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Abstract

Abstract of thesis entitled “Shape Analysis for Image Retrieval”
submitted by CHOI Wai-Pak for the degree of Doctor of Philosophy
at The Hong Kong Polytechnic University in January, 2003.

Content-based image retrieval (CBIR) system is designed to help retrieve
relevant images in an image database based on their image contents. This system will
allow queries on large image databases based on example images, user-constructed
sketches and drawings, and other graphical information. Different image features, or
descriptions, may have different significance and effectiveness in the interpretation
and representation of images in different applications. The Moving Picture Experts
Group (MPEG) of the International Standards Organization (ISO) initiated the
MPEG-7 standard, which provides standardized core technologies that allow for the
description of audiovisual data content in multimedia environments. The most
challenging technical issues for a CBIR system are the effectiveness and efficiency of
feature extraction and recognition algorithms for content-based image retrieval.

The objectives of this thesis are to investigate and develop efficient techniques
for shape feature extraction, and to construct a content-based image retrieval system.
An introduction to the general concept of image retrieval will be given in this thesis,
and the recent development of the MPEG-7 standard will be described. Existing

content-based image retrieval systems, and the feature extraction and recognition



techniques based on color, texture, shape and motion will be reviewed. Furthermore,
more efficient and effective features will be proposed so that a reliable and practical
retricval system becomes possible. Shape descriptors, which are high level
descriptions, will be emphasized in this research work.

In this rescarch, the content-based image retrieval system developed consists of
three major parts: boundary extraction, feature extraction and recognition. The first
part is based on an active contour model for representing image contours. We have
proposed an cfficient active contour model which can represent highly irregular
boundaries. The contour points can be used to form other shape descriptors such as
chain code, curvature scale-space representation, skeleton, etc. After extracting the
boundaries, the second part is skeletonization which is an important process that can
provide a compact shape representation. We have proposed a fast, efficient and
accurate skeletonization method for the extraction of a well-connected Euclidean
skeleton based on the boundary information. The skeleton feature can be used as a
shape descriptor, which can represent the shape more compactly, and consists of
spatial and structural information. In the third part, we have proposed a robust and
efficient histogram representation scheme for shape retrieval, which is based on the
normalized maximal disks used to represent the shape of an object. The maximal
disks are extracted by means of the fast skeletonization technique with a pruning
algorithm. The logarithm of the radii of the normalized maximal disks is used to
construct a histogram to represent the shape. The proposed representation scheme
outperforms the other methods under affine transformation, different distortions and
noise levels. Hence, these three major parts are integrated to form a complete system

for content-based image retrieval. We have also devised a contour/region-based
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matching algorithm has been used for retrieving relevant images containing similar
shapes from a database. In the algorithm, Hausdorff distance is used to measure the
similarity of two point sets. We have devised a robust line-feature-based approach for
model-based recognition based on this distance measure. The proposed algorithm can
achieve a good performance level in matching, even in a noisy environment or with

the existence of occlusion, and can be used as a similarity measure for image retrieval.
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STATEMENT OF ORIGINALITY

The following contributions reported in this thesis are claimed to be original.

1.

A new efficient active contour model for representing a highly irregular

boundary. (Chapter 3, Section 3.3.1 and 3.3.2).

This is an efficient algorithm for active contour model, which can represent
highly irregular boundaries. The algorithm includes an adaptive force along
the contour, and adjusts the number of points for the snake according to the
desired boundary. The adaptive force is introduced at a point of the snake
whenever the image forces in its neighborhood are smaller than a certain
threshold. In order to achieve an accurate representation of a boundary, the
distances between adjacent points of the snake are kept close to a constant.
Two processes, namely deletion and insertion, are introduced to change the

number of points for the snake during the energy minimization process.
A better terminating Criterion (Chapter 3, Section 3.3.3).

A new terminating criterion called contour area criterion (CA-criterion) has
been proposed, which makes use of the normalized total area to determine the
convergence of an iteration process. The CA-criterion exhibits a smoother and
faster convergence than that of the contour length criterion (CL-criterion). The
CA-criterion also has better stability in convergence, as its fluctuation between
successive iterations is much smaller than the CL-criterion without using any
averaging. In addition, the calculation of area is simple and fast, while the CL-

criterion requires computing square roots to obtain the length of each segment.
Criteria for extracting multiple objects (Chapter 3, Section 3.4).

The adaptive snake model can be used to represent the contour of a single
object. In order to extract multiple objects, the snake model is modified such
that it can determine the cormresponding contour of each object. We have

proposed a criterion to determine critical points where the snake is split and
vi



connected for multiple object representation. The criterion includes the
processes of splitting and connecting. A critical point is defined as the end
points of a contour segment which are adjacent to non-contour segments.
During the iteration process, each of the critical points will be checked in
sequence. Pairs of the critical points will be marked as connected points where
the splitting and connecting operations will be performed to form two
contours. Having searched the pairs of connected points, which are close to

cach other, the splitting and connecting operations are then performed.
. Criteria for validating of the snake (Chapter 3, Section 3.4.3).

With the process of splitting and connecting process, new snake may be
generated. Some of the snakes will grow until they touch the edges in the
image. The validity of a new snake can be identified by calculating its
enclosed area. If the points of a snake collapse and meet each other, the area
enclosed by the snake will be zero. If the snake grows in a reverse direction,
its computed area will be negative. This signifies that an invalid snake has
been formed. In addition, a snake is also considered to be invalid if its number

of points is less than a certain value.
- The criterion for a skeleton point (Chapter 4, Section 4.3).

In real applications, the contour points and the skeleton points must be located
at the pixel grids; this induces a lot of discrete problems. We have defined an
ideal skeleton which has non-zero width, and all the pixels passed through by
this ideal skeleton will be considered to be a skeleton pixels. Based on this
ideal skeleton, we have devised a connectivity criterion for the square grid to
determine whether a given pixel is a skeleton point independently. A
connected Euclidean skeleton with a single pixel width can be generated

without requiring a linking algorithm or iteration process.
. A skeletonization algorithm (Chapter 4, Section 4.4).

To determine whether a pixel point is a skeleton point in a discrete image, we
have proposed a skeletonization algorithm based on the connectivity criterion
and the signed sequential Euclidean distance (8SSED) map. The nearest

contour points for each of the 8 neighboring points can be obtained by using
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the 8SSED map. The nearest contour points of the pixel under consideration
and one of its 8 neighbors then form a point pair. If any one of the point pairs

satisfies the connectivity criterion, the pixel can be declared a skeleton point.
Maximal disk-based Histogram for Shape Retrieval (Chapter 5, Section 5.2).

We have proposed a robust and efficient representation scheme for shape
retrieval, which is based on the normalized maximal disks used to represent
the shape of an object. The maximal disks are extracted by means of a fast
skeletonization technique with a pruning algorithm. The logarithm of the radii
of the normalized maximal disks is used to construct a histogram to represent
the shape. Our proposed representation scheme outperforms the other
methods, including moment invariants, Zernike moments, and curvature scale-

space, under affine transformation, different distortions and noise levels.
Robust feature for object matching (Chapter 6, Section 6.3.3).

The Hausdorff distance can be used to measure the similarity of two point sets.
We have proposed a robust line-feature approach for model-based recognition
based on the Hausdorff distance. The robust features are extracted based on
the line segments formed between each point and its corresponding farthest
point in a point set. These features are insensitive to noise and can find the
rotation and scale between two image point sets accurately and reliably, so

2D-2D matching algorithm can be adopted.

viii
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Chapter 1
Introduction

The objectives of this chapter are to give the motivation for content-based image
retrieval, an introduction to the general concept of image retrieval, as well as the
recent development of the MPEG-7 standard. An overview of the techniques for
content-based image retrieval proposed and developed in this thesis will be presented.

Finally, the organization of the thesis is given at the end of this chapter.

1.1 Motivation for Content-Based Retrieval from Image
Databases

Many organizations have large image and video collections in digital format,
available for on-line access. With the development of digital photography, on-line
collections of images are growing larger and more common, and tools are needed to
efficiently manage, organize, and navigate through them. In order to organize these
collections into categories, an effective and efficient way of image feature extraction
and recognition is imperative for real-time browsing and retrieval. A number of
content-based image retrieval systems have been developed and research on content-
based retrieval has emerged as an important area in computer vision and multimedia
computing. In October 1996, the Moving Picture Experts Group (MPEG) of the

International Standards Organization (ISO) initiated the MPEG-7 standard, which

1



provides standardized core technologies allowing description of audiovisual data
content in multimedia environments. The descriptors, which best fulfil the
requirements as defined by the experts, are selected in MPEG-7 standard. Effective
and efficient feature extraction and recognition algorithms for content-based image

retrieval is a challenging research topic.

1.2 Introduction to Content Based Image Retrieval System

Content-based image retrieval (CBIR) system is designed to help retrieve
relevant images in an image database based on their image contents. This system will
allow queries on large image databases based on example images, user-constructed
sketches and drawings, and other graphical information. Different image features, or
keys, may have different significance and effectiveness in the interpretation and
representation of images in different applications. In other words, the features to be
extracted from images should be dynamically selectable. These image content
features can be combined with each other and with text-based descriptions to form a
sophisticated CBIR system. The selected features from images are used to build the
index for accessing image databases. Relevance feedback methods are also useful as
the information to the user supplies to the system in an attempt to “guess” what are
her intentions, thus making it easier to find what she wants. Relevance feedback
directed queries may help to protect the user from unwanted technicalities and to find
more rapidly certain categories of images in large databases. With the wide
applications of multimedia systems and the ever-increasing rate of generating

different types of images from civilian satellites, biomedical imaging, human face



recognition, fingerprinting, etc., it is therefore required that the CBIR system can use
the information from these image repositories effectively and efficiently.

Since there are different features for image retrieval, the properties such as color
percentages, color layout, and textures occurring in the images are often considered in
the system. Such queries use the visual properties of images, so the descriptors such
as color and texture can be matched without describing them in words. Content-based
queries are also combined with text and keyword predicates to get powerful retrieval
methods for image and multimedia databases. However, the descriptors such as shape
and motion, which are high-level descriptions, are a challenging area for image
retrieval. In this thesis, we will focus on the development of the shape descriptors

which includes the feature extraction and recognition algorithms.

1.3 Our Methods for Content Based Image Retrieval System

The objectives of this research work are to investigate and develop efficient
techniques for feature extraction and to construct a content-based image retrieval
system. We will review existing content-based image retrieval systems, and the
feature extraction and recognition techniques based on color, texture and shape, etc.
Most of the content-based image retrieval systems allow users to choose different
features for retrieval. These features may not be effective and efficient for real-time
retrieval systems because their derivations are usually computationally expensive.
These features are usually pre-computed and stored with the corresponding images in
a database. In our research, different features for image retrieval have been studied,
and their corresponding efficiency, effectiveness, and required computation have also

been investigated. Furthermore, more efficient and effective features will be proposed



so that a reliable and practical retrieval system becomes possible. Content-based
image retrieval systems may allow users to choose color, texture, shape, and other
features as the query input. Due to the different signatures of the features, a weighting
factor can be associated with each of the chosen features. The features can be selected
and their corresponding weighting factors can be assigned by the user.

The content-based image retrieval system developed in this thesis project consists
of three major parts: boundary extraction, feature extraction and recognition. The first
part is based on an active contour model for representing image contours. In this part,
we have proposed an efficient active contour model which can represent highly
irregular boundaries. The contour points can be used to form other shape descriptors
such as chain code, curvature scale-space representation, skeleton, etc. After
extracting the boundaries, the second part is skeletonization which is an important
process for a compact shape representation. We have proposed fast, efficient and
accurate skeletonization methods for the extraction of a well-connected Euclidean
skeleton based on the boundary information. The skeleton feature can be used as a
shape descriptor which can represent the shape more compactly, and consists of
spatial and structure information. In the third part, the contour/region-based matching
algorithm has been used for retrieving relevant images containing similar shapes from
the database. Since the Hausdorff distance can be used to measure the similarity of
two point sets, we have proposed a robust line-feature-based approach based on the
Hausdorff distance for model-based recognition, which can achieve a good
performance level in matching, even in a noisy environment or with the existence of
occlusion. The proposed method can be used as a similarity measure for image
retrieval. Hence, these three major parts are integrated to form a complete system for

content-based image retrieval.



1.4 Organization of the Thesis

The rest of this thesis will firstly give an overview of existing content-based
image retrieval systems and the related techniques. Then, we will present an efficient
boundary extraction technique based on the active contour model and efficient
skeletonization algorithms. These algorithms can be used to extract shape features of
an object. Having extracted the shape information, a new point-set matching
technique based on Hausdorff distance will be presented in this thesis. Finally,
conclusions and possible future work will be given in the last chapter. The detailed
contents of the following chapters are briefly given in the following.

In Chapter 2, we will describe some existing CBIR systems and the image
databases used for content based image retrieval, as well as the recent development of
MPEG-7. We will also introduce the visual descriptors recommended in MPEG-7.
Then, we will review some techniques which can be used for visual feature extraction
and recognition.

In Chapter 3, the original snake model, which is used for representing image
contours, will be described. Then, our proposed adaptive snake model will be
presented, which can be used to extract the boundary of a highly irregular object. We
apply an adaptive force along the contour, and adjust the number of points for the
snake according to the desired boundary in our algorithm. A better stopping criterion
based on the area of a closed contour will also be described.

In Chapter 4, we will introduce efficient skeletonization algorithms based on the
maximal disk and the definition of medial axis transform. The discrete problems on
the extraction of a skeleton will also be described. Then, we will establish a concept

of the width of a skeleton and present our proposed connectivity criterion for



extracting a Euclidean skeleton which can be used to determine whether a given pixel
is a skeleton point independently. The implementation of the skeletonization
algorithm will also be illustrated and summarized.

In Chapter 5, we will give a detailed description of our proposed shape descriptor
based on histogram representation. Then, experimental results will be presented and
evaluated, where the performance of our proposed scheme is compared to other shape
representation schemes, namely moment invariants, Zernike moments, and curvature
scale-space. Finally, the robustness and accuracy of our proposed shape descriptor
will also be evaluated.

In Chapter 6, we will give an introduction to the Hausdorff distances and describe
an M-estimation Hausdorff distance, which can be used to determine the relative
position between two shapes efficiently even if noise and occlusion exist along the
two object boundaries. Then, we will present our new matching algorithm, which can
accurately find the scale and orientation of a point set relative to one another. A robust
line-segment Hausdorff distance will also be described for matching two point sets.
Experimental results based on simulated data and a database of trademarks will be
presented and evaluated.

In Chapter 7, a summary of the work completed for this thesis and a conclusion
will be provided. We will also give suggestions on future directions for developing a
better shape descriptor, a better similarity measure, as well as a further improved

content based retrieval system.



Chapter 2
Overview of Content Based Retrieval
System

2.1 Introduction

Content Based Image Retrieval (CBIR) Systems [1-6] help users retrieve relevant
images based on their contents from an image database. Previous approaches to
content based retrieval have taken two directions. In the first, image contents are
modeled as a set of attributes extracted manually and managed within the framework
of conventional database-management systems. Attribute-based representation of
images entails a high level of image abstraction. The second approach depends on an
integrated feature-extraction or object-recognition subsystem to overcome the
limitations of attribute-based retrieval. This subsystem automates the feature-
extraction and object-recognition task that occurs when the image is inserted into the
database. However, automated approaches to object recognition are computationally
expensive, difficult, and tend to be domain specific. This approach is advanced
primarily by image-interpretation researchers. Recent CBIR research recognizes the
need for synergy between these two approaches.

In this chapter, we will see some existing CBIR systems and image databases

used for content based image retrieval and look at the recent development of MPEG-7



[6, 7] which consists of the descriptions of the content based image retrieval. Then,
we will introduce the visual descriptors appearing in the MPEG-7 standard. Finally,
we will review some methods which can be used for visual feature extraction and

recognition.

2.1.1 Existing Content Based Image Retrieval Systems

Approaches to content based image retrieval differ in terms of which image
features are extracted, the level of abstraction manifested in the features, and the
degree of desired domain independence. There are two major categories of features:
primitive and logical. Primitive, or low-level, image features such as an object’s
centroid and boundaries can be extracted automatically or semi-automatically. Logical
features are abstract representations of images at various levels of detail. Regardless
of which approach is used, generic query classes facilitate CBIR through retrieving by
color, texture, sketch, shape, volume, spatial constraints, browsing, objective

attributes, subjective attributes, motion, text, and domain concepts.

2.1.1.1 IBM's Query By Image Content (QBIC)

The Query By Image Content (QBIC) system (8], which can make queries of
large image databases based on visual image content, has been developed by IBM. It
is based on an a priori feature extraction approach as a comprehensive, operational
CBIR system. It allows queries on large image and video databases based on example
images, user-constructed sketches and drawings, selected color and texture patterns,
camera and object motion, and other graphical information. Two key properties of
QBIC are its use of image and video content-computable properties of color, texture,
shape, and motion of images, videos, and their objects in the queries, and its graphical

means. It has two main components: database population (the process of creating an



image database) and database query. During the population, image and videos are
processed to extract features describing their content such as colors, textures, shapes,
and camera and object motion, and the features are stored in a database. During the
query, the user composes a query graphically. Fecatures are generated from the
graphical query and then input to a matching engine that finds images or videos from

the database with similar features.

2.1.1.2 Advanced Multimedia Oriented Retrieval Engine (AMORE)

AMORE is a World-Wide Web image search engine. It allows the retrieval of
images from the Web based on either keywords or the specification of a similar image
or a combination of the two. In addition, an image on a particular web page can be
specified as the search query. AMORE also allows users to control how they would
like the search to be conducted. They can indicate how important color similarity
should be in the results, how important shape similarity is, and whether the results

should be visually or semantically similar to the search query.

2.1.1.3 IKONA

IKONA is a new architecture for building CBIR software systems, based on a
client-server architecture, designed and implemented at the IMEDIA Project research
team, INRIA Rocquencourt, France. The server part is written in C++ (for reasons of
speed) and the client part is written in Java, so and it should normally run on any
computer architecture that supports Java Runtime Environment (JRE). The client and
the server communicate with each other through a protocol, which is a set of
commands the server understands and a set of answers it can return to the client.

[KONA can be used to search all images in all databases and returns a list of the
most visually similar images in response to the query image. It allows region-based

queries and has a hybrid text-image retrieval mode. In the region based mode, the user
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can select a part of an image and the system will search images or parts of images that

are visually similar to the selected part.

2.1.1.4 NETRA - Image Search Using Color and Texture

NETRA is a prototype image retrieval system that is currently being developed in
the UCSB Alexandria Digital Library (ADL) project. NETRA uses color, texture,
shape and spatial location information in segmented image regions to search and
retrieve images with similar regions from the database. A distinguishing aspect of this
system is its incorporation of a robust automated image segmentation algorithm that
allows object or region based search. Image segmentation significantly improves the

quality of image retrieval when images contain multiple complex objects.

2.1.1.5 NETRA 2 - A Region-Based Image Retrieval System

NETRA 2 is a prototype image retrieval system that allows users to search and
retrieve images in the database based on color information. One of the distinctive
aspects of the system is that it allows users to localize the information and select
image regions of interest as queries, thus providing a more powerful search tool than
other retrieval systems that use global image features. Compared to the original
NETRA system, this new version of NETRA emphasizes the latest work on color

image segmentation and local color features.

2.1.1.6 FERET Database and System

An automatic face system for recognition and interactive search has been
developed using the FERET face database. The system consists of a two-stage object
detection and alignment stage, a contrast normalization stage, and a Karhunen-Loeve
(eigenspace) based feature extraction stage whose output is used for both recognition

and coding. This leads to a compact representation of the face that can be used for
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both recognition as well as image compression. The system has been successfully
tested on a database of nearly 2000 facial photographs from the ARPA FERET
database with a detection rate of 97%. Recognition rates as high as 99% have been
obtained on a subset of the FERET database consisting of 2 frontal views of 155

individuals.

2.1.2 Existing Image Databases

2.1.2.1 Vision Texture Database

The Vision Texture Database is a collection of texture imagery for the computer
vision community. The database was created with the intention of providing a large
set of high quality textures for computer vision applications. Unlike other texture
collections, the images in VisTex do not conform to rigid frontal plane perspectives
and studio lighting conditions. Instead, the images that make up VisTex are taken
from examples of common (“real-world”) photography and video. The goal of VisTex
is to provide texture images that are representative of real world conditions. While
VisTex can serve as a replacement for traditional texture collections, it includes

examples of many non-traditional textures.

2.1.2.2 Shape Queries Using Image Databases (SQUID)

A system for Shape Queries Using Image Databases (SQUID) is the first image
database retrieval system on the Internet which allows users to submit shapes as query
objects. There are about 1,100 images of marine creatures in the database. Each image
shows one distinct species on a uniform background. Every image is processed to
recover the boundary contour, which is then represented by three global shape
parameters and the maxima of the curvature zero-crossing contours in its Curvature

Scale Space image.
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2.2 MPEG-7 Recent Development

The Moving Picture Experts Group (MPEG) of the International Standards
Organization (ISO) initiated work on MPEG-7 [9], its fourth standard, in 1997.
MPEG-7, formally named “Multimedia Content Description standard”, is quite
different to earlier MPEG standards such as MPEG-1, MPEG-2, and MPEG-4 which
address video coding. MPEG-7 is a standard for describing the multimedia content
data that supports standardized Descriptors and Description Schemes for audio and
video, as well as integrated multimedia content. Also standardized is a Description
Definition Language that allows new Descriptors and Description Schemes to be
defined. Its objective is to provide standardized core technologies allowing
description of audiovisual data content in multimedia environments. Recently, the
MPEG-7 standard [9] has been finalized on December 2001 and it consists of eight
parts; Systems [10], Description Definition Language [11], Visual [12-15], Audio
[16-17], Multimedia Descriptor Schemes [18], Reference Software, Conformance,
and Extraction and use of descriptors. MPEG-7 Visual Description Tools included in
the standard consist of basic structures and descriptors that cover the following basic
visual features: color, texture, shape, motion, localization, and face recognition. Each

category consists of elementary and sophisticated descriptors.

2.3 MPEG-7 Visual Descriptors

In order to design efficient descriptors for these features for applications such as
similarity retrieval, considerable work has been done. The visual descriptors have
been classified into fo;.lr types: color descriptors, texture descriptors, shape descriptors
and motion descriptors. Color and texture descriptors [13] are low-level descriptors

while shape descriptors [14] and motion descriptors [15] are high-level descriptors.
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Color and texture are among the more expressive of the visual features. Shape
descriptors express the shape properties of an object’s outline or the pixel distribution
within the 2-D/3-D object’s region. Much research has also been devoted to the
properties of shape descriptors and the algorithms for recognition, retrieval, and
indexing. Motion descriptors cover the range of complexity and functionality in a
broad range of applications. Descriptors for human face recognition are also included,
which are high-level descriptors used to retrieve face images by matching a query

face image. The details of the above descriptors are given below.

2.3.1 Color Descriptors

In content based retrieval research, color is perhaps the most dominant and
distinguishing visual feature. Color histograms are one of the most frequently used
color descriptors that capture global color distribution in an image. Since color
histograms result in large feature vectors, indexing is difficult and has high search and
retrieval costs. Although spatial information is not preserved in a color histogram,
several of the recently proposed color descriptors have been proposed to incorporate
spatial information to varying degrees. They include the compact color moments,
binary color sets, color coherence vectors, and color correlograms. The Color
Descriptors can be classified into seven types: Color space, Color Quantization,

Dominant Colors, Scalable Color, Color Layout, Color-Structure, and GoF/GoP Color

as shown in the following.

2.3.1.1 Color space
This descriptor defines the color space to be used in a certain application, usually
in combination with other descriptors such as dominant color or color histogram. In

the current description, the following color spaces are supported: RGB, YCrCb, HSV,
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HMMD, Monochrome, and Linear transformation matrix with reference to RGB.
Most of the visual data available in computer and video applications uses RGB and
YCrCb while HSV and HMMD provide better results in search and retrieval
applications, since they are closely related to the human perception of color. The other
color spaces based on linear transformation matrix with respect to RGB are also
supported. The monochrome space is a complement which allows the more universal

use in the context with other descriptors, like histogram of monochrome images.

2.3.1.2 Color Quantization

This descriptor defines a uniform quantization of a color space. The number of
bins which the quantizer produces is configurable, such that great flexibility is
provided for a wide range of applications. For a meaningful application in the context
of MPEG-7, this descriptor has to be combined with dominant color descriptors to

express the meaning of the values of dominant colors.

2.3.1.3 Dominant Color(s)

This color descriptor is most suitable for representing local features such as an
object or image region where a small number of colors are enough to characterize the
color information in the region of interest. Whole images are also applicable, for
example, flag images or color trademark images. Color quantization is used to extract
a small number of representing colors in each region or image. The percentage of
each quantized color in the region is calculated correspondingly. A spatial coherency

on the entire descriptor is also defined, and is used in similarity retrieval.

2.3.1.4 Scalable Color
The Scalable Color Descriptor is a Color Histogram in HSV color space, which is

encoded by a Haar transform. Its binary representation is scalable in terms of bin

14



numbers and bit representation accuracy over a broad range of data rates. The
Scalable Color Descriptor is useful for image-to-image matching and retrieval based
on color features. Retrieval accuracy increases with the number of bits used in the

representation.

2.3.1.5 Color Layout

This descriptor effectively represents the spatial distribution of color of visual
signals in a very compact form. This compactness allows visual signal matching
functionality with high retrieval efficiency at very small computational costs. It
provides image-to-image matching as well as ultra high-speed sequence-to-sequence
matching, which requires so many repetitions of similarity calculations. It also
provides a very friendly user interface using hand-written sketch queries since this
descriptor captures the layout information of color features. The sketch queries are not

supported in other color descriptors.

2.3.1.6 Color-Structure Descriptor

The Color Structure Descriptor is a color feature descriptor that captures both
color content and information about the structure of this content. Its main
functionality is image-to-image matching and its intended use is for still-image
retrieval, where an image may consist of either a single rectangular frame or
arbitrarily shaped, possibly disconnected regions. The extraction method embeds
color structure information into the descriptor by taking into account all colors in a
structuring element of 8x8 pixels that slides over the image, instead of considering
each pixel separately. Unlike the color histogram, this descriptor can distinguish
between two images in which a given color is present in identical amounts but where
the structure of the groups of pixels having that color is different in the two images.

The Color Structure descriptor also provides additional functionality and improved
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similarity-based image retrieval performance for natural images compared to the

ordinary color histogram.

2.3.1.7 GoF/GoP Color

The Group of Frames (GoF) or Group of Pictures (GoP) Color Descriptor extends
the Scalable Color Descriptor that is defined for a still image to the color description
of a video segment or a collection of still images. Two more bits are added, which
allows to define how the color histogram was calculated, before the Haar transform is
applied to it. The color histogram can be computed by average, median or
intersection. The average histogram, which refers to averaging the counter value of
each bin across all frames or pictures, is equivalent to computing the aggregate color
histogram of all frames and pictures with proper normalization. The median histogram
refers to computing the median of the counter value of each bin across all frames or
pictures. It is more robust to round-off errors and the presence of outliers in image
intensity values compared to the average histogram. The intersection histogram refers
to computing the minimum of the counter value of each bin across all frames or
pictures to capture the “least common” color traits of a group of images. It is different
from the histogram intersection, which is a scalar measure. The same
similarity/distance measures that are used to compare Scalable Color Descriptions can

be employed to compare GoF/GoP Color Descriptors.

2.3.2 Texture Descriptors

Texture is a powerful low-level descriptor for image search and retrieval
applications. Three texture descriptors are considered in MPEG-7. The first one is the
“Homogenous Texture Descriptor” which is based on computing the local spatial-

frequency statistics of texture to provide a quantitative characterization of
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homogeneous texture regions for similarity retrieval. The second one is the “Edge
Histogram Descriptor” which is used when the underlying region is not homogeneous
in texture properties. The last one is the “Texture Browsing Descriptor” which
characterizes perceptual attributes such as directionality, regularity, and coarseness of

a texture. We introduce these three texture descriptors below.

2.3.2.1 Homogenous Texture Descriptors

Homogeneous texture has emerged as an important visual primitive for searching
and browsing through large collections of similar looking patterns. An image can be
considered as a mosaic of homogeneous textures so that these texture features
associated with the regions can be used to index the image data. To support such
image retrieval, an effective representation of texture is required. The Homogeneous
Texture Descriptor also provides a quantitative representation that is useful for
similarity retrieval. In order to extract the feature, the image is first filtered with a
bank of orientation and scale tuned filters using Gabor filters. The first and the second
moments of the energy in the frequency domain in the corresponding sub-bands are
then used as the components of the texture descriptor. An efficient implementation
using projections and 1-D filtering operations exists for feature extraction. The
Homogeneous Texture Descriptor provides a precise quantitative description of a
texture that can be used for accurate search and retrieval in this respect. The

computation of this descriptor is based on filtering using scale and orientation

selective kernels.

2.3.2.2 Edge Histogram
The Edge Histogram Descriptor represents the spatial distribution of five types of
edges, namely four directional edges and one non-directional edge. Since edges play

an important role for image perception, it can retrieve images with similar semantic
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meaning. Thus, it primarily targets image-to-image matching, especially for natural
images with non-uniform edge distribution. In this context, the image retrieval
performance can be significantly improved if the edge histogram descriptor is
combined with other descriptors such as the color histogram descriptor. Besides, the
best retrieval performances considering this descriptor alone are obtained by using the
semi-global and the global histograms generated directly from the edge histogram

descriptor as well as the local ones for the matching process.

2.3.2.3 Texture Browsing

The Texture Browsing Descriptor is useful for representing homogeneous texture
for browsing type applications. It provides a perceptual characterization of texture,
similar to a human characterization, in terms of regularity, coarseness and
directionality. The computation of this descriptor proceeds in the same way as the
Homogeneous Texture Descriptor. In order to extract the feature, the image is first
filtered with a bank of orientation and scale tuned filters modeled as Gabor functions.
Two dominant texture orientations are identified from the filtered outputs. The filtered
image projections along the dominant orientations are analyzed to determine the
regularity and coarseness. The second dominant orientation and second scale feature
are optional. This descriptor, combined with the Homogeneous Texture Descriptor,

provides a scalable solution to representing homogeneous texture regions in images.

2.3.3 Shape Descriptors

Much research has been devoted to the properties of shape descriptors and the
algorithms for recognition, retrieval, and indexing [19-21]. The shape descriptors can
be divided into three types: Contour Shape Descriptors [22], Region Shape

Descriptors [23], and 3D Shape Descriptors [24, 25]. A contour-based descriptor
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expresses the shape properties of an object’s outline while a region-based descriptor
describes the pixel distribution within the 2-D object’s region. Also, 2D shape
descriptors such as contour shape and region shape descriptors [25, 26] can be used to
represent the visual feature of a 3D object from different viewing angles. We review

these three shape descriptors: contour shape, region shape, and 3D shape, below.

2.3.3.1 Contour Shape

The Contour Shape Descriptor captures characteristic shape features of an object
or region based on its contour. A Curvature Scale-Space [22, 27, 28] representation,
which captures perceptually meaningful features of the shape, is used. The object
contour-based shape descriptor is based on the Curvature Scale Space representation
of the contour. This representation has a number of important properties. First of all,
this descriptor is compact which can capture characteristic features of the shape very
well, enabling similarity-based retrieval and reflects properties of the perception of
human visual system and offers good generalization. Also, it is robust to non-rigid
motion, partial occlusion of the shape and perspective transformations, which result

from the changes of the camera parameters and are common in images and video.

2.3.3.2 Region Shape

The shape of an object may consist of either a single region or a set of regions as
well as some holes in the object. Since the Region Shape Descriptor makes use of all
pixels constituting the shape within a frame, it can describe any shape. Such shapes
may be a simple with a single connected region or complex consisting of holes in the
object or several disjoint regions. The Region Shape Descriptor nui only can describe
such diverse shapes efficiently in a single descriptor, but is also robust to minor
deformations along the boundary of the object. The descriptor is also characterized by

its small size, fast extraction time and matching. The feature extraction and matching
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processes are straightforward and require a low computational complexity. The

descriptor is therefore suitable for tracking shapes in video data processing.

2.3.3.3 3D Shape

Considering the continuous development of multimedia technologies, virtual
worlds, and augmented reality, 3D contents become a common feature of today’s
information systems. Although most real-world objects are 3-D, the image and video
world usually deals with 2-D projections of real-world objects. Some 2D shape
descriptors can be therefore used to represent the visual feature of a 3D object from
different viewing angles. One of the descriptors for 3-D shapes is based on the shape
spectrum [29, 30], which can be used to represent the local convexity of a 3-D
surface. Also, 3D information can be represented as polygonal meshes. MPEG-4,
within the Synthetic-Natural Hybrid Coding (SNHC) subgroup, considered this issue
and developed technologies for efficient 3D mesh model coding. Within the
framework of the MPEG-7 standard, tools for intelligent content-based access to 3D
information are needed. The main MPEG-7 applications are search, retrieval, and
browsing of 3D model databases. The 3D Shape Descriptor described in detail
provides an intrinsic shape description of 3D mesh models. It exploits some local

attributes of the 3D surface.

2.3.4 Motion Descriptors

The motion descriptors [31-33] cover the range of complexity and functionality,
such as video hyperlinking based on trajectories [34, 35], refined browsing based on
motion characteristics, or refinement of table of contents [34], enabling MPEG-7 to
support a broad range of applications. Simple extraction, simple matching, concise

expression and effective characterization of motion features of a video sequence
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provide the easiest access to its temporal dimension, and are key significance in video
indexing. Using motion characteristics, camera motion-estimation techniques,
trajectory-matching techniques, and aggregated motion-vector histogram-based
techniques form the core of past work. The performance of similarity-based video
retrieval systems [33] can significantly be improved by the motion-based indexing in
combination with indexing based on still-image features such as color, texture, etc.
Four motion descriptors: Camera Motion, Motion Trajectory, Parametric Motion, and

Motion Activity, are described below.

2.3.4.1 Camera Motion

This descriptor characterizes 3-D camera motion parameters. Based on 3-D
camera motion parameter information, the parameters can be automatically extracted
or generated by capture devices. The camera motion descriptor supports the following
well-known basic camera operations: fixed, panning (horizontal rotation), tracking
(horizontal transverse movement, also called traveling in the film industry), tilting
(vertical rotation), booming (vertical transverse movement), zooming (change of the
focal length), dollying (translation along the optical axis), and rolling (rotation around
the optical axis). This descriptor represents the union of the building blocks which are
described by their start time, the duration, the speed of the induced image motion, the
fraction of time of their duration compared with a given temporal window size, and
the focus-ot-expansion (FOE) or the focus-of-contraction (FOC). It has the option of
describing a mixture of different camera motion types. The mixture mode captures the
global information about the camera motion parameters while the non-mixture mode

captures the notion of pure motion type and their union within certain time interval.



2.3.4.2 Motion Trajectory

The motion trajectory of an object is a simple, high level feature, defined as the
localization, in time and space, of one representative point of this object. This
descriptor is essentially a list of key points along with a set of optional interpolating
functions that describe the path of the object between key points, in terms of
acceleration. The properties of this representation are that it is compact, scalable,
independent of the spatio-temporal resolution of the content, and it directly allows a
wide variety of uses, like similarity searches, or categorization by speed (fast, slow
objects), behaviour (accelerating when approaching this area) or by other high level
motion characteristics. This descriptor shows usefulness for content-based retrieval in
object-oriented visual databases in more specific applications and allows enhancing
data interactions or manipulations to adapt the object motion to any given sequence
global context such as semiautomatic multimedia editing, and trajectory stretching

and shifting.

2.3.4.3 Parametric Motion

Parametric motion models have been extensively used within various related
image processing and analysis areas, including motion-based segmentation and
estimation, global motion estimation, mosaicing and object tracking. Parametric
motion models have been already used in MPEG-4, for global motion estimation and
compensation and sprite generation. Within the MPEG-7 framework, motion is a
highly relevant feature, related to the spatio-temporal structure of a video and
concerning several MPEG-7 specific applications, such as storage and retrieval of
video databases and hyperlinking purposes. Motion is also a crucial feature for some
domain specific applications that have already been considered within the MPEG-7

framework, such as sign language indexation.
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2.3.4.4 Motion Activity

Video content in general spans the gamut from high to low activity, therefore we
need a descriptor that enables us to accurately express the activity of a given video
sequence or shot, and comprehensively covers the aforementioned gamut. The activity
descriptor is useful for applications such as video re-purposing, surveillance, fast
browsing, dynamic video summarization, content-based querying. A human watching
a video or animation sequence perceives it as being a slow sequence, fast paced
sequence, action sequence, etc. The activity descriptor captures this intuitive notion of

‘intensity of action’ or ‘pace of action’ in a video segment.

2.3.5 Localization

There are two descriptors for localization: Region locator and Spatio-temporal
locator. The region locator enables localization of regions within images or frames by
specifying them with a brief and scalable representation of a Box or a Polygon. The
spatio-temporal locator describes spatio-temporal regions in a video sequence, such as

moving object regions, and provides localization functionality.

2.3.6 Others

The Face Recognition Descriptor can be used to retrieve face images which
match a query face image. This descriptor represents the projection of a face vector
onto a set of basis vectors which span the space of possible face vectors. The face
recognition feature set is extracted from a normalized face image. This normalized
face image contains 56 lines with 46 intensity values in each line. The centers of the
two eyes in each face image are located on the 24th row and the 16th and 3 1st column
for the right and left eye, respectively. This normalized image is then used to extract

the one dimensional face vector which consists of the luminance pixel values from the
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normalized face image arranged into a one dimensional vector using a raster scan
starting at the top-left corner of the image and finishing at the bottom-right corer of
the image. The Face Recognition feature set is then calculated by projecting the one

dimensional face vector onto the space defined by a set of basis vectors.

2.4 Previous Works on Visual Feature Extraction and
Recognition
Most of the content-based image retrieval systems allow users to choose different
features for retrieval. Some techniques for the extraction and recognition which can
be applied to specific features are simply divided into three categories, such as color
and texture features, contour-based shape features, and region-based shape features.

The details of these three types of techniques are described below.

2.4.1 Color and Texture Features

Color and texture are visual features that are immediately perceived when
looking at an image. For a content-based retrieval system, the color and texture
extractions are very important. It directly affects the performance of the system which
retrieves the relevant image from an image database. Color and texture analysis is also
an important subject of research in imaging technology for fundamental applications
like image compression, object identification and recognition in images and videos,
and pattern inspection and discrimination, etc. Therefore, we will show some methods

used in color and texture features extraction and recognition in the following.

2.4.1.1 Edge-Flow
EdgeFlow [36] is a technique for boundary detection and image segmentation. It

utilizes a predictive coding model to identify the direction of change in color and



texture at each image location at a given scale, and then constructs an edge flow field.
By projecting the edge flow vectors, the boundaries can be detected at the image
locations where two opposite directions of flow are encountered in the stable state.
The edge energies and the corresponding probability of the edge flow are firstly
computed from the image attributes, which are the intensity/color, texture and phase,
to form a single edge flow field. The direction of the edge flow vector can be
estimated by maximizing the sum of the corresponding probabilities in different
orientations of the half plane. After this, the edge flow vector can be determined by
summation of the edge energies. After the edge flow propagation and boundary
detection, the disjoint boundaries are then connected to form closed contours and
result in a number of image regions. This approach requires a small number of
parameters for tuning and achieves acceptable quality for thc segmentation of the
different images including the texture images. However, the computation of the
texture feature is expensive because of the extraction of a set of Gabor texture

features.

2.4.1.2 Peer Group Filtering

Noise removal and image smoothing are important to many image processing
applications. For color images, a common approach to remove impulse noise is by
vector median fiitering (VMF) but it is typically implemented uniformly across the
image and tends to modify pixels that are not corrupted by noise. Other approaches
such as Teager-like operator is used to first detect the outliers so that only the noisy
pixels are replaced. However, the detection process is performed on each individual
color component. For the case of mixed Gaussian and impulse noise, an adaptive

nonlinear multivariate filtering method has been proposed, but it may blur the edges
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and the details. Therefore, peer group filtering (PGF) [36, 37], which is a nonlinear
algorithm, has been proposed for noise removal in color images.

Suppose that xo(n) denotes an image pixel vector, characterizing the color
information at position n centered in a wxw window and x(»n) denotes other pixels
where i = 0,....k (=w" -1). All the pixels in the window are sorted according to their

distances to xo(n) in ascending order,
do(n)sd,(n)s...sdk(n) 2.1
where d,(n) = |x,(n)- x,(n)], i=0,....k.
Therefore, the peer group P(n) of size m(n) for xo(n) is defined as
P(n)={x,(n)i=0,...,m(n)-1} (2.2)

By using 1-D distances di(n) for Fisher’s discriminant estimation, the criterion to be

maximized is

Iy la@=a.@f

= —, i=1,....k 2.3
@) +5:0) ' @)

where
i-l

N1 o1 £
al(l)-i;dj(n) and az(t)—k+l_i2dj(n)

j=i

:»'lz(i)=i|dj(n)—al(nl2 and szz(i)=i[dj(n)—a:(nl2

j=0 j=i
Then, the cut-off position can be obtained by maximizing J(i),

m(n) = arg max J (i) (2.4)

In order to remove the effect of impulse noise, the following test is performed on

the first and the last M points of x(n), where M is half of the window size, to check if

they belong to impuise noise:
fn)=d.,(n)-d(n) 2.5)
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where f;(n)<a and a is set large for highly corrupted images and small for slightly
corrupted ones.

If f(n) does not satisfy the condition, the end points xi(n) for j<i or j>i are
considered as impulse noise and removed. The remaining dj(n) are used to estimate

the true peer group. After the impulse noise removal and the peer group classification,

the pixel xo(n) is replaced by the weighted average of its peer group members

m(n)-1
w,p,(n)
new(n) z m(n)- - ’
Zrzo Wi

where w; are the standard Gaussian weights depending on the relative positions of

p;(n)e P(n) (2.6)

pi(n) with respect to x¢(n).

2.4.1.3 Color Image Quantization

Human vision perception is more sensitive to the changes in smooth regions than
in detailed regions. Accordingly, colors can be more coarsely quantized in the detailed
regions without affecting the perceptual quality significantly. The maximum distance
for each peer group T(n) (= dmn).1(n) ) is obtained. The weight of each pixel v(n) is
calculated as follows:

v(n) = exp(-T(n)), 2.7)
and the initial number of clusters N in vector quantization is estimated as follows:

N= By, 2.8)
where £ is set to 2 in the experiments and T, is the average of T(n) which indicates
the smoothness of the entire image. In general, the higher the T,.,, the less smooth the

image is and more clusters are needed to quantize the colors in the image.



The generalized Lloyd algorithm (GLA) [38] is used in vector quantization. The
update rule is modified to incorporate the pixel weights. For color cluster C;, its

centroid c; is calculated as follows:

¢ =—Z—Zv:(n—zx¥l, x(n)eC,, (2.9)
v\n

and the weighted distortion measure D; is defined as follows:

D, =Y v(n)x(n)—c,, x(n)eC, (2.10)

By using the popular splitting initialization algorithm, the initial clusters for GLA
are determined. For each updated process, the centroids are shifted towards points
with higher weights. The algorithm is used to determine which clusters to split until
the initial number of clusters V is reached. Thus, points with smaller weights will be
assigned fewer clusters so that the number of color clusters in the detailed regions are
suppressed. Finally, the cluster centroids are calculated without pixel weights to

obtain the true cluster centers.

2.4.1.4 Gabor Wavelet

An important property of Gabor filters {39, 40] is that they have optimal joint
localization, or resolution, in both the spatial and the spatial-frequency domains. In
addition, they have been shown to be a good fit to the receptive field profiles of
simple cells in the striate cortex. These characteristics suggest that the Gabor-filter-
based features seem to be similar to features extracted by humans and, thus, may be
effective in recognition and classification. Consequently, due to the above properties,
there are many researches for the applications in the classification.

The Gabor Wavelet [41-44] can be used in many applications such as remote
sensing and crop classification, segmentation, interpretation of medical images, and

second-generation image coding techniques. Using a simple texture feature
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representation for browsing and retrieval of large image databases, the Gabor wavelet
features [45, 46] have been proposed for texture retrieval systems. It uses the Gabor
function modulated by a wavelet to describe the characteristics of the texture. A novel
set of circularly symmetric Gabor filters [47-49] has also been proposed for rotation

invariant texture classification.

2.4.2 Contour-based Shape Features

For contour-based algorithms, Chang et al. [50] have proposed a shape
recognition scheme based on relative distances between the contour points and their
centroid. Other feature extraction methods include the corner point detection [51] and
the dominant point detection [52] for contour representation. These important contour
points can be used as features in the matching process. However, if part of a shape is
missed, or an additional part is added to the boundary of the shape, there may be
significant effects on the features and this will cause false matching results. The
curvature scale-space (CSS) [14, 22, 27, 28] approach has been proposed as a
contour-based shape descriptor used for search and retrieval in MPEG-7. The
algorithms based on these shape descriptors usually analyze the contour points in
computing the similarity of the shapes, forming an essential part of the retrieval and
recognition systems.

For comparing the boundaries of two objects, the algorithm should be able to
handle different number of boundary points used to represent the boundaries, simple
to compute and responsive to arbitrary changes in orientation, position, and scale of
the objects under classification. One way of finding out the similarity of the two
objects is to extract their boundaries and the corresponding properties of their shapes.

There are many different algorithms for this purpose. We will review the methods
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which are used for boundary extraction, shape matching method and recognition

below.

2.4.2.1 Chain Code

Chain code [53, 54] has been widely used for the representation and compression
of contour information in object-based video applications, such as video object
manipulation and content based video coding. It is used to represent a boundary by a
connected sequence of straight-line segments of a specified length and direction. The
direction of each segment is coded by using a numbering scheme. Typically, this
representation is based on the 4- or 8-connectivity of the segments.

Chung et al. [53] have proposed a new conditional differential chain coding
scheme which is used for lossless representation of an object contour. It uses the
conditional probability of directional symbols depending on the context of contour
directions. It shows that useful information about the direction can be extracted by
using the conditional probability.

Bribiesca [54] has proposed a new chain code to represent the shape of an object
which is composed of regular cells. The boundary chain code is based on the number
of cell vertices which touch the bounding contour of the shape. It is invariant under
translation and rotation, and optionally, under starting point and mirroring
transformation. In addition, it is possible to relate the chain length to the contour

perimeter.

2.4.2.2 Fourier Descriptors

The Fourier descriptor [55-59] is a popular curve descriptor which describes a
closed planar curve by a set of Fourier coefficients. The advantage of this
representation is that it reduces a 2-D representation to 1-D problem. The number of

pixels on a digital contour is always different. In order to compare the boundaries of
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two different objects, we can resample the points on a contour to a specified number
and then describe the shape of the digital contour using the Fourier descriptor. Cheng
and Yan [55] have used this descriptor as a feature vector to classify different
handwritten digits based on the contour information.

Fourier descriptors are complex coefficients of the Fourier series expansion of
waveforms. From the boundary trace of a shape, a pair of one-dimensional waveforms
[x(#), ¥(1)] can be generated. Suppose that N samples of a closed boundary are taken.

Each sample can be represented as follows:
u(n)=x(n)+ jy(n) (2.11)
where n =0, 1,..., N-1.

Then, its discrete Fourier Transform (DFT) representation is shown as follows:

Sfk)= f u(n)exr{——j%), 2.12)

a=0
where k=0, 1,..., N-1.
The complex coefficients f{k) are called the Fourier descriptors of the boundary.
The Fourier descriptors are invariant to the starting point of sampling, rotation,

scaling, as well as reflection.

2.4.2.3 Curvature Scale-Space

The curvature scale-space (CSS) [14, 22, 27, 28] representation of a contour has
been further extended and optimized during the MPEG-7 development phase. The key
modifications include the addition of global shape parameters, transformation of the
feature vector in the parameters space improving retrieval performance, and a new
quantization scheme supporting a compact representation of the descriptor.

The shape properties of contours are important for retrieval of semantically

similar objects. This descriptor is robust to noise present in the contour and it is very
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efficient in applications where high variability in the shape is expected, due to
deformations in the object (rigid or non-rigid), or perspective deformations. Some
important features are that it can distinguish between shapes that have similar region-
shape properties but different contour-shape properties, and support searches for
shapes that are semantically similar for humans. Also, it is robust to distortions in the
contour due to perspective transformations.

A CSS descriptor of a contour shape can be created as N equi-distance points
which are selected on the contour and grouped into two series X and Y. The contour is
gradually smoothed by repetitive application of a low-pass filter with the kernel (0.25,
0.5, 0.25) to X and Y. For each smoothed contour, the zero-crossings of its curvature
function are computed. A CSS image can be associated with the contour evolution
process. The horizontal line represents the indices of the contour points and the
vertical line represents the amount of filtering applied. The curvature zero-crossing
points separate concave and convex parts of the contour. The CSS description is
extracted according to the coordinate values of the prominent peaks and listed in order
of decreasing value of the y coordinate, and the eccentricity and circularity of the

contour. Both of them are quantized and stored in the database.

2.4.2.4 Template Matching

For shape recognition, template matching is one approach to simplifying the
problem of different scales, orientations and positions. A potential-based approach
[60] has been proposed. This matching process involves the minimization of a
potential function with an assumption that the border of any 2D region is uniformly
charged. If a shape template is small in size and can be placed inside a region whose
shape is to be determined, the template will experience a repulsive force and torque

arising from the potential field.
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The basic idea of this approach is to achieve a better match in the shape between
the template and the given region by translating and reorienting the template along the
above force and torque directions, respectively, toward the configuration of the lowest
potential. This approach is intrinsically invariant under translation, rotation and size
changes of the shape sample. The advantages of this method are that it is simple and
highly efficient. It can also match two boundaries in a noisy environment and even the
boundaries consist of unconnected segments, provided that the template remains

inside the shape of the sample.

2.4.2.5 Deformable Templates

An automatic image retrieval system should be able to search in a database for
those images which contain objects with similar characteristics as specified by the
user. [t is required to locate and retrieve an object from a complex image based on its
2D shape or boundary information. In order to locate and identify an object, a process
of matching using the deformable templates [61] has been proposed. The model
consists of a prototype template which describes a representative shape of a class of
objects, a set of parametric transformations which deform the template and a
probability distribution defined on the set of deformation mappings. The prototype
captures the global structure of a shape without specifying a parametric form for each
class of shapes. The template has to be deformed to match objects in an image. Then,
a Bayesian scheme is used to find a match between a deformable template and objects

in an image.

2.4.2.6 Shape Spectrum
Shape Spectrum [14, 24, 29, 30] is defined as the histogram of the shape index,

computed over the entire 3-D surface of a 3-D object which is represented as a 3-D
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mesh. The shape index computed for each vertex of the mesh is invariant to affine

transformations. The shape index of the 3-D surface at point p is defined as follows:

S[V = l _ iarc[anw

T2 k(o) ko) @13

where ki(p) and k:(p) denote the principal curvatures at point p, and the shape index
captures information about the local convexity of the 3-D surface.

The descriptor uses histograms with 100 bins and each bin is represented by 12
bits. Also, the relative area of planar surface regions of the mesh with respect to the
entire area of the 3-D mesh, and the relative area of all polygonal components with

respect to the entire area of the 3-D mesh are used as two additional variables.

2.4.3 Region-based Shape Features

The applications of contour-based descriptors are more specific and limited when
compared to those of region-based descriptors. This is because the latter does not need
to extract the contours. For example, a trademark may consist of text, images, and
occasionally other media such as scent or sound. Therefore, images of a trademark
retrieval system [62, 63] are usually represented by region-based descriptors. Many
well-known region-based descriptors, such as moment invariants [64-67], Zemike
moments [4, 68-72], Fourier coefficients [73, 74], angular radial transformation
(ART) [23], etc., have been proposed and can provide invariant features with respect
to the affine transformation. As the region-based shape descriptor expresses pixel
distribution with a 2-D object region, it can describe complex objects consisting of
multiple disconnected regions as well as simple objects with or without holes. There
are many different algorithms for this purpose. We will review the methods which are

used for feature extraction, point set matching method and recognition in the

following.
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2.4.3.1 Moment Invariants

The use of moment invariants as shape recognition and identification have been
proposed by Hu [64] in 1962. Suppose that the intensity function of an image f(x,y) is
assumed to be piecewise continuous and with compact support, the central moments

of order (p,q) are defined as follows:
Hog = [[G=%Y (= 7Y 1 (x, y)dbedy 2.14)
and the normalized central moments, denoted by 7,,, are defined as follows:

i

where 7=%(p+q)+l for p+¢9=2,3,....

From the second and third order moments, a set of seven invariant moments can

be derived as follows:

my = 1y + Ny,

my = (11 = 12§ +4n,’

my = (5 =37,,) + (37 = 1703 ¥

my = (s + 1, ) + (0 + Moy}

ms = (’730 —3’712X'730 + '71:)‘ [(’730 + '712)2 - 3('721 + 7o; )2]"' (2.16)
(3’721 =M X’hl + 703 ) [3(’730 + 7. )2 "(’721 + o3 )2]

e = C1so =02 (0130 + 102 F = (s + 170 1 4, + 722 X0+ 7)

m, = (3’721 = o3 X’ho + ’712)' [(’730 + M )2 - 3(’721 + 103 )2]_
('730 -3n, X’hl + o3 ) [3(’730 + 1, )2 - (’721 + 173 )z]

For the purpose of comparison, the moment invariants are computed for each
image in an entire collection of images. The limits of each moment invariant are

determined and then normalized between 0 and 1.
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2.4.3.2 Zernike moments

Zemike moments proposed for image recognition are derived from Zernike
polynomials which form a complete orthogonal set over the interior of the unit circle.
Let the set of these polynomials be denoted by V,,(xy). The form of these

polynomials is shown as follows:

[/nm(x’y): I/nm(p’e)= an(p)exp(jmg)’ (2'l7)
where
n Position integer or zero.
m Position and negative integers subject to constraints n-jm| even, |m| < n.
ya) Length of vector from origin to (x, y)pixel.
o Angle between vector p and x axis in countclockwise direction.

Radial polynomial is defined as follows:

nedm]

R,.(p)= Z -1y (s} pr-2s 2.18)

S!(n;|m|_sj{n—2lml_s}

The Zernike moment of order » with repetition m for a continuous image function

Sf(x,y) that vanishes outside the unit circle is shown as follows:

nm = nTH J.If(x9 ,V)V.nm (P, 0)dfdy (2 19)

£ayisl

A

To compute the Zernike moments of a given image, the center of the image is
taken as the origin and pixel coordinates are mapped to the range of unit circle. Those

pixels falling outside the unit circle are not used in computation.

2.4.3.3 Angular Radial Transformation (ART)
A complex 2-D Angular Radial Transformation (ART) is defined on a unit disk
in polar coordinates. From each shape, a set of ART coefficients F,, is extracted

using the following formulas,
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F  =("..(0.6).7(p.,0))

u (2.20)

The basic functions are separable along the angular and radial directions, and are

defined as follows:
1 .
V.. =—2—7;exp(jm0)R,, (p), (2.21)

1, n=0

where R, (p) = {2 cos(znp), n#0

Although an object may be split into disconnected sub-regions during the process
of segmentation, the above coefficients give a compact and efficient way of
describing properties of multiple disjoint regions simultaneously and is also robust to

segmentation noise.

2.4.3.4 Hough Transform

Hough transform (HT) [75-79] is a voting process where each point belonging to
the patterns votes for all the possible patterns passing through that point. These votes
are accumulated in an accumulator array, and the pattern receiving the maximum
votes is recognized as the desired pattern. The disadvantages of the standard Hough
transform are the heavy burden of computational complexity, massive storage
requirement and inferior to the intellectual mechanism of the human visual
recognition. To overcome these weaknesses of the Hough transform, many modified
approaches have been proposed. The earliest and most classical probabilistic Hough
transform (PHT) algorithm is the randomized Hough transform (RHT). A single
parameter point can be determined uniquely with a pair, triple or generally n feature

points from the original picture, depending on the complexity of the curves to be

detected.
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2.4.3.5 Distance Transformation

In most of the digital image processing applications, it is preferable to use
integers to represent distance. The process, so called Chamfer distance [80] can be
used to compute a good integer approximation of the Euclidean distance. Ii can be
calculated sequentially by a two-pass algorithm. First, a distance image is created
such that each boundary pixel is set to zero and each non-boundary pixel is set to
infinity. The distance image can be modified after the forward and backward pass
operators. Then, the distance image can be represented as the measure of distance
from the boundary.

It can convert the boundary pixels of a shape into a gray-level image where all
pixels have a value corresponding to the distance to the nearest boundary pixel. The
goodness of the match between the two shapes can be computed from the root-mean-
square value of the normalized boundary pixels of the second shape on the distance
image created from the first shape.

Using every pixel of the boundary to calculate the distance works very well when
the object under classification is undistorted or only a small part of it is distorted.
When a large part of the object is distorted, the distance measurement scheme cannot
serve the purpose of distance calculation. Liu and Srinath [81] have proposed a partial
distance measurement scheme which can be used to recognize a partial shape without

knowing its orientation, location, and size.

2.4.3.6 Hausdorff Distance

Hausdorff Distance [82] can be used in binary image comparison and computer
vision. Suppose that 4 and B are the two point sets representing objects in two
images.

A={a,..,a,},and B = {b,,....0,},
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Then, the Hausdorff distance H(4,B) is defined as follows:

H (A, B) = max(h(A, B),h(B, A)), (2.22)

where h(A, B) = max min
aed beB

Ia —b[| .

Unlike most shape comparison methods, the Hausdorff distance can be calculated
without the explicit pairing of points in their respective data sets. It can be used to
compare partial images with a natural allowance in simple and fast implementation.
This distance can be used to determine the degree of resemblance between two
objects that are superimposed on one another. However, the method is sensitive to
noise and has some problems for object matching under noisy conditions. Therefore,
the original definition of /(4,B) is redefined such that the measure of the distance is
improved. The modified Hausdorff distances [83] proposed have the most desirable
behavior for real-world applications. It can be used in face matching and fast

screening of large facial databases.

2.4.3.7 Robust Orientated Hausdorff Similarity Measure

An oriented Hausdorff similarity (OHS) [84] measure based on the similarity
concept of the Hough transform (HT) for robust object alignment has been proposed,
which embedded the robust Hausdorff measure into an accumulating operation of the
Hough transform and can eliminate the wrong correspondences by computing the
orientation at each pixel. This algorithm is composed of edge detection, the distance
transform (DT) map, and the similarity computation. The edge maps along with their
DT maps, and the gradient images are necessary to compute the proposed OHS. The
similarity is calculated by accumulating the distance value of distance transform map.

The Oriented Hausdorff Similarity (OHS) is defined as follows:

Hyys = min(hons(AG s Ag,dy )w hous\Bg» Be,d )) (2.23)
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and the direct OHS is

hOIIS(AG’AE’dB)= Zs(a)pr(da(a)), (2.24)

ae Ay

where an orientation vector O, () represents a unit gradient vector of 4 at position a,
s(a)= 0,.(a)* Os,(.) denotes the dot product of two gradient vectors obtained from two

images, and p,(x) is a symmetric threshold function.

The computational complexity of the algorithm has linear-order in computing the
Hausdorff distance measure at a point. For the algorithm, fast search algorithms can
be developed by sub-sampling the edge images of a model and an input. In the coarser
level, the matching point is detected in the Hough space generated by sub-sampled
edge pixels. In a finer level search, other edge information is used to accumulate the

Hough translational space, thus yielding accurate matching point.

2.4.3.8 Principal component analysis Methods

Principal component analysis [85], also known as the Karhunen-Loeve transform
[86], has been used for face recognition. The main idea is to find the vectors that best
account for the distribution of face images within the entire image space. We called
these eigenvectors or eigenfaces [87, 88]. These eigenfaces can be thought of as a set
of features (or eigenfeature) that together characterize the variation between face
images. However, some eigenfeatures may not be related to recognition. More
features do not imply a better success rate for classification. For example, the
illumination direction and the facial expression are factors which affect the success
rate of the classification. Therefore, the fisherfaces method [89-91] has been proposed
to deal with this problem. Even though the principal component analysis can describe
some major variations in the class, it is not good for discriminating among classes

defined by the set of samples. The fisherfaces method can weigh down the
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unimportant features appropriately or discard them by using the selection process. It is
an effective feature space to be used for classification and it discounts factors
unrelated to classification. In addition, the fisherfaces method can be used in face
recognition system [92] using local autocorrelations and multiscale integration by

extracting the salient features.

2.5 Summary

In this chapter, we have described some existing CBIR systems and image
databases used for content based image retrieval, and the recent development of
MPEG-7. We have also introduced the visual descriptors recommended in the MPEG-
7 standard. Finally, we have reviewed some techniques which can be used for visual
feature extraction and recognition. We have mentioned some techniques used for the
three types of features: color and texture features, contour-based shape features and
region-based shape features. However, there are still a lot of different techniques
proposed previously for content based retrieval. In the following chapters, we will

present some algorithms used for shape feature extraction and recognition, as well as

retrieval.
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Chapter 3
Proposed Methods for Boundary Extraction

25

Snake is an active contour model for representing image contours. In this chapter,
we propose an efficient active contour model which can represent highly irregular
boundaries. The algorithm includes an adaptive force along the contour, and adjusts
the number of points for the snake according to the desired boundary. A better
stopping criterion based on the area of a closed contour is devised. Furthermore, in
this method, a contour can break automatically to represent the contours of multiple

objects. Experiments show that this method can extract object’s boundaries accurately

and efficiently.

3.1 Introduction

Locating an object’s boundary is an important step for content-based retrieval
systems [1]. Most of the systems use shape information for image query. An active
contour model (snake) [2] has been successfully used in contour detection for object
recognition, computer vision, computer graphics, and biomedical image processing.
Based on the object’s boundary, its contents can then be extracted. Nevertheless, this
active contour model has many limitations. Firstly, the initial contour should be near

to the object, provided that the contour is in the effect of the image force. Secondly,
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the performance of the snake depends on the number of contour points, which is
usually fixed. According to these reasons, the model is unable to represent irregular
objects accurately. Besides, this method fails to extract the contours of multiple
objects. In real situations, an image may contain a number of objects which are
relevant objects for retrieval.

In this chapter, the original snake model is reviewed in Section 3.2. Our proposed
adaptive snake model is presented in Section 3.3. Section 3.4 describes the contours
representation for multiple objects by using the adaptive snake model. Experimental

results are demonstrated in Section 3.5. Finally, summary is given in Section 3.6.

3.2 Original Snake Model

An active contour model (snake) [2] is an energy-minimizing spline, which can
be operated under the influence of internal contour forces, image forces, and external
constraint forces. A snake is represented as a parametric curve v(s) = [x(s), ()],

where the arc length s is a parameter. An energy functional of the snake is defined as
. |
Esnakc = LE inlernal[v(s )] + Eimuge[v(s)] + Ecarmruinl[v(s)]ds (3 . l)

where Eimernar represents the internal energy of the contour due to bending or
discontinuities, Ejmqg. refers to the image forces, and E_onsrain is the external constraint
forces. The location of the snake corresponds to the local minima of the energy
functional.

We have proposed the fast greedy algorithm [3], which is an iterative method for
minimizing the energy functional. In order to locate the boundary of an object in an
image, an accurate estimation of the initial position and the number of points of the

snake is necessary. The initial snake is then drawn by image forces to the object’s
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boundary. However, the image force is effective only when the snake is placed near
the edge. To attract snake from a fairly large distance away from the edges, the image
force is blurred by a 2-D Gaussian smoothing operator with a large window size. The
window size is chosen to be 23x23. This allows the snake to move to the blurry
energy functional and the blurring is then slowly reduced when the snake is close to
the image. Nevertheless, for a highly irregular boundary, part of the snake may still be
too far away from the desired boundary.

Cohen [4] proposed a balloons model for snake, but it only partially resolved the
problems. It is difficult to locate concave parts of an object from outside. In view of
such limitation, Wong er al. [5] proposed a segmented snake which converts the
global optimization of a closed snake curve into local optimization based on a number
of open snake curves. A recursive split-and-merge procedure is then used to
determine the final object contour. However, the method is computationally
expensive.

In our proposed model, an adaptive force is introduced at a point of the snake
whenever the image forces in its neighborhood are smaller than a threshold. In order
to achieve an accurate representation of a boundary, the distances between adjacent
points of the snake are kept close to a constant. Two processes, namely deletion and
insertion, are introduced to change the number of points for the snake during the

energy minimization process.



3.3 Adaptive Snake Model

3.3.1 Generating an adaptive force

In our method, an adaptive force will be introduced at a point if its surrounding
image forces are smaller than a threshold E,;.. If the noise in the surroundings of a
point is less than the threshold, an adaptive force is created and the effect of the noise
can be overcome. The direction of the force is defined to be perpendicular to the line

joining its two adjacent points, as illustrated in Fig. 3.1.

Figure 3.1: The adaptive force.
Considering a point v, , the direction n of the force is defined as follows:
n-v=0 3.2)

and  v=—itt "Vie (3.3)

- Ivm - vi-ll
where n is the unit adaptive force. As the point is far away from the desired boundary,
itis allowed to move with a larger step size in the direction as follows:

v,=v,+3-n (3.4)

where v; is the new position of the point. In other words, the snake can move 3 steps

in the direction of the normal force whenever the image forces are small. This can

reduce the number of iterations required and speed up the whole process.
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3.3.2 Overshoot and undershoot problems of the adaptive force

After determining the direction of the adaptive force, it can be observed that the
points may move too close or too far away from each other. It has been shown that
overshoot and undershoot problems in the concave region may occur. Wong et al. [5]
proposed a segmented snake approach to determine the object contour, but the method
is computationally expensive. Although this method can overcome the problem of
overshoot and undershoot by using different normal forces in between the non-
contour segments, it involves a number of calculation for each segment. Furthermore,
a fixed number of snake points cannot represent the object accurately if the boundary
of the object is highly irregular.

The above problems are solved by the deletion and insertion of snake points. The
main idea of this method is to keep the distance between each point more constant. If
the distances between adjacent points are small, a deletion process will be applied to
avoid overshoot. If the distances between adjacent points are large, an insertion
process will be applied such that the continuity of the snake can be maintained. The
snake is constructed by using a doubly-linked list structure so that the deletion and

insertion processes can be performed efficiently.

3.3.3 The Deletion and Insertion Processes

To achieve an accurate representation of a boundary and overcome the overshoot
and undershoot problem, the number of points for the snake must be determined
appropriately. As this number depends on the size and shape of the boundary, in the
iterative process, two operations - deletion and insertion - are introduced to keep the

distance between two points of the snake more constant.
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In our method, if the distance of two adjacent points of a point, v;, is less than a
threshold or if the distance between the points, v; and v, is less than another
threshold, point v; is deleted, and v;.; and v, will then become adjacent points. When
the distance between two adjacent points is larger than a threshold, an additional point
will be inserted between them.

Suppose the distances d) and d- are defined as follows:

d, =|Vm "Vil and d, =|vi+l —vi-ll ’
then the criteria for these two operations are described as follows:
If dy <ty or d> <t;, then delete v;

else if d, > 13, then a new point u is inserted between v; and v;.;.

where the new point, ; = v'_"'zv.i and 1y, t3, 13 are threshold values.

3.3.4 Terminating Criteria

In the fast greedy algorithm, the iteration will be stopped if the number of points
moved is less than a threshold or if the number of iterations has reached a certain
quantity. It is observed that, sometimes, the points of the snake shift along the
boundary, and the contour only moves very slightly. However, as most of the points
are moved, the iteration process will be continued. Other terminating criteria include
the measurement of the difference between the lengths of the contour in the current
and previous iterations and the measurement of the change of the energy per unit
length of the contour in successive iterations. The limitations of the criterion are the
incorrect detection of image with no object, inability to locate small object, and poor
stability. Wong et al. [6] have proposed a contour length criterion (CL-criterion)

which can overcome the above limitations. The CL-criterion measures the rate of
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change of the normalized total length of a curve and possesses two properties: a two-
phase convergence property and an averaging property. The two-phase convergence
property can solve the problem of detecting a small object or no object. The averaging
property can solve the stability problem by smoothing the contour lengths computed
in successive iterations. In the method, however, it requires the contour lengths to be
stored over the past 10 iterations for smoothing. Otherwise, the sudden increase and
decrease of the rate of change of normalized total length may cause the spikes and
valleys during the iterations. The instability problem is due to the space discretization
of the evolution problem which is introduced by the oscillation of the snake points
between the quantized steps. The plots of CL-criterion against the iteration without
averaging and with averaging are shown in Fig. 3.2. Fig. 3.2(i) illustrates the curve
fluctuating seriously during iteration, while Fig. 3.2(ii) shows the improvement in the

stability of the termination process when averaging is applied.
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Figure 3.2: CL-criterion against the iteration (i) without averaging (ii) with averaging.

In our method, a new terminating criterion called contour area criterion (CA-
criterion) is proposed, which makes use of the normalized total area to determine the

convergence of the process.
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Suppose that A4* is the area of the snake at the k™ iteration. Then, the CA-

criterion, 7%, is defined as follows:

. A=A
n' ST 3.5)

The area of the snake 4* can be calculated by using the equation as follows:

At =13 'k

~ =l

k
xl yi
k

k
xul yi+l

3.6)

where (x,,y% ) is equal to (xf,y!) for a closed snake and » is the total number of
n+l n+l 1 1

snake points. The value of n* converges quickly and is close to zero when the object

boundary is located by the snake. Figure 3.3 shows the rate of convergence with the

CA-criterion.
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Figure 3.3: Plot of CA-criterion 77* against the iteration.
The CA-criterion exhibits a smoother and faster convergence than that of the CL-
criterion. The CA-criterion also has better stability in convergence, as its fluctuation

between successive iterations is much smailer than the CL-criterion without using any

49



averaging. In addition, the calculation of area is simple and fast, while the CL-
criterion requires computing square roots to obtain the length of each segment.

Using the relations of the area and the perimeter of a closed contour, we have an
inequality expressed as follows:

La’ < 1 or Area £ L Perimeter* 3.7
Perimeter- 4r 4r

We can observe that the area of the object is bounded provided that its perimeter
is convergent. If the perimeter is converged, then the area of the object will converge

faster. Therefore, the use of area as a stopping criterion can give a better convergence.

3.4 Contour Representation for Multiple objects

The adaptive snake model can be used to represent the contour of a single object.
However, if there are more than one object in the image, the snake model must be
modified such that it can determine the corresponding contour of each object. In
Section 3.4.1, we will describe the determination of critical points where the snake is
split and connected for multiple object representation. In Section 3.4.2, we will
demonstrate the splitting and connecting process. Finally, the validation of each

contour will be verified so that invalid contours are removed.

3.4.1 Critical points for splitting and connecting

In order to determine which parts of a contour should be split to form two
contours, the segments of the snake are classified into two types, contour segment and
non-contour segment, which are determined by calculating the surrounding image
forces along a segment. If the surrounding image forces of a point are smaller than a

threshold, we define it as a non-contour point. Otherwise, it is defined as a contour
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point. A sequence of contour points or non-contour points forms a contour or non-
contour segment. A critical point is defined as the end points of a contour segment
which are adjacent to non-contour segments. The determination of a contour point is

illustrated as follows:

If (E(v,)>E,,., Ev,_)>E,. and E(v,)<E

noise ? noise i+l noise )

or (E(v)>E

woises E(Vie) )< E and E(v,)>E

noise noise )7

then point v, is marked as a critical point.
where E(v;) is the image forces at the surounding of v,, and E, ., is a pre-defined

threshold. A number of critical points are therefore identified and denoted as a

sequence as follows:
C={c, =(x,y)|i=0,1,2,...n—1}, (3.8)
where ¢; is a critical point and » is the number of critical points. The number, », is

equal to zero or an even number for a closed loop contour.

During the iteration process, each of the critical points will be checked in
sequence. Pairs of the critical points will be marked as connected points where the
splitting and connecting operations will be performed to form two contours.

With reference to Fig. 3.4, the procedure to identify connected points is as

follows:

Step I: Set i =0 as the starting critical point c;.

Step 2: Set j =i+ | for the other critical point c;.

Step 3: Compute the distance, dj;, between the two critical points ¢; and c;.

Step 4: 1f dj; is less than a threshold, ¢; and ¢; are marked as a pair of connected points.
Step 5: 1fj <n, thenj = + 2 and go to Step 3. Otherwise, go to Step 6.

Step 6:If i <n, then i =i+ | and go to Step 2. Otherwise, go to Step 7.

Step 7: End.
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O Critical points

Invalid contour

Figure 3.4: Splitting and connecting procedure.

3.4.2 Splitting and Connecting Processes
Having searched the pairs of connected points, which are close to each other, the
splitting and connecting operations are then performed. Suppose that a pair of the

connected poirnts is defined as follows:

S=15, =(,v,)|i<j<nk<m] (3.9)
where s; is the A" pair of connected points, n is the number of snake points, and m is
the number of connected pairs. The transition from contour segment to non-contour

segment occurs at the point v;, while an opposite transition happens at the point v;.

Then, the procedure for the splitting and connecting operations is shown as follows:

Step 1: Setk=0.

Step 2: Splitting process: the contour is broken between the points v; and v;;, and
between the points v; and v;.,

Step 3: Connecting process: the contours between the points v; and v;, and the points
vi+1 and v;; are connected. Two contours are, therefore, formed after this
connection process.

Step 4: 1f k <m, then k =k + | and go to Step 2. Otherwise, go to Step 5.
Step 5: End.
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3.4.3 Criteria for validation of the snake

With the above processes, new snakes may be generated. However, some of the
snakes may be invalid, as illustrated in Fig. 3.4. The invalid contour will grow until it
touches the edges in the image. This kind of contour can be identified by calculating
its enclosed area. If the points of a snake collapse and meet each other, the area
enclosed by the snake will be zero. If the snake grows in a reverse direction, its
computed area will be negative. This signifies that an invalid snake has been formed.
In addition, a snake is also considered to be invalid if its number of points is less than
a certain value (e.g. 5). The computed area for a contour is also used in the
terminating criterion in the iteration process. As described in Section 3.3.4, this is a

better terminating criterion than that based on length measurement.

3.5 Experimental Results

In the experiments, we compare the performance in contour representation of our
new algorithm with that of the fast greedy algorithm. The performances based on the
CL- and CA-criterion are also compared. Finally, the extractions of the boundaries of
multiple objects are illustrated. The experiments were conducted on a Pentium II
400MHz PC.

In our algorithm, the snakes are initialized as a circle or a rectangle with an
arbitrary number of points surrounding the desired objects. The inter-distance
between two adjacent points, and the thresholds ¢, -, and 5 used in the deletion and
insertion process are set at 6, 4, 8, and 12, respectively. The threshold values are
basically determined by the inter-distance such that the snake points can move to the

desired position smoothly without the overshoot and undershoot problems of the
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adaptive force. On the other hand, the pre-defined threshold E,;., which is used to
determine whether to apply the adaptive force or not, is set at 30. If the surrounding
image forces of the snake points are smaller than the threshold, an adaptive force is
created and the effect of background noise in an image can be overcome.

Figure 3.5(a) shows the initial contours, while Fig. 3.5(b) and Fig. 3.5(c) depict
the final contours using both the fast greedy algorithm and our new algorithm,
respectively. Figure 3.6 shows some more examples for highly irregular objects. It is
obvious that the new algorithm can achieve an accurate representation of the concave
region of a boundary, and keep the distances between adjacent points close to a
constant. The performances in contour representation based on the CL- and CA-
criterion are very similar. However, the required number of iterations and runtimes
are different, as shown in Table 3.1. The CA-criterion results in a smoother

convergence and can therefore make decision on stopping iteration more accurately.

Penguins B-2 Pochacco
CL | CA CL CA CL CA

Number of iteration 75 72 47 43 4] 39
Runtime (ms) 1185 111.6] 564 | 508 | 68.5 | 63.6
* Number of snake points | 142 | 142 109 | 110 | 146 | 144

Table 3.1: Comparison with CL and CA-criterion.
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Figure 3.5: The comparison of the contour representation using snakes: (a) the initial
contours of snakes, (b) using the fast greedy algorithm method, and (c) using the new
algorithm.
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{(i)Penguins (111)Pochacco
Figure 3.6: Some examples for highly irregular boundary.

Figure 3.7 illustrates the resulting contours for representing multiple objects
during the iteration process. Due to the adaptive force, parts of the snake will move
close to each other, where the snake is split into two separate contours. Some more

results are illustrated in Fig. 3.8.




3.6 Summary

In this chapter, we have presented an active contour model which can locate
highly irregular boundaries in an image. An adaptive force is applied when the image
forces around a point are small and points on the snake can be deleted or inserted such
that the distance between adjacent points can be kept more constant. An additional
terminating criterion based on area is also proposed such that unnecessary iterations
can be prevented. By identifying contour and non-contour segments in a snake, the
algorithm can extract multiple objects in an image by the splitting and connecting
processes. Experiment results show that the new algorithm can achieve a better
contour representation with a required runtime similar to that of the fast greedy

algorithm.
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Chapter 4
Extraction of an Euclidean Skeleton based
on a Connectivity Criterion

Based on the contour extracted by the adaptive snake algorithm as described in
the previous chapter, a skeleton, which is obtained by using a skeletonization method,
can be used as a feature to represent the original shape as it has a more compact
representation. In this chapter, we propose a fast, efficient and accurate
skeletonization method for the extraction of a well-connected Euclidean skeleton
based on a signed sequential Euclidean distance map. A connectivity criterion is
proposed, which can be used to determine whether a given pixel is a skeleton point
independently. The criterion is based on a set of point pairs along the object boundary,
which are the nearest contour points to the pixel under consideration and its 8
neighbors. Our proposed method generates a connected Euclidean skeleton with a
single pixel width without requiring a linking algorithm or iteration process.
Experiments show that the runtime of our algorithm is faster than the distance

transformation and is linearly proportional to the number of pixels of an image.

58



4.1 Introduction

The skeleton is essential for general shape representation. It is a useful means of
shape description [100] in different areas, such as content-based image retrieval
systems, character recognition systems, circuit board inspection systems, as well as
biomedical imagery for shape analysis. The extracted skeleton can be used as a
feature to represent the original shape as it has a more compact representation. In real-
time image processing, a fast skeletonization algorithm is necessary.

Due to the importance of skeletonization, many approaches for it have been
proposed throughout the past decades. Most of the skeletonization algorithms can be
simply classified into two essential types. The first type is referred to as thinning
algorithms, such as shape thinning [101-104] and the wave front/grassfire transform
[105, 106]. These algorithms iteratively remove border points, or move to the inner
parts of an object in determining an object’s skeleton. However, the iterative process
is a time-consuming operation and requires some terminating criteria. In addition, the
uniqueness of the extracted skeleton may be dependent on the initial conditions
provided. The second type of algorithm is based on the medial-axis transform, as
introduced by Blum [100]. Examples include the line skeleton [107-109], Voronoi
skeleton [110,111], morphological transform [112-114], and maximal disk method
[115-118]. As these algorithms search the set of centers and the corresponding radii of
the maximal disks contained in an object, they can usually preserve all the
information about the object and allow the reconstruction of the object. Although the
medial axis transform is a very useful tool and yields an intuitively pleasing skeleton,
its direct implementation is usually computationally prohibitive. Moreover, due to the

use of discrete space, the extracted skeletons are sensitive to local variations and
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noise, and there is no guarantee that the extracted medial-axis can preserve the
original object’s topology. In addition, these algorithms may produce redundant
points on determination of the skeleton, and are memory-intensive and requirec a
complex data structure.

In order to efficiently find the maximal disks enclosed in an object, a distance
map should be generated before locating the centers of the maximal disks. Different
algorithms based on different distance maps have been proposed. Approximate
distance maps such as the city-block, chessboard, chamfer distance transform (CDT)
[119], etc. can be used to extract the maximal disks. An exact Euclidean distance map
can be obtained by using the Euclidean distance. The corresponding skeleton, namely
the Euclidean skeleton, is invariant to rotation. However, the Euclidean skeleton will
include much more computation due to the square root operation. This problem can be
solved by means of the vector distance transform (VDT) [120]. Two sequential
Euclidean distance (SED) mapping algorithms, called 4SED and 8SED, have been
proposed for the efficient computation of the Euclidean distance map. The signed
sequential Euclidean distance (8SSED) {121] mapping algorithm is an extension of
the 8SED, which keeps track of the sign component of the vectors. Consequently, this
algorithm can greatly reduce the time required to create the distance map. Not only is
the shortest distance to the object’s boundary determined, but the position of the
corresponding point on the boundary is also provided.

Extracting the centers of the maximal disks (CMDs) using a distance map is also
complicated. Many algorithms have been proposed for extracting the true CMDs by
using different types of distance map. In order to reduce the required runtime, some
fast algorithms [115, 117] have been proposed, but they produce some false CMDs.

Ge ez al. [118] proposed a bounding box-based algorithm followed by an exhaustive
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search, which is significantly faster than simply using the exhaustive search.
However, the algorithm is still rather slow for large objects. Furthermore, the centers
of the maximal disks are, in general, not connected because the discrete distance map
is used. Some points should be added between the centers of the maximal disks with a
linking algorithm, so that the connectivity of the skeleton can be preserved. As this
linking process may affect the uniqueness of the skeleton, it is limited to being used
for compression purposes.

The connectivity of a skeleton is one of the important concerns for the
skeletonization algorithms. Analytically, the boundary of a planar shape can be
assumed to be composed of a finite number of real analytic curves. The continuity and
path-connectedness of a skeleton can be proven by using the domain decomposition
lemma [122]. In this lemma, a planar shape is continuously broken up into simpler
picces that are represented by the maximal disks. The centers of the disks are
connected, and so is the skeleton. In the discrete case, it is assumed that the planar
shape can be represented by polygons. With the use of the Voronoi diagram [110,
111], a continuous skeleton can also be obtained analytically by the relationship
between the skeleton and the Voronoi diagram. In [109], it is shown that each
Voronoi diagram is path-connected and the skeleton is a sub-graph of the Voronoi
diagram, so the connectivity of the skeleton is preserved. Consequently, both the
continuity and the path-connectedness of a skeleton in discrete and continuous
representations have been proven theoretically. However, there is no connectivity
criterion for the extraction of the skeleton for efficient implementation.

An abundant amount of work on skeletonization and its application has been
conducted, in which a profound theoretical background of the skeleton from different

aspects has been provided. The properties of the skeleton, including its thickness,
61



connectivity and reconstructability, have been investigated. In this paper, we propose
a new skeletonization algorithm, which is fast, efficient and accurate, to extract a
well-connected Euclidean skeleton based on a signed sequential Euclidean distance
map. By using the connectivity criterion proposed in this paper, a skeleton point can
be determined efficiently and independently by considering a set of points along the
object’s boundary, which are the nearest contour points to the pixel under
consideration and its 8 neighbors.

This chapter is organized as follows. In Section 4.2, skeletonization based on the
maximal disk is introduced and the definition of the medial axis transform is
provided. Section 4.3 deals with the effect of discrete problems on the extraction of
the skelcton. The concept of the width of a skeleton is established. The connectivity
criterion for extracting a skeleton using the Euclidean metric is then proposed. Then,
the algorithm is used to resolve different types of boundary segments. Section 4.4
illustrates and summarizes the implementation of the skeletonization algorithm.

Finally, the experimental results and the summaries are given in Sections 4.5 and 4.6,

respectively.

4.2 Skeleton based on the Maximal Disk

Suppose that the contour C of an object in an image is represented by a
continuous closed curve. Inside the contour C, the planar shape F represents the
content of the object. The corresponding skeleton S can be determined, as shown in
Fig. 4.1. According to Blum’s definition [100], the skeleton S of a planar shape is
defined as the locus of the centers of the maximal disks contained inside the planar

shape F. The medial axis transform can then be defined as follows:
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Definition 1: The medial axis transform is the set of ordered pairs of the centers and

radii of maximal disks in the planar shape F. That is,
SK(F)={(p,r)e F|B(p,r)e MaxDisk(F)} @.1)

where MaxDisk(F) is the set of all maximal disks in the planar shape F and B(p,r) is
a disk with radius r centered at the point p.

It can be obscrved that almost all skeleton points are associated with at least two
boundary points whose respective distances to the skeleton point are the shortest
except the end points of the skeleton. These boundary points divide the contour into
different separate segments. In Fig. 4.1, with a maximal disk centered at p, the
object’s contour and the maximal disk touch each other at the points ¢; and ¢. These
two points divide the contour C into two segments 4 and B. If there exists at least one
point along segment 4 and along segment B outside the maximal disk with a distance
larger than a certain distance, which is called residual distance [123], the point p will
be declared to be a skeleton point. The residual distance can be used to form a pruned

skeleton. The magnitude of the residual distance influences the accuracy of the

skeleton for the original object.
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Figure 4.1: The definition of:a skeleton.

4.3 The criterion for a skeleton point

4.3.1 The width of skeleton

An ideal skeleton is connected and has zero-width. A continuous boundary will
produce a path-connected skeleton {122]. However, in real applications, the contour
points and the skeleton points must be located at the pixel grids; this induces a lot of
discrete problems. The skeleton may not pass through the pixel exactly. Hence, in
practice, the skeleton has a non-zero width and all the pixels passed through by the
ideal skeleton will be considered to be skeleton pixels. Consider a skelefon point p,
the corresponding maximal disk touches the boundary at points ¢; and ¢, as shown in
Fig. 4.2. Points g; and q; are the two nearest contour points with respect to point p.
The distance between points ¢; and g; is denoted as D. Suppose that the true skeleton

point p lies midway between the two adjacent points p; and p,. The width of the
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skeleton can then be represented by a line segment pl P, , which 1s parallel to the line

E and perpendicular to the direction of the skeleton. Due to the width of the
skeleton, two values, r; and r;, which are the distances of |pqy| or |p2qa], and |pq| or
|p7q:l, can be obtained with the condition that r,> r|. By using the Cosine Law and

Lquqapr = Zqppr , we have:

2 2 2 2 2
Diar’=n _wan-n ' -r _(h-rkn+n) “2)
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Ve Tt~ == « == Contour, C
N Skeleton, S
Maximal Disk

X = Direction o
q:z\‘ R s
\ - the skeleton .
ST -7 7
.5 Segment B
~ 5

s . am—— /
Figure 4.2: The width of a skeleton.

According to the above equation, the width of a skeleton is therefore proportional
to the ‘difference between the two local shortest distances and the radius of the
maximal disk, and is inversely proportional to the value D, where D is the distance
between the two nearest contour points q; and q;. Consequently, a skeleton of non-

zero even width can be obtained if the following criterion is satisfied:

<5, (4.3)
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where o 1s defined as a threshold to determine the maximum width of a skeleton and
w represents the corresponding width of the skeleton at a particular point.

For the point py, the first shortest distance ry is |p,q,| while the second shortest
distance ry is |psgs|. Similarly, for the point p,, the first shortest distance r| is |p.g;|
while the second shortest distance #; is |[p2g;]. For the point lying midway between the
points p; and p,, the two shortest distances are equal, so the value of w is equal to

zero, which is the exact position of the skeleton point. Any point p along the line

P, P, 15 also a skeleton point. Therefore, the criterion, as shown in equation (4.3), can

be used to determine whether or not a point is a skeleton point with a given &.

4.3.2 Connectivity of a skeleton on the square grid
The type of grid, such as square, hexagonal, etc., used for pixel position has

different effect on the minimum width of the skeletons of an object under different

orientations. Considering the square grid, the minimum width of a skeleton depends
on its direction that is perpendicular to the line ¢,g, . Figure 4.3 illustrates the effect

of different orientations of a skeleton on the corresponding minimum width.

(@)x>y (byx <y
Figure 4.3: Effect of orientations on skeleton width.
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Suppose that the coordinates of the two nearest contour points ¢, and ¢, are (x,

1) and (x3, y2), respectively. Since the direction of the line segment ggq, is
perpendicular to the direction of the skeleton, the minimum width & of the skeleton

can be determined by the deviation of the line segment Zq—z If the horizontal

deviation x is greater than the vertical deviation y of the line segment q,q, , as shown
in Fig. 4.3(a), the minimum width & of the skeleton can be obtained as x/D by

considering the two similar triangles, Ag1q2q3 and Apspsp;. Similarly, if the horizontal

deviation x is less than the vertical deviation y of the line segment g,q, , as shown in
Fig. 4.3(b), the minimum width & of the skeleton can be obtained as y/D by

considering the two similar triangles, Aq1q2q3 and Apypap:. The minimum width & of

the skeleton can therefore be set as foilows:

5= max(x, y) ,
D

(4.4)
where x = abs(x:-x;) and y = abs(y»-y)), and the value D is the distance between the
two nearest contour points ¢ and q3.

A skeleton of non-zero width with threshold & is illustrated in Fig. 4.4. The thick
solid line represents the ideal skeleton. All these pixels passed over by this ideal

skeleton are considered to be a skeleton point. Therefore, the connectivity criterion for

the square grid can be obtained based on equations (4.3) and (4.4) as follows:

L0 < and D*zp, (4.5)
max(x, y)

where x = abs(x;-x;) and y = abs(y»-y1), and p is a non-zero threshold used to

determine the minimum distance between the two nearest contour points.
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Figure 4.4: The extracted skeleton on a square grid.
According to the connectivity criterion, we can observe that only the maximum

of x and y, which are the horizontal and vertical deviations of the line segment ¢,q, ,

and the two lengths of the line segments, ;)?l and b?z , are considered in the

determination of a skeleton point. This criterion can be extended to the contour
surface of a 3D object when considering the minimum width of the connected
skeleton of the 3D object. Based on the connectivity criterion, the minimum widths
for a connected skeleton in 2D case are 0.707 and 1.000 units, respectively, in the
diagonal and vertical/horizontal directions. The true skeleton line, which is
represented by the dark line in Fig. 4.4, may not pass through the skeleton pixel
exactly. The skeleton with non-zero width is represented by the gray regions, which

include all the connected skeleton pixels satisfying the connectivity criterion.

4.3.3 Types of boundary segments

Since the skeleton points are determined based on the connectivity criterion,
simple contour segments that are either in a horizontal/vertical or a diagonal direction
will cause some points to be mistaken for skeleton points. These points can be

removed by simply determining the corresponding segment type. For example, Fig.
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4.5 illustrates the values of the square distances D’ between the two nearest contour
points. The pixel under consideration is represented by a shaded square, while the
corresponding two nearest contour points are represented by white squares. With
equation (4.5), only those pixels having the corresponding distance D’ greater than the
threshold p will be considered as skeleton points. Two adjacent 8-connected contour
points have D* = | and 2 for vertical/horizontal and diagonal boundary segments,
respectively, as shown in Fig. 4.5(a) and Fig. 4.5(b). In order to exclude the pixels in
these two cases as skeleton points, we set p to be 4. Consequently, the pixels under
consideration, as shown in Fig. 4.5(c) and Fig. 4.5(d), will be considered as skeleton
points. Actually, if a larger value is set for p, the number of redundant branches in the

skeleton will be reduced.

(a) D’=1 (b) D’=2
Figure 4.5: The different types of boundary segments.

4.4 The skeletonization algorithm

To determine whether a pixel point is a skeleton point, the corresponding nearest
contour point for each of the 8 neighboring points will be determined, and the
connectivity criterion will then be applied to this set of 8 contour point pairs. The
relative positions of the nearest contour points for each pixel can be obtained by using
the signed sequential Euclidean distance (8SSED) map. The nearest contour points for
each of the 8-neighboring points of the point under consideration can be obtained by

subtracting the relative position of its nearest contour point from the relative position
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of its neighborhoods. The nearest contour points of the pixel under consideration and
one of its 8 neighbors then form a point pair. If any one of the point pairs satisfies the
connectivity criterion, the pixel can be declared a skeleton point. Otherwise, if all the
8 point pairs fail to fulfill the connectivity criterion, the pixel is not a skeleton point.

In summary, the procedure of our proposed algorithm is described as follows:

Compute the signed sequential Euclidean distance (8SSED) map
set P to be the first pixel
do

set O = DM(P) to be the nearest contour point of the pixel P according to the
distance map where DM(.) represents the 8SSED map.

find the nearest contour points of its 8 neighbors P;
Qi = DM(P!) + (xis yi)v

where (x;, 1) is the relative position of the neighborhood i with respect to the
pixel Pandi=1,2,.. 8 is the index of the neighborhoods.

The cight point pairs are formed by the nearest contour points of both the pixel P
and its 8-neighbors, which are denoted as

0, 0) where i=1,2,....8.
Apply the connectivity criterion:
D'=10;~0f2p  and |Qf-I0F < max(X(Q- Q), KO- Q)
where X(p) and X(p) represent the x and y coordinates of the point.
If one of the point pairs, (Q, 0)), satisfies the connectivity criterion, then
the pixel P is a skeleton point.
until the last pixel of the image checked
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Figure 4.6: An example of the skeletonization procedure.
Figure 4.6 illustrates an example of skeletonization based on the above

procedure. The white square represents the boundary points and the gray squares
represent the pixels inside the boundary. The pixel under consideration is P, and its 8
neighbors are represented as Py, P», Py, Ps, Ps, Ps, P7 and Py. The relative positions of
the nearest contour point for each pixel are obtained by using the signed sequential
Eucl;dean distance transformation. 'fhe nearest contour point to thela pixel P is located
at the position 4, which is (0,2) relative to its position. Similarly, the nearest contour
points of 1{s eight neighbors (P3, P3, Ps, Ps) and (Py, Pa, Pe, P7) are at positions A4(0,2)
and B(-2,1) relative to the pixel P, respectively. For example, the nearest contour
point of Py is calculated as (-1,0)+(-1,1) = (-2,1), which is its position relative to the
pixel P. Since the nearest contour points of some of the § neighbors are the same as
the nearest contour point of the pixel P, the exact number of point pairs considered in
this case 1s one, which is formed by the points A(O,Z} and B(-2,1). Based on this point
pair, the square distance D* between thgse two nearest contour points is [(0,2)-(-2,1)*

= 5 which is greater than the threshold p = 4. The width of the skeleton, w, is [(-2+1)-

(0+2)] / max(2,1) = 0.5, which is less than one, and thus satisfies the connectivity
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criterion. Consequently, the pixel P is declared an Euclidean skeleton point. As the

square root operation is not required in the procedure, this algorithm is very efficient.

4.5 Experimental Results

In the experiment, the shapes in an image can be extracted by using a contour
extraction method called the adaptive snake method [124] or any edge follower
method. Based on the extracted contours, the skeletons of the shapes are extracted
using our proposed algorithm. The skeletonization performance and the complexity of
our proposed algorithm are evaluated in this section. The effect of the threshold
values p on the extraction of a skeleton will be illustrated. Then, the complexity of
our proposed algorithm is compared to some maximal disk extraction algorithms. The
experiments were conducted on a Pentium II 400MHz PC. The signed sequential

Euclidean distance map (8SSED) [121] was used in all the methods to be compared.

4.5.1 The effect of the threshold p
The effect of different threshold values p on the skeleton of an object is
illustrated in Fig. 4.7. The whole skeleton extracted by using our proposed algorithm
is shown in Fig. 4.7(a), which uses the threshold value p = 4. When the value of the
threshold p increases, a smaller number of skeleton points will be extracted and as a
result there will be fewer branches in the skeleton. The effect of increasing the
threshold p is similar to that of pruning. However, this pruning procedure may cause
the extracted skeleton to disconnect from some spurious points, as shown in Fig.
| 4.7(b), because there is no guarantee of extracting a connected skeleton for a larger

value of p. Since many pruning methods [110, 111, 125] have been proposed, we can
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apply one of them after we have applied our proposed algorithm to extract the
Euclidean skeleton. Alternatively, we can use a larger threshold p as a simple pruning

method to extract the pruned skeleton, as shown in Fig. 4.7(c).

(a) p=4 (b) p=50 () p=150
Figure 4.7: The skeletons using different thresholds o with an image of size 320x240.

4.5.2 The computational requirements of the algorithms

In this section, we will investigate the computational complexity of our proposed
method. As mentioned previously, there are many approaches to extracting a skeleton,
and it is impossible to compare our proposed method with each of the existing
methods. Therefore, we will compare our algorithm to the following existing
methods, namely, method 1, a neighborhood algorithm followed by an exhaustive
algorithm [118]; method 2, a modification of method 1 with the use of an exhaustive
algorithm followed by a bounding box-based algorithm [118]; and method 3, a
method based on a criterion with a residual distance [123].

Both methods | and 2 use the neighborhood algorithm to etiminate most of the
points in the planar shape by means of the inclusion test procedure [118]. In order to
determine the true maximal disks, the exhaustive algorithm is used to screen out the
rest of the non-CMDs. The testing procedure ris very computationally intensive
because all the possible sets of points are used in the inclusion test procedure. By
apblying the bounding box-based algorithm before the exhaustive algorithm, the

computational time for method 2 can be reduced and a smaller number of false CMDs
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will be generated. Both methods 1 and 2 can be used to reconstruct the original
contour exactly, and so be used as a means for compression, but they require a linking
algorithm [118] to obtain a connected skelcton. Method 3 can extract a pruned

connected skeleton directly without using a linking algorithm.

Method 1: NciM lfl?c‘:l(\ioi:d + Method 3: Proposed
) 8SSED | Neighborhood + 8 Criteria of p
[nput images . Bounding Box-based + Method
(sec) Exhaustive Method . a skeleton
Exhaustive Method (sec)
(sec) (sec)
(sec)

320x240 0.0700 5.6680 5.5380 4.3770 0.1000

#1 640x480 0.2810 65.9650 58.3340 34.2800 0.1610

1280x960 1.1520 - - - 0.6510

320x240 | 0.0700 5.1570 5.0170 3.2450 0.1000

#2 | 640x480 | 0.2810 61.1280 55.3400 28.6110 0.1500

1280x960 | 1.1520 - - - 0.5910

320x240 | 0.0700 5.0570 5.5680 3.7650 0.1200

#3 | 640x480 | 0.2810 28.6110 28.6110 29.3020 0.1810
1280x960 | 1.1520 - - - 0.57000

Table 4.1: A comparison of different methods with different images.

As shown in Table 4.1, the runtimes for methods 1, 2 and 3 are longer than that
for the proposed method. Theoretically, the complexity of an exhaustive algorithm is
in the order of Oy(n%), where n is the number of points in the planar shape. With the
neighborhood method, the complexity in terms of testing and finding the maximal
disks in the neighborhood of each point in the planar shape is in the order of Ox(kn),
where £ is the size of the neighborhood. The computation time is reduced significantly
compared to the exhaustive algorithm due to the use of the bounding box-based
algorithm to eliminate the irrelevant disks. For method 3, the complexity of the
algorithm is in the order of Oy(mn), where m is the total number of contour points.
This method computes the distances to the contour instead of checking the inclusion
and overlapping of the maximal disks. For the proposed method, its computational
complexity is in the order of O(8n) only, because it only considers the pixel under

consideration and its 8 neighbors by means of the connectivity criterion. In addition,
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the square root operation is not needed in this algorithm. In Table 4.1, we can observe
that the runtimes required by the three methods increase tremendously when the
image stze increases. For our proposed method, the runtime is linearly proportional to
the number of pixels in the planar shape. Figure 4.8 illustrates some of the extracted

skeletons based on our algorithm.

(b) Example #2 (c) Example #3
Figure 4.8: The skeletons based on our proposed algorithm with an image of size
640x480.

4.6 Summary

.With the use of the connectivity criterion proposed in this chapter, an accurate,
stmple and efficient algorithm for the extraction of a well-connected Euclidean
skeleton is devised with the use of the signed sequential Euclidean distance map. The
nearest contour points of the pixel under consideration and its 8 neighbors are
generated to form a set of 8 point pairs, which are then used to determine whether the
pixel is a skeletoﬁ point. This method can generate a connected Euclidean skeleton
without requiring square root operation, a linking algorithm or any iteration. The
complexity of this algorithm is linearly proportional to the number of the pixels in an
image. The computational complexity is O(8n) where n is the total number of pixels

in the image.
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Chapter 5
Maximal disk-based Histogram for Shape
Retrieval

After extracting the skeleton of an object, a set of maximal disks can be obtained
using our proposed skeletonization technique with the simple pruning algorithm as
described in the previous chapter. In this chapter, we propose a robust and efficient
representation scheme for shape retrieval, which is based on the normalized maximal
disks used to represent the shape of an object. The logarithm of the radii of the
normalized maximal disks is used to construct a histogram to represent the shape. The
retrieval performance of this maximal disk-based histogram approach is compared to
other methods, including moment invariants, Zernike moments, and curvature scale-
space. Experimental results show that our proposed representation scheme

outperforms the other methods under affine transformation, different distortions and

noise levels.

5.1 Introduction

In designing a content-based image retrieval system [4,128), retrieval efficiency
and accuracy are the two most important issues to be considered, especially for large

multimedia databases. Research on content-based image retrieval has attracted great
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interest and attention over the past decade. Feature selection and extraction is the most
important step for image retrieval. To describe different types of images, different
visual features, such as shape, texture, color, etc., should be considered.

Shape retrieval is one of the most challenging areas covered by the literature that
deals with retrieval based on shape similarity. There are different traditional
approaches for representing the shape characteristics, such as Fourier descriptors
[73,74], moment invariants [60,64,65], Zernike Moments [4,68,69], etc. However,
these methods are sensitive to noise and distortion. The curvature scale-space (CSS)
method [22,27,28] is one of the most successful contour-based features used as a
shape descriptor, and has been a shape descriptor in the MPEG-7 standard [14]. The
representation of the curvature scale-space has been shown to be robust under the
similarity transformations such as scaling, orientation changes, translation, and even
shearing. However, the method is easily affected by distortion or occlusion. A shape
descriptor which is compact, robust to noise and distortion, and provides an accurate
representation of an object’s shape is highly desirable.

Histogram analysis has been a widely used approach for content-based
image/video retrieval. Even though histograms are commonly used for color
description, they are quite limited in descripting shapes. The advantages of the use of
histograms are due to their robustness, effectiveness, and their implementation and
computational simplicity. In this chapter, a robust and efficient representation scheme
based on the distribution of the maximal disks used to represent a shape is proposed.
The maximal disks of a shape are extracted by a fast skeletonization technique with a
pruning algorithm [123], which has been presented in Chapter 4. The robust feature is

formed by the logarithm of the radii of the normalized maximal disks of an object. A
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histogram based on the distribution of the radii is constructed and used for shape
matching.

This chapter is organized as follows. In Section 5.2, we will give a detailed
description of our proposed shape descriptor. Experimental results are illustrated in
Section 5.3, where the performance of our proposed scheme is compared to other
shape representation schemes, namely moment invariants, Zernike moments, and
curvature scale-space. The robustness and accuracy of our proposed shape descriptor

are also evaluated. Finally, a summary is given in Section 5.4.

5.2 A new Shape Descriptor

The shape of an object can be obtained by contour extraction or image
segmentation methods, such as the adaptive snake method, which has been presented
in Chapicr 3, or any edge follower method. The extracted contour or shape is then
encircled completely by a minimum disk, as shown in Fig. 5.1(a). The radius of this
minimum disk is denoted as ryq. In order to obtain a descriptor independent of scale,
the shape is normalized such that the radius 7. is equal to a fixed value N/2. In other
words, the object forms an image of size NxN. The boundary of the object is then re-
sampled and represented by 512 evenly spaced points. In order to reduce the effect of
noise along the contour of the shape, the contour is smoothed by converting the
contour points to the frequency domain. Then, 75% of the highest frequency
components are discarded. Based on the smoothed contour, the skeleton of the shape
is then extracted using a fast skeletonization method with a pruning algorithm. The
skeletonization method uses the loci of those maximal disks inside an object to

represent its skeleton. In our scheme, the distribution of these radii is used to represent
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the object. Figure 5.1(b) shows the result after skeletonization, which contains many
branches. This is due to the discrete representation of the shape. In order to remove
the branches, a pruning algorithm is applied, and the pruned result is shown in Fig.
5.1(c). The radii of those maximal disks associated with the pruned skeleton are then
used to form a histogram for shape representation. The corresponding histogram for

the skeleton in Fig. 5.1(c) is shown in Fig. 5.1(d).

bin

(c) (d
Figure 5.1: Shape representation of a marine shape: (a) the contour, (b) the skeleton,
(c) the pruned skeleton, and (d) the maximal disk-based histogram.

5.2.1 Maximal disk-based histogram
Similar shapes will result in similar histograms for the radii of the maximal disks.
The maximal disks are extracted by our skeletonization algorithm. Each
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representative radius of the maximal disks and its corresponding percentage form a
pair of attributes that can be used to describe the shape characteristics in an image.
Basically, the histogram is formed by the maximal disks along the skeleton of a shape,
so it is independent of the translation and orientation of the object. The radii of those
maximal disks used to represent the object are normalized by the radius Frmav, SO
histogram formed on the basis of these normalized radii is also invariant to the
object’s scale. Maximal disks with a larger radius capture the global shape, while
those with a smaller radius represent the fine details. As the number of maximal disks
with small radii is much more than that of large radii, the allocation of the normalized
radii to the histogram bins should be performed in a non-linearly manner. Therefore,
the radius r of a maximal disk is normalized by 7y and then quantized to a bin value,

bin(r), of the histogram as follows:

r
max

. 1 r
bm(r)-;logm[—-xIOOJx N, (5.1
where Npin is the maximum number of bins and bin(r) is in the range of [1, ..., Nbin].
The histogram of a shape with maximal disks of radii in the range of [1, R}, where R <

Fmax, 1S defined as follows:

count (bin(r))

H (bin(r)) = -

=1,2,...,R (5.2)

where count(bin(r)) represents the number of maximal disks assigned to bin(r) of the

histogram, n is the total number of maximal disks for the object, and X H(bin(r)) = 1.
In order to have a compact representation of the shape descriptor, the histogram

is set to have 16 bins, and each bin is represented by 4 bits. Therefore, 64 bits are used

to represent a histogram or a shape. The 4-bit value is used to represent the number of
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maximal disks with a particular range of radii in the corresponding bin. The maximal

disk-based histogram of a marine shape is shown in Fig. 5.1(d).

5.2.2 Histogram Comparison

The difference between two histograms is computed by using the quadratic-form
distance measure [13,127], which takes the cross-bin similarity into account when
measuring the distance. Suppose that the maximal disk-based histograms of two
images, P and Q, are represented as H, = (H,(1),... H,,(Nb,-,,))r, and H, = (H/(1),...
Hq(Nb,-,.))T, respectively. The quadratic-form distance measure D is then defined as

follows:

p(r.0)-|(u,-n ) a(m -n ) 6

where A=[a;] is a similarity matrix that incorporates the cross-bin similarity, and a;
denotes the similarity between bins i and ;.

Each bin of the histogram corresponds to a particular range of logarithm radii of
the normalized maximal disks, and the similarity matrix represents the correlation
between the bin under consideration and its neighbors. The similarity matrix A used is

defined as follows:

. N2
= t=J
aij-exp[—(—a—-) ] (5~4)

where i, j = [1,...,Nsin] and o is the variance of the similarity parameter. The value of
this distance measure D can then be used to determine the similarity between the two

shapes.
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5.3 Experimental Results

The retrieval performance of our proposed algorithm is compared to the
traditional algorithms including Zernike moments [4], moment invariants [60] and
curvature scale-space [14,27]. Part of the SQUID database (Shape Queries Using
Image Databases) [27] was used in the experiments. The cffects of affine
transformation, noise, and distortion on the performances of the different algorithms

were investigated and evaluated. The experiments were conducted on a Pentium 4

2.4GHz PC.

5.3.1 Generation of image databases

In our experiments, 10 distinct species of marine creatures were selected from the
SQUID database. Each of the marine images is represented as a set of closed-contour
points, then converted to binarized images, and normalized to a size of 256x256. The
10 different species form 10 classes, and each class contains at most 8 similar species.
In our system, this makes up a database consisting of 76 images in all, which is
similar to the databases constructed in [27]. One shape from each of the classes, its
corresponding skeleton, and the maximal disk-based histogram are shown in Fig. 5.2.

We can observe that the histograms of the distinct species are different.
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(b) The corresponding pruned skeletons.

(c) The corresponding maximal disk-based histograms.
Figure 5.2: The 10 representative shapes used in the experiments.

Four types of databases were generated by applying different affine
transformations, different levels of noise added to the contour points, different
distortions added to the contour points in the original database, and all of the above

variations. The first database was generated by using scaling factors between 0.8 and
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0.9, and rotated by an arbitrary angle. The second database was generated by using 10
levels of noise between 0.0 and 18.0. The third database was generated by randomly
adding different distortions to the contour points of the marine images. The fourth
database was generated by using different scaling factors, rotations, and noise levels,
and adding different distortions to the contour points. Hence, the number of classes in
each of these databases is the same. The query set used in the experiments was formed
by all the images within the database. The runtime required for extracting the
proposed shape descriptors for 760 images in each of the databases is approximately

24 seconds, and the average runtime for retrieval for each query is about 168 ms.

5.3.2 Comparisons of different shape descriptors
In order to visualize the robustness of the different shape descriptors, the effects
of affine transformation, noise, and distortion are investigated in the following

sections.

3.3.2.1 Effect of affine transformations

The first database generated by using scaling factors between 0.8 and 0.9, and
rotated by an arbitrary angle was used. Suppose that C={x, y} represents the original
contour and C’ represents the contour under affine transformation. Then

(i ={x' =s(xcosf+ysing), ' =s(xsin0-ycos€)} (5.5)

where s is the scaling factor and 6 is the arbitrary angle. Figure 5.3 shows the
maximal disk-based histograms with the object under different orientations and
scales. It can be observed that the skeletons extracted are robust under the affine

transformations, so the histograms of the images are very similar to each other.
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(b) The corresponding skeletons.

TP

(c) The corresponding maximal disk-based histograms.

Figure 5.3: The maximal disk-based histograms of a marine shape with different
orientations and scales.

3.3.2.2 Effect of noise levels
The second database was generated by using 10 different noise levels between
0.0 and 18.0. Suppose that C={x, y} represents the original contour and C' represents

the contour with noise added along the boundary. Then
C'= {x' = X+ noisexrandom( ), y'= y+noisexrandom( )} (5.6)

where random() is a random number in the range of {-1,1} and noise is the level of
noise variance. Figure 5.4 shows the histograms using our proposed representation
scheme for a shape under different levels of noise. It can be observed that the
skeletons extracted are insensitive to noise. With the use of a pruning algorithm, the

histograms with different noise levels are similar to each other.
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(a) The simulated images with different noise levels (4, 6, 8, 10).

(b) The corresponding skeletons.

(c) The corresponding maximal disk-based histograms.

Figure 5.4: The maximal disk-based histograms of a marine shape under different
noise levels.
3.3.2.3 Effect of distortions

The third database was used to investigate the effect of distortions on the
different shape description schemes. The distortion is defined as a disk with a fixed
radius r arbitrarily added along the contour of the shape, and we set ¥=25 used in the
experiments. Figure 5.5 shows the maximal disk-based histograms under different
distortions. It can be observed that the skeletons extracted are the same except for
those distorted parts close to the distorted regions of the shape. Since the effect of

distortion is very localized to the skeleton, the respective histograms with different

distortions are only changed slightly, and the corresponding histograms are similar to

each other.
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(b) The corresponding skeletons.

(c) The corresponding maximal disk-based histograms.

Figure 5.5: The maximal disk-based histograms of a marine shape under different
distortions.

5.3.2.4 Effect of combing all the variations

The fourth database, which was generated by combining all the previous
variations in the object shapes, was used to evaluate the retrieval performances of the
different retrieval schemes. Figure 5.6 shows the maximal disk-based histograms of
an object under different combinations of variations. It can be observed that the
effects of the variations on the extracted skeleton are localized and limited, so the

histograms are similar to each other.
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(a) The simulated images with different types of variations.

(b) The corresponding skeletons.

(c) The corresponding maximal disk-based histograms.

Figure 5.6: The maximal disk-based histograms of a marine shape under different
variations.

5.3.3 The retrieval performances

To measure the retrieval performances of the different shape representation
schemes, the precision and recall rates for the different retrieval approaches are
measured. The precision rate and recall rate are defined as follows:

number of relevant images selected
total number of retrieved images

Precision Rate =

(5.7

number of relevant images selected
total number of similar images in the database

Recall Rate =

(5.8)

In our experiments, the 80 best-matched marine images were retrieved from the
different databases for each query image. The average values of the precision rate and

recall rate were computed and plotted as precision-recall graphs. The horizontal and
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vertical axes represent the recall rate and the precision rate, respectively. The top-left
point of the graph corresponds to the precision/recall values when only one retrieved
image is considered, while the bottom right point corresponds to the precision/recall
values when considering the entire answer set with 80 retrieved images. The Zernike
moments, the moment invariants, and the curvature scale-space, which were the
features used in other content-based retrieval systems, were compared to our proposed
feature based on the precision-recall graphs. Also, the effects of different numbers of
bins and different quantization levels were investigated by means of the precision-

recall graphs.

3.3.3.1 Comparisons based on different algorithms

In order to evaluate the accuracy of our proposed algorithm, the precision-recall
graphs based on the Zernike moment, the moment invariants, the curvature scale-
space, and the proposed features, were measured. Figure 5.7 shows the precision-
recall graphs of the different algorithms based on the four databases. Figure 5.7(a)
shows that the performance of the Zemike moments falls dramatically when the
shapes are rotated and scaled, as compared with that of the other approaches. Figure
5.7 (b) shows that the performance of the moment invariants under noise is dropped
when compared with others, due to its sensitivity to noises. Figure 5.7 (c) shows that
the performance of the curvature scale-space when the shapes are distorted also falls
dramatically compared to the others. Our proposed scheme has the best retrieval
performances under affine transformation and different noise levels. Under distortion,
our proposed algorithm still outperforms the moment invariants and the curvature
scale-space, but is only very slightly inferior to that of the Zernike moments for a

small answer set. Figure 5.7(d) shows the precision-recall graphs of the different
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algorithms based on the fourth database. Our proposed scheme has the best retrieval

performance while the performances of the other algorithms are dropped as they are

sensitive to either noise, distortion or affine transformation.
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(a) Shapes are rotated and scaled.
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(c) Shapes are distorted.
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(d) Shapes are rotated, scaled, and distorted with noises.
Figure 5.7: Comparison of the precision-recall graphs with 80 retrieval images using
the four different shape databases: (a) affine transformed, (b) different noise levels,
(c) different distortions, and (d) all the above variations.

5.3.3.2 Performances with different numbers of contour points and portions of high
frequency components removed

To optimize the performance of our proposed scheme, removing different
numbers of contour points and different portions of high frequency components was
considered. To investigate their effects on retrieval performances, the fourth database
was used for comparison. Figure 5.8(a) shows the retrieval performances based on
different numbers of contour points. The use of 512 contour points achieves the best
retrieval performance. Figure 5.8(b) shows the retrieval performances based on
different portions of the highest frequency components discarded. The removal of

75% of the highest frequency components achieves the best performance.
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(b) Different percentages of highest frequency components discarded.
Figure 5.8: Comparison of the precision-recall graphs with 80 retrieval images using
the fourth shape database based on (a) different number of contour points, and (b)
different percentage of the highest frequency components discarded.
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Figure 5.9 illustrates a contour and the corresponding smoothed contours
obtained by removing 40%, 60%, and 80% of the highest frequency components in
the shape as well as their corresponding pruned skeletons. The results show that the
noise along a contour is removed according to the percentage of the highest frequency

components removed, so the extracted skeletons are affected accordingly.

Figure 5.9: The original contour and the corresponding smoothed contour
60%, and 80% of the highest frequency components are discarded.

s when 40%,

5.3.3.3 Performances with different numbers of bins and quantization levels

To further evaluate the performance of our proposed scheme, different numbers
of bins and quantization levels were considered. In this part, the fourth database,
which was generated by combining all types of variations, was used for comparison.
Figure 5.10(a) shows the retrieval performances based on different numbers of bins
with 16 quantization levels. The 16-bin histogram with 16 quantization levels
outperforms others for a large answer set. Figure 5.10(b) shows the retrieval
performances based on a 16-bin histogram with different quantization levels. A better
retrieval performance level can be obtained by using more quantization levels.
Nevertheless, the retrieval performances of using 16, 32 and 64 quantization levels are
nearly the same. Considering both the representation efficiency and retrieval accuracy

of the shape descriptor, we choose the 16-quantization level histogram in our shape

description scheme.
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(a) Different numbers of bins used in the shape descriptor.
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(b) Different quantization levels per bin used in the shape descriptor.
Figure 5.10: Comparison of the precision-recall graphs with 80 retrieval images using
the fourth shape database based on (a) different number of bins, and (b) different
quantization levels per bin used in the shape descriptor.
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5.4 Summary

This chapter proposed a robust and efficient representation scheme for
representing and retrieving shapes. Our algorithm is based on the histogram of the
logarithmic radii of the normalized maximal disks of a shape. The centers of these
maximal disks are located along the skeleton of the shape. This representation scheme
is compact and can achieve a good retrieval performance level. The performance of
our proposed scheme is superior to the moment invariants, Zernike moments, and
curvature scale-space methods when the shapes are under affine transformation, at

different noise levels, and under different distortions.
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Chapter 6
Object Matching based on Line-Feature
Hausdorff distance

The Hausdorff distance can be used to measure the similarity of two point sets. In
matching the two point sets, one of them is translated, rotated and scaled in order to
obtain an optimal matching, which is a computaticnally intensive process. In this
chapter, a robust line-feature-based approach based on the Hausdorff distance for
model-based recognition is proposed, which can achieve a good performance level in
matching, even in a noisy environment or with the existence of occlusion. The robust
features are extracted based on the possible longest segments in a point set. These
features are insensitive to noise and can find the rotation and scale of the image point
set accurately and reliably, so 2D-2D matching algorithm can be adopted. The 2D-2D
matching can greatly reduce the required memory and computation when compared to
a 4D-matching. Both the performance and the sensitivity to noise of our algorithm are
evaluated using simulated data and a database of trademarks. Experiments show that
our 2D-2D algorithm can give a high performance level when determining the relative
scale and orientation of two point sets and locating an object, and the first 2D-

matching is sufficient for similarity measure.
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6.1 Introduction

Object matching is an important task in computer vision, model-based
recognition [128, 129] and content-based retrieval [4, 6, 126, 130]. Humans can
recognize or match the objects solely from their outlines or contents even under
different translations, orientations and scales. Much research has been devoted to the
properties of shape descriptors and the algorithms for recognition, retrieval, and
indexing [19-21]. The shape descriptors selected in MPEG-7 [7, 10, 12, 14] are the
ones that best fulfil the requirements as defined by the experts. The shape descriptors
can be simply divided into four types: 3-D shape descriptor [24], 2-D/3-D shape
descriptor [25], contour-based shape descriptor [22], and region-based shape
descriptor [23]. Most of the real-world objects are 3-D, and one of the descriptors for
3-D shapes is based on the shape spectrum [29, 30], which can be used to represent
the local convexity of a 3-D surface. However, the image and video world usually
deals with 2-D projections of real-world objects. Therefore, 2-D shape descriptors
such as contour shape, region shape, and 2-D/3-D descriptors [25, 26] can be used to
represent the visual feature of a 3-D object from different viewing angles.

A contour-based descriptor expresses the shape properties of an object’s outline
while the region-based descriptor describes the pixel distribution within the 2-D
object’s region. For contour-based algorithms, Chang et al. [50] has proposed a shape
recognition scheme based on relative distances between the contour points and their
centroid. Other feature extraction methods include the corner point detection [51] and
the dominant point detection [52] for contour representation. These important contour
points can be used as features in the matching process. However, if part of a shape is

missed, or an additional part is added to the boundary of the shape, there may be
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significant effects on the features and this will cause false matching results. The
curvature scale-space (CSS) [22, 27, 28] approach has been proposed as a contour-
based shape descriptor used for search and retrieval in MPEG-7. The algorithms
based on these shape descriptors usually analyze the contour points in computing the
similarity of the shapes, forming an essential part of the retrieval and recognition
systems. However, the applications of contour-based descriptors are more specific and
limited when compared to those of region-based descriptors. This is because the latter
does not need to extract the contours. For example, a trademark may consist of text,
images, and occasionally other media such as scent or sound. Therefore, images of a
trademark retrieval system [62, 63] are usually represented by region-based
descriptors. Many well-known region-based descriptors, such as moment invariants
[64-67], Zernike moments [4, 68, 69], Fourier coefficients [73, 74], angular radial
transformation (ART) [23], etc., have been proposed and can provide invariant
features with respect to the affine transformation. Both the high-order moments and
the Fourier descriptors for two-dimensional images for object matching are sensitive
to the uneven distribution of noise, and will produce a significant degree of error
when the object is occluded or distorted.

One of the critical problems is how to match two point sets efficiently and
accurately with the existence of noise, partial occlusion or spurious parts, and under
different translations, orientations and scales. Hausdorff distance [81] has been used
for matching two point sets because of its simplicity and relatively insensitivity to
noise, and because it requires no explicit correspondence between the two point sets.
Different Hausdorff distance measures [131] for object matching have been
investigated, and a modified Hausdorff distance [82, 132] has also been applied in

human face recognition. Most of the Hausdorff distance algorithms can find the best
99



match with respect to translation only. Although efficient matching algorithms
incorporated with Chamfer distance matching [133] and combing translation and/or
rotation transformation have been proposed by Goodrich er al. [134], the
computational complexity is still intensive. The algorithm only considers the
translation and/or rotation transformations for approximate point set pattern matching,
which cannot tolerate the errors caused by different orientations and scales. A huge
amount of computation is also required for matching objects of different orientations
and scales. In [135], 2D-2D matching based on line features with Hausdorff distance
was proposed. A line segment formed by two consecutive points along a contour is
represented by its mid-point (x, y), the logarithm of its segment length, and its
orientation. The first 2D-matching that computes the rotation and scaling factor is
sensitive to noise. A 4D-matching was therefore proposed in [136]. However, this
approach requires a large memory and is computationally intensive. More
importantly, the use of line-segments along the contour will have a segmentation
problem [136]. In this chapter, we propose a robust line-feature-based approach,
which can be used to recognize an object based on its contour or its region. For shape
matching, the contour of the object under consideration is extracted, the contour
points form the required point set. For region-based matching, the edge map of the
object is computed and is then used as the point set for matching. Hence, our
approach can be used for both contour-based matching and region-based matching. In
our algorithm, a segment is formed by joining a point and its corresponding farthest
point in a point set, and then the features of this segment are extracted. This
arrangement will solve the segmentation problem in [136]. We will also prove that
this arrangement can make the extracted features robust to noise and occlusion, so a

2D-2D matching algorithm instead of a 4-D matching algorithm can be used. The first
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2D-matching is to determine the relative scale, s, and orientation, ¢, while a modified
M-estimation Hausdorff distance is used for the second 2D-matching.

This chapter is organized as follows. In Section 6.2, an introduction to the
Hausdorff distances is given. In particular, the M-estimation Hausdorff distance can
determine the translation between two shapes efficiently even if noise and occlusion
exist along the two object boundaries. In Section 6.3, our new matching algorithm is
presented, which can accurately find the scale and orientation of a point set relative to
another one. A robust line-segment Hausdorff distance is also described for matching
two point sets. In Section 6.4, experimental results based on simulated data and a
database of trademarks are presented. The accuracy of our 2D algorithm to determine
the relative scale and orientation of two point sets and the effect of noise on the

contour points are also evaluated. Finally, summary is given in Section 6.5.

6.2 Hausdorff Distance for Shape Matching

The Hausdorff distance is a kind of metric measurement used to measure the
degree of mismatch between all possible relative positions of two point sets. Given
two finite point sets 4 = {ay, a3,..., an} and B = {by, bs,..., b,}, the Hausdorff distance

H(A,B) for these two point sets is defined as follows:

H (A, B)= max(h(4,B),h(B, 4)) 6.1)
h(4,B)= maxmin d(a,,b,), (6.2)

where /(4,B) is the directed Hausdorff distance and d(a,b) is the Euclidean distance
between two points g and b.
The relative position between the two point sets can be calculated by searching

for a minimum value of the Hausdorff distances on the (x, y)-plane. If a translation

101



transformation, ¢, applied to the point set B is best matched with the point set 4, a
minimum value of the Hausdorff distance H(4,(B)) for point set 4 and its
transformed point set #B) can be obtained. The searching function for matching can

be written as follows:

H;, = minH(4,:(B)) (6.3)

where #(.) represents the translation transformation function. For a specific
transformation ¢, the minimum value of the Hausdorff distance, H,,,, represents the
similarity between the two point sets. If this value is great, it implies that the degree of
mismatch between the two point sets 4 and B is high. Conversely, if this value is
small, it implies that the two point sets are similar to each other. The translation
parameters (x, y) obtained from the minimizer of the transformation ¢ is used to
transform the point set B before computing the similarity between A4 and B.

Different Hausdorff distance measures have been proposed for shape matching.
Huttenlocher er al. [81] proposed the generalized Hausdorff distance measures, which
include the traditional Hausdorff distance (HD), the modified Hausdorff distance
(MHD), and the ranked Hausdorff distance. The MHD can achieve the best
performance level when matching two point sets. Sim ef a/. [137] proposed the least
trimmed square Hausdorff distance (LTS-HD) and the M-estimation Hausdorff
distance (ME-HD), which are more robust to outliers and occlusions. The ME-HD
measure only requires the comparison and summation operations, whereas the LTS-
HD measure requires the sorting and summation operations, so the ME-HD is used in
our algorithm. Given two finite point sets 4 = {a,, aa,..., an} and B = {by, bs,..., b,}

k]

the M-estimation Hausdorff distance, H){(A4,B), for the point sets 4 and B is defined as

follows:
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Hy(4.8 ) = max(h.‘, (A, B )-h.u (8, 4)) 6.4)

and the directed M-estimation Hausdorff distance, h,{4,B), is

ha(4.8)=—- 3" plda a)) (6.5)

A ued

N (O
where p(x) {r, |-"|2"v

dg(a) represents the minimum distance value from point a to the point set B, and N, is
the number of points in the point set 4. The threshold r is used to eliminate outliers.
This distance measure can therefore eliminate those outliers yielding large errors. The
matching performance depends on the parameter z. If ris set to infinity, the ME-HD
is equivalent to the conventional modified HD. The parameter 7 cannot be accurately
determined [137], and depends on the amount of noise and occlusion. For example, if
the value of r is set at 5.0, the range of the measured distance using ME-HD is
between 0.0 and 5.0. The zero value means that the two point sets are exactly the
same, while a value of 5.0 means that the two point sets are totally unmatched with
each other.

Two objects can be compared either by their contours or by their overall patterns.
The shape of an object can be represented as a set of contour points along its
boundary. The contour points can be obtained by using an adaptive active contour
model, which can extract the contour of a highly irregular object even under noisy
environment. For region-based representation, the edge points of the objects are
considered. Matching based on contour or region also requires the computation of the
relative orientation, scale and position so that the line segments formed by the
corresponding point sets can be matched with each other as closely as possible. The

Hausdorff distance can be used to determine the translation parameters (x, y)
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efficiently. The minimum value of the Hausdorff distance can also be used to
represent their similarity to each other. If an object is rotated and scaled, we have also
to determine the scale and orientation (4, s). There are two approaches for computing
the relative position, scale, and orientation between two objects. The first one is 2D-
2D matching, which determines the relative scale and orientation in the first 2D-
matching, and their relative position and similarity in the second 2D-matching. This
approach is simple, but the scale and orientation must be determined accurately in the
first 2D-matching. Otherwise, error results in the first matching will be passed onto
the second 2D-matching. The second approach is 4-D matching, which determines the
position, scale, and orientation in a single process. This approach is accurate and
robust to noise, but it has a very large memory requirement and is very
computationally intensive.

Yi et al. [136] proposed a line-feature-based approach for model-based
recognition using a 4-D matching based on Hausdorff distance. Line segments are
formed by joining the points along the object’s contour. A line segment is represented
by its midpoint, the logarithm of its length, and its orientation, which form a feature
point (x, y, 6, log ) for its representation. The relative orientation, scale and
translation between two different shapes can be obtained by using the 4-D Hausdorff
distance measure. For the object-based matching, the direction of its orientation
corresponding to each line segment has a range of 0° to 360° in the 8, axis because
the contour segments are connected sequentially. False alarms [136] will occur in the
first matching if the rotation angle is limited to the range from 0° to 180°. This
algorithm can be used for shape matching, and has the segmentation problem [136]. If

a line segment is split into two or more segments, there will have little or no change
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visually. However, the feature points will change significantly when the line segments
are split or merged. Furthermore, as the shape of an object is represented by a set of
contour points, different contour points will be extracted due to the presence of noise
or distortion along its boundary. In other words, different line segments, and therefore
feature points, will be formed if the line-segment approach is used. In addition, if
more points are used to represent the contour, the corresponding line segments will
become shorter. This segmentation problem makes this algorithm dependent on the
contour points selected to represent the contour. Although 4-D matching was used to
improve its accuracy, the algorithm is still not robust to the presence of noise and
occlusions. Therefore, in this chapter, an approach based on robust line segment
feature which can be used for both contour-based and region-based matching is

proposed and evaluated.

6.3 A Robust Feature for Object Matching

Feature selection is an important issue for object matching. The selected features
should be robust to noise and invariant to position, scale and orientation. We propose
a robust feature for object matching using Hausdorff distance which allows 2D-2D
matching to be adopted instead of 4D matching. The feature is based on the line
segments formed between each point and their corresponding farthest point in a point
set. The orientation and length of each of the line segments are then used to form a
feature point in the (6, log /)-plane. The features extracted are robust to noise and
partial occlusion, so 2D-matching can be used to determine the scale and orientation

between the point sets accurately. Having rotated and scaled the query point set, the
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relative position and the similarity between the point sets are computed in the second

2D-matching in the (x, y)-plane.

6.3.1 Robust features for matching under different orientations and
scales

Suppose that we have a model object, S,. A query object, S,, is obtained by
rotating and scaling the object S,, by an angle ¢ and a scaling factor s, respectively, as
shown in Fig. 6.1(a) and (b). Depending on the context to be considered, the point sets
for the model object and the query object are formed by their contour points for shape
matching and by their edge maps for region-based matching. Robust line-segment
features are then extracted by considering line segments formed by joining each point
and its corresponding farthest point in the point sct. To simplify the explanation, we
consider shape matching only in the following discussions, which can be extended to

region-based matching. Consider two points, z,, and z,, which are the corresponding

farthest points from the points, ¢ and ¢, of the two shapes. Two line segments, z,c,,
and z,c, for the two objects are therefore formed. These two line segments are

converted to feature points, (&, log /») and (6,, log /,), in the (6, log /)-feature plane,
which can then be used to measure the relative scale and orientation of the objects.
Since ¢, and ¢, are the corresponding points in the two objects, the lengths and the

orientations of the two line segments have the following relationship:
loglt, )= log(/,, ) + log(s) (6.6)
6,=0,+¢ 6.7)
where the parameters ¢ and s represent the orientation and the scaling factor,

respectively.
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(a) The model object S, (b) The query object S,
Figure 6.1: A model and a query object, which are represented by the point sets, under
different translations, orientations and scales.

A set of feature points can be extracted for each object to form a feature pattern
in the (6, log /)-feature plane. Figure 6.2(a) shows a model shape, a query shape, and
two more shapes which are the rotated and scaled versions of the model shape with
additional noise or distortion. By projecting the logarithmic lengths and the
orientations of the longest line segments of these four objects into their corresponding
feature planes, as shown in Fig. 6.2(b), the minimum value of the ME-HD can be
obtained at a specific relative position between the model feature pattern and an
image feature pattern. The methods used for forming line-segments have a high
tolerance to noise and distortion. The scale s and the orientation ¢ can then be
computed by matching the model and image feature patterns based on equations (6.6)
and (6.7). In order to find their relative orientation within the range of 0° to 360°, the
feature pattern of the model object is duplicated to the range of 360° to 720°, as
shown in the first feature plane in Fig. 6.2(b). The feature patterns of these shapes in
the (6, log /)-feature plane are similar, but are translated relative to each other.
Therefore, the minimum value of the ME-HD can be used for similarity measure in

the first 2D-matching. After the relative orientation and scale between two point sets

107



are obtained, the query object can be resized and rotated for matching. The relative
position between the transformed query object and the model object can then be

obtained by using the ME-HD in the second 2D-matching.
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(b) The feature planes based on the longest segments
Figure 6.2: The objects and their corresponding (6, log /)-feature planes.

6.3.2 Robustness with respect to noise and occlusions

Considering the feature pattern of an object, the effect of noise and occlusion can
be minimized since the feature pattern is extracted based on the line segments formed
by each point to its corresponding farthest point in a point set. Suppose that S={x, y}
represents the point set of an object and S,,;. represents the object with Gaussian
noise added to the point set. Then

S i = 16+ Vx,y + Vy} (6.8)

where Vx and Vy represent the noise level of the variances with respect to x- and y-
coordinates.

Since the line segments considered are the longest segments, the extracted
features, the orientation and the logarithm of their lengths, are affected to a lesser

extent than other possible line segments formed by the points in the point set. Suppose
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that noise is added to a contour point and its corresponding farthest contour point, the

change in length of the line segment formed by these two points is as follows:

Vi =

[ +Vx,l + Vyl] -

/.1
_LVx+1Vy (6.9)

= [[x: +Iyl

The change in orientation can be computed as follows:

[, +Vy Il
veo = arctan| - —arctan| -+
[ +V /

+Vx

X X

(6.10)
1,Vx—1Vy
= arctan| —————
[+l

where (/, /) are the relative (x, y)-coordinates between the contour point and its
farthest contour point along the boundary and (Vx, Vy) arc the maximum resultant
shift of the points due to noise. Since the line segment is the longest segment that can

be formed in the point set and the displacement, Vx and Vy, are small compared to /

X

and /,, the values of V/ and V§, i.e. the deviations of the length and orientation of the
linc segment, are the smallest compared to other possible line segments in the point
set.

On the other hand, if an object is distorted or occluded in some parts, only the
corresponding parts of the feature pattern are affected, as shown in the fourth column
in Fig. 6.2(a) and (b). The feature pattern is still similar to the original one. By using
the ME-HD, the effect of changes to the feature pattern due to noise, distortion or
occlusion can be minimized. If more feature points are considered, the orientation and
scaling factor between two objects can be obtained more accurately. Consequently,
our algorithm using the ME-HD can achieve good robustness when comparing two

objects, even in the presence of noise, distortion or occlusion.
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6.3.3 M-estimation segment Hausdorff distance for translation
matching

After the relative orientation and scale between two point sets are obtained, the
query object can be resized and rotated for matching. For region-based matching, the
relative position between the transformed query object and the model object can then
be obtained by using the ME-HD in the second 2D-matching. The conventional
Hausdorff distance considers only the point sets, but without considering the points
along the line segments formed by the consecutive contour points. For contour-based
matching, the relative position between the transformed query object and the model
object can be obtained by using an M-estimation Segment Hausdorff distance (MES-
HD) in the second 2D-matching. Given two sets 4 = {ay, aa,..., a,} and B = {by,
bs,..., ba}, the M-estimation Segment Hausdorff distance, H,y(A,B), between 4 and B
is defined as follows:

H,(4,B)=max(n,, (4, B) 4, (B, 4)) (6.11)
and the directed M-estimation Segment Hausdorff distance, Nseg(A,B), is

h:zg (A’ B) = h.‘.l (A’ seg(B)) (6. l 2)

where hydA,seg(B)) is the directed ME-HD from 4 to the point set formed by seg(B).
The point set seg(B) includes all the points along the line segments formed by joining

the consecutive points along the contour of object B, which is defined as follows:
seg(B)={c|ceaZ;c,,ceeB} (6.13)

where ¢, and c. are the starting and the end points of any line segment along the

boundary of an object, and c,_ce is the line formed by joining ¢, and c.. The Euclidean

distance map of seg(B) can also be obtained by the same distance transform [120].

1o



Distance transform is a means of making the computation of the Hausdorff
distance efficient. For the MES-HD, besides considering the contour points, all the
points along the line segments formed by the consecutive contour points are also
taken into account and used to generate the distance map. As the computation
required depends on the size of the distance map [120], the computation required for
this Hausdorff distance is similar to that of using the point set only. However, the
computed distance will be more accurate, as all the points along an object’s boundary
are considered. Nevertheless, we must have a high-level knowledge about the
representation of an object’s boundary in order to use the MES-HD. If the point set of
an object is obtained by edge detection techniques, which can provide low-level

information about the points only, the MES-HD can no longer be used.

6.4 Experimental Results

The matching performance of our proposed algorithm is compared to the line-
segment feature proposed by Yi er. al. [136). The shapes used in the first part of the
experiments are closed-contour, which are distorted by different levels of noise
variance. The effect of occlusion and distortion on the matching performance will also
be evaluated by removing part of a shape and/or including an additional part to the
shape. In the second part of the experiment, the trademarks used are region-based
object and a trademark retrieval system was implemented based on our algorithm. The
retrieval rate of this trademark retrieval system based on our algorithm was also

evaluated. The experiments were conducted on a Pentium II 400MHz PC.
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6.4.1 Generation of the model and query sets

In this experiment, 10 different shapes extracted from images of size 640x480 by
an adaptive snake method, which has been presented in Chapter 3, and represented by
a set of 40 contour points are used to form the model set, as shown in Fig. 6.3. These
10 model shapes are first rotated by an angle of 37° and scaled by a factor of 0.7. A
query set containing 100 shapes is then generated by applying different noise levels to
the transformed model shapes. Another query set containing 10 shapes is also

generated by arbitrarily removing and/or adding parts of contours to the transformed

model shapes.

I 48 4 L3S
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Figure 6.3: The 10 models used for the experiments.

6.4.2 The effects of noise levels and distortion

Figures 6.4 and 6.5 illustrate the effect of noise and of distortion/occlusion added
to an object on the matching performance. The rotated and scaled point sets
representing the objects with or without modifications are shown in the first row. In
order to visualize the effect of noise or distortion on the object’s shape, the successive
points along the contour are connected and shown in the second row. Their
corresponding feature patterns based on the line-segment approach [136] and our

approach, robust line-segment, are used for matching. The scale and orientation of a
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transformed shape relative to the original object can be computed by using the ME-
HD in the respective feature planes. Having transformed the shapes accordingly, the
MES-HD is applied to match the objects in the (x, y)-plane. The matching results
based on the line-segment approach and our proposed approach are illustrated in the
third and fourth rows, respectively.

Three different factors will affect the line segments of a shape and its feature
pattern. These factors include the number of contour points used to represent the
shape, the noise level of the shape, and the distortion or occlusion of the shape. Figure
6.6(a) illustrates an object represented by different number of contour points. The
corresponding feature patterns generated by the line-segment approach and our
proposed approach are shown in Fig. 6.6(b) and (c), respectively. The x-axis
represents the orientation of the longest segments while the y-axis represents the
logarithmic length of the longest segments. The feature patterns generated based on
the line-segment approach change significantly with the number of contour points
used to represent the object. On the contrary, the feature patterns generated by our
approach are similar to each other and will be more accurate if more contour points
are used. Our proposed approach does not have the segmentation problem, while the
line-segment approach requires the careful selection of the contour points. In order to
observe the effect of different noise levels added to a shape, and distortion or
occlusion on the feature patterns, more contour points are used to represent an object.
The corresponding feature patterns are shown in Fig. 6.6(d) and (e), respectively.
However, in order to reduce the required computation, the number of contour points
should be as small as possible, while it is sufficient to represent the object’s shape.
Algorithms such as the Discrete Curve Evolution (DCE) [138] and the Local Maximal

Curvature (LMC) Point Decomposition [139] can be used to reduce the number of
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contour points. The visual appearance of a shape can be preserved and the required
computational time for the matching process can be reduced. As the noise level
increases, our approach will result in minimal change to the feature pattern, as shown
in Fig. 6.6(d). Similarly, as parts are added or removed, as shown in F ig. 6.5(a), the
feature patterns generated using our approach, as illustrated in Fig. 6.6(e), are affected
to a lesser extent than the line-segment approach. Consequently, the matching
performance based on our approach outperforms the line-segment approach when the
shapes are distorted by noise and occlusion, as shown in Fig. 6.4 and Fig. 6.5. This is
mainly due to the fact that the extracted features are obtained based on the longest
possible line segments formed in a point set. Noise or disturbance on the contour
points will have a relatively lesser effect when compared to the features extracted
from other possible line segments of the point set. Furthermore, in measuring the
Hausdorff distance in the second 2D-matching, line segments are considered instead

of the point set only.
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(d) Matching results based on our approach

Figure 6.4: The comparison of matching performance using the line-segment and the
robust line-segment features with different levels of noise.
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Figure 6.5: The comparison of matching performance using the line-segment and the
robust line-segment features with occlusion and additional parts to the shapes.
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(b) the line-segment approach and (c-e) our proposed approach. The horizontal and

vertical coordinates of the feature planes represent the parameters 6 and log /,
respectively.
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6.4.3 Computation of scale and orientation

Protability of finding the scale within
a threshold to the true value
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Figure 6.7: The probabilities of finding the scaling factor by (a) the line-segment
approach and (b) the robust line-segment approach.

To evaluate the performance of computing the relative scale and orientation
between two shapes, the probabilities of finding the scale and orientation are
measured based on the shapes in the model set and the query set. The probabilities of
finding the scale and orientation correctly within a threshold to the true value against
different levels of Gaussian noise using the line-segment approach and our approach
are plotted in Fig. 6.7 and Fig. 6.8, respectively. According to the results, we can

observe that the probabilities drop rapidly when the noise level is higher than 4.0 for
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the line-segment approach. Our proposed feature can be used to find these two factors

accurately even if the noise is increased to 20.0.
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Figure 6.8: The probabilities of finding the orientation by (a) the line-segment
approach and (b) the robust line-segment approach.

6.4.4 Computation of relative position

After the orientation and scaling factor between the objects are obtained by using
the line-segment method and the robust line-segment method, the query object is
transformed accordingly and then compared to the model object. The errors on the
orientation and scaling factor obtained in the first 2D-matching will propagate to the
second 2D-matching. This will affect the accuracy of the computed relative position
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and the similarity between the two objects in the second 2D-matching. To evaluate the
performance of computing the relative position between the two shapes, the
probabilities of computing the relative position within a threshold with the ME-HD
are shown in Fig. 6.9(a) for the line-segment approach and in Fig. 6.9(b) for the
robust line-segment approach. We can observe that the matching results are degraded
significantly when the noise variance is increased to 4.0 with the line-segment
approach. Although the same second 2D-matching is applied, the robust line-segment
approach has a much better matching performance than the line-segment approach.
The matching performance of the MES-HD used in the second 2D-matching is also
measured. The probability of finding the best translation parameters within a
threshold to the true value for the robust line-segment approach with the MES-HD is
plotted in Fig. 6.9(c). Experimental results show that the matching performance for
the MES-HD is better than that for the ME-HD with different thresholds.

Similarly, the probabilities of the computed Hausdorff distance within a threshold
with the ME-HD are shown in Fig. 6.10(a) for the line-segment approach and in Fig.
6.10(b) for the robust line-segment approach. The probabilities for the robust line-
segment approach are much higher than those for the line-segment approach. Figure
6.10(c) shows the probability for the robust line-segment approach with the MES-HD,

which can give a much better performance than the ME-HD in object-based matching.
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Figure 6.9: The probabilities of finding the relative position between two shapes using

(a) the line-segment approach, (b) the robust line-segment approach, and (c) the
robust line-segment approach with the MES-HD.
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Figure 6.10: The probabilities of finding the Hausdorff distance within a certain

threshold using (a) the line-segment approach, (b) the robust line-segment approach,
and (c) the robust line-segment approach with the MES-HD.
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Figure 6.11 tllustrates more matching results, where the solid lines represent the -
model shapes, while the dotted lines represent the query shapes which are generated
by arbitrarily removing and/or adding parts of contours to the transformed model
shapes. The results show that our proposed algorithm can be used for matching even

when the objects are distorted, rotated and scaled.
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(b) The matching results
Figure 6.11: The matching of the model shapes and the query shapes.

6.4.5 Precision-Recall Graphs for trademark databases

To further evaluate the performance of our proposed algorithm, two trademark
databases consisting of 500 images were used. All trademark images were scanned
and binarized to black and white, and normalized to a size of 100x100. As the internal
details of a trademark must also be considered, the edge image was therefore used to

form its point set for its representation. Consequently, the ME-HD was used instead
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of the MES-HD in the second 2D-matching for this application. Based on the edges of
the trademark images, a database was constructed and integrated to form a retrieval
system. As the classification of a trademark may be a subjective task in accordance
with human perception, we divided the trademarks into 50 classes with 10 similar
trademarks for each class to construct a database consisting of 500 images. The
second database was generated by randomly rotating and scaling each of the
trademark images in the first database. The scaling factors used are random numbers
between 0.8 and 0.9. Hence, the number of classes and images in the second database
are the same as the first one. The query set used in the experiments was formed by
selecting an image from each class of the first database. The 50 query images are
illustrated in Fig. 6.12.

To measure the performance of the trademark retrieval system, we computed the
precision and recall rates for different matching approaches. The precision rate and
recall rate are defined as follows:

number of relevantimages selected
total number of retrieved images

Precision Rate =

(6.14)

number of relevant images selected
total number of similar images in the database

Recall Rate =

(6.15)
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The best matched 40 trademark images were retrieved from the two databases for
each query image. The average values of the precision and recall rate were computed
and plotted as the precision-recall graphs. The horizontal axis represents the recall
rate while the vertical axis corresponds to the precision rate. The performance of a
matching algorithm is represented by a curve which has 40 points corresponding to
considering from 1 to 40 retrieved images in measuring the precision rate and the
recall rate. The top-left point of the graph corresponds to the precision/recall values
for considering 1 retrieved image while the bottom right point corresponds to the
precision/recall values for the entire answer set with 40 retrieved images. The Zernike
moments [4] and the moment invariants [66], which were the features used in other
content-based trademark retrieval systems, were compared to our algorithm. The
precision-recall graphs based on the Zernike moment features, the moment invariants,
the M-estimation Hausdorff distance, the robust line-segment approach with first 2D-
matching only, and the robust line-segment approach with 2D-2D matching, were
measured.

Figure 6.13 shows the precision-recall graphs of the different matching methods
based on the two trademark databases: the original images, and the rotated and scaled
images. Figure 6.13(a) shows the performance of the different approaches when the
database of the original trademark images was used. For small answer sets, our robust
line-segment approach with the 2D-2D matching performs slightly better than the
Zernike moments and the M-estimation Hausdorff distance. Although our robust line-
segment approach with the first 2D matching only has 12% lower precision rate than
the 2D-2D matching method for small answer sets, it performs better than other
meiiods for larger answer sets, achieving up to 9% better recall rate and 2% better

precision rate compared to the Zernike moments. Figure 6.13(b) shows the
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performance of the different approaches using the database of transformed trademark
images. For small answer sets, the performances of most of the approaches are
dropped compared to when the first database was used. Our robust line-segment
approach with the 2D-2D matching shows nearly no change and yields the best
performance. The performance of the M-estimation Hausdorff distance method drops
significantly as it does not consider the differences in rotation and scale between two
images. Since the trademark images are scaled between 0.8 and 0.9 with different
orientations, the number of pixels used to represent a transformed image will be
different from that of the original one. Therefore, the precision rate of the Zernike
moments for small answer sets drops nearly 38% when compared to using the original
trademark images. Although our proposed approach with the first 2D matching has a
10% lower precision rate than that using the original trademark images for small
answer sets, it performs the best for larger answer sets.

Experimental results show that our robust line-segment approach with first 2D
matching and with 2D-2D matching outperform the other three approaches in terms of
the precision and recall rates. For a larger answer set, the recall rate of the first 2D
matching algorithm was slightly greater than that of the 2D-2D matching. This means
that the Hausdorff distance obtained in the first 2D matching based on our proposed
approach can be used directly in similarity measure. The second 2D matching is used
to locate the required object in an image, which is not necessary for retrieval
purposes. Instead of using the 2D-2D matching, the computational time for the
retrieval system can be reduced if only the first 2D-matching is used. Experimental
results also show that our algorithms are invariant with respect to the orientation and

scale of an image.
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Figure 6.13: Comparison of the precision-recall graphs with 40 retrieved images for

the trademark databases (a) based on the original images, and (b) based on the rotated
and scaled images.
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6.5 Summary

In this chapter, a robust line-feature-based approach for model-based recognition
is proposed. This approach can be used for both contour-based matching and region-
based matching. It can provide a good level of performance in a noisy environment or
with the existence of occlusion. This new approach is insensitive to noise, and can
find the rotation and scale of the image point set more accurately and reliably than
other approaches. It solves the problems of determining the translation, rotation and
scale between two objects. The feature points are genecrated based on the line
segments formed by each contour point and its corresponding farthest point in a point
set. The robustness and performance of our method have also been addressed.
Experiments show that our approach can achieve accurate results and is robust to
noise. Consequently, 2D-2D matching can be used instead of 4D-matching. This can
greatly reduce the memory requirement and the required computation. In addition, a
trademark retrieval system was implemented based on our proposed approach.
Experimental results show that the first 2D-matching based on our proposed feature is

sufficient for similarity measure.
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Chapter 7
Conclusions and Further Work

7.1 Conclusions

In this thesis, we have given an overview of the content-based retrieval system
and the recent development of the MPEG-7. The visual descriptors considered in the
standard of MPEG-7 such as color, texture, shape and motion have been introduced.
Also, various techniques of feature extraction and recognition for content-based
image retrieval have been reviewed. Shape descriptors, which are high level
description, have been emphasized in this research work.

In our research, we proposed an adaptive snake method, which can locate highly
irregular boundaries of objects in an image. An adaptive force is applied when the
image forces around a point are small, and points on the snake can be deleted or
inserted such that the distance between adjacent points can be kept more constant. An
additional terminating criterion based on area is also proposed such that unnecessary
iterations can be prevented. By identifying contour and non-contour segments in a
snake, the algorithm can extract multiple objects in an image by the processes of

splitting and connecting. Experimental results show that the new algorithm can
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achieve a better contour representation with a required runtime similar to that of the
fast greedy algorithm.

After locating the boundaries, the skeleton can be extracted according to the
extracted contour points. With the use of the connectivity criterion proposed in this
thesis, an accurate, simple and efficient algorithm for the extraction of a well-
connected Euclidean skeleton is devised with the use of the signed sequential
Euclidean distance map. The nearest contour points of the pixel under consideration
and its 8 neighbors are generated to form a set of 8 point pairs, which are then used to
determine whether the pixel is a skeleton point. This method can generate a connected
Euclidean skeleton without requiring a linking algorithm or any iteration. The
complexity of this algorithm is linearly proportional to the number of the pixels in an
image.

After extracting the skeletons, a set of maximal disks can be obtained by our
proposed skeletonization technique with the simple pruning algorithm. We proposed a
robust and efficient representation scheme for shape retrieval, which is based on the
normalized maximal disks used to represent the shape of an object. The logarithm of
the radii of the normalized maximal disks is used to construct a histogram to represent
the shape. Our proposed representation scheme outperforms the other methods,
including moment invariants, Zernike moments, and curvature scale-space, under
affine transformation, different distortions and noise levels.

In addition, we also studied the problem of matching between two objects. In
order to handle the variations due to different scales, orientations and locations of the
objects, we proposed a robust line-feature-based approach for model-based
recognition. This approach can be used for both contour-based matching and region-

based matching. It can provide a good level of performance in a noisy environment or
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with the existence of occlusion. This new approach is insensitive to noise, and can
find the rotation and scale of the image point set more accurately and reliably than
other approaches. It solves the problems of determining the translation, rotation and
scale between two objects. The feature points are generated based on the line
segments formed by each contour point and its corresponding farthest point in a point
set. The robustness and performance of our method have also been addressed.
Experiments show that our approach can achieve accurate results and is robust to
noise. Consequently, 2D-2D matching can be used instead of 4D-matching. This can
greatly reduce the memory requirement and the required computation. A trademark
retrieval system was implemented based on our proposed approach. Experimental
results show that the first 2D-matching based on our proposed feature is sufficient for
similarity measure.

Finally, we believe that the techniques for extracting the contour and its skeleton,
and matching algorithm are important for content based retrieval. In this thesis, we
have demonstrated the extractioa of object boundaries, the skeleton and the maximal
disk-based histograms, as well as the matching of two objects based on
contours/region of the objects for shape retrieval. In addition, two retrieval systems
based on a set of SQUID images and a set of trademark images have been developed

to demonstrate the overall performance of the different techniques.
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7.2 Further Work

Current research into high-level features for image retrieval is at an early stage,
and it will be a long time before any generally useful systems emerge. As described in
previous sections, we have proposed an adaptive snake method, which can locate the
boundaries of objects in an image, and an efficient and accurate algorithm for
extracting a skeleton based on maximal disks. Also, we have proposed the matching
algorithm for contour/region-based object. The results obtained in this research work
are useful contributions to the development of content based retrieval from image
database. It is far from certain that any current approach will lead to effective image
retrieval based on the feature extraction and recognition techniques. Although our
work provides solutions to shape feature extraction and matching/retrieval algorithm,
there are rich areas for further research.

In our further work, we will focus on developing a better shape descriptor such as
the skeleton representation, and a better similarity measure capable of dealing with
differences between similar feature vectors. After locating the boundaries and
extracting the skeletons, the extracted information can be used as a useful query
feature for retrieving similar images from a database. The skeleton feature consists of
the spatial and hierarchical structure information which can be used to represent the
shape more efficiently. However, a drawback of the use of the maximal disk-based
histogram as presented in Chapter 5 is due to the fact that different shapes may have
similar or identical shape histograms. A set of maximal disks can form other different
spatial structures which have the same distribution of the maximal disks. Our future
work will concentrate on using the spatial information of the skeleton to form a spatial

domain histogram such that its retrieval performance can be further improved. Hence,
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different techniques for skeleton matching are being studied and investigated to
further improve its efficiency.

In order to further improve the performance of the trademark retrieval system we
have developed in our work, there are a number of research issues which need to be
addressed. Our system can be extended to match on the basis of a set of salient
features rather than a single feature representing the entire image. This would require
a robust and automatic segmentation algorithm, which can extract not only multiple
closed-contour objects but also the mesh contour objects in more general trademark
images. A future extension is to allow partial matching of objects based on some
specific features which are useful in eliminating many false matches and retrieving
more similar objects. Also, a future extension may be in the direction of allowing the
system to learn through feedback from each user query. Another area of research is in
automatic grouping or clustering of the trademark images to improve retrieval
performance. However, we believe that there may be other approaches or techniques

used in specific applications that are suitable to retrieval systems.
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