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II 

 
Abstract 

 

 
In the last decades, several blackouts have occurred due to the voltage instability and 

led to huge economic losses. Voltage stability becomes an increasingly concerned 

problem. Many methods have been developed for voltage stability analysis. 

However, most of the computational tools developed so far are based on 

predetermined set of severe but credible situations. The essential weakness of such 

deterministic techniques is that they do not and cannot account for the probabilistic 

or stochastic nature of system behavior. However, there are uncertainties such as 

measurement errors, forecast inaccuracy and outages of system elements in power 

systems. To carry out deterministic voltage stability analysis for every possible or 

probable combination is impractical because of an extremely large computational 

requirement.  

 

Therefore, the present research attempts to apply probability theory to study voltage 

stability problem and to improve the voltage stability of power system considering 

uncertainties of load forecasts and load parameters. Similar to the prevailed 

deterministic approaches, voltage stability will be examined via ‘static’ and 

‘dynamic’ system behaviors under probabilistic environment. The static voltage 

stability analysis based on power flow will regard the maximum load point as the 

critical point, where the Jacobian matrix of power flow equation is singular. The 

‘dynamic’ voltage stability analysis based on small disturbance and using eigenvalue 
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analyses will consider Hopf bifurcation or saddle node bifurcation as critical point, 

where system state matrix has one or a pair of eigenvalues with zero real part.  

 

In deterministic studies, the degree of voltage stability is often quantified in terms of 

stability margin, which is the distance between the normal operating point and the 

critical operating point. Static voltage stability analysis based on power flow is a 

common tool to assess stability margin index due to its simplicity and fast 

calculation. Under probabilistic studies, however, system loads are random variables 

such that the stability margin is also random variable. In the present study, 

probabilistic power flow technique combined with point of collapse method will be 

used to obtain probabilistic characteristics of stability margin and nodal voltages at 

the maximum load points. Maximum entropy will be employed to determine the 

probabilistic distribution of stability margin according to these probabilistic 

characteristics.  

 

After static study, voltage instability will be investigated using probabilistic 

eigenvalue approach by considering the dynamic behaviors of system components. 

With load assumed to be normal distribution, the characteristics of nodal voltages 

are obtained through probabilistic power flow. Probabilistic eigenvalues are used to 

determine probabilistic stability margin, taking into account the random load 

variations. 
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The probabilistic studies will then be extended to examine the impact of the load 

parameter characteristics on voltage stability. With loads represented by exponential 

recovery load model, and with the assumption that the load parameters are normal 

distribution, the eigenvalues are also approximated by normal distribution. 

Expectation and standard deviation of eigenvalues that determine the distribution of 

eigenvalues are obtained from probabilistic characteristics of load parameters. The 

distribution of critical eigenvalue is used to determine the stability probability of 

power system. Effect of uncertainties of load parameters on probabilistic stability 

margin will be investigated.  

 

In all the above stability studies, probabilistic results will be compared by Monte 

Carlo approaches, using 10000 deterministic samples for each result, and 

effectiveness of the proposed techniques (static and eigenvalue) will be 

demonstrated. 

 

Finally, power system voltage stabilizer (PSVS) is adopted to improve voltage 

stability of power system considering the random variations of loads. Modal 

participation factor is used to locate power system voltage stabilizer; instability 

modal coefficient and probabilistic sensitivity index are employed to determine the 

input signal of PSVS. Then the Quasi-Newton method will be used to adjust the 

parameters of PSVS. Subsequently, voltage stability of power system under wide 

range of operation can be enhanced by the present systematic PSVS design. 



V 

Acknowledgements 
 
 
 
 
The work presented in this thesis was carried out under the supervision of Dr. C.T. 

TSE, Department of Electrical Engineering, the Hong Kong Polytechnic University. 

The author wishes to expression her sincerest gratitude to her chief supervisor, Dr. 

C.T. TSE, for his invaluable guidance, advice and encouragement. 

 

The author would like to take this opportunity to acknowledge the co-supervisor 

Prof. K. W. WANG of Department of Electrical Engineering, Zhengzhou University, 

for his academic advice and kind help. 

 

The author is also grateful to Dr. Zhen WANG for many academic discussions and 

helps. 

 

The financial support provided by the Research Grants Council of Hong Kong under 

project PolyU 5212/03E and the Research Committee of the Hong Kong Polytechnic 

University through the award of scholarships is also appreciated. The helpful 

assistance from the Research Office is appreciated.  

 

Finally but not the least, the author would like to thank all members of her family for 

their support and encouragement, especially thank her husband Dr. Xinzheng 

ZHANG. He has contributed more to this thesis than he can imagine. 



Table of Contents 

Chapter 1 Introduction .............................................................................................. 1 

1.1 What is voltage stability ...................................................................................... 1 

1.2 Literature review ................................................................................................. 4 

1.2.1 Voltage instability mechanism ........................................................................... 4 

1.2.2 Voltage stability analysis ................................................................................... 5 

1.2.3 Probabilistic analysis in voltage stability analysis ........................................... 17 

1.2.4 Probabilistic eigenvalue used in power system dynamic stability studies ....... 19 

1.3 Motivation of this research work ...................................................................... 20 

1.4 Outline of the thesis .......................................................................................... 23 

1.5 Publications ....................................................................................................... 24 

Chapter 2 Voltage stability analysis based on probabilistic power 

flow and maximum entropy ................................................................................... 27 

2.1 Introduction ............................................................................................................. 27 

2.2 The foundation of probability theory ...................................................................... 31 

2.2.1 Numerical attributes of random variables ........................................................ 31 

2.2.2 Normal distribution .......................................................................................... 33 

2.3 Point of collapse method for voltage stability analysis ........................................... 34 

2.4 Stability margin assessment by probabilistic approach .......................................... 35 

2.4.1 0=B S  ............................................................................................................. 36 

2.4.2 B = S0 ............................................................................................................... 39 

2.5 The maximum entropy method ............................................................................... 41 

2.6 Applications of probabilistic approach and maximum entropy .............................. 44 

2.6.1 Case study on 39-bus system ........................................................................... 45 

2.6.2 Case study on 57-bus system ........................................................................... 51 

2.7 Summary ................................................................................................................. 55 

Chapter 3 Determination of probabilistic stability margin 

considering the uncertainty of loads ................................................................... 57 

3.1 Introduction ............................................................................................................. 57 

3.2 Probabilistic power flow calculation ....................................................................... 58 



3.3 Plug-in modeling technique .................................................................................... 60 

3.3.1 Multimachine system representation technique ............................................... 61 

3.3.2 State space equation ......................................................................................... 63 

3.4 Eigenvalue sensitivities ........................................................................................... 65 

3.4.1 General formulas of eigenvalue sensitivities ................................................... 65 

3.4.2 Derivatives of matrix A with regard to zero order block parameters ............... 66 

3.4.3 Derivatives of matrix A with regard to first order block parameters ............... 66 

3.5 Probabilistic stability analyses ................................................................................ 67 

3.5.1 Probabilistic characteristics of eigenvalue ....................................................... 67 

3.5.2 Assessment criterion of stability probability.................................................... 70 

3.5.3 Load margin for probabilistic voltage stability ................................................ 71 

3.5.4 Probabilistic load characteristics ...................................................................... 73 

3.6 Case studies ............................................................................................................. 74 

3.6.1 Test system I .................................................................................................... 74 

3.6.2 Test system II ................................................................................................... 79 

3.7 Conclusion .............................................................................................................. 81 

Chapter 4 Voltage stability analysis considering the uncertainties of 

dynamic load parameters ........................................................................................ 83 

4.1 Introduction ............................................................................................................. 83 

4.2 Exponential recovery load model............................................................................ 84 

4.3 Probabilistic eigenvalue .......................................................................................... 86 

4.4 Determination of probabilistic critical load level.................................................... 88 

4.5 Case studies ............................................................................................................. 88 

4.5.1 Test system I .................................................................................................... 89 

4.5.2 Test system II ................................................................................................... 94 

4.5.3 Test system III .................................................................................................. 96 

4.5.4 Observation of results ...................................................................................... 98 

4.6 Conclusion .............................................................................................................. 98 

Chapter 5 Probabilistic power system voltage stabilizer design 

considering uncertainties of loads ..................................................................... 101 

5.1 Introduction ........................................................................................................... 101 



5.2 Probability of stability ........................................................................................... 103 

5.3 Power system voltage stabilizers .......................................................................... 104 

5.4 Design of PSVS .................................................................................................... 105 

5.4.1 Location of PSVS ........................................................................................... 105 

5.4.2 Selection of PSVS input signal ...................................................................... 106 

5.4.3 PSVS parameter optimization ........................................................................ 109 

5.5 Case studies ........................................................................................................... 111 

5.5.1 9-bus system ................................................................................................... 111 

5.5.2 39-bus system ................................................................................................. 115 

5.6 Conclusion ............................................................................................................ 119 

Chapter 6 Conclusions and future work ........................................................ 121 

6.1 Conclusions ........................................................................................................... 121 

6.2 Recommended future work ................................................................................... 124 

Appendix 1 Machine models ............................................................................... 127 

Appendix 2 Representation of voltage dependent load ............................. 129 

Appendix 3 Test system data .............................................................................. 131 

Reference .................................................................................................................... 143 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



List of Figures 
 

Fig. 1. 1 Classifications of power system stability.............................................................. 2 

Fig. 2. 1 Interpretations of load margin in the load power space ...................................... 28 

Fig. 2. 2 Hyper-cone loading model and its worst conditions .......................................... 30 

Fig. 2. 3 Two cases for load increase direction ................................................................. 35 

Fig. 2. 4 PDF of exponential distribution .......................................................................... 44 

Fig. 2. 5 39-bus system ..................................................................................................... 45 

Fig. 2. 6 Probabilistic distributions of stability margin with different load variance in  

39-bus system with 0=B S  ............................................................................................... 49 

Fig. 2. 7Probabilistic distributions of stability margin with different load variance in  

39-bus system with B = S0 ................................................................................................ 50 

Fig. 2. 8 Probabilistic distributions of stability margin with different load variance in  

57-bus system with 0=B S  .............................................................................................. 53 

Fig. 2. 9 Probabilistic distributions of stability margin with different load variance in  

57-bus system with B = S0 ................................................................................................ 54 

Fig. 3. 1 Two types of elementary transfer blocks ............................................................ 62 

Fig. 3. 2 Overall view of PMT connection........................................................................ 62 

Fig. 3. 3 Probabilistic density function of a critical eigenvalue for σL=0.0389μ  ............. 73 

Fig. 3. 4 Distribution of stability margin of 9-bus system for σL=0.0389μ (without 

reactive limit of generator) ................................................................................................ 73 

Fig. 3. 5 9-bus system ....................................................................................................... 75 

Fig. 3. 6 Distribution of critical α with load variance σL ................................................. 77 

Fig. 3. 7 Distribution of stability margin of 9-bus system for σL=0.0775μ (without 

reactive limit of generator) ................................................................................................ 77 

Fig. 3. 8 39-bus system  .................................................................................................... 79 

Fig. 3. 9 Distribution of stability margin of 39-bus system for σL=0.0389μ (without 

reactive limit of generator) ................................................................................................ 80 

Fig. 3. 10 Distribution of stability margin of 39-bus system for σL=0.0775μ (without 

reactive limit of generator) ................................................................................................ 81 

Fig. 4. 1 Exponential recovery load representation........................................................... 86 



Fig. 4. 2 Flowchart to obtain critical load level ................................................................ 89 

Fig. 4. 3 Loci of the critical eigenvalues ........................................................................... 92 

Fig. 4. 4 Distribution of stability margin of 9-bus system for σP=0.0389μ ...................... 93 

Fig. 4. 5 Distribution of stability margin of 9-bus system for σP=0.0606μ ...................... 94 

Fig. 4. 6 14-bus system ..................................................................................................... 95 

Fig. 4. 7 Distribution of stability margin of 14-bus system for σP=0.0389μ .................... 96 

Fig. 4. 8 Distribution of stability margin of 14-bus system for σP=0.0775μ .................... 96 

Fig. 4. 9 Distribution of stability margin of 39-bus system for σP=0.0389μ .................... 97 

Fig. 4. 10 Distribution of stability margin of 39-bus system for σP=0.0775μ .................. 97 

Fig. 5. 1 Distribution of eigenvalue with 0.0618α = − and 0.1131ασ =  ....................... 104 

Fig. 5. 2 Symbolic representation of the excitation system of a generator including 

PSVS   ............................................................................................................................. 105 

Fig. 5. 3 Distribution of probabilistic stability margin of 9-bus system without PSVS . 112 

Fig. 5. 4 Voltage instability mode coefficient in 9-bus system ....................................... 113 

Fig. 5. 5 PSI corresponding to residue with input signals of nodal voltage of 9-bus 

system  ............................................................................................................................. 113 

Fig. 5. 6 Distribution of probabilistic stability margin of 9-bus system with 

optimized  PSVS ............................................................................................................. 115 

Fig. 5. 7 Distribution of probabilistic stability margin of 39-bus system without 

PSVS ............................................................................................................................... 116 

Fig. 5. 8 Voltage instability mode coefficient of 39-bus system .................................... 117 

Fig. 5. 9 PSI with input signals of nodal voltage of 39-bus system ................................ 118 

Fig. 5. 10 Distribution of probabilistic stability margin of 39-bus system with 

optimized PSVS .............................................................................................................. 119 

Fig. A1. 1 The GMT/PMT representation of the third-order generator model ............... 127 

Fig. A1. 2 The GMT/PMT representation of the fourth-order generator model............. 128 

Fig. A2. 1 Voltage dependant load module..................................................................... 130 

Fig. A3. 1 IEEE Type 1 rotating excitation system model adopted for 39-bus sysem ... 133 

Fig. A3. 2 Exciter model adopted for 9-bus system ........................................................ 138 

Fig. A3. 3 Exciter model adopted for 14-bus system ...................................................... 140 

Fig. A3. 4 Turbine governor model adopted for 14-bus system ..................................... 141 



List of Tables 
 
Table 2. 1 Functions and their expectation of random variable ........................................ 43 

Table 2. 2 Stability margin for 39-bus system with 0=B S  ............................................. 46 

Table 2. 3 Stability margin for 39-bus system with B = S0 .............................................. 47 

Table 2. 4 Stability margin for 57-bus system with 0=B S  ............................................. 51 

Table 2. 5 Stability margin for 57-bus system with B = S0 .............................................. 52 

Table 3. 1 Probabilistic stability margin with different probability requirement ............. 72 

Table 3. 2 Probabilistic stability margin with different load variance σL of 9-bus 

system (without reactive power limit of generator) .......................................................... 77 

Table 3. 3 Probabilistic stability margin with different load variance σL of 9-bus 

system (with reactive power limit of generator of Qmax=1) ............................................ 78 

Table 3. 4 Probabilistic stability margin with different load variance σL of 39-bus 

system (without reactive power limit of generator) .......................................................... 80 

Table 3. 5 Probabilistic stability margin with different load variance σL of 39-bus 

system (with reactive power limit of generator of Qmax=3) ............................................ 80 

Table 4. 1 Critical eigenvalues at different load levels with σP=0.0389μ   ...................... 91 

Table 4. 2 Stability margin with different variances σP of load parameters for 9-bus 

system     ............................................................................................................................ 93 

Table 4. 3 Stability margin with different variances σP of load parameters for 14-bus 

system   .............................................................................................................................. 95 

Table 4. 4 Stability margin with different variances σP of load parameters for 39-bus 

system   .............................................................................................................................. 97 

Table 4. 5 The computational time for ISM of different test systems................................. 98 

Table 5. 1 The critical eigenvalue at a critical load level without PSVS ........................ 112 

Table 5. 2 Probabilistic stability margin of 9-bus system without PSVS ....................... 112 

Table 5. 3 Voltage stability without and with PSVS ...................................................... 114 

Table 5. 4 Probabilistic stability margins with PSVS ..................................................... 114 

Table 5. 5 Critical eigenvalues at critical load level without PSVS ............................... 115 

Table 5. 6 Probabilistic stability margins of 39-bus system without PSVS.................... 116 

Table 5. 7 Voltage stability without and with PSVS ...................................................... 118 



Table 5. 8 Probabilistic stability margins of 39-bus system with PSVS ......................... 118 

Table A3. 1 Bus data of 39-bus system........................................................................... 131 

Table A3. 2 Line data for 39-bus system ........................................................................ 132 

Table A3. 3 Detailed model unit data of 39-bus system ................................................. 133 

Table A3. 4 Detailed model generator excitation system data of 39-bus system ........... 133 

Table A3. 5 Bus data of 57-bus system........................................................................... 134 

Table A3. 6  Line data of 75-bus system ........................................................................ 135 

Table A3. 7 Load-flow results of 9-bus system .............................................................. 137 

Table A3. 8 Line data of 9-bus system ........................................................................... 137 

Table A3. 9 Generator data of 9-bus system ................................................................... 137 

Table A3. 10 Exciter data of 9-bus system ..................................................................... 137 

Table A3. 11 Bus data of 14-bus system......................................................................... 138 

Table A3. 12 Line data of 14-bus system ....................................................................... 139 

Table A3. 13 Generator data of 14-bus system ............................................................... 139 

Table A3. 14 Exciter data of 14-bus system ................................................................... 140 

Table A3. 15 Turbine governor data of 14-bus system ................................................... 140 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 1 

Chapter 1 Introduction  

 

 

1.1 What is voltage stability 

Power system stability has been and continues to be an important problem for secure 

system operation since 1920s. It is the ability of an electric power system, for a 

given initial operating condition, to regain a state of operating equilibrium after 

being subjected to a physical disturbance, with most system variables bounded so 

that practically the entire system remains intact (Kundur et al., 2004). The 

classification of power system stability is proposed by IEEE/CIGRE task force 

(Kundur et al., 2004) shown in Fig. 1.1.  

 

Voltage stability, one category of power system stability, has attracted increasing 

attention in last decades. It refers to the ability of a power system to maintain steady 

voltages at all buses in the system after being subjected to a disturbance from a 

given initial operating condition (Kundur et al., 2004). When voltage instability 

occurs, voltages at some buses may progressively fall or rise. The main factor 

causing this problem is the inability of the power system to meet the demand for 

reactive power (Kundur, 1994). It is essentially a local phenomenon, but its 

consequences may have a widespread impact. A possible outcome of voltage 

instability is loss of load in an area, or tripping of transmission lines and other 
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elements by their protective systems leading to cascading outages (Kundur et al., 

2004), which may lead to loss of synchronism of some generators. 

 

The incidents of power systems due to voltage instability or voltage collapse in 

different countries all over the world have been reported by Taylor (1994) and 

Ajjarapu (2006). The west region (WECC) of the United States experienced voltage 

collapse on July 2, 1996. The blackout due to voltage collapse of Chilean power 

system in May 1997 resulted in a loss of 80% of its loads. Voltage collapse in 

Athens on July 12, 2004 led to the blackout of the entire Athens and Peloponnese 

peninsula. These incidents resulted in huge economic losses, life thereat and 

inconvenience to people. Therefore, voltage stability study has attracted increasing 

attention of researchers and engineers. 

Angle
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Fig. 1. 1 Classifications of power system stability 
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For convenience in analysis and for gaining useful insight into the nature of voltage 

stability problem, IEEE/CIGRE task force classified voltage stability into four 

categories: large-disturbance voltage stability, small-disturbance voltage stability, 

short-term voltage stability and long-term voltage stability (Kundur et al., 2004). 

 

Large-disturbance voltage stability refers to the system’s ability to maintain steady 

voltages following large disturbances such as system faults, loss of generation, or 

circuit contingencies. 

 

Small-disturbance voltage stability refers to the system’s ability to maintain steady 

voltages when subjected to small perturbations such as incremental changes in 

system load. 

 

Short-term voltage stability involves dynamics of fast acting load components such 

as induction motors, electronically controlled loads, and HVDC converters. The 

study period of interest is in the order of several seconds and analysis requires 

solution of appropriate system differential equations. 

 

Long-term voltage stability involves slower acting equipment such as tap-changing 

transformers, thermostatically controlled loads, and generator current limiters. The 

study period of interest may extend to several or many minutes, and long-term 

simulations are required for analysis of system dynamic performance. Stability is 

usually determined by the resulting outage of equipment, rather than the severity of 

the initial disturbance. 
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1.2  Literature review 

There are two aspects in voltage stability analysis: one is voltage instability 

mechanism analysis, including identifying factors that lead to voltage instability and 

the weak area and buses that are most susceptible to voltage instability; the other is 

voltage stability assessment, including estimating whether the power system is 

voltage stable and calculating the voltage stability margin (Gao, Morison, & Kundur, 

1992). 

1.2.1 Voltage instability mechanism  

Great progress has been made in voltage stability studies. However, in comparison 

with rotor angle stability theory, the theory of voltage stability is far away from 

mature. Even the wide agreement on the mechanism of voltage instability has not 

been reached.  

 

During early period, voltage stability was regarded as static problem. As a result, the 

existence of the equilibrium points of power system was the major criterion for 

voltage stability. This voltage collapse mechanism is mainly interpreted by multiple 

solutions of power flow equations (Tamura, Mori, & Iwamoto, 1983) and the 

existence of the intersection of system and load curves (Begovic et al., 1995). With 

the further development of voltage stability studies, the complexity of voltage 

instability and the effect of dynamic elements of power system have been recognized, 

such as dynamic characteristic of load, generators, exciter systems, on-load tap 

changer, reactive compensators and converter of high voltage direct current devices. 
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Consequently, the dynamic mechanism for voltage collapse draws more attention 

(Bao, Duan, & He, 2000; Dahlgren, 1994). The restoration characteristic of dynamic 

load is important research interest. 

1.2.2 Voltage stability analysis 

Voltage stability is a complex problem. Many methods have been developed. 

According to the models used, they can be divided into three types: static analysis 

based on power flow equations, small disturbance analysis based on linearized 

system differential-algebraic equations, and dynamic time domain simulations based 

on nonlinear system differential-algebraic equations.  

1.2.2.1 Static analysis  

Static voltage stability study focuses on the existence of power system equilibrium 

points. It requires that the disturbance is so small and the evolvement of power 

system is so slow that the dynamic characteristics can be ignored. It regards power 

system transmission limit as the stability limit. There are many static analysis 

methods developed in literature. Most of them are based on the characteristic at the 

critical point, such as V-Q sensitivity analysis, Q-V modal analysis, singular value 

decomposition etc, some are based on multi-solutions of load flow equations, and 

others are originally derived from a two bus network and are extended to complex 

power system (Kessel & Glavitsch, 1986; Smon, Verbic, & Gubina, 2006; Vu, 

Begovic, Novosel, & Saha, 1999).  
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 V-Q sensitivity analysis (Kundur, 1994) 

The network constraints may be expressed in the following linearized form (Kundur, 

1994): 

∆ ∆    
=     ∆ ∆    

PθPV

QθQV

J JPθ
J JQ V

                                                         (1.1) 

where ΔP and ΔQ  are incremental changes in bus real power and reactive power 

injections. Δθ is incremental change in bus voltage angle, and ΔV is incremental 

change in bus voltage magnitude. 

In order to analyze the incremental relationship between Q and V, let ΔP = 0, the 

following equation is given, 

∆ = ∆RQ J V                                                                (1.2) 

where 

1[ ]−= −R QV QθPθPVJ J J J J                                                        (1.3) 

JR is the reduced Jacobian matrix of the system. From equation (1.2), equation (1.4)

is given 

1−∆ = ∆RV J Q                                                                (1.4) 

The ith diagonal element of the matrix 1
R
−J  is the V-Q sensitivity at bus i. It 

represents the change in bus voltage magnitude with respect to the change in 

reactive power injection at the same bus, and is used as indication of the proximity 

of the bus to voltage instability. If the V-Q sensitivity for every bus is positive, the 

system is stable; if the V-Q sensitivity for at least one bus is negative, the system is 

unstable. Because of the nonlinear nature of the V-Q relationships, the magnitudes 
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of the sensitivities for different system conditions do not provide a direct measure of 

the relative degree of stability. 

 

 Q-V modal analysis (Gao et al., 1992; Kundur, 1994; Morison, Gao, & Kundur, 

1993) 

The eigenvalues and the eigenvectors of the reduced Jacobian matrix JR defined in 

(1.3) can be used to identify voltage stability characteristic of the system. For 

practical purposes, JR can be taken as a symmetric matrix and therefore, the 

eigenvalues of JR are close to being purely real (Gao et al., 1992) . If all eigenvlues 

are positive, the system is voltage stable; if at least one eigenvalue is negative, the 

system is voltage unstable. The magnitude of eigenvalue determines the degree of 

stability. Although this magnitude of the eigenvalues can provide a relative measure 

of the proximity to instability, they do not provide an absolute measure due to the 

nonlinearity of the problem. Participations obtained from right and left eigenvectors 

corresponding to the smallest eigenvalue can provide the information of concerned 

variable associated with the critical mode, and can be used to determine weak buses 

(Gao et al., 1992).  

 

 Singular value decomposition 

The Jacobian matrix of power flow equations is singular at the critical point of the 

power system. The smallest singular value of a matrix is the shortest distance 

between the matrix and its corresponding singular matrix. If the minimum singular 

value of Jacobian matrix of power flow equal to zero, then the studied matrix is 
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singular and no power flow solution can be obtained (Lof, Andersson, & Hill, 1993). 

Therefore, the minimum singular value of Jacobian matrix of power flow has been 

used as a static voltage stability index (Hong, Pan, & Lin, 1997; Lof et al., 1993; Lof, 

Smed, Andersson, & Hill, 1992; Tiranuchit & Thomas, 1988). Fast and highly 

efficient algorithms to get the minimum singular value of Jacobian matrix of load 

flow equations have been presented (Hong et al., 1997; Lof et al., 1992). Due to the 

nonlinear relationship, the minimum singular value cannot supply information for 

the margin (the distance between the current operating point and the point of voltage 

collapse).  

 

 Continuation power flow  

Continuation power flow can trace the power flow solution curve with respect to a 

varying parameter in concern. From the solution curve, the voltage collapse point, i.e. 

the critical point or steady-state voltage stability limit, and stability margin can be 

obtained. To get these power flow solutions, the iterative calculation starts from a 

known solution, and the predictor and corrector technique is used to get the 

subsequent solution at different load levels. As the Jacobian matrix of power flow 

equations is singular at voltage collapse point, it is difficult to get the solution of 

power flow near the critical point. The difficulty is overcome by introducing other 

parameter and equation (Ajjarapu & Christy, 1992; Canizares & Alvarado, 1993; 

Chiang, Flueck, Shah, & Balu, 1995; Iba, Suzuki, Egawa, & Watanabe, 1991; Li & 

Chiang, 2008; Mori & Yamada, 2002), which make the power flow Jacobian 

nonsingular at the voltage collapse point.  
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Continuation power flow provides a robust numerical solution technique to obtain 

the voltage stability critical point, and it can take different inequality constrains into 

account. Nevertheless, this method only obtains an approximate solution other than 

an exact solution of collapse voltage and it is time-consuming. 

 

 Point of collapse method 

A salient characteristic of voltage collapse point is that the Jacobian matrix J of 

power flow equations is singular, i.e. J has a zero eigenvalue but the corresponding 

eigenvectors (left and right) are non-zero. Employing this characteristic, point of 

collapse method have been proposed to obtain the critical point of power system by 

solving the expanded power flow equations as follow (Canizares & Alvarado, 1993; 

Chiang & Jean-Jumeau, 1995; Lu, Liu, & Thorp, 1995)  

( , )
( , ) (or ( , ) )

1 0 ( 1 0)
x x
T T

x

or

λ
λ λ
=
⋅ = ⋅ =

− = − =

f x 0
f v 0 w f x 0

v v ww

                                                  (1.5) 

where v (w) is the right (left) eigenvector corresponding to the zero eigenvalue of 

Jacobian matrix fx(x,λ). In general, a set of 2n+1 nonlinear equations have to be 

solved when this method is used. 

 

The point of collapse method can obtain the critical points quickly. However, it is 

restricted by the initial solution. If the initial solution is not appropriate, it may fail 

to get the critical point. Furthermore, it is difficult for this method to consider 

reactive power limit of generator and other inequality constrains. 
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 Nonlinear programming technique 

As the critical point corresponds to the maximum load power, the determination of 

critical point can be expressed as an optimization problem (Obadina & Berg, 1988; 

Cutsem, 1991; Zarate, Castro, Ramos, & Ramos, 2006). Optimal solution is solved 

by nonlinear programming technique and the stability margin can be obtained from 

the optimal solution. Nonlinear programming optimization technique (Ajjarapu, Lau, 

& Battula, 1994; Hwachang, Byongjun, Sae-Hyuk, & Ajjarapu, 2003; Song, Lee, & 

Moon, 2005) has been used to enhance the voltage stability margin of power system.  

 

Nonlinear programming technique can calculate the critical point accurately and 

quickly. It can also take different inequality constrains into account.  

 

 Closest critical point 

Voltage stability margin is a useful index for power system planning and operation. 

Usually, it is assumed that loads increase along a predefined direction until the 

system’s maximum load point is reached. An unexpected load increase at some 

buses or area may result in smaller voltage stability margin. The closest critical point, 

which is defined as the point on the loadability boundary having minimum 

Euclidean distance from an operating point, represents the worst case scenario for a 

power system. The corresponding load increase direction can provide useful 

information to operators to take measures against voltage collapse. Different 

methods (Alvarado, Dobson, & Yi, 1994; Bedoya, Castro, & da Silva, 2008; Dobson, 

1992; Dobson & Lu, 1993; Mori & Iizuka, 1998; Nam, Song, Kim, Moon, & Lee, 
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1999; Yorino, Harada, & Cheng, 1997) have been developed to estimate the closest 

critical point and the corresponding load increase direction.   

 

 Multiple power flow solutions 

Load flow equations are a set of nonlinear equations, and they may have multiple 

solutions. The multiple solutions have been used to estimate the voltage stability of 

power system. The relationship between voltage instability and multiple load flow 

solutions in electrical power system has been examined in the work of  Tamura et al 

(Tamura et al., 1983), which stated that the individual solutions of the solution pair 

have different features from each other even through they are close to each other. 

Since a pair of near solutions is indispensable for estimating a critical load condition 

accurately, a method for finding a pair of multiple load flow solutions in bulk power 

system has been proposed (Iba, Suzuki, Egawa, & Watanabe, 1990). An efficient 

algorithm to solve all load flow solutions have been presented (Ma & Thorp, 1993). 

Tamura, Sakamoto, & Tayama (1988) proposed a voltage instability proximity index 

based on multiple load flow solutions which can be used for monitoring the system 

state. Liu, Chang, Jiang, & Yeh (2005) described an algorithm to compute all the 

type-1 load-flow solutions based on continuation power flow method, which can 

provide more complete information for voltage stability assessment.  

 

 Local method    

In this method, different indicators for voltage collapse are first derived from simple 

two-bus system (El-Kateb, Abdelkader, & Kandil, 1997; Kessel & Glavitsch, 1986; 
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Musirin & Rahman, 2002; Smon et al., 2006; Vu et al., 1999), and then these 

indicators are extended to complex power system. One way that these indices are 

used to determine the stability of complex system is using the Thevenin’s equivalent 

which is obtained from original power system as seen from the load bus. The other 

way is to evaluate the index for every line or every load bus in the system. A local 

method (Vu et al., 1999) is proposed based on the power transfer impedance-

matching principle. The measured data are used to obtain the Thevenin’s equivalent 

of the system and the apparent impedance of the load.  Voltage collapse occurs when 

load impedance and the equivalent apparent impedance are equal. The indicator L 

which varies between 0 (no load of system) and 1 (voltage collapse) is defined  to 

detect voltage instability (Kessel & Glavitsch, 1986). El-Kateb et al.(1997) 

developed a linear indicator for voltage collapse, and the indicator was extended to a 

multinode power system. Smon et al. (2006) used the Tellegen’s theorem to simplify 

the determination of the Thevenin’s parameters and proposed a new index to 

determine the voltage-stability margin. 

 

The local methods use the local information to directly evaluate voltage stability. In 

addition to the benefits of small computation effort and simplicity, local methods 

also give a good insight into the voltage-collapse process and can easily be used for 

online system monitoring.  

 

In summary, static voltage analysis techniques are still attractive because its 

calculation is simple and fast. Furthermore, the static analysis techniques can 
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provide much insight into the nature of the problem and identify the key contributing 

factor if appropriately used. 

1.2.2.2 Small disturbance analysis  

Small disturbance analysis is used to estimate the stability of power system under 

small perturbation. This method is a rigorous mathematic method and determines 

whether the system is stable by eigenvalues of state matrix, which is obtained by 

eliminating algebraic variables of linearized differential-algebraic equations at their 

equilibrium operating points. If all eigenvalues have negative real parts, the system 

is asymptotically stable.  

 

This method has been used for voltage stability analysis along the P-V curve 

(Byongjun & Ajjarapu, 1995; Rajagopalan, Lesieutre, Sauer, & Pai, 1992). With 

system parameter variations, different bifurcations, such as saddle-node bifurcation, 

Hopf bifurcation and singularity-induced bifurcation, may occur (Byongjun & 

Ajjarapu, 1995). The dynamic aspects of operation on a typical P-V curve were 

examined with a typical system model of machines with voltage regulators, constant 

impedance and constant power loads (Rajagopalan et al., 1992). Besides generator 

dynamics and associated control devices, the load dynamics were also taken into 

account (Byongjun & Ajjarapu, 1995). Small disturbance analysis has been used to 

analyze structural stability related to bifurcation phenomena and the effect of 

different load models was investigated (Pai, Sauer, Lesieutre, & Adapa, 1995). 

Vournas, Pai, & Sauer (1996) studied the relationship between types of bifurcation 

in power systems and their expected occurrence for voltage regulated and 
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unregulated synchronous machines on a single machine infinite bus system. Zeng, 

Berizzi, & Marannino (1997) used small-signal voltage stability analysis to study the 

influence of the various model parameters on the voltage stability limits. Su, Cheng, 

Wen, & Zhang (2006) examined the dynamic stability using small signal analysis 

and identified the stability type by mode participation factors of the state variables. 

A fast algorithm was proposed to identify and trace both saddle node bifurcation and 

Hopf bifurcation and to estimate the stability margin without calculating any 

eigenvalues (Zhou & Ajjarapu, 2005). The integration-based eigenvalue tracing was 

presented to trace any specified eigenvalue of interest (Wen & Ajjarapu, 2006). This 

method was used to identify Hopf bifurcation and determine the stability margin. 

The relationship between a detailed power system dynamic model and a standard 

load flow model has been discussed  (Sauer & Pai, 1990). Only under very drastic 

assumptions about the synchronous machines and their control systems, the 

determinant of the standard load flow Jacobian provides information about the 

steady-state stability of a dynamic model.  

 

In a realistic power system, there are many dynamic elements and time constants of 

these dynamic elements can range from seconds to ten minutes. It is crucial to 

establish the appropriate system model, which is simple and can reflect the dynamic 

nature of power system.  

1.2.2.3 Dynamic analysis 

Dynamic method based on non-linear differential algebraic equations is often 

regarded as time domain simulation. Time domain simulation is a powerful measure 
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to explore the mechanism and process of voltage collapse, to verify voltage stability 

study findings and to investigate the effectiveness of control measure in voltage 

stability enhancement. The results of time simulation are clear and intuitional. 

Simulation was employed to demonstrate the mechanism of the voltage collapse on 

39-bus 10-generator system when suffering a very small increase of loads near the 

static bifurcation point (Begovic & Phadke, 1990). To reduce the oscillation and 

enhance dynamic voltage stability, time simulation was used to investigate the 

effectiveness of the proposed parameter optimization method (Lee & Lee, 1993). 

Simulation was used to demonstrate voltage oscillatory instability caused by the 

induction motor loads interacting with automatic voltage regulators and to show the 

control effectiveness of an appropriate lead/lag compensation in the automatic 

voltage regulator (de Mello & Feltes, 1996). Static and simulation programs have 

been developed for voltage stability studies, and their practicality were verified by 

Nagao, Tanaka, & Takenaka (1997).  Borghetti, Caldon, Mari, & Nucci (1997) have 

used time simulation method to study the effect of different simplified-dynamic load 

models on voltage stability analysis. Morison et al (1993) have presented time 

domain simulation to demonstrate voltage instability and to clarify the influence of 

ULTCs, generator MXLs, and voltage dependent loads. 

 

According to the different responding time of different dynamic elements, voltage 

stability analysis can be classified into long term and short term analysis (Cutsem, 

1998; Kundur et al., 2004). With modern computer technology, it is quite feasible to 

handle the whole set of differential-algebraic, discrete-continuous time equations in 
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digital simulations. However, for the purposes of understanding voltage instability 

mechanisms as well as devising faster analysis methods, it is advantageous to exploit 

the time separation which exists between the short and long term phenomena. 

Therefore, time-scale decomposition was introduced and discussed (Cutsem, 1998). 

The idea of time-scale decomposition is described as follow. The fast subsystem is 

assumed infinitely fast and can be replaced by its equilibrium equations when 

dealing with the slow subsystem. Conversely, the fast dynamics can be 

approximated by considering the slow variables as practically constant during the 

fast transients. The Quasi Steady-State (QSS) approximation for slow subsystem has 

been used to simulate the voltage behavior of a power system beyond the transient 

period (Cutsem & Mailhot, 1997). The QSS approximation for mid term simulation 

was combined with small signal analysis to analyze the transient and mid-term 

dynamics of power system voltage stability (Cutsem & Vournas, 1996). Van Cutsem, 

Moisse, & Mailhot (1999) combined QSS simulation and binary search to form an 

efficient tool suitable for off-line security limit determination.  

 

Time domain simulations, in which appropriate modeling is included, capture the 

events and their chronology leading to instability. However, such simulations are 

time-consuming and do not readily provide sensitivity information and the degree of 

stability.  

1.2.2.4 Summary of deterministic voltage stability analysis 

In summary, different research methods for voltage stability have been reviewed.  

Most of the computational methods for voltage stability analysis developed so far 
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are based on the analysis of a predetermined set of severe but credible situations. 

However, there are uncertainties such as measurement errors, forecast inaccuracy 

and outages of system elements in power systems. To carry out deterministic voltage 

stability analysis for every possible or probable combination of bus loads and 

generating unit outages is completely impractical because of an extremely large 

computational requirement. Therefore, probabilistic methods have been introduced 

to power system stability analysis taking these uncertainties. 

1.2.3 Probabilistic analysis in voltage stability analysis  

The probabilistic theory has been successfully used in many aspects of power system 

analysis (Anders, 1990), such as the reliability evaluation, production simulation, 

power network loss analysis, load flow studies and transient stability analysis. 

Probabilistic method has been used in voltage stability analysis considering different 

uncertainties such as element forced outages (Aboreshaid & Billinton, 1999; Arya, 

Titare, & Kothari, 2007; Billinton & Aboreshaid, 1998; Sharaf & Berg, 1991), load 

uncertainty (Hatziargyriou & Karakatsanis, 1998; Kataoka, 2003; Nwankpa & 

Hassan, 1993; Schellenberg, Rosehart, & Aguado, 2006; Sobierajski & Fulczyk, 

2004) and load parameters (Indulkar & Viswanathan, 1983) etc. Indulkar & 

Viswanathan (1983) described a probabilistic approach for evaluation of voltage 

stability of Extra High Voltage lines with series compensation, where the 

uncertainties of the coefficients of the load polynomials relating the complex power 

of the loads with the load voltage were considered. Sharaf & Berg  (1991) proposed 

a probabilistic voltage stability indexes based on sensitivity, the expected voltage 

instability proximity, which takes into account the probabilistic nature of system 
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elements’ forced outages. Voltage stability considerations have been included in the 

reliability assessment (Amjady, 2004; Billinton & Aboreshaid, 1998; Momoh, 

Makarov, & Mittelstadt, 1999). Aboreshaid & Billinton (1999) proposed a 

probabilistic evaluation approach of voltage stability based on contingency 

enumeration. Probabilistic load flow for assessment of voltage instability has been 

presented taking into account the random variation of loads, generation uncertainties, 

dispatching effects and outages (Hatziargyriou & Karakatsanis, 1998). Kataoka 

(2003) proposed a nodal loading model, called the “hyper-cone” model, for use in 

voltage stability assessment of electric power systems and determined the worst 

cases based on this model. The “vertex” of the hyper-cone is taken to be the current 

operating point, and the uncertainty of future loading is represented by the 

“thickness” of the hyper-cone. Schellenberg et al (2006) describes a probabilistic 

voltage stability analysis based on cumulant-based stochastic nonlinear 

programming to get the probabilistic distributions of maximum load levels and bus 

voltages. A security measure has been presented by De Marco & Bergen (1987). It 

indicated vulnerability to voltage collapse which accounts for random load 

disturbances in electric power system. A voltage collapse indicator has been defined 

(Nwankpa & Hassan, 1993) which considers the effects of random fluctuations at 

various load buses by using a stochastic approach. Sobierajski and Fulczyk (2004) 

developed P-Q curve method to estimate the probability of the critical voltage 

violation under the assumption that active and reactive power at a given load bus are 

uniformly distributed. 
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However, most of the previous probabilistic voltage stability analysis methods are 

based on static analysis and do not consider the effects of dynamic elements in 

power systems. Indeed, voltage instability or collapse is dynamic process (Taylor, 

1994). The probabilistic method should be incorporated with dynamic voltage 

stability analysis to obtain more accurate and reliable results. 

1.2.4 P robabilistic e igenvalue used in  p ower s ystem dynamic 

stability studies 

Probabilistic theory was introduced for power system dynamic stability studies 

(Burchett & Heydt, 1978). The sensitivities of eigenvalues are used to calculate the 

statistics of eigenvalues from the known statistic nature of system stochastic 

parameters. Under the assumption that system parameters are multivariable normal 

distribution, the probabilistic densities of real parts of eigenvalues are determined. 

The stability probability of entire power system is then computed from joint normal 

distribution. With the development of eigenvalue sensitivities with regard to 

arbitrary system parameters (Wang, Chung, Tse, & Tsang, 2000b), probabilistic 

eigenvalue have been used to analyze the angular stability of power system and to 

determine the probabilistic stability considering the multiple operation conditions 

(Wang, Chung, Tse, & Tsang, 2000a; Wang, Tse, & Tsang, 1998). Probabilistic 

eigenvalue method has been also used for robust PSS site selection (Wang, Chung, 

Tse, & Tsang, 2001) and the parameter optimization of robust PSSs (Chung, Wang, 

Tse, Bian, & David, 2003; Chung, Wang, Tse, & Niu, 2002; Tse, Wang, Chung, & 

Tsang, 2000). 
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1.3 Motivation of this research work 

Probabilistic voltage stability analysis methods have been presented in literatures. 

Most of them use probabilistic index to assess the voltage stability of power system, 

and indicate which buses are weak and most susceptible to instability. Few of them 

indicate the probabilistic voltage stability margin. Furthermore, few of them 

consider effect of dynamic elements of power systems.  

 

Small disturbance method has been used for voltage stability analysis. But most of 

them are based on deterministic situations. The uncertainties of loads are not taken 

into account. Although dynamic loads have been included in small disturbance 

voltage stability analysis, the uncertainties of load model parameters have not been 

considered.  

 

Probabilistic eigenvalue analysis has been developed for dynamic stability studies of 

power system. The first order and second sensitivities of eigenvalues with regard to 

arbitrary system parameters have been systematically determined. This provides the 

foundation for small disturbance voltage stability studies using probabilistic 

eigenvalues considering the uncertainties of load and load parameters. 

 

Similar to robust Power System Stabilizers (PSS) for rotor angle stability under 

multiple operating conditions, the voltage stability should be improved by designing 

some robust voltage stability stabilizers.  
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This thesis aims to incorporate the probability theory with voltage stability analysis, 

to determine probabilistic stability margin and to design voltage stability controller 

for improvement of voltage stability. The objectives of this project can be defined as: 

 

• to determine the probabilistic distribution of static voltage stability margin  

considering the random variations of loads; 

 

• to determine the probabilistic stability margin considering uncertainties in 

loads by using probabilistic eigenvalue method;  

 

• to extend probabilistic eigenvalue technique to include uncertainties of load 

parameters in voltage stability analysis; 

 

• to design power system voltage stabilizer to improve voltage stability taking 

into account random load variations. 

 

Probabilistic distribution of voltage stability margin  

Voltage stability margin is a useful index to quantify the degree of stability, which 

indicates how far the current operating point is to the collapse point. The technique 

based on power flow is often used to determine voltage stability margin because it is 

simple and fast. In practice, loads in power system are random so that the stability 

margin is random variable. In the present study, the probabilistic characteristics of 

stability margins and critical points can be obtained from those of loads through 
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probabilistic point of collapse method, and then the distribution of stability margin 

and other variables at critical point can be determined by maximum entropy. The 

effect of load uncertainty degree on stability margin will be examined. 

Probabilistic stability margin considering load uncertainties 

In small disturbance voltage stability analysis, different bifurcations have been 

regarded as the critical point for voltage stability. In this study, Hopf bifurcation is 

regarded as the critical point of voltage stability. In order to obtain Hopf bifurcation, 

one has to form state matrix A firstly. Elements of the state matrix A are functions of 

system parameters which are assumed to have known statistics. Therefore, the 

stability margin determined by Hopf bifurcation is non-deterministic. As 

probabilistic eigenvalue analysis has been systematically developed, the stability 

probability of power system is easy to determine at any load level. In this research 

work, the probabilistic critical point which is the maximal load point meeting 

stability requirements, and the probabilistic stability margin will be determined by 

probabilistic eigenvalue technique considering the uncertainties of loads.   

Probabilistic stability margin considering uncertainties of load parameters 

With the advancement of voltage stability study, load dynamics have been 

recognized. After exponential recovery load model (Karlsson & Hill, 1994) and 

adaptive load model (Xu & Mansour, 1994) proposed according to the results from 

the measurement of actual power system load, dynamic load models have been 

introduced to voltage stability analysis (Byongjun & Ajjarapu, 1995; Zeng et al., 

1997). There is always some uncertainty associated with load parameters due to the 
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dynamic load variation. Dynamic parameter variation will affect the assessment of 

voltage stability margin. Therefore, in this research work, the probabilistic 

eigenvalue is extended to study the effect of uncertainties of load parameter on 

probabilistic stability margin. 

Power system voltage stabilizer design and parameter optimization 

Similar to Power System Stabilizer used for angular stability, Power System Voltage 

Stabilizer has been presented for dynamic voltage stability enhancement of power 

systems or prevention of fast voltage stability (Radman, Pama, Powell, & Gao, 

2007). Considering the random variations of loads, the present study will adopt 

probabilistic eigenvalue to design power system voltage stabilizer to enhance 

voltage stability. The location, design and parameters optimization of power system 

voltage stabilizer will be presented.  

1.4 Outline of the thesis 

The remaining chapters of the thesis are arranged as follows. 

 

Chapter 2 determines the probabilistic distribution of voltage stability margin based 

on probabilistic point of collapse method and maximum entropy. The effect of 

uncertainty degree of loads will be investigated. 

 

Chapter 3 examines the probabilistic eigenvalue methods for determination of 

probabilistic stability margin considering the uncertainties of loads. 
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Chapter 4 extends the probabilistic eigenvalue technique to take into account 

uncertainties of dynamic load parameters in voltage stability analysis.  

 

Chapter 5 presents a probabilistic method for power system voltage stabilizer design 

and parameter optimization to improve voltage stability of power system. 

 

Chapter 6 encapsulates the main finding and contribution of this research work and 

points out some suggestions for future work on probabilistic voltage stability studies.  
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 Chapter 2 Voltage stability analysis based on 

probabilistic power flow and maximum entropy 

 

 

2.1 Introduction 

Static voltage stability analysis based on power flow attracts researchers because of 

its simplicity and fast calculation. It regards the maximum load point as the critical 

point, where the Jacobian matrix of the power flow equations becomes singular.  

Static voltage stability analysis can provide margin index which is the distance 

between the current operating point and the maximum load point for power system 

operators. 

 

The stability margin is also called load margin. Two types of load margins have 

been proposed for voltage stability analysis (Ajjarapu & Christy, 1992; Canizares & 

Alvarado, 1993; Dobson & Lu, 1993). As illustrated in Fig. 2.1, one is obtained by 

increasing loads and generations from the current operating point S0 along a 

predefined direction B (Ajjarapu & Christy, 1992; Canizares & Alvarado, 1993; 

Zarate, Castro, Ramos, & Ramos, 2006) until the system maximum load point S* is 

reached (Fig. 2.1(a)). Since the direction of loads and generations is predefined, the 

load coefficient λ can describe the load margin. The other is the distance between 

current operating point S0 and the closest critical point Scr which is on the critical 

super surface Σ and has the smallest Euclidean distance from the current operating 
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point S0 (Fig. 2.1(b)) (Alvarado, Dobson, & Yi, 1994; Dobson & Lu, 1993). Scr 

represents the worst case scenario for a given power system. In general, these two 

types of load margins are often applied for deterministic voltage stability analysis. 

(a) (b)
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Fig. 2. 1 Interpretations of load margin in the load power space 
 

Deterministic voltage stability analysis requires specific values for loads. In reality, 

the loads vary from time to time. It is impossible to carry out conventional voltage 

stability study for every possible or probable combination of bus loads because of 

the requirements on extremely large computational effort. Probabilistic method may 

be the best technique to a wide range operation of load variations/uncertainties. 

Various probabilistic methods have been used for voltage stability analyses 

(Aboreshaid & Billinton, 1999; Haesen, Bastiaensen, Driesen, & Belmans, 2009; 

Hatziargyriou & Karakatsanis, 1998; Kataoka, 2003; Schellenberg, Rosehart, & 

Aguado, 2006; Sharaf & Berg, 1991). Sharaf and Berg (1991) presented expected 

voltage instability proximity index at all load buses based on sensitivity which took 

into account the element forced outages. According to voltage instability index, the 

weakest bus close to voltage instability or collapse is identified. Sharaf & Berg 

(1991) also determined the worst scenario of voltage stability and distinguished the 
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critical system elements as well as the probability of the worst scenario. 

Hatziargyriou & Karakatsanis (1998) used the results of the probabilistic load flow 

to appraise voltage instability considering random variation of loads, generation 

uncertainties, dispatching effects and outages. The standard deviation of voltage and 

reactive injection sensitivities have been applied as probabilistic voltage collapse 

indices. A hyper-cone nodal loading model (Kataoka, 2003) whose thickness 

represents the uncertainty of future loading, has been developed for voltage stability 

assessment of electric power system. The worst case S2 is determined on the 

intersection of the transfer limit surface and the loading hyper-cone (Fig. 2.2). S1 and 

S3 respectively represent the minimum total load critical point and the on-scenario 

critical point.  Sobierajski and Fulczyk (2004) employed the P-Q curve to estimate 

the probability of the critical voltage violation under the assumption that active and 

reactive power at given load buses are uniformly distributed. Schellenberg et al. 

(2006) suggested a cumulant-based method to solve a maximum loading problem 

incorporating a constraint on the maximum variance of the loading parameters. They 

took advantage of some properties regarding saddle node bifurcations to create a 

linear mapping relationship between random bus loading variables and all other 

system variables to evaluate the cumulants of system variables, and obtained the 

probabilistic density function of stability margin. Stochastic response surface 

method (Haesen et al., 2009) has been employed for a probabilistic load margin 

considering stochastic generation source.  
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Fig. 2. 2 Hyper-cone loading model and its worst conditions 
 

Although probabilistic methods have been adopted for voltage stability studies, most 

of them are used to assess the voltage stability and to identify the weak buses or area. 

Only a few papers (Haesen et al., 2009; Schellenberg et al., 2006) can provide the 

probabilistic distribution of stability margin taking into account random variations of 

the loads or generations. This chapter combines the probabilistic technique and point 

of collapse approach to determine the probabilistic characteristics of stability margin 

and nodal voltages at the maximum load point, and then applies the maximum 

entropy technique to study the distribution of stability margin considering the load 

variations.  

 

Entropy, a concept in information theory, is a measure of uncertainty. An entropy 

application is to deal with problems involving the determination of unknown 

distributions but with available information such as expected values or other 

statistical functions (Papoulis, 2002; Zellner & Highfield, 1988). Similar to the 

cumulant method, maximum entropy method is a general method and is not 

restricted to a special distribution. With the moments of random variable of stability 
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margin obtained in terms of probabilistic point of collapse approach, the distribution 

can be determined by maximum entropy. 

2.2 The foundation of probability theory  

2.2.1 Numerical attributes of random variables  

In many practical problems, the characteristic of random variables can be described 

by the numerical attributes such as expected value, variance, and moment. 

a) Expected value (Bartoszyński, 1996) 

If X is a discrete random variables that assumes values x1,x2,…with probabilities 

P{X=xi}, i=1,2,…n,…, then the expected value of X is defined as 

( ) { }i i
i

E X x P X x                                                   (2.1) 

provided that  

{ }i i
i

x P X x                                                        (2.2) 

If X is a continuous random variable with density function f(x), then the expected 

value of the variable X is defined as 

( ) ( )E X xf x dx



                                                        (2.3) 

provided that 

( )x f x dx



                                                          (2.4) 

The reason for introducing conditions (2.2) and (2.4) is connected with the 

possibility that the value of an infinite sum may depend on the order of summation 

(and a similar phenomenon may occur for an integral). The absolute convergence 
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(respectively absolute integrability) guarantees that the expected value is 

unambiguously defined. 

 

b) Moments (Bartoszyński, 1996) 

Given random variable X, the expectation of nX , if it exists, will be called nth 

moment (or moment of the order n) of X, denoted as mn, 

( )n
nm E X                                                                           (2.5) 

and mn exists if  E|X|n<∞. 

Clearly, the moment of the order zero always exists and equals one, while 1m is 

simply the expectation of X. 

Ordinary moments of the random variable ( )Y X E X  are called central moments 

of X, so that  

1[( ) ]n
n E X m                                                                   (2.6) 

where 1 ( )m E X . 

Obviously, the first central moment 1 is always zero. 

 

c) Variance (Bartoszyński, 1996) 

If 2( )E X   , then the second central moment of X is called the variance of X:  

2 2
1[( ) ]E X m                                                                (2.7) 

where 1 ( )m E X . The positive square root of variance σ2 is called the standard 

deviation of X. 
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d) Covariance (Bartoszyński, 1996) 

The covariance between X and Y is defined as 

Cov( , )= ( ) ( ) ( ) [( ( ))( ( ))]X Y E XY E X E Y E X E X Y E Y                   (2.8) 

If Cov(X,Y)=0, the random variables X, Y are called uncorrelated or orthogonal. 

The coefficient of correlation between X and Y is defined as 

,
Cov( , )

X Y

X Y

X Y 
 

                                                   (2.9) 

2.2.2 Normal distribution  

The normal distribution is perhaps the most important distribution in statistical 

paradigms since many measurements approximate normal distributions (Hogg, 

1983). X is a normal random variable (Hogg, 1983; Ross, 1993) (or X is normally 

distributed) with parameters μ and σ2 if the density of X is given by  

2 2( ) /21( ) ,
2

xf x e x 


                                   (2.10) 

In fact μ and σ2 are the mean and the variance of this distribution. The normal 

distribution is denoted as N(μ, σ2).  

Let Y=(X- μ)/ σ, the density of Y is  

2 /21( ) ,
2

yf y e y


                                             (2.11) 

Y is a standard normal random variable. The mean and the variance of the standard 

normal distribution are respectively zero and one. 
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2.3 Point of collapse method for voltage stability analysis  

Because of its simple calculation and intuition, voltage stability analysis based on 

power flow is still attractive. Many methods such as continuation power flow 

(Ajjarapu & Christy, 1992; Iba, Suzuki, Egawa, & Watanabe, 1991), non-linear 

programming method (Irisarri, Wang, Tong, & Mokhtari, 1997; Parker, Morrison, & 

Sutanto, 1996) and point of collapse method (Canizares & Alvarado, 1993; Chiang 

& Jean-Jumeau, 1995), have been used to obtain the saddle-node bifurcation and 

stability margin. In order to incorporate with probabilistic method conveniently, 

point of collapse is adopted to compute the stability margin in this chapter. 

 

A salient characteristic of the voltage collapse point is that the Jacobian matrix J of 

power flow equations is singular; J has a zero eigenvalue but the corresponding 

eigenvectors (left and right) are non-zero. Based on this property, the exact critical 

point of power system is directly obtained by solving the extended power flow 

equations as follows, 

( )   0f V B S 0                                                            (2.12a)  

T
V J w 0                                                                              (2.12b) 

1 0T  w w                                                                         (2.12c) 

where B describes the load increase; S0=SG0-SL0, is the initial injections; SG0 and SL0 

are power vectors of generations and loads respectively in the base case. V stands for 

vector of voltage; w is the left eigenvector of J with respect to zero eigenvalue; λ 

stands for stability margin; T stands for transpose. (2.12a) describes the power flow; 

(2.12b) and (2.12c) ensure J is singular at the critical point.  
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2.4 Stability margin assessment by probabilistic approach 

With the equation (2.12), if the initial loads, generations and the direction of load 

increase are predefined, the critical point and the stability margin λ are easy to obtain. 

There definitely exist uncertainties in power systems, such as the variations of loads 

and the generator outputs. In this chapter, loads SL0 are regarded as random variables 

and the generations SG0 are not random variable. Therefore, the injections 

0 0 0G L S S S  are random variables, and the possible injection values are S01, S02,..., 

S0n. Two cases of load increase directions are considered. In one case shown in Fig. 

2.3(a), the load increase directions are predefined and equal to the expectation of S0, 

i.e. 0B S . The critical points corresponding to S01, S02,..., S0n are S*1, S*2,..., S*n 

with the relationship 01 1 0 *1 S S S , …, 0 0 *n n n S S S . λ1,…, λn are random 

margins corresponding to S01, S02,..., S0n. In other case shown in Fig. 2.3(b), the load 

increase directions are random as S0, i.e. 0B S . The critical points corresponding 

to S01, S02, ..., S0n are S*1, S*2,..., S*n with the relationship 01 1 01 *1 S S S ,…, 

0 0 *n n n n S S S . This chapter aims to determine the probabilistic stability margin 

λ taking into the random load variations.  
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*nS*3S
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(a)                                                                                          (b) 
Fig. 2. 3 Two cases for load increase direction 
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In equation (2.12), if the voltages are expressed with rectangular coordinates, every 

expression is the second order function of nodal voltage and left eigenvector. 

Equation (2.12) can be represented as, 

1 1 1 1 1 0 0( , , , , , , ) ( )n n n n G LVV VV V V V V    F B S S 0              (2.13a) 

2 1 1 1 1( , , , , , , )n n n nV w V w V w V w F 0                                         (2.13b) 

3 1 1( , , ) 1 0n nF w w w w                                                               (2.13c) 

where, Vi and wi,  for i=1 to n, respectively stand for the elements of voltage vector 

and left eigenvector. B describes direction of load increase. λ stands for stability 

margin. Since the direction of load increase B will affect the stability margin, the 

calculation of probabilistic stability margin will be divided into two parts as follows.  

2.4.1 0B S   

For 0 0 0G L  B S S S , if equation (2.13) is expanded at the means of nodal 

voltages, stability margin, the left eigenvector and nodal loads, it can be represented 

as 

1 1 1 11
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                       (2.14a) 
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1 1 13 3 1

13 1 3 1 1
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 

 

                                   (2.14c) 

 
Since 0  , 0L S 0 ,  V 0  and  w 0 , the expectation of equation (2.14) is 

expressed as equation (2.15) 
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1 1 1 12
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1 13 3 1 1( , , ) ( , , ) 1 0n n n nF w w w w F w w w w                                      (2.15c) 

 
As 

jiVVji CVV  ,
i ji j V wV w C   ,

i ji j w ww w C   , equation (2.15) can also be 

represented with covariance of random variances of nodal voltages and left 

eigenvector. With the covariances, the means of nodal voltages, left eigenvector at 

critical point and stability margin can be obtained by solving equation (2.15) via 

Newton-Raphson method. 

Omitting the second order terms of equation (2.14) and (2.15), the linearized 

relationships among nodal voltage V, stability margin λ, left eigenvector w and the 

nodal load SL0 are shown as equation (2.16), 

0L    
       
      

V S

J w 0

λ 0

                                                                                  (2.16) 
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where
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J 0
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                                                    (2.17) 

The deviations of random variables nodal voltage, left eigenvector and stability 

margin from their means are obtained by rearranging equation (2.16) as: 

0
1

L


    
       
      

V S

w J 0

λ 0

                                                                           (2.18) 

The covariances of random variables nodal voltage, left eigenvector and stability 

margin are 

 
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                                                                               (2.19) 

The nth moment for TwV ][  is computed from equation (2.18). As a result, 

the nth moment for TwV ][  can be obtained using following equation  

rnr
n

r

r
n

nnn XXCXXXE 




  )()()()(
1

1
                                         (2.20) 
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2.4.2 B = S0 

Since B=S0=SG0-SL0 , B is random vector like S0, the expended equation of (2.13)  at 

the means of nodal voltages, stability margin, the left eigenvector and nodal loads 

can be represented as 

1 1 1 11
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Similar to (2.15), the expectation of equation (2.21) is expressed as equation (2.22) 

1 1 1 11

1 1 1 1 1

0 0 0 0 0

( , , , , , , )

( , , , , , , )

( ) ( )

n n n n

n n n n

G L L G L

V V V V V V V V

V V V V V V V V

 

        

       

F

F

S S S S S 0

  

                                    (2.22a) 

 
1 1 1 12

2 1 1 1 1

( , , , , , , )

( , , , , , , )

n n n n

n n n n

V w V w V w V w

V w V w V w V w         

F

F 0

  

  
                            (2.22b) 

 
1 13 3 1 1( , , ) ( , , ) 1 0n n n nF w w w w F w w w w                                      (2.22c) 
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Due to the difficulty of determining 0L S , the means of voltage V, stability 

margin λ and left eigenvector w are calculated from (2.22) by neglecting 0L S . 

Omitting the second order terms of equation (2.21) and (2.22), the linearised 

relationships among nodal voltage V, stability margin λ, left eigenvector w and the 

nodal load SL0 are shown as equation (2.23), 

0(1 ) L     
      
     

V S

J w 0

λ 0

                                                                    (2.23) 

The Jacobian matrix J in (2.23) is the same as that in (2.16). The deviations from 

means of random variables nodal voltage, left eigenvector and stability margin is 

obtained by rearranging equation (2.23) as:  

0
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(1 ) L


     
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     

V S

w J 0

λ 0

                                                                (2.24) 

The covariances of random variables nodal voltage, left eigenvector and stability 

margin are obtained as, 
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                                                                    (2.25) 

The nth moment for TwV ][  is computed from equation (2.24). As a result, 

the nth moment for TwV ][  can be obtained by using equation (2.20). 
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The probabilistic characteristics of critical points can be described by probabilistic 

characteristics of stability margins and nodal voltages. Taking the first case ( 0B S ) 

for example, the procedure of probabilistic critical point calculation is: 

Step 1 Calculate the probabilistic power flow at a load level, and get 

the initial voltages and covariances of voltages CV ; 

Step 2 Calculate the eigenvalues and eigenvectors of Jacobian matrix 

of power flow equations. The left eigenvector corresponding to 

minimum real eigenvalue is the initial left eigenvector; 

Step 3 Compute the mismatches in equation (2.15); if the mismatches 

meet the error requirement, go to step 6; otherwise continue; 

Step 4 Form the Jacobian matrix J of extended power flow equations 

(2.15) with respect to the means of nodal voltage, stability 

margin and left eigenvector; 

Step 5 Calculate the corrections of the means of nodal voltage, stability 

margin and left eigenvector and correct them; go to step 3; 

Step 6 Calculate the covariances of nodal voltage, left eigenvector and 

stability margin according to equation (2.19). Substitute the 

covariances in equations (2.15) and calculate the mismatches. 

If the mismatches meet the error requirement, stop, otherwise 

go to step 4. 

Consequently, the means and covariances of both nodal voltages and stability 

margin can be determined from the probabilistic computation. The moments of 

stability margin can be obtained in terms of (2.18) and (2.20). 
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2.5 The maximum entropy method 

Entropy is a measure of uncertainty of a random variable. The entropy H of a 

discrete random variable X is defined by (Cover, 1991) 

( ) ln( ( ))H P X x P X x                                                             (2.26) 

For a continuous random variable, the entropy of a probabilistic density function 

(PDF) )(xp  is defined as (Zellner & Highfield, 1988) 

 dxxpxpH )(ln)(                                                                            (2.27) 

An application of entropy is to determine an unknown distribution based on the 

principle of maximum entropy, provided that expected values and its other statistical 

functions are given. The solution by maximum entropy, in its general 

form(Mohammad-Djafari, 1991), is 

n n n

max   ( ) ln ( )

s.t.     E{ ( )} ( ) ( ) ,   n 0, ,

H p x p x dx

x x p x dx N  

 

  


 

                          (2.28) 

where 0 01, ( ) 1x   and n ( ), n 1,...x N  are N known functions, and 

n , n 1, , N   are N given expectation data. The classical solution of this problem is 

given by  

n n
n 0

( ) exp ( )
N

p x x 


 
  

 
                                                        (2.29) 

The 1N Lagrange parameters ],,[ 0 N λ are obtained by solving the following 

1N nonlinear equations, 

n n n n
n 0

( ) exp ( ) , n 0, ,
N

x x dx N   


 
   
 
                         (2.30) 
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For example, the maximum entropy is applied to a simple exponential distribution 

with a PDF of  

xexf  )(                                                                                (2.31) 

where 0,0  x . If 4 , 40  x . 

With the PDF, expectations of random variable functions, for example the 

geometrical moments, can be calculated as listed in Table 2.1. The objective is to 

determine the distribution of random variable only with known function φn(x), 

n=1,…, 4 and expectations of random variable functions E{φn(x)}=n in Table 2.1. 

By solving the five nonlinear equations like equation (2.30), the five Lagrange 

parameters λ= [λ0, λ1, λ2, λ3, λ4] in equation (2.29) are obtained. The PDF of random 

variable x can be obtained as form of equation (2.29) with five known Lagrange 

parameters λ=[λ0 , λ1,  λ2,  λ3,  λ4 ].  

Table 2. 1 Functions and their expectation of random variable 
n 0 1 2 3 4 

φn(x) 1 x x2 x3 x4 

μn 1 0.25 0.125 0.09374 0.09371 
 

The PDF obtained by maximum entropy is then compared with known PDF of 

exponential distribution in Fig. 2.4. Note that for this simple case, the derived curve 

and the actual exponential curve almost coincide, and accurate result can be obtained 

for N=4. This shows that maximum entropy method can determine any unknown 

distribution with enough available information of random variables. 
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Fig. 2. 4 PDF of exponential distribution  

2.6 Applications of probabilistic approach and maximum 

entropy  

The proposed method is investigated on two test systems: a 39-bus (Fig. 2.5) and a 

57-bus system. The bus data and line data of these two systems are listed in 

appendices 3A and 3B respectively. Normal distribution is one of the most common 

random distributions. In this chapter all active and reactive loads are assumed to be 

Gaussian random variables. The loads are independent random variables with means 

at the expected values of bus loading from the original system. The variance of each 

load (Schellenberg et al., 2006) has been chosen such that the 99% confidence is 

within ±10% of the normal loading value. The load standard deviation σL=0.04μ (μ 

is expected valued of load) has been used (Aboreshaid, Billinton, & Fotuhi-

Firuzabad, 1996) for probabilistic transient stability analysis. In order to study the 

effect of uncertainty of load on stability margin here, the variance of each load is 

chosen such that the 99%, 95%, 90%, 85%, 80% confidence are within ±10% of the 

normal loading value. In other words, the standard deviations of loads are 

respectively 0.0389μ, 0.0510μ, 0.0606μ, 0.0694μ and 0.0755μ. For simplicity, no 
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limitations for reactive power of generation or bus voltage levels are assumed first. 

All the loads are constant power models. The probabilistic stability margin and its 

distribution are determined by applying probabilistic point of collapse method 

(section 2.4) and maximum entropy (section 2.5). Monte Carlo simulations, 

consisting of 10,000 samples, are used to validate the proposed method. 
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Fig. 2. 5 39-bus system 

2.6.1 Case study on 39-bus system   

The 39-bus system shown in Fig. 2.5 includes ten generators and 19 loads. As 

mentioned in section 2.4, two cases of load increase directions are considered.  

First, when direction B of load increase is equal to 0S , with different variances of 

loads, the means and variances of stability margins listed in Table 2.2 are calculated 

from equations (2.15) and (2.19) using probabilistic point of collapse method. From 

Table 2.2, it is observed that when the mean of stability margin has insignificant 
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changes, the variance of stability margin increases with load variances as expected. 

Additionally, a stability margin index ISM of, say, 99% is introduced in Table 2.2. 

For example, ISM=1.2974 in row (a) implies that if the system load is increased by 

1.2974B ( 0B S ), 99% of the PDF in Fig. 2.6a has a margin greater than 1.2974 for 

a system load variance L=0.0389μ. Of course, if the load variance increases, ISM 

will be reduced.  

Table 2. 2 Stability margin for 39-bus system with 0B S  

 σL 

Probabilistic Method Monte Carlo Difference (%) 

Mean Variance
(10-3) ISM Mean Variance 

(10-3) Mean Variance 

(a) 0.0389μ 1.3507 0.5232 1.2974 1.3504 0.5249 0.022 0.324 
(b) 0.0510μ 1.3500 0.8995 1.2798 1.3495 0.9043 0.037 0.531 
(c) 0.0606μ 1.3492 1.2694 1.2658 1.3487 1.2783 0.037 0.696 
(d) 0.0694μ 1.3485 1.6667 1.2527 1.3479 1.6815 0.045 0.880 
(e) 0.0775μ 1.3476 2.0770 1.2406 1.3470 2.0993 0.045 1.062 

 
To validate the probabilistic method, the mean and variance are compared with those 

obtained by Monte Carlo method based on 10,000 deterministic load flows (section 

2.3). The results listed in Table 2.2 show that their differences in the mean (0.022%-

0.045%) are very small, and the differences in variance are between 0.324%-1.062%. 

It can also be observed that the differences in mean and variance of stability margin 

increase with variance of loads.  

 

Based on the moments, the PDFs obtained by the maximum entropy approach are 

plotted with black solid line in Fig. 2.6. Stability margins based on 10,000 samples 

using Monte Carlo method are obtained and the PDFs are also shown in dotted line 

in Fig. 2.6. Comparing the two curves obtained by different methods, it is observed 
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that the difference of two probabilistic density curves will increase when the load 

variances increase.  

 

Alternately, when the load increase direction B is random, i.e. 0B S , the computed 

probabilistic characteristics of stability margin by the two methods are also listed in 

Table 2.3, and the probabilistic distribution of stability margin are shown in Fig. 2.7. 

Similar to Table 2.2, with L increase, the mean value of stability margin slightly 

decrease, and the variance of stability margin increases, resulting that index ISM also 

decreases with variance of loads. The difference in mean value computed using the 

proposed method and Monte Carlo simulation are well within 0.3%. The difference 

in variance between the proposed method and Monte Carlo simulation was between 

2%-7%.  

Table 2. 3 Stability margin for 39-bus system with 0B S  

 

Comparing results on the mean value and variance of stability margin in Table 2.2 

and Table 2.3, it can be seen that with the same L, while the mean values in Table 

2.2 are slightly higher than those in Table 2.3, the margin variances in Table in 2.2 

are much smaller than those in Table 2.3. In other words, with the same L, power 

 L 
Probabilistic Method Monte Carlo Difference (%) 

Mean Variance
(10-3) ISM  Mean Variance 

(10-3) Mean Variance

(a) 0.0389μ 1.3461 2.8993 1.2204 1.3463 2.8445 0.015 1.926 
(b) 0.0510μ 1.3420 4.9693 1.1775 1.3428 4.8131 0.060 3.245 
(c) 0.0606μ 1.3381 6.9907 1.1429 1.3395 6.6902 0.104 4.492 
(d) 0.0694μ 1.3339 9.1486 1.1107 1.3359 8.6495 0.150 5.770 
(e) 0.0775μ 1.3295 11.3617 1.0809 1.3323 10.6158 0.210 7.026 
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system has smaller mean value and larger variance of stability margin if the 

direction of load increase is random. Taking L=0.0775μ for example, when load 

increase B is constant, the mean value and variance of stability margin is 1.3476 and 

2.077010-3, as compared to 1.3295 and 11.361710-3 obtained when load increase 

B is random like the initial injection S0.  

 

It is also observed that with the same L, the differences in mean and variance of 

stability margins in Table 2.2 are smaller than those in Table 2.3. For example, with 

L=0.0775μ, the differences in mean and variance of stability margin in Table 2.2 

are 0.045% and 1.062 %, less than 0.210% and 7.026% in Table 2.3. These may be 

attributable to two reasons. One reason is that the covariances 0L S  between 

stability margin λ and initial load SL0 in (2.22a) are ignored because it is difficult to 

determine their values. The other reason is that the linearilized relationship is used to 

determine the covariance of stability margin and the increment of loads are 

0(1 ) L S  in (2.23) larger than 0LS that in (2.16). These factors may lead to a 

larger error in mean and covariance of stability margin in Table 2.3. 
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Fig. 2. 6 Probabilistic distributions of stability margin with different load variance in 39-bus 
system with  0B S  
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Fig. 2. 7 Probabilistic distributions of stability margin with different load variance in 39-bus 
system with  0B S  
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2.6.2 Case study on 57-bus system  

The 57-bus system includes four generating units and three synchronous condensers. 

Same as the 39-bus system, two cases of load increase directions 0B S and 

0B S are considered. The means and variances of stability margin with different 

load variances are listed in Table 2.4 and Table 2.5. The probabilistic distributions of 

stability margin are shown in Fig. 2.8 and 2.9. From Table 2.4 and 2.5, the mean 

value decreases very little and the covariance increases with load uncertainty. The 

so-called stability margin index ISM reduces when L increases (i.e. when system 

uncertainty increases). The mean value and variance of stability margins are also 

compared with those obtained by Monte Carlo simulation and the differences 

between two methods are quite small.  

 

Similar to the 39-bus system, while the means of stability margin in Table 2.4 are 

slightly larger than those in Table 2.5, the variances of stability margin in Table 2.4 

are smaller than those in Table 2.5. Nevertheless, the validity of the present 

probabilistic method is further confirmed, since the differences from the Monte 

Carlo deterministic method are much reduced in a larger size system of 57 buses. 

Table 2. 4 Stability margin for 57-bus system with  0B S  

 

 σL 
Probabilistic Method Monte Carlo Difference (%) 

Mean Variance
(10-4) ISM  Mean Variance 

(10-4) Mean Variance

(a) 0.0389μ 0.80149 0.9553 0.7788 0.80152 0.9552 0.00 0.00 
(b) 0.0510μ 0.80139 1.6425 0.7719 0.80143 1.6423 0.00 0.01 
(c) 0.0606μ 0.80130 2.3176 0.7663 0.80134 2.3173 0.00 0.01 
(d) 0.0694μ 0.80120 3.0429 0.7611 0.80125 3.0423 0.01 0.02 
(e) 0.0775μ 0.80110 3.7916 0.7563 0.80115 3.7908 0.01 0.02 
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Table 2. 5 Stability margin for 57-bus system with  0B S  

 σL 
Probabilistic Method Monte Carlo Difference (%) 

Mean Varianc
e(10-4) ISM Mean Variance 

(10-4) Mean Variance 

(a) 0.0389μ 0.80119 3.0077 0.7614 0.80129 3.0066 0.01 0.04 
(b) 0.0510μ 0.80088 5.1693 0.7489 0.80108 5.1657 0.02 0.07 
(c) 0.0606μ 0.80057 7.2915 0.7393 0.80088 7.2840 0.04 0.10 
(d) 0.0694μ 0.80024 9.5691 0.7282 0.80066 9.5560 0.05 0.14 
(e) 0.0775μ 0.79991 11.9197 0.7195 0.80044 11.8981 0.07 0.18 
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Fig. 2. 8 Probabilistic distributions of stability margin with different load variance in 57-bus 

system with  0B S  

 



 54

0.65 0.7 0.75 0.8 0.85 0.9
0

5

10

15

20

25

 

 

Monte Carlo
Maximum entropy

(a) =0.0389μ 

0.65 0.7 0.75 0.8 0.85 0.9
0

5

10

15

20

 

 

Monte Carlo
Maximum entropy

(b) =0.0510μ 

0.65 0.7 0.75 0.8 0.85 0.9
0

5

10

15

20

 

 

Monte Carlo
Maximum entropy

(c) =0.0606μ 

 

0.65 0.7 0.75 0.8 0.85 0.9
0

5

10

15

 

 

Monte Carlo
Maximum entropy

(d) =0.0694μ 

0.65 0.7 0.75 0.8 0.85 0.9
0

5

10

15

 

 

Monte Carlo
Maximum entropy

(e) =0.0775μ 

Fig. 2. 9  Probabilistic distributions of stability margin with different load variance in 57-bus 
system with  0B S  
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2.7 Summary 

This chapter proposes a new probabilistic approach to evaluate the important margin 

index by taking into account the uncertainty of system loads. Two cases for load 

increase are considered. One is that load increase direction is constant, i.e. 0B S , 

and the other is that load increase direction is random, i.e. 0B S . With the 

assumption that all loads are independent Gauss distributions, the prevailed point of 

collapse method for evaluating stability margin is modified so that the moments of 

stability margin and critical nodal voltage can be obtained. Maximum entropy 

technique is then applied to determine the distribution of the stability margin. As 

expected, the stability margin will be reduced with higher load uncertainty, implying 

that the stability margins obtained based on traditional deterministic load flows are 

too ‘optimistic’. In addition, when the load increase is random, the variance of 

stability margin increases. The proposed approach is tested on two test systems. To 

validate the proposed probabilistic algorithm, the distributions of the stability margin 

by the proposed method are compared with those by Monte Carlo technique (by 

10,000 computation simulation using deterministic method), and the comparison 

results show they are quite close. As a conclusion, the proposed probabilistic 

approach (based on single computer run) is very effective and pragmatic to compute 

the voltage stability margin when there are system uncertainties. 
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Chapter 3 Determination of probabilistic stability 

margin considering the uncertainty of loads  

 

 

3.1 Introduction  

Probabilistic voltage stability analysis based on power flow considering the load 

random variations has been described in chapter 2. However, the voltage instability 

is a dynamic problem. To consider dynamic elements of power system, dynamic 

small signal analysis method (Byongjun & Ajjarapu, 1995; Pai, Sauer, Lesieutre, & 

Adapa, 1995; Rajagopalan, Lesieutre, Sauer, & Pai, 1992) has been presented for 

voltage stability analysis. Different methods (Wen & Ajjarapu, 2006; Zhou & 

Ajjarapu, 2005) have been proposed to identify the stability margin. However, these 

research works are based on deterministic power system condition. In this chapter, 

load uncertainties will be considered in voltage stability analysis by using 

probabilistic eigenvalue method to determine the probabilistic stability margin. 

 

Probabilistic eigenvalue algorithm was successfully developed to analyze system 

small disturbances stability (Wang, Chung, Tse, & Tsang, 2000; Wang, Tse, & 

Tsang, 1998)  and to design and optimize parameters of power system stabilizers 

(Chung, Wang, Tse, Bian, & David, 2003; Chung, Wang, Tse, & Niu, 2002; Tse, 

Wang, Chung, & Tsang, 2000, 2001). Different methods (Anders, 1990; Wang, Tse, 
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& Tsang, 1998; Wang, Chung, Tse, & Tsang, 1998; Wang et al., 2000) for 

calculation of expectation and covariances of eigenvalues have been presented. This 

chapter will use the simplest method to determine the expectations and covariances 

of eigenvalues to obtain the probabilistic stability margin. Deterministic methods 

based on 10,000 Monte Carlo simulations will be conducted as a reference to 

validate the proposed method. 

3.2 Probabilistic power flow calculation 

Probabilistic power flow provides the initial operating state of generators and 

probabilistic attributes of nodal voltages for probability eigenvalue analysis. This 

chapter will determine the probabilistic stability margin and probabilistic power flow 

calculations at different load levels are required.  The detail for probabilistic power 

flow calculation at a load level is as follows. 

 

Power flow equation at load level (1+k) is represented as following equation, 

 ( ) 0G L− − =f V S S                                                                      (3.1) 

where V is vector of nodal voltages. SG and SL are generator powers and load powers. 

System loading is expressed as follows: 

0(1 )= +S SL Lk                                                                             (3.2) 

where 

SL0 stands for original active and reactive load vector; 

k is load increase factor. 

The load increment is shared by the generator as follows: 
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0G G k g= + ⋅S S K                                                                             (3.3) 

SG0 is generation active vector in the base case; 

Kg is the rate of change in generation as k varies. 

If the nodal voltage is expressed in form of rectangular coordinates, equation (3.1) is 

represented as, 

1 1 1 1 0 0( , , , , , , ) ( ) (1 ) 0− + ⋅ − + =f S K S  n n n n G LVV VV V V V V k g k                    (3.4) 

The power equation can be expanded at voltage expectation V using Taylor series,  
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                                            (3.5) 

Considering 
jiVji CVV

,
=∆∆ and ∆ = − = − =V V V V V 0 (Bartoszyński, 1996), and only 

the loads are assumed to be random variables.  With 0 0G G=S S and g g=K K , the 

expectation of nodal injection is obtained from equation (3.5) as follows, 

1,1 , ,

1 1 1 1

00

( , , , , , , )
( , , , , )

( ) (1 ) 0
i j n n

n n n n

V V V

LG

V V V V V V V V
C C C

k g k

+

− + ⋅ − + =

f
f

S K S

  

                                                (3.6) 

The expectation of nodal voltage can be obtained by solving equation (3.6) with 

Newton-Raphson method. 

According to the linearized relationship between loads and nodal voltages, 

00 0(1 )( ) (1 )LL LV k k∆ = + − = + ∆J V S S S                                                   (3.7) 

where, 
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=

∂
=
∂V

V V

fJ
V

, 0LS is the given expectation vector of loads. 

The covariance of nodal voltages can be obtained in terms of the following equation 

   
0

2 1 1(1 ) ( )
L

T
V SV Vk − −= +C J C J                                                                          (3.8) 

From equation(3.6), covariances CV have been taken into account in the calculation 

of expectations. The effect of V on covariance is also considered via VJ in (3.8). 

 

In probabilistic power flow calculation, according to the different effects of voltage 

expectations and covariances on the nodal injections, solving expectation of nodal 

voltages from (3.6) establishes the inner circulation and calculation of covariance of 

nodal voltage from 
0LSC  is the outer circulation. After probabilistic power flow 

calculation, the expectation V  and covariances CV of nodal voltage are acquired. 

 

Since this work is based on probabilistic eigenvalue analysis, the method adopted for 

formation of system state matrix in this study, Plug-in Modeling Technique, and 

eigenvalue sensitivities will be introduced. 

3.3 Plug-in modeling technique  

Eigenvalue analysis based on the state variables has been widely used for power 

system dynamic studies. To form the state space equation, many methods (Kundur, 

1994; Palmer & Ledwich, 1996; Sauer; & Pai, 1998; Tse & Tso, 1988; Yu, 1983) 

have been developed for multimachine systems, in which power networks, machines 

and associated control equipment, such as the excitation system (EXC), governor 
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system (GOV) and power system stabilizer (PSS), are all included. In most of these 

methods, transfer functions of linearized machine models and associated controls 

system are transferred to corresponding differential and algebraic equations. 

Together with the power network equations, a characteristic coefficient matrix is 

directly constructed and the state space equation of entire system is obtained by 

eliminating the non-state variables. This type of technique provides a better insight 

in the construction of the characteristic coefficient matrix, and the block-matrix 

techniques can also be efficiently employed. 

 

In this thesis, a highly versatile technique of generalized multimachine 

representation (GMR) (Tse & Tso, 1988) is adopted to form power system state 

matrix. In this technique, the differential equations and algebraic equations of 

networks, machines and associated control equipments are transferred into blocks. 

This technique was subsequently improved by plug-in modeling technique (PMT) 

(Chung, Wang, Cheung, Tse, & David, 1998) to model any newly developed power 

equipment. Comparing with other modeling techniques for multimachine system 

representation, the outstanding feature of GMR/PMT is that eigenvalue sensitivity 

with respect to arbitrary parameters can be obtained easily, which is the foundation 

of probabilistic eigenvalue analysis.  

3.3.1 Multimachine system representation technique 

In GMR/PMT, the entire system only consists of two types of elementary transfer 

blocks with 5 types of parameters as shown in Fig. 3.1. All machines and associated 
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control systems can be derived from these two types of blocks and can be described 

to any desired degree complexity. 

im m ix x
ik

bb

aa

pTk
pTk

+
+

(a) (b)  

Fig. 3. 1 Two types of elementary transfer blocks 
 
For a system of m generators, the multimachine system representation is shown in 

Fig. 3.2. The control equipments, such as excitation system (EXC), governor (GOV) 

and PSS, can be amalgamated easily to the machine. Other control devices, such as a 

static var compensator (SVC) and thyristor controllable series compensator (TCSC), 

can be easily plugged into the network as shown in Fig 3.2. 

 

MACHINE 1

LOAD

MACHINE m

SVC TCSC

MACHINE i

NETWORK

RJI∆
RJV∆ RJI∆ RJI∆

RJI∆ RJI∆ RJI∆ RJI∆

RJV∆ RJV∆

RJV∆ RJV∆ RJV∆ RJV∆

... ... ... ...

 
 

Fig. 3. 2 Overall view of PMT connection 
 
The nodal admittance matrix Y is usually used to describe the network configuration 

and parameters of a power system. System loads represented by equivalent 

admittances are directly merged in the nodal admittance matrix Y of entire power 

network (Bian, 2006; Wang, 2000). In order to plug different load models 
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conveniently in the system, the voltage dependent loads, for example, are also 

transferred into blocks (see Appendix 2).  

3.3.2 State space equation  

When all machines and associated control systems are represented only by two types 

of elementary blocks shown in Fig. 3.1 and connected to power system as shown in 

Fig. 3.2, a transfer frame for entire system is obtained. To describe the transfer 

relationship among blocks, a connecting matrix L composed of nine submatrices is 

constructed as (3.9) 

     
     
     
          

i 1 2 3

o 4 5 6
' ' '

i 7 8 9

X L L L X
Y = L L L R
M L L L M

                                                               (3.9) 

where Xi and X are input/output vectors for first order blocks in Fig.3.1 (b); Mi and 

M are input/output vectors for zero order blocks in Fig. 3.1 (a); Yo and R are 

input/output vectors .  

 

Suppose that K is a diagonal matrix collecting all parameters in zero order blocks 

such that 

iM = KM                                                                                             (3.10) 

Substituting the last row of equation (3.9) in (3.10) gives 

= + +' ' '
7 8 9M KL X KL R KL M                                                                  (3.11) 

Therefore equation (3.9) can be rewritten as 
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7 8 9

     
     
     
          

i 1 2 3

o 4 5 6

X L L L X
Y = L L L R
0 L L L M

                                                              (3.12) 

where '
7 7=L KL , '

8 8=L KL , '
9 9= −L KL I . I stands for identity matrix. 

In(3.12), submatrices L1 to L3 are composed of zeros and ones, whilst L7 and L9 

describe the algebraic relationship from which the eigenvalue sensitivity expression 

is developed. 

 

The first order transfer block in Fig. 3.1(b) can be represented as 

( b a t ip) ( p )+ = + XK X K K                                                             (3.13) 

where, Ka, Kb and Kt are diagonal matrices collecting parameters ka/Tb,  kb/Tb and  

Ta/Tb in Fig.2(b) respectively. The state space equation (3.14) is obtained by 

eliminating the non-state vector M, Mi and Xi from (3.12) and (3.13), 



 o

X = AX + BR + ER
Y = CX + DR

 
                                                                         (3.14) 

where 

a b( )=A S K F - K                                                                               (3.15) 

2 3 7( )a= +B SK L L HL                                                                             (3.16) 

2 3 8( )t= +E SK L L HL                                                                             (3.17) 

4 6 7= +C L L HL                                                                                       (3.18) 

5 6 8= +D L L HL                                                                                        (3.19) 

with 

-1( )t=S I - K F                                                                                    (3.20) 
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1 3 7= +F L L HL                                                                                      (3.21) 

-1
9= −H L                                                                                                 (3.22) 

Eigenvalues and eigenvectors will be solved from A. 

3.4 Eigenvalue sensitivities 

3.4.1 General formulas of eigenvalue sensitivities  

With the left and right eigenvectors Wk and Uk satisfying 1T
k k =W U , iκ and 

jκ standing for parameter variables, the general representations for the first and 

second order eigenvalue sensitivities are , 

Tk
k k

i i

λ
κ κ
∂ ∂

=
∂ ∂

AW U                                                                                       (3.23) 

2 2 T T
Tk k k

k k k k
i j i j i j j i

λ
κ κ κ κ κ κ κ κ
∂ ∂ ∂∂ ∂ ∂

= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

W WA A AW U U U                             (3.24) 

For a system of n eigenvalues, the derivative of left eigenvector T
kW is a linear 

combination of all eigenvectors  

1

1T n
T Tk

k m m
mi k m i
m k

λ
κ λ λ κ=

≠

 ∂ ∂
=  ∂ − ∂ 
∑W W U W                                                           (3.25) 

From the equation (3.23) and (3.24), derivative of matrix A are required and will be 

determined from equation (3.15), (3.20), (3.21) and (3.22).  Because the first order 

block parameters in multimachine representation are collected by diagonal matrices 

Ka, Kb, and Kt in (3.13), while the zero order block parameters appear in L7 and L9, 

the determination of derivatives of matrix A will be divided into two types. 
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3.4.2 Derivatives of matrix A with regard to zero order block 

parameters 

Derivatives of matrix A are required and will be determined from equation (3.15), 

(3.20), (3.21) and (3.22) as 

t a
i i iκ κ κ

∂ ∂ ∂
= +

∂ ∂ ∂
A F FSK A SK                                                                            (3.26) 

2 2 2

t t a
i j i j j i i j i jκ κ κ κ κ κ κ κ κ κ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

A F A F A F FSK S K A K           (3.27) 

where 

9 7
3 7 7

i i iκ κ κ
 ∂ ∂∂

= + ∂ ∂ ∂ 

L LF L HL HL                                                                      (3.28) 

       
2 22

9 7
3 7

i j i j i jκ κ κ κ κ κ

 ∂ ∂∂
= +  ∂ ∂ ∂ ∂ ∂ ∂ 

L LF L H HL    

9 9 7 9 9 7
7 7

i j j j i iκ κ κ κ κ κ

   ∂ ∂ ∂ ∂ ∂ ∂
+ + + +     ∂ ∂ ∂ ∂ ∂ ∂    

L L L L L LH HL H HL                   (3.29) 

The derivatives of submatrices L7 and L9 are complex to determine and are 

described in detail (Wang, 2000). 

3.4.3 Derivatives of matrix A with regard to first order block 

parameters 

The first order block parameters may be ka, kb, Ta or Tb in the first order block of Fig. 

3.1(b). Because ka/Tb, kb/Tb and Ta/Tb have been collected in diagonal marices Ka, Ka 

and Kt respectively in equation (3.13), derivatives of system matrix A with regard to 

ka, kb, Ta and Tb are derived from equation (3.15), (3.20), (3.21) and (3.22) as 
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a

ai aik k
∂∂

= −
∂ ∂

KA S F                                                                        (3.30) 

b

bi bik k
∂∂

= −
∂ ∂

KA S                                                                            (3.31) 

∂∂
=

∂ ∂
KA S FAt

ai aiT T
                                                                       (3.32) 

ai bi ai

bi ai bi bi bi ai bi

k k T
T k T k T T T

∂ ∂ ∂∂ ∂ ∂ ∂
= − − −

∂ ∂ ∂ ∂ ∂ ∂ ∂
A A A A                                     (3.33) 

where, the subscript ‘i’ denotes the i-th first order block, matrices S and F were 

defined in (3.20) and (3.21). Because a first order block parameter appears in Ka, Kb, 

Ta and Tb only once, each of a aik∂ ∂K , b bik∂ ∂K and a aiT∂ ∂T in (3.30)-(3.33) has 

only one non-zero element 1 biT on the i-th diagonal (i, i). 

3.5 Probabilistic stability analyses  

3.5.1 Probabilistic characteristics of eigenvalue 

Because nodal voltages and loads are random variables, eigenvalues are random 

variables. For determination of eigenvalue expectation and covariance, different 

methods have been used.  

Method I 

A particular complex eigenvalue kλ can also be analytically expressed as a nonlinear 

function of the nodal voltage vector V as  

( )k kGλ = V                                                                               (3.34) 
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in which nodal voltage are defined in rectangular form and the voltage vector V 

contains 2N real components as  1 2 2[ , , , ]T
NV V V=V  in a power system of N nodes.  

The general nonlinear function can be linearized using a first-order Taylor series 

expansion at V ,  

2

1
( ) ( )

N
k

k k i
i i

G V
V
λλ

= =

∂
≈ + ∆

∂∑
V V

V                                                                (3.35) 

Taking expectation in both sides of (3.35), considering 0iV∆ = (for i=1,2, ..., 2N), 

the eigenvalue mean can be approximately obtained by: 

( )k kGλ ≈ V                                                                           (3.36) 

According to the linearised relationship between the eigenvalue vector λ and the 

nodal voltage vector V , the covariance matrix λC of λ  is obtained from the 

covariance matrix VC of nodal voltageV as (Anders, 1990; Burchett & Heydt, 1978;  

Wang, Tse et al., 1998)  

T
VVV ,, λλλ JCJC =                                                                  (3.37) 

where, ,VλJ is the first order eigenvalue sensitivity matrix with respect to nodal 

voltage V . 

Method II (Wang et al., 2000) 

If (3.34) is expanded in Taylor series with second order terms retained as, 

22 2 2

1 1 1

1( ) ( ) ( )
2

N N N
k k

k k i i j
i i ji i j

G V V V
V V V
λ λλ

= = == =

∂ ∂
≈ + ∆ + ∆ ∆

∂ ∂ ∂∑ ∑∑
V V V V

V                   (3.38) 

where ( )kG V  is solved from state matrix A with nodal voltages set at their 

expectations. Considering 0iV∆ = (for i=1,2, ..., 2N) and the nodal voltage 
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covariance 
,i ji j VV V C∆ ∆ = between Vi and Vj, the expectation of eigenvalue λk is 

expressed as, 

,

22 2

1 1

1( ) ( )
2 i j

N N
k

k k V
i j i j

G C
V V
λλ

= = =

∂
≈ +

∂ ∂∑∑
V V

V                                                (3.39) 

From (3.39), the effect of covariance has been considered in the calculation of 

eigenvalue expectation. The eigenvalue covariance between eigeavalues λm and λn is 

calculated from the following equation 

,
[( )( )]

m n
m nm nC Eλ λ λ λ λ= − −                                                 (3.40) 

Substituting (3.35) and (3.39) into (3.40) gives, 

, ,

2 2

1 1
( )

mn m i n j ij

N N

V m n
i j

C J J C H Hλ λ λ
= =

= +∑∑                                          (3.41) 

where 
,

22 2

1 1

1 ( )
2 i j

N N
m

m V
i j i j

H C
V V
λ

= = =

∂
=

∂ ∂∑∑
V V

and
,

22 2

1 1

1 ( )
2 i j

N N
n

n V
i j i j

H C
V V
λ

= = =

∂
=

∂ ∂∑∑
V V

. 

 
Method III (Wang, Tse et al., 1998) 

From GMR/PMT technique, state coefficient matrix A can be regarded as a 

nonlinear function of nodal voltage as 

( )=A G VA                                                                                  (3.42)   

The expectation of state matrix can be corrected by voltage covariances as 

,

22 2

0
1 1

1
2 i j

N N

V
i j i j

C
V V= = =

 ∂ ≈ +
 ∂ ∂ 

∑∑
V V

AA A                                             (3.43) 

0A is determined from the expectation of nodal voltages. Eigenvalue expectation 

vector λ is then calculated from A .  
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The covariance matrix λC of eigenvalue is obtained from the covariance matrix 

VC of nodal voltageV as (3.37). 

 

Although different methods have been developed to determine the expectation and 

covariance of eigenvalue, only method I will be adopted in this chapter. Due to 

calculation of the second order sensitivity of matrix A or eigenvalue with regard to 

nodal voltages, method II and method III need much more calculation effort. Taking 

calculation requirement into account, method I is employed to determine the 

expectation and covariance of eigenvalue. 

3.5.2 Assessment criterion of stability probability 

According to (3.36) and (3.37), the means and covariances of eigenvalues of system 

state matrix can be obtained. If loads are normally distributed, then eigenvalues are 

approximately normal distribution from the linear relationship (Anders, 1990). In 

this study, eigenvalues are assumed normal distribution. The stability probability of 

power system can be determined from the most critical eigenvlaues λk , according to 

(3.44) (Wang, Tse et al., 1998) 

0

{ 0} ( )k k kP f a daα
−∞

< = ∫                                                                 (3.44) 

where kα is the real part of the λk, and )( kaf is the probabilistic density function of λk. 

In angular stability, to ensure system stability being adequate in wide range of 

operation, a high reliable index of 4
kα

σ has been employed (Chung et al., 2003; 

Chung et al., 2002; Tse et al., 2000) such that the stability probability under the 
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distribution range { , 4 }
kk αα σ−∞ + is P{αk<0}=0.99997. i.e. if 4 0

kk αα σ+ ≤ ,  

99.997% of operation scenarios will not experience system instability. For voltage 

instability, however, an alternate probabilistic assessment criterion for voltage 

stability is employed.  

3.5.3 Load margin for probabilistic voltage stability 

Load margin is a reasonable measure to the bifurcation-related instability, defined as 

the amount of additional load on a specified pattern of load increase that would 

cause system instability (Zhou & Ajjarapu, 2005). If the initial operating point and 

load increase are specific, the stability margin is specific and can be obtained easily. 

However, if the loads at current point are random variables, the stability margin is 

also random.  For illustration, consider a system which is very stable. If the load 

level is increased to load level (1+k)=1.8443, the distribution of the critical 

eigenvalue in Fig. 3.3a shows that 99% of scenarios are stable. In other words, 99% 

scenarios have stability margin higher than 0.8443. If the load is further increased to 

(1+k)=1.8714 (Fig. 3.3b), 50% of scenarios are stable. In other words, 50% 

scenarios have stability margin higher than 0.8714. Likewise, the ‘load margin’ can 

be obtained for any specified percentage scenario (cumulative), as shown in Table 

3.1, from which the distribution of the load margin can be derived in Fig. 3.4. Note 

that, whilst the eigenvalue in Fig. 3.3 is assumed normal distribution (for normal 

distributed load); the distribution of the load margin of Fig.3.4 is not symmetric. 
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Table 3. 1 Probabilistic stability margin with different probability requirement 
 

Cumulative 
Density 

Probabilistic 
stability 
margin 

99% 0.8443 
90% 0.8556 
80% 0.8606 
70% 0.8646 
60% 0.8681 
50% 0.8714 
40% 0.8748 
30% 0.8787 
20% 0.8833 
10% 0.8902 
1% 0.9093 

 

For normal distribution of critical eigenvalue, the degree of voltage stability at a 

certain operating point can be fully depicted by the mean and standard deviation: α  

and ασ . However to assess the stability margin, the entire distribution (such at Fig. 

3.4 or Table 3.1) may be necessary since the distribution is asymmetric. For 

simplicity, the margin distribution will be reflected by the two most key indices: ISM 

and kc, corresponding to 99% and 50% stable scenarios of Fig. 3.3a and Fig. 3.3b 

(each with differentα  and ασ ). These two indices will be employed to assess the 

voltage stability in the present thesis. 
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(a) α =-0.0707 and  

ασ = 0.0303 at  

load level (1+k)=1.8443 
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(b) α =0.0 and  

ασ = 0.0383  

at load level(1+k)=1.8714 

Fig. 3. 3 Probabilistic density function of a critical eigenvalue for  σL=0.0389μ 
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Fig. 3. 4 Distribution of stability margin of 9-bus system for σL=0.0389μ  

(without reactive limit of generator) 
 

3.5.4 Probabilistic load characteristics 

Loads having normal distribution characteristic are commonly adopted for 

probabilistic stability analysis (Aboreshaid, Billinton, & Fotuhi-Firuzabad, 1996; 

Schellenberg, Rosehart, & Aguado, 2006), and the distribution can be adequately 
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described in terms of two parameters: mean and standard deviation. In probabilistic 

stability analysis (Aboreshaid, Billinton, & Fotuhi-Firuzabad, 1996; Schellenberg, 

Rosehart, & Aguado, 2006), the normal bus loading is often regarded as mean value 

μ for the random load. To describe the load uncertainty, 4% standard deviation σ 

(Aboreshaid et al., 1996) and 99% ‘confidence’ (Schellenberg et al., 2006) have 

been used. 99% ‘confidence’ implies that 99% of loads are within ±10% deviation 

from μ, corresponding σ=0.0389μ, slightly less than σ=4%. (Note: this 99% 

confidence is not the 99% scenario of ISM described in Section 3.5.3.) In this chapter, 

‘confidences’ of 99%, 95%, 90%, 85% and 80% (for load deviation within ±10% 

from μ) will be used, corresponding standard deviations σL of 0.0389μ, 0.0510μ, 

0.0606μ, 0.0694μ and 0.0775μ respectively. The lower the confidence (say 80%), 

the larger is σL and the smaller is the ‘density’ within ±10%, implying the higher is 

the load uncertainty. 

3.6 Case studies 

The proposed method to determine the probabilistic stability margin is to be 

validated on two systems: a 9-bus system and a 39-bus system. 

3.6.1 Test system I 

The 9-bus system (Fig. 3.5) consists of three generator buses (7, 8, 9), three load 

buses (4, 5, 6) and three connecting buses (1, 2, 3). In the analysis, the fourth order 

generator model and IEEE type I excitation system are adopted. Network parameters, 

nodal data and controller parameters are listed in Appendix 3. Constant power load 

model is adopted for all loads. 
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Fig. 3. 5 9-bus system 
  

The present study is first started with σL=0.0389μ. Using probabilistic power flow 

calculation, the probabilistic characteristics of nodal voltages are obtained, and the 

expectation and the convariances of eigenvalues are evaluated according to (3.36) 

and (3.37). The real part α  of a complex eigenvalue increases and becomes positive 

at load level (1+k) =1.8714 (Fig. 3.3b) and Hopf bifurcation occurs. (This complex 

eigenvalue is associated with 3'qE and 3fdE  and Hopf bifurcation point is regarded 

as the critical point in the present work). In other words, if a stability margin k is 

evaluated using expectation of eigenvalue, it only guarantees 50% scenario being 

stable at that load level (1+k). To be more pragmatic, the present study will 

introduce a scenario of 99% (Fig. 3.3a), and this k value is termed as stability margin 

index ISM in order to distinguish from other k. Likewise, 50% scenario is termed as 

kc in the present study. Taking scenario of 99% as example, the process to determine 

the probabilistic stability margin ISM is described as follows.  
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After probabilistic power flow calculation of the expectation and covariance of 

nodal voltages at a load level, according to sections 3.5.1 and 3.5.2, the stability 

probability of power system can be determined at load level 1+k. If the stability 

probability is larger than 99%, then increase load factor k; otherwise, decrease load 

factor k, until the stability probability at load level 1+k is 99%, and ISM equals to this 

k value. 

 

To validate the proposed probabilistic approach, deterministic method of Monte 

Carlo is employed to obtain the stability margin by counting the number of stable 

cases based on 10,000 deterministic samples. By adjusting the load factor k, once  

the number of unstable cases reaches 100 (1% of 10,000) at a load level 1+k, the 

probabilistic stability margin ISM determined by Monte Carlo method is k. Likewise, 

the unstable count for kc is 5,000 (50% of 10,000). 

 

Table 3.2 gives the probabilistic stability margins without consideration of reactive 

power limit of generators. For load standard deviation σL=0.0389μ, kc=0.8714 and 

ISM=0.8443. The corresponding values computed by Monte Carlo method are 0.8714 

and 0.8505. The differences in probabilistic stability margins between the 

probabilistic method and Monte Carlo are 0.00% and 0.73% respectively. The 

difference in kc is less than that in ISM. This conclusion also applies to other σL. 

Nevertheless, the maximum difference is 0.03% for kc and 0.79% for ISM, and the 

present probabilistic approach should be validated.  
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Table 3. 2 Probabilistic stability margin with different load variance σL of 9-bus system 
(without reactive power limit of generator) 
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(a) 50% scenario for kc (b) 99% scenario for ISM 

 
Fig. 3. 6 Distribution of critical α with load variance σL 
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Fig. 3. 7 Distribution of stability margin of 9-bus system for σL=0.0775μ  

(without reactive limit of generator) 
 

 
σL 

Density 
within 
±10% 

Probabilistic 
Method  Mont Carlo  Difference 

kc ISM kc ISM kc ISM 
(a) 0.0389μ 99% 0.8714 0.8443 0.8714 0.8505 0.00% 0.73% 
(b) 0.0510μ 95% 0.8710 0.8368 0.8711 0.8435 0.01% 0.79% 
(c) 0.0606μ 90% 0.8706 0.8311 0.8708 0.8376 0.02% 0.78% 
(d) 0.0694μ 85% 0.8703 0.8261 0.8705 0.8324 0.02% 0.76% 
(e) 0.0775μ 80% 0.8699 0.8216 0.8702 0.8273 0.03% 0.69% 
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For closer examination to Table 3.2, with the increase of load uncertainty (i.e. with 

increase of σL), kc decreases very slightly, and ISM gradually decreases from 0.8443 

to 0.8216. It is because if σL is increased from 0.0389μ to 0.0775μ, σα will increase 

from 0.0303 to 0.0506 and the α distribution becomes wider and is shifted to the left, 

resulting in decrease of ISM as shown in Fig. 3.6b. However, as for kc, the change is 

negligible in Fig. 3.6a.  

 

The rough distribution of stability margin of 9-bus system for σL=0.0389μ and 

σL=0.0775μ are shown in Fig. 3.4 and Fig. 3.7. With increase of σL, the distribution 

range of stability margin becomes wider, which may echo that ISM will decrease with 

increase of load uncertainty, described by σL. 

 

The study is then repeated with more realistic assumption by considering reactive 

power limits exhibited in generators. Table 3.3 once more shows that, with increase 

in load uncertainty, kc has only very slight change and ISM drops more. As compared 

to Table 3.2, the stability limits without reactive power constraints are always larger 

than those with ‘constraints’ in Table 3.3. 

Table 3.3 Probabilistic stability margin with different load variance σL of 9-bus system  
(with reactive power limit of generator of Qmax=1) 

 
σL 

Density 
within 
±10% 

Probabilistic 
Method  Mont Carlo  Difference 

kc ISM kc ISM kc ISM 
(a) 0.0389μ 99% 0.8319 0.8061 0.8320 0.8045 0.01% 0.20% 
(b) 0.0510μ 95% 0.8314 0.7994 0.8315 0.7955 0.01% 0.49% 
(c) 0.0606μ 90% 0.8308 0.7944 0.8312 0.7884 0.05% 0.76% 
(d) 0.0694μ 85% 0.8302 0.7937 0.8308 0.7818 0.07% 1.52% 
(e) 0.0775μ 80% 0.8296 0.7932 0.8303 0.7757 0.08% 2.25% 
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3.6.2 Test system II 

The second test system of 39-bus in Fig. 3.8 has ten generators. The third and fourth 

order models are adopted for synchronous machines. The loads are regarded as 

constant power load model. All excitations are IEEE Type 1 rotating excitation 

system model. The system data, generator data and associated controller data are 

listed in Appendix 3.  
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Fig. 3. 8 39-bus system 

 

Again, the kc and ISM for without and with considering the reactive power limit of 

generators for 39-bus system are computed as shown in Tables 3.4 and 3.5 

respectively. Comparing with the 9-bus system, the trends of margin reduction with 

load uncertainty are basically the same. As comparing with Monte Carlo results, the 

maximum differences are 0.54% for kc and 2.19% for ISM. As a conclusion, the 

validity of the present proposed probabilistic method is more confirmed. 
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Table 3.4 Probabilistic stability margin with different load variance σL of 39-bus system 
 (without reactive power limit of generator) 

 
Table 3.5 Probabilistic stability margin k with different load variance σL of 39-bus system  

(with reactive power limit of generator of Qmax=3) 
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Fig. 3. 9 Distribution of stability margin of 39-bus system for σL=0.0389μ  

(without reactive limit of generator) 

 σL 
Density 
within 
±10% 

Probabilistic 
Method Mont Carlo Difference 

kc ISM kc ISM kc ISM 
(a) 0.0389μ 99% 0.2416 0.2276 0.2420 0.2277 0.16% 0.04% 
(b) 0.0510μ 95% 0.2411 0.2232 0.2416 0.2224 0.21% 0.35% 
(c) 0.0606μ 90% 0.2406 0.2199 0.2413 0.2180 0.29% 0.87% 
(d) 0.0694μ 85% 0.2400 0.2168 0.2410 0.2138 0.41% 1.40% 
(e) 0.0775μ 80% 0.2394 0.2141 0.2407 0.2095 0.54% 2.19% 

 σL 
Density 
within 
±10% 

Probabilistic 
Method Mont Carlo Difference 

kc ISM kc ISM kc ISM 
(a) 0.0389μ 99% 0.2408 0.2270 0.2411 0.2271 0.12% 0.04% 
(b) 0.0510μ 95% 0.2403 0.2227 0.2408 0.2219 0.21% 0.36% 
(c) 0.0606μ 90% 0.2398 0.2194 0.2405 0.2175 0.29% 0.87% 
(d) 0.0694μ 85% 0.2392 0.2164 0.2402 0.2133 0.41% 1.45% 
(e) 0.0775μ 80% 0.2386 0.2137 0.2398 0.2091 0.50% 2.19% 
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Fig. 3. 10 Distribution of stability margin of 39-bus system for σL=0.0775μ  

(without reactive limit of generator) 
 
From the rough distribution of stability margins of Fig. 3.9 and Fig. 3.10, it once 

more demonstrates that the distribution range of stability margin becomes wider 

with increase of σL. 

3.7 Conclusion 

Many uncertainties exist in power system operation and one of them is the load 

variation which will affect the assessment of voltage stability margin. This chapter 

has exploited the in-house versatile technique to develop a systematic probabilistic 

technique to evaluate stability margin under the uncertainty of loads. With the 

assumptions that these loads are normal distributions, two stability margin indices 

(kc for 50% scenario and ISM for 99% scenario) are introduced. The results show that, 

with the increase of load uncertainty, the kc only decreases very slightly, and ISM 

gradually decreases. 

 

The accuracy of the proposed probabilistic method is compared with Monte Carlo 
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results based on multi 10,000 deterministic samples for each load variance. The 

comparison shows the proposed probabilistic method has small difference from 

Monte Carlo method for the determination of kc and ISM. Consequently, the proposed 

method can effectively compute stability margin under the uncertainty of loads.  
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Chapter 4 Voltage stability analysis considering the 

uncertainties of dynamic load parameters 

 

 

4.1 Introduction 

Probabilistic stability margin has been used to assess voltage stability under load 

uncertainties. This chapter will extend the probabilistic eigenvalue method to study 

voltage stability considering effects of dynamic load parameters. 

 

With the development of voltage stability study, researchers have gradually realized 

the important effect of dynamic load on voltage stability. After exponential recovery 

load model (Karlsson & Hill, 1994) and adaptive load model (Xu & Mansour, 1994)  

were proposed according to the results from the measurement of actual power 

system load, dynamic load model have been introduced to voltage stability analysis. 

Byongjun & Ajjarapu (1995) adopted generic load model for a piecewise global 

small-disturbance voltage stability analysis. Exponential recovery load model and 

adaptive load model (Zeng, Berizzi, & Marannino, 1997) have been adopted for 

voltage analysis where excitation and governor systems are in quasi steady-state. 

 

Load parameters also affect the result of voltage stability studies. Different ranges of 

parameters for the same load model have been reported (Byongjun & Ajjarapu, 
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1995; Makarov, Maslennikov, & Hill, 1996; Zeng et al., 1997). Furthermore, there is 

always some uncertainty associated with load parameters due to the load variation. 

The influence of dynamic load parameters on small disturbance stability (Makarov 

et al., 1996) has been revealed via quasi-optimization procedure with the cost 

function which reflects shifts of selected eigenvalues along the real axis when all 

load parameters vary within their constraints. However the related research above is 

based on deterministic operations and load parameters.  

 

To consider uncertainties of load parameters, the probabilistic eigenvalue algorithm 

is extended to handle the uncertainties of dynamic load parameters under the 

assumption that the load parameter variations follow normal distribution with a 

mean value and a standard deviation. Based on this proposed method, the 

probabilistic critical load level can be obtained. 

4.2 Exponential recovery load model  

The exponential recovery load model can be represented by following equations 

(Zeng et al., 1997) 

( )p p s dT x P V P= −                                                                                  (4.1) 

( )q q s dT x Q V Q= −                                                                                  (4.2) 

( )d p tP x P V= +                                                                                    (4.3) 

( )d q tQ x Q V= +                                                                                  (4.4) 

0 0( ) ( ) s
sP V P V V α=                                                                              (4.5) 
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0 0( ) ( ) s
sQ V Q V V β=                                                                             (4.6) 

0 0( ) ( ) t
tP V P V V α=                                                                                (4.7) 

0 0( ) ( ) t
tQ V Q V V β=                                                                              (4.8) 

where 

PT , qT  active and reactive load recovery time constant; 

,d dP Q  active power and reactive power consumption; 

( ), ( )s sP V Q V  steady-state part of active power and reactive power consumption; 

( ), ( )t tP V Q V  transient part of active power and reactive power consumption; 

,s sα β  steady-state active and reactive load-voltage dependent exponents; 

,t tα β  transient active and reactive load-voltage dependent exponents; 

0 0,P Q  active power and reactive power consumption at nominal voltage; 

V  supply voltage 

0V  nominal voltage. 

Since the present work focuses on small disturbance stability analysis, the linearized 

representation of dynamic load (4.9)-(4.12) can be obtained from (4.1)-(4.8). In 

order to employ Plug-in Modeling Technique (PMT) (Tse & Tso, 1988), the 

linearized exponential recovery load model is transferred into diagram 

representation as shown in Fig. 4.1. 

' ( )  p p s dT x P V V P∆ = ∆ −∆                                                                  (4.9) 

' ( )q q s dT x Q V V Q∆ = ∆ −∆                                                                (4.10) 

' ( )d p tP x P V V∆ = ∆ + ∆                                                                     (4.11) 
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' ( )d q tQ x Q V V∆ = ∆ + ∆                                                                    (4.12) 

' ( ), ' ( )s sP V Q V  derivatives of )(),( VQVP ss  with respect to voltage V; 

' ( ), ' ( )t tP V Q V  derivatives of ( ), ( )t tP V Q V  with respect to voltage V. 

 

RV∆

JV∆ sTP

1

)(' VPt

)(' VPs

)(' VQt

)(' VQs

2

2 4

2( )d d R J d JQ P V V Q V
V V

+
−

4

2

2

)(2
V

VVQVP
V
P JRdRdd +

−

4

2

2

)(2
V

VQVVP
V
Q RdJRdd −

−
−

4

2

2

)(2
V

VVQVP
V
P JRdJdd −

−

VVR

VVJ

2VVJ

2VVR−

RI∆

JI∆

1−

1

1

1−

2VVR

2VVJ

sTq

1

 

Fig. 4.1 Exponential recovery load representation 

4.3 Probabilistic eigenvalue  

System matrix is an explicit function of dynamic load parameters and operating 

parameters described as (Wang, Tse, & Tsang, 1998) 

)(KA G=                                                                                           (4.13) 

When equation (4.13) is expanded at expectation K  of load parameters, the Taylor 

series retaining the second order term can be expressed as equation (4.14) (Wang et 

al., 1998) 
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2,

1
1

1 ( )
2

n n

i j
i i j
j

K K
K K==

= =

∂ ∂
≈ + ∆ + ∆ ∆

∂ ∂ ∂∑K
K K

K K

A AA A K
K

                         (4.14) 

The expectation of state matrix can be expressed as follows 

,

2,

1
1

1 ( )
2 i j

n n

K
i i j
j K K

C
K K=

= =

∂
≈ +

∂ ∂∑K

AA A                                                         (4.15) 

where, 
jiKC

,
is the covariance between load parameters Ki and Kj.  

As a result, the expectation of eigenvalues λ can be solved from the system state 

matrix expectation A . 

Eigenvalue λ is regarded as a nonlinear function of load parameter K with a 

linearized expression as 

∆ Kλ= JΔK                                                                                           (4.16) 

where JK is the first order derivative matrix of eigenvalue with respect to load 

parameters. The eigenvalue covariance matrix Cλ is obtained as 

T
λK K KC = J C J                                                                                    (4.17) 

Diagonal elements of matrix Cλ are the variances of eigenvalues, and the off-

diagonal elements are covariances between two eigenvalues. 

 

According to equation (4.15) and(4.17), the means and variance of eigenvalues can 

be calculated. 
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4.4 Determination of probabilistic critical load level 

Eigenvalues are functions of load parameters and load parameters are random 

variables. Therefore, eigenvalues are random variables. A random complex 

eigenvalue λ=α+jβ  will distribute over a certain range in the complex plane. The 

stability degree of mode i can be assessed by the probability of  

{ }
0

0 ( )i i iP f dα α α
−∞

< = ∫                                                           (4.18) 

where f(.) denotes the probabilistic density function. In case of f(.) approximating to 

normal distribution, the distribution pattern can be depicted by the expectationα  and 

the standard deviation σ. The stability probability of power system is determined by 

the critical eigenvalue. Again, two indexes will be used to assess stability margin: kc 

for 50% scenario and ISM for 99% scenario. The flowchart for the solution of 

probabilistic critical load level considering uncertainties of load parameters is 

illustrated in Fig. 4.2. k0 in the flowchart is the probabilistic stability margin. 

4.5 Case studies  

In this chapter, probabilistic eigenvalue method is used to determine the stability 

margin considering probabilistic characteristic of load parameters. The method is 

applied to three systems: a 9-bus system, a 14-bus system and a 39-bus system. 
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Fig. 4. 2 Flowchart to obtain critical load level 
 

4.5.1 Test system I  

The 9-bus system (Fig. 3.5) consists of three generator buses (7, 8, 9), three load 

buses (4, 5, 6) and three connecting buses (1, 2, 3). In the analysis, the fourth order 

generator model and IEEE type I excitation system are adopted. The data of 9-bus 
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system are listed in detail in appendix 3. 

 

 
With load increase in the same proportion and keeping constant power factor, the 

load can be expressed as 

0 0(1 ), (1 )Li Li Li LiP P k Q Q k= + = +                                                     (4.19) 

where, PLi0 and  QLi0 are load of bus i at the initial operating point; (1+k) is regarded 

as load level.  

 

All loads are exponential recovery model shown in Fig. 4.1. The model has six load 

parameters αs, βs, αt, βt, Tp and Tq, which have different values in literatures 

(Byongjun & Ajjarapu, 1995; Makarov et al., 1996; Zeng et al., 1997). The ranges of 

voltage dependent exponentials are (Makarov et al., 1996): 

0 3sα≤ ≤ ; 0 7sβ≤ ≤ ;1.5 2.5tα≤ ≤ ; 4 7tβ≤ ≤                                                 (4.20) 

The recovery time constants have different values in literatures: Tp=Tq=25s 

(Byongjun & Ajjarapu, 1995), Tp=Tq=30s (Zeng et al., 1997),  but Tp<1s and Tq<1s 

(Makarov et al., 1996). 

 

Normal distribution is one of the most common distributions in nature. Load 

parameters following normal distributions have been adopted to take uncertainty of 

load parameters into voltage stability analysis of series-compensation of EHV 

transmission lines (Indulkar & Viswanathan, 1983). In this chapter, with the 

assumption of normal distribution, these parameters are assumed to have expected 
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values of αs=1.5, βs=3.5, αt=2.0, βt=5.5, Tp=Tq=25s, denoted by μ, but the standard 

deviation σP of these parameter are not yet determined. 

 

The present study is first started with σP=0.0389μ and the expectation and the 

convariances of eigenvalues are evaluated according to (4.15) and(4.17). The 

expectation of critical eigenvalues at different load levels are computed as listed in 

Table 4.1. 

Table 4.1 Critical eigenvalues at different load levels with σP=0.0389μ 

Load level 
1+ k 

Critical 

eigenvalue 
_
α  

Associated state 
variables 

2.346 -0.1848+j2.5234 E’q3, Efd3 
2.347 -0.0655+j2.5913 E’q3, Efd3 
2.348 0.0640+j2.6191 E’q3, Efd3 
2.351 0.3929+j2.5871 E’q3, Efd3, ω1,ω3 

2.352 0.4867+j2.5608 
0.0005 

E’q3, Efd3, ω1,ω3 
xp1,xq2 

2.360 1.1438+j2.2093 
0.0006 

E’q3, Efd3, ω1,ω3 
xp1,xq2 

2.370 2.087+j0.7931 
0.0235 

E’q3, Efd3,ω3, ω1 
xp1,xq2 

2.3707 2.1823+j0.2898 
0.0261 

E’q3, Efd3 ω3, ω1 
xp1,xq2 

2.3708 2.2179,2.2176 
0.0265 

E’q3, Efd3, ω3, ω1 
xp1,xq2 

2.373 4.2463,0.9835 
0.0417 

E’q3, Efd3, ω3, ω1 
xp1,xq2 

 

Table 4.1 shows the expectation of critical eigenvalues at different load levels. When 

load increases, the real part of the critical eigenvalue increases.  When the load level 

increases from 2.347 to 2.348, the real part of the critical eigenvalue becomes 

positive (point A in Fig. 4.3), i.e. Hopf bifurcation (Byongjun & Ajjarapu, 1995) 

occurs. By participation factor analysis, this mode is associated with the excitation 
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system of generator 3. If load level increases to 2.352, another real eigenvalue passes 

the origin and turns positive, and saddle node bifurcation (Byongjun & Ajjarapu, 

1995) occurs (point C in Fig. 4.3). At load level of 2.3708, the complex eigenvalue 

turns into two real eigenvalues, and node focus (Byongjun & Ajjarapu, 1995) occurs 

(point B in Fig. 4.3). With further load increase, one of the real eigenvalues 

decreases and the other two increase until power flow divergences. 
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Fig. 4. 3 Loci of the critical eigenvalues 
 

In this chapter, the point A is regarded as the critical operating point and kc=1.347 is 

stability margin with loads at expected values. Note that Table 4.1 depicts the 

expectation of critical eigenvalue variations at different load levels. In other words, 

under the uncertainty of load parameters, about 50% of scenarios may experience 

voltage instability when kc=1.347 for σP=0.0389μ as Tabled 4.2(a).  If σP is 

increased to 0.0775μ, 50% of scenarios will experience voltage instability at a lower 

kc=1.344 as Table 4.2 (e). (According to section 3.5.4, σP
 =0.0775μ in normal 

distribution implies that 80% of the density distribution is within ±10% of their 

expected values). Again, the pragmatic stability margin index ISM for 99% scenario 
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is used in Table 4.2. For example, ISM=1.342 in Table 4.2(a) implies that if the 

system load is increased by 134.2%, 99% of the scenarios will not experience 

voltage instability. The probabilistic technique is repeated for different parameter 

variances, and the results in Table 4.2 show that whilst kc has negligible change, ISM 

will be reduced with increase of parameter uncertainty.  

The stability margin distributions (asymmetric) for σP= 0.0389μ and σP= 0.0606μ of 

Table 4.2(a) and 4.2(e) are plotted in Fig. 4.4 and Fig. 4.5 respectively, which may 

help to explain why kc in the middle has slight change and ISM at the rear end has a 

larger change with σP. 

 
Table 4.2 Stability margin with different variances σP of load parameter for 9-bus system 

 
σP 

Density 
within 
±10% 

Probabilistic 
Method 

Monte Carlo 
Method 

Difference 

kc ISM kc ISM kc ISM 
(a) 0.0389μ 99% 1.347 1.342 1.348 1.329 0.07% 0.97% 
(b) 0.0510μ 95% 1.346 1.340 1.348 1.321 0.15% 1.42% 
(c) 0.0606μ 90% 1.346 1.338 1.347 1.315 0.07% 1.72% 
(d) 0.0694μ 85% 1.345 1.337 1.347 1.308 0.15% 2.17% 
(e) 0.0775μ 80% 1.344 1.336 1.346 1.301 0.15% 2.62% 
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Fig. 4. 4 Distribution of stability margin of 9-bus system for σP=0.0389μ 
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Fig. 4. 5 Distribution of stability margin of 9-bus system for σP=0.0606μ 

 

To validate the probabilistic approach, Monte Carlo method is employed to count 

the number of stable cases based on 10,000 deterministic samples for each σ and 

load level (1+k). With deceasing k, kc is obtained for stability count equal to 5,000 

(i.e. 50%) and ISM for count equal to 9,900 (i.e. 99%). Comparing the results in 

Table 4.2, the differences of stability margins obtained by the two methods are quite 

small.  

4.5.2 Test system II  

The second test system of 14-bus in Fig. 4.6 has two generators and three 

synchronous compensators. The fifth order model is adopted for slack generator, and 

the sixth order model for the other synchronous machines. The data of this test 

system are listed in appendix 3. The loads are all exponential recovery load model 

and the load parameters are same as those of the 9-bus system. 
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Computation results for different σP are listed in Table 4.3 with the stability margin 

distributions shown in Fig. 4.7 and Fig. 4.8. Again, whilst kc has negligible change, 

ISM of 99% will be reduced with increase of parameter uncertainty. The distribution 

range of stability margin becomes wider with increase of σP. The probabilistic 

results are then compared with Monte Carlo deterministic method, and the two sets 

of computation results are very close. 

Table 4. 3 Stability margin with different variances σP of load parameter for 14-bus system 

 
σP 

Density 
within 
±10% 

Probabilistic 
Method 

Monte Carlo 
Method 

Difference 

kc ISM kc ISM kc ISM 
(a) 0.0389μ 99% 1.304 1.246 1.304 1.252 0.0% 0.48% 
(b) 0.0510μ 95% 1.304 1.226 1.304 1.236 0.0% 0.81% 
(c) 0.0606μ 90% 1.303 1.212 1.304 1.224 0.8% 0.99% 
(d) 0.0694μ 85% 1.303 1.204 1.303 1.212 0.0% 0.66% 
(e) 0.0775μ 80% 1.303 1.198 1.303 1.202 0.0% 0.33% 
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Fig. 4. 7 Distribution of stability margin of 14-bus system for σP=0.0389μ 
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Fig. 4. 8 Distribution of stability margin of 14-bus system for σP=0.0775μ  

4.5.3 Test system III  

The third test system of 39-bus system shown in Fig. 2.5 has ten generators. The 

fourth order and third order generator model and IEEE type-1 rotating excitation 

system model are adopted for this test system. Exponential recovery load model is 

adopted for all loads and load parameters have the same characteristics as those of 

the 9-bus system. The computed stability index kc and ISM are shown in Table 4.4 

and the stability margin distribution in Fig. 4.9 and Fig. 4.10. The stability margin of 

this 39-bus system is relatively low, e.g. kc=0.364 and ISM=0.346 for σP=0.0389μ 
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(Table 4.4), as compared to those in Table 4.2 or Table 4.3. It is also observed ISM 

decreases with σP. From Fig. 4.9 and Fig. 4.10, it can be seen that distribution range 

of stability margin becomes wider with increase of σP. The proposed method is 

validated because the difference from the Monte Carlo method is quite small.  

Table 4. 4 Stability margin with different variances σP of load parameter for 39-bus system 
 

σP 
Density 
within 
±10% 

Probabilistic Method Monte Carlo Method Difference 

kc ISM kc ISM kc ISM 

(a) 0.0389μ 99% 0.364 0.346 0.364 0.347 0.00% 0.29% 
(b) 0.0510μ 95% 0.364 0.341 0.364 0.341 0.00% 0.00% 
(c) 0.0606μ 90% 0.364 0.337 0.364 0.337 0.00% 0.00% 
(d) 0.0694μ 85% 0.364 0.334 0.364 0.333 0.00% 0.30% 
(e) 0.0775μ 80% 0.364 0.331 0.364 0.329 0.00% 0.60% 
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Fig. 4. 9 Distribution of stability margin of 39-bus system for σP=0.0389μ  
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Fig. 4. 10 Distribution of stability margin of 39-bus system for σP=0.0775μ 
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4.5.4 Observation of results 

Stability margins have been computed for 3 systems for same variance of system 

dynamic load parameters. Results show that difference between the probabilistic 

method and Monte Carlo method are quite small: less than 0.15% for kc and less than 

2.62% for ISM, which may validate the present algorithm. It is also observed, when 

σP increases from 0.0389μ to 0.0775μ, whilst kc remains fairly constant, ISM 

decreases e.g. ISM decreases by 0.4%, 4% and 4.5% for test system I, II and III 

respectively. In the present probabilistic method, the analysis is not affected by the 

system size. Instead, the major concern is the computer time, which increases 

rapidly with the system size, e.g. from 1.2s for the small 9-bus system to 135.3s for 

the 39-bus system (Table 4.5). From Table 4.5, it is also observed that most of the 

computation effort is spent on the calculation of the second order sensitivities of 

state matrix A in (4.14) and (4.15). It is desirable to have an effective method to 

improve the computation technique of the second order sensitivities of state matrix 

A. 

Table 4. 5 The computational time for ISM of different test systems 
 

System 9-bus 14-bus 39-bus 
Total computation time 1.165s 23.994s 135.313s 

Time for 2nd order 
sensitivity of Matrix A 0.408s 18.611s 114.638s 

 
 

4.6 Conclusion  

Many uncertainties exist in power system operation and one of them is the load 

dynamic parameter variation which will affect the assessment of voltage stability 
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margin. If the parameter variation follows normal distribution, kc obtained by 

existing deterministic methods can only provide a margin index that ensures about 

50% of scenarios having a margin higher than kc. This chapter has exploited the in-

house versatile eigenvalue technique to develop a systematic probabilistic technique 

to evaluate stability margin under the uncertainty of load parameters. With the 

assumptions that these parameters are normal distributions, the indices kc for 50% 

and ISM for 99% scenario are once more used to assess the stability margin. 

Computations show that whilst kc has negligible change, ISM will be reduced with 

increase of parameter uncertainty. The observation becomes obvious by the stability 

margin distribution plotting. 

 

The probabilistic results are then validated with Monte Carlo approach based on 

multi 10,000 samples for each parameter variance. Because the two sets of 

computation results are close, the effectiveness and accuracy of the proposed 

probabilistic method (based on single computation) are confirmed.  

 

The present computation study assumes that the expected values of the load 

parameters are given but their variances are undetermined. In practice, both the 

expected values and the variances may be obtained by site measurements. Moreover, 

the proposed technique of ISM evaluation can be applied to any percentage, to be 

assigned by the system planning engineers. 
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Chapter 5 Probabilistic power system voltage 

stabilizer design considering uncertainties of loads 

 

 

5.1 Introduction 
 
Probabilistic voltage stability analysis by probabilistic eigenvalue considering 

uncertainties of loads and load parameters has been introduced in chapter 3 and 

chapter 4. This chapter will present a method to design controller to improve voltage 

stability of power system under probabilistic environment.  

 

Voltage collapse has become a challenge to power engineers and scientists in the last 

decades. Hence, a great deal of efforts has been devoted to voltage stability 

enhancement. One of factors causing voltage instability is that there is a lack of 

sufficient reactive power support. In order to improve the voltage stability margin, 

reactive power compensation devices are installed to provide reactive power support. 

It is impractical to install reactive power compensation devices on each bus. The 

selection of efficient reactive power compensation location is vital. Based on power 

flow equations, singular vector of minimum singular value (Chen, Chang, & Liu, 

1995), Voltage-collapse proximity indicator method (Chen, 1996; Chen et al., 1995), 

relative voltage change method (Obadina & Berg, 1990), sensitivity method 

( Begovic & Phadke, 1992; Obadina & Berg, 1990) and participation factor of bus to 

mode (Gao et al., 1992) are used to determine the weak buses or weak areas for the 
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location of reactive power compensation. Considering dynamic elements of power 

system, small disturbance analysis method adopted voltage instability mode 

coefficient (Liu, Cheng, & Cheng, 1999) to determine the weak nodes of power 

system. 

 

Another measure is to optimize reactive power outputs of generators and condensers 

and other system components to improve voltage stability (Menezes, da Silva, 

Affonso, & da Costa, 2004; Thukaram, Jenkins, & Visakha, 2006). Modal 

participation factors are used to identify the most adequate reactive-power injection 

for each generator or synchronous condenser to maximize voltage stability margins 

(Menezes et al., 2004). The reactive power was optimized by adjusting reactive 

power control variables for voltage stability improvement in AC/DC system 

(Thukaram et al., 2006).   

 

Similar to power system stabilizers (PSS) used for angular stability, power system 

voltage stabilizer (PSVS) has been presented for dynamic voltage stability 

enhancement of power systems or prevention of fast voltage instability (Radman et 

al., 2007). Probabilistic method had been used to design robust PSS for rotor angular 

stability (Tse et al., 2000). This chapter extends the application of the probabilistic 

method to design PSVS considering the random variations of loads. The selection of 

PSVS location and input signal, and the design PSVS parameters by optimization 

method will be presented.  
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5.2 Probability of stability 
 
Loads are assumed normal distribution in this study. The eigenvalues are assumed 

normal distribution according to the linearized relationship. For a special eigenvalue 

with the mean values iα and standard deviation
iασ , the distribution of a typical 

eigenvalue is shown in Fig. 5.1. The stability probability of critical eigenvlaues is 

determined according to equation   (Wang, et al., 1998).  

0

{ 0} ( )i i iP f a daα
−∞

< = ∫                                                               (5.1) 

where iα is the real part of the ith eigenvalue, and )( iaf  is the probabilistic density 

function of the eigenvalue. The stability probability of power system is determined 

by the stability probability of critical eigenvalues. A high reliable index of 4
iα

σ has 

been employed to ensure system stability being adequate in wide range of operation 

(Chung et al., 2003; Chung et al., 2002; Tse et al., 2000). In case of normal 

distribution, the probability of iα distributed within { }, 4
ii αα σ−∞ +  is 0.99997, 

where iα  and 
iασ are the mean value and standard deviation of real part of 

eigenvalue respectively. If ' 4 0i i iα α σ= + ≤  (i.e. * / 4
i

ii αα α σ= − ≥ ), the system 

stability is regarded as adequate.  
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Fig. 5. 1 Distribution of eigenvalue with 0.0618α = − and 0.1131ασ =  

 

Thus, a system having an eigenvalue distribution of Fig. 5.1 and αi
*=0.0618/0.1131 

=0.5457 is highly inadequate since only about 70.88% of scenario is stable, far from 

the 99.997%. In terms of stability margin, Fig. 5.1 is equivalent to 70.88% of 

operation scenarios having positive load margin, i.e. k>0. (In Chapters 3 and 4, the 

degree of voltage stability is assessed by kc and Ism values at 50% and 99% of 

scenarios.) 

5.3 Power system voltage stabilizers 
 
In order to improve the voltage stability, the concept of power system voltage 

stabilizer has been introduced (Radman et al., 2007). It works similar to the well 

known power system stabilizer (PSS).  A PSS operates on the excitation system of a 

generator and provides additional damping torque to angular stability of a power 

system. The PSVS also operates on the excitation system of a generator/condenser in 

order to save the system from fast voltage collapse. The symbolic representation of 

power system voltage stabilizer (Radman et al., 2007) is shown in Fig. 5.2. The 

selected input of the PSVS should appropriately reflect the voltage deficiency of the 

system (Radman et al., 2007). In this chapter, the input is the weak bus voltage 
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deviation. The output of a PSVS is injected to the summing junction of the 

excitation system block as shown in Fig. 5.2. Different models for PSVS can be 

designed. One may design sophisticated PSVS controller. In this chapter a simple 

lead-lag block with a gain of K is used (Fig. 5.2).  

 

Excitation
System

PSSV

refV

fdE

PSVSV VK
PSVSU

2

1

1
1

sT
sT

+
+

 
Fig. 5. 2 Symbolic representation of the excitation system of a generator including PSVS 

 

5.4 Design of PSVS 

5.4.1 Location of PSVS 

PSVS operates on excitation system of a generator/condenser. It may be impractical 

to install PSVS to all generators. To efficiently enhance the voltage stability, 

location of PSVS is first considered.  

 

In this study, the mode participation factor will be used to determine the location of 

PSVS. For small disturbance stability analyses, participation factors will determine 

which excitation system of generators is the most associated with the critical 

eigenvalue.  
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5.4.2 Selection of PSVS input signal 

A. Modal analysis method  

In this research work, the nodal voltage is concerned; therefore, the output vector is 

the nodal voltage magnitude represented as 

RJR

J

∆  = ∆ =    ∆   

VVVY V
VV V

                                                       (5.2) 

Algebraic variable M consists of [ , ]T
R J R J otherΔI ,ΔI ,ΔVΔV ,V .  RΔV and JΔV are 

deviations of node voltage; RΔI and JΔI  are deviations of generator injection 

current; otherV are outputs of other zero order blocks. Therefore, the output vector Y 

can be rewritten as  

1= ∆Y C M                                                                                 (5.3) 

In terms of the relationship between algebraic and state variables   

XLLM 7
1

9 ∆−=∆ −                                                                      (5.4)  

Substituting (5.4) into (5.3) gives 

= ∆Y C X                                                                                 (5.5) 

where 1
1 9 7( )−= −C C L L   

 

The diagonal matrix )( n21 λ,,λ,λΛ diag=  consists of eigenvalue of state 

equation XAX ∆=∆  . U is right eigenvector matrix,  according to, 

UΛAU =                                                                                   (5.6) 

the system is linearly transformed by using right eigenvector matrix. A new set of 

state variables are expressed as 
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ZUX ∆=∆                                                                                  (5.7) 

The new state equation is represented as follows 

ZΛZAUUZ ∆=∆=∆ −1                                                             (5.8) 

Since Λ is diagonal matrix, the system can be decoupled in the new state space. One 

of equations is expressed as follows 

iii ZZ ∆=∆ λ                                                                                 (5.9) 

One of the time domain solutions is  

),,2,1(0 niezZ t
ii

i ==∆ λ                                                        (5.10)  

where 0iz is the initial value of iZ∆ . 

Substituting equation (5.8) into equation(5.7), power system state variables is 

represented as  

t
nn

tt
nn

neUzeUzeUzZUZUZUX λλλ
02201102211 ,,,, 21 +++=∆+∆+∆=∆=∆ ZU  (5.11) 

Substituting equation (5.11) into equation(5.5), the deviation of node voltage 

magnitude can be expressed as equation (5.12) 

1 2
10 1 20 2 0, , ntt t

n nz w e z w e z w eλλ λ= ∆ = ∆ = ∆ = + + +Y V CU Z W Z �                          (5.12) 

For a instable mode tieλ , jiw indicates the effect of instable mode on nodal voltage 

magnitude. If some jiw are large, the corresponding node voltage is affected heavily 

by instable mode and is prone to collapse. jiw is called instable mode coefficient 

(Liu et al., 1999). The node which is most associated with the largest jiw is the weak 

node, and the voltage magnitude deviation of this node is an appropriate input signal 

of PSVS. The input signal of PSVS may not be local signal. The remote signals for 
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controllers (Aboul-Ela, Sallam, McCalley, & Fouad, 1996; Chaudhuri & Pal, 2004; 

Farsangi, Nezamabadi-pour, Song, & Lee, 2007) have been used. 

 

B. Probabilistic sensitivity index 

Residue method and different sensitivity coefficients have been proposed and 

successfully used for selecting PSS sites. The relationship between residue and 

eigenvalue sensitivity (Wang, 2000) has been discussed. The residue of an open-

loop system can also be obtained by the eigenvalue sensitivity from its closed-loop 

system when the gain of feedback is zero. The residue index is successfully 

extended to probabilistic environment (Wang, 2000) for design of power system 

stabilizer considering a wide operating condition, called probabilistic sensitivity 

index.  

 

Under the assumption of normal distribution, the statistic nature of a random can be 

determined by its expectation and variance. In order to ensure the system robust 

stable as mentioned in section 5.2, the upper limit should be negative, i.e. 

' 4 0k k kα α σ= + ≤                                                                  (5.13) 

The probabilistic sensitivity index (PSI) adopted to determine the input signal in this 

chapter can be expressed as the following equation, 

, ,' '
0 0 0

' 4
k m k m

m m m

k k k

m m mK K K

PSI S
K K Kα α
α α σ

= = =

∂ ∂ ∂
= = = +

∂ ∂ ∂
                                  (5.14) 
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5.4.3 PSVS parameter optimization  

To ensure that the system is robust stable, the inequality of (5.15) for the k-th 

complex eigenvalue kkk jβαλ +=  should be achieved. 

4/* ≥−=
k

kk ασαα                                                                            (5.15) 

where  *
kα  is the standardized expectation,  as well as a direct measure of the stable 

probability of { }0<kP α  under the normal distribution. 

 

Optimization method is used to determine appropriate PSVS parameters to improve 

voltage stability of power system. A nonlinear objective function can be established 

as equation (5.16) with K standing for the PSVS parameter vector, 

2

4

* )4()(Minimize
*

−= ∑
<k

kF
α

αK                                                       (5.16) 

Problem (5.16) can be solved by the steepest descent approach. To steed up the 

convergence, the quasi-Newton method with correcting equation (5.17) can be 

applied. 

)( )()()(
2

)()1( iiiii F KHKK ∇−=+ µ                                                   (5.17) 

The optimal step length )(
2
iµ is also obtained by the one-dimensional search. )(iH is 

the approximation to the inverse of the second order derivative matrix of )(KF at 

point )(iK  and will be improved in each iteration. The iterative procedure of the 

method can be stated as follows, 

 

(a) Start with an initial point )1(K , and ][)1( 1H = . Set iteration number 1=i . 
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(b) Compute the objective function )( )(iF K , if ς<)( )(iF K , stop; otherwise, go 

to (c); 

(c) Compute the gradient  )( )(iF K∇ , and set  

)( )()()( iii F KHS ∇−=                                                                   (5.18) 

(d) Check the convergence. If ε<)(iS , stop. 

(e) Find the optimal step length )(
2
iµ in the direction )(iS and set 

)()(
2

)()1( iiii SKK µ+=+                                                                 (5.19) 

(f) Calculate the objective function )( )1( +iF K . If ς<)( )(iF K , terminate the 

iterative process; otherwise, go to (g). 

(g) Compute )( )1( +∇ iF K at the point )1( +iK , and set 

)()( )()1()( iii FF KKG ∇−∇=∆ +                                                   (5.20) 

(h) Update the H matrix as 

)()()(

)()()()(

)()(

)()(
)()1( ))((

iiTi

Tiiii

iTi

Tii
ii

GHG
GHGH

GK
KKHΗ

∆∆

∆∆
−

∆∆

∆∆
+=+              (5.21) 

(i) Set the iteration number 1+= ii , and go to (c). 

 

However, along with the parameter optimization, some modes are improved by 

parameter adjustment, but some of other modes may be jeopardized and become 

unstable. Eigenvalues considered in )( )1( +iF K may be different from those 

in )( )(iF K . In this case, the gradient difference )(iG∆ may provide an ineffective or 
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wrong correction for )1( +iΗ . At this case, )1( +iΗ has to be restarted from the identity 

matrix ][)1( 1H =+i . 

5.5 Case studies 

The effect of PSVS to improve power system voltage stability is investigated on two 

test systems: 9-bus system of Fig. 3.5, and the 39-bus system of Fig. 3.8. All loads in 

the two systems are independent random variables with mean values at the nominal 

bus loading value from the original system, and the variance of each load is chosen 

such that the 90% confidence interval is ±10% of the nominal loading value. 

Constant power load model is adopted for all loads. All load increase at the same 

proportion is assumed. 

5.5.1 9-bus system 

There are three generators and three loads in the system shown in Fig. 3.5. The 

fourth order model is adopted for all generators. The exciter is assumed to be 

identical for all the machines and is the IEEE-Type I shown in appendix 3.  

 

Based on probabilistic analysis, the stability is assessed and the critical eigenvalue 

λ =-0.0618±j1.6368 is associated with the exciter of generator G3 (Table 5.1). With 

an eigenvalue distribution of Fig. 5.1, voltage stability with only about 70.88% 

stable operation scenarios is inadequate, as reflected in *α =0.5457 less than 4. In 

terms of stability margin index, kc=0.0069 for 50% is rather small and ISM=-0.0164 

for 99% is even negative. The probabilistic stability margins for other ‘cumulative 
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densities’ are computed in Table 5.2 such that the rough distribution of stability 

margin under the load uncertainty can be derived as Fig 5.3. 

Table 5. 1 The critical eigenvalue at a critical load level without PSVS 

 
Table 5. 2 Probabilistic stability margin of 9-bus system without PSVS 

 
Cumulative 

density 
Probabilistic 

stability margin 
99% -0.0164 
90% -0.0076 
80% -0.0032 
70% 0.0002 
60% 0.0035 
50% 0.0069 
40% 0.0107 
30% 0.0155 
20% 0.0221 
10% 0.0353 
4% 0.0560 
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Fig. 5. 3 Distribution of probabilistic stability margin of 9-bus system without PSVS 

 

In order to improve the probabilistic voltage stability of this weak system, PSVS is 

introduced. As the critical mode is associated with the exciter of generator G3, the 

Critical 
eigenvalue 

Associated state 
variables ασαα /* −=  Stability 

probability 
-0.0618±j1.6368 '

3 3,q fdE E  0.5457 70.88% 
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suitable location of the PSVS should be the G3 exciter. For the signal selection, two 

indexes of modal coefficient and probabilistic sensitivity index are used. Fig. 5.4 and 

Fig. 5.5 for the two indices reach the similar conclusion: the voltage magnitude 

deviation of bus 1 and 5 can be the input signal of PSVS. Here, the voltage 

magnitude deviation of bus 5 is selected as the input signal.  

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04

0.05

0.06

Bus  

Fig. 5. 4  Voltage instability mode coefficient in 9-bus system 

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

Bus  
Fig. 5. 5 PSI corresponding to residue with input signals of nodal voltage of 9-bus system 

 

After the selection of location and signals, the initial parameters of PSVS are chosen 

as 1.0, 0.2, 0.1a bK T T= = = : system stability is improved but α*=1.3530 is still less 
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than 4 in Table 5.3. After the PSVS parameters optimized with the quasi-Newton 

method, α* is increased to 7.7163 and the system stability becomes adequate and 

more than 99.997% of scenarios has positive load margin.  

Table 5. 3 Voltage stability without and with PSVS 

 

Load margin changes are also examined. With the initial parameters, the stability 

margins are: kc=0.0137 for 50% and ISM=-0.0071 for 99%. After the parameter 

optimization, the stability margin margins are increased to kc=0.0304 and ISM 

=0.0142. Finally more probabilistic stability margins are computed in Table 5.4 and 

the derived distribution of stability margin is as shown in Fig. 5.6. Comparing Fig. 

5.3 and Fig. 5.6, the distribution of the stability margin has been shifted to the right 

by the PSVS and the stability of power system is much improved.   

Table 5. 4 Probabilistic stability margins with PSVS 
Cumulative 

density 
Probabilistic 

stability margin 
99% 0.0142 
90% 0.0192 
80% 0.0221 
70% 0.0245 
60% 0.0273 
50% 0.0304 
40% 0.0341 
30% 0.0383 
20% 0.0428 
10% 0.0492 
4% 0.0566 

 K  aT  bT  ασαα /* −=  kc ISM 
Without 
PSVS 0 - - 0.5457 0.0069 -0.0164 

PSVS with Initial 
settings 1.0 0.2 0.1 1.3530 0.0137 -0.0071 

PSVS with 
optimized setting 1.6054 0.3111 0.0994 7.7163 0.0304 0.0142 
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Fig. 5. 6 Distribution of probabilistic stability margin of 9-bus system with optimized PSVS 

5.5.2 39-bus system 

This system includes ten generators and nineteen loads shown in Fig. 3.8. The fourth 

and third order model is adopted for generators. The critical eigenvalue and the 

associated state variables are listed in Table 5.5. Since α* =0.2531<4, the power 

system stability is inadequate. The computed stability margins are listed in Table 5.6, 

and the rough distribution of stability margin under load uncertainty is derived as 

shown in Fig.5.7. 

Table 5. 5 Critical eigenvalues at critical load level without PSVS 
 

Critical 
eigenvalue 

Associated state 
variables ασαα /* −=  Stability 

probability 
-0.0123±j 2.8090 '

9 9,q fdE E  0.2531 59.87% 
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Table 5. 6 Probabilistic stability margins of 39-bus system without PSVS 
 

Cumulative 
density 

Probabilistic stability 
margin 

99% -0.0152 
90% -0.0079 
80% -0.0046 
70% -0.0022 
60% 0.0000 
50% 0.0021 
40% 0.0041 
30% 0.0065 
20% 0.0092 
10% 0.0131 
4% 0.0172 

 

 

Fig. 5. 7 Distribution of probabilistic stability margin of 39-bus system without PSVS 
 

Since the critical eigenvalue is associated with the exciter of generator G9, PSVS 

should be installed to the exciter of generator G9 in Fig. 3.8. The two indices (modal 

coefficients and the PSIs of residue index) are computed as illustrated in Fig. 5.8 and 

5.9. The decision is that the best input signal of PSVS is the deviation of bus-29.  

 

-0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

Stability margin

9%

10%

10%

10%
10%

10%

10%

10%

10%

6%

96%99%



 117 

With initial PSVS parameters 0.1, 0.2, 0.2a bK T T= − = = , the improved α*=1.5410 is 

less than 4. To enhance the stability, the PSVS parameters are then tuned by the 

nonlinear optimization technique. After optimization of PSVS parameters, the final 

α*= 6.7130 is larger than 4 (Table 5.7), and system stability is adequate. Once more, 

the stability is reassessed with voltage margins kc and ISM. Without PSVS, the 

probabilistic stability margins are poor with kc =0.0021 and ISM=-0.0152. With PSVS 

having initial parameters, the probabilistic stability margin kc=0.0118 and ISM=-

0.0054. With optimized PSVS, kc=0.0421 and ISM=0.0250. Finally, the computed 

probabilistic stability margins are listed in Table 5.8 and the derived distribution of 

stability margin is shown in Fig. 5.10. Comparing Fig. 5.7 and Fig. 10, the 

distribution of stability margin is shifted to the right by the optimized PSVS and the 

stability of power system is enhanced by the optimized PSVS. 
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Fig. 5. 8 Voltage instability mode coefficient of 39-bus system 
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Fig. 5. 9 PSI with input signals of nodal voltage of 39-bus system 

 

Table 5. 7 Voltage stability without and with PSVS 

 

Table 5. 8 Probabilistic stability margins of 39-bus system with PSVS 
Cumulative 

density 
Probabilistic stability 

margin 
99% 0.0250 
90% 0.0323 
80% 0.0355 
70% 0.0379 
60% 0.0401 
50% 0.0421 
40% 0.0441 
30% 0.0466 
20% 0.0492 
10% 0.0531 
4% 0.0574 

 

 K  aT  bT  ασαα /* −=  kc ISM 
Without 
PSVS 0 - - 0.2531 0.0021 -0.0152 

PSVS with 
Initial settings -0.1 0.2 0.2 1.5410 0.0118 -0.0054 

PSVS with 
optimized setting -0.4219 0.1949 0.2004 6.7130 0.0421 0.0250 



 119 

-0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

Stabilility margin

6%

96%

10%
10%

10%

10%

99%

9%

10%

10%

10%

10%

 

Fig. 5. 10 Distribution of probabilistic stability margin of 39-bus system with optimized PSVS 

5.6 Conclusion 

In this chapter, PSVS was used to improve the voltage stability of power system 

considering the load uncertainties. In order to ensure power system being stable 

under the load uncertainty, a high reliable index α*>4 was used to assess the 

adequacy of stability.  The PSVS were installed to two weak systems having α*<4. 

First, the participation factor of the critical eigenvalue was used to locate PSVS. 

Then modal instable coefficient and PSI were adopted to determine the input signal 

of PSVS. Finally, the PSVS parameters were optimized by quasi-Newton method. 

Moreover, probabilistic stability margins indices (kc of 50% and ISM of 99%) and 

distributions of stability margin were used to quantify the stability improvements. 

The results confirm the designed PSVS with appropriate parameters can improve the 

voltage stability of power system.  
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Chapter 6 Conclusions and future work 
 

 

6.1 Conclusions 
 
Power system voltage stability is being paid increasing attention in last decades 

because several blackouts occurred is likely due to voltage instabilities. A great 

achievement has been developed in voltage stability study, and many methods have 

been proposed for assessment and enhancement of voltage stability. Most of the 

existing voltage stability analysis methods are based on predetermined set of severe 

but credible situations. However, there exist uncertainties such as measurement 

errors, forecast inaccuracy and outages of system elements in power systems. 

Considering these uncertainty factors, a few of probabilistic voltage stability 

analysis has been used to assess voltage stability, but they did not provide the 

probabilistic stability margin index which is a useful index to quantify the voltage 

stability of power system. The main objective of this research was to analyze voltage 

stability and to improve voltage stability of power system taking into account 

uncertainties in loads and load parameters.  

 

Probabilistic voltage stability analysis based on power flow had been conducted to 

get the probabilistic distribution of stability margin in chapter 2. If the current point 

and load increase are predetermined, the stability margin and voltage collapse point 

can be easily obtained with point of collapse method. However, in this study, the 
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loads are random variables; therefore, stability margin and the critical point are also 

random. To obtain the statistical characteristics, such as expectation, covariance and 

moments of stability margin and nodal voltage at voltage collapse points, point of 

collapse method has been incorporated with probabilistic power flow. With these 

characteristics, maximum entropy has been adopted to determine the density 

function of stability margin. Furthermore, the effect of load uncertainty on the 

distribution of probabilistic stability margin had been analyzed. The load uncertainty 

has a slight effect on the stability margin mean value, but has a significant effect on 

the covariance of stability margin. In other words, with increase of load uncertainty, 

the stability margin will distribute in a wider range. In comparison with Monte Carlo 

simulation results which are obtained by analysis with point of collapse approach on 

numerous scenarios, the results showed that the proposed probabilistic method can 

obtain the probabilistic distribution of stability margin accurately and efficiently. 

 

The above analysis in chapter 2 regards voltage stability as static problem and the 

voltage stability was analyzed based on power flow. The dynamic nature of voltage 

stability was studied in chapter 3. Under small disturbances, voltage stability margin 

is a reasonable index to the bifurcation-related instability. Since the loads are 

random variables, the load margin is also random. In this study, the probabilistic 

stability margin was obtained by probabilistic eigenvalue method. Firstly, 

probabilistic power flow at a particular load level was implemented, which provides 

the initial operating state of generators and probabilistic attributes of nodal voltages. 

Secondly, sensitivities of eigenvalues were used to determine the expectations and 
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covariances of eigenvalues. With the assumption that the distribution of eigenvalues 

is also close to normal, the stability probability of power system is determined by the 

critical eigenvalue. Finally, the probabilistic stability margin has been obtained by 

adjusting the load level to obtain the ‘maximal’ to reach the stability requirement. 

Two probabilistic stability margins indexes, kc corresponding to 50% scenario and 

ISM of 99% scenario, have been obtained by probabilistic eigenvalue method. 

Furthermore, the effect of load uncertainty on probabilistic stability margin has been 

examined. With increase in load uncertainty, kc has only very slight change and ISM 

drops gradually. The proposed method was validated by Monte Carlo simulation 

based on multi 10000 samples. 

 

After analyzing voltage stability using the probabilistic eigenvalue by considering 

the uncertainties of loads, the research work was extended to examine the effect of 

dynamic load parameter uncertainty on voltage stability in chapter 4. A dynamic 

load model is established for the voltage stability analysis. Due to the random 

variation and other uncertain factor, different load parameter values have been used 

even for the same dynamic load model. The uncertainties of load parameters can 

affect the result of stability analysis. Voltage stability was analyzed taking into 

account the uncertainties of load parameters to obtain the probabilistic voltage 

stability margin, provided that the load parameters are normal random variables. The 

two probabilistic stability margin indexes, kc and ISM used in chapter 3, were once 

more used to determine the system stability and the results obtained were then 

compared with those obtained by Monte Carlo methods. It is shown that the 
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proposed probabilistic eigenvalue method can obtain the probabilistic stability 

margin accurately and efficiently.  

 

Probabilistic voltage stability analysis has conducted considering the uncertainties of 

loads and dynamic load parameters. Based on the probabilistic analysis, power 

system voltage stabilizer (PSVS) was then used to improve the stability of very 

weak power systems in chapter 5. Similar to power system stabilizers (PSS) used for 

angular stability, PSVS output will be injected to excitation system of a generator. 

First, mode participation factors have been used to determine the most associated 

generator. Then, instability modal coefficient and probabilistic sensitivity index have 

been employed to determine the input signal of PSVS. Here, the index α*>4 

(employed in angular stability) was used to ensure the system stability being 

adequate. Based on this α* index, the PSVS parameters are optimized using 

nonlinear programming technique. The effect of PSVS to voltage stability was then 

examined by the probabilistic stability margin indexes kc and ISM. To derive the 

distribution of the stability margin, more indexes for different scenarios (other than 

50% and 99%) are computed. The result comparisons of α* as well as the voltage 

margin distribution on two test systems manifest that the PSVS with appropriate 

parameters can effectively improve the stability of power system. 

6.2 Recommended future work 

The research work presented in this thesis has attempted to develop probabilistic 

method to study voltage stability taking into account some uncertainties of power 
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system. With the progress made in this research work, the following issues are 

expected to be further explored in the future: 

 

1. Effects of the load uncertainty and dynamic load parameter uncertainty were 

separately analyzed in this thesis. It will be more challenging if their effects 

can be simultaneously considered. 

 

2. The probabilistic voltage stability analysis in this thesis is based on the 

system under normal operations. Contingencies such as transmission line or 

generator outages (which have been considered in other deterministic voltage 

stability studies) should be included in the future probabilistic study. 

 

3. In this thesis, the uncertainties of loads or load parameters are assumed 

normal distribution. For probabilistic eigenvalue analysis, the variable can be 

any distribution. Any distribution uncertainties of loads can be included in 

voltage stability study. 

 

4. Only PSVS for generator is used to improve voltage stability of power 

system in this thesis for wide range of system operation. A more effective 

PSVS design should be coordinated with reactive compensation in the 

system.  
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Appendix 1 Machine models  
 

 

The third-order generator model is used in the thesis for modeling the d-axis and  

q-axis transient dynamics with the following equations,  

0/ refpδ Ω = ∆Ω−∆Ω                                                                  (A1.1) 

[ ] /m ep P P MΩ = −                                                                      (A1.2) 

' [ ( ') '] / 'q f d d d d q dopE E X X I E T= − − −                                      (A1.3) 

2 2 2
t d qV V V= +                                                                               (A1.4) 

d a d q qV R I X I= − +                                                                      (A1.5)  

' 'q q d a qV E X R I= − −                                                                   (A1.6) 

2 2( )e d d q q d qP V I V I I I= + + +                                                         (A1.7) 

The GMT/PMT representation of the model is given in Fig. A1.1. 
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Fig. A1. 1 The GMT/PMT representation of the third-order generator model 
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The fourth-order generator model is used in the thesis for modeling the d-axis and 

q-axis transient dynamics with the following equations,  

0/ refpδ Ω = ∆Ω−∆Ω                                                                  (A1.8) 

[ ] /m ep P P MΩ = −                                                                      (A1.9) 

' [ ( ') '] / 'q f d d d d q dopE E X X I E T= − − −                                     (A1.10) 

' [( ') '] / 'd q q q d qopE X X I E T= − −                                               (A1.11) 

2 2 2
t d qV V V= +                                                                               (A1.12) 

d a d q qV R I X I= − +                                                                      (A1.13)  

' 'q q d a qV E X R I= − −                                                                   (A1.14) 

2 2( )e d d q q d qP V I V I I I= + + +                                                         (A1.15) 

The GMT/PMT representation of the model is given in Fig. A1.2. 
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Fig. A1. 2 The GMT/PMT representation of the fourth-order generator model 
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Appendix 2 Representation of voltage dependent 
load 
 
 
 
The voltage dependency of load characteristic is represented by an exponential 

function in (A2.1)  for the load at node i 

0 0
a b

Li i iS P jQ PV jQ V= + = +                                                                    (A2.1) 

The load current is represented as 

* *

* * 2

1 ( )( )i i i
i i i Ri Ji

i i i i

S S VI P jQ V jV
V V V V

= = = − +                                                  (A2.2) 

Equating the real and imaginary parts of the load current i Ri JiI I jI= + , 

2

1Ri i i Ri

Ji i i Jii

I P Q V
I Q P VV
     

=     −     
                                                                         (A2.3) 

Differentiating  

2 2 3

21 1Ri i i Ri i i Ri i i Rii

Ji i i Ji i i Ji i i Jii i i

I P Q V P Q V P Q VV
I Q P V Q P V Q P VV V V

∆ ∆ ∆ ∆             ∆
= + −             ∆ − ∆ −∆ ∆ −             

(A2.4) 

where 

1
0

1
0

a
i ii i i

ib
i i ii i

P aPaP V VV
Q bQ VbQ V

−

−

∆      ∆
= ∆ =    ∆    

                                                            (A2.5) 

and 

Ri Ji
i Ri Ji

i i

V VV V V
V V

∆ = ∆ + ∆                                                                               (A2.6)  

because 

2 2 2
i Ri JiV V V= +                                                                                          (A2.7)                                                                                             
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Substitute (A2.5)and (A2.6) in(A2.4), i∆I can be obtained by 

2

1Ri RRi RJi Ri

Ji JRi JJi Jii

I Y Y V
I Y Y VV

∆ ∆     
=     ∆ ∆     

                                                               (A2.8) 

where 

2

4 4 2

2

4 4 2

2

4 4 2

2

4 4 2

( 2)( 2)

( 2) ( 2)

( 2) ( 2)

( 2) ( 2)

R JR
RR

R J J
RJ

R J R
JR

J R J
JJ

b QV Va PV PY
V V V

a PV V b QV QY
V V V

a PV V b QV QY
V V V

a PV b QV V QY
V V V

−−
= + +

− −
= + +

− −
= − −

− −
= − +

                                                      (A2.9)

(A2.10) 

The voltage dependent load module is shown in fig A1.1, 
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Fig. A2. 1 Voltage dependant load module 
 
For the constant power load adopted in this thesis, a=b=0. 
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Appendix 3 Test system data 
 

A) 39-bus system dada 
 

Table A3. 1 Bus data of 39-bus system 

Bus 
Type 

(0=P-Q) 
(0=P-V) 

Volts Load 
MW 

Load 
MVAR 

Gen 
Load 

Gen 
MVAR 

1 0 - 0.0 0.0 0.0 0.0 
2 0 - 0.0 0.0 0.0 0.0 
3 0 - 322.0 2.40 0.0 0.0 
4 0 - 500.0 184.0 0.0 0.0 
5 0 - 0.0 0.0 0.0 0.0 
6 0 - 0.0 0.0 0.0 0.0 
*6 0 - 9.2 4.6 0.0 0.0 
7 0 - 233.8 84.0 0.0 0.0 
8 0 - 522.0 176.0 0.0 0.0 
9 0 - 0.0 0.0 0.0 0.0 
*9 0  1104.0 250.0 0.0 0.0 
10 0 - 0.0 0.0 0.0 0.0 
11 0 - 0.0 0.0 0.0 0.0 
12 0 - 7.5 88.0 0.0 0.0 
13 0 - 0.0 0.0 0.0 0.0 
14 0 - 0.0 0.0 0.0 0.0 
15 0 - 320.0 153.0 0.0 0.0 
16 0 - 329.0 32.3 0.0 0.0 
17 0 - 0.0 0.0 0.0 0.0 
18 0 - 158.0 30.0 0.0 0.0 
19 0 - 0.0 0.0 0.0 0.0 
20 0 - 628.0 103.0 0.0 0.0 
21 0 - 274.0 115.0 0.0 0.0 
22 0 - 0.0 0.0 0.0 0.0 
23 0 - 247.5 84.60 0.0 0.0 
24 0 - 308.6 -92.20 0.0 0.0 
25 0 - 224.0 47.20 0.0 0.0 
26 0 - 139.0 17.0 0.0 0.0 
27 0 - 281.0 75.5 0.0 0.0 
28 0 - 206.0 27.6 0.0 0.0 
29 0 - 283.5 26.9 0.0 0.0 
30 1 1.0475 0.0 0.0 250.0 - 
31 1 0.9820 9.2 4.60 - - 
*31 1 0.9802 0.0 0.0 - - 
32 1 0.9831 0.0 0.0 650.0 - 
33 1 0.9972 0.0 0.0 632.0 - 
34 1 1.0123 0.0 0.0 508.0 - 
35 1 1.0493 0.0 0.0 650.0 - 
36 1 1.0635 0.0 0.0 560.0 - 
37 1 1.0278 0.0 0.0 540.0 - 
38 1 1.0265 0.0 0.0 830.0 - 
39 1 1.03 1104.0 250.0 1000.0 - 
*39 1 1.03 0.0 0.0 1000.0 - 

 
* Data used in chapter 3 and 5. 
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Table A3. 2 Line data for 39-bus system 
 

Line Data Transformer Tap 
No. Bus Bus Resistan

ce R 
Reactanc

e X 
Suscepta

nce B 
Magnitu

de Angle 
1 1 2 0.0035 0.0411 0.6987 0.000 0.00 
2 1 39 0.0010 0.0250 0.7500 0.000 0.00 
3 2 3 0.0013 0.0151 0.2572 0.000 0.00 
4 2 25 0.0070 0.0086 0.1460 0.000 0.00 
5 3 4 0.0013 0.0213 0.2214 0.000 0.00 
6 3 18 0.0011 0.0133 0.2138 0.000 0.00 
7 4 5 0.0008 0.0128 0.1342 0.000 0.00 
8 4 14 0.0008 0.0129 0.1382 0.000 0.00 
9 5 6 0.0002 0.0026 0.0434 0.000 0.00 
10 5 8 0.0008 0.0112 0.1476 0.000 0.00 
11 6 7 0.0006 0.0092 0.1130 0.000 0.00 
12 6 11 0.0007 0.0082 0.1389 0.000 0.00 
13 7 8 0.0004 0.0046 0.0780 0.000 0.00 
14 8 9 0.0023 0.0363 0.3804 0.000 0.00 
15 9 39 0.0010 0.0250 1.2000 0.000 0.00 
*15 9 39 0.0001 0.0025 1.2000 0.000 0.00 
16 10 11 0.0004 0.0043 0.0729 0.000 0.00 
17 10 13 0.0004 0.0043 0.0729 0.000 0.00 
18 13 14 0.0009 0.0101 0.1723 0.000 0.00 
19 14 15 0.0018 0.0217 0.3660 0.000 0.00 
20 15 16 0.0009 0.0094 0.1710 0.000 0.00 
21 16 17 0.0007 0.0089 0.1342 0.000 0.00 
22 16 19 0.0016 0.0195 0.3040 0.000 0.00 
23 16 21 0.0008 0.0135 0.2548 0.000 0.00 
24 16 24 0.0003 0.0059 0.0680 0.000 0.00 
25 17 18 0.0007 0.0082 0.1319 0.000 0.00 
26 17 27 0.0013 0.0173 0.3216 0.000 0.00 
27 21 22 0.0008 0.0140 0.2565 0.000 0.00 
28 22 23 0.0006 0.0096 0.1846 0.000 0.00 
29 23 24 0.0022 0.0350 0.3610 0.000 0.00 
30 25 26 0.0032 0.0323 0.5130 0.000 0.00 
31 26 27 0.0014 0.0147 0.2396 0.000 0.00 
32 26 28 0.0043 0.0474 0.7802 0.000 0.00 
33 26 29 0.0057 0.0625 1.0290 0.000 0.00 
34 28 29 0.0014 0.0151 0.2490 0.000 0.00 
35 12 11 0.0016 0.0435 0.0000 1.006 0.00 
36 12 13 0.0016 0.0435 0.0000 1.006 0.00 
37 6 31 0.0000 0.0250 0.0000 1.070 0.00 
*37 6 31 0.0000 0.0125 0.0000 1.070 0.00 
38 10 32 0.0000 0.0200 0.0000 1.070 0.00 
39 19 33 0.0007 0.0142 0.0000 1.070 0.00 
40 20 34 0.0009 0.0180 0.0000 1.009 0.00 
41 22 35 0.0000 0.0143 0.0000 1.025 0.00 
42 23 36 0.0005 0.0272 0.0000 1.000 0.00 
43 25 37 0.0006 0.0232 0.0000 1.025 0.00 
44 2 30 0.0000 0.0181 0.0000 1.025 0.00 
45 29 38 0.0008 0.0156 0.0000 1.025 0.00 
46 19 20 0.0007 0.0138 0.0000 1.060 0.00 

 
* Data used in chapter 3 and chapter 5. 
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Table A3. 3 Detailed model unit data of 39-bus system 

Unit No. H 
(sec) Ra Xd’ Xq’ Xd Xq Td0’ Tq0’ Xl 

1 500.0 0 0.006 0.08 0.02 0.019 7.0 0.7 0.003 
2 30.3 0 0.0697 0.170 0.295 0.282 6.56 1.5 0.035 
3 35.8 0 0.0531 0.0876 0.2495 0.237 5.7 1.5 0.0304 
4 28.6 0 0.0436 0.166 0.262 0.258 5.69 1.5 0.0295 
5 26.0 0 0.132 0.166 0.67 0.62 5.4 0.44 0.054 
6 34.8 0 0.05 0.0814 0.254 0.241 7.3 0.4 0.0224 
7 26.4 0 0.049 0.186 0.295 0.292 5.66 1.5 0.0322 
8 24.3 0 0.057 0.0911 0.290 0.280 6.7 0.41 0.028 
9 34.5 0 0.057 0.0587 0.2106 0.205 4.79 1.96 0.0298 
10 42.0 0 0.031 0.08 0.1 0.069 10.2 0.0 0.0125 

 
 

Table A3. 4 Detailed model generator excitation system data of 39-bus system 
Unit 
No. KA TA VRMIN VRMAX KE TE KF TF C1 C2 

1 0 0 0 1 0 0 0 0 0 0 
2 6.2 0.05 -1.0 1.0 -0.633 0.405 0.057 0.5 0.66 0.88 
3 5.0 0.06 -1.0 1.0 -0.0198 0.5 0.08 1.0 0.13 0.34 
4 5.0 0.06 -1.0 1.0 -0.0525 0.5 0.08 1.0 0.08 0.314 
5 40.0 0.02 -10.0 10.0 1.0 0.785 0.03 1.0 0.07 0.91 
6 5.0 0.02 -1.0 1.0 -0.0419 0.471 0.0754 1.246 0.064 0.251 
7 40.0 0.02 -6.5 6.5 1.0 0.73 0.03 1.0 0.53 0.74 
8 5.0 0.02 -1.0 1.0 -0.047 0.528 0.0854 1.26 0.072 0.282 
9 40.0 0.02 -10.5 10.5 1.0 1.4 0.03 1.0 0.62 0.85 
10 5.0 0.06 -1.0 1.0 -0.0485 0.25 0.04 1 0.08 0.26 
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Fig. A3. 1 IEEE Type 1 rotating excitation system model adopted for 39-bus system 
 
 
Note: A & Bin Fig. A3.1 are computed as follows: 
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2
2

RMAX

E

VEX
K C

=
+

, 1 20.75EX EX=  

2 1 2 1ln( ) / ( )B C C EX EX= − − , 2
2 / B EXA C e ⋅=  

fdB E
ES Ae ⋅=  

Generator 1 has constant excitation. 

 

B) 57-bus system 

Table A3. 5 Bus data of 57-bus system 

Bus No. 

Type 
(1=P-Q) 
(2=P-V) 

(3=Slack) 

voltage Load MV Load 
MVAR 

1 3 1.04 - - 
2 2 1.01 3 88 
3 2 0.985 41 21 
4 1 - 0.0 0.0 
5 1 - 13 4 
6 2 0.98 75 2 
7 1 - 0 0 
8 2 1.005 150 22 
9 2 0.98 121 26 
10 1 - 5 2 
11 1 - 0 0 
12 2 1.1015 377 24 
13 1 - 18 2.3 
14 1 - 10.5 5.3 
15 1 - 22 5 
16 1 - 43 3 
17 1 - 42 8 
18 1 - 27.2 9.8 
19 1 - 3.3 0.6 
20 1 - 2.3 1 
21 1 - 0.0 0.0 
22 1 - 0.0 0.0 
23 1 - 6.3 2.1 
24 1 - 0.0 0.0 
25 1 - 6.3 3.2 
26 1 - 0.0 0.0 
27 1 - 9.3 0.5 
28 1 - 4.6 2.3 
29 1 - 17 2.6 
30 1 - 3.6 1.8 
31 1 - 5.8 2.9 
32 1 - 1.6 0.8 
33 1 - 3.8 1.9 
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34 1 - 0.0 0.0 
35 1 - 6 3 
36 1 - 0.0 0.0 
37 1 - 0.0 0.0 
38 1 - 14 7 
39 1 - 0.0 0.0 
40 1 - 0.0 0.0 
41 1 - 6.3 3 
42 1 - 7.1 4.4 
43 1 - 2 1 
44 1 - 12 1.8 
45 1 - 0.0 0.0 
46 1 - 0.0 0.0 
47 1 - 29.7 11.6 
48 1 - 0.0 0.0 
49 1 - 18 8.5 
50 1 - 21 10.5 
51 1 - 18 5.3 
52 1 - 4.9 2.2 
53 1 - 20 10 
54 1 - 4.1 1.4 
55 1 - 6.8 3.4 
56 1 - 7.6 2.2 
57 1 - 6.7 2.0 

 
 

Table A3. 6  Line data of 75-bus system 
No. Bus Bus R X B T 
1 2 1 0.0083 0.028 0.129  
2 3 2 0.0298 0.085 0.0818  
3 4 3 0.0112 0.0366 0.038  
4 5 4 0.0625 0.132 0.0258  
5 6 4 0.043 0.148 0.0348  
6 7 6 0.02 0.102 0.0276  
7 8 6 0.0339 0.173 0.047  
8 9 8 0.0099 0.0505 0.0548  
9 10 9 0.0369 0.1679 0.044  
10 11 9 0.0258 0.0848 0.0218  
11 12 9 0.0648 0.295 0.0772  
12 13 9 0.0481 0.158 0.0406  
13 14 13 0.0132 0.0434 0.011  
14 15 13 0.0269 0.0869 0.023  
15 15 1 0.0178 0.091 0.0988  
16 16 1 0.0454 0.206 0.0546  
17 17 1 0.0238 0.108 0.0286  
18 15 3 0.0162 0.053 0.0544  
19 4 18 0.0 0.555 0.0 0.97 
20 4 18 0.0 0.43 0.0 0.978 
21 6 5 0.0302 0.0641 0.0124  
22 8 7 0.0139 0.0712 0.0194  
23 12 10 0.0277 0.1262 0.0328  
24 13 11 0.0223 0.0732 0.0188  
25 13 12 0.0178 0.058 0.0604  
26 16 12 0.018 0.0813 0.0216  
27 17 12 0.0397 0.179 0.0476  
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28 15 14 0.0171 0.0547 0.0148  
29 19 18 0.461 0.685 0.0  
30 20 19 0.461 0.685   
31 21 20 0.0 0.7767 0.0 1.043 
32 22 21 0.0736 0.117   
33 23 22 0.0099 0.0152   
34 24 23 0.166 0.256 0.0084  
35 24 25 0.0 1.182   
36 24 25 0.0 1.23   
37 24 26 0.0 0.0473  1.043 
38 27 26 0.165 0.254   
39 28 27 0.0618 0.0954   
40 29 28 0.0418 0.0587   
41 7 29 0.0 0.0648  0.967 
42 30 25 0.135 0.202   
43 31 30 0.326 0.497   
44 32 31 0.507 0.755   
45 33 32 0.0392 0.036   
46 34 32 0.0 0.953  0.975 
47 35 34 0.052 0.078 0.032  
48 36 35 0.043 0.0537 0.0016  
49 37 36 0.029 0.0366   
50 38 37 0.0651 0.1009 0.002  
51 39 37 0.0239 0.0379   
52 40 36 0.03 0.0466   
53 38 22 0.0192 0.0295   
54 11 41 0.0 0.749  0.955 
55 42 41 0.207 0.352   
56 43 41 0.0 0.412   
57 44 38 0.0289 0.0585 0.002  
58 15 45 0.0 0.1042  0.955 
59 14 46 0.0 0.0735  0.9 
60 47 46 0.023 0.068 0.0032  
61 48 47 0.0182 0.0233   
62 49 48 0.0834 0.129 0.0048  
63 50 49 0.0801 0.128   
64 51 50 0.1386 0.22   
65 10 51 0.0 0.0712  0.93 
66 13 49 0.0 0.191  0.895 
67 52 29 0.1442 0.187   
68 53 52 0.0762 0.0984   
69 54 53 0.1878 0.232   
70 55 54 0.1732 0.2265   
71 11 43 0.0 0.153  0.958 
72 45 44 0.0624 0.1242 0.004  
73 40 56 0.0 0.1195  0.958 
74 41 56 0.553 0.549   
75 42 56 0.2125 0.354   
76 39 27 0.0 1.355  0.98 
77 56 57 0.174 0.26   
78 49 38 0.115 0.177 0.003  
79 48 38 0.115 0.177   
80 9 55 0.0 0.1205  0.94 
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C) 9-bus system 
 

Table A3. 7 Load-flow results of 9-bus system 

 Bus type Voltage (pu) PG 
(pu) 

QG 
(pu) 

-PL 
(pu) 

-QL 
(pu) 

1 (P-Q) 1.026 3.7o∠  - - - - 
2 (P-Q) 1.032 2.0o∠  - - - - 
3 (P-Q) 1.026 2.2o∠−  - - - - 
4 (P-Q) 0.996 4.0o∠−  - - 1.25 0.5 
5 (P-Q) 1.016 0.7o∠  - - 1.00 0.35 
6 (P-Q) 1.013 3.7o∠−  - - 0.9 0.3 
7 (P-V) 1.025 9.3o∠  1.63 0.067   
8 (P-V) 1.025 4.7o∠  0.85 -0.109 - - 
9 (swing) 1.04 - - - - 

 
 
 

Table A3. 8 Line data of 9-bus system 
No. From To R X B T 
1 1 5 0.0085 0.072 0.1490 1.0 
2 5 2 0.0119 0.1008 0.2090 1.0 
3 1 4 0.0320 0.161 0.3060 1.0 
4 4 3 0.01 0.085 0.176 1.0 
5 2 6 0.039 0.17 0.358 1.0 
6 3 6 0.017 0.092 0.158 1.0 
7 7 1 0.0 0.0625 0.0 1.0 
8 8 2 0.0 0.0586 0.0 1.0 
9 9 3 0.0 0.0576 0.0 1.0 

 
 

Table A3. 9 Generator data of 9-bus system 
Generator 

No. H Xd Xd’ Xq Xq’ Td0’ Tq0’ 

1 6.4 0.8958 0.1198 0.8645 0.1969 6.0 0.535 
2 3.01 1.3125 0.1813 1.2578 0.25 5.89 0.6 
3 23.64 0.146 0.0608 0.0969 0.0969 8.96 0.31 

 
 

Table A3. 10 Exciter data of 9-bus system 

No. KA TA 
(sec) KE TE 

(sec) KF TF 
(sec) 

1 20 0.2 1.0 0.314 0.063 0.35 
2 20 0.2 1.0 0.314 0.063 0.35 
3 20 0.2 1.0 0.314 0.063 0.35 
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Fig. A3. 2 Exciter model adopted for 9-bus system 

 
 
Note: 1.555( ) 0.0039 1,2,3fdiE

Ei fdiS E e i= =   
 
 
 
 
 
 
D) 14-bus system 
 

Table A3. 11 Bus data of 14-bus system 

Bus 
No. 

Type 
(1=P-Q) 
(2=P-V) 

(3=Slack) 

voltage Load 
MV 

Load 
MVAR 

Gen 
MV 

Gen 
MVAR 

1 3 1.06 - - - - 
2 2 1.045 -0.217 0.127- 0.4 - 
3 2 1.01 0.942 0.19 0.0 - 
4 1  0.478 0.04   
5 1  0.076 0.016   
6 2 1.07 0.112 0.075 0.0 - 
7 1  0.0 0.0 - - 
8 2 1.09 0.0 0.0 0.0 - 
9 1  0.295 0.166 - - 
10 1  0.09 0.058 - - 
11 1  0.035 0.018 - - 
12 1  0.061 0.016 - - 
13 1  0.135 0.058 - - 
14 1  0.149 0.05 - - 
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Table A3. 12 Line data of 14-bus system 
Line Data Transformer Tap 

No. Bus Bus Resistance 
R 

Reactance 
X 

Susceptance 
B Magnitude Angle 

1 2 5 0.05695 0.17388 0.034   
2 6 12 0.12291 0.25581 0.0   
3 12 13 0.22092 0.19988 0.0   
4 6 13 0.06615 0.13027 0.0   
5 6 11 0.09498 0.1989 0.0   
6 11 10 0.08205 0.19207 0.0   
7 9 10 0.03181 0.0845 0.0   
8 9 14 0.12711 0.27038 0.0   
9 14 13 0.17093 0.34802 0.0   
10 7 9 0.0 0.11001 0.0   
11 1 2 0.01938 0.05917 0.0528   
12 3 2 0.04699 0.19797 0.0438   
13 3 4 0.06701 0.17103 0.0346   
14 1 5 0.05403 0.22304 0.0492   
15 5 4 0.01335 0.04211 0.0128   
16 2 4 0.05811 0.17632 0.0374   
17 5 6 0.0 0.25202 0.0 0.932  
18 4 9 0.0 0.55618 0.0 0.969  
19 4 7 0.0 0.20912 0.0 0.978  
20 8 7 0.0 0.17615 0.0   

 
 

Table A3. 13 Generator data of 14-bus system 
 G1 G2 G3 G4 G5 
lX  0.0 0.0 0.0 0.0 0.0 

aR  0.0 0.0031 0.0031 0.0014 0.0014 

dX  0.8979 1.05 1.05 1.25 1.25 
'
dX  0.6 0.185 0.185 0.232 0.232 
''
dX  0.23 0.13 0.13 0.12 0.12 
'
0dT  7.4 6.1 6.1 4.75 4.75 

''
0dT  0.03 0.04 0.04 0.06 0.06 

qX  0.646 0.98 0.98 1.22 1.22 
'
qX  0.646 0.36 0.36 0.715 0.715 
''
qX  0.4 0.13 0.13 0.12 0.12 

'
0qT  2 0.3 0.3 1.5 1.5 
''

qT  0.033 0.099 0.099 0.21 0.21 
M 10.296 13.08 13.08 10.12 10.12 
D 2 2 2 2 2 
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Table A3. 14 Exciter data of 14-bus system 
 EXC1 EXC2 EXC3 EXC4 EXC5 

Vrmax 7.32 4.38 4.38 6.81 6.81 
Vrmin 0 0 0 1.395 1.395 
Ka 20 20 20 20 20 
Ta 0.02 0.02 0.02 0.02 0.02 
Kf 0.002 0.001 0.001 0.001 0.001 
Tf 1.0 1.0 1.0 1.0 1.0 
Te 0.01 0.01 0.01 0.01 0.01 
Tr 0.2 1.98 1.98 0.7 0.7 
Ae 0.001 0.001 0.001 0.001 0.001 
Be 0.0006 0.0006 0.0006 0.0006 0.0006 
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Fig. A3. 3 Exciter model adopted for 14-bus system 

 
 
Note: ( ) ( 1)e fdB E

E fd eS E A e= −   
 

Table A3. 15 Turbine governor data of 14-bus system 
 

 Ωref R Tmax Tmin Ts Tc Ts T4 T5 
1 1 0.02 1.2 0.3 0.1 0.45 0.0 12 50 
2 1 0.02 1.2 0.3 0.1 0.45 0.0 12 50 
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Fig. A3. 4 Turbine governor model adopted for 14-bus system 
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