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Abstract 

Palmprint, as a new member of biometrics family, has attracted much of research 

attention in the past decade. Many different algorithms and systems have been proposed 

and built. Although, great success has been achieved in palmprint research, palmprint 

recognition could be further improved in two aspects: higher accuracy and robustness 

against spoof attack. Multispectral imaging, a method to collect a series of images by 

different spectra, is a good technique to address the issues mentioned above. In this 

thesis, different aspects of multispectral palmprint recognition were investigated and 

discussed. 

First, the issues of multispectral palmprint recognition were addressed. A well 

developed and accurate multispectral palmprint prototype with high speed was proposed. 

There are four different kinds of illumination in the device developed, blue illumination, 

green illumination, red illumination, and near infrared illumination. The former three are 

the primary colors well known in visible spectrum, and they could compose other lights. 

A large multispectral palmprint database was built by this device. Multispectral 

palmprint recognition can be regarded as a kind of special multimodal biometrics and 

there are three popular schemes regarding multimodal fusion: image level, feature level 

and matching score level. In this thesis, the three levels of fusion were studied and 

compared. The shortcomings and advantages of each method make them applicable for 

different applications.  

Then, a critical issue for palmprint recognition was studied. Illumination which is 

used to enhance the palmprint feature is a key component in palmprint recognition 

system design. Although there are some rules or guidances on the selection of cameras, 

light types, lens etc. There is no work systematically evaluating whether the white light 

source, which is the dominant light color in palmprint recognition, and which is the 

optimal light. Based on the multispectral palmprint image acquisition and additive color 

theory, seven kinds of palmprint images are acquired by red, green, blue, cyan, yellow, 

magenta and white lighting. The question which light is optimal for palmprint was 

studied empirically through three kinds of palmprint recognition algorithms. 

After that, although a multispectral palmprint acquisition device was developed, the 

underlying design principles were not well studied. In general, more feature bands could 

provide more features and thus get higher accuracy. However, more feature bands may 

contain redundant information and require too much cost on computation. Thus, the 
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optimal number of feature bands in terms of accuracy and computation cost is a key 

issue in multispectral imaging. In this thesis, a feature band clustering algorithm was 

proposed to determine the optimal feature band number. After determining the number, 

an exhaustive searching could find the optimal combination. 

Finally, CompCode, one of state-of-the-art algorithms for palmprint recognition 

was analyzed and used in this thesis. It is the first algorithm for extracting orientation 

information for palmprint image with good accuracy and less computation cost on 

matching. It is mainly composed of three parts: filter design, feature extraction and 

matching. Although some work has been done on proposing novel filters, little work has 

been done on feature extraction and matching. A novel feature extraction scheme, 

Binary Orientation Co-occurrence Vector, was proposed in this thesis. It showed 

robustness to rotation effect and got better results than CompCode did on public 

databases. There are two widely used distances for fast orientation feature comparison. 

They are SUM_XOR and OR_XOR. No one empirically analyzed which one is more 

appropriate for palmprint recognition, and their relationship is left open for analyzing. In 

this thesis, a unified distance measurement was proposed. There is one parameter to 

control the proposed distance, and SUM_XOR and OR_XOR are special cases of the 

proposed distance with suitable parameter value. It also empirically showed when a 

suitable parameter was selected, better accuracy could be achieved comparing with the 

two distances.  
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Chapter 1. Introduction 

1.1 Introduction of Biometrics 

Nowadays, traditional token or key based personal authentication could not meet some 

applications, especially high secure orientated ones. Automatic authentication using 

biometric characteristics as the substitution or complement technology is becoming 

more and more popular. It is the study of methods for uniquely recognizing humans 

based up one or more intrinsic physical or behavioral traits [111-112], including the 

extensively studied fingerprint, facial features, iris, speech, hand geometry, palmprint etc. 

Fig. 1.1 shows a typical framework of a biometric system. 

 

Figure 1.1 A typical framework of a biometric system. [115] 

Among these traits, fingerprint has the longest history [113]. However some 

reasons such as age or the dryness of finger caused that around 2% of the population 

could not provide clear fingerprint images [114]. Iris is a popular and reliable trait [50], 

but its devices are more expensive, and some persons are reluctant to accept it because 

of worrying potential damage to their eyes. Other features, such as the face [116], voice 

[117] and hand geometry [118] are as yet not sufficiently accurate.  

Compared with other features, palmprint has many advantages. It is composed of 

three kinds of features [12]: principal lines (usually three dominant lines on the palm), 

wrinkles (weaker than principal and more irregular lines) and minutia (ridge and valley 

which are similar to fingerprint). The principal and wrinkle could be captured under low 

resolution, for example <100dpi, so the on-line palmprint authentication could utilize 

CCD camera as the input sensor which makes the device much cheaper. Meanwhile, 
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palmprint capture device is more user friendly than iris devices. Fig. 1.2 shows the 

comparison among various biometric traits.  

 

Figure 1.2 Comparison of various biometrics traits. (High, Medium and Low are denoted by H, 
M and L) [119] 

1.2 Motivation and Summary of the Work 

Great breakthrough has been made in palmprint recognition in the past decade, many 

systems and methods have been proposed. However, the accuracy is limited in some 

cases as the palmprint feature may be similar for a given spectral illumination. 

Furthermore, it is not difficult to fake a palmprint image [86]. Although 3-D imaging 

could be used to address these issues, the expensive and bulky device makes it difficult 

to be applied for real applications [100-102]. One solution to these problems can be 

multispectral imaging, which captures an image in a variety of spectral bands. Each 

spectral band highlights specific features of the palm, making it possible to collect more 

information to improve the accuracy and anti-spoofing capability of palmprint systems. 

This thesis investigated different aspects of multispectral palmprint recognitions, 

including system design and recognition methods.  

There is no public available multispectral palmprint image acquisition device. A 

specially designed multispectral palmprint scanner was proposed. It could collect 

palmprint images in visible (blue, green and red) and near infrared spectra in a very 

short time. Constructing a semi-closed environment and using several pegs to control the 
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position, high quality multispectral palmprint images could be acquired. Based on this 

device, a large multispectral palmprint database was built. Regarding multispectral 

palmprint as a special multimodal, different fusion techniques, image level, feature level 

and matching score level, were investigated and discussed. Their cons and pros were 

compared empirically.  

Different palmprint systems were proposed in the past, among them, using active 

illumination to enhance the palmprint feature was a popular one. Although all of them 

use white light as the illumination source, there is no work systematically evaluating 

whether white light color illumination is the optimal choice for palmprint recognition. 

To address this issue, using the proposed multispectral palmprint acquisition device and 

additive color theory, seven kinds of palmprint images were collected by different 

simulated colors, blue, green, red, cyan, yellow, magenta, and white. To get unbiased 

results, three popular palmprint recognition methods were chosen and tested on many 

different kinds of settings. The experimental results show that white color may not be 

the optimal color, while yellow or magenta may be more appropriate for palmprint 

recognition. 

Although multispectral palmprint recognition is not a new topic and several 

multispectral palmprint systems have been proposed. The question how to select feature 

bands for the system design has not been addressed. The random selection will cumber 

the wide acceptance of multispectral palmprint recognition. Here, a hyperspectral 

palmprint collecting environment is set up and a large hyperspectral palmprint database 

was built to address this issue. The hyperspectral cube includes 69 palmprint images 

from 420nm to 1100nm with 10 nm interval. A modified mean cluster algorithm was 

proposed to find the optimal number of feature bands. 3 distinctive clusters was 

discovered in our data and it was empirically validated that 3 bands may be enough for 

multispectral palmprint recognition.  

In addition to using well developed palmprint recognition methods on multispectral 

palmprint recognition, the improvement of traditional palmprint recognition* is also 

important. Competitive Code (CompCode), one of the state-of-the-art algorithms on 

traditional palmprint recognition, was utilized in this thesis. Thus, if CompCode is 

improved, better performance on multispectral palmprint recognition could be obtained. 

After investigating the framework of CompCode, a new feature extraction and a unified 

distance measurement were proposed. Using the same filter, the proposed feature 

extraction, Binary Orientation Co-occurrence Vector (BOCV), could get better result and 

is more robust to rotation effect than CompCode. A unified distance measurement was 

                                                        
* In this thesis, traditional palmprint recognition represents the palmprint recognition by 2D image and 
unispectral lighting.  
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proposed to combine two widely used distances, SUM_XOR and OR_XOR, for fast 

feature comparison. There is one parameter to control the proposed distance, and 

SUM_XOR and OR_XOR are special cases of the proposed distance with suitable 

parameter value. Experimental results showed that better accuracy could be achieved 

compared with the two distances, if the parameter is selected suitably.  

1.3 Organization of the Thesis 

The following of the thesis is organized as follows. Chapter 2 reviews different aspects 

of palmprint recognition and several novel directions of palmprint recognition, including 

multispectral palmprint recognition, fusion, 3D palmprint, system protection and 

acceleration of identification. Chapter 3 presents the proposed multispectral palmprint 

acquisition device and investigates different fusion schemes: image level, feature level 

and matching score level, for online recognition. Chapter 4 empirically studies the light 

source for traditional palmprint recognition using the designed multispectral palmprint 

device. Chapter 5 investigates the feature band selection for multispectral palmprint 

recognition based one a self collected hyperspectral palmprint database. Chapter 6 

discusses the improvement of traditional (unispectral) palmprint recognition from two 

aspects, a novel feature extraction and a unified distance. Fig. 1.3 shows the illustration 

of the organization. 

 
Figure 1.3 The organization of the thesis. (The links show the relationship between chapters or 
sections. S stands for Section while C represents Chapter.) 

Palmprint Recognition 

Multispectral Palmprint Recognition Traditional Palmprint Recognition 

S.3.1) Multispectral 
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S.3.2) Multispectral 
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C.5) Feature Band Selection for 

Multispectral Palmprint Recognition 

C.4) Light Source Selection for 

Traditional Palmprint Recognition 

S.6.1) A Novel 

Feature Extraction, 
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S.6.2) A 
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1.4 Palmprint Database to Be Used in the Thesis 

In this study, six different kinds of palmprint database were used to test the system accuracy 
or algorithm performance.  

1.4.1 PolyU Multispectral Palmprint Database (PUMPD) 

A large multispectral palmprint images from 250 individuals using the developed 

multispectral acquisition device (described in Section 3.1) was collected. The subjects 

were mainly volunteers from our institute. In the database, 195 people are male and the 

age distribution is from 20 to 60 years old. We collected the multispectral palmprint 

images on two separate sessions. The average time interval between the two occasions is 

9 days. On each session, the subject was asked to provide 6 samples of each of his/her 

left and right palms. So the database contains 6,000 images for each band from 500 

different palms. For each shot, the device collected 4 images from the four bands (Red, 

Green, Blue and NIR) in less than one second. In palmprint acquisition, the users are 

asked to keep their palms stable on the device. The resolution of the images is 352 by 

288 (<100 dpi). 

1.4.2 PolyU Multispectral Motion Blur Palmprint 

Database (PUMMBPD) 

The PUMPD was acquired under supervision. The image quality is controlled and good. 

However, in real applications, the supervision may not exist, and some users may not 

familiar with the system, so motion blur may occur during image acquisition. This may 

cause some poor quality images. A new database which is used to investigate motion 

blur effect was built. 1000 images were randomly selected from each feature band. Then 

these images were converted to simulated motion blur images by the described method 

(described in Section 3.2). Finally, these images were put to the original database to 

replace the original images. 

1.4.3 PolyU Additive Color Palmprint Database 

(PUACPD) 

We collected multispectral palmprint images from 250 subjects using the developed data 
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acquisition device (described in Section 3.1). The subjects were mainly volunteers from 

our institutes. In the database, 195 subjects are male and the age distribution is from 20 

to 60 years old. We collected the multispectral palmprint images on two separate 

sessions. The average time interval between the two occasions is 9 days. On each session, 

the subject was asked to provide 6 samples of each of his/her left and right palms. So our 

database contains 6,000 images for each band from 500 different palms. For each shot, 

the device collected 7 images from different bands (red, green, blue, cyan, yellow, 

magenta, and white) in less than two seconds. In palmprint acquisition, the users are 

asked to keep their palms stable on the device. The resolution of the images is 352*288 

(<100 DPI). 

1.4.4 PolyU Hyperspectral Palmprint Database (PUHPD) 

A large hyperpsectral palmprint cube from 190 individuals using the developed data 

acquisition system (described in Section 5.1) is built. The subjects were mainly 

volunteers from our institute. In the database, the age distribution is from 20 to 60 years 

old. The multispectral palmprint cubes were collected by two separate sessions. The 

average time interval between the two occasions is around 1 month. On each session, the 

subject was asked to provide around 7 cubes of each of his/her left and right palms. So 

the database contains 5,240 images for each band from 380 different palms. Among 

them, 2608 cubes were collected by the first session, while 2632 by the second session. 

1.4.5 PolyU Palmprint Database (PUPD) 

The public database includes 7752 palmprint images from 193 individuals [127]. The 

database is collected in two sessions. Each time, the subject was asked to collect around 

10 palmprint images from his left and right palms. Altogether, each person provided 

around 40 images. The average time interval between the two sessions is 69 days. 

1.4.6 CASIA Palmprint Database (CASIAPD) 

The public database contains 5,239 palmprint images from 301 individuals [146]. To the 

best of our knowledge, this database is the largest public available database in terms of 

the number of subjects. Most of the samples were collected in one session only. The 

subject was asked to provide about 8 palmprint images from his/her left and right palms. 
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1.5 Introduction of CompCode 

CompCode, one of the state-of-the-art palmprint verification algorithms, is widely used 

in the thesis. It is a kind of texture-based coding, which extracts an orientation feature 

for each pixel. It owns many advantages, such as robust to illumination and fast for 

matching, thus it is more suitable for online system.  

 By viewing the line features in palmprint images as dark lines, we apply six Gabor 

filters along different directions ( / 6j jθ π= , where j={0,1,2,3,4,5}) to the palmprint 

images for orientation feature extraction. For each pixel, the orientation corresponding to 

the minimal response is taken as the feature at this pixel [52]. The employed Gabor filter 

is as: 
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half-amplitude bandwidth of the frequency response. To reduce the influence of 

illumination, the DC (direct current) is removed from the filter.  

 Table 1.1 Bit Representation of the Orientation Coding. 
Orientation Value Bit 0 Bit 1 Bit 2 

0 0 0 0 
π/6 0 0 1 
π/3 0 1 1 
π/2 1 1 1 

2π/3 1 1 0 
5π/6 1 0 0 

 

Since there are totally 6 different orientations, we can code them by using 3 bits as listed 

in Table 1.1. This coding scheme is to make the bit-wise difference proportional to the 

angular difference [52]. So the difference between two orientation maps could be 

measured by using the bitwise Hamming distance: 
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where P and Q represent two palmprint orientation feature maps, b
iP  and b

iQ  are the 

ith
 bit plane of P and Q, respectively. Symbol “⊗ ” represents bitwise exclusive OR. 
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Obviously, D is between 0 and 1, and for a perfect matching the distance will be 0. The 

feature map is down-sampled from 128*128 to 32*32 [103].  
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Chapter 2. Literature Review 

In this chapter, the general concepts and methods of palmprint recognition is introduced 

first. Then, some palmprint recognition methods and systems are introduced. The 

research and analysis of multispectral palmprint, a new direction of palmprint 

recognition, are reviewed. Finally, other directions of palmprint recognition are 

discussed and compared. 

2.1 Introduction of Palmprint Recognition 

2.1.1 Introduction of Palmprint 

A palm is defined as the inner surface of a hand between the wrist and the root of fingers 

[1]. It is rich in features: principal lines, winkles, ridges, singular points and minutiae 

points, as shown in Fig. 2.1, make up the palmprint. The area of it is much larger than a 

finger tip, but is covered with the same kind of skin.  

 
Figure 2.1 Typical Features from Palmprint. [1] 

The main features of palmprint, including principal lines and wrinkles, are formed 

between 3 and 5 months after conception, and the other features appear after birth [2]. 

There is a long history of palmistry, using palm lines for fortune telling [3]. In palmistry, 

different lines are defined for different functions as shown in Fig. 2.2. It is also found 

that palmprint is related with human diseases [4]. 

Principal 
Lines 

Wrinkles 
Ridges 
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Figure 2.2 Some of the lines of the hand in Palmistry. 1: Life line - 2: Head line - 3: Heart line - 
4: Girdle of Venus - 5: Sun line - 6: Mercury line - 7: Fate line. [3] 

From the acquisition point of view, there are mainly two types of palmprint 

recognition, offline and online. 

2.1.2 Offline Palmprint Recognition 

In the early stage, due to the limitation of digital image acquisition, researchers could 

not get palmprint images instantly and their work focused on offline images only [5-7, 

38]. They had to put their palms on a paper with ink, then the inked paper was 

digitalized by a scanner. Usually, the image quality is good and the resolution is high. 

However, because of the shape of palm, part of palmprint feature, especially the central 

part, is missed as shown in Fig. 2.3. Furthermore, its acquisition time is much longer and 

is more suitable for forensic applications, not for civil and commercial applications.  
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Figure 2.3 An offline palmprint image. [7] 

2.1.3 Online Palmprint Recognition 

There are two types of palmprint images, high resolution and low resolution. High 

resolution palmprint images (usually above 500 dpi to meet the requirement of NIST [8]) 

could provide clear minutia features which are exclusively collected by high resolution 

imaging. These minutia features are very important for forensic applications [9-11]. 

Because of the large area, the computation cost of high resolution image is high. The 

high computation make high resolution palmprint recognition fail to meet the 

requirement of many civil and commercial applications. 

As low resolution (usually below 100 dpi [12]) could contain most of lines of palm 

and texture information, the discriminant information is enough for most of civil and 

commercial applications such as access control and time attendance. In this thesis, low 

resolution palmprint recognition is the main focus. 

 

 
(a) (b) 

Figure 2.4 High resolution vs low resolution palmprint images. a) High resolution palmprint 
image [10]; b) low resolution palmprint image [12]. 
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2.2 Review of Palmprint Recognition 

For an online palmprint recognition system, it is mainly composed of four parts: 

acquisition device, Region of Interest (ROI) extraction, feature extraction and matching. 

This section discusses the research results of each part. 

2.2.1 Palmprint Image Acquisition Device 

According to the types of sensors, there are mainly four kinds of devices [13]: digital 

scanners [14-21], video cameras [22-24], CCD (Charge Coupled Device) based 

palmprint scanner [12, 25-26] and digital cameras [27-31].  

It is easier and convenient to get palmprint images by digital scanner with different 

image resolution. The scanner does not require any consideration of light source, lens 

and focus issues. But it suffers two main disadvantages during collection. First, the 

speed is usually slow. It requires warm-up procedure and may take several seconds to 

collect the palmprint. Second, during collections, the user is asked to put his/her palm 

wholly on the scanner, so it may bring sanitary issues. Fig. 2.5a shows a typical 

palmprint image by a scanner. 

Digital cameras could get good quality of palmprint images. It could quickly get a 

palmprint image without the worry of hygienic problems. Although it could get online 

palmprint image, to my best knowledge, no one developed an online palmprint 

recognition system using digital cameras. Probably because it is difficult to control the 

digital camera with a computer, thus it requires human intervention for data collection 

which limits its applications. Fig. 2.5b shows a typical palmprint image by a digital 

camera. 

CCD based palmprint scanner is a specifically designed device for data collection. 

The image quality is very high and the central part of palm is collect by touchless way 

usually. The image is collected by a semi-closed environment usually. There are many 

issues to be addressed during device design, such as illumination shape, lens and A/D 

converter [32]. Fig. 2.4b shows a typical palmprint image by a CCD based scanner.  

Video camera, usually web camera, draws attention recently. Web cameras and 

embedded camera are becoming more and more popular. The cost of camera is usually 

low and it is much easier to collect palmprint images. Furthermore, it is easy to design a 

wholly touchless system. The only drawback is the camera may not provide very high 

quality image as the signal-to-noise ratio is relative low. Fig. 2.5c shows a typical 

palmprint image by a web camera. 
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(a) [14] (b) [28] (c) [24] 

Figure 2.5 Palmprint images by different devices. (a) a palmprint image by scanner; (b) a 
palmprint image by digital camera; (c) a palmprint image by web camera.  

2.2.2 ROI Extraction 

After getting palmprint images, it is necessary to crop part of palm for feature extraction 

and matching. It is because of two reasons. First, the area of processing is reduced. For 

example, Zhang et al. extracted a 128*128 region from a 384*284 image [12]. The 

computation and storage cost could be reduced by using ROI only. Second, the palm 

position is aligned. It is difficult, even impossible, to put a user’s palm on the same 

position. Thus rotation, translation and scale variation may occur during data collection. 

Some works were proposed to use a fixed area [31] or ROI free method [27], but it 

required long time for recognition or failed to get higher accuracy. The most popular 

method detects some key points in the image, then sets a coordinate from these key 

points and finally extract a rectangle region from the original image. There are different 

methods on detecting key points including tangent line [12], wavelet analysis [17], 

bisector method [34], middle of fingers [25], valley line [16], and maximal rectangle 

[28], etc. Other ROI extraction methods include extracting a circular region [35, 48] and 

elliptical regions [36]. Fig. 2.6 shows an illustration of ROI extraction. Usually, the ROI 

is extracted from one single image. Han et al. [23] proposed to use one extra camera to 

address the ROI issue in uncontrolled scene. Two images are collected by two cameras 

simultaneously, one for ROI extraction only and the other for recognition.  
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(a) (b) 

Figure 2.6 An illustration of ROI extraction. (a) Coordinate built by tangent line; (b) extracted 
region. [12] 

2.2.3 Feature Extraction 

Before feature extraction, to remove intensity variation, normalization methods could be 

chosen such as histogram equalization [37], and a pre-specified mean and standard 

deviation [28]. There are four kinds of popular methods for feature extraction, line 

detection, coding schemes, subspace learning, and statistical method. And there are some 

methods which are difficult to be classified to any groups.  

2.2.3.1 Line Detection 

Palm lines are most apparent features in images. Thus, it is very intuitive to detect palm 

lines and use the extracted feature for recognition. At the early stage, some well known 

line detection operators were applied on palmprint images directly, such as Sobel 

operator [14, 17-18, 30, 34] and Canny operator [39]. After that, many modified 

operators or specific designed operators were proposed, including first-order and 

second-order derivative of Gaussian function [40, 43], line-based Hough transform [41], 

Steerable filter [42], modified finite Radon transform [44], wide line detector [45-47] 

and self designed directional structure [49]. Fig. 2.7 shows an example of line detection. 

However, line detection method may lose some information of palmprint and itself is 

still an open issue in image processing.  
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(a) (b) (c) 
Figure 2.7 An example of line detection [40]. (a) Original image; (b) Detected lines. (c) Original 
image overlapped with the extracted lines.  

2.2.3.2 Coding Scheme 

Regarded palmprint image as a texture image and derived from successful IrisCode [50], 

Palmprint Code (PalmCode) [12] is the first coding scheme encoded Gabor phase 

information. Then an improved version, Fusion Code (Fusion Code) [51] was proposed 

to reduce the similar streak effect. Competitive Code (CompCode) [52] was the first 

algorithm to encode orientation feature for palmprint image. After the success of 

CompCode, several orientation based coding schemes have been proposed such as 

Palmprint Orientation Code (POC) [53], Robust Line Orientation Code (RLOC) [23, 31, 

54]. Recently, other codes schemes, including Orthogonal Line Ordinal Features (OLOF) 

[55], derivative of Gaussian code (DoGCode) [57] and Binary Orientation 

Co-occurrence Vector (BOCV) [56], were proposed. Fig. 2.8 shows an example of 

extracted codes. Because coding scheme could utilize all information of palmprint image 

and can compare different features in a short time, it is suitable for identification in large 

databases [13].  

  

(a) (b) 
Figure 2.8 An example of code. (a) Original Image; (b) CompCode Feature (different gray level 
represent different orientation). [52] 

2.2.3.3 Subspace Learning 

Taking palmprint images as a high dimensional vector or a 2D matrix, many different 

subspace learning methods have been applied on palmprint recognition. Some works 

applied classical or new developed subspace learning algorithms, such as principal 

component analysis (PCA) [15, 16, 37, 58, 64, 70, 74], linear discriminant analysis 
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(LDA) [59], independent component analysis (ICA) [60, 65], locality preserving 

projection (LPP) [21, 61], unsupervised discriminant projection (UDP) [62] and 

discriminant projection embedding (DPE) [63], on palmprint images directly. Other 

works applied subspace learning algorithms on filtered images or feature maps instead 

of original images, such as Gabor+PCA [20, 67, 69, 73], Gabor+LDA [66], 

Gabor+discriminative common vectors (DCV) [68], principal lines+LPP [71], line 

profile+PCA [25], and RLOC+LPP[72]. Fig. 2.9 shows an example of extracted feature 

by PCA. 

  
(a) (b) 

Figure 2.9 An example of extracted feature. (a) Original Image; (b) Eigenpalm. [58] 

2.2.3.4 Statistical Method 

There are mainly two kinds of statistical methods, local and global statistical approaches. 

For local statistical methods, a palmprint image is divided into many overlapped or 

non-overlapped regions and statistical values are extracted from each region. The local 

statistical methods include mean and/or standard value of original images or filtered 

images [28, 35, 75, 81, 82], energy features [33], and Local Binary Pattern (LBP) 

histogram [19, 22, 76]. The idea of global statistical methods is similar with local 

statistical methods, but features are extracted from the whole image, such as moment [48, 

78-79] and gravity center [77]. Fig. 2.10 shows an example of extracting statistical 

features. 

 
  

(a) (b) (c) 
Figure 2.10 An example of extracting statistical features. (a) Original Image; (b) Fourier 
transform partition by radius; (c) Fourier transform partition by angle. (Energy feature are 
computed from different regions.) [33] 

2.2.3.5 Other Methods 

There are some methods difficult to be classified into previous mentioned methods [24, 

27, 29, 80, 83]. For example, Doublet et al. proposed to decompose and estimate a 
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grayscale distribution from the image [24]. Su generated characteristic matrix using ring 

rotation invariant transform [29]. Hennings-Yeomans et al. designed correlation filter for 

palmprint recognition [80]. Ito et al. applied phase-based correlation to compute the 

similarity of two images [83]. Zhang et al. proposed to use complex wavelet for 

palmprint image matching [120]. The method was derived from image similarity 

structure [121-122] and can get good results even with small translation, rotation and 

scale variation. Wu et al. built feature vectors from centroid coordinates of different 

regions, as illustrated in Fig. 2.11 [27]. 

  

(a) (b) 
Figure 2.11 An image with its segmentation. (a) Original image; (b) The segmentation of (a). [27] 

2.2.4 Feature Matching 

Feature matching is usually related with feature extraction, for example, Hamming 

distance is commonly used for coding scheme and Euclidean distance is widely utilized 

for subspace learning. Many advanced classification technique, such as neural network 

[17, 63], support vector machine (SVM) [24], hidden Markov model [34] and correlation 

filter [80], have been applied on palmprint matching. And many different dissimilarity 

measurements with simple nearest neighborhood classifiers, such as Euclidean distance 

[58-59], Hamming distance [12, 54-57], correlation [83] and cosine distance [16], have 

been tested on palmprint features. Compared with feature extraction, fewer researches 

explored new distances or classifiers [37, 84]. Yu and Leung proposed a curve segment 

Hausdorff distance to measure line edge map. Zuo et al. [37] developed a new distance 

metric for image matching.  

2.3 Review of Multispectral Palmprint Recognition 

Although great successes have been achieved for palmprint recognition, there is room 

for improvement of online palmprint recognition, particularly in the area of accuracy and 

its vulnerability to spoof attacks [86]. In palmprint, each spectral image will highlight a 

different feature of the palm, making it possible to collect more information to improve 
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the accuracy [87-89, 152-153]. The correlations between different spectra [89] can then 

be used for anti-spoof measures. Multispectral imaging has shown its superiority in 

many biometric researches, such as face recognition [88, 153, 162-167], iris recognition 

[152, 89] and fingerprint recognition [87, 168-169]. 

Multispectral analysis has been used in palm related authentication [26, 90-93]. 

Rowe et al. [90] proposed a multispectral whole-hand biometric system. The object of 

this system was to collect palmprint information with clear fingerprint features and the 

imaging resolution was set to 500dpi. However, the low speed of feature extraction and 

feature matching makes it unsuitable for real-time applications. Likforman-Sulem et al. 

[91] used multispectral images in a multimodal authentication system; however, their 

system used an optical desktop scanner and a thermal camera which make the system 

very costly. The imaging resolution is also too high (600dpi, the FBI fingerprint standard) 

to meet the real-time requirement in practical biometric systems. Wang et al. [26] 

proposed a palmprint and palm vein fusion system, which could acquire two kinds of 

images simultaneously. The system uses one color camera and one near infrared camera 

and requires a registration procedure of about 9 seconds. Hao et al. [92-93] developed a 

contact-free multispectral palm sensor. However, the image quality is limited and hence 

the recognition accuracy is not very high. Overall, multispectral palmprint scanning is a 

relatively new topic and the works mentioned above stand for the state-of-the-art work. 

And, to our best knowledge, how to select the feature bands is not addressed yet. 

2.4 Review of Other Directions of Palmprint 

Recognition 

To improve the system accuracy and enhance the anti-spoof ability, except multispectral 

palmprint, some works on fusion and 3D palmprint recognition have been proposed and 

will be discussed in the following section. After that, other issues, besides accuracy and 

anti-spoof, need to be addressed for system implementation, for example, how to protect 

privacy, templates and communication, are reviewed. Finally, how to accelerate 

palmprint matching in large scale identification are surveyed. 

2.4.1 Fusion 

Fusion is a good way to increase the system accuracy and robustness [94]. Generally 

speaking, there are two kinds of fusion. The first kind is fusion of multiple features 

[18-19, 75] from one palmprint image. As the different features from the same image are 
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correlated, the improvement will be limited [95]. The other kind is multimodal, fusion of 

palmprint with other biometrics traits [15, 28, 35, 67-68, 74, 81, 96]. In the past decade, 

many different multimodal systems have been proposed, including, finger 

surface+palmprint [15], hand geometry+palmprint [28, 35, 81], face+palmprint [67, 68], 

fingerprint+palmprint [74], and iris+palmprint [96]. 

2.4.2 3D Palmprint Recognition 

3D information is robust to illumination change and it is difficult to fake a high 

resolution 3D object, so 3D biometrics has been studied for face [97], ear [98] and finger 

biometrics [99]. Recently, Zhang et al. proposed to acquire 3D palmprint information by 

a structure light method for personal authentication [100-102, 131]. Fig. 2.12 shows an 

example of 3D palmprint.  

  

(a) (b) 
Figure 2.12 Partial of palm. (a) 2D; (b) 3D. [100] 

2.4.3 System Protection 

As shown in Fig. 2.13, a biometric system is vulnerable to different attacks. Kong et al. 

analyzed the vulnerable points and proposed corresponding measurements to replay 

attacks, database attacks [103]. Kong et al. analyzed the success probability of 

brute-force attack [105]. Palmprint template re-issuance has been analyzed and 

discussed [103-104, 106]. Palmprints could also be used for cryptosystem [107-108]. 

Compared with palmprint feature extraction and matching, the research on system 

protection is less.  
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Figure 2.13 Vulnerable points in a typical biometric system. [103] 

2.4.4 Acceleration of Identification 

There are usually two ways, hierarchies and palmprint classification, to speed up to find 

a similar palmprint in a large scale database. Hierarchical methods first find a subset 

from a large database. Then further findings are implemented on the selected candidates 

only [14, 27, 41, 85]. Fig. 2.14 illustrates an example of hierarchical search scheme.  

 
Figure 2.14 Process of hierarchical search scheme. [85] 

However, there is a balance between accuracy and speed; selecting a small subset in 

the first step can get quick responses but may fail to find the correct sample, while 

selecting too many candidates could not improve the searching speed. Wu [109] 

proposed six classes of palmprint images according to the principal lines. Fig. 2.15 
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shows the six classes of palmprint defined by Wu. However, the partition is unbalanced. 

For example, more than 78% samples belong to one class (Fig. 2.15e), which attenuates 

the advantage of classification. So a further classification is needed to break the 

unbalanced situation [110]. 

 
Figure 2.15 Examples of six classes of palmprint classified by principal lines. [109] 
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Chapter 3. An Apparatus and Methods 

for Online Multispectral Palmprint 

Recognition 

There is no commercial available multispectral palmprint recognition acquisition device. 

This chapter will introduce the device design principle and the proposed apparatus. 

Based on a self collected large multispectral database, different multispectral recognition 

methods, including image level fusion, feature level fusion and score level fusion will be 

investigated and discussed. 

3.1 An Apparatus for Online Multispectral Palmprint 

Recognition 

To get multispectral palmprint images with high quality and short acquisition time, a low 

cost multispectral palmprint apparatus device was proposed. In this section we describe 

the components of our proposed device and its parameters. Two basic considerations in 

the design of a multispectral palmprint device are the color-absorptive and 

color-reflective characteristics of human skin and the light spectra to be used when 

acquiring images. Human skin is made up of three layers: the epidermis, dermis, and 

subcutis as shown in Fig. 3.1. Each layer contains a different proportion of blood and fat. 

The epidermis also contains melanin, while the subcutis contains veins [123]. Different 

light wavelengths will penetrate to different skin layers and illuminate in different 

spectra. Near Infrared (NIR) light penetrates human tissues further than visible light, and 

blood absorbs more NIR energy than surrounding tissues (e.g. fat or melanin) [124]. The 

device acquires spectral information from all the three dermal layers by using both 

visible bands and the NIR band. In the visible spectrum, a three mono-color LED (Light 

Emitting Diode) array is used with Red peaking at 660nm, Green peaking at 525nm and 

Blue peaking at 470nm. In the NIR spectrum, an NIR LED array peaking at 880nm is 

used. It has been shown that light in the 700-1000nm range can penetrate human skin 
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while 880-930nm provides a good contrast of subcutaneous veins [124]. 

 
Figure 3.1 Cross-section anatomy of the skin. 

Fig. 3.2 shows the structure of the designed multispectral palmprint image 

acquisition device and Fig. 3.3 shows the prototype of our device. It is composed of a 

CCD (charge-coupled device) camera, lens, an A/D (analogue-to-digital) converter, a 

multispectral light source and a light controller. A monochromatic CCD is placed at the 

bottom of the device. The A/D converter connects the CCD and the computer. The light 

controller is used to control the multispectral light. The camera, A/D converter and lens 

are selected based on our previous work [12, 32]. 

The device can capture palmprint images in a resolution of either 352 by 288 or 704 

by 576. A user is asked to put his/her palm on the platform. Several pegs serve as control 

points for the placement of the user’s hands. Four palmprint images of the palm are 
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collected under different spectral lights. The switching time between the two consecutive 

lights is very short and the four images can be captured in a very short time (<1 second). 

Figure 3.2 The structure of the multi-spectral palmprint acquisition device. 
 

Figure 3.3 Prototype of the proposed multispectral palmprint system. 
Fig. 3.4 shows a typical multispectral palmprint sample in the a) Blue, b) Green; c) 

Light Controller Camera 

Computer 

A/D Converter 

Multi-spectral Light 
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Red; and d) NIR bands. It can be observed that line features are clearer in the Blue and 

Green bands than in the Red and NIR bands. While the Red band can reveal some vein 

structures, the NIR band can show palm vein structures as well as partial line 

information. In our device, the palm vein structure acquired in the NIR band is not as 

clear as that reported in [124] because the CCD in our system is a standard CCTV 

(Closed Circuit Television) camera, instead of a near-infrared sensitive camera, to reduce 

cost. Moreover, we do not add an infrared filter in front of the CCD because the infrared 

filter would cut off the visible light and affect the acquisition of clear palmprint images 

under the visible spectrum. 

(a) (b) 

(c) (d) 
Figure 3.4 A typical multispectral palmprint sample. a) Blue; b) Green; c) Red; d) NIR. The white 
square is the ROI of the image. 

A ROI will be extracted from the palmprint image for further feature extraction and 

matching. This can reduce the data amount in feature extraction and matching and 

reduce the influence of rotation and translation of the palm. In this paper, the ROI 

extraction algorithm in [12] is used and applied to the blue band (the ROI extraction 

accuracy on the other three bands is similar to blue band) to find the ROI coordinate 

system. After ROI extraction, the translation or rotation is usually small between two 

images. Thus no more registration procedure is necessary. Fig. 3.4 shows the ROI of the 

palmprint image and Fig. 3.5 shows the cropped ROI images. 
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(a) (b) (c) (d) 

Figure 3.5 ROI of Fig. 4. a) Blue; b) Green; c) Red; d) NIR. 

3.2 Methods for Online Multispectral Palmprint 

Recognition 

The experimental results on each feature band, which could be regarded as the baseline 

for multispectral palmprint recognition, is first investigated and discussed. Multispectral 

palmprint images could be regarded as a special case of multimodal. There are different 

ways to consolidate the information presented by multiple biometric measures. In this 

study, three kinds of widely used techniques [94], image level fusion, feature level 

fusion and matching score level fusion, are investigated. Here, we do not study decision 

level fusion as it may fail to reduce FRR and FAR simultaneously [170]. 

3.2.1 Verification Accuracy on Single Feature Band 

CompCode [52] (refer to Section 1.5 for detail) is used for single feature band as the 

baseline. To further reduce the influence of imperfect ROI extraction, in matching we 

translate one of the two feature maps vertically and horizontally from -3 to 3. The 

minimal distance obtained by translated matching is treated as the final distance.  

In this chapter, verification accuracy, equal error rate (EER, when false acceptance 

rate (FAR) equals to false rejection rate (FRR)), is used to evaluate the accuracy. The 

verification test is implemented on the PUMPD (refer to Section 1.4.1 for detail). Each 

image is compared with the remaining images in the database. If the two images come 

from the same palm, this comparison is counted as a genuine match; otherwise, it is 

counted as an impostor match. The numbers of genuine matching and impostor matching 

are 33,000 and 17,964,000 respectively.  

The receiver operating characteristic (ROC) curves for different spectral bands are 

shown in Fig. 3.6. The accuracy values are listed in Table 3.1. The accuracy on each 

single band is comparable to those of state-of-the-art (EER: 0.024%) [128] on the public 

palmprint database [127] collected under white illumination. 
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Figure 3.6 ROC curves of each spectral band. 
 

Table 3.1 Accuracy value for different bands on PUMPD. 
Feature Band EER (%) 

Blue 0.0515 
Green 0.0529 
Red 0.0248 
NIR 0.0396 

Several findings could be found from the experimental results. Firstly, Red and NIR 

bands have better EER than Blue and Green bands. This is mainly because Red and NIR 

could not only capture most of palm line information, but also capture some palm vein 

structures. This additional palm vein information helps classify those palms with similar 

palm lines. Fig. 3.7 shows an example, the two multispectral images of different palms 

have small distance under Blue ((a) and (e)) or Green ((b) and (f)) bands, which may 

lead to a false match; however, their distance under Red ((c) and (g)) or NIR ((d) and (h)) 

bands is large, which will lead to a correct match. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 3.7 Multispectral images of two different palms which are wrongly recognized under Blue 
or Green spectrum, but can be correctly recognized under Red or NIR spectrum. From a-b) or 
e-h), the four images correspond to Blue, Green, Red and NIR respectively. 

Secondly, the EER of NIR is higher than that of Red. There are mainly two reasons. 

First, the palm lines in NIR band is not as strong as those in the Red band because NIR 

light can penetrate deeper the palm skin than Red light, which attenuates the reflectance. 

Second, some people, especially females, have very weak vein structures under NIR 

light because their skin is a little thicker [129]. Fig. 3.8 shows an example. Figs. 3.8 (b) 

and (d) are the NIR images of a palm. The line structure in the two images is very weak 

compared with Figs. 3.8 (a) and (c), which are the Red images of the palm. Meanwhile, 

the vein structure in Figs. 3.8 (b) and (d) is not strong enough. Thus the palm will be 

falsely recognized in the NIR band, while it can be recognized in the Red band. Finally, 

the performance of Blue and Green bands is very similar. As can be seen in Fig. 3.4 and 

Fig. 3.5, the palm lines in Blue and Green bands look very similar. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.8 An example of palm which is falsely recognized in NIR band but can be correctly 
recognized in Red band. a) and c) are collected under Red light while b) and d) are collected 
under NIR light. 

In this chapter, the robustness to motion blur is evaluated. Motion blur [133] could 

be simulated by mathematics motion model. Supposing the image exposition time is T, 

in this time duration, the palmprint image could be expressed by: 

[ ]0 00
( , ) ( ), ( )

T
g x y f x x t y y t dt= − −∫  (3-1) 

where ( , )g x y  is the simulated motion blur image, ( , )f x y  is the original image. The 
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image translation in T duration could be expressed by 0 0( ) , ( )
t t

x t a y t b
T T

= = , here a 

and b are two parameters to control the degree of motion. The Fourier transform of Eq.3-1 

is: 

( , ) ( , ) ( , )G u v H u v F u v=  (3-2) 
where ( , )G u v  and ( , )F u v  is the Fourier transform of ( , )g x y  and ( , )f x y , 

respectively. ( , )H u v  could be computed by: 

( )( , ) sin[ ( )]
( )

j ua vbT
H u v ua vb e

ua vb
ππ

π
− += +

+
 (3-3) 

As shown in Eq. 3-1-3.3, there are totally three parameters, T, a, and b, to control 

the degree of motion. In the simulation test, T is fixed to 1, a and b are randomly 

selected from [10-4, 10-3]. Fig. 3.9 shows an example of blurred image. 

  

(a) (b) 
Figure 3.9 An example motion blur. a) Original image; b) Simulation of blurred image. 
 

Table 3.2 Accuracy values for different bands on PUMMBPD. 
Fusion Combination EER (%) 

Blue 0.2087 
Green 0.1675 
Red 0.1488 
NIR 0.1455 

The verification results on single band of PUMMBPD (refer to Section 1.4.2 for 

detail) are listed in Table 3.2. Compared with Table 3.1, Table 3.2 shows that the 

verification accuracy drops very quickly when the database includes blurred images. 

3.2.2 Image Level Fusion 

The image fusion method tries to solve the problem of combining information from 

several images taken from the same object to get a new fused image. The wavelet-based 

approach is a widely used technique in image fusion [125]. In this section, Haar wavelet, 

a kind of discrete wavelet transform (DWT), is selected to fuse multispectral palmprint 

images. The framework is shown in Fig. 3. 10. 
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Figure 3.10 Framework of image level fusion. 

3.2.1.1 Fusion Algorithm 

Haar wavelet, a well known wavelet function, is applied in this section. It is composed 

of two orthogonal functions: 

1    for 0 <1,
( )

0   otherwise.

x
xφ

≤
= 


 

1      for 0 <0.5,

( ) 1   for 0.5 <1, 

0     otherwise.

x

x xψ
≤

= − ≤



 

(3-4) 

For a 2D image I(x,y), it could be decomposed by four parts, one approximation 

coefficients matrix, A , and three detail coefficient matrixes, ,   ,  and H V DD D D  in 

horizontal, vertical and diagonal directions:  

Multispectral palmprint 

image collection 

ROI coordinate construction 

based Blue band 

ROI image extraction from Blue, Green, 

Red and NIR bands 

Image fusion by different bands 

Feature extraction and matching on 

fused image 

Decision 
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(3-5) 

To get non redundant information and perfect reconstruction, ,  ,  H VA D D  and DD  

are down-sampled to half size in both horizontal and vertical directions.  

Based on image decomposition and reconstruction theory, Mallat proposed a fast 

multiscale wavelet algorithm [126]. The approximate coefficients on scale j could be 

further decomposed into four parts: 

1

1

1

1

( , ), ( ) ( )

( , ), ( ) ( )

( , ), ( ) ( )

( , ), ( ) ( )

j j

j j
H

j j
V

j j
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A A x y x y

D A x y x y

D A x y x y

D A x y x y

φ φ
ψ φ
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+

=< >
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 (3-6) 

Similarly, down-sampling is applied in the next j+1 sacle. Fig 3.11 illustrates the 

multiscale wavelet decomposition. Fig 3.12 shows a sample of palmprint image 

decomposition. 

Figure 3.11 Illustration of multiscale wavelet decomposition. 
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Figure 3.12 4 level palmprint image decomposition. 

After wavelet decomposition, coarse scale keeps structure information, while fine 

scale contains detail features. According to different requirement of applications, 

structures and detail features could be processed separately. Thus, wavelet 

decomposition has been applied to many image processing fields, such as, compression, 

edge detection and noise reduction.  

Image fusion is an important application in wavelet analysis. Multiple images can 

be combined into one image while represent many important features. To keep image 

structure while maintain high frequency information, a wavelet based image fusion 

algorithm is proposed, the pseudocode is as follows: 

1) By applying Haar wavelet on each spectral palmprint image, the image is 

decomposed into three levels; 

2) A new coefficient matrix of a fused image is computed. For low frequency part, 

mean strategy is used. The average coefficients of low frequency from different images 

are gotten for the new coefficient matrix; 

3) For high frequency part, max strategy is applied. The maximal coefficients of 

high frequency from different images are computed for the new coefficient matrix; 

4) Inverse wavelet is applied on the new coefficient matrix to get the fused image. 

 Fig. 3.13 shows an illustration of the procedure and Fig. 3.14 gives an example. 
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Figure 3.13 Illustration of image fusion. 

 

 
Figure 3.14 An example of image fusion. 

3.2.1.2 Experimental Results 

Using the fusion algorithm discussed in above section, different kinds of fusion images 

were generated. Then, CompCode, described in Section 3.2.1, is used for feature 

extraction and Hamming distance is employed for feature comparison. By using the 

same test protocol as mentioned above, the acquired accuracy is listed in Table 3.3.  
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Table 3.3 Accuracy values for different fusions on PUMPD. 
Fusion Combination EER (%) 

Blue, Green 0.0576 
Blue, Red 0.0577 
Blue, NIR 0.0607 
Green, Red 0.0454 
Green, NIR 0.0568 
Red, NIR 0.0286 

Blue, Green, Red 0.0605 
Blue, Green, NIR 0.0665 
Blue, Red, NIR 0.0679 
Green, Red, NIR 0.0576 

Blue, Green, Red, NIR 0.0696 

Compared with Table 3.1, fusion method could not improve accuracy. It is mainly 

because wavelet based image fusion may bring artificial artifacts sometimes. As 

CompCode extracted an orientation feature for each pixel, these artifacts may bring 

wrong orientation or fake feature. 

Although image level fusion may fail to improve accuracy, it owns two merits. First, it 

is robust to motion blur which may occur in real situations. Second, it could be applied for 

liveness detection. 

Table 3.4 shows the accuracy on motion blur database. Except fusion of Blue and 

NIR, Table 3.4 illustrates that fusion could get better result than single feature band. It 

also shows that fusing more feature bands can improve accuracy usually, which is 

different from Table 3.2. It is because motion blur may occur on some bands, not all 

bands, in most cases. It is close to real situations, as an unfamiliar user may withdraw 

his/her palm before the device finishes data collection. Although, image registration is 

not applied before image fusion, motion blur effect could be reduced somewhat by 

image level fusion technique. 

Table 3.4 Accuracy values for different fusions on PUMMBPD. 
Fusion Combination EER (%) 

Blue, Green 0.1030 
Blue, Red 0.1029 
Blue, NIR 0.1936 
Green, Red 0.0788 
Green, NIR 0.1181 
Red, NIR 0.0969 

Blue, Green, Red 0.0700 
Blue, Green, NIR 0.1061 
Blue, Red, NIR 0.1182 
Green, Red, NIR 0.0943 

Blue, Green, Red, NIR 0.0757 

Antispoof [130] ability is an important property in a real system. Traditional 

palmprint recognition acquires reflectance information by one light only, so it is not 

difficult to spoof the system, sometime, a printed palmprint image may be falsely 

accepted [131]. However, the reflectance of human skin is related with spectral 

wavelength [132], as shown in Fig. 3.15. A true palm, which is composed of different 

layers, will show varied spectral property under different feature bands, while a fake 
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palm has same reflectance rate in different spectra. As the image acquisition procedure is 

fast, it is very difficult to provide several fake palms in such a short time. Since image 

level fusion could consolidate different features into one image, much distinctive feature 

from each spectral is maintained. Thus, the fused image will be different from any single 

spectral palmprint image and fake fused image.  

 
Figure 3.15 Skin reflectance vs hemoglobin absorption. [132] 

A simple experiment shows the robustness of the multispectral palmprint 

recognition system. Fig. 3.16 shows an example of faked multispectral palmprint which 

is captured from a printed paper and an example of true multispectral palmprint. Their 

fused images by four channels are also shown in Fig. 3.16. As shown in it, a true palm 

has different image characteristics by different spectra, while the difference between 

different spectra in fake palm is very small.  
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(a) (b) 

  

(c) (d) 

Figure 3.16 An example of fake and true multispectral palmprint images with their fused images. 
a) faked palmprint by four channels; b) true palmprint by four channels; c) fused fake palmprint; 
d) fuse true palmprint 

Three groups of faked multispectral palmprint images and three groups of true 

images were collected. The fused images by four channels were constructed and 

compared using CompCode. Table 3.5 lists the Hamming distance between true and fake 

palms and Table 3.6 shows the distance between true palms.  

Table 3.5 Distance between true and fake palms. 
Distance True I True II True III 

Fake I 0.4083 0.4128 0.4137 

Fake II 0.3947 0.4034 0.4197 

Fake III 0.3986 0.3982 0.4157 

 
Table 3.6 Distance between true palms. 
Distance True I True II True III 

True I 0 0.2473 0.3125 

True II  0 0.3440 

True III   0 

As shown in Table 3.5 and Table 3.6, the distance between true palms is much 

smaller than that of fake and true palms. For example, the maximal distance between 
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true palms is 0.3440 while the minimal distance between true and fake palms is 0.3986. 

Usually, 0.39 is the threshold corresponding to EER. Thus, fake palms could be rejected 

correctly.  

3.2.3 Feature Level Fusion 

Although image level fusion could reduce the possible feature size as only one image is 

kept, some of discriminant information may be lost, so the recognition accuracy may not 

be increased. This section will investigate feature level fusion with which we could 

consider the correlation between different feature bands and get better results than single 

spectrum alone. Fig. 3.17 illustrates the framework of feature level fusion. 

 
Figure 3.17 Framework of feature level fusion. 
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3.2.3.1 Min-Min Fusion Scheme 

As CompCode extracts orientation feature from each pixel, so the most intuitive and 

simplest way is to create joint feature from two feature bands for each pixel: 

( , ) ( , ) *6 ( , )f i jO x y O x y O x y= +  (3-7) 

where ( , ),  ( , ) {0,1,2,3,4,5}i jO x y O x y ∈ , , {Blue,Green,Red,NIR}i j ∈  and i j≠ . (x, 

y) indicate the position of a pixel. This kind of joint representation could use the least 

number of bits for binary representation. In the following, this kind of fusion is named as, 

Min-Min Fusion. It has limitation as it is difficult to extend to three or four feature bands, 

as the possible feature space will be huge and the length of binary string will be too long. 

In a real situation, instead of extracting joint feature from all spectra, hybrid technique 

could be used. Such as, partition the four spectra into two groups, each group has two 

feature bands, then extract fused feature from each group and finally apply score level 

fusion. 

 For the fused feature, there are totally 36 kinds of possible values, integer value 

from 0 to 35. Each joint value is represented by its binary representation. The distance 

between two features could be compared by: 

1 1

1 1 6 6
1 1
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  (3-8) 

where P and Q represent two palmprint orientation feature maps, b
iP  and b

iQ  are the 

ith
 bit plane of P and Q, respectively. Symbol “⊗ ” represents bitwise exclusive OR. 

However, the verification accuracy of this method is not promising as shown in 

Table 3.7. It shows that fusion of Blue and NIR could get better accuracy. Fusion of 

Green and NIR is better than Green, but a little inferior than NIR. The remaining fails to 

improve the accuracy than single spectrum. 

Table 3.7 Accuracy values for Min-Min Fusion on PUMPD. 
Fusion Combination EER (%) 

Blue, Green 0.1484 
Blue, Red 0.2817 
Blue, NIR 0.0313 
Green, Red 0.2668 
Green, NIR 0.0423 
Red, NIR 0.2442 

This is probably because the strong correlation between different images by 

different spectrum. Fig. 3.18 plots the cross-section profile of different palmprint 
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images.  

 

    

(a) (b) (c) (d) 

0 20 40 60 80 100 120
90

100

110

120

130

140

150

160

170

180

190

Position

G
ra

y 
V

al
ue

Blue
Green
Red
NIR

 

(e)  

Figure 3.18 An example of profile of image. (a)-(d) original image of Blue, Green, Red and NIR 
channel. (e) Profile of (a)-(b). 

As shown in Fig. 3.18, Blue and Green channel get more similar intensity 

distribution, while the similarity between NIR and Blue, or NIR and Green is small. To 

further validate it, an identical CompCode map is plotted in Fig. 3.19. Usually, the 

higher percentage of identical orientation indicates higher correlation between two 

spectra. The quantitive value is shown in Table 3.8.  

Table 3.7 and Table 3.8 show the proposed feature level fusion is not suitable for 

high correlated spectra. Fig. 3.20 shows the relationship between correlation and fusion 

accuracy. Since Blue and NIR, and Green and NIR have less correlation, so their fusion 

could get better results than other combination. Blue and Red, Green and Red, and Red 

and NIR have medium correlation, their fusion gets worse result. Blue and Green has the 

large correlation while medium fusion accuracy. Thus, a less correlated fusion strategy is 
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preferred and is proposed in the following. 

 

 Green Red NIR 
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Red   

 

Figure 3.19 Identical features between different spectra. (Black pixels represent pixels with 
identical orientation while white pixels represent pixels with different orientation.) 

 
Table 3.8 The average percentage (%) of identical orientation features between different spectral 

bands in PUMPD. 
Fusion Combination Average Percentage (%) 

Blue, Green 77.1441 
Blue, Red 52.4086 
Blue, NIR 33.9168 
Green, Red 55.3237 
Green, NIR 35.7150 
Red, NIR 55.6474 
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Figure 3.20 Percentage of identical orientation vs fusion accuracy. 

3.2.3.2 Min-Max Fusion Scheme 

First, CompCode is inspected. The original CompCode extracts the orientation for the 

minimal responses from six orientations. Is minimal response’s orientation the best 

among six orientations and does any other orientation provide useful information? To 

address this issue, instead of extract the orientation of the minimal response, other 

orientation is extracted and compared. The achieved EER is shown in Table 3.9.  

Table 3.9 The recognition accuracy of different orientation extraction scheme. 
EER (%) 1st Minimal 2nd Minimal 3rd Minimal 4th Minimal 5th Minimal 6th Minimal 

Blue 0.0515 0.4673 3.3755 3.0062 0.4231 0.1206 
Green 0.0529 0.3950 3.4180 2.8299 0.3632 0.1089 
Red 0.0248 0.2159 1.8748 1.4614 0.2306 0.0880 
NIR 0.0396 0.2838 2.9110 2.6411 0.2964 0.0850 

As shown in Table 3.9, orientation corresponding to minimal response is the most 

robust and could get better accuracy. While orientation corresponds to maximal response 

could get sound results. It can be regarded as a kind of bright line orientation extractor.  

Ideally, orientation corresponds to maximal response should be orthogonal to 

orientation with minimal response. However, palmprint image is composed of complex 

structures, thus this rule may not be met. To investigate the correlation between minimal 

and maximal response, a co-occurrence matrix for same spectral samples is shown in 

Table 3.10. 
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Table 3.10 Co-occurrence percentage (%) of minimal and maximal orientation index for same 
spectral. 

Max\Min Orientation Index 0 1 2 3 4 5 
0 0 3.63 4.36 3.13 4.29 3.64 
1 1.92 0 3.02 2.86 3.65 3.67 
2 2.46 3.12  0  2.44 3.61 3.61 
3 2.98 4.85 4.04 0 3.72 4.89 
4 2.39 3.51 3.77 2.26 0 2.92 
5 1.89 3.53 3.67 2.85 3.20 0 

Table 3.10 shows that there is no strong correlation between orientation with 

minimal response and maximal response, for the same spectral. Thus, the correlation 

between different spectral should be small, too. A new feature level scheme, Min-Max 

Fusion, is proposed: 

min max( , ) ( , ) *6 ( , )f i j
imal imalO x y O x y O x y= +  (3-9) 

where min max( , ), ( , ) {0,1,2,3,4,5}i j
imal imalO x y O x y ∈ . Eq. 3-8 is used for dissimilarity 

measurement.  

Based on Min-Max Fusion scheme, the verification accuracy is listed in Table 3.11. 

As defined in Eq. 3-9, the sequence of fusion will affect the accuracy, such as when Blue 

channel is used to extract orientation with minimal response while Green channel is used 

to extract orientation with maximal response, it is different with fusion of Green and 

Blue. Compared with Table 3.7, Min-Max Fusion could get better results. Sometimes, 

the proposed fusion could get better results than single spectrum, such as Green and 

Blue, Green and NIR, Blue and NIR, and NIR and Green.  

Table 3.11 Verification Accuracy of Min-Max Fusion for PUMPD. 
Fusion Combination EER (%) 

Blue, Green 0.0541 
Blue, Red 0.1459 
Blue, NIR 0.0266 

Green, Blue 0.0484 
Green, Red 0.1791 
Green, NIR 0.0335 
Red, Blue 0.1840 
Red, Green 0.1838 
Red, NIR 0.0967 
NIR, Blue 0.0393 
NIR, Green 0.0301 
NIR, Red 0.0934 

For Min-Max Fusion, same as Min-Min Fusion, there are totally 36 kinds of values, 

integer from 0 to 35. However, some values, such as 

min max( , ) ( , ) *6 ( , )f i j
imal imalO x y O x y O x y= +  when min max( , ) ( , )i j

imal imalO x y O x y= has less 

probability. Furthermore, these values show conflict situations. In one channel, there is a 

dark line while in the other channel, there is a bright line. As shown in Table 3.12, such 

kind of occurrence is neglectable and the percentage is higher as spectra difference 

increases, such as the percentage of Blue and Green is much smaller than that of Blue 
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and NIR.  

Table 3.12 Percentage (%) of pixels formin max( , ) ( , )i j
imal imalO x y O x y= . 

Fusion Combination Percentage (%) 
Blue, Green 0.086 
Blue, Red 1.818 
Blue, NIR 7.166 

Green, Blue 0.096 
Green, Red 1.433 
Green, NIR 6.653  
Red, Blue 2.140 
Red, Green 1.545 
Red, NIR 2.339 
NIR, Blue 7.288 
NIR, Green 6.482 
NIR, Red 1.888 

If the situations min max( , ) ( , )i j
imal imalO x y O x y=  are removed, the possible number of 

integer value is reduced to 30, which could be represented by 5 bits only. Hamming 

distance similar as Eq. 3-9 is selected for distance measurement. In the following, this 

fusion scheme is named as Min-Max-Refined Fusion. The verification accuracy of this 

scheme on the database is shown in Table 3.13. Compared with Table 3.11, Table 3.13 

shows that better accuracy is gotten after some pixels are removed. The best accuracy is 

gotten by fusion of Blue and NIR, 0.0182% EER.  

Table 3.13 Verification Accuracy of Min-Max-Refined Fusion for PUMPD. 
Fusion Combination EER (%) 

Blue, Green 0.0553 
Blue, Red 0.0701 
Blue, NIR 0.0182 

Green, Blue 0.0484 
Green, Red 0.0907 
Green, NIR 0.0242 
Red, Blue 0.1090 
Red, Green 0.1089 
Red, NIR 0.0510 
NIR, Blue 0.0424 
NIR, Green 0.0242 
NIR, Red 0.0275 

As discussed before, the proposed feature level scheme is difficult to apply for four 

bands, thus a hybrid fusion method is chosen: the feature level fusion, Min-Max-Refined, 

is applied on two spectra first, then score level fusion, sum, is used to fuse four channels. 

The accuracy achieved is listed in Table 3.14. It shows that hybrid fusion could improve 

the verification accuracy in most cases. 
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Table 3.14 Verification Accuracy of Hybrid Min-Max-Refined Fusion on PUMPD. 
Fusion Combination EER (%) 

(Blue, Green)+(Red, NIR) 0.0151 
(Blue, Green)+(NIR, Red) 0.0213 
(Green, Blue)+(Red, NIR) 0.0212 
(Green, Blue)+(NIR, Red) 0.0212 
(Blue, Red)+(Green, NIR) 0.0302 
(Blue, Red)+(NIR, Green) 0.0303 
(Red, Blue)+(Green, NIR) 0.0333 
(Red, Blue)+(NIR, Green) 0.0310 
(Blue, NIR)+(Red, Green) 0.0212 
(Blue, NIR)+(Green, Red) 0.0212 
(NIR, Blue)+(Red, Green) 0.0304 
(NIR, Blue)+(Green, Red) 0.0357 

For anti-spoof attack, as faked palm has small difference between different spectra, 

the fused feature will be different with true palm, similar as the example shown in 

liveness detection by image level fusion.  

Similar as Section 3.2.1.2, motion blur robustness is investigated. The accuracy 

achieved of feature level and hybrid fusion is listed in Table 3.15 and Table 3. 16. As 

shown in Table 3.15 and Table 3.5, the proposed feature level fusion could get better 

results than single spectrum on the motion blur database. Similarly, hybrid fusion gets 

better results than feature level fusion in most of cases.  

Table 3.15 Verification Accuracy of Min-Max-Refined Fusion on PUMMBPD. 
Fusion Combination EER (%) 

Blue, Green 0.1161 
Blue, Red 0.1244 
Blue, NIR 0.0484 

Green, Blue 0.1212 
Green, Red 0.1330 
Green, NIR 0.0334 
Red, Blue 0.1275 
Red, Green 0.1301 
Red, NIR 0.0826 
NIR, Blue 0.0726 
NIR, Green 0.0485 
NIR, Red 0.0993 

Table 3.16 Verification Accuracy of Hybrid Min-Max-Refined Fusion on PUMMBPD. 
Fusion Combination EER (%) 

(Blue, Green)+(Red, NIR) 0.0332 
(Blue, Green)+(NIR, Red) 0.0364 
(Green, Blue)+(Red, NIR) 0.0334 
(Green, Blue)+(NIR, Red) 0.0424 
(Blue, Red)+(Green, NIR) 0.0424 
(Blue, Red)+(NIR, Green) 0.0480 
(Red, Blue)+(Green, NIR) 0.0364 
(Red, Blue)+(NIR, Green) 0.0517 
(Blue, NIR)+(Red, Green) 0.0395 
(Blue, NIR)+(Green, Red) 0.0364 
(NIR, Blue)+(Red, Green) 0.0483 
(NIR, Blue)+(Green, Red) 0.0453 
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3.2.4 Matching Score Level Fusion 

3.2.4.1 Score Level Fusion Scheme 

 
Figure 3.21 Framework of score level fusion. 

The framework of score level fusion is illustrated in Fig. 3.21. Generally, more 

information is used, better performance could be achieved. However, since there is some 

overlapping of the discriminating information between different bands, simple sum of 

the matching scores of all bands may not improve much the final accuracy. Suppose 

there are k kinds of features ( { },  1,2,...,X
iF i k= ). For two samples X and Y, the 

distance using simple sum rule is defined as: 

1

( , ) ( , )
k

X Y
Sum i i

i

d X Y d F F
=

=∑   (3-10) 

where ( , )X Y
i id F F  is the distance for the ith feature. 
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Figure 3.22 An example of sum score fusion. 
Fig. 3.22 shows an example of score level fusion by summation. There are two 

kinds of features ( { }2,1 , =iF X
i ) for three samples { 1 2 1, ,X X Y }, where 21  and XX  

belonging to the same class and 1Y  belongs to another class. By Eq. 3-10, we can get 

),( 21 XXd Sum =9 and 1 1( , )Sumd X Y =8. In fact, the true distances between 1X  and 

2X , and 1X  and 1Y  without information overlapping should be 5 and 6, respectively. 

Because there is an overlapping part between the two features, it will be counted twice 

by using the sum rule (Eq. 3-10). Sometimes, such kind of over-computing may make 

the simple score level fusion fail as shown in the above example. For multispectral 

palmprint images, most of the overlapping features between two spectral bands locate on 

the principal lines as shown in Fig. 3.19. By using the sum rule (Eq. 3-10), those line 

features will be over-counted so that it may fail to classify two palms with similar 

principal lines. 

From the above analysis, when a score level fusion strategy could reduce the 

overlapping effect, better verification results can be expected. The “U” operator in the 

set theory gives us a good hint, which is defined as follows: 

YXYXYX ∩∪ −+=   (3-11) 

Based on Eq. 3-11, a score level fusion rule is defined which tends to minimize the 

overlapping effect on the fused score: 

1 2 1 2 1 2

1 1 2 2
1 1 2 2 1 2

( , ) ( ) ( ) ( )

( ( , ) ( , ))
  ( , ) ( , ) * ( , )

2

F F

X Y X Y
X Y X Y

OP

d X Y d F d F d F F

d F F d F F
d F F d F F P F F

= + −

+= + −

∪ ∩

  (3-12) 

where ),( 21 FFPOP  is the overlapping percentage between two feature maps. Here two 

assumptions are made. First we assume that the overlapping percentage of two feature 

maps is nearly the same for different palms. There are two reasons for us to make this 

assumption. One is that the difference of overlapping percentage between different 
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palms is relatively small, as can be seen in Table 3.17. The other one is that although 

1 2( , )OPP F F  can be computed for any given two feature maps, it will spend some 

computational cost and hence may be a burden in time demanding applications. Thus, to 

improve the processing speed, we fix 1 2( , )OPP F F  as the average value computed from 

half of the database. The second assumption we made is that the overlapping is 

uniformly distributed across the feature map. Thus we can use 

),(*
2

)),(),((
21

2211 FFP
FFdFFd

OP

YXYX +
 as an approximation distance in the 

overlapping part. 

Table 3.17 The statistical percentage (%) of overlapping features between and among different 
spectral bands on half of the PUMPD. 

Spectra Mean Percentage Standard Percentage 
Blue and Green 77.1441 4.2342 
Blue and Red 52.4086 6.0750 
Blue and NIR 33.9168 5.0745 

Green and Red 55.3237 5.6668 
Green and NIR 35.7150 4.8323 
Red and NIR 55.6474 5.6270 

Blue, Green and Red 46.1191 5.9856 
Blue, Green and NIR 28.7881 4.4930 
Blue, Red and NIR 28.4338 4.7187 

Green, Red and NIR 30.4006 4.7396 
Blue, Green, Red and NIR 25.1862 4.4144 

By using Eq. 3-12, the distances between 1 2 1 and ,  and  and X X X Y  become 

6.75 and 6, respectively. It is much closer to the true distance than using Eq. 3-10. 

Similarly, we could extend the fusion scheme to fuse more bands, e.g. 3 spectral bands 

as in Eq. 3-13: 
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(3-13) 

Because different bands highlight different features of the palm, these features may 

provide different discriminate capabilities. It is intuitive to use weighted sum: 

∑
=

=
n

i
iiWeight dwd

1
Sum   (3-14) 

where iw  is the weight on id , the distance in the ith band, and n is the number of total 
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bands. Eq. 3-10 can be regarded as a special case of Eq. 3-14 when the weight is 1 for 

each spectrum. 

 Using the reciprocal of EER as weight is widely used in Biometric Systems [134]. 

If we take iii dwd ='  as the normalized distance for band i, we can extend our 

proposed score level fusion scheme to weighted sum: multiply original distance with the 

weight for normalization, and then substitute the new distance into Eq. 3-12 or Eq. 3-13. 

3.2.4.2 Experimental Results 

Table 3.18 lists the accuracy results by four different fusion schemes, original weighted 

sum (w=1), proposed weighted sum (w=1), original weighted sum (w=1/EER) and 

proposed weighted sum (w=1/EER). Some findings could be obtained. Firstly, all fusion 

schemes can result in smaller EER than a single band except the fusion of Blue and 

Green (this is because the feature overlapping between them is very high), which 

validates the effectiveness of multispectral palmprint authentication. Secondly, using the 

reciprocal of EER as weight usually leads to better results than the equal weight scheme. 

Thirdly, the proposed fusion scheme, which could reduce the feature overlapping effect, 

achieves better results than the original weighted sum method. It can be verified that Eq. 

3-12 can be rewritten as Eq. 3-15 and it is actually a weighted ( )),(1( 21 FFPOP− ) 

distance of Eq. 3-10. 
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Table 3.18 Accuracy measurement comparison by different fusion schemes on PUMPD. 

EER (%) 
Original 

Weighted Sum 
(w=1) 

Proposed 
Weighted Sum 

(w=1) 

Original 
Weighted Sum 

(w=1/EER) 

Proposed 
Weighted Sum 

(w=1/EER) 
Blue, Green 0.0485 0.0485 0.0485 0.0485 
Blue, Red 0.0243 0.0243 0.0212 0.0212 
Blue, NIR 0.0151 0.0151 0.0152 0.0152 
Green, Red 0.0272 0.0272 0.0212 0.0212 
Green, NIR 0.0213 0.0213 0.0182 0.0182 
Red, NIR 0.0151 0.0151 0.0152 0.0152 

Blue, Green, Red 0.0272 0.0272 0.0236 0.0212 
Blue, Green, NIR 0.0213 0.0182 0.0181 0.0151 
Blue, Red, NIR 0.0151 0.0151 0.0152 0.0152 
Green, Red, NIR 0.0152 0.0159 0.0152 0.0151 
Blue, Green, Red, 

NIR 
0.0182 0.0152 0.0152 0.0152 

The best result is EER as low as 0.0151%. To the best of our knowledge, our 

multispectral palmprint database (250 subjects) is the largest database so far. The 

numbers of subjects in the databases of Ref. [93], Ref. [90], Ref. [91], Ref. [26] and Ref. 
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[92] are 7, 50, 100, 120 and 165, respectively. Among them, only the size of the database 

by Hao et. al. [92] is close with ours. However the best EER of their work is 0.50%, 

which is much worse than ours (0.0151%).  

Although our fusion scheme verifies that the accuracy could be improved by fusing 

the features across spectral bands, sometimes the fusion of 3 or 4 bands is not better than 

the fusion of 2 bands. Certainly, it is possible that a better fusion scheme could be 

developed to more efficiently fuse the different features in different bands. 

Table 3.19 lists the accuracy of the proposed fusion scheme on motion blur 

simulation database.  

Table 3.19 Accuracy measurement comparison of the proposed fusion scheme on PUMMBPD. 

EER (%) 
Proposed 

Weighted Sum 
(w=1/EER) 

Blue, Green 0.1030 
Blue, Red 0.0601 
Blue, NIR 0.0364 
Green, Red 0.0429 
Green, NIR 0.0272 
Red, NIR 0.0394 

Blue, Green, Red 0.0454 
Blue, Green, NIR 0.0272 
Blue, Red, NIR 0.0212 
Green, Red, NIR 0.0182 

Blue, Green, Red, NIR 0.0212 

A good biometric system should be robust to spoof attacks. To test the anti-spoofing 

ability, a simple test is implemented. Here the test is based on inter-spectral distance, 

which is different from Section 3.2.1.2. A palmprint image in Blue band is printed on a 

paper, and then this paper is used as a fake palm to attack the system. For comparison, 

we apply this test to both the single-spectral (i.e. the Blue channel) system and 

multispectral system. For easy comparison, Table 3.20 lists the statistical value of 

genuine and impostor distance for each spectrum from the whole database and Table 

3.21 lists the inter-spectral distance.  
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0.376 0.414 0.433 0.442 

0.167 0.202 0.183 

0.206 0.340 0.408 

a)                  b)                  c)                  d) 

e)                  f)                  g)                  h) 

 

Figure 3.23 An example of anti-spoof test. a-d) are images of a true palm taken under Blue, 
Green, Red and NIR. e-h) are images of a fake palm taken under Blue, Green, Red and NIR. The 
distance between two images is showed on or near a double arrow curve. 

As shown in Fig. 3.23, the faked palmprint is easy to pass the single-spectral 

system, the distance (0.376) between (a) and (e) is smaller than the mean impostor 

distance (0.459, refer to Table 3.20 please) and close to the verification threshold in our 

system. But it is hard to pass the multispectral system because the distances in other 

bands are big. For example, the distance (0.442) between (d) and (h) is close to the mean 

impostor distance (0.460) and far away from the verification threshold. Moreover, 

because the reflectance of the fake material (paper in this example) is different from that 

of the skin, the distance between Blue and NIR bands of the faked palm is very small 

compared with that of the true palm (refer to Table 3.21 please). Thus, this feature can be 

used for liveness detection to improve the robustness of our system. 

Table 3.20 Statistic of intra-spectra distance of whole PUMMPD. 

Spectrum Mean of Genuine Mean of Impostor 
Blue 0.234 0.459 

Green 0.237 0.459 
Red 0.221 0.457 
NIR 0.237 0.460 

 

 



51 

Table 3.21 Statistic of inter-spectral distance of whole PUMMPD. 

Mean/ 
Minimal/ 

Maximal of Distance 
Blue Green Red NIR 

Blue 0 
0.126/ 
0.069/ 
0.302 

0.269/ 
0.129/ 
0.404 

0.384/ 
0.273/ 
0.470 

Green  0 
0.252/ 
0.127/ 
0.431 

0.371/ 
0.264/ 
0.466 

Red   0 
0.246/ 
0.148/ 
0.384 

NIR    0 

3.2.5 Discussion and Conclusion 

In the above sections, three different kinds of fusion methods have been discussed 

separately. Their pros and cons are discussed in this section. Some key values for 

original multispectral database and motion blur simulated database are listed in Table 

3.22. 

Table 3.22 Key values for three kinds of fusion. 

 
Image Level 

Fusion 

Feature Level Fusion 
(Min-Max-Refined 

Fusion) 

Score Level Fusion 
(Proposed Weighted 
Sum (w=1/EER)) 

Lowest EER for Two 
Spectra in Original 

Database (%) 
0.0286 0.0182 0.0152 

Lowest EER for Two 
Spectra in Motion Blur 

Database (%) 
0.0788 0.0484 0.0272 

Feature Size for Two 
Spectra Fusion (bits) 

3072 
(3*32*32) 

5120 
(5*32*32) 

6144 
(6*32*32) 

(Best) EER for Four 
Spectra Fusion in Original 

Database (%) 
0.0696 0.0151 0.0151 

(Best) EER for Four 
Spectra Fusion in Motion 

Blur Database (%) 
0.0757 0.0332 0.0212 

Feature Size for Four 
Spectra Fusion (bits) 

3072 
(3*32*32) 

10240 
(5*2*32*32) 

12288 
(3*4*32*32) 

From Table 3.22, several findings could be found. First, verification accuracy is 

related with feature length. Score level fusion has the longest feature size with best 

accuracy. Image level fusion has the shortest feature size and worse performance. 

Second, the score level fusion considers different features independently, it is more 

robust to the motion blur effect. Although image level fusion is sensitive to motion blur 

when the image sources are few, such as for two bands fusion, the accuracy drops from 

0.0288% to 0.0788. This is mainly because the possibility of both images blur is high, 

thus the fused image is blur usually. While as the number of feature band increases, the 
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probability of fused images blurred is low, the fused image could reduce the blur effect. 

Thus the accuracy does not change too much, for example, it drops from 0.0696% to 

0.0757%. Third, as mentioned before, the proposed feature level fusion is difficult to 

extend to odd number of feature bands. There are two possible ways to address this kind 

of situation. Taking three bands, Blue, Green and Red, fusion as example, the first way is 

to use hybrid fusion scheme, first compute distance by feature level fusion on Blue and 

Green, and compute the distance by Red channel, then normalize the two distance by a 

given rule [94], finally fuse the two normalized distances; the second way is to over use 

a channel, compute distance by feature level fusion on Blue and Green, and Green and 

Red, then fuse the two distances.  

In summary, score level fusion is more suitable for high security oriented 

applications. It does not have strict time limitation (time spending is related with feature 

length directly), image level fusion is more appropriated for real time application with 

fewer requirements on accuracy, and feature level fusion is applicable to applications 

with medium requirement on security and time spending. 
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Chapter 4. Empirical Study of Light 

Source for Palmprint Recognition 

As an important member of the biometric characteristics, palmprint has merits such as 

robustness, user-friendliness, high accuracy, and cost-effectiveness. Because of these 

good properties, palmprint recognition has received a lot of research attention and many 

systems have been proposed. In the early stage, most works focus on offline palmprint 

images [5-7]. With the development of digital image acquisition devices, many online 

palmprint systems have been proposed. Based on the sensors used, there are mainly four 

types of online palmprint image acquisition systems [13]: digital scanners [14-21], video 

cameras [22-24], CCD (Charge Coupled Device) based palmprint scanner [12, 25-26] 

and digital cameras [27-31]. On the other hand, according to imaging conditions, these 

systems could be classified into three classes: digital scanners [14-21], camera with 

passive illumination [23-24 26, 28-31], and camera with active illumination [12, 22, 25, 

27].  

Desktop scanner could provide high quality palmprint images [14-21] under 

different resolutions. However, it suffers from the slow scanning speed [13] and it 

requires the full touch of whole hand, which may bring sanitary issues during data 

collection. Using camera with uncontrolled ambient lighting [23-24, 26, 28-31] does not 

have the above problems. However, the image quality may not be very good as the 

illumination lighting may change much so that the recognition accuracy may not be high 

enough. Because camera mounted with active light could collect image data quickly 

with good image quality and it does not require the full touch with the device, this kind 

of systems have been widely adopted [12, 22, 25, 27]. In these systems, the light source 

is a key component and there are some principles on the setting of lighting scheme [32]. 

However, to the best of our knowledge, no work has been done to systematically 

validate whether white light is the optimal light for palmprint recognition, in spite of the 

fact that all of these studies [12, 22, 25, 27] use white light source for palmprint imaging. 

To this end, this chapter discusses this problem through extensive experiments on a large 

multispectral palmprint database we established by the proposed multispectral palmprint 

acquisition device, as illustrated in Fig. 3.3. 
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As discussed in Section 2.2.3, there are five kinds of popular approaches on 

palmprint recognition: structural, statistical, texture coding, subspace learning and other 

methods. Different approaches focus on different kinds of features, for example, 

structural methods pay attention to principal lines and wrinkles [12], subspace learning 

methods use holistic expression for palmprint recognition [58], and texture coding 

schemes assign a feature code for each pixel in the palmprint [12]. Different illumination 

may enhance different palmprint features as the reflectance and absorbance of human 

skin relative to spectrum, for example, short wavelength light could enhance the line 

feature of palms, while long wavelength light could acquire some subcutaneous vein 

structure [132]. Thus, to get unbiased result for different illuminations, this chapter 

employs three different kinds of feature extraction methods, i.e. CompCode [52] (texture 

coding), wide line detection [45, 135] (structural method), (2D)2PCA [136-137] 

(subspace learning method) and, to empirically study the light source selection for 

palmprint recognition.   

Section 4.1 introduces the data collection and database. Section 4.2 briefly reviews 

the three methods in this chapter and Section 4.3 gives the experimental results. Finally 

section 4.4 discusses the findings and concludes.  

4.1 Data Collection 

 
Figure 4.1 Additive Color Mixing: adding red to green yields yellow, adding all three primary 
colors together yields white. 
It is known that red, green, and blue are the three primary colors, and the combination of 

them could result in many different colors in the visible spectrum as shown in Fig. 4.1. A 

multispectral palmprint data collection device which includes the three primary color 

illumination sources (LED light sources) is proposed, as introduced in Section 3.1. By 

using this device, we can simulate different illumination conditions. For example, when 

the red and green LEDs are switched on simultaneously, the yellow like light could be 

generated. Totally our device could collect palmprint images under seven different color 

illuminations: red, green, blue, cyan, yellow, magenta and white. Fig. 4.2 shows 

examples of the collected images under different illuminations. PUACPD (please refer 

to Section 1.4.3 for detail) is collected for recognition evaluation. 
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(a) Red (b) Green (c) Blue (d) Yellow 

   
(e) Magenta (f) Cyan (g) White 

Figure 4.2 A sample of collected image of one palm with different illuminations. 
After obtaining the multispectral cube, a local coordinate of the palmprint image is 

established [12] from the blue band (the ROI extraction accuracy on the other six bands 

is similar to blue one), and then a ROI is cropped from each band based on the local 

coordinate, Fig. 4.3 shows the extracted ROI from Fig. 4.2. For the convenience of 

analysis, we normalized these ROIs to a size of 128*128. To remove the global intensity 

and contrast effect, all images are normalized to have a mean of 128 and standard 

deviation of 20. 

    
(a) Red (b) Green (c) Blue (d) Yellow 

   
(e) Magenta (f) Cyan (g) White 

Figure 4.3 A sample of ROIs of one palm with different illuminations. 

4.2 Review of feature extraction methods 

4.2.1 Wide Line Detection 

A palmprint image has mainly three kinds of features: principal lines (usually three 

dominant lines on the palm), wrinkles (weaker and more irregular lines) and crease (the 

ridge and valley structures like those in fingerprint) [12]. These principal lines and 

wrinkles could be extracted by a wide line detector directly [45, 135]. The thickness of 

the line is defined as:  
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where g is the geometric threshold and m is the weighed mask having similar brightness. 

ω  is a circular constant weighing mask and 0ω  is the normalization of the circular 

mask.  

To remove noise, a Gaussian smoothing is applied as a post-processing step. Then 

the response is binarized after thresholding:  

2 2

2 2

1
( , ) ( , ) * ( , ) where ( , ) exp( )

2 2

x y
L x y L x y g x y g x yσ σ πσ σ

+= = −ɶ  (4-6) 

1 if ( , )
( , )=  

0 otherwise

L x y t
B x y

 >



ɶ
 (4-7) 

where σ  is the scale of the Gaussian filter and t  is a threshold. After binarization, the 

similarity between two palmprints is defined as the proportion of matched bits to the 

total bits of the two binary palmprint maps [45, 135]. As shown in Fig. 4.4, different 

parameters will generate different feature maps. In the experiments, we will compute the 

recognition accuracy on a group of parameters and select the best result of each 

illumination for final comparison. 

(a) A ROI sample (b) Extracted features by different parameters 
Figure 4.4 A palmprint ROI sample and its extracted wide line features. 
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4.2.2 CompCode 

As discussed in Section 3.1, the shape of Gabor filter is related with parameters, 

including ω  and δ . If the shape of Gabor filter is changed, the extracted orientation 

map will change accordingly. Fig. 4.5 shows an example of the extracted orientation 

feature map, where different gray levels represent different orientation. 

    
(a) A ROI sample (b) Extracted features by different parameters 

Figure 4.5 A palmprint ROI sample and its extracted CompCode features. 

4.2.3 (2D)2PCA 

Principal component analysis (PCA) is a widely used statistical analysis method, and 

(2D)2PCA [136-137] is an extension of it, which can alleviate much the small sample 

size problem and better preserve the image local structural information. Suppose we 

have M subjects and each subject has S sessions in the training data set, i.e. S 

multispectral palmprint cube were acquired at different times for each subject. Then, we 

denote by b
msX  (the original image matrix) the bth band image for the mth individual in 

the sth session. The covariance matrices along the row and column directions are 

computed as: 

1 2
1 1 1 1

1 1
( ) ( ), ( )( )

S M S M
b b b T b b b b b b b T

ms ms ms ms
s m s m

G X X X X G X X X X
MS MS= = = =

= − − = − −∑∑ ∑∑  (4-8) 

where 
1 1

1 S M
b b

ms
s m

X X
MS = =

= ∑∑ . 

 The project matrix 
1

1 11 12 1
[ , ,..., ]b

b b b b

k
V v v v=  is composed of the orthogonal 

eigenvectors of 1
bG  corresponding to the 1

bk  largest eigenvalues, and the projection 

matrix 
2

2 21 22 2
[ , ,..., ]b

b b b b

k
V v v v=  consists of the orthogonal eigenvectors of 2

bG  

corresponding to the largest 2
bk   eigenvalues. 1

bk  and 2
bk  can be determined by 

setting a threshold to the cumulant eigenvalues: 

1 2

1 1 2 2
1 1 1 1

/ , /
b b

c r

c c c c

c c r r

Ik k I
b b b b
j j u j j u

j j j j

C Cλ λ λ λ
= = = =

≥ ≥∑ ∑ ∑ ∑  (4-9) 
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where 11 12 1, ,...,
c

b b b
Iλ λ λ  are the first cI  biggest eigenvalues of 1

bG , 21 22 2, ,...,
r

b b b
Iλ λ λ  are 

the first rI  biggest eigenvalues of 2
bG , and uC  is a pre-set threshold. For each given 

band bth, the test image bT  is projected to �bT  by 1
bV  and 2

bV  ( 2 1
bT b bV T V× × ), then 

Euclidean distance is used to measure the dissimilarity [136-137]. Fig. 4.6 shows the 

reconstructed image ( �
2 1
b b bTV T V× × ) by different uC . 

(a) A ROI sample (b) Extracted features by different parameters 
Figure 4.6 A palmprint ROI sample with its reconstructed images. 

4.3 Experimental Results 

4.3.1 Palmprint Verification Results by Wide Line 

Detection 

In this Chapter, PUACPD is used for recognition evaluation. To compute the verification 

accuracy for this section, each palmprint image is matched with all the other palmprint 

images in the database. A match is counted as a genuine if the two palmprint images are 

from the same palm; otherwise, it is counted as an impostor. The total number of 

matches is 17,997,000 and the number of genuine is 33,000. The EER is used to evaluate 

the accuracy. 

As discussed in Section 4.2.1, there are four parameters which could influence the 

feature extraction, r, t, g, and σ . To reduce the possible parameter space, we fixed 

g=0.5 and t=0.1 [45, 135] and selected 5 different values for r and t, thus the total 

number of test settings is 25. The EER under different settings with different 

illuminations are plotted in Fig. 4.7 and the lowest EER for each light is listed in Table 

4.1. 
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Figure 4.7 EER under different setting by Wide Line Detection. 

 

Table 4.1 The lowest EER for each color by Wide Line Detection. 

Color EER (%) 
Blue 0.3875 
Cyan 0.4694 
Green 0.3912 

Magenta 0.3029 
Yellow 0.2546 

Red 0.2606 
White 0.3396 

4.3.2 Palmprint Verification Results by CompCode 

As discussed in Section 4.2.2, there are two parameters, ω  and δ  could influence the 

extracted features. We selected 5 different values for ω  and δ , respectively, and used 

the same test protocol as discussed in Section 4.3.1. The EER under different settings 

with different illuminations are plotted in Fig. 4.8 and the lowest EER for each light is 

listed in Table 4.2. 
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Figure 4.8 EER under different setting by CompCode. 

 

Table 4.2 The lowest EER for each color by CompCode. 

Color EER (%) 
Blue 0.0484 
Cyan 0.0547 
Green 0.0514 

Magenta 0.0182 
Yellow 0.0392 

Red 0.0182 
White 0.0241 

4.3.3. Palmprint Identification Results by (2D)2PCA 

In this section, identification instead of verification is implemented. The whole database 

is partitioned into two parts, a training set and a test set. The training set is used to 

estimate the projection matrix and is taken as gallery samples. The test samples are 

matched with the training samples and the nearest neighborhood classification is 

employed. The ratio of the number of correct matches to the number of test samples, i.e. 

the recognition accuracy, is used as the evaluation criterion. To reduce the dependency of 

experimental results on training sample selection, we designed the experiments as 

follows. Firstly, the first three samples in the first session are chosen as the training set 

and the remaining samples are used as the test set. Secondly, the first three samples in 

the second session are chosen as training set, and the remaining samples are used as the 

test set. Finally, the average accuracy is computed.  
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As shown in Section 4.2.3, there is only one parameter, uC , to control the feature 

extraction. The accuracy under different settings with different illuminations is plotted in 

Fig. 4.9 and the highest accuracy for each light is listed in Table 4.3. 
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Figure 4.9 Recognition Accuracy under differentuC . 

 

Table 4.3 The lowest EER for each color by (2D)2PCA. 

Color EER (%) 
Blue 97.2000 
Cyan 96.8777 
Green 96.6334 

Magenta 97.4333 
Yellow 97.8777 

Red 97.3555 
White 97.6334 

4.4 Discussion and Conclusion 

From Fig. 4.7-9 and Table 4.1-3, we could have three findings. First, no spectrum could 

compete with all the others for all settings. This is mainly because different light could 

enhance different features of palms, while these different features have different 

intensity distributions which are in favor of different parameters.  

Second, among the three primary colors, Red has a little higher accuracy than blue 

and green. This is mainly because red could not only capture most of the palm line 

information, but also capture some palm vein structures as shown in Fig. 4.3. This 

additional palm vein information helps classify those palms with similar palm lines. It 
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could also explain why the composite colors (magenta, yellow, white) could get better 

accuracy than cyan.  

Last, white color could not get the best accuracy among the seven spectra. Yellow 

achieves the best result by the schemes of wide line detection and (2D)2PCA, while 

magenta and red achieve the best result by the scheme of competitive coding. This 

finding could be explained as follows.  

We assume that the imaged objects, i.e. palms, have a Lambertian surface [138]. 

The output of the monochrome CCD at pixel (x,y) can be given by:  

( , ) ( ) ( , , ) ( , ) ( )
VE

VS

I x y x y s x y e d
λ

λ
ρ λ α λ λ λ= ∫  (4-10) 

where ( )e λ  is the spatially invariant illumination source of spectral distribution and λ  

represents the wavelength of the incident light. ( , , )x yα λ  denotes the albedo of the 

scene objects. ( )ρ λ is the spectral response of the sensor and ( , )s x y  expresses the 

effect of the geometry. VSλ  and VEλ  are the limits of visible frequency spectrum. 

According to the additive color mixing, the intensity by the white illumination could be 

expressed by:  

( , ) ( ) ( , , ) ( , ) ( ) ( ) ( , , ) ( , ) ( )

( ) ( , , ) ( , ) ( ) ( , ) ( , ) ( , )

BE GE
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W x y x y s x y e d x y s x y e d

x y s x y e d B x y G x y R x y

λ λ

λ λ

λ

λ

ρ λ α λ λ λ ρ λ α λ λ λ

ρ λ α λ λ λ

= +

+ ≈ + +

∫ ∫

∫
 (4-11) 

where BSλ / GSλ / RSλ   and BEλ / GEλ / REλ  are the limits of blue/green/red light 

frequency spectrum. ( , )B x y , ( , )G x y  and ( , )R x y  represents the intensity by blue, 

green and red light, respectively. 

As shown in Fig. 4.3, the palmprint images under blue and green illumination are 

more similar to each other than to the image under red illumination. A quantitive image 

quality index, complex wavelet structural similarity index (CW-SSIM) [121-122], is 

used here. 

CW-SSIM is defined to measure the similarity of two images on wavelet frequency 

domain:  
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where  and x yc c  are the complex wavelet coefficents. In implementing the complex 

wavelet transform, a complex version of the “steerable pyramid” transform [139], which 

is a type of redundant wavelet transform that avoids aliasing in subbands, is used here. 
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*c  denotes the complex conjugate of c and K is a small positive constant. It has been 

shown that the CW-SSIM index is insensitive to luminance and contrast changes as well 

as small translation, rotation and distortion [121-122]. 

 Eq. 4-12 could be rewritten as:  

*
, ,1, ,1

2 2
, , , ,1 1 1
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c cɶ  (4-13) 

Fig. 4.10 illustrates the similarity computation procedure. The first component in the 

right hand of the above equation is completely determined by the magnitudes of the 

coefficients. The maximum value 1 is achieved if and only if |||| ,, iyix cc =  for all values 

of i. The second component is fully determined by the consistency of phase changes 

between 
xc  and 

yc . It achieves the maximum value 1 when the phase difference 

between 
ixc ,
 and 

iyc ,
 is a constant for i. And it is shown that the second component is a 

better measure of image structural similarity of palmprint images because the structural 

information of local image features is mainly contained in the relative phase patterns of 

the wavelet coefficients and a constant phase shift of all coefficients does not change the 

structure of local image features [120]. 

 
Figure 4.10 CS-SSIM computation procedure. 

 The modified CW-SSIM is defined as:  
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The average of CW-SSIM on three primary colors is shown in Table 4.4. It further 

validates that blue and green collect much redundant information, as the average 

similarity between blue and green is 0.95, while the average similarity between blue and 

red, and green and red are 0.83. The redundancy makes white color fail to capture more 

information than the yellow or magenta color, and sometimes the accuracy drops a little. 

This is also consistent with the finding of Fratric and Ribaric [140], fusion of blue and 

red channels gets better results than fusion of three channels.  

Table 4.4 Average of CW-SSIM. 

CW-SSIM Blue Green Red 
Blue 1 0.95 0.83 
Green  1 0.83 
Red   1 

Palmprint recognition has been attracting lots of research attention in the past 

decade and many data collection devices have been proposed. For good image quality 

and high data capture speed, using cameras mounted with active lighting sources is the 

most popular device configuration. Almost all existing devices use white light as the 

illumination source but there was no systematic analysis on whether the white light is 

the optimal light source for palmprint recognition. This chapter made such an effort on 

answering this problem by establishing a large multispectral palmprint database using 

our developed device. With the database we empirically evaluated the recognition 

accuracies of palmprint images under seven different colors by three different methods. 

Our experimental results showed that the white color is not the optimal color for 

palmprint recognition and the yellow or magenta color could achieve higher accuracy 

than the white color.  
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Figure 4.11 Skin reflectance of different subjects. [132] 

However, so far our data were collected from East Asian residents (more 

specifically Chinese) only. Since the palm spectral properties of different groups may be 

different, as shown in Fig. 4.11, the finding of this work may not valid for other groups. 

In the future, more samples from other groups will be collected to investigate the best 

illumination conditions for palmprint recognition. 
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Chapter 5. Feature Band Selection for 

Online Multispectral Palmprint 

Recognition 

Chapter 3 shows an apparatus and methods for multispectral palmprint recognition. The 

experimental results show that fusion of different spectra could improve the recognition 

accuracy significantly. Such as score level fusion of Blue (EER: 0.0515%) and NIR 

(EER: 0.0396%) could get much lower EER, 0.0151% (Refer to Table 3.19). 

Furthermore, examples show that liveness detection could be applied by analyzing 

multispectral images. Thus, the main disadvantage of traditional palmprint recognition 

could be addressed by multispectral imaging. Similar researches on fingerprint [87], face 

[88, 153], and iris [152] also show the superiority of multispectral imaging. 

However, the two underlying key issues need to be addressed well before wide 

application of multispectral palmprint recognition. First, how many spectra are enough 

for discriminating different palms? Usually, more feature bands provide more 

information, thus higher accuracy could be expected. On the other hand, more feature 

bands require high cost on feature extraction and matching. Furthermore, because of 

redundancy between different spectra, more information may fail to increase the 

accuracy sometime. For example, score level fusion of Blue, Green and NIR get EER 

0.0151% which is the same as that of Blue and NIR, 0.0151% (Refer to Table 3.19). 

Therefore, it is necessary to determine an optimal number of feature bands in 

multispectral palmprint system design. To our best knowledge, there are no public 

reports on this topic for biometric research. Second, how to choose these representative 

spectra for a given number of feature bands? After determining the number of feature 

bands, a group of bands could be selected by some rules, such as divergence [153], 

mutual information [154], and entropy [155]. The bands could also be found through 

exhaustive searching.  

This chapter focuses on the first key issue. A clustering based method to determine 

the number of feature band from hyperspectral palmprint database is proposed. Section 
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5.1 introduces the data collection of hyperspectral palmprint cube. Section 5.2 reports 

the spectral k-means clustering algorithm and Section 5.3 shows the validation by 

verification experiment.  

5.1 Hyperspectral Palmprint Cube Collection 

To discover the optimal number of feature band for multispectral palmprint recognition, 

hyperspectral imaging [156] is used here. Hyperspectral imaging is a widely used 

technique in remote sensing [157]. The definition between hyperspectral and 

multispectral is usually defined as the number of spectral bands. Fig. 5.1 shows the 

difference between hyperspectral and multispectral imaging. Hyperspectral data could be 

a set of contiguous bands while multispectral data is a set of discrete bands. 

 
Figure 5.1 Hyperspectral vs Multispectral. [156] 

A hyperspectral imaging system is set up to collect the palmprint images in 

consecutive spectral bands. The key components of the system include a Liquid Crystal 

Tunable Filter (LCTF), a high quality CCD, and two halogen lights.  

The LCTF, model TOF-VIS, is made by Meadowlark Inc. Fig. 5.2 shows the LCTF 

with its transmission of different wavelengths. Its polarized transmission range is from 

420nm-1100nm and its tuning resolution is 0.1nm. The full width at half max is 5nm, 

thus the object (i.e. palm) will be imaged at 69 spectral bands with a step-length of 10nm 

over spectrum range to maximize the image independence and to get higher spectral 

resolution. Although, there is correlation between different wavelengths which is 

difficult to be removed, the motivation of the chapter is to find minimal number of 
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feature bands to fully represent the whole spectrum information. 

  
(a) (b) 

Figure 5.2 LCTF with its transmission property. (a) TOF-VIS LCTF; (b) transmission vs 
wavelength. 

A high quality CCD, Sensicam em made by the cooke corporation, is chosen in this 

work. Its resolution is 1004*1002 pixels. The spectral range is from 290nm to 1100nm. 

Fig. 5.3 shows the CCD with its spectral characteristic curve.  

 

 
(a) (b) 

Figure 5.3 CCD with its sensitivity curve. (a) Sensicam em CCD; (b) quantum efficency vs 
wavelength. 

To provide uniform and strong enough illumination, two 500W Osram halogen 

lights as shown in Fig. 5.4 are selected.  

 
Figure 5.4 500W Osram halogen light. 

Fig. 5.5 illustrates the hyperspectral palmprint cube collection setting. In data 

collection, the users are asked to put their palms on the panel in front of the LCTF with 

the halogen lights power on. Several pads are used to reduce the degree of freedom of 

the palm. A hyperspectral image cube (with dimension 1004*1002*69) of the palm can 
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be collected in a short time. PUHPD (please refer to Section 1.4.4 for detail) is collected 

for feature band selection. 

 
Figure 5.5 The hyperpsectral palmprint imaging system.  

Fig. 5.6 shows partial of the hyperspectral palmprint cube.  

   
420nm 500nm 590nm 

   
670nm 760nm 840nm 

   
930nm 1010nm 1100nm 

Figure 5.6 Partial of a sample of hyperspectral palmprint cube. 
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After obtaining the hyperspectral cube, a local coordinate of the palmprint image is 

established [12] in the center band (760nm), and then a ROI is cropped from each band 

based on the local coordinate. Fig. 5.7 illustrates the ROIs sample. For the convenience 

of analysis, these ROIs are normalized to a size of 128*128. To reduce the intensity 

effect, the ROIs are converted to have a mean intensity of 128 with a standard deviation 

of 20. As shown in Fig. 5.7, because of the low transmission of LCTF at short 

wavelength (please refer to Fig. 5.2), the image quality of the first several bands is not 

good. Meanwhile, since the CCD’s response is not high enough at long wavelength 

(please refer to Fig. 5.3), the image quality at the last several bands are not good neither. 

 
Figure 5.7 The ROIs extracted from sample of Figure 5.6. From left to right, top to down, the 
wavelength is increasing from 420nm to 1100nm with 10nm interval.  

5.2 Feature Band Selection by Clustering 

5.2.1 Review of K-Means Clustering 

K-means clustering algorithm [158] is a basic and well known technique in pattern 

recognition. During the clustering, some points are clustered into separated classes or 

clusters according to the given clustering criterion. Fig. 5.8 shows an example of 

k-means. Fig. 5.8a shows three clusters which are generated by three separate Gaussian 

distribution. As k is a critical input parameter, different values will generate different 

clustering results. Fig. 5.8b-d show the clustering results for k=2, k=3 and k=4, 

respectively.  
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(c) (d) 

Figure 5.8 (a) Original data; (b) K-means result, k=2; (c) K-means result, k=3; (d) K-means result 
k=4. 
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Figure 5.9 Number of clusters vs minimal center distance. 
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When the k is smaller or equal to the true number of clusters, the center distance is 

very big; while the k is larger than the true number of clusters, one cluster will be split 

into small clusters, the center distance becomes smaller and stable. The minimal center 

distance is defined as:  

min ,
1
1

min( )k
i j

i k
j k

i j

d d
≤ ≤
≤ ≤
≠

=  
(5-1) 

, ( , )i j i jd d c c=  (5-2) 

where d is Euclidean distance and k is the number of clusters.  

Fig. 5.9 shows the min
kd for different k values. As illustrated by Fig. 5.9, the distance 

drops quickly from k=2 to k=3. When k is bigger than 3, the distance changes slowly. 

The example shows that k-mean clustering could be used to discover the true number of 

clusters. Based on this finding, a spectral k-means clustering algorithm is proposed in the 

following.  

5.2.2 Proposed Spectral K-Means Clustering 

Based on the finding in Section 5.2.1, a spectral k-means clustering algorithm is 

proposed. Suppose we have N hyperspectral palmprint cubes with B spectrum, as the 

training set, Fig. 5.10 shows the pseudo-code of the algorithm: 

1. Randomly get k initialized centers (wavelengths), x=0; 
2. For any wavelength j (j=1,2,…,B), compute the distance between the wavelength with k 

centers, here the distance is compute as: 

, ,
1 1

( , ), 1,2,...,
N N

n n
i j i j i j

n n

D d d c w i k
= =

= = =∑ ∑  

   where c is the center wavelength, jw  is the given wavelength, and d is the CW-SSIM 

distance defined in Section 4.4. x=x+1; 
3. For each center, find the wavelengths which have the minimal distance among n centers. 

There are k clusters of wavelengths: 
   ,{ | arg min }, 1,2,...,i i j

i
S j D i i k= = =  

4. For any cluster, find the wavelength which has the minimal average distance with the 
remaining wavelengths in the cluster, this wavelength is updated as the new center: 

   '
,

1

arg min , ,
i

B

i l m i
m S l

c D l m l S
∈ =

= ≠ ∈∑  

5. If the centers are not changed or x=T (T is a predefined iteration threshold), stops; otherwise, 
goes to step 2.  

Figure 5.10 Pseudo-code of the proposed spectral k-means clustering. 
In this thesis, N=2280, B=54 (The first 10 and last 5 feature bands are removed due 

to low signal to noise ratio as discussed before. The remaining 54 bands are 

520nm-1050nm, with 10nm interval.) and T=100.  

Because there is possibility that the clustering ends at local minimal instead of 
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global minimal, for a given k, the clustering runs 1,000 times and the most frequent 

cluster centers are kept as the final result for the given k. Similar as Fig. 5.9, Fig. 5.11 

shows minimal center distance for different numbers of clusters.  
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Figure 5.11 Minimal distance vs k. 
Fig. 5.11 shows that three clusters may be enough to represent the 54 feature bands. 

The k=3 cluster result is listed in Table 5.1 and the distance map between different 

wavelength is plotted in Fig. 5.12. As can be seen from Fig. 5.12, there are roughly three 

dark blocks. According to the spectrum definition [159], the three clusters could be 

roughly named as visible spectrum without red, red spectrum and NIR spectrum. 

Table 5.1 Clustering Result of spectral k-mean for k=3. 

Cluster Wavelengths 
1 520 530 540 550 560 570 580 590 600 610 
2 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760 770 780 

3 
790 800 810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970  
980 990 1000 1010 1020 1030 1040 1050 
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Figure 5.12 Distance map between different feature bands. The distance is convert from [0,1] to 
[0, 255] for display.  

5.3 Experimental Validation 

To demonstrate whether there is the optimal number of feature bands, verification 

experiment is implemented on PUHPD to validate it. Here, CW-SSIM based verification 

is used as it is less sensitive to scale, rotation and translation variation for palmprint 

verification [121]. 

One cube of each palm in the first session is randomly selected as the gallery 

sample, and all the cubes in the second session are used as probe samples. For any 

feature band, the image distance between each sample in the gallery set and sample in 

the probe set is computed. Totally, there are 1,000,160 (380*2632) matching distances 

for each feature band. Among them, 2,632 distances are genuine matching distances 

while the remaining are impostor matching distances. To get unbiased result with 

training gallery selection, the gallery set is selected three times independently. Then, one 

cube of each palm in the second session is randomly selected as the gallery sample, and 

all the cubes in the first session are used as probe samples. We use the same test protocol, 

for each wavelength, and get 991,040 (380*2608) matching distances for each feature 

band. Among them, 2,608 distances are genuine matching distances. Similarly, the 

gallery set is selected three times independently. Thus, totally six verification trials are 

implemented. In the following, the average of the six trials is listed as experimental 
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results. Fig. 5.13 illustrates the EER with different wavelengths. The lowest EER is 

achieved by 790nm with EER=0.2220%. The error rate is much larger than the reported 

result in Section 4. This is caused by two reasons, first since the user is asked to put their 

palm vertically rather than horizontally, the degree of freedom is much higher than the 

traditional palmprint data collection; second, to speed up the comparison and reduce the 

feature size, the image is decomposed into 6 orientations rather than 16 orientations [120] 

in complex wavelet of CS-SSIM. 
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Figure 5.13 Wavelength vs EER. 

To find the optimal combination for a given number of feature bands, many 

algorithms could be used to search for the combination, such as divergence [153], 

mutual information [154], and entropy [155]. Here, exhaustive search is implemented as 

it has less possibility to miss the true optimal combination. Sum score level fusion [94] 

is used as the fusion technique on the dataset. The lowest EER for each combination is 

listed in Table 5.2. 

 

Table 5.2 Fusion result for different number of feature bands. 

Number of feature bands Optimal Combination EER (%) (Mean+Std) 
1 790nm 0.2220+0.0652 
2 580nm, 770nm 0.1039+0.0431 
3 580nm, 760nm, 990nm 0.0780+0.0344 
4 580nm, 620nm, 760nm ,940nm 0.0727+0.0430 

Table 5.2 shows more feature bands, and higher accuracy. Such as, fusion of 2 

bands could reduce the EER from 0.222% to 0.1039%. However, the improvement from 
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3 bands to 4 bands is very small, only 0.0053%. Using statistical analysis [160], the 

difference between fusion of 4 bands and 3 bands is not statistically significant. And as 

shown in Table 5.1, 580nm, 760nm and 990nm come from three different clusters. These 

findings are consistent with the findings in the above section.  

5.4 Discussion and Conclusion 

In this chapter, a spectral k-means clustering algorithm is proposed to cluster 

hyperspectral palmprint cubes. The clustering could be used to determine an optimal 

number of feature bands. The result shows that three feature bands may be enough to 

represent the palmprint features. Based on score level fusion and exhaustive searching 

on all fusion candidates, three feature bands could get much better results than two 

bands and it can get comparable results with four bands. This finding validates the 

effectiveness of the proposed clustering algorithm and it is empirically demonstrated that 

three feature bands is a good option for real multispectral palmprint applications. The 

finding will be applied to the design of our future multispectral palmprint system. 

However, similar as the discussion in Chapter 4, the database is limited by Chinese 

persons only, whether the finding is applicable to other groups needs further 

investigation.  
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Chapter 6. Improvement of CompCode 

In the above multispectral palmprint analysis, one of the state-of-the-art palmprint 

recognition algorithms, CompCode, is used for feature extraction and matching. If the 

performance of CompCode could be improved, better multispectral recognition is 

expected.  

CompCode with other orientation based methods as shown in Fig. 6.1 has three 

main issues, including filter design, coding for filtering responses, and distance measure. 

Many researchers has discussed filter design before, for example, Wu et al. devised a 

self designed filter (POC) [53], Jia et al. proposed to use Radon transform (RLOC) [54] 

and Yue et al. investigated the filter orientation effect [141]. In fact, the main difference 

between these three methods (CompCode, POC and RLOC) lies in the filter design. 

Compared with filter design, coding of filter response and distance measure is less 

studied. To address these two issues, a new coding scheme, BOCV is discussed in 

Section 6.1 and a unified distance measurement is proposed in Section 6.2.  

 
Figure 6.1 Major framework of orientation coding-based palmprint verification algorithm. 

6.1 BOCV for Palmprint Verification 

Among various coding schemes for palmprint recognition, the orientation based coding 

methods [52-54] are state-of-the-art ones and they have merits of high accuracy, 

robustness to illumination variation and fast implementation, etc. Since the orientation of 

palm lines is stable and can provide enough discriminatory information for personal 

identification, many palmprint coding schemes, including CompCode [52], POC [53], 

RLOC[54], were proposed. These algorithms use different filters or masks, such as 

Gabor filter (CompCode), self designed mask (POC), and modified finite Radon 

transform (RLOC), to estimate the orientation feature of each local region. A common 
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rule, the “competition” rule, is shared by these algorithms: several filters or masks with 

different orientation were convolved with the image, and then the “dominant” 

orientation was determined with some criterion. By simply coding the orientation map of 

the palmprint, high accuracy palmprint identification could be implemented with high 

speed matching. 

However, the line structures in palmprint image are very complex. Multiple lines 

may intersect at some regions, so some structural information may be lost if only one 

orientation is used to represent the local feature. Fig. 6.2a and Fig. 6.2b show an 

example area where two lines intersect. Fig. 6.2c plots the curve of Gabor filtering 

response [52] versus orientation for the local area in Fig. 2b. We can see two valleys, 

which imply two main orientations in this area. If only one orientation is kept, much 

valuable discriminatory information will be lost. 

  
(a) (b) 

 
(c) 

Figure 6.2 (a) A palmprint image; (b) cropped and enlarged image with two intersected lines; (c) 
Gabor filtering responses versus orientation. 

In addition, the extracted “dominant” orientation is sensitive to rotation. Fig. 6.3 

shows an example. If we rotate Fig. 6.3a only by 50 counter-clockwise, the extracted 

orientation of the local area will change from 1200 to 900, i.e. 300 difference. 
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(a) (b) (c) 

  

 
(d) (e) (f) 

Figure 6.3 (a) is a palmprint image and (d) is the 50 rotation of it; (b) and (e) are the cropped and 
enlarged images of (a) and (d); (c) and (f) are the curves of Gabor filtering responses versus six 
orientations for (b) and (e) respectively. 

To circumvent the above problems in traditional orientation coding schemes, a new 

feature representation algorithm is proposed in this section, namely BOCV. Instead of 

extracting only one orientation from the filtering responses, all the orientation 

information is preserved by concatenating the responses as a vector. Then, the response 

vector is binarized by thresholding. There are two main advantages of BOCV over the 

traditional orientation based methods. First, the discriminatory ability is enhanced 

because more line orientation information is preserved. Second, it is more robust to 

small rotation. Taking Fig. 6.3 as an example, we see that the “dominant” direction is 

very sensitive to rotation. A 50 rotation of the image will lead to a 300 change of the 

dominant direction (from 1200 to 900). However, if all the directions are coded, it is 

possible that Fig. 6.3c and Fig. 6.3f have the same code. For instance, the Gabor filtering 

responses above 0 are coded as “0”, and the responses below 0 are coded as “1”. Then 

the codes for both Fig. 6.3c and Fig. 6.3f are “000110”. They have the same 

representation after small rotation. 



80 

6.1.1 Definition of BOCV 

  
(a) (b) 

(c) (d) 
Figure 6.4 (a) A palmprint image; (b) cropped and enlarged image of (a); (c) Intensity value 
distribution of (b); (d) Gabor filter with θ =0. 
Usually, the cross section of palm lines is Guassian-shaped. Fig. 6.4 shows an example 

of palm line intensity value distribution, while Fig. 6.4d shows the real part of a Gabor 

filter, which has similar (but upside-down) shape to Fig. 6.4c. The Gabor filter can be 

regarded as a line detector or matched filter to detect palm lines [142]. If the Gabor 

filtering response vector is normalized to L2-norm unity as in Eq. 6.1, the filter response 

at each orientation can be treated as a confidence measure of the feature occurring at that 

orientation [143]. 

'

5
' 2

0

'

( , )
( , )

( , )

( , ) ( , ) ( , , , ), / 6, {0,1,2,3,4,5}

j
j

i
i

j R j j

G x y
G x y

G x y

G x y I x y x y j jψ ω θ θ π
=

=

= ∗ = =

∑  (6-1) 

For each local region, a 6-dimensional vector can be calculated by concatenating 

the normalized responses along 6 directions, namely the Orientation Co-occurrence 

Vector (OCV). The distance between two OCVs, P  and Q , can be computed by using 

the L1-norm: 
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where iP  and iQ  are the thi  dimension planes of P  and Q  respectively.  

 However, because the orientation features are represented by float numbers, it is 

time consuming to use OCV for dissimilarity computation. To speed up the matching 

time, a 6-bit binarized vector, called BOCV, is defined by thresholding each orientation’s 

filter response: 

1,  ( , )
( , )

0,

j jb
j

if G x y T
P x y

else

′ <
= 


 (6-3) 

 The threshold jT  could be set as 0, which is simple and intuitive but could lead to 

good results. It can also be chosen according to the filter response distribution which 

could further improve the accuracy. In this chapter, we set jT 0= , { }0,1,2,3,4,5j = , as 

it is intuitive and simple and widely used in palmprint [12, 51] and iris recognition [144]. 

Fig. 6.5 shows an example of the extracted BOCV. 

  
(a) (b) 

   
(c) (d) (e) 

   
(f) (g) (h) 

Figure 6.5 A palmprint image and its BOCV features. (a) Original palmprint image; (b) BOCV 
feature map; (c)-(h) are the binarized feature maps by six Gabor filters in six directions. 

Similar to CompCode, the widely used bitwise Hamming distance can be applied to 

BOCV for matching: 
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Obviously, D is between 0 and 1, and for a perfect matching the distance will be 0. 

In practice, we will shift the BOCV map along different directions in a small range to 

find the smallest distance between two maps. If the distance is smaller than a certain 

level, the two palmprints will be classified into the same class. 

6.1.2 Experimental Results 

6.1.2.1 Experimental Results on PUPD [127] 

I) Test Protocol 
To compute the verification accuracy in PUPD, each palmprint image is matched with 

all the other palmprint images in the database. A match is counted as a genuine if the two 

palmprint images are from the same palm; otherwise, it is counted as an impostor. The 

total number of matches is 30,042,876 and the number of genuine is 74,068. The EER is 

used to evaluate the accuracy. And the decidability index 'd [144] (the index measures 

how well the genuine and impostor distributions are separated) is used for reference. 
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where 1µ  ( 2µ ) is the mean value of genuine (impostor) and 1σ  ( 2σ ) is the standard 

deviation of genuine (impostor) distances. 

A ROI extraction procedure similar to that in [12] is used to extract the ROI of size 

128*128. To reduce the influence of imperfect ROI extraction, we shift the feature maps 

vertically and horizontally in a small range for matching. The minimal distance obtained 

by shift matching is taken as the final distance. The shift range is set as [-4, 4] in the 

following experiments. 

II) Determination of the Number of Gabor Filters 
Although those orientation based coding algorithms [52-54] have been widely used, the 

relationship between the number of employed directional filters (i.e. the number of 

quantized orientations) and the recognition accuracy has not been well discussed. 

CompCode [52], POC [53] and RLOC [54] use 6, 4, and 6 filters respectively, but the 

authors did not clearly show why such numbers were used and whether the number was 

optimal. Intuitively, using more filters may obtain higher accuracy but increase the 

computational cost. Thus it is necessary to analyze the determination of the optimal 
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number of filters, which could result in high accuracy and fast implementation. In the 

following, this issue will be discussed. 

First, we use 2, 4, 6, 8, 10, 12, 14 and 16 Gabor filters with π/2, π/4, π/6, π/8, π/10, 

π/12, π/14 and π/16 interval of [0, )π  to extract BOCV features and implement 

verification using bitwise Hamming distance. The computed EER and 'd  are plotted in 

Fig. 6.6. We see that the EER is relatively high when the number of Gabor filters is 

smaller than 6. When the number is bigger than 6, the EER is much lower but fluctuates 

rather than monotonically decreases with the number of filters. Although 'd  increases 

as the number increases, the curve is flat when the number is greater than 6. Thus 6 can 

be regarded as the optimal number balancing between the accuracy and time 

consumption. This finding is also in accordance with the neuro-physiological discovery: 

simple cells are sensitive to specific orientation with approximate bandwidth of π/6 

[145].  

(a) (b) 

Figure 6.6 EER and 'd  of BOCV using different number of Gabor filters. a) EER vs. number of 

Gabor filters; b) 'd  vs. number of Gabor filters. 
The main reason that why increasing the number of filters could not further reduce 

the EER is the feature redundancy. To illustrate it, we can calculate the average rate of 

identical features between adjacent bit planes as follows: 
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where Pb is an extracted BOCV map, mod( , )x y  is the modulus of x divided by y, n is 

the number of Gabor filters, and “!” is a bitwise NOT operator. 

The curve of average rates on the whole database versus the number of Gabor 

filters is plotted in Fig. 6.7. We can see that as the number of Gabor filters increases, the 

percentage of identical bits between adjacent planes also increases. Assume that the 

binary values in each plane follow Bernoulli trials. If two planes are uncorrelated, then 
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the percentage of identical bits should be 50%. However, Fig. 6.7 shows that as the 

number of Gabor filters increases, the correlation between adjacent bit planes increases, 

so that using more Gabor filters could not increase much the discriminatory information.  

 
Figure 6.7 Average rate of the identical features between two adjacent planes vs. the number of 
Gabor filters. 

 

 
Figure 6.8 Degrees-of-freedom of impostor distance distribution vs. number of Gabor filters. 

Assuming the comparison (exclusive OR) between two BOCVs from two different 

palms follows a Bernoulli trial, the full distribution of impostor distance corresponds to 

a fractional binomial, whose degrees-of-freedom could be simulated as [144]: 

2(1 ) /N p p σ= −  (6-7) 

where p  is the mean of impostor distance distribution, σ  is the standard deviation of 

impostor distance distribution. Fig. 6.8 shows the degrees-of-freedom using different 

numbers of filters. It shows similar trend to that of 'd  in Fig. 6.6b. The discriminatory 
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information bits increase rapidly when the number of filters is less than 6, while it 

increases little when the number is greater than 6. On the other hand, finer quantization 

may increase the genuine distance due to noise and rotation. Fig. 6.9 shows an example. 

If six Gabor filters are used, the 6-bit codes of the two ROIs are both 000110. However, 

if eight filters are used, the 8-bit codes of the two ROIs are 01011110 and 00011110 

respectively. Based on the above analysis, in all the experiments in the following, the 

number of Gabor filters is set as 6. 

  

 
(a) (b) (c) 

  

 
(d) (e) (f) 

Figure 6.9 An example to show finer quantization may increase genuine distance. (a)-(b) Two ROIs 
of two sample images from the same palm; (c)-(d) cropped and enlarged images of (a)-(b); (e)-(f) 
filter responses using six and eight Gabor filters. 
III) The Robustness to Rotation 
As shown in Fig. 6.3, the extracted “dominant” orientation by CompCode is sensitive to 

small rotation, while the proposed BOCV scheme is not so sensitive. To further show 

that BOCV is more robust to rotation than CompCode, two experiments are performed 

in this section. In the first experiment, we rotate a ROI image by 20, 40, 60, 80 and 100 

clockwise, as shown in Fig. 6.10. The matching distances between the images by 

CompCode and BOCV are listed in Table 6-1. 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 6.10 An original image and its rotated images. (a) original image; (b)~(f) are the rotated 
images of (a) by 20, 40, 60, 80 and 100 clockwise, respectively. 

 

Table 6.1 Matching distances between the images in Fig. 6.10. 

CompCode 
/BOCV 

(a) (b) (c) (d) (e) (f) 

(a) 0 
0.1974 
/0.1393 

0.3337 
/0.2635 

0.4281 
/0.3744 

0.4775 
/0.4475 

0.4959 
/0.4858 

(b)  0 
0.1842 
/0.1389 

0.3243 
/0.2699 

0.4155 
/0.3688 

0.4700 
/0.4449 

(c)   0 
0.1924 
/0.1398 

0.3379 
/0.2560 

0.4333 
/0.3579 

(d)    0 
0.1868 
/0.1232 

0.3465 
/0.2493 

(e)     0 
0.1970 
/0.1342 

 From Table 6-1, we can see that the matching distances by BOCV are smaller than 

those by CompCode. This validates that BOCV will give more robust recognition results 

when there are small alignment or registration errors of the palmprint images. To further 

validate BOCV’s robustness to small rotation, another experiment is performed. Each 

image in the database is rotated randomly by a degree within a range [-d, d], where d={1, 

2, 3, 4, 5, 6}. By using the test protocol described in Section 4.1, the calculated EER 

curves are plotted in Fig. 6.11. We can see that the EER values by BOCV are always 

lower than those by CompCode at all the rotation degrees. 



87 

 
Figure 6.11 EER vs. Rotation by CompCode and BOCV. 

IV) Palmprint Verification Result 

Fig. 6.12 plots the ROC curves by different methods and Table 6-2 shows the accuracy 

rates for comparison. Some optimizations have been made on ROI extraction and 

matching, so the experimental results for RLOC and CompCode are better than the 

previous publications [52-53]. For POC and RLOC, The original distance for POC [53] 

and RLOC is used. Because BOCV could keep more directional information than 

CompCode, POC and RLOC, it could get the best results. 
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Figure 6.12 ROC curves by different methods for PUPD. 
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Table 6.2 Verification accuracy by different methods for PUPD. 

 EER (%) 'd  FRR (when FAR=3.3x10-6%) 
POC 0.2341 3.1053 5.5247 

RLOC 0.0593 7.2594 2.8946 
CompCode 0.0379 5.4122 1.2273 

BOCV 0.0220 5.8477 0.3011 

V) Feature Size vs. Speed 

In the proposed BOVC, 6 bits are used to represent orientations for each pixel. To speed 

up matching during verification, the feature is down-sampled to 32*32, thus the feature 

size is 768bytes in total for one image, twice the CompCode. The system is implemented 

using Visual C++6.0 on a Windows XP, T6400 CPU (2.13GHz) and 2GB Ram PC. The 

execution time for ROI extraction, feature extraction and matching is about 138ms, 

40ms, and 0.33ms respectively. The total execution time of verification is less than 0.5 

seconds, which is fast enough for real-time application. As the speed of matching is fast, 

it can be easily extended to identification system. 

6.1.2.2 Experimental Results on CASIAPD [146] 

I) Test Protocol 

The same test protocol and matching scheme stated above is used in this section. There 

were 13,710,466 (2 poor quality images were excluded from our experiment, so the 

actual number of pictures is 5,237) matches with 20,567 being genuine. 

II) Palmprint Verification Result 

Table 6.3 lists the verification accuracy and Fig. 6.13 plots the ROC curves. The 

experimental result is similar as in PUPD. BOCV could get the highest recognition 

accuracy. 

Table 6.3 Verification accuracy by different methods for CASIAPD. 

 EER (%) 'd  FRR (when FAR=7.3x10-6%) 
POC 0.8547 3.4326 10.4634 

RLOC 0.5670 7.2439 3.8411 
CompCode 0.5475 5.1873 7.8913 

BOCV 0.3891 5.7459 2.7909 
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Figure 6.13 ROC curves by different methods for CASIAPD. 

6.2 A Unified Distance Measurement for Palmprint 

Verification 

Currently, there are three kinds of orientation based palmprint verification algorithms, 

including CompCode, POC, and RLOC. CompCode [52] measures the dissimilarity 

between two features by angular distance (SUM_XOR). POC [53] uses integer 

Hamming distance, which could be implemented by OR_XOR distance. RLOC [54] 

compared with OR_XOR distance with a proposed distance, pixel-to-area. SUM_XOR 

and OR_XOR could be implemented by bitwise operation and thus could achieve fast 

matching for large scale applications. Although, pixel-to-area could get better results 

than OR_XOR or SUM_XOR, it is difficult to be implemented by bitwise operation, 

which may impede its applications. In [147], Kong claimed that the angular distance is 

superior to the Hamming distance but without any experimental support, little work has 

been done to date to compare the two distance measures. And even if it does turn out 

that angular distance has higher verification accuracy than the Hamming distance, it is 

possible that these two distance measures are complementary and the combination of 

them would outperform either one of them. 

In this section, a unified distance measure is proposed. Then it shows that the 

angular and the Hamming distance measures (SUM_XOR and OR_XOR) can be 



90 

regarded as the special cases of the proposed measure. The principles for determining 

the parameters of the unified distance are also discussed and the experimental results 

show that the same feature extraction and coding methods using the unified distance 

measure can achieve lower EER than the original distance measures. It is also 

empirically validated that OR_XOR could get better results than SUM_XOR in many 

cases. 

6.2.1 The Unified Distance Measurement 

6.2.1.1 Review of SUM_XOR and OR_XOR 

Orientation code matches using two kinds of distance measure, SUM_XOR 

(angular distance) and OR_XOR (Hamming distance). In CompCode [19], the 

angular distance between two features is defined as: 
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where P and Q are two CompCode features. biP  or b
iQ  is the ith

 bit plane of P or Q 

and ⊗  is bitwise exclusive OR (XOR). For each pixel, the angular distance is the sum 

of the three XOR results on each bit. Thus the angular distance can be called the 

SUM_XOR distance. 

In [53], the distance between two POCs (In CompCode, Kong et al. encoded the 

dominant orientation {0 , / 6π , / 3π , / 2π , 2 /3π , 5 /6π } using 3 bits {000, 001, 

011, 111, 110, 100} for efficient palmprint representation and matching. Such a coding 

could also be used in the POC and RLOC schemes) is defined as follows: 
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where H(P, Q) is defined as the number of pixels at which the values of P and Q are 

different. Using the bit representation as CompCode, the distance could be rewritten as: 
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For each pixel, the distance defined in Eq. 6-10 actually performs the OR operation 

on the three XOR results on each bit. It is called the OR_XOR distance. RLOR uses a 

similar distance measure [54]. 
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6.2.1.2 Relation between SUM_XOR and OR_XOR 

In the past, research on how to represent palmprint features has attracted a lot of 

attention, and some work have been done on investigating the relationship between 

different feature extraction algorithms [55]. In contrast, little such work has been done 

on the distance measures. SUM_XOR and OR_XOR have been widely adopted for fast 

matching of orientation codes, while few comparative studies have been made to 

investigate the difference and relations between them. In [147], Kong claimed that 

SUM_XOR is superior to OR_XOR but without any experimental evidence. Even 

SUM_XOR could achieve higher verification accuracy, it is still possible that OR_XOR 

and SUM_XOR would be complementary and hence the combination of them would 

outperform any one of them. 

Suppose ( , )P x y  and ( , )Q x y  are two 3-bit features extracted from the same 

location of two images. Using the SUM_XOR distance, there are four possible results 

when we compare ( , )P x y  with ( , )Q x y : zero-, one-, two- or three-bit difference. 

Denote by a, b, c and d the numbers of pixels where the zero-, one-, two- and three-bit 

differences occur, respectively. We define the unified distance between P and Q is: 

(1 ) * (2 ) * (3 ) *
( , )

(3 )( )U

K b K c K d
D P Q

K a b c d

+ + + + +=
+ + + +

 (6-11) 

where K is a parameter of the unified distance measure. 

It can be shown that OR_XOR and SUM_XOR are two special cases of the 

proposed unified distance measure. The SUM_XOR distance (angular distance) defined 

in Eq. 6-8 could be written as: 
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 (6-12) 

Clearly the SUM_XOR distance is a special case of the unified distance with K=0. 

Similarly, the OR_XOR distance defined in Eq. 6-9 could be written as 

_ ( , )  lim ( , )OR XOR UK

b c d
D P Q D P Q

a b c d →+∞

+ += =
+ + +

 (6-13) 

Thus, the OR_XOR distance can also be regarded as a special case of the unified 

distance with K=+∞. By adjusting the K value, we can get more appropriate weights on 

a, b, c and d, and thus expect that the unified distance measure would achieve a higher 

verification performance. 
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6.2.1.3 Selection of Parameter K 

In this section, we discuss some principles to determine the value of parameter K based 

on the score level fusion theory [94]. OR_XOR and SUM_XOR can be treated as two 

classifiers. Given two templates P and Q, the outputs of these two classifiers are 

_ ( , ) SUM XORD P Q  and _ ( , ) OR XORD P Q . If we adopt the weighted sum rule to combine 

the classification outputs _ ( , ) SUM XORD P Q  and _ ( , ) OR XORD P Q , the fusing result 

would be: 

_ _( , ) ( , ) ( , )C SUM XOR OR XORD P Q D P Q wD P Q= +  (6-14) 

where w>0 is the weight on OR_XOR. The fusing result can be given as: 

(1 3 ) (2 3 ) (3 3 )
( , )

3( )C

w b w c w d
D P Q

a b c d

+ + + + +=
+ + +

 (6-15) 

3
( , ) ( , ),  when 3

3C U

K
D P Q D P Q K w

+= =  (6-16) 

It is obvious that the unified distance measure is a proportional to the weighted sum 

of OR_XOR and SUM_XOR with 3K w= . In real application, the selection of K, like 

in many other score level fusion [94] techniques, is not a trivial issue. It could be relied 

on the individual modal’s accuracy [134], or be done by using a small portion of the data 

as training set to tune the parameter [15]. Usually, the weight is strongly related with the 

data set and the feature map’s discrimination. For example, if OR_XOR has better 

results than SUM_XOR on a given data set, the optimal value of K should be bigger than 

3 (w>1); otherwise, it will be smaller than or equal 3 (w<=1). 

6.2.1.4 Computational Complexity 

The proposed unified distance preserves the fast matching property and could be 

implemented in bit-wise operation. In this subsection, we compare the computational 

complexity of OR_XOR, SUM_XOR and the unified distance measure. 

Suppose P and Q are of M*N pixels and there are three bits for each pixel. 

According to Eq. 6-8, SUM_XOR needs 3*M*N times XOR operations and 3*M*N 

times SUM operations. While OR_XOR in Eq. 6-10 requires the same number of XOR 

operations, 2*M*N times OR operations and M*N times SUM operations. Usually, the 

bit-wise operation OR is much faster than integer-wise SUM operation. So OR_XOR is 

a little faster than SUM_XOR. 

For the unified distance measures, Eq. 6-11 could be rewritten as: 
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(3 ) 3 3 3
U
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D P QKa b c d K K
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' * 2 3
( , )U

K a b c d
D P Q
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+ + +

 (6-18) 

Since K is a constant value, it will not influence the distance relationship. For 

example, if ( , ) ( , )U UD A B D A C> , then ' '( , ) ( , )U UD A B D A C> . So Eq. 6-17 and Eq. 

6-18 could be regarded as the equivalent form for recognition. 

Eq. 6-18 could be implemented in bit-wise operation as: 

'
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1 1 1

* 2 3
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 (6-19) 

It needs 3*M*N times XOR operations, 2*M*N times OR operations and 4*M*N 

times SUM operations. Though the complexity is little higher than SUM_XOR and 

OR_XOR, the unified distance measure is still fast enough for real time applications. 

6.2.2 Experimental Results 

The same test protocol and database as Section 6.1.2 is used in this section. And EER is 

used for accuracy evaluation. 
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6.2.2.1 Experimental Results on PUPD 
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Figure 6.14 EER vs K for PUPD. 

Fig. 6.14 shows the EERs using different K values. As shown in Fig. 6.14, the EER 

drops to a minimal point when K is small, then it increases and gradually stabilizes. This 

is because OR_XOR and SUM_XOR have different properties. Fusing those increases 

accuracy when K is small but as K increases, the accuracy will change gradually to that 

of OR_XOR. Fig. 6.15 shows an example. Using original SUM_XOR and OR_XOR 

distance, the same palm images will be wrongly classified because the distance is bigger 

than that of the different palm images. If we use a different K value, it will easy to 

distinguish the same palm images from different palm images. 
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Figure 6.15 The matching results with different K values. CompCode is applied on the three 
images. 

Table 6.4 lists part of the EERs with optimal K values. Compared with the original 

distance (Italic number) used in each method, the optimal K value (shown in bracket) 

reduces the EER by up to 22% (0.0379�0.0298), 25% (0.2341�0.1761) and 20% 

(0.0820�0.0656) for CompCode, POC and RLOC, respectively. There is no a common 

optimal K value for the unified distance. As discussed in Section 6.2.1.3 this value is 

related to the performance of SUM_XOR and OR_XOR. For example, when EER of 

SUM_XOR is lower than that of OR_XOR, smaller K will get superior results. Negative 

K value will drop the performance significantly, and this is intuitive because bigger a 

should occur on genuine more frequently and it plays an important role for 

discrimination. We also found that in this database, SUM_XOR is better than OR_XOR. 

This finding is consistent with the claim by Kong [147], i.e. angular distance is superior 

to Hamming distance. 

Table 6.4 Verification accuracy by different methods for PUPD. 

EER (%) CompCode POC RLOC 
0 (SUM_XOR) 0.0379 0.1887 0.0678  

Optimal K 0.0298 (K=5) 0.1761 (K=1) 0.0656 (K=1) 
+∞ (OR_XOR) 0.0325 0.2341 0.0820 
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6.2.2.2 Experimental Results on CASIADP 
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Figure 6.16 EER vs K for CASIPD. 

Table 6.5 Verification accuracy by different methods for CASIAPD. 

EER (%) CompCode POC RLOC 
0 (SUM_XOR) 0.5475 0.9575 0.8407  

Optimal K 0.5006 (K=4) 0.8294 (K=4) 0.7092 (K=50) 
+∞ (OR_XOR) 0.5190 0.8547 0.7138 

Fig. 6.16 shows the EERs using different K value and Table 6.5 lists part of the 

EERs with optimal K values. Similar to Fig. 6.14, the EER drops to a minimal point, and 

then it increases and gradually stabilizes. The optimal K value could reduce the EER 

compared with original distance metric. Unlike the results in PUPD, OR_XOR gets 

better results than SUM_XOR for all feature extraction methods. This finding shows that 

it is hard to draw a conclusion that the angular distance is superior to the Hamming 

distance. 

6.2.2.3 Matching Speed 

Table 6.6 shows the matching speed of different distance measures by average execution 

times. The ordinal relationship is accord with our computational complexity discussion 

in Section 6.2.1.4. The experiment is implemented using Visual C++6.0 on a PC with 

Windows XP, E6650 CPU (2.33GHz) and 4GB Ram. Although the proposed unified 
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distance takes a little longer than OR_XOR, it could increase the accuracy and still fast 

enough for most of applications. For example, for a 1 to10,000 identification comparison, 

the matching using the proposed distance takes about 0.7 second. Compared with Table 

6.2 and Table 6.4, pixel-to-area distance (0.0593%) [54] could get better results than 

OR_XOR (0.820%) distance for RLOC, which shows the superiority of pixel-to-area 

distance. However, as shown in Table 6.6, it is very time consuming, about 20 times 

longer than OR_XOR. Thus it is not applicable for large scale identification 

applications. 

Table 6.6 Average time spending by different methods. 

Measure Average Time (ms) 
SUM_XOR (Eq. 6-8) 0.058 
OR_XOR (Eq. 6-10) 0.052 

Unified distance (Eq. 6-19) 0.070 
Pixel-to-area [54] 1.178 

6.3 Discussion and Conclusion 

A novel feature extraction scheme, BOCV, is proposed for palmprint verification. The 

BOCV scheme could keep more orientation information for complex palmprint lines and 

is more robust to small rotations than the conventional CompCode. The relationship 

between orientation quantization and accuracy is also investigated, and it is found that 6 

is an optimal number of orientation quantization in terms of accuracy and complexity. 

Experimental results demonstrated the effectiveness of this scheme. Using the same 

Gabor filters as in CompCode, the proposed BOCV could reduce the EER from 

0.0379% to 0.0220% for PUPD, and from 0.5475% to 0.3891% for CASIAPD. The 

proposed BOCV can be extended to other orientation based feature extraction algorithms, 

such as POC and RLOC. 

After analyzing the two distance metrics, a unified distance for orientation-based 

coding is proposed. The two widely used distance metrics are two special cases of the 

proposed distance. The proposed distance measure was evaluated on two large public 

databases. The palmprint verification results showed that the proposed unified distance 

achieves lower EER than each of the two previously used distances on both databases. It 

is also empirically found that OR_XOR is not inferior to SUM_XOR but has a faster 

matching speed. However, OR_XOR has one limitation. It may not be suitable for long 

binary vector comparison, for example, it can only get 0.0552% EER on PUPD 

(SUM_XOR achieves 0.0220%) database by BOCV feature. This is because the feature 

length per pixel of BOCV is 6 bits, which is 2 times longer than CompCode. 

The accuracy of CASIAPD is much lower than that of PUPD. This is mainly 
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caused by three reasons. First, the size of the database of CASIAPD is much larger than 

PUPD, which brings difficulties for classification. Second, there are no pegs to restrict 

postures and positions of palms during CASIAPD data collection, which brings large 

degree of freedom. Finally, the image quality of CASIAPD is not as good as that of 

PUPD. As shown Fig. 6.17, lots of detailed palmprint information is lost in CASIAPD. 

  
(a) (b) 

Figure 6.17 (a) A sample palmprint of PUPD [127], and (b) A sample palmprint of CASIAPD 
[146]. 

Although OLOF [55] is not designed as an orientation estimator, it can be used to 

represent a line’s orientation like the CompCode does. Suppose there is a straight dark 

line in a white background as shown in Fig. 6.18a. Fig. 6.18a is rotated counterclockwise 

by different angles, e.g. from 1 to 180 degree with 1 degree interval (referring to Fig. 

6.18b ~ Fig. 6.18f for examples). The associated integer value for CompCode and OLOF 

are plotted in Fig. 6.19. It can be seen that there is clear correlation between CompCode 

and OLOF for this simple line image.  

      
(a) (b) (c) (d) (e) (f) 

Figure 6.18 An image with a straight line and its rotated image. (a) is the original image and 
(b)~(f) are the 30, 60, 90, 120 and 150 degree counterclockwise rotated versions of (a). 
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Figure 6.19 Rotation angle vs. Coding value of OLOF and CompCode.. 

For real palmprint images, however, the structure is much more complex. For 

example, in a local region, there may be non-straight lines, weak lines and even multiple 
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lines. But there is still weak correlation between OLOF and CompCode [148]. So, 

OLOF could be regarded as a kind of orientation feature extraction, thus the proposed 

feature extraction scheme and unified distance measurements could be applicable to 

OLOF also. 
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Chapter 7. Conclusion and Future Work 

This thesis has studied several aspects of online multispectral palmprint recognition, 

including the data collection apparatus and three kinds of recognition schemes. Pros and 

cons of three recognition schemes have been evaluated and it shows that score level 

fusion is more suitable for high secure orientated applications while image level fusion 

is fit for high speed applications. Using the developed multispectral palmprint device, 

palmprint recognition under several lights, including blue, cyan, green, magenta, yellow, 

red and white, have been empirically studied. Based on a large database and three 

different kinds of recognition methods, it is empirically shown that the white light may 

not be the optimal light for palmprint recognition, at least for Chinese people.  

Using a hyperspectral palmprint database, the open issue of feature band number 

selection for multispectral palmprint recognition is studied. A k-means feature band 

clustering algorithm is proposed to determine the optimal number of feature bands for 

multispectral palmprint recognition. The experimental results show that 3 bands could 

convey much of palmprint information.  

Original palmprint recognition algorithm is the foundation of multispectral 

palmprint recognition. If original recognition algorithm is improved, better multispectral 

palmprint recognition could be expected. The framework of orientation based palmprint 

recognition is reviewed and two improved algorithms, a new feature representation and a 

unified matching distance measurement, have been proposed.  

In conclusion, the main contributions of this thesis are as follows: 

7.1 Main Contributions 

� A high speed and accurate multispectral palmprint acquisition device: The device 

developed is composed of four illuminations: near infrared, blue, green and red. It 

could collect four palmprint images by these four illuminations in a short time, more 

specifically, less than one second. Since some pegs are used to restrict the movement 

of the palm, the registration procedure, which is time consuming, is not required. 

� A wavelet based image level fusion was applied on multispectral palmprint 

recognition: Multispectral palmprint could be regarded as a kind of multimodal 

biometrics and there are different kinds of fusion methods. Wavelet based image level 
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fusion is one of the most popular. It is applied on the self built large multispectral 

palmprint database. Its pros and cons were analyzed and discussed. 

� A novel feature level fusion for multispectral palmprint recognition: The new feature 

level fusion method can represent useful and less redundant features from any two 

spectra for real time applications. It requires less storage than matching score level 

fusion while gets comparable results. 

� A novel matching score level fusion for multispectral palmprint recognition: In 

common score level fusion, the relationship between different modals is unexplored. 

Thus, redundant features may be overemphasized. The proposed score level fusion, 

derived from set theory, could reduce the overlapping effect and thus get better 

accuracy. 

� Empirically validating whether the white light is the optimal light for palmprint 

recognition: The white light is the widely used light source for palmprint recognition, 

although no systematical work is studied. By the proposed multispectral palmprint 

acquisition and based on the additive color theory, seven palmprint images under blue, 

green, red, cyan, magenta, yellow and white colors were collected. It is empirically 

found that the white light is not the optimal light source for palmprint recognition, at 

least for Chinese people.  

� A novel cluster based feature band number selection for multispectral palmprint 

recognition: Band number selection is an open issue for multispectral palmprint 

recognition. An optimal feature band number could reduce the device and 

computation cost. It is the first attempt to address this issue. A large hyperspectral 

palmprint database was built first. By analyzing the relationship between cluster 

centers and the number of classes, it is found that 3 bands may be enough for 

multispectral palmprint recognition. The finding is also validated empirically. 

� A novel palmprint feature extraction method: In contrast to selecting one dominant 

orientation by several filters for a local region, the Binary Orientation Co-occurrence 

Vector (BOCV) extracts a binary vector to represent information for all orientations. 

Since more information is kept, BOCV could get better results than the orientation 

based methods. Furthermore, BOCV is more robust to the rotation effect. The optimal 

orientation number for BOCV was empirically studied and analyzed. 

� A unified distance measurement for orientation based palmprint feature: There are 

two widely used distances, OR_XOR and SUM_XOR, for orientation based palmprint 

feature comparison. No work validates which one is more appropriate for palmprint 

recognition and their relationship is left to be addressed. In the proposed measurement, 

these two distances are the special cases. Once the parameter in the unified distance is 
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selected appropriately, the proposed distance could get better results than either 

distance. 

7.2 Future Work 

The thesis has studied several issues in palmprint recognition and multispectral 

palmprint recognition. A few directions could extend current work and improve the 

accuracy and robustness of palmprint recognition, especially multispectral palmprint 

recognition: 

� Specific multispectral palmprint recognition algorithm: Chapter 3 discusses three 

kinds of multispectral palmprint recognition methods, however all these algorithms 

are derived from original palmprint recognition which is dealing with 2D palmprint 

image only. In the future, we plan to apply methods on multispectral palmprint cube, 

3-dimensional data, directly, such as tensor based subspace learning methods [150] 

and quaternion analysis [151]. 

� Palmprint recognition on different human groups: Chapter 4 studies the light influence, 

and finds that different lights may enhance different features and gets different 

accuracy. However, the samples are limited by Chinese people only, while different 

group has different skin properties, whether the findings are applicable to other groups 

needs further exploration and is the future work. 

� Feature band selection for different human groups: Chapter 5 selects feature band for 

multispectral palmprint recognition using hyperspectral palmprint cube. Similar as 

Chapter 4, the database is built from Chinese people only, so the effectiveness of the 

selected bands needs further validation on different groups. 

� Application of improvement of CompCode on multispectral palmprint recognition: 

Chapter 6 discusses two directions of improvement over original palmprint 

recognition. The application of these modifications on multispectral palmprint 

recognition is our future work.  

� Improvement of image level fusion: Chapter 3 investigates the wavelet based image 

level fusion. However, the experimental results show that application of Haar wavelet 

is not suitable for multispectral palmprint recognition. In the next stage, we plan to 

investigate other wavelet bases and other image level fusion techniques for 

multispectral palmprint recognition. 

� Other applications of multispectral palmprint images: As the spectral property of 

different wavelength is different, some wavelengths have deeper penetration while 

others enhance skin appearance. These different information could provide a more 
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comprehensive profile of hand and maybe useful for medical diagnosis, for example, 

wound status detection [161]. 

� Liveness detection by multispectral palmprint images: This thesis has shown some 

samples regarding anti-spoof attacks. However, the sample is limited by printed paper. 

In the future, we plan to collect more faked palms, including palms made from 

different materials, and amputation or corpus palms. The analysis on these faked 

palms will improve the robustness of the system. 

� Applications of the proposed feature band clustering: Multispectral imaging has many 

potential applications in biometrics, including fingerprint, iris, and face. Although 

there are some works on study multispectral analysis, the underlying feature band 

selection is paid less attention. We would like to build hyperspectral cube for other 

biometric traits and apply the proposed algorithm to discover the optimal number of 

feature bands.  
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