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Abstract 
 

Civil structures begin to deteriorate once they are built due to harsh environment 

such as corrosion, earthquake, and typhoon. Vibration-based structural damage 

detection methods have thus attracted considerable attention for assessment of 

functionality and safety of civil structures. Nevertheless, the damage detection of 

civil structures still remains as a challenging task. One of the main obstacles is that 

the current damage detection methods are either insensitive to local structural 

damage or sensitive to measurement noise. In addition, a significant amount of 

uncertainties are inherently and inescapably associated with structural damage 

detection of civil structures, which limits the successful application of most 

deterministic damage detection methods. In this regard, this thesis focuses on the 

establishment of a framework in which novel stochastic approaches in consideration 

of the uncertainties involved in measurements, structures and external excitations are 

proposed to detect damage of building structures and assess their reliability 

effectively.  

 

This thesis first proposes a novel structural damage detection method using a new 

damage index based on the statistical moments of dynamic responses of a building 

structure under random excitation. The principle of the statistical moment-based 

damage detection (SMBDD) method is first put forward in the frequency domain 

through a single-degree-of-freedom (SDOF) system under white Gaussian noise 
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excitation. The sensitivity of statistical moment to structural damage is discussed for 

various types of structural responses and different orders of statistical moment. The 

formulae for statistical moment-based damage detection are derived. The effect of 

measurement noise on damage detection is ascertained. The new damage index and 

the proposed SMBDD method are then extended to multi-degree-of-freedom (MDOF) 

systems with resort to the nonlinear least squares method. As numerical studies, the 

proposed method is applied to both single and multi-story shear buildings in 

consideration of measurement noise. Numerical results show that the fourth-order 

statistical moment of story drifts is a more sensitive indicator to structural stiffness 

reduction than the natural frequencies, the second order moment of story drift, and 

the fourth-order moments of velocity and acceleration responses of the shear building. 

The fourth-order statistical moment of story drifts can be used to satisfactorily 

identify both locations and severities of various damage scenarios of the shear 

building. Furthermore, a significant advantage of the SMBDD method lies in that it 

is not only sensitive to local structural damage but also insensitive to measurement 

noise. 

 

After that, the SMBDD method is advanced in the following three aspects in the 

frequency domain for its practical application: (1) the type and location of external 

excitations, (2) the type of building structures, and (3) the number of structural 

responses measured. The equations of the SMBDD method are accordingly extended 

to be more general for any type of building structures under any type of random 

excitation as long as it complies with the Gaussian distribution. The generalized 

SMBDD method is also extended from the necessity of complete measurements of 

all DOFs to the proper selection of measurements of incomplete DOFs. Extensive 
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numerical examples are presented to demonstrate the feasibility and effectiveness of 

the generalized SMBDD method. A MDOF shear building structure under colored 

noise excitations at different locations is investigated. Various damage scenarios of a 

high-rise building and a frame structure using selected measurement responses are 

investigated. The effect of measurement noise on the quality of identified results is 

also investigated for all the damage scenarios concerned by numerically 

contaminating the external excitations and the measured responses with white 

Gaussian random noises. Numerical analysis results show that the damage locations 

and severities of all the concerned various damage scenarios can be identified 

satisfactorily even though the structural responses used are incomplete and the 

measurement noise has a high noise-to-signal ratio of 15%.  

 

Furthermore, the feasibility and effectiveness of the generalized SMBDD method are 

explored in the time domain for the building structures under non-Gaussian 

excitations. The algorithm of the generalized SMBDD method in the time domain is 

developed. Various damage scenarios of different damage locations and damage 

severities of shear buildings, high-rise buildings and frame structures are numerically 

investigated. Numerical results demonstrate that the generalized SMBDD method is 

feasible and effective for building structures under either Gaussian or non-Gaussian 

excitations in the time domain. Even with the measurement noise intensity as high as 

15%, the structural damage locations in various damage scenarios with incomplete 

measurements can be identified satisfactorily no matter whether the external 

excitation is of Gaussian distribution or not. Furthermore, the identified damage 

severities are exactly equal to the real values when measurement noise is not 

considered. Otherwise, the quality of the identified damage severities in the time 
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domain is similar with that in the frequency domain when measurement noise is 

considered. Nevertheless, the requirement of proper optimization methods in model 

updating is required for the generalized SMBDD method in the time domain.  

 

Before the generalized SMBDD method can be applied to real building structures, 

experimental investigations are necessary. This thesis therefore presents an 

experimental investigation on the generalized SMBDD method through shaking table 

tests. Three three-story shear building models of different lumped masses are 

designed and manufactured. The column width of each building model is reduced 

from both sides of the columns at designated stories to simulate building damage. 

Different damage severities are simulated by different reductions of column widths. 

A total of eight damage scenarios of different single or multi damage locations and 

different damage severities are constructed in the building models step by step. The 

undamaged and damaged shear building models are subjected to ground motions 

generated by the shaking table. Two band-limited white noise time histories and two 

colored noise time histories are randomly simulated and inputted as scheduled into 

the control system of the shaking table to generate the expected ground excitation to 

the building models. The ground motion and the displacement responses of each 

building model at each floor are recorded. The recorded ground motion and building 

responses as well as identified structural damping ratios are then used to identify 

damage locations and severities using the generalized SMBDD method in both the 

frequency domain and the time domain. To provide a basis for the assessment of the 

proposed damage detection method, the theoretical value of damage severity for a 

given damage scenario is also computed using the flexibility method and the 

principle of virtual work. The identified damage locations and severities are 
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compared with the theoretical values. The comparison is found satisfactory in both 

the frequency domain and the time domain. The effectiveness and feasibility of the 

generalized SMBDD method are therefore demonstrated by the shaking table tests.  

 

The research work on structural damage detection then makes further progress by 

proposing a new stochastic damage detection method based on the generalized 

SMBDD method in consideration of random parameters or uncertainties which are 

inescapable for civil structures. Although many researchers have studied statistical 

structural damage identification to consider the uncertainties involved in civil 

structures in the last three decades, most of the statistical approaches still stay in 

primitive forms. Generally speaking, they have one or more of the following 

problems: computational complex, inherent limitation to identifying presence of 

damage only, ineffectiveness in dealing with uncertain parameters which are not 

normally distributed, and prohibitiveness for most practical applications. The new 

stochastic damage detection method proposed in this thesis can not only locate 

structural damage but also identify damage severities without the extensive 

computational efforts, and it can also handle both Gaussian and non-Gaussian 

random parameters. The algorithm of the stochastic damage detection method is first 

presented in the thesis. New damage indices are proposed to identify damage 

locations and damage severities. The numerical investigation is then conducted to 

demonstrate the proposed method through a shear building structure. The first 

damping ratio of the shear building is selected as a random parameter with a 

lognormal distribution. Three damage scenarios including single and multi damage 

scenarios are explored. Numerical analysis results show that the proposed method in 

consideration of uncertainties or random parameters can identify both damage 
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locations and damage severities of the building structures of random parameters 

satisfactorily.  

 

The last piece of work described in this thesis is concerned with reliability 

assessment of instrumented building structures. Although the deployment of 

structural health monitoring systems has now attained some degree of maturity, the 

application of measured response data of a building structure for evaluating structural 

reliability is still in its infancy. In most of previous investigations, structural system 

identification and structural reliability assessment are treated separately. When 

uncertainties or random parameters are taken into account, the stiffness parameters of 

all the elements in a building structure identified are random parameters coupled 

with each other. Under this circumstance, it is prohibitive to evaluate structural 

reliability by the current reliability analysis methods for civil structures. This study 

therefore presents two integrated methods to evaluate structural component reliability 

and structural system reliability, respectively. The integrated methods accept the 

measurement responses as input and produce as output the reliability of the 

concerned instrumented structures. Structural system identification is embedded in 

the procedure of the reliability analysis in the proposed methods. Numerical 

investigation is conducted on the aforementioned stochastic shear building structure 

with three damage scenarios under the EL Centro excitation. The computation results 

manifest that the undamaged shear building has higher reliability than the damaged 

shear buildings of various damage scenarios. The larger damage severity, the lower is 

the reliability of the building. In addition, the values of structural system reliability 

are always no larger than those of structural component reliability. The structural 

reliability of stochastic building structures integrated with system identification can 
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be effectively evaluated by the proposed methods using limited measurement 

responses.  

 

In summary, the research described in this thesis involves the development and 

application of the SMBDD method, the stochastic damage detection method, and the 

reliability assessment methods for stochastic structures. Extensive numerical and 

experimental investigations have demonstrated that the SMBDD method is not only 

sensitive to local structural damage but also insensitive to measurement noise, and 

this method can be used in either the frequency domain or the time domain. The 

stochastic damage detection method enables the damage identification of building 

structures of uncertainties or random parameters. By using the proposed reliability 

assessment methods, the reliability of a stochastic structure without explicit damage 

identification can be obtained by using limited measurement responses. 
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CHAPTER 1 

INTRODUCTION  

1.1 Background 

Civil engineering infrastructures begin to deteriorate once they are built and 

continuously accumulate damage during their service life due to natural hazard and 

harsh environment such as earthquake, storm, fire, long-term fatigue and corrosion. 

Such damage undetected and uncorrected will potentially cause more damage and 

eventually lead to catastrophic structural failure with loss of human life. To ensure 

the serviceability and safety of structures, structural damage detection and integrity 

assessment are very necessary. They not only could indicate potential damage but 

also are of essential value to the management authorities to make fast and safe 

decisions on whether or not repair, partial replacement or even demolition of the 

structure is necessary. Such information on structural damage and integrity is 

particularly crucial in cases of severe natural hazards and after long-term usage.  

 

Vibration-based structural damage detection methods have therefore attracted 

considerable attention in recent years for the assessment of health and safety of 

complex civil engineering structures. Most of currently-used vibration-based 

structural damage detection methods are built on the idea that the measured modal 

parameters or the parameters derived from these modal parameters are functions of 

the physical properties of the structure and, therefore, changes in the physical 

properties will cause detectable changes in the modal parameters (Doebling et al. 

1998). The changes in modal parameters (damage indices) commonly used in 
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vibration-based structural damage detection include natural frequency changes, mode 

shape changes, mode shape curvature changes, flexibility matrix changes, and modal 

strain energy changes. These damage indices are often estimated experimentally 

from the structural response time histories measured before and after the changes in 

physical properties of a structure (structural damage). The advantages of the damage 

detection method based on natural frequency change are that the identification of 

natural frequency from measured structural response time histories is relatively easy 

and of relatively higher precision than those based on other modal parameters. 

Typical resolution error in the identification of natural frequency of a lightly damped 

structure is 0.1%, while that of mode shape is 10% or more (Friswell and Penny, 

1997). Those synthesized derivatives based on mode shape could presumably have 

more uncertainty. However, the structural damage typically is a local phenomenon, 

and the change of natural frequency has low sensitivity to local damages (Salawu, 

1997). Furthermore, natural frequency is a global property of the structure and it 

generally can not provide spatial information about damage location. The damage 

indices based on mode shape changes or those derivatives can give the spatial 

information on damage location in theory. However, they may not be effective and 

reliable in consideration of the number of sensors required and the measurement 

noise arising from the environment conditions during the test, and they generally do 

not provide the information regarding damage severity (Pandey et al, 1991; Farrar 

and Jauregui, 1998).  Alvandi and Cremona (2006) assessed various damage indices 

and concluded that the modal strain energy is less affected by measurement noise. 

However, they found that, even for the modal strain energy method, a 3% noise level 

has already made it difficult to identify damage location of a structure in practice and 

should be considered as a high level of noise. 
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In view of the aforementioned studies, it can be seen that although vibration-based 

damage detection methods and modal updating methods have demonstrated various 

degrees of success, the damage detection of complex civil engineering structures still 

remains a challenging task. The main obstacles are the insensitivity to local structural 

damage for the methods based on modal properties (particularly modal frequencies 

and mode shapes) and the high sensitivity to environmental conditions and 

measurement noise for the methods based on derivatives of modal parameters and 

other methods which might be sensitive to local structural damage. Therefore, 

efficient and effective damage detection methods which are sensitive to local 

structural damage but insensitive to measurement noise need to be pursued. 

 

Furthermore, most of the methods aforementioned are to identify structural damage 

deterministically by assuming that the finite element (FE) model of a structure can 

represent actual structural properties and that measurement data have high precision. 

In practice, however, a significant amount of uncertainties are inevitably involved in 

damage detection procedure especially for civil structures. If the level of uncertainty 

is higher than or close to the level of actual changes of structural properties due to 

structural damage, the real information of structural damage will be concealed and 

the structural damage can not be accurately identified. For example, the existence of 

measurement noise may render less pronounced damage undetectable (negative 

falsity) or may identify some intact structural elements as damaged elements 

(positive falsity) (Doebling  et al., 1998). The uncertainties existing in the model 

along with the errors in the measured vibration data limit the successful use of those 

deterministic damage detection methods. Therefore, Housner (1997) indicated that 

structural identification within a statistical framework appears to be a promising 
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general approach to structural health monitoring of civil structures in view of the 

inescapable data and modeling uncertainties.  

 

Although many researchers have studied in the area of structural damage 

identification with consideration of uncertainties, most of the statistical approaches 

still stay in primitive forms. The representative approaches to detect structural 

damage with consideration of the uncertainties are the Bayesian methods, the Monte 

Carlo simulation (MCS) methods, the perturbation methods and the statistical pattern 

recognition methods. For the Bayesian probabilistic approaches, the computation 

could become prohibitive when a large number of substructures of complex civil 

structures are assumed as damaged because substantive hypotheses should be 

examined to find more local maximum posterior probabilities and potentially to 

identify the correct damage event. The problem of computational complex also exists 

in the stochastic perturbation methods, in which various covariance matrices of 

updating parameters have to be calculated by the MCS method under many 

circumstances. The MCS methods are computationally intensive because it requires a 

large number of simulations to obtain an accurate and valid statistics. For the 

statistical pattern recognition methods, they can be divided into two classes: 

supervised learning and unsupervised learning. The unsupervised learning can be 

applied to data not containing examples from the damaged structure, but this 

approach is inherently limited to identify presence of damage only. When data are 

available from both the undamaged and damaged structure, supervised learning 

approach can be taken to move forward to higher level damage identification to 

locate and quantify damage. However, the acquisition of data sets from the damaged 

structure in various damage states is often prohibitive for most applications. 
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Furthermore, almost all of damage detection techniques with consideration of 

uncertainties assume the Gaussian distribution of a feature space, and establish 

decision making threshold values based on this normality assumption. Therefore, 

they do not always work effectively in dealing with uncertainty parameters which are 

not normally distributed. In addition, few, if any, of the current probabilistic damage 

detection methods can give complete probabilistic information such as the 

probability density function (PDF) of structural damage severity. Therefore, the more 

efficient and versatile stochastic damage detection method needs to develop for civil 

structures.  

 

While the development of methods for structural damage detection has now attained 

much attention and some degree of maturity, the practical use of monitoring data 

from instrumented structures to help structural inspection, maintenance, and 

management is still in its infancy. Research efforts devoted to the methodologies that 

accept the processed monitoring data as input and produce as output the reliability of 

the concerned structure are still very few in comparison with the myriad of literature 

addressing on structural damage detection methods. As structural reliability is the 

major decision factor throughout the life cycle of civil engineering structures, 

methodologies to assess structural reliability based on monitoring data are indeed 

desirable. The prominent work is due to Yao and his colleagues (Yao 1979; Yao 

1983; Natke and Yao 1988; Yao and Natke 1994; Wong and Yao 2001). They 

proposed a holistic view where health monitoring, damage detection, and reliability 

evaluation are defined as the sequential components in a value chain. In order to 

cater for the reliability analysis of instrumented structures, the symptom-based 

reliability method compatible with health monitoring technologies was introduced in 
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their study. Following this study, Stubbs et al. (1998; 2000) developed a 

methodology to continuously assess the safety of civil engineering structures in 

which structural damage was first identified using the measurement data of modal 

parameters and reliability method was then applied to the possibly damaged structure 

to determine the failure probability and reliability index. However, the deterministic 

model updating approach they used lacks the capability in accounting for the 

uncertainties in measurement data, such as measurement errors and inherent 

randomness. A complete integrity assessment should consider uncertainties of 

structures and inputs for the damaged or employed structures, especially in dynamic 

aspects. Therefore, the method to assess structural reliability with consideration of 

the uncertainties of structures and inputs and based on the measurement data is 

indeed desirable for instrumented structures.  

 

1.2 Research Objectives 

This thesis is devoted to developing a deterministic damage detection method that is 

both sensitive to local damage and insensitive to measurement noise, proposing a 

stochastic damage detection method that can effectively and efficiently identify 

damage locations and damage severities with consideration of the uncertainties 

involved in civil structures, and establishing a framework to evaluate structural 

component reliability with only one limit-state function and structural system 

reliability with multiple limit-state functions. The proposed structural reliability 

analysis approaches accept the monitoring data as input and produce as output the 

reliability of the instrumented structure. More specifically, the main objectives of this 

research are: 
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(1) To propose the statistical moment-based damage detection (SMBDD) 

method for deterministic building structures, and numerically demonstrate 

the proposed method both in the frequency domain and in the time 

domain for different kinds of building structures with different external 

excitations. The proposed method should be sensitive to structural 

damage and at the same time insensitive to measurement noise.  

(2) To carry out experimental study on the SMBDD methods to investigate its 

feasibility and effectiveness both in the frequency domain and in the time 

domain through shaking table tests on shear building models of multi 

degrees of freedom (MDOF) with various damage scenarios.  

(3) To develop a stochastic damage detection method with consideration of 

the uncertainties inescapably involved in structural identification 

especially for civil structures. The stochastic damage detection method 

can accurately identify damage locations and damage severities without 

the problem of prohibitive computation.   

(4) To proposed the methods which accept the monitoring data as input and 

produce as output the reliability of the instrumented structure to assess 

structural component reliability with only one limit-state function and 

structural system reliability with multiple limit-state functions. The 

uncertainties of both structures and inputs are considered in the proposed 

approaches.  

 

1.3 Thesis Layout 

This dissertation is comprised by nine chapters.  
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Chapter 1 introduces the background and motivation of the present research, the 

main objectives in the PhD project, and the organization of the thesis.  

 

Chapter 2 contains a literature review, which covers three relatively independent 

subjects. The first subject is on the vibration-based deterministic damage detection 

methods, including methods based on structure frequency changes, methods based on 

mode shape changes and their derivatives, methods based on frequency response 

functions (FRF), methods based on matrix updating, methods based on neural 

network and genetic algorithm and time-frequency methods. The second subject is 

on the statistical damage detection method with consideration of the uncertainties 

resulting from environment, such as temperature, loading and humidity, 

measurement noise, uncertainty in geometry and boundary conditions, inexact 

modeling of the material constitutive behavior or damping, uncertainty in external 

excitations, and so on. The last subject is on the structural reliability analysis 

methods, including component reliability analysis methods, system reliability 

analysis methods and time dependent reliability analysis methods. 

 

Chapter 3 proposed a novel structural damage detection method with a new damage 

index based on the statistical moments of dynamic responses of a structure under a 

random excitation. After a brief introduction to statistical moment theory, the 

principle of the new method is put forward in terms of a single-degree-of-freedom 

(SDOF) system in the frequency domain. The sensitivity of statistical moment to 

structural damage is discussed for various types of structural responses and different 

orders of statistical moment. The formulae for statistical moment-based damage 
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detection are derived in the frequency domain. The effect of measurement noise on 

damage detection is ascertained. The new damage index and the proposed statistical 

moment-based damage detection method are then extended to multi-degree-of-

freedom (MDOF) systems with resort to the nonlinear least squares method. 

Numerical studies are conducted for both single and multi-story shear buildings. And 

the effect of measurement noise on the quality of identified results is investigated by 

contaminating the measured responses and inputs with Gaussian white noise. 

 

Chapter 4 advances this statistical moment-based damage detection (SMBDD) 

method in the frequency domain to make it more versatile to various types of 

structures rather than shear buildings only and to different random excitations other 

than white noise ground motion only. In this regard, the basic equations of motion 

involved in the method are firstly generalized so as to be applicable to different 

random excitations at different locations and to different types of structures. The 

feasibility of the extended method is then numerically investigated by utilizing both 

flexible high-rise buildings and relatively stiff frame structures and by considering 

colored noise ground excitations as well as random excitations acting on other parts 

of the structures. Various damage scenarios of different damage locations and 

severities of the high-rise buildings and the frame structures are investigated using 

the generalized SMBDD method. The effect of measurement noise is also considered 

for all the concerned cases. 

 

Chapter 5 investigates the feasibility and effectiveness of the SMBDD method in the 

time domain without the limitation that the external excitation should be stationary 

and have Gaussian distribution. Firstly, the algorithm of the proposed method is 
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proposed in the time domain. Then, various damage scenarios of different damage 

locations and severities of shear buildings, high-rise buildings and frame structures 

are investigated using the SMBDD method in the time domain. The effect of 

measurement noise on the quality of damage detection results is also investigated for 

all the concerned cases. 

 

Chapter 6 presents the experimental investigation on this method both in the 

frequency domain and in the time domain through shaking table tests of MDOF shear 

building models. Three three-story shear building models are manufactured and 

subjected to ground motions generated by a shaking table. The displacement and 

acceleration responses of each building model at each floor are recorded. Afterwards, 

various damage scenarios with different damage locations and different damage 

severities are inflicted on the shear building models step by step. For each damaged 

building model with a given damage scenario, the shaking table tests are performed 

in a way similar to that for the undamaged building model. The first two damping 

ratios of the undamaged and damaged models are estimated by applying the Hilbert 

transform method to the measured acceleration responses. Then the recorded ground 

motion and building responses as well as identified structural damping ratios are 

utilized to identify damage locations and severities using the SMBDD method. The 

identified damage locations and severities are finally compared with the theoretical 

values to evaluate the effectiveness of the proposed method.  

 

Chapter 7 establishes a new stochastic damage detection method to solve the 

problem of structural damage detection involving a significant amount of 

uncertainties which are escapable especially for civil structures. The proposed 
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method is implemented by two steps. Firstly, PDFs of structural stiffness parameters 

before and after earthquake are calculated by utilizing the probability density 

evolution (PDE) method and the SMBDD method. Then damage locations and 

damage severities are identified according to the computed values of probability of 

damage existence and the PDFs of damage severity index. Numerical investigations 

are performed to demonstrate the feasibility and effectiveness of the proposed 

method in terms of a shear building structure with different damage scenarios, in 

which the first damping ratio was regarded as a stochastic parameter with a 

lognormal distribution.  

 

Chapter 8 develops a new structural reliability analysis method that accepts the 

measurement data as input and produces as output the reliability of the concerned 

instrumented structures. The proposed method can consider uncertainties of both 

damaged structures and dynamic inputs. Firstly, the method to calculate the 

component reliability of stochastic structures with only one limit state function is 

proposed based on the SMBDD method in conjunction with the PDEE-based 

absorbing boundary condition method. Then, the method to calculate the reliability 

of stochastic structures with multiple limit-state functions is developed based on the 

measurement data by integrating the SMBDD method with the PDEE-based 

equivalent extreme value method. Finally, numerical investigation is conducted 

through a three-story shear building structure under the EL Centro excitation for 

different damage scenarios. Both the stochastic parameters of structures and those of 

dynamic inputs are considered in the numerical analysis.   
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Chapter 9 summarizes the main conclusions achieved in this thesis and presents the 

recommendations for future research.  
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CHAPTER 2 

 LITERATURE REVIEW  

2.1 General Concepts of Structural Damage Detection 

Maintaining safe and reliable civil infrastructures for daily use is a topic that has 

received considerable attention to engineers and researchers in recent years. Usual 

inspection techniques require the portion of the structure being inspected to be 

readily accessible but it may not be appropriate because of interference with 

operational conditions. By definition, non-destructive techniques (NDT) are the 

means by which structures may be inspected without disruption or impairment of 

serviceability. Many methods have been developed for NDT, and an overview of the 

various techniques is presented by Witherell (1994). Some techniques are based on 

visual observations and some are based on the properties of materials. Other 

techniques are based on the interpretation of the structural condition by observing the 

change in the global behavior of the structure.  

 

The need of non-destructive and global techniques for structure diagnosis has led to 

the continuous development of methods examining the changes of dynamic 

characteristics. Such an approach has been introduced for a number of years in fields 

like automotive, aeronautical and mechanical engineering. The basic premise of the 

global damage detection methods that examine changes in the dynamic properties is 

that modal parameters, notably resonant frequencies, mode shapes, and modal 

damping, are a function of the physical properties of the structure (mass, damping, 

stiffness, and boundary conditions). Therefore, changes in physical properties of the 
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structure, such as its stiffness or flexibility will cause changes in modal properties.  

An alternative system of classification for damage detection methods, as presented 

by Rytter (1993), defines four levels of damage identification as follows: 

Level 1: Determination of the presentation of damage in a structure; 

Level 2: Determination of the presentation and location of damage in a structure; 

Level 3: Determination of the presentation, location and severity of damage;  

Level 4: Level 3 plus the prediction of remaining service life of a structure.    

 

Most of the damage detection methods developed to date limit themselves to Level 1 

to Level 3. Level 4 methods require the knowledge associated with the disciplines 

such as structural design, fracture mechanics and structural reliability, and are still 

very limited (Yao and Natke 1994; Park et al. 1997; Stubbs et al. 2000; Xia and 

Brownjohn 2003). The field of damage detection is very broad and encompasses both 

local and global methods. Many different issues are critical to the success of using 

the vibration characteristics of a structure for damage detection and health 

monitoring. Among the important issues are excitation and measurement 

considerations, including the selection of the type and location of sensors, and the 

type and location of the excitations. Another important topic is signal processing, 

which includes such methods as Fourier analysis and time-frequency analysis. In this 

review, the peripheral issues will not be directly addressed. This review will be 

limited to global methods that are used to infer damage from changes in vibration 

characteristics of the structure. 

 

 

 



Chapter 2                                                       Literature Review 

         2-3 

2.2 Vibration-based Deterministic Damage Detection Techniques  

2.2.1 Methods based on structure frequency changes 

In the first stage of structural damage detection research, as far as the structural 

dynamic properties parameters are concerned, only the damage detection based on 

structure frequency change is reliable because of the immature mode identification 

techniques. The amount of literature addressing damage detection using changes in 

modal frequencies is quite large (Salawu 1997). There are two types of methods. In 

the first type of methods, the damage detection problem is treated as a forward 

problem, where the patterns of measured frequency changes are compared with those 

of analytical frequency changes for all possible damage cases and then the damage 

case which produces the best match to the measured frequency changes is regarded 

as the suspect one. This type of methods takes the advantage that some patterns of 

measured frequency changes are the function of damage location only. The second 

type of methods, which essentially is the model updating methods, deals with 

damage detection as an inverse problem and is able to calculate both damage location 

and damage magnitude.  

 

The advantages of damage detection methods based on structure frequency change 

are that the identification is relatively easy, which can be performed only using very 

few sensors and has relatively higher precision than those based on other parameters 

because the modal frequency has least statistical variation from random error sources 

than other modal properties. However, it should be noted that frequency shifts have 

significant practical limitations for applications to the type of structures considered in 

this review, although ongoing and future work may help resolve these difficulties. 



Chapter 2                                                       Literature Review 

         2-4 

The somewhat low sensitivity of frequency shifts to damage requires either very 

precise measurements or large levels of damage. For example, in offshore platforms 

damage-induced frequency shifts are difficult to distinguish from shifts resulting 

from increased mass from marine growth. Tests conducted on the I-40 bridge (Farrar, 

et al., 1994) also demonstrate this point. When the cross-sectional stiffness at the 

center of a main plate girder had been reduced 96.4%, reducing the bending stiffness 

of the overall bridge cross-section by 21%, no significant reductions in the modal 

frequencies were observed. Currently, using frequency shifts to detect damage 

appears to be more practical in applications where such shifts can be measured very 

precisely in a controlled environment, such as for quality control in manufacturing. 

As an example, a method known as “resonant ultrasound spectroscopy”, which uses 

homodyne detectors to make precise sine-sweep frequency measurements, has been 

used to determine out-of-roundness of ball bearings. In addition, Xu, et al., (2004) 

established closed-form sensitivity equation which relates the relative change in the 

stiffness of each story to the relative changes in the natural frequencies of the 

building using the transfer matrix method. Numerical and experimental 

investigations on damage detection of monocoupled multistory buildings were then 

conducted by their proposed method.  

 

Also, because modal frequencies are a global property of the structure, it is not clear 

that shifts in this parameter can be used to identify more than the mere existence of 

damage. In other words, the frequencies generally cannot provide spatial information 

about structural changes. An exception to this limitation occurs at higher modal 

frequencies, where the modes are associated with local responses. However, the 

practical limitations involved with the excitation and extraction of these local modes, 
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caused in part by high modal density, can make them difficult to identify.  

 

2.2.2 Methods based on mode shape changes  

As the largest change in mode shapes is expected to occur in the vicinity of damage, 

it is intuitive to incorporate them for damage localization. Two most commonly used 

methods to compare two sets of measured mode shapes are the modal assurance 

criterion (MAC) and the coordinate modal assurance criterion (COMAC) where one 

set of data is measured from the intact structure and the other is measured after the 

structure is damaged. MAC indicates the correlation between two sets of mode 

shapes and COMAC indicates the correlation between the mode shapes at a selected 

measurement point on the structure.  

 

The first systematic use of mode shape information was presented by West (1984) for 

the location of structural damage without the use of a prior finite element model. The 

author uses the MAC to determine the level of correlation between the modes from 

the test of an undamaged Space Shuttle Orbiter body flap and the modes from the test 

of the flap after it has been exposed to acoustic loading. The mode shapes are 

partitioned using various schemes, and the structural damage is localized using the 

change in MAC across the different partitioning techniques.  

 

Yuen (1985) determined damage locations according to the changes in the mode 

shape and mode-shape-slope parameters by computing{ }
{ } { }

*
d u
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= − , where 

{ }i
ϕ and iω  are respectively the ith mode shape and the ith circular frequency. 

Subscript ‘d’ and ‘u’ denote damaged and undamaged structures. The changes in 
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these parameters were simulated for a reduction in stiffness in each structural 

element, and then the predicted changes were compared to the measured changes to 

determine the damage location. The author identified the need for some 

ortho-normalization process in order to look at higher mode shapes.  

 

Rizos, et al. (1990) developed an analytical model for vibration of a beam with an 

open crack. The sections on either side of the crack are considered to be standard 

slender beams in transverse vibration. The compatibility condition between the two 

sections is derived based on the crack-strain-energy function. The result is a system 

of equations for the frequencies and mode shapes in terms of crack length and 

position. To determine the crack length and location, the beam is excited at a natural 

frequency, and vibration amplitudes at only two locations are measured. The 

Newton-Raphson method is used to solve the system of equations for the crack 

parameters.  

 

A project that examines changes in the dynamic properties of a scale model of an 

offshore platform subjected to damage was reported by Osegueda, et al. (1992). 

Mode shape changes could not be correlated with damage in this study. Fox (1992) 

shows that single-number measures of mode shape changes such as the MAC are 

relatively insensitive to damage in a beam with a saw cut. “Node line MAC,” an 

MAC based on measurement points close to a node point for a particular mode, was 

found to be a more sensitive indicator of changes in the mode shape caused by 

damage. Graphical comparisons of relative changes in mode shapes proved to be the 

best way of detecting the damage location when only resonant frequencies and mode 

shapes were examined. A simple method of correlating node points—in modes that 
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show relatively little change in resonant frequencies—with the corresponding peak 

amplitude points—in modes that show large changes in resonant frequencies—was 

shown to locate the damage. The author also presents a method of scaling the relative 

changes in mode shape to better identify the location of the damage.  

 

Kam and Lee (1992) presented an analytical formulation for locating a crack and 

quantifying its size from changes in the vibration frequency and mode shape. The 

crack is located by discretizing the structure and looking at the reduced stiffness in 

each element. The formulation is based on a first-order Taylor expansion of the 

modal parameters in terms of the elemental parameters. Once located, the crack 

length is determined by a formulation based on considering the change in strain 

energy resulting from the presence of a crack. The Newton-Raphson method is used 

to solve   the resulting equations for the crack parameters. Kim, et al. (1992) 

investigated the use of MAC and its variations in the location of structural damage. 

They used the Partial MAC (PMAC) to compare the MAC values of coordinate 

subsets of the modal vectors. By using the Coordinate MAC (COMAC) and the 

PMAC in conjunction, they are able to isolate the damaged area of the structure. 

Mayes (1992) presented a method for model error localization based on mode shape 

changes known as structural translational and rotational error checking (STRECH). 

By taking ratios of relative modal displacements, STRECH assesses the accuracy of 

the structural stiffness between two different structural degrees of freedom (DOF). 

STRECH can be applied to compare the results of a test with an original FEM or to 

compare the results of two tests. Srinivasan and Kot (1992) found that changes in 

mode shapes were a more sensitive indicator of damage than changes in resonant 

frequencies for a shell structure. These changes are quantified by changes in the 
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MAC values comparing the damaged and undamaged mode shapes.  

 

Ko, et al. (1994) presented a method that uses a combination of MAC, COMAC and 

sensitivity analysis to detect damage in steel framed structures. The sensitivities of 

the analytically derived mode shapes to particular damage conditions are computed 

to determine which DOF is most relevant. The authors then analyzed the MAC 

between the measured modes from the undamaged structure and the measured modes 

from the damaged structure to select which mode pairs to use in the analysis. Using 

the modes and DOF selected with the above criteria, the COMAC is computed and 

used as an indicator of damage. The results demonstrate that particular mode pairs 

can indicate damage, but when all mode pairs are used, the indication of damage is 

masked by modes that are not sensitive to the damage.  

 

Salawu and Williams (1994) compared the results of using mode shape relative 

change and mode shape curvature change to detect damage. They demonstrated that 

the relative difference measure does not typically give a good indication of damage 

using experimental data. They pointed out that the most important factor is the 

selection of the modes used in the analysis. Salawu and Williams (1995) showed that 

the MAC values can be used to indicate which modes are being affected most by the 

damage. Lam, et al. (1995) defined a mode shape normalized by the change in 

natural frequency of another mode as a “damage signature.” The damage signature is 

a function of crack location but not of crack length. They analytically computed a set 

of possible signatures by considering all possible damage states. The measured 

signatures were matched to a damage state by selecting which of the analytical 

signatures gave the best match to the measurements using the MAC.  
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Salawu (1997) proposed a global damage integrity index that is based on a weighted 

ratio of the damaged natural frequency to the undamaged natural frequency. The 

weights are used to reflect the relative sensitivity of each mode to the damage event. 

When damage is indicated, local integrity indices are calculated to locate the 

defective areas. The local integrity index is calculated from the global integrity index 

by further weighting the global index by the square of the ratio of damaged mode 

amplitude to the undamaged mode amplitude for a particular measurement point.  

 

One of key issues in implementing damage indicators using changes in mode shapes 

is the selection of the modes and the optimum placement of sensors in the case of 

limited sensors. Such an issue has been addressed by Cobb and Liebst (1997) and Shi 

et al. (2000) via eigenvector sensitivity analysis. The damage index based on mode 

shapes change can give the information of spaces, but the high modal shapes which 

are sensitive to structure local damage are very difficult to get. 

 

2.2.3 Methods based on modal damping changes 

The damage detection methods based on modal damping change were mostly applied 

to composite structure. And this method is still in the laboratorial research stage 

because the precision of structural modal damping change attained by mode 

parameters identification technique is not enough. Ndambi (2002) investigated the 

principle of structure modal damping and made use of the modal damping as a 

damage detection index for pre-stressed concrete beam structures. Salane and 

Baldwin (1990) tested a steel bridge having a concrete deck. Farrar et al. (1998) 

found that structural damage was not consistent with structural modal damping 
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change. 

 

2.2.4 Methods based on mode shape curvature changes 

An alternative to using mode shapes to obtain spatial information about vibration 

changes is using mode shape derivatives, such as curvature. It is first noted that for 

beams, curvature and bending strain are directly related as y
R
y κε == , where ε  is 

strain, R is radius of curvature, and κ  is curvature or 1/R. The practical issues of 

measuring strain directly or computing it from displacements or accelerations are 

discussed by some researchers.  

 

Pandey et al. (1991) demonstrated that absolute changes in mode shape curvature can 

be a good indicator of damage for the beam structures they considered. The curvature 

values are computed from the analytical modal displacements using a finite 

difference method, as 

2
1 1( 2 ) /i i i i hκ ϕ ϕ ϕ+ −= − +                            (2.1) 

where iϕ  is the modal displacement at measurement point i ; and h  is the length 

of elements.  

 

Ratcliffe (1997) extended the method and put forward the damage detection method 

which did not use fiducial mode. The index is effective when structural damage is 

very serious. And if mode shape curvature is used for damage detection, testing 

locations are required close to each other and testing points are in good enough. 

Otherwise, the estimate value of centre difference will arouse biggish error. This 

limitation will make the method very difficult to apply to large complicate structures. 
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2.2.5 Methods based on flexibility matrix changes 

Another class of damage detection methods uses the dynamically measured 

flexibility matrix to estimate changes in the static behavior of the structure. Typically, 

damage is detected using flexibility matrices by comparing the flexibility matrix 

synthesized using the modes of the damaged structure to the flexibility matrix 

synthesized using the modes of the undamaged structure or the flexibility matrix 

from an FE model. Because of the inverse relationship to the square of the modal 

frequencies, the measured flexibility matrix is most sensitive to changes in the 

lower-frequency modes of the structure.  

 

Pandey and Biswas (1994) presented a damage-detection and -location method based 

on changes in the measured flexibility of the structure. This method is applied to 

several numerical examples and to an actual spliced beam where the damage is linear 

in nature. Results of the numerical and experimental examples showed that estimates 

of the damage condition and the location of the damage could be obtained from just 

the first two measured modes of the structure. Toksoy and Aktan (1995) computed 

the measured flexibility of a bridge and examined the cross-sectional deflection 

profiles with and without a baseline data set. They observed that anomalies in the 

deflection profile can indicate damage even without a baseline data set.  

 

2.2.6 Methods based on modal strain energy changes 

Damage detection method based on modal strain energy changes is one of commonly 

used methods in the discipline. Some studies indicated that modal strain energy is 

useful in localizing structural damage. The general definition of modal strain energy 

of a structure with respect to the r-th mode can be expressed as  
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1
2

T
r r rMSE = Kφ φ                              (2.2) 

where K is the stiffness matrix of a structure and rφ is the r-th mode shape.  

 

Yao et al. (1992) put forward the method to detect damage through examining 

changes in modal strain energy. The method is based on the hypothesis that structural 

damage will result in the redistribution of structural internal force and the modal 

strain energy changes will be large in the structural damage area. However, the 

internal force redistribution is different between different modes. Therefore, different 

outcomes will be attained making use of different testing modes. Topole and Stubbs 

(1995) examined the feasibility of using a limited set of modal properties for 

structural damage detection. Later, Stubbs and Kim (1996) improved the method by 

using modal strain energy to localize the damage and estimating the damage size 

without baseline modal properties. 

 

Despite damage detection methods based on mode shape changes and their 

derivatives can provide spatial information regarding the location of structural 

damage, they also suffer from several limitations in application: Firstly, dense array 

of measurement points is required for an accurate configuration of mode shapes and 

curvature mode shapes. Secondly, the mode shape has larger statistical variation than 

does modal frequency. Thirdly, the mode shape based methods, especially the 

curvature mode shape based methods, are not readily applicable for structures with 

complex configuration. Finally, it is required to select a mode shape, yet it is a priori 

unknown which mode suffers from significant change due to particular structural 

damage.  
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2.2.7 Methods based on frequency response functions (FRF) 

Law et al. (1992) developed sensitivity from formulation based on the change in the 

FRF at any point, rather than just at the resonances. In practice, many points of the 

FRF around the resonances are taken, and a least-squares fit is used to determine the 

changes in the physical parameters. This method requires both a before- and 

after-damage FRF and a physical modal relating the damage parameter to a physical 

parameter such as stiffness. Wu et al. (1992) identified the damage in a three-storey 

building model by selecting the first 200 points of the frequency response function as 

input to a back-propagation (BP) neural network. Chaudhry and Ganino (1994) used 

measured FRF data over a specified frequency range as input to a BP neural network 

to identify the presence and severity of delamination in debonded beams. Juan, et al. 

(2000) presented and experimentally verified a new technique to identify damage 

based on changed in the component transfer functions of the structure, or the transfer 

functions between the floors of a structure. Multiple locations of damage can be 

identified and quantified using the approach. The peak value of frequency response 

function can provide spatial information of structural damage. Frequency response 

function based methods have the advantages as follows: 

a. measuring data include modes which are outside the frequency band width; 

b. measuring data can provide ample structural information; 

c. the error of mode identification can be avoided because of not needing to 

analyze mode; and 

d. it can be applied to structures with high damping and highly close mode 

However, the structural input information is required when identifying frequency 

response function of structure. This is quite difficult for large civil engineering 

structures. Furthermore, there is still no good method to choose interested frequency 
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bound and the noise in converse response is large. 

 

2.2.8 Matrix update methods 

Another class of damage identification methods is based on the modification of 

structural model matrices such as mass, stiffness, and damping to reproduce as 

closely as possible the measured static or dynamic response from the data. These 

methods solve for the updated matrices (or perturbations to the nominal model that 

produce the updated matrices) by forming a constrained optimization problem based 

on the structural equations of motion, the nominal model, and the measured data. 

Comparisons of the updated matrices to the original correlated matrices provide an 

indication of damage and can be used to quantify the location and extent of damage. 

The methods use a common basic set of equations, and the differences in the various 

algorithms can be classified as follows: 1) objective function to be minimized; 2) 

constraints placed on the problem; 3) numerical scheme used to implement the 

optimization. They, either for model improvement or for damage detection 

applications, can be classified into three categories: 1) optimal matrix updating 

methods; 2) eigenstructure assignment methods; and 3) sensitivity-based updating 

methods. Considerable research efforts have been devoted to developing various 

model updating methods during the past several decades. Survey literature on model 

updating in structural dynamics began to appear in the early 1970s. Among them, 

Hart and Yao (1977), Liu and Yao (1978), Natke (1988), Imregun and Visser (1991), 

Natke (1991), Zimmerman and Smith (1992), Mottershead and Friswell (1993), and 

Link (2001) are worthy of attention. 

 

It should be noted that model updating algorithms used for model improvement and 
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damage detection share the similar objectives, i.e. seeking an analytical model that is 

close to the real structure. The purpose of model improvement is to achieve an 

analytical model which is dynamically equivalent to the tested structure. The updated 

model is subsequently utilized for response prediction and structural modification. 

The model improvement is performed in face of numerous simplifications in FE 

model building. Often there are complex geometrical features that cannot be modeled 

accurately. In addition, boundary conditions and joint parameters between 

components are seldom fully understood. Mottershead and Friswell (1993) 

summarized three commonly encountered modelling errors, which could give rise to 

significant discrepancy between analytical predictions and testing values, as: 1) 

model structure errors, which are liable to occur when there is uncertainty concerning 

the governing equations of motion; 2) model order errors, which are often arising 

from discretizing the complex structures and can result in a model with insufficient 

order; and 3) model parameter errors, which typically include inappropriate boundary  

conditions, inaccurate assumptions used in order to simplify the model, and 

inconsistent material properties. These modeling errors may exist only in a few 

locations or can be extensively distributed in the whole structure.  

 

On the other hand, the damage detection aims to detect and identify the changes in 

stiffness, mass and damping matrices due to damage instead of modeling errors. The 

changes in the measured quantities caused by structural damage are often smaller 

than those observed between the healthy (i.e. undamaged) structure and its FE model. 

Consequently, it becomes almost impossible to discern between inadequate modeling 

and actual changes due to damage. To distinguish damage from modeling errors, an 

original FE model that accurately represents the intact structure is required. This is 
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accomplished with a first-stage model improvement procedure which is performed in 

order to correlate this original model with testing data of the intact structure (Titurus 

et al. 2003a). The improved model is commonly used as the baseline model and can 

be then further correlated with testing data of possibly damaged structures for 

damage detection by using a similar updating procedure (Titurus et al. 2003b). 

Therefore, a two-step scheme is generally required for damage detection application 

using model updating methods with the first step correcting the modelling errors and 

the second step detecting structural damage. For a large-scale structure, the 

modelling errors could spread over the whole structure while the damage generally 

tends to concentrate on several locations.   

 

2.2.9 Neural network and genetic algorithm based methods 

In recent years there has been increasing interest in using neural networks to estimate 

and predict the extent and location of damage in complex structures. Neural networks 

have been promoted as universal function approximators for functions of arbitrary 

complexity. A general overview of neural networks can be found in Bishop (1994). 

The most common neural network in use is the multilayer perceptron (MLP) trained 

by back-propagation. In this section, terminology will be defined consistent with 

common usage by calling a MLP trained by back-propagation a “back-prop neural 

network.” The back-prop neural network is a system of cascaded sigmoid functions 

where the outputs of one layer, multiplied by weights, summed, then shifted by a bias 

are used as the inputs to the next layer. Once architecture for the network is chosen, 

the actual function represented by the neural network is encoded by the weights and 

biases. The back-propagation learning algorithm is a way of adjusting the weights 

and biases by minimizing the error between the predicted and measured outputs. In 
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the following studies there were typically more adjustable weights than experiments, 

and the body of data was repeatedly run through the training algorithm until a 

criterion for the error between the data and the neural network was satisfied. Each 

error-generating run is called an epoch. The terms neuron and node are used 

interchangeably in the following discussion.  

 

Kudva, et al. (1991) used a back prop neural network to identify damage in a plate 

stiffened with a 4 ×  4 array of bays. Damage was modeled by cutting holes of 

various diameters in the plate at the centers of the bays. The bays were sized 305 mm 

(12 in.) ×  203 mm (8 in.) and the holes were from 12.7 mm (0.5 in.) to 63.5 mm 

(2.5 in.). A static uniaxial load was applied to the structure, and strain gage readings 

were taken from elements in the bays. The neural network was used to identify the 

map from the strain gage data to the location and size of the hole. In different 

experiments 8, 20, and 40 strain gages were used as input. The structure of the 

network was chosen to be two hidden layers, each with the same number of hidden 

nodes as the number of inputs. The network was trained with 3, 12, or 32 patterns, 

depending on which experiment was being tested. The authors claimed the networks 

converged in less than 10 minutes on a 386 PC, depending on the example. It should 

be noted that in one example the neural network failed to converge, and the authors 

were forced to modify their procedure to a two-step algorithm, which first predicted 

the whole quadrant, then the correct bay within the quadrant. The authors found that 

the neural network was able to predict the location of the damaged bay without an 

error but that predicting whole size was more difficult with sometimes erratic results. 

In the cases where the neural network successfully identified the whole size, typical 

errors were on the order of 50%. Wu, et al. (1992) used a back prop neural network 
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to identify damage in a three-story building modeled by a two-dimensional “shear 

building” driven by earthquake excitation. The damage was modeled by reducing 

member stiffness by 50% to 75%. The neural network was used to identify the map 

from the Fourier transform of acceleration data to the level of damage in each of the 

members. The first 200 points in the fast Fourier transform (FFT) (0 Hz to 20 Hz) 

were used as network inputs. Network architecture with one hidden layer and 10 

hidden nodes was selected, and 42 training cases were used. No information was 

given on how long it took for the neural net to converge. The first attempt relied on 

using only acceleration data from the top floor. On test data, the neural network was 

only able to identify third-floor data with any accuracy. A second network was 

implemented that used acceleration data from the second two floors as inputs. This 

network was able to diagnose damage on the first and third floors to within 

approximately 25% but was still unable to predict damage to the second floor with 

any accuracy. The latter method relied on a complete knowledge of the time histories 

of two of the three DOF.  

 

Elkordy, et al. (1993) used back propagation neural networks to identify damage in 

five-story buildings. Damage was modeled by reducing member stiffness in the 

bottom two stories from 10% to 70%. The neural network was used to identify the 

map from the mode shapes to the percent change in member stiffness. The authors 

chose a network with a single hidden layer of fourteen nodes. The network was 

trained on two mathematical models and verified with experimental data. The models 

were two-dimensional, finite element representations of increasing complexity. The 

first model gave eleven training patterns, the second model gave nine. The authors do 

not specify how long it took the neural net to converge. The model was reasonably 
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successful at predicting damage to the first and second stories and predicting the 

extent of the damage. In general, the neural network trained on the first model of 

lower complexity made poorer predictions, and it incorrectly diagnosed damage in 

two of the eleven experiments. The neural network trained on the second model 

never made an incorrect diagnosis, but it was indeterminate in one example. If the 

correct diagnosis was made, the predictions of damage were generally correct to 

within 10%. Elkordy, et al. (1994) is a slightly modified version of this paper.  

 

In addition, Tsou and Shen (1994) used residual force vectors in a neural network 

based identification process to obtain structural damage location and severity. Mares 

and Surace (1996) employed the concept of the residual force vectors to specify an 

objective function for an optimization procedure which is then implemented by using 

genetic algorithms and identified damage in elastic structures. Friswell et al. (1998) 

proposed a combined genetic and eigensensitivity algorithm to locate damage in 

structures. Genetic algorithms have also been applied in structural damage 

identification by Xia and Hao (2001), Chou and Ghaboussi (2001). To overcome the 

computational complexity of traditional genetic algorithms involved in evaluating the 

fitness functions for large populations when there are a lot of candidates in the 

possible damage domain, Au et al. (2002) proposed the two-level search strategy and 

the micro-genetic algorithm to identify structural damage severity.  

 

2.2.10 Time-frequency methods  

Many time-frequency methods, such as short time Fourier transform, wavelet 

transform, Hilbert transform and empirical mode decomposition, have been 

investigated numerically or experimentally for damage detection purpose. One of the 
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major reasons for the application of these signal processing techniques is their 

capturing capability of non-stationary events because many factors will induce 

non-stationary events in structural response, such as structural nonlinearities, 

time-varying structural parameters, sudden or cumulative damages and 

non-stationary excitations. Unlike the Fourier analysis, which spreads out an abrupt 

change in a non-stationary signal over the whole frequency range, wavelet analysis 

transforms the non-stationary signal in a way that the abrupt change can be precisely 

separated from the original signal. This important property of wavelet analysis was 

used by Hou et al (2000) to identify the damage time instant and damage location of 

the structure subject to a sudden damage. It is illustrated that the sudden damage will 

induce discontinuities in the structural responses. The occurrence of damage and the 

moment when it occurs can be identified from the wavelet detail of structural 

response, which contains the high frequency content of the signal. Noting the 

similarity of the property between wavelet decomposition and empirical mode 

decomposition (EMD), the similar damage detection procedure was proposed based 

on empirical mode decomposition (Vincent et al, 1999; Yang et al, 1999). Only 

numerical investigations were conducted in the aforementioned wavelet and EMD 

based damage detection studies. To investigate the applicability of EMD for 

identifying sudden structural damage in real situation, shaking table tests were 

carried out by Xu and Chen (2004). Two springs were horizontally connected to the 

first floor of the tested building. The sudden damage was simulated by suddenly 

releasing two pre-tensioned springs. It was found that the damage time instant and 

location can be obtained from the spikes in the first IMF component of the structural 

responses at different locations. Although for some cases a monotonic relationship 

could be seen between the spike amplitude and the damage severity, no quantitative 
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relationship can be found. It is noted that in all these researches, both the wavelet and 

EMD based spikes are damage location sensitive, which means that the 

accelerometer should be located in the vicinity of the damage location to capture the 

discontinuity in response. A disadvantage thus emerges when the number of sensors 

is small and no sensor is installed near the position where damage occurs. 

Furthermore, since the spikes caused by linear time-varying damage are not as large 

and concentrated as sudden damage, the applicability of the aforementioned damage 

detection techniques for time-varying damage case is not optimistic. 

 

Unlike the aforementioned damage detection methods, which utilize the signal 

decomposition results directly as the indicator of occurrence and location of damage, 

Sun and Chang (2002) proposed a wavelet packet decomposition based method for 

structural damage assessment. A wavelet packet signature (WPS), which represents 

the energy of predominant frequency component, was proposed as damage index. 

The structural damage was assessed by comparing the wavelet packet signature 

before and after damage. The changes of the signature were then input into neural 

network models to quantify the damage severity of structural components. Numerical 

examples showed that the signature is sensitive to structural damage. However, since 

the structure was assumed to be linear before and after damage during the application 

of this method, WPS based damage detection can hardly be applied for time-varying 

damage models. 

 

2.3 Structural Damage Detection Methods with Consideration of Uncertainties  

Structural damage detection in civil engineering involves a significant amount of 

uncertainties which may result from environment, such as temperature, loading and 
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humidity, measurement noise, uncertainty in geometry and boundary conditions, 

inexact modeling of the material constitutive behavior or damping, uncertainty in 

external excitations, and so on. To sum up, the uncertainty and errors in structural 

damage detection are attributed to: 

(1). inaccuracy in the FE model discretization; 

(2). uncertainties in geometry and boundary conditions; 

(3). variations in material properties during manufacture; 

(4). inexact modeling of the material constitutive behavior; 

(5). uncertainties introduced during the construction process; 

(6). environmental variability (such as temperature, wind and traffic); 

(7). uncertainties in external excitations; 

(8). errors associated with measured signals; 

(9). errors in post-processing techniques; 

(10). un-modeled features such as neglected nonstructural components; 

(11). improper methods applied in damage identification, etc.. 

 

According to their sources, these errors can be classified into three groups, namely 

methodology errors, modeling errors and measurement errors. Methodology errors 

are generated by the limitation of the method itself in model updating (or damage 

identification). Modeling errors are related to the uncertainties in modeling the actual 

structure. Measurement errors mainly come from procedures and equipment related 

to modal testing. These errors can be divided into two basic categories: systematic 

errors and random errors. Systematic errors cause the mean of the estimation not to 

converge to the actual value even when more values are taken. Random errors, on the 

other hand, are quantified in the form of a standard deviation associated with the 
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mean of the estimation for the parameters considered. Normally methodology errors 

belong to systematic errors, but both systematic errors and random errors might exist 

in modeling and measurement data. And these errors in damage identification can 

result in false-positive damage identification (identifying the intact element as 

damaged) and false-negative damage identification (failure to identify the damaged 

elements). The uncertainties existing in the model along with the errors in the 

measured vibration data limit the successful use of those deterministic damage 

detection methods. Therefore, many approaches with consideration of the 

uncertainties have been developed for detecting structural damage and are reviewed 

in the following section.  

 

2.3.1 Bayesian methods 

The method of statistical identification of structures which is capable of dealing with 

uncertainties both in FE model and measured modal properties was first developed 

by Collins et al. (1974), and later improved by Friswell (1989) to accelerate the 

convergence rate. They presented a minimum variance method for statistical 

estimation of flexural and torsional stiffness based on Bayesian theorem. In their 

method, both structural parameters and measured modal properties are assumed to 

have errors given in terms of their variances. The estimation of mean and variance of 

the updating parameters is iteratively obtained and the iteration will cease if the 

difference of parameter estimation in two consecutive iterations is small. 

 

Let Hj denote a hypothesis for a damage event that can contain any number of 

substructures as damaged, and the hypothesis Hj is represented with a prior 

probability P(Hj ). Using Bayes theorem, the posterior probability P(Hj |ψ ), given a 
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set of observed modal parametersψ , can be represented as: 

( )
( ) ( )

( )
j

j j

P H
P H P H

P
ψ

ψ
ψ

=                           (2.3) 

The most likely damaged substructures are the ones included in the hypothesis Hmax 

that has the largest posterior probability (Sohn and Law 1997), i.e. 

max( ) ( )max
j

j
H

P H P Hψ ψ
∀

=                           (2.4) 

The distribution of measurement noise and modeling error are explicitly considered 

within the Bayesian probabilistic framework. To avoid permuting all possible 

damage events Hj, a branch-and-bound method was devised to search the results. 

Sohn and Law (2000) applied this algorithm to detect damages in an RC bridge 

column. The proposed probabilistic damage detection method was able to locate the 

damaged region, but two deterministic methods could not. A more rigorous and 

comprehensive Bayesian updating has been developed by Beck and his co-workers 

(Beck and Katafygiotis 1998; Katafygiotis and Beck 1998; Yuen and Katafygiotis 

2005). 

 

2.3.2 Monte Carlo simulation method 

The commonly used method for uncertainty propagation is the Monte Carlo 

simulation (MCS) method. The basic concept behind the MCS method is: a large 

number of samples following the given probability distribution of stochastic 

parameters are generated and then repeatedly used for model updating; the desired 

statistics are eventually estimated from these resulting updating results.  

 

Agbabian et al. (1988) employed the MCS method to identify the statistical 
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properties of stiffness coefficients in a linear system. In their simulation study, they 

computed the time histories of the applied excitation as well as the accelerations, 

velocities, and displacements of a system. The calculated data were then corrupted 

with a set of Gaussian noise. By separately applying the model updating procedure to 

different time segments, ensembles of stiffness coefficients were identified. 

Subsequent statistical analysis yielded statistical measures such as mean, variance, 

and probability density functions (PDFs). This work has been later extended to 

statistical identification of a nonlinear system approximated by an equivalent linear 

one (Smyth et al. 2000). Banan et al. (1994), Sanayei and Saletnik (1996), Yeo et al. 

(2000), and Zhou et al. (2003) adopted similar approaches for studying the effect of 

measurement noise on identification results. However, the MCS method is 

computationally intensive as it requires a large number of simulations to obtain an 

accurate and valid statistics. 

 

2.3.3 Perturbation methods 

An alternative approach to uncertainty propagation is the perturbation method. This 

approach expands a nonlinear function with a truncated Taylor series expansion at a 

known point and then proceeds to the approximation of the moments of solutions 

from the expansion.  

 

Perturbation method is another very popular technique for uncertainty propagation. It 

has been applied very successfully in the discipline of stochastic structural analysis 

where the perturbation technique in conjunction with the FE analysis is applied to 

evaluate the response variability and failure probabilities associated with prescribed 

limit states (Kleiber and Hien 1992). Perturbation method expands the nonlinear 
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function in terms of random variables either by a linear function or by a quadratic 

one at a particular point. Second moment technique is then applied to evaluate the 

mean and standard deviation of the response, or to evaluate the failure probabilities. 

 

Liu (1995) might be the first to adapt this technique to model updating. In her work, 

the identification of structural parameters is formulated in a linear least squares 

problem to minimize the modal force residuals. To investigate the influence of 

measurement errors, the author expanded each term in a system of linear equations in 

terms of random variables. Making use of the expanded sets of linear equations, the 

mean and covariance of updating parameters are finally derived. Papadopoulos and 

Garcia (1998) presented a two-step probabilistic method for damage assessment to 

determine the statistics of stiffness coefficients of the damaged structure. They first 

used the measured statistical changes in modal frequencies and mode shapes to 

obtain the statistics of stiffness reduction factor. These statistics of stiffness reduction 

factor along with the statistics of stiffness coefficients corresponding to healthy 

structure are then combined to determine the statistics of stiffness coefficients of the 

damaged structure. A set of graphical and statistical probability damage quotients 

was then used to assess the existence of damage by the comparison of statistics of SC 

before and after damage. Xia et al. (2002), and Xia and Hao (2003) updated the 

statistics of stiffness of the damaged structure in a single step and used the statistics 

of stiffness before and after structural damage to implement probabilistic damage 

detection. Araki and Hjelmstad (2001) used the higher-order perturbation method 

based on the concept of optimum sensitivity. 

 

Intuitively, all model updating algorithms can be combined with MCS method and 
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perturbation method for uncertainty propagation. The combination of MCS method 

and model updating techniques has been used by a number of researchers (Agbabian 

et al. 1988; Banan et al. 1994; Sanayei and Saletnik 1996; Smyth et al. 2000; Yeo et 

al. 2000; Zhou et al. 2003). 

 

2.3.4 Statistical pattern recognition methods 

In addition, Farrar et al. (1999) set up a statistical pattern recognition paradigm for 

vibration-based structural health monitoring. Sohn et al. (2000) developed the 

technique known as an ‘X-bar control chart’ and set up the autoregressive (AR) 

model for vibration-based damage diagnosis in the context of a statistical pattern 

recognition paradigm. Then, Sohn et al. (2001) extended the above statistical pattern 

recognition method to locate structural damage. Wang et al. (2008) employed a 

statistical pattern recognition method to locate damage of sensitivity-enhanced 

structures. Probabilistic neural network methods can be regarded as one kind of the 

statistical pattern recognition methods. Klenke et al. (1996) applied the probabilistic 

neural network to determine whether structural damage had happened or not. Stefano 

et al. (1999) exploited the fundamental learning and generalization capabilities of 

probabilistic neural networks to obtain an estimate of the vulnerability of structural 

systems. Ni and his coworkers (Ni YQ, et al. 2000; Ni YQ, et al. 2001) built adaptive 

probabilistic neural networks to locate structural damage for a cable stayed bridge 

and a suspension bridge, respectively.   

 

2.3.5 Other methods 

Other researches addressing the statistical parameter estimation using uncertain 
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modal data include the work of Li and Roberts (2001) who incorporated the 

uncertainty-propagation approach with extended Kalman filter method for recursive 

identification of random structural parameters, Farrar and Doebling (1998) who used 

Monte Carlo method and Bootstrap method to estimate modal parameters, Fonseca et 

al. (2005) who combined the maximum likelihood method with perturbation 

technique for estimating the statistics of random location of a mass, Xu and Chen 

(2004) who presented an experimental investigation on the applicability of the 

empirical mode decomposition for identifying structural damage caused by a sudden 

change of structural stiffness. 

 

 

2.4 Structural Reliability Analysis Methods 

The essence of the structural reliability problem is the probability integral 

1 1, , , 1 2 1 2( , , , )
nf X X X n n

D

P f x x x dx dx dx= ∫ ∫ "" " "                  (2.5) 

which may also be written as 

( )f
D

P f d= ∫ x x                                  (2.6) 

where fP  denotes the ‘failure’ probability, ( )f x  denotes the joint PDF of a vector 

of random variables x , and D denotes a subset of the outcome space where failure 

occurs. The term failure used here is in its general sense. It may denote the physical 

failure of a structure or its member, or the exceeding of a serviceability limit state. In 

other words, the reliability analysis can be formulated for both the safety and 

serviceability limit states. And the uncertainties in a structure and its external 

loadings are assumed to be time-invariant and modeled by continuous random 
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variables. These random variables include the load-related, resistance-related, and 

geometry-related quantities (Nowak and Collins 2000). The set of basic random 

variables describing these uncertainties are represented by the random 

vector 1 2( , , , )T
nx x x=x " . Structural reliability analysis methods can be divided into 

component reliability analysis methods and system reliability analysis methods 

according to the objects of study. The evaluation of the failure probability for a single 

failure mode (or a single limit-state function) is called component reliability analysis. 

The probability due to the combination of numerous failure modes requires a system 

reliability analysis, for which the component failure probability is the basic 

ingredient.  

 

For mathematical analysis, it is necessary to describe the failure domain D in an 

analytical form. A "component' reliability problem is defined when D is described 

through a single function, i.e. { }: ( ) 0D g= ≤x x , where ( )g x  is known as the 

limit-state function. The boundary of D is defined by ( ) 0g =x  and is known as the 

limit-state surface. The set with g(x) > 0 defines the safe domain and the set with g(x) 

< 0 defines the failure domain. These definitions are shown in Figure 2.1 for the 

special case of two variables.   

 

The system reliability problem is defined when D is described as the union and/or 

intersection of several subsets. In particular, a ‘series system’ reliability problem is 

defined by { }: ( ) 0i
i

D g= ≤x x∪ , and a ‘parallel system’ reliability problem is 

defined by { }: ( ) 0i
i

D g= ≤x x∩ , where ( )ig x denote componental limit-state 

functions (see Figure 2.2). Series systems and parallel systems are the two basic 
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system types from which any system can be built. Any system can be represented 

both as a series system of parallel systems and as a parallel system of series systems. 

 

2.4.1 Component reliability analysis methods 

A great deal of effort has been devoted to developing efficient algorithms for 

computing component probability integrals in Equation (2.6). A straightforward 

integration, by analytical or numerical means, usually is not possible because of the 

arbitrary nature of the integration domain and the typically high dimension of the 

problem. Over the past decades, a number of approximation methods have been 

developed to compute this probability integral as summarized by Melchers (1999). 

 

Several of the methods described below require transformation of a random vector 

x  into a standard normal vectoru , thus enabling the reliability analysis for random 

variables with arbitrary distribution types. The standard normal space is defined by a 

set of independent and standard normal variables u  having zero means and unit 

covariance matrix and the following joint PDF: 

1
2

2

1( )
(2 )

T

U nf e
π

−
=

u u
u                            (2.7) 

where n denotes the number of random variables.  

 

A general form of the transformation is given by Hobenbichler and Rackwitz (1981) 

and a more convenient form for a particular class of multivariate distributions is 

given by Der Kiureghian and Liu (1986). Equation (2.6) is rewritten in the following 

form after the transformation.  

( )f nD
P dφ= ∫ u u                               (2.8) 



Chapter 2                                                       Literature Review 

         2-31 

where D  is now defined in the u  space and ( )nφ u  denotes the joint PDF of the 

vector of random variables x in the standard normal space. For notational 

convenience, let 1( ) (T ( ))G g −=u u  denote the transform of the limit-state function 

in the u  space.  

 

2.4.1.1 First-order and second-order reliability method  

Two widely used methods: the first-order reliability method (FORM) and the 

second-order reliability method (SORM) have been proved satisfactory for most of 

engineering problems (Rackwitz, 2001). For example, Kareem evaluated the 

reliability of concrete chimneys under winds by employing the First-order 

Second-moment approximation (Kareem and Hseih, 1986). The first- and second-order 

reliability methods (FORM and SORM) take advantage of the fact that the point *u  

located on the limit-state surface with minimum distance from the origin has the 

highest probability density among all failure points in the standard normal space. 

This point is known as the ‘design point’ or the ‘most likely failure point’ and is 

defined by the constrained optimization problem 

{ }* arg min ( ) 0G= =u u u                           (2.9) 

where ‘argmin’ denotes the argument of the minimum of a function. 

 

It is readily evident that probability densities in the standard normal space are 

rotationally symmetric and decay exponentially with the square of distance in both 

radial and tangential directions from *u . It follows that the major contribution to the 

probability integral in Equation (2.8) comes from the neighborhood of *u , provided 

the surface is not strongly nonlinear and there is only one significant design point. 
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These conditions are satisfied for most structural component reliability problems. 

Based on this, the limit-state surface in the neighborhood of the design point is 

approximated by a first- or second-order surface for which the solution of the 

probability integral is available. Specifically, in the FORM, the limit-state surface is 

replaced by the tangent hyperplane at *u . The linearized limit-state function is 

written as 

* * *
1( ) ( ) ( )( ) ( ) ( )G G G G β α≅ = ∇ − = ∇ −u u u u u u u              (2.10) 

where 1( ) ( / , , / )nG G u G u∇ = ∂ ∂ ∂ ∂u " denotes the gradient row vector, 

* *( ) / ( )G Gα = −∇ ∇u u  is the normalized negative gradient row vector at the 

design point (a unit vector normal to the limit-state surface at the design point and 

pointing toward the failure domain), and *β α= u is the reliability index. In essence, 

the linearization replaces the failure domain ( ) 0G ≤u by the half space 0β α− ≤u ; 

see Figure 2.3. The first-order approximation of the failure probability is given by the 

probability content of the half space in the standard normal space, which is 

completely defined by the distance β ; that is,  

1 ( )f fp p β≅ = Φ −                          (2.11) 

where the subscript 1 is used to indicate a first-order approximation. There are two 

conditions under which this approximation may not work well: (1) the surface is 

strongly nonflat, and (2) the optimization problem in Equation (2.8) has multiple 

local or global solutions. A recourse for the first condition is to use a higher-order 

approximation, such as SORM, or a corrective sampling method, such as importance 

sampling or sampling on the orthogonal plane (Engelund, et al., 1993). All these 

methods make use of the design point, so they need the FORM solution as a first step. 

The second condition is quite rare, but it does occur, particularly when dealing with 
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dynamic problems. 

 

As its name implies, the second-order reliability method, SORM, involves a 

second-order approximation of the limit-state function. Consider a Taylor series 

expansion of the component limit-state function ( )G u at the design point *u .  

* * * T *

* * T *
*

1( ) ( )( ) ( ) H( )
2

1        ( ) ( ) ( ) H( )
2 ( )

G G

G
G

β α

≅ ∇ − + − −

⎡ ⎤
⎢ ⎥= ∇ − + − −

∇⎢ ⎥⎣ ⎦

u u u u u u u u

u u u u u u
u

        (2.12) 

where α  and β  are as defined earlier and H is the second-derivative matrix at the 

design point having the elements 2 *( ) / ( ),  , 1, , .ij i jH G u u i j n= ∂ ∂ ∂ =u "  Now 

consider a rotation of the axes ' =u Pu , where P  is an orthonormal matrix with α  

as its last row. Such a matrix can be constructed by, for example, the well-known 

Gram-Schmidt algorithm. This rotation positions the design point on the axis 'u , 

such that * T' [0 0 ] .β=u "  Keeping only second-order term in Equation (2.12), the 

limit-state surface can be  rewritten as 

T
1 11 1

1'( ') '
2n n nG uβ − −

′ ′≅ − +u u A u                      (2.13) 

where 11A  is the ( 1) ( 1)n n− × −  matrix formed by the first n-1 rows and columns 

of A . Now consider a rotation of the axes around 'nu defined by the transformation 

1 1n n− −
′′ ′=u Qu . It follows that by selecting TQ as the eigenmatrix of 11A , Equation 

(2.13) reduces to 

1
2

1

1'( ') '
2

n

n i i
i

G u uβ κ
−

=

′′≅ − + ∑u                         (2.14) 

where iκ are the eigenvalues of 11A . The preceding expression defines a paraboloid 
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through its principal axes with iκ , i =1, …, n-1, denoting its principal curvatures. 

This paraboloid is tangent to the limit-state surface at the design point and its 

principal curvatures match those of the limit-state surface at the design point. In 

SORM, the probability of failure is approximated by the probability content of the 

above-defined paraboloid. The SORM approximation can be written as 

2 1 1( , , , )f f np p β κ κ −≅ "                            (2.15) 

 

Tvedt (1990) has derived an exact expression for 2fp  under the condition 1 iβκ− <  

as follows.  

2 1i
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=
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∏∫         (2.16) 

where i= 1− . A simpler foumula based on asymptotic approximations derived 

earlier by Breitung (1984) is  

1

2
1

1( )
1 ( )

n

f
i i

p β
ψ β κ

−

=

≅ Φ −
+

∏                         (2.17) 

where ( ) ( ) / ( )ψ β φ β β= Φ . Note that in the above formula, each term 

1/ 1 ( ) iψ β κ+  acts as a correction factor on the FORM approximation to account 

for the curvature of the limit-state surface in the principal direction iu ′′ .  

 

To summarize, the SORM approximation according to the above formulation 

involves the following steps after the design point has been found: (1) Construct the 

orthonormal matrix P with α  as its last row; (2) Compute the second-derivative 

matrix H at the design point by using a finite difference scheme in the u space; (3) 

Compute the matrix 11A and its eigenvalues; (4) Use either of the formulas in 
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Equation (2.15) or Equation (2.16) to obtain the SORM approximation.  

 

2.4.1.2 Monte Carlo simulation method 

Another widely used method for computing probabilities is the MCS method 

(Rubenstein, 1981; Ang and Tang, 1984). For example, Kareem analyzed the 

aerodynamic response and reliability of wind sensitive structures with parametric 

uncertainties by utilizing the MCS method (Kareem, 1988a; Kareem, 1988b; Kareem, 

1990). The basic concept behind the MCS method is: a large number of samples 

following the given probability distribution of stochastic parameters x are generated 

and then repeatedly used for calculating the limit-state function g(x); the desired 

failure probability is eventually estimated as the ratio of the times when g(x) < 0 to 

the sampling number. The MCS method is the most straightforward statistical 

method and effective for higher-order nonlinear problems of structural reliability. 

The main disadvantage of the Monte Carlo simulation method lies in its large 

computational requirement. The direct MCS method normally requires tens or 

hundreds of thousands of repeated computations of the limit-state function, which is 

impractical for many engineering applications (Kiureghian, 1994). Therefore, many 

more efficient simulation methods have been developed, aiming at reducing the 

variance of the probability estimate for a given number of simulations.  

 

The importance sampling method (Shinozuka, 1983; Harbitz, 1986) appears to be the 

most promising variance reduction technique for the structural reliability problem. 

Knowledge of the design point(s) from FORM analysis can be particularly helpful in 

choosing an appropriate sampling density used in the importance sampling method 

(Harbitz, 1986; Schueller, 1987). The method that sampling is the normal density 
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centered at each design point has been advocated by a number of investigators 

(Melchers, 1987; Maes and Breitung, 1993) when the shape of the limit-state surface 

is not known in advance. Adaptive importance sampling techniques, where the 

sampling density is modified during the course of sampling, have also been 

suggested (Bucher, 1988). It should be noted that the importance sampling method 

may converge to a wrong probability estimate if the sampling density is not properly 

selected. Other variance-reduction techniques include the method of antitbetic 

variates (Rubenstein, 1981), the method of stratified sampling , and in particular the 

Latin hypercube sampling (McKay, et al., 1979).  

 

Another class of efficient simulation methods is based on the concept of conditioning. 

Karamchandani and Cornell (1991) have used this method by conditioning on a 

single variable. One simulation method by conditioning is the so-called directional 

simulation method, in which various choices for the sampling density using the 

knowledge of design point(s) from FORM analysis have been suggested by Bjerager 

(1988) and Melchers (1990). Another, nonradial, directional simulation method has 

been suggested by Hohenbichler and Rackwitz (1988), which is aimed at improving 

probability estimates based on FORM and SORM. 

 

2.4.1.3 Response surface method 

For large complex structures, it is difficult to obtain the explicit expression of 

structural limit-state function and its gradient which is necessary in FORM and 

SORM analysis is difficult to compute. The response surface method (Montgomery, 

1976) has been developed for computing probabilities of this kind of problem. The 

basic principle is to replace the integration boundary by an approximating response 
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surface and then perform the integration by an approximate means (e.g. FORM, 

SORM) without having to engage the actual limit-state function. Faravelli (1989) 

developed the response surface method based on the experimental design. The 

iterative interpolation technique proposed by Bucher and Bourgund (1990) has high 

efficiency. Schueller et al. (1989) investigated the precision of the response surface 

method. Liu et al. (1994) applied the sequential response surface method to aircraft 

structural system.   

 

To construct the response surface, a number of 'experiment' points ix , i =1, 2, ...., N, 

are used to calculate g(x) and then fits a polynomial surface to the points by the least 

squares method. If a second-order polynomial is used, at least 2 / 2 3 / 2 1N N+ +  

points are necessary, which is a formidable number for large N. To reduce this 

number, the use of polynomial functions excluding cross terms has been suggested 

by Schueller and Stix (1987). Another suggestion is to reduce the number of random 

variables by collecting less important variables into a single error term (Faravelli, 

1989). The selection of the 'experiment' points, ix , is important consideration in the 

response surface methodology. For the structural reliability problem, it is clear that 

these points should be selected in the neighborhood of the design point, which 

unfortunately is usually unknown in advance. 

 

2.4.1.4 Stochastic finite element method 

Stochastic finite element method (SFEM) which combines probability theory with 

deterministic FE methods (FEM), provides an efficient alternative to time-costly 

MCS and allows engineers to estimate the risk of structural systems. SFEM is an 

extension of deterministic FEM for considering the fluctuation of structural 
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properties, loads, and responses of stochastic systems. The basic formulation for 

SFEM is described as follows (Schuëller, 1997; Shinozuka, 1986). 

( ) ( )
0 0

1 1

e eN N
e e

e e= =

= + Δ = + Δ∑ ∑K K K K K                       (2.18) 

The global stiffness matrix can be split into two parts: the deterministic part, 0K , 

and the fluctuation (uncertainty) part, ΔK . The global stiffness matrix K  is 

obtained by assembling the element stiffness matrices of Ne elements. There are four 

typical methods for formulating the fluctuation part of the SFEM procedure: the 

perturbation method, the Neumann expansion method, the weighted integral method, 

and the spectral stochastic finite element method.  

 

The perturbation method is also known as the Taylor series expansion method and, 

generally, its effectiveness is restricted in that the random fluctuations must be small 

(i.e., COV < 0.2). Hart and Collins (1970) and Cambou (1971) dealt with 

randomness in FEM modeling using first-order perturbation theory. Handa and 

Anderson (1981) obtained the variance of the structural response considering the 

first-order variance of force, displacement, and stiffness. Nakagiri and Hisada (1982) 

indicate that the second-order perturbation is impractical for large-scale problems 

because of its huge computational effort in calculating the second-order function 

gradients. The Neumann expansion method has been used by several researchers 

within the framework of Monte Carlo simulation (Schuëller, 1997). The main 

advantage of the Neumann expansion method is that the matrix 0K  has to be 

decomposed only once for all samples in conjunction with the Monte Carlo 

simulation. Due to this single matrix decomposition, computing time can be greatly 

reduced. However, determining the covariance matrix among all elements of the 
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fluctuation part of the stiffness matrix requires extremely high computational effort 

(Matthies, et al., 1997). The weighted integral method was proposed by Deodatis and 

Shinozuka (1988, 1991). The main feature of this method is that it does not require 

discretization of the random field. Instead, everything is determined by the mesh 

chosen for the deterministic part of the stiffness matrix. The weighted integral 

method requires about ten times more computational effort than the perturbation 

scheme method (Matthies, et al., 1997).  

 

The spectral stochastic finite element method (SSFEM) has been introduced by 

Ghanem and Spanos (1991) as an extension of the deterministic finite element 

method for the solution of boundary value problems with random material properties. 

In most applications, SSFEM is used in conjunction with a Karhunen–Loève (K–L) 

expansion of the Gaussian random field(s) describing the uncertain parameters of the 

problem (Schevenels, et al., 2004). This random field must be characterized by a 

correlation length sufficiently large in order for the corresponding K–L expansion to 

yield a good approximation for a small number of (<20) terms and a reasonable 

stochastic dimension is preserved. For non-Gaussian properties, it has been 

suggested to use polynomial chaos expansion (PCE) for the representation of the 

input as well (Ghanem and Kruger, 1996; Ghanem, 1999a; Ghanem, 1999b). 

However, the use of PCE for the representation of both input and output can lead to a 

loss of accuracy (Sudret and Kiureghian, 2000; 2002). The use of the generalized 

PCE seems to be the best solution in the case of a general non-Gaussian input (Foo, 

et al., 2007; Lucor, et al., 2004; Xiu and Karniadakis, 2002). The application of 

SSFEM is practically limited to linear problems. Geometrical and material 

non-linearity cannot be taken into account efficiently since PCE has been found to 
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perform poorly in problems involving sharp non-linearities, discontinuities, slope 

changes or bifurcations (Field and Grigoriu, 2004; Acharjee and Zabaras, 2006). 

More recently, a novel stochastic response surface approach has been proposed for 

solving nonlinear mechanical problems (Baroth, et al., 2006; Baroth, et al., 2007), 

but its application is limited to problems involving a small number of uncertain 

parameters. The most recent developments in spectral-Galerkin-based SFEM include 

the stochastic reduced basis methods (SRBMs) introduced in (Nair and Keane, 2002; 

Sachdeva, et al., 2006; Mohan, et al., 2008), the non-intrusive approaches proposed 

in (Baroth, et al., 2006; 2007; Berveiller et al., 2006), the use of the method in a 

multi-scale setting (Xu, 2007) and the extension to the stochastic framework of the 

extended finite element method (Nouy, et al.,2008). 

 

2.4.2 System reliability analysis methods 

Structural system reliability analysis initially arose as an extension of component 

failure mode analysis when it became apparent that multi-component behavior had a 

severe impact on the true risk of structure failure. In reality, structure systems have a 

wide variety of different failure characteristics. In many structures, several 

components must fail before the structure fails. On the other hand, in some systems, 

a weakest-link or chain model governs so the failure of one single component is 

catastrophic. For applications to large-scale realistic structures, the system reliability 

analysis is divided into two parts: (a) identification and enumeration of the 

statistically significant collapse modes, and (b) probabilistic calculations to assess 

each individual model failure probability or safety index and subsequently 

combining these into a single system risk assessment.    
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To identify dominant modes of structural failure, the methods of mechanics (Murotsu, 

et al., 1981; Christensen and Murotsu, 1986) and mathematical programming 

techniques have been employed. Fu and Moses (1988) found a new approach in 

importance sampling that provided both good accuracy and high efficiency. The 

major recent extensions of the failure tree system modeling were done by Cornell 

and his colleagues (1988) supported by an oil industry project. The representative 

approaches to calculate structural system failure probability include the Probabilistic 

network evaluation technique (Ang, 1975) and the lower-upper bound method 

(Vanmarcke, 1973; Ditlevsen, 1979; Feng, 1989). In these methods, major difficulties 

encountered are how to deal with the combination explosion problem and how to 

tackle the correlation information among different component random events. 

 

2.4.3 Time dependent reliability analysis methods 

Time dependent reliability still complies with the general structural reliability 

problem defined by Equation (2.6). A new trait lies in that the limit-state function 

depends on time, which is also said to be time-variant reliability. In general, the time 

dependent reliability can be given by 

{ }( ) ( ) ,  [0, ]SR t P X t= ∈Ω ∈τ τ                      (2.19) 

where P{·} is the probability of the random event; SΩ is the safe domain. Equation 

(2.19) means that the time dependent reliability is the total probability of a random 

event that is always in the safe domain over the time interval [0, t]. The failure 

probability of exceeding a limit state can be described as the first-passage probability 

(Lin, 1967).                

 

The time dependent reliability of deterministic structures can be assessed by the level 
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crossing theory through the Rice formula (Rice, 1944) or by the diffusion theory 

through the backward Kolmogorov equation (Crandall, 1970) besides the Monte 

Carlo simulation (Au and Beck, 2001). These methods have been naturally extended 

to assess the reliability of structures involving random parameters. For instance, the 

reliability is assessed by the level crossing theory after the statistical quantities have 

been gained by the orthogonal polynomial expansion method (Jensen and Iwan, 

1992). The similar methodology, to directly employ the level crossing theory after 

gaining the statistical quantities with the random perturbation, is widely used as well 

(Chen, et al., 1997; Kawano and Venkataramana, 1999). Brenner and Bucher (1995) 

embedded the stochastic finite element method in the reliability analysis procedure. 

However, the joint probability density function of the response and its velocity 

required in the Rice formula is usually unavailable and can only be assumed, say, to 

be normal or Rayleigh distribution, with the acquired mean and the standard 

deviation. Additionally, Poisson or Markov assumption in the traditional probability 

analysis may lead to irreducible error. The diffusion process theory based method 

may give more accurate results. For example, Spencer and Elishakoff (1988) used the 

diffusion theory method to an SDOF system, dealing with the randomness through 

the conditionization technique, to evaluate the reliability with the backward 

Kolmogorov equation. Unfortunately, it is still difficult to use the method for 

practical MDOF systems. Until now, it seems that only Monte Carlo method, 

including its improvements, is widely accepted as a versatile and practical approach 

for time dependent reliability assessment of MDOF structures (Au and Beck, 2001).  

 

For the system reliability problems in dynamic aspect, the theory of the extreme 

value distribution has been extensively studied since pioneering researches of Fisher 
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and Tippet (1928) and Gumbel (1958). Some approximate approaches to calculate 

the extreme value distribution were studied based on the level-crossing process 

theory. The Rayleigh distribution was adopted as the extreme value distribution of a 

narrow-banded Gaussian stochastic process by Powell (1958). To tackle 

non-Gaussian processes, the translation processes technique based on nonlinear static 

transformations were proposed (Grigoriu, 1984; Grigoriu, 1998). Generally speaking, 

the assumption on properties of the upcrossing events has to be made in these 

method. In engineering the Poisson’s assumption and the Vanmarcke’s assumption 

are widely used (say, Cheong, 1995; Rychlik, et al., 1997; etc.) based on empirical 

data rather than theoretical analysis. Another approach employed the equivalent 

statistical quadratization and cubicization in the frame of equivalent Volterra systems 

gives fair results for SDOF systems with explicit nonlinearities in damping or 

restoring forces (Tognarelli, et al., 1997). 

 

In recent years, a family of probability density evolution method (PDEM), which is 

capable of capturing the instantaneous PDF and its evolution of the response of 

structures involving random parameters, has been developed and used successfully in 

linear and nonlinear dynamical systems by Li and Chen (2004; 2005; 2006). Based 

on the generalized density evolution equation (GDEE), the time dependent reliability 

assessment can be performed in two different ways. One is to investigate the 

first-passage problem through the transition and absorbing of probability by the 

absorbing boundary condition method (Li and Chen, 2005), the other is to transform 

the first-passage problem to the corresponding extreme value (Chen and Li, 2007). 

The former is effective for component reliability problems, while the latter can be 

used to solve both the component reliability problems and the system reliability 
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problems.  

 

Figure 2.1 Component reliability problem 
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(b) parallel system 

Figure 2.2 System reliability problem: (a) series system, (b) parallel system 

 

 

Figure 2.3 FO RM and SORM approximations for a component problem 
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 CHAPTER 3 

STATISTICAL MOMENT-BASED DAMAGE 

DETECTION METHOD IN FREQUENCY DOMAIN  

3.1 Introduction          

In this chapter, a novel statistical moment-based damage detection (SMBDD) 

method is proposed in the frequency domain and illustrated through shear building 

structures. White noise ground motion is employed to excite shear building structures.  

The principle of the SMBDD method is firstly presented through a single-degree-of-

freedom (SDOF) system with a brief introduction of statistical theory. The sensitivity 

and noise issues of the new method are discussed in relation to various types of 

responses and different orders of statistical moments. The new method is then 

extended to MDOF systems. The displacement responses of a MDOF shear building 

structure are numerically measured and then utilized to calculate the measured 

statistical moments of story drifts. The measured statistical moments are used as 

standards to update structural stiffness parameters using the least squares method, by 

which structural damage can be detected. The theoretical values of the statistical 

moments which are compared with the measured values in the objective function of 

the least square method are obtained through dynamic analyses in the frequency 

domain. Numerical studies on multi-story shear building structures finally show that 

the SMBDD method is not only sensitive to structural damage but insensitive to 

measurement noise. The feasibility and robustness of the SMBDD method in 

detecting damage location and evaluating damage severities for both SDOF and 
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MDOF systems are demonstrated through various damage scenarios in both SDOF 

and MDOF shear building structures.  

3.2 Statistical Moment Theory       

To introduce the statistical moment-based damage detection method, a brief review 

of statistical moment theory is presented here. For a linear structural system, if the 

excitation is a stationary Gaussian random process, then the structural response is 

also a stationary Gaussian random process (Meirovitch, 1975).  

 

The probability density function (PDF) of a structural response x of Gaussian 

distribution can be expressed by 

2

2

2
)(

2
1)( σ

σπ

xx

exp
−−

=                                                           (3.1)  

where )(xp  is the PDF of structural response x ;σ  is the standard deviation of 

structural response; and x  is the mean value of structural response. The nth-order 

statistical moment of structural response can be given in terms of PDF by the 

following integrals:  

∫
+∞

∞−
−= dxxpxxM n

n )()(
       

n = 1, 2, 3, 4,……                        (3.2) 

In general, the odd moments relate to information about the position of the peak of 

probability density function which is dependent on the mean value for normal 

distributions, while the even statistical moments indicate the characteristics of the 

spread of the distribution. Figure 3.1 shows variations of probability density function 

with the change of variance of a zero-mean structural response of Gaussian 

distribution.  It can be seen that the curve with a large variance tends to be flatter and 

more spread out than those with small variances. The shape of probability density 



Chapter 3                                                                          SMBDD Method in Frequency Domain 

3-3 

function depends on the value of even statistical moments, and the change of the 

probability density function can be reflected by the even statistical moments. 

Therefore, when the mean value of a structural response is zero due to a zero-mean 

ground motion, the odd statistical moments of the structural response are always 

zeros. Even statistical moments up to sixth order are considered in the following 

investigation for the statistical moment based structural damage detection.  

 

For a structural response of Gaussian distribution, some relationships exist between 

the even statistical moments and the variance: 

22
2 )()( σ=−= ∫

+∞

∞−
dxxpxxM                                                (3.3) 
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The differentiation of Equations (3.3), (3.4) and (3.5) with respect to the standard 

deviation σ  then yields 
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The above expressions reveal that the relative change in higher even statistical 

moments possesses higher sensitivity to the relative change in the standard deviation 

of a structural response.  
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3.3 SMBDD Method for SDOF Systems  

Structural damage such as stiffness losses in a structure will cause changes in both 

statistical moments and probability density function of the structure under random 

excitation. Therefore, the changes in statistical moments, particularly higher even 

statistical moments, may be sensitive to structural damage. In this regard, the 

principle of the SMBDD method is firstly put forward in terms of a single-degree-of-

freedom (SDOF) system in this section. The sensitivity of statistical moments to 

structural damage is then discussed for different types of structural responses and 

different orders of statistical moments. The formulae for statistical moment-based 

damage detection are derived. The effect of measurement noise on damage detection 

is finally ascertained.  

 

3.3.1 Statistical moments 

Let us consider single-story shear building under zero-mean white-noise ground 

acceleration of Gaussian distribution as shown in Figure 3.2(a). Considering only a 

linear-elastic structural system, the equation of motion of the shear building can be 

expressed as 

gxmkxxcxm −=++                                                           (3.9)  

or 

22 o o gx x x xξω ω+ + = −                                (3.10)  

where m , c  and k are respectively the mass, damping coefficient and stiffness 

coefficient of the building;. x , x and x   are respectively the relative displacement, 

velocity and acceleration responses of the building to the ground; gx  is the white 

noise ground acceleration; ξ  is the damping ratio of the building; and oω is the 
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circular natural frequency of the building and it is equal to /k m  .  

 

If a structure is a linear system, the power spectrum )(ωS  and the variance 2σ  of the 

structural response can be obtained by 

)()()( 2 ωωω fSHS =                                                       (3.11)  

2 ( )S dσ ω ω
+∞

−∞
= ∫                                                              (3.12) 

where )(ωfS  is the power spectrum of ground excitation; and )(ωH stands for the 

frequency response function (FRF). If the ground excitation is an ideal white noise, 

)(ωfS  is then a constant 0S  over the whole frequency zone from−∞  to +∞ . For a 

SDOF system, the module of the displacement FRF, )(ωdH , the velocity FRF, 

)(ωvH , and the acceleration FRF, )(ωaH , can be obtained as follows: 
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Substituting Equation (3.13) to Equation (3.11) and then Equation (3.12) leads to the 

variance or second-order moment of displacement response 2
dσ . 

22 0
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= = =∫                      (3.16) 

 In a similar way, the variance or second-order moment of velocity, 2
vσ  and 

acceleration, 2
aσ  can be obtained as follows: 
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The fourth-order and sixth-order moments of displacement, velocity and acceleration 

can then be given as  
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3.3.2 Sensitivity analysis 

Based on Equations (3.17) to (3.24), the following sensitivity equations can be 

derived: 

2 2 2

2 2 2

3 1 1, ,
2 2 2
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4 4 4

4 4 4

3 , ,
dis v a

dis v a
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= − = − =                          (3.26) 
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6 6 6

6 6 6

9 3 3, ,
2 2 2

dis v a

dis v a

dM dM dMdk dk dk
M k M k M k

= − = − =                  (3.27) 

From the above equations, it can be observed that the relative changes of the 

statistical moments of displacement and velocity are negatively proportional to the 

relative change of stiffness while the relative change of the statistical moment of 

acceleration is positively proportional to the relative change of stiffness. The ratio of 

the relative change of  the second-order, fourth-order and six-order moments of 

displacement to the relative change of stiffness are always three times of the 

counterparts of velocity and acceleration positively or negatively. This result reflects 

that the relative change of the statistical moment of displacement is two times more 

sensitive to the relative change of stiffness than those of velocity and acceleration. 

Thus, the statistical moment of displacement is considered in this study. Furthermore, 

it can be observed that the relative change of higher order moment of displacement is 

more sensitive to the relative change of stiffness.  

 

3.3.3 Damage detection 

Based on Equations (3.16), (3.19) and (3.22), the stiffness of the structure can be 

obtained from the second-order, fourth-order, and sixth-order statistical moments of 

displacement response, respectively. 
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The above equations reflect the relationships between the stiffness and the statistical 

moments of the displacement responses for a SDOF system in the frequency domain. 

From a practical point of view, the ith-order statistical moment can be estimated 

directly from the measured displacement response of the single-story shear building, 

denoted as ˆ
iM  (i=2,4,6). Assuming that the measured discrete time history of the 

displacement response is 1 2[ , , , ]
sNx x x=x , where sN  is the number of sampling 

points, the statistical moments of the measured displacement response can be 

calculated as follows. 

2 2
2

1 1

1 1ˆ ( )
s sN N

i i
i is s

M x x
N N= =

= −∑ ∑                                              (3.31) 

 2
4 2

ˆ ˆ3( )M M=                                                                      (3.32) 

3
6 2

ˆ ˆ15( )M M=                                                                     (3.33)  

 

The statistical moment-based damage detection of a SDOF system can be carried out 

according to the following steps:  

(1)   Measure the displacement response of the undamaged single-story shear 

building under ground acceleration which can be assumed to be a zero-mean 

Gaussian white noise random process;  

(2)   Calculate the measured statistical moments, 2M̂ , 4M̂ and 6M̂ ,  using Equations 

(3.31) to (3.33);  

(3)   Substitute 2M̂ , 4M̂ or 6M̂  into Equations (3.28) to (3.30), and the structural 

stiffness uk̂  of the undamaged structure can be obtained;  

(4)  For the same building with damage (stiffness reduction), repeat Steps (1) to (3) 

to find out the structural stiffness dk̂  of the damaged structure ;  
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(5) The structural damage severity μ  can then be identified by 

ˆ ˆ
ˆ 100%ˆ

d u

u

k k
k

μ −
= ×                                              (3.34) 

In the above, the symbol ‘^’ represents ‘estimated’ in contrast with ‘theoretical’. The 

superscript ‘u ’ and ‘ d ’ stand for ‘undamaged’ and ‘damaged’, respectively. 

 

3.3.4 Effect of measurement noise 

In order to investigate the effect of measurement noise on the quality of damage 

detection, white noise is used as measurement noise to contaminate the displacement 

response of a SDOF system. The measurement noise intensity is defined as the ratio 

of the root mean square (RMS) of measurement noise ε  to the RMS of displacement 

response x. 

%,100
)(
)(
×=

xRMS
RMS εα                                            (3.35) 

The effect of measurement noise on the quality of damage detection is measured in 

terms of the noise effect ratioγ . 

%100ˆ
ˆˆ
×

−
=

k
kknγ                                                      (3.36) 

where nk̂  is the identified structural stiffness considering the effect of measurement 

noise while k̂  is the counterpart without considering the effect of measurement noise. 

By defining the structural response with measurement noise as y, there is a 

relationship 

ε+= xy                                                              (3.37) 

where x  is the actual structural response; ε  is the measurement noise independent 

of x . Then, by taking a noise intensity of 15%, for example, one may have 
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2222 0225.1 xxy σσσσ ε =+=                                              (3.38) 

As a result, the statistical moments of the structural responses with measurement 

noise can be obtained as 

xy MM 22 0225.1=                                                            (3.39) 

xxyy MM 4
24222

4 )0225.1()0225.1(3)(3 =×== σσ            (3.40) 

xxyy MM 6
36332

6 )0225.1()0225.1(15)(15 =×== σσ           (3.41) 

where yM 2 , yM 4  and yM 6  are respectively the second-order, fourth-order and sixth-

order moment of y ; xM 2 , xM 4  and xM 6 are the counterparts of x , respectively. 

Using Equations (3.28) to (3.30) leads to 
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    (3.42) 

where nk  is the theoretically identified stiffness with considering measurement noise; 

and k is the corresponding stiffness without considering measurement noise. It can 

be seen that the theoretical noise effect ratio is only 1.47% even at the noise intensity 

of 15%. This result indicates that the statistical moment of displacement response is 

not sensitive to measurement noise. 

 

3.4 SMBDD Method for MDOF Systems 

In this section, the statistical moment-based damage detection method is extended to 

a MDOF system. Let us consider an N-story linear shear building subjected to 
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ground acceleration gx  as shown in Figure 3.2 (b). The lumped mass, horizontal 

stiffness coefficient, and structural damping coefficients of ith story of the building 

are denoted as mi, ki and ci, respectively, where i = 1, 2,…,N. The equation of motion 

in the matrix form for this shear building can be expressed as 

)()()()( txttt gMIKxxCxM −=++                        (3.43) 

where M , C  and K  are the mass matrix, damping matrix and stiffness matrix of the 

building structure, respectively; )(tx , )(tx  and )(tx  are the acceleration, velocity 

and displacement response vectors relative to the ground, respectively; and I is the 

column vector with all its elements equal to unity. The ground acceleration gx is 

taken as zero-mean white noise ground excitation whose power spectral density is a 

constant 0S .   

 

By adopting the Rayleigh damping assumption, Equation (3.43) can be decoupled 

through the following transformation: 

Φzx =                                                                              (3.44) 

where Φ  is the mass-normalized modal matrix of the system. The uncoupled 

equations of motion of the system can then be expressed as 

2( ) 2 ( ) ( ) ( )i i i i i i i gz t z t z t x tξ ω ω+ + = Γ         i=1, 2, 3,…, N          (3.45) 

∑
=

=
N

k
kiki m

1
φΓ                                                                        (3.46) 

where iΓ  is the ith participation factor; iξ  is the ith modal damping ratio; iω is the ith 

circular natural frequency; and kiφ is the kth component of the ith mode shape. By 

using the mode superposition method and taking the Fourier transform, the Fourier 

transform of the displacement response ( )ix t  of the ith floor can be obtained   
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1
( ) ( )

N

i o ik k
k

X S mω α ω
=

= ∑                   (3.47) 

2 2
1

( ) ( )
( )

( ) 2 ( )

N
ij kj

ik
j j j ji

φ φ
α ω

ω ω ωω ξ=

⋅
=

− +∑
K K

K K
                            (3.48)  

Because story drifts are directly related to horizontal stiffness reduction, the 

statistical moments of story drifts other than floor displacements are considered in 

this section. The Fourier transform of the ith story drift can be obtained by 

1
1

( ) ( ) ( ) ( ) ,    1, 2,3...
N

i i i o ik k
k

X X X S m i Nω ω ω α ω−
=

Δ = − = Δ =∑         (3.49) 

( 1) 0( ) ( ) ( ), and ( ) 0ik ik i k kα ω α ω α ω α ω−Δ = − =                  (3.50) 

The power spectral density (PSD) function of the ith story drift ixΔ  can be expressed 

as 

*

1 1
( ) ( ( ) )( ( ) )

i

N N

x o ik k ik k
k k

S S m mω α ω α ωΔ
= =

= Δ Δ ⋅∑ ∑                             (3.51)  

where *)(ωα ikΔ is the conjugate of )(ωα ikΔ . Therefore, the variance of the ith story 

drift can be calculated by 

2 *

1 1
( ) ( ( ) )( ( ) )

i i

N N

x x o ik k ik k
k k

S d S m m dσ ω ω α ω α ω ω
+∞ +∞

Δ Δ−∞ −∞
= =

= = Δ Δ ⋅∑ ∑∫ ∫         (3.52) 

Since the ith story drift is a stationary random process, its statistical moments can be 

computed by 

2 4 6
2 4 6, 3 , 15

i i ii x i x i xM M Mσ σ σΔ Δ Δ= = =  ,  i=1,2,…,N                   (3.53)  

The second-order, fourth-order, and sixth-order statistical moment vectors can be 

expressed as 

],,,[ 222212 NMMM=M                                              (3.54) 

],,,[ 442414 NMMM=M                                             (3.55) 
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],,,[ 662616 NMMM=M                                                 (3.56) 

Based on the above derivation, it can be seen that if the mass matrix and the damping 

ratios of the system are kept invariant, the statistical moments of story drifts are the 

function of the horizontal stiffness. Therefore, the ith-order moment vector of story 

drift, denoted as  iM (i=2,4,6), can be theoretically calculated for the given stiffness 

vector 1 2[ ,  ,  ..., ]. Nk k k=k For damage detection,  the ith-order statistical moment 

vector shall be estimated from the measured displacement responses based on 

Equations (3.31) to (3.33), denoted as ˆ .iM  The residual vector between  iM and 

 ˆ
iM can be written as 

ˆ( ) ( )i i= −F k M k M                                                   (3.57)  

 

Ideally, if the given stiffness vector k is equal to the actual value, the 2-norm of the 

residual vector, 2)(kF , will be zero. Practically, the optimal stiffness vector can be 

identified by the nonlinear least-squares method, that is, giving k an initial value and 

minimizing .)( 2kF  Since it is physically impossible that the stiffness parameters of 

the damaged building are larger than those of the corresponding undamaged building, 

the constrained optimization method is utilized to identify the lateral stiffness value 

of the damaged building. That is, the structural stiffness parameter vector of the 

damaged building is identified by the nonlinear least-squares method under the 

constrained condition that the stiffness parameters of the damaged building shall be 

less than the identified stiffness parameters of the corresponding undamaged building. 

The quasi-Newton method and the trust-region method are respectively used to solve 

the unconstrained optimization problem and the constrained optimization problem 

(Dennis, Gay and Welsch, 1981; Byrd, Schnabel and Shultz, 1988). The finite difference 
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method is utilized to approximate the Jacobian matrix of the objective function 

through many additional function evaluations in the aforementioned two methods.  

 

The statistical moment-based damage detection method for a MDOF system can be 

carried out according to the following steps:  

(1) The actual statistical moments of story drifts ˆ
iM  are estimated from the 

measured displacements for undamaged and damaged building respectively by 

using Equations (3.31) ~ (3.33);  

(2) Give the horizontal stiffness of the building structure an initial value, the 

theoretical statistical moments of story drifts iM  can be calculated by the above 

Equations (3.44) ~ (3.53) in the frequency domain.  

(3) Substitute ˆ
iM  and iM  into Equation (3.57), the structural stiffness vector can be 

identified by the nonlinear least-squares method for the undamaged and damaged 

building respectively;  

 (4) The structural damage including damage existence, location and severity can be 

detected by comparing the identified stiffness vector ˆ uk  of the undamaged 

building with the identified stiffness vector ˆ dk of the damaged building.  

 

In addition, to investigate the effect of measurement noise on the statistical moment-

based damage detection, the measurement noise can be added to the numerically 

measured displacement response and ground excitation. The contaminated 

displacement responses and excitation can be then used to estimate the actual 

statistical moment vector in the above Step (1) and the power spectral density of the 

contaminated excitation which is utilize to calculate the theoretical statistical 

moments in the above Step (2). The noise effect can be finally assessed by 
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comparing the identified damage severity values with their corresponding preset ones. 

 

3.5. Numerical Example of SDOF System 

3.5.1 Numerical model   

A single-story shear building model (see Figure 3.2(a)) is utilized in this section to 

examine the feasibility of the statistical moment-based damage detection method. 

The mass and horizontal stiffness of the SDOF system are taken as 230.2 kg and 

5.46×105 N/m, respectively. The damping ratio is 1%. The ground excitation is taken 

as a zero-mean white-noise stationary process. The duration of the ground excitation 

time history is 1000s with a sampling frequency of 256 Hz. The ground excitation 

time history is generated using the method of digital simulation of a random 

processes developed by Shinozuka and Jan (1972), which is used to obtain 

numerically measured structural responses. The excitation time history generated is 

ergodic regardless of the number of frequency intervals. This makes the method 

directly applicable to a time domain analysis in which the ensemble average can be 

evaluated in terms of the temporal average. Note that the simulated process is of 

Gaussian distribution by virtue of the central limit theorem. Figure 3.3 presents the 

attributes of a simulated band-limited white Gaussian excitation, which includes its 

time history, power spectrum density and probability density distribution. The 

intensity of the power spectral density is 2.1801 310−× (m/s2)2/Hz with a frequency 

band from 0.5Hz to 70Hz.   

 

3.5.2 Sensitivity of PDF to structural damage 
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The sensitivity of PDF of different responses of the building to structural damage 

severity is numerically investigated. The displacement, velocity and acceleration 

responses of the building with different stiffness k0, 0.98k0, 0.95k0, 0.90k0, 0.80k0 

and 0.70k0 are computed for the same ground excitation. These stiffness coefficients 

represent different damage severities, that is, 0%, 2%, 5%, 10%, 20% and 30%, 

correspondingly. The displacement, velocity and acceleration response time histories 

are then used to compute their PDF curves. The PDF curves are finally fitted by the 

Gaussian PDF curves and shown in Figures 3.4 (a), (b) and (c) for displacement, 

velocity, and acceleration responses, respectively, in which DS stands for damage 

severity.  

 

It can be seen that the PDF curves of displacement and velocity responses become 

flatter with the increase of structural damage severity but the PDF curves of 

acceleration responses show the contrary phenomenon. With reference to Figure 3.1, 

one may conclude that the statistical moments of displacement and velocity 

responses get bigger with the decrease of structural stiffness but those of acceleration 

responses become smaller. Furthermore, the PDF curves of displacement responses 

present more apparent and consistent changes with respect to different damage 

severities than those of velocity and acceleration responses. Accordingly, the PDF 

curve of displacement response is more sensitive to structural damage severity than 

those of velocity and acceleration responses. These results are all consistent with the 

previous conclusions drawn from theoretical analysis given in Section 3.2. The 

displacement responses will be therefore utilized hereinafter in order to effectively 

conduct damage detection. 
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3.5.3 Sensitivity of statistical moments to structural damage 

As mentioned above, changes in the structural stiffness values are clearly illustrated 

in the PDF of displacement responses which would take the form of well known 

Gaussian bell shaped curve for a linear SDOF structural system under the ground 

excitation of zero-mean white noise. The theoretical second-order, fourth-order and 

sixth-order statistical moments which represent the characteristics of distribution are 

now computed for the undamaged building and the damaged building with the 

stiffness reduction of 2%, 5%, 10%, 20% and 30% ( Scenario 1 to Scenario 5) 

respectively using Equations (3.16), (3.19), and (3.22), respectively. The 

corresponding circular frequencies of the undamaged building and the damaged 

building are also computed. The theoretical circular frequency and the theoretical 

second-order, fourth-order and sixth-order statistical moments of the undamaged 

building calculated by Equations (3.16), (3.19) and (3.22) are denoted as 0
uω , 2

uM , 

4 ,uM  and 6
uM , respectively. The counterparts of the damaged building are denoted 

as 0 ,dω 2
dM , 4

dM and 6
dM , respectively. The change ratios of these values to those 

of the undamaged building are listed in Table 3.1.  

Table 3.1 Change ratios of natural frequency and statistical moments 

(SDOF system) 

Scenario 0 0

0

d u

u
ω ω

ω
− (%) 2 2

2

d u

u
M M

M
− (%) 4 4

4

d u

u
M M

M
− (%) 6 6

6

d u

u
M M

M
− (%)

1 -1.00 3.08 6.25 9.52 

2 -2.53 8.00 16.64 25.96 

3 -5.13 17.12 37.17 60.66 

4 -10.55 39.75 95.31 172.96 

5 -16.33 70.75 191.55 397.80 
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It can be seen that statistical moments are more sensitive to structural damage than 

circular natural frequency. Furthermore, the higher-order statistical moment is more 

sensitive to structural damage than lower-order moment. This has also been 

theoretically interpreted in Section 3.2. It seems that the higher-order statistical 

moment would be a good index for structural damage detection. However, the 

statistical moments are calculated in the frequency domain based on the assumption 

that the responses are stationary Gaussian time histories resulting from the external 

random excitation which satisfies the stationary Gaussian distribution. Thus, the 

statistical moments intend to be unstable in the actual numerical calculation due to 

the effects of limited time duration and the transitory unstable dynamic responses at 

the initial stage. It is, therefore, necessary to investigate the stability of higher 

statistical moment value. 20 stationary Gaussian ground acceleration time histories 

with the same preset power spectral density function are generated randomly and 

then employed as external excitations and respectively input to the undamaged single 

story shear building structure. The statistical moments of displacement response are 

computed. The mean value and standard deviation of the 20 values of the ith 

statistical moment and then the coefficient of variation iδ are calculated. 

ˆ( ) 100%ˆ( )

u
i

i u
i

std M
mean M

δ = ×                                                      (3.58) 

where )ˆ( u
iMstd  is the standard deviation of the ith statistical moment and 

)ˆ( u
iMmean  is its mean value. The results show that the coefficients of variance of 

the second-order, fourth-order and sixth-order moments are 8.9%, 16.9% and 24.2%, 

respectively. The coefficient of variance is larger for higher statistical moment. 

Namely, higher statistical moment is less stable. Therefore, as far as a damage index 

is concerned, the fourth-order moment may be a good choice which represents a 



Chapter 3                                                                          SMBDD Method in Frequency Domain 

3-19 

compromise measure between sensitivity and stability. In the following study, the 

fourth-order moments are adopted for damage detection. In addition, the stability of 

the identified structural stiffness using the mean value of 20 fourth-order moments is 

also investigated. The mean value of corresponding structural stiffness identified is 

549880N/m which only has a bias of 0.71% and the coefficients of variance 0.42%, 

comparing with the true value. This promising result paves the way for the following 

damage detection. 

 

3.5.4 Damage detection results 

In this section, the damage detection is carried out without considering the effect of 

measurement noise. The identified stiffness from the fourth-order moment of 

displacement response of the undamaged building, uk̂ , is 547244 N/m, which is very 

close to the theoretical stiffness uk of 546000 N/m. The identified stiffness ˆdk from 

the fourth-order moments of displacement responses of the damaged building, dM 4
ˆ ,  

is tabulated in Table 3.2 for Scenario 1 to Scenario 5. In the table, dM 4
ˆ stands for the 

estimated fourth-order moment of the damaged building using Equation (3.11) while 

dM 4  is the theoretical value derived by Equation (3.19) using the theoretical 

stiffness dk .  The maximum difference between the identified and theoretical 

stiffness among all the five cases is 0.88 % only. The identified damage severities for 

the five damage cases are 2.20%, 4.12%, 9.38%, 19.83% and 29.64%, which 

correspond to the preset values, 2%, 5%, 10%, 20%, and 30% respectively. It can be 

seen that even for the damage severity of 2%, the proposed statistical moment-based 

damage detection method produces a satisfactory result if measurement noise is not 
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considered. 

Table 3.2 Damage detection results and preset values (SDOF system) 

Scenario
dM 4

ˆ  
( 13 410 m− ) 

dM 4  
( 13 410 m− )

dk̂  
)/( mN

dk  
)/( mN

μ̂   
(%) 

μ   
(%) 

1 2.5516 2.5530 535218 535080 -2.20 -2 

2 2.1644 2.2310 524683 518700 -4.12 -5 

3 3.2873 3.3646 495871 491400 -9.38 -10 

4 3.8272 3.8841 438702 436800 -19.83 -20 

5 7.2024 7.3511 385054 382200 -29.64 -30 

 

3.5.5 Effect of measurement noise 

Random white measurement noises are now introduced into the structural 

displacement responses to investigate the effect of measurement noise on damage 

detection. Five noise intensities are considered and they are 1%, 2%, 5%, 10% and 

15%, respectively. Table 3.3 displays the noise effect ratio γ  obtained for the 

aforementioned five damage cases and five noise intensities. As shown in the table, 

the noise effect ratio is only related to noise intensity and has almost nothing to do 

with damage severity. The measurement noise has only small effects on the damage 

detection. Even when the noise intensity is as high as15%, the absolute γ  values for 

the five damage cases are only 1.88%, 1.63%, 1.72%, 1.39% and 1.65%.  

 

It can be concluded that the fourth statistical moment is a sensitive measure but it is 

insensitive to measurement noise. By using the fourth moment as a damage index, 

the proposed statistical moment–based damage detection method can provide not 

only reliable damage detection results but explicit estimation of noise effects on 

damage detection results. 
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Table 3.3  Noise effect ratioγ  (SDOF system) 

α  Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

1% -0.01% -0.01% -0.01% -0.01% -0.01% 

2% -0.03% -0.03% -0.03% -0.03% -0.03% 

5% -0.21% -0.19% -0.19% -0.13% -0.17% 

10% -0.90% -0.80% -0.76% -0.57% -0.71% 

15% -1.88% -1.63% -1.72% -1.39% -1.65% 
 

3.6 Numerical Example of MDOF System  

In this section, the robustness of the statistical moment-based damage detection 

method is numerically demonstrated based on a real three-story shear building model.  

Various damage cases with different damage severities and locations are investigated 

by making use of the inherent relationship between the fourth-order moments of 

structural responses and structural properties. Random white measurement noises are 

also introduced into the structural responses to investigate the effect of measurement 

noise on the damage detection quality.  

 

3.6.1 Numerical model  

To demonstrate the feasibility and the effectiveness of the new damage detection 

method for MDOF systems, a three-story shear building structure is investigated in 

this section. The mass and horizontal stiffness coefficients of the three-story shear 

building are respectively 350250 kg and 4728400 kN/m for the first story, 262690 kg 

and 315230 kN/m for the second story, and 175130 kg and 157610 kN/m for the 

third story. The mass of each floor is assumed to be invariant. The first damping ratio 

is taken as 1%. The second and third modal damping ratios are 2.14% and 5.56%, 
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respectively. The ground acceleration is simulated as a white noise whose magnitude 

is chosen such that the maximum absolute value of acceleration is 2.0 m/sec2. To 

simulate the white noise excitation, a method of digital simulation random processes 

developed by Shinozuka M and Jan CM (1972) is utilized. The duration of the 

excitation time history is 1000s with the sampling frequency of 256 Hz.  

 

Listed in Table 3.4 are the values of the fourth-order moments for all the three stories 

of the undamaged building, u
4iM̂ ( 3,2,1=i ), obtained using Equations (3.30) and 

(3.31). The identified stiffness values of the undamaged building, u
ik̂  ( 3,2,1=i ) 

using the corresponding values of the fourth-order moments and the least-squares 

method are also listed in Table 3.4. It can be seen that the identified horizontal 

stiffness coefficients of the undamaged building u
ik̂  are very close to the theoretical 

values u
ik . The relative errors of the identified horizontal stiffness values are 

respectively 0.93%, 0.38% and 0.35% for the three stories compared with the real 

values, which lays down a good foundation for the coming damage detection. 

Table 3.4 Identified statistical moments and stiffness of undamaged building  

(MDOF system) 

Story  )( ˆ 4u
4i mM  ˆ ( / )u

ik kN m  u  ( / )ik kN m  

1 6.9171 1610−×  4772490.31 4728400.00 

2 1.3412 1110−×  316418.04 315230.00 

3 2.6322 1110−×  158158.31 157610.00 

 

3.6.2 Damage detection results: different damage severities at the same 

damage location 
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The main purpose of this section is to demonstrate the sensitivity of the proposed 

statistical moment-based damage detection method to structural damage severities at 

the same damage locations. Five single-damage cases with different damage 

severities at the first story are considered. The details of the five damage cases are 

listed in Table 3.5 in which the theoretical stiffness values uk1 , uk2  and uk3  of the 

undamaged building can be found in Table 3.4. The theoretical damage severities are 

actually 2%, 5%, 10%, 20% and 30%, respectively, for the first story of the building.  

 

For each damage case, the fourth-order moments of story drift are computed for each 

story of the damaged building and then used to identify stiffness coefficients of the 

damaged building using the least-squares method. With reference to the identified 

stiffness coefficients of the undamaged building (see Table 3.4), the damage 

severities of each story are finally calculated for each damage case. The results are 

listed in Table 3.6 and the result of Scenarios 2 is also plotted in Figure 3.5. In 

comparison with the actual damage severities shown in Table 3.5, it can be seen that 

the identified damage severities are quite close to the actual damage severities. Even 

for the small damage Scenario 1, the identified damage severity is 1.99% versus the 

actual value of 2%. The effectiveness and sensitivity of the proposed method to 

structural damage are demonstrated here.  

Table 3.5 Details of five single-damage scenarios (MDOF system) 

Scenario Story 1 Story 2 Story 3 

1 0.98 uk1  uk2  uk3  

2 0.95 uk1  uk2  uk3  

3 0.90 uk1  uk2  uk3  

4 0.80 uk1  uk2  uk3  

5 0.70 uk1  uk2  uk3  
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Table 3.6 Identified damage severities μ (%) for Scenarios 1-5 (MDOF system) 

Scenario Story 1 Story 2 Story 3 

1 -1.99 0.00 0.00 

2 -4.92 0.00 0.00 

3 -9.90 0.00 0.00 

4 -19.75 0.00 0.00 

5 -29.77 0.00 0.00 
 

3.6.3 Damage detection results: different damage locations and 

severities 

To demonstrate the accuracy of the statistical moment-based damage detection 

method for identifying more complicated damage of the three-story building, other 

11 damage scenarios with combination of various damage severities and locations 

are further considered in this section. The details of damage cases are presented in 

Table 3.7 in which the theoretical stiffness values of the undamaged building uk1 , 

uk2  and uk3  can be found in Table 3.4. Scenarios 6 and 7 simulate single damage in 

the second story with damage severities of 5% and 10%, respectively. Scenario 8 has 

single damage in the third story with damage severity of 10%. Scenarios 9 to 15 

simulate two damages at different stories with the same or different damage 

severities. In Scenario 16, the three stories all have damage but with different 

severities. 
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Table 3.7 Details of eleven more damage scenarios (MDOF system) 

Scenario Story 1 Story 2 Story 3 

6 uk1  0.95 uk2  uk3  

7 uk1  0.90 uk2  uk3  

8 uk1  uk2  0.90 uk3  

9 0.98 uk1  0.98 uk2  uk3  

10 0.90 uk1  0.95 uk2  uk3  

11 0.90 uk1  0.90 uk2  uk3  

12 uk1  0.95 uk2  0.90 uk3  

13 uk1  0.80 uk2  0.90 uk3  

14 uk1  0.70 uk2  0.90 uk3  

15 0.90 uk1  uk2  0.70 uk3  

16 0.95 uk1  0.90 uk2  0.80 uk3  
 

Table 3.8 Identified damage severities μ̂  (%) vs. μ (%) for Scenarios 6 -16  

(MDOF system) 

Story 1 Story 2 Story 3 
Scenario 

μ (%) μ̂ (%) μ (%) μ̂ (%) μ (%) μ̂ (%) 

6 0.00 0.00 -5.00 -5.02 0.00 0.00 

7 0.00 0.00 -10.00 -9.84 0.00 0.00 

8 0.00 0.00 0.00 0.00 -10.00 -9.65 

9 -2.00 -1.56 -2.00 -1.44 0.00 0.00 

10 -10.00 -9.80 -5.00 -4.75 0.00 0.00 

11 -10.00 -9.79 -10.00 -9.68 0.00 0.00 

12 0.00 0.00 -5.00 -4.38 -10.00 -9.50 

13 0.00 -0.25 -20.00 -20.22 -10.00 -10.20 

14 0.00 0.00 -30.00 -29.97 -10.00 -9.93 

15 -10.00 -10.13 0.00 -0.02 -30.00 -29.97 

16 -5.00 -4.52 -10.00 -9.26 0.00 0.00 
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By using the same procedure as used in Section 3.6.2, the damage severities μ  are 

identified for these damage scenarios and listed in Table 3.8.  It can be seen that the 

structural damage can be effectively detected out for all these damage scenarios with 

different damage locations and severities. The large damage at one story of the shear 

building structure hardly has any effect on the identified results of adjacent locations, 

in other words, there are no negative falsity (less pronounced damage undetectable) 

and positive falsity (identifying intact stories as damaged ones) resulting from the 

large damage at adjacent stories. For example, the situations of Story 1 and 3 can be 

quite accurately identified according to the analytical result even when the damage 

severity of Story 2 is 30% in Scenario 14. In addition, the small multi-damage can 

also be detectable by utilizing the proposed method, say, Scenario 9. The 

identification results for Scenarios 7, 14 and 16 are also plotted in Figure 3.5. The 

damage locations can be apparently identified for these damage scenarios seen from 

these figures. It can be seen that the identified results only have very small relative 

errors compared with the actual values. The robustness of the proposed method for 

identifying complicated damage of multi-story shear buildings is demonstrated 

without considering measurement noise in this section. 

 

3.6.4 Effect of measurement noise 

To assess the effect of measurement noise on the damage detection of the three-story 

building, each displacement response is contaminated with a random Gaussian white 

noise. The ground excitation is also contaminated with a random Gaussian white 

noise. The added Gaussian white noises are different with and independent to each 

other. Two noise intensities, %5=α  and %15 , are considered, respectively. The 

story drifts are calculated from the contaminated displacement responses. The fourth-
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order moments of the story drifts are then computed and utilized for the structural 

damage detection. The horizontal stiffness coefficients of the undamaged building 

are firstly identified by the proposed method. The results are listed in Table 3.9. 

Compared with the results of the scenarios without considering measurement noise 

presented in Table 3.4, it can be seen that the effects of measurement noise on the 

fourth-order moments and horizontal stiffness coefficients are very minimal. Even 

when noise intensity is as high as 15%, the relative differences between the identified 

horizontal stiffness values and the actual stiffness values are only 0.27%, 0.92% and 

0.89% for the three stories of the undamaged structure, respectively.  

 

Table 3.9 Identified statistical moments and stiffness of undamaged building with 

noise (MDOF system) 

%5=α  %15=α  
Story  

unM 4i
ˆ )( 4m  î ( / )unk kN m unM 4i

ˆ )( 4m  î ( / )unk kN m

1 6.9529 1610−×  4772351.56 7.2476 1610−×  4715438.96

2 1.3475 1110−×  316536.42 1.4034 1110−×  312336.05 

3 2.6441 1110−×  158220.87 2.7490 1110−×  156200.23 

 

Five scenarios of the three-story building are explored with consideration of 

measurement noise. The identified results with 5% and 15% noise intensities are 

listed in Tables 3.10 and 3.11, respectively. Four of the five scenarios with 15% 

measurement noise intensities are also plotted in Figures 3.6. Compared with the 

actual values, it can be seen that even the measurement noise intensity is as high as 

15%, it has only very little impact on the identified damage results: the damage 

severities and damage locations can still be properly identified. Therefore, the 

proposed method is insensitive to measurement noise. Its robustness and reliability 
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are demonstrated again.  

Table 3.10 Identified damage severities nμ  (%) for Scenarios 2, 7, 11, 14 and 16 

with noise intensity α =5% (MDOF system) 

Scenario Story 1 Story 2 Story 3 

2 -5.11 -0.10 -0.10 

7 0.00 -9.95 0.00 

11 -9.86 -9.74 0.00 

14 -0.28  -30.25  -10.28  

16 -4.90 -9.76 -19.75 

  

Table 3.11 Identified damage severities nμ  (%) for Scenarios 2, 7, 11, 14 and 16 

with noise intensity α =15% (MDOF system) 

Scenario  Story 1 Story 2 Story 3 

2 -4.81 0.00 0.00 

7 0.00 -9.58 0.00 

11 -9.76 -9.61 0.00 

14 -0.31 -30.25 -10.28 

16 -5.13 -10.00 -19.96 

 

3.7 Conclusions 

A new structural damage detection method has been proposed in the frequency 

domain in this chapter based on the analysis of statistical moments of displacement 

responses of a shear building structure under white noise ground excitation in the 

frequency domain.  

 

The basic equations for sensitivity analysis of damage indices and damage detection 
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have been derived for a single-story shear building. It is found that the relative 

change of the statistical moment of structural displacement response is two times 

more sensitive to the relative change of building stiffness than those of velocity and 

acceleration. Therefore, the displacement responses are employed in the numerical 

analysis rather than the velocity and acceleration responses. In addition, the relative 

change of higher order moments is more sensitive to that of the natural frequency 

and the second-order moment. However, the higher statistical moments may not be 

numerically stable. As a result, the fourth-order moment has been proposed as a new 

damage index by making a balance between the sensitivity to structural damage and 

the numerical stability to random excitation. Analytical results of the single-story 

shear building show that the new method is sensitive to structural damage. Even 

when the damage severity is only 2%, the identified result is very close to the actual 

value. In addition, the effect of measurement noise on the quality of damage 

detection is explored in terms of the noise effect ratio. Analytical results of the 

single-story shear building show that the noise effect ratio is only related to noise 

intensity and has almost nothing to do with damage severity. Even when the noise 

intensity is as high as 15%, the maximal value of the noise effect ratio for the 

numerically evaluated damage cases is only 1.88%.  Therefore, the damage index of 

the fourth-order statistical moment is also very insensitive to measurement noise for 

the SDOF system.  

 

Then the proposed method is applied to a multi-story shear building. A three-story 

shear building is investigated for various damage scenarios with different damage 

locations and damage severities. Numerical results show that the fourth order 

moments of story drifts can be used to accurately identify both damage locations and 
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damage severities for all the damage scenarios concerned.  Furthermore, a significant 

advantage of the proposed damage detection method lies in that it is insensitive to 

measurement noise. Even when the measurement noise intensity is as high as 15%, 

the SMBDD method still gives highly reliable results on damage severities and 

damage locations of the multi-story shear building structure. The robustness of the 

proposed method is also demonstrated through the multi-story shear building.  

 

However, only shear building structures are explored to demonstrate the feasibility 

and effectiveness of the SMBDD method in this chapter. More complicated 

structures should be investigated before the practical application of the proposed 

method. Furthermore, the Gaussian white noise excitation is employed in this chapter, 

which is only a very special dynamic excitation. It is necessary to explore the 

feasibility of other dynamic excitations, such as colored noise excitations. Other 

types of structures and colored noise excitations will be addressed in Chapter 4. In 

addition, the SMBDD method can also be applied in the time domain. In other words, 

the theoretical fourth-order statistical moment in Equation (3.57) can also be 

obtained in the time domain. The feasibility and effectiveness of the SMBDD 

method in the time domain will be addressed in Chapter 5.  
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Figure 3.1 Variations of zero-mean Gaussian probability density functions 

 

 (a). Single-story shear building;        (b). N-story shear building 

Figure 3.2 Building models: (a) single-story shear building, (b) N-story shear 

building 
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(b) power spectrum density 
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(c) probability density distribution 

Figure 3.3 Simulated band-limited Gaussian white noise excitation: (a) time history, 

(b) power spectrum density, (c) probability density distribution 
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(a) displacement ( 310−× m) 

 

(b) velocity (m/s) 

 

(c) acceleration (m/s2) 

Figure 3.4 Probability density functions of different responses for different stiffness 

values: (a) displacement ( 310−× m), (b) velocity (m/s), (c) acceleration (m/s2) 
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(a) Scenario 2                                           (b) Scenario 7 
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(c) Scenario 14                                          (d) Scenario 16 

Figure 3.5 Identified results with noise free: (a) Scenario 2, (b) Scenario 7, (c) 

Scenario 14, (d) Scenario 16 

 

 

 

 

 



 

3-35 

1 2 3
0

-2
-4
-6
-8

-10
-12
-14
-16
-18
-20

D
am

ag
e 

S
ev

er
ity

 (%
)

Number of Story

 Preset Damage
 Numerical Prediction

   
1 2 3

0
-2
-4
-6
-8

-10
-12
-14
-16
-18
-20

D
am

ag
e 

S
ev

er
ity

 (%
)

Number of Story

 Preset Damage
 Numerical Prediction

 

                          (a) Scenario 2                                              (b) Scenario 7                            
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                          (a) Scenario 14                                            (b) Scenario 16                           

Figure 3.6 Identified results with the measurement noise intensity of 15%: (a) 

Scenario 2, (b) Scenario 7, (c) Scenario 14, (d) Scenario 16 
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CHAPTER 4 

GENERALIZATION OF SMBDD METHOD IN  

FREQUENCY DOMAIN 

4.1 Introduction       

The basic equations of the statistical moment-based damage detection (SMBDD) 

method have been derived based on shear building structures by making use of 

Gaussian white  noise ground excitation in Chapter 3. The feasibility and 

effectiveness of the proposed method have also been numerically demonstrated 

through various damage scenarios with different damage locations and damage 

severities of a three-story shear building.  The major advantage of the proposed 

method is that it is not only sensitive to structural damage but also insensitive to 

measurement noise. However, the white noise ground excitation is an idealized 

excitation which is hard to obtain in practical application. The application of the 

proposed method by utilizing other more realistic excitations is worthwhile to 

investigate. In addition, most building structures are more complicated than shear 

buildings and generally analyzed by finite element (FE) methods. Therefore, further 

study is necessary to extend the proposed method from shear building structures to 

more general structures based on FE models.  

 

Furthermore, shared with all developed approaches for damage detection and model 

correlation, incomplete measurement is a problem. For large structures, it is usually 

not feasible to measure the responses of a structure at all DOFs of the FE model, and 
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to collect the data from all natural modes that the FE model possesses because of a 

limited number of sensors being placed at accessible locations on the real structure. 

The current approach of addressing the problem practically is either to reduce the FE 

model to the measured degrees of freedom or to expand the measured modal data to 

all degrees of freedom included in the FE model. Unfortunately, both of these 

approaches cause troubles when performing damage detection. An observed problem 

with model reduction is that localized changes in the full model may become 

"smeared" throughout the reduced model. The problem observed with mode shape 

expansion is that errors introduced in the expansion process lead to false positive 

indications of damage. However, neither mode shape expansion nor model reduction 

is theoretically required by the SMBDD method because the objective function of 

model updating is based on errors between the components of statistical moments of 

the measured responses and the associated analytical statistical moments only. 

Therefore, it is also worthwhile to investigate the feasibility of the proposed method 

for practical application with only incomplete measurement responses. 

  

In this regard, the equations of the proposed method are generalized for not only 

more kinds of excitations acting at various locations but also more types of structures 

based on the FE models with considering of the incomplete measurement problem in 

this chapter. Numerical investigation is first conducted to demonstrate the feasibility 

of the generalized method by using colored noise excitations acting at different 

locations of a shear building structure without considering the incomplete 

measurement problem. Then, various damage scenarios of high-rise buildings and 

frame structures with only partially measured DOFs are respectively investigated by 

the generalized method in the frequency domain. The effects of measurement noise 
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on the quality of identified results are also investigated for all the concerned damage 

cases by contaminating the fully or partially measured responses and external 

excitations with Gaussian white  noise.  

 

4.2 The Generalized SMBDD Method  

The basic principle of the generalized SMBDD method is to first identify the 

stiffness parameters of a building before and after the occurrence of damage through 

FE model updating based on the statistical moments of fully or, most probably, 

partially measured building responses and then determine damage locations and 

damage severities by comparing the structural stiffness parameters identified at the 

two stages. A planar FE model of a building structure with N DOFs and Ne elements 

plotted in Figure 4.1 is utilized here to illustrate the generalized SMBDD method. 

There are three DOFs at every node: the horizontal displacement x , the vertical 

displacement y and the angular displacement θ .  From the viewpoint of engineering, 

the time history of angular displacement is hard to measure. Therefore, only the 

horizontal displacement or the vertical displacement responses or both are assumed 

to be available and utilized to detect frame structures’ damage by the generalized 

SMBDD method as long as the total number of measured displacement responses, 

denoted as Nm, is larger than or at least equal to the number of unknown stiffness 

parameters, Ne. The equation of motion in the matrix form for the structure can be 

expressed as  

( ) ( ) ( ) ( )t t t t+ + =Mx Cx Kx f                                     (4.1)  

where M , C  and K  are the global mass matrix, damping matrix and stiffness 

matrix of the structure, respectively. )(tx , )(tx  and )(tx  are the acceleration, 
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velocity and displacement response vectors, respectively. Only part of displacement 

responses are measured, that is, ( ) [ ( ) ( )]T
m ut t t=x x x , where subscript ‘m’ and ‘u’ 

denote respectively measured and unmeasured quantities. 

T
1 2( ) [ ( ), ( ), , ( )]

mm m m mNt x t x t x t=x ， T
1 2 ( )[ ( ), ( ), , ( )]

mu u u u N Nx t x t x t−=x , where (N-

Nm) is the number of unmeasured displacement responses. )(tf  is the external 

excitation, T
1 2( ) [ ( ), ( ), , ( )]Nt t t t=f f f f . The Fourier transform of  )(tf k  is denoted 

as )(ωkC .  

 

By adopting the Rayleigh damping assumption, Equation (4.1) can be decoupled 

through the following transformation: 

Φzx =                                                                         (4.2) 

where Φ  is the mass-normalized modal matrix of the system. The uncoupled 

equations of motion of the system can then be expressed as 

2
i i i i i i iz (t) 2 ( )z (t) ( ) z (t) p (t)ξ ω ω+ + =K K  i=1, 2, 3,…, N                         (4.3)    

where
1

( ) ( ) ( )
N

i ji j
j

p t f tφ
=

=∑ K ; ( )jiφ K is the jth component of the ith theoretical mode 

shape and ( )iω K is the ith theoretical circular natural frequency; iξ  is the ith modal 

damping ratio. In most cases, the first two modal damping ratios are estimated from 

the measured acceleration responses, while the higher modal damping ratios are 

derived according to the Rayleigh damping assumption.  

 

Denote the Fourier transform of the displacement response corresponding to 

measured DOFs mx  as ( )m ωX , T
1 2( ) [ ( ), ( ), , ( )]

mm m m mNX X Xω ω ω ω=X . By using 

the mode superposition method, the Fourier transform of the displacement response 
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mix  can be obtained 

1
( ) ( ) ( ),  1, 2, ,

N

mi k ik m
k

X C i Nω ω α ω
=

= =∑                                (4.4) 

2 2
1

( ) ( )
( )

( ) 2 ( )

N
ij kj

ik
j j j ji

φ φ
α ω

ω ω ωω ξ=

⋅
=

− +∑
K K

K K
                              (4.5)  

The conjugate of ( )miX ω , denoted as * ( )miX ω , is calculated by 

* * *

1
( ) ( ) ( )

N

mi k ik
k

X Cω ω α ω
=

=∑                                               (4.6) 

where *( )kC ω and * ( )mkα ω  are respectively the conjugates of ( )kC ω and ( )mkα ω . 

 

It should be noted that not only the statistical moments of the measured absolute 

displacement responses, T
1 2[ , , , ]

mm m m mNx x x=x , but also the relative displacement 

responses, denoted as T
1 2[ , , , ]

mm m m mNy y y=y , can be utilized to identify structural 

stiffness by the generalized SMBDD method. The relative displacement responses 

can be calculated from the measured absolute displacement responses. For example, 

if the kth relative displacement responses mky  is the ith absolute displacement 

response mix  relative to the jth absolute displacement response mjx , mky  can be 

calculated as follow. 

mk mi mj my x x= − = Px                                                     (4.7) 

where [0, ,0,1,0, ,0, 1,0, , 0 ]
mi j N

= −P . When the jth element of P, denoted as jP , 

equals to 0, mky  represents the ith absolute displacement response. In addition, the 

Fourier transform of mky  can be obtained by 

( ) ( )mk mY ω ω= PX     k=1,2,3,…, Nm                               (4.8) 

Therefore, the power spectral density (PSD) function of the kth relative displacement 
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( 1jP = − ) or the kth absolute displacement ( 0jP = ) mky  can be uniformly expressed 

as 

[ ] *( ) ( ) ( )
mky m mS ω ω ω⎡ ⎤= ⎣ ⎦PX PX                                      (4.9)  

where * ( )m ωX is the conjugate of ( )m ωX , * * * * T
1 2( ) [ ( ), ( ), , ( )]

mm m m mNX X Xω ω ω ω=X . 

The variance of mky  can be calculated by 

2 ( )
mk mky yS dσ ω ω

∞

−∞
= ∫                                                   (4.10)  

The external excitations are taken as stationary Gaussian random processes in this 

study. Therefore, the structural responses are also stationary Gaussian random 

processes in terms of a linear structural system. Its statistical moments can be 

computed by 

2 4 6
2 4 6, 3 , 15

mk mk mkk y k y k yM M Mσ σ σ= = = , k=1,2,3,…, Nm          (4.11)  

The theoretical second-order, fourth-order, and sixth-order statistical moment vectors 

can be expressed as 

1 2[ , , , ]
mi i i iNM M M=M , i=2, 4, 6                                    (4.12) 

 

Based on the above derivation, it can be seen that if the mass matrix and the damping 

ratios of the building structure are kept invariant, the statistical moments of 

displacement responses are the function of lateral stiffness of the building. Therefore, 

the ith-order statistical moment vector of the associated responses, denoted as 

 iM (i=2,4,6), can be theoretically calculated for a given stiffness vector 

1 2[ ,  ,  ..., ]Nek k k=k  in the frequency domain. On the other hand, the actual ith-order 

statistical moment vector can be directly estimated from the measured displacement 

responses as follows, denoted as 1 2
ˆ ˆ ˆ ˆ[ , , , ]

ri i i iNM M M=M  (i=2,4,6).  
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Denote the kth actually measured displacement response corresponding to mky  as 

ˆmky , 1, 2,ˆ ˆ ˆ ˆ[ , ]mk mk mk mkNsy y y y= , where sN  is the number of sampling points, the 

statistical moments of ˆmky  can be calculated as follows. 

2 2
2

1 1

1 1ˆ ˆ ˆ( )
s sN N

k mki mki
i is s

M y y
N N= =

= −∑ ∑                                              (4.13) 

 2
4 2

ˆ ˆ3( )k kM M=                                                                      (4.14) 

3
6 2

ˆ ˆ15( )k kM M=                                                                     (4.15)  

Therefore, the residual vector between the theoretical statistical moment vector,  iM , 

for a given stiffness vector and the actual statistical moment vector,  ˆ
iM estimated 

from the measured building responses can be calculated and written as 

ˆ( ) ( )i i= −F k M k M                                                            (4.16)  

Once the objective function has been established, the system identification of the 

undamaged or damaged building structure can be interpreted as a nonlinear least-

squares problem, that is, giving k an initial value 0k and minimizing 2( )F k  through 

optimization algorithms. Detailed information about the optimization algorithms for 

undamaged and damaged building structures can be found in Chapter 3 and will not 

be reiterated here. 

 

In brief, the generalized SMBDD method for a building structure can be 

implemented according to the following steps:  

(1) Decide the number and locations of displacement responses of a building 

structure needed to measure before and after damage and record the 

measurement data of the building structure under external excitations;  
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(2) The actual statistical moments of the measured displacement responses, ˆ
iM , are 

estimated from the measured displacements for undamaged and damaged 

building respectively by using Equations (4.13) ~ (4.15);  

(3) Give the stiffness parameter vector of the building structure an initial value, the 

theoretical statistical moments iM corresponding to ˆ
iM  can be calculated by the 

above Equations (4.4) ~ (4.12) in the frequency domain;  

(4) Substitute ˆ
iM  and iM  into Equation (4.16), the structural stiffness vector can be 

identified by the unconstrained and constrained nonlinear least-squares methods 

for the undamaged and damaged building, respectively;  

 (5) The structural damage including damage existence, location and severity can be 

detected by comparing the identified stiffness vector ˆ uk  of the undamaged 

building with the identified stiffness vector ˆ dk of the damaged building.  

 

The procedure of the generalized SMBDD method to detect structural damage is 

presented in Figure 4.2. The fourth-order moment other than the second-order or the 

sixth-order moment is used in the following investigation which makes a tradeoff 

between the sensitivity of an index to structural damage and its stability to random 

excitation as discussed in Chapter 3.  

 

4.3 Different Types and Locations of External Excitation  

4.3.1 Different types of external excitation 

In this section numerical investigation is made to extend the SMBDD method from 

Gaussian white  noise ground excitation to colored noise ground excitation. The 
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three-story shear building model used in Chapter 3 is employed here to demonstrate 

the feasibility and effectiveness of the proposed method by utilizing colored noise 

ground excitation. In the following numerical investigation, the power spectral 

density (PSD) of the colored noise excitation is the Kanai–Tajimi spectral density 

function which has the form of  

2 2

0
22 2 2

1 4 ( )
( )

[1 ( ) ] 4 ( )

g
g

g

g
g g

S S

ωζ
ω

ω ω ωζ
ω ω

+
=

− +
                                         (4.17) 

where gω , gζ and S0 may be regarded as the characteristics and the intensity of an 

external excitation. The parameters in Equation (4.17) are selected as gω =15.0 rad/s, 

gζ =0.6, and 0S =4.65 410−× m2/rad s3. The time duration of the simulated acceleration 

is 1000s and the sampling frequency is 256Hz. The PSD function of the simulated 

acceleration is estimated and compared with the preset Kanai–Tajimi spectral density 

function in Figure 4.3 (b). The probability density functions (PDFs) of simulated 

ground acceleration with Gaussian and nonparametric fitting are presented in Figure 

4.3 (c). It can be seen that the PDF of simulated ground acceleration can be regarded 

as a Gaussian distribution. Displacement responses of the undamaged and damaged 

buildings are measured and then their story drifts are calculated.  

 

The undamaged shear building is firstly identified by the SMBDD method. Listed in 

Table 4.1 are the values of the fourth-order moments of the story drifts of the 

undamaged building u
4iM̂ ( 3,2,1=i ) calculated by Equation (4.14) and the 

identified stiffness values of the undamaged building u
ik̂  ( 3,2,1=i ) using the least-

squares method. It can be found that the identified horizontal stiffness coefficients of 
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the undamaged building u
ik̂  are very close to the real values u

ik . Compared with the 

real values, the relative errors of the three identified horizontal stiffness values are 

only 0.36%, 0.32% and 0.30%, respectively, which lays down a good foundation for 

the coming damage detection. Furthermore, comparing the identified horizontal 

stiffness parameters using colored noise excitation with those using white noise 

excitation listed in Table 3.4, it can be seen that the type of external excitations has 

no much effect on the quality of the identified results. The maximum relative error 

between them is only 0.57%. It indicates that different types of external excitations 

can be utilized to identify structural stiffness parameters before and after damage and 

then to detect structural damage.  

Table 4.1 Analysis results of the undamaged shear building by utilizing colored noise 

ground excitation 

Story )( ˆ 4u
4i mM  ˆ ( / )u

ik kN m  u  ( / )ik kN m  

1 2.3546 1410−×  4745423.61 4728400.00 

2 9.0875 1010−×  316236.44 315230.00 

3 1.6514 910−×  158080.95 157610.00 
 

Then ten damage scenarios with different damage locations and damage severities 

are examined to demonstrate the robustness of the proposed method by employing 

the colored noise ground excitation. The details of these damage scenarios are 

presented in Table 4.2, in which Scenarios 1 ~7 have been investigated by the 

proposed method utilizing white noise ground excitation in Chapter 3. And two more 

scenarios with very small damage severity of 2%, Scenario 8 and 9, are also 

examined to check the sensitivity of the proposed method to structural damage by 

using the colored noise ground excitation. Very adverse circumstances for damage 

detection are considered in the multi-damage scenarios. For example, in Scenario 10, 
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a small damage of 5% at Story 2 is set to be in the middle of two large damages of 

20% and 30% at Story 1 and Story 3, respectively.   

Table 4.2 Details of damage scenarios 1-10 of a three-story shear building 

Scenario Story 1 Story 2 Story 3 

1 0.98 uk1  uk2  uk3  

2 uk1  0.95 uk2  uk3  

3 uk1  uk2  0.90 uk3  

4 0.90 uk1  0.95 uk2  uk3  

5 0.90 uk1  uk2  0.70 uk3  

6 uk1  0.95 uk2  0.90 uk3  

7 0.95 uk1  0.90 uk2  0.80 uk3  

8 uk1  0.98 uk2  uk3  

9 uk1  0.90 uk2  0.98 uk3  

10 0.80 uk1  0.95 uk2  0.70 uk3  
 

For each damage scenario, the fourth-order moments of story drifts are computed 

from the measured displacement responses of the damaged building and then utilized 

to identify the horizontal stiffness values of the damaged building. With reference to 

the identified horizontal stiffness values of the undamaged building (see Table 4.1), 

the damage locations and their corresponding damage severities are determined. The 

identified results are presented in Figure 4.4 and also listed in Table 4.3. As seen 

from Figure 4.4, the damage locations can be accurately identified out for both single 

damage and multi-damage scenarios by using the colored noise excitations. In 

comparison with the actual damage severities shown in Table 4.3, it can be seen that 

the identified damage severities are quite close to the actual damage severities. Even 

for the small damage of 2% in Scenarios 1, 8 and 9 with single or multi damage, the 

identified damage severities are respectively 1.95% at Story 1 for Scenario 1, 1.49% 

at Story 2 for Scenario 8 and 1.65% at Story 3 for Scenario 9. The effectiveness and 
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sensitivity of the proposed method to structural damage are demonstrated through 

these damage scenarios by using colored noise excitations.  

Table 4.3 Identified damage severities by colored noise ground excitation 

Story 1 Story 2 Story 3 
Scenario 

μ (%) μ̂ (%) μ (%) μ̂ (%) μ (%) μ̂ (%) 

1 -2.00 -1.95 0.00 0.00 0.00 0.00  

2 0.00 0.00 -5.00 -4.60 0.00 0.00  

3 0.00 0.00 0.00 0.00 -10.00 -9.82  

4 -10.00 -9.74 -5.00 -4.71 0.00 0.00  

5 -10.00 -10.23 0.00 -0.17 -30.00 -30.08  

6 0.00 0.00 -5.00 -4.56 -10.00 -9.66  

7 -5.00 -4.88 -10.00 -9.79 -20.00 -19.77  

8 0.00 0.00 -2.00 -1.49 0.00 0.00  

9 0.00 0.00 -10.00 -9.61 -2.00 -1.65  

10 -20.00 -20.82 -5.00 -5.95 -30.00 -30.67  
 

The influence of measurement noise on the quality of damage detection results is 

considered by contaminating measured displacement responses and external 

excitations with white Gaussian random noises in the following numerical 

investigation. The superimposed random noises are independent to and different with 

each other. The measurement noise intensity (MNI) is adopted as 15%. The 

calculated fourth-order moments and the identified horizontal stiffness coefficients of 

the undamaged building with the effects of measurement noise are listed in Table 4.4. 

The relative errors between the identified horizontal stiffness values and the actual 

ones are respectively only 0.37%, 0.43% and 0.43% for the three stories. The 

measurement noise has no much effect on the quality of identified results. The 

identified results of the ten aforementioned damage scenarios with the MNI of 15% 

are presented in Figure 4.4 and Table 4.5.   
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Table 4.4 Identified results of the undamaged building (MNI of 15%) 

Story  )( ˆ 4u
4i mM  ˆ ( / )u

ik kN m  u  ( / )ik kN m  

1   2.3546 1410−×  4710815.11 4728400.00 

2 9.0875 1010−×  313889.28 315230.00 

3 1.6514 910−×  156935.12 157610.00 
 

Table 4.5 Identified results by colored noise ground excitation (MNI of 15%) 

Story 1 Story 2 Story 3 
Scenario 

μ (%) μ̂ (%) μ (%) μ̂ (%) μ (%) μ̂ (%) 

1 -2.00 -1.88 0.00 0.00 0.00 0.00  

2 0.00 0.00 -5.00 -4.88 0.00 0.00  

3 0.00 0.00 0.00 0.00 -10.00 -9.92  

4 -10.00 -10.23 -5.00 -5.21 0.00 -0.19  

5 -10.00 -10.71 0.00 -0.70 -30.00 -30.45  

6 0.00 0.00 -5.00 -4.81 -10.00 -9.84  

7 -5.00 -5.29 -10.00 -10.19 -20.00 -20.14  

8 0.00 0.00 -2.00 -1.63 0.00 0.00  

9 0.00 0.00 -10.00 -9.70 -2.00 -1.73  

10 -20.00 -20.89 -5.00 -6.00 -30.00 -30.70  
 

As seen from Figure 4.4, there are no much difference among the identified results 

without measurement noise, those with measurement noise and the real values even 

when the MNI is as high as 15%. Accurate damage locations and reliable damage 

severities are obtained at such a high measurement noise level. The insensitiveness of 

the SMBDD method to measurement noise is demonstrated again by employing 

colored noise ground excitations.  
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4.3.2 Different locations of external excitation  

In terms of practical application, it is sometimes more convenient to excite a 

structure at its floor by using an exciter. Therefore, it is necessary to investigate the 

feasibility and effectiveness of the proposed SMBDD method by utilizing non-

ground excitations. The colored noise excitations aforementioned are employed and 

imposed at the first floor of the three-story shear building in the following numerical 

analysis.  

 

Firstly, the undamaged shear building is identified by the proposed method. The 

fourth-order moments of the story drifts of the undamaged building, u
4iM̂ ( 3,2,1=i ), 

calculated by Equation (4.14) and the identified stiffness values of the undamaged 

building, u
ik̂  ( 3,2,1=i ) are presented in Table 4.6. It can be seen that the identified 

horizontal stiffness coefficients of the undamaged building u
ik̂  are very close to the 

real values u
ik . The relative errors of the identified horizontal stiffness values to the 

real values are only 0.63%, 0.30% and 0.44%, respectively.  

Table 4.6 Identified results of the undamaged building by colored noise excitation at 

the first floor 

Story  )( ˆ 4u
4i mM  ˆ ( / )u

ik kN m  u  ( / )ik kN m  

1 2.3094 1710−×  4758184.60 4728400.00 

2 1.6873 1510−×  314270.49 315230.00 

3 3.5300 1510−×  156921.92 157610.00 
 

Then the ten damage scenarios presented in Table 4.2 are examined to demonstrate 

the applicability of the proposed method for damage detection by using the non-

ground colored noise excitation. The horizontal stiffness values of the damaged 
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building are identified. With reference to the identified horizontal stiffness values of 

the undamaged building (see Table 4.6), the damage locations and damage severities 

are determined for every damage scenario. The identified results are presented in 

Figure 4.5 and also listed in Table 4.7. The damage locations are accurately 

identified for both single damage and multi-damage scenarios according to Figure 

4.5. In comparison with the actual damage severities shown in Table 4.7, the 

identified damage severities by the colored noise excitation acting at the first floor 

are quite close to the actual damage severities. Even for very small damage cases, 

satisfactory identified results are obtained. For example, the identified results for the 

small damage of 2% in Scenarios 1, 8 and 9 are respectively 1.99% at Story 1 for 

Scenario 1, 2.01% at Story 2 for Scenario 8 and 1.24% at Story 3 for Scenario 9. The 

effectiveness and sensitivity of the proposed method to structural damage are 

demonstrated again by using the non-ground colored noise excitation.  

Table 4.7 Identified damage severities by colored noise excitation at the first floor 

Story 1 Story 2 Story 3 
Scenario 

μ (%) μ̂ (%) μ (%) μ̂ (%) μ (%) μ̂ (%) 

1 -2.00 -1.99 0.00 0.00 0.00 0.00  

2 0.00 0.00 -5.00 -5.02 0.00 0.00  

3 0.00 -0.02 0.00 0.00 -10.00 -9.99  

4 -10.00 -10.00 -5.00 -5.01 0.00 0.00  

5 -10.00 -10.41 0.00 0.00 -30.00 -29.76  

6 0.00 0.00 -5.00 -4.17 -10.00 -9.24  

7 -5.00 -5.09 -10.00 -9.47 -20.00 -19.48  

8 0.00 0.00 -2.00 -2.01 0.00 0.00  

9 0.00 0.00 -10.00 -9.26 -2.00 -1.24  

10 -20.00 -20.92 -5.00 -5.25 -30.00 -30.01  
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The influence of measurement noise on the damage detection results is also 

numerically investigated. Random white noises are utilized to contaminate the 

measured displacement responses of the building and the external excitation. The 

MNI of 15% is adopted here. The calculated fourth-order moments and the identified 

horizontal stiffness coefficients of the undamaged building with the effects of 

measurement noise are listed in Table 4.8. The relative errors between the identified 

horizontal stiffness values and the actual ones are respectively 0.56%, 1.44% and 

1.87% for the three stories. The measurement noise has no much effect on the 

identified horizontal stiffness values. The identified damage severities are presented 

in Figure 4.5 and Table 4.9 for all damage scenarios with MNI of 15%. 

Table 4.8 Identified results of the undamaged building with MNI of 15% 

Story  )( ˆ 4u
4i mM  ˆ ( / )u

ik kN m  u  ( / )ik kN m  

1 2.4150 1710−×  4754794.57 4728400.00 
2 1.7251 1510−×  310687.53 315230.00 
3 3.6432 1510−×  154662.48 157610.00 

 

As seen from Figure 4.5, the identified results without measurement noise and those 

with measurement noise are very close to the actual ones.  Even when the MNI is as 

high as 15%, satisfactory results are also obtained for both damage locations and 

damage severities by the proposed method utilizing colored noise excitation at the 

first floor. The stability and insensitivity of the proposed method to measurement 

noise are demonstrated through the shear building structure utilizing the colored 

noise excitation acting on upper structures. In addition, comparing the horizontal 

stiffness values of the undamaged shear building identified by colored noise 

excitations at the first floor with consideration of MNI of 15% (see Table 4.8) with 

those identified by white noise ground excitations with consideration of MNI of 15% 
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(see Table 3.9), the maximum relative error among them is only 0.98%. Therefore, 

different types and different locations of external excitations can be utilized to 

vibrate building structures before and after damage by the proposed damage 

detection method.  

Table 4.9 Identified results of damage scenarios by colored noise excitation at the 

first floor with MNI of 15% 

Story 1 Story 2 Story 3 
Scenario 

μ (%) μ̂ (%) μ (%) μ̂ (%) μ (%) μ̂ (%) 

1 -2.00 -2.14 0.00 -0.02 0.00 0.00  

2 0.00 -0.07 -5.00 -5.97 0.00 -0.96  

3 0.00 -0.15 0.00 -0.88 -10.00 -10.76  

4 -10.00 -10.05 -5.00 -5.04 0.00 0.00  

5 -10.00 -10.33 0.00 -1.53 -30.00 -31.11  

6 0.00 -0.02 -5.00 -4.14 -10.00 -9.17  

7 -5.00 -5.34 -10.00 -11.76 -20.00 -21.44  

8 0.00 0.00 -2.00 -2.05 0.00 0.00  

9 0.00 -0.01 -10.00 -9.84 -2.00 -1.82  

10 -20.00 -21.52 -5.00 -4.96 -30.00 -29.34  
 

4.4 Damage Detection on High-rise Buildings with Incomplete 

Measurement       

4.4.1 Numerical model 

In this section, the generalized SMBDD method is applied to a high-rise building. 

The analysis model of a MDOF flexible building structure is presented in Figure 4.6. 

Two degrees of freedom are considered for every node in the FE model: the 

horizontal displacement x  and the angular displacement θ . But only the horizontal 

displacement responses are measured and utilized to detect structural damage in the 
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following investigation. The ith element stiffness matrix of the flexible model can be 

expressed as 

3 2 3 2
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where ( )iEI  is the product of the modulus of elasticity and the moment of inertia of 

the ith element. ih  is the length of the ith element. For the special case of the element 

with uniformly distributed mass, the mass matrix of the ith element is: 

2 2

2 2

156        22      54     13
22          4     13    3
54          13       156   22L420

13   3   22L       4

i
e

L L
L L L LmL

L
L L L
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⎢ ⎥−⎢ ⎥= ⎢ ⎥−
⎢ ⎥
− − −⎢ ⎥⎣ ⎦

M                              (4.19) 

where m  is the mass density (mass per unit height) of the flexible building. Then the 

stiffness matrix and the mass matrix for the entire system can be obtained by 

respectively assembling the stiffness matrix and mass matrix of each beam element 

of the structure. The global mass matrix and stiffness matrix are then substituted into 

Equation (4.1). In the following numerical investigation, the explored flexible 

building is a 20-story high-rise building with height 80Th = m. The mass density is 

4×105kg/m. The stiffness parameter for the flexible building is ( )TEI =8.18×1010 

kN.m2, where E is Young’s Modulus and I is the moment of inertia of the building. 

The high-rise building is discretized into five elements with the length of 16m. The 

ground acceleration is modeled as a colored noise with the Kanai-Tajimi spectrum 
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having parameters gω =15.6 rad/s and gζ =0.6. The magnitude is chosen such that the 

maximum ground acceleration is 2.0 m/sec2.  

 

4.4.2 Damage detection on high-rise buildings with incomplete 

measurement and without measurement noise 

In the following numerical investigation, the five story drifts of the high-rise building 

are calculated from the measured horizontal displacement responses and utilized to 

detect structural damage.  Firstly, structural identification is carried out on the 

undamaged building without considering the effect of measurement noise on 

detected results. The fourth-order moments of the story drifts, u
4iM̂ ( 3,2,1=i ), are 

calculated by Equation (4.13) and then used to identify the stiffness parameters of the 

undamaged building, ˆ( ) u
iEI  ( 3,2,1=i ). The fourth-order moments and the identified 

stiffness parameters of all elements are presented in Table 4.10. The maximum 

relative errors of the identified stiffness parameters is only 0.14% for Element 5, 

while the other four relative errors are 0.02%, 0.01%, 0.04% and 0.06%, respectively.  

It can be seen that the identified horizontal stiffness coefficients of the undamaged 

building ˆ( ) u
iEI  are almost the same as the theoretical values u( )iEI . 

 

Then six damage scenarios are designed and examined to demonstrate the robustness 

of the proposed method for high-rise buildings with incomplete measurement. The 

details of the six damage scenarios are presented in Table 4.11. Scenarios 1 and 2 are 

single damage cases, while there are two or three damage elements in Scenario 3, 4 

and 5 and all elements are damaged in Scenario 6. For each damage scenario, the 

fourth-order moments of the story drifts are computed according to Equation (4.13).  
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The horizontal stiffness parameters of the damaged building for every damage 

scenarios are identified by the constrained least-squares method. With reference to 

the identified horizontal stiffness values of the undamaged building (see Table 4.10), 

the damage locations and damage severities are identified for every damage scenario. 

The identified results without considering the effect of measurement noise are 

presented in Figure 4.7 and Table 4.12. 

 

According to Figure 4.7, the damage locations can be apparently and accurately 

identified out for both the single damage and the multi-damage scenarios. Even for 

the very small damage of 2%, the damage locations can also be accurately detected, 

say, Element 3 in Scenario 2, Element 4 in Scenario 3 and Element 5 in Scenario 6. 

In comparison with the actual damage severities shown in Table 4.12, the identified 

damage severities are quite close to the actual values for these damage scenarios. The 

feasibility and effectiveness of the proposed method are demonstrated again through 

the high-rise building structure even when only the horizontal displacement 

responses are measured. 

Table 4.10 Identified results of the undamaged building by colored noise ground 

excitation  

Element )( ˆ 4u
4i mM  u 5( )  ( 10 / )iEI kN m× u 5ˆ( )  ( 10 / )iEI kN m×

1 1.0319757 1010−× 818000.00 817836.65 

2 4.6951913 910−× 818000.00 817907.89 

3 1.7689435 810−×  818000.00 817698.12 

4 3.0304883 810−×  818000.00 817468.40 

5 3.5325220 810−×  818000.00 816855.31 
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Table 4.11 Details of damage scenarios of a high-rise building 

Scenario No. Damage severity Damage location 

1 5% 1st element 

2 2% 3rd element 

10% 1st element 
3 

2% 4th element 

5% 2nd element 
4 

10% 5th element 

20% 1st element 

10% 3rd element 5 

5% 5th element 

10% 1st element 

5% 2nd element 

5% 3rd element 

5% 4th element 

6 

2% 5th element 
 

Table 4.12 Identified damage severities of a high-rise building with noise free 

Scenario  
No. 

Element 
1 

Element 
2 

Element 
3 

Element 
4 

Element 
5 

1 -5.13 -0.14 -0.14 -0.14 -0.14 

2 -0.03 -0.03 -2.03 -0.03 -0.03 

3 -10.30 -0.34 -0.34 -2.34 -0.33 

4 -0.13 -5.13 -0.13 -0.13 -10.11 

5 -19.03 0.00 -8.94 0.00 -3.92 

6 -10.38 -5.41 -5.41 -5.43 -2.41 
 

4.4.3 Damage detection on high-rise buildings with measurement noise 

The influence of measurement noise on the quality of the damage detection results is 

numerically investigated through the high-rise building structure. Random white 

noises are added to both the measured horizontal displacement responses of the 

building and the external acceleration excitation. The MNI of 15% is adopted here. 
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Similar procedure is adopted to detect structural damage as that without considering 

measurement noise. The identified stiffness parameters of the undamaged building 

with the effects of measurement noise are listed in Table 4.13. The maximum relative 

error between the identified stiffness parameters and the actual ones are only 1.44% 

for the five elements even when the MNI is 15%, which demonstrate the reliability of 

the generalized SMBDD method under measurement noise and incomplete 

measurement.   

Table 4.13 Identified results of the undamaged high-rise building with MNI of 15% 

Element )( ˆ 4u
4i mM  u 5ˆ( )  ( 10 / )iEI kN m× u 5( )  ( 10 / )iEI kN m×  

1 1.5065 1010−× 806943.46 818000.00 

2 6.8538 910−× 806978.22 818000.00 

3 2.5822 810−× 806924.45 818000.00 

4 4.4237 810−× 806827.05 818000.00 

5 5.1566 810−× 806226.68 818000.00 
 

Then the six damage scenarios presented in Table 4.11 are explored to evaluate the 

effect of measurement noise on the quality of identified results. For each damage 

scenario, the measured horizontal displacement responses and the external excitation 

are contaminated by independent white Gaussian random noises. The noise intensity 

is adopted as 15%. The horizontal stiffness parameters of the damaged building for 

every damage scenarios are identified by utilizing the fourth-order moments of the 

contaminated responses and the contaminated external excitation. With reference to 

the identified horizontal stiffness values of the undamaged building (see Table 4.13), 

the damage severity of each element is finally calculated for every damage scenario. 

The identified results are presented in Figure 4.8 and Table 4.14.  
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As seen from Figure 4.8, there is no much difference between the identified results 

without measurement noise and those with measurement noise which are at the same 

time very close to the actual ones. Even when the MNI is as high as 15%, 

satisfactory results are also obtained for both damage locations and damage severities 

by the proposed method. In other words, the proposed method is insensitive to 

measurement noise. The reliability and robustness of the proposed method are 

demonstrated through the high-rise building structure with considering the effect of 

measurement noise.  

Table 4.14 Identified damage severities of a high-rise building with MNI of 15% 

Scenario  
No. 

Element 
1 

Element 
2 

Element 
3 

Element 
4 

Element 
5 

1 -5.84 -0.90 -0.88 -0.87 -0.83 

2 -0.15 -0.16 -2.16 -0.17 -0.17 

3 -10.73 -0.83 -0.82 -2.81 -0.78 

4 -0.03 -5.04 -0.05 -0.06 -10.04 

5 -19.03 0.00 -8.94 0.00 -3.96 

6 -11.05 -6.13 -6.11 -6.12 -3.11 
 

4.5 Damage Detection on Frame Structures with Incomplete 

Measurement      

4.5.1 Numerical model 

The feasibility and robustness of the SMBDD method being applied to frame 

structures are investigated in this section. A 2-D moment resisting one-story and one-

bay steel frame (see Figure 4.9) is employed to illustrate the application of the 

proposed method. The frame consists of two columns (W14×257 and W14×311) and 

one beam (W33×118). The columns are made of 345 MPA (50ksi) steel and the 

beam is made of 248 MPA (36ksi) steel. The bay width L is 9.15m (30ft) and the 



Chapter 4                                             Generalization of SMBDD Method in Frequency Domain 

 4-24

height h is 3.96m (13 ft). The mass density of the left column (W14×257) is 382.46 

Kg/m, while that of the right column (W14×311) is 462.82 Kg/m and that of the 

beam is 17235.7 Kg/m. The Rayleigh damping is assumed and the first two damping 

ratios are adopted as 2%. The external excitations are simulated as zero-mean 

colored noise acceleration represented by the Kanai-Tajimi spectrum having 

parameters gω =15.6 rad/s and gζ =0.6 .  The locations of the external excitations are 

presented in Figure 4.9. The magnitude is chosen such that the maximum 

acceleration is 2.0 m/sec2. The duration of the external excitation time history is 

1000s with a sampling frequency of 256 Hz. The FE model of the frame structure is 

presented in Figure 4.9. Each column or beam is divided into two elements. These 

elements are numbered and marked in Figure 4.9. The bar element is adopted in the 

finite element model of the frame structure. The element stiffness matrix, eK , is 

given as 
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where E , A  and I  are respectively the elastic modulus, the area and the inertia 

moment of the element. The mass matrix of the ith element with the uniformly 

distributed mass is: 
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where m  is the mass density (mass per unit height) of the ith element. Then the mass 

matrix and the stiffness matrix for the entire system can be obtained by assembling 

all the element mass matrices and the element stiffness matrices, respectively.  

 

4.5.2 Damage detection on frame structures without measurement noise 

In the following numerical investigation, only the horizontal and vertical 

displacement responses are measured and utilized to detect frame structures’ damage 

by the generalized SMBDD method.  Firstly, structural identification is carried out 

on the undamaged frame structure without considering the effect of measurement 

noise. The identified stiffness parameters of the undamaged frame structure, ˆ( ) u
iEI  

( 1,2,3,4,5,6i = ) are presented and compared with real values u( )iEI  in Table 4.15. 

The maximum relative error of the identified stiffness parameters is only 0.69%. The 

high accuracy of the identified stiffness parameters of the undamaged building paves 

a good foundation for the following damage detection of the frame structure.  

 

Then six damage scenarios are designed and examined to demonstrate the robustness 

of the proposed method for frame structures. The details of the six damage scenarios 

are presented in Table 4.16. Scenarios 1, 2 and 3 are single damage in which 

Scenarios 1and 3 have damage in column elements and Scenarios 2 have damage in a 

beam element (see Figure 4.9). The other three damage scenarios have multi-damage 
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with different locations and different damage severities. The actual locations of all 

damaged elements can be found in Figure 4.9. For each damage scenario, the actual 

fourth-order moments of displacement responses are directly computed from the 

measured displacement responses of the damaged buildings by Equation (4.14). Then 

the stiffness parameters of the damaged building for every damage scenarios are 

identified by the constrained least-squares method. With reference to the identified 

stiffness parameters of the undamaged building (see Table 4.15), damage locations 

and their corresponding damage severities of damage scenario are identified. The 

identified results are presented in Figure 4.10 and listed in Table 4.17.  

Table 4.15 Identified results of the undamaged frame structure with noise free 

Element u 2( )  ( )iEI N m⋅ u 2ˆ( )  ( )iEI N m⋅  Relative Error 

1 491153082.21 494203217.52 0.62% 

2 491153082.21 489363945.78 0.36% 

3 283037369.41 283104171.25 0.02% 

4 283037369.41 281073515.95 0.69% 

5 360456414.57 360771944.64 0.09% 

6 360456414.57 358373464.68 0.58% 

 

As seen from Figure 4.10, the damage locations of the frame structure can be 

accurately identified out for both single damage and multi-damage scenarios no 

matter whether the damage is in beam elements or in column elements. Even for the 

very small damage of 2% in Scenario 3, the damage locations can also be detected 

out. In comparison with the real damage severities shown in Table 4.16 for every 

damage scenario, it can be seen that the identified damage severities in Table 4.17 

are quite close to the real values for both single damage and multi-damage scenarios. 

The feasibility and robustness of the proposed method are demonstrated through the 
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frame structure with incomplete measurement when measurement noise is not 

considered.   

Table 4.16 Details of damage scenarios of the frame structure 

Scenario No. Damage severity Damage location 

1 5% 3rd element 

2 5% 2nd element 

3 2% 6th element 

5% 1st element 
4 

10% 5th element 

10% 2nd element 

10% 3rd element 5 

20% 5th element 

5% 1st element 

10% 2nd element 

15% 4th element 
6 

20% 5th element 
 

Table 4.17 Identified damage severities (%) of the frame structure with noise free 

Scenario  
No. 

Element 
1 

Element 
2 

Element 
3 

Element 
4 

Element 
5 

Element 
6 

1 0.00 0.00 -5.13 -0.03 -0.08 0.00 

2 0.00 -5.06 0.00 -0.14 -0.01 -0.06 

3 0.00 0.00 0.00 -0.05 0.00 -2.07 

4 -4.97 -0.04 0.00 -0.45 -10.02 0.00 

5 0.00 -9.07 -9.51 -2.25 -20.36 0.00 

6 -3.95 -9.97 0.00 -16.42 -20.06 0.00 
 

4.5.3 Damage detection on frame structures with measurement noise 

Then the influence of measurement noise on the quality of damage detection results 

is numerically investigated through frame structures. Gaussian white  noises are 

added to both the measured displacement responses of the building and the external 
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acceleration excitation. The added random noises are independent to and different 

with each other. The MNI of 15% is adopted here. The identified stiffness parameters 

of the undamaged building with the effects of measurement noise are listed and 

compared with the real values in Table 4.18. The maximum relative error between 

the identified stiffness parameters and the actual ones is 1.58%, which is larger than 

that without the effects of measurement noise but still acceptable in consideration of 

the high measurement noise intensity of 15%.  

Table 4.18 Identified results of the undamaged frame structure with MNI of 15% 

Element u 2( )  ( )iEI N m⋅  u 2ˆ( )  ( )iEI N m⋅  Relative Error 

1 491153082.21 495524388.89 0.89% 

2 491153082.21 489843679.41 0.27% 

3 283037369.41 283513318.58 0.17% 

4 283037369.41 278577259.14 1.58% 

5 360456414.57 361059562.66 0.17% 

6 360456414.57 355794388.97 1.29% 

 

Then the six damage scenarios aforementioned are explored again to evaluate the 

effect of measurement noise. For each damage scenario, the measured displacement 

responses and the external excitation are contaminated by the measurement noise. 

The noise intensity is adopted as 15%. The stiffness parameters of the damaged 

building for every damage scenarios are identified by utilizing the fourth-order 

moments of the contaminated responses and the contaminated external excitation. 

With reference to the identified stiffness parameters of the undamaged building (see 

Table 4.18), the damage severity of each element is finally calculated for every 

damage scenario. The identified results are presented in Figure 4.10 and compared 

with real values and those without considering measurement noise. The damage 

severity values of the six damage scenarios can be found in Table 4.19.  
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Table 4.19 Identified damage severities of the frame structure with MNI of 15% 

Scenario  
No. 

Element 
1 

Element 
2 

Element 
3 

Element 
4 

Element 
5 

Element 
6 

1 0.00 -0.08 -4.99 0.00 -0.02 -0.02 

2 0.00 -3.92 0.00 -0.32 -0.58 0.00 

3 0.00 0.00 0.00 0.00 0.00 -1.10 

4 -4.35 0.00 0.00 -1.00 -9.89 0.00 

5 0.00 -8.91 -9.52 -1.96 -20.36 0.00 

6 -4.48 -9.25 -0.32 -16.35 -20.15 0.00 
 

It can be seen from Figure 4.10 that even when the MNI is as high as 15%, the 

damage locations of these scenarios are accurately detected out for the frame 

structure with incomplete measurement. The location of very small damage of 2% in 

Scenario 3 is also identified out. In addition, as seen from Table 4.19, the identified 

damage severity values with measurement noise are close to the real ones. Compared 

with the identified results without measurement noise, the measurement noise has 

small effect on the identified results. The feasibility and robustness of the proposed 

method are demonstrated through the frame structure with incomplete measurement 

and with high level of measurement noise.  

 

4.6 Conclusions       

In this chapter research efforts are made to extend the SMBDD method from 

Gaussian white  noise ground excitation to colored noise excitation, from shear 

building structures to more general building structures represented by FE models and 

from complete measurements to incomplete measurements. The more general 

equations of the SMBDD method are derived in the frequency domain. Then the 

generalized SMBDD method is numerically investigated in the frequency domain for 
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the aforementioned extension cases.  

 

In the numerical investigation, the colored noise acceleration with the Kanai–Tajimi 

power spectral density is firstly employed as ground external excitation. Various 

damage scenarios of a multi-story shear building are explored by the proposed 

method. Numerical results show that the damage locations and damage severities of 

these damage scenarios are accurately detected by using the colored noise ground 

excitation. The effect of measurement noise is explored by contaminating the 

displacement responses and external excitations with Gaussian white  noise.  Even 

when the measurement noise intensity is as high as 15%, the SMBDD method still 

gives highly reliable results on damage severities and damage locations of the multi-

story shear building structure. Then the locations of the colored noise excitation 

change from ground to the upper structure. Various damage scenarios 

aforementioned and the effect of measurement noise are examined again. It is shown 

that the proposed method is still feasible and effective to detect both damage 

locations and damage severities when colored noise excitations acting on the upper 

structures are utilized and high level of measurement noise is considered.  The types 

and locations of external excitations have no much effect on the quality of the 

identified stiffness parameters of building structures. Therefore, before and after 

damage, different types and different locations of external excitations can be utilized 

to vibrate building structures by the proposed damage detection method. 

 

After that, the generalized SMBDD method is applied to high-rise buildings with 

incomplete measurement. A 20-story high-rise building with height 80Th = m is 

employed to demonstrate the feasibility and robustness of the SMBDD method. In 
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the numerical investigation, only the horizontal displacement responses of the high-

rise building is measured and utilized to detect damage, which is much less than the 

number of the DOFs. Various damage scenarios with different damage locations and 

damage severities of the high-rise building are identified by the proposed method. It 

is shown that the method can effectively identify damage locations and damage 

severities of various damage scenarios under the influences of measurement noise 

and incomplete measurement.  

 

Finally, a frame structure is numerically investigated by the proposed method. Only 

the horizontal and vertical displacement responses are measured and utilized to 

detect structural damage. The advantage of the proposed method that is both 

sensitive to structural damage and insensitive to measurement noise is manifested 

through various damage scenarios of the frame structure with incomplete 

measurement. The feasibility and robustness of the proposed method are 

demonstrated again through the frame structure. 

 

In conclusion, the generalized SMBDD method is sensitive to both damage states 

and to damage levels. Theoretically speaking, it can be applied to any structures by 

utilizing any Gaussian external excitations with no limitation of locations. In addition, 

it has the capability to cope with the incomplete measurement problem. Such features 

of the proposed method show great potential for industrial applications. 

 

Nevertheless, the research efforts up to now only focus on the SMBDD method in 

the frequency domain which requires that the external excitations should be 

stationary and have Gaussian distributions. Such a requirement prevents the SMBDD 
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method from practical application under other external loads of non-Gaussian nature. 

To make the proposed method more versatile, the SMBDD method in the time 

domain without such a limitation will be explored in the next chapter.  
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Figure 4.1 Finite element model of a building structure 
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Figure 4.2 Procedure of the generalized SMBDD method 
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Figure 4.3 Simulated colored noise excitation: (a) time history, (b) power spectrum 

density, (c) probability density distribution 
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       (a) Scenario 1                                              (b) Scenario 2 
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       (e) Scenario 5                                              (f) Scenario 6 
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       (g) Scenario 7                                              (h) Scenario 8 
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       (j) Scenario 9                                              (k) Scenario 10 

Figure 4.4 Identified results of shear building structures using colored noise ground 

excitation: (a) Scenario 1, (b) Scenario 2, (c) Scenario 3, (d) Scenario 4, (e) Scenario 

5, (f) Scenario 6, (g) Scenario 7, (h) Scenario 8, (j) Scenario 9, (k) Scenario 10 
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       (a) Scenario 1                                              (b) Scenario 2 
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       (c) Scenario 3                                              (d) Scenario 4 
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       (e) Scenario 5                                              (f) Scenario 6 
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       (g) Scenario 7                                              (h) Scenario 8 
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       (j) Scenario 9                                              (k) Scenario 10 

Figure 4.5 Identified results of shear building structures using colored noise 

excitation at the first floor: (a) Scenario 1, (b) Scenario 2, (c) Scenario 3, (d) 

Scenario 4, (e) Scenario 5, (f) Scenario 6, (g) Scenario 7, (h) Scenario 8, (j) Scenario 

9, (k) Scenario 10 
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Figure 4.6 Configuration of a high-rise building structure  
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        (a) Scenario 1                                              (b) Scenario 2 
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        (c) Scenario 3                                              (d) Scenario 4 
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            (e) Scenario 5                                              (f) Scenario 6 

Figure 4.7 Identified results of a high-rise building with noise free: (a) Scenario 1, (b) 

Scenario 2, (c) Scenario 3, (d) Scenario 4, (e) Scenario 5, (f) Scenario 6 
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       (a) Scenario 1                                              (b) Scenario 2 
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       (c) Scenario 3                                              (d) Scenario 4 
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       (e) Scenario 5                                              (f) Scenario 6 

Figure 4.8 Identified results of a high-rise building with the MNI of 15%: (a) 

Scenario 1, (b) Scenario 2, (c) Scenario 3, (d) Scenario 4, (e) Scenario 5, (f) Scenario 

6 
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Figure 4.9 Configuration of a steel frame structure 
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Figure 4.10 Identified results of the frame structure with the MNI of 15%(a) Scenario 

1, (b) Scenario 2, (c) Scenario 3, (d) Scenario 4, (e) Scenario 5, (f) Scenario 6 
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CHAPTER 5 

STATISTICAL MOMENT-BASED DAMAGE 

DETECTION METHOD IN TIME DOMAIN 

5.1 Introduction     

The feasibility and robustness of the SMBDD method have been numerically 

demonstrated in the frequency domain through shear buildings, tall buildings and 

frame structures with consideration of the problems of incomplete measurements and 

measurement noise in Chapters 3 and 4. However, the SMBDD method can be 

applied to practical structures in the frequency domain only when external 

excitations have Gaussian distributions. This requirement limits the application of the 

SMBDD method to other non-Gaussian external excitations. In this regard, the 

SMBDD method is further explored in the time domain in this chapter.  

 

Firstly, the algorithm of the SMBDD method is proposed in the time domain for any 

Gaussian, non-Gaussian and non-stationary external excitations with consideration of 

the problem of incomplete measurements. Then various damage scenarios of shear 

buildings, high-rise buildings and frame structures are numerically investigated in the 

time domain by the SMBDD method. The feasibility and effectiveness of the 

SMBDD method are first investigated in the time domain by using Gaussian external 

excitations. Then non-Gaussian and non-stationary external excitations are utilized to 

demonstrate the versatility of the SMBDD method in the time domain through shear 

building structures. The effect of measurement noise on the quality of identified 
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results is finally studied for all the concerned damage scenarios. Analysis results 

show that various damage scenarios with consideration of the incomplete 

measurements and measurement noise can be accurately identified in the time 

domain by the SMBDD method using Gaussian, non-Gaussian and nonstatioary 

external excitations.    

 

5.2 The SMBDD Method in Time Domain 

Let us consider an N-DOFs building structure which is under an external 

excitation 1 2( ) [ ( ), ( ), , ( )]Nt t t t=f f f f" . Without loss of generality, the equation of 

motion in the matrix form for the building structure can be expressed as  

)()()()( tttt fKxxCxM =++ ���                       (5.1)  

where M , C  and K  are the mass matrix, damping matrix and stiffness matrix of 

the building structure, respectively, )(tx�� , )(tx�  and )(tx  are the acceleration, 

velocity and displacement response vectors, respectively. The problem of incomplete 

measurements is also considered by the SMBDD method in the time domain. The 

displacement responses )(tx  include the measured ones ( )m tx and the unmeasured 

ones ( )u tx . 1 2( ) [ ( ), ( ), , ( )]
m

T
m m m mNt x t x t x t=x " , where Nm is the total number of 

measured displacement responses. Denote the number of unknown stiffness 

parameters as Ne. Nm should be larger than or at least equal to Ne. Otherwise, it will 

result in an unidentifiable problem for the model updating. )(tf  is the external 

excitation vector which can be Gaussian and non-Gaussian random excitation acting 

at any locations of the building structure.  

 



Chapter 5                                         SMBDD Method in Time Domain 

 5-3

Denote the time history of the jth measured response as 1 2[ , , , ]
sj j j N jx x x= "x , where 

sN  is the number of sampling points. Its statistical moments, denoted as ˆ
iM  

(i=2,4,6), can be calculated by using summation-type relationships as follows 

whenever it fits the Gaussian distribution or not (Martin, 1989).  

1
1

1 Ns

j j ij
i

M x x
N =

= = ∑                             (5.2) 

2 2
2

1

1 Ns

j ij j
i

M x x
N =

= −∑                           (5.3) 

4 3 2 2 4
4

1 1 1

1 4 6 3
Ns Ns Ns

j ij j ij j ij j
i i i

M x x x x x x
N N N= = =

= − + −∑ ∑ ∑              (5.4) 

6 5 2 4 3 3 4 2 6
6

1 1 1 1 1

1 6 15 20 15 5
Ns Ns Ns Ns Ns

j ij j ij j ij j ij j ij j
i i i i is s s s s

M x x x x x x x x x x
N N N N N= = = = =

= − + − + −∑ ∑ ∑ ∑ ∑ (5.5) 

 

Given the structural stiffness parameter vector an initial value, the stiffness matrix 

and the damping matrix can be calculated through the FE model of the building 

structure by adopting the Rayleigh damping assumption. Substituting them into 

Equations (5.1), the displacement response corresponding to the jth measured 

displacement response can be obtained by solving the equation. Then the statistical 

moments of the obtained displacement response can be directly calculated by using 

the above Equations (5.2) ~ (5.5) in the time domain, denoted as iM (i=2,4,6). 

Therefore, the residual vector between the theoretical statistical moment vector, 

iM (i=2,4,6), for a given stiffness parameter vector k  and the actual statistical 

moment vector of the measured building responses, ˆ
iM  (i=2,4,6), can be calculated 

and written as 

ˆ( ) ( )i i= −F k M k M                             (5.6)  
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Ideally, if the given stiffness vector k is equal to the actual value, the 2-norm of the 

residual vector, 2)(kF , will be zero. Practically, the optimal stiffness vector can be 

identified by the least-squares method, that is, giving k an initial value 0k and 

minimizing .)( 2kF   

 

In brief, the SMBDD method can be implemented in the time domain according to 

the following steps:  

(1) Measure the displacement responses of the undamaged and damaged building 

under external acceleration;  

(2) The actual statistical moments of the measured displacement responses of the 

undamaged and damaged building, ˆ
iM , are respectively estimated by using 

Equations (5.2) ~ (5.5);  

(3) Given the stiffness parameter vector an initial value, the theoretical statistical 

moments of displacement responses iM  can be calculated based on FE models 

of the building structure and the above Equations (5.2) ~ (5.5) in the time 

domain.  

(4) Substitute ˆ
iM  and iM  into Equation (5.6), the structural stiffness vector can 

be identified by the constrained nonlinear least-squares method for the 

undamaged and damaged building respectively;  

(5) The structural damage including damage existence, damage location and damage 

severity can be detected by comparing the identified stiffness vector ˆ uk  of the 

undamaged building with the identified stiffness vector ˆ dk of the damaged 

building.  
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It should be noted that the constrained nonlinear least-squares method is utilized by 

the SMBDD method in the time domain for both undamaged and damaged building 

structures other than for damaged building structures only. In piratical application, 

the upper limit of the stiffness parameter vector of the undamaged building should be 

first estimated and then utilized by the constrained nonlinear least-squares method in 

model updating. Otherwise, under some circumstances, the unconstrained 

least-squares method will converge to the local optimum value other than the global 

optimum value of the stiffness parameter vector for some undamaged buildings. 

Generally speaking, higher requirement is put forward for the optimization method 

used by the SMBDD method in the time domain than in the frequency domain. In 

addition, since the stiffness parameters of the damaged building are physically 

impossible to be larger than those of the corresponding undamaged building, the 

upper limit of the structural stiffness parameter vector of the damaged structures is 

adopted as the identified stiffness parameters of the corresponding undamaged 

building. The fourth-order moment other than the second-order or the sixth-order 

moment is used in this following investigation, which makes a tradeoff between the 

sensitivity of an index to structural damage and its stability to random excitation.  

 

In summary, the algorithm of the SMBDD method in the time domain is similar to 

that of the SMBDD method in the frequency domain. The only difference between 

them lies in that the statistical moments M  for a given initial stiffness parameter 

vector are directly calculated in the time domain without any limitation, while the 

relationship between the variance and the statistical moments of a Gaussian response 

need to be utilized in the frequency domain. Therefore, there is no such limitation 
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that the external excitation should have normal distribution for the SMBDD method 

in the time domain as that in the frequency domain.  

 

5.3 Numerical Investigation by Gaussian Excitations 

5.3.1 Damage detection of shear buildings 

The three-story shear building model (see Figure 5.1) is employed here to illustrate 

the application of the proposed method in the time domain. The mass and horizontal 

stiffness coefficients of the three-story shear building are respectively 350250 kg and 

4728400 kN/m for the first story, 262690 kg and 315230 kN/m for the second story, 

and 175130 kg and 157610 kN/m for the third story. The mass of each floor is 

assumed to be invariant. The first damping ratio is taken as 1%. The second and third 

modal damping ratios are 2.14% and 5.56%, respectively. The ground acceleration is 

modeled as a colored noise corresponding to the Kanai-Tajimi spectrum having 

parameters gω =15.6 rad/s and gζ =0.6. The magnitude is chosen such that the 

maximum ground acceleration is 2.0 m/sec2. The time duration of the simulated 

acceleration is 1000s and the sampling frequency is 256Hz. The time history of the 

ground excitation is generated using the method of digital simulation of a random 

processes developed by Shinozuka and Jan (1972).  

5.3.1.1 Damage detection of shear buildings in the time domain without 

consideration of measurement noise 

The undamaged shear building is firstly identified in the time domain by the 

proposed method using Gaussian external excitations. The effect of measurement 

noise is not considered at first. Listed in Table 5.1 are the values of the fourth-order 



Chapter 5                                         SMBDD Method in Time Domain 

 5-7

moments of the measured three story drifts of the undamaged building, 

u
4iM̂ ( 3,2,1=i ), calculated by Equations (5.2) ~ (5.5). Given the stiffness parameter 

vector an initial value, the horizontal stiffness values of the undamaged building, 

u
ik̂  ( 3,2,1=i ) are identified by using the constrained nonlinear least-squares method. 

The identified results are presented in Table 5.1. It can be found that the identified 

horizontal stiffness coefficients of the undamaged building u
ik̂  in the time domain 

are the same as the real values u
ik , which have the higher precision than the results 

identified in the frequency domain.  

Table 5.1 Identification results of the undamaged shear building in the time domain 

Story )( ˆ 4u
4i mM  u ( / )ik kN m  ˆ  ( / )u

ik kN m  

1 4.0380 1410−×  4728400.00 4728400 

2 1.6151 910−×  315230.00 315230 

3 2.9936 910−×  157610.00 157610 
 

Then six damage scenarios are investigated. The details of these damage scenarios 

are presented in Table 5.2. Both single damage scenarios and multi-damage scenarios 

with different damage locations and damage severities are considered. All these 

damage scenarios of the shear building have been investigated in the frequency 

domain by the proposed method in Chapter 4. For each damage scenario, the 

fourth-order moments of story drifts are computed in the time domain through the 

measured displacement responses of the damaged building. Then the horizontal 

stiffness values of the damaged building are identified by the SMBDD method. With 

reference to the identified horizontal stiffness values of the undamaged building (see 

Table 5.1), the damage severity of each story is obtained for every damage scenario. 

The identified results are presented in Table 5.3 and compared with the actual 
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damage severities. It can be seen that the identified damage severities are the same as 

the actual damage severities for all the six damage scenarios. The accurateness and 

sensitivity of the proposed method are demonstrated in the time domain when 

measurement noise is not taken into account.  

Table 5.2 Details of damage scenarios 1-6 of a three-story shear building 

Scenario Story 1 Story 2 Story 3 

1 0.98 uk1  uk2  uk3  

2 uk1  0.95 uk2  uk3  

3 0.90 uk1  0.95 uk2  uk3  

4 uk1  0.95 uk2  0.90 uk3  

5 0.90 uk1  uk2  0.70 uk3  

6 0.95 uk1  0.90 uk2  0.80 uk3  

 

Table 5.3 Identified results of damage scenarios of a three-story shear building in the 

time domain with noise free 

Story 1 Story 2 Story 3 
Scenario 

μ (%) μ̂ (%) μ (%) μ̂ (%) μ (%) μ̂ (%) 

1 -2.00 -2.00 0.00 0.00 0.00 0.00 

2 0.00 0.00 -5.00 -5.00 0.00 0.00 

3 -10.00 -10.00 -5.00 -5.00 0.00 0.00 

4 0.00 0.00 -5.00 -5.00 -10.00 -10.00 

5 -10.00 -10.00 0.00 0.00 -30.00 -30.00 

6 -5.00 -5.00 -10.00 -10.00 -20.00 -20.00 
 

5.3.1.2 Damage detection of shear buildings with measurement noise 

The effect of measurement noise on the quality of damage detection results is 

numerically investigated in this section. Random white Gaussian noises are added 

into the measured displacement responses and the external excitations of the 
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undamaged and damaged shear buildings. The added random noises are independent 

to and different with each other. The measurement noise intensity (MNI) is adopted 

as 15%. The calculated fourth-order moments and the identified horizontal stiffness 

coefficients of the undamaged building with the effects of measurement noise are 

listed in Table 5.4. The relative errors between the identified horizontal stiffness 

values and the actual ones are respectively 0.34%, 0.48% and 0.35% for the three 

stories. It can be said that the measurement noise has no much effect on the identified 

horizontal stiffness values in the time domain by using the proposed method. The 

identified damage severities of the six damage scenarios aforementioned with the 

MNI of 15% are presented in Table 5.5. The identified results are also compared 

with the real values, the identified results in the time domain with noise free and the 

identified results in the frequency domain with the MNI of 15% in Figure 5.2.   

Table 5.4 Identified results of the undamaged shear building with MNI of 15% 

Story  )( ˆ 4u
4i mM  u ( / )ik kN m  ˆ  ( / )u

ik kN m  

1 2.4921 1410−×  4728400 4712127 

2 9.6735 1010−×  315230 313722 

3 1.7432 910−×  157610 157066 
 

Table 5.5 Identified results by colored noise ground excitation with MNI of 15% 

Story 1 Story 2 Story 3 
Scenario 

μ (%) μ̂ (%) μ (%) μ̂ (%) μ (%) μ̂ (%) 

1 -2.00 -2.08 0.00 0.00 0.00 -0.11 

2 0.00 0.00 -5.00 -4.86 0.00 -0.25 

3 -10.00 -10.67 -5.00 -4.51 0.00 0.00 

4 0.00 -0.17 -5.00 -5.07 -10.00 -10.21 

5 -10.00 -10.30 0.00 -0.17 -30.00 -30.22 

6 -5.00 -3.76 -10.00 -8.38 -20.00 -18.67 
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As seen from Figure 5.2, the damage locations can be accurately detected out even 

when the MNI is as high as 15%. There is no much difference among the four kinds 

of identified results. In other words, the SMBDD method is insensitive to 

measurement noise and effective both in the frequency domain and in the time 

domain. In addition, the identified damage severities have no much difference with 

the real values according to Table 5.5 even when the MNI is as high as 15%. The 

robustness of the proposed method in the time domain is demonstrated through the 

shear building structure.  

 

5.3.2 Damage detection of tall buildings with incomplete measurements    

In this section, the proposed SMBDD method is applied to high-rise buildings or 

flexible buildings in the time domain with consideration of the problem of 

incomplete measurements. In the following numerical investigation, the concerned 

flexible building is a 20-story high-rise building with height 80Th = m. The mass 

density is 4 × 105kg/m. The stiffness parameter for the flexible building is 

( )TEI =8.18×1010 kN.m2, where E is the Young’s modulus and I is the moment of 

inertia of the building. The high-rise building (see Figure 5.3) is discretized into five 

elements with the length of 16m. The colored noise simulated in Section 5.3.1 is 

utilized as external ground excitation. The problem of incomplete measurements is 

considered in the numerical investigation. Therefore, only half of the DOFs of the 

high-rise building are measured and utilized to detect structural damage in the time 

domain by the SMBDD method. 
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5.3.2.1 Damage detection of high-rise buildings without measurement 

noise 

Firstly, structural identification is carried out on the undamaged building without 

considering the effect of measurement noise on detected results. The fourth-order 

moments of the horizontal displacement responses, u
4iM̂ ( 3,2,1=i ,4,5), are 

calculated by Equations (5.2) ~ (5.5) and then used to identify the stiffness 

parameters of the undamaged building, ˆ( ) u
iEI  ( 1, 2,3,4,5i = ). The fourth-order 

moments and the identified stiffness parameters of all elements are presented in 

Table 5.6. It can be seen that the identified horizontal stiffness coefficients of the 

undamaged building ˆ( ) u
iEI  in the time domain are identical with the theoretical 

values u( )iEI  when measurement noise is not taken into account. 

Table 5.6 Identified results of the undamaged building  

Element )( ˆ 4u
4i mM  u 5( )  ( 10 / )iEI kN m× u 5ˆ( )  ( 10 / )iEI kN m×

1 1.4848 1010−×  818000.00 818000.00 

2 6.7453 910−×  818000.00 818000.00 

3 2.5381 810−×  818000.00 818000.00 

4 4.3449 810−×  818000.00 818000.00 

5 5.0632 810−×  818000.00 818000.00 
 

Then six damage scenarios are examined to explore the feasibility of the proposed 

method in the time domain through the high-rise building. Both single damage 

scenarios and multiple damage scenarios are explored. The details of the six damage 

scenarios are presented in Table 5.7. For each damage scenario, the fourth-order 

moments of the relative horizontal displacement responses between two elements are 

computed from the measured horizontal displacement responses of the damaged 
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building.  The horizontal stiffness parameters of the damaged building for every 

damage scenarios are identified by the constrained nonlinear least-squares method. 

With reference to the identified horizontal stiffness values of the undamaged building 

(see Table 5.6), the damage severity of each element is calculated for every damage 

scenario. The identified results without considering the effect of measurement noise 

are presented in Table 5.8.  

Table 5.7 Details of damage scenarios of a high-rise building 

Scenario No. Damage severity Damage location 

1 5% 1st element 

2 2% 3rd element 

10% 1st element 
3 

2% 4th element 

5% 2nd element 
4 

10% 5th element 

20% 1st element 

10% 3rd element 5 

5% 5th element 

10% 1st element 

5% 2nd element 

5% 3rd element 

5% 4th element 

6 

2% 5th element 
 

According to Table 5.8, the damage locations and damage severities can be 

apparently and accurately identified out for both single damage scenarios and 

multi-damage scenarios when measurement noise is not taken into account. Even for 

the very small damage of 2%, the damage can also be accurately detected. In 

comparison with the actual damage severities shown in Table 5.7, the identified 

damage severities are the same as the actual values when measurement noise is taken 
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into account. The sensitivity of the proposed method is demonstrated in the time 

domain through high-rise buildings.  

 

Table 5.8 Identified damage severities (%) of a high-rise building with noise free 

Scenario 
No. 

Element 
1 

Element 
2 

Element 
3 

Element 
4 

Element 
5 

1 -5.00 0 0 0 0 

2 0 0 -2.00 0 0 

3 -10.00 0 0 -2.00 0 

4 0 -5.00 0 0 -10.00 

5 -20.00 0 -10.00 0 -5.00 

6 -10.00 -5.00 -5.00 -5.00 -2.00 
 

5.3.2.2 Damage detection of high-rise buildings with measurement noise 

The influence of measurement noise on the quality of the damage detection results is 

then numerically investigated for the high-rise building structure. Random white 

Gaussian noises are added to both the measured displacement responses and the 

external acceleration excitation. The added random noises are independent and 

different with each other. The MNI of 15% is adopted here. The calculated 

fourth-order moments and the identified stiffness parameters of the undamaged 

building with the effects of measurement noise are listed in Table 5.9. The maximum 

relative error between the identified stiffness parameters and the actual ones is only 

0.89% for the five elements.  

 

Then the six damage scenarios presented in Table 5.7 are explored to evaluate the 

effect of measurement noise. For each damage scenario, the measured displacement 

responses and the external excitation are contaminated by the measurement noise. 

The noise intensity is still adopted as 15%. The horizontal stiffness parameters of the 
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damaged building for every damage scenarios are identified by utilizing the 

fourth-order moments of the contaminated responses and the contaminated external 

excitation. With reference to the identified horizontal stiffness values of the 

undamaged building (see Table 5.9), the damage severity of each element is finally 

calculated for every damage scenario. The identified results are presented in Table 

5.10. The identified results are also compared with the real values, the identified 

results in the time domain with noise free and the identified results in the frequency 

domain with the MNI of 15% in Figure 5.4.  

Table 5.9 Identified results of the undamaged high-rise building with MNI of 15% 

Element )( ˆ 4u
4i mM  u 5( )  ( 10 / )iEI kN m× u 5ˆ( )  ( 10 / )iEI kN m×  

1 1.5514 1010−× 818000 811073 

2 7.0481 910−× 818000 811168 

3 2.6521 810−× 818000 811195 

4 4.5399 810−× 818000 811261 

5 5.2905 810−× 818000 810759 
 

Table 5.10 Identified damage severities of a high-rise building with MNI of 15% 

Scenario 
No. 

Element 
1 

Element 
2 

Element 
3 

Element 
4 

Element 
5 

1 -4.80 -0.74 -1.00 -0.99 -1.69 

2 -0.19 -0.20 -2.19 -0.18 -0.16 

3 -12.28 -2.60 -2.57 -4.56 -2.43 

4 0 -4.96 0 0 -9.88 

5 -21.20 -1.58 -11.38 -1.56 -6.31 

6 -8.21  -3.09  -3.10  -3.09  -0.81  
 

As seen from Figure 5.4, the damage locations of these damage scenarios can be 

accurately determined even when the MNI is as high as 15%. Taking Scenario 2 for 
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example, the damage location is accurately determined as the third element by the 

proposed method although its damage severity is very small and only 2%. There is 

no much difference between the identified damage severities and the real values. The 

reliability and robustness of the proposed method are demonstrated in the time 

domain through the high-rise building structure. In addition, the precision of the 

identified results in the time domain is similar with that of the identified results in the 

frequency domain. In other words, although the higher precision of the identified 

severities is obtained by the SMBDD method in the time domain when the effect of 

measurement noise is not considered, the identified results with consideration of 

measurement noise are not distinctly improved compared with those obtained by the 

SMBDD method in the frequency domain.  

 

5.3.3 Damage detection of frame structures with incomplete 

measurements 

The feasibility and robustness of the SMBDD method are investigated in the time 

domain through frame structures in this section. A 2-D moment resisting one-story 

and one-bay steel frame (see Figure 5.5) is employed to illustrate the application of 

the proposed method in the time domain. The frame consists of two columns 

(W14×257 and W14×311) and one beam (W33×118). The columns are 345 MPA 

(50ksi) steel and the beam is 248 MPA (36ksi). The bay width L is 9.15m (30ft) and 

the height h is 3.96m (13 ft). The mass density of the left column (W14×257) is 

382.46 Kg/m, while that of the right column (W14×311) is 462.82 Kg/m and that of 

the beam is 17235.7 Kg/m. Each column or beam is divided into two elements. These 

elements are numbered and marked in Figure 5.5. There are three DOFs at every 

node: the horizontal displacement x , the vertical displacement y and the angular 
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displacement θ . The Rayleigh damping is assumed and the first two damping ratios 

are adopted as 2%. The colored noise simulated in Section 5.3.1 is utilized as 

external ground excitation. The locations of the external excitations are in the middle 

of the beam and at the top of the left column. The problem of incomplete 

measurements is considered. Only the horizontal and vertical displacement responses 

no angular displacement responses of frame structures are measured and utilized in 

the following numerical investigation.  

 

5.3.3.1 Damage detection of frame structures without measurement noise 

Firstly, structural identification is carried out on the undamaged frame structure 

without considering the effect of measurement noise. The identified stiffness 

parameters of the undamaged frame structure, ˆ( ) u
iEI  ( 1, 2,3, 4,5,6i = ) are presented 

and compared with real values u( )iEI  in Table 5.11. The former is almost the same 

as the latter. The high accuracy of the identified stiffness parameters of the 

undamaged building paves a good foundation for the following damage detection of 

the frame structure.  

 

Then six damage scenarios are examined in the time domain by the proposed method. 

The details of the six damage scenarios are presented in Table 5.12. All of them 

which include single and multiple damage scenarios have been investigated in the 

frequency domain by the proposed method in Chapter 4. For each damage scenario, 

the actual fourth-order moments of displacement responses are directly computed 

from the measured displacement responses of the damaged buildings by Equations 

(5.2)~ (5.5). Then the stiffness parameters of the damaged building for every damage 
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scenarios are identified by the constrained nonlinear least-squares method. With 

reference to the identified horizontal stiffness values of the undamaged building (see 

Table 5.11), the damage severity of each element is calculated for every damage 

scenario. The identified results are presented in Table 5.13.  

Table 5.11 Identified results of a frame structure with noise free 

Element u 2( )  ( )iEI N m⋅ u 2ˆ( )  ( )iEI N m⋅  

1 491153082 491152980 

2 491153082 491152940 

3 283037369 283037340 

4 283037369 283037560 

5 360456415 360456380 

6 360456415 360456700 
 

Table 5.12 Details of damage scenarios of the frame structure 

Scenario No. Damage severity Damage location 

1 5% 3rd element 

2 5% 2nd element 

3 2% 6th element 

5% 1st element 
4 

10% 5th element 

10% 2nd element 

10% 3rd element 5 

20% 5th element 

5% 1st element 

10% 2nd element 

15% 4th element 
6 

20% 5th element 
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Table 5.13 Identified damage severities (%) of the frame structure with noise free 

Scenario 
No. 

Element 
1 

Element 
2 

Element 
3 

Element 
4 

Element 
5 

Element 
6 

1 0 0 -5.00 0 0 0 

2 0 -5.00 0 0 0 0 

3 0 0 0 0 0 -2.00 

4 -5.00 0 0 0 -10.00 0 

5 0 -10.00 -10.00 0 -20.00 0 

6 -5.00 -10.00 0 -15.00 -20.00 0 

 

As seen from Table 5.13, the damage locations and damage severities of the frame 

structure can be accurately identified out for all these damage scenarios no matter 

whether the damage is in beam elements or in column elements. Even for the very 

small damage of 2%, the damage can also be accurately detected out. The identified 

damage severities in Table 5.13 are the same as the real values listed in Table 5.12 

for every damage scenario. The sensitivity and accurateness of the proposed method 

are demonstrated in the time domain through the frame structures when measurement 

noise is not taken into account.  

 

5.3.3.1 Damage detection on frame structures with measurement noise 

The influence of measurement noise on the quality of damage detection results is 

then numerically investigated for the frame structure. Random white noises are 

added to both the measured displacement responses and the external acceleration 

excitation. The MNI of 5% and 15% are respectively investigated for the frame 

structure in this section. The identified stiffness parameters of the undamaged 

building with the effects of measurement noise are listed and compared with the real 

values in Table 5.14. The maximum relative error between the identified stiffness 
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parameters and the actual ones is only 0.26% when the MNI is of 5% and 1.42% 

when the MNI is of 15%.  

 

Then the effects of measurement noise on the quality of the identified results of the 

six damage scenarios aforementioned are explored. For each damage scenario, the 

measured displacement responses and the external excitation are contaminated by 

white Gaussian noise. The MNI of 5% and 15% are considered respectively. The 

stiffness parameters of the damaged building for every damage scenarios are 

identified by utilizing the fourth-order moments of the contaminated responses and 

external excitation. With reference to the identified stiffness parameters of the 

undamaged building (see Table 5.14), the damage severity of each element is finally 

calculated for every damage scenario. The identified damage severities are 

respectively presented in Table 5.15 and Table 5.16 for the two levels of 

measurement noise. The identified results with consideration of the two kinds of 

measurement nose levels are also compared with the actual values in Figure 5.6.  

Table 5.14 Identified results of the undamaged frame structure with noise 

Preset value Identified value with 
MNI of 5% 

Identified value with 
MNI of 15% Element 

u 2( )  ( )iEI N m⋅  u 2ˆ( )  ( )iEI N m⋅ Relative 
Error 

u 2ˆ( )  ( )iEI N m⋅  Relative 
Error 

1 491153082 4916991.23 0.11% 491346309 0.04% 

2 491153082 4924055.39 0.26% 490327349 0.17% 

3 283037369 2825623.28 0.10% 282647167 0.14% 

4 283037369 2826226.71 0.15% 284223829 0.42% 

5 360456415 3599515.46 0.14% 359533793 0.26% 

6 360456415 3612725.28 0.23% 365578356 1.42% 
 

It can be seen from Figure 5.6 that when the MNI is of 5%, the damage locations of 

all the concerned damage scenarios can be accurately identified. The detected 
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damage severities are almost the same as the actual values. There is almost no 

positive falsity which identifies some intact structural elements as damaged elements. 

When the MNI is increased to 15%, small positive falsities are observed for some 

damage scenarios. However, the identified results are still satisfactory in view of 

such a high measurement noise level. The insensitiveness of the proposed method to 

measurement noise is manifested in the time domain.  

Table 5.15 Identified damage severities of the frame structure with MNI of 5% 

Scenario 
No. 

Element 
1 

Element 
2 

Element 
3 

Element 
4 

Element 
5 

Element 
6 

1 -0.16 0 -4.92 -0.37 0 -0.08 

2 -0.15 -4.70 0 -0.54 0 -0.31 

3 -0.08 0 0 -1.04 0 -2.38 

4 -5.09 -0.27 -0.08 0 -10.05 0 

5 0 -10.08 -9.87 -0.60 -19.98 0 

6 -5.06 -10.21 0 -15.24 -20.07 0 
 

Table 5.16 Identified damage severities of the frame structure with MNI of 15% 

Scenario 
No. 

Element 
1 

Element 
2 

Element 
3 

Element 
4 

Element 
5 

Element 
6 

1 -0.55 0 -4.45 -2.22 0 -3.23 

2 0 -7.18 0 -2.05 -0.07 -1.06 

3 -0.22 -0.85 0 -1.98 0 -3.45 

4 -6.83 0 -1.90 0 -10.58 -3.61 

5 0 -9.79 -9.28 -2.85 -19.65 -2.71 

6 -4.11 -13.25 -1.36 -15.51 -22.35 -0.70 
 

In addition, the results identified in the time domain with the MNI of 15% are also 

compared with those identified in the frequency domain with the same level of 

measurement noise in Figure 5.7. It can be seen that the precision of the results 

identified in the time domain is similar with that of the results identified in the 
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frequency domain. The effectiveness and feasibility of the proposed method are 

demonstrated both in the frequency domain and in the time domain through the 

frame structure.  

 

5.4 Numerical Investigation by Non-Gaussian Excitations 

In this section, the robustness of the SMBDD method is demonstrated in the time 

domain through the aforementioned three-story shear building model by using 

non-Gaussian external excitations. Details of the shear building model can be found 

in Section 5.3.1. A random process with Log-normal distribution is simulated and 

utilized as an external excitation. Its magnitude is chosen such that the maximum 

absolute value of acceleration is 2.0 m/sec2. The time duration of the simulated 

acceleration is 1000s and the sampling frequency is 256Hz. The time history and the 

probability density distribution of the random process are presented in Figure 5.8. It 

can be seen that the random process has highly skewed non-Gaussian probability 

distribution in comparison with the normal distribution.  

 

The undamaged shear building and the four damage scenarios listed in Table 5.2, 

Scenarios 1, 3, 4 and 6, are firstly identified by the non-Gaussian external excitation 

without considering the effect of measurement noise. The fourth-order moments of 

the measured three story drifts of the undamaged building, u
4iM̂ ( 3,2,1=i ), and the 

identified horizontal stiffness values of the undamaged building, u
ik̂  ( 3,2,1=i ) are 

presented in Table 5.17. The identified stiffness parameters are identical to the real 

values when the effect of measurement noise is not taken into account. The high 

precision of the SMBDD method in the time domain is manifested by the 
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non-Gaussian external excitation. The identified results of the four damage scenarios 

without considering the measurement noise are presented in Table 5.18 and 

compared with the real values in Figure 5.8. The damage locations of the four 

damage scenarios are all accurately identified. The identified damage severities are 

exactly the same as the prescribed values.  

 

Table 5.17 Identification results of the undamaged shear building in the time domain 

Story )( ˆ 4u
4i mM  u ( / )ik kN m  ˆ  ( / )u

ik kN m  

1 4.4704 1910−×  4728400 4728400 

2 8.7034 1510−×  315230 315230 

3 1.6937 1410−×  157610 157610 
 

Then the effect of the measurement noise on the quality of identified results is 

explored in the time domain by the SMBDD method using the non-Gaussian external 

excitation. The measured displacement responses and the external excitation are all 

contaminated by white noise. The MNI of 15% is considered here. The identified 

stiffness parameters of the undamaged shear building are listed in Table 5.19. The 

maximum relative error between the identified stiffness parameters and the real 

values is only 1.91% even when the MNI is as high as 15%. The damage detection 

results of the four damage scenarios are presented in Figure 5.9 and Table 5.20. It 

can be seen from Figure 5.8 that the damage locations of the four scenarios can be 

accurately identified. The identified damage severities are very close to the real 

values. The sensitivity of the proposed method to structural damage and its stability 

to measurement noise are demonstrated in the time domain by utilizing the 

non-Gaussian external excitation.  
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Table 5.18 Identified results of damage scenarios of a three-story shear building in 

the time domain with noise free 

Story 1 Story 2 Story 3 
Scenario 

μ (%) μ̂ (%) μ (%) μ̂ (%) μ (%) μ̂ (%) 

1 -5.00 -5.00 0.00 0.00 0.00 0.00 

3 -10.00 -10.00 -5.00 -5.00 0.00 0.00 

4 0.00 0.00 -20.00 -20.00 -10.00 -10.00 

6 -5.00 -5.00 -10.00 -10.00 -20.00 -20.00 
 

Table 5.19 Identified results of the undamaged shear building with MNI of 15% 

Story  )( ˆ 4u
4i mM  u ( / )ik kN m  ˆ  ( / )u

ik kN m  

1 5.4991 1910−×  4728400 4700622 

2 9.8948 1510−×  315230 318342 

3 2.6444 1410−×  157610 160616 
 

Table 5.20 Identified results by colored noise ground excitation with MNI of 15% 

Story 1 Story 2 Story 3 
Scenario 

μ (%) μ̂ (%) μ (%) μ̂ (%) μ (%) μ̂ (%) 

1 -5.00 -4.64 0.00 -0.28 0.00 0.00 

3 -10.00 -10.75 -5.00 -6.49 0.00 -1.16 

4 0.00 -0.48 -20.00 -20.21 -10.00 -10.09 

6 -5.00 -6.17 -10.00 -10.80 -20.00 -20.38 
 

5.5 Numerical Investigation by Non-stationary Excitations 

In addition, non-stationary time histories are further adopted as external excitations 

of the three-story shear building model to identify structural damage by the SMBDD 

method in the time domain. The utilized non-stationary external excitation takes the 

form of  
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( ) ( ) ( )g gGx t x t g t=�� �� i                             (5.7) 

in which g(t) is a specified envelope or modulation function as shown in Figure 4 (a).   

0.0                                                 0
( )

2.5974[exp( 0.2 ) exp( 0.6 )]    0
t

g t
t t t

<⎧
= ⎨ − − − ≥⎩

             (5.8) 

gGx��  is the aforementioned Gaussian colored noise. The time history and probability 

density distribution of the simulated non-stationary external excitation are presented 

in Figure 5.10.  

 

The undamaged shear building is first identified by the SMBDD method in the time 

domain using the non-stationary external excitation without considering the effect of 

measurement noise. The identified stiffness parameters are 4728400 kN/m, 315230 

kN/m and 157610 kN/m, respectively, which are the same as the real values. When 

the MNI is 15%, the identified stiffness parameters are 4724838 kN/m, 315029 kN/m 

and 157493 kN/m, respectively. The maximum relative error of all the identified 

horizontal stiffness values in comparison with the actual ones is only 0.08%. The 

measurement noise has no much effect on the identified horizontal stiffness values 

by using the proposed method in the time domain.  

 

Then scenarios 1, 3, 4 and 6 of the shear building structure are investigated. The 

identified results of the damage shear building structure under non-stationary 

external excitations are presented in Table 21, in which μ̂  stands for the identified 

results without considering the effect of measurement noise and ˆnμ  stands for the 

identified results when the MNI is 15%. In addition, the identified results in Table 21 

are also more clearly presented in Figures 5.11 and compared with the corresponding 

real values. It can be seen from Table 21 that the identified damage severities of the 
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four damage scenarios are the same as the actual damage severities when the effect 

of measurement noise is not taken into account. As seen from Figure 5.11, the 

damage locations can be accurately detected out when the external excitations are 

non-stationary. Furthermore, the identified results have no much difference with the 

actual values even when the MNI is as high as 15%. The sensitivity of the SMBDD 

method to structural local damage, its insensitivity to measurement noise and its 

applicability to non-stationary external excitations are demonstrated.  

 

Table 5.21 Identified results using non-stationary excitations 

Story 1 Story 2 Story 3 
Scenario 

μ̂ (%) ˆnμ (%) μ̂ (%) ˆnμ (%) μ̂ (%) ˆnμ (%) 

1 -5.00 -5.00 0.00 -0.01 0.00 0.00 

2 -10.00 -10.04 -5.00 -5.04 0.00 -0.03 

3 0.00 0.00 -20.00 -19.53 -10.00 -9.60 

4 -5.00 -4.36 -10.00 -9.57 -20.00 -19.54 

 

5.6 Conclusions       

The algorithm of the SMBDD method is proposed in the time domain in this chapter. 

The effectiveness and feasibility of the SMBDD method are numerically investigated 

in the time domain by using Gaussian, non-Gaussian and non-stationary external 

excitations. The problem of incomplete measurements and the effect of measurement 

noise on the quality of identified results are considered in the time domain by the 

proposed method.  

 

Firstly, the feasibility of the SMBDD method is explored in the time domain by 

using Gaussian external excitations. The three-story shear building is first 
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investigated. Various damage scenarios with different damage locations and different 

damage severities are examined. Numerical results show that the damage locations of 

these damage scenarios are accurately detected and the identified damage severities 

are the same as the real values when the effect of measurement noise is not 

considered. The effect of measurement noise is then explored by contaminating 

measured dynamic responses and external excitations. Even when the measurement 

noise intensity is as high as 15%, the damage locations and damage severities of 

various damage scenarios are still accurately identified in the time domain by the 

SMBDD method.  

 

Then a 20-story high-rise building with height 80Th = m is employed to investigate 

the feasibility and effectiveness of the SMBDD method in the time domain with 

consideration of the incomplete measurements. In the numerical investigation, only 

the horizontal displacement responses of the high-rise building are measured and 

utilized to detect damage, which is only half of the number of the degrees of freedom. 

A frame structure with incomplete measurements is also numerically investigated by 

the proposed method in the time domain using the Gaussian excitations. The damage 

locations of various damage scenarios of the high-rise building and the frame 

structure are accurately determined. And the identified damage severities are 

identical to the real values when the effect of measurement noise is not taken into 

account. The higher quality of analyzed results is obtained in the time domain by the 

proposed method when the effect of measurement noise is not taken into account. 

However, there is no much change or apparent improvement in the quality of the 

identified results by the SMBDD method in the time domain compared with those 

obtained by the proposed method in the frequency domain when the effect of 
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measurement noise is considered.  

 

Finally, the feasibility and effectiveness of the SMBDD method in the time domain 

are investigated by non-Gaussian and non-stationary external excitations. Several 

damage scenarios of the shear building structure are explored. Numerical analysis 

results show that the damage locations of the various damage scenarios are 

accurately determined and the identified damage severities are the same as the real 

values when the effect of measurement noise is not considered. The stability of the 

proposed method in the time domain to the measurement noise is also demonstrated 

by using the non-Gaussian and non-stationary external excitations. Even when the 

MNI is as high as 15%, the damage locations can still be accurately detected and the 

identified damage severities are very close to the real values.  

 

In conclusion, the numerical results of various damage scenarios of different 

structures demonstrate that the proposed method is sensitive to local structural 

damage and insensitive to measurement noise in the time domain. Gaussian, 

non-Gaussian and non-stationary external excitations can be utilized in the time 

domain by the SMBDD method to detect structural damage. However, higher 

requirement is put forward for the optimization method used by the SMBDD method 

in the time domain than in the frequency domain. In addition, before this method can 

be applied to real structures the experimental investigation is necessary. The next 

chapter will present an experimental investigation on this method both in the 

frequency domain and in the time domain. 
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Figure 5.1 Three-story shear building model 
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Figure 5.2 Comparison of the identified results of the shear buildings (TD: time 

domain, FD: frequency domain, MNI: measurement noise intensity): (a) Scenario 1, 

(b) Scenario 2, (c) Scenario 3, (d) Scenario 4, (e) Scenario 5, (f) Scenario 6 
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Figure 5.3 Configuration of a high-rise building structure 



Chapter 5                                         SMBDD Method in Time Domain 

 5-31

1 2 3 4 5
0

-2
-4
-6
-8

-10
-12
-14
-16
-18
-20
-22

 Preset Damage   TD, MNI:15% 
 TD, No Noise      FD, MNI:15% 

Element No.

D
am

ag
e 

S
ev

er
ity

 (%
)

1 2 3 4 5
0

-2
-4
-6
-8

-10
-12
-14
-16
-18
-20
-22

 Preset Damage   TD, MNI:15% 
 TD, No Noise      FD, MNI:15% 

Element No.

D
am

ag
e 

S
ev

er
ity

 (%
)

 
 (a) Scenario 1                      (b) Scenario 2 

1 2 3 4 5
0

-2
-4
-6
-8

-10
-12
-14
-16
-18
-20
-22

 Preset Damage   TD, MNI:15% 
 TD, No Noise      FD, MNI:15% 

Element No.

D
am

ag
e 

S
ev

er
ity

 (%
)

1 2 3 4 5
0

-2
-4
-6
-8

-10
-12
-14
-16
-18
-20
-22

 Preset Damage   TD, MNI:15% 
 TD, No Noise      FD, MNI:15% 

Element No.

D
am

ag
e 

S
ev

er
ity

 (%
)

 
 (c) Scenario 3                      (d) Scenario 4 

1 2 3 4 5
0

-2
-4
-6
-8

-10
-12
-14
-16
-18
-20
-22
-24

 Preset Damage   TD, MNI:15% 
 TD, No Noise      FD, MNI:15% 

Element No.

D
am

ag
e 

S
ev

er
ity

 (%
)

 
1 2 3 4 5

0
-2
-4
-6
-8

-10
-12
-14
-16
-18
-20
-22
-24

 Preset Damage   TD, MNI:15% 
 TD, No Noise      FD, MNI:15% 

Element No.

D
am

ag
e 

S
ev

er
ity

 (%
)

 
 (e) Scenario 5                        (f) Scenario 6 

Figure 5.4 Comparison of the identified results of the tall buildings (TD: time 

domain; FD: frequency domain; MNI: measurement noise intensity) : (a) Scenario 1, 

(b) Scenario 2, (c) Scenario 3, (d) Scenario 4, (e) Scenario 5, (f) Scenario 6 
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Figure 5.5 Configuration of a steel frame structure 
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Figure 5.6 Identified results of a frame structure in the time domain: (a) Scenario 1, 

(b) Scenario 2, (c) Scenario 3, (d) Scenario 4, (e) Scenario 5, (f) Scenario 6 
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Figure 5.7 Comparison of the identified results of the frame structures in the time 

domain with those in the frequency domain with the same MNI of 15%: (a) Scenario 

1, (b) Scenario 2, (c) Scenario 3, (d) Scenario 4, (e) Scenario 5, (f) Scenario 6 
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Figure 5.8 A simulated non-Gaussian external excitation: (a) time history, (b) 

probability density distribution  
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(a) Scenario 1                      (b) Scenario 3 
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(c) Scenario 4                      (d) Scenario 6 

Figure 5.9 Identified results of the shear building by non-Gaussian excitation: (a) 

Scenario 1, (b) Scenario 3, (c) Scenario 4, (d) Scenario 6 
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Figure 5.10 A non-stationary excitation: (a) modulation function, (b) time history, (c) 

probability density distribution 
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             (c) Scenario 4                       (d) Scenario 6 

Figure 5.11 Identified results of the shear building by non-stationary excitation: (a) 

Scenario 1, (b) Scenario 3, (c) Scenario 4, (d) Scenario 6 
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CHAPTER 6 

EXPERIMENTAL INVESTIGATION ON STATISTICAL 

MOMENT-BASED DAMAGE DETECTION METHOD  

6.1 Introduction      

A new structural damage detection method based on the statistical moments of 

dynamic responses of a structure has been proposed in both the frequency domain 

and the time domain, and extensive numerical studies have been performed in the 

previous three chapters. The numerical results demonstrated that the proposed 

method is sensitive to local structural damage and insensitive to measurement noise, 

and it can identify both location and severity of structural stiffness reduction of a 

building satisfactorily. Nevertheless, before this method can be applied to real 

structures the experimental investigation is necessary. This chapter therefore presents 

an experimental investigation on this method. 

 

Three shear building models were manufactured and mounted on a shaking table. 

Shaking table tests were firstly conducted on the undamaged building models. The 

displacement and acceleration responses of the building model at each floor were 

recorded by laser displacement transducers and accelerometers, respectively. The 

statistical moments of story drifts were calculated from the measured displacement 

responses. The first two damping ratios of the undamaged models were estimated by 

applying the Hilbert transform method to the measured acceleration responses. 

Afterwards, various damage scenarios with different damage locations and different 
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damage severities were inflicted on the shear building models step by step. For each 

damaged building model with a given damage scenario, the shaking table tests were 

performed in a way similar to that for the undamaged building model. 

 

Then, the data of the shaking table tests were analyzed by the SMBDD method both 

in the frequency domain and in the time domain. Firstly, the calculated statistical 

moments and the estimated damping ratios as well as the recorded ground excitation 

were used as inputs to identify the lateral stiffness values of the undamaged building 

models in the frequency domain. The lateral stiffness values of the damaged model 

were obtained accordingly and compared with those of the corresponding 

undamaged model, from which the damage locations and damage severities were 

identified by the proposed method in the frequency domain. The identified damage 

locations and severities were finally compared with the theoretical values to assess 

the accuracy of the proposed method. Moreover, the lateral stiffness values of the 

undamaged models and the damaged models were calculated by the proposed 

method but in the time domain. The damage locations and damage severities were 

then identified by the proposed method in the time domain. The results demonstrate 

that the damage locations and their corresponding damage severity values of all the 

damage scenarios were satisfactorily identified by the proposed method both in the 

frequency domain and in the time domain.  They again demonstrated the reliability 

and effectiveness of the SMBDD method.  
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6.2 Experimental Arrangement 

To assess the feasibility and accuracy of the proposed damage detection method, an 

experimental investigation program was initiated and implemented. Three building 

models were manufactured and mounted on a shaking table. Shaking table tests were 

conducted on the undamaged building models first. Single and multi damage 

scenarios of different damage locations and severities were then created in the 

building models step by step. The damaged building models were finally subjected to 

the shaking table tests. By comparing undamaged with damaged case, the damage 

locations and damage severities were identified and compared with the preset 

theoretical values to assess the accuracy of the proposed method. In this experiment, 

two band-limited white noise time histories and two colored noise time histories of 

1000s duration and a frequency range from 0.5 to 40 Hz were numerically generated 

using a random process simulation method (Shinozuka et al., 1972). They were input, 

one by one, into the control system of the shaking table with an appropriate scaling 

factor for amplitude to generate the expected ground excitations to the building 

models. Different amplitude scaling factors were utilized for the building models of 

different damage scenarios to avoid plastic deformation and structural nonlinearity. 

Since this study intends to demonstrate the feasibility and accuracy of the proposed 

method through the comparison of stiffness identified from the two cases, no 

particular length and time scales were followed by the experiment. 

6.2.1. Building models  

Three shear building models of three stories (the building model 1, 2 and 3) were 

designed and constructed as shown in Figure 6.1. Each three-story building model 

consisted of mainly three steel beams of 394 (length)×50 (width) ×  30 (thickness) 
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mm and two identical columns of a 50 x 3 mm cross section and a 900 mm length. 

The nominal story height is 300mm. The three beams and two columns were tightly 

connected by using six steel blocks (50 x 30 x 12 mm) and twenty four screws to 

form connections as rigid as possible. The building model was then fixed on a steel 

base plate of 15 mm thickness through four angle bars (50 x 50 x 5 mm) and eight 

screws. For each support, the inner two angle bars were welded on the steel plate to 

form rigid support and the outer two ones were fixed on the steel plate by screws. 

The steel base plate was in turn bolted firmly on the shaking table using a total of 

eight bolts of high tensile strength.  All the columns and beams were made of high 

strength steel of 435 MPa yield stress and 200 GPa modulus of elasticity. Each steel 

beam could be regarded as a rigid beam in the horizontal direction, leading to a 

shear-type building model. An additional mass of about 10 kg was placed on each 

beam of the building model 1 using bolts and nuts to change the building mass. The 

lumped mass of each story of a building model was determined through the 

measurement and summation of the weights of the corresponding beam, connection 

accessories and part of the column. Without additional masses, the mass was 5.48 kg, 

5.48 kg and 5.15 kg for the first, second and third floor of the building model 2 and 3, 

respectively. With additional masses, the corresponding mass was 15.41 kg, 15.63 kg 

and 15.26 kg for the building model 1. To simulate inherent energy dissipation 

capacity of a real structure, a shear-type viscous damper was installed in the first 

story of all the building models as shown in Figure 6.2.  

6.2.2. Damage scenarios 

To simulate building damage, the column width of each building model was reduced 

from both sides at a designated story. Two kinds of column width reductions were 
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used in this experiment: 2.5 mm reduction from each side of the column to lead to a 

10% reduction of the column width, and 5 mm reduction from each side of the 

column to yield a 20% reduction of the column width. Figures 6.3a-6.3c show 

respectively the damage scenarios of the building model at the first story with 20% 

column width reduction, the building model at the second story with 20% column 

width reduction, and the building model at the third story with 10% column width 

reduction. A total of eight damage scenarios were designed in this experimental 

investigation and listed in Table 6.1. The scenarios 1, 2, 3 and 4 represent single 

damage at either first or second story of the building model. The scenarios 5, 6 and 7 

incorporate damage at two different stories while the scenario 8 contains damage at 

all three stories. The building model 1 was used in the sequence of the scenarios 1, 2 

and 5. The building model 2 was used in the sequence of the scenarios 3, 4 and 6 

whereas the building model 3 was used in the sequence of the scenarios 7 and 8.  

 

To provide a basis for the assessment of the proposed damage detection method, the 

theoretical value of damage severity for a given damage scenario was computed 

using the flexibility method and the principle of virtual work. For a column with a 

reduced width in the given story, the lateral stiffness values before and after damage 

are denoted as uk  and dk  respectively, and the theoretical damage severity μ  is 

expressed as follows. 

100%
u d

u

k k
k

μ −
= ×                                                                      (6.1) 

where uk  is the summation of the lateral stiffness of the undamaged columns in the 

given story of the building model and dk  is the same quantity but for the building 

model with the damaged columns. The computed theoretical damage severities for 
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various damage scenarios are presented in Table 6.1. It is noted that the so-obtained 

theoretical values of damage severity are only approximations of the real ones of 

building models but they can be taken as references for comparison with the damage 

severity identified from the experiments. 

Table 6.1 Details of damage scenarios 

Scenario 
No. 

Building 
Model  

Ground 
Excitation

Location 
of 

Damage 

One-side 
Width 

Reduction  
( mm)  

Theoretical 
damage 

severity (%)

1 1 W. N. Story 1 2.5 5.36 

2 1 W. N.  
 C. N. Story 1 5.0 11.26 

3 2 C. N. Story 2 2.5 7.45 

4 2 W. N.  
 C. N. Story 2 5.0 15.33 

Story 1 5.0 11.26 
5 1 W. N. 

Story 3 2.5 7.45 

Story 2 5.0 15.33 
6 2 W. N. 

 C. N. Story 3 2.5 7.45 

Story 1 5.0 11.26 
7 3 C. N. 

Story 2 2.5 7.45 

Story 1 5.0 11.26 

Story 2 2.5 7.45 8 3 C. N. 

Story 3 5.0 15.33 

Note: W.N. and C.N. respectively stand for white noise and colored noise excitation 

 

6.2.3. Experimental equipment and data acquisition 

The unidirectional shake table at the Hong Kong Polytechnic University used in this 

study was manufactured by the MTS Corporation with a dimension of 3 x 3 m in 

plane (MTS 469DU). The maximum acceleration of the shaking table is ±1 g with 
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the maximum proof specimen mass of 10 tons, where g is the acceleration due to 

gravity in m/s2. The frequency of the input wave ranges from 0.1 to 200 Hz. The 

horizontal acceleration and displacement responses of the building model at each 

floor in the x-direction were measured using accelerometers and laser displacement 

transducers as shown in Figure 6.2. The measured acceleration responses from B&K 

4370 accelerometers were used to estimate the first two modal damping ratios of the 

building model. One more B&K 4370 accelerometer was installed on the base plate 

of the building model to measure the acceleration in the x-direction as the ground 

motion. Laser displacement transducers with a maximum range of 100 mm and a 

resolution of ±0.01 mm were used to measure the absolute displacements of each 

floor of the building model as well as the shake table. The 32 channel data 

acquisition system was used to acquire the data during the shaking table tests. The 

sampling rate was set as 500 samples per second.  

6.2.4. Experiment procedure 

In the stage 1, the building models 1 and 2 without any damage were mounted on the 

shake table for simultaneous tests.  The two white noise and two colored noise time 

histories of ground motion randomly generated were input to the shake table to excite 

the two undamaged models.  For each shaking table test of the building models, the 

fourth-order statistical moment vectors of story drift were computed based on the 

absolute displacement responses measured from the laser displacement transducers. 

The first two modal damping ratios of each building model were identified based on 

the acceleration responses measured from the accelerometers using the Hilbert-

transform (HT) method in conjunction with the random decrement technique (RDT) 

(Yang et al.,1999, Xu et al., 2003). The measured statistical moment vectors, the 
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estimated masses and damping ratios and the recorded ground motion were used as 

inputs to identify the lateral stiffness values of the undamaged building models using 

the proposed method. 

 

In the stage 2, the shake table tests were performed on the building model 1 in the 

sequence of the scenarios 1 (white noise), 2 (white noise and colored noise) and 5 

(white noise) and then on the building model 2 in the sequence of the scenarios 3 

(colored noise), 4 (white noise and colored noise), and 6 (white noise and colored 

noise) (see Table 6.1). Based on the measurement results from each shake table test 

and following the same procedure as used in the stage 1, the lateral stiffness values 

of the damaged building models for a given damage scenario could be identified. The 

identified lateral stiffness of the damaged building model was then compared with 

that of the corresponding undamaged building model. The damage location and 

damage severity of the building model could be found. The results were then 

compared with the aforementioned theoretical values to assess the feasibility and 

accuracy of the proposed damage detection method.  

 

In the stage 3, the shake table tests were first conducted on the undamaged building 

model 3 and then on the damaged building model 3 in the sequence of the scenarios 

7 (colored noise) and 8 (colored noise).  Based on the measurement results from the 

shake table tests and following the same procedure as used in the stages 1 and 2, the 

damage location and damage severity of the building model 3 could be found and 

compared with the theoretical values. 
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6.3 Experimental Analysis in Frequency Domain 

The experimental data were analyzed by the SMBDD method in the frequency 

domain in this section at first. The time histories of ground motions were studied and 

their power spectral density functions were estimated and prepared for the following 

damage identification. Then, the first two modal damping ratios of a building model 

for each shaking table test were estimated by applying the HT method in conjunction 

with the RDT. Finally, the power spectral density functions of the ground motions 

and the recorded building responses as well as the identified structural damping 

ratios were used to identify damage locations and severities using the SMBDD 

method in the frequency domain. The identified damage locations and severities 

were compared with the theoretical values. 

6.3.1. Ground motions  

In this experiment, two band-limited white noise time histories of a 5 m/s2 peak 

ground acceleration (PGA) and two colored noise time histories of a 2 m/s2 PGA 

were randomly generated within a frequency range from 0.5 to 40 Hz and for 1000s 

duration.  They were input as scheduled into the control system of the shaking table 

to generate the expected ground excitation to the building model with an amplitude 

scaling factor of 0.75, 0.5, and 0.3 for the white noise ground motions and 0.5 for the 

colored noise ground motions. The selection of the amplitude scaling factor depends 

on the building model and the damage scenario concerned. Figures 6.4 and 6.5 

present the simulated and measured time histories and power spectral density 

functions of a white noise ground motion and a colored noise ground motion 

respectively. It can be seen that the measured time histories and power spectral 

density functions match the simulated ones in general, but the spectral amplitude of 
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the white noise ground motion is not ideally constant. Furthermore, the background 

noise of the experimental site was measured by accelerometers with the shake table 

being closed. The background noise intensity ranged from about 8% to 10% of the 

PGA, a high level of background noise which may make it difficult to identify 

damage location of a structure by other detection methods (Alvandi et al., 2006). 

6.3.2. Estimation of damping ratios 

The first two modal damping ratios of a building model were estimated by applying 

the HT method in conjunction with the RDT to the structural acceleration responses 

measured from the accelerometers. The details of the identification procedure used 

for structural damping ratio could be found in the literature (Yang et al., 1999, Xu et 

al., 2003). The identified first two modal damping ratios for the three undamaged 

building models under either white noise excitations or colored noise excitations are 

listed in Table 6.2.  

 

It can be seen that the structural damping ratio varies within a certain range for the 

three building models due to various uncertainties. Different excitations of different 

intensities may cause slightly different damping ratios even for the same building 

model. The averaged damping ratio is suggested to be used for the subsequent 

damage detection. The same procedure was applied to the damaged building models 

to estimate their modal damping ratios. 
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Table 6.2 Identified structural damping ratios  

Test No. Building 
Model 

Ground 
Excitation GPA(m/s2) 1̂ξ  2̂ξ  

1 1 W.N. 1 4.11 0.0169 0.0134 

2 1 W.N. 2 3.96 0.0133 0.0112 

3 1 C.N. 1 1.01 0.0128 0.0112 

4 1 C.N. 2 1.19 0.0136 0.0128 

5 2 W.N. 1 4.11 0.0100 0.0092 

6 2 W.N. 2 3.96 0.0091 0.0082 

7 2 C.N. 1 1.01 0.0076 0.0090 

8 2 C.N. 2 1.19 0.0081 0.0084 

9 3 C.N. 1 0.99 0.0113 0.0079 

10 3 C.N. 2 1.11 0.0105 0.0069 

 

6.3.3. Stiffness identification of undamaged building models 

The averaged first two modal damping ratios for the three building models are listed 

in Table 6.3 for different ground excitations. It can be seen that the modal damping 

ratio ranges from 0.74% to 1.51%. The averaged modal damping ratios, the 

measured statistical moment vectors, the estimated masses, and the recorded ground 

motion were used as inputs to identify the lateral stiffness values of the undamaged 

building models using the proposed method. The identified results are listed in Table 

6.3. It can be seen that the identified lateral stiffness values from the two separate 

tests using either white noise or colored noise ground excitation are very close to 

each other. The mean values of identified stiffness vectors of the building model 1 

are [45592, 26128, 24574] N/m and [46580, 26772, 24157] N/m for the white noise 

excitation and the colored noise excitation, respectively. The relative difference of 

stiffness vectors of the building model 1 identified from the two cases is [2.48%, 

2.78%, 1.41%], which indicates that the effect of the type of ground excitation on the 
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identified stiffness is small. For the building model 2, the mean values of identified 

stiffness vectors are [40149, 23864, 23236] N/m and [40650, 24110, 23898] N/m for 

the white noise excitation and the colored noise excitation, respectively. The relative 

difference of stiffness vectors identified from the two cases is [1.25%, 1.03%, 

2.85%]. The small difference of identified stiffness implies some degree of feasibility 

of the statistical moment-based damage detection method. For the building model 3, 

the mean value of identified stiffness vector is [37379, 23232, 24347] N/m. 

Table 6.3 Identified results of undamaged building models in the frequency domain  

Mean Damping 
Ratio Identified Stiffness (N/m) Building 

Model 
Ground 

Excitation 
1̂ξ  2̂ξ  1̂k  2k̂  3̂k  

W.N. 1 45592 26120 24485 
W.N. 2 

0.0151 0.0123 
45591 26136 24663 

C.N. 1 46443 26694 23986 
1 

C.N. 2 
0.0132 0.0120 

46717 26849 24327 
W.N. 1 40297 23999 23210 
W.N. 2 

0.0096 0.0087 
40002 23729 23262 

C.N. 1 40746 24101 23930 
2 

C.N. 2 
0.0079 0.0087 

40554 24119 23866 
C.N. 1 37047 23080 24088 

3 
C.N. 2 

0.0109 0.0074 
37710 23383 24605 

 

6.3.4. Damage detection results-white noise excitation 

A total of five damage scenarios (see Table 6.4) were investigated on the building 

models 1 and 2 with white noise excitation input. The scenario 1 and scenario 2 have 

the single damage in the first story of the building model 1 but with different damage 

severities. The theoretical damage severity of the scenario 1 is 5.36% while that of 

the scenario 2 is 11.26%. In the scenario 5, a dual damage scenario was inflicted on 
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the building model 1 with the damage in the first and third story, and the theoretical 

damage severity is respectively 11.26% and 7.45%. The scenario 4 has the single 

damage in the second story of the building model 2 with a theoretical damage 

severity of 15.33% while the scenario 6 investigated the dual damage of the building 

model 2 in the second and third stories with the theoretical damage severities of 

15.33% and 7.45%, respectively.  

Table 6.4 Identified stiffness values of damaged building models under 

W.N.excitation (N/m) in the frequency domain 

Mean 
Damping 

Ratio 
Identified Stiffness 

Scenario Building 
Model  

Ground 
Excitation

1̂ξ  2̂ξ  1̂k  2k̂  3̂k  

W.N. 1 42815 25647 24574
1 1 

W.N. 2 
0.0155 0.0132

43669 26128 24574
W.N. 1 40341 25986 24663

2 1 
W.N. 2 

0.0168 0.0141
40670 26136 24663

W.N. 1 40149 19970 22993
4 2 

W.N. 2 
0.0077 0.0098

40149 20039 23056
W.N. 1 39883 26128 22257

5 1 
W.N. 2 

0.0146 0.0129
39062 26128 21812

W.N. 1 40149 19287 21942
6 2 

W.N. 2 
0.0095 0.0085

40149 18943 21539
 

The first two modal damping ratios of either the building model 1 or the building 

model 2 were estimated for each damage scenario under white noise excitation, and 

the mean modal damping ratios estimated are listed in Table 6.4.  They are slightly 

different from the mean modal damping ratios of the corresponding undamaged 

building model (see Table 6.3) because of the reassembly and reinstallation of the 

building models after the designated damage scenario was made.  The identified 
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lateral stiffness values of the building models 1 and 2 for each damage scenario are 

also presented in Table 6.4. It can be seen that the identified results from the two 

different white noise excitations are again very close to each other for each damage 

scenario.  

Table 6.5 Identified and theoretical damage severities in the frequency domain  

(white noise excitation) 

Damage Severity (DS) 
Scenario Building 

Model Category 1μ̂ (％) 2μ̂ (％) 3μ̂ (％) 

Theoretical DS -5.36 0 0 
1 1 

Identified DS -5.15 -0.92 0 
Theoretical DS -11.26 0 0 2 1 
Identified DS -11.16 -0.27 0 

Theoretical DS 0 -15.33 0 4 2 
Identified DS 0 -16.17 -0.91 

Theoretical DS -11.26 0 -7.45 5 1 
Identified DS -13.42 0 -10.33 

Theoretical DS 0 -15.33 -7.45 6 2 
Identified DS 0 -19.90 -6.44 

 

The mean lateral stiffness values of the damaged building model were then compared 

with those of the corresponding undamaged building model for each damage 

scenario, from which the damage location and severity were identified. The 

identified damage location and severity were finally compared with the theoretical 

ones, as listed in Table 6.5 and plotted in Figure 6.6. It can be seen from Figure 6.6 

that the locations of either single damage case or multi-damage case could be 

identified correctly, even for the minor damage cases such as the 5.36% damage in 

the first story in the scenario 1 (single damage) and the 7.45% damage in the third 

story in the scenarios 5 and 6 (multi-damage). Although the theoretical damage 

severity values may be different from the real damage severity values, the identified 
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damage severity values are close to the theoretical values except for the scenario 6. 

The aforementioned results demonstrate the feasibility and accuracy of the statistical 

moment-based damage detection method. 

6.3.5. Damage detection results-colored noise excitation 

A total of six damage scenarios (the scenarios 2, 3, 4, 6, 7 and 8) were investigated 

based on the building models 1, 2 and 3 with the input of colored noise excitation. 

The scenario 2 has the single damage in the first story of the building model 1 with a 

theoretical damage severity of 11.26%. The scenarios 3 and 4 have the single damage 

in the second story of the building model 2 but with different theoretical damage 

severities of 7.45% for the former and 15.33% for the latter. The scenarios 6 and 7 

have dual damage but with different damage locations. In the scenario 6, the damage 

was inflicted in the second and third stories of the building model 2, and the 

theoretical damage severities are respectively 15.33% and 7.45%. In the scenario 7, 

the damage was made in the first and second stories of the building model 3 with the 

theoretical damage severities of 11.26% and 7.45%, respectively. The scenario 8 has 

the damage in all the three stories of the building model 3 with the theoretical 

damage severities of 11.26%, 7.45% and 15.33% for story 1, 2 and 3, respectively. 

 

The first two modal damping ratios of the building models 1, 2 and 3 were estimated 

for each damage scenario under colored noise excitation, and the mean modal 

damping ratios estimated are listed in Table 6.6.  They are slightly different from the 

mean modal damping ratios of the corresponding undamaged building model (see 

Table 6.3) and the corresponding damaged building model under white noise 

excitation (see Table 6.4) because of the reassembly and reinstallation of the building 
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models after the designated damage scenario was made.  The identified lateral 

stiffness values of the building models 1, 2 and 3 for each damage scenario are also 

presented in Table 6.6. It can be seen that the identified results from the two different 

colored noise excitations are very close to each other for each damage scenario, 

indicating again the feasibility of the proposed damage detection method. 

Table 6.6 Identified stiffness values of damaged building models under C. N. 

excitation (N/m) in the frequency domain 

Mean Damping 
Ratio Identified Stiffness 

Scenario 
 

Building 
Model 

Ground 
Excitation

1̂ξ  2̂ξ  1̂k  2k̂  3̂k  

C.N. 1 40612 26524 24156 
2 1 

C.N. 2 
0.0166 0.0139

41154 26772 24156 
C.N. 1 40650 21509 23898 

3 2 
C.N. 2 

0.0100 0.0095
40650 21969 23898 

C.N. 1 40650 19753 23129 
4 2 

C.N. 2 
0.0077 0.0099

40650 20142 23898 
C.N. 1 40650 19440 21901 

6 2 
C.N. 2 

0.0097 0.0092
40650 19755 22296 

C.N. 1 33154 21531 23678 
7 3 

C.N. 2 
0.0165 0.0152

32838 21236 23938 
C.N. 1 34023 21304 19569 

8 3 
C.N. 2 

0.0142 0.0110
33234 20707 19144 

 

The mean lateral stiffness values of the damaged building model listed in Table 6.6 

were then compared with those of the corresponding undamaged building model for 

each damage scenario, from which the damage location and severity were identified. 

The identified damage location and severity were finally compared with the 

theoretical ones, as listed in Table 6.7 and plotted in Figure 6.7. It can be seen from 

Figure 6.7 that the locations of either single damage case or multi-damage case could 

be identified satisfactorily although there are small stiffness values identified for the 
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undamaged third story in the scenarios 4 and 7. Many factors such as high level of 

measurement noise and uncertainties in damping identification and numerical 

modeling could all result in these small false identifications. It can also be seen form 

Figure 6.7 that even for the minor damage cases such as the 7.45% damage in the 

second floor in the scenario 3 (single damage), the scenario 7 (dual damage) and the 

scenario 8 (multi-damage), the satisfactory location identification results can be 

obtained by the statistical moment-based damage detection method. Again, although 

the theoretical damage severity values may be different from the real damage 

severity values, the identified damage severity values are close to the theoretical 

values in most of the cases. The feasibility and accuracy of the statistical moment-

based damage detection method are demonstrated again by the colored noise tests.  

Table 6.7 Identified and theoretical damage severities and locations (colored noise 

excitation) in the frequency domain 

Damage Severity (DS) Scenario Building 
Model Category 1μ̂ (％) 2μ̂ (％) 3μ̂ (％) 

Theoretical DS -11.26 0 0 2 1 
Identified DS -12.23 -0.46 0 

Theoretical DS 0 -7.45 0 
3 2 

Identified DS 0 -9.83 0 
Theoretical DS 0 -15.33 0 4 2 
Identified DS 0 -17.26 -1.61 

Theoretical DS 0 -15.33 -7.45 6 2 
Identified DS 0 -18.72 -7.53 

Theoretical DS -11.26 -7.45 0 
7 3 

Identified DS -11.72 -7.95 -2.21 
Theoretical DS -11.26 -7.45 -15.33 8 3 
Identified DS -10.03 -9.58 -20.50 

 

The damage severities and locations of the building models identified using colored 

noise excitations are compared with those using white noise excitations to see 
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whether the type of external excitations affects the identification results or not. This 

can be done in terms of the scenarios 2, 4 and 6. The identification results of the 

three scenarios are presented and compared with the corresponding theoretical values 

in Figure 6.8. It can be seen that the identified results using the white noise 

excitations are close to those using the colored noise excitations and they all match 

the theoretical values well. In addition, according to the identified stiffness 

parameters of the undamaged building models by white noise excitation (see Table 

6.3) and the identified stiffness parameters of the damaged building models by 

colored noise excitation (see Table 6.6), damage locations and damage severities of 

Scenarios 2, 4 and 6 are obtained and presented in Table 6.8. The identified results 

by the excitations of different types before and after damage are also compared with 

theoretical values and those identified by the excitations of the same type in Figure 

6.8. It can be seen from Figure 6.8 that there is no much difference in the precision of 

all the identified results. Therefore, before and after damage, different types of 

external excitations can be utilized to vibrate building structures by the proposed 

method.  

Table 6.8 Identified damage severities by the excitations of different types before and 

after damage in the frequency domain 

Damage Severity (DS) Scenario Building 
Model Category 1μ̂ (％) 2μ̂ (％) 3μ̂ (％) 

Theoretical DS -11.26 0 0 2 1 
Identified DS -10.33 0 -1.70 

Theoretical DS 0 -15.33 0 4 2 
Identified DS 0 -16.41 0 

Theoretical DS 0 -15.33 -7.45 6 2 
Identified DS 0 -17.88 -4.90 

Note: before damage: white noise excitation, after damage: colored noise excitation 
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6.4 Experimental Analysis in the Time Domain 

The experimental data were analyzed by the SMBDD method in the time domain in 

this section. The recorded ground motions and building responses as well as the 

identified structural damping ratios in Section 6.3.2 were utilized to identify damage 

locations and severities using the SMBDD method in the time domain. The identified 

damage locations and severities were also compared with the theoretical values. 

 

6.4.1. Stiffness identification of undamaged building models 

Firstly, the stiffness values of the undamaged shear building models were identified 

by the SMBDD method in the time domain. The averaged modal damping ratios, the 

measured statistical moment vectors, the estimated masses, and the recorded ground 

motion were used as inputs to identify the lateral stiffness values of the undamaged 

building models. The identified results are listed in Table 6.9.  

Table 6.9 Identified results of undamaged building models in the time domain (N/m) 

Mean Damping 
Ratio Identified Stiffness Building 

Model 
Ground 

Excitation 
1̂ξ  2̂ξ  1̂k  2k̂  3̂k  

W.N. 1 45236 25966 24038 
W.N. 2 

0.0151 0.0123 
43783 25099 23659 

C.N. 1 44231 24811 23235 
1 

C.N. 2 
0.0132 0.0120 

47172 27143 24597 
W.N. 1 38974 23029 22560 
W.N. 2 

0.0096 0.0087 
40662 24164 23615 

C.N. 1 41136 24342 24152 
2 

C.N. 2 
0.0079 0.0087 

41211 24556 24306 
C.N. 1 35845 22173 22955 

3 
C.N. 2 

0.0109 0.0074 
37942 23517 24744 
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Then the mean values of the identified lateral stiffness from the two separate tests 

using either white noise or colored noise ground excitation are calculated and 

compared with those computed in the frequency domain in Table 6.10. It can be seen 

that the results calculated in the time domain are very close to those obtained in the 

frequency domain. The maximum relative difference between the two kinds of 

results is only 3.06% which is less than 5% and acceptable. It also indicates that both 

the identified results in the frequency domain and those in the time domain should be 

reliable for all the three undamaged shear building models. 

Table 6.10 Comparison between identified results of undamaged building models in 

the FD and those in the TD  

Mean value of Identified 
Stiffness (N/m) Building 

Model  Method 
1̂k  2k̂  3̂k  

FD 45592 26128 24574 

TD 44510 25533 23849 W.N. 

Error (%) 2.43 2.33 3.04 

FD 46580 26772 24157 

TD 45702 25977 23916 

1 

C.N. 

Error (%) 1.92 3.06 1.01 

FD 40150 23864 23236 

TD 39818 23597 23088 W.N. 

Error (%) 0.83 1.13 1.01 

FD 40650 24110 23898 

TD 41174 24449 24229 

2 

C.N. 

Error (%) 1.27 1.39 1.37 

FD 37379 23232 24347 

TD 36894 22845 23850 3 C.N. 

Error (%) 1.31 1.69 2.08 

 



Chapter 6                                                             Experimental Investigation on SMBDD Method 

6-21 

6.4.2. Damage detection results-white noise excitation 

The five damage scenarios (the scenarios 1, 2, 4, 5 and 6) which were investigated on 

the building models 1 and 2 with white noise excitation input were examined by the 

proposed method in the time domain. Details of the five damage scenarios could be 

found in Section 6.3.4. The first two modal damping ratios of either the building 

model 1 or the building model 2 estimated before were also utilized here.  The 

identified lateral stiffness values of the building models 1 and 2 for each damage 

scenario were presented in Table 6.11. The mean lateral stiffness values of the 

damaged building model were then compared with those of the corresponding 

undamaged building model for each damage scenario, from which the damage 

location and severity were identified. The identified damage location and severity 

were finally compared with the theoretical ones, as listed in Table 6.12 and plotted in 

Figure 6.9. 

 

It can be seen from Figure 6.9 that the locations of either single damage cases or 

multi-damage cases could be identified correctly. In addition, the locations of the 

minor damage cases such as the 5.36% damage in the first story in the scenario 1 

(single damage) and the 7.45% damage in the third story in the scenarios 5 and 6 

(multi-damage) were identified correctly. As far as the identified damage severity 

values in the time domain are concerned, they are close to the theoretical ones. The 

difference between the identified values in the time domain and the corresponding 

theoretical values is either decreased or increased for a structural location in 

comparison with that between the identified values in the frequency domain and the 

corresponding theoretical values. For example, the difference for the first story and 

the second story of Scenario 1 in the frequency domain is respectively 0.21% and 
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0.92% according to Table 6.5. However, the corresponding difference in the time 

domain listed in Table 6.12 is respectively 1.42% and 0.15%. The difference for the 

first story of Scenario 2 in the frequency domain and the time domain is respectively 

0.10% and 2.7% (see Tables 6.5 and 6.11). However, the difference for the third 

story of Scenario 5 identified in the frequency domain and the time domain is 

respectively 2.88% and 0.15% (see Tables 6.5 and 6.11). Therefore, it is difficult to 

say in which domain the proposed method is more reliable or accurate for the 

experimental analysis with white noise excitations. In other words, the conclusion 

can be made that the analyzed results in the time domain also demonstrate the 

feasibility and effectiveness of the SMBDD method. 

Table 6.11 Identified stiffness values of damaged building models under W.N. 

excitation in the time domain (N/m) 

Mean 
Damping 

Ratio 
Identified Stiffness 

Scenario Building 
Model  

Ground 
Excitation

1̂ξ  2̂ξ  1̂k  2k̂  3̂k  

W.N. 1 42944 25532 23849
1 1 

W.N. 2 
0.0155 0.0132

42565 25455 23849
W.N. 1 41043 25533 23849

2 1 
W.N. 2 

0.0168 0.0141
40360 25533 23849

W.N. 1 39684 19243 22696
4 2 

W.N. 2 
0.0077 0.0098

39706 21439 23088
W.N. 1 37878 25326 21575

5 1 
W.N. 2 

0.0146 0.0129
39849 25533 22497

W.N. 1 39706 19387 21932
6 2 

W.N. 2 
0.0095 0.0085

39706 18185 21192
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Table 6.12 Identified and theoretical damage severities in the time domain 

(White Noise Excitation) 

Damage Severity (DS) 
Scenario Building 

Model Category 1μ̂ (％) 2μ̂ (％) 3μ̂ (％) 

Theoretical DS -5.36 0 0 
1 1 

Identified DS -3.94 -0.15 0.00 
Theoretical DS -11.26 0 0 2 1 
Identified DS -8.56 0.00 0.00 

Theoretical DS 0 -15.33 0 4 2 
Identified DS -0.31  -13.80  -0.85  

Theoretical DS -11.26 0 -7.45 5 1 
Identified DS -12.68 -0.40 -7.60 

Theoretical DS 0 -15.33 -7.45 6 2 
Identified DS -0.28  -20.39  -6.61  

 

6.4.3. Damage detection results-colored noise excitation 

The six damage scenarios (the scenarios 2, 3, 4, 6, 7 and 8) investigated based on the 

building models 1, 2 and 3 with the input of colored noise excitation were also 

examined by the proposed method in the time domain. Details of the six damage 

scenarios could be found in Section 6.3.5. The first two modal damping ratios of 

either the building model 1 or the building model 2 estimated before, the measured 

displacement responses and the recorded ground motion were used as inputs to 

identify the lateral stiffness values of the damaged building models using the 

proposed method in the time domain. The identified lateral stiffness values of the 

building models 1 and 2 for each damage scenario were presented in Table 6.13.  
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Table 6.13 Identified stiffness values of damaged building models under C. N. 

excitation (N/m) in the time domain 

Mean Damping 
Ratio Identified Stiffness 

Scenario 
 

Building 
Model 

Ground 
Excitation

1̂ξ  2̂ξ  1̂k  2k̂  3̂k  
C.N. 1 40517 25977 23916

2 1 
C.N. 2 

0.0166 0.0139
40329 25977 23916

C.N. 1 41174 21683 23699
3 2 

C.N. 2 
0.0100 0.0095

41174 22120 24229
C.N. 1 41174 20622 23072

4 2 
C.N. 2 

0.0077 0.0099
41174 20439 23700

C.N. 1 41174 18875 21283
6 2 

C.N. 2 
0.0097 0.0092

41174 21695 22139
C.N. 1 33444 21695 23849

7 3 
C.N. 2 

0.0165 0.0152
33482 21661 23850

C.N. 1 34065 21319 195718 3 
C.N. 2 

0.0142 0.0110
32980 20523 18983

 

Table 6.14 Identified and theoretical damage severities and locations (colored noise 

excitation) in the time domain 

Damage Severity (DS) Scenario Building 
Model Category 1μ̂ (％) 2μ̂ (％) 3μ̂ (％) 

Theoretical DS -11.26 0 0 2 1 
Identified DS -11.55 0 0 

Theoretical DS 0 -7.45 0 
3 2 

Identified DS 0.00 -10.42  -1.09 
Theoretical DS 0 -15.33 0 4 2 
Identified DS 0.00  -16.03  -3.48  

Theoretical DS 0 -15.33 -7.45 6 2 
Identified DS 0.00 -17.03  -10.39 

Theoretical DS -11.26 -7.45 0 
7 3 

Identified DS -9.30  -5.11  0.00  
Theoretical DS -11.26 -7.45 -15.33 8 3 
Identified DS -9.14  -8.42  -19.17  
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The mean lateral stiffness values of the damaged building models listed in Table 6.13 

were then compared with those of the corresponding undamaged building model for 

each damage scenario, from which the damage location and severity were identified. 

The identified damage location and severity were finally compared with the 

theoretical ones, as listed in Table 6.14 and plotted in Figure 6.10. Seen from Figure 

6.10, the locations of either single damage case or multi-damage could be identified 

satisfactorily although there were small damage severity values identified for the 

undamaged locations. As mentioned before, many factors such as high level of 

measurement noise and uncertainties in damping identification and numerical 

modeling could all result in such small false identification. In addition, the identified 

damage severity values in the time domain are also close to the theoretical values 

according to Table 6.14.  Generally speaking, the identified results by the proposed 

method in the time domain with colored noise excitations remain the same high 

quality as those identified by the proposed method in the frequency domain. 

Therefore, the analyzed results of colored noise tests in the time domain demonstrate 

the feasibility and effectiveness of the SMBDD method again. 

 

6.5. Conclusions 

The structural damage detection method developed in the previous chapters based on 

the statistical moments of dynamic responses of a building structure was 

experimentally examined in this chapter. Three shear building models were 

constructed for the shaking table tests under either band-limited white noise 

excitation or the Kanai-Tajimi filtered white noise (colored noise) excitation. The 

background noise intensity of about 8% to 10% of the peak ground acceleration was 

involved in the shake table tests. A total of eight damage scenarios of different 
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damage locations and severities were created on the three building models to 

examine the feasibility and accuracy of the proposed damage detection method. 

Among the eight damage scenarios, there were five damage scenarios that were 

investigated on the building models 1 and 2 by using two randomly-generated white 

noise ground excitations, six damage scenarios that were explored by using two 

randomly-generated colored noise ground excitations and three damage scenarios 

that were examined by both white noise tests and colored noise tests.  

 

Firstly, the experimental data were analyzed by the proposed method in the 

frequency domain. It was found that that the identified results from the two different 

white noise ground excitations were very close to each other for all the damage 

scenarios concerned. The damage locations and severities of either single damage 

case or multi-damage case could be identified correctly by the proposed method, 

even for the minor damage cases. Although the theoretical damage severity values 

may be different from the real damage severity values, the fact that the identified 

damage severity values are close to the theoretical values demonstrates the feasibility 

and effectiveness of the SMBDD method. 

 

Then, the experimental data were analyzed by the proposed method in the time 

domain. The damage locations and severities of either single damage case or multi-

damage case were also accurately identified by the proposed method in the time 

domain, even for the minor damage cases. Furthermore, the identified results by the 

proposed method in the time domain almost have the same high quality in 

comparison with those identified by the proposed method in the frequency domain. It 
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can be concluded that the proposed statistical moment-based damage detection 

method is feasible and accurate both in the frequency domain and in time domain.   

 

However, most civil structures involve a certain amount of uncertainties caused by 

environment or modeling. These uncertainties in damage identification may result in 

false-positive damage identification (identifying the intact element as damaged) and 

false-negative damage identification (failure to identify the damaged elements). 

Therefore, when some uncertainties exist in the structural damage detection, it is 

definitely necessary to take the uncertainties into account. This will be investigated 

in the next chapter.  
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                      (a) Front view                                                          (b) Side view 

Figure 6.1 Configuration of building model 
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Figure 6.2 Experimental arrangement 
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(a) 5 mm reduction from both sides of a column at the first story  

 
(b) 5 mm reduction from both sides of a column at the second story 

 
(c) 2.5 mm reduction from both sides of a column at the third story 

Figure 6.3 Schematic typical damage scenarios: (a) 5 mm reduction from both sides 

of a column at the first story, (b) 5 mm reduction from both sides of a column at the 

second story, (c) 2.5 mm reduction from both sides of a column at the third story 
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(a) time histories  
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(b) power spectral density functions 

Figure 6.4 Typical white noise ground excitation: (a) time histories, (b) power 

spectral density functions 
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(b) power spectral density functions 

 

Figure 6.5 Typical colored noise ground excitation: (a) time histories, (b) power 

spectral density functions 
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                           (a) Scenario 1                                                (b) Scenario 2 
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(c) Scenario 4 
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                        (d) Scenario 5                                            (e) Scenario 6 

Figure 6.6 Identified results in the frequency domain using white noise excitations: (a) 

Scenario 1, (b) Scenario 2, (c) Scenario 4, (d) Scenario 5, (e) Scenario 6 
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        (a) Scenario 2                                                (b) Scenario 3 
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       (c) Scenario 4                                                (d) Scenario 6 

1 2 3
0

-2
-4
-6
-8

-10
-12
-14
-16
-18
-20

 Theoretical DS
 Identified DS

D
am

ag
e 

Se
ve

rit
y 

(%
)

Story No.
1 2 3

0
-2
-4
-6
-8

-10
-12
-14
-16
-18
-20

 Theoretical DS
 Identified DS

D
am

ag
e 

Se
ve

rit
y 

(%
)

Story No.
 

        (e) Scenario 7                                                (f) Scenario 8 

Figure 6.7 Identified results in the frequency domain using colored noise excitations: 

(a) Scenario 2, (b) Scenario 3, (c) Scenario 4, (d) Scenario 6, (e) Scenario 7, (f) 

Scenario 8 
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Figure 6.8 Identified results using white noise excitations before damage and colored 

noise excitations after damage and those using excitations of the same type before 

and after damage: (a) Scenario 2, (b) Scenario 4, (c) Scenario 6
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(a) Scenario 1                                                       (b) Scenario 2 
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(c) Scenario 4 
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                         (d) Scenario 5                                               (e) Scenario 6 

Figure 6.9  Identified results in the time domain using white noise excitations: (a) 

Scenario 1, (b) Scenario 2, (c) Scenario 4, (d) Scenario 5, (e) Scenario 6 
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        (a) Scenario 2                                                (b) Scenario 3 
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       (c) Scenario 4                                                (d) Scenario 6 
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        (e) Scenario 7                                                (f) Scenario 8 

Figure 6.10 Identified results in the time domain using colored noise excitations: (a) 

Scenario 2, (b) Scenario 3, (c) Scenario 4, (d) Scenario 6, (e) Scenario 7, (f) Scenario 

8 
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CHAPTER 7 

STOCHASTIC DAMAGE DETECTION METHOD FOR 

STRUCTURES WITH PARAMATRIC UNCERTAINTIES 

7.1 Introduction  

In the previous Chapters 3, 4 and 5, the statistical moment damage detection 

(SMBDD) method has been proposed and numerically demonstrated to be feasible 

and effective for structural damage detection. Then, experimental investigation on 

this method in Chapter 6 further testified the proposed SMBDD method. Both the 

numerical analysis and the experimental investigation show that the proposed 

method is feasible and reliable for damage detection of building structures without 

uncertainties or random parameters. However, one of the main challenges of the 

practical application of a damage detection method to civil structures is that a 

significant amount of uncertainties such as modeling errors and measurement errors 

are inevitably involved in the damage detection procedure for civil structures. If the 

level of uncertainty is higher than or close to the level of actual changes of structural 

properties due to structural damage, the real information of structural damage will be 

concealed and the structural damage can not be accurately identified. For example, 

the existence of measurement noise may render less pronounced damage 

undetectable (negative falsity) or may identify some intact structural elements as 

damaged elements (positive falsity) (Doebling, et al., 1998). The uncertainties 

existing in the structural model along with the errors in the measured vibration data 

limit the successful use of the deterministic damage detection methods. Housner 
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(1997) indicated that structural identification within a statistical framework appears 

to be a promising general approach to structural health monitoring of civil structures 

in view of inescapable data and modeling uncertainties.  

 

Although many researchers have studied in the area of statistical structural damage 

identification and health monitoring based on vibration data, most of the statistical 

approaches still stay in primitive forms (Sohn, et al., 2004). The representative 

approaches to detect structural damage with consideration of the uncertainties are the 

Bayesian methods (Beck and Katafygiotis, 1998; Katafygiotis and Beck, 1998; 

Vanik et al., 2000; Beck and Au, 2002; Yuen and Katafygiotis, 2005), the Monte 

Carlo simulation (MCS) methods (Agbabian et al., 1988; Banan et al., 1994; Yeo et 

al., 2000; Zhou et al., 2003), the perturbation methods (Papadopoulos and Garcia, 

1998; Xia et al., 2002; Xia and Hao, 2003) and the statistical pattern recognition 

methods (Farrar et al., 1999; Sohn et al., 2001). For the Bayesian probabilistic 

approaches, the computation could become prohibitive when a large number of 

substructures of complex civil structures are assumed as damaged because 

substantive hypotheses should be examined to find more local maximum posterior 

probabilities and potentially to identify the correct damage event. The problem of 

computational complex also exists in the stochastic perturbation methods, in which 

various covariance matrices of updating parameters have to be calculated by the 

MCS method under many circumstances. The MCS methods are computationally 

intensive because it requires a large number of simulations to obtain an accurate and 

valid statistics. For the statistical pattern recognition methods, they can be divided 

into two classes: supervised learning and unsupervised learning. The unsupervised 

learning can be applied to data not containing examples from the damaged structure, 
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but this approach is inherently limited to identify presence of damage only. When 

data are available from both the undamaged and damaged structure, supervised 

learning approach can be taken to move forward to higher level damage 

identification to locate and quantify damage. However, the acquisition of data sets 

from the damaged structure in various damage states is often prohibitive for most 

applications. Furthermore, almost all of damage detection techniques with 

consideration of uncertainties assume the Gaussian distribution of a feature space, 

and establish decision making threshold values based on this normality assumption. 

Therefore, they do not always work effectively in dealing with uncertainty 

parameters which are not normally distributed. In addition, few, if any, of the current 

probabilistic damage detection methods can give complete probabilistic information 

such as the probability density function (PDF) of structural damage severity. 

Therefore, a new stochastic damage detection method is proposed in this chapter to 

locate structural damage and their corresponding damage severities in consideration 

of the random parameters or uncertainties involved in building structures. 

 

Firstly, the basic equations and algorithm of the stochastic damage detection method 

are derived and presented. The stochastic damage detection method can be applied to 

civil structures with two stages. The first stage is to calculate the PDFs of the 

structural stiffness parameters at both the undamaged state and the damaged state. 

The second stage is to identify damage locations and their corresponding damage 

severities by calculating the probability of damage existence and the PDFs of 

damage severity indices. Numerical investigation is performed to demonstrate the 

proposed method through a three-story shear building structure. To simply illustrate 

the proposed method, only the first modal damping ratio of the building is adopted as 
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an independent random parameter, while the second modal damping ratio is fixed as 

a deterministic value and the third modal damping ratio is calculated from the first 

two modal damping ratios according to the Rayleigh damping assumption. The first 

modal damping ratio is set to be of a lognormal distribution in order to testify the 

applicability of the proposed method to non-Gaussian random parameters. Three 

damage scenarios of the shear building are explored. Numerical analysis results show 

that the proposed method is reliable and effective for structural damage detection 

when uncertainties or random errors are taken into account. 

 

7.2. Stochastic Damage Detection Method 

A new stochastic damage detection method is proposed and its formulae are derived 

in this section. The basic principle of the stochastic damage detection method is to 

identify the PDFs of stiffness parameters of a structure before and after the 

occurrence of damage using the measured building responses, and then to determine 

damage locations and their corresponding damage severities by calculating the 

probability function { }ˆ ˆ ˆu d uP K K Kα− ≥ × and its derivatives, where ˆ uK  is the 

identified stiffness of a component interested before damage occurrence, while ˆ dK  

is the counterpart after the damage occurrence. α  is a variable ranging from 0 to 

100%. 

 

7.2.1 Calculation of PDFs of structural stiffness parameters before and 

after damage   

The first stage of the stochastic damage detection method focuses on the 
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identification of the PDFs of structural elemental stiffness parameters before and 

after damage. Intuitively, all modal updating methods can be combined with MCS 

method and perturbation method for such uncertainty propagation. However, MCS 

method and perturbation method are either of computational prohibitiveness 

particularly for large complex structures or only effective for dealing with Gaussian 

random parameters. In this regard, a new integrated algorithm is proposed to identify 

the PDFs of the structural stiffness parameters at the undamaged state ˆ uK and the 

corresponding PDFs after the damage occurrence ˆ dK  by combining the Statistical 

Moment-Based Damage Detection (SMBDD) method (Zhang, et al., 2008 and Xu, et 

al., 2009) and the Probability Density Evolution (PDE) method (Li and Chen, 2004). 

One distinctive advantage of the SMBDD method is that it is not only sensitive to 

structural damage (or structural stiffness changes) but also insensitive to 

measurement noise, which has been numerically and experimentally demonstrated in 

the references. The PDE method can handle any kinds of uncertainty parameters and 

is more efficient than MCS method for uncertainty propagation. Hence, the PDFs of 

the structural elemental stiffness parameters before and after damage can be 

accurately and efficiently calculated by combing the two methods.  

 

Without loss of generality, the equation of motion of a MDOF building structure 

with random parameters in the matrix form can be expressed as  

( ) ( ) ( ) ( ) ( ) ( )t t t t+ + =MX C Θ X K Θ X f                      (7.1)  

with the following deterministic initial condition 

0 0 0 0( ) ,   ( )t t= =X x X x                            (7.2) 

where X , X , X are the acceleration, the velocity and the displacement vector of N 

order; ( )tf  is the external excitation which is used to detect the structural damage, 
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1 2( ) [ ( ),  ( ), , ( )]Nt f t f t f t=f ; M, C and K are the N × N mass matrix, damping matrix 

and stiffness matrix, respectively; Θ  is the random parameter vector of nθ  order 

which reflects the uncertainties in the structural identification procedure, with the 

known PDF of ( )pΘ θ .  

 

For every given value of the random parameter vectorΘ , the structural stiffness 

parameters can be obtained by the SMBDD method. Detail description about the 

SMBDD method can be found elsewhere (Zhang, et al., 2008 and Xu, et al., 2009).  

Due to the random nature of Θ , the identified structural stiffness parameters are also 

stochastic and dependent on the random parameterΘ , denoted as ( )k Θ . The PDE 

method that has been used successfully in many stochastic dynamical systems is 

employed here to obtain the PDFs of ( )k Θ  because of its versatility and no 

computational intensiveness.   

 

Construct a virtual random vector process for every elemental stiffness parameter.  

( ) ( )l lZ t k t= ⋅Θ                                    (7.3) 

where ( )lk Θ  is the lth elemental stiffness parameter or the lth element of ( )k Θ , 

there is 

( )l lZ k= Θ                                      (7.4) 

For an engineering structure, the lth element stiffness parameter identified is existent, 

unique for every given value of Θ  and dependent on the random parametersΘ . So 

is the virtual random vector process ( )lZ t . According to the principle of preservation 

of probability, the joint PDF of ( ( ), )lZ t Θ , denoted as ( , , )
lZp z tΘ θ , satisfies the 

following probability density evolution equation (PDEE).   
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( , , ) ( , , )

( , ) 0l lZ Z
l

p z t p z t
Z t

t z
∂ ∂

+ =
∂ ∂

Θ Θθ θ
θ                     (7.5) 

Substitute Equation (7.4) into Equation (7.5), it gets 

( , , ) ( , , )
( ) 0l lZ Z

l

p z t p z t
k

t z
∂ ∂

+ =
∂ ∂

Θ Θθ θ
θ                      (7.6) 

with the following initial condition 

0( , , ) | ( ) ( )
lZ tp z t z pδ= =Θ Θθ θ                            (7.7) 

where ( )δ ⋅  is the Dirac’s function. 

 

After solving the initial-value problem of Equations (7.6) and (7.7), the PDF of 

( )lZ t  can be given by 

0( , , ) | ( ) ( )
lZ tp z t z pδ= =Θ Θθ θ                           (7.8) 

Note that  

1( ) ( )l l tk Z t ==Θ                                 (7.9) 

Therefore, the PDF of ( )lZ t  at time 1 is just the PDF of ( )lk Θ  which is aimed to 

obtain.   

 

The procedure to find the solution of the PDFs of structural elemental stiffness 

parameters before and after damage can be summarized as follows:  

(1) Select the random parameters Θ  need to consider and obtain their probabilistic 

information in the domainΩΘ  (ΩΘ  is the distribution domain of Θ ). The 

considered random parameters may be Young’s modulus, structural damping 

ratios, elemental mass parameters, external excitation parameters and any 

combination of these parameters or others; 

(2) Construct the virtual random vector processes ( )u u t= ⋅Z k Θ  and 
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( )d d t= ⋅Z k Θ , where the superscripts ‘u’ and ‘d’ respectively represents the 

undamaged and damaged states. ( )u u=Z k Θ  and ( )d d=Z k Θ are then simply 

derived.  

(3) Discretize the random parameters Θ  into representative points 

, 1, 2, ,q sq N=θ  in the domainΩΘ ; Denote the representative domain of each 

representative point 
q

θ  as 
q
V . The probability measure over this domain is 

assigned to this point and denoted as
q
P . 

( )
q

q V
P p d= ∫ Θ θ θ                            (7.10) 

Clearly, 
1

1sN

qq
P

=
=∑ . The initial condition expressed by Equation (7.7) is 

discretized correspondingly as 

0 s( , , ) | ( ) ( ),    1, 2, ,
lZ q t qp z t z P q Nδ= = =Θ θ θ                   (7.11) 

(4) For every given discrete point qθ , the structural stiffness vectors before and after 

the damage occurrence, ( )u
qk θ  and ( )d

qk θ , are identified respectively by the 

SMBDD method using measurement data at the two stages; 

(5) Substitute the attained values of ( )u
l qk θ and ( )d

l qk θ  in Step (4) into Equation 

(7.6) for the lth elemental stiffness parameter of the undamaged and damaged 

structure, respectively, and solve Equations (7.6) and (7.11) by the finite 

difference method to obtain ( , , )u
l

qZ
p z tθ  and ( , , )d

l
qZ

p z tθ , respectively, 

where u
lZ  and d

lZ  are respectively the lth element of uZ and dZ ;  

(6) Repeat Steps (4) and (5) until ( , , )u
l

l qZ
p z tθ  and ( , , )d

l
l qZ

p z tθ  at every 

given discrete points, , 1, 2, ,q sq N=θ , are obtained; 
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(7) Synthesize the results in Step (6) to respectively obtain ( , )u
l

lZ
p z t  and 

( , )d
l

lZ
p z t  through the discretized version of Equation (7.10) 

1
( , ) ( , , )

s

l l

N

Z Z q
q

p z t p z t
=

=∑ Θ θ                           (7.12) 

Finally, let t =1, the PDFs of u
lk  and d

lk  are obtained.  

(8) Repeat Steps (5), (6) and (7) until PDFs of all structural elemental stiffness 

parameters are obtained; 

 

7.2.2 Identification of damage locations and damage severities  

The second stage of the stochastic damage detection method is to identify structural 

damage locations and their corresponding damage severities by employing the 

previously obtained PDFs of structural elemental stiffness parameters before and 

after damage. For simplicity, the lth elemental stiffness parameter identified is 

denoted as K̂  in the following expression. Firstly, a probability function is defined 

and calculated as follows.  

{ } { }
ˆ(1 )

0 0
ˆ(1 )

0 0

ˆ ˆ ˆ ˆ ˆ(1 )

ˆ ˆ ˆ ˆ                                   = ( , )

ˆ ˆ ˆ ˆ                                   = ( ) ( )

                              

u

u

u d u d u

K d u d u

K d u d u

P K K K P K K

p K K dK dK

p K p K dK dK

α

α

α α

∞ − ×

∞ − ×

− ≥ × = ≤ − ×

⋅

∫ ∫

∫ ∫
ˆ(1 )

0 0
ˆ ˆ ˆ ˆ     = [ ( ) ] ( )

uK d d u up K dK p K dK
α∞ − ×

∫ ∫

             (7.13) 

The probability function { }ˆ ˆ ˆu d uP K K Kα− ≥ ×  is the function of α , denoted as 

( )G α . Its value will decrease along with the increase of α . Here we assume that 

ˆ uK  and ˆ dK  are independent to each other. As was mentioned before, the PDFs of 

structural stiffness parameters are dependent on the PDFs of the random 
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parametersΘ . Therefore, if there is no damage at the associated location the 

identified ˆ uK  and ˆ dK  should have the same PDF since the same uncertainties or 

random parameters are considered before and after damage occurrence. Under this 

situation, ˆ uK  and ˆ dK  are uniformly denoted as K̂ , and the value of 

{ }ˆ ˆ ˆu d uP K K Kα− ≥ ×  at 0α = , that is, the value of { }ˆ ˆ 0u dP K K− ≥ can be 

derived as follows.  

{ } { }
ˆ

0 0
ˆ

0 0
ˆ

0 0

ˆ ˆ ˆ ˆ0

ˆ ˆ ˆ ˆ                           = ( , )

ˆ ˆ ˆ ˆ                           = ( ) ( )

ˆ ˆ ˆ ˆ                           = [ ( ) ] ( )

         

u

u

u

u d d u

K d u d u

K d u d u

K d d u u

P K K P K K

p K K dK dK

p K p K dK dK

p K dK p K dK

∞

∞

∞

− ≥ = ≤

⋅

∫ ∫

∫ ∫

∫ ∫
ˆ

0 0

0

2
0

ˆ ˆ ˆ ˆ                  = [ ( ) ] ( )

ˆ ˆ                           = ( ) ( )

1 1ˆ                           = [ ( )]  = 
2 2

                                                                 

K
p K dK p K dK

F K dF K

F K

∞

∞

∞

∫ ∫
∫

             

        (7.14) 

where ˆ( )F K  is the distribution function of K̂ . 

 

According to Equation (7.14), it can be concluded that when there is no damage at 

the location investigated, the value of { }ˆ ˆ 0u dP K K− ≥ should equal to 0.5. 

Otherwise, if there is damage at the location investigated, the PDF of ˆ dK  should 

offset toward the negative abscissa compared with the PDF of the stiffness parameter 

at the undamaged state, ˆ uK . Hence, the value of { }ˆ ˆ 0u dP K K− ≥  should be larger 

than 0.5. Therefore, whether structural damage occurs or not can be determined 

according to the values of { }ˆ ˆ 0u dP K K− ≥ . When the value of { }ˆ ˆ 0u dP K K− ≥ is 
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larger than 0.5, there should be damage occurrence at the corresponding location and 

the larger the value of { }ˆ ˆ 0u dP K K− ≥ , the higher probability the damage 

occurrence at this place.  

 

In addition, once the probability function { }ˆ ˆ ˆu d uP K K Kα− ≥ ×  has been obtained, 

the derivative of { }ˆ ˆ ˆu d uP K K Kα− ≥ ×  in terms of α  can be further calculated, 

which is also the function of the variableα . Rearrange the probability function 

( )G α  as  

{ }ˆ ˆ ˆ( )

ˆ ˆ
        ˆ

ˆ ˆ
        1 ˆ

u d u

u d

u

u d

u

G P K K K

K KP
K

K KP
K

α α

α

α

= − ≥ ×

⎧ ⎫−⎪ ⎪= ≥⎨ ⎬
⎪ ⎪⎩ ⎭

⎧ ⎫−⎪ ⎪= − ≤⎨ ⎬
⎪ ⎪⎩ ⎭

                         (7.15) 

Since ˆ ˆ ˆ( ) /u d uK K K−  is the definition of structural damage severity,  

{ }ˆ ˆ ˆ( ) /u d uP K K K α− ≤  is just the distribution function of structural damage severity, 

denoted as ( )F α . Therefore,  

( ) ( )G fα α′− =                              (7.16) 

The negative derivative of ( )G α  is just the PDF of structural damage severity, 

denoted as ( )f α . Therefore, the value of α  corresponding to the maximum of 

( )f α  should be the most likely value of structural damage severity, denoted asβ , 

which is straightforwardly set as the index of damage severity for structures with 

uncertainties. Therefore, according to the above deductions, not only structural 

damage locations but also their corresponding damage severities can be identified by 

the proposed stochastic damage detection method. The flowchart of the stochastic 



Chapter 7       A Stochastic Damage Detection Method with Consideration of Uncertainties 

7-12 

damage detection method is presented in Figure 7.1. The feasibility and effectiveness 

of the new stochastic damage detection method are demonstrated by the following 

numerical investigation based on a three-story shear building structure.  

 

7.3. Numerical Investigation 

7.3.1 Numerical model   

To evaluate the effectiveness of the stochastic damage detection method for building 

structures with uncertainties or of random parameters, the three-story shear building 

model shown in Figure 7.2 is investigated in this paper. The mass and horizontal 

stiffness coefficients of the three-story shear building model are respectively 350250 

kg and 4728400 kN/m for the first story, 262690 kg and 315230 kN/m for the second 

story, and 175130 kg and 157610 kN/m for the third story. The mass of each floor is 

assumed to be invariant. Though more than one random parameter can be taken into 

account by the proposed method, it is sufficient for demonstrative purposes to 

consider only one random parameter of the building structure. In the following 

numerical investigation, the first modal damping ratio is selected as a random 

parameter due to its highly uncertainties or random errors in the identification of this 

parameter. The first damping ratio is approximated as a lognormal distribution with 

mean value ξ = 1% and the standard deviation σ  of 10% of the mean value. The 

second modal damping ratio is fixed as 2.14%. The third modal damping ratio is 

calculated from the first two modal damping ratios according to the Rayleigh 

damping assumption. The ground acceleration is simulated as a colored white noise 

corresponding to the Kanai-Tajimi spectrum having parameters gω = 15.6 rad/sec 
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and gζ = 0.6. The magnitude is chosen such that the maximum absolute value of 

acceleration is 2.0 m/sec2. To simulate the colored white noise excitation, a method 

of digital simulation random processes developed by Shinozuka and Jan (1972) is 

utilized. The duration of the excitation time history is 1000s with the sampling 

frequency of 256 Hz. 

 

7.3.2 Numerical Analysis   

In this section, three damage scenarios, Scenario 1, 2 and 3, are explored through the 

shear building model. Both Scenarios 1 and 2 have single damage at the second story 

but with different damage severities of 10% and 20%, respectively. Scenario 3 has 

the multi-damage at the first story and the third story respectively with the damage 

severities of 20% and 10%, respectively.  

 

The PDFs of the horizontal stiffness parameters of the undamaged shear building 

structure are first identified according to the proposed algorithm in Section 2.1. The 

first modal damping ratio is discretized into 21 representative points in the 

domain [ 3 ,  3 ]ξ σ ξ σ− + , as seen in Figure 7.3. For every given representative 

point, iξ , the horizontal stiffness parameters of the undamaged shear building are 

identified by using the SMBDD method. The discretized representative points iξ and 

the corresponding identified horizontal stiffness parameters of the undamaged shear 

building are listed in Table 7.1. Then respectively substitute the identified horizontal 

stiffness parameters into Equation (7.6) and solve it with the finite difference method. 

Following the procedure of the proposed algorithm in Section 2.1, the PDF of every 

story’s horizontal stiffness parameter of the undamaged structure is finally obtained. 
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Likewise, the PDFs of the horizontal stiffness parameters for Scenarios 1, 2 and 3 are 

also identified and respectively presented in Figures 7.4, 7.5 and 7.6 in comparison 

with the identified PDFs of the horizontal stiffness parameters of the undamaged 

building. The solid red lines stand for the PDFs of the undamaged shear building, 

while the dotted blue lines stand for the counterparts of the damaged building. 

 

Table 7.1 Identified stiffness parameters of the undamaged structure 

No. 
iξ  Story 1 Story 2 Story 3 

1 0.0074 5287164800 354730240 177358680 

2 0.0077 5229349800 350663220 175327720 

3 0.0080 5149865300 345118050 172568980 

4 0.0083 5061825300 338916160 169471800 

5 0.0086 4984801200 342098900 164384060 

6 0.0089 4926428000 298523950 148982510 

7 0.0092 4869308900 315110140 169321590 

8 0.0095 4810261300 294431810 146951340 

9 0.0098 4751981000 292550670 146020970 

10 0.0101 4695639400 312994980 156525780 

11 0.0104 4641564200 289036760 144282060 

12 0.0107 4595750600 287372210 143457670 

13 0.0110 4553734200 285754670 142660310 

14 0.0113 4508861000 299738810 149915870 

15 0.0116 4460632400 296328830 148220130 

16 0.0119 4412387000 292906480 146516850 

17 0.0122 4365901500 289597900 144868940 

18 0.0125 4322035500 286468230 143309600 

19 0.0128 4280236400 283479780 141820230 

20 0.0131 4240985400 280666700 140417760 

21 0.0134 4204557200 276180710 139691580 

 

As seen from Figures 7.4, 7.5 and 7.6, the stiffness values corresponding to the peak 
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values of the PDFs of an undamaged story before and after damage are almost at the 

same position. For a damaged story, the stiffness values corresponding to the peak 

values of the PDFs after damage are apparently smaller than those before damage 

occurrence. And the larger the damage severity, the more backward offset occurs 

between the PDFs of the damaged state and those of the undamaged state. This is 

verified by the identified results of Story 2 for Scenarios 1 and 2 which are 

respectively presented in Figure 7.4 (b) and Figure 7.5 (b). For the stories with 

damage in Scenario 3, say, Stories 1 and 3, the PDFs after damage apparently offset 

backward in comparison with that before damage occurrence, while the PDF of the 

horizontal stiffness parameter of Story 2 almost keeps unchanged. Therefore, the 

damage locations can be qualitatively determined according to the identified PDFs of 

structural elemental stiffness parameters before and after damage.  

 

Then damage locations and their corresponding damage severities are quantitatively 

identified according to the following investigation. The probability functions 

{ }u d uP K K Kα− ≥ ×  for Scenarios 1, 2 and 3 are calculated according to Equation 

(10) and plotted in Figures 7.7, 7.8 and 7.9, respectively. In Figure 7.7, the values of 

{ }u d uP K K Kα− ≥ ×  at 0α = , or the values of { }0u dP K K− ≥ , for the first and 

third stories are 50.84% and 50.81%, respectively, which indicates that the PDFs of 

the first and third stories’ horizontal stiffness values change only marginally before 

and after damage occurrence. That is, the first and third stories have no damage. 

However, the corresponding value for the second story is 95.55% which is much 

larger than 0.5. It means the stiffness of the second story is apparently decreased or 

damaged.  

 



Chapter 7       A Stochastic Damage Detection Method with Consideration of Uncertainties 

7-16 

For Scenario 2, it can be seen from Figure 7.5 that the PDFs of the first and third 

stories’ horizontal stiffness values change very little before and after the damage 

occurrence. In addition, the values of { }0u dP K K− ≥  for the first and third stories 

in Figure 7.8 are 55.82% and 55.85%, respectively, which are only a litter larger than 

50%. On the other hand, the values of { }0u dP K K− ≥  corresponding to the 

damage severities of 2% and 5% are theoretically calculated as 55.65% and 63.85%, 

respectively. Therefore, it can be deduced that the first and third stories of Scenario 2 

either have no damage or have only marginal damage which is about 2%. More 

determinate conclusion can be made by calculating the derivative of 

{ }u d uP K K Kα− ≥ × in the following section. However, for the second story, the 

value of { }0u dP K K− ≥  is 99.99%, which can directly lead to the assured 

conclusion that the stiffness of the second story is definitely decreased or damaged. 

The probability functions { }u d uP K K Kα− ≥ ×  for Scenario 3 are presented in 

Figure 7.9. The values of { }0u dP K K− ≥  for the first story, the second story and 

the third story are respectively 99.99%, 50.34% and 95.58%. Therefore, the first and 

third stories are determined as damage locations.  

 

In order to provide more information about the structural damage for Scenarios 1, 2, 

and 3, the negative derivatives of the probability functions { }u d uP K K Kα− ≥ ×  or 

the PDFs of structural damage severity of every story are calculated and presented in 

Figures 7.10, 7.11, and 7.12, respectively. As seen from Figure 7.10, the damage 

severity of the second story can be determined as 10.0% according to the proposed 

index of damage severity. The identified damage severity is identical with the actual 
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value. The damage severities at the other two stories are identified as 0, which 

verifies the aforementioned conclusion that there is no damage at the first and third 

story for Scenario 1. According to Figure 7.11, the damage severities of the first, 

second and third stories for Scenario 2 are 1.0%, 20.5% and 0, respectively, which 

are very close to the true values, 0, 20% and 0. As seen from Figure 7.12, the 

identified damage severity values of the first and third stories of Scenario 3 are 

20.5% and 10%, respectively, which are almost the same as the actual values, 20% 

and 10%. And the second story should have no damage according to the profile of 

Figure 7.12 (c). The identified damage severities of the three scenarios are compared 

with the real values in Figure 7.13. The identified results are identical with or very 

close to the real values. In summary, the analysis results show that the proposed 

stochastic damage detection method can accurately detect both damage locations and 

their corresponding damage severities when uncertainty or random parameters of 

building structures are taken into account. The feasibility and effectiveness of the 

proposed stochastic damage detection method are numerically demonstrated. 

 

7.4 Concluding Remarks 

A new stochastic damage detection method has been proposed in this paper for 

structural damage detection of building structures of random parameters or with 

uncertainties. Numerical investigation has been performed to demonstrate the 

feasibility and effectiveness of the proposed method in terms of a shear building 

structure, in which the first modal damping ratio is regarded as a random parameter 

with a lognormal distribution. Three damage scenarios were explored. For every 

damage scenario, the PDFs of structural stiffness parameters before and after damage 
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occurrence ˆ uK  and ˆ dK  were firstly identified by employing the proposed 

algorithm. Then the defined probability functions { }u d uP K K Kα− ≥ × and their 

negative derivatives were computed by making use of the identified PDFs of 

structural stiffness parameters before and after damage. 

 

When the PDF of ˆ dK  offsets toward the negative abscissa of stiffness compared 

with the PDF of the undamaged stiffness parameter, ˆ uK , and the value of 

{ }u d uP K K Kα− ≥ × at 0α =  is larger than 0.5, the damage occurrence could be 

ascertained. Their corresponding damage severity values were accurately determined 

according to the maximum points of the negative derivatives of 

{ }u d uP K K Kα− ≥ × (the PDFs of structural damage severities). Numerical analysis 

results show that not only damage locations but also damage severities can be 

correctly identified by the proposed method. The proposed method is effective and 

robust for structural damage detection when uncertainties or random parameters are 

taken into account. 

 

In the next chapter, a framework of the reliability analysis will be developed by 

utilizing the SMBDD method in conjunction with the PDE method. The reliability of 

instrumented building structures will be evaluated based on the dynamic response 

measurements with consideration of uncertainties in measurements, structures and 

external excitations.  

 

 

 



Chapter 7       A Stochastic Damage Detection Method with Consideration of Uncertainties 

7-19 

 

 

Figure 7.1 Flowchart of the stochastic damage detection method 
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Figure 7.2 Three-story shear building model 

 

 

Figure 7.3 Representative points of the first damping ratio 
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(c) Story 3 

Figure 7.4 Comparison of identified PDFs of horizontal stiffness parameters before 

and after damage in Scenario 1: (a) Story 1, (b) Story 2, (c) Story 3  
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(c) Story 3 

Figure 7.5 Comparison of identified PDFs of horizontal stiffness parameters before 

and after damage in Scenario 2: (a) Story 1, (b) Story 2, (c) Story 3 
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(c) Story 3 

Figure 7.6 Comparison of identified PDFs of horizontal stiffness parameters before 

and after damage in Scenario 3: (a) Story 1, (b) Story 2, (c) Story 3  



Chapter 7       A Stochastic Damage Detection Method with Consideration of Uncertainties 

7-24 

0 5 10 15 20 25 30 35 4040
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

11

α (%)

P
ro

ba
bi

lit
y

Storey 1

 
(a) Story 1 
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(c) Story 3 

Figure 7.7 Probability functions { }u d uP K K Kα− ≥ ×  of every story in Scenario 1: 

(a) Story 1, (b) Story 2, (c) Story 3 
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(b) Story 2 
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(c) Story 3 

Figure 7.8 Probability functions { }u d uP K K Kα− ≥ ×  of every story in Scenario 2: 

(a) Story 1, (b) Story 2, (c) Story 3 
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(c) Story 3 

Figure 7.9 Probability functions { }u d uP K K Kα− ≥ ×  of every story in Scenario 3: 

(a) Story 1, (b) Story 2, (c) Story 3 
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(c) Story 3 

Figure 7.10 Derivatives of probability functions { }u d uP K K Kα− ≥ ×  in Scenario 

1: (a) Story 1, (b) Story 2, (c) Story 3 
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Figure 7.11 Derivatives of probability functions { }u d uP K K Kα− ≥ × in Scenario 2: 

(a) Story 1, (b) Story 2, (c) Story 3 
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Figure 7.12 Derivatives of probability functions { }u d uP K K Kα− ≥ × in Scenario 3: 

(a) Story 1, (b) Story 2, (c) Story 3 
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(a) Scenario 1 
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(c) Scenario 3 

Figure 7.13 Identified damage severities in comparison with the real values: (a) 

Scenario 1, (b) Scenario 2, (c) Scenario 3 
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CHAPTER 8  

RELIABILITY ANALYSIS OF STOCHASTIC 

BUILDING STRUCTURES 

8.1 Introduction 

The stochastic damage detection method has been proposed to consider the 

uncertainties involved in damage detection of building structures in Chapter 7. To 

further evaluate the reliability of the instrumented building structures, structural 

component probability and structural system probability will be investigated in this 

chapter. Although the development of structural damage detection has now attained 

some degree of maturity, the application of measured data of structural health 

monitoring system (SHMS) to structural reliability evaluation is still in its infancy. A 

gap between health monitoring technologies and structure integrity assessment 

impedes structure managers to benefit from measured data for inspection, 

maintenance and management exercises. In addition, in most of previous 

investigations, structural system identification and structural reliability assessment 

are treated separately. When uncertainties or random parameters are taken into 

account, the stiffness parameters of all the elements in a building structure identified 

are random parameters coupling with each other. Under this circumstance, it is 

prohibitive to evaluate structural reliability by the current reliability analysis methods 

for civil structures. This chapter therefore presents two integrated methods to 

evaluate structural dynamic reliability and structural system reliability, respectively. 

The integrated methods accept the measurement responses as input and produce as 
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output the reliability of the concerned instrumented structures, in which structural 

reliability analysis is coupled with structural system identification. Numerical 

investigation is conducted through a stochastic shear building structure whose 

stiffness parameters can not be directly utilized to evaluate structural reliability 

because they all are random parameters obtained by system identification with 

consideration of uncertainties and they couple with each other. Three damage 

scenarios of the stochastic shear building are also investigated. The external force of 

the building structure is an EL Centro excitation. Two cases are considered. In the 

first case, only the random parameters of the undamaged and damaged building 

structures are considered. In the second case, there are random parameters both in the 

structures and in the external force. Numerical analysis results show that the 

component reliability and the system reliability of the stochastic building structures 

are effectively evaluated by the proposed methods using limited measurement 

responses.  

 

8.2 Component Reliability of Stochastic Building Structures             

In this section, a new structural component reliability analysis method is proposed by 

integrating the SMBDD method and the probability density evolution equation 

(PDEE)-based absorbing boundary condition method (Chen and Li, 2005). The 

algorithm of the proposed method is presented for stochastic structures with only one 

limit state function or one specified failure mode. The system identification and 

structural reliability analysis are not treated separately in the algorithm of the 

proposed method. On the contrary, the structural reliability analysis is coupled with 

the structural system identification by directly using the probabilistic information of 
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the random parameters considered in the structural system identification other than 

the random stiffness parameters of all structural elements identified. The component 

reliability of a stochastic building structure without explicit system identification can 

thus be evaluated by the proposed method. 

 

8.2.1 Governing equations of structural component reliability analysis  

Without loss of generality, a building structure can be discretized into a MDOF 

system by the finite element method, and the equation of motion in the matrix form 

of the building structure can be expressed as  

( ) ( ) ( ) ( ) ( ) ( , )t t t t+ + =MX C Θ X K Θ X g Ψ                  (8.1)  

where X , X , X are the acceleration, the velocity and the displacement vector of N 

order; ( , )tg Ψ  is a random or deterministic external force, where Ψ  is the 

nΨ order random parameter vector with the known probability density function 

( )pΨ ψ  which reflects the uncertainty in the excitation. If Ψ  is deterministic, 

( , )tg Ψ stands for a deterministic dynamic excitation.  M, C and K are the N × N 

mass matrix, damping matrix and stiffness matrix, respectively; Θ  is the random 

parameter vector of nθ  order which reflects the uncertainty in the structural 

identification procedure, with the known probability density function ( )pΘ θ . 

Evidently, due to the random nature ofΘ , the identified structural stiffness is also a 

random stiffness matrix, denoted as ( )K Θ . For every given value θ  of the random 

parameter vectorΘ , the structural stiffness vector of the building structure can be 

identified by the SMBDD method, denoted as ( )Θk θ . As usual, the structural 

responses have the following deterministic initial condition 
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0 0 0 0( ) ,   ( )t t= =X x X x                          (8.2) 

 

In general, the dynamic reliability of the building structure under the dynamic 

excitation ( , )tg Ψ can be given by 

{ }( ) ( ) ,  [0, ]SR t P X tτ τ= ∈Ω ∈                    (8.3) 

where P{·} is the probability of the random event; SΩ is the safe domain. Equation 

(8.1) means that the dynamic reliability is the total probability of a random event that 

are always in the safe domain over the time duration [0, t]. If the reliability is 

assessed through either the top displacement or one inter-story displacement of a 

building structure, the structural dynamic reliability can be expressed as  

{ }1( ) ( ) ,  [0, ]top BR t P X x tτ τ= ≤ ∈                     (8.4a) 

or                { }2( ) ( ) ,  [0, ]floor BR t P X x tτ τ= ≤ ∈                    (8.4b) 

where ( )topX t  is the displacement response of the building at the top, ( )floorX t  is 

the story drift investigated and 1Bx  or 2Bx  is the threshold of the displacement.  

 

As mentioned before, for every given value θ  of the stochastic parameter vectorΘ , 

the identified structural lateral stiffness vector is unique and denoted as ( )Θk θ . Let 

( , )=Z Θ Ψ , the joint PDF of ( )tX and Z  is denoted as ( , , ( ), )p x tXZ Θz k θ , here 

( )tX  may be displacement responses, internal forces, stress response, and others. 

The general probability density evolution equation is given as 

( , , ( ), ) ( , , ( ), )
( , ) 0

p x t p x t
t

t x
∂ ∂

+ =
∂ ∂

XZ Θ XZ Θz k θ z k θ
X z            (8.5)  

with the initial condition 
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0 0( , , ) ( ) ( )t=tp x t x x pδ= −XZ Zz z                    (8.6) 

Since Equation (8.3) means that the reliability is the total probability of the random 

events that are always in the safe domain over the time duration [0, t], once the 

random events enter the failure domain the related probability will never return to the 

safe domain. That is, the probability density transits one-direction outside the 

boundary. As a result, an absorbing boundary condition is imposed on Equation (8.5) 

as follows. 

f( , , ) 0,       p x t x= ∈ΩXZ z                   (8.7)  

where fΩ  is the failure domain. 

 

If the solution of the initial-boundary-value problem (8.5), (8.6) and (8.7) is 

( , , )p x tXZ z , then the ‘remaining’ PDF is 

( , ) ( , , )dX Xp x t p x t
Ω

= ∫
Z

Z z z                     (8.8) 

and the structural dynamic reliability will be given by 

( ) ( , )
S

XR t p x t dx
Ω

= ∫                             (8.9) 

where SΩ  is the safe domain. For the symmetrical double boundary problem, 

Equation (8.9) becomes 

( ) ( , )B

B

x

Xx
R t p x t dx

−
= ∫                         (8.10) 

It can be seen from the above derivation that the probability flows like the water in a 

river with leaking dikes. 
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8.2.2. Numerical algorithm for structural component reliability analysis 

Denote the stochastic variations as Z which includes two kinds of random 

parameters: the random parameters in the excitation Ψ  and the structural random 

parametersΘ . The basic procedure to evaluate the dynamic reliability of a building 

structure is presented in Figure 8.1 and depicted as follows:  

1. Discretize the stochastic variations Z  into representative points 

( , ),  1, 2, , ,  1, 2, , ,  1, 2, ,i q r zi N q N r Nθ ψ= = = =z θ ψ  in the domain ΩZ ,  

Denote the representative domain of each representative point as 
i
V . The 

probability measure over this domain is assigned to this point and denoted as
i
P . 

( )
i

i V
P p d= ∫ Z z z                            (8.11) 

Clearly, 
1

1zN

ii
P

=
=∑ . The initial condition expressed by Equation (8.6) is 

discretized correspondingly as 

0 0( , , ) ( ) ,  1, 2, ,i t=t i zp x t x x P i Nδ= − =XZ z              (8.12) 

2. For every specific value of structural random parameter vector qθ , the stiffness 

parameters of the undamaged or damaged building structure, ( )qΘk θ , can be 

identified by the SMBDD method using the structural health monitoring system 

(SHMS)-recorded measurement data; 

3. For a given ( , )i q r=z θ ψ and its corresponding identified stiffness vector 

( )qΘk θ , calculate the velocity ( , )i tX z  by solving Equation (8.1) with a 

deterministic numerical method; 

4. Substitute ( , )i tX z  into Equation (8.5), and solve the initial-boundary-value 

problem defined by Equations (8.5), (8.12) and (8.7) with the finite difference 
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method; 

5. Repeat Steps 3 and 4 until ( , , )ip x tXZ z  at every given discrete points, 

, 1, 2, ,i zi N=z , are obtained; 

6. Synthesize the results in Step 5 to obtain ( , )Xp x t  through the discretized 

version of Equation (8.8) 

1

( , ) ( , , )
iN

X X i
i

p x t p x t
=

= ∑ Z z                           (8.13) 

7. Carry out the numerical integration in Equation (8.9) to obtain the structural 

component reliability with respect to time t. 

 

The deterministic structural stiffness identification is embedded in the procedure of 

structural component reliability evaluation in Step 2. Detailed information of the 

method to identify structural stiffness can be found in Chapters 3, 4 and 5. In Chapter 

7, the identified stiffness values of ( )Θk θ  for every given discrete points of the 

stochastic parameters are utilized to calculate the distribution of the structural 

stiffness parameters and then detect structural damage. In this chapter, they are 

arrayed with their corresponding discrete points of the stochastic parameters to 

calculate the reliability of building structures.  

 

8.3 System Reliability of Stochastic Building Structures 

In this section, a new structural system reliability analysis method is proposed by 

integrating the SMBDD method and the PDEE-based equivalent extreme value 

method (Chen and Li, 2007). The algorithm of the integrated method is presented for 

stochastic structures with multi limit state functions. The structural system reliability 
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analysis is coupled with the structural system identification in the algorithm of the 

proposed method.  

 

8.3.1 Governing equations of structural system reliability analysis  

Generally speaking, the structural component reliability is such defined that only one 

limit state function is involved. In other words, only one specified failure mode is 

considered by the structural component reliability. For the reliability evaluation of a 

structure, we usually need to take into account more than one indices, or more than 

one failure modes. For instance, when the serviceability of a multi-story building 

structure is considered, not only the first inter-story drift is require not to exceed a 

threshold, but also all the other inter-story drifts are required not to exceed 

corresponding thresholds. In this case, a family of limit state functions should be 

considered 

1 1 1 2

2 2 1 2

1 2

( , , , )

( , , , )

( , , , )

n

n

m m n

Y g

Y g

Y g

ξ ξ ξ
ξ ξ ξ

ξ ξ ξ

=
=

=

"
"

"
"

                         (8.14) 

 

For example, let us consider an N-story building structure under a random external 

excitation. It should be noted that all the stiffness parameters of the building structure 

are random parameters identified by using the SHMS-based measurement data with 

consideration of uncertainties or random parametersΘ . And the stiffness parameters 

are also coupling with each other. Obviously, the random nature of the stiffness 

parameters is caused by the random parametersΘ considered in the structural system 

identification. To evaluate the system reliability of the building structure, the 

identified stiffness parameters can not be directly used. Otherwise, it will be 
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prohibitive to evaluate the structural system reliability especially for large civil 

building structures when a large number of random stiffness parameters should be 

considered. In this regards, a new structural system reliability analysis method is 

proposed which couples the structural system reliability analysis with the structural 

system identification by utilizing the probabilistic information of the random 

parametersΘ .  

 

The equation of motion in the matrix form of the building structure is expressed as  

( ) ( ) ( ) ( ) ( ) ( , )t t t t+ + =MX C Θ X K Θ X g Ψ                  (8.15)  

with the following deterministic initial condition 

0 0 0 0( ) ,   ( )t t= =X x X x                          (8.16) 

The meanings of the denotations in Equations (8.15) and (8.16) can be found in 

Section 8.2.1. The total random parameter vector in the structural system reliability 

analysis can be denoted as ( , )=Z Θ Ψ . Due to the random nature of Z , the dynamic 

responses of the building structure are also random processes. Denote the inter-story 

drifts from the floor to the top by
1 2
( , ), ( , ), , ( , )

N
X t X t X tZ Z Z" , the heights of the 

stories by 
1 2
, , ,

N
h h h" . The system reliability of the structure can be defined by 

b
1

( , )
Pr ,  [0, ]

N
j

j j

X t
R t T

h
ϕ

=

⎧ ⎫⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎪= < ∈⎨ ⎨ ⎬⎬⎪ ⎪ ⎪⎪⎪ ⎪ ⎪⎪⎪ ⎪⎩ ⎭⎪ ⎪⎩ ⎭

Z
∩                   (8.17) 

where 
b

ϕ  is the threshold of inter-story angle. For clarity, we define the 

dimensionless inter-story drift as 

b

( , )
( , ) ,  1,2, ,j
j

j

X t
X t j N

h ϕ
= =

Z
Z "                     (8.18) 

Thus Equation (8.17) becomes  
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{ }

{ }
1

,max
1

Pr ( , ) 1,  [0, ]

  Pr ( ) 1

N

j
j

N

j
j

R X t t T

X

=

=

⎧ ⎫⎪ ⎪⎪ ⎪= < ∈⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪⎪ ⎪= <⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

Z

Z

∩

∩
                 (8.19) 

where { },max [0, ]
( ) max ( , )

j jt T
X X t

∈
=Z Z . Further, we define an equivalent extreme value 

by 

( )max ,max1
( ) max ( )

jj N
X X

≤ ≤
=Z Z                           (8.20) 

 

To evaluate the system reliability of the building structure, the PDF of the equivalent 

extreme value 
max

( )X Z  should be calculated. Introduce a virtual stochastic process 

max
( , ) ( )Y Xτ τ= ⋅Z Z                        (8.21) 

where τ  is somewhat like the time and is called as the “virtual time”. ( )Y τ  is a 

“virtual stochastic process” whose randomness comes from the random parameter 

vector Z . The virtual stochastic process satisfy the conditions 

0
( , ) 0Y

τ
τ

=
=Z , 

max1
( , ) ( )Y X

τ
τ

=
=Z Z                  (8.22) 

Differentiating Equation (8.21) on both sides with regard to τ  will yield 

max
( , ) ( )Y Xτ =Z Z�                          (8.23) 

The virtual stochastic process satisfies the following probability density evolution 

equation 

( , , ) ( , , )
( , ) 0Y Y

p y p y
Y

y

τ τ
τ

τ
∂ ∂

+ =
∂ ∂
Z Zz z

z�                 (8.24) 

with the initial condition [From Equation (8.16)] 

0
( , , ) | ( ) ( )

Y
p y y pττ δ

=
=Z Zz z                        (8.25) 

where ( , , )
Y
p y τZ z  is the joint PDF of  and Y Z , and ( )pZ z  is the PDF of Z .  
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Once the initial-value problem consisting of Equations (8.24) and (8.25) is solved, 

the PDF of ( )Y τ  will be given by 

( , ) ( , , )
Y Y
p y p y dτ τ

Ω
= ∫

Z
Z z z                     (8.26) 

Note that max 1( )X Y ττ == , the PDF of ( )Y τ  at time 1 is the PDF of maxX . 

max 1
( ) ( , ) |

X Y
p x p y ττ ==                     (8.27) 

The integral on the PDF of this equivalent extreme value random variable will then 

give the system reliability and the probability of failure, i.e. 

{ }
max

1

max 0
Pr 1 ( )

X
R X p x dx= < = ∫                 (8.28) 

 
f

1P R= −                         (8.29) 

 

8.3.2. Numerical algorithm for structural system reliability analysis  

The numerical algorithm to evaluate the system reliability of a building structure is 

presented in Figure 8.2 and depicted as follows:  

1. Discrete the random parameter vector into representative points in the domain 

ΩZ , ( , ),  1, 2, , ,  1, 2, , ,  1, 2, ,i q r zi N q N r Nθ ψ= = = =z θ ψ , and calculate 

the probability measure 
i
P  for every representative point iz  by Equation 

(8.11);  

2. For every given value qθ  of the stochastic parameter vectorΘ , the structural 

stiffness parameter vector can be identified by the SMBDD method using the 

SHMS-based measurement data, denoted as ( )qΘk θ ; 

3. Substitute the given representative point ( , )q q q=z θ ψ and the corresponding 
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stiffness matrix ( )qK θ  obtained from the identified structural stiffness 

parameter vector ( )qΘk θ  into Equation (8.1). The inter-story drifts and then the 

equivalent extreme value 
max

( )
q

X z  of the inter-story drifts of the building 

structure can be calculated for every given value iz  of the stochastic parameter 

vector Z ; 

4. Substitute 
max

( )
q

X z  into Equation (8.24), and solve the discretized version of 

Equations (8.24) ~ (8.25) using the finite difference method;  

5. Repeat Steps 2-4 until i equals to zN ; 

6. Calculate the PDF of ( )Y τ  by the discretized version of Equation (8.26) and 

the PDF of maxX is then obtained through Equation (8.27);  

7. Carry out the numerical integration in Equation (8.28) to obtain structural system 

reliability. The failure probability can then be obtained through Equation (8.29).  

 

The structural component reliability after an external excitation can also be 

calculated by integrating the SMBDD method and the PDEE-based equivalent 

extreme value method. Since  

{ }
{ },max

R( ) P ( , ) ,  [0, ]

        P ( )

j S

j S

T X T

X

τ τ= ∈Ω ∈

= ∈Ω

Z

Z
                   (8.30) 

where T is the total time duration of an external excitation, { }max [0, ]
( ) max ( , )

t T
X X t

∈
=Z Z . 

Therefore, the only difference between structural component reliability after an 

external excitation in terms of the jth interested response and structural system 

reliability lies in that the PDF of the maximum value of the jth interested response 

,max
( )

j
X Z  rather than the PDF of the equivalent extreme value of the whole 
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structure
max

( )X Z  should be calculated in the aforementioned procedure. Hence, the 

corresponding component reliability and failure probability can be respectively 

evaluated by 

{ }
,max,max

R P ( )
j

S
j j S X

X p x dx
Ω

= ∈ Ω = ∫                  (8.31) 

f,
P 1 R
j j
= − , 1,2, ,j N= "                      (8.32) 

 

8.4 Numerical Investigation  

In this section, the undamaged stochastic shear building and its three damage 

scenarios, that is, Scenarios 1, 2 and 3 that have been investigated in Chapter 7, are 

employed to evaluate their structural component reliability under the earthquake 

excitation in the shape of EL Centro acceleration record in the E-W direction. The 

power spectral density function of the external excitation is estimated and presented 

in Figure 8.3. The dynamic properties of the four scenarios are analyzed and 

presented in Table 8.1 in which Scenario 0 stands for the undamaged shear building. 

Two cases are investigated here. In the first case, only the first modal damping ratio 

( 1ξ ) is considered as a random parameter due to the uncertainty during the damping 

identification. In the second case, both the first modal damping ratio ( 1ξ ) and the 

peak acceleration ( maxga ) of the earthquake excitation are considered as two random 

parameters. It means that both the structure and the excitation are random. The 

details of the two cases are presented in Table 8.2. 
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Table 8.1 Dynamic properties of the four investigated scenarios 

Scenario  Scenario 0 Scenario 1 

Frequency 3.447 7.372 19.155 3.342 7.241 19.085 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

15.4786 13.6161 -0.0949 17.1223 15.1110 -0.0853 Mode 

32.3337 -9.8390 0.0063 33.5627 -11.6228 0.0057 

Scenario Scenario 2 Scenario 3 

Frequency 3.220 7.111 19.015 3.358 7.113 17.294 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

19.1813 16.9775 -0.0757 12.5053 10.7809 -0.1197 Mode 

35.1855 -13.9395 0.0051 27.7643 -7.3556 0.0088 

 

Table 8.2 Probability information of the random parameters 

Case No. Parameter Distribution Mean C.O.V 

1 1ξ  Lognormal 0.01 0.1 

1ξ  Lognormal 0.01 0.1 
2 

maxga  Normal 1.25 m/s2 0.1 

 

8.4.1 Numerical analysis of structural component reliability  

In this section, the reliability is assessed through the top displacement or one 

inter-story displacement of building structures. In other words, only one limit state 

function is involved to evaluate structural component reliability. This kind of 

problem can be solved by the absorbing boundary condition method elaborated in 

Section 8.2.  
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8.4.1.1 Numerical investigation on Case A 

For the first case, the procedure of evaluating the structural component reliability is 

depicted as follows. Firstly, measure the displacement responses of the undamaged or 

damaged structure under a white noise or colored noise excitation and calculate the 

fourth-order statistical moments of displacement responses. Then discretize the 

random parameter, the first modal damping ratio, into 21 representative points in the 

domain[ 3 ,  3 ]ξ σ ξ σ− + . The discrete points are listed in Table 7.1 and presented in 

Figure 7.2. For every given representative point, iξ , the horizontal stiffness vector of 

the undamaged or damaged shear building is identified in the frequency domain by 

the SMBDD method. The identified results corresponding to each representative 

point, iξ , can be found in Table 7.1.  

 

For every given discrete damping ratio, after the horizontal stiffness values of the 

undamaged or damaged shear building structure are identified, calculate the 

corresponding velocity responses ( , )tX θ  of the displacement of the top floor or the 

story drifts of the structure under the EL Centro earthquake excitation. After that, 

solve the initial-boundary-value problem defined by Equations (8.5), (8.6) and (8.7) 

with the finite difference method. Finally, carry out the numerical integration in 

Equations (8.8) and (8.9) for reliability assessment. 

 

For Case A, the reliability defined with the boundary of top displacement in the time 

duration [0, 18s] is presented in Table 8.3. It can be seen from Table 8.3 that the 

reliability increases for every scenario when the threshold enlarges. Take Scenario 2 

as an example. When the threshold of the top displacement ranges from 0.013m to 
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0.017m, the dynamic reliability of the damaged shear building in the time duration [0, 

18s] increases from 11.65% to 99.33%. In addition, the undamaged structure has the 

higher reliability than the three damage scenarios for every threshold in Table 8.3.  

 

Comparing the results of Scenarios 1 and 2 in Table 8.3, the conclusion can be made 

that when the concerned damage scenarios have the same damage locations, the 

larger the damage severity values are, the lower component reliability the damaged 

structure has. However, the reliability of Scenarios 3 which has both damage of 20% 

at the first story and damage of 10% at the third story is larger than that of Scenarios 

2 which only has single damage of 20% at the second story. This may be explained 

as follows. As seen from Figure 8.3 that the power spectral density of the EL Centro 

excitation almost equals to zero when frequency is larger than 15Hz. The third mode 

frequencies of the undamaged shear building and the three damage scenarios are all 

larger than 15Hz, which means that the third mode responses are filtered by the EL 

Centro excitation. Only the first two modes take action in the displacement responses. 

In addition, the first two mode frequencies of Scenario 3 are respectively 3.358 and 

7.113 which are respectively larger than the first two mode frequencies of Scenario 2, 

3.220 and 7.111. That is, if the third mode does not take action, the damaged 

structure of Scenario 2 is more flexible than the damaged structure of Scenario 3. 

Therefore, when the component reliability is defined by the threshold of top 

displacement, Scenario 2 should have lower reliability than Scenario 3. This has been 

demonstrated by the results in Table 8.3. The statement can be made that when the 

component reliability is defined by the threshold of the top displacement response of 

the building structure, the component reliability depends on the dynamic properties 

of the structure, the external excitation and the threshold.   
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Table 8.3 Reliability of Case A in terms of different thresholds of the top 

displacement  

Reliability (%) Threshold 

(mm) Scenario 0 Scenario 1  Scenario 2  Scenario 3 

13.0 98.75 81.27 11.65 84.88 

14.0 99.95 89.89 21.97 93.08 

15.0 100.00 96.58 38.19 97.81 

15.5 100.00 98.99 51.45 99.30 

16.0 100.00 99.96 73.30 99.95 

17.0 100.00 100.00 99.33 100.00 

 

The component reliability of each story defined by different thresholds of each story 

drift is presented in Tables 8.4~8.6. Since the horizontal stiffness value of the first 

story of the undamaged shear building is much larger than that of the other two 

stories, which is 15 times of that of the second story and 30 times of that of the third 

story, the threshold of the first story drift is set to be much smaller than those of the 

other two story drifts. 

Table 8.4 Reliability of Case A in terms of different thresholds of story drift 1  

Reliability (%) Threshold 

(mm) Scenario 0 Scenario 1 Scenario 2 Scenario 3 

0.4 69.61 55.21 4.52 5.80 

0.5 99.89 91.25 54.85 73.45 

0.6 100.00 100.00 100.00 96.59 

0.7 100.00 100.00 100.00 100.00 
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Table 8.5 Reliability of Case A in terms of different thresholds of story drift 2 

Reliability (%) Threshold 

(mm) Scenario 0 Scenario 1 Scenario 2 Scenario 3 

6.0 99.90 73.92 2.69 96.95 

7.0 100.00 96.89 17.62 100.00 

8.0 100.00 100.00 53.21 100.00 

9.0 100.00 100.00 100.00 100.00 

 

Table 8.6 Reliability of Case A in terms of different thresholds of story drift 3  

Reliability (%) Threshold 

(mm) Scenario 0 Scenario 1 Scenario 2 Scenario 3 

6.0 53.15 46.40 11.60 10.23 

7.0 97.59 86.31 43.70 64.22 

8.0 100.00 100.00 99.86 94.28 

9.0 100.00 100.00 100.00 100.00 

 

It can be seen form Tables 8.4~8.6 that the component reliability of every story 

increases for every scenario when the threshold enlarges. Take Scenario 2 in Table 

8.6 for example, when the threshold ranges from 6mm to 9mm, the component 

reliability of the damaged shear building increases from 11.60% to 100.00%. In 

addition, the reliability of the undamaged structure has the highest value for every 

threshold in Tables 8.4~8.6.  

 

It can also be seen from Table 8.4 that although Scenarios 1 and 2 have no damage at 

the first story, the component reliability values of the first story in Scenarios 1 and 2 

are still apparently decreased. And the larger the damage severity at the second story, 

the lower the component reliability of the first story of the damaged structure. 

Likewise, as seen from Table 8.6 that although Scenarios 1 and 2 have no damage at 
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the third story, the component reliability values of the third story in Scenarios 1 and 2 

are still apparently decreased. And the larger the damage severity at the second story, 

the lower the component reliability of the third story of the damaged structure. The 

component reliability of each story is not only dependent on the horizontal stiffness 

of itself but also concerned with the dynamic properties of the whole structure.  

 

Similarly, although the first story of Scenario 3 has the damage of 20%, the 

component reliability of the first story in Scenario 3 is generally higher than that in 

Scenario 2 which has no damage at the first story according to Table 8.4. And the 

component reliability of the third story in Scenario 3 which has damage of 10% at 

the third story is sometimes higher than that in Scenario 2 which has no damage at 

the third story instead according to Table 8.6. The statement can be made that when 

the component reliability of each story is defined by the threshold of the 

corresponding story drift of the undamaged or damaged building structure, the 

component reliability depends on its own horizontal stiffness, the dynamic properties 

of the whole structure, the properties of the external excitation and the threshold.   

 

Furthermore, the component reliability of Scenario 2 defined by different thresholds 

of the top displacement in the time interval [4s, 6s] is presented in Figure 8.4. The 

component reliability of the second story in Scenario 2 defined by different 

thresholds of Story Drift 2 in the time interval [0, 16s] is presented in Figure 8.5. The 

changes of these component reliabilities of the damaged structure during the 

earthquake excitation can be seen in Figures 8.4 and 8.5.  
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8.4.1.2 Numerical investigation on Case B 

For the second case, the procedure of evaluating the structural component reliability 

is depicted as follows. Firstly, measure the displacement responses of the undamaged 

or damaged structure under a colored noise excitation and calculate the fourth-order 

statistical moments of story drifts. Then discretize the stochastic variations Z  into 

representative points in the domainΩZ and denote the abbreviation of the lattice point 

as 1 1 1( , ),  =z θ ψ  2 2 2( , ),  ,=z θ ψ ( , )n n n=
z z z

z θ ψ , where Θ  is the first modal 

damping ratio whose uncertainty is considered in the structural identification and the 

reliability analysis and Ψ  is the random maximum acceleration of the EL Centro 

earthquake excitation. In the analysis, Θ  and Ψ  are independent to each other. 

Detailed probabilistic information about them can be found in Table 8.2. In the 

numerical analysis, the random parameter vector Z is discretized into 441 

representative points as presented in Figure 8.6.  

 

For every given discrete point, qθ , the horizontal stiffness vector of the investigated 

shear building can be identified by the SMBDD method. After that, for every given 

discrete point ( , )q q q=z θ ψ , calculate the corresponding velocity responses ( , )q tX z  

of the displacement of the top floor and the story drifts of the structure under the EL 

Centro earthquake excitation. Solve the initial-boundary-value problem defined by 

Equations (8.5), (8.6) and (8.7) with the finite difference method and carry out the 

numerical integration in Equations (8.8) and (8.9), the structural component 

reliability defined by top displacement or story drifts can be finally carried out.  

 

For Case B, the calculated reliability defined with the boundary of top displacement 
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of the undamaged structure and the damaged structure after the EL Centro 

earthquake excitation is listed in Table 8.7. As seen form Table 8.7, the reliability 

increases for every scenario when the threshold enlarges. Take Scenario 2 in Table 

8.7 as an example, when the threshold ranges from 0.013m to 0.017m, the dynamic 

reliability of the damaged shear building increases from 16.85% to 69.03%. In 

addition, the reliability of the undamaged structure is the highest for every threshold. 

The reliability decreases for the damaged structure with Scenarios 1 and 2. The larger 

the damage severity at the second story, the lower the reliability of the damaged 

structure. For the same reason as has been explained in Case A, although Scenario 3 

has both the damage of 20% at the first story and the damage of 10% at the third 

story, its reliability defined by the threshold of the top displacement is still larger 

than that of Scenario 2.  

Table 8.7 Reliability of Case B in terms of different thresholds of the top 

displacement  

Reliability (%) Threshold 

(m) Scenario 0 Scenario 1 Scenario 2 Scenario 3 

0.0130 90.90 74.48 16.85 76.81 

0.0140 97.32 86.96 30.77 89.20 

0.0150 99.42 93.97 49.49 95.43 

0.0160 99.91 97.54 69.03 98.25 

 

The component reliability values of Story 1, 2 and 3 defined with the threshold of the 

corresponding story drift are respectively presented in Table 8.8~8.10 for Case B. It 

can be seen form Tables 8.8~8.10, the reliability increases for every scenario when 

the threshold enlarges. Taking Scenario 2 in Table 8.8 as an example, when the 

threshold ranges from 6mm to 9mm, the reliability of the damaged shear building 

increases from 4.70% to 88.46%. In addition, the reliability of the undamaged 
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structure is the highest for every threshold in Tables 8.8~8.10.  

Table 8.8 Reliability of Case B in terms of different thresholds of story drift 1 

Reliability (%) Threshold 

(m) Scenario 0 Scenario 1 Scenario 2  Scenario 3 

0.0005 98.40 89.69 55.94 60.10 
0.0006 99.99 99.22 95.67 93.00 
0.0007 100.00 99.99 99.95 99.21 
0.0008 100.00 100.00 100.00 99.96 

 

Table 8.9 Reliability of Case B in terms of different thresholds of story drift 2 

Reliability (%) Threshold 

(m) Scenario 0 Scenario 1 Scenario 2 Scenario 3 

0.006 93.19 63.63 4.70 92.90 
0.007 99.80 92.21 22.83 99.37 
0.008 100.00 99.05 58.52 99.97 
0.009 100.00 99.94 88.46 100.00 

 

Table 8.10 Reliability of Case B in terms of different thresholds of story drift 3 

Reliability (%) Threshold 

(m) Scenario 0 Scenario 1 Scenario 2  Scenario 3 

0.006 50.68 46.21 15.98 19.28 
0.007 88.09 82.75 49.79 60.38 
0.008 98.83 96.55 85.48 88.90 
0.009 99.96 99.64 98.20 98.07 

 

Although Scenarios 1 and 2 have no damage at the first story, the component 

reliability values of the first story in Scenarios 1 and 2 are still apparently decreased 

according to Table 8.8. And the larger the damage severity at the second story, the 

lower the component reliability of the first story of the damaged structure. Likewise, 
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although Scenarios 1 and 2 have no damage at the third story, the component 

reliability values of the third story in Scenarios 1 and 2 are still apparently decreased 

with the increase of the damage severity at the second story according to Table 8.10.  

 

Similarly, although Scenario 3 has both the damage of 20% at the first story and the 

damage of 10% at the third story, its component reliability values of the first story 

and the third story are generally close to or higher than those of Scenario 2 according 

to Tables 8.8 and 8.10. The component reliability of each story is not only dependent 

on its own horizontal stiffness but also concerned with the dynamic properties of the 

whole structure, the external excitation and the threshold value. 

 

The dynamic reliability of Scenario 2 defined by different thresholds of the top 

displacement and the component reliability of the third story defined by different 

thresholds of Story drift 3 in Scenario 2 is respectively presented in Figures 8.7 and 

8.8 for Case B. The changes of the component reliability during the duration of the 

external excitation can clearly observed from these figures.  

 

8.4.1.3 Effects of more uncertainties on structural reliability 

The undamaged or damaged stochastic shear building structures investigated above 

are identical for Case A and Case B. The only difference between them lies in that 

the external excitation of Case A is deterministic while the peak acceleration of the 

external excitation is a random parameter for Case B. It means that both the structure 

and the external excitation are stochastic in Case B: two random parameters are 

considered for the latter. To investigate the effect of multiple random parameters on 

structural reliability, the analytical results of Case A and Case B are further studied 



Chapter 8                          Reliability Analysis of Stochastic Building Structures 

 8-24

and compared.  

 

By comparing the results in Table 8.3 with those in Table 8.7, it can be seen that the 

reliability of Case B in terms of different thresholds of the top displacement is lower 

than that of Case A for Scenarios 0, 1 and 3. However, different observation is made 

for Scenario 2: when the thresholds are small (13mm, 14mm and 15mm), the 

corresponding reliability of Scenario 2 which is relatively low improves with the 

increase of random parameters from Case A to Case B. On the other hand, when the 

threshold is 16mm, the corresponding reliability of Scenario 2 which is relatively 

high decreases form 73.30% (Case A) to  69.03% (Case B). A similar result is also 

observed for the component reliability in terms of different thresholds of Story Drift 

2 by comparing the values in Table 8.5 with those in Table 8.9.  

 

According to Equation (8.31), the component reliability values calculated in Tables 

8.3 and 8.7 depend on the distribution of the maximum value of the top displacement 

response. Theoretically speaking, when more uncertainties (random parameters) are 

considered, the degree of dispersion of the maximum value should increase. That is, 

the probability density function (PDF) of the maximum value of the top displacement 

response should become flatter as schematically shown in Figure 8.9(a). Their 

cumulative distribution functions (CDFs) (see Figure 8.9(b)) have a point of 

intersection. When a threshold is less than the intersection point, structural reliability 

becomes higher when more uncertainties are considered. Otherwise, structural 

reliability should decrease on the contrary.  

 

To demonstrate this conclusion, the actual PDFs of the extreme value of the top 
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displacement during the external excitations for Scenario 2 are respectively 

calculated for Case A and Case B and presented in Figure 8.10(a). Their CDFs are 

also calculated and presented in Figure 8.10 (b). It can be seen from Figure 8.10(a) 

that when more uncertainties are considered, the distribution of the maximum value 

of the top displacement becomes more dispersive and flatter. In Figure 8.10(b), the 

CDFs of Case A and Case B really have a point of intersection. When thresholds are 

13mm, 14mm and 15mm, structural component reliability increases from Case A to 

Case B, while it decreases for the threshold of 16mm. The results are consistent to 

those presented in Tables 3 and 5. In addition, the PDFs and CDFs of the maximum 

value of the top displacement for Scenario 3 are also respectively calculated for Case 

A and Case B and presented in Figure 8.11. As seen from Figure 8.11(a), the 

distribution of the maximum value of the top displacement for Scenario 3 also 

becomes more dispersive and flatter. Furthermore, all the thresholds (13mm~16mm) 

locate at the right side of the intersection point of the CDFs in Figure 8.11(b). 

Therefore, the reliability becomes lower when more uncertainties are considered for 

Case B, which is also demonstrated by the results in Tables 8.3 and 8.7. In 

conclusion, when more uncertainties are considered, the higher structural reliability 

should decrease, and on the contrary the lower structural reliability should increase. 

 

8.4.2 Numerical analysis of structural system reliability  

In addition, when the multi-story shear building structure is required that all the 

inter-story drifts do not exceed the corresponding threshold, a family of limit state 

functions should be considered. In other words, the system reliability of the structure 

should be evaluated under this situation. The proposed algorithm aforementioned in 

Section 8.3 will be employed here to evaluate the system reliability of the building 
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structure in the following numerical analysis. In the following numerical analysis, the 

threshold for all story drifts is set as 7mm. 

 

8.4.2.1 Numerical investigation on Case A 

The probability density function (PDF) and cumulative distribution function (CDF) 

of the extreme value for the undamaged structure are presented in Figure 8.12. In 

Figure 8.12(b), the abscissa can be understood as the threshold and the ordinate gives 

their corresponding reliability. The failure probability can then be obtained by 

Equation (26). The analysis results of the system failure probability in Case A are 

listed in Table 8.11 and compared with the component failure probability of each 

story obtained by the same method.  

 

Table 8.11 System failure probability versus component failure probability of every 

story in Case A (%) 

Failure Probability Scenario 0 Scenario 1 Scenario 2 Scenario 3 

Story 1 0.00 0.00 0.00 0.00 

Story 2 0.00 2.35 80.19 0.00 

Story 3 1.28 12.97 53.45 32.63 

The Whole Structure 1.28 12.97 80.19 32.63 

 

It can be seen that the failure probability of the whole structure equals to the 

maximum value of those of story drifts. For example, Story 3 in Scenario 1 has the 

maximum failure probability of 12.97% and the failure probability of the whole 

structure is also 12.97%. This means that Story 3 is the weakest link in the damaged 

structure with Scenario 1 and the probability of the whole structure is dependent on 
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the weakest link. For Scenario 2 and 3, the weakest links respectively exist at Story 2 

and Story 3 and the failure probability values are respectively 80.19% and 32.63%. 

The investigated shear building is a special case which satisfies the weakest link 

assumption. Otherwise, the failure probability of the whole structure should be larger 

than the maximum of the component failure probabilities of all stories, or the system 

reliability should be smaller than the minimum component reliability of all stories.  

 

8.4.2.2 Numerical investigation on Case B 

The analysis results of the system failure probability in Case B are listed in Table 

8.12 and compared with the component failure probability of each story obtained by 

the same method. It can be seen that the system failure probability of the whole 

structure equals the maximum component failure probability of all stories. In 

addition, the system failure probability of the undamaged structure has the lowest 

value. The system failure probability increases with the increase damage severity at 

the second story in Scenarios 1 and 2. That is, the larger the single damage severity at 

the second story, the lower system reliability of the damaged structure. However, the 

system reliability of Scenario 3 is higher than that of Scenario 2 for the same reason 

as has been explained in Section 8.4.1.1. The system reliability depends on the 

dynamic properties of the undamaged and damaged building structure, the external 

excitation and the limit state functions.  
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Table 8.12 System failure probability versus component failure probability of every 

story in Case B (%)  

Failure Probability Scenario 0 Scenario 1 Scenario 2 Scenario 3 

Story Drift 1 0.00 0.00 0.00 0.00 
Story Drift 2 0.12 5.83 72.13 0.45 
Story Drift 3 9.91 14.79 46.90 35.09 
The Whole Structure 9.91 14.79 72.13 35.09 

 

8.5 Conclusions  

Two integrated methods have been proposed to respectively evaluate structural 

component reliability and structural system reliability in this chapter. The structural 

reliability analysis is coupled with structural system identification in the two 

integrated methods. Firstly, the method to evaluate the component reliability of 

stochastic structures with only one limit state function has been proposed based on 

the SMBDD method in conjunction with the PDEE-based absorbing boundary 

condition method. The governing equations and the numerical algorithm of the 

component reliability analysis method have been presented. Then, the method to 

evaluate system reliability of stochastic structures with multi limit state functions has 

been developed by integrating the SMBDD method with the PDEE-based equivalent 

extreme value method. The governing equations and the numerical algorithm of the 

structural system reliability analysis method have also been presented in this chapter.  

 

Numerical investigation has been conducted to evaluate structural component 

reliability and structural system reliability of a three-story shear building structure 

and its three damage scenarios by using the two proposed methods. Two cases have 
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been explored. In the first case, only the first modal damping ratio is considered as a 

random parameter. In the second case, both the structural random parameter and the 

maximum acceleration of the EL Centro excitation are taken into account in the 

reliability analysis. The first modal damping ratio and the maximum acceleration of 

the EL Centro excitation are both regarded as random parameters in the second case.  

 

The structural component reliability defined by the threshold of top displacement or 

each story drift has been analyzed for the undamaged shear building and its three 

damage scenarios. The analysis results show that the structural component reliability 

increases for the undamaged shear building and the three damage scenarios when the 

threshold of the top displacement or one story drift enlarges. In addition, the 

undamaged shear building has the highest reliability. For the damage scenarios at the 

same locations, the larger damage severity the lower reliability of the damaged shear 

building.  

 

The analysis results of the structural system reliability defined by multi limit state 

functions have also been obtained by using the proposed method. Then the system 

failure probability values of the undamaged shear building and the three damage 

scenarios are calculated and compared with the component failure probability of each 

story. The results of comparison show that the failure probability of the whole 

structure is always larger than or equal to that of one story.     

 

Therefore, the proposed reliability analysis methods can handle the problem that the 

stiffness parameters of the concerned structure are all random parameters obtained by 

system identification and coupled with each other by directly using the probabilistic 
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information of the random parameters considered in system identification and the 

SHMS-based measurement data. The structural dynamic reliability and structural 

system reliability of stochastic building structures can be effectively evaluated by the 

proposed methods.  
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Figure 8.1 Procedure of the structural component reliability analysis method  
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Figure 8.2 Procedure of the structural system reliability analysis method 
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Figure 8.3 Power spectral density of the EL Centro excitation 
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Figure 8.4 Time dependent reliability of Scenario 2 in terms of different thresholds of 

the top displacement in Case A  
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Figure 8.5 Time dependent reliability of the second story of Scenario 2 in terms of  

different thresholds of Story Drift 2 in Case A 
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Figure 8.6 Representative points of Case B 
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Figure 8.7 Time dependent reliability of Scenario 2 in terms of different thresholds of 

the top displacement in Case B 
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Figure 8.8 Time dependent reliability of the third story of Scenario 2 in terms of 

different thresholds of Story Drift 3 in Case B 
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(a) PDFs 
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(b) CDFs 

Figure 8.9 Schematic View of PDFs and CDFs with different degrees of dispersion 
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(a) PDFs 
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(b) CDFs 

Figure 8.10 Comparison of PDFs and CDFs of the maximum value of the top 

displacement of Scenario 2 between Case A and Case B: (a) PDFs; (b) CDFs 
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(b) CDFs 

Figure 8.11 Comparison of PDFs and CDFs of the maximum value of the top 

displacement of Scenario 3 between Case A and Case B: (a) PDFs; (b) CDFs 
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Figure 8.12 PDF and CDF of the extreme value for the undamaged structure: (a) PDF, 

(b) CDF  
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CHAPTER 9 

 CONCLUSIONS AND RECOMMENDATIONS  

9.1 Conclusions 

This dissertation has established a framework in which novel stochastic approaches 

in consideration of the uncertainties involved in measurements, structures and 

external excitations are proposed to effectively detect damage of building structures 

and assess their reliability. Firstly, a new statistical moment-based damage detection 

(SMBDD) method was proposed in the frequency domain. Extensive numerical 

investigation demonstrated that the proposed method is not only sensitive to 

structural local damage but also insensitive to measurement noise. Then, the 

proposed method was extended in the frequency domain in three aspects: the types of 

building structures, the types and locations of random external excitation and the 

number of structural responses measured. Extensive numerical examples were 

presented to demonstrate the feasibility and effectiveness of the generalized SMBDD 

method. The algorithm of the SMBDD method has also been developed in the time 

domain. Various damage scenarios were investigated by the generalized SMBDD 

method in the time domain for different building structures. The application of the 

proposed method to non-Gaussian excitations was also explored in the time domain. 

This dissertation then experimentally investigated the SMBDD method both in the 

frequency domain and in the time domain through shaking table tests. After that, the 

research work on structural damage detection has made further progress by 

proposing a new stochastic damage detection method based on the generalized 

SMBDD method in consideration of random parameters or uncertainties which are 
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inescapable for civil structures. Finally, two integrated methods have been proposed 

to respectively evaluate component reliability and system reliability of stochastic 

structures whose stiffness parameters of all elements identified are random 

parameters and coupled with each other.    

 

The main contributions of this thesis and the conclusions reached are summarized as 

follows:  

 

1.  Establishment of the Novel Statistical Moment-Based Damage Detection Method 

A new structural damage detection method has been proposed in the frequency 

domain based on the statistical moments of displacement responses of a shear 

building structure. Firstly, the sensitivity of statistical moments of different responses 

to structural damage and the effect of measurement noise on the quality of identified 

results were theoretically analyzed through a single-story shear building under white 

noise ground excitation. It is found that the relative change of the statistical moment 

of structural displacement response is two times more sensitive to the relative change 

of building stiffness than those of velocity and acceleration. In addition, the higher 

order statistical moments are more sensitive to structural damage than that of the 

natural frequency and the second-order moment. However, the higher statistical 

moments may not be numerically stable. As a result, the fourth-order moment of 

displacement response has been proposed as a new damage index by the proposed 

method, which makes a tradeoff between the sensitivity to structural damage and the 

numerical stability to random excitation. Theoretical analysis results of the single-

story shear building show that the new method is sensitive to structural damage. 

Even when the damage severity is only 2%, the identified result is almost the same as 
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the actual value. In addition, the proposed method is insensitive to measurement 

noise. Even when the noise intensity is as high as 15%, the maximal relative error of 

identified damage severity values for various damage cases of the shear building is 

only 1.88%.  

 

Then various damage scenarios of a three-story shear building were numerically 

investigated by the proposed SMBDD method in the frequency domain. Numerical 

results show that the fourth order moments of story drifts can be used to accurately 

identify both damage locations and damage severities for all the damage scenarios 

concerned. Furthermore, a significant advantage of the proposed damage detection 

method has been manifested that it is insensitive to measurement noise. Even when 

the measurement noise intensity is as high as 15%, the SMBDD method still gives 

highly reliable results on damage severities and damage locations of the multi-story 

shear building structure. The feasibility and robustness of the proposed method have 

been demonstrated through the multi-story shear building.  

 

2.  Extension of the SMBDD Method in the Frequency Domain 

Further study has advanced the SMBDD method in the frequency domain to make it 

more general for any type of building structures under any type of random excitation 

as long as it complies with the Gaussian distribution.  The SMBDD method has also 

been extended from the necessity of complete measurements of all DOFs to the 

proper selection of measurements of incomplete DOFs. Various damage scenarios of 

a MDOF shear building structure, a high-rise building and a frame structure have 

been investigated by using colored noise excitations at different locations and 

selected measurement responses. The effect of measurement noise on the quality of 
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identified results has also been investigated for all the damage scenarios concerned 

by numerically contaminating the external excitations and the measured responses 

with white Gaussian random noises. Numerical analysis results show that the damage 

locations and severities of all the concerned various damage scenarios can be 

identified satisfactorily even though the structural responses used are incomplete and 

the measurement noise has a high noise-to-signal ratio of 15%.  The feasibility and 

effectiveness of the generalized SMBDD method have been demonstrated by the 

satisfactorily results of the extensive numerical examples. 

 

3.  Extension of the SMBDD Method in the Time Domain 

The SMBDD Method has been further extended to the time domain for building 

structures under Gaussian or non-Gaussian external excitations. The algorithm of the 

SMBDD method in the time domain has been proposed. Various damage scenarios 

of different damage locations and damage severities of shear buildings, high-rise 

buildings and frame structures have been numerically investigated. The effect of 

measurement noise has also been considered by contaminating measured dynamic 

responses and external excitations with Gaussian white noise for all the concerned 

damage scenarios. Numerical results demonstrate that the generalized SMBDD 

method is feasible and effective for building structures under either Gaussian or non-

Gaussian excitations in the time domain. Even when the measurement noise intensity 

is as high as 15%, the structural damage locations of various damage scenarios with 

incomplete measurements are accurately identified no matter whether the external 

excitation is of Gaussian distribution or not. Furthermore, the identified damage 

severities are exactly equal to the real values when measurement noise is not 

considered. Otherwise, when measurement noise is considered, the precision of the 
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identified damage severities in the time domain is similar with that in the frequency 

domain. Nevertheless, the requirement of proper optimization methods in model 

updating is required for the generalized SMBDD method in the time domain.  

 

4.  Experimental Investigation of the SMBDD Method  

The SMBDD method has been experimentally examined both in the frequency 

domain and in the time domain. Three shear building models were constructed for 

the shaking table tests under either band-limited white noise excitation or the Kanai-

Tajimi filtered white noise (colored noise) excitation. The background noise intensity 

of about 8% to 10% of the peak ground acceleration was involved in the shake table 

tests. A total of eight damage scenarios of different damage locations and severities 

were created on the three building models to examine the feasibility and accuracy of 

the proposed damage detection method by using white noise and colored noise 

ground excitations. Firstly, the experimental data were analyzed by the proposed 

method in the frequency domain. It was found that the identified results from the two 

different white noise ground excitations were very close to each other for all the 

damage scenarios concerned. The damage locations and severities of either single 

damage case or multi-damage case could be identified correctly by the proposed 

method, even for the minor damage cases. Although the theoretical damage severity 

values may be different from the real damage severity values, the fact that the 

identified damage severity values are close to the theoretical values still demonstrates 

the feasibility and effectiveness of the SMBDD method. Then, the experimental data 

were analyzed by the proposed method in the time domain. The damage locations of 

either single damage case or multi-damage case were also accurately identified by 

the proposed method in the time domain, even for the minor damage cases. 
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Furthermore, the identified damage severities are close to both the theoretical values 

and those identified by the proposed method in the frequency domain. It can be 

concluded that the proposed SMBDD method is feasible and robust both in the 

frequency domain and in time domain.   

 

5.  Development of the Stochastic Damage Detection Method 

Another contribution of the dissertation is that a new stochastic damage detection 

method has been proposed for structural damage detection of building structures of 

random parameters or with uncertainties. New damage indices have been proposed to 

not only determine damage locations but also identify damage severities in the 

stochastic damage detection method. The new stochastic damage detection method 

can handle building structures with both Gaussian and non-Gaussian random 

parameters. Numerical investigation has been performed to examine the feasibility 

and effectiveness of the proposed method in terms of a shear building structure, in 

which the first damping ratio is regarded as a random parameter with a lognormal 

distribution. Three damage scenarios have been considered. Numerical analysis 

results show that not only damage locations but also damage severities can be 

correctly identified by the proposed method. The proposed method is effective and 

robust for structural damage detection when uncertainties or random parameters are 

taken into account.  

 

6.  Establishment of a Framework to Evaluate Component and System Reliability of 

Building Structures 

A framework has been established for evaluating component and system reliability of 

building structures whose stiffness parameters are all random parameters obtained by 
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system identification and coupled with each other. By directly using the probabilistic 

information of the random parameters considered in system identification and the 

SHMS-based measurement data, the structural component reliability and structural 

system reliability of stochastic building structures can be effectively evaluated by the 

proposed methods. Structural component reliability and structural system reliability 

of a three-story shear building structure and its three damage scenarios were 

respectively evaluated by the two proposed methods. Two cases were explored. In 

the first case, only the first modal damping ratio was considered as a random 

parameter. In the second case, both the structural random parameter and the 

maximum acceleration of the EL Centro excitation were taken into account in the 

reliability analysis. The first modal damping ratio and the maximum acceleration of 

the EL Centro excitation are both regarded as random parameters in the second case. 

The analysis results show that the undamaged shear building has the highest 

reliability compared with that of the damaged shear building with different damage 

scenarios. For the damage scenarios at the same locations, the larger damage severity 

the lower reliability of the damaged shear building. In addition, with the increase of 

the threshold of top displacement or one story drift, the structural reliability 

correspondingly increases for both the undamaged shear building and the damaged 

shear building. For the structural system reliability defined with multi limit state 

functions, similar analysis results were obtained by the proposed method. Analysis 

results also show that the failure probability of the whole structure is always larger 

than or equal to that of one story.  Therefore, the reliability of a stochastic structure 

without explicit damage identification can be obtained by the proposed reliability 

assessment methods using limited measurement responses. 
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9.2 Recommendations  

Studies have been made in the development of methodologies for damage detection 

and reliability assessment of instrumented building structures using monitoring data 

in this thesis. Most of the proposed methods are general and can be developed and 

applied to other engineering structures. In this section, recommendations are 

provided for further research and exploration. 

 

(i) Development of the optimization method utilized in the SMBDD method 

In the proposed SMBDD method, the nonlinear least square method is utilized to 

update structural stiffness parameters both in the frequency domain and in the time 

domain. Although good results have been obtained for almost all the concerned cases, 

the limitation of the optimization algorithms themselves that they will not always 

converge to global optimization will jeopardize the effectiveness and feasibility of 

the proposed SMBDD method to detect structural damage, especially for large 

complex structures. Therefore, it would be of value to find more efficient and reliable 

optimization algorithms to ensure the robustness of the SMBDD method.  

 

(ii) Experimental investigation on  the proposed SMBDD method for more 

complicate structural models 

In the thesis, shaking table tests have been conducted to demonstrate the feasibility 

and effectiveness of the proposed SMBDD method through shear building models. 

Nevertheless, before this method can be applied to real structures the experimental 

investigation on more complicate structures, such as a three-dimensional frame 

structures with incomplete measurements, is necessary to further experimentally 

examine the proposed method.  
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(iii) Numerical investigation of the stochastic damage detection method for 

cases with multi random parameters 

A framework of the stochastic damage detection method with consideration of the 

uncertainties or random parameters has been established in the thesis. To illustrate 

the proposed method, the modal damping ratios are considered as random parameters 

because the identification of the modal damping ratios involves many uncertainties in 

reality. For the sake of simplification, only the first damping ratio is assumed as a 

random parameter with a lognormal distribution. Theoretically speaking, the 

proposed method can solve the problem of structural damage detection with multiple 

random parameters or uncertainty factors. Therefore, it is necessary to further 

investigate the proposed method through damage detection cases with multiple 

random parameters.  

 

(iv) Study on the probabilistic distribution of the stochastic parameters 

involved in civil structures 

In the numerical investigation of the proposed stochastic damage detection method, 

the stochastic parameters are assumed to be lognormal distribution, which may be 

different from the actual situations of real structures. To further understanding the 

uncertainties of existing structures, it is of value to conduct research and give a 

statistical description of the concerned random parameters for some kind of structure.  

 

(v) Experimental investigation and application of the stochastic damage 

detection methods 

The shaking table tests conducted in this study can be utilized to further evaluate the 

effectiveness of the proposed stochastic damage detection method. Firstly, the 
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distribution of the damping ratios could be identified by the Bootstrapping schemes 

(Kijewski and Kareem, 2002). Then the stochastic damage detection method can be 

utilized to identify the damage locations and damage severities of the damaged shear 

building models, and its effectiveness could be evaluated by comparing the identified 

results with the real values. Once the feasibility and effectiveness of the stochastic 

damage detection method have been experimentally demonstrated, it can be further 

applied to real structures according to the following suggested procedures for two 

different situations. Firstly, if the probabilistic distribution of the random parameters 

is known, the algorithms proposed in Chapter 7 can be directly utilized to detect 

structural damage. Otherwise, the PDFs of the structural stiffness parameters at the 

undamaged state, ˆ uK , or those after the earthquake, ˆ dK , should be identified through 

extensive sampling monitoring data or by Bootstrapping schemes. Then, the PDFs of 

the structural stiffness parameters can be estimated and structural damage locations 

and damage severities can be determined according to the proposed method.  
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