quality can be maximized with limited

resource budgets.

In Section 6.4.1 we present the Single Query (SQ) problem, where we

explain how probing can be done efficiently for a query with limited resource

119

budgets. We then extend our solution to support a more complicated and

practical scenario, i.e. Multiple Queries with Shared Budget (MQSB), in

Section 6.4.3. We give heuristics which provide close-to-optimal performance

in Section 6.4.4.

6.4.1 Single Query (SQ)

In this scenario, only one query, Q, needs to be considered when choosing sen-

sors. Suppose based on the cached data, the Query Evaluator has calculated

the qualification probabilities,{p1, · · · , pn}, of all the items oi(i = 1, · · · , n)

such that pi > 0. The cost of probing oi is ci. Let the gain obtained by

probing oi be gi (Equation 6.2). We formally define the Single Query (SQ)

problem as follows.

Maximize
n

∑

i=1

bi · gi (6.5)

Subject to

n
∑

i=1

bi · ci ≤ C (6.6)

Here we use an array {bk|k = 1, · · · , n} to record the choices. Initially,

all the values of bi are zero. If item oi is chosen for probing, we set bi to 1.

To solve the SQ problem, we use dynamic programming. We observe that

this problem has the optimal substructure, meaning that the optimal solutions

of subproblems can be used to find optimal solutions of the SQ problem. Let

us rewrite the SQ problem as P (C, N), which is associated with a resource

budget C and items N = {o1, · · · , on}, whose pi’s are all nonzero. Suppose

we have found the optimal set S = {oγ1
, · · · , oγm

} (m ≤ n ∧γi ∈ [1, n]) for

P (C, N): among all the subsets of N whose costs are not larger than C, S

120

is the one with the highest gain. Now we define a subproblem by randomly

removing an item, e.g. oγ1
, from the candidate item set, and reducing the

budget to C − cγ1
. That is, we consider a subproblem P (C − cγ1

, N/{oγ1
}).

If S1 = S/{oγ1
} = {oγ2

, · · · , oγm
}, is the optimal set for this subproblem, the

SQ problem can be solved by using the dynamic programming framework.

Next we prove that S1 must be the optimal set for P (C − cγ1
, N/{oγ1

}).

Proof : Suppose S1 is not the optimal set for P (C− cγ1
, N/{oγ1

}), then we

can find another set S ′
1 6= S1 which meets two requirements: (1) the cost of

probing S ′
1 is not larger than C− cγ1

and (2) the gain of probing S ′
1 is higher

than that of probing S1. Consider the set S ′
1 ∪ {oγ1

}. Its cost is not larger

than C− cγ1
+ cγ1

= C. The gain of probing it is higher than that of probing

the set S1 ∪ {oγ1
}, or S. Thus S ′

1 ∪ {oγ1
} should be a better choice than S

for the overall problem, which violates the condition that S is the optimal

set. So S1 must be the optimal set for P (C − cγ1
, N/{oγ1

}).

6.4.2 Algorithm DP.

In this algorithm, we look for the optimal set for each subproblem denoted

by P (k, i), where the resource budget equals to k and the candidate item

set is {o1, ..., oi}. There are totally n · C subproblems. For the subproblems

with zero budget or empty candidate set, the optimal set is also an empty

set. We use an array s to store the optimal sets for the subproblems, where

s[k, i] is the optimal set for the subproblem P (k, i). Each element of s, e.g.

s[k, i], is also an array, where s[k, i][j] = 1 if oj is chosen for probing, and zero

otherwise. We also use an array v to store the gain by probing the optimal

set s[k, i]. For each data item oi, there are two possible choices. Either oi

is not chosen and s[k, i − 1] is considered as the optimal set for P (k, i), or

this item is put into the solution set which contributes gi to the solution

121

gain but decrease the budget remaining for items {o1, · · · , oi−1} to k − ci.

The optimal set for the subproblem P (k − ci, i − 1) is s[k − ci, i − 1] with

the gain v[k − ci, i− 1]. Thus if oi is chosen, the maximum possible gain is

v[k − ci, i − 1] + gi. In Step 3, the gains of these two possible choices are

compared, and the one with larger gain is taken as the optimal solution for

current subproblem P (k, i). Steps 4-5 handle the case that oi is not chosen,

while Steps 7-9 construct the optimal set and the corresponding gain if oi is

chosen. Another point to notice is, in order to put oi into the solution set,

the cost of probing oi, i.e. ci, must be not larger than the remaining budget

k. Step 3 also tests whether this condition is satisfied.

input : An array of probing costs c = (c1, · · · , cn)
input : An array of gains g = (g1, · · · , gn)
input : The resource budget C
output: The optimal set

for i← 1 to n do1

for k ← 1 to C do2

if ci > k or v[k, i− 1] > v[k − ci, i− 1] + gi then3

v[k, i]← v[k, i− 1];4

s[k, i]← s[k, i− 1];5

else6

v[k, i]← v[k − ci, i− 1] + gi;7

s[k, i]← s[k − ci, i− 1];8

s[k, i][i]← 1;9

return s[C, n];10

Algorithm 5: Algorithm DP for SQ

Using Algorithm 5, we can find an optimal solution for the SQ problem.

We will show soon that Algorithm 5 can also be used to solve the MQSB

problem, with little change to the calculation of gain.

Complexity. There are two for-loops in Algorithm 5. The computa-

122

tional complexity is thus O(nC). The algorithm requires the storage of in-

termediate results, i.e. the optimal sets and corresponding gains for the

subproblems. The variable s is a 3D array with space complexity of n2C,

while v is a 2D array with the size of nC. Thus the memory complexity of

Algorithm 5 is O(n2C).

6.4.3 Multiple Queries with Shared Budget (MQSB)

In many cases, more than one query are processed at the server simultane-

ously. A data item oi may be involved in the results of multiple queries.

By probing oi, all queries containing it in their results will have a better

quality. In order to apply Algorithm 5 in this scenario, we need to change

the method of calculating gain, i.e. Equation 6.2. Suppose there are m

queries, Q1, · · · , Qm, we can have a set of m values for oi, pi1, · · · , pim, where

pij(j = 1, · · · , m) specifies the probability that oi satisfies Qj. After get-

ting the exact value of oi the result precision of these queries will be im-

proved by gij . Here gij, the gain for Qj obtained by probing oi, is equal to

−pijlog2pij − (1− pij)log2(1− pij), where j = 1, · · · , m(Equation 6.2). The

gain of probing oi is the sum of gij, or

Gi =

m
∑

j=1

gij (6.7)

For example, as in Figure 6.3, item A overlaps with the ranges of both

Q1 and Q2, where pA1 = pA2 = 0.25. Thus gA = −2 · (0.25 · log20.25 + 0.75 ·

log20.75) = 1.62.

Suppose the server needs to process multiple queries in batches, and these

queries share a single resource budget C. We denote this scenario as Multiple

Queries with Shared Budget, MQSB. The formal definition of MQSB has the

123

same form as that of SQ. The only difference is the use of Gi (Equation 6.7)

to replace gi (Equation 6.2). Therefore, Algorithm 5 is also suitable for

solving MQSB. Moreover, the approximate solutions, which will be discussed

in Section 6.4.4, can also be used for MQSB.

Complexity of DP (MQSB). Compared with the SQ scenario, the

inputed data size for the DP algorithm will be larger in the MQSB scenario.

There are m queries evaluated concurrently in the MQSB scenario. If we

let n to be the average size of the result sets for these m queries, the DP

algorithm needs to process nm data items. Moreover, there would be extra

cost of computing the gains by using Equation 6.7 in the MQSB scenario,

which is O(nm). Thus, the computational complexity of Algorithm 5 would

be O(nmC + nm) = O(nmC) in the MQSB scenario, and the memory com-

plexity is O((nm)2C).

6.4.4 Approximate Solutions

The dynamic programming solution, Algorithm DP, can find the optimal

sets. However, its complexity can be quite high. To enhance its scalability,

we design a greedy algorithm. The general idea of Greedy is to make a

locally optimal choice. Every unit of cost should be allocated to the items

which can produce maximum benefit. To achieve this objective, we define a

new metric to describe the amount of gain obtained by consuming a unit of

resource. This metric is called efficiency, denoted by ei. Equation 6.8 shows

how to compute the value of ei.

ei =
gi

ci

(6.8)

124

input : An array of probing costs c = (c1, · · · , cn)
input : An array of gains g = (g1, · · · , gn)
input : The resource budget C
output: The probing set

d← sort(c, g);1

B ← C;2

for i← 1 to n do3

if B ≥ cd[i] then4

s[d[i]]← 1;5

B ← B − cd[i];6

return s;7

Algorithm 6: Algorithm Greedy

In Step 1 of the Greedy algorithm, the items are sorted by their efficiencies

in descending order. The sorted indices are stored in an array d. Initially,

the remaining budget, i.e. B, is set to the value of C. We then check the

items sequentially in the order stored in d. If the remaining budget is not

smaller than the cost of probing this item (Step 4), it is put into array s

(Step 5) and the remaining budget is reduced by its cost (Step 6). Step 7

returns the probing set stored in s.

The Greedy algorithm has a time complexity of O(n logn) (to sort the

items). The space requirement for Greedy is O(n). It is thus more efficient

than DP. However Greedy does not guarantee an optimal set can be found.We

will compare the performance of these two algorithms in Section 6.5.

6.4.5 Random and MaxVal

We also develop two other simpler heuristics, called Random and MaxVal.

The Random solution chooses items randomly until the resource budget is

exhausted. The MaxVal heuristic probes items sequentially in descending

order of their gains until the resource budget is exhausted.

125

Algorithm Computational Complexity Space Complexity

DP O(nC) O(n2C)
Greedy O(n log n) O(n)
Random O(n) O(n)
MaxVal O(n log n) O(n)

Table 6.2: Complexity of Four Algorithms (SQ)

Algorithm Computational Complexity Space Complexity

DP O(nmC) O((nm)2C)
Greedy O((nm) log(nm)) O(nm)
Random O(nm) O(nm)
MaxVal O((nm) log(nm)) O(nm)

Table 6.3: Complexity of Four Algorithms (MQSB)

Table 6.2 compares the complexities of the above algorithms in the SQ

scenario. For MQSB, the complexities of the optimal and approximate solu-

tions are listed in Table 6.3. They are derived by substituting the value of n

in Table 6.2 by nm.

6.5 Experimental Results

We have performed experimental evaluation on the effectiveness of our ap-

proaches. We first present our simulation model, followed by the detailed

results.

0 100 200 300 400 500
0

5

10

15

20

25

30

Resource Budget

Q
ua

lit
y

Im
pr

ov
em

en
t

Random
MaxVal
Greedy
DP

Figure 6.4: Quality Improvement vs.
Resource Budget (SQ)

0 100 200 300 400 500
0

1

2

3

4

5

6

Resource Budget

Q
ua

lit
y

Im
pr

ov
em

en
t

Random
MaxVal
Greedy
DP

Figure 6.5: Quality Improvement vs.
Resource Budget (MQSB)

126

6.5.1 Experimental Setup

We use a realistic data set, called Long Beach5, which contains 53K rectan-

gles, and each represents a region in the Long Beach country. The objects

occupy a 2D space of 10, 000 ∗ 10, 000 units. We use the Long Beach data as

an uncertain object database. We also assume that the uncertainty pdf of

any uncertain object is a uniform distribution.

The cost of probing each item (i.e. ci) are uniformly distributed in [1, 10].

The resource budget, C, ranges from 20 to 500. The performance metric

is the result quality improved by probing a set of result items. Each data

point is an average over 50 runs. Our experiments are run on a PC with

2.4GHz CPU and 512MB of main memory. Our simulation is written in

j2sdk1.4.2 11.

6.5.2 Results

Effectiveness Analysis. Figure 6.4 compares the quality improvement

using different probing strategies for the SQ problem. The x-axis is the value

of resource budget which ranges from 20 to 500. The y-axis is the improved

quality of query results. As shown in Figure 6.4, DP always outperforms

MaxVal and Random. This is because DP derives the probing set with

optimal resource utilization. The performance of Greedy is close to DP;

in fact, DP performs about only 2% to 3% better than Greedy. This is

because that the quality-aware probing problem is a variant of the knapsack

problem [29], and it has been shown in [35] that the average performance of

a greedy solution is close to the optimal one.

Figure 6.5 illustrates similar results for MQSB. In these experiments, 10

queries are executed concurrently in a batch.

5Available at http://www.census.gov/geo/www/tiger/

127

Figure 6.6: Time Spent in Different
Phases during Query Processing (SQ).

0 100 200 300 400 500
0

20

40

60

80

100

120

Resource Budget

D
ec

is
io

n
T

im
e

(m
s)

Random
MaxVal
Greedy
DP

Figure 6.7: Decision Time vs. Re-
source Budget (SQ)

Performance Analysis. Figure 6.6 shows a decomposition of the time

spent in the server: (1) Evaluation - the time required by the Query Evaluator

to compute the initial results (Step 1 in Section 6.2), and (2) Decision - the

time for deciding the probing set contents (Step 2 in Section 6.2). We have

ignored the processing time of Step 4 since after probing, the qualification

probabilities will become either zero or one for the data items in the probing

set, and no extra effort is needed to compute their qualification probabilities.

Here, we use DP to find optimal probing set in the Decision step. As shown in

Figure 6.6, the Decision step costs more time as the resource budget increases.

The reason is that more choices are available with a larger resource budget.

Figure 6.7 shows the time spent in the Decision step for the SQ problem.

DP uses more time to find the optimal probing sets, and the decision time of

DP increases fast with the resource budget. The decision time for heuristics

(i.e. Greedy, MaxVal and Random) are much less. The results in MQSB are

similar and are omitted here.

Compared with DP, Greedy gets similar quality improvement with less

time. In fact, Greedy performs very well under a large batch of queries in

the MQSB scenario. Figure 6.8 illustrates the time required for finding the

probing sets using the Greedy algorithm. The resource budget is set to 100.

128

0 20 40 60 80 100
0

10

20

30

40

50

Query Batch Size

D
ec

is
io

n
T

im
e

(m
s)

Figure 6.8: Scalability of MQSB (Greedy).

The number of queries evaluated in a batch varies from 10 to 100. As shown

in the figure, the decision time increases gracefully with the query batch size.

6.6 Chapter Summary

The evaluation of probabilistic queries over uncertain data has attracted

plenty of research interest in recent years. In this chapter, we investigated the

problem of optimizing the quality of probabilistic query answers with limited

resources. We further extended our solution to handle the case where the

resource budget is shared among multiple queries. While the DP algorithm

provides an optimal solution in polynomial times, our experiments show that

the Greedy heuristic can achieve close-to-optimal performance in less time.

In the future, we will investigate this problem for other types of queries.

129

7 Cleaning Tuple-Uncertainty Data

In this chapter, we will address the issues of cleaning tuple-uncertainty data.

Similarly as in Section 6, our objective is to optimize result quality with a

limited amount of resources. For this purpose, we present the PWS-quality

metric under the possible world semantics, which is a universal measure that

quantifies the ambiguity of query answers over uncertain data under tuple-

uncertainty. We study how PWS-quality can be efficiently evaluated for

two major query classes: (1) queries that examine the satisfiability of tuples

independent of other tuples (e.g., range queries); and (2) queries that require

the knowledge of the relative ranking of the tuples (e.g., MAX queries). We

then propose a polynomial-time solution to achieve an optimal improvement

in PWS-quality. Other fast heuristics are presented as well. Experiments,

performed on both real and synthetic datasets, show that the PWS-quality

metric can be evaluated quickly, and that our cleaning algorithm provides

an optimal solution with high efficiency. To our best knowledge, this is the

first work that develops a quality metric for a probabilistic database, and

investigates how such a metric can be used for data cleaning purposes.

7.1 Introduction

In this chapter, we address the problem of cleaning tuple-uncertainty data,

i.e. probabilistic databases [6, 30], for achieving better query or service quality,

under a limited budget. Despite the importance of uncertain database clean-

ing, relatively little work has been done in the area (e.g., [67, 33, 51, 4, 19]).

The techniques for cleaning attribute-uncertainty data in Section 6 cannot be

readily utilized here. The reasons are two-folds. Firstlly, the query semantics

are different. The queries over attribute-uncertainty data retrieves entities,

130

while those over tuple-uncertainty data are fed with tuples. Futhermore, the

quality metric in Section 6 is designed only for probabilistic range query.

In this chapter, we propose PWS-quality, a universal measure quantifing the

ambiguity of query answers over uncertain data under tuple-uncertainty. Our

main idea is to make use of the query information to decide the set of data

items to be cleaned. By operating on these data, the quality of the answers

returned to the user can attain the highest improvement. We develop our

solution based on the probabilistic database [6, 30], a popular model for un-

certain data cleaning and integration [3, 84, 53, 36].The main challenges that

we address include: (1) define a sound and general quality metric over query

results; (2) develop efficient methods to compute this metric; and (3) devise

efficient and optimal cleaning algorithms.

To illustrate, Table 7.1 shows a relation in a probabilistic database, which

stores the quotations of four products (with IDs a, b, c and d), collected from

webpages by using some automatic schema matching methods. An attribute

called existential probability (Prob. in short) is used to indicate the confidence

of the existence of each tuple. A tuple is also associated with an “x-tuple” [3],

which represents a distribution of alternatives. For example, product a has

a 0.7 chance for offering a price of $120, and a 0.3 chance for having a

quotation of $80. Now consider a MAX query: “Return the tuple with the

highest price”. Due to data imprecision, this query can produce imprecise

answers. Table 7.2 shows the query result, which contains the IDs of the

tuples, and their non-zero qualification probabilities for being the correct

answers.

Based on the answer probabilities, a real-valued “quality score” can be

defined to capture the degree of ambiguity of a query answer. For exam-

ple, the score of the MAX query result (Table 7.2) is -1.73 (according to our

131

Product ID Tuple ID Price ($) Prob.
a a1 120 0.7
a a2 80 0.3
b b1 110 0.6
b b2 90 0.4
c c1 140 0.5
c c2 110 0.3
c c3 100 0.2
d d1 10 1

Table 7.1: Uncertain database example.

Tuple Qualification Probability
a1 0.35
b1 0.09
c1 0.5
c2 0.09
c3 0.024

Table 7.2: Results of the MAX query on Table 7.1.

quality metric). Suppose Table 7.1 is partially cleaned (e.g., by consulting

the companies about the actual prices of the products). Table 7.3 shows one

possible scenario, where the uncertainties associated with x-tuples a and c

are removed. In this table, only one tuple exists for each of a and c, and the

existential probability of this tuple is equal to one. The new result of the MAX

query is shown in Table 7.4, with a lower ambiguity, or an improved quality

score of -0.97. In the extreme, if all the x-tuples are cleaned, the quality

score becomes the highest (a value of zero with our metric).

Product ID Tuple ID Price ($) Prob.
a a2 80 1
b b1 110 0.6
b b2 90 0.4
c c3 100 1
d d1 10 1

Table 7.3: A partially-cleaned instance of Table 7.1.

How should such a query quality metric be defined? Although some qual-

ity measures have been proposed before, they are either catered for specific

132

Tuple Qualification Probability
b1 0.6
c3 0.4

Table 7.4: Results of the MAX query on Table 7.3.

types of queries (e.g., [23, 33, 26, 74]), or not designed for use in a prob-

abilistic database (e.g., [32, 42]). To solve these problems, we propose the

PWS-quality. This metric provides a universal measure of query quality (i.e.,

can be used by any queries) for the probabilistic database. It is essentially

an entropy function [73], which returns a real-valued score for conveniently

indicating the amount of impreciseness in query answers. The PWS-quality

also enables efficient data cleaning solutions, as we will show in this chapter.

Another salient feature of PWS-quality is that it assumes the Possible-

World Semantics (or PWS in short). The PWS provides a formal interpre-

tation of the probabilistic data model [30], where a database is viewed as a

set of deterministic database instances (called possible worlds), each of which

contains a set of tuples extracted from each x-tuple. An example possible

world for Table 7.1 contains the tuples {a1, b2, c3, d1}. Query evaluation al-

gorithms for a probabilistic database should follow the notion of PWS, i.e.,

the results produced should be the same as if the query is evaluated on all

the possible worlds [33]. Analogously, the PWS-quality score is calculated

based on the query results obtained from all the possible worlds.

One apparent problem about the PWS-quality is that it is inefficient

to calculate. This is because evaluating this measure requires examining

all possible worlds, the number of which can be exponentially large [6, 30].

Interestingly, we observe that it is not often necessary to examine all the

database instances; the PWS-quality can, in fact, be computed by using the

query answers returned to the user. This is true for a broad class of queries

known as the entity-based query [23]. This kind of query has the property

133

that the final answer returned to the user contains the IDs of the tuples that

satisfy it, as well as their qualification probabilities (e.g., Table 7.2). We

study two representative examples of entity-based queries, namely, the range

query and the MAX query. Both queries are used in many applications. For

example, in a sensor-monitoring application, a range query can be: “Return

the IDs of the sensors whose temperature values are within [10oC, 20oC]”. In

the movie database, a MAX query can be: “Return the ID of the movie-viewer

whose rating is the highest”. We show that the PWS-quality of these two

queries can be quickly computed by using query answer information. Our

methods are effective because a query answer can be efficiently generated by

existing query evaluation and indexing algorithms, and the complexity of our

technique is linear to the size of the query answer.

The PWS-quality also serves as a useful tool for solving the data cleaning

problem. Given the set of x-tuples to be cleaned, we prove that there is al-

ways a monotonic increase in the expected value of PWS-quality. This helps

us to formulate the data cleaning problem as: choose the subset X of x-tuples

such that (1) the increase in the expected quality of cleaning the x-tuples in

X is the highest; and (2) the total cost of cleaning X does not exceed a given

budget. This problem is challenging because calculating the expected quality

improvement of X requires the processing of all combinations of the tuples

in X. Moreover, a näıve approach of finding the optimal set X requires the

testing of different combinations of x-tuples in the database, rendering an

exponential time complexity. To solve these problems, we convert the PWS-

quality expression into an “x-form” – a linear function of the probability

information of the x-tuples. The x-form allows us to compute the expected

quality improvement for cleaning a set of x-tuples easily. Moreover, it has the

same format for both the range and the MAX queries (with different param-

134

eters), so that only a single solution is needed to support both queries. To

find the optimal solution without testing all combinations of x-tuples from

the whole database, we show that it is only necessary to select the x-tuples

whose tuples appear in a query answer. We then model the cleaning task as

an optimization problem, and develop a dynamic-programming-based algo-

rithm, in order to deduce the optimal set of x-tuples in polynomial time. We

also propose other approximate heuristics (such as the greedy algorithm).

Our algorithms serve both the range and the MAX queries. They also support

databases that contain tuples with the same attribute value.

We have performed detailed experimental evaluation to examine our ap-

proaches. For both real and synthetic datasets, the results show that PWS-

quality can be efficiently computed. Moreover, x-tuples can be quickly se-

lected to achieve an optimal improvement in expected quality. Among the

heuristics, the greedy algorithm provides a close-to-optimal performance with

the highest efficiency.

Figure 7.1 illustrates a system design that incorporates our solution. The

query engine, upon receiving a user’s request, produces a probabilistic query

answer. This information is passed to the quality manager. Inside this mod-

ule, the quality evaluator computes the PWS-quality score. It then sends the

necessary information to the data cleaning algorithm, which derives the opti-

mal set of x-tuples to be cleaned (or “cleaning set”), with the available budget

considered. The cleaning manager is responsible for performing the saniti-

zation activity (e.g., requesting the selected sources to report their updated

values). The query, when executed again, will then have an improvement in

the expected quality. 6 Notice that the quality manager is decoupled from

the query engine, since it only requires the probability information of the

6When the query is re-run on the refreshed database, a full evaluation is not needed,
as explained in Section 7.2.

135

answer tuples. Another issue is that the PWS-quality score is also sent to

the user. This real-valued rating provides an intuitive way for the user to

understand the degree of ambiguity in his results, without interpreting the

numerous probability values that may appear in his query answers. In this

chapter, we focus on the design of the quality evaluator and the data cleaning

algorithm.

Probabilistic

Database

Query

Engine

Query
Answer

User

Quality

Evaluator

Data Cleaning

Algorithm

Quality Manager

PWS-quality

score

Cleaning
Budget

External Data
Sources

Cleaning

Manager

Cleaning

Set
 Cleaning
request

Data
update

Query
request

Figure 7.1: The framework of our solution.

The rest of this chapter is organized as follows. In Section 7.2, we dis-

cusses the system assumed in this chapter, as well as the data and query

models. In Section 7.3 we present the formal notion of the PWS-quality, and

efficient methods for evaluating it. Section 7.4 describes the quality-based

cleaning method and other heuristics. We present our experimental results

in Section 7.5, and conclude this chapter in Section 7.6.

136

7.2 Data and Query Models

We now describe the probabilistic database model (Section 7.2.1), and the

types of queries studied in this chapter (Section 7.2.2).

7.2.1 The Probabilistic Database Model

A probabilistic database D contains m entities known as the “x-tuples” [6,

33, 3]. We denote the k-th x-tuple by τk, where k = 1, . . . , m. We also

assume that the x-tuples are independent of each other. Each x-tuple is a set

of tuples ti, which represent a distribution of values within the x-tuple. There

are a total of n tuples in D. Each tuple has four attributes: (IDi, vi, ei, xi).

Here IDi is an unique identifier of ti, and vi is a real-valued attribute used

in queries (called the querying attribute). For simplicity, we assume vi is

one-dimensional, but our solutions can generally be extended to support

multi-dimensional attributes. The attribute ei is the existential probability

of ti – the probability that ti exists in the real world. Each tuple belongs to

one of the x-tuples, and xi = {k|k = 1, . . . , m} denotes that ti belongs to the

k-th x-tuple.

Within the same x-tuple, the existence of tuples is mutually exclusive.

We also assume that the sum sk of all ei’s of the tuples in the same x-tuple

τk is equal to 1. If sk is less than 1, we conceptually augment a “null” tuple

to τk, whose querying attribute has a value equal to −∞, and existential

probability equal to 1 − sk. This null tuple is only used for completeness

in proofs; they do not exist physically. In Table 7.1, for example, there are

four x-tuples (a, b, c, d). The “Price” and “Prob.” columns represent the

querying attribute and existential probability respectively.

137

7.2.2 Queries

We study two types of entity-based queries: non-rank-based and rank-based [23].

In a non-rank-based query, a tuple’s qualification probability is independent

of the existence of other tuples. For example, queries whose selection clauses

involve only the attributes of a single tuple belong to this query class. An-

other good example is the range query:

Definition 7.1 Probabilistic Range Query (PRQ). Given a closed in-

terval [a, b], where a, b ∈ ℜ and a ≤ b, a PRQ returns a set of tuples (ti, pi),

where pi, the qualification probability of ti, is the non-zero probability that

vi ∈ [a, b].

For a rank-based query, a tuple’s qualification probability is dependent

on the existence of other tuples. Examples of this class include the MAX/MIN

query and the nearest-neighbor query. We study the MAX query in this chap-

ter.

Definition 7.2 Probabilistic Maximum Query (PMaxQ). A PMaxQ

returns a set of tuples (ti, pi), where pi, the qualification probability of ti, is

the non-zero probability that vi ≥ vj, where j 6= i ∧ j = 1, . . . , n.

Although the answers returned by both queries have the same form, their

PWS-quality scores are computed in a different way, as illustrated in the

next section. We will also discuss how PWS-quality can be computed for

other entity-based queries (e.g., nearest-neighbor queries). Table 7.5 shows

the symbols used in uncertain data cleaning.

Let us now briefly explain how PRQ and PMaxQ can be evaluated effi-

ciently (without consulting the possible worlds). A PRQ can be computed

by examining each tuple ti, and testing whether its querying attribute, vi, is

138

Symbol Description

Data model

D A probabilistic database
τk An x-tuple of D, with k = 1, . . . , m
ti A tuple of D with i = 1, . . . , n

IDi A unique identifier of ti
vi Querying attribute of ti
ei Existential probability of ti
xi The ID of the x-tuple (k) that contains ti

Query model

Q A probabilistic query
pi Qualification prob. of ti for Q
Pk Qualification prob. of τk for Q

Quality Metrics

rj A distinct PW-result (j = 1, . . . , d)
qj Prob. of occurrence of rj

S(D, Q) PWS-quality of Q on database D

Data Cleaning

C Cleaning budget for Q
ck Cost of cleaning τk

X Set of x-tuples to be cleaned
I(X, D, Q) Quality improvement of cleaning X

Table 7.5: Symbols for cleaning probabilistic databases.

within [a, b]. If this is not true, then ti’s qualification probability, pi, must

be zero. Otherwise, pi = ei, its existential probability. The probability of ti

for satisfying the PMaxQ is the product of (1) its existential probability and

(2) the probability that x-tuples other than the one that ti belongs to do not

have a tuple with value larger than vi. Indexing solutions (e.g., B-tree and

R-tree) can be built on the querying attributes in order to improve the query

performance.

Also, as mentioned in Section 7.1, a query may need to be re-evaluated

after cleaning is done. However, this round of query evaluation can be done

more efficiently. In particular, only the x-tuples whose tuples appear in

the query answer of the first evaluation round need to be considered. We

will explain these details in Section 7.4.5 after we discuss the issues of data

139

cleaning.

7.3 The PWS-Quality

To understand this metric, let us first review how the possible world semantics

(PWS) are used to evaluate a query. As shown in Figure 7.2, a probabilistic

database is expanded to a set of possible worlds (Step 1). The query is then

issued on each possible world, producing answers that we call PW-results

(Step 2). In Step 3, the PW-results are combined to produce the final query

answer. For example, a possible world in Table 7.1 is the set W of tuples

whose IDs are a1, b2, c3 and d1. If a MAX query is issued on price, the

PW-result of W is a1 (since it has the largest price), with a probability

of 0.7 × 0.4 × 0.2 × 1 = 0.056. In the final query answer, the qualification

probability of a1 is equal to the sum of the probabilities that a1 is the answer

in all the possible worlds, that is, 0.35.

Probabilistic

DB

Possible

World
Possible

World

Query Query

PW-

Result

PW-

Result

Final Query

Answer

PWS-

Quality

A

B

1

2

3

Figure 7.2: PWS and PWS-Quality.

140

The PWS-quality is essentially a function of the PW-results (computed

in Step A in Figure 7.2). Since the form of the queries for computing the

PW-results is not specified, the PWS-quality can be applied to any type

of queries. The major problem of this approach is that there can be an

exponentially large number of possible worlds [6, 33], so as the PW-results.

Computing PWS-quality can thus be very costly. To address this problem,

we show how PWS-quality can be evaluated by using the tuple information

in the final query answers, instead of the PW-results (Step B), for PRQ and

PMaxQ. Since the number of tuples in the query answer set is much smaller

than that of the possible worlds, the computation efficiency of PWS-quality

is also better.

We now examine the definition of PWS-quality (i.e., Step A) in Sec-

tion 7.3.1. Then we propose a better method (i.e., Step B) in Section 7.3.2.

Sections 7.3.3 and 7.3.4 outline the proofs of the new method for PRQ and

PMaxQ.

7.3.1 Evaluating the PWS-Quality

The PWS-quality is essentially the entropy [73] of the PW-results produced

in Step 2 of Figure 7.2. Let {r1, . . . , rd} be the set of d distinct PW-results.

Also, let qj be the probability that rj is the actual answer (we call qj the

PW-result probability of rj).

Definition 7.3 The PWS-quality of a query Q evaluated on a database

D, denoted by S(D, Q), is:

S(D, Q) =

d
∑

j=1

qj log qj (7.1)

141

Notice that the base of the log() function is 2. Moreover, the sum of the PW-

result probabilities must be equal to one (i.e.,
∑d

j=1 qj = 1). By using this

fact and comparing with the entropy function [73], it can be shown that the

PWS-quality (Equation 7.1) is the negated value of the entropy of the PW-

results. The entropy, a popular function for measuring uncertainty in the

information theory literature, is adopted here to quantify the impreciseness

of query answers. The value of the PWS-quality score ranges from − log d

(i.e., the most ambiguous result) to zero (i.e., a single PW-result).

The problem of computing PWS-quality in this way is that we need to

know all the PW-result probabilities. This may represent a performance

bottleneck, since the number of PW-result possibilities, derived from possi-

ble worlds, can be exponentially large. This is true for a PRQ, where each

PW-result contains a unique set of tuples whose querying attributes are inside

the query range. For a PMaxQ, the number of PW-results can also be com-

binatorial, if more than one tuple contain the same querying attribute value.

For instance, in Table 7.1, tuples b1 and c2 have the same price (i.e., $110).

We then have 22 − 1 = 3 PW-results that contain one or more of these tu-

ples as the answer (i.e., {b1}, {c2}, {b1, c2}), derived from the possible worlds

where all tuples with price above $110 are excluded. Let us investigate how

PWS-quality can be evaluated more efficiently for these queries.

7.3.2 The x-Form of the PWS-Quality

The PWS-quality can in fact be computed by using the probability informa-

tion of the tuples in the query answer (Step B of Figure 7.2). In particular,

the PWS-quality (for both PRQ and PMaxQ) can be converted to an expres-

sion known as the x-form. An x-form is essentially a sum of some function g

evaluated on each x-tuple τk, and g can be computed efficiently based on the

142

probability information of the tuples in τk. For notational convenience, we

use Y (x) to denote the function x log x. We also let Pk be the qualification

probability of τk (i.e., its probability for satisfying the query). Since tuples

belonging to the x-tuple are mutually exclusive, we have

Pk =
∑

ti∈τk

pi (7.2)

The following lemma presents an alternative formula of PWS-quality.

Lemma 7.1 The x-form of the PWS-quality is given by:

S(D, Q) =

m
∑

k=1

g(k, D, Q) (7.3)

For PRQ,

g(k, D, Q) =
∑

ti∈τk

pi log ei + Y (1− Pk) (7.4)

For PMaxQ, let the i-th tuple of τk be tk,i, sorted in descending order of vk,i.

If tk,i has existential probability ek,i and qualification probability pk,i, then,

g(k, D, Q) =

|τk|
∑

i=1

(pk,i log ek,i + ωk,i log(1−
i

∑

j=1

ek,j)) (7.5)

where

ωk,i =







(1−
∑i

j=1 ek,j)(
pk,i

ek,i
−

pk,i+1

ek,i+1
) i < |τk|

0 i = |τk|
(7.6)

Lemma 7.1 states that the PWS-quality is the sum of some function g

for k = 1, . . . , m. Each g is a function of the existential and qualification

probabilities of tuples within x-tuple τk. Interestingly, even though PRQ

and PMaxQ have different semantics, their PWS-quality function has a com-

mon form (i.e., Equation 7.3). Evaluating the x-form of PMaxQ needs some

143

preprocessing, by sorting the tuples within the same x-tuple according to the

querying attributes. An example of tuples sorted in this way is shown in

Table 7.1.

Given that the values of g(k, D, Q) are available, the x-form of both

queries can be computed by iterating on the whole table of x-tuples, in O(m)

times. For PMaxQ, an additional average cost of O(n log n
m

) may be needed

to sort the tuples. This is still faster than using an exponential number of

PW-result probability values to evaluate the PWS-quality. The x-form is

also useful to solve the data cleaning problem, to be presented in Section 7.4.

We next show a useful fact.

Lemma 7.2 g(k, D, Q) < 0 if and only if there exists ti ∈ τk such that

pi ∈ (0, 1). Otherwise, g(k, D, Q) = 0.

Proof : First of all, g(k, D, Q) is obviously zero if pi = 0, for ∀ti ∈ τk,

which means no tuples of this x-tuple can satisty the query Q. Secondly, the

case pi = 1 implies that ei = 1, which means the x-tuple τk contains only

one tuple and must satisfy the query. Therefore, τk is clean, and brings no

uncertainty to the query answer. For all other cases, i.e. there exists ti ∈ τk

such that pi ∈ (0, 1), it is not certain whether the x-tuple satisfies the query

or not, and g(k, D, Q), the uncertainty caused by τk will be non-zero.

Given an x-tuple τk, the above states that g(k, d, Q) is less than zero

if there exists a tuple ti ∈ τk, such that its qualification probability, pi, is

neither zero nor one. More importantly, an x-tuple whose tuples’ qualification

probabilities are either zero or one does not need to be included in computing

the PWS-quality (Equation 7.3). Thus, we do not need to examine the whole

database. Instead, we can just pick the x-tuples that satisfy the conditions

stated in Lemma 7.2. This is exactly the set of x-tuples whose tuples in the

144

final query answer have qualification probabilities not equal to one. If we are

given the query answer (which are produced by the query engine), then the

set of x-tuples required to compute the PWS-quality can be derived easily.

We remark that the x-forms for PRQ and PMaxQ can also be used by

other entity-based queries. Particularly, the x-form of PRQ can be used by

other non-rank-based queries, whose selection conditions only involve the

attributes of a single tuple. The x-form of the PMaxQ can also be used by

MIN and nearest-neighbor queries, by using a different sorting criterion on

the query attribute. Next, we explain briefly how the x-form is obtained for

PRQ and PMaxQ.

7.3.3 Deriving the x-Form for PRQ

We now show the proof of the x-form expression for PRQ. Here, a distinct

PW-result rj is essentially a set of tuples ti’s that satisfy the PRQ (i.e.,

vi ∈ [a, b]) in one or more possible worlds. Note that rj cannot possess more

than one tuple from the same x-tuple, since each possible world only contains

one of the tuples selected from each x-tuple. The probability qj of getting rj

is then equal to:

qj =
∏

ti∈rj

ei

∏

τk∩rj=∅

(1− Pk) (7.7)

Equation 7.7 is the product of: (1) the probability all tuples ti’s that satisfy

the PRQ are in rj (i.e.,
∏

ti∈rj
ei), and (2) the probability that other x-tuples

satisfy the PRQ but do not appear in rj(i.e.,
∏

τk∩rj=∅(1 − Pk)). We then

substitute this into Equation 7.1, which becomes:

S(D, Q) =

d
∑

j=1

qj(

n
∑

i=1∧ti∈rj

log ei +

m
∑

k=1∧τk∩rj=∅

log(1− Pk)) (7.8)

145

Now, we claim that

d
∑

j=1

n
∑

i=1∧ti∈rj

qj log ei =

n
∑

i=1

pi log ei (7.9)

To understand why, notice that the summation orders of the left side of

Equation 7.9 can be reversed, which becomes:

n
∑

i=1

d
∑

j=1∧ti∈rj

qj log ei (7.10)

Observe that the qualification probability pi (of tuple ti) can be obtained

by summing up the distinct PW-result probabilities (qj’s), where result rj

contains ti. That is,

pi =

d
∑

j=1∧ti∈rj

qj (7.11)

This is an important equation because it allows us to replace all qj ’s with pi’s

in the expression. Since there are at most m pi’s in the final query answer, the

PWS-quality can be computed faster than using qj ’s, the number of which is

exponential. Thus, Equation 7.9 is correct.

Next, we prove that

d
∑

j=1

m
∑

k=1∧τk∩rj=∅

qj log(1− Pk) =
m

∑

k=1

Y (1− Pk) (7.12)

Again, by reversing the order of summation, the left side of 7.12 becomes

m
∑

k=1

d
∑

j=1∧τk∩rj=∅

qj log(1− Pk) (7.13)

Notice that
∑d

j=1∧τk∩rj=∅ qj is the probability that τk does not appear in any

146

of the distinct results, which is equal to 1− Pk. Thus, Equation 7.12 can be

obtained. Finally, by using Equations 7.8,7.9 and 7.12, the x-form of PRQ

(Equation 7.3 and Equation 7.4) is proved.

Notice that our proof still holds for other queries that involve different

selection constraints, by replacing the condition that a tuple is included in

a possible result (i.e., “vi ∈ [a, b]”) with the required conditions (e.g., “vi <

a ∨ vi > b”). That is, the x-form of PRQ can be generalized to a non-rank-

based query, which tests whether a tuple satisfies it based on the tuple’s own

attributes.

7.3.4 Deriving the x-Form for PMaxQ

The derivation of the x-form for PMaxQ is similar to that of PRQ, with

the following major differences: (1) all tuples in an x-tuple are assumed to

be sorted in descending order, and (2) the PW-result probability qj has a

different formula. Our solution also handles the scenario where more than

one tuple with the same querying attribute value exist.

For convenience, let the i-th tuple of τk be tk,i, sorted in descending order

of vk,i. A distinct PW-result rj for PMaxQ is then a set of tuples ti’s that

have the same maximum value, in one or more possible worlds. Suppose rj.v

is the value shared by tuples in result rj. The probability qj of getting rj is

then equal to:

qj =
∏

ti∈rj

ei

∏

τk∩rj=∅

Pr(τk < rj .v) (7.14)

where Pr(τk < rj.v) is the probability that τk has a tuple with querying

attribute value smaller than rj.v. Equation 7.14 is the product of: (1) the

probability that all tuples ti’s in rj exist (i.e.,
∏

ti∈rj
ei), and (2) the proba-

bility that all other x-tuples have at least a tuple with a value smaller than

147

rj .v (i.e.,
∏

τk∩rj=∅ Pr(τk < rj.v)). Moreover, since all tuples of an x-tuple

are sorted in descending order, we can rewrite Pr(τk < rj.v) as:

Pr(τk < rj.v) = 1−

s(j,k)
∑

l=1

ek,l (7.15)

where s(j, k) is some integer inside [1, |τk|], such that vk,s(j,k) is the smallest

value not smaller than rj.v.

By substituting Equation 7.14 into log qi, Equation 7.1 becomes:

S(D, Q) =
d

∑

j=1

qj(
n

∑

i=1∧ti∈rj

log ei +
m

∑

k=1∧τk∩rj=∅

log(Pr(τk < rj.v))) (7.16)

Similarly as the proof in Section 7.3.3, we can have

d
∑

j=1

n
∑

i=1∧ti∈rj

qj log ei =

n
∑

i=1

pi log ei (7.17)

Next we prove that

d
∑

j=1

m
∑

k=1∧τk∩rj=∅

qj log(Pr(τk < rj.v))

=

m
∑

k=1

|τk|
∑

i=1

ωk,i log(1−
i

∑

j=1

ek,j) (7.18)

By substituting Equation 7.15 into log Pr(τk < rj.v), the left part of

Equation 7.18 becomes:

d
∑

j=1

m
∑

k=1∧τk∩rj=∅

qj log(1−

s(j,k)
∑

l=1

ek,l) (7.19)

148

By swapping the summation orders and noticing that s(j, k) is just some

number in [1, |τk|], Equation 7.19 can be simplified to the form of Equa-

tions 7.3 and 7.5.

The rest is to show that ωk,i is equivalent to Equation 7.6. First, notice

that ωk,i is just a sum of qj ’s (for PW-results rj). In particular,

ωk,i =
∑

vk,i+1<rj .v≤vk,i

qj (7.20)

This is because the value i in the term log(1−
∑i

j=1 ek,j) of Equation 7.5

represents the i-th position of the tuple in the x-tuple τk (i.e., tk,i) which

has the smallest querying attribute larger than rj.v, which must be between

(vk,i+1, vk,i], or else i cannot be the position where rj .v is just larger than

vk,i+1. Notice that if i = |τk|, no tuples th,l can satisfy this condition, and so

ωk,|τk| = 0.

Next, we claim that

∑

rj .v≤vk,i

qj = (1−
i

∑

l=1

ek,l) ·
pk,i

ek,i

(7.21)

To prove Equation 7.21, note that its left side is the probability that the

answer to PMaxQ has a querying attribute value smaller than vk,i. This is

equal to the product of the occurrence probabilities of two events: E1, the

event that all tuples that do not belong to τk and whose values are larger than

vk,i do not exist; E2, the event that none of the tuples {tk,1, . . . , tk,i} exist.

The probability that E1 is true (Pr(E1)) can be derived by using the fact

that pk,i = Pr(E1) · ek,i. Thus, Pr(E1) =
pk,i

ek,i
. Since Pr(E2) = 1−

∑i

j=1 ek,j,

Equation 7.21 can be obtained.

149

Finally, Equation 7.20 can be written as

∑

vh,l≤vk,i

ph,l − pk,i+1 −
∑

vh,l≤vk,i+1

ph,l (7.22)

By substituting Equation 7.22 with the result of Equation 7.21, we prove

that Equation 7.6 is correct.

We can easily adapt the x-form of PMaxQ to other rank-based queries.

For example, for MIN queries, we can sort the tuples within an x-tuple in

ascending order, and change the comparison signs accordingly. As another

example, the x-form for the nearest-neighbor query can be derived by order-

ing the tuples according to the Euclidean distance of their querying attributes

from the query point.

7.4 Cleaning Uncertain Data

Let us now discuss how the PWS-quality can be used to facilitate the cleaning

of uncertain data. Section 7.4.1 presents the formal definition of this problem.

In Sections 7.4.2 and 7.4.3, we describe an efficient solution that can be

applied to the queries under study. Several heuristics that provide efficient

solutions are presented in Section 7.4.4. We also investigate how to efficiently

reevaluate a query on the cleaned database in Section 7.4.5.

7.4.1 Problem Definition

Recall that our goal is to select the most appropriate set of x-tuples to be

cleaned, under a stringent budget, in order to achieve the highest expected

quality improvement. Formally, let us define an operation called clean(τk):

Definition 7.4 Given an x-tuple τk, clean(τk) replaces τk with an x-tuple

that contains a single tuple: {IDi, vi, 1, k}, such that IDi and vi are the cor-

150

responding identifier and querying attribute value of some tuple ti that belongs

to τk.

Essentially, τk becomes “certain” after clean(τk) is performed. Only one

of the tuples in the original x-tuple is retained, with existential probability

changed to one. The value of the new tuple depends on the cleaning oper-

ation. In Table 7.1, for example, after clean(a) is performed, a contains a

single tuple {a2, 80, 1, a}, derived from a2, with a price of $80 and existential

probability of 1.

Cleaning an x-tuple may involve a cost. For example, if an x-tuple rep-

resents a sensor reading in a sensor monitoring application, then the cost of

cleaning this x-tuple (by probing the sensor to get the latest value) can be

the amount of battery power required for that sensor’s value to be shipped

to the base station. We use ck, a natural number, to capture the cost of per-

forming clean(τk). We also assume that a query Q is associated with a budget

of C units, where C is a natural number. This value limits the maximum

amount of cleaning effort that can be used to improve the quality of Q. In

sensor monitoring, C can be the total amount of energy allowed for probing

the sensors. The value of C may be based on the amount of system resource

available, or the priority of the query user.

Our goal is to obtain the set of x-tuples that, under a given budget, yields

the most significant expected improvement in PWS-quality. This set of x-

tuples is then selected to be cleaned. Specifically, let X be any set of x-tuples

chosen from database D. Without loss of generality, let X = {τ1, . . . , τ|X|}.

Also, let ~t be a “tuple vector” of |X| dimensions, where the k-th dimension of

~t is a tuple that belongs to the k-th x-tuple of X. For example, if X = {τ1, τ2},

where τ1 = {t0, t3} and τ2 = {t2, t5}, then two possible values of ~t are {t0, t5}

and {t3, t2}.

151

Now, let D′(~t) be the new database obtained, after clean(τk) is performed

on each x-tuple τk in X, which produces tuples described in ~t. The expected

quality of cleaning a set X of x-tuples is then equal to:

E(S(D′(~t), Q)) =
∑

~t∈τ1×...×τ|X|

Πti∈~tei · S(D′(~t), Q) (7.23)

For every tuple vector in τ1×. . .×τ|X|, Equation 7.23 calculates the probabil-

ity that the new database D′(~t) is obtained (i.e., Πti∈~tei) and the PWS-quality

score of query Q evaluated on D′(~t) (i.e., S(D′(~t), Q)).

Definition 7.5 The quality improvement of cleaning a set X of x-tuples is

I(X, D, Q) = E(S(D′(~t), Q))− S(D, Q) (7.24)

Our problem can now be formulated as follows:

Definition 7.6 The Data Cleaning Problem. Given a budget of C units,

choose a set X of x-tuples from D such that I(X, D, Q) attains the highest

value.

A straightforward way of solving this problem is to obtain the powerset of

all x-tuples in D. For each element (a set X of x-tuples) of the powerset, we

test whether the total cost of cleaning the x-tuples in X exceeds the budget

C. Among those that do not, we select the set of x-tuples whose quality

improvement is the highest.

This solution is inefficient for two reasons. First, given a set X of x-tuples,

computing Equation 7.24 requires the consideration of all tuple vectors of

X, which are the combinations of tuples selected from the x-tuples in X.

Second, the number of sets of x-tuples to be examined is exponential. We

152

tackle the first problem in Section 7.4.2. The second problem is addressed in

Section 7.4.3.

7.4.2 Evaluating Quality Improvement

Equation 7.24 can be computed more easily by using the x-form of PWS-

quality, as shown by the following lemma.

Lemma 7.3 The quality improvement of cleaning a set X of x-tuples is:

I(X, D, Q) = −

|X|
∑

k=1

g(k, D, Q) (7.25)

where g(k, D, Q) is given by Equations 7.4 and 7.5, for PRQ and PMaxQ

respectively.

Proof : By using the x-form (Equation 7.3), we can rewrite E(S(D′(~t), Q))

as
|X|
∑

k=1

E(g(k, D′(~t), Q)) +

m
∑

k=|X|+1

E(g(k, D′(~t), Q)) (7.26)

For both PRQ and PMaxQ, we claim that:

g(k, D′(~t), Q)) = 0, for k = 1, . . . , |X| (7.27)

E(g(k, D′(~t), Q)) = g(k, D, Q), for k = |X|+ 1, . . . , m (7.28)

By using Equations 7.27 and 7.28, Equation 7.26 becomes
∑m

k=|X|+1 g(k, D, Q).

Together with Equations 7.24 and 7.3, we can see that Equation 7.25 is cor-

rect. The following sketches the proof of Equations 7.27 and 7.28 for PRQ

and PMaxQ.

PRQ: First, notice that the new database D′(t) contains a single tuple for

every τk ∈ X, whose existential probability is 1, and qualification probability

153

is either 0 or 1. Using this fact and Equation 7.4, we can see Equation 7.27

is true for every k ∈ [1, |X|]. For Equation 7.28, observe that g(k, D′(~t), Q)

is just some function (Equation 7.4) of pi’s and ei’s for ti ∈ τk, where τk /∈ X.

As discussed in Section 7.2.2, the value of pi for PRQ is either ei or zero.

Since these values of pi’s and ei’s are not changed by any cleaning operations

on the x-tuples in X, Equation 7.28 holds for k = |X|+ 1, . . . , m.

PMaxQ: Let the existential and qualification probabilities of each tuple

ti,k for the new database D′(~t) be e′k,i(~t) and p′k,i(~t) respectively. Then, After

clean(τk), only one tuple (tk,1) in τk can exist in D′(~t). Since ωk,1 = 0 (Equa-

tion 7.5), we have g(k, D′(~t), Q) = p′k,1(~t) log e′k,1(~t). Moreover, e′k,1(~t) = 1.

Thus, g(k, D′(~t), Q) = 0 and the proof for Equation 7.27 is complete.

To prove Equation 7.28, note that by using Equation 7.5, E(g(k, D′(~t), Q))

can be written as:

|τk|
∑

i=1

(E(p′k,i(~t)) log ek,i + (
E(p′k,i(~t))

ek,i

−
E(p′k,i+1(~t))

ek,i+1
)Y (1−

i
∑

j=1

ek,j)) (7.29)

Next, we claim that

E(p′k,i(~t)) = pk,i, ∀k > |X| (7.30)

In order to compute E(p′k,i(~t)) directly, p′k,i(~t) needs to be evaluated for every

vector ~t ∈ τ1 × . . . × τ|X|. Furthermore, computing each p′k,i(~t) involves

querying on every possible world in D′(~t). Thus, E(p′k,i(~t)) is just some

function of all the PW-result probabilities queried on D, and this is the same

function for pk,i. Thus, Equation 7.30 is correct. Finally, by substituting

Equation 7.30 into Equation 7.29, we obtain Equation 7.28.

Equation 7.25 reveals three important facts. First, the quality improve-

ment, I(X, D, Q), is non-negative (since g(k, D, Q) is non-positive). This

implies that the expected quality monotonically increases with the perfor-

154

mance of the clean(τk) operation. Second, the task of computing I(X, D, Q)

is made easier (compared with Equation 7.24), since g(k, D, Q) can be com-

puted in polynomial time. If these g values have been stored (e.g., in a

lookup table) during the process of computing the x-form of the PWS-quality

(Equation 7.3), then I(X, D, Q) can be evaluated by a table lookup. Third,

Equation 7.25 can be applied to both PRQ and PMaxQ, since g(k, D, Q)

have been derived for both queries in Section 7.3.2. Let us see how these

results can be used to develop an efficient data cleaning algorithm.

7.4.3 An Optimal and Efficient Data Cleaning Algorithm

We now address the second question: to find out the set B of x-tuples that

leads to the optimal expected quality improvement in PWS-quality, is it

possible to avoid enumerating all the combinations of x-tuples in the whole

database? To answer this, we first state the following lemma:

Lemma 7.4 For any x-tuple τk ∈ B, τk must satisfy the condition: there

exists ti ∈ τk such that (ti, pi) appears in the final answer of Q, with pi ∈

(0, 1).

Proof : Consider an x-tuple τj , whose tuples’ qualification probabilities

are either zero or one. We can show that τj does not need to be included

in B. Suppose by contradiction that τj ∈ B. According to Lemma 7.2,

g(j, d, Q) = 0. By using Lemma 7.3, we can see that including τj in B has no

effect on the quality improvement i.e., I(B, D, Q). Thus, it is unnecessary

to include τj in B.

In fact, by excluding τj , the remaining x-tuples that we need to consider

for cleaning are those that contain at least a tuple ti with the following

conditions: (1) ti appears in the final query answer, and (2) pi ∈ (0, 1).

155

For example, for the MAX query evaluated on Table 7.1, the optimal set B

can be derived from the result of the MAX query (Table 7.2), which contains

the tuples from x-tuples a,b, and c, but not d. Correspondingly, B is the

subset of the x-tuples {a, b, c}. Thus, Lemma 7.4 reduces the search space

to the x-tuples whose tuples appear in the query answer. It also means that

the input of our data cleaning algorithm can be the tuples contained in the

query answer (c.f. Figure 7.1).

We now focus on the x-tuples that satisfy the conditions of Lemma 7.4.

Let Z be the number of these x-tuples. We use τk (where k = 1, ..., Z) to

denote these x-tuples.

An Optimization Problem. We now present an efficient algorithm

that provides an optimal solution to the data cleaning problem. This algo-

rithm can be applied to entity-based queries, including PRQ and PMaxQ.

We assume the values of g(k, D, Q) have been obtained for all values of k =

1, . . . , Z. For notational convenience, we also use gk to represent g(k, D, Q)

(since D and Q are constant parameters). Then, Definition 7.6 can be refor-

mulated as an optimization problem P (C, M), where M = {τ1, . . . , τZ} is the

set of candidates to be considered, and C is the budget assigned to the query:

Maximize

−
Z

∑

k=1

bk · gk (7.31)

Subject to

Z
∑

k=1

bk · ck ≤ C (7.32)

Here {bk|k = 1, . . . , Z, bk = 0|1) is a bit vector of length Z, encoding

the IDs of x-tuple(s) chosen from M to be cleaned. Particularly, bk = 1

156

if x-tuple τk is selected, and bk = 0 otherwise. Equation 7.31 is the total

quality improvement for cleaning a set of x-tuples (where τk is chosen if

bk = 1), which is the same as Equation 7.25. The optimization constraint

is described in Equation 7.32, which requires that the total cost of cleaning

the set of x-tuples cannot be more than C. Note that since Equation 7.31

(or Equation 7.25) is true for PRQ and PMaxQ, the solution to this problem

can be applied to both queries.

We further note that P (C, M) is essentially a variant of the 0/1 knapsack

problem [29], which can be solved by using dynamic programming techniques,

e.g. Algorithm 5. Therefore we skip the details of the solution. The time

and space complexities of the optimal solution are respectively O(CZ) and

O(CZ2).

7.4.4 Heuristics for Data Cleaning

To further improve the efficiency of data cleaning, we have developed three

other heuristics:

1. Random: This is the simplest heuristic, where x-tuples are selected

randomly until the query budget is exhausted.

2. MaxQP: Compute the qualification probability Pk for each x-tuple τk,

using Equation 7.2. Then, choose the x-tuples in descending order of Pk

(where Pk 6= 1) until the total cost exceeds C. The rationale is that selecting

x-tuples with higher qualification probabilities may have a better effect on

the PWS-quality than those with small values.

3. Greedy: Let fk = gk

ck
. Select x-tuples with the highest values of fk such

that the maximum total cost is less than C. Intuitively, fk is the quality

improvement of clean(τk) per unit cost. The choice of x-tuples is decided by

the amount of quality improved and the cost required.

157

The MaxQP and Greedy heuristics can be extended to support large

query answer sets. Specifically, if the number of x-tuples to be considered by

the data cleaning algorithm is too large to be stored in the main memory,

disk-based algorithms (e.g., [66]) can be used to sort the x-tuples. Then, the

x-tuples that rank the highest can be retrieved. In our experiments, since

the main memory is large enough to hold the tuples returned to a user, our

data cleaning algorithms are executed on the main memory.

7.4.5 Incremental Query Processing

As a sidenote, consider a query Q which has just been evaluated on the

database D. After the database is cleaned, the re-running of Q does not

require the examination of the whole database. This is because only the

tuples that appear in the query result of the pre-cleaned database need to be

handled. In particular, Let D′ be the new database after cleaning is done,

and R(D) be the set of tuples appearing in the answer of Q on D. We claim

that the tuples that are included in the answer of Q being evaluated on

D′, i.e., R(D′), must be a subset of R(D). We term this incremental query

processing, since the evaluation of Q on D′ can be based upon the answer set

R(D), instead of the whole database D′.

To see this, let u be a tuple which does not appear in R(D). Then, u

must not satisfy Q in any possible worlds generated from D. Now, consider

a possible world W that appears in D. After cleaning (Definition 7.4) is

completed, two cases can occur: (1) W consists of the same set of tuples; or

(2) W is eliminated, where one or more tuples that belong to W are removed

due to cleaning. Hence, the set of possible worlds of D′ must be a subset of

those in D. This implies u still cannot satisfy Q in any possible world of D′.

Consequently, u must not be in R(D′). Hence, in the second round of query

158

evaluation, we only need to examine the tuples that appear in R(D), instead

of D′. This can reduce the effort of evaluating a query on D′ significantly.

Next, let us investigate how PRQ and PMaxQ on D′ make use of the

above observation.

PRQ: We only need to re-evaluate the probabilities of the tuples belong-

ing to the x-tuples in the cleaning set, since these x-tuples are chosen from

the answer set R(D) (according to Lemma 7.4). Qualification probabilities

of tuples that do not appear in the cleaning set remain unchanged.

PMaxQ: Let tm be the tuple that consists of the maximum attribute

value among all the cleaned tuples. We claim that only tuples whose values

larger than or equal to vm need to be considered. Note that after cleaning,

the existential probability of tm becomes one. Thus all tuples with attribute

values smaller than vm, which has no chance to be the maximum object, can

be removed from R(D). The remaining tuples are inserted to R(D), with

qualification probabilities recomputed.

7.5 Results

We now discuss the experimental results. Section 7.5.1 describes the settings

of our experiments. We present our findings in Section 7.5.2.

7.5.1 Experimental Setup

We have used a synthetic dataset in our experiments. This dataset contains

10K objects (e.g., products), each of which has a 1D attribute y (as a price

collected automatically from web pages), in the domain [0, 10, 000]. The

value of y follows attribute uncertainty described in [87, 23], where y has two

components: “uncertainty interval” y.L and “uncertainty pdf” y.U . The

center of y.L is uniformly distributed in the domain, and the range of y.L is

159

0 500 1000 1500 2000
−6000

−5000

−4000

−3000

−2000

−1000

0

z

S

Gaussian
Uniform

Figure 7.3: Quality vs. z.

20 50 100 150 200
−50

−40

−30

−20

−10

0

Size of Database(K)

S

PMaxQ
PRQ

Figure 7.4: Quality vs. Database
Size.

uniformly distributed in the range of [60, 100]. The uncertainty pdf y.U is a

Gaussian distribution defined on y.L, with the mean equal to the center of

y.L, and the variance of 100 units. To store these objects in a probabilistic

database, we discretize y.U by obtaining its histogram representation, where

the probabilities of 10 equal “histogram bars” within y.L are computed.

Each object is then treated as an x-tuple, under which 10 tuples are created,

whose querying attributes are the mean values of the histogram bars, and

the existential probabilities are the probabilities computed for the histogram

bars. Our synthetic database thus has 10K x-tuples, or 100K tuples.

We also perform experiments on a real dataset [64], which contains some

uncertainty in the viewers’ ratings for specific movies. The table has 4, 999 x-

tuples, or 10, 037 tuples. It has five attributes: <movie-id,customer-id,date,rate,

confidence>, where <movie-id,customer-id> is the key of the x-tuple, and

confidence records the existential probability of a tuple.

To model the data cleaning problem, for both datasets we attach a “clean-

ing cost” attribute to each x-tuple. This cost is an integer, uniformly dis-

tributed in the range of [1, 10]. The query budget has a default value of 30

units.

160

10
1

10
2

10
3

10
410

−1

10
0

10
1

10
2

10
3

z

tim
e(

m
s)

Original
X−Form

Figure 7.5: The x-Form (PRQ).

0 0.5 1 1.5 2
x 10

4

0

20

40

60

80

100

120

z

tim
e(

m
s)

Query Evaluation
Quality Caculation

Figure 7.6: Query vs. Quality Evalu-
ation Time.

We have implemented both PRQ and PMaxQ for the synthetic dataset.

For PRQ, the query range has a width of 20 units, and its position is evenly

distributed in the domain. For the real dataset, the PRQs use <date,rate>

as a 2D querying attribute. We also implement a probabilistic nearest-

neighbor query (PNNQ) with a random 4D query point q on the dimensions

<movie-id,customer-id,date,rate>. Notice that a PNNQ is essentially

a PMaxQ by ranking on the Euclidean distance of each data point from q.

Thus our algorithms can also be used by a PNNQ.

We have used an R-tree based on the codes in [63] to index the querying

attributes, in order to improve the efficiency of computing the query answers.

The two primary metrics used for evaluation are: (1) PWS-quality score; and

(2) quality evaluation time. Notice that metric (2) does not include the time

required for evaluating the query answer.

Each data point is the average of 100 queries. Unless stated otherwise,

the results are based on the synthetic dataset. Our codes, implemented in

J2SE 1.5.0 09, are run on a PC with an Intel T2400 CPU of 1.83GHz and

1GB memory.

161

7.5.2 Results

We now present the results. First of all, we discuss the performance of

PWS-quality in quantifying uncertainty. We then examine the x-forms of

PWS-quality, and present the results on data cleaning. Finally, we report

the results on the real dataset.

1. Expressiveness of PWS-Quality

We first investigate how well PWS-quality can quantify the ambiguity of

query results. We use z to denote the number of distinct tuples in the query

answer, whose qualification probabilities are non-zero. Figure 7.3 shows the

quality score of PRQ (S) under a wide range of z. We see that the quality

score decreases (i.e., a degradation in quality) when z increases. Intuitively,

the larger the value of z, the more tuples are in the query answers, imply-

ing a more uncertain answer. Thus, the PWS-quality naturally reflects the

vagueness in a query answer.

In the same graph, we present the PWS-quality for two different un-

certainty pdfs (y.U) of the attribute y in our dataset. As we can see, the

uniform pdf generally demonstrates a lower quality score than its Gaussian

counterpart. This is not surprising, since a uniform pdf has a larger entropy

(i.e., more uncertain) than a Gaussian pdf. Consequently, the query answer

becomes more ambiguous, as illustrated by the lower quality scores.

Next, we compare the quality scores of PRQ and PMaxQ in five different

databases. For fairness, we compare the scores only for the queries that

produce the same number of tuples (with a 1% difference) in their answers in

the same database. As shown in Figure 7.4, PRQ scores lower than PMaxQ

across all the database samples. The reason is that the PWS-quality is an

entropy function of PW-result probabilities (Equation 7.1). On average, the

PRQ (which finds tuple(s) with querying attribute(s) in a specified range)

162

1 2 3 4 5
0

500

1000

1500

2000

|x|

tim
e(

m
s)

Original
Enhanced

Figure 7.7: Evaluation Time of Qual-
ity Improvement.

10
0

10
1

10
2

10
310

−2

10
−1

10
0

10
1

10
2

10
3

C

tim
e(

m
s)

Basic
Random
MaxQP
DP
Greedy

Figure 7.8: Time for selecting x-
tuples (PMaxQ).

yields more PW-results than PMaxQ (which finds tuple(s) that gives the

maximum value). Hence, the answer of PRQ is also more uncertain than

PMaxQ, as shown by our results.

2. Evaluation of PWS-Quality

Sanity Check. We first verify the correctness of the x-form by running

several experiments. We found that the relative difference between the x-form

and the original definition of PWS-quality (Equation 7.1) is in the order of

10−4 or less. For PRQ, at z = 3.18, the relative difference is 2.08e− 6. For

PMaxQ, that difference is 3.99e−6 at z = 77.46. The slight difference is due

to the precision loss at computing small probability values.

Evaluation Time. Figure 7.5 compares the time required for calculating

the x-form and the original definition of PWS-quality for PRQ. The amount

of time for both methods increases with z, since more result probabilities

have to be considered. However, the x-form needs much shorter time to

evaluate than the original definition. This follows from the fact that the x-

form (Equation 7.4) runs in polynomial time, whereas the original definition

(Equation 7.1) requires an exponential time complexity.

Figure 7.6 shows the time required to compute the x-form for PRQ, and

163

the query evaluation time. We notice that the former needs no more than

10% of the time required by the latter. The quality evaluation time for

PMaxQ, not shown here, requires an average of 0.16 ms, or 1.6% of the

query evaluation time. The difference in the evaluation time of a query

and its quality may actually be larger, since in these experiments we have

constructed indexes to speed up the query evaluation. Thus computing PWS-

quality adds little overhead to the query evaluation process.

Effect of duplicate tuples. We also study the effect of “duplicate tu-

ples” on computing the PWS-quality of PMaxQ. These are the tuples whose

querying attribute values are the same. We modify the synthetic database

by treating attribute values within a range of ±1 as a single value. As a

result, each querying attribute value is associated with an average of 6.33

tuples. We found that computing PWS-quality with the original definition

takes 259.58 ms to complete, while x-form can finish the job in 3.48 ms.

The huge difference (98.6% improvement) is due to the fact that the original

definition has to consider a large number of PW-results due to the duplicate

tuples, but the x-form only needs to iterate over the x-tuples in the answer

once. We also test with other databases; since the results are similar, they

are not reported here.

3. Data Cleaning

Next, we examine the results for data cleaning. We assume that the qual-

ity of the queries being tested has been obtained. Moreover, prior to cleaning,

all the values of g(D, k, Q), computed during the evaluation of the x-forms,

have been stored in a lookup table. We first compare the performance of

the “enhanced” method in calculating quality improvement (Equation 7.25),

with its “original” definition (i.e., Definition 7.5). Figure 7.7 shows the re-

sults for both methods on a given set X of x-tuples, with |X| = 1, . . . , 5.

164

0 20 40 60 80 100
0

5

10

15

20

25

30

35

C

I

Random
MaxQP
DP
Greedy

Figure 7.9: I vs. C (PRQ).

10 20 30 40 50
0.5

1

1.5

2

2.5

3

C

I

Random
MaxQP
DP
Greedy

Figure 7.10: I vs. C (PMaxQ).

The time required by the original definition increases sharply with |X|. The

enhanced method just needs to sum up the g(D, k, Q) values for the x-tuples

τk ∈ X, and these values can be retrieved from the lookup table. Thus, its

execution time is much less. Thus, the enhanced method will be used in our

subsequent experiments.

We then study the time required to compute the quality improvement,

using the methods presented in Sections 7.4.3 and 7.4.4. Here, the Basic

method means the quality improvement of each member of the powerset of

all x-tuples is examined, and then the set of x-tuples that yields the highest

improvement is chosen. Figure 7.8 examines the amount of time (in log

scale) for different methods under a wide range of query budgets used by the

PMaxQ. We see that Basic performs the worst. The DP method provides an

optimal solution in polynomial time, and so it is faster than Basic. However,

its time is higher than other heuristics (i.e., Random, MaxQP and Greedy).

The results for PRQ are similar and so they are skipped here.

Figures 7.9 and 7.10 examine the quality improvement (I) for PRQ and

PMaxQ respectively. Since both Basic and DP give the optimal solution, for

clarity we only show the result for DP. Although DP performs the best, it is

worth notice that both Greedy and MaxQP come close to it. This is because

165

Greedy selects the x-tuple according to the cost and the benefit of cleaning it,

while MaxQP gives priority to x-tuples with higher qualification probabilities.

These factors are important to deciding the optimal solution. Moreover, the

data cleaning problem is a variant of the knapsack problem [29], and it has

been shown in [35] that the average performance of a greedy solution is close

to the optimal one. Random does not consider any of these factors at all, and

thus it performs the worst. Observe that MaxQP is better in PMaxQ than

in PRQ. In PMaxQ, by considering a x-tuple with the highest qualification

probability, the tuple that remains in that x-tuple may have a chance to give

the highest value than all other tuples, yielding a high-quality result; and so

the expected improvement in quality is also higher than the case of PRQ.

We also compare the quality improvement (I) of PRQ and PMaxQ, rel-

ative to their original quality (S). We assume the DP algorithm is used to

obtain the x-tuples. The results, shown in Figure 7.11, reveals that under a

fixed query budget and query answer size, the relative quality improvement

(I/|S|) for PMaxQ is consistently higher than that of PRQ. The main reason

is that the PMaxQ has fewer distinct PW-results than the PRQ. This implies

there are less tuples in the answer of a PMaxQ than that of a PRQ. Cleaning

an x-tuple for PMaxQ, therefore, has more impact than cleaning an x-tuple

for PRQ. In environments where multiple queries are concurrently executed,

a system one may therefore choose to place more effort on PMaxQ than on

PRQ.

4. Results on the Real Dataset

We now present selected results for the real dataset. Figure 12(a) shows

the quality of PRQ under different values of z. Similar to Figure 7.3, the

quality of PRQ worsens as z increases. On the other hand, PNNQ has an

average score of −0.86. The reason for the high quality obtained by PNNQ

166

is that the dataset also has a high quality: on average, each x-tuple has 2

tuples, and 33% of the x-tuples have no uncertainty (i.e., they only have one

single tuple). Thus, it is easy to obtain an unambiguous answer for PNNQ.

20 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Size of Database(K)

I /
 |S

|

PMaxQ
PRQ

Figure 7.11: PRQ vs. PMaxQ (I/|S|).

We also observe that the PWS-quality scores of the queries in the real

dataset are generally higher than those obtained for the synthetic dataset.

To understand why, for each x-tuple, we have measured the entropy of the

existential probabilities of all tuples in a x-tuple. We found that the average

of these entropy values over the real dataset is 0.78, which is lower than

that of the synthetic dataset (1.85). Thus, the real dataset is generally less

uncertain than the synthetic one, and the PWS-quality scores for the real

dataset are also better.

Finally, Figure 12(b) shows the quality improvement of PRQ under dif-

ferent query budgets. The results are similar to those for the synthetic data

(Figure 7.9). We have also measured the quality improvement for the PNNQ.

Since its original quality score is high, the data cleaning algorithms does not

have much effect on the quality. Thus, we do not show their results here.

167

0 200 400 600 800 1000 1200 1400
−800

−700

−600

−500

−400

−300

−200

−100

0

z

S

PRQ

(a) Quality vs. z.

0 20 40 60 80 100
0

5

10

15

C

I

Random
MaxQP
DP
Greedy

(b) Quality Improvement vs. C.

Figure 7.12: Results on Real Data Set

7.6 Chapter Summary

The management of uncertain and probabilistic databases has become an

important topic in emerging applications. In this chapter, we investigated

a cleaning problem for these databases, with the goal of optimizing the ex-

pected quality improvement under a limited budget. To accomplish this task,

we designed the PWS-quality metric to quantify query answer ambiguities.

We showed how PWS-quality can be efficiently computed for common entity-

based queries (PRQ and PMaxQ). We also illustrated that it is possible to

develop optimal and efficient solutions around this metric.

We plan to extend our solutions to support other kinds of queries, e.g.,

top-k query. We will also examine other cleaning models, e.g., a cleaning

request that may not be immediately accomplished. We can also investigate

how to perform optimal cleaning where an x-tuple, after cleaning, becomes

a set of tuples with arbitrary distributions. It is also interesting to study

how cleaning can be done on databases where the uncertainty of attributes

is given by a continuous distribution (e.g., [76, 70]).

168

8 Conclusions and Future Works

The uncertain database plays a more and more important role in many arising

applications. We addressed two essential issues of managing imprecise data,

i.e. querying and cleaning uncertain database. We pointed out the difficulties

of evaluating several important kinds of probabilistic queries, and proposed

efficient approaches for answering them. We also investigated the techniques

of optimizing query answer quality by cleaning uncertain database.

We proposed a series of approaches in order to improve the efficiency of

evaluating the imprecise location-dependent queries. The Minkowski Sum

and the expanded query can help pruning the data objects with no chances

to satisfy the query requirements. The observation of the query-data dual-

ity property enables the reduction of the cost to compute the qualification

probabilities. If the probability information of the data objects are stored in

the index, more pruning opportunities can be created.

We identified the problem of high computational complexity for PNN

evaluation, and proposed to study the C-PNN, a variant of PNN. We devel-

oped probabilistic verifiers to reduce the chance of calculating qualification

probabilities, and the incremental refinement algorithm for facilitating prob-

ability computation.

We also studied the probability threshold k-NN Query (T -k-PNN) for

uncertain databases. We proposed various pruning techniques with con-

sideration of both distance and probability constraints. With the k-bound

filtering technique, a lot of unqualified objects can be pruned. The number

of k-subsets can be significantly reduced by the PCS algorithm. We further

demonstrated the efficient computation of lower and upper bounds of prob-

abilities with the aid of partition information, based on the techniques for

evaluating C-PNN, i.e. verification and incremental refinement.

169

Finally, we discussed the issues of cleaning the uncertain database, with

the goal of optimizing the expected quality improvement under a limited

budget. To accomplish this task, we designed the PWS-quality metric to

quantify query answer ambiguities. We showed how PWS-quality can be

efficiently computed for common entity-based queries (PRQ and PMaxQ).

We also illustrated that it is possible to develop optimal and efficient solutions

around this metric.

8.1 Future Works

Recently, researchers have proposed several probabilistic queries with com-

plex ranking semantics, such as Skyline [69, 58, 90] and reverse nearest neigh-

bor [60]. We plan to extend the techniques proposed in this thesis for pro-

cessing these queries. Furthermore, it might be possible to find a unified

framework for evaluating a variety of ranking-based probabilistic queries like

Min/Max, NN, and Skyline etc.

We noticed that the continuous version of the probabilistic queries has

attracted attentions from the database community [82]. The evaluation of

the continuous queries must be finished in short time otherwise the values of

the data may change and the results will be meaningless. It thus brings a

tighter requirement for the evaluation cost. We are currently working on an

idea of reusing the answers of the continuous queries in order to improve the

query execution performance.

Another arising issue of uncertain data management is to process queries

over uncertain graph, e.g. XML or road network [52, 16]. Researchers have

proposed several methods for representing the uncertain data as probabilistic

graph. Efficient methods are needed for processing queries over these graph

with uncertainty. In particular, traditional techniques for querying graph

170

could be incorporated with the approaches of handling probabilistic queries.

We are also looking for the opportunities of effectively and efficiently

conducting uncertain data integration and cleaning [34, 31, 53]. We are now

trying to extend our solutions to support other kinds of queries, e.g., top-k

query, and examine other cleaning models.

171

References

[1] The orion databae system. http://orion.cs.purdue.edu/.

[2] S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation and

querying of sets of possible worlds. SIGMOD Rec., 16(3):34–48, 1987.

[3] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. Nabar, T. Sug-

ihara, and J. Widom. Trio: a system for data, uncertainty, and lineage.

In VLDB ’06: Proceedings of the 32nd international conference on Very

large data bases, pages 1151–1154. VLDB Endowment, 2006.

[4] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers over dirty

databases: A probabilistic approach. In ICDE ’06: Proceedings of the

22nd International Conference on Data Engineering, page 30, Washing-

ton, DC, USA, 2006. IEEE Computer Society.

[5] L. Antova, C. Koch, and D. Olteanu. From complete to incomplete

information and back. In SIGMOD ’07: Proceedings of the 2007 ACM

SIGMOD international conference on Management of data, pages 713–

724, New York, NY, USA, 2007. ACM.

[6] D. Barbará, H. Garcia-Molina, and D. Porter. The management of

probabilistic data. IEEE Trans. on Knowl. and Data Eng., 4(5):487–

502, 1992.

[7] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom. Uldbs:

Databases with uncertainty and lineage. In VLDB ’06: Proceedings

of the 32nd International Conference on Very Large Data Bases, pages

953–964, 2006.

172

[8] A. R. Beresford and F. Stajano. Location privacy in pervasive comput-

ing. IEEE Pervasive Computing, 2(1):46–55, 2003.

[9] M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf. Computational

Geometry – Algorithms and Applications, 2nd ed. Springer Verlag, 2000.

[10] G. Beskales, M. A. Soliman, and I. F. Ilyas. Efficient search for the top-k

probable nearest neighbors in uncertain databases. In VLDB ’08: Pro-

ceedings of the 34th international conference on Very large data bases.

VLDB Endowment, 2008.

[11] C. Böhm, M. Gruber, P. Kunath, A. Pryakhin, and M. Schubert. Prover:

Probabilistic video retrieval using the gauss-tree. In ICDE ’07:Proceed-

ings of the 23rd International Conference on Data Engineering, pages

1521–1522, 2007.

[12] C. Böhm, A. Pryakhin, and M. Schubert. The gauss-tree: Efficient

object identification in databases of probabilistic feature vectors. In

ICDE ’06:Proceedings of the 22nd International Conference on Data

Engineering, page 9, 2006.

[13] B. P. BUCKLES and F. E. PETRY. A fuzzy representation of data for

relational databases. Fuzzy Sets and Systems, 7:213–226, 1982.

[14] R. Cavallo and M. Pittarelli. The theory of probabilistic databases. In

VLDB ’87: Proceedings of the 13th International Conference on Very

Large Data Bases, pages 71–81, San Francisco, CA, USA, 1987. Morgan

Kaufmann Publishers Inc.

[15] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive

queries in relational data bases. In STOC ’77: Proceedings of the ninth

173

annual ACM symposium on Theory of computing, pages 77–90, New

York, NY, USA, 1977. ACM.

[16] L. Chang, J. X. Yu, and L. Qin. Query ranking in probabilistic xml

data. In EDBT’09: Proceedings of the 12nd International Conference

on Extending Database Technology, pages 156–167, 2009.

[17] M. A. Cheema, X. Lin, W. Wang, W. Zhang, and J. Pei. Probabilistic

reverse nearest neighbor queries on uncertain data. Technical Report

UNSW-CSE-TR-0816, July 2008.

[18] J. Chen and R. Cheng. Efficient evaluation of imprecise location-

dependent queries. In ICDE ’07:Proceedings of the 23rd International

Conference on Data Engineering, pages 586–595, 2007.

[19] J. Chen and R. Cheng. Quality-aware probing of uncertain data with

resource constraints. In SSDBM ’08:Proceedings of the 20th Interna-

tional Conference on Scientific and Statistical Database Management,

pages 491–508, 2008.

[20] R. Cheng, J. Chen, M. F. Mokbel, and C.-Y. Chow. Probabilistic ver-

ifiers: Evaluating constrained nearest-neighbor queries over uncertain

data. In ICDE ’08: Proceedings of the 24th International Conference on

Data Engineering, pages 973–982, 2008.

[21] R. Cheng, J. Chen, and X. Xie. Cleaning uncertain data with quality

guarantees. In VLDB ’08: Proceedings of the 34th international con-

ference on Very large data bases, pages 722–735. VLDB Endowment,

2008.

[22] R. Cheng, L. Chen, J. Chen, and X. Xie. Evaluating probability thresh-

old k-nearest-neighbor queries over uncertain data. In EDBT’09: Pro-

174

ceedings of the 12nd International Conference on Extending Database

Technology, pages 672–683, 2009.

[23] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating probabilis-

tic queries over imprecise data. In SIGMOD Conference, pages 551–562,

2003.

[24] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Querying imprecise

data in moving object environments. IEEE Trans. on Knowl. and Data

Eng., 16(9):1112–1127, 2004.

[25] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluation of proba-

bilistic queries over imprecise data in constantly-evolving environments.

Inf. Syst., 32(1):104–130, 2007.

[26] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter. Efficient

indexing methods for probabilistic threshold queries over uncertain data.

In VLDB ’04:Proceedings of the 30th international conference on Very

large data bases, pages 876–887, 2004.

[27] R. Cheng, Y. Zhang, E. Bertino, and S. Prabhakar. Preserving user

location privacy in mobile data management infrastructures. In Proc.

of the 6th Workshop on Privacy Enhancing Technologies, June 2006.

[28] E. F. Codd. Extending the database relational model to capture more

meaning. ACM Trans. Database Syst., 4(4):397–434, 1979.

[29] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algo-

rithms. The MIT Press, 2001.

[30] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic

databases. In VLDB, pages 864–875, 2004.

175

[31] A. de Keijzer and M. van Keulen. Imprecise: Goodis-good-enough data

integration. In ICDE ’08: Proceedings of the 24th International Confer-

ence on Data Engineering, pages 1548–1551, 2008.

[32] M. de Rougemont. The reliability of queries. In PODS ’95: Proceed-

ings of the fourteenth ACM SIGACT-SIGMOD-SIGART symposium on

Principles of database systems, pages 286–291, New York, NY, USA,

1995. ACM.

[33] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and

W. Hong. Model-driven data acquisition in sensor networks. In VLDB

’04: Proceedings of the Thirtieth international conference on Very large

data bases, pages 588–599. VLDB Endowment, 2004.

[34] T. Detwiler, W. Gatterbauer, B. Louie, D. Suciu, and P. Tarczy-

Hornoch. Integrating and ranking uncertain scientific data. In ICDE’09:

Proceedings of the 25th International Conference on Data Engineering,

pages 1235–1238, 2009.

[35] G. Diubin. The average behaviour of greedy algorithms for the knapsack

problem: general distributions. Mathematical Methods of Operations

Research, 57(3), 2003.

[36] X. Dong, A. Y. Halevy, and C. Yu. Data integration with uncertainty.

In VLDB ’07: Proceedings of the 33rd international conference on Very

large data bases, pages 687–698. VLDB Endowment, 2007.

[37] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,

editors. Advances in knowledge discovery and data mining. American

Association for Artificial Intelligence, Menlo Park, CA, USA, 1996.

176

[38] N. Fuhr and T. Rölleke. A probabilistic relational algebra for the inte-

gration of information retrieval and database systems. ACM Trans. Inf.

Syst., 15(1):32–66, 1997.

[39] S. Ganguly, M. Garofalakis, R. Rastogi, and K. Sabnani. Streaming al-

gorithms for robust, real-time detection of ddos attacks. In ICDCS ’07:

Proceedings of the 27th International Conference on Distributed Com-

puting Systems, page 4, Washington, DC, USA, 2007. IEEE Computer

Society.

[40] B. Gedik and L. Liu. Mobieyes: Distributed processing of continuously

moving queries on moving objects in a mobile system. In EDBT ’04: the

9th International Conference on Extending Database Technology, pages

67–87, 2004.

[41] B. Gedik and L. Liu. Location privacy in mobile systems: A personalized

anonymization model. In ICDCS, pages 620–629, 2005.

[42] E. Grädel, Y. Gurevich, and C. Hirsch. The complexity of query reli-

ability. In PODS ’98: Proceedings of the seventeenth ACM SIGACT-

SIGMOD-SIGART symposium on Principles of database systems, pages

227–234, New York, NY, USA, 1998. ACM.

[43] G. Grahne. Dependency satisfaction in databases with incomplete infor-

mation. In VLDB ’84: Proceedings of the 10th International Conference

on Very Large Data Bases, pages 37–45, San Francisco, CA, USA, 1984.

Morgan Kaufmann Publishers Inc.

[44] J. Grant. Null values in a relational data base. Inf. Process. Lett.,

6(5):156–157, 1977.

177

[45] A. Guttman. R-trees: a dynamic index structure for spatial searching.

In SIGMOD ’84: Proceedings of the 1984 ACM SIGMOD international

conference on Management of data, pages 47–57, New York, NY, USA,

1984. ACM.

[46] H. Hu and D. L. Lee. Range nearest-neighbor query. IEEE Trans. on

Knowl. and Data Eng., 18(1):78–91, 2006.

[47] S. Ilarri, E. Mena, and A. Illarramendi. Location-dependent queries

in mobile contexts: Distributed processing using mobile agents. IEEE

Trans. Mob. Comput., 5(8):1029–1043, 2006.

[48] T. Imieliński and W. Lipski. Incomplete information in relational

databases. Journal of the Association for Computing Machinery,

31(4):761–79, 1984.

[49] T. Imieliński, S. Naqvi, and K. Vadaparty. Incomplete object—a data

model for design and planning applications. In SIGMOD ’91: Proceed-

ings of the 1991 ACM SIGMOD international conference on Manage-

ment of data, pages 288–297, New York, NY, USA, 1991. ACM.

[50] G. S. Iwerks, H. Samet, and K. Smith. Continuous k-nearest neigh-

bor queries for continuously moving points with updates. In VLDB

’2003: Proceedings of the 29th international conference on Very large

data bases, pages 512–523. VLDB Endowment, 2003.

[51] N. Khoussainova, M. Balazinska, and D. Suciu. Towards correcting

input data errors probabilistically using integrity constraints. In MobiDE

’06: Proceedings of the Fifth ACM International Workshop on Data

Engineering for Wireless and Mobile Access, pages 43–50, 2006.

178

[52] B. Kimelfeld and Y. Sagiv. Matching twigs in probabilistic xml. In

VLDB ’07:Proceedings of the 33rd international conference on Very large

data bases, pages 27–38, 2007.

[53] C. Koch and D. Olteanu. Conditioning probabilistic databases. In VLDB

’08: Proceedings of the Thirtieth international conference on Very large

data bases. VLDB Endowment, 2008.

[54] N. Koudas, B. C. Ooi, K.-L. Tan, and R. Zhang. Approximate nn queries

on streams with guaranteed error/performance bounds. In VLDB ’04:

Proceedings of the Thirtieth international conference on Very large data

bases, pages 804–815. VLDB Endowment, 2004.

[55] H.-P. Kriegel, P. Kunath, and M. Renz. Probabilistic nearest-neighbor

query on uncertain objects. In DASFAA ’07:Proceedings of the Inter-

national Conference on Database Systems for Advanced Applications,

pages 337–348, 2007.

[56] I. Lazaridis and S. Mehrotra. Approximate selection queries over impre-

cise data. In ICDE, 2004.

[57] D. L. Lee, J. Xu, B. Zheng, and W.-C. Lee. Data management in

location-dependent information services. IEEE Pervasive Computing,

1(3):65–72, 2002.

[58] X. Lian and L. Chen. Monochromatic and bichromatic reverse skyline

search over uncertain databases. In SIGMOD ’08: Proceedings of the

2008 ACM SIGMOD international conference on Management of data,

pages 213–226, New York, NY, USA, 2008. ACM.

179

[59] X. Lian and L. Chen. Probabilistic group nearest neighbor queries in

uncertain databases. IEEE Transactions on Knowledge and Data Engi-

neering, 20(6):809–824, 2008.

[60] X. Lian and L. Chen. Efficient processing of probabilistic reverse nearest

neighbor queries over uncertain data. Accepted to appear in Very Large

Data Bases Journal (VLDBJ), 2009.

[61] Z. Liu, K. C. Sia, and J. Cho. Cost-efficient processing of min/max

queries over distributed sensors with uncertainty. In SAC ’05: Proceed-

ings of the 2005 ACM symposium on Applied computing, pages 634–641,

New York, NY, USA, 2005. ACM.

[62] V. Ljosa and A. K. Singh. Apla: Indexing arbitrary probability distri-

butions. In ICDE, pages 946–955, 2007.

[63] M.Hadjieleftheriou. Spatial index library version 0.44.2b.

[64] A. moving rating database. http://infolab.stanford.edu/trio/code/index.html.

[65] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: An

adaptable, symmetric multikey file structure. ACM Trans. Database

Syst., 9(1):38–71, 1984.

[66] M. Nodine and J. Vitter. Greed sort: An optimal sorting algorithm for

multiple disks. JACM, 42(4), 1995.

[67] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous

queries over distributed data streams. In SIGMOD ’03: Proceedings of

the 2003 ACM SIGMOD international conference on Management of

data, pages 563–574, New York, NY, USA, 2003. ACM.

180

[68] C. Olston and J. Widom. Offering a precision-performance tradeoff for

aggregation queries over replicated data. In VLDB’00: Proceedings of

26th International Conference on Very Large Data Bases, pages 144–

155. Morgan Kaufmann, 2000.

[69] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines on uncertain

data. In VLDB ’07: Proceedings of the 33rd international conference on

Very large data bases, pages 15–26. VLDB Endowment, 2007.

[70] D. Pfoser and C. S. Jensen. Capturing the uncertainty of moving-object

representations. In SSD ’99: Proceedings of the 6th International Sym-

posium on Advances in Spatial Databases, pages 111–132, London, UK,

1999. Springer-Verlag.

[71] H. Prade and C. Testemale. Generalizing database relational algebra for

the treatment of incomplete/uncertain information and vague queries.

Inf. Sci., 34(2):115–143, 1984.

[72] Y. Qi, S. Singh, R. Shah, and S. Prabhakar. Indexing probabilistic

nearest-neighbor threshold queries. In Proceedings of Workshop on Man-

agement of Uncertain Data (MUD), 2008.

[73] C. Shannon. The Mathematical Theory of Communication. University

of Illinois Press, 1949.

[74] A. Silberstein, R. Braynard, C. S. Ellis, K. Munagala, and J. Yang. A

sampling-based approach to optimizing top-k queries in sensor networks.

In ICDE ’06: Proceedings of the 22nd International Conference on Data

Engineering, page 68, 2006.

181

[75] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and S. E. Hambrusch. In-

dexing uncertain categorical data. In ICDE ’07: Proceedings of the 23rd

International Conference on Data Engineering, pages 616–625, 2007.

[76] P. A. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Querying the

uncertain position of moving objects. In Temporal Databases: Research

and Practice, pages 310–337. Springer Verlag, 1998.

[77] M. Soliman, I. Ilyas, and K. Chang. Top-k query processing in un-

certain databases. In ICDE ’07: Proceedings of the 23rd International

Conference on Data Engineering, pages 896–905, 2007.

[78] Z. Song and N. Roussopoulos. K-nearest neighbor search for moving

query point. In SSTD ’01: Proceedings of the 7th International Sym-

posium on Advances in Spatial and Temporal Databases, pages 79–96,

London, UK, 2001. Springer-Verlag.

[79] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prabhakar.

Indexing multi-dimensional uncertain data with arbitrary probability

density functions. In VLDB ’05: Proceedings of the 31st international

conference on Very large data bases, pages 922–933. VLDB Endowment,

2005.

[80] Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neighbor search.

In VLDB ’02: Proceedings of the 28th international conference on Very

Large Data Bases, pages 287–298. VLDB Endowment, 2002.

[81] Y. Tao, X. Xiao, and R. Cheng. Range search on multidimensional

uncertain data. ACM Trans. Database Syst., 32(3):15, 2007.

[82] G. Trajcevski, R. Tamassia, H. Ding, P. Scheuermann, and I. Cruz.

Continuous probabilistic nearest-neighbor queries for uncertain trajec-

182

tories. In EDBT ’09: Proceedings of the 12th International Conference

on Extending Database Technology, pages 874–885, 2009.

[83] G. Trajcevski, O. Wolfson, F. Zhang, and S. Chamberlain. The geometry

of uncertainty in moving objects databases. In EDBT ’02: Proceedings

of the 8th International Conference on Extending Database Technology,

pages 233–250, London, UK, 2002. Springer-Verlag.

[84] M. van Keulen, A. de Keijzer, and W. Alink. A probabilistic xml ap-

proach to data integration. In ICDE ’05: Proceedings of the 21st Inter-

national Conference on Data Engineering, pages 459–470, Washington,

DC, USA, 2005. IEEE Computer Society.

[85] Y. Vassiliou. Null values in data base management a denotational seman-

tics approach. In SIGMOD ’79: Proceedings of the 1979 ACM SIGMOD

international conference on Management of data, pages 162–169, New

York, NY, USA, 1979. ACM.

[86] J. Warrior, E. McHenry, and K. McGee. They know where you are.

Spectrum, 40(7):20– 25, July 2003.

[87] O. Wolfson, A. P. Sistla, S. Chamberlain, and Y. Yesha. Updating and

querying databases that track mobile units. Distrib. Parallel Databases,

7(3):257–387, 1999.

[88] E. Wong. A statistical approach to incomplete information in database

systems. ACM Trans. Database Syst., 7(3):470–488, 1982.

[89] M. Zemankova and A. Kandel. Implementing imprecision in information

systems. Inf. Sci., 37(1-3):107–141, 1985.

183

[90] W. Zhang, X. Lin, Y. Zhang, W. Wang, and J. Yu. Probabilistic sky-

line operator over sliding windows. In ICDE’09: the 25th International

Conference on Data Engineering, pages 1060–1071, 2009.

184

	theses_copyright_undertaking
	b2306173x

