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Abstract 

 
 

The rapid development of the Global Positioning System has demonstrated the 

advantages of satellite based navigation systems. In near future, there will be a 

number of Global Navigation Satellite System (GNSS) available, i.e. modernized GPS, 

Galileo, restored GLONASS, BeiDou and many other regional GNSS augmentation 

systems. Undoubtedly, the new GNSS systems will significantly improve navigation 

performance over current GPS, with a better satellite coverage and multiple satellite 

signal bands. In this dissertation, the positioning performance improvement of new 

GNSS has been investigated based on both theoretical analysis and numerical study.  

First of all, the navigation performance of new GNSS systems has been analyzed, 

particularly for urban applications. The study has demonstrated that Receiver 

Autonomous Integrity Monitoring (RAIM) performance can be significantly 

improved with multiple satellite constellations, although the position accuracy 

improvement is limited. Based on a three-dimensional urban building model in Hong 

Kong streets, it is found that positioning availability is still very low in high-rising 

urban areas, even with three GNSS systems. On the other hand, the discontinuity of 

navigation solutions is significantly reduced with the combined constellations. 

Therefore, it is possible to use cheap DR systems to bridge the gaps of GNSS 

positioning, with high accuracy. 

Secondly, the ambiguity resolution performance has been investigated with 

Galileo multiple frequency band signals. The ambiguity resolution performance of 

three different algorithms is compared, including CAR, ILS and improved CAR 

methods (a new method proposed in this study). For short baselines, with four 

frequency Galileo data, it is highly possible to achieve reliable single epoch ambiguity 
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resolution, when the carrier phase noise level is reasonably low (i.e. less than 6mm). 

For long baselines (up to 800 km), the integer ambiguity can be determined within 1 

min on average.  

Ambiguity validation is crucial for any ambiguity resolution algorithm using 

searching method. This study has proposed to use both Ellipsoidal Integer Aperture 

(EIA) estimator and R-ratio test for ambiguity validation.  Using real GPS data and 

simulated Galileo data, it has been demonstrated that the new method performs better 

than the use of EIA or the R-ratio test alone, with much less ambiguity mis-fixed rate.  
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Chapter 1 Introduction 

 

1.1 Background 

In past thirty years, we have witnessed rapid development in satellite positioning, 

particularly the development of the Global Positioning System (GPS). GPS has found 

widespread applications in different fields from navigation (Igor and Francois, 2003; 

Civil Aviation Authority 2004; Federal Radionavigation Plan 2005; Lachapelle and 

Mezentsev, 2005), surveying (Frei and Beutler, 1990; Chen, 1992; Leick, 2004), to 

geophysics and geodynamic studies (Chen et al., 2004; Colombo et al., 2004) and 

atmospheric research (Hirahara, 2000; Joachim, 2003). On the other hand, it is well 

known that GPS has some drawbacks (Civil Aviation Authority 2004): 

• The navigation availability and integrity provided by current GPS alone 

cannot meet certain navigation requirements due to the few satellites available 

and inadequate ground tracking stations; 

• Signal interference threats due to only one civilian frequency; 

• GPS is a military system controlled by a single nation;  

• Ionospheric delay estimation error using a single frequency correction model 

(Klobuchar model); 

• In urban areas, GPS signal availability is significantly reduced (Miller et al., 

1995; Kozlov and Tkachenko, 1998; Grejner-Brzezinska et al., 2001; Berefelt 

et al., 2004); 

• For precise real-time kinematic (RTK) positioning, the reliability and 

efficiency of ambiguity resolution is generally low due to only two frequency 

bands being available. 
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To overcome these problems and to enhance its military and civil navigation 

capabilities, a GPS modernization program has begun (McDonald, 2001). Parallel to 

that, the replenishment of GLONASS has also been scheduled (GLONASS ICD 

2002). 

In the early 1990s, the European Union (EU) began to conceive its own global 

satellite navigation system. It includes two steps, to implement a GNSS-1 system to 

augment the existing GPS and GLONASS (EGNOS) and to develop a new civilian 

control GNSS-2 system. In 1998, a series of studies were formally commissioned 

concerning the design of an independent, civil satellite navigation service. In 1999, 

the European-based Galileo system was announced. The European Commission (EC) 

assumed political responsibility for Galileo and the European Space Agency (ESA) 

led the programme’s development. A tentative Galileo frequency and signal plan was 

published in early 2000. In 2002, the development phases of Galileo were finally 

decided in a meeting of the Transport Council of the EU. Taking into account the 

compatibility and interoperability with GPS, Galileo frequencies and signals were 

refined in the same year. In mid-2004, a few more important changes were carried out 

in the waveforms on E1 and E6 as a consequence of the agreement made between the 

US and EU (USA and CE 2004). In addition, the orbit selection for the Galileo 

constellation was finalized. The first experimental satellite Giove-A was launched on 

28 December 2005 (Oliver et al., 2006) and the system is expected to be operational 

in the 2010s. 

Different from GPS and GLONASS, Galileo is a completely new civil navigation 

system with two distinguished features: 

• To ensure safety of navigation, an integrity message is provided; 

• Navigation signals are transmitted in four frequency bands.        
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Except the above three systems, China, Japan and India are planning their own 

navigation systems. All of them are forming the basis of the future new GNSS 

systems.  

Within the next a few years, there will be more than 100 navigation satellites and 

much more navigation signals available. These will dramatically improve navigation 

performance over the current GPS system. Studies have demonstrated that with 

multiple GNSS systems, positioning availability and integrity will be significantly 

improved (Kyle, 2001; Hewitson and Wang, 2004; O’Keefe, 2001). Utilizing multiple 

frequency bands from new GNSS will also improve the capability for fast ambiguity 

resolution (Alves, 2001; Schlotzer and Martin, 2005).  On the other hand, there are 

some questions that need to be stressed, i.e.: 

• Will the combination of new GNSS solve the urban navigation problem, as 

more satellites are available? 

• Currently, most studies use three frequency bands from GPS modernization 

and Galileo for fast ambiguity resolution study. Actually, Galileo provides four 

frequency bands. Although E6 is a restricted signal for navigation, it is possible to 

extract carrier phase from E6 signal as well. What is the ambiguity resolution 

performance with four frequency bands? 

• Is it possible to resolve ambiguity within a single epoch reliably? If it is, then 

we are able to provide centimetre level real-time navigation to greatly extend the 

applications of satellite navigation.  

This study tries to answer some of these questions.  
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1.2 Objectives  

The objectives of this study are:  

• Developing new GNSS data simulator and data processing software  

In the near future, there will be multiple GNSS systems available, i.e. modernized 

GPS, GLONASS, Galileo and BeiDou. Therefore, there is a need to develop GNSS 

data processing software which is able to use measurements from all these systems to 

achieve better positioning performance with multiple frequency signals from 

combined satellite constellations. As Galileo is not available, it is necessary to 

develop a data simulator to simulate the Galileo data. Fortunately, Galileo’s signal is 

also in the L band and therefore the error models developed by GPS studies can be 

applied to Galileo signals.  In this study, software packages will be developed to 

enable the processing of pseudorange and carrier phase measurements from multiple 

GNSS systems.  

• Evaluating navigation performances with multiple GNSS systems, including GPS, 

GLONASS and Galileo  

With multiple GNSS systems, satellite positioning availability and integrity can be 

significantly improved (Kyle, 2001; Hewitson and Wang, 2004; O’Keefe, 2001), due 

to the fact that more satellites will be available. In this study, the observation models 

will be developed for integrating various GNSS systems and the navigation 

performances with multiple GNSS systems (accuracy and integrity) will be analyzed. 

As GPS availability in Hong Kong (urban areas) is very low (Miller et al., 1995; 

Kozlov and Tkachenko, 1998; Grejner-Brzezinska et al., 2001; Berefelt et al., 2004), 

in this study, the positioning availability with multiple GNSS systems will be 

analyzed using a realistic Hong Kong 3D city model. 
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• Investigating ambiguity resolution performance with multiple frequency Galileo 

signals   

With Galileo system, there are four frequency bands available, double the number of 

the frequency bands of current GPS and more number of frequency combinations can 

be formed. Undoubtedly this will provide more opportunities for fast ambiguity 

resolution. How to take advantage of the multiple Galileo frequency bands for 

ambiguity resolution is one main focus of current GNSS research. In this study, the 

current available methods will be compared first and a new algorithm will be then 

proposed. 

• Studying ambiguity resolution validation methods  

The search method is an important step for fast ambiguity resolution algorithms. 

Therefore, validation processing is crucial for any ambiguity resolution. Many 

different validation methods for ambiguity resolution have been proposed (Frei and 

Beutler, 1990; Landau and Euler, 1992; Euler and Schaffrin, 1991; Leick, 2003; 

Tiberius and De Jonge, 1995; Wang et al., 1998a; Han, 1997; Teunissen, 2004; 

Teunissen, 2005). But the reliability is not high enough to support navigation 

requirements. Currently, the carrier phase measurement is mainly used for surveying 

and some special applications where accuracy is a main concern. How to improve the 

reliability of ambiguity resolution is a major research focus of GNSS research, and in 

this study, the performance of existing validation methods will be analyzed and new 

algorithms will be proposed for improving ambiguity resolution reliability.   

 

1.3 Dissertation  Outline 

This dissertation is organized in the following way. In Chapter 2, a brief description to 

recent developments on new GNSS systems is given. Then recent research on 
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multiple frequency ambiguity resolution, GNSS integrity issues and ambiguity 

resolution validation methods are reviewed. The GNSS data simulator developed in 

this project is described in Chapter 3, including the error models applied in the data 

simulator, the program structure and some examples. The point positioning issues 

with multiple GNSS systems are studied in Chapter 4. In this chapter, the navigation 

performance is first analyzed with pseudorange measurements. Special attention is 

paid to the performance improvements with multiple GNSS systems in an urban 

environment, in which GPS does not perform well due to signal obstructions. The 

ambiguity convergent time for the Precise Point Positioning (PPP) with multiple 

Galileo signals is also investigated in the chapter.   In Chapters 5 and 6, the 

performance of ambiguity resolution is analyzed with multiple frequency Galileo 

signals and it is examined that if it is possible to resolve ambiguity reliably within a 

single epoch. In Chapter 5, the performances of two commonly used ambiguity 

resolution methods Cascading Ambiguity resolution (CAR) method and integer Least-

Squares (ILS) method are compared. In Chapter 6, an improved ambiguity resolution 

method is proposed and the performance of this new method is evaluated with 

simulated Galileo data. The ambiguity resolution validation algorithm is a crucial part 

for any ambiguity resolution method. In Chapter 7, EIA method is analyzed. Then a 

new ambiguity resolution validation method is proposed. Based on the tests with real 

GPS observation data and simulated Galileo data, the new method is more reliable for 

ambiguity resolution than the traditional R-ratio and EIA method. Finally, the 

conclusions and recommendations are given in Chapter 8 of the dissertation. 
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Chapter 2 Recent developments in GNSS technologies 

 

The development of Global Positioning System (GPS) has clearly demonstrated the 

advantages of satellite navigation systems over terrestrial navigation systems (i.e. 

Loran-C, DME/VOR). In recent years, we have witnessed rapid developments in 

satellite navigation. The US GPS system achieved its Full Operation Capacity (FOC) 

in 1995 and is currently improving through GPS modernization programme.  Parallel 

to GPS, the Russian GLONASS also deployed full constellation in the late nineties. 

Due to an economic downturn and technical issues, the number of GLONASS 

satellites has reduced dramatically. Currently, the Russian government is 

implementing the GLONASS modernization programme and it is expected that the 

full GLONASS constellation will be available in the early 2010s. In addition, since 

early 1998, the European community (EC) has been planning to launch a similar 

global satellite navigation system, Galileo. Its first experimental satellite Giove-A was 

launched on 28 December 2005.  Although there have been some problems with 

Galileo’s development (funding and organizational) (Blair 2005), the system is 

expected to be operational in the 2010s as well.  Meanwhile, China has indicated that 

it will expand its regional satellite navigation system into a global navigation system – 

BeiDou or Compass Navigation Satellite System (CNSS). Japan is also developing an 

ingenious satellite navigation augmentation system to the U.S. GPS under the QZSS 

programme and the Indian government is planning to build an independent satellite 

navigation system using home-grown components, called the Indian Regional 

Navigation System (RNSS). 

All of these systems form the base of the new GNSS. This chapter will provide the 

background to the new GNSS. In addition the recent developments in GNSS research 
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relevant to this study will be reviewed. 

 

2.1 Recent developments of the new GNSS 

2.1.1 European Galileo system  

In the early 1990s, the European Union (EU) began to conceive its own global 

satellite navigation system. The EC assumed political responsibility for Galileo and 

the European Space Agency (ESA) led the programme’s development. In 1998, a 

series of studies were formally commissioned concerning the design of an 

independent, civil satellite navigation service. Three years later, a tentative Galileo 

frequency and signal plan was published. In 2002, the development phases of Galileo 

were finally decided in a meeting of the Transport Council of the EU. Taking into 

account the compatibility and interoperability with GPS, Galileo frequencies and 

signals were refined in the same year. In mid-2004, a few important changes were 

carried out in the waveforms on E1 and E6 as a consequence of the agreement made 

between the US and EU (USA and CE 2004). In addition, the orbit selection for the 

Galileo constellation was finalized. On 28 December 2005 the first experimental 

satellite Giove-A was launched (Oliver et al., 2006) and the system is expected to be 

operational in the 2010s. 

Though similar to GPS in working principle, Galileo has its own unique features, 

which can be seen from its system architecture, the services to be provided and the 

integrity concept.  

2.1.1.1 System architecture 

The fundamental parts of Galileo’s system architecture include the space segment, 

signal in space and ground segment (European Commission, Galileo Mission High 

Level Definition Document 2002). 
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• Space segment 

The Galileo space segment will comprise a constellation of a total of 30 medium-

Earth-orbit (MEO) satellites, 3 of which are spares, in a so-called Walker 27/3/1 

constellation (Figure 2-1).  

 

                            Figure 2-1 Galileo satellite constellation 

The constellation has been optimized to the following nominal constellation 

specifications: 

 circular orbits with a semi-major axis of 29,994 km 

 orbital inclination of 56° (slightly larger than that of GPS (55°)) 

 three equally spaced orbital planes 

 nine operational satellites equally spaced in each plane 

 one spare satellite in each plane 

The constellation provides better coverage over northern Europe, well suited for 

high latitude countries and offers improved visibility in towns and cities. 

• Signal in space (SIS) 

Ten navigation signals and one SAR signal are provided by Galileo (GAL OS SIS 

ICD 2006). In accordance with the ITU (International Telecommunication Union) 

regulations, Galileo navigation signals will be emitted in the RNSS allocated bands 



 10

and the SAR signal will be broadcast in one of the frequency bands reserved for the 

emergency services (1544-1545 MHz). 

Figure 2-2 describes the Galileo navigation signals emission: 

 4 signals are transmitted in the frequency range 1164-1215 MHz (E5a-E5b) 

 3 signals are transmitted in the frequency range 1260-1300 MHz (E6) 

 3 signals are transmitted in the frequency range 1559-1591 MHz (L1) 

 

Figure 2-2 Galileo signal in space 

Different signals are broadcast on the in-phase (I) and quadrature (Q) channels 

and, in the case of band 1164-1215MHz, different signals are provided in the upper 

(E5b) and lower (E5a) part of the band.  

Table 2-1 is a summary of the primary Galileo navigation signal parameters and 

their mapping services (which are introduced in Section 2.1.1.2).  

Table 2-1 Primary Galileo navigation signal parameters and mapping services 

Signal 
name Channel Modulation 

type 
Chip rate 
(Mcps) 

Symbol rate 
(sps) 

Reference 
service 

E5 

E5a data 
AltBOC 
(15,10) 10.23 

50 OS E5a pilot N/A 
E5b data 250 OS/SoL/CS E5b pilot N/A 

E6 E6-B data BPSK(5) 5.115 1000 CS E6-C pilot N/A 

E1 E1-B data BOC(1,1) 1.023 250 OS/SoL/CS E1-C pilot N/A 
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• Ground segment 

The ground segment includes the Galileo control centre, Galileo sensor stations, 

Galileo uplink stations, mission uplink stations and a global area network. 

The Galileo control centre is the heart of the system and includes all control and 

processing facilities. Its main functions include orbit determination, time 

synchronization, global satellite integrity determination, Galileo system time 

maintenance, satellite monitoring and control. 

Galileo sensor stations collect navigation data from the Galileo satellites as well as 

meteorological and other required environmental information. This information is 

passed to the Galileo control centre for processing. 

Galileo uplink stations include separate two-way tracking, telemetry and 

command stations in the S-band, specific Galileo mission related up-links in the C-

band and Galileo sensor stations. 

The global area network provides a communication network linking all system 

elements around the world. 

 

2.1.1.2 Galileo services 

The definition of the Galileo services is based on a comprehensive review and market 

analysis to cover the widest range of user needs, including professional users, 

scientists, mass-market users, safety of life and public regulated domains. There are 

some services resulting from the combined use of Galileo and other systems. There 

are also other services provided autonomously by Galileo which will be introduced as 

follows.  

• Open Service (OS) 

The Open Service results from a combination of open signals, free of user charges and 
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suitable for mass-market applications. The performance and features of the 

positioning, velocity and timing information it provides are summarized in Tables 2-2 

& 2-3. 

Table 2-2 Performance and features of Open Service (positioning) 

Types of Receiver Single Frequency Dual-frequency 
Ionospheric 
Correction 

Based on simple 
model 

Based on dual-frequency 
measurements 

Coverage Global 

Accuracy (95%) H: 15m 
V: 35m 

H: 4m 
V: 8m 

Integrity Not Applicable 
Availability 99.8% 

 

Table 2-3 Performance and features of Open Service (timing) 

Carriers Three-Frequency 
Coverage Global 

Timing Accuracy w.r.t UTC/TAI 30nsec 
Availability 99.8% 

 

• Safety of Life (SoL) 

The Safety of Life Service is for safety critical users, for example maritime, aviation 

and trains. It improves the open service performance by providing timely warnings to 

the user when it fails to meet certain margins of accuracy (integrity). Its performance 

and features are given in Table 2-4. 

Table 2-4 Performance and features of Safety of Life Service 
Types of Receiver Three frequency 

Ionospheric Correction Based on dual-frequency measurements 
Coverage Global 

Accuracy (95%) 
Critical level Non-critical level 

H: 4m 
V: 8m H: 220m 

Integrity
Alarm Limit H: 12m V: 20m H: 556m 

Time-To-Alarm 6 seconds 10 seconds 
Integrity risk s150/105.3 7−× hour/10 7−  

Continuity Risk s15/10 5−  hourhour /10/10 84 −− −  
Certification/Liability Yes 

Availability of integrity 99.5% 
Availability of accuracy 99.8% 
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• Commercial Service (CS) 

Compared with Open Service, the Commercial Service (CS) will allow the 

development of professional applications, with increased navigation performance and 

added value data. It will be a controlled access service operated by Commercial 

Service providers. 

• Public Regulated Service (PRS) 

The Public Regulated Service (PRS) will be provided to specific users a higher level 

of protection against the threats to Galileo signals in space (SIS) than is available for 

OS, CS and SoL through the use of appropriate interference mitigation technologies. 

The objective is to improve the probability of continuous availability of the SIS, in 

the presence of interfering threats, to those users with such a need. The use of PRS 

will be restricted to clearly identified categories of users authorized by the EU and 

participating states. 

Its performance and features are shown in Table 2-5. 

 

Table 2-5 Performance and features of the Public Regulated Service 

Types of Receiver Dual-frequency 

Ionospheric Correction Based on dual-frequency 
measurements 

Coverage Global 

Accuracy (95%) H: 6.5m 
V: 12m 

Integrity 
Alarm Limit H: 6.5m V: 12m 

Time-To-Alarm 10 seconds 
Integrity risk s150/105.3 7−×  

Continuity Risk s15/10 5−  
Certification/Liability Yes 

Availability of integrity 99.5% 
Timing Accuracy w.r.t 

UTC/TAI 100nsec 
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• Search and Rescue Service (SAR) 

The Search and Rescue Service (SAR) broadcasts globally the alert messages received 

from distress emitting beacons. It will contribute to enhance the performance of the 

international COSPAS-SARSAT Search and Rescue system. 

2.1.1.3 Galileo integrity concept 

One main characteristic of the Galileo system is the provision of an integrity function 

for the global user. This means that the integrity performance must be achieved 

globally, keeping the Time-To-Alert within 6 seconds. 

The Galileo integrity concept is to monitor each satellite itself and transmit the 

corresponding behaviour to the user. Taking all transmitted information into account 

the user can calculate the integrity risk and decide if he is allowed to start his 

operation. 

The overall Galileo concept consists of a system alert mechanism, user integrity 

concept and the system allocation for integrity (Veit et al., 2004).  

• System alert mechanism 

Galileo has the capability to monitor the signal-in-space (SIS) through its complex 

global distributed ground network consisting of more than 30 ground sensor stations 

(GSSs). With the known positions of the GSSs, the actual position of the SV and 

maximum error on the range (the Signal-in-Space-Error, SISE) can be estimated. 

The prediction of the SISE distribution can be over-bounded by a non-biased 

Gaussian distribution with the minimum standard deviation called Signal-in-Space-

Accuracy (SISA).  

The difference between the actual SISE and the estimated SISE (SISEest) can be 

described by a Gaussian distribution function with the standard deviation called 

Signal-in-Space-Monitoring-Accuracy (SISMA). 
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Within the Galileo integrity concept, the system estimates the SISE using the 

measurements of the GSSs to detect faulty satellites. If the estimated SISE for a SIS is 

larger than the integrity flag threshold, the integrity flag (IF) for this SIS is set to not 

ok and an alert will be sent to the user. The integrity flag threshold (TH) can be 

computed from the SISE distribution, the distribution of the difference between SISE 

and SISEest, and the allowed False Alarm probability.   

According to the Galileo integrity concept, the following information will be 

disseminated to the user: 

 Navigation Message: beside the normal navigation message content the 

message will include the SISA values and will be updated every 30 seconds; 

 Integrity Message: the integrity message will be updated every 30 seconds, 

including the complete integrity table consisting of the SISMA value and IF 

for each SIS; 

 Checksum and connectivity status: the integrity checksum and connectivity 

status (how integrity has been derived) will be updated every second; 

 Alerts: if necessary alerts can be transmitted in real-time (every second). 

• User integrity concept 

Taking the disseminated integrity information into account (SISA, SISMA, IF) the 

user can derive its individual integrity risk. 

The current Galileo system design uses four failure mechanisms: horizontal, 

vertical and for each of them a fault-free and an undetected error. The integrity risk is 

calculated for each failure mechanism at the alert limit to compare the sum of all four 

contributions with the required integrity risk. 

Once the distribution of the error in the desired reference frame is known 

(SISMA), it is straightforward to derive the associated integrity risk. The error 
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distributions for the vertical (one dimensional Gaussian distribution) and horizontal 

(Chi-Squared distribution with two degrees of freedom) case need to be derived and 

the corresponding integrity risk can be easily computed by analyzing the integral for 

both distributions with the given limits (alert limits). 

• Integrity allocation 

An important part of the overall Galileo system integrity design is the allocation of the 

top level requirements down to the specific failure modes. This allocation for integrity 

is outlined in the so-called allocation tree. Figure 2-3 illustrates the high-level 

integrity allocation including the specific values. 

 

The left branch, fault-free or Single SIS HMI (HMI = Hazardous Misleading 

Information) represents the HMI situation created when either all the signals used in 

the position solution perform nominally or at most one signal affected by an 

undetected failure is used in the position solution. 

The middle branch, integrity dissemination failure due to non-local effects covers 

all events where errors in the dissemination of integrity information result in an HMI 

in the position domain. 

The right branch, multiple SIS failures represents the condition where at least one 

SIS is failing due to either navigation data determination failure or multiple 

independent signal failures. 

 

HMI in the Position Domain 2.0E-7 in any 150 seconds 

Fault-Free or 
single SIS HMI 

1.7e-7 

Integrity dissemination 
failure non-local 

4.6e-11 

Multiple SIS 
failures  
2.95e-8 

Figure 2-3 High-level integrity allocation 
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2.1.1.4 Galileo pilot projects 

To investigate the introduction and benefits of Galileo in safety of life applications, 

such as maritime, car navigation, railway etc., the European Commission launched 

several pilot projects. 

• GADEROS project 

The GADEROS project is a pilot project under the Growth thematic programme of 

the 5th RTD Framework Programme of the European Union. It forms part of ongoing 

research work for the Galileo programme and is managed by the Commission’s 

Directorate-General for Energy and Transport. 

GADEROS aimed at demonstrating the use of GNSS Safety-of-life features for 

defining a satellite-based system to perform train location for safe railway 

applications (Urech, 2002; GADEROS, 2002) that will be integrated into the 

ERTMS/ETCS (European Rail Traffic Management System/European Train Control 

System). The system will offer another technological approach for train location, 

mainly for conventional and low density traffic lines. 

• LOCOPROL project  

The LOCOPROL project intends to develop an innovative, cost-effective, satellite-

based, vital, fail-safe train location system as the score of a train protection, control 

and command system (LOCOPROL 2002). 

The four main objectives of the project are strongly interconnected: 

 To define a new multi-technology train location system; 

 To study its application to the ERTMS/ETCS; 

 To study and prove its applicability in low density traffic lines (LDTL); 

 To study and prove its application for workers’ protection.  
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• NAUPLIOS project 

NAUPLIOS is also a pilot project under the Growth thematic programme of the 5th 

RTD Framework Programme of the European Union. 

The project will demonstrate the added value of Galileo positioning and SAR 

services for commercial shipping. It will make use of the EGNOS Test Bed and six 

vessels equipped with autonomous terminals - an EGNOS receiver, a satellite telecom 

link and an Automatic Identification System (AIS). NAUPLIOS Control Centres will 

monitor the results, which will be adapted in a geographical information system and 

formatted prior to being transmitted to several kinds of end users (Dick, 2004). 

NAUPLIOS will demonstrate how monitoring and surveillance of European 

waters can be improved such that risks can be identified at an early stage and 

measures can be taken to avoid major pollution incidents (Jean, 2003; Jean, 2004). 

• GALLANT project 

GALLANT (Galileo for Safety of Life Application of driver Assistance in Road 

Transport) is also a pilot project under the Growth thematic programme of the 5th 

RTD Framework Programme of the European Union. 

The main objectives of the GALLANT project focus on the integration of Galileo 

with an Advanced Driver Assistant System (ADAS) with ADAS onboard equipment 

to provide unprecedented support to the driver in avoiding accidents and to road 

mobility as a whole (GALLANT 2002). 

The expected benefits include: Adaptive Cruise Control, Overtaking Warning, 

Vision Enhancement, Lane Warning and Keeping, Collision Warning and Avoidance, 

Automatic Guidance. 

• INSTANT project 

INSTANT (Infomobility services for safety-critical applications on land and sea based 
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on integrated GNSS terminals) addresses sustainable mobility and intermodality and 

focuses on the management of large-scale events and emergency situations (Luigi, 

2004). 

The objectives of the project are to accelerate the uptake of Galileo by the 

transport sector by exploiting and demonstrating the improved performance provided 

by EGNOS in targeted applications and to evaluate benefits and analyse economic 

viability from synergies with appropriate infrastructures and services, both terrestrial 

and space-based. 

The expected benefits include more consistent and reliable route matching, an 

ability to give better route guidance and event monitoring - and integrity increases 

acceptability. 

• Polaris project 

Polaris is a software tool that allows the evaluation of navigation performance for 

different user applications in different environments. Its users include Galileo system 

engineers, navigation service providers and market analysts (Angel et al., 2004). 

Polaris can model the four application domains that are most critical for mass-

market application demonstrations: road, personal mobility, train and maritime. It will 

also provide a means for exploring new ideas for GNSS applications and 

demonstrating design feasibility to Galileo system designers. 

 

2.1.2 GPS and its modernization 

2.1.2.1 Current status of GPS  

The Global Positioning System (GPS) is a space-based positioning, navigation and 

timing (PNT) system developed by the U.S. Department of Defense (DoD) in the 



 20

early 1970s and currently managed by the U.S. government through an interagency 

process that seeks to fuse civilian and military interests. 

A combination of Block II, IIA, IIR and IIR-M satellites make up the current 

constellation. As of February 2007, there were 31 actively broadcasting satellites 

distributed among six orbital planes. The six planes have approximately 55 degree 

inclinations and are separated by 60 degree right ascension of the ascending node. 

Orbiting at an altitude of approximately 20,200 km, each satellite makes two complete 

orbits each sidereal day (Figure 2-4) (Global Positioning SPS Performance Standard 

2001).  

 

Figure 2-4 GPS satellite constellation 

Current GPS uses two frequency bands: L1 and L2 with central frequencies of 

1575.42MHz and 1227.60MHz respectively.  

Two navigation signals are broadcast. The first one is the Coarse / Acquisition 

code (C/A) on L1, which is freely available to the public. The C/A code is a 1,023 bit 

long pseudo-random noise code broadcast at 1.023MHz. The second ranging signal 

Precision P(Y) code broadcast at 10.23MHz is reserved for military use. 

2.1.2.2 GPS modernization  

Since the President’s decision on 1 May 2000 to “turn off” the capability to degrade 
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the civil signal, GPS modernization has begun to enhance both military and civil 

capabilities, including new signals for civil use and increased accuracy and integrity 

for all users, while maintaining backward compatibility with existing GPS equipment 

(Per Enge, 2003).  

First, a third frequency L5=1175.45MHz will be broadcast beginning with the first 

IIF satellite and it can be used for safety-of-life aviation because it lies in the 

“Aeronautical Radionavigation Services” band. For precise applications, the third 

frequency will benefit ambiguity resolution. 

Second, in the near future, GPS will provide an expanded signal set for both 

military and civil users.  

The first new signal L2C signal has an overall chipping rate of 1.023MHz, the 

same as the C/A code, but with an increased length. This will reduce the probability of 

a false lock during signal acquisition especially when the desired signal is obstructed 

and also reduces the worst case effect of narrowband radio frequency interference 

(RFI) by 10dB (Spilker and Van derendonck, 2001). But unfortunately, the L2C 

signal does not fall in an Aeronautical Radio Navigation System band, and so it does 

not enjoy the same institutional protection as the L1 and L5 signals do. 

The second new signal L5C is 10.23M chips long and the chipping rate will be 

10.23 Megachips per second (Mcps), ten times faster than today’s C/A code. This 

increase in speed will improve the noise performance of the GPS receivers and also 

make it easier for the receiver to resolve and mitigate the effects of multipath. 

Meanwhile the L5C will be significantly less vulnerable to RFI due to the tenfold 

increase in bandwidth and four times increase in power. 



 22

In addition, according to the agreement signed by the United States and the 

Member States of the European Union on GPS and Galileo, a compatible and 

interoperable signal on the L1 frequency L1C will be provided. It will be backwardly 

compatible with the current civil signal on L1, broadcast at a higher power level, and 

include an advanced design for enhanced performance. 

Since 1 May 2000, a lot of modernization activities have been and will be carried 

out. See Table 2-6 for the time schedule. 

GPS-III, which will incorporate the extra L2 and L5 signals of the Block IIR and 

Block IIF satellites are planned for launch from about 2013 until 2018. 

In addition to the space segment, control segment modernization is also ongoing.  

Table 2-6 GPS modernization plan 

Activity Implementation Date 

SA set to zero May 2000 

GPS IIR-M enhancements (L2C) 
1st satellite operational on Dec. 16, 

2005 

2nd launch 14 Sept. 2006 

GPS IIF enhancements (L2C and L5C) 1st launch currently scheduled for 
May 2008 

GPS III enhancements (L2C, L5C and 
new L1C) 1st launch ~ 2013 

Control segment enhancements Ongoing 

 

2.1.3 GLONASS 

GLONASS is another operational satellite navigation system. It was product of “cold 

war” and originally deployed as the former Soviet Union’s version of GPS. Today 

GLONASS is managed by the Commonwealth of Independent States (CIS) and 

especially the Russian Federation as the successor of the Soviet Union.  
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The full GLONASS space segment designed will consist of 24 satellites, 

distributed over three orbital planes. The longitude of ascending node differs by 120 

degrees from plane to plane. Each plane comprises eight satellites, staggered by 45 

degrees in argument of latitude. The arguments of latitude of satellites in equivalent 

slots in two different orbital planes differ by 15 degrees. Orbital and other parameters 

of the spacecraft are summarized and compared with GPS as in Table 2-7 (GLONASS 

ICD 2002; Rossbach U, 2000). 

Table 2-7 Parameters of the GLONASS and GPS space segments 

Parameter GLONASS GPS 

Semi-major axis 25,510km 26,580km 

Orbital height 19,130km 20,200km 

Orbital period 11 h 15.8 min 11 h 58 min

Inclination o8.64  o55  

Eccentricity ≤ 0.01 ≤  0.1 

 

Different from GPS, to distinguish between individual satellites, GLONASS 

employs different frequencies to broadcast their navigational information. Satellite 

frequencies are determined by the following equations: 

MHzkfL 5625.01602
1

⋅+=  

MHzkfL 4375.01246
2

⋅+=  

Here, k means the frequency number of the satellite. Table 2-8 compares 

GLONASS and GPS. The frequency domain as specified in Table 2-8 is equivalent to 

the frequency numbers 0 – 24. 
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Table 2-8 Comparing frequency plans of GLONASS and GPS 

Parameter GLONASS GPS 

Differences between satellites FDMA CDMA 

Frequency L1 1602 – 1615.5 MHz 1575.42 MHz 

Frequency L2 1246 – 1256.5 MHz 1227.60 MHz 

Signal polarization RHCP RHCP 

 

In 2005, GLONASS frequencies was shifted to frequency numbers -7… +4, with 

+5 and +6 as technical frequencies. This equals a frequency domain of 1598.0625 – 

1605.375 MHz in the L1 sub-band and 1242.9375 – 1248.625 MHz in the L2 sub-

band. 

Exactly as GPS, GLONASS uses a Coarse Acquisition (C/A) code and a Precision 

(P) Code. The L1 carrier phase band is modulated by both C/A and P code, whereas 

the L2 is modulated by the P code only. 

GLONASS C/A code is 511 characters long at a clock frequency of 511KHz and 

P code is 33,554,431 characters long at a clock frequency of 5.11MHz. 

The maintenance of the GLONASS system is affected by the continuing decline 

of the Russian Federation and especially its industries. See Figure 2-5 for the 

GLONASS constellation deployment history and future plan. Currently, there are 15 

satellites in orbit, including 4 GLONASS-Ms. GLONASS is scheduled to reach a 

minimum constellation size (of 18 satellites) by 2007 and full constellation (24 

satellites) by 2009. 
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Figure 2-5 GLONASS constellation deployment history and future plan 

 

2.1.4 Other GNSS systems 

2.1.4.1 Chinese Beidou System 

The BeiDou Navigation system or BeiDou Satellite Navigation and Positioning 

System, also known as Compass Navigation System (CNSS) by some western 

observers, is a project by China to develop an independent satellite navigation system 

(Elliott and Christopher, 2006). 

Currently, BeiDou is in a semi-operational phase of BeiDou-1 with four satellites 

deployed in geostationary orbit over China, BeiDou 1A (See Figure 2-6), 1B, 1C and 

1D. The latest BeiDou navigation satellite BeiDou 1D was successfully launched on 3 

February 2007. See Table 2-9 for details of the first three satellites.  

The official Chinese press has designated the constellation as the BeiDou 

Navigation Test System (BNTS). It supports two types of satellite navigation 

capabilities: Radio Determination Satellite Service (RDSS) (Figure 2-7) and Satellite 

Based Augmentation Systems (SBAS). The RDSS capability is operational with 

positioning accuracy between 20m and 100m (two-dimensional). 
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Figure 2-6 BeiDou 1A 

Table 2-9 Parameters of BeiDou satellites 

 BeiDou 1A BeiDou 1B BeiDou 1C 

Launch Site Xichang Xichang Xichang 

Launch Vehicle CZ-3A CZ-3A CZ-3A 

Mass 2,200kg 2,200kg 2,200kg 

Perigee 35,770km 35,773km 35,747km 

Apogee 35,804km 35,801km 35,829km 

Inclination o05.0  o07.0  o15.0  

Position o9.139 East o2.80 East o4.110 East 

 

Figure 2-7 RDSS service 

In addition to the BNTS RDSS service, the Chinese are in the process of 

establishing an ingenious SBAS system using the L-band transponder. The SBAS 
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service will likely share the GPS monitoring structure currently transmitting 

corrections via the S-band signals. 

Beyond the current BeiDou-1 system, China is in the final stages of designing a 

follow-on system designated BeiDou-2. The new system will consist of 35 satellites, 

including 5 geostationary orbit satellites and 30 medium Earth orbit satellites, which 

will offer complete coverage of the globe. There will be two levels of service 

provided: a free service for those in China and licensed service for the military: 

 The free service will have a 10-metre location-tracking accuracy, 

synchronized clocks with an accuracy of 50ns and measure speeds within 

0.2m/s; 

 The licensed service will be more accurate than the free service; it can be used 

for communication and can supply information about the system status to 

users. 

2.1.4.2 Japanese QZSS 

The Japanese are developing an ingenious satellite navigation augmentation to the 

U.S. GPS under the QZSS programme. Under current plans, the QZSS constellation 

will be designed to support both mobile communications and GPS augmentation 

services. Particularly, the Japanese intend the navigation services to address shortfalls 

in GPS satellite visibility in urban canyons and mountainous terrain (Elliott and 

Christopher, 2006). 

To meet the requirements for having a system with satellites operating 

predominantly over Japan, an inclined geosynchronous or semi-synchronous orbit is 

being planned.  A number of possible constellation designs have been considered. At 

the time of writing, the Japanese Aerospace Exploration Agency presented an updated 

concept for the QZSS constellation at an international conference. The agency 
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proposed a constellation of three distinct and separate inclined HEO orbits, 

complemented by a return to as many as five spacecraft at geostationary positions. 

The overall satellite navigation service in Japan will be provided by 1,200 stations 

with the capability to receive GPS, the augmentation signals from QZSS and any 

future independent ranging signals that may be provided by QZSS satellites. 

 

2.2 Navigation with new generation GNSS 

Civilian uses of GNSS are growing rapidly due to the quality of the service that GNSS 

provides, ease of use and low user cost. 

Although with the turn off of SA, navigation performance has been greatly 

improved with current GPS, it is still not sufficient to meet some requirements for 

safety-of-life navigation applications, especially the user integrity monitoring level in 

terms of RAIM availability. 

Now Galileo is launching and GLONASS is under replenishment. In the near 

future there are likely three or more satellite-based navigation systems available 

simultaneously. Navigation with combined systems has attracted more research 

interest in recent years.  

In this section, two aspects will be reviewed. One is the compatibility and 

interoperability issues between different GNSS systems. The other is the assessed 

navigation performance with combined GNSS. 

2.2.1 Compatibility & interoperability issues 

Compatibility is in this context understood as the assurance that one system will not 

degrade the stand-alone service of the other systems. Interoperability is the ability for 

the combined use of GNSSs to improve accuracy, integrity, availability and reliability 

through the use of a single common receiver design (McDonald, 2001). 
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The relationship among GNSS systems is not one of either cooperation or competition, 

but, rather, of degrees or levels of cooperation and competition. For joint use, 

compatibility and interoperability are very important issues. 

In this part, only compatibility and interoperability issues among GPS, Galileo and 

GLONASS are addressed. Three topics are of primary importance: Signal in space, 

Geodetic coordinate reference frame and Time reference frame (Elliott and 

Christopher, 2006). 

2.2.1.1 Signal-in-space 

The ability to support different frequencies increases receiver cost and complexity, 

because extra or more complex antennas, filters and associated RF components are 

needed. Furthermore, processing two signals with different carrier frequencies may 

cause frequency biases in the navigation solution. In particular, the high-precision 

position solutions that use carrier phase data may be degraded in terms of accuracy. 

Galileo/GPS interoperability is realized by a partial frequency overlap with 

different signal structures and/or different code sequences. At E5a (resp. L5) and E1 

(resp. L1) Galileo and GPS signals are broadcast using identical carrier frequencies. 

At L1 spectral separation of GPS and Galileo signals is given by different modulation 

schemes. This will drastically simplify user receiver RF front-end design and also 

allows jamming of civil signals without affecting GPS M-code or the Galileo PRS 

service (Jeremie, 2003). 

However, this simplification in RF frond-end design comes at the cost of mutual 

interference of both systems due to the overlapping of signal spectra. This so-called 

inter-system interference adds to the interference of navigation signals belonging to 
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the same system, called intra-system interference. Only the sum of both types of 

interference is relevant for determining receiver performance (Dennis et al., 2003). 

Another area of interest for interoperability at signal level is the selection of the 

PRN code families. Currently, two Galileo safety of life signals on E5a and L1 have 

the same modulation and carrier frequency as the GPS L5 and modernized L1C 

signals (on GPS III), respectively. Having common code families could bring some 

more benefits to the user community. 

Unlike GPS and Galileo with CDMA modulation, GLONASS employs FDMA 

technology (GLONASS ICD 2002; Rossbach U, 2000). The differences between 

FDMA and CDMA signals make combined GPS/GLONASS or Galileo/GLONASS 

receivers more complex and costly. 

At the September 2006 meeting of the Institute of Navigation, Sergey Revnivykh, 

Deputy Director of the Mission Control Centre of the Central Research Institute of 

Machine Building of the Russian Federal Space Agency (RFSA) spoke of CDMA as 

an "option" for GLONASS and added that the system "probably will be able to 

implement CDMA signals" on the new third frequency, to be added on to GLONASS-

K satellites during Phase 3 of GLONASS modernization and at L1 (Inside GNSS 

News, 2007). A GLONASS switch to CDMA would make manufacture of combined 

receivers far easier. 

2.2.1.2 Coordinate reference frame  

For the Galileo coordinate reference system, international civilian standards will be 

adopted. However, the realization of the Galileo coordinate reference frame should be 

based on stations different from those of GPS. 
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The Galileo Terrestrial Reference Frame (GTRF) shall be in practical terms an 

independent realization of the International Terrestrial Reference System (ITRS) 

established by the Central Bureau of the International Earth Rotation Service (IERS). 

WGS 84 is the coordinate reference frame for GPS. The original WGS 84 

realization essentially agrees with NAD 83 (1986). Subsequent WGS 84s, however, 

approximate certain ITRS realizations.  

The differences between WGS84 and the GTRF are expected to be only a few cm. 

This implies for the interoperability of both GNSS systems that WGS84 and GTRF 

will be identical within the accuracy of both realizations (i.e. coordinate reference 

frames are compatible). This accuracy is sufficient for navigation and most other user 

requirements. Besides, transformation parameters can be provided by a Galileo 

external Geodetic Reference Service Provider and mapping between the two systems 

can readily be accomplished in the receiver. 

Coordinate reference frames often include Earth gravity models. For example, the 

WGS-84 uses a spherical harmonic expansion of the gravity potential up to the order 

and degree of 360. For Galileo, a similar model must be considered. 

The coordinate system used by GLONASS is PZ 90. Though the definitions of 

WGS 84 and PZ 90 sound similar, due to different realizations, there are differences 

in origin, orientation and scale. Therefore, in order to get meaningful results when 

combining GPS/GLONASS or Galileo/GLONASS measurements, a coordinate 

transformation is needed. 

2.2.1.3 Time reference frame  

The Galileo System Time (GST), modulo 1 second, is planned to be steered to a 

prediction taken from a number of UTC laboratories obtained through an external 

Galileo time service provider. GST is specified to be kept to within 50ns (95%) of 
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International Atomic Time (TAI) over any 1-year time interval. The offset between 

TAI and GST will be known with a maximum uncertainty of 28ns (2 sigma), 

assuming the estimation of TAI six weeks in advance. Users equipped with a Galileo 

timing receiver will be able to predict UTC to 30ns for 95% of any 24 hours of 

operation. 

GPS System Time is the internal GPS navigation time scale, which is not adjusted 

for leap seconds and which is steered to UTC (USNO) modulo 1 second. GPS System 

Time is specified to be maintained to within one microsecond modulo integral 

seconds, and for the past eight years it has been maintained to within +/-25ns of this 

goal. 

GLONASS System Time is maintained by the GLONASS Central Synchronizer 

by means of a set of hydrogen masers. It is closely coupled to UTC, but with a 

constant offset of three hours plus a fractional part in the order of microseconds. 

Therefore, GLONASS system time also considers leap seconds. But The GLONASS 

ephemeris is referenced to UTC (GL). UTC (GL) is a discontinuous time scale, with 

leap seconds introduced on 30 June or 31 December as needed. With GPS, the integer 

second difference between GPS time and UTC is transmitted within the GPS 

navigation message. 

When using a combined GNSS positioning, navigation and timing service there 

are two options for obtaining the system time offset: 

 The user is able to determine the system time offset in the position and 

navigation processing at the expense of one additional satellite tracked. 
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 The offset could be measured by traditional time transfer techniques or 

precisely estimated in near real time at the monitoring station of the systems 

using a combined receiver. 

The latter option was adopted as part of the EU-U.S. agreement on Galileo/GPS 

interoperability. The accuracy of this time offset modulo 1 second is specified to be 

less than 5ns with a 2-sigma confidence interval over any 24-hour period. 

The Russian Military Space Forces as the operator of the GLONASS system are 

planning to include the time difference between GLONASS system time and GPS 

system time in the navigation message of GLONASS-M spacecraft. 

In addition to the system time offset between these systems, there is another 

problem when using combined navigation services. Future receivers may have the 

same or different receiver clocks for different system signals, so one more clock 

parameter may be introduced in the navigation mathematical model. 

2.2.2 Navigation with new GNSS 

Combinations with the new GNSS systems will provide more than 100 satellites, with 

multiple frequency band navigations signals. A number of studies has been carried out 

to evaluate navigation performance by integrating these systems (Hein et al., 1997; 

Ryan and Lachapelle, 2000; Kyle, 2001; O’Keefe, 2001; Verhagen, 2002; Ochieng 

and Sauer, 2001; Ochieng et al., 2002; Blomenhofer et al., 2004; Lee, 2004; Daghay 

et al., 2005; Hewitson et al., 2004). Based on the simulated performance of GPS, 

Galileo, and combined GPS and Galileo, the following conclusions can be made:  

• Although the additional satellites available in a combined constellation clearly 

improve the accuracy performance, it is of limited significance especially in 

the horizontal direction (Ochieng and Sauer, 2001); 
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• Using a combined GPS and Galileo system can clearly improve the 

availability performance, especially in extreme masking environments, where 

navigation with GPS only is very difficult (Kyle, 2001); 

• There is a significant improvement in integrity using a combined Galileo/GPS 

system compared to the performance using the Galileo system alone. The use 

of a combined constellation can either reduce the minimum position shift that 

can be detected at a given probability level or can increase the probability with 

which a blunder of a given size will be detected overall (Daghay et al., 2005; 

Hewitson et al., 2004; Ochieng et al., 2002). 

 

2.3 High precision relative positioning with new GNSS 

The Global Navigation Satellite Systems (GNSS) provide two main types of 

measurements: pseudorange and carrier phase. The main differences between them 

are measurement precision (metre vs millimetre) and integer ambiguity associated 

with carrier phase. If we can reliably resolve the carrier phase ambiguity, then the 

carrier phase measurement can be conceptually turned into a high-precision range 

observation and positioning accuracy at the centimetre level could be achieved every 

epoch. This can benefit an large number of scientific applications. 

Ambiguity resolution has been a continuing challenge and a rich source of 

research over the last decade. From the first demonstration of the use of the GPS 

carrier phase observations for sub-centimetre-level precision positioning and 

surveying, to the latest development of the instantaneous ambiguity resolution on-the-

fly (OTF) techniques, from zero-distance baseline to long baseline more than 1,000km, 

from a single frequency band of GPS to multiple frequency bands of new GNSS 
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systems, a lot of ambiguity resolution techniques has been proposed by many groups 

from all over the world. 

Ambiguity validation is equally important in order to ensure reliable ambiguity 

resolution. Ambiguities cannot be fixed if there is not enough confidence.  A lot of 

validation criteria or tests or methods have been proposed over the last decade. And 

obviously it is still an open problem. 

Three aspects are summarized and discussed here, including ambiguity resolution 

over short, long-distance baselines and ambiguity validation. 

2.3.1 Ambiguity resolution over a short baseline 

• Ambiguity resolution with current GPS 

In the past, various ambiguity resolution algorithms have been developed for different 

applications such as rapid static positioning, kinematic or real-time navigation, etc. 

Generally these techniques can be classified according to how they attempt to make 

use of the information contained within the receiver measurements. 

The first class includes the very first ambiguity resolution technique developed, 

namely the Ambiguity Function Method (AFM) (Counselman and Gourevitch, 1981; 

Remondi, 1984; Han and Rizos, 1996a). This technique uses only the fractional value 

of the instantaneous carrier phase measurement and hence the ambiguity function 

values are not affected by the whole-cycle change of the carrier phase or by cycle 

slips. Generally it provides relatively poor computational efficiency and consequently 

is of little importance other than of historical interest (Kim and Langley, 2000). 

The second class comprises the most abundant group of techniques which are 

based on the theory of integer least-squares (ILS) (Teunissen, 1993). Parameter 

estimation under the theory is carrier out in three steps – the float solution, the integer 

ambiguity estimation and the fixed solution. Each technique makes use of the 



 36

variance-covariance matrix obtained at the float solution step and employs different 

ambiguity search processes at the integer ambiguity estimation step. The following 

are some representative techniques in this class: the Least-Squares Ambiguity Search 

Technique (LSAST) (Hatch, 1990); the Fast Ambiguity Resolution Approach (FARA) 

(Frei and Beutler, 1990); the modified Cholesky decomposition method (Euler and 

Landau, 1992); the Least-Squares AMBiguity Decorrelation Adjustment (LAMBDA) 

(Teunissen, 1994; Teunissen, 1995); the null space method (Martin-Neira et al., 1995); 

the Fast Ambiguity Search Filter (FASF) (Chen and Lachapelle, 1995); and the 

Optimal Method for Estimating GPS Ambiguities (OMEGA) (Kim and Langley, 

1999).  

The second class – ILS, can be divided into two categories. The first category 

takes advantage of both pseudorange and carrier phase measurements, so the 

observation model is full rank; the second category uses only carrier phase ones, so its 

observation model is rank defect. Though the former one generally takes less time, the 

latter has its own advantages, that is, it is free from the effects of big multipath in 

pseudorange measurements. 

In addition to the above developments trying to solve full ambiguities, a partial 

solution concept has been proposed (Teunissen, 1998; Teunissen et al., 1999). The 

idea of partial ambiguity resolution is based on the fact that the success rate will 

generally increase when fewer integer constraints are imposed. Due to its higher 

reliability, if the accuracy provided can meet navigation requirements, a partial 

solution can improve navigation continuity.  

However with current GPS, both the efficiency and reliability of ambiguity 

resolution is not high (Chen, 1992) even for short baselines. Fewer available carrier 

phase frequency bands (only L1, L2) is an important limitation factor. 
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• Ambiguity resolution with modernized GPS and Galileo 

In the future, both modernized GPS and Galileo are expected to have at least three 

carrier phase frequencies. With more carrier phase data available, more frequency 

combinations with longer equivalent wavelengths can be formed. This will provide 

more opportunities for fast and reliable ambiguity resolution.  

In recent years, studies on fast ambiguity resolution with new GNSS have been 

carried out by many researchers (Hatch et al., 2000, Tiberius et al., 2002; Vollath et 

al., 1998; Zhang et al., 2003; Werner and Winkel, 2003; Schlotzer and Martin, 2005; 

Zhang, 2005). A new kind of ambiguity resolution method class has been developed. 

Instead of estimating all ambiguities at one time, this class solves ambiguities step by 

step from the easiest ones to the most difficult. They are specially designed for 

multiple frequency bands of modernized GPS and Galileo by taking advantage of 

inter-frequency carrier phase linear combinations. Representative techniques in this 

class include: three-carrier ambiguity resolution (TCAR) (Forsell et al., 1997), 

Integrated TCAR (ITCAR) (Vollath et al., 1998) and Cascade Integer Resolution 

(CIR) (Jung et al., 2000). They share a similar basic approach and can all be called the 

Cascading Ambiguity Resolution (CAR) method. 

This class can be divided into two categories. The first category is the simplest 

ambiguity resolution technique and is called geometry-free which determines the 

carrier phase ambiguity directly with pseudorange measurement. The second category 

is geometry-based, in which satellite geometry strength is taken advantage of. 

Generally the second category performs better than the first one, but with a heavy 

computational burden. 

However two problems are left open with modernized GPS and Galileo. The first 

is how to select optimal combinations for CAR. The second is which ambiguity 
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resolution method is best compared with ILS. These two problems are important for 

fast and reliable ambiguity resolution.  

2.3.2 Ambiguity resolution over a long baseline 

Unlike short baselines, due to weakened spatial correlation, the remaining 

atmospheric effect of long baselines (> 10 or > 30km) cannot be neglected after 

double differencing, especially ionospheric ones.  

With current GPS, if without external ionospheric information, traditionally, there 

are two methods to deal with ionosphere-delay: ionosphere-delay float and 

ionosphere-free. 

With the first method, ionosphere delay is parameterized in the mathematical 

model and assumed to be invariant with time. This method can easily lead to wrong 

ambiguity resolutions when there are active solar activities. 

With the second method, the integer property of ambiguities is lost due to only 

two frequency bands being available. 

So with current GPS, ambiguity resolution is not an easy task and a fast static 

ambiguity resolution is almost impossible. The traditional approach has been long 

static occupation allowing time for the ambiguities to converge to integers. Typical 

occupation time can be hours, depending on baseline length and atmospheric 

conditions, and is far too restrictive for many applications. 

In recent years, much research work has been carried out to investigate ambiguity 

resolution performance over long baselines with new GNSS. Generally, the CAR 

method is used (Zhang et al., 2003; Zhang, 2005) with the remaining ionospheric 

effect just ignored. This is only feasible for ambiguity resolution of combinations with 

long wavelength when the baseline is not very long (e.g. < 100km). When the 

baseline grows longer, ambiguity resolution reliability becomes questionable.  
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2.3.3 Ambiguity validation 

To ensure reliable ambiguity resolution, ambiguity validation is an important step. 

Several validation methods have been proposed over the last decade and the following 

are some representative methods: the F-ratio (Frei and Beutler, 1990; Landau and 

Euler, 1992), R-ratio (Euler and Schaffrin, 1991; Leick, 2003), difference-test 

(Tiberius and De Jonge, 1995), projector test (Wang et al., 1998a; Han, 1997) and W-

test (Wang et al., 1998a). 

In recent years, another class of validation methods called Integer Aperture (IA) 

estimators (Teunissen, 2003) has been proposed. It provides a theoretically sound, 

overall approach to the problem of integer estimation and validation and the user has 

control over the fail rate and thus also over the amount of discernibility. With the 

concept of integer aperture estimation, three possibilities are distinguished: the 

success rate, the fail rate and the undecided rate. To guarantee that the probability of 

fixing incorrectly is low enough, a fixed fail rate is generally chosen as the decision 

parameter. Among the IA class, the Ellipsoidal Integer Aperture (EIA) estimator 

(Teunissen, 2005) is an outstanding one with an easy-to-evaluate fail-rate.  

Analysis (Teunissen and Verhagen, 2004; Verhagen, 2005) has shown that the F-

ratio, R-ratio, projector test and difference-test all belong to the IA estimator class.  

In the W-test, the test statistic W is assumed to have the t -distribution. However, 

analysis (Verhagen, 2005) has shown that this is not true. 

In spite of the above developments, ambiguity validation is far from being 

resolved. 
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Chapter 3 GNSS Data Simulator 

 

A GNSS data simulator has been developed in this research, as the Galileo system is 

not yet fully operational. The simulator is able to simulate pseudorange and carrier 

phase measurements in different frequency bands from various satellite systems 

including GPS, GLONASS, and Galileo.  

The radio frequency bands for these systems are all in L band. Thus the error 

models used in the simulator are based on detailed GPS satellite signal error 

behaviour and realistic GPS error models, including orbit errors, satellite and receiver 

clock errors, propagation errors (ionosphere, troposphere), multipath and 

measurement noise. 

In this chapter, the data models used for the GNSS data simulator are presented 

and the positioning results from simulated Galileo data show that the error models 

applied in the GNSS simulator are realistic. 

 

3.1 Data models for GNSS simulator  

3.1.1 Satellite constellations  

The constellations considered in the GNSS simulator include Galileo, GPS and 

GLONASS.  

• Galileo 

The Walker 27/3/1 constellation (European Commission, Galileo Mission High Level 

Definition Document 2002) is adopted for Galileo data simulation. A simplified 

circular orbit with an orbit height of 24,000km is used in the simulation.  
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• GPS 

GPS constellation (28 satellites) and orbit parameters on January 3rd, 2004 are adopted 

(Table 3-1 gives satellite orbit plane locations) for GPS data simulation.  

Table 3-1 Parameters of the GPS constellation 
Block sequence SVN PRN Orbit Plane 

II-2 13 02 B-5 

II-5 17 17 D-6 

II-9 15 15 D-5 

II-10 23 23 E-5 

II-11 24 24 D-6 

II-12 25 25 A-2 

II-14 26 26 F-2 

II-15 27 27 A-4 

II-16 32 01 F-6 

II-17 29 29 F-5 

II-19 31 31 C-3 

II-20 37 07 C-5 

II-21 39 09 A-1 

II-22 35 05 B-4 

II-23 34 04 D-4 

II-24 36 06 C-1 

II-25 33 03 C-2 

II-26 40 10 E-3 

II-27 30 30 B-2 

II-28 38 08 A-3 

IIR-2 43 13 F-3 

IIR-3 46 11 D-2 

IIR-4 51 20 E-1 

IIR-5 44 28 B-3 

IIR-6 41 14 F-1 

IIR-7 54 18 E-4 

IIR-8 56 16 B-1 

IIR-9 45 21 D-3 
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• GLONASS 

For the GLONASS constellation, the full constellation (with 24 satellites in three 

orbital planes) (GLONASS ICD 2002; Rossbach, 2000) is used in the simulation. 

Similar to Galileo constellation simulation, a simplified circular orbital model is 

adopted for convenience. 

3.1.2 Reference frames 

• Coordinate reference frames 

The coordinate reference frames for different satellite GNSS systems are maintained 

by different system operators, i.e. WGS84 for GPS, PZ90 for GLONASS and GTRF 

for Galileo. For GPS and Galileo, in practice the reference frames are the realization 

of the International Terrestrial Reference Frame (ITRF) to an accuracy of a few 

centimetres (Elliott and Christopher, 2006). For GLONASS, the transformation 

between PZ90 and the ITRF has been good (Rossbach, 2000). Therefore, in the GNSS 

simulator, the differences of the reference frames will not be considered with different 

GNSS systems and a unified ITRF is adopted for all GNSS systems in the simulation. 

With this approach, the performance analysis from a single GNSS system will not be 

affected. With the integration of a number of GNSS systems, the effects of reference 

frame differences are within a few centimetres.  

• Time reference frames 

The time standards of different GNSS systems are maintained by different system 

operators. Therefore, there are time offsets among different GNSS systems. With 

current technology, the time synchronization accuracy between two time references of 

5ns can be achieved (Elliott and Christopher, 2006), which will lead to a range error 

of less than one and half a metre.  Both Galileo and GLONASS systems plan to 
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broadcast their system time offsets compared to GPS time reference (GLONASS 

interface control document version 5.0).  

In the GNSS simulator, one time offset can be set for each GNSS system or a 

common time reference can be applied for all GNSS systems. 

 

3.1.3 Error models 

The pseudorange and carrier phase measurements from GNSS systems are affected by 

many error sources, i.e. clock errors, propagation errors, orbit errors, antenna offset 

and phase centre errors, inter-channel biases, relativity effects, multipath, etc. (Elliott 

and Christopher, 2006).  As the signals of the three GNSS systems considered in this 

study are all in the L band, the error models which have been widely applied in GPS 

positioning will be adopted for the GNSS simulator.  

In the simulator, the main error models include orbital error and satellite clock 

error, measurement noise, multipath effect, receiver clock error and ionospheric and 

tropospheric delays.  

 Satellite clock 

The satellite clock error is simulated in two ways.  The first method models the 

satellite clock error by a second-order polynomial to count for the specific offset 

relative to the reference time, including systematic clock errors (bias, drift and 

acceleration) and thermal noise errors. Although the random atomic clock errors 

should be modeled by coloured noise models (Stephen and Willy, 1989), in this 

simulator, a simple Gaussian white noise model is adopted. The sizes of systematic 

and random clock errors are user configurable. 
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The second method directly simulates satellite clock errors based on GPS satellite 

broadcast clock errors, which can be obtained by comparing the satellite clock errors 

computed from broadcasting navigation messages and those computed from the 

precise clock error estimates from the International GNSS Service (IGS) products. 

• Satellite orbit 

Similar to GPS, the future Galileo navigation message also gives the Keplerian 

parameters to compute the satellite coordinates. The GLONASS broadcasts the 

satellite coordinates at different time epochs. As the orbit determination methods for 

different GNSS systems are similar, the orbital error behaviour is expected to be 

similar to GPS. The orbit errors used in the simulator are obtained from the 

differences from the orbit computed from the broadcast ephemeris and the precise 

ephemeris from the IGS products. The precise orbit will be used to generate the 

measurements while the orbits with errors will be used for positioning computation.  

• Ionosphere delay 

In the simulator, ionosphere delay for different frequencies can be simulated using 

two methods and is user configurable. The first method applies the Klobuchar Model 

(Klobuchar, 1987) to simulate the vertical ionospheric delays. Then a mapping 

function is applied to convert it to the slant delays. The second method is to 

interpolate the ionsopheric delay based on the IGS global ionosphere model (Final 

Ionospheric TEC grid) (Joachim, 2003). For different frequency bands, only the first-

order ionospheric delay is simulated and the higher-order part is not considered. 

Figures 3-1 to 3-5 are samples of zero-differenced, single-differenced and double-

differenced ionospheric delays for one satellite simulated using the Klobuchar Model. 

From the figures we can see that the zero-differenced ionospheric delays are in the 

range of 15-24m for a particular set of Klobuchar model parameters broadcast from a 
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GPS satellite. The differential process can significantly reduce the effects of 

ionospheric delays. The ionospheric residuals for relative positioning are increased 

with baseline distance. For a very short baseline (i.e. 1km), the ionospheric delay 

residuals between two stations are very small and can be ignored.  When the distance 

of baseline exceeds one thousand kilometres, the ionospheric delay residuals can 

reach several metres. 

 

 

 

 

 

 

 

Figure 3-1 Simulated zero-differenced ionospheric delays  

Figure 3-2 Simulated single-differenced ionospheric delays of different 
baselines (1km, 45km and 90km from bottom to top) 
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• Troposphere delay 

There are a number of models available for tropospheric delays, i.e. Saastamoinen 

model (Saastamoinen, 1973), Hopfield model (Hopfield, 1969), etc. In the data 

Figure 3-3 Simulated single-differenced ionospheric delays of different 
baselines (170, 260, 345, 430, 520 & 860km from bottom to top) 

Figure 3-4 Simulated double-differenced ionospheric delays of baselines 
(1km, 45km and 90km from top to bottom) 

Figure 3-5 Simulated double-differenced ionosphere delays of different 
baselines (170, 260, 345, 430, 520 and 860km from top to bottom) 
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simulator, troposphere delay is simulated using the Modified Hopfield Model (Goad 

and Goodman, 1974). 

The effects of tropospheric delays on zero-differenced, single-differenced, double-

differenced observables are plotted in Figures 3-6 to 3-10.  

 

 

 

 

 

Figure 3-6 Troposphere delays for one satellite 

Figure 3-7 Single-differenced troposphere delay residuals for different 
baselines (1km, 45km and 90km from bottom to top) 

Figure 3-8 Single-differenced troposphere delay residuals for different 
baselines (170, 260, 345, 430, 520 & 860km from bottom to top) 
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• Receiver clock 

The receiver clock is modelled as a specific offset relative to the reference time, 

including: systematic clock errors (bias, drift and acceleration) and thermal noise 

errors. White noise is used to represent the clock random errors.  

 Measurement noise 

Code and carrier phase observation noises are simulated according to Gaussian 

normal distribution model (Parkinson, 1996). Their sizes are user configurable. 

• Multipath effect 

The code range error mrE  and carrier phase range error mpE  due to the multipath 

effect are simulated according to the following formula (Galileo System Simulation 

Facility – Algorithms and Models 2005): 

Figure 3-9 Double-differenced troposphere delay residuals for different 
baselines (1km, 45km and 90km from top to bottom) 

 

Figure 3-10 Double-differenced troposphere delay residuals for different 
baselines (170, 260, 345, 430, 520 & 860km from bottom to top) 
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)sin( ElevKKKAAE ranrecenvrbrmr ∗+= ω                           (3-1) 

)sin( ElevKKKAAE ranrecenvpbpmp ∗+= ω                           (3-2) 

Where rA and pA  are the amplitude of the multipath effects respectively, brA  and bpA  

are corresponding random residual multipath bias terms (mean = 0), recK  is the 

receiver sensibility factor (0 to 1), ω  is the multipath frequency and Elev  is the 

elevation angle of the transmitter relative to the receiver. ranK  is a time-correlated 

Gaussian distribution noise with a mean of 0. envK  depends on the receiver 

environment characteristics. Table 3-2 lists typical envK values in different 

environments (Galileo System Simulation Facility – Algorithms and Models 2005). 

 Table 3-2 envK  values 
Value Environment 

0 No fading or reflections 
0.25 Rural area, fading only 
0.5 Urban area, fading and one specular reflection only 
1 Urban area, fading and multiple reflections 
10 Excessive multipath 

 

Figures 3-11 to 3-15 give the multipath errors of code observations using different  
environmental values envK . The sigma value of brA  is set to 0.2m. 

 
Figure 3-11 E1/L1 code Multipath error when envK =0 



 50

 

 

 

 

 

 

 

 

Figure 3-12 E1/L1 code Multipath error when envK =0.25 

Figure 3-13 E1/L1 code Multipath error when envK =0.5 

Figure 3-14 E1/L1 code multipath error when envK =1 
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These figures show that when envK  becomes bigger, the code multipath error 

increases from less than one metre to about thirty metres, the error characteristics 

change from random (i.e. envK =0) to approximately periodical (i.e. envK =10).  

Figure 3-16 is a sample of carrier phase multipath error when envK =0.5 and 

sigma of bpA  = 0.01. The errors are approximately randomly distributed and the 

magnitudes do not exceed one quarter of the wavelength. 

 

 

 

3.2 Program structure 

The program’s structure of the simulator can be seen in Figure 3-17.  

Figure 3-15 E1/L1 code multipath error when envK =10 

Figure 3-16 E1/L1 phase multipath error when envK =0.5 
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User setting file consists of all user configurable parameters, including output file 

name, station(s) name(s) and coordinates, broadcast ephemeris and/or precise 

ephemeris file, the starting time and the ending time of observations, data sampling 

interval, the sizes for the satellite clock and receiver clock noises, the sizes for 

pseudorange and carrier phase measurement noises and the cutoff elevation angle. 

Users can also select whether to simulate cycle slips.  

Based on the station coordinates and ephemeris file, the true geometric ranges 

from the station to satellites at any epoch can be calculated. Then the main error 

sources listed in Figure 3-17 are simulated, including satellite clock error, orbital error, 

receiver clock error, ionosphere and troposphere delays, multipath effect and 

observation noise. Afterwards pseudorange and carrier phase measurements are 

formed separately by combining the true receiver with satellite distances and all 

simulated errors together. Finally pseudorange and carrier phase measurements are 

output to the user indicated file. 

 

Input 
 User  

Setting 
 File 

Calculate true geometric ranges

Simulate satellite clock error  

Simulate receiver clock error  

Simulate ionosphere delay  

Simulate troposphere delay  

Simulate multipath effect  

Simulate observation noise  

Form pseudorange 
 measurements 

Form carrier phase 
 measurements 

Output  
Simulated 

Data 

Simulate orbital error 

Figure 3-17 Programme structure of the simulator 
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3.3 Validation test  

In the simulator, the clock errors of both satellite and receiver are modeled as having a 

specific offset relative to the reference time. The clock offset includes: systematic 

clock errors (bias, drift and acceleration) and thermal noise errors. There are generally 

five sources of clock noises that can be present:  

 Random walk on frequency 

 White noise on frequency 

 Flicker noise on frequency 

 White noise on phase 

 Flicker noise on phase 

In the simulator, only the white noise on frequency is implemented, since it is the 

basic noise classically associated with atomic clocks. This is also the model used in 

Galileo System Simulation Facility (GSSF) officially developed by VEGA for Galileo 

system design (Galileo System Simulation Facility – GSSF Models and Algorithms, 

2005). 

For orbital error simulation, the differences between precise orbit provided by IGS 

and broadcast orbit are adopted. Since the accuracy of the precise orbit can reach up 

to 5cm, the orbital error in simulated measurement is very similar to practical one of 

GPS. 

Since the final ionosphere TEC grid provided by IGS can be as precise as to 2-8 

TECU, the ionosphere delay simulated by interpolating the TEC grid will be similar 

to practical one with expected TEC difference less than 10 TECU generally. 

For troposphere delay, the modified Hopfield model appears to predict the 

tropospheric effects by 92% to 95% depending on the amount of atmospheric 

information available to the user (Wells et al., 1987). So the simulated tropospheric 
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delay is almost the same to the practical one with the difference less than 2dm 

generally. 

Observation noise sources include analogue-to-digital quantization, and tracking 

loop design. Most of these noises are essentially white in nature and can be modeled 

by a Gaussian normal distribution. 

The model used in the simulator for multipath effect represents a parameterization 

of the observations and conclusion drawn from the reference: Global Positioning 

System: Theory and Applications, Vol. I, B.W. Parkinson, J.J. Spilker, AIAA, 

Chapter 14 Multipath Effects. 

To validate the suitability of the error models applied in the GNSS data simulator,  

the ‘receiver’ positions is determined by using the simulated pseuodrange 

measurements and then compared with the inputted “true position” to examine the 

size of the positioning errors. The point positioning method is used because the 

positioning errors will be affected by all the simulated errors. The simulated errors 

include orbital error, satellite clock error, receiver clock error, tropospheric delay, 

ionospheric delay, pseudorange measurement noise and multipath. The IGS precise 

ephemeris is used to simulate satellite’s orbit. Ionospheric delay errors are simulated 

using the IGS global ionosphere maps. Tropospheric delay error is simulated with 

modified Hopfield model. The parameters for measurement noise and multipath are 

given in Table 3-3.   

Table 3-3 Data Simulation for Point Positioning 

Error source Error size 
Code observation 

noise 0.5 m 

Code multipath error
Sigma of brA = 0.2m; 

envK =0.25 
 



 55

In data processing, the broadcast ephemeris is used for positioning computations. 

The ionospheric delay errors are corrected by the Klobuchar Model and the 

tropospheric delay errors are corrected using the dry part of Modified Hopfield Model 

only. 

Figures 3-18 and 3-19 are the horizontal and vertical positioning errors from the 

simulated data.  

It can be seen from the two figures that the horizontal positioning errors are in the 

range of 2 to 6m, while the vertical errors are up to 20m, which is what we expected 

from GNSS positioning (Global Positioning SPS Performance Standard 2001).  Thus 

the error models used in the GNSS simulator reasonably represent the real situation.  
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Figure 3-18 Horizontal position error of point positioning with Galileo 
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Figure 3-19 Vertical position error of point positioning with Galileo 
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Chapter 4 Point Positioning Performance Analysis with New 

GNSS Systems 

 

Point positioning is the basic positioning mode for GNSS systems and has been 

widely used in navigation, which utilizes a single GNSS receiver to determine the 

absolute position of a point. Both pseudorange and carrier phase measurements can be 

used for point positioning. Pseudorange measurement is commonly used due to its 

robustness for positioning computations. The point positioning accuracy with 

pseudorange measurement is around 10m. In recent years, the Precise Point 

Positioning (PPP) technique has been developed which utilizes carrier phase 

measurement and can achieve centimetre level positioning accuracy (Kouba and 

Heroux, 2001; Bisnath and Langley, 2001a; Bisnath and Langley, 2001b; Bock et al., 

2002; Colombo et al.,; 2004; Chen et al., 2004).  

For navigation applications, any navigation system needs to fulfil certain required 

navigation performance factors, i.e. accuracy, integrity, availability continuity and 

coverage (Federal Radionavigation Plan 2005). It is well known that GPS alone 

cannot satisfy navigation requirements for some specific applications, i.e. civil 

aviation (Civil Aviation Authority 2004). The development of the US WAAS and the 

European EGNOS systems (Gauthier et al., 2001) is an important step to provide 

augmentation systems to further improve navigation performances of GNSS, 

particularly accuracy, integrity and coverage (Mohamed et al., 2000).   

In the near future, a number of GNSS systems will be available, including 

modernized GPS, Galileo, GLONASS and Chinese BeiDou systems. Integrating these 

systems, undoubtedly, will improve navigation performance, due to the fact that more 

measurements and frequency bands are available (Hewitson and Wang, 2004). Of 
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course, the compatibility and interoperability issues have to be taken into account 

when integrating these systems, which have been discussed in Chapter 2 of this 

dissertation. 

In this chapter, the navigation performance improvements is analyzed by 

integrating different systems together, using simulated data.  Except some general 

analyses in the accuracy and RAIM performance improvements by combining 

GPS/Galileo, this study concentrates on the performance improvements in urban 

environments, where GPS alone is particularly vulnerable (Miller et al., 1995; Kozlov 

and Tkachenko, 1998; Grejner-Brzezinska et al., 2001; Berefelt et al., 2004). Also, the 

Precise Point Positioning performance with combined GPS and Galileo is investigated 

in this chapter. 

 

4.1 Accuracy improvement with GPS/Galileo integration 

4.1.1 Mathematical models of GPS and Galileo integration 

Both GPS and Galileo establish their coordinate and time references independently. 

To process measurements from GPS and Galileo together, the time and coordinate 

systems have to be synchronized first. As both GPS and Galileo systems have in 

practice adopted the ITRF as the reference frame, the coordinate frame errors caused 

by different realizations of the ITRF by the two systems are expected to be within the 

centimetre level (Elliott and Christopher, 2006), which will not significantly affect 

positioning accuracy when the two systems are integrated. On the other hand, the 

absolute clock errors for GNSS is in the order of 10-20ns (Elliott and Christopher, 

2006), which is equivalent to a range error of around 5m. Thus, there exists a system 

time offset between GPS and Galileo. Techniques have been developed to 

synchronize different time reference frames using GNSS measurements with the 
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accuracy of sub-ns (Píriz et al., 2006) and the Galileo system plans to estimate the 

time offset between GPS and Galileo and broadcast it to users (European Commission 

2002). Alternatively, users may estimate this time offset by using an additional 

measurement. Moreover, the integrated receivers may use one or two receiver clocks 

in future GPS/Galileo receivers. Then the receiver clock errors have to be estimated 

separately if two receiver clocks are used. In general, the clock errors may be 

described by the following four cases, which require different mathematical models:  

Case 1: same receiver clock without a system time offset 

Case 2: same receiver clock with a system time offset 

Case 3: different receiver clocks with a system time offset 

Case 4: different receiver clocks without a system time offset 

The mathematical models corresponding to each of the above cases will be 

discussed separately. 

• same receiver clock without a system time offset  

This case is the simplest one and the mathematical model is the same as a single 

system (Leica, 2004) which is: 

LBtAX R =+                                                                 (4-1) 

where Rt  is receiver clock error and X is position parameters. A and B are 

corresponding coefficient matrices and  L is the observation vector.  

• same receiver clock with a system time offset  

In this case, the time offset between GPS and Galileo has to be estimated, together 

with other parameters in Eq. (4-1). The mathematical model for GPS measurement is 

the same as Eq. (4-1), while the observation equation for Galileo measurement is  
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LCtBtAX SR =++                                                          (4-2) 

where St is the system time offset between GPS and Galileo andC is the corresponding 

coefficient matrix. 

• different receiver clocks with a system time offset  

This is the most complicated case and the mathematical model is: 

LCttBtBAX SGPSGPSGalileoGalileo =+++                                          (4-3) 

where, Galileot  is the receiver clock error for Galileo, GPSt  is the receiver clock error for 

GPS. A , GalileoB , GPSB andC are corresponding coefficient matrices. 

GPSB  is 0 (a Galileo measurement) or 1 (a GPS measurement). 

GalileoB  is 0 (a GPS measurement) or 1 (a Galileo measurement).  

C  is 0 (a GPS measurement) or 1 (a Galileo measurement). 

Actually, for single epoch point positioning, GalileoB  and C  have the same values 

and can be combined together. Therefore, the mathematical model can be simplified 

as: 

LtBtBAX GPSGPSGalileoGalileo =++                                          (4-4) 

where Galileot  is the sum of the Galileo receiver clock error and the system time offset 

between GPS and Galileo. 

• different receiver clocks without a system time offset  

The mathematical model for this case is: 

LtBtBAX GPSGPSGalileoGalileo =++                                          (4-5) 

which has the same form as Eq. 4-4 for case 3.  
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4.1.2 Global PDOP Analysis 

Position Dilution Of Precision (PDOP) is an important factor to quantify GNSS 

positioning accuracy (Leica, 2004) and the positioning error can be expressed as: 

0δδ PDOP=                                                                   (4-6) 

In the above equation, 0δ  denotes the standard deviation of the observations and 

δ  is an one-number representation of the standard deviation of position. PDOP is a 

factor related to visible satellite geometry. With a low PDOP value, navigation 

solutions can be expected to be more precise. 

By giving satellite constellations, we are able to calculate the PDOP values at any 

location on the earth. Figures from 4-1 to 4-3 are three global PDOP maps of GPS 

alone, Galileo alone and GPS + Galileo. Ideally, one should estimate the PDOP values 

for every point on the earth and over the whole period of satellite navigation. For 

simplicity, here the PDOP values in a global distribution is showed only at a particular 

epoch. In the computation, snapshots of PDOP values are taken around the world 

( oo 11 × ) with a masking angle of o15 . Based on the computation, we can summarize 

below: 

1. With GPS or Galileo alone:  

 All PDOP values are bigger than 1.0.  

 Most places have values between 1.0 and 5.0.  

 There are a few places where PDOP values are bigger than 5, even 10. 

• With GPS + Galileo:  

 There are many places with values between 0.5 and 1.0. 

 Most places have values between 0.5 and 1.5.  

 All PDOP values are less than 4.0.  
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Figure 4-1 Global PDOP with GPS alone 

 

Figure 4-2 Global PDOP with Galileo alone 
 

 

Figure 4-3 Global PDOP with GPS + Galileo 

 

With the integration of GPS and Galileo, the PDOP values are decreased 

compared with GPS or Galileo alone, due to more satellites being available. 
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Particularly, the maximum PDOP values are significantly reduced with the integration 

of GPS and Galileo. Therefore, the position errors have less dependence on location 

and time with the integration.  

 

4.1.3 Accuracy evaluation based on simulated data 

To further evaluate the positioning accuracy with GPS/Galileo integration, the 

positions are estimated based on simulated measurements, using a GNSS data 

simulator developed in this study (Chapter 3) and then the estimations are compared 

with the simulated truth.  

In data simulation, both GPS and Galileo pseudorange measurements are 

simulated based on the models described in Chapter 3 at a point in Hong Kong. The 

errors considered here are receiver clock errors, tropospheric and ionospheric delays, 

orbit error, pseudorange observation noise and multipath. Table 4-1 gives the 

parameters and models for the error simulation. 

The precise orbit is used to generate measurements, while the broadcast ephemeris 

is used for position computation. In data processing, ionospheric delay error is 

corrected using the Klobuchar model and tropospheric delay error is corrected using 

only the dry part of the modified Hopfield model. 

Table 4-1 Simulated errors 

Error source UERE* (sigma) or Model 
Code observation noise 0.5m 

Code multipath error 
Sigma of brA = 1m; 

envK =0.5 
Tropospheric delay Modified Hopfield Model 
Ionospheric delay IGS ionosphere map model 

* UERE – User equivalent range error 
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In position computations, for a single system (either Galileo or GPS), the 

following model is used with only one receiver clock parameter: 

LBtAX =+                                                           (4-7) 

For integration of GPS and Galileo, two receiver clocks are estimated separately 

using the model used in Eq. (4-4). 

Figures 4-4 to 4-6 show the horizontal positioning errors of 30,000 samples with 

Galileo, GPS and Integration of Galileo and GPS. Figures 4-7 to 4-9 show the vertical 

positioning errors with Galileo, GPS, and integration of Galileo and GPS respectively. 

With GPS and Galileo alone, the RMS values of the horizontal position errors are 

1.5m and 1.3m respectively. With integration of Galileo and GPS, the RMS value of 

the horizontal position errors is about 1.2m. For vertical positioning errors, the RMS 

values are 4.7m, 3.0m and 2.8m for GPS, Galileo and integration of GPS and Galileo 

respectively. From these tests, we can see that the navigation accuracy (RMS values) 

with the integration of GPS and Galileo is only slightly improved compared with GPS 

or Galileo alone. However, the maximum position errors with the integration of GPS 

and Galileo are significantly reduced, particularly for the vertical component (Figure 

4-9). 

 

Figure 4-4 Horizontal error with Galileo alone 

 



 64

 

Figure 4-5 Horizontal error with GPS 

 

 

Figure 4-6 Horizontal error with Galileo + GPS 

 

 

Figure 4-7 Vertical error with Galileo 
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Figure 4-8 Vertical error with GPS 

 

Figure 4-9 Vertical error with GPS + Galileo 

 

4.2 RAIM performance analysis 

Integrity is the ability of a navigation system to provide timely warnings to users 

when the system fails to meet the navigation requirements, which is very important 

for safety-of-life navigation. In general, there are two main approaches for GNSS 

integrity monitoring, including network integrity monitoring and Receiver 

Autonomous Integrity Monitoring (RAIM). The network integrity monitoring method 

utilizes an independent integrity monitoring station to estimate the size of 

measurement errors and to broadcast integrity information through a dedicated 

Ground Integrity Channel (GIC). The RAIM method checks the consistency of 

measurements made from different satellites to estimate the quality of the resulting 

positions.    
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In this section, the RAIM performances with various constellations are mainly 

analyzed. The reliability theory developed by Baarda (1968) is adopted in this study, 

which analyzes the effects of Marginal Detectable Bias (MDB) on position error 

estimation.  

4.2.1 RAIM algorithm 

4.2.1.1 Outlier detection and identification 

The linearized observation equation can be expressed as: 

vlAx +=                                                                   (4-8) 

where A  is the mn ×  design matrix; x  is a vector of m  parameters; l  is a vector of 

n  measurements and v is the measurement error vector. The stochastic variance 

covariance (VCV) matrix of measurements is lQ .  

Define: 

1−= lQP                                                                   (4-9) 

the estimation of x and residual are:   

PlAPAAx TT 1)(ˆ −=                                                         (4-10) 

lxAv −= ˆ                                                                     (4-11) 

where x̂  is the least squares estimates of x  and v  is the vector of residuals. 

The variance factor is determined as: 

  
mn

PvvT

−
=2

0̂δ                                                                    (4-12) 

The variance factor can be tested against the two-tailed limits derived from the 

Chi-squared distribution: 
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                                                (4-13) 

where mn −  is the degree of freedom and α  is the significance level of the test. 
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If the variance factor exceeds the test limit (critical value), either the statistical 

model is not correct or there exist outliers in the measurements. 

Assuming that an outlier iS∇  exists, the linearized adjustment model can be 

formed as: 

  vlSexA ii +=∇+ˆ                                              (4-14) 

T
ie ]0100[ K=  

A least squares estimation of the magnitude of the outlier iS∇  can be determined 

as: 

  PvePePQeS T
iiv

T
ii

1)(ˆ −−=∇                                   (4-15) 

with a variance of: 
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∇
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T
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i
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The w -test (Baarda, 1968; Cross et al., 1994; Teunissen, 1998b) can be used to 

identify an outlier: 
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T
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T
i

i
PePQe

Pvew −
=                                          (4-16) 

For the situation where: 

)1,0(2/1 α−> Nwi  

The ith measurement is identified as an outlier. 

4.2.1.2 Internal reliability 

The measure of internal reliability is quantified as MDB which is indicated by the 

lower bound for detectable outliers. The MDB is the magnitude of the smallest error 

that can be detected for a specific level of confidence and is determined by (Baarda, 

1968; Cross et al., 1994): 
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where 0δ  is the non-centrality parameter which depends on the given Type I and 

Type II errors ( 0α  and 0β ). 

4.2.1.3 External reliability  

External reliability of the system is characterized by the effects of the MDB on the 

estimated parameters. External reliability measures are evaluated as (Baarda, 1968; 

Cross et al., 1994): 

  ii
T

x SPeAQx 00 ˆ ∇=∇                                                     (4-18) 

4.2.2 RAIM test based on simulated data 

Based on the above theory, the RAIM performance is able to be analyzed with 

different satellite constellations. In the tests, the following parameters are adopted in 

the computation (Ochieng et al., 2001). Table 4-2 lists the parameter values for 

probabilities of Missed Detection and False Alarm and Table 4-3 provides the UERE 

budgets.   

Table 4-2 Parameter values of Probabilities of Missed Detection and False Alarm 
β α

0.999 0.9998 

 

Table 4-3 UERE budgets 
Elevation angle 

(Degree) 10 30 50 70 90 

UERE 
(m, 1σ) 5.23 2.77 2.28 2.25 2.27 

 

Internal reliability 

Using Eq. 4-17, the MDB values are able to be calculated for any satellite observed 

for different satellite constellations. As an example, the MDB values for one Galileo 
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satellite are calculated over a 5-hour period, with Galileo only and GPS and Galileo 

constellations. The results are shown in Figures 4-10 and 4-11 respectively. With the 

integration of GPS and Galileo (Figure 4-11), the MDB values are slightly smaller 

than that from the Galileo system alone (Figure 4-10). The average values of MDB 

are 17.5m and 14.8m for Galileo alone and GPS/Galileo combined constellations 

respectively. 
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Figure 4-10 MDB of satellite No. 14 using Galileo alone 
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Figure 4-11 MDB of satellite No. 14 using Galileo + GPS 

External reliability 

External reliability indicates the effects of the MDB on the position errors. Figures 4-

12 to 4-15 are maximum horizontal and vertical position error due to the MDB with 

Galileo alone and Galileo/GPS constellations for a period of 5 hours, which are the 

maximum value of Eq. 4-18 for all satellites.  
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This example clearly demonstrates the advantage of the integrated GPS/Galileo 

constellation. With Galileo alone, the RAIM protection levels for horizontal and 

vertical errors are 30m and 70m respectively. On the other hand, with the GPS/Galileo 

constellation, the protection levels for horizontal and vertical errors reduce to less than 

15m and 25m respectively.   

 

Figure 4-12 Maximum horizontal errors due to MDB of Galileo alone 

 

Figure 4-13 Maximum horizontal errors due to MDB of Galileo + GPS 

 

Figure 4-14 Maximum vertical errors due to MDB of Galileo alone 
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Figure 4-15 Maximum vertical errors due to MDB of Galileo + GPS 

 

4.3 Navigation performance analysis with new GNSS in urban environments 

It is well known that GNSS navigation performance in urban areas is significantly 

degraded due to signal blockage by buildings and multipath effects (Klukas et al., 

2003). For example, GPS availability in Hong Kong urban streets is less than 30% 

(Yu et al., 2006). With more satellites available for various GNSS systems (i.e. GPS, 

Galileo and GLONASS), GNSS navigation performance should be improved. 

However, how much it can be improved still is a question to be answered. In this 

section, the improvement is quantified by analyzing the navigation performance in 

Hong Kong urban areas by using a 3D building model. Three satellite constellations 

(GPS, GLONSS and Galileo) and their combinations are considered in the study.  

4.3.1 Method to analyze GNSS positioning availability in urban areas 

To evaluate GNSS satellite availability in urban areas, the 3D building model has to 

be taken into account.  For a point in the street, the heights of surrounding buildings 

will be used to calculate the minimum elevation angles in all azimuth directions (360 

degrees). For example, as shown in Figure 4-16, a range of 200m is selected to cover 

a point in a street. Within this range, the minimum elevation angle will be calculated 
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for satellite availability in all azimuth directions (using 5 degree intervals) using 

surrounding building heights (as shown in Figure 4-17 as an example) and only 

satellite elevation angles larger than the minimum elevation angle at a specific 

azimuth direction can be observed by the GNSS receiver in the street.      

The positioning availability of a point is considered as the percentage of time 

when there are at least four satellites to be seen and the HDOP value is less than 10, 

over a 24-hour period.  The time interval of 15 minutes. is adopted in the analysis.   

 

Figure 4-16 Close View of a Sample Point 

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400

Angles

M
in

im
um

 E
le

va
ti

on
 A

ng
le

 

Figure 4-17 Minimum elevation angle for the point 

As an example, the availabilities of three typical points are calculated in Hong 

Kong streets, namely a main road (road wider than 20m), narrow road (road width is 

less than 20m) and junction area point (as shown in Figure 4-18). 

200m 
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Figure 4-18 Points in Major road, Minor road and Junction area 

[from left to right] 

Table 4-4 Availability in Different Urban Environments 

 GPS GPS + 
 GLONASS 

GPS + 
 Galileo

GPS + GLONASS 
 + Galileo 

Major Road point 1% 6% 17% 44% 
Minor Road point 1% 1% 1% 3% 
Junction Area point 5% 28% 63% 84% 
 

Table 4-4 gives the positioning availabilities for these three points with different 

satellite constellations. With only one system (i.e. GPS), the availability is very low 

(only a few percent) for all three points. With a three-system constellation (GPS, 

GLONASS and Galileo), the positioning availabilities increase to 44% and 84% for 

the main road and junction area points, but it is still very low for narrow road points 

(3%). 

  

4.3.2 GNSS positioning availability in Hong Kong urban areas 

To evaluate GNSS positioning availability in Hong Kong urban areas, 189 sample 

points are selected in Hong Kong, almost evenly spaced in urban areas of Hong Kong 

Island covering Wan Chai, Causeway Bay, Sheung Wan and Central (see Figure 4-19).  

The positioning availability analysis results are summarized in Figure 4-20. The 

horizontal axis shows the percentage of time availability over a 24-hour period and 

the vertical axis shows the percentage of points (out of 189 points). The different 
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colours in the figure demonstrate different satellite constellations. For example, the 

figure shows that there are 60% of points with positioning availability larger than 10% 

and 40% points with positioning availability larger than 30% for the three systems 

(GPS, Galileo and GLONASS) constellation.  

 

Figure 4-19 Study site to evaluate coverage performance 
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Figure 4-20 Availability performance analysis 

In general, with a single system (i.e. GPS only), the positioning availability is 

extremely low in Hong Kong urban areas and that is the main restriction for the 

navigation applications of GNSS in Hong Kong.  With more satellites available 

(combined constellations), the positioning availability improves significantly. 

However, even using three systems, the positioning availability is still very low - only 

10% of points have a positioning availability larger than 90%. Thus GNSS alone 

cannot satisfy the navigation requirements in dense urban areas such as Hong Kong. 
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4.3.3 GNSS positioning discontinuity analysis in Hong Kong urban areas 

In urban navigation, GNSS is normally integrated with other navigation systems (i.e. 

Dead Reckoning, DR) (Vlcek, 1993; Lachapelle and Mezentsev, 2005). However, a 

DR system is subject to large drift errors and GNSS positioning is crucial for 

providing calibration for the DR errors (Yu et al., 2006). Although GNSS alone 

cannot satisfy the navigation requirements in urban areas (as discussed before), can it 

provide sufficient positioning fixes for the DR calibration? To answer this question, 

we need to analyze the discontinuity of GNSS positioning in urban areas. Here the 

discontinuity is defined as mean or maximum distance in streets where no GNSS 

positioning fixes are available.     

To evaluate the discontinuity of GNSS positioning in Hong Kong, a simulated 

vehicle route of approximate 8,000 metres is selected in Wan Chai and Causeway Bay 

on Hong Kong island (Figure 4-21). The vehicle speed is set to 20km/hour. Then a 

large number of points (187 points) are sampled approximately equally spaced along 

the route (Figure 4-21) to test the GNSS positioning availability along the route.   To 

count the constellation changes with time, we simulate the run at 7 different start 

times with 3-hour intervals. If there is a point where GNSS positioning is available 

and at the next point GNSS positioning is not available, it is counted as a positioning 

discontinuity. Finally the mean and maximum discontinuity distances are used along 

the route to quantify the GNSS positioning quality along the route. As GPS 

availability is very poor in this region, the discontinuity can reach more than 5km. In 

the following discussion, the single system analysis results will not be included. 

Figures 4-22 and 4-23 show the mean and maximum GNSS discontinuity 

distances for various combined GNSS constellations at different start times. For two 

system combinations (i.e. GPS/GLONASS or GPS/Galileo) the mean discontinuity 
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distance is in the range of 80 to 140m and the maximum discontinuity is in the range 

of 400m to 1,000m. With three systems combined (GPS/Galileo/GNSS), the mean 

discontinuity is less than 80m and the maximum discontinuity is slightly over 400m. 

 

Figure 4-21 Sample Points along a simulated Route 

 

Figure 4-22 Average discontinuity Distance 

 

Figure 4-23 Maximum discontinuity distance 

 

 

Start Point 
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4.4 Precise Point Positioning with GPS and Galileo Constellations 

4.4.1 The basic concepts of PPP positioning 

With the advent of precise ephemeredes and satellite clock corrections from IGS and 

several other organizations, it is possible to conduct high precision GPS positioning 

with carrier phase observations with just one receiver. This positioning method is 

known as Precise Point Positioning (PPP).  

PPP research began around 1997 before Selective Availability (SA) was turned off 

and it has attracted much attention in recent years. Previous research work has shown 

that centimetre accuracy positioning can be reached in a static mode. 

In the implementation of PPP, generally both code and phase observations from a 

dual-frequency receiver are used as basic observables. When forming observation 

equations, generally ionosphere free pseudorange and carrier phase combinations 

(Zumberge et al., 1997; Kouba and Heroux, 2001; Bisnath and Langley, 2001a; 

Bisnath and Langley, 2001b; Bock et al., 2002; Colombo et al., 2004; Chen et al., 

2004;) are used as follows: 
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Where 
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IFIF P,φ  -ionosphere-free carrier phase and pseudorange measurements 

ρ   -true geometric range 

c   -speed of light  

dT  -receiver clock error  

tropd  -tropospheric delay  

s
LLhdd )),(( 21φ  -satellite carrier phase hardware bias after ionosphere-free combination 

r
LLhdd )),(( 21φ  -receiver carrier phase hardware bias after ionosphere-free combination 

s
LLPhdd )),(( 21

 -satellite pseudorange hardware bias after ionosphere-free combination 

r
LLPhdd )),(( 21

 -receiver pseudorange hardware bias after ionosphere-free combination 

),( 0 ir Ltφ  -initial phase of receiver oscillator 

),( 0 i
s Ltφ  -initial phase of satellite oscillator 

),(/ 21 LLPmultd -multipath effect in the ionosphere-free pseudorange measurement 

),(/ 21 LLmultd φ -multipath effect in the ionosphere-free carrier phase measurement 

)(⋅ε  -measurement noise 

In equation (4-19), the ionosphere-free ambiguities ( 2
2

2
1

22
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ff
NfNf

−
− λλ ) are 

calculated as a lumped term and treated as a float number. Hence there is one float 

ambiguity parameter for each satellite. 

Another way to form observation equations, averaged pseudorange and carrier 

phase observations on the two GPS frequencies in addition to the ionosphere free 

carrier phase combination (Gao and Shen, 2001) are used as follows: 
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Where 

iiPP φ,  -average of pseudorange and carrier phase observations 

)( iSM LP  -ionosphere-free smoothed pseudorange measurement 

),( 11 φPP  -average of pseudorange and carrier phase observations on L1 

),( 22 φPP  -average of pseudorange and carrier phase observations on L2 

s
LPInterfreq i

d )(/ -satellite pseudorange inter-frequency bias on Li  

s
LInterfreq i

d )(/φ -satellite carrier phase inter-frequency bias on Li  

r
LPInterfreq i

d )(/ -receiver pseudorange inter-frequency bias on Li  

r
LInterfreq i

d )(/φ -receiver carrier phase inter-frequency bias on Li  

Hence the model allows for the estimation of two float ambiguity parameters (on 

L1 and L2) for each satellite. 

When implementing PPP, except for the errors listed in the above equations, 

several other error sources should be taken into consideration, including satellite 

antenna phase centre offset, and errors from phase wind up, solid earth tides, ocean 

loading, atmosphere loading, etc. 
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For PPP, either zero or single-differenced (between satellites) observations can be 

used. The latter can make observation equations simpler by cancelling receiver related 

parameters. 

Ever since its introduction, PPP has shown its potential to become a high precision 

technology. Unfortunately, the ambiguity terms are no longer integers as they are 

corrupted by fractional initial phase biases in the GPS satellites and receivers. This 

makes the ambiguity parameters only estimable as float numbers in PPP. A long 

initialization time, typically more than 20 minutes, is necessary before a converged 

position solution can be obtained. 

With the combination of GPS and Galileo constellations, the number of satellites 

is doubled and satellite geometry is greatly improved (Feng et al., 2006). Moreover, 

there are a total of four independent ionosphere-free carrier phase combinations that 

can be formed. Therefore, it is expected that the PPP convergence time will be 

decreased. 

In this section the convergence time improvement is investigated from the 

combination of GPS and Galileo constellations. 

The PPP ionosphere-free observation equation for carrier phase measurements can 

be expressed as (Holfman-Wellenhof et al., 2002; Kouba et al., 2001; Han et al., 

2001): 
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where  

ijϕ - ionosphere-free carrier phase observation of frequency band i  and j  (m); 

if , jf - carrier phase frequencies of band i  and j respectively; 

iϕ , jϕ - carrier phase observation ranges of frequency band i  and j respectively; 



 81

ijλ  - wavelength of ionosphere-free carrier phase combination of frequency band i  

and j ; 

ρ - geocentric topocentric distance from receiver r  to satellite; 

ijN - real valued ionosphere-free carrier phase ambiguity; 

)(tdtr - clock error of  receiver r ; 

)(tdt - satellite clock error; 

)(tdtrop  - zenith tropospheric delay; 

t  - epoch time; 

m  - tropospheric mapping function, e.g. Neil mapping function (Niell, 1996); 

c  - speed of light; 

r  - subscript for receiver station identifier; 

ε - observation noise. 

And  

22
ji

jjii
ij ff

NfNf
cN

−

−
=  

where, iN , jN - ambiguity of carrier phase frequency bands i  and j respectively; 

For GPS, only one ionosphere-free combination between L1 and L2 can be 

formed; while for the Galileo system, a maximum of three independent ionosphere-

free combinations between two frequency bands can be formed from four frequency 

bands (E1, E6, E5a and E5b).  

In PPP data processing, precise satellite orbital and clock error data from IGS are 

used. Some other errors which are not considered in relative positioning such as errors 

caused by earth rotation (McCarthy D.D., 1996), earth body tide, ocean loading, phase 

wind-up effects and satellite antenna offset (Wu J.T. et al., 1993) have to be corrected 
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with models.  Detailed data processing methods can be found (Chen et al., 2004) and 

will not be discussed here.  

When combining GPS and Galileo systems, a time offset between GPS and 

Galileo has to be considered. Also, receiver clock errors for GPS and Galileo will be 

considered separately. The receiver clock errors are time-dependent unknown 

parameters and different for every epoch. Single-difference between satellites can be 

formed to cancel out the receiver clock errors.  

 

4.4.2 Data simulation and analysis 

In this study, the GPS data is observed in Hong Kong by a Leica SR530 dual 

frequency GPS receiver in a static positioning mode,  from 11 o’clock (UTC) on 9 

December to 7 o’clock (UTC) on 10 December, 2004. The data interval is 1 second. 

The precise satellite orbit and clock products are downloaded from the CODE 

Analysis Centre of the IGS. 

As Galileo is not available yet, the Galileo measurements are simulated using a 

data simulator developed for this study (Chapter 3). In the simulation, the receiver 

position and tropospheric delays are obtained from GPS data processing. The receiver 

clock errors are simulated with a second order polynomial with white noise. The 

ionospheric delay is simulated with a Klobuchar model. As in the PPP data processing, 

the ionosphere-free observables are used; the ionosphere model error will not affect 

the results. The measurement noise is simulated with normal distributed noise with the 

standard errors of 1.5m and 3mm for the pseudorange and carrier phase respectively.  

In data processing, the ambiguity is regarded as convergent if the position error is 

less than 20cm. To count for the effects of satellite constellation difference at different 
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times, the data is processed every hour.  Table 4-5 gives the ambiguity convergence 

time for GPS alone and GPS/Galileo integration. 

Table 4-5 Convergence time 

Starting Time Convergence Time (seconds) 
Case I Case II 

December 9 

11:12 1,683 862 
12:12 3,121 1,150 
13:12 >7,200 685 
14:12 >7,200 360 
15:12 6,441 320 
16:12 1,385 1,264 
17:12 1,380 575 
18:12 1,259 460 
19:12 2,201 740 
20:12 900 1,730 
21:12 >7,200 1,420 
22:12 1,681 1,428 
23:12 4,356 1,780 

December 10 

00:12 592 330 
01:12 869 1,465 
02:12 >7,200 483 
03:12 7,008 370 
04:12 1,567 1,120 
05:12 3,570 575 
06:12 1,714 547 

*Average Time 3,426 883 
*Note: if convergence time exceeds 7,200 seconds, it is regarded as 7,200 seconds 

when computing average time. 

  

For GPS alone, the ambiguity convergence time varies significantly at different 

times, from 592s to over 7,200s, with an average time of 3,426s. On the other hand, 

with the GPS/Galileo constellation, the ambiguity convergence time is in the range of 

330s to 1,780s, with an average time of 883s, which is much more stable. 

4.5 Summary 

In this chapter, the positioning performance improvements have been analyzed by 

using the combined GNSS constellations from (GPS, Galileo and GLONASS).  Based 
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on the studies, we can summarize as follows: 

a) Integration of multiple GNSS constellations does not significantly improve 

positioning accuracy. However, the RAIM performance is significantly improved. 

The simulation study shows the RAIM position protection levels reduce 

dramatically from 30m and 70m with GPS only for the horizontal and vertical 

components to 15m and 25m with GPS/Galileo constellations. 

b) For urban applications, combined constellations can improve the positioning 

availability in streets. However, it still does not satisfy the requirement for vehicle 

navigation in urban areas. On the other hand, the discontinuity distances are 

significantly reduced with the combined constellations. Therefore, it is possible to 

use cheaper DR systems to bridge the gaps of GNSS positioning, with high 

accuracy. 

c) For PPP data processing, the combined constellation with GPS/Galileo can 

significantly reduce the ambiguity convergence time, from an average time of 

around 1 hour (3,400s) with GPS alone to less than 15 min (880s) with 

GPS/Galileo combination. 
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Chapter 5 Performance analysis of ambiguity resolution with Galileo 

multiple frequency carrier phase measurements 

 

The Global Navigation Satellite Systems (GNSS) provide two main types of 

measurements: pseudorange and carrier phase. The main differences between them 

are measurement precision (metre vs. millimetre) and integer ambiguity associated 

with carrier phase. If we can reliably resolve the carrier phase ambiguity, the carrier 

phase measurement is conceptually turned into high-precision range observation and 

positioning accuracy at centimetre level can be achieved.   

Ambiguity resolution has been a continuing challenge in GNSS research and a 

large number of ambiguity resolution techniques have been proposed by many 

different research groups (Counselman and Gourevitch, 1981; Remondi, 1984; Han 

and Rizos, 1996a; Teunissen, 1993; Teunissen, 1994; Teunissen, 1995; Hatch, 1990; 

Frei and Beutler, 1990; Euler and Landau, 1992; Martin-Neira et al., 1995; Chen and 

Lachapelle, 1995; Kim and Langley, 1999). Even if the ambiguities for all satellites 

cannot be fixed at the same time, a partial ambiguity-fixed solution is also useful for 

improving GNSS navigation performance (i.e. accuracy and continuity) (Teunissen, 

1998; Teunissen et al., 1999).   

Reliable and fast ambiguity resolution is affected by many factors, such as the 

number of satellites observed, the sizes of errors, the observation time and the number 

of signal frequencies. For example, it has been demonstrated that more satellites are 

helpful for ambiguity resolution in Chapter 4 of this dissertation.  

Galileo will provide navigation signals in more frequency bands (up to four 

frequency bands). With more carrier phase data available, more frequency 
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combinations with longer equivalent wavelengths can be formed. This will provide 

more opportunities for fast and reliable ambiguity resolution.  

In recent years, studies on fast ambiguity resolution using multiple frequencies 

from new GNSS have been carried out by many researchers (Hatch et al., 2000; 

Tiberius et al., 2002; Vollath et al., 1998; Zhang et al., 2003; Werner and Winkel, 

2003; Schlotzer and Martin, 2005), predominantly based on triple frequencies of 

Galileo, namely E1, E5b and E5a. The Cascading Ambiguity Resolution (CAR) 

method is mostly used in these studies. 

In this chapter, the performance of ambiguity resolution will be studied using a 

multiple frequency Galileo system. Two different algorithms, including the CAR 

method and the Integer least-squares (ILS) method, are used in the study for 

comparison. Particularly, we are interested in studying the possibility of single epoch 

ambiguity resolution using a multiple frequency Galileo system.  

 

5.1 Mathematic models for CAR and ILS algorithms  

The linearized double-differenced Galileo pseudorange and carrier phase 

measurements for frequency band i (i=1, 2, 3, 4) can be expressed as: 

iiii

pcode

nLNAX

nLAX

+=+

+=

λ
      (5-1) 

where X  is a position parameter; iN  is an ambiguity parameter of frequency band i ; 

codeL and iL are pseudorange and carrier phase measurements respectively; Pn and 

in are measurement noises for pseudorange and carrier phase measurements 

respectively; A  is the linear coefficient matrix related to position parameters; and iλ  

is the wavelength of carrier iL . 
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Using observations from all four frequencies, we are able to solve for X and 

ambiguities by least squares: 
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where B  is the design matrix, L  is the vector of pseudorange and carrier phase 

measurements, and LQ  is the variance-covariance matrix of measurements. 

The variance-covariance matrix of the estimated unknowns X  and N  can be 

written as: 
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Normally the estimated float ambiguities N  are strongly correlated. Teunissen 

(1995) applied an integer transformation Z  which de-correlates the variance-

covariance matrix NQ , as follows:  

NZz T=        (5-4) 

where Z is an integer transformation and all the elements in Z are integers, and 

det(Z)= ±1. Therefore, z is also an integer with the variance-covariance matrix: 

ZQZQ N
T

z =       (5-5)  

This integer transformation provides an effective way to reduce ambiguity search 

range and to improve ambiguity resolution performance. 

The CAR method tries to form longer equivalent wavelengths using GNSS 

multiple frequency signals and to resolve for ambiguities one by one. The 

mathematical model of the CAR method can be expressed as: 
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where, X  is a position parameter; 1Wλ , 2Wλ , 3Wλ  and 4Wλ  are wavelengths of 

selected independent combinations W1, W2, W3 and W4; 1WN , 2WN , 3WN  and 4WN  

are corresponding double-differenced unknown ambiguity parameters; 1WN
(

, 2WN
(

, 

and 3WN
(

 are corresponding fixed double-differenced ambiguities; 1Wn , 2Wn , 3Wn  

and 4Wn  are the noises of the combinations; 1WL , 2WL , 3WL  and 4WL  are corresponding 

double-differenced measurements; codeL and pn are double-differenced measurements 

and noise of pseudorange measurement respectively; A  is the linear coefficient 

matrix related to position parameters. 

5.2 Optimal Galileo frequency combinations for the CAR method 

5.2.1 Linear combination of Galileo frequency bands 

The Galileo system will provide four frequency bands for navigation (GAL OS SIS 

ICD 2006) with central frequencies at: 

E1: =1f 1575.42 MHz, E6: =2f 1278.75 MHz 

E5b: =3f 1207.14 MHz, E5a: =4f 1176.45 MHz 

The general form for a combination of the four frequencies (Liu and Wang, 2003) 

is: 
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4321 mNkNjNiNN c +++=                                                  (5-10) 
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4321 mfkfjfiff c +++=                                                       (5-12) 

4321 LLLLLc δγβα +++=                                                     (5-13) 

where cN , cλ , cf , and cL  are ambiguity, wavelength, frequency and observable of 

the combination respectively. We further have: 

 1/λλα ci= , 2/λλβ cj= , 3/λλγ ck= , 4/λλδ cm= ,  1=+++ δλβα . 

In the above equations, i , j , k  and m  are integers so that the integer property of the 

ambiguity for the new combination is preserved. 

The combinations are affected by the same tropospheric delay as are E1, E6, E5b 

or E5a observables. But the ionospheric delay cI  and observation noise cσ  are 

different: 

1,,, IRI mkjic =                                                            (5-14) 

0,,, σσ mkjic A=                                                           (5-15) 

where 

141312

413121
,,, ///

///
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2222
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The symbol 0σ  denotes the measurement noise level of the original frequencies 

(assuming E1, E6, E5b or E5a have the same observation noise) and 1I  is the 

ionospheric delay at E1 frequency. 

With different values assigned to i, j, k and m, different combinations can be 

formed. Thus, it is necessary to find optimal criteria to select four independent 

combinations which are optimal for ambiguity resolution. Combinations proposed by 



 90

different researchers are often based on longer equivalent wavelengths or larger 

wavelength-to-noise ratio (Zhang et al., 2003; Zhang, 2005; Wang et al., 2004).  

Table 5-1 lists the top five combinations with largest wavelength-to-noise ratio. 

They have one common feature, i.e. i + j + k + m = 0. Therefore, only three 

independent combinations can be selected from Table 5-1. Table 5-2 lists the top five 

combinations with the largest wavelength-to-noise ratio and independent from those 

in Table 5-1. They have one common feature: i + j + k + m = 1. Apart from the 

combinations listed in Table 5-1 and 5-2, there are other combinations with longer 

wavelengths and reasonable wavelength-to-noise ratio. They are listed in Table 5-3. 

Table 5-1 Top five combinations with largest wavelength-to-noise ratios 

No. i j k m cλ (m) mkjiR ,,, mkjiA ,,, i+j+k+m cλ / mkjiA ,,,  
1 0 0 1 -1 9.76 -1.74 54.92 0 0.18 
2 0 1 -1 0 4.18 -1.6 24.55 0 0.17 
3 0 1 0 -1 2.93 -1.64 16.98 0 0.17 
4 1 -1 0 0 1.01 -1.23 6.84 0 0.15 
5 1 0 -1 0 0.81 -1.31 5.39 0 0.15 

 

Table 5-2 Top five combinations with largest wavelength-to-noise ratio 

which are independent from those in Table 5-1 

No. i j k m cλ (m) mkjiR ,,, mkjiA ,,, i+j+k+m cλ / mkjiA ,,,  
1 -1 0 1 1 0.37 3.21 2.85 1 0.130 
2 -2 1 1 1 0.59 5.77 7.41 1 0.078 
3 -2 0 1 2 0.73 7.63 10.05 1 0.072 
4 -2 1 0 2 0.62 6.25 8.60 1 0.072 
5 -2 0 2 1 0.68 6.98 9.41 1 0.072 

 

Table 5-3 Combinations with longer wavelength and  

reasonable wavelength-to-noise ratios 

No. i j k m cλ (m) mkjiR ,,, mkjiA ,,, i+j+k+m cλ / mkjiA ,,,  
1 0 1 -3 2 29.3 -0.77 440.27 0 0.066 
2 -1 4 0 -3 29.3 -13.77 626.69 0 0.047 
3 0 1 -2 1 7.32 -1.5 72.69 0 0.10 
4 1 -4 2 1 5.86 0.66 117.07 0 0.05 
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The question is how to select four independent combinations that will lead to an 

easier ambiguity resolution. Obviously, different optimal criteria will lead to different 

selections. For example, if we only consider the effects of measurement noise, the 

wavelength-to noise ratio may be a good selection. On the other hand, if we consider 

long baselines which have to take the ionospheric delay into account, the size of 

coefficient mkjiR ,,,  for the ionospheric term in Eq. 5-9 will also need to be balanced. 

5.2.2 Optimal Galileo frequency combinations for the CAR method 

One method to express the quality of ambiguity resolution is the success rate of fixing 

all ambiguities to their integers (Teunissen, 1998), which indicates the probability of 

correct integer ambiguity estimation. The success rate can be computed from the 

simulated data. Thus the success rate expresses the probability of ambiguity fixing 

given the satellite geometry distribution and the assigned statistical errors of the 

measurements. In this section, the success rate will be used as the criterion for the 

selection of independent combination for the CAR method. The success rate is 

calculated based on the following formula (Teunissen, 2003): 

n
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First combination 

From Tables 5-1, 5-2 and 5-3, we can see that different combinations have 

different wavelengths and wavelength-to-noise ratios. When selecting the first 

combination for Eq. 5-6, should we select the longest wavelength (the first row in 
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Table 5-3) or the largest wavelength-to-noise ratio (the first row in Table 5-1)? Table 

5-4 gives these two combinations for comparison. Figure 5-1 shows the success rate 

calculated based on different pseudorange and carrier phase noise levels for the 

combinations of Com0 and Com1 listed in Table 5-4. It can be seen that the success 

rate is related to the measurement noise level. For the same combination, a larger 

noise level will lead to a lower success rate. Also, the success rate of Com0 is always 

larger than that of Com1 for the same code and phase noise levels. Thus, the first 

optimal combination for the CAR method should be Com0. 
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Figure 5-1 The success rates of Com0 and Com1 

 

Table 5-4 Candidates for the first combination 

Name i j k m cλ (m) mkjiR ,,, mkjiA ,,, i+j+k+m cλ / mkjiA ,,,  
Com0 0 0 1 -1 9.76 -1.74 54.92 0 0.18 
Com1 0 1 -3 2 29.3 -0.77 440.27 0 0.066 

 

Second combination 

After the first optimal combination is determined, we can find three independent 

combinations from Tables 5-1, 2, 3 which are possible for the second combination for 

Eq. 5-7, as shown in Table 5-5.  
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Table 5-5 Candidates for the second combination 

Name i j k m cλ (m) mkjiR ,,, mkjiA ,,, i+j+k+m cλ / mkjiA ,,,  
Com1 0 1 -3 2 29.3 -0.77 440.27 0 0.066 
Com2 0 1 -1 0 4.18 -1.60 24.55 0 0.17 
Com3 0 1 -2 1 7.32 -1.50 72.69 0 0.10 

 

Figure 5-2 shows the success rate for the three combinations with different carrier 

phase noise levels. It is clear the success rate of combination Com2 is larger than the 

other two. Thus the combination Com2 is selected as the second optimal combination. 
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Figure 5-2 Approximate success rates of Com1, Com2 and Com3 

 

Third combination 

In Eq. 5-8, when solving for 3WN , the ambiguity fixed in the second step is usually 

used as a constraint. Thus the noise level of the second combination Com2 will affect 

the success rate of the 3WN  resolution.  

In fact, as the com0 and com2 ambiguities in steps 1 and 2 have been fixed to their 

integers, we can use a combination of the two to form a new combination with 

minimum noise level as the constraint for solving 3WN . Table 5-6 gives this 

combination (called Trans3). 
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Table 5-6 Combination used as unambiguous measurement in the third step 

Name i j k m cλ (m) mkjiR ,,, i+j+k+m mkjiA ,,,  
Trans3 0 5 -1 -4 0.62 -1.64 0 16.7 

 

Similarly the candidates for the third combinations are those with reasonable 

wavelength-to-noise ratio and independent of Com0 and Com2. Table 5-7 shows a list 

of possible candidates for the third combination. The success rates for these 

combinations are shown in Figure 5-3. It is obvious that combination Com4 should be 

selected as it is associated with a larger success rate. 

Table 5-7 Candidates for the third combination 

Name i j k m cλ (m) mkjiR ,,, mkjiA ,,, i+j+k+m cλ / mkjiA ,,,  
Com4 1 -1 0 0 1.01 -1.23 6.84 0 0.15 
Com5 1 -4 2 1 5.86 0.66 117.07 0 0.05 
Com6 -1 4 0 -3 29.3 -13.77 626.69 0 0.047 
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Figure 5-3 Approximate success rates of Com4, Com5 and Com6 

The fourth combination 

Similar to the way to find the third combination, we will use a combination of 

Com0, Com2, and Com4 which has a minimum noise level, to constrain the solution 

of 4WN . Table 5-8 shows the combination (called Trans4).  

The candidates for the fourth combination are listed in Table 5-9 and the success 

rates for these combinations are shown in Figure 5-4. Obviously, the fourth 



 95

combination should be E5a, which corresponds to the larger success rate.  

Table 5-8 Combination used as unambiguous measurements in the fourth step 

Name i j k m cλ (m) mkjiR ,,, mkjiA ,,, i+j+k+m 
Trans4 5 0 -2 -3 0.155 -1.32 4.64 0 

 

Table 5-9 Candidates for the fourth combination 

Name i j k m cλ (m) mkjiR ,,, mkjiA ,,, i+j+k+m cλ / mkjiA ,,,  
Com7 -1 0 1 1 0.37 3.21 2.85 1 0.130 
Com8 -2 1 1 1 0.59 5.77 7.41 1 0.078 
Com9 -2 0 1 2 0.73 7.63 10.05 1 0.072 
E5a 0 0 0 1 0.255 1.79 1 1 0.255 
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Figure 5-4 Approximate success rates of Com7, Com8, Com9 and E5a 

 

Finally, the optimal combinations for the CAR method based on the success rate 

criterion are listed in Table 5-10; the two unambiguous combinations with minimum 

noises for the third and fourth steps are listed in Table 5-11. 

Table 5-10 Optimal combinations 

Name i j k m cλ (m) mkjiR ,,, mkjiA ,,,

Com0 0 0 1 -1 9.76 -1.74 54.92
Com2 0 1 -1 0 4.18 -1.6 24.55
Com4 1 -1 0 0 1.01 -1.23 6.84 
E5a 0 0 0 1 0.25 1.79 1 
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Table 5-11 Two unambiguous combinations for the third and fourth steps 

Name i j k m cλ (m) mkjiR ,,, mkjiA ,,,

Trans3 0 5 -1 -4 0.62 -1.64 16.7 
Trans4 5 0 -2 -3 0.155 -1.32 4.64 

 

5.2.3 Comparison with combinations proposed by previous research  

Different combinations for the CAR method have been proposed by previous research. 

Table 5-12 and Table 5-13 give two examples with three frequencies (except E6) and 

four frequencies for Galileo signals (Zhang et al., 2003; Wang et al., 2004). For 

convenience, they are named Group 1 and Group 2 separately; the optimal 

combinations selected in this section (Tables 5-10 and 5-11) are named Group 3 in the 

following context. The success rates for these three groups of combinations are shown 

in Figure 5-5.  The success rate with Group 3 is the largest. From Figure 5-5, it is also 

shown that more frequency bands will be very useful for ambiguity resolution as the 

success rate with four frequency combinations is higher than that of three frequency 

combinations. 

Table 5-12 Group 1 combinations 

i j k m cλ (m) mkjiR ,,, mkjiA ,,,

0 0 1 -1 9.76 -1.74 54.92
1 0 -1 0 0.81 -1.31 5.39 
1 0 0 0 0.19 1 1 

 

Table 5-13 Group 2 combinations 

i j k m cλ (m) mkjiR ,,, mkjiA ,,,

0 0 1 -1 9.76 -1.74 54.92
0 1 0 -1 2.93 -1.64 16.98
1 -1 0 0 1.01 -1.23 6.84 
0 0 0 1 0.25 1.79 1 
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Figure 5-5 The success rates of the three groups of combinations 

 

5.3 Ambiguity resolution performance analysis using ILS and CAR methods 

In this section, ambiguity resolution performances with CAR and ILS methods are 

investigated and compared. Two different methods are used for the evaluation. The 

first method analyzes the success rate of ambiguity resolution. This provides the 

answer to the question: is the geometry of Galileo able to support reliable single 

epoch ambiguity resolution, given a certain measurement noise level and desired 

success rate? The second method evaluates the actual ambiguity resolution 

performance based on simulated Galileo observations.  

5.3.1 Comparison of CAR and ILS methods based on success rate 

The success rate can be used to evaluate the performance of ambiguity resolution of 

different methods. The success rate is based on a priori information of measurement 

models and provides an expected probability of the ambiguity solution. The lower-

bound approximation of the success rate can be calculated as (Teunissen and Odijk, 

1997; Teunissen, 1998; Verhagen, 2005): 

∏
=

−Φ=≥
n

i Ii
BsPPs

1 |
, )1)

2
1(2(
σ

                                                      (5-18) 
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where, Ii|σ  is the standard deviation of the i-th ambiguity obtained through a previous 

i = 1, …, (i – 1) ambiguities. These sequential conditional standard deviations follow 

from the diagonal elements of the diagonal matrix D, whereby  TLDL  is the 

decomposition to the variance covariance matrix of the float ambiguities NQ .  

For the CAR method, the lower bound success rate to fix carrier phase ambiguities 

is obtained from the following formula: 

4,,3,,2,,1,,, ** BsBsBsBsBs PPPPP ∗=                       (5-19) 

where iBsP ,,  is the lower bound success rate for each step derived from the variance-

covariance matrix of float ambiguities.  

In this study a success rate threshold of 99.9% is used to assure reliable 

geometrical strength for ambiguity resolution. This means an ambiguity solution is 

considered to be a fixed integer only when the lower bound success rate is greater 

than 99.9%.  

The Ambiguity-Fix Rate (AFR) is used to quantify the performance of ambiguity 

resolution methods in a 24-hour period: 

hourinepochsofnumberTotal
ratesuccesswitheopchofNumberAFR
24

%9.99>
=   (5-20) 

Table 5-14 lists the AFR values for the CAR and ILS methods when carrier phase 

noise is 3mm (1σ). Different pseudorange noise levels from 0.5m to 2m (1σ) are used 

in the test. For the ILS method, the AFR reaches 100% with single epoch data, 

independent of pseudorange noise levels. For the CAR method, 100% of AFR can be 

achieved with single epoch data only when the pseudorange noise levels are less than 

1m. The single epoch AFRs for the CAR method drop to 93% and 80% for 

pseudorange noises of 1.5m and 2.0m respectively. Two epochs of data are required 

for the CAR method to achieve 100% of AFR. 
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Table 5-14 AFR for CAR and ILS (phase noise: 3mm) 

Time to Fix 
 (second) 

AFR (%) 
Code Noise (m) 

0.5 1.0 1.5 2.0 
CAR ILS CAR ILS CAR ILS CAR ILS 

1 100 100 100 100 92.9 100 79.9 100 
2 - - - - 100 - 100 - 

 

Table 5-15 shows the AFR values for the CAR and ILS methods when the carrier 

phase noise level increases to 6mm (1σ). For ILS, the AFR can reach 100% with 

single epoch data. For the case where the code noise level is 2.0m, the AFR is slightly 

reduced to 99.6%. For CAR, the AFR is affected by the pseudorange noise level. 

When the code errors are less than 1m, the AFR can reach 100% with single epoch 

data. However, when the code noise level increases to 2m, it requires three epochs to 

reach 100% of AFR.  

 

Table 5-15 AFR for CAR and ILS (phase noise: 6mm) 

Time to fix  
(second) 

AFR (%) 
Code Noise (m) 

0.5 1.0 1.5 2.0 
CAR ILS CAR ILS CAR ILS CAR ILS 

1 100 100 100 100 65.42 100 37.6 99.58 
2 - - - - 100 - 88.19 100 
3 - - - - - - 100 - 

 

By further increasing the carrier phase noise level to 12mm, the AFR values 

significantly reduce for both CAR and ILS methods. The AFR values are 0% for 

single epoch data with both CAR and ILS methods (as shown in Table 5-16), i.e. no 

ambiguity solution is able to be fixed with a success rate greater than 99.9%. It 

requires 3 to 4 epochs to achieve 100% of AFR for both methods, depending on code 

noise levels.  
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From the success rate analysis in this section, we find that the single epoch 

ambiguity resolution is possible for both CAR and ILS methods if the carrier phase 

noise level is low (< 6mm, 1σ), even with a very high success rate threshold of 99.9%. 

The ILS method, in general, performs better than the CAR method. The performance 

of the CAR method is strongly affected by the pseudorange noise level. When the 

code noise level is larger than 1.5m, the single epoch AFR reduces significantly to 

less than 93%. Both methods are very sensitive to carrier phase noise level. Four 

epochs are needed to achieve 100% of AFR for both methods when the carrier phase 

noise level is 12mm. 

Table 5-16 AFR for CAR and ILS (phase noise: 12mm) 

Time to fix 
(second) 

AFR (%) 
Code Noise (m) 

0.5 1.0 1.5 2.0 
CAR ILS CAR ILS CAR ILS CAR ILS 

1 0 0 0 0 0 0 0 0 
2 0 81.11 0 68.58 0 47.78 0 42.22 
3 67.78 100 67.78 100 67.78 99.86 67.78 97.91 
4 100 - 100 - 100 100 100 100 

 

5.3.2 Comparison of CAR and ILS methods based on the simulated data  

5.3.2.1 Data simulation 

To investigate ambiguity resolution performance over short baselines, Galileo 

measurements are simulated at two stations around Hong Kong - A (114.19º, 22.23º, 

11.19m) and B (114.196º, 22.236º, 0.97m). The baseline distance of AB is about 

860m. 

A 27/3/1 Walker constellation of thirty satellites (27 satellites + 3 operational in-

orbit spares) is adopted for the simulated Galileo constellation (GAL OS SIS ICD 

2006). The satellites are distributed in three planes in medium Earth orbit (about 
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24,000km above the Earth’s surface). The orbital inclination is 56°. For convenience 

circular orbits are assumed with a radius of 29,994km. 

Gaussian noise is assumed for both carrier phase and pseudorange measurements. 

Different noise levels (1σ error) have been simulated, as shown in Table 5-17. 

Tropospheric and ionospheric delays are based on the Hopfield and Klobuchar models 

(Xu, 2003). Twenty-four hour Galileo measurement data is simulated with epoch 

intervals of one second, with a total of 86,400 epochs. 

Table 5-17 Observation noise levels 

observation type and  
noise level 

observation noise 
(sigma) 

carrier 
phase 

Level 1 3mm 
Level 2 6mm 
Level 3 12mm 

code 

Level 1 0.5m 
Level 2 1.0m 
Level 3 1.5m 
Level 4 2.0m 

 

5.3.2.2 Numerical results of ambiguity resolution performance 

Based on the success rate analysis it has been shown above that it is possible to fix 

ambiguity with single epoch Galileo data, if the carrier phase noise level (1σ) is less 

than or equal to 6mm. In this section, the performance of the CAR and ILS methods 

will be examined based on simulated Galileo measurements described in section 

5.2.3.1. For ambiguity resolution, the discrimination test is very important. It is 

dangerous to fix ambiguity if two ambiguity candidates cannot be separated 

statistically, even when the ambiguity resolution success rate is as high as 100%. In 

this study, a simple ratio test is used for ambiguity fixing (Euler et al., 1991; Leick, 

2004): 

k
R

RS ≥                                                                               (5-21) 
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where, R and SR  are the smallest and second smallest sum of residuals for fixed 

ambiguities respectively; k is an empirically chosen critical value. 

Different thresholds have been used by different authors based on their experience, 

e.g. 1.5 (Han and Rizos, 1996b), 2 (Wei and Schwarz, 1995) and 3 (Leick, 2004). 

Though not an optimal test, the theoretical foundation of the ratio test has been 

studied by Teunissen (Teunissen and Verhagen, 2004; Teunissen, 2005). In this study 

the value 2 is used.  

Also the Ambiguity-Fix Rate (AFR) is used to quantify the quality of ambiguity 

fixing with different methods, but with a slightly different definition. 

hourinepochsofnumberTotal
egersinttofixedambiguityeopchofNumberAFR

24
=   (5-22) 

Table 5-18 shows the AFR values for both CAR and ILS, with carrier phase noise 

of 3mm (1σ). For the ILS method we can achieve 100% single epoch AFR with 24-

hour simulated data. For the CAR method, the single epoch AFR can reach 100% 

when the pseudorange noise level is less than 1.0m. When the code noise increases to 

2m, the single epoch AFR reduces slightly to 98.7%; ambiguity resolution can be 

achieved 100% within three epochs.  

Table 5-18 AFR for CAR and ILS (phase noise: 3mm) 

Time to fix  
(second) 

AFR (%) 
Code Noise (m) 

0.5 1.0 1.5 2.0 
CAR ILS CAR ILS CAR ILS CAR ILS 

1 100 100 100 100 99.91 100 98.7 100 
2 - - - - 100 - 99.95 - 
3 - - - - - - 100 - 

 

When the carrier phase noise level increases to 6mm, it requires two epochs to fix 

ambiguities 100% of the time. On the other hand, the single epoch ambiguity fix 

percentage is still very high with ILS, in fact more than 99.58% (Table 5-19). The 
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performance of CAR is slightly worse than that of the ILS method. It requires three 

epochs of data to achieve 100% of AFR.  

Table 5-19 AFR for CAR and ILS (phase noise: 6mm) 

Time to fix (second) 

AFR (%) 
Code Noise (m) 

0.5 1.0 1.5 2.0 
CAR ILS CAR ILS CAR ILS CAR ILS 

1 99.2 99.68 99 99.63 97.9 99.72 94.7 99.58
2 100 100 100 100 100 100 99.7 100 
3 - - - - - - 100 - 

 

If carrier phase noise level increases to 12mm, the single epoch AFR is low for 

both CAR and ILS - only around 30% and 47% respectively (Table 5-20). Again, the 

ILS method performs better that the CAR method. The latter requires five to six 

epochs to achieve 100% of AFR.  

One of the criteria to evaluate ambiguity resolution methods is the missed-fix rate, 

which is the percentage of solutions fixed to wrong ambiguity integers. Out of a total 

of 86,400 epochs for a day, the percentages of missed-fix rate based on our simulated 

Galileo data are shown in Figure 5-6. The missed-fix rate for CAR is around 2 to 3% 

or around 2,000 epochs out of 86,400 epochs in a day. It is much lower for the ILS 

method, with a rate less than 0.05%, or less than 43 epochs out of 86,400 epochs.   

Table 5-20 AFR for CAR and ILS (phase noise: 12mm) 

Time to fix  
(second) 

AFR (%) 
Code Noise (m) 

0.5 1.0 1.5 2.0 
CAR ILS CAR ILS CAR ILS CAR ILS 

1 35.8 50.2 35.4 47.8 32.7 47.2 29.5 44.1 
2 88.4 92.4 89.8 92.1 88.8 90.9 86.8 91.8 
3 98.2 99.0 98.0 99.1 98.2 98.8 97.8 99.1 
4 99.5 99.9 99.8 99.9 99.6 99.8 99.7 99.8 
5 99.9 100 100 100 99.9 100 99.9 100 
6 100 - - - 100 - 100 - 
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Figure 5-6 Mis-fixed rate for ILS and CAR  

 

In section 5.1.4, it has been demonstrated that the optimal combinations (Group 3, 

Tables 5-10 and 5-11) for the CAR method have higher success rates than the 

combinations proposed by previous research: Group 1 (Table 5-12) and Group 2 

(Table 5-13). Here the performance of these three groups of combinations will be 

examined based on simulated Galileo data.  Figure 5-7 shows the AFR values for the 

three groups. Noise levels of 12mm and 1.5m are used for carrier phase and 

pseudorange measurements respectively. It shows again that the optimal combinations 

proposed in this paper perform better. To achieve 100% AFR one needs 6 epochs for 

Group 3 but 9 epochs for Group 1. 
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Figure 5-7 Comparison of three groups of combinations for the CAR method 



 105

5.3.2.3 Performance of single epoch ambiguity resolution with Galileo 

A question we try to answer relates to the possibility of reliably fixing ambiguities 

from single epoch Galileo observations. For any ambiguity resolution algorithms the 

discrimination test is based on carrier phase residuals. Therefore, in this study we will 

check if the single epoch minimum sum of residuals PVV T  corresponds to the correct 

ambiguities. The results are obtained based on the simulated Galileo data, assuming 

carrier phase and pseudorange noises obeying a zero-mean Gaussian distribution. The 

results are shown in Figure 5-8 for the CAR and ILS methods. When the carrier phase 

noise level is 3mm, for 100% of epochs the minimum sum PVV T  corresponds to the 

correct ambiguities. At the level of 6mm, the percentage of correct matches is still 

high - more than 99.7% for both methods. However, when the carrier phase noise 

level increases to 12mm, there are more than 20% of epochs where the minimum sum 

of residuals do not correspond to the correct ambiguities, which will lead either to no 

ambiguity fixing solutions or wrong fixes. The ILS method performs slightly better 

with the success rate ranging between 92% and 98%, depending on the quality of the 

pseudorange. 

Figure 5-9 gives the mean success rates calculated for every epoch in a day 

(86,400 epochs), with different carrier phase and pseudorange noise levels for CAR 

and ILS respectively. It can be seen that the mean success rates are very high if the 

carrier phase noise level is less than 6mm - more than 99% for both methods - while 

the ILS method has slightly higher success rates, especially when the pseudorange 

noise level is larger (2m). When the carrier phase noise level increases to 12mm, the 

mean success rates reduce significantly for both methods - to 77-82% for CAR and 

90-97% for ILS. 
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a) CAR method 
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b) ILS Method 

Figure 5-8 The Percentage of Epochs for the single epoch PVV T  corresponding to 

correct ambiguities 

 

Figure 5-10 gives the percentage of epochs in which the ambiguities can be fixed 

to the correct integers using the test ratio method (k=2) for both methods. For the ILS 

method the ambiguities can be fixed to integers for 100% of the epochs when the 

carrier phase noise level is 3mm, or 99.6% of the epochs with a carrier phase noise 

level of 6mm. However, the ambiguity fixing rate drops to about 50% if the carrier 

phase noise level increases to 12mm. For the CAR method, the ambiguity fixing rate 

is less than that of the ILS method. However, 100% of epochs ambiguity fixing can 

still be achieved if the carrier phase and pseudorange noise levels are low (i.e. 3mm 

and 0.5m respectively). The CAR method is more sensitive to pseudorange errors; as 
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the pseudorange errors level increases, the percentage of epochs of ambiguity fixing 

reduces.  
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b) ILS method 

Figure 5-9 The single epoch success rate for CAR and ILS Methods 

 

The ratio test method (k=2) is a very conservative method, especially when the 

carrier phase noise level is large (i.e. 12mm). Comparing Figures 5-8b and 5-10b, for 

over 90% of epochs, the minimum sum of residuals correspond to the correct 

ambiguities, but only for around 50% of epochs can the ambiguities be fixed to their 

integers by the ratio test method.  
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b) ILS method 

Figure 5-10 Percentage of single epoch ambiguity fix with CAR and ILS Methods 

 

5.4 Single epoch positioning performance with partial ambiguity resolution 

From the test results in the above sections, we can see that when the carrier phase 

noise is as small as 3mm, all ambiguities may be fixed with 1 epoch; when noise 

increases to as large as 12mm, single-epoch performance is degraded significantly. 

Therefore navigation continuity would be greatly affected by carrier phase positioning 

when large observation noises or outliers occur. 

Centimetre positioning accuracy can be reached once all ambiguities are fixed. 

But this precision level is not necessary for many navigation applications. A partial 

solution concept has been proposed as another alternative for carrier phase positioning 

(Teunissen, 1998; Teunissen et al., 1999) in case of failing to fix all ambiguities. 
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In this section, single-epoch positioning performance with partial ambiguity 

resolution is investigated with Galileo alone and Galileo and modernized GPS 

constellations.  

5.4.1 Partial ambiguity resolution concept 

When it is not possible to resolve the complete vector of ambiguities with sufficient 

confidence, as an alternative, one may consider resolving only a subset of the 

ambiguities. Then the receiver position will be estimated by fixing the subset of 

ambiguities to their integers, while leaving the remaining ambiguities as a float 

solution.  

The bootstrapped probability of partial ambiguity resolution can be calculated 

according to the following formula (Teunissen, 1998; Teunissen et al., 1999): 

∏∏
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−Φ=>−Φ=
n

i a
a

m

i a
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(

) σσ
             (5-27) 

where partialP is the probability of resolving a subset of m ambiguities and aP(  is the 

probability of resolving all n ambiguities. 

The partial solution success rate (Eq. 5-27) has a design-stage meaning and is 

highly dependent on the correctness of stochastic models. In this section, a practical 

method is proposed to select the subset of ambiguities which can be fixed to integers. 

Firstly the float ambiguity resolution is calculated and also the corresponding 

variance-covariance matrix for the combinations Com0, Com2, Com4 and E5a (table 

5-10). Then the ambiguity combinations that cannot be distinguished by the Ratio test 

will be selected for further investigation. In other words, all ambiguity candidates are 

selected if their corresponding sums of residuals R meet the following requirement: 

k
R
Ri ≤
min

                                                           (5-28) 
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where minR is the minimum sum of residuals, iR is the value corresponding to i-th 

ambiguity candidate and k is a predefined threshold. 

If there are any ambiguities which are common in the selected ambiguity 

combinations, those ambiguities will be considered as able to be fixed.  Finally after 

fixing those ambiguities, the receiver position will be estimated again as the partial 

ambiguity fixing solution. 

 

5.4.2 Simulation study 

To assess real-time positioning continuity and accuracy, single-epoch ambiguity 

resolution performance based on partial ambiguity resolution with Galileo alone and 

modernized GPS + Galileo are investigated and compared. The data used for the 

investigation are simulated as discussed in Section 5.2.3.1. 

Similar to Galileo, optimal combinations of modernized GPS (three frequency 

bands, L1, L2 and L5) have been selected based on the success rate, as listed in Table 

5-21 and 5-22. Combination Trans1 in Table 5-25 is similar to Trans3 and Trans4 in 

Table 5-11.  

Table 5-21 Optimal combinations of modernized GPS 

Name 1j  2j 3j cλ  (m) R  A  
Com1 0 1 -1 4.19 -1.61 24.56
Com2 1 -1 0 1.01 -1.23 6.84

L5 0 0 1 0.25 1.79 1 
 

Table 5-22 Combination formed from Com0 and Com1  

Name 1j 2j 3j cλ (m) R  A  
Trans1 3 -1 -2 0.29 -1.28 5.28

 

5.4.2.1 Single-epoch full ambiguity resolution performance 

Firstly, the single-epoch performance to fix all ambiguities is investigated. Table 5-23 
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shows the AFR values for both Galileo and GPS/Galileo constellations, with different 

carrier phase and pseudorange noise levels (1σ), based on 24-hour simulated data with 

a sample rate of 1 second.  

Table 5-23 The single epoch AFR (%) for Galileo and GPS/Galileo constellation  

Carrier 
phase 
noise 
(mm) 

Code Noise (m) 
0.5 1.0 1.5 2.0 

Galileo GPS/Galileo Galileo GPS/Galileo Galileo GPS/Galileo Galileo GPS/Galileo 

3mm 100 100 100 100 100 100 100 100 
6mm 99.7 100 99.6 100 99.7 100 99.6 100 

12mm 50.2 74.6 47.8 69.9 47.2 54.7 44.1 48.6 

 

From table 5-23, it can be seen that when the carrier phase noise level is 3mm, the 

ambiguity can be fixed to their integers 100%, based on the simulated data for both 

constellations. On the other hand, if the noise level increases to 12mm, ambiguities 

can be fixed to their integers with only around 50% of epochs. Therefore for the rest 

of the epochs, the positioning accuracy would reduce to a metre level (differential 

pseudorange positioning). 

5.4.2.2 Partial ambiguity resolution performance 

For those epochs in which the ambiguities cannot be fixed for all satellites, can we fix 

a subset of the ambiguities to improve positioning accuracy? In this investigation, the 

method proposed in section 5.4.1 is used to estimate receiver position with partial 

ambiguity resolution. Particularly, we are interested in whether we can determine the 

receiver position with an accuracy of less than 10cm.  

Table 5-24 summarizes the positioning results with a partial ambiguity resolution 

method, with larger carrier phase noise levels (6mm and 12mm). Based on the 

simulated data, the positioning errors are less than 10cm for 100% of epochs if the 

carrier phase noise level is 6mm for both Galileo alone and GPS/Galileo 

constellations. However, if the carrier phase noise level increases to 12mm, there is no 

significant improvement in positioning accuracy using the partial ambiguity resolution 
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for Galileo only constellation and only a few percent more epochs can reach the 

positioning accuracy of less than 10cm. On the other hand, by increasing the number 

of satellites (GPS/Galileo constellation), the number of epochs for which positioning 

errors are less than 10cm increases to over 90% from around 50% for full ambiguity 

resolution.   Also, the maximum positioning errors of the partial ambiguity resolution 

method are examined within the one-day simulated data. It is shown that the 

maximum errors for the case of Galileo only (carrier phase and pseudorange errors are 

12mm and 2m respectively) can reach up to several metres (differential pseuodrange 

performance), while it is 0.6m for the GPS/Galileo constellation under the same noise 

levels.   

Table 5-24 Percentage of epochs with a positioning error of less than 10cm 

Carrier 
phase 
noise 

Code Noise (m) 
0.5 1.0 1.5 2.0 

Galileo GPS/Galileo Galileo GPS/Galileo Galileo GPS/Galileo Galileo GPS/Galileo 
6mm 100 100 100 100 100 100 100 100 

12mm 58.6 99.1 55.9 98.1 54.2 94.5 51.7 90.6 

 

 

5.5 Summary 

In this chapter, the performance of ambiguity resolution has been investigated using 

multiple frequency data from the Galileo system. An optimal frequency combination 

has been proposed based on the success rate analysis. Two algorithms (CAR and ILS) 

are compared for the efficiency of ambiguity resolution based on theoretical analysis 

(success rate) and simulation studies. Particularly, the possibility of ambiguity 

resolution with single epoch Galileo data is studied. Based on this study, we can 

summarize as follows: 

 With four frequency Galileo data, it is highly possible to achieve reliable 

single epoch ambiguity resolutions, when the carrier phase noise level is 
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reasonably low (i.e. less than 6mm). This has been confirmed by both the 

success rate analysis and simulation study. 

 Carrier phase noise level is an important factor for successful single epoch 

ambiguity resolution. If the carrier phase noise level increases to 12mm, the 

performance of single epoch ambiguity resolution degrades significantly. The 

pseudorange noise levels do not affect ambiguity resolution performance of 

the ILS method very much, but have strong effects on the CAR method. 

 Two ambiguity resolution methods are compared in this study. In general, the 

ILS method performs better than the CAR method on single epoch ambiguity 

resolution, based on both the success rate analysis and simulation study.  

 A group optimal frequency combination is proposed based on the success 

rate criterion for the CAR method. The test shows that the optimal 

combination performs better than the combinations proposed in previous 

studies which are based on wavelength-to-noise ratio. 

 The success rate analysis method is a very powerful tool for studying the 

performance of ambiguity resolution. The ambiguity resolution performance 

obtained from the success rate analysis is very close to the simulation results. 

 With the simulated Galileo data, the ratio test with a critical value of 2 seems 

to be too conservative. 

 With the Galileo constellation only, the positioning accuracy does not 

improve significantly with partial ambiguity resolution. By increasing the 

number of satellites (GPS/Galileo), positioning error can be significantly 

reduced. Over 90% of epochs (out of 86,400), the positioning errors are less 

than 10cm and the maximum error is less than 0.6m. 
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Chapter 6 An improved CAR method for multiple frequency 

ambiguity resolution 

 

From the simulation studies in Chapter 5, it is shown that ambiguity resolution 

performance of the ILS method is slightly better than that of the CAR method. By 

comparing these two methods, we can find several differences: 

 ILS uses original carrier phase measurements, while the CAR method uses those 

of carrier phase combinations which generally have larger noise levels. 

 The effects of code measurements in CAR method is larger than that in the ILS 

method due to larger measurements of noise of long wavelength combinations 

used in the CAR method. Thus, the CAR method can be more easily affected by 

large code noise. 

 The CAR method fixes ambiguities step by step (bootstrap) after every step. By 

fixing a subset of ambiguities, the unambiguous measurement is helpful for 

resolving the rest of the ambiguities.  

 The CAR method applies an optimal ambiguity combination based on the 

success rate, while ILS uses an approximate orthogonal combination.   

In this section, an improved CAR is proposed which includes the advantages of 

both ILS and CAR. Like ILS, the new algorithm uses original carrier phase 

measurement, instead of those of the combinations used in the CAR method. 

Meanwhile, the optimal ambiguity combination based on the success rate and the 

bootstrap algorithm are adopted in the new algorithm.  

Similar to Chapter 5, the performance of the new algorithms will be studied using 

simulated multiple frequency Galileo data. 
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6.1 Mathematical models of the improved CAR method 

The linearized double-differenced Galileo pseudorange and carrier phase 

measurements for frequency band i (i=1, 2, 3, 4) can be expressed as: 

iiii

pcode

nLNAX

nLAX

+=+

+=

λ
      (6-1) 

where X  is a position parameter; iN  is an ambiguity parameter of frequency band i ; 

codeL and iL are pseudorange and carrier phase measurements respectively; Pn and 

in are measurement noises for pseudorange and carrier phase measurements 

respectively; A  is the linearised coefficient matrix related to the position parameters; 

and iλ  is wavelength. 

Firstly, an optimal combination of different frequencies will be identified based on 

the success rate (i.e. in Chapter 5). Then the original ambiguity vector N will be 

mapped to the combination Ncom, to let N=CNcom. Finally the ambiguity will be solved 

using the bootstrap approach similar to the CAR method used in Chapter 5. The 

improved CAR method can be described in the following mathematical model: 
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where, L is the measurement vector of original carrier phase measurements; λ  is 

the wavelength vector of the original carrier phase; ComN  is an unknown ambiguity 

vector of four Galileo optimal combinations and if we denote ambiguities of original 

carrier phase measurements as N , C is the transformation matrix from ComN to N , 

that is ComCNN = . 

For the improved CAR, original carrier phase measurements are used and all 

ambiguities of four combinations are included as unknown parameters. In every step, 

only an ambiguity vector of one combination is fixed and the fixing order is from that 

with the longest wavelength to that of the shortest one. The mathematical model is 

updated every step: the fixed ambiguity is included as known parameters and 

unambiguous measurement is changed to the most precise one currently available. 

In Eq. 6-1, the atmospheric effects is not considered and thus it can be considered 

a short baseline case (most errors are cancelled by the differencing process). For 

longer baselines (i.e. > 30km), the atmospheric effects cannot be ignored. For long 

baselines, the double-difference observation equation is: 

iiiii LNDTCXBIA =+++             , iP                                          (6-6) 

Where,  

I  - ionospheric delay parameter vector; 

X  - coordinate components; 

T  - zenith tropospheric delay parameter vector; 

N  - ambiguity vector; 
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iL  - pseudorange and carrier phase measurements; 

iB  - coefficient matrix of X ; 

iD  - coefficient matrix of N ; 

iC  - mapping function for slant tropospheric delay; 

iA  - coefficient matrix of I ; 

iP - weight matrix. 

For long baselines, the ionospheric delay is the main problem, due to the fact that 

the dry component of the tropospheric delay can be accurately modelled. In this study, 

we will mainly consider how to deal with the ionospheric delays. Combining X, T and 

N as a vector Y, Eq. 6-6 can be rewritten as:  

iii LYBIA =+             , iP                                          (6-7) 

Where, iB  is the coefficient matrix of Y. 

The least squares normal equation can be formed: 
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To eliminate ionospheric delay parameters, an equivalent elimination process (Xu, 

2003) can be applied. 

The elimination matrix is formed as ⎥
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where, ii
T
ii BJEPBN )(,22 −= . 

Then we have a new normal equation for the i-th epoch with ionospheric delay 

eliminated: 
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ii
T
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Because matrices J and JE − are idempotent and i
T PJE )( − is symmetric, we 

have:  

ii
TT

iii
T
ii BJEPJEBBJEPBN )()()(,22 −−=−=   (6-10) 

 and 

 ii
TT

iii
T
i LPJEBLJEPB )()( −=− .     (6-11) 

Denoting ii BJEF )( −= , the new equivalent observation equation of the i-th 

epoch is: 

ii LYF =                            , iP                                                   (6-12) 

With multiple epoch data, the observation equation can be rewritten as: 

LBNAX =+                     , P                                                    (6-13) 

where, X is the vector of coordinates and tropospheric delay; N is the ambiguity 

vector; A and B are corresponding coefficient matrixes. We can see that ionospheric 

delay parameters are eliminated. 

Comparing Eqs (6-13) and (6-1), both equations have a similar form. Therefore, 

after the ionospheric delay is eliminated using this method, we can apply the same 

method for the short baseline approach to estimate ambiguity and position parameters 

for long baselines.  

As discussed in Chapter 5, the success rate is a powerful indicator of the 

geometric strength of ambiguity solution. In the following study, the following criteria 

for ambiguity resolution validation are applied:  

• Partial-solution success rate is larger than 4
1

999.0 ; 

• Ratio critical value is larger than 2. 
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Assuming that the total ambiguity number is n  and the first m  ambiguities are 

fixed, the success rate of partial solution can be calculated according to the following 

formula (Teunissen et al., 2000): 

∏
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i Ii
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σ

                                                      (6-14) 

 

6.2 Performance analysis of the improved CAR method based on simulation  

6.2.1 Short baseline 

In this section, ambiguity resolution performance with the improved CAR method is 

investigated based on simulated data described in Section 5.3.2.1. Similar to Section 

5.3, the Ambiguity-Fix Rate (AFR) is used again to quantify the quality of ambiguity 

fixing. 

Table 6-1 shows the AFR with carrier phase noise of 3mm (1σ). For comparison, 

the results obtained in Section 5.3 for the ILS method is also listed in the table. It can 

be seen that both improved CAR and ILS methods can achieve 100% single epoch 

AFR with 24-hour simulated data.  

Table 6-1 AFR for the improved CAR and ILS methods (phase noise: 3mm) 

Time to fix  
(second) 

AFR (%) 
Code Noise (m) 

0.5 1.0 1.5 2.0 
Imp. CAR ILS Imp. CAR ILS Imp. CAR ILS Imp. CAR ILS

1 100 100 100 100 100 100 100 100
 

When the carrier phase noise level increases to 6mm, for the improved CAR 

method, it can still achieve 100% single epoch AFR with 24-hour simulated data (as 

shown in Table 6-2). Compared with the results of the ILS method, we can see that 

the performance of the improved CAR method is slightly better than the ILS method.   
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Table 6-2 AFR of the improved CAR and ILS methods (phase noise: 6mm) 

Time to 
fix  

(second) 

AFR (%) 
Code Noise (m) 

0.5 1.0 1.5 2.0 
Imp. 
CAR ILS Imp. 

CAR ILS Imp. 
CAR ILS Imp. 

CAR ILS 

1 100 99.68 100 99.63 100 99.72 100 99.58
2 - 100 - 100 - 100 - 100 

 

If the carrier phase noise level increases to 12mm, the improved CAR method 

cannot resolve the ambiguity in a single epoch all the time (only around 70% of 

epochs). However, compared with the results of the ILS method with the same noise 

levels, the improved CAR obviously performs better.   

Table 6-3 AFR of improved CAR and ILS (phase noise: 12mm) 

Time to 
fix  

(second) 

AFR (%) 
Code Noise (m) 

0.5 1.0 1.5 2.0 
Imp. 
CAR ILS Imp. 

CAR ILS Imp. 
CAR ILS Imp. 

CAR ILS

1 78.6 50.2 72.2 47.8 70.2 47.2 67.2 44.1
2 98.6 92.4 99.1 92.1 98.5 90.9 98.5 91.8
3 99.9 99.0 99.9 99.1 99.9 98.8 99.9 99.1
4 100 99.9 100 99.9 100 99.8 100 99.8
5 - 100 - 100 - 100 - 100

 

Similar to the study in Chapter 5, single epoch ambiguity resolution performance 

with the improved CAR method has been investigated. Figure 6-1 shows the 

percentage of the single epoch PVV T  corresponding to correct ambiguities.  

 

Figure 6-1 Single-epoch performance of the improved CAR method 
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When the carrier phase noise is less than 6mm (1 sigma), 100% single-epoch 

ambiguity resolution can be achieved. More than 96% of a total of 86,400 epochs 

provide correct ambiguity resolutions even when 1 sigma of carrier phase noise is 

0.012m, while with the CAR method it is only about 80% and with the ILS method 

only about 90%.  

 

6.2.2 Long baselines 

6.2.2.1 Data simulation 

The pseudorange and carrier phase measurements are simulated on frequency bands 

as listed in Table 6-4. Pseudorange measurement over E6 is not simulated due to its 

restricted access to public users. 

Table 6-4 Simulated pseudorange and carrier phase measurements 

Measurement type Frequency bands
Carrier phase E1, E6, E5b, E5a
Pseudorange E1, E5b, E5a 

 

To investigate ambiguity resolution performance of different lengths of baselines, 

10 stations are simulated and 9 baselines are formed as listed in Table 6-5 and 6-6. 

 

Table 6-5 Simulated stations 
Station 
Name X Y Z Longitude Latitude Altitude 

A -2420466.778 5388173.100 2398086.812 114.19° 22.23° 1.19m 
C -2443402.300 5363914.722 2428805.036 114.491° 22.531° 1.19m 
D -2466082.725 5339417.907 2459457.750 114.791° 22.831° 1.19m 
E -2488505.564 5314685.322 2490044.121 115.091° 23.131° 1.19m 
F -2506692.778 5294237.100 2515066.812 115.336° 23.377° 2.01m 
G -2548379.778 5245997.100 2573187.812 115.909° 23.950° 1.03m 
H -2589094.778 5196934.100 2631055.812 116.482° 24.523° 1.00m 
I -2628821.778 5147068.100 2688664.812 117.055° 25.096° 1.58m 
J -2667542.778 5096418.100 2746009.812 117.628° 25.669° 1.56m 
K -2812077.778 4886390.100 2972625.812 119.920° 27.960° 1.24m 
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Table 6-6 Baselines formed 
Baselines Distance (KM)

AC 45 
AD 90 
AE 135 
AF 173 
AG 259 
AH 345 
AI 431 
AJ 516 
AK 857 

 

Main simulated error sources are listed in Table 6-7. 

Table 6-7 Main error sources simulated 

Error sources Size or model 
Carrier phase observation noise (sigma) 3mm 
pseudorange observation noise (sigma) 1.5m 

Tropospheric effect Hopfield model 
Ionospheric effect Klobuchar model 

 

 

6.2.2.2 Ambiguity resolution performance analysis 

For long baselines, it is difficult to achieve one epoch ambiguity resolution as for the 

short baselines. However, we still need to know how long is required to resolve for 

ambiguities. In this study, we start from every epoch in 24-hour simulated data and 

then examine how long we can achieve a reliable ambiguity resolution. It can be seen 

from Table 6-8 that the average time for ambiguity resolution over long baselines is in 

the range of 34 to 64 seconds, depending on the baseline lengths, while the maximum 

time required for ambiguity resolution is in the range of 3 min to 10 min. For 

comparison, the corresponding values are also provided for the ILS method (Table 6-

9). The mean time for ambiguity resolution with the improved CAR method reduced 

to about 50%, compared with the ILS method. There are mis-fixed cases (fixed to 

wrong ambiguities) for both methods. But the mis-fixed percentages are less than 

0.1% for both methods. 
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Table 6-8 Time required for ambiguity resolution for the Improved CAR method 

 Baseline 
AC AD AE AF AG AH AI AJ AK

Average time (seconds) 33.8 34.2 35.1 35.8 39.4 40.5 43.2 44.8 63.9
Maximum time (seconds) 180 168 312 167 503 335 549 343 566

 

Table 6-9 Time required for ambiguity resolution for the ILS method  

 Baseline 
AC AD AE AF AG AH AI AJ AK 

Average time (seconds) 76.0 77.1 79.7 81.3 87.3 89.7 92.4 98.8 131.9
Maximum time (seconds) 279 241 352 336 511 409 566 350 600 

 

 

6.2.2.3 Positioning accuracy with ambiguity-fix solution 

To assess the positioning performance after the ambiguities are fixed, the positioning 

results are summarized in Table 6-10 for various baseline lengths: their average, 

maximum and RMS positioning errors in both horizontal and vertical directions. Two 

cases are investigated: the first - with just one epoch data and the second – with 30 

epochs (30 seconds) data. 

From Table 6-10, we can see that: 

• The positioning accuracy can reach cm level with single epoch data and mm 

level with 30 epoch data in both horizontal & vertical components; 

• The maximum positioning error will not exceed half a metre with single epoch 

data and 1 decimeter with 30 epoch data in both horizontal & vertical 

components; 

• With an increase of baseline length, the positioning error increases slightly.   
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Table 6-10 Positioning errors 

   Baselines 
AC AD AE AF AG AH AI AJ AK

Average error (m) 

Single 
epoch 

Horizontal (mm) 22 23 25 24 25 26 27 30 38
Vertical (mm) 22 22 23 24 24 25 27 26 33

30 epochs Horizontal (mm) 4.2 4.5 4.8 5.3 5.8 6.3 6.9 8.3 11.3
Vertical (mm) 4.1 4.2 4.3 5.2 6.3 6.2 6.6 7.7 10.3

RMS (m) 

Single 
epoch 

Horizontal (mm) 18 19 24 22 22 23 26 28 52
Vertical (mm) 18 18 22 21 24 24 28 23 49

30 epochs Horizontal (mm) 3.6 4.3 4.3 5.8 5.2 4.8 5.0 7.7 8.7
Vertical (mm) 3.6 3.8 3.8 5.8 4.7 4.9 5.7 9.5 9.0

Maximum error (m) 

Single 
epoch 

Horizontal (mm) 125 132 181 171 162 194 205 212 373
Vertical (mm) 160 113 191 165 265 248 314 170 429

30 epochs Horizontal (mm) 38 55 31 50 77 48 39 98 97
Vertical (mm) 38 38 30 32 30 30 54 98 99

 

6.2.2.4 Partial ambiguity resolution 

As discussed in Chapter 5, with four Galileo frequency bands, we can form 

combinations with much longer wavelengths (i.e. Com0, Com2 and Com4 in table 5-

10). Therefore, we may resolve the ambiguities with those longer wavelengths much 

faster. Tables (6-11) and (6-12) give the time required for resolving the first two 

ambiguities (Com0 and Com2) and three ambiguities (Com0, Com2 and Com4). As 

the wavelengths of these combinations are larger than 1m, they can be easily fixed to 

their integers within a few seconds.   

 

Table 6-11 Time required for resolving ambiguities for Com0 ad Com2  

 Baseline 
AC AD AE AF AG AH AI AJ AK 

Average time (seconds) 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 
Maximum time (seconds) 6 5 5 6 5 5 5 6 5 

 

Table 6-12 Time required for resolving Com0, Com2 and Com4  

 Baseline 
AC AD AE AF AG AH AI AJ AK 

Average time (seconds) 4.2 4.0 4.2 4.1 4.2 4.3 4.1 4.1 4.4 
Maximum time (seconds) 20 18 18 52 22 33 41 45 24 
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6.2.2.5 Positioning accuracy with fixed ambiguities of the first three 

combinations 

Though the ambiguities of Com0 and Com2 can be resolved for in two or three 

seconds (Table 6-11), unfortunately since their ionospheric delay coefficients are 

close (Com0: 1.74 vs. Com4: 1.6 in Table 5-10 of Section 5.2.2), the ionospheric 

delay can not be estimated precisely. The positioning accuracy with the fixed 

ambiguity solution of Com0 and Com2 can only reach the metre level.  

To assess the positioning performance after the ambiguities of Com0, Com2 and 

Com4 are fixed, the positioning results are summarized in Table 6-13 for various 

baseline lengths: their average, maximum, RMS positioning errors and also the 

percentages with positioning errors less than 0.5m in both horizontal and vertical 

directions. Two cases are investigated: the first - with just 5 epoch data and the second 

– with 30 epoch (30 seconds) data. 

From Table 6-13, we can see that: 

• The positioning accuracy can reach a decimeter level with 5 epoch data and 

almost cm level with 30 epoch data in both horizontal and vertical directions; 

• The maximum positioning error will not exceed 2 metres with 5 epoch data 

and is generally within 1m with 30 epoch data in both directions; 

• With the increase of baseline distance, the positioning error increases slightly ; 

• The percentages of positioning errors less than 0.5m in both horizontal and 

vertical directions are above 80% with 5 epoch data and more than 97% with 

30 epoch data. 
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Table 6-13 Positioning accuracy with first three combinations fixed   

 Baseline 
AC AD AE AF AG AH AI AJ AK

Average 
error (m) 

5 
epochs

Horizontal 0.28 0.30 0.28 0.28 0.30 0.32 0.32 0.31 0.36
Vertical 0.27 0.26 0.28 0.28 0.28 0.28 0.28 0.30 0.31

30 
epochs

Horizontal 0.11 0.12 0.11 0.11 0.12 0.12 0.13 0.12 0.14
Vertical 0.11 0.11 0.12 0.12 0.12 0.11 0.12 0.12 0.11

RMS (m) 

5 
epochs

Horizontal 0.24 0.28 0.27 0.30 0.31 0.29 0.27 0.29 0.33
Vertical 0.23 0.23 0. 26 0.25 0.25 0.25 0.23 0.26 0.28

30 
epochs

Horizontal 0.10 0.10 0.10 0.09 0.11 0.11 0.12 0.13 0.13
Vertical 0.10 0.10 0.10 0.10 0.10 0.14 0.11 0.10 0.10

Maximum 
error (m) 

5 
epochs

Horizontal 1.57 1.77 1.69 1.72 1.80 1.74 1.87 1.80 1.87
Vertical 1.41 1.34 1.61 1.41 1.77 1.58 1.12 1.87 1.93

30 
epochs

Horizontal 0.64 0.82 0.73 0.79 0.95 0.99 0.96 1.04 0.92
Vertical 0.94 0.90 0.70 0.63 1.00 0.69 0.62 0.82 1.15

Percent with 
error 

< 0.5m (%) 

5 
epochs

Horizontal 88.1 85.3 87.5 87.9 85.2 83.8 84.6 83.3 79.7
Vertical 87.5 87.8 85.8 84.7 85.2 85.0 84.1 81.6 82.7

30 
epochs

Horizontal 98.7 98.5 99.0 99.6 99.2 98.8 99.2 98.5 97.8
Vertical 99.3 98.9 99.2 99.2 99.2 99.4 99.2 99.4 99.6

 
 
 

6.3 Summary 

In this section, an improved CAR method has been proposed for Galileo multiple 

frequency ambiguity resolution. Instead of directly using combination measurements 

in the mathematical model like the CAR method, the original carrier phase 

measurements are used. Also, a uniform model has been established for both short and 

long baseline ambiguity resolutions.   

Based on the simulated data and optimal combinations, ambiguity resolution 

performance with the improved CAR is investigated and compared with the ILS 

method.  It has shown that the performance of the new method is better than the ILS 

method in terms of time required for ambiguity resolution and mis-fixed rate.   

For short baselines, with four Galileo frequency bands, it is possible to resolve 

ambiguity to their integers within a single epoch, with a reasonable carrier phase noise 

assumption (<6mm).  
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For longer baselines, it requires on average less than 1 min to fix ambiguities, with 

the maximum time less than 10 minutes. However, the ambiguities of Com0, Com2 

and Com4 are easily fixed and generally only about 4 or 5 seconds are required. The 

positioning accuracy can almost reach cm level in 30 seconds with the partial 

ambiguity solution. 
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Chapter 7 Investigation of ambiguity resolution validation methods  

 

To ensure reliable ambiguity resolution, ambiguity validation is an indispensable step. 

It has been a challenge for many years and is far from being resolved. In Chapters 5 

and 6, it is demonstrated that there are some mis-fixed cases in ambiguity resolution 

using the ratio test method in the simulation studies. 

Various ambiguity validation methods have been proposed since 1990s, such as 

the R-ratio test (Frei and Beutler, 1990; Landau and Euler, 1992; Euler and Schaffrin, 

1991; Leick, 2003), difference test (Tiberius and de Jonge, 1995), projector test 

(Wang et al., 1998a; Han, 1997) and Ellipsoidal Integer Aperture (EIA) estimator 

(Teunissen, 2005). It has been shown (Teunissen and Verhagen, 2004; Verhagen, 

2005) that all of them belong to a class of Integer Aperture (IA) estimator (Teunissen, 

2003).  

Compared with other IA estimators, Ellipsoidal Integer Aperture (EIA) estimator 

is the outstanding one, as the fail-rate of ambiguity fixing is easy to evaluate 

(Teunissen, 2005). In this chapter, firstly the problems associated with the EIA are 

analyzed.  

Some modifications are suggested to improve EIA performance: 

• The overlap of aperture regions is allowed to make EIA more applicable and 

meet the fail-rate requirement at the same time; 

• Ratio test is combined with EIA to maintain the statistical advantage of 

ambiguity resolution. 

Based on this modification, a new procedure is proposed for the ambiguity 

validation process. Tests are carried out based on kinematic GPS observation and 

simulated Galileo data. Compared with the R-ratio test or EIA alone, the test results 
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show that the new method proposed in this chapter, which combines the use of both 

the EIA and R-ratio test, can improve ambiguity resolution reliability. 

7.1 Ellipsoidal Integer Aperture estimator and R-ratio test 

7.1.1 Integer Aperture (IA) estimators 

The class of integer aperture (IA) estimators was introduced by Teunissen (2003) and 

it is defined as follows. 

Definition 1 (Integer aperture estimators)  

Let nR⊂Ω be the integer translational invariant, i.e. z+Ω=Ω , nZz∈∀ and 

let zz SIΩ=Ω with zS the pull-in region of an admissible integer estimation. Then 

integer aperture estimators are defined as: 

∑
∈

−+=
nZz

zIA aazaa )ˆ()ˆ(ˆˆ ω                                                  (7-1) 

with )(xzω the indicator function of zΩ .  

The IA estimator is a hybrid estimator having as an outcome either the real-valued 

float solution â if Ω∉â or equal to z when za Ω∈ˆ . Note, sinceΩ is the collection of 

all zz +Ω=Ω 0 , that the IA estimator is completely determined once 0Ω is known. The 

subset 0Ω can therefore be seen as an adjustable pull-in region and it determines the 

aperture of the pull-in region. 

An IA estimator can produce one of the following three outcomes: nZa∈ (correct 

integer), }{\ aZz n∈ (incorrect integer), or nn ZRa \ˆ∈ (no integer). The probabilities of 

success (correct integer), failure (incorrect integer) and undecided (no integer) are 

given as:   

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−=

=

=

∑ ∫
∫
≠ Ω

Ω

)(undecided1
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(success))(

ˆ

ˆ

FSU

az aF

aS

PPP

dxxfP

dxxfP

z

a

                                     (7-2) 
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7.1.2 The definition of Ellipsoidal Integer Aperture estimator (EIA) 

The aperture pull-in regions of EIA are defined as: 

zEEz += 0 , 0,00 εCSE I= , nZz∈∀                              (7-3) 

with 0S being the least-squares pull-in region and }|{ 22
0,

ˆ
εε ≤∈=

aQ
n xRxC , an 

origin-centred ellipsoidal region of which the size is controlled by the aperture 

parameter ε . 

Assuming the float ambiguity solution is distributed as ),(~ˆ âQaNa and let the 

aperture parameter satisfy
a

n QZz
z

ˆ}0{\
min

2
1

∈
≤ε , the EIA-probabilities of failure, 

success and undecided are given as: 

⎪
⎩

⎪
⎨

⎧

−−=
≤=

≤=∑ ∈

SFU

S

Zz zF

PPP
nPP

nPP n

1
))0,((

)),((
22

}0{\
22

εχ
ελχ

                                 (7-4) 

in which ),(2
zn λχ denotes a random variable having as pdf the non-central Chi-square 

distribution with n degrees of freedom and non-centrality parameter zQz a
T

z
1

ˆ
−=λ . 

To make it more clear, Figure 7-1 is a two-dimensional de-correlated example of 

EIA. The original ellipsoidal regions become circular after de-correlation.  

 

 

 

 

 

 

The circular region in blue is the aperture region for success; the circular regions 

in red are the aperture regions for failure; the other parts except the blue and red ones 

Figure 7-1 Two-dimensional de-correlated example of EIA

Success

Failure

Undecided
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are regions for undecided. The aperture region sizes are controlled by the aperture 

parameterε . 

 

7.1.3 The weaknesses of EIA 

• First weakness 

In the above definition of EIA, to avoid overlap of the aperture regions, the aperture 

parameter is required to satisfy
a

n QZz
z

ˆ}0{\
min

2
1

∈
≤ε . This requirement is applicable 

for cases of geometry-free ambiguity resolution with pull-in-region not too narrow 

like Figure 7-1.  

With a narrow pull-in-region as shown in Figure 7-2, the corresponding success 

and failure probabilities with
a

n QZz z
ˆ}0{\min

2
1

∈
=ε are 0SP and 0FP . If 0FP is too 

conservative compared with the required fail-rate, generally 0SP will be small and the 

efficiency of ambiguity resolution performance can be very low.  

 

 

 

 

 

 

 

Such is the case with geometry-based ambiguity resolution: due to the high 

correlation between ambiguities, the distances 
aQ

z
ˆ
vary greatly and the pull-in-region 

is generally narrow.  

Figure 7-2 Two-dimensional example of EIA with narrow pull-in-region 
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Based on the simulated data in Chapter 5 (code noise: 2m; carrier phase noise: 

12mm), the ambiguity resolution performance is investigated with the ILS method 

and EIA estimator with the required fail rate of 0.001. Figure 7-3 is the time to fix 

ambiguity with the required fail-rate less than 0.001, Figure 7-4 is the actual fail-rate 

when fixing ambiguity, and Figure 7-5 is the actual ratio values (Eq. 5-21).  

From Figures 7-3 and 7-4, we can see that the actual fail-rate (~10-9) when 

ambiguities are fixed is much less than the required (~10-3). Hence this requirement 

on 
a

n QZz
z

ˆ}0{\
min

2
1

∈
≤ε  leads to lower performance (long time for ambiguity 

resolution). In the previous study in Chapters 5 and 6, it has been shown that the time 

for ambiguity resolution for this data set is only a few seconds with the ratio test 

method.  With the EIA method, there are cases that the required time for ambiguity 

fixing is beyond one minute (Figure 7-3).  From Figure 7-5, it can be seen that the 

actual ratio values are mostly above 5, and can reach as big as more than 25. This 

example demonstrates that the EIA method is a very conservative method with a long 

time for ambiguity resolution, although it is very reliable.  
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Figure 7-3 Time to fix with the required fail-rate 0.001 
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Figure 7-5 Ratio values when fixed 

• Second weakness 

EIA is an estimator with design stage meaning (only use a priori information). It only 

considers the quality of the best ambiguity resolution candidate and it takes no 

consideration of the other candidates. In fact, the starting point of EIA is that it first 

assumes that the best ambiguity resolution candidate is correct, and then calculates its 

corresponding fail-rate. If the fail-rate meets the requirement, the best ambiguity 

resolution will be fixed as correct. However, other ambiguity resolution candidates 

have the possibility to be correct. Especially when the ratio value of the second best to 

the best is close to 1, they almost have the same possibility of being correct. In this 

case, even if the fail-rate of EIA very small, the real fail-rate is near to 50%. 

Figure 7-4 Real fail-rate when fixed
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As shown in Figure 7-6, when the float ambiguity solution reaches the boundary 

part (the red part) between two pull-in-regions, the ratio value of the two 

distances
aQ

z
ˆ
D1 and D2 (yellow arrows in Figure 7-6) is near to 1, that is, no one is 

statistically better than the other and the two ambiguity candidates (the central points 

of the blue parts) have almost equal probability of being correct. Even if the current 

fail-rate is very small, obviously it is risky to fix ambiguity resolution to this one. 

 

 

 

 

 

 

 

 

 

7.1.4 R-ratio validation test 

R-ratio test is a popular one used for ambiguity validation (Euler and Schaffrin, 1991; 

Leick, 2003). If the ratio value between the squared distances (e.g. D1 and D2 in 

Figure 7-6) of the float ambiguity solution to the best and second best candidates is 

greater than the predefined critical value (general values: 1.5, 2 or 3), the best 

candidate will be regarded as statistically better than the others and fixed as correct. 

The observation equation strength and observation data quality can affect the 

reliability of the R-ratio test. For example, when satellite geometry has little change 

over a short time, the observation equations are always singular and the R-ratio test 

may become unreliable even with a large predefined critical value. With high level 

 

D1
D2

Figure 7-6 Second weakness of EIA
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observation noise or multipath, ambiguities can be mistakenly fixed to wrong ones 

with the R-ratio test. 

7.1.5 Improving EIA 

To overcome the first weakness of EIA, the overlap of aperture region is allowed, 

without the constraint of 
a

n QZz
z

ˆ}0{\
min

2
1

∈
≤ε  (see Figure 7-7 as an example). 

In Figure 7-8, we can see that the calculated fail-rate 

∑ ∈
≤=

}0\{
22 )),((nZz zF nPP ελχ (including the overlap parts) is greater than the true 

fail-rate (excluding the overlap parts) and can be regarded as the upper boundary of 

the true fail-rate. If ∑ ∈
≤=

}0\{
22 )),((nZz zF nPP ελχ is less than the required fail-rate, 

undoubtedly the true fail-rate also meets the fail-rate requirement. Also, the success 

aperture region is also expanded by half of the green overlap parts (see Figure 7-7). 

Therefore, by allowing the overlap of aperture region, the success probability is also 

increased.  

 

 

 

7.1.6 EIA and R-ratio test 

Both the R-ratio test and EIA belong to a class of IA estimators (Teunissen and 

Verhagen, 2004; Verhagen, 2005). The R-ratio test can be used to overcome the 

Overlap parts of 
failure aperture region 

Overlap part of failure and 
 success aperture region 

Figure 7-7 Overlapped EIA
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second weakness of EIA. That is, the R-ratio test can be used to ensure that the best 

ambiguity candidate is statistically better than the others, which avoids wrong 

ambiguity fixing when float ambiguity solution reaches the boundary of the pull-in-

region. As shown in Figure 7-9, with the help of the R-ratio test, the aperture region 1 

is turned into the undecided aperture region from original failure aperture region of 

EIA. 

 

 

On the other hand, EIA can help to improve the reliability of the R-ratio test. The 

fail-rate of EIA is in fact an indicator of both observation equation strength and data 

quality. With the strict fail-rate requirement of EIA, wrongly fixing cases with the R-

ratio test due to big observation errors or poor equation strength can be avoided. As 

shown in Figure 7-9, the aperture region 2 turned into the undecided aperture region 

from the original failure aperture region of the R-ratio test. 

Based on the above analysis, using the combination of EIA and the R-ratio test for 

GNSS ambiguity validation is suggested. With this approach, the fail-rate decreases as 

the failure aperture region becomes smaller. Unfortunately, with the combination the 

success rate also decreases as the success aperture region becomes the overlapped part 

of the original regions of EIA and the R-ratio test.  

Failure aperture region 

Success aperture region 

Undecided aperture region 

Aperture region 1 

Aperture region 2 

Figure 7-8 EIA + R-ratio test
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7.2 Estimation of variances of GNSS measurement  

The stochastic model represents the quality indicator of observations and is very 

important for ambiguity resolution.  Improper stochastic models on measurement can 

cause a problem in the calculation of various probabilities (i.e. Eqs 7-2 and 7-4) and 

therefore can result in wrong decisions in ambiguity validation tests. 

Several stochastic models have been proposed in the past years, such as: elevation 

angle (Euler and Goad, 1991; Gerdan, 1995; Jin, 1996; Han, 1997) or signal-to-noise 

ratio dependent (Talbot, 1988; Gianniou and Groten, 1996; Langley, 1997), or 

SIGMA- Δ  (Brunner et al., 1999) or ε  (Hartinger and Brunner, 1999) and the 

MINQUE method (Rao, 1971; Wang et al., 1998a) etc. Most of them rely on the priori 

statistical information. With more frequency band available (i.e. Galileo), it is 

possible to estimate GNSS measurement error variance directly from the observations. 

In this section, new models are proposed to estimate both carrier phase and 

pseudorange measurements errors directly from GNSS observations.  

7.2.1 Carrier phase error variance estimation 

For each satellite, the carrier phase observation equation can be written as for four 

frequency bands as:  
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where subscript i indicates frequency bands of E1, E6, E5b and E5a respectively; 

D includes geometric distance plus errors the same for all frequency bands; I is the 
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ionospheric delay parameter; iλ , if and iN are wavelength, frequency and ambiguity; 

iL is the carrier phase measurements with observation noise and multipath. 

Let
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where 1X includes the time-variant parameters and 2X includes only the time-

invariant ones. Applying the equivalent elimination process (Chapter 6) to delete 1X , 

we can get: 
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Denote [ ]TTTT vvvvLAAAAEBV 4321
1 ))(( =−= − . If there is no cycle slip, 

the change of V is only affected by observation errors. Thus, the observation data 

quality of L can be examined from the time series of V.  
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Figures 7-9 and 7-10 are two samples of time-series 1v (with a moving average), 

simulated with measurement noise of 3mm and 12mm (1σ) respectively.  

The RMS values of v1 in Figures 7-9 and 7-10 are 0.064mm and 0.159mm 

respectively. Based on the error propagation law, we can calculate the standard 

deviation of the original carrier phase measurement errors, and the results are 3mm 

and 12mm respectively, which is the same as simulated.  

7.2.2 Pseudorange error variance estimation 

Pseudorange observation equation can be expressed as: 

iC
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2

11                                              (7-9) 

Figure 7-9 time-series of 1v  (simulated with a noise level of 3mm) 

Figure 7-10 time-series of 1v  (simulated with a noise level of 12mm) 
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where, subscript i indicates the frequency bands E1, E6, E5b or E5a. 

Combining Eqs (7-9) and (7-5), and applying the equivalent elimination process, 

we can form an equation that has the same form as Eq. (7-7), and  
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))(( 1 TTT AAAAEB  (7-10) 

[ ]TTTT vvvvvLAAAAEBV 54321
1 ))(( =−= − . Because carrier phase 

observation noise is much smaller than that of pseudorange, V is mainly affected by 

pseudorange errors. Therefore the time-series V can be used to examine the data 

quality of pseudorange measurements. 

From Equation (7-10), we can see that 1v is more sensitive to pseudorange 

measurements due to the bigger coefficient corresponding to the pseudorange. 

Figures 7-11 and 7-12 are two samples of time-series 1v , simulated with 

pseudorange errors of 0.5m and 2m (1σ) respectively.  
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Figure 7-11 Time-series of 1v  (simulated with a noise level of 0.5m) 
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The RMS values of the two time series are 0.019m and 0.076m respectively. 

Based on the error propagation law, the original pseudorange error variances are 

calculated and the values of 0.501m and 2.007m respectively, almost the same as the 

values used for the simulation.   

 

7.3 Evaluation of different ambiguity validation methods 

The quality of an ambiguity validation method is mainly described by two factors: 

time required for ambiguity resolution and ambiguity mis-fixed rate. In this section, 

the performance of three validation methods (R-ratio, EIA and EIA/R-ratio) will be 

compared, using real GPS kinematic observations and simulated Galileo data (the 

same as simulated data used in Chapter 5).  

7.3.1 Kinematic GPS Experiment 

A GPS buoy with Leica dual frequency GPS receivers equipped was set up (Figure 7-

14) near the shore of Repulse Bay, Hong Kong and another Leica dual frequency GPS 

receiver was set up on the shore as a base station. The distance between them was 

about 200m. The observation time was from 8:13:59 to 19:59:59 on December 8, 

2004 and the sampling interval was 1 second. 

Figure 7-12  Time-series of 1v  (simulated with a noise level of 2m) 
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To examine GPS data quality, the following time series are formed: 

2112 LLL −=                                                         (7-11) 

11 LPP −=                                                           (7-12) 

where 1L and 2L are double-differenced carrier phase measurements on two 

frequency bands; 1P is the double-differenced 1C measurements. 

As the distance between the two stations was so close (200m), we can assume 

most GPS errors are cancelled out through double differencing and the remaining are 

mainly measurement errors. Figures 7-15 and 7-16 show the time series of Eqs. (7-11) 

and (7-12) for satellite No. 5 respectively. Based on the time series, the error 

variances of carrier phase and pseudorange measurements can be calculated and they 

are 5mm and 120mm respectively. Figures 7-17 shows the number of satellites 

observed during the experiment period, which are between 5 and 9 satellites.  

 

Figure 7-14 GPS buoy at the Repulse Bay, Hong Kong 

In the data processing, the ILS method is used to estimate carrier phase 

ambiguities and three methods are used to validate ambiguity resolution: R-ratio test 
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(critical value: 2), EIA (with an overlap of aperture region) estimator (critical fail-rate: 

0.001), and combined R-ratio test and EIA estimator.  
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Figure 7-15 Carrier phase error 
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Figure 7-16 Pseudorange measurement Error 
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Figure 7-17 Number of satellites observed 
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In data processing, we start from every epoch until all ambiguities are fixed to 

their integers. Also the Ambiguity-Fix Rate (AFR) is used to quantify the efficiency 

performance of ambiguity resolution with the following definition: 

observedepochsofnumberTotal
egersinttofixedambiguitywitheopchsofNumberAFR =    

Table 7-1 shows the AFR values with three validation methods. From the table, it 

can be seen that the time required for ambiguity resolution with these three validation 

methods are quite similar, with a few percentage point differences. The best one is the 

R-ratio test, with 98% of epochs in which the ambiguity can be fixed within a single 

epoch.  

Table 7-1 AFR with ratio test (critical value = 2) 

 R-ratio EIA EIA/R-
ratio 

time to fix (second) AFR (%) AFR 
(%) 

AFR 
(%) 

1 98.36 91.32 91.26 
2 99.19 94.85 94.76 
3 99.38 96.60 96.49 
4 99.45 97.70 97.57 
5 99.50 98.47 98.32 
>5 and < 60 99.86 99.97 99.86 
> 60 100 100 100 

 

Table 7-2 shows their corresponding mis-fixed rates. We can see that with R-ratio 

test alone, the mis-fixed rate is 0.01%; with EIA estimator alone, the mis-fixed rate is 

0.02%; and with combined EIA and R-ratio test, the performance is obviously better, 

as there is no mis-fixed case. 

 

Table 7-2 Missed-fix performance  

validation method Mis-fixed rate (%)
R-ratio test 0.01 

EIA 0.02 
EIA and Ratio test 0 

 

 

7.3.2 Multiple frequency case with simulated Galileo data 

The simulated Galileo data is the same as used in Chapter 5 (i.e. 24 hours, one second 
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sample data). As demonstrated in Chapters 5 and 6, with lower carrier phase noise 

levels the ratio test can achieve good results. It is also tested with the EIA and EIA/R-

ratio methods, and the results are quite similar. In this case study, it is mainly 

concentrated on the case when the carrier phase noise level is high (12mm). 

Tables 7-3, 7-4 and 7-5 show the AFR values with different validation methods. 

Again, this example demonstrates that the time required for ambiguity fix is similar 

among these three validation methods.  

 

Table 7-3 AFR with Ratio test (critical value = 2)  

time to fix (second)
AFR (%) 

code noise 
0.5m 1.0m 1.5m 2.0m

1 50.87 47.93 46.33 43.40
2 92.33 92.16 91.88 91.79
3 98.84 98.88 98.84 98.89
4 99.80 99.81 99.80 99.82
5 99.95 99.97 99.97 99.96
6 99.99 99.99 99.99 99.99
7 100 100 100 100 

 

The mis-fixed rates for the three methods are given in Table 7-6. There are up to 

0.05% of epochs in which ambiguities are fixed to wrong values. For the EIA/R-ratio 

method proposed in this study, the mis-fixed rate is only 0.00002, which is much 

smaller than the previous methods.  

Table 7-4 AFR with EIA (critical value = 0.001)  

time to fix (second)
AFR (%) 

code noise 
0.5m 1.0m 1.5m 2.0m

1 53.42 50.67 48.77 46.09
2 91.61 91.41 91.05 90.92
3 99.13 98.96 98.97 99.00
4 99.94 99.94 99.94 99.96
5 99.99 99.99 99.99 99.99
6 99.99 99.99 99.99 99.99
7 100 100 100 100 
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Table 7-5 AFR with EIA and ratio test  

time to fix (second)
AFR (%) 

code noise 
0.5m 1.0m 1.5m 2.0m

1 45.07 42.33 40.75 38.34
2 88.89 88.59 88.13 87.86
3 98.31 98.24 98.18 98.22
4 99.75 99.76 99.75 99.79
5 99.95 99.97 99.96 99.95
6 99.99 99.99 99.99 99.99
7 100 100 100 100 

 

 

Table 7-6 Mis-fixed performance  

validation method
Mis-fixed rate (%) 

code noise 
0.5m 1.0m 1.5m 2.0m

Ratio test 0.018 0.028 0.046 0.001
EIA 0.035 0.039 0.049 0.028

EIA and Ratio test 0.002 0.002 0 0 
 

 

7.4 Summary 

In this chapter, through analysis, it has been shown that to make the EIA estimator 

more applicable for practical applications, overlap of aperture regions is necessary. 

Also, EIA and the R-ratio test are two complementary ambiguity validation methods: 

EIA can ensure strong observation equation strength and good enough data quality, 

while the R-ratio test can ensure the statistical advantage of ambiguity resolution.  

Tests are carrier out based on simulated Galileo data and real GPS observations. 

The results show that the combined use of EIA & R-ratio tests can improve ambiguity 

resolution reliability especially under high observation noise levels, while the 

efficiency is almost the same as the R-ratio and EIA methods.  
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Chapter 8 Conclusions and Recommendations 

 

8.1 Conclusions 

In this study, the positioning performance of the multiple frequency Galileo system 

has been systematically analyzed. To achieve this goal, a GNSS data simulator and 

data processing software are developed, which are able to simulate and process 

pseudorange and multiple frequency carrier phase data from different GNSS systems, 

including GPS (and its modernization), GLONASS and Galileo. The navigation 

performance of integrated GNSS systems has been analyzed, particularly for urban 

applications. With multiple frequency band data from Galileo and GPS modernization, 

it is possible to resolve ambiguity much faster and more reliably than current GPS. A 

new ambiguity resolution method (the improved CAR method) has been developed 

and the ambiguity resolution performance has been analyzed with different algorithms. 

The ambiguity validation process is crucial for the success of ambiguity resolution. A 

new ambiguity validation method is proposed which combines the R-ratio test and 

EIA for reliable ambiguity resolutions. Based on the study, we can conclude: 

1.  Integration of multiple GNSS constellations does not significantly improve 

positioning accuracy. However, the RAIM performance is significantly 

improved. The simulation study shows that the RAIM position protection 

levels can be reduced dramatically from 30m and 70m with GPS only for 

horizontal and vertical components to 15m and 25m with GPS/Galileo 

constellations respectively. 

2. For urban applications, combined constellations can improve the positioning 

availability in streets. However, it cannot satisfy the requirement for vehicle 

navigation in urban areas.  On the other hand, the discontinuity distances are 
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significantly reduced with the combined constellations. Therefore, it is 

possible to use cheap DR systems to bridge the gaps of GNSS positioning, 

with high accuracy.  

3. The ambiguity resolution performances of three different algorithms have been 

compared, including CAR, ILS and improved CAR methods. From the 

simulation study, it has been demonstrated that the improved CAR method is 

better than the other two methods on ambiguity resolution, especially when the 

carrier phase measurement noise is big (i.e. 12mm). It is recommended that the 

success rate should be used as the criterion for the selection of different 

observation combinations. 

4. For short baselines, with four frequency Galileo data, it is highly possible to 

achieve a reliable single epoch ambiguity resolution, when the carrier phase 

noise level is reasonably low (i.e. less than 6mm). This has been confirmed by 

both the success rate analysis and simulation study. The carrier phase noise 

level is an important factor for successful single epoch ambiguity resolution. If 

the carrier phase noise level increases to 12mm, the performance of single 

epoch ambiguity resolution degrades significantly. The pseudorange noise 

levels do not affect ambiguity resolution performance of the ILS method very 

much, but have strong effects on the CAR method. 

5. For long baselines where the ionospheric delays cannot be ignored, an 

equivalent elimination process is proposed to be applied to eliminate 

ionopsheric delays and then to use the improved CAR method to resolve the 

ambiguities. The simulation study has demonstrated that the ambiguity can be 

determined within 1 minute (average), with a maximum time of 10 min, for 

baselines up to 800km. 
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6. When fixing full ambiguities becomes impossible, partial ambiguity-fix 

solutions can be useful to improve single-epoch positioning accuracy. With the 

Galileo constellation only, the positioning accuracy does not improve 

significantly with partial ambiguity resolution. By increasing the number of 

satellites (GPS/Galileo), positioning error can be significantly reduced. Over 

90% of epochs (out of 86,400), the positioning errors are less than 10cm and 

the maximum error is less than 0.6m. 

7. The success rate analysis method is a very powerful tool to study the 

performance of ambiguity resolution. The ambiguity resolution performance 

obtained from the success rate analysis is very close to the simulation results. 

8. Both EIA and the R-ratio test are recommended for the validation of 

ambiguity resolution.  Using real GPS data and simulated Galileo data, it has 

been demonstrated that the new method with the combination of EIA/R-ratio 

performs better then the use of EIA or the R-ratio test alone. With the 

combination of EIA/R-ratio, the time required for ambiguity resolution is 

almost the same as using an individual method (slightly worse). On the other 

hand, the ambiguity mis-fixed rate with the combined method decreases 

significantly. Applying to real GPS observations with the carrier phase errors 

of 5mm, the ambiguity mis-fixed rate is 0.01~0.02% for the R-ratio and EIA 

methods, but there is no mis-fixed case for the EIA/R-ratio method. Using 

simulated Galileo data (carrier phase error 12mm), the mis-fixed rates for R-

ratio or EIA methods reach 0.05%. The mis-fixed rate for the combined 

method is only 0.00002%. 

9. With multiple frequency data (i.e. Galileo), it is possible to estimate the 

measurement noise level based on observation only. The numerical tests show 
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that the estimation accuracy is very high. 

10. For PPP data processing, the combined constellation with GPS/Galileo can 

significantly reduce the ambiguity convergence time, from an average time of 

around 1 hour (3,400s) with GPS alone to less than 15 min (880s) with 

GPS/Galileo.  

 

8.2 Recommendations for future studies 

As Galileo was not fully operational at the time of writing this thesis, for our research 

purpose, the tests used in this study are based on simulated data. The simulation is 

based on the error characteristics and models from the study of GPS, which is 

applicable to both Galileo and GLONASS since they are also transmitting data in the 

L band. However, simulated data are not real observations after all.  For example, 

because only first-order ionospheric delay effect is simulated, the results with 

ambiguity resolution performance over long baselines may be a little too optimistic. 

To validate the conclusions from this study, we need to use real Galileo data in future 

when they are available. 

In this thesis, a new validation method is proposed and the test results show that it 

can improve ambiguity reliability. In the study, mainly random measurement noises 

are considered. In fact, the problem of ambiguity validation is far more complicated, 

and it involves many factors, such as cycle slip, large outliers, suitability of stochastic 

models and the geometrical strength of satellite distributions. More research and tests 

should be carried out in this research area.   

Satellite navigation in a metropolis like Hong Kong is still a challenge. GNSS 

alone cannot fulfill the full requirements even with a constellation of three systems 
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(i.e. GPS + Galileo + GLONASS). It is therefore to integrate with other sensors such 

as INS or digital maps, etc.  
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