






ABSTRACT

Survival analysis with long-term survivors has received considerable attention

in recent years. It is useful in handling situations in which a proportion of sub-

jects under study may never experience the event of interest. A commonly used

approach is to formulate the model as a mixture of two populations, one for “long-

term survivors” (subjects that will never experience the event of interest) and the

other for “susceptibles” (subjects that will “fail” eventually). This is an attractive

approach to analyzing survival data with long-term survivors, in that it contains

two parts which can be interpreted separately by adding structure to the standard

survival model. Fully parametric approaches have had a long history and recent

attention has focused on test for the presence of long-term survivors in the data

for mixture model. Recently, Kuk and Chen (1992) proposed a model which is a

semiparametric generalization of a parametric model above, which combines a lo-

gistic formulation for the probability of occurrence of the event with a proportional

hazards specification for the time of occurrence of the event. However the model

proposed by Kuk and Chen (1992) does not have a proportional hazards structure

for the survival function of the entire population, this structure is a desirable prop-

erty in survival analysis models when doing covariates and is extensively used in

survival analysis.

In this dissertation, we will investigate an alternative mixture model with

covariates, which does have a proportional hazards structure and is proposed by

Maller and Zhou (1996) via the different motivation of the model from other cure

models and is not further investigated so far. Their idea is to extend Cox model

with a parametric or completely unspecified baseline to “improper” Cox model of

which the baseline can be modeled as an improper and semiparametric structure of

a combination of the probability of occurrence of the event with a proper survival

function for the time of occurrence of the event. Partial and full likelihood methods

are used to make statistical inference based on counting processes and martingale

technique. In addition, we consider the problem of measurement errors for the

covariates, and propose corrected partial and full likelihoods to obtain relevant es-

timators. We show that the resulting estimators are consistent and asymptotically

normal. We study this improper proportional hazards model in both interior and

boundary cases by maximum likelihood method, and develop a likelihood ratio test
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for the presence of an immune proportion in a population.

Recently, much attention has been attracted to semiparametric transformation

model, which provides many interesting statistical models and approaches. In this

dissertation, we consider a class of semiparametric transformation models derived

from the aforesaid “improper” PH model, which assume a linear relationship be-

tween an unknown transformation of the survival time under the proportional haz-

ards model and the covariates. The random errors are modeled by an “improper”

extreme value distribution, which is parametrically specified with unknown param-

eters and covariates. Estimators for the coefficients of covariates are obtained from

pseudo Z-estimator approach with censored observations. The consistency and

asymptotic normality of the estimators are proved. This transformation model,

coupled with proposed inference procedures, provides many alternatives to Cox

proportional hazards models for survival analysis with long-term survivors.

Although continuous-time survival analysis is frequently used in many settings,

discrete-time survival analysis is often more natural in social and behavioral sci-

ence applications where the survival data typically posses three features: discrete,

ties and contain concomitant information. Inspired by the works of Potts (2004)

and Linoff (2004), in this dissertation we will review some existing discrete-time

survival models which have already been proposed to analyze survival data from

social and behavioral science by these authors, and then generalize these models

to accommodate survival data with long-term survivors. As a natural extension of

the continuous cases discussed in Chapters 1-4, in Chapter 5 of this dissertation

we will predominantly focus on modeling discrete-time survival data which may

accommodate proportional hazards structure and propose an alternative discrete-

time cure model which does have proportional hazards structure. The maximum

likelihood estimation and approximate partial likelihood estimation are proposed

to obtain the parameter estimators. The proposed models and approaches can be

directly applied to analyze survival data from social and behavioral science such as

the economic values for customer retention with long-life customers.
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Preface

In this dissertation, we consider a proportional hazards model for survival data

with long-term survivors. We begin by introducing the main idea of Cox’s propor-

tional hazards model in this preface, which inspired and motivated this research.

Next we will briefly explain in words how we extend Cox’s proportional hazards

model to a new model which may allow a “semiparametric” baseline function. Then

the layout of this dissertation is outlined.

A broad family of survival analysis models that has been widely used in the

analysis of survival data is best specified via the hazards function. For a constant

vector z of explanatory variables (covariates), suppose that the hazards function

has the form α(t) = α0(t)Ψ(z), where α0(t) is the baseline hazards for an individual

with z = 0, and Ψ(0) = 1. This is the well-known Cox’s proportional hazards (PH)

model (Cox, 1972, 1975). The function Ψ(z) connects the model with covariates

and can be parameterized, commonly by Ψ(z) = exp(z>β).

There have been a great deal of literature on the PH model with either time-

independent or time-dependent covariates. Two types of methods have been widely

used to estimate the PH model: the partial likelihood, which disregards the un-

known baseline α0(t), proposed by Cox (1972); and the full maximum likelihood,

which assumes a parameterized baseline hazards function α0(t), such as the expo-

nential or Weibull hazards functions.

On the other hand, if we consider an equivalent form of the PH model, namely

F (t) = 1 − [1 − F0(t)]
exp(z>β), then it can be rewritten as log{− log[1 − F0(t)]} =

−z>β+ε (Doksum, 1987), where ε has the extreme value distribution. This model,

termed as the semiparametric transformation model, has also been extensively in-

vestigated by many authors.

This proportional hazards structure is a desirable property in survival analysis
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models when covariates are involved and is extensively used in survival analysis.

To apply it to survival models with long-term survivors, Kuk and Chen (1992) pro-

posed a model which is a semiparametric generalization of a parametric mixture

model due to Farewell (1982), which combines a logistic formulation for the prob-

ability of occurrence of the event with a proportional hazards specification for the

time of occurrence of the event. However, the model proposed by Kuk and Chen

(1992) does not have a proportional hazards structure for the survival function of

the entire population, even if the survival function for the time of occurrence of

the event is taken to be proportional hazards structure.

Maller and Zhou (1996) considered both proportional and nonproportional

hazards models, such as the exponential mixture model with cdf p(1 − exp(−ψt))

and hazards function α(t) = pψ/(1 − p exp(−ψt) + p), where 0 < p < 1. They

also considered the case in which the immune probability pi and the exponential

rate ψi of individual i are related to the covariates zi = (xi, yi) in some canonical

manner, such as pi = exp(x>i δ)/(1 + exp(x>i δ)) and ψi = exp(β>yi). However,

just as pointed out by Chen et al (1999), this exponential mixture model, when

including covariates through parameters pi, has some drawbacks too. For example,

it does not lead to a proportional hazards structure, and it yields improper posterior

distributions for many types of noninformative improper prior.

An alternative class of survival models, which do have proportional hazards

and also allow for long-term survivors, was proposed by Maller and Zhou (1996)

via a different motivation from other cure models. Their idea is to naturally ex-

tend Cox model S(t) = [S0(t)]
exp(z>β) with a parametric or completely unspecified

baseline S0(t) to an “improper” (semiparametric baseline) Cox model defined by

S(t) = [1− pF0(t)]
exp(z>β)

, where F0(t) is a proper distribution function which

may be parameterized or completely unspecified. We term this model as an im-

proper proportional hazards model. This idea can also be depicted through hazards
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function as follows: α(t) = α0(t) exp(z>β) with α0(t) = pf0(t)/(1− pF0(t)), where

F0(t) is a proper cdf with density f0(t). This model, however, has not been further

investigated by Maller and Zhou or other authors. A main objective of this disserta-

tion is to follow through such an idea to propose an improper mixture proportional

hazards model that incorporates the presence of long-term survivors, and develop

some efficient methods for statistical inferences in both theoretical and applicable

aspects.

The layout of this dissertation is as follows. In Chapter 1, we begin with intro-

ducing some background and specification of this improper proportional hazards

model, and point out that the proposed model is different from that of Tsodikov

(2003) in both motivation and approaches of analyses. For semiparametric model

(with nonparametric baseline hazards F0(t)), the partial likelihood is used to es-

timate the coefficients of covariates, then an estimator of the immune (long-term

survival) proportion is derived from the Nelson-Aalen estimator of the cumulative

hazards. In Section 1.3, for the full parametric model, we use the classic maximum

likelihood to estimate parameters of interest by a parameterized baseline hazards

function. In Section 1.4, the asymptotic properties of the estimators are investi-

gated based on the counting processes and martingale technique, and an example

is provided to illustrate our statistical inferences. For semiparametric model, an

i.i.d. Cox model is assumed (cf. Tsiatis, 1981). The estimation of the asymptotic

variances of estimators is discussed in Section 1.5. Some simulation results and an

example of application with a set of Leukaemia data are presented in Section 1.7.

Section 1.8 concludes this chapter.

In Chapter 2, we consider the improper proportional hazards model, where co-

variates are subject to linear measurement error. Approximately corrected partial

likelihoods are proposed in semiparametric model to reduce the bias of the ‘naive’

estimators of the covariate coefficients and the long-term survival proportion. Ac-
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curately corrected full likelihood is used to obtain our corrected maximum likeli-

hood estimators of parameters in Section 2.2. In Section 2.3, we investigate their

asymptotic properties based on the works of Kong and Gu (1999) and Nakamura

(1990). Some simulations are performed in Section 2.4 to illustrate our statistical

inferences. Concluding remarks are given in Section 2.5.

In Chapter 3, our main objective is to investigate this improper proportional

hazards model for the interior and boundary cases. The boundary case is an

interesting topic for survival analysis with long-term survivors since we want to

know whether an immune proportion is indeed present in the population, which

corresponds to testing H0 : p = 1 (see Ghitany, Maller and Zhou (1994), Zhou and

Maller (1995), and Vu and Zhou (1997)). Assumptions and model specifications

are given in Section 3.2. Section 3.3 presents some preliminary results, and Section

3.4 derives the main results of the chapter.

In Chapter 4, inspired by the works of Hu (1998) and Doksum (1987), we

propose a semiparametric transformation model, which is an alternative to our

improper proportion hazards model, and is different from other transformation

models in that its error variable may depend on the covariates and some unknown

parameters. Section 4.2 specifies the model. We then propose a two-step estimation

method for this model as follows. A consistent estimator of the unknown transform

function is first given for possibly censored observations in Section 4.3. Then in

Section 4.4, by inserting the estimated transform function into the likelihood func-

tion, termed as the pseudo likelihood function, we obtain the maximum likelihood

estimators of the coefficients of the covariates by treating the pseudo likelihood

function as an ordinary likelihood function. An estimator of the long-term survival

proportion is also provided via the estimator of the transform function in Section

4.4. The asymptotic properties of these estimators are derived in Section 4.5. The

variance estimators are also proposed in Section 4.5 using the bootstrap method,
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since the asymptotic variances of the proposed estimators do not have explicit or

closed forms. Section 4.6 reports a simulation study and an example of application

in criminology is given in Section 4.7. We close up this chapter by some concluding

remarks in Section 4.8.

Finally, in Chapter 5, we are interested in discrete-time survival analysis, espe-

cially, discrete-time proportional hazards models, for survival data with long-term

survivors. Although continuous-time survival analysis is frequently used in many

settings, discrete-time survival analysis is often more appropriate in social and

behavioral science applications where the survival data typically possess three fea-

tures: discrete, ties and concomitant information. Inspired by the works of Potts

(2004) and Linoff (2004) in which survival analysis is utilized to mine data, in this

chapter we will extend this new idea to fitting survival data with long-term sur-

vivors. In Section 5.2 we will review some existing discrete-time survival models

which have already been proposed to analyze survival data from social and behav-

ioral science in the literature. Then in Section 5.3 we generalize these models to

accommodate long-term survivors. The estimations for discrete-time model and

discrete-time cure model are investigated in Sections 5.4-5.5. For discrete-time

cure model we predominantly focus on left censored or truncated and right cen-

sored data which are recorded at some fixed but non-identical points. Then the

proposed models and approaches can be directly applied to analyze survival data

from social and behavioral science such as the economic values for customer reten-

tion with long-life customers. The asymptotic properties are discussed in Section

5.6. Simulation study is reported in Section 5.7 and an example of application is

illustrated in Section 5.8. Finally, some concluding remarks are provided in Section

5.9, which include some worthwhile issues for further research.
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Chapter 1

Proportional Hazards Model for Survival

Data with Long-term Survivors

1.1. Introduction

Conventional event history models typically assume that the entire population

is at risk of experiencing the event of interest throughout the observation period.

Individuals who will never experience the event are commonly referred to as long-term

survivors, which is recently attracted a great deal of interests in the analysis of survival

data due to its applications in a wide range of areas, including cancer treatment, AIDS

study, criminology, marketing, engineering reliability, etc. For a population with long-

term survivors, thus the survival data may consist of a mixture of the data from two

latent subpopulations: one who has a non-zero risk of experiencing the event, even if

they are not observed to do so during the study period, and another who is not subject

to the event of interest, and will continue up to the end of the observation period and

will therefore always appear as right-censored. This mixture model formulation is an

attractive approach to analyzing such data, in that it contains two parts which can

be interpreted separately by adding structure to the standard survival model. Yu et

al. (2004) gave a nice review for this model. The model can be formulated as follows.

The survival model is assumed that the failure time can be decomposed

T ∗ = ηT s + (1 − η)∞,

where T s <∞ denotes the failure time of susceptible subject and η indicates, by the

value 1 or 0, whether the sampled subject is susceptible or not. If we assume that the

proportion of the susceptible Pr(η = 1) = p, where p ∈ (0, 1], then the distribution
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function of T ∗ given by

F (x) = Pr(T s ≤ x)P (η = 1) + Pr(∞ ≤ x)Pr(η = 0)

= pF0(x) + 0 = pF0(x),

where F0(·) is the latent distribution function for T s (no-cure group). Equivalently,

S(t) = pS0(t) + (1 − p),

which is also referred as standard cure model (SCR).

Common parametric choices for F0(t) are exponential and Weibull distribution.

Nonparametric choices for F0(t) also have bee considered. The effects of some in-

dependent covariates on both the incidence probability p and the survival function

S0(t) for the susceptible group can be modeled. The incidence model is typically

given by p(x) = exp(x>γ1)/(1 + exp(x>γ1)), where x is a vector for covariates, γ1 is

a parameter to be estimated and > denotes the transpose.

For S0(t) (hence F0(t)), which is assumed to follow a parametric distribution.

Farewell (1982) assumed that a Weibull distribution S0(t) = exp[−ψtα], where α is

a parameter to be estimated and ψ also can be modeled as α = exp(x>γ2). Different

formulations can also be used in the above setting, especially in the survival function

S0(t) for the susceptible group. Yamaguchi (1992) applied a cure model with a logis-

tic mixture probability model and an accelerated failure time model with generalized

gamma distribution. Maller and Zhou (1996) studied the cure model extensively,

specifically nonparametric failure time models for one sample and parametric failure

time regression models. Recent work has focused on nonparametric failure models.

Taylor (1995) assumed a model with a logistic mixture probability and a completely

unspecified failure time process, estimated by a Kaplan-Meier type estimator. Most

recently, Kuk and Chen (1992), Sy and Taylor (2000) and Peng and Dear (2000)

considered a semiparametric Cox mixture proportional hazards model for the fail-
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ure time process, in which S0(t) is taken to be a proportional hazards structure as

[S0(t)]exp(z>β).

In order to keep the proportional hazards structure for survival data with long-

term survivors, Yakovlev and Tsodikov (1996), Tsodikov (1998) and Chen, Ibrahim

and Sinha (1999) have proposed a model termed as no-mixture models, also as the

bounded cumulative hazards (BCH) model, which can accommodate long-term sur-

vivors and also have the proportional hazards structure, and are different from mix-

ture models. In these models, the probability of cure is incorporated into the propor-

tional hazards model by assuming a bounded cumulative hazard G̃0(t) as t→ ∞ with

G̃0(t) ≤ ζ, limt→∞G̃0(t) = ζ. One way to enforce this is to write G̃0(t) = ζG0(t),

where G0(t) is the distribution function of a nonnegative random variable. Then the

survival distribution S(t) for the population can be written as S(t) = exp{−ζG0(t)}

We can see that the cure rate is limt→∞S(t) = e−ζ . Chen et al. (1999) showed that if

S(t) is taken to have a proportional hazards structure, then the conditional survival

function for the susceptible group no longer has no proportional hazards structure.

Hence in the non-mixture model, the survival distribution S(t) for the entire popula-

tion is modeled as a proportional hazard model, whereas in the mixture cure models,

the non-cured group is often modeled as a proportional hazards model.

Covariates can be incorporated into the non-mixture cure model through ζ. One

example is to use ζ(z) = exp(z>β). Tsodikov (1998) treated G0(t) as nuisance and

used marginal likelihood to estimate the cure rate ζ(x). Chen et al. (1999) specified

a parametric or discrete form for G0(t) and uses a Bayesian approach. Brown and

Ibrahim (2003) have extended this non-mixture cure model to including a longitudinal

covariates.

Just as Chen et al. (1999) reviewed that the SCR model has a mathematical

relationship with the BCH model such that any SCR model can be expressed as the

BCH model, but there are some biostatistical differences between them. Especially,
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when the effects of some independent covariates on both the incidence probability p

and the survival function S0(t) for the susceptible group are modeled, these two cure

models have distinct mathematical and statistical differences. The identifiability for

the SCR and BCH models are investigated in Appendix B.

For the SCR model, Chen et al. (1999) pointed out that relating covariates with

p, such as p = exp(z>β)/
(
1 + exp(z>β)

)
, has some drawbacks. First, it does not

lead to a proportional hazards structure, which is often preferred for survival models.

Second, it yields improper posterior for many types of noninformative improper prior,

including the uniform prior for the regression coefficients. For the mixture cure model

proposed by Kuk and Chen (1992), on the other hand, it is easy to see that it does not

have a proportional hazards structure for the entire population even if S0(t) is taken

to be proportional hazards. To remedy these drawbacks for the SCR and Kuk and

Chen’s (1992) models, in this chapter, we will specify an alternative mixture model

with covariates, which does have a proportional hazards structure and is proposed

by Maller and Zhou (1996) via the different motivation of the model from other

cure models, such as BCH and Kuk and Chen’s (1992) models, and is not further

investigated in Maller and Zhou or by other authors so far. Their idea is to extend

Cox model S(t) = [S0(t)]
exp(z>β) with a parametric or completely unspecified baseline

S0(t) to “improper” (semiparametric baseline) Cox model defined by

S(t) = [1 − pF0(t)]
exp(z>β)

,

where F0(t) is a proper distribution function which may be parameterized or com-

pletely unspecified, we term this model as “improper” proportional hazards model.

Maller and Zhou (1996) extensively discussed the estimation of the long-term

survivors proportion, also termed as “immune” or “cured” proportion, as well as

the survival distribution, via parametric or nonparametric approach. In Maller and

Zhou (1996) and other related works, ordinary maximum likelihood approach was

successfully applied via mixture models to obtain estimators of the parameter p (the
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“susceptibles proportion”) and the parameters associated with the proper survival

function for the susceptible population, and their large-sample properties are ob-

tained via classic approaches. But more advanced theory and techniques, such as the

counting process and martingale technique, have not been utilized. The martingale

technique, which is based on the statistical theory of counting process initiated by

Aalen (1975), and further developed by Andersen and Gill (1982, 1993) and Fleming

and Harrington (1991), among others, has since been extensively applied to survival

analysis. In this dissertation, we attempt to combine the idea of “long-term survivors”

with the Cox proportional hazards model (Cox, 1975) using the martingale technique.

A main objective of this chapter is to follow through such an idea to propose an

improper mixture PH model that incorporates the presence of long-term survivors,

and apply some martingale techniques to derive relevant large-sample properties. The

identifiability for this new proportional hazards cure model is also investigated in Ap-

pendix B. It should be noted that our model is fundamentally different from the

alternative improper PH model proposed by Tsodikov (1998,2003), in both the moti-

vation of the model and the approach of analyses.

In Section 1.2, we first specify the models and consider the ordinary maximum

likelihood function based on the hazard rate; and then give an equivalent reformu-

lation of the model in terms of the intensities of counting processes and the partial

likelihood function. Parameter estimation is discussed in Section 1.3 based on the

Cox PH model and full likelihood method. In Section 1.4, the martingale theory is

applied to derive the asymptotic properties of the statistical procedures related to the

model. The estimation of the asymptotic variances of estimators is investigated in

Section 1.5. Sections 1.6-1.7 report some simulation results and an application of the

model on a set of leukaemia data. Section 1.8 concludes this Chapter.
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1.2. Model Specification

Following the usual formulation in survival analysis, we postulate that T ∗
i , i =

1, 2, . . . , n, are independent and continuously distributed positive random variables

representing the failure times of n individuals, each of whom can only be observed

within a time interval [0, ci] subject to censoring times ci, i = 1, 2, . . . , n. The observa-

tions for the ith individual consist of Ti = T ∗
i ∧ci = min{T ∗

i , ci} and δi = I{T ∗
i ≤ ci},

where I{·} denotes the indicator of an event. We further assume that T ∗
i is indepen-

dent of ci for each i, and {(T ∗
i , ci), i = 1, . . . , n} are independent pairs. In addition,

{ci} are assumed to follow a common cumulative distribution function G, which is re-

ferred to as an independent and identically distribution (i.i.d.) censoring model. The

distributions of T ∗
i , i = 1, 2, . . . , n, on the other hand, are not necessarily identical,

and may depend on such covariates as age, gender, treatment method, etc.

Let Fi(t) be the cumulative distribution function (cdf) of T ∗
i . The hazard function

of T ∗
i is the instantaneous rate at which failures occur among remaining survivors. If

T ∗
i is a continuous random variable with density fi(t) = dFi(t)/dt, then its hazard

function is given by αi(t) = fi(t)/[1 − Fi(t)], which is defined at points 0 ≤ t < τFi ,

where τFi = inf{t ≥ 0 : Fi(t) = 1} (so that Fi(t) < 1). For a (possibly censored)

observation ti of T ∗
i with censoring indicator δi, its contribution to the likelihood

function can be written in terms of its hazard function αi(t) by

Li(ti) = fi(ti)δi [1 − Fi(ti)]1−δi =
[

fi(ti)
1 − Fi(ti)

]δi

[1 − Fi(ti)]

= αi(ti)δi exp
{
−

∫ ti

0

αi(y)dy
}
. (1.1)

Let zi be a k × 1 vector of covariates associated with the survival time T ∗
i of an

individual under study. The Cox PH model specifies the hazards function of T ∗
i with

covariate vector zi by

αi(t) = αi(t, z) = α0(t) exp{z>i β}, (1.2)
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where α0(t) is a baseline hazards function that does not depend on the covariates,

and β = (β1, . . . , βq)> is an unknown vector of regression parameters (coefficients of

covariates) to be estimated.

As discussed in Maller and Zhou (1996), the population contains “long-term

survivors” (or “cured” or “immune” individuals) if the cdf F (t) of T ∗ is improper,

i.e., F (∞) = P(T ∗ < ∞) < 1. To accommodate possible presence of long-term

survivors, we allow the baseline cdf of the survival time to be improper of the form

F (t) = pF0(t), where 0 < p ≤ 1 is an additional parameter and F0(t) is a proper

cdf with density f0(t). The parameter p can be interpreted as the proportion of

“susceptible” individuals (those who are not long-term survivors) when covariates

have no effects on the survival times. Under such a formulation, the baseline hazard

function becomes

α0(t) = α0(t, p) =
dF (t)/dt
1 − F (t)

=
d(pF0(t))/dt
1 − pF0(t)

=
pf0(t)

1 − pF0(t))
. (1.3)

Therefore we propose to model the hazard rate function of a survival time T ∗
i with

covariate zi by

αi(t, z) = α0(t) exp{z>i β} =
pf0(t)

1 − pF0(t)
exp{z>i β}. (1.4)

By (1.4), if zi does not depend on t, then the probability for the ith individual with

covariate zi to be a long-term survivor is given by

1 −P(T ∗
i <∞) = exp

{
−

∫ ∞

0

αi(t, z)dt
}

= exp
{
−

∫ ∞

0

pf0(t)dt
1 − pF0(t)

exp(z>i β)
}

= exp
{
log(1 − p) exp(z>i β)

}
= (1 − p)exp(z>i β), (1.5)

and this reduces to 1 − p when there are no covariate effects (β = 0).

Let t1, . . . , tn be the ordered sample of (possibly censored) survival data with

corresponding covariate vectors z1, . . . , zn. If the baseline distribution F0(t) is pa-

rameterized with parameter vector ψ, then by (1.1) and (1.3), the likelihood function,
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which is referred to as the full likelihood, can be written as

Lf = Lf (ψ, β, p) =
n∏

i=1

αi(ti, zi)δi exp
{
−

∫ ti

0

αi(y, zi)dy
}

=
n∏

i=1

[α0(ti) exp(z>i β)]δi exp
{
−

∫ ti

0

α0(s) exp(z>i β)ds
}

=
n∏

i=1

[
pf0(ti)

1 − pF0(ti)
exp(z>i β)

]δi

[1 − pF0(ti)]exp(z>i β). (1.6)

The maximum likelihood estimates of the parameters (ψ, β>, p) can then be obtained

by maximizing the Lf with respect to (ψ, β>, p).

If F0(t) is a nonparametric distribution function, then the model in (1.4) is said to

be semi-parametric. In such a case we can maximize the partial likelihood function to

estimate β first, then estimate p and F0(t) nonparametrically. The partial likelihood

function, denoted by Lp, is given by

Lp =
∏

i

exp(z>i β)∑
j∈R(ti)

exp(z>j β)
, (1.7)

where R(t) denotes the risk set at time t, i.e., the set of individuals who have not

failed or been censored prior to time t.

To apply the martingale theory for statistical inference purposes, we now refor-

mulate the Cox PH model in terms of the random intensity of a multivariate counting

process. We begin with some introductory discussions on the meanings of the relevant

terms. Suppose that individual i has hazard function

λi(t) = lim
h→ 0+

1
h
P [T ∗

i ≤ t+ h | T ∗
i ≥ t], i = 1, 2, . . . , n.

A multivariate counting process Ñ(t) = {Ni(t), i = 1, 2, . . . , n}, 0 ≤ t < ∞, is a

stochastic process with n components that can be thought of as counting the oc-

curences (as time t proceeds) of n different types of events (or the same event for n

different individuals). We suppose these events to occur one at a time. The realiza-

tions of each component Ni(·), as functions of t, are integer-valued step functions,
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equal to zero at time zero and with jumps of size 1 only. We assume they are right-

continuous, so that Ni(t) is the random number of events of type i in the interval

[0, t], and no two components jump at the same time. Define Ft to be the σ-algebra

generated by {Ñ (s), s ≤ t}. Under certain regularity conditions, the process Ñ has

intensity process

Λ̃(t) = {Λi(t) : 0 ≤ t <∞, i = 1, 2, . . . , n},

where Λi(t)dt = P(Ni jumps in a small time interval [t− dt, t] | Ft−).

Now for the full parametric PH model, we define

Ni(t) = I{T ∗
i ∧ ci ≤ t, δi = 1}. (1.8)

Then Ni jumps once at time T ∗
i if T ∗

i ≤ ci. Given what happened before the interval

[t − dt, t], we know that individual i either failed at the observed time T ∗
i < t ∧ ci,

or was censored at time ci < t, or is still alive and uncensored at t − dt. In the first

two cases, we know that Ni either has made its only jump or will never jump, so

the probability of a jump in the interval [t − dt, t] is zero. In the last case, either

T ∗
i ∈ [t − dt, t] or T ∗

i > t, so the probability of jump in [t− dt, t] is λi(t)dt. Thus we

can write Λi(t)dt = Yi(t)λi(t)dt, where

Yi(t) = I{T ∗
i ≥ t, ci ≥ t} = I{T ∗

i ∧ ci ≥ t}

=
{

1, if individual i is still under observation prior to time t.
0, otherwise. (1.9)

Note that given the past prior to (but not including) time t, Yi(t) and Λi(t) are fixed

(non-random). We say in such a case that Yi(t) and Λi(t) are predictable.

With Ni(t) defined in (1.8), Ñ (t) = {Ni(t), i = 1, . . . , n} is a multivariate count-

ing process with intensity process Λ̃(t) = {Λi(t), i = 1, . . . , n} satisfying Λi(t)dt =

Yi(t)λi(t)dt. We can rewrite the full likelihood in (1.6) as

Lf =
n∏

i=1

∏

t>0

[
α0(t) exp(z>i β)

]dNi(t) exp
{
−

∫ ∞

0

α0(t)Yi(t)dt exp(z>i β)
}
, (1.10)
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where α0(t) is given by (1.3), and the partial likelihood in (1.7) is equivalent to

Lp =
n∏

i=1

∏

t≥0

{
Yi(t) exp(z>i β)∑n
j=1 Yj(t) exp(z>j β)

}dNi(t)

. (1.11)

Note that dNi(t) = 1 at t = ti ≤ ci and dNi(t) = 0 otherwise. We take the convention

that a0 = 1 for any a. Hence the product over t in (1.10) or (1.11) is actually equal

to a single factor with dNi(t) = 1.

In the rest of this section, we show the process Mi(t) = Ni(t) −
∫ t
0
λi(s)Yi(s)ds

is a martingale. Let G(t) be the common cdf of the censoring variables ci’s. Since

Fi(t) is continuous, Ni(t) = I{T ∗
i ∧ ci ≤ t, δi = 1} and Yi(t) = I{T ∗

i ≥ t, ci ≥ t}, we

have

E[Ni(t)] = P (T ∗
i ∧ ci ≤ t, δi = 1) =

∫ t

0

[1 −G(u−)]dFi(u) (1.12)

and

E[Yi(t)] = P (T ∗
i ≥ t, ci ≥ t) = [1 − Fi(t)][1 −G(t−)]. (1.13)

It follows from (1.12)–(1.13) that

E[dMi(t)|Ft−] = E[dNi(t) − λi(t)Yi(t)dt|Ft−] = dE[Ni(t)] −E[Yi(t)]λi(t)dt

= [1 −G(t−)]dFi(t) − [1 − Fi(t)][1 −G(t−)]
dFi(t)

1 − Fi(t)
= 0.

ThusMi(t) is a martingale. Note that Fi(t) can be an improper distribution function,

such as Fi(t) = 1 − (1 − pF0(t))
exp(z>i β) under the preceding formulation.

1.3. Estimation of Parameters

We first consider the semiparametric Cox PH model. Cox (1975) derived

Lp = Lp(β) =
n∏

i=1

∏

t≥0

{
Yi(t) exp(z>i β)∑n
j=1 Yj(t) exp(z>j β)

}dNi(t)

(1.14)

as a partial likelihood function. Let N̄(t) =
∑n

i=1Ni(t). Then by (1.14),

logLp =
n∑

i=1

∫ ∞

0

z>i βdNi(t) −
∫ ∞

0

log
{ n∑

j=1

Yj(t) exp(z>j β)
}
dN̄(t). (1.15)
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An estimator β̂ of β is given by maximizing the Lp with respect to β, or equivalently,

solving the following equation:

U(β) =
∂

∂β
logLp =

n∑

i=1

∫ ∞

0

zidNi(s) −
∫ ∞

0

∑n
i=1 Yi(s)zi exp(z>i β)∑n
i=1 Yi(s) exp(z>i β)

dN̄ (s) = 0.

(1.16)

Breslow (1974) suggested that the baseline cumulative hazard Λ0(t) =
∫ t
0 α0(s)ds can

be estimated by

Λ̂0(t) =
∫ t

0

dN(s)
∑n
i=1 Yi(s) exp(z>i β̂)

. (1.17)

Then an estimator of the baseline survival function S0(t) is Ŝ0(t) = exp (−Λ̂0(t)).

Furthermore, since

Λ0(∞) =
∫ ∞

0

α0(s)ds =
∫ ∞

0

pf0(s)
1 − pF0(s)

ds = − log(1 − p),

using Λ̂0(·) given by (1.17), p can be estimated by

p̂ = 1 − exp−(Λ̂0(+∞)). (1.18)

For the full parametric Cox PH model, let F (t, ψ) be the parameterized baseline

cumulative distribution function with parameter vector ψ, and write θ> = (ψ, β>, p).

Then the log-likelihood function is given by

logLf =
n∑

i=1

{∫ ∞

0

log{αi(t, θ, zi)}dNi(t) −
∫ ∞

0

αi(t, θ, zi)Yi(t)dt
}
, (1.19)

where αi(t, θ, zi) = α0(t, p, ψ) exp(z>i β) and α0(t, p, ψ) = pf0(t, ψ)/[1 − pF0(t, ψ)].

Assuming the order of differentiation and integration to be interchangeable, the

first derivative vector of the log-likelihood with respect to θ is given by

U(θ) =
∂ logLf
∂θ

=
n∑

i=1

∫ ∞

0

∂

∂θ
logαi(t, θ, zi)dMi(t), (1.20)

which is known as the score process, where

Mi(t) = Ni(t) −
∫ t

0

αi(s, θ, zi)Yi(s)ds, i = 1, . . . , n.
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As discussed in Section 1.2, {Mi, i = 1, . . . , n} is a sequence of martingale. Thus an

estimator θ̂ can be found by solving the score function (1.20).

1.4. Large-sample Properties of Estimators

1.4.1. Semi-parametric PH Model

In this subsection, we derive the large sample properties of the estimators for

the covariate coefficients β, the baseline cumulative hazards function Λ(t), and the

baseline susceptible proportion p. Our results are mainly based on the Lenglart’s

inequality and the martingale central limit theory. We consider in this section the

case of i.i.d. random covariates {zi} (cf. Andersen and Gill, 1982 ).

The Cox PH model has been studied extensively in the statistical literature,

which includes Andersen and Gill (1982), Gill (1984), Andersen, Borgan, Gill, Keiding

(1993), Kalbfleish and Prentice (2002), Fleming and Harington (1991), among others.

In particular, the results in Andersen and Gill (1982) can be employed to well fit our

model with long-term survivors. Let “ p→” and “ d→” denote convergence in probability

and in distribution respectively.

Define τL = inf{t ≥ 0 : L(t) = 1} for any distribution function L(t), with τL = ∞

if L(t) < 1 for all t ≥ 0. We now state our main results of the asymptotic properties

for aforementioned estimators.

Theorem 1.1. Suppose that (Ni, Yi, zi), i = 1, 2, . . . , n, are i.i.d. replicates of

(N,Y, z), where N(t) and Y (t) are counting process and predictable process corre-

sponding to an improper survival function (1 − pF0(t))
exp(z>β) with 0 < p < 1, z is

bounded, and the matrix Σ defined by (1.22) in lemma 1.1 below is positive definite.

If either τG = ∞ or τF0 ≤ τG < ∞, then with probability approaching 1, equation

(1.16) has a solution β̂ such that β̂ p→ β0 and n1/2(β̂ − β0)
d→ N(0,Σ−1) as n→ ∞.

The next theorem gives the asymptotic normality of the Nelson-Aalen estimator
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for the improper baseline function.

Theorem 1.2. Under the conditions of Theorem 1.1, for t ∈ [0,∞],

n1/2{Λ̂0(t) −Λ0(t)}
d→ N(0, b2(t) + a(t)>Σ−1a(t)), as n→ ∞,

where b(t) and a(t) are defined in Lemma 1.2 below, Λ̂0(t) is defined in (1.17), and

Ni(t) and Yi(t) are defined in Theorem 1.1.

The asymptotic properties of the estimator p̂ of p in (1.18) is given by the fol-

lowing theorem.

Theorem 1.3. Under the conditions of Theorem 1.1, p̂
p→ p as n→ ∞, and

n1/2(p̂− p) d→ N(0, exp(−2Λ0(+∞))Σ−1

Λ̂0(+∞)
),

where ΣΛ̂0(+∞) is the asymptotic variance of Λ̂0(+∞) (whose estimation was discussed

by Tsiatis (1981), see (1.27) below).

1.4.2. Full Maximum Likelihood Model

Now let F0(t, ψ) denote F0(t) and 1 − Fh(t, ψ) = {1 − pF0(t, ψ)}exp(z>h β) in the

full maximum likelihood model. Then θ> = (ψ, β>, p) is the parameter vector to be

estimated. To avoid confusion we will denote by θ>0 = (ψ0, β
>
0 , p0) the true value of

the parameter and reserve θ for the free parameter in the log-likelihood function, the

score function, etc. Let Ñ = {Nh, h = 1, . . . , n} be a sequence of counting processes

with intensity processes λ(t) = {λh(t), h = 1, . . . , n}, which have a parametric form

λh(t) = λh(t, θ0) = αh(t, θ0)Yh(t) with

αh(t, θ0) =
pf0(t, ψ)

1 − pF0(t, ψ)
exp(z>h β), h = 1, . . . , n.

To simplify the notation we write ∂
∂θj

g(θ0) for ∂
∂θj

g(θ)|θ=θ0 and assume covariates

z1, . . . , zn to be one-dimensional and non-random.
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The following theorem provides the asymptotic theory for full likelihood model.

We say that a sequence of events {An} occurs with probability approaching 1 (WPA1)

if Pr{An} → 1 as n→ ∞.

Theorem 1.4. Suppose that there exists a neighborhood Θ0 of θ0 such that F0(t, ψ)

and f0(t, ψ) are three-times continuously differentiable with respect to ψ in Θ0; and

that the derivatives of
∫ t
0 αh(s, θ)ds can be taken inside the integral. Let

g
(j)
h (t, θ0) =

{
∂

∂θj
logαh(t, θ0)

}2

and g
(jl)
h (t, θ0) =

{
∂

∂θj∂θl
logαh(t, θ0)

}2

for j, l = 1, 2, 3. If the following regularity conditions (referred to as Condition G)

hold:

(G1) there exist functions γ(t) and ρ(t) such that for all j, l,m and t ∈ [0,∞],

sup
θ∈Θ0

∣∣∣∣
∂3αh(t, θ)
∂θj∂θl∂θm

∣∣∣∣ ≤ γ(t), sup
θ∈Θ0

∣∣∣∣
∂3 logαh(t, θ)
∂θj∂θl∂θm

∣∣∣∣ ≤ ρ(t);

(G2) the limits of the sequences of functions

n−1
n∑

h=1

gh(t, θ0)αh(t, θ0)(1 − Fh(t, θ0)) and n−1
n∑

h=1

γ(t)(1 − Fh(t, θ0))

exist, where gh(t, θ0) represents one of g(j)
h (t, θ0), g

(jl)
h (t, θ0) and ρ(t);

(G3) there exist integrable functions π(t, θ0) and q(t, θ0) such that

n−1
n∑

h=1

gh(t, θ0)αh(t, θ0)(1 − Fh(t, θ0)) < π(t, θ0),

and n−1
∑n

h=1 γ(t)(1 − Fh(t, θ0)) < q(t, θ0),

then with probability approaching 1, the equation U(θ) = 0, where U(θ) is given in

(1.20), has a solution θ̂ such that θ̂
p→ θ0 and n1/2(θ̂ − θ0)

d→ N(0,Σ−1) as n → ∞,

where Σ = {σjl(θ0)} is defined by part D of Condition 6.1.1 in Andersen et al. (1993,

p. 421) (referred to as A-K Condition), e.i., as n→ ∞,

n−2

∫ ∞

0

n∑

h=1

{ ∂

∂θj
logαh(t, θ0)}{

∂

∂θl
logαh(t, θ0)}αh(t, θ0)dt

p→ σjl(θ0).
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1.4.3. Exponential Mixture Model with Covariates.

Let us consider an example with an exponential cdf F0(t, ψ0) = 1− e−ψ0t. Then

the survival function for individual h is

1 − Fh(t, θ0) = (1 − p0F0(t, ψ0))
exp(zhβ0) = (1 − p0 + p0e

−ψ0t)exp(zhβ0)

and so the hazard rate is

αh(t, θ0) =
p0ψ0 exp(−ψ0t)
1 − p0F0(t, ψ0)

exp(zhβ0).

Assume that z ∈ [−c1, c2], β ∈ [−b1, b2], p0 ∈ (0, 1), ψ0 ∈ (0,∞), where ci, bi (i = 1, 2)

are positive constants, and let Θ = [−c1, c2]⊗ [−b1, b2]⊗ (0, 1)⊗ (0,∞). We can verify

easily (thought a bit lengthy) that Condition G of Theorem 4 holds. For example, by

differentiating αh(t, θ) in the above (related derivatives are listed in Appendix A), we

can see that, for (θ1, θ2, θ3) = (ψ, β, p),

sup
θ∈Θ0

∣∣∣∣
∂3 logαh(t, θ)
∂θj∂θl∂θm

∣∣∣∣ ≤ ρ(t), for all t > 0 and i, j,m ∈ {1, 2, 3},

where

ρ(t) =
t3(4p3

2 − 5p2
2 + 4p2)

(1 − p2)
3 +

t2(2p2 − 1)

(1 − p2)
3 +

2t

(1 − p2)
3 +

4

(1 − p2)
3 +

2
p2
1

+
1
ψ3

1

with p2 = p0 + δ, p1 = p0− δ, ψ1 = ψ0 − δ for sufficient small δ > 0 such that Θ0 ∈ Θ.

Further, π(3)(t, θ0), π(33)(t, θ0) and πρ(t, θ0) can be taken as

π(3)(t, θ0) =
[

1
p0

+
1 − exp(−ψ0t)

1 − p0

]2
cp0ψ0 exp(−ψ0t)

1 − p0
,

π(33)(t, θ0) =

{
1
p2
0

+
[
1 − exp(−ψ0t)

1 − p0

]2
}2

cp0ψ0 exp(−ψ0t)
1 − p0

and

πρ(t, θ0) = ρ(t)
cp0ψ0 exp(−ψ0t)

1 − p0
,
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where c is an upper bound of exp(zhβ). Similarly, we can find γ(t) and consequently

q(t, θ0) = γ(t)cp0ψ0 exp(−ψ0t)/(1 − p0). The other functions required in Condition

G can be found easily as well.

Note that the function tn1 exp(−ψ0t
n2) is integrable for positive integers n1 and

n2. Hence it is easy to see that the above functions satisfy Condition G. Thus the

conclusions of Theorem 1.4 hold for exponential F0(t, ψ).

1.4.4. Proofs

The proofs of Theorems 1.1-1.3 draw on the results of Anderson and Gill (1982),

although some conditions need to be checked in fine details as shown in Lemma 1.1

below. We begin with Lemma 1.1 from Andersen and Gill (1982).

Lemma 1.1. Let (Ni, Yi, zi), i = 1, 2, . . . , n, be i.i.d. replicates of (N,Y, z), where

N(t) and Y (t) are counting process and predictable process corresponding to a survival

function S(t) with E[N(∞)] <∞, and z is bounded. Assume that, for each τ <∞,

P(Y (t) = 1,∀t ≤ τ ) > 0 (1.21)

and the matrix

Σ =
∫ ∞

0

v(β0, t)s(0)(β0, t)λ0(t)dt (1.22)

is positive definite, where

v(β, t) =
s(2)(β, t)
s(0)(β, t)

−
[
s(1)(β, t)
s(0)(β, t)

]2

, s(i)(β, t) = E[Y (t)zi exp (z>β)], i = 0, 1, 2.

Then with probability approaching 1, the equation in (1.16) has a solution β̂ such that

β̂
p→ β0, and n1/2(β̂ − β0)

d→ N(0,Σ−1) as n→ ∞.

Similar to the proof of Lemma 1.1, we can proceed to prove Theorem 1.1.

Proof of Theorem 1.1. Note that N(t) and Y (t) correspond to an improper cumu-

lative distribution function F (t) = 1 − (1 − pF0(t))
exp(z>β), and that p < 1, we have
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E[N(∞)] <∞. Similar to the proof of Lemma 1.1 (see Andersen and Gill (1982)), it

suffices to show that (1.21) holds either for τ < τF0 or for τ <∞.

Since F (t) is improper, P(T ∗ > τ ) = 1− F (τ ) > 0 for any τ <∞. Furthermore,

if τG = ∞, then P(c ≥ τ ) = 1 −G(τ−) > 0 for any τ <∞. Hence

P(Y (t) = 1,∀t ≤ τ ) = P(T ∗ ∧ c ≥ τ ) = P(T ∗ ≥ τ )P(c ≥ τ ) > 0 (1.23)

for any τ <∞. If τF0 ≤ τG <∞, on the other hand, then P(c ≥ τ ) = 1−G(τ−) > 0

for any τ < τF0 ≤ τG, which shows that (1.23) holds for τ < τF0 , and so does (1.21).

This completes the proof.

The next lemma on the cumulative hazards estimation is due to Andersen and

Gill (1982) as well (cf. also, Kalbfleisch and Prentice (2002), p.177).

Lemma 1.2. Under the same conditions as for Lemma 1.1, as n→ ∞,

n1/2{Λ̂0(t) − Λ0(t)}
d→ N(0, b2(t) + a(t)>Σ−1a(t)), t ∈ [0,∞],

where

b(t) =
∫ t

0

α0(s)ds
s(0)(β, s)

and a(t) =
∫ t

0

s(1)(β, s)
s(0)(β, s)

α0(s)ds,

Λ̂0(t) is defined in (1.17), and Ni(t) and Yi(t) are as in Lemma 1.1.

Proof of Theorem 1.2. This follows directly from Lemma 1.2.

Proof of Theorem 1.3. This follows from the well known Slutsky theorem and

delta-method together with Theorem 1.2.

The following lemma is due to Gill (1983a) (see also Andersen, Borgan, Gill and

Keiding (1993), p. 85 ) and plays a key role in proving the Theorem 1.4.

Lemma 1.3 Let {X(n)(s)} be a sequence of stochastic processes with a deterministic

limit f(s) as n→ ∞ for almost all t ∈ [0,∞), where
∫ ∞
0 |f(s)|ds <∞. Furthermore,

for all δ > 0, there exists kδ(s) with
∫ ∞
0
kδ(s)ds <∞ such that

lim inf
n→∞

P(|X(n)(s)| ≤ kδ(s) for all s ) ≥ 1 − δ.
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Then

sup
t

∣∣∣∣
∫ ∞

0

X(n)(s)ds −
∫ ∞

0

f(s)ds
∣∣∣∣
p→ 0.

Proof of Theorem 1.4. To prove Theorem 4, we need the following “in probability

linear bound” by Daniels (1945). Let Hn be the empirical distribution based on a

random sample of size n from a continuous distribution H. Then P{1 − Hn(s) ≤

δ−1(1 − H(s))} ≥ 1 − δ for any δ ∈ (0, 1) and all s ∈ [0,∞]. We first use this

result on the empirical distribution of the uncensored t∗i to obtain P{I(T ∗
i ≥ t) ≤

δ−1(1 − Fi(t, θ0))} ≥ 1 − δ. Since Yi(t) = I(Ti ≥ t) ≤ I(T ∗
i ≥ t), we get P{(Yi(t) ≤

δ−1(1 − Fi(t, θ0))} ≥ 1 − δ for all t ∈ [0,∞). Then for a function gi(t, θ0), we have

P

{
1
n

n∑

i=1

Ai ≤
1
δn

n∑

i=1

Bi

}
≥ 1 − δ for all t ∈ [0,∞), (1.24)

where Ai = gi(t, θ0)αi(t, θ0)Yi(t) and Bi = gi(t, θ0)αi(t, θ0)[1 − Fi(t, θ0)].

On the other hand, as E[Yi(t)] = P(T ∗
i ≥ t, ci ≥ t) = (1 − Fi(t, θ0))(1 −G(t−))

and V ar(Yi(t)) ≤ E[Yi(t)], by Condition (G2) and the Markov weak law of large

numbers (Sen and Singer (1993), p. 63, let δ = 2), we can easily see that

1
n

n∑

i=1

Ai
p→ y(t), (1.25)

where y(t) = lim
n→∞

n−1
∑n

i=1Bi[1 −G(t−)].

Using Condition G together with Lebesgue Dominated Convergence Theorem,

we have
∫ ∞
0
y(t)dt <∞. Hence by Lemma 1.3 and (1.24)–(1.25),

1
n

∫ ∞

0

n∑

i=1

gi(t, θ0)αi(t, θ0)Yi(t)dt
p→

∫ ∞

0

y(t)dt. (1.26)

Now let gh(t, θ0) = g
(j)
h (t, θ0) = { ∂

∂θj
logαh(t, θ0)}

2
. Then part (C) of A-K

Condition follows from (1.26). By the Cauchy-Schwarz inequality, part (B) of A-K

Condition also holds. Similarly, by letting

gh(t, θ0) = g
(jl)
h (t, θ0) =

{
∂

∂θj∂θl
logαh(t, θ0)

}2

18



or ρ(t), we can see that (1.26) together with (G2) imply (E) of A-K Condition. In

particular, if

gil(t, θ0) =
{

∂

∂θj
logαh(t, θ0)

}{
∂

∂θl
logαh(t, θ0)

}
,

then (B) of A-K Condition leads to σjl(θ0) =
∫ ∞
0 y(t)dt, provided that Σ = {σjl(θ0)}

is positive define (in part (D) of A-K Condition). Thus A-K Condition holds and

Theorem 1.4 then follows from Lemma 1.3 and Theorem 6.1.1 in Andersen et al.

(1993).

1.5. Estimation of the Asymptotic Variance of Estimators

In this section, we will discuss the estimators of the asymptotic variances. For

simplicity we consider the case of 1-dimensional i.i.d. covariates z1, . . . , zn, which are

realizations of a random variable z. Censoring is assumed independent of the failure

time and z. Let t1, t2, . . . , tn be the ordered observations. We can estimate β by

maximizing the logarithm of the Cox partial likelihood of β:

logLp =
n∑

i=1

∫ ∞

0



ziβ − log




n∑

j=1

Yj(t) exp(zjβ)






 dNi(t).

Given the estimator β̂, the baseline cumulative hazard Λ0(t) is estimated by

Λ̂0(t) =
∫ t

0

dN(s)
∑n
i=1 Yi(s) exp [ziβ̂]

.

The asymptotic variance V = V ar(Λ̂0(t)) of the above estimator, discussed by Tsiatis

(1981), can be estimated by

V̂ =
∫ t

0

dN(s)

{
∑n

i=1 Yi(s) exp[ziβ̂]}2
+ I−1

n (β̂, t)

{∫ t

0

ε(β̂, s)dN(s)
∑n

i=1 Yi(s) exp[ziβ̂]

}2

, (1.27)

where

ε(β̂, s) =
n∑

i=i

ziYi(s) exp(ziβ̂)/
n∑

i=1

Yi(s) exp(ziβ̂)
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and In(β, t) = − ∂2

∂β2 logLp is the observed information on β (Kalbfleish and Prentice

2002 p. 174):

In(β, t) =
∫ t

0

∑n
i=1[zi − ε(β, s)]2Yi(t) exp (ziβ)∑n

i=1 Yi(s) exp(ziβ)
dN(s),

=
∫ t

0

{∑n
i=i z

2
i Yi(s) exp(ziβ)∑n

i=1 Yi(s) exp(ziβ)
−

[∑n
i=i ziYi(s) exp(ziβ)∑n
i=1 Yi(s) exp(ziβ)

]2
}
dN(s).

Using the above, V ar(β̂) can be estimated by

V̂ ar(β̂) = I−1
n (β̂,+∞). (1.28)

By the delta method, we have V ar(p̂) ≈ V ar(Λ̂0(+∞)) exp (−2Λ̂0(+∞)), hence an

estimator of V ar(p̂) is given by

V̂ ar(p̂) = V̂ ar(Λ̂0(+∞)) exp (−2Λ̂0(+∞)), (1.29)

where V̂ ar(Λ̂0) is given in (1.27). Following the results of Section 7.2.2 in Andersen

et al. (1993, pp.496-501), it is easy to show that under the conditions of Theorem 1,

V̂ ar(β̂) and V̂ ar(p̂) are consistent estimators of V ar(β̂) and V ar(p̂), respectively.

For the full likelihood model, the log-likelihood function (apart from a constant)

takes the form

logLf =
∫ ∞

0

n∑

i=1

logαi(t, θ, zi)dNi(t) −
∫ ∞

0

n∑

i=1

αi(t, θ, zi)Yi(t)dt,

and is maximized by θ̂. The observed information of θ can be easily found by the

results of Kalbfleish and Prentice (2002, p. 63, p. 180). The observed information of

p is In(p, t) = −
∫ t
0

∑n
i=1

∂2

∂p2 logαi(t, θ, zi)dMi(t). Clearly,

In(p,+∞) =
n∑

i=1

{
δi(1 − 2pF0(ψ, ti))

p2[1 − pF0(ψ, ti)]
2 +

exp(ziβ)F 2
0 (ψ, ti)

[1 − pF0(ψ, ti)]
2

}
. (1.30)

Proceeding along the lines of the above we can find the observed information of β as

In(β,+∞) = −
n∑

i=1

z2
i exp(ziβ) log(1 − pF0(ψ, ti)), (1.31)
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and the observed information of ψ is

In(ψ,+∞) =
n∑

i=1

{
δi
ψ2

+
ψ2t2i (p− p2) exp(−ψti)[δi − exp(ziβ)]

ψ2[1− pF0(ψ, ti)]
2

}
. (1.32)

The variances of the estimators of p, β, ψ are estimated by replacing p, β, ψ in (1.30)–

(1.32) with their maximum likelihood estimators. Then we have

V̂ (p̂) = I−1
n (p̂,+∞), V̂ (β̂) = I−1

n (β̂,+∞), V̂ (ψ̂) = I−1
n (ψ̂,+∞).

These estimators are consistent by standard maximum likelihood theory.

1.6. Simulation Results

In the simulation study, we compare the performance of the parametric maxi-

mum likelihood estimators (MLEs) with the maximum partial likelihood estimators

(MPLEs). The calculations can be seen more clearly in special cases. We consider

the two sample problem with exponentially distributed lifetimes. The two samples

are of sizes, say, n0 and n1, respectively, n0 +n1 = n, with sample membership being

indicated by the dummy variable

zi =
{

0, if individual i is in sample 0
1, if individual i is in sample 1 , i = 1, 2, . . . , n.

Data are generated from the survival functions S0(t) = 1 − pF0(t) (with respect

to sample 0) and S1(t) = (1 − pF0(t))
exp(β) (with respect to sample 1). Let F0(t)

be an exponential distribution with parameter ψ = 0.058. The proportion of the

susceptibles is p = 0.90 and the coefficient of covariates is β = −0.3851. Censoring

times c are generated from an uniform distribution between 0 and 100. For this

simulation, samples of sizes n1 = n2 = 100 and n1 = n2 = 400 were replicated 10000

times. In the first simulation study, the result is on the mean and standard deviation of

the estimators. In the second simulation study, three (survival) distribution functions

are compared in each of the two samples.
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Let p0 and p1 denote the susceptible proportions in samples 0 and 1 respectively.

Then p0 = p = 0.9 and p1 = 1 − (1 − p)exp(β) = 1 − 0.1exp(−0.3851) = 0.79125. The

means and standard deviations of the simulated estimates are displayed in Table 1.1

below, where p(f)
0 and p

(f)
1 denote the maximum likelihood estimators of p0 and p1

respectively under the full likelihood model; p(s)
0 and p(s)

1 the estimators of p0 and p1

respectively under the semiparametric PH model; and β(s) and β(f) the estimators

of the coefficient β under semiparametric Cox model and the full likelihood model

respectively.

Table 1.1. Summary of the simulation studies on the estimators of β and p

n1 = n2 β(s) β(f) p
(s)
0 p

(s)
1 p

(f)
0 p

(f)
1 ψ̂

100 Mean −0.3945 −0.3903 0.8931 0.7818 0.9206 0.8022 0.0588
STD 0.0782 0.0858 0.0368 0.0493 0.0823 0.0481 0.0082

400 Mean −0.3870 −0.3863 0.8959 0.7857 0.9000 0.7918 0.0581
STD 0.0392 0.0407 0.0191 0.0255 0.0184 0.0236 0.0036

From Table 1.1 we can see that the estimates are close to the true values of the

parameters and the accuracy improves as the sample sizes increase from 100 to 400.

The true and estimated distribution function curves are shown in Figures 1.1

and 1.2 below (with n1 = n2 = 100), where F (t) denotes the true distribution for

the simulation, FP denotes the estimates under the full parametric model and SP

the estimates under the semiparametric model. These two figures show that the two

estimators are close to the true distribution function curve.
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Figure 1.1. The Estimated Distribution Curve for Two Models in Sample 0
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Figure 1.2. The Estimated Distribution Curve for Two Models in Sample 1
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1.7. An Example of Application

We consider the leukaemia data analyzed by Goldman et al. (1984) and further

discussed by Maller and Zhou (1996). Our main interest is to compare the estimates

between the semiparametric (partial likelihood) model and the full likelihood model

under the PH structure. We take F0(t, ψ) to be an exponential distribution with

parameter ψ. The estimates of the parameters p, β and ψ are listed in Table 1.2

below:

Table 1.2. Estimates for the Leukaemia Data (n0 = 46, n1 = 44)

β(s) = 0.3950 p
(s)
0 = 0.6811 p

(s)
1 = 0.8167

β(f) = 0.3690 p
(f)
0 = 0.6892 p

(f)
1 = 0.8155 ψ̂ = 1.9414

where β(s) and β(f) denote the estimates of β based on the semiparametric model and

the full likelihood model, respectively; p(s)
i and p

(f)
i denote the estimates of p based

on the two models with i = 0 for Group one (allogeneic transplants) and i = 1 for

Group two (autologous transplants) data. The distribution curves are displayed in

Figures 1.3 and 1.4 below. We can see that the estimators based on the two models

are relatively close to each other, and the discrepancies between the two models may

be explained by small sample sizes and the choice for the baseline survival function

F0(t).
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Figure 1.3. cdf’s for leukaemia data under the partial likelihood model
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Figure 1.4. cdf’s for leukaemia data under the full likelihood model
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1.8. Concluding Remarks

In this Chapter we proposed a new improper PH model to analyze survival data

with long-term survivors and covariates. Our model, which is based on the mixture

model, can overcome the drawbacks mentioned by Chen et al. (1999). Our approach

is based on the counting processes and martingale techniques, which has rarely been

used to investigate the survival data with long-term survivors. The partial maximum

likelihood and full maximum likelihood estimators of the parameters are obtained and

their asymptotic properties are investigated.

The simulation study indicates that the proposed model and estimation proce-

dures produce efficient estimators for both semiparametric and parametric settings.

An application is also demonstrated with a set of Leukaemia data.

Our motivation to model this improper PH model is based on the SCR model,

which leads to a natural extension of the usual PH model. Hence methods for the stan-

dard PH model may be extended to our improper model, such as Bayesian analysis

with an improper noninformative prior, measurement error for the covariates, which

may be longitudinal data, and so on, but further investigations are needed. Another

issue worth for further consideration is hypothesis testing based on our model, which

may involve tests under nonstandard conditions (e.g., p on the boundary of its param-

eter space). Final issue for further study is the extension of continuous-time improper

PH model to discrete-time PH models for the survival data with long-term survivors

duo to their extensively applications to economic, , business, marketing, sociological

and behavioral statistics.
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Chapter 2

Measurement Error in Proportional

Hazards Models for

Survival Data with Long-term Survivors

2.1. Introduction

In Chapter 1, we reviewed some cure models and Cox mixture proportional

hazards models, and thus proposed an alternative “improper” proportional hazards

model, which may allow a semiparametric baseline. We also investigated its pa-

rameter estimation by using partial likelihood and full likelihood approaches, and

then derived their asymptotic properties via the martingale techniques.

In that chapter, our statistical inferences are based on time-independent co-

variates. We also must know the values of the covariates for all subjects at risk

at any failure time points, with the risk set being defined as the set of all patients

who are still under study prior to that time point. In many clinical studies, how-

ever, it is quite often that some or even all of the covariates are measured with

error or are misspecified. A common consequence of such measurement error or

misspecification is that the parameter estimates are attenuated, in the sense that

the estimators shrink towards zero. A more serious consequence is that such error

could lead to violation of the correct model relationship (Kong and Gu, 1999).

Considering conventional Cox proportional hazards models with covariates

subject to measurement error, Kong and Gu (1999) mentioned two approaches of

parameter estimation. One approach, proposed by Prentice (1982), is believed to

give consistent induced maximum partial likelihood estimator and further explored
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by Pepe, Self and Prentice (1989), Tsiatis, DeGruttola and Wulfsohn (1995), Wulf-

son and Tsiatis (1997) and Zhou and Pepe (1995). However, so far there has been

no effective way to derive this estimator. Another approach, the corrected like-

lihood, developed by Stefanski (1989) and Nakamura (1990), is to construct an

unbiased score function. However, as Stefanski (1989) argued, such a corrected

score function does not exist for the partial likelihood score. Therefore, Nakamura

(1992) introduced an approximately corrected partial likelihood score and derived

an estimator that was less biased than the ‘naive’ maximum partial likelihood esti-

mator (MPLE), as shown through simulations. Kong and Gu (1999) showed that

Nakamura’s approach can produce a consistent estimator.

In this chapter, we will apply some martingale techniques and combine the

mixture models with PH models to tackle the problem of measurement error in

time-independent covariates. An accurately corrected maximum likelihood score

and an approximately corrected partial likelihood score are used to obtain the

corrected maximum likelihood estimators (CMLEs) and the corrected maximum

partial likelihood estimators (CMPLEs), respectively. The asymptotic properties

are derived based on the works of Kong and Gu (1999) and Nakamura (1990).

We would like to point out that our proposed method is different from the re-

cent work of Thomas (2004), in which an exact corrected log-likelihood is proposed

under the assumption of piecewise constant hazard, that is, the hazard is assumed

to be a constant in the interval of two adjacent failure points.

The structure of this chapter is briefly described as follows. Parameter esti-

mations are discussed in Section 2.2 based on Cox proportional hazards model and

full likelihood model. In Section 2.3, the martingale theory is applied to derive the

asymptotic properties of the statistical procedures related to the model. Section

2.4 reports some simulation results. Section 2.5 concludes this chapter.
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2.2. Estimation of Parameters

2.2.1. Proportional Hazards Model

In proportional hazards model for survival data with long-term survivors, recall

that the hazard function of an individual with a covariate vector z is given by

(cf.(1.4))

α(t, θ, z) =
pf0(t)

1 − pF0(t)
exp(z>β).

Now we shall denote by Z and Z̃ the set of z’s and z̃’s, respectively. Let a⊗0 = 1,

a⊗1 = a and a⊗2 = aa> for a column vector a. We introduce the following

notations:

S(r)(β, t, Z) =
1
n

n∑

i=1

Yi(t)z⊗ri exp(z>i β), r = 0, 1, 2.

E(β, t, Z) =
S(1)(β, t, Z)
S(0)(β, t, Z)

, V (β, t, Z) =
S(2)(β, t, Z)
S(0)(β, t, Z)

−E⊗2(β, t, Z),

and

s(r)(β, t) = E[S(r)(β, t, Z)], r = 0, 1, 2,

where the expectation is taken with respect to the true distribution of (T ∗, c, z).

Under the above assumptions, as n → ∞, S(r)(β, t, Z) p→ s(r)(β, t) for r = 0, 1, 2,

so that E(β, t, Z)
p→ e(β, t) and V (β, t, Z)

p→ v(β, t), where

e(β, t) =
s(1)(β, t)
s(0)(β, t)

and v(β, t) =
s(2)(β, t)
s(0)(β, t)

− e⊗2(β, t).

Define

Σ =
∫ t

0

v(β, s)s(0)(β, s)α0(s)ds.

Let N̄(t) =
∑n

i=1Ni(t) and D be the observed values of (Ni(·), Yi(·), ti), i =

1, . . . , n. Then by (1.11) we have

logLp =
n∑

i=1

∫ ∞

0

z>i βdNi(t) −
∫ ∞

0

log
{ n∑

j=1

Yj(t) exp(z>j β)
}
dN̄(t), (2.1)
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and the score function corresponding to (2.1) is given by

U(β,Z,D) =
∂

∂β
logLp =

n∑

i=1

∫ ∞

0

zidNi(t) −
∫ ∞

0

E(β, t, Z)dN̄ (t). (2.2)

From Chapter 1, the solution of U(β,Z,D) = 0 has some attractive properties

when the covariates are observed accurately (without measurement error). But in

reality it is quite common that some or even all of the covariates are measured with

error or are misspecified. Thus we assume an additive measurement error of the

form:

z̃i = zi + εi, for i = 1, . . . , n, (2.3)

with normal random variables εi independent of zi. The main assumption on εi is

that it has mean zero and a variance-covariance matrix Λq×q that is not dependent

on time t. In this chapter we focus on model (2.2) under conditions (2.3) and i.i.d.

random measurement errors εi, i = 1, . . . , n.

For observable covariates z̃i, i = 1, . . . , n, if S(r)(β, t, Z̃), r = 0, 1, 2, E(β, t, Z̃),

V (β, t, Z̃) and U(β, Z̃,D) are defined simply by replacing Z with Z̃ in the above

definitions, under observed values of (z̃i, ti, δi), i = 1, . . . , n, then the observed

score U(β, Z̃,D) is biased. So some modified methods were presented to deal with

this problem. In this chapter, Nakamura’s corrected score function method will be

used to find a corrected estimator for the “improper” proportional hazards model.

Let Z̃ denote a set of observable z̃’s as in (2.3) and replace Z with Z̃ in (2.2).

Then the score function becomes

U(β, Z̃,D) =
n∑

i=1

∫ ∞

0

z̃idNi(t) −
∫ ∞

0

E(β, t, Z̃)dN̄ (t), (2.4)

which is called a naive score function. Let βz̃ satisfy the equation U(βz̃ , Z̃,D) =

0. Then βz̃ is biased (Prentice 1982). Nakamura (1990) proposed a correction

of the bias by using a corrected score function U∗(β, Z̃,D) whose expectation

E∗[U∗(β, Z̃,D)] with respect to the ε′s given D and Z coincides with U(β,Z,D).
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Let β∗ be a solution of the equation U∗(β∗, Z̃,D) = 0 with a positive-definite

I∗n, where I∗n is the corrected observed information matrix. Such a β∗ is called a

corrected estimator. Stefanski (1989) proved that no exact U∗ exists for propor-

tional hazards model, thus we shall find an approximately corrected score function.

Applying a first-order approximation, we have (see Nakamura (1992))

E∗[E(Z̃|β,D)] ≈ E(Z|β,D) + Λβ. (2.5)

With Z being replaced by Z̃ andE(β, t, Z) by E(β, t, Z̃)−Λβ in (2.2), the corrected

score function is obtained as

U∗(β, Z̃,D) =
n∑

i=1

∫ ∞

0

z̃idNi(t) −
∫ ∞

0

{
E(β, t, Z̃) − Λβ

}
dN̄(t)

=
n∑

i=1

∫ ∞

0

{
z̃i −E(β, t, Z̃) + Λβ

}
dNi(t)

= U(β, Z̃,D) +D∗Λβ, (2.6)

where D∗ is the total number of failed subjects. If there exists a solution β∗

to U∗(β∗, Z̃,D) = 0, then β∗ is called the corrected maximum partial likelihood

estimator (CMPLE).

Breslow (1974) suggested to estimate the underlying cumulative hazard func-

tion Λ0(t) =
∫ t
0
α0(s, p)ds by

Λ̂0(t, Z) =
∫ t

0

dN̄(s)∑n
i=1 Yi(s) exp(z>i β∗)

=
∫ t

0

dN̄ (s)/n
S(0)(β∗, s, Z)

.

If we simply replace Z by Z̃ in Λ̂0(t, Z), Λ̂0(t, Z̃) will be a biased estimator of Λ0(t).

The corrected score function method can be used to find asymptotically unbiased

estimators. If there exists an estimator Λ∗
0(t, Z̃) such that

E∗[Λ∗
0(t, Z̃)] = Λ̂0(t, Z),

then Λ∗
0(t, Z̃) is called a corrected estimator of Λ0(t). The following formula:

E∗[exp(z̃>i β)] = exp(z>i β + ξ) (2.7)
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will be used to find Λ∗
0(t, Z̃), where ξ = 1

2β
>Λβ.

Let A =
∑n

i=1 Yi(t) exp(z̃>i β). Then E∗(A) =
∑n
i=1 Yi(t) exp(z>i β) exp(ξ).

Now define f(A) = 1/A. Since A
p→ E∗(A) as ξ → 0, expanding f at A = E∗(A)

to the first order and taking the expectation yield an approximate equality with

small ξ (Kendall and Stuart, 1977, p. 260),

E∗(1/A) ≈ 1/E∗(A). (2.8)

Then the corrected estimator of Λ0(t) is

Λ∗
0(t, Z̃) =

∫ t

0

exp(ξ∗)dN̄(s)∑n
i=1 Yi(s) exp(z̃>i β∗)

=
∫ t

0

exp(ξ∗)dN̄ (s)/n
S(0)(β∗, s, Z̃)

, (2.9)

where ξ∗ = 1
2β

∗>Λβ∗, which was also given by Kong, Huang and Li (1998) from

a different motivation. Hence an estimator of the baseline survival function with

“long-term” survivors can be given by

Ŝ0(t) = exp
{
−Λ∗

0(t, Z̃)
}
,

and the parameter p, the proportion of susceptible individuals, can be estimated

by

p∗ = 1 − exp
{
−Λ∗

0(+∞, Z̃)
}
. (2.10)

Remark 2.1: We can obtain more accurate approximate results if the terms on

the right-hand sides of equations (2.5) and (2.8) are replaced with their respective

second-order approximations.

2.2.2. Maximum likelihood Model

Now we denote F0(t) by F0(t, ψ) in maximum likelihood model so that pa-

rameters can be easily estimated. Then θ> = (ψ, β>, p) is the parameter to be

estimated. Recall the following likelihood function (cf. (1.6)):

Lf (θ, Z, D̃) =
n∏

i=1

[
pf0(ti)

1 − pF0(ti)
exp(z>i β)

]δi

exp
{
−

∫ ti

0

pf0(s)
1 − pF0(s)

exp(z>i β)ds
}
,

=
n∏

i=1

[
pf0(ti)

1 − pF0(ti)
exp(z>i β)

]δi

[1 − pF0(ti)]
exp(z>i β)

,
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where D̃ =
{
D̃i = (ti, δi), i = 1, . . . , n

}
.

Denote by l(θ, Z, D̃), U(θ, Z, D̃) and In(θ, Z, D̃) the log-likelihood, score func-

tion and observed information −∂U(θ, Z, D̃)/∂θ, respectively, of θ given Z and

D̃.

The point θz that satisfies U(θ, Z, D̃) = 0, if attainable, is a maximum likeli-

hood estimate of θ. When z is subject to measurement error and z̃ is the observ-

able value of z, U(θ, Z̃ , D̃) obtained from U(θ, Z, D̃) by simply replacing z with

z̃ is termed a naive score function. The naive maximum likelihood estimator θz̃,

however, is often inconsistent. The corrected score function method to obtain a

consistent estimator starts with finding function l∗(θ, Z̃ , D̃) such that its condi-

tional expectation (also denote by E∗(.)) with respective to Z̃ given Z and D̃ is

l(θ, Z, D̃). If E∗(.) and ∂θ are interchangeable, we have

E∗[U∗(θ, Z̃ , D̃)] = U(θ, Z, D̃),

where U∗(θ, Z̃ , D̃) = ∂l∗(θ, Z̃ , D̃)/∂θ. The point θ∗ = (β∗, p∗, ψ∗) that solves the

equation U∗(θ∗, Z̃, D̃) = 0 with a positive definite I∗n(θ, Z̃ , D̃) is called a corrected

maximum likelihood estimate, where

I∗n(θ, Z̃, D̃) = −∂U∗(θ, Z̃ , D̃)/∂θ.

Given observed values of D̃i = (ti, δi) and zi, the log-likelihood function li(θ, zi, D̃i)

is given by

δi

[
ln

(
pf0(ti, ψ)

1 − pF0(ti, ψ)

)
+ z>i β

]
+ exp

(
z>i β

)
ln(1 − pF0(ti, ψ)). (2.11)

Following (2.7), we can define a score function l∗i (θ, z̃i, D̃i) by

l∗i (θ, z̃i, D̃i) = δi

[
ln

(
pf0(ti, ψ)

1 − pF0(ti, ψ)

)
+ z̃>i β

]
+ exp

(
z̃>i β − ξi

)
ln(1 − pF0(ti, ψ)),

(2.12)
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where ξi = 1
2β

>Λβ. Then

E∗[l∗(θ, Z̃ , D̃)] = l(θ, Z, D̃),

and therefore l∗(θ, Z̃, D̃) is a corrected log-likelihood function. Differentiating with

respect to p, β, ψ, we get

U∗
p (θ, Z̃ , D̃) =

n∑

i=1

{
δi

[
1
p

+
F0(ti)

1 − pF0(ti)

]
− exp(z̃>i β − ξi)

F0(ti)
1 − pF0(ti)

}
, (2.13)

U∗
β(θ, Z̃ , D̃) =

n∑

i=1

{
δiz̃i + (z̃i − σi) exp(z̃>i β − ξi) ln(1 − pF0(ti))

}
, (2.14)

and

U∗
ψ(θ, Z̃ , D̃) =

n∑

i=1

{
δi

[
1
ψ

− ti +
pψ exp(−ψti)
1 − pF0(ti)

]}

−
n∑

i=1

{
exp(z̃>i β − ξi)

pψ exp(−ψti)
1 − pF0(ti)

}
. (2.15)

The corrected maximum likelihood estimator θ∗> = (ψ∗, β>∗
, p∗) is easily obtained

by solving equations (2.13)–(2.15).

2.3. Asymptotic Properties of Parameter Estimators

2.3.1. Proportional hazards Model

In this section, we derive the large sample properties of the parameter esti-

mators β∗ and p∗ for model (1.11) with additive measurement error (2.3). For

Cox PH model (1.11), the consistency of the estimators of β and the cumulative

baseline hazard function Λ0(t, Z) has been presented by Andersen and Gill (1982)

for the observed time t ∈ [0, τ ] for any τ < ∞. Moreover, for the i.i.d. case, the

asymptotic properties of the above estimators have also been established by An-

dersen and Gill (1982) for observed time t ∈ [0,∞]. On the other hand, under

model (1.11) with error (2.3) (for the i.i.d. case), Kong and Gu (1999) established
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the asymptotic properties of the corrected maximum partial likelihood estimator

β∗ and the corresponding Λ∗(t, Z̃) for the observed time t ∈ [0, τ ] for τ < ∞ un-

der the regularity conditions in Andersen and Gill (1982). The results of Kong

and Gu (1999) also hold under the assumptions of Theorem 4.2 (i.i.d. case) in

Andersen and Gill (1982). Thus our asymptotic properties can be established by

incorporating the results of Andersen and Gill (1982) with those of Kong and Gu

(1999).

Theorem 2.1. Suppose that (Ni, Yi, Z̃i), i = 1, . . . , n are i.i.d. replicates of

(N,Y, Z̃), where N(t) and Y (t) are counting process and predictable process corre-

sponding to an improper survival function (1 − pF0(t))
exp(z>β) with 0 < p < 1, Z̃

is bounded and Σ is positive definite. If either τG = ∞ or τF0 ≤ τG <∞, then with

probability approaching 1, equation (2.5) has a solution β∗ such that β∗ p→ β0 and

n1/2(β∗−β0) converges in distribution to a normal distribution with mean zero and

a variance-covariance matrix that can be consistently estimated by (2.17) below.

The next theorem gives the asymptotic properties for the estimator of p.

Theorem 2.2. Under the conditions of Theorem 2.1, p∗
p→ p as n→ ∞, and

n1/2(p∗ − p) d→ N(0, exp(−2Λ∗
0(+∞, Z̃))Σ−1

Λ∗
0 (+∞,Z̃)

),

where ΣΛ∗
0(+∞,Z̃) is the asymptotic variance of Λ∗

0(+∞, Z̃) (whose estimation is

given by (2.18) below).

2.3.2. Maximum Likelihood Model

For simplicity we consider the case where the covariate z is an univariate

random variable.

Theorem 2.3. Let (t∗k, ck, zk, εk), k = 1, . . . , n, be independent random variables,

εi are normal distribution random variables with variance σ2
i . Then under the
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conditions in Lemma 2.3 below and

∞∑

k=1

k−2
{
2ξδ2k +Wk [4ξδk exp(zkβ) +Mk]

}
<∞,

the equations (2.13)–(2.15) each has a root θ∗ which is consistent as n → ∞ and

θ∗> = (ψ∗, β∗>, p∗) is normally distributed with finite variance, where ξ = σ2β2/2,

Wk = [log(1 − pF0(tk, ψ))]2 and Mk = exp(2zkβ + 2ξ) − exp(2zkβ).

2.3.3. Proofs

To begin, we state some lemmas.

Lemma 2.1. Let (Ni, Yi, Z̃i), i = 1, . . . , n, be i.i.d. replicates of (N,Y, Z̃), where

N(t) and Y (t) are counting process and predictable process corresponding to a sur-

vival function S(t) with E[N(∞)] < ∞, Z̃ is bounded and Σ is positive definite.

Assume that for each τ <∞

P (Y (t) = 1,∀t ≤ τ ) > 0. (2.16)

Then with probability approaching 1, the score equation for (2.4) has a solution β∗

such that β∗ p→ β0 and n1/2(β∗ −β0) has asymptotically a normal distribution with

mean zero and a variance-covariance matrix consistently estimated by

I∗n(β
∗, Z̃)

−1
J∗
n(β

∗, Z̃)I∗n(β∗, Z̃)
−1
, (2.17)

where I∗n(β, Z̃) is the corrected observed information,

J∗
n(β

∗, Z̃) =
1
n

n∑

i=1

C1i(β∗, Z̃)⊗2,

C1i(β, Z̃) =
∫ ∞

0

{
z̃i −

S(1)(β, s, Z̃)
S(0)(β, s, Z̃)

+ Λβ

}
dNi(s)

−
∫ ∞

0

{
z̃i −

S(1)(β, s, Z̃)
S(0)(β, s, Z̃)

}
Yi(s) exp(z̃>i β)
S(0)(β, s, Z̃)

dN̄i(s)
n

,

S(0)(β, t, Z̃) = exp(ξ)
{
S(0)(β, t, Z) +

1√
n
Q0(β, t)

}
,
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S(1)(β, t, Z̃) = exp(ξ)
{
S(1)(β, t, Z) + ΛβS(0)(β, t, Z)

1√
n
Q1(β, t)

}
,

Q0(β, t) =
1√
n

n∑

i=1

Yi(t) exp(z>i β)
{
exp(ε>i β − ξ) − 1

}
,

and

Q1(β, t) =
1√
n

n∑

i=1

Yi(t) exp(z>i β)[zi exp(ε>i β − ξ) − {zi + Λβ}].

Proof: This is a direct consequence of Theorem 4.2 in Andersen and Gill (1982)

together with Theorem 3.1 in Kong and Gu (1999).

Lemma 2.2. Under the assumptions of Lemma 2.1, Λ∗
0(t, Z̃), as defined in (2.9),

is a consistent estimator of Λ0(t, Z̃). Also, on [0,∞], n1/2{Λ∗
0(t, Z̃)−Λ0(t, Z̃)} can

be expressed as a sum of independent random processes and so it converges to a

Gaussian process with mean zero and a variance function that can be consistently

estimated by

1
n

n∑

i=1

{
nH∗(β∗, t)I∗(β∗, Z̃)

−1
C1i(β∗, Z̃, t) +C2i(β∗, Z̃, t)

}⊗2

, (2.18)

where

H∗(β∗, t) = −
∫ t

0

exp(ξ)
S(0)(β∗, s, Z̃)

{
S(1)(β∗, s, Z̃)
S(0)(β∗, s, Z̃)

+ Λβ∗

}
dN̄i(s)
n

,

C1i(β∗,X, t) is defined in lemma 2.1 with integration interval [0,∞] being replaced

with [0, t], and

C2i(β∗, Z̃, t) =
∫ t

0

exp(−ξ)
S(0)(β∗, s, Z̃)

{
dNi(s) −

Yi(s) exp(z̃>i β
∗)

S(0)(β∗, s, Z̃)
dN̄i(s)
n

}
.

Proof: This is straightforward by combining Theorem 4.2 in Andersen and Gill

(1982) with Theorem 4.1 in Kong and Gu (1999).

Lemma 2.3. Let l∗(θ, Z̃, D̃) and l(θ, Z, D̃) be, respectively, corrected log-likelihood

function and log-likelihood function. Suppose that l∗(θ, Z̃, D̃) and l(θ, Z, D̃) are
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differentiable in an open convex subset of a parameter space that contains the “true”

parameter θ0,
∞∑

k=1

k−2V ar∗
{
l∗

(
θ, z̃k, D̃k

)}
<∞, (2.19)

θ is identifiable and the D̃i, i = 1, 2, . . . , are mutually independent. Then the

equation U∗(θ, Z̃ , D̃) = 0 has a root θ∗ which is consistent as n→ ∞. Furthermore,

under certain regularity conditions on U∗(θ, Z̃, D̃), the unconditional distribution

of θ∗ is asymptotically normal with mean θ and variance

I+(θ, Z)E+
[
V ar∗

{
U∗(θ, Z̃ , D̃)

}]
I+(θ, Z)−1 + I+(θ, Z)−1,

where I+(θ, Z) = E+[I(θ, Z, D̃)], the expectations are with respective to the random

variable D̃, and V ar∗(·) denotes the conditional variance given Z and D̃.

Proof: See Nakamura (1990).

Proof of Theorem 2.1. Since p < 1, we have E[N(∞)] < ∞. Note that N(t)

and Y (t) correspond to an improper distribution F (t) = 1 − (1 − pF0(t))
exp(z>β).

Similar to the proof of Lemma 2.1 (see also Andersen and Gill, 1982), it suffices to

show that (2.16) holds either for τ < τF0 or for τ <∞.

Since F (t) is improper, P (T ∗ > τ ) = 1 − F (τ ) > 0 for any τ < ∞. Further-

more, if τG = ∞, then P (c ≥ τ ) = 1 −G(τ−) > 0 for any τ <∞. Hence

P (Y (t) = 1,∀t ≤ τ ) = P (T ∗ ∧ c ≥ τ ) = P (T ∗ ≥ τ )P (c ≥ τ ) > 0. (2.20)

for any τ <∞. On the other hand, if τF0 ≤ τG <∞, then P (c ≥ τ ) = 1−G(τ−) >

0 for any τ < τF0 ≤ τG, which shows that (2.20) holds for τ < τF0 , and so does

(2.16). This completes the proof.

Proof of Theorem 2.2. This follows from the well known Slutsky theorem and

delta-method together with Lemma 2.2.
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Proof of Theorem 2.3. It is sufficient to prove condition (2.19) in Lemma 2.3.

Note that

E∗{exp(z̃β)} = exp(zβ + ξ), (2.21)

E∗{z̃ exp(z̃β)} = (z + σ2β) exp(zβ + ξ), (2.22)

and

E∗{z̃2 exp(z̃β)} = {σ2 + (z + σ2β)
2} exp(zβ + ξ). (2.23)

Then Theorem 2.3 follows.

Before closing this section, we consider variance estimation for the estimators

based on the full likelihood approach in Section 2.2.2. Nakamura (1990) gave two

asymptotically equivalent estimators of the variance of θ∗ (cf. Nakamura, 1990,

p.130). For simplicity, the variance of θ∗ can be estimated by

V̂ ar(θ∗) = I∗(θ∗, Z̃, D̃)−1S(θ∗, Z̃, D̃)I∗(θ∗, Z̃, D̃)−1,

where I∗(θ∗, Z̃, D̃) is the corrected observed information and

S(θ∗, Z̃, D̃) =
n∑

i=1

U∗(θ, z̃k , D̃k)U∗(θ, z̃k , D̃k)>.

2.4. Simulation Results

In this section, we report some simulations results to assess the accuracy of

p∗, β∗ and ψ∗ when the error magnitude of covariates varies for the case of one-

dimensional covariate. We chose the sample size n to be n = 200, 400, 1000. Let z

be a set of n uniform random numbers in (0, 121/2) so that the standard deviation of

covariate z is 1. For a given β and each covariate value z, a failure time t is generated

from the survival function (1 − pF0(t))
exp(z>β) with the susceptible proportion p =

0.9, 0.8, 0.6, 0.4 and an exponential F0(t) with hazard rate λ0(t) = 0.058. To save

space, Tables 2.1–2.8 present only part of the simulation results for sample size
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n = 1000, 400 and 200, and p = 0.9. The results for other values of n and p are

similar and available from the authors. For a fixed σ and a measurement error ε

generated from N(0, 1), an observed covariates z̃ is the sum of z and σε. Given

n independent pairs of (z̃, t), we derive the corrected maximum partial likelihood

estimator (CMPLE) and the corrected maximum likelihood estimator (CMLE).

This procedure was repeated 500 times, and the averages of the CMPLEs and

CMLEs were calculated.

We preformed a simulation to fit the two models with censoring time indepen-

dently generated from uniform distribution on [0, d], where d is a positive number.

For a fixed β, d can be chosen such that the percentage of censoring is a desired

value. We choose d = 100 for simplicity. In Tables 2.1–2.8 below, M(·) represents

the mean of the naive estimator (denoted by βx, px and ψx) or the corrected es-

timator (β∗, p∗ and ψ∗). The standard deviation of the estimators is denoted by

SD(·) and the average censoring proportion of the failure data for each combination

β and σ is denoted by r.

First a simulation was performed to compare the corrected estimators with

corresponding naive estimators of p and β. The results of simulation are listed in

Tables 2.1 and 2.2, from which we can find that the naive estimations are biased,

and the bias are larger when σ are increasing.

Next, we performed simulations to choose a reasonable sample size. The sam-

ple size n was chosen to be 200, 400, 1000, and a recommended sample size was

given.

We must note that the CMPLE and CMLE may not always exist because the

derivative of the corrected score function is not always negative in a neighborhood

of the true θ. This usually happens when the measurement error is large. In our

simulation study, we find that the CMPLE often fails to converge when β = 2.0

and σ ≥ 0.3, and the CMLE often fails to converge when β = 2.0 and σ ≥ 1.
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The simulation results indicate that the CMPLE and CMLE perform quite

well for the given sample sizes. We see from these tables that the CMPLE and

CMLE are more accurate when the measurement error is small and the sample size

is increasing (in Tables 2.3–2.8). We also see that for the given sample sizes, the es-

timators of β are biased upwards and the estimations of p are biased downwards for

semiparametric model, whereas in maximum likelihood estimation, the estimators

of β and p are biased upwards. The results also indicate that the CMPLE is more

robust than the CMLE for the selected sample sizes and |σβ|. For example, when

sample size n = 200, the CMLE cannot be accepted for their large biases (cf. Table

2.6), while the CMPLE as listed in Table 2.3 are reasonably accurate. When the

sample size is large, the procedures produce accurate estimators. Overall, the CM-

PLE preforms better than the CMLE and sample size n = 400 is recommended for

the CMPLE. Finally it should be mentioned that the second order Taylor expan-

sion can be considered to obtain more accurate approximate results (see Nakamura

1992).

Table 2.1. CMPLE and corresponding naive estimator with n = 400

β σ M(β) M(p) M(βx) M(px)

0.1 0.1 0.0998 0.8931 0.0995 0.8903
0.2 0.2 0.2006 0.8902 0.1916 0.8944
0.3 0.3 0.3016 0.8914 0.2752 0.9005
0.4 0.4 0.4048 0.8879 0.3435 0.9006
0.5 0.5 0.4957 0.8884 0.3842 0.9182
0.5 0.6 0.5068 0.8889 0.3559 0.9268
0.6 0.5 0.6053 0.8876 0.4599 0.9210
0.7 0.5 0.7059 0.8828 0.5117 0.9243
0.8 0.4 0.8039 0.8824 0.6435 0.9170
0.9 0.3 0.9044 0.8825 0.7777 0.9054
1.0 0.3 1.0035 0.8813 0.8579 0.9064
1.0 0.5 1.0158 0.8835 0.7155 0.9290
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Table 2.2. CMLE and corresponding naive estimator with n = 400

β σ M(β) M(p) M(ψ) M(βx) M(px) M(ψx)

0.1 0.1 0.0975 0.9012 0.0584 0.0111 0.9022 0.0581
0.2 0.2 0.2001 0.9026 0.0582 0.1949 0.9029 0.0582
0.3 0.3 0.3022 0.9025 0.0583 0.2752 0.9005 0.0590
0.4 0.4 0.3999 0.9036 0.0586 0.3435 0.9006 0.0612
0.5 0.5 0.5104 0.9044 0.0572 0.3842 0.9182 0.0623
0.5 0.6 0.5072 0.9016 0.0578 0.3559 0.9268 0.0645
0.6 0.5 0.6058 0.9085 0.0579 0.4599 0.9210 0.0658
0.7 0.5 0.7091 0.9048 0.0579 0.5412 1.0398 0.0737
0.8 0.4 0.8084 0.9049 0.0582 0.6815 1.0040 0.0693
0.9 0.3 0.9058 0.9081 0.0577 0.8157 0.9496 0.0658
1.0 0.3 1.0043 0.9082 0.0570 0.9123 0.9120 0.0663
1.0 0.5 1.0075 0.8835 0.0557 0.7155 0.9290 0.0698

Table 2.3. CMPLEs of β and p and their standard deviations with n = 200

r β σ M(β∗) M(p∗) SD(β∗) SD(p∗)

0.79 0.1 0.1 0.1036 0.8854 0.0830 0.0480
0.83 0.2 0.2 0.1935 0.8856 0.0803 0.0491
0.85 0.3 0.3 0.3034 0.8845 0.0860 0.0488
0.82 0.4 0.4 0.4032 0.8818 0.0996 0.0594
0.89 0.5 0.5 0.5066 0.8763 0.1045 0.0563
0.89 0.5 0.6 0.5098 0.8765 0.1180 0.0572
0.91 0.6 0.5 0.6194 0.8745 0.1142 0.0599
0.92 0.7 0.5 0.7147 0.8708 0.1255 0.0602
0.93 0.8 0.4 0.8249 0.8678 0.1187 0.0660
0.93 0.9 0.3 0.9137 0.8624 0.1114 0.0646
0.94 1.0 0.3 1.0123 0.8582 0.1235 0.0669
0.94 1.0 0.5 1.0158 0.8687 0.1568 0.0720
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Table 2.4. CMPLEs of β and p and their standard deviations with n = 400

r β σ M(β∗) M(p∗) SD(β∗) SD(p∗)

0.79 0.1 0.1 0.0998 0.8931 0.0561 0.0336
0.83 0.2 0.2 0.2066 0.8902 0.0595 0.0357
0.85 0.3 0.3 0.3016 0.8914 0.0589 0.0335
0.82 0.4 0.4 0.4048 0.8879 0.0618 0.0389
0.89 0.5 0.5 0.4957 0.8884 0.0756 0.0397
0.89 0.5 0.6 0.5086 0.8889 0.0830 0.0430
0.91 0.6 0.5 0.6053 0.8876 0.0785 0.0439
0.92 0.7 0.5 0.7059 0.8828 0.0876 0.0464
0.93 0.8 0.4 0.8039 0.8824 0.0883 0.0497
0.93 0.9 0.3 0.9044 0.8825 0.0759 0.0474
0.94 1.0 0.3 1.0035 0.8813 0.0836 0.0480
0.94 1.0 0.5 1.0158 0.8835 0.1089 0.0552

Table 2.5. CMPLEs of β and p and their standard deviations with n = 1000

r β σ M(β∗) M(p∗) SD(β∗) SD(p∗)

0.79 0.1 0.1 0.0988 0.8964 0.0352 0.0208
0.83 0.2 0.2 0.1989 0.8967 0.0384 0.0216
0.85 0.3 0.3 0.3022 0.8935 0.0370 0.0232
0.82 0.4 0.4 0.4021 0.8934 0.0430 0.0264
0.89 0.5 0.5 0.5034 0.8943 0.0449 0.0272
0.89 0.5 0.6 0.5037 0.8922 0.0481 0.0298
0.91 0.6 0.5 0.6012 0.8936 0.0235 0.0321
0.92 0.7 0.5 0.7031 0.8934 0.0521 0.0329
0.93 0.8 0.4 0.8041 0.8925 0.0533 0.0334
0.93 0.9 0.3 0.9034 0.8899 0.0493 0.0353
0.94 1.0 0.3 1.0039 0.8916 0.0529 0.0346
0.94 1.0 0.5 1.0049 0.8912 0.0759 0.0374

43



Table 2.6. CMLEs of β and p and their standard deviations with n = 200

r β σ M(β∗) M(p∗) M(ψ∗) SD(β∗) SD(p∗) SD(ψ∗)

0.79 0.1 0.1 0.1016 0.9507 0.0585 0.0847 1.1541 0.0093
0.83 0.2 0.2 0.1934 0.9512 0.0593 0.0797 1.0899 0.0090
0.85 0.3 0.3 0.3018 0.9156 0.0579 0.0950 0.1058 0.0103
0.82 0.4 0.4 0.4024 0.9721 0.0584 0.1056 0.5518 0.0147
0.89 0.5 0.5 0.5035 1.1523 0.0583 0.1151 2.6054 0.0168
0.89 0.5 0.6 0.5102 1.0486 0.0576 0.1196 1.2716 0.0169
0.91 0.6 0.5 0.6190 1.0615 0.0559 0.1234 1.0380 0.0189
0.92 0.7 0.5 0.7143 1.0705 0.0561 0.1121 2.3077 0.0163
0.93 0.8 0.4 0.8215 1.0519 0.0558 0.1209 1.1718 0.0243
0.93 0.9 0.3 0.9138 1.1844 0.0556 0.0959 2.7637 0.0163
0.94 1.0 0.3 1.0087 1.1342 0.0563 0.1167 3.4083 0.0226
0.94 1.0 0.5 1.0135 0.9882 0.0559 0.1359 0.3046 0.0208

Table 2.7. CMLEs of β and p and their standard deviations with n = 400

β σ M(β∗) M(p∗) M(ψ∗) SD(β∗) SD(p∗) SD(ψ∗)

0.1 0.1 0.0975 0.9012 0.0584 0.0552 0.0552 0.0059
0.2 0.2 0.2001 0.9026 0.0582 0.0576 0.0576 0.0065
0.3 0.3 0.3022 0.9025 0.0583 0.0581 0.0334 0.0068
0.4 0.4 0.3999 0.9036 0.0586 0.0596 0.0371 0.0069
0.5 0.5 0.5104 0.9044 0.0572 0.0570 0.2632 0.0113
0.5 0.6 0.5072 0.9016 0.0578 0.0760 0.0760 0.0090
0.6 0.5 0.6058 0.9085 0.0579 0.0776 0.0735 0.0125
0.7 0.5 0.7091 0.9048 0.0579 0.0830 0.5547 0.0113
0.8 0.4 0.8084 0.9049 0.0582 0.0827 0.1824 0.0152
0.9 0.3 0.9058 0.9081 0.0577 0.0741 0.7566 0.0185
1.0 0.3 1.0043 0.9082 0.0570 0.0667 0.5927 0.0100
1.0 0.5 1.0075 0.8835 0.0557 0.0821 0.4197 0.0115
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Table 2.8. CMLEs of β and p and their standard deviations with n = 1000

β σ M(β∗) M(p∗) M(ψ∗) SD(β∗) SD(p∗) SD(ψ∗)

0.1 0.1 0.0986 0.9015 0.0581 0.0348 0.0188 0.0036
0.2 0.2 0.1994 0.9016 0.0580 0.0349 0.0198 0.0038
0.3 0.3 0.3020 0.8998 0.0582 0.0360 0.0201 0.0040
0.4 0.4 0.4018 0.9022 0.0579 0.0380 0.0224 0.0045
0.5 0.5 0.5043 0.9029 0.0576 0.0419 0.0252 0.0490
0.5 0.6 0.5047 0.8999 0.0577 0.0403 0.0255 0.0049
0.6 0.5 0.6001 0.9012 0.0578 0.0402 0.0256 0.0050
0.7 0.5 0.7046 0.9038 0.0575 0.0454 0.0421 0.0056
0.8 0.4 0.8034 0.9044 0.0577 0.0431 0.0311 0.0053
0.9 0.3 0.9029 0.9044 0.0575 0.0400 0.0379 0.0053
1.0 0.3 1.0036 0.9051 0.0575 0.0403 0.0339 0.0053
1.0 0.5 1.0021 0.9066 0.0580 0.0544 0.0443 0.0068

2.5. Concluding Remarks

In this Chapter we also investigate an improper PH model to analyze sur-

vival data with long-term survivors. We applied some martingale techniques to

tackle the problem of measurement error in time-independent covariates. An accu-

rately corrected maximum likelihood score and an approximately corrected partial

likelihood score are used to obtain the corrected maximum likelihood estimators

(CMLEs) and the corrected maximum partial likelihood estimators (CMPLEs), re-

spectively. The asymptotic properties are derived based on the works of Kong and

Gu (1999) and Nakamura (1990).

The simulation study indicates that the proposed model and estimation pro-

cedures produce efficient estimators.

In survival analysis, a frequent objective is to characterize the relationship

between survival times and covariates. Recently, modeling the event time process

using longitudinal data as time-dependent covariates in a proportional hazards

model is a standard framework (such as, Wulfsohn and Tsiatis, (1997) and Tsiatis
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and Davidian (2001)). Other than the above study in chapters 1-2 where the covari-

ates are time-independent, longitudinal data study where repeated measurements

on a continuous response, an observation on a possible censored time-to-event, and

additional covariates information are collected on each participant may allow “in-

termittent” and “error” measurements and also differs from the time-dependent

covariates study where the values of all subjects in the risk at any failure points

are known (cf. Sec.6.3, Kalbfeisch and Prentice (2002)). This issue is worth for

further studies.

Finally we can consider some more complex structure of measurement error

by extending or modifying our model in two aspects. One is to extend our model

S(t) = [1 − pF0(t)]exp(z>β) to more general cases, such as a nonparametric model

ψ(x), or a seimparametric partially linear model ψ(x) + z>β, for the covariates;

and measurement error may be added to ψ(x). We expect our statistical inference

would still work for the above models if ψ(x) is modeled by local polynomials. This

method for nonlinear models was considered by many authors such as, Liang et al.

(1999), Carroll et al. (1999), Iturria et al. (1999), Wang et al. (1998), among

others. Another direction is to consider multiplicative measurement error instead

of additive ones, such as xε with some covariates x.We have proposed a transform

log{− log(·)} to the model in Chapter 4. Based on such transform some results for

multiplicative measurement error, such as those in Iturria et al. (1999) and Eckert

et al. (1997), may be considered together with our statistical inference in Chapter

4.
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Chapter 3

Proportional Hazards Model for Survival Data

with Long-term Survivors:

Interior and Boundary Cases

3.1. Introduction

Suppose that F0(t, ψ) is a proper cumulative distribution function (cdf) with

parameter (vector) ψ and p ∈ (0, 1]. Then the survival function of the standard

cure rate (SCR) model can be written as

S(t) = 1 − pF0(t, ψ). (3.1)

Recently, an alternative cure rate model S(t) = exp {−ζG0(t, ψ)} with ζ ∈ (0,∞)

and G0(t, ψ) to be a proper cdf, termed as the bounded cumulative hazard (BCH)

model, was introduced by Yakovlev et al. (1993) and subsequently investigated by

many authors including Yakovlev (1994), Chen et al. (1999) and Tsodikov et al.

(2003), among others. The SCR model has a mathematical relationship with the

BCH model such that any SCR model can be expressed as the BCH model (Chen

et al., 1999), and vice versa. If allowing for covariates, the SCR model

S(t) = 1 − pF0(t, ψ), with p =
exp(z>β)

1 + exp(z>β)
, (3.2)

was proposed by Maller and Zhou (1996), and the BCH model with θ = exp(β>z)

has been discussed by Tsodikov (2003), where β is a vector of regression coefficients,

z is a vector of covariates and > denotes the transpose. However, Chen et al. (1999)

found that the SCR model in (3.2) has some drawbacks. First, it does not have a

proportional hazards structure, which is a desirable property for survival models.
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Second, it yields improper posterior for many types of noninformative improper

prior, including the uniform prior for the regression coefficients. Maller and Zhou

(1996) raised an idea to incorporate Cox proportional hazards (PH) models with

mixture models and proposed an intensity function of the form

α(t) exp (β>z) with α(t) =
pf0(t, ψ)

1 − pF0(t, ψ)
, (3.3)

where α(t) is a baseline intensity function with respect to an improper distribution

function pF0(t, ψ) and f0(t, ψ) is the density function associated with F0(t, ψ). This

improper PH model, having been investigated in Chapters 1-2 with p ∈ (0, 1), can

overcome the drawbacks mentioned above. It should be noted that many aspects

for this improper PH model, such as the motivation and the research approach

to be utilized in this chapter, are different from those of the improper PH model

proposed by Tsodikov (2003).

For the above models (3.1)-(3.3), our main interests lie in two aspects: one

is to estimate the parameters θ> = (ψ, β>, p), where ψ is a parameter associated

with F0(t, ψ) to be estimated, β is a coefficient vector of the covariates and p is

related to the proportion of “susceptibles” in the population. The other is, when

the true parameters are allowed to be on the boundary of the parameter space, i.e.,

p0 = 1 (which is referred to as the boundary case), how to obtain the asymptotic

distributions of the MLEs and the likelihood ratio statistic used to test H0 : p0 = 1.

Following the procedure of Self and Liang (1987), Fahrmeir and Kaufmann (1985),

Zhou and Maller (1995) investigated model (3.1) with common p and ψ for all

individuals (i.e., with no covariate information for p and ψ). Model (3.2) were also

discussed by Ghitany, Maller and Zhou (1994), when F0 is exponential with hazard

rate ψ = exp(γ>x) and p = exp(β>z)/(1+exp(β>z)). Vu, Maller and Zhou (1998)

further extended the work to the case where the failure time distribution belongs

to an exponential family.

In this chapter, following the procedure of Vu, Maller and Zhou (1998), we
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study model (3.1). We will establish the existence and consistency of the MLEs, say

θ̂n, which may lie on the boundary of the parameter space, and find the asymptotic

distributions of θ̂n and the related likelihood ratio statistic. However, our model

is not limited to an exponential family anymore. Moreover, Vu, Maller and Zhou

(1998) assumed a common covariate effect on p for all individuals (in other words,

there is no covariate effect on the proportion of “immunes”), this reduces to the case

of Zhou and Maller (1995). In this chapter, we allow different effects of covariates

on p between individuals and extend the works of Vu, Maller and Zhou (1998)

beyond the exponential family of failure distributions.

In Section 3.2, we first specify the model and then make some assumptions.

Preliminary and main results for parameter estimation based on the likelihood

method are discussed in Section 3.3, while Section 3.4 deals with the likelihood

ratio statistics. The proofs for the main results are given in Sections 3.5–3.6.

3.2. Model Specification and Assumptions

Following the notations in Section 1.2 of Chapter 1, we let t1, . . . , tn be a

sample of (possibly censored) survival data with corresponding covariate vectors

z1, . . . , zn. If the baseline distribution F0(t, ψ) is parameterized with parameter

vector ψ, then by (1.6), the likelihood function can be written as

Lf = Lf (ψ, β>, p) =
n∏

i=1

αi(ti, zi)δi exp
{
−

∫ ti

0

αi(y, zi)dy
}

=
n∏

i=1

[α0(ti) exp(β>zi)]δi exp
{
−

∫ ti

0

α0(s) exp(β>zi)ds
}

=
n∏

i=1

[
pf0(ti, ψ)

1 − pF0(ti, ψ)
exp(β>zi)

]δi

[1 − pF0(ti, ψ)]exp(β>zi). (3.4)

For example, if F0(t, ψ) is an exponential distribution, then F0(t, ψ) = 1− exp(ψt).

Let li(θ) be the contribution to the log-likelihood l(θ) = logLf by individual i.
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Then l(θ) =
∑n
i=1 li(θ) and

li(θ) = δi{log(p) + log(ψ) − ψti + β>zi + [exp(β>zi) − 1] log(1 − pF0(ti, ψ))}

+ (1 − δi) exp(β>zi) log(1 − pF0(ti, ψ)). (3.5)

We assume that the parameter spaces for ψ and β are open sets Θψ = (0,∞) and

Θβ = (−b, b), b > 0, respectively. Denote the “true” parameter value of θ by

θ>0 = (ψ0, β
>
0 , p0). We consider two cases in this chapter:

(1) The interior case: θ0 ∈ Θ = Θψ ⊗ Θβ ⊗ Θp, where Θp = (0, 1), then θ0 is

an interior point of Θ.

(2) The boundary case: θ0 ∈ Θ = Θψ ⊗ Θβ ⊗ Θp, where Θp = (0, 1], then θ0

may be an boundary point of Θ.

For the interior and boundary cases, the maximum likelihood estimators of the

parameters (ψ, β>, p) can then be obtained by maximizing the l(θ) with respected

to θ = (ψ, β>, p).

Define the “link” functions

ηi = exp(ki(β)), ki(β) = β>zi, ki0 = ki(β0) = β>
0 zi. (3.6)

From (3.5)-(3.6) we can calculate the vector derivatives ∂l(θ)/∂ψ, ∂l(θ)/∂β and

∂l(θ)/∂p, and then write

Sn(θ) =
∂l(θ)
∂θ

=
[
∂l(θ)
∂ψ

∂l(θ)
∂β

∂l(θ)
∂p

]>

=
n∑

i=1

XiSi(θ), (3.7)

where

Si(θ) =



si1
si2
si3


 =



si1(θ)
si2(θ)
si3(θ)


 =

[
∂li(θ)
∂ψ

∂li(θ)
∂β

∂li(θ)
∂p

]>

and

Xi =




1 0 · · · 0 0

0
.. . 0

... zi
...

. . .
0 0 · · · 0 1




(q+2)×3

(3.8)
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are non-stochastic matrices. Similarly, we obtain the minus second derivative ma-

trix of l(θ) as

Fn(θ) = −∂
2l(θ)
∂θ2

= −




∂2l(θ)
∂ψ2

∂2l(θ)
∂ψ∂β

∂2l(θ)
∂ψ∂p

∂2l(θ)
∂β∂ψ

∂2l(θ)
∂β2

∂2l(θ)
∂β∂p

∂2l(θ)
∂p∂ψ

∂2l(θ)
∂p∂β

∂2l(θ)
∂p2




=
n∑

i=1

XiFi(θ)X>
i , (3.9)

where each Fi(θ) is a 3×3 symmetric random matrix with the (r, s)-element equal

to frsi (θ) = −∂sir(θ)/∂ξis, r, s = 1, 2, 3, and ξi = (ξi1, ξi2, ξi3) = (ψ, ki, p), where

ki = β>zi. The information matrix Dn of l(θ), which has order (q + 2) × (q + 2),

is given by

Dn = E[Fn(θ0)] =
n∑

i=1

XiDiX>
i ,

where

Di =



d11
i d12

i d13
i

d21
i d22

i d23
i

d31
i d32

i d33
i


 (3.10)

are 3 × 3 symmetries with elements drsi = E[frsi (θ0)], r, s = 1, 2, 3.

Provided that the expectations in (3.10) are finite under regularity conditions,

the general likelihood theory (Cox and Hinkley, 1974, pp. 107-108) suggests that

E[Sn(θ0)] = 0 and E[Sn(θ0)S>
n (θ0)] = E[Fn(θ0)] = Dn. (3.11)

Define

τ− = inf {t > 0 : F0(t, ψ) > 0} and τ+ = sup {t > 0 : F0(t, ψ) < 1}

to be the left and right extremes of F0(t, ψ).

We make the following assumptions as regularity conditions, which place re-

strictions on the covariates and the relation between the censoring and survival

distributions. For A > 0, define

Nn(A) =
{
θ ∈ Θ : (θ − θ0)

>
Dn(θ − θ0) ≤ A2

}
. (3.12)
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Assumptions F:

(F1) For each i and ψ ∈ (0,∞), Pr(ci ≥ t∗i > τ−) > 0, i.e., F0(τG−, ψ) > 0, where

τG− is the left extreme of the censoring distribution G.

(F2) The matrix
∑n
i=1 ziz

>
i is positive definite for some n ≥ k.

(F3) limn→∞
∑n
i=1Mi

{
tr(XiD

−1
n X>

i )
}3/2 = 0, where Mi is defined in Lemma 3.4

(cf. (3.32) below).

(F4) For each i, Pr(ci < τ+) = 1, i.e., F0(τG+, ψ) < 1, where τG+ is the right

extreme of the censoring distribution G.

Lemma 3.2 below will show that Dn is positive definite for large n under

Assumptions (F1)-(F3).

Remark 3.1. The condition Pr(ci ≥ t∗i > τ−) > 0 in (F1) ensures that uncensored

observations will be observed with positive probability, and represents a minimal

requirement that “follow-up” is sufficient in the sample. In our model, if F0(t, ψ)

is exponential, then (F1) is satisfied provided that the censoring distribution G

does not degenerate at 0. Condition (F2) simply ensures that the covariates do not

degenerate to a lower dimensional subspace for a large sample. Condition (F3) is

a “uniform asymptotic negligibility” type of requirement on the covariates which

also incorporates some interplay between censoring and survival distribution. (F4)

is natural in the boundary case since no ci > τ+ can be observed when p0 = 1. In

practice, the censoring random variable ci will be bounded, so that Pr(ci < τ+) = 1

holds for any F (t, ψ) with τ+ = ∞.

Remark 3.2. As a consequence of assumption (F4), if Gi attributes no mass to

τ+ or to large points if τ+ <∞, then the log-likelihood will be finite a.s.

Remark 3.3. Maller and Zhou (2002) pointed out that (F4) can be replaced by

Assumption (F5) below when F0(t, ψ) is exponential.
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(F5) For some ζ > 0, E[e(ψ0+ζ)c] <∞.

Note that in our model, τ+ = ∞, so that (F4) implies τG+ <∞. Under (F5),

on the other hand, we allow τG+ ≤ ∞.

3.3. Preliminary Results

3.3.1. Preliminary Results

We state some preliminary results and begin with some expressions for the

first and second derivatives of l(θ).

Lemma 3.1. We have the following expressions for sir(θ) and frsi (θ) (r, s = 1, 2, 3)

(see (3.5) and (3.9)).

si1(θ) = δi

{
1
ψ

− ti − [ηi − 1]
pti[1− F0(ti, ψ)]
1 − pF0(ti, ψ)

}
− (1 − δi)ηipti[1− F0(ti, ψ)]

1 − pF0(ti, ψ)
;

si2(θ) = δi {1 + ηi log(1 − pF0(ti, ψ))} + (1 − δi)ηi log(1 − pF0(ti, ψ));

si3(θ) = δi

{
1
p
− (ηi − 1)F0(ti, ψ)

1 − pF0(ti, ψ))

}
− (1 − δi)ηiF0(ti, ψ)

1 − pF0(ti, ψ)
;

f11
i (θ) =

δi
ψ2

− {(ηi − 1)δi + (1 − δi)ηi}
p(1 − p)t2i [1 − F0(ti, ψ)]

(1 − pF0(ti, ψ))2
;

f22
i (θ) = −{δi + (1 − δi)} log(1 − pF0(ti, ψ));

f21
i (θ) = {δi + (1 − δi)}

ηipti[1 − F0(ti, ψ)]
1 − pF0(ti, ψ)

;

f33
i (θ) =

δi
p2

+ {(ηi − 1)δi + (1 − δi)ηi}
F 2

0 (ψ, ti)
(1 − pF0(ti, ψ))2 ;

f31
i (θ) = {δi(ηi − 1) + (1 − δi)ηi}

ti[1 − F0(ti, ψ)]

(1 − pF0(ti, ψ))2
;

f32
i (θ) = {δiηi + (1 − δi)ηi}

F0(ti, ψ)
1 − pF0(ti, ψ)

.

In Section 3.2, (3.11) shows that the positive definiteness of Dn is essential.

This in turn depends on the positive definiteness of the Di, which will be investi-

gated in Lemma 3.2 below. Define

l̃i(ξi) = log(p) + log(ψ) − ψti + ki + [exp(ki) − 1] log(1 − pF0(ti, ψ)),
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(see (3.5)), and let ξi = (ψ, ki, p). We also need the notation

gi(y, u, a) = u>
∂ log l̃i(y, ξ

(0)
i )

∂ξi
+ a, y ≥ 0, u ∈ R3, a ∈ R,

where ξ(0)i = (ψ0, ki0, p0) = (ψ0, β
>
0 zi, p0).

Lemma 3.2.

(i) Assume that Assumption (F1) holds in the interior case, or Assumptions (F1)

and (F4) hold in the boundary case hold. Then the matrix Di defined by (3.10)

is positive definite for each i = 1, . . . , n.

(ii) Suppose that (F2) holds. If λmin(Di) > 0 for i ≥ 1, then

λmin(Dn) > 0 for some n ≥ q + 2, (3.13)

or equivalently, λmin(Dn) > 0 for large enough n. Where λmin(Di) denotes the

minimal eigenvalue of matrix Di.

The next lemma gives necessary and sufficient conditions for (F3).

Lemma 3.3. If Assumptions (F1)-(F2) hold, then for each A > 0 and n large

enough,

sup
θ∈Nn(A)

|X>
i (θ − θ0)|

2 ≤ A2tr(X>
i D

−1
n Xi), (3.14)

and for some constant B > 0 not depending on A and n,

sup
θ∈Nn(A)

|θ − θ0|2 ≤ BA2 max
1≤i≤n

tr(X>
i D

−1
n Xi). (3.15)

Furthermore, λmin(Dn) → ∞ as n→ ∞ if in addition (F3) holds.

The following Lemma is important to the proofs of our main results.

Lemma 3.4. Assume that (F1)-(F3) hold for the interior case or (F1)-(F4) hold

for the boundary case, and that covariates zi, i = 1, . . . , n, are bounded so that

exp(β>
0 zi) = exp(ki0) ≤ B0 for some constant B0 > 0. Then there exists a constant

K (may be dependent on A) such that for r, s = 1, 2, 3,
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(C1) E

{
sup

θ∈Nn(A)

|frsi (θ) − frsi (θ0)|
}

≤ KMi

√
tr(X>

i D
−1
n Xi); (3.16)

(C2) E
{
|frsi (θ0)|3/2

}
≤ KMi; (3.17)

(C3) E
{
|Si(θ0)|3

}
≤ KMi. (3.18)

Let D−1/2
n Xi = wi = (wi1, wi2, wi3), where wir ∈ Rq+2, r = 1, 2, 3, so that

tr
(
X>
i D

−1
n Xi

)
= |wi1|2 + |wi2|2 + |wi3|2. (3.19)

For any unit vector u ∈ Rq+2 and r, s = 1, 2, 3, let arsin = u>wirw
>
isu. Then for

r, s = 1, 2, 3,

|arsin| = |u>wirw>
isu| ≤

|wir|2 + |wis|2

2
≤ |wir|2 + |wis|2 ≤ tr

(
X>
i D

−1
n Xi

)
. (3.20)

Lemma 3.5. If (F3) and (C1) − (C2) hold, then

n∑

i=1

arsin (frsi (θ0) − drsi )
p→ 0 as n→ ∞. (3.21)

3.3.2. Proofs of Preliminary Results

Proof of Lemma 3.1. The formulae for sir(θ) and frsi (θ) are verified by differen-

tiation of (3.5). We should mention that the formulae for drsi = E {frsi (θ0)} (r, s =

1, 2, 3) are a straightforward application of Lemma 2 of Ghitany, Maller and Zhou

(1994), i.e., let F (x) is the distribution of the fail times, c is the censoring random

variable and δ is the censoring index, then for any positive measurable function

Q(t) : R → R,

E[δQ(t)] = E

[∫ c

0

Q(x)dF (x)
]

and

E[(1 − δ)Q(t)] = E[(1− F (c))Q(c)].
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Proof of Lemma 3.2. Note that by the definition of gi(y, u, a) and sij , j = 1, 2, 3,

in Lemma 3.1,

∂ log l̃i(y, ξ
(0)
i )

∂ξi
=




1
ψ0

− yi − [η0i − 1]
p0yi exp(−ψ0yi)
1 − p0F0(yi, ψ0)

1 + η0i log(1 − p0F0(yi, ψ0))

1
p0

− (η0i − 1)F0(yi, ψ0)
1 − p0F0(yi, ψ0))



.

Thus for (u, a) ∈ R4 − {0}, y > 0,

gi(y, u, a) = u1

{
1
ψ0

− yi − [η0i − 1]
p0yi exp(−ψ0yi)
1 − p0F0(yi, ψ0)

}

+ u2 {1 + η0i log(1 − p0F0(yi, ψ0))}

+ u3

{
1
p0

− (η0i − 1)F0(yi, ψ0)
1 − p0F0(yi, ψ0))

}
+ a.

Clearly, gi(y, u, a) = 0 has no zero (when (u1, u2, u3) = 0, in which case a 6= 0), or

only isolated zeroes (when u 6= 0), so that Pr{gi(t∗, u, a) = 0} = 0, i = 1, . . . , n.

Thus Di is positive definite by Lemma 7.2 in Maller and Zhou (2002). This proves

part(i) of Lemma 3.2.

For part(ii), suppose that λmin(Di) > 0, i ≥ 1, and that (F3) holds. Define a

matrix Cn by

Cn =
n∑

i=i

XiX
>
i =




1 0
.. .

n∑

1=i

ziz
>
i

. . .
0 1




(q+2)×(q+2).

(3.22)

Thus (F3) is obviously equivalent to

λmin{Cn0} > 0, for some n0 ≥ q + 2. (3.23)

Let ν be any (q + 2)−dimensional unit vector. Suppose that λ(Dn) = 0 for some

n ≥ n0. Since

ν>Dnν =
n∑

i=1

ν>XiDiX>
i ν ≥

n∑

i=1

λmin(Di)ν>XiX
>
i ν
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and λmin(Di) > 0 for i ≥ 1, this means ν>XiX
>
i ν = 0, for some ν(n) and 1 ≤ i ≤ n.

This contradicts (3.23) as n0 ≤ n. Hence (F3) implies that (3.13) holds for all values

of n ≥ n0, i.e., for all values of n large enough.

Proof of Lemma 3.3. Note that (3.14) is the same as (4.14) of Ghitany et al.

(1994), and (3.15) follows just as in the working after (4.24) of Ghitany et al.

(1994). Furthermore, let vn be a (q + 2)-dimensional eigenvector of Dn associated

with λmin(Dn), i.e., Dnvn = λmin(Dn)vn, define the (q + 2)-dimensional vector

θn = θ0 +
√
A2/vn>Dnvn vn. Since θn ∈ Nn(A), it follows from (3.15) that

A2 = λmin(Dn)|θn − θ0| ≤ λmin(Dn)BA2 max
1≤i≤n

tr(X>
i D

−1
n Xi). (3.24)

Thus (F4) implies that λmin(Dn) → ∞ as n→ ∞.

Proof of Lemma 3.4. By Taylor expansion of frsi (θ) about θ0, and using the

chain rule of differentiation, we obtain, for r, s = 1, 2, 3,

|frsi (θ) − frsi (θ0)| =
∣∣∣∣(θ − θ0)

> ∂

∂θ
frsi (θ̃)

∣∣∣∣

=
∣∣∣∣(ψ − ψ0)

∂

∂ψ
frsi (θ̃) + (β − β0)

>
zi

∂

∂ki
frsi (θ̃) + (p− p0)

∂

∂p
frsi (θ̃)

∣∣∣∣ , (3.25)

where θ̃ is on the segment between θ and θ0, thus θ̃ ∈ Nn(A). We must now bound

the quantities in the above. For any θ ∈ Nn(A) we have |D1/2(θ − θ0)|
2 ≤ A2 by

the definition in (3.12), hence by Lemma 3.3, when θ = (ψ, β>, p)>, we have

|ψ − ψ0|2 + |z>i (β − β0)|
2
+ |p0 − p|2 = |X>

i (θ − θ0)|
2 ≤ A2M, (3.26)

where M = tr(X>
i D

−1
n Xi). From (3.22) it follows that for θ ∈ Nn(A),

|frsi (θ) − frsi (θ0)| ≤ A
√
M

{∣∣∣∣
∂

∂ψ
frsi (θ̃)

∣∣∣∣ +
∣∣∣∣
∂

∂ki
frsi (θ̃)

∣∣∣∣ +
∣∣∣∣
∂

∂p
frsi (θ̃)

∣∣∣∣
}
. (3.27)

So we need to derive bounds for the quantities in (3.27). We illustrate this deriva-

tion for r = s = 1. Note that, by Lemma 3.1,

∂

∂ψ
f11
i (θ) =

−2δi
ψ3

+ {(ηi − 1)δi + (1 − δi)ηi} p(1 − p)ti
f̃1(ξ, ti)f̃2(ξ, ti)

(1 − pF0(ti, ψ))3
; (3.28)
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∂

∂ki
f11
i (θ) = −{ηiδi + (1 − δi)ηi} p(1 − p)

f̃1(ξ, ti)

(1 − pF0(ti, ψ))2
; (3.29)

∂

∂p
f11
i (θ) = −{(ηi − 1)δi + (1 − δi)ηi}

f̃1(ξ, ti)f̃2(ξ, ti)
(1 − pF0(ti, ψ))3

, (3.30)

where f̃1(ξ, ti) = t2i [1 − F0(ti, ψ)] and f̃2(ξ, ti) = pF0(ti, ψ) − 2p + 1. Note that

f̃2(ξ, ti) ≤ exp(−ψti) + 2, by differentiation we obtain
∣∣∣∣
∂

∂ψ
f11
i (θ)

∣∣∣∣ ≤
2δi
ψ3

+ {(1 − δi) +B1}
t3i (2e

−ψti + e−2ψti )
4(1 − pF0(ti, ψ))3 ; (3.31)

∣∣∣∣
∂

∂ki
f11
i (θ)

∣∣∣∣ ≤
B0t

2
i e

−ψti

4(1 − pF0(ti, ψ))2
; (3.32)

∣∣∣∣
∂

∂p
f11
i (θ)

∣∣∣∣ ≤ {(1 − δi) +B1}
t2i (2e

−ψti + e−2ψti )

(1 − pF0(ti, ψ))3
, (3.33)

where B1 = B0 + 1. It suffices to prove the following inequality from (3.31):

E

{
sup

θ∈Nn(A)

[
2δi
ψ2

+ [(1 − δi) +B1]
t3i (2e

−ψti + e−2ψti )
4(1 − pF0(ti, ψ))3

]}
≤M

(11)
i1 <∞. (3.34)

By Lemma 2 in Ghitany et al. (1994), the first term on the left side of (3.34) is

equivalent to

E

{
sup

θ∈Nn(A)

{
2Fθ0(ci)
ψ2

+
c3i (2e

−ψci + e−2ψci )

4(1 − pF0(ψ, ci))
3 Sθ0(ci) +

B1t
3
i (2e

−ψti + e−2ψti )

4(1 − pF0(ti, ψ))3

}}

≤ E

{
sup

θ∈Nn(A)

{
2
ψ2

+
c3i (2e

−ψci + e−2ψci)

4(1 − pF0(ψ, ci))
3 +

B1t
3
i (2e

−ψti + e−2ψti )

4(1 − pF0(ti, ψ))3

}}
.

Note from (3.26) that ψ0 − A
√
M ≤ ψ ≤ ψ0 + A

√
M and p0 − A

√
M ≤ p ≤

p0+A
√
M . Thus (3.34) follows from (F1) for the interior case, or (F1) and (F4) for

the boundary case, together with 2/ψ2 and u3(e−ψu + 2e−2ψu)/4(1 − pF0(ψ, u))3

are integrable with respect to G(du), and B0v
3(e−ψv + 2e−2ψv)/4(1 − pF0(ψ, v))

3

is integrable with respect to Hi(dv), where Hi(v) = 1 − [1 − Fi(v)][1 −G(v)].

From (3.27) and a similar bound for the terms on the right-hand side of (3.32)-

(3.33), we obtain M (11)
i2 and M (11)

i3 .

The details of the proofs for (C2) and (C3) are fairly standard and thus omitted

here. If E
{
|frsi (θ0)|3/2

}
≤ KN

(rs)
i and E

{
|si(θ0)|3

}
≤ KQ

(r)
i , r, s = 1, 2, 3.
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For each i, let Mi be the maximum value over any of the quantities




3∑

j=1

M
(rs)
ij ,N

(rs)
i , Q

(r)
i , r, s = 1, 2, 3



 . (3.35)

This completes the proof of lemma 3.4.

Proof of Lemma 3.5. See Theorem 6.2 in Vu et al. (1998).

3.4. Main Results

3.4.1. Main Results

Let Iq+2 and N (0, Iq+2) denote the identity matrix and a standard normal

random variable in q+2 dimension. We now state the major results of this chapter.

We say that a sequence of events {An} occurs with probability approaching 1

(WPA1) if Pr{An} → 1 as n→ ∞.

Theorem 3.1. If Assumptions (F1)-(F3) for the interior case or conditions (F1)-

(F4) for the boundary case are satisfied, then a MLE θ̂n of θ0 exists, is locally

unique WPA1, and is consistent in probability for θ0.

From now on, θ̂n denotes the estimator obtained in Theorem 3.1. θ̂n is gen-

erally not unique on Θ, even WPA1, though it is uniquely defined WPA1 on the

neighborhood Nn(A) of θ0 for each A > 0.

Next, we consider the interior case. For this case, we want to test the hypoth-

esis H0 : p = p0 < 1, against an unrestricted alternative H1 : p ∈ (0, 1). Let Lf (θ)

be the likelihood function and l(θ) = log(Lf (θ)). The likelihood ratio test statistic

for H0 is defined by Ln = Lf (θ̃n)/Lf (θ̂n), where θ̃n is a local maximum estimator

of l(θ) under H0. Now defined the “deviance” of the restricted model from the

unrestricted model by

dn = −2 logLn = 2[l(θ̂n) − l(θ̃n)]. (3.36)

59



Small values of Ln or large values of dn indicate that H0 is unlikely to be true.

Denote by χ2
v a chi-square random variable with v degrees of freedom. Let D1/2

n

and D>/2
n be any left and right square roots of Dn, i.e., any square matrices such

that D1/2
n D

>/2
n = Dn.

Theorem 3.2. (The interior case) If conditions (F1)-(F3) are satisfied, then for

every y ≥ 0, as n→ ∞,

Pr {dn ≤ y} → Pr
{
χ2
q+1 ≤ y

}
, (3.37)

and

D>/2
n (θ̂n − θ0)

d→ N (0, Iq+1). (3.38)

We now turn to the boundary case. We wish to test the hypothesisH0 : p0 = 1

against an unrestricted alternative H1 : p ∈ (0, 1]. Thus no individuals are immune

to failure under the null hypothesis H0.

Let θ̇n = (ϑ̇>n , 1)
>

be a local maximum of l(θ) under H0, where ϑ̇n is a MLE

of ϑ = (ψ, β>)> under the restriction p = 1. Again define the “deviance” of the

restricted model from the unrestricted model by

dn = 2
[
l(θ̂n) − l(θ̇n)

]
. (3.39)

Partition the expected information matrix Dn as

Dn =



D̄n gn

g>n an


 , (3.40)

where D̄n is (q + 1) × (q + 1) and gn is (q + 1) × 1. Let

X ∼ N (0, Iq+1), Y ∼ N (0, 1) and Z = (X>, Y )> ∼ N (0, Iq+2).

Our next theorem shows that dn has a non-standard asymptotic distribution.
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Theorem 3.3. (The boundary case) If Assumptions (F1)-(F4) are satisfied, then

for every y ≥ 0, as n→ ∞,

Pr {dn ≤ y} → 1
2

+
1
2

Pr(χ2
1 ≤ y), (3.41)

Pr
{√

an − g>n D̄
−1
n gn(p̂n − 1) ≤ x

}
→ Pr(Y ≤ x), (3.42)

and

Pr {p̂n < 1} → 1
2
. (3.43)

In addition, if D>/2
n is the right Cholesky square root of Dn, then for any Borel set

W ⊆ Rq+2 as n→ ∞,

Pr
{
D>/2
n (θ̂n − θ0) ∈W, p̂n < 1

}
→ Pr(Z ∈W,Y ≤ 0). (3.44)

Theorem 3.1-3.3, just as the works of Vu, Maller and Zhou (1998), generalize

the results of Zhou and Maller (1995), which deal with the exponential distribution

in the case without covariate information. For an example of application with the

“50-50” chi-squared distribution in (3.41), see Maller and Zhou (1996, Chapter 5)

and Zhou and Maller (1995). Ghitany et al. (1994) discuss how to use the results

like Theorem 3.1-3.3 to analyze exponentially distributed data that are classified

into different groups (i.e., with one covariate to specify the group each individual

belongs to).

3.4.2. Proofs of Main Results

Proofs of Theorems 3.1-3.2 and (3.41) of Theorem 3.3:

We apply the general results of Vu and Zhou (1997). In our case the g(Yi, θ)

of Vu and Zhou (1997) is the log-likelihood of the ith observation with Yi replaced

by ti. Obviously, Conditions (A1)-(A2) of Vu and Zhou (1997) are satisfied with

our covariate function of the form

ηi = exp(β>zi) = exp(ki).
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Note that (3.11) is their condition (B1) and the matrix V in (B4) is simply Iq+2 in

our case. Since λmin(Dn) → ∞ as n → ∞, by Lemma 3.3, then their (B2) holds.

Thus we can apply the results in that paper provided that their (B3) and (B5)

hold, i.e., the observed information matrix can be approximated by the expected

information matrix in the sense that

sup
θ∗∈[Nn(A)]9

‖D−1/2
n F ∗

n(θ̃)D−>/2
n − Iq+2‖

p→ 0 for each A > 0, (3.45)

and the score function is asymptotically normal in the sense that for any unit vector

ζn in Rq+2,

ζ>nD
−1/2
n Sn(θ0)

d→ N (0, 1). (3.46)

In (3.45), ‖ · ‖ denotes the sum of the absolute values of the elements of a matrix,

[Nn(A)]9 =
{
θ̃ = (θ11, . . . , θ33) : θrs ∈ Nn(A), r, s = 1, 2, 3

}
, (3.47)

and

F ∗
n(θ̃) =

n∑

i=1

Xi




f11
i (θ11) f12

i (θ12) f13
i (θ13)

f21
i (θ21) f22

i (θ22) f23
i (θ23)

f31
i (θ31) f32

i (θ32) f33
i (θ33)


X

>
i . (3.48)

Then Theorem 3.1 and the asymptotic distribution of dn (cf. (3.37) and (3.41))

in Theorems 3.2-3.3 follow from Theorems 2.1-2.2 in Vu and Zhou (1997). For the

asymptotic distribution of θ̂n given in (3.38), let u be a unit vector in Rq+2. Recall

that θ̂n maximizes the log-likelihood function on Nn(A) WPA1. Thus Sn(θ̂n) = 0

WPA1 as the log-likelihood function is concave on Nn(A) for all n large enough by

(3.45). Hence there exists, by Taylor expansion, a θ̄n on the line segment between

θ̂n and θ0 such that

u>D−1/2
n Sn(θ0) = u>D−1/2

n Sn(θ0) − u>D−1/2
n Sn(θ̂n)

= u>D−1/2
n Fn(θ̄n)(θ̂n − θ0) + op(1)

= u>
{
Iq+2 +D−1/2

n [Fn(θ̄n) −Dn]D−1/2
n

}
D1/2
n (θ̂n − θ0) + op(1)

= u> {Iq+2 + op(1)}D1/2
n (θ̂n − θ0) + op(1). (3.49)
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Thus θ̂n is asymptotically normal by (3.46) and (3.49).

It remains to prove (3.45)-(3.46). Let θ̃ ∈ [Nn(A)]9 and write

D−1/2
n F ∗

n(θ̃)D−>/2
n = Ik+2 + ε(1)n (θ0) + ε(2)n (θ̃),

where

ε(1)n (θ0) = D−1/2
n {Fn(θ0) −Dn}D−>/2

n

and

ε(2)n (θ̃) = D−1/2
n

{
F ∗
n(θ̃) − Fn(θ0)

}
D−>/2
n .

Let u be any unit vector in Rq+2. Observe that

u>ε(1)n (θ0)u =
n∑

i=1

∑

1≤r,s≤3

arsin (frsi (θ0) − di) (3.50)

and

sup
θ̃∈[Nn(A)]9

∣∣∣u>ε(2)n (θ̃)u
∣∣∣ ≤

n∑

i=1

|arsin| sup
θrs∈Nn(A)

|frsi (θrs) − frsi (θ0)|. (3.51)

Thus (3.50) tends to 0 in probability by Lemma 3.5, and (4.51) tends to 0 in

probability by Markov inequality together with (3.20), (C1) and (F3). This proves

(3.45).

To prove (3.46), let ζn be any unit vector in Rq+2 and define

Yin = ζ>nD
−1/2
n XiSi(θ0), 1 ≤ i ≤ n,

σ2
in = V ar(Yin) = ζ>nD

−1/2
n XiDiX>

i D
−>/2
n ζn.

Then for each n, Y1n, . . . , Ynn are mutually independent with mean E(Yin) = 0

and sum of variance σ2
1n + · · · + σ2

nn = 1. It follows from (C3) that
n∑

i=1

E(|Yin|3) ≤
n∑

i=1

E

([
λmax(Si(θ0)S>

i (θ0))ζ>nD
−1/2
n XiX

>
i D

−>/2
n ζn

]3/2
)

≤
n∑

i=1

E(|Si(θ0)|3)(tr(X>
i D

−1
n Xi))

3/2

≤ K
n∑

i=1

Mi

(
tr(X>

i D
−1
n Xi)

)3/2
.
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By (F3), the last expression tends to 0 as n → ∞. Thus (3.46) follows from the

Lyapounov Theorem in Billingsley (1968, p.44).

Proofs of (3.42) and (3.43) of Theorem 3.3:

Next we show (3.42) and (3.43) of Theorem 3.3, while the proof of (3.44) can

be found in Vu and Zhou (1998, p.652).

Note that Dn =
∑n
i=1XiDiX>

i and (3.40) implies

D̄n = E(F̄n(θ0)) with F̄n(θ0) =
n∑

i=1

X̄i



f11
i (θ0) f12

i (θ0)

f21
i (θ0) f22

i (θ0)


 X̄>

i , (3.52)

where X̄i is of order (q + 1) × 2 and Xi =
[
X̄i 0
0 xq+2

]
.

Partition a (q + 2)× (q + 2) real symmetric matrix Fn and a (q + 2)× (q + 2)

real matrix F̃n as

Fn =



F̄n fn

f>n an


 and F̃n =




¯̃
Fn f̃n

h̃>n ãn


 ,

where F̃n,
¯̃Fn, h̃n, f̃n and ãn are defined in (3.63)-(3.65) below, with F̄n and ¯̃Fn

being (q + 1) × (q + 1) matrices; and fn, f̃n and h̃n being (q + 1)-vectors.

Denote by S̄n(θ0) the (q + 1)-vector (Sn1(θ0), . . . , Sn(q+1)(θ0))
>
.

The following Lemmas 3.6-3.8 are used to show (3.42) and (3.43). Their proofs

are similar to the arguments in Vu and Zhou (1998, pp.649-651).

Lemma 3.6. Suppose that D−1/2
n FnD

−>/2
n

p→ Iq+2. Then

D̄−1/2
n F̄nD̄

−>/2
n

p→ Iq+1 and [F−1
n ](q+2)(q+2) = (1 + op(1))[D−1

n ](q+2)(q+2).

Also if D−1/2
n Sn(θ0)

d→ N (0, Iq+2), then D̄
−1/2
n S̄n(θ0)

d→ N (0, Iq+1).

For a fixed A > 0, define a subset of Rq+2 by

N
′

n(A) =
{
θ : (θ − θ0)

>
Dn(θ − θ0) ≤ A2, p = p0

}

=
{
(ϑ>p0)

>
: (ϑ − ϑ0)>D̄n(ϑ − ϑ0) ≤ A2

}
. (3.53)
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Lemma 3.7. Suppose that Conditions (F1)-(F4) hold.

(i) When p̂n < p0, θ̂n is an interior stationary point of l(θ) WPA1, i.e.,

Pr(Sn(θ̂n) 6= 0, p̂n < p0) → 0 (n→ ∞). (3.54)

(ii) Let ϑ̇n be the maximizer of the log-likelihood function in N
′

n(A). We have

Pr(Snj(ϑ̇n, p0) = 0,∀j ∈ [1, q + 1]) → 1 (n→ ∞) (3.55)

and

Pr(Snj(θ̂n) = 0,∀j ∈ [1, q + 1]) → 1 (n→ ∞). (3.56)

(iii) p̂n = p0 if and only if Sn(k+2)(ϑ̇n, p0) ≥ 0WPA1.

Let

bn =
√
an − g>nD

−1
n gn, (3.57)

and

v>n = bn[ 0 · · · 0 1 ]D−>/2
n =

√
an − g>nD

−1
n gn[ 0 · · · 0 1 ]D−>/2

n . (3.58)

Lemma 3.8. v>n is a unit vector. Furthermore,

[F̃−1
n ](q+2)(q+2) = (ãn − h̃>n

¯̃
F

−1

n f̃n)
−1

,

[D−1
n ](q+2)(q+2) = (an − g>n D̄

−1gn)
−1

= b−2
n , (3.59)

and

[ 0 · · · 0 1 ]F̃−1
n Sn(θ0) =

Sn(q+2)(θ0) − h̃>n
¯̃F
−1

n S̄n(θ0)

ãn − h̃>n
¯̃F
−1

n f̃n

. (3.60)

In addition, if D−1/2
n F̃nD

−>/2
n

p→ Iq+2, then

bn[ 0 · · · 0 1 ]F̃−1
n Sn(θ0) = v>nD

−1/2
n Sn(θ0) + op(1), (3.61)

where F̃n,
¯̃
Fn, h̃n, f̃n and ãn are defined in (3.63)-(3.65) below.
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We now complete the proof of (3.42)-(3.43). We will work throughout on the

event {p̂n < p0}. By Lemma 3.7, Sn(θ̂n) = Sn(ϑ̂n, p̂n) = 0 WPA1 on this event.

By Taylor expansion, we have

Sn(θ0) = Sn(θ0) − Sn(ϑ̂n, p0) + Sn(ϑ̂n, p0) − Sn(ϑ̂n, p̂n)

=
n∑

i=1




f11
i (θ̃11n )(ψ̂n − ψ0) + f12

i (θ̃12n )z>i (β̂n − β0)

zif
21
i (θ̃21n )(ψ̂n − ψ0) + zif

22
i (θ̃22n )z>i (β̂n − β0)

f31
i (θ̃31n )(ψ̂n − ψ0) + f32

i (θ̃32n )z>i (β̂n − β0)




+
n∑

i=1




f13
i (θ̃13n )(p̂n − p0)

zif
23
i (θ̃23n )(p̂n − p0)

f33
i (θ̃33n )(p̂n − p0)


 , (3.62)

where θ̃rsn , r = 1, 2, 3, s = 1, 2, lie between θ0 and (ϑ̂n, p0), and θ̃rsn , r = 1, 2, 3, s = 3,

lie between (ϑ̂n, p0) and θ̂n. Define

¯̃
Fn =

n∑

i=1

X̄i



f11
i (θ̃11n ) f12

i (θ̃12n )

f21
i (θ̃21n ) f22

i (θ̃22n )


 X̄>

i , h̃n

=
n∑

i=1

xq+2 [ f31
i (θ̃31n ) f32

i (θ̃32n ) ] X̄>
i , (3.63)

f̃n =
n∑

i=1

xq+2X̄i [ f13
i (θ̃13n ) f23

i (θ̃23n ) ]> , ãn =
n∑

i=1

x2
q+2f

33
i (θ̃33n ), (3.64)

and

F̃n =




¯̃
Fn f̃n

h̃>n ãn


 =

n∑

i=1

Xi




f11
i (θ̃11) f12

i (θ̃12) f13
i (θ̃13)

f21
i (θ̃21) f22

i (θ̃22) f23
i (θ̃23)

f31
i (θ̃31) f32

i (θ̃32) f33
i (θ̃33)


X

>
i , (3.65)

where ¯̃
Fn are (q+1)× (q+1) matrices, and fn, f̃n and h̃n are (q+1)-vectors. Thus

Sn(θ0) = F̃n(θ̂n − θ0), and then

θ̂n − θ0 = F̃−1
n Sn(θ0). (3.66)
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Since D−1/2
n F̃nD

−>/2
n

p→ Iq+2, it follows from (3.61) and (3.66) that
√
an − g>n D̄

−1
n gn(p̂n − p0) = bn[ 0 · · · 0 1 ][θ̂n − θ0]

= bn[ 0 · · · 0 1 ]F̃−1Sn(θ0)

= v>nD
−1/2
n Sn(θ0) + op(1) (3.67)

on {p̂n < p0}, where vn is defined by (3.58). Therefore, by (3.67),

Pr
{
p̂n < p0, v

>
nD

−1/2
n Sn(θ0) ≥ 0

}
→ 0 as n→ ∞.

If we assume that

Pr
{
p̂n = p0, v

>
nD

−1/2
n Sn(θ0) < 0

}
→ 0, n→ ∞, (3.68)

then it follow from (3.46) that, for x < 0,

lim
n→∞

Pr
{√

an − g>n D̄
−1
n gn(p̂n − 1) ≤ x

}
= Pr(Y ≤ x).

Thus (3.42)-(3.43) follow from (3.68). It remains to show (3.68).

Since S̄n(θ̇n) = 0 WPA1 by (3.55), by Taylor expansion, there exist θ̃rsn1, r, s =

1, 2, and θ̃rsn1, r = 3, s = 1, 2, between θ̇n and θ0 such that

S̄n(θ0) = S̄n(θ0) − S̄n(θ̇n)

=
n∑

i=1




f11
i (θ̃11n1)(ψ̇n − ψ0) + f12

i (θ̃12n1)z>i (β̇n − β)

zif
21
i (θ̃21n1)(ψ̇n − ψ0) + zif

22
i (θ̃22n1)z>i (β̇n − β0)




=
n∑

i=1

X̄i



f11
i (θ̃11n1) f12

i (θ̃12n1)

f21
i (θ̃21n1) f22

i (θ̃22n1)


 X̄>

i (ϑ̇n − ϑ0)

= ¯̇
Fn(ϑ̇n − ϑ0) (3.69)

and

Sn(q+2)(θ̇n) = Sn(q+2)(θ0) −
n∑

i=1

{
f31
i (θ̃31n1)(ψ̇n − ψ0) + f32

i (θ̃32n1)z
>
i (β̇n − β0)

}

= Sn(q+2)(θ0) −
n∑

i=1

xq+2 [ f31
i (θ̃31n1) f32

i (θ̃32n1) ] X̄>
i (ϑ̇n − ϑ0)

= Sn(q+2)(θ0) − ḣ>n (ϑ̇n − ϑ0), (3.70)
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where

Ḟn =




¯̇Fn ḣn

ḣ>n an


 , ¯̇

Fn =
n∑

i=1

X̄i



f11
i (θ̃11n1) f12

i (θ̃12n1)

f21
i (θ̃21n1) f22

i (θ̃22n1)


 X̄>

i ,

and

ḣ>n =
n∑

i=1

xq+2[f31
i (θ̃31n1) f32

i (θ̃32n1)]X̄
>
i .

Thus (3.45) implies that D−1/2
n ḞnD

−>/2
n

p→ Iq+2. By substituting Ḟn,
¯̇Fn, ḣn and

an for F̃n,
¯̃Fn, h̃n and ãn into (3.60) and (3.61), it follows form (3.69)-(3.70) that

bnSn(q+2)(θ̇n)

an − ḣ>n
¯̇
F

−1

n ḣn

=
bn(Sn(q+2)(θ0) − ḣ>n

¯̇F
−1

n S̄n(θ0))

an − ḣ>n
¯̇
F

−1

n ḣn

= v>nD
−1/2
n Sn(θ0) + 0p(1). (3.71)

By Lemma 3.7, the event {p̂n = p0} occurs if and only if {Sn(q+2)(θ̇n) ≥ 0} occurs

WPA1. Thus (3.68) follows from (3.71). This completes the proof.
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Chapter 4

Semiparametric Transformation Models for

Survival Data with Long-term Survivors

4.1. Introduction

Semiparametric transformation models have recently attracted considerable

attention and efforts in the analyses of survival data. A semiparametric transfor-

mation model has the form

h(T ∗) = −z>β + ε, (4.1)

where T ∗ is the response variable, h(·) is a smooth, invertible and strictly increasing

function on R1, z is a q × 1 covariate vector, β is a q × 1 coefficient vector, and

ε is the random error with distribution function W and density w > 0 on R1.

The response T ∗ is continuous and z and β are bounded. For a general form of

transformation models (4.1), if h(·) is completely known or its form is known but

with some unknown parameters, then the distribution for error ε may be relaxed

to be completely unknown. With a completely unknown h(·), however, we need at

least a parametric form of the error distribution. In this chapter, we allow that the

distribution of ε may depend on z and/or some unknown parameters and h(·) is

completely unknown. The data {(T ∗
i , zi), i = 1, . . . , n} form independent replicates

of (T ∗, z). Our focus is on the estimation of β based on {(T ∗
i , zi), i = 1, . . . , n}.

Model (4.1) covers a number of important models in survival analysis. If the

error ε has an extreme value distribution W (s) = 1 − exp{− exp(s)}, then (4.1)

becomes the well-known proportional hazards model; if W is the standard logistic

or normal distribution, then (4.1) is the proportional odds model or the probit

model respectively.
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Different approaches have been proposed in the literature to estimate the semi-

parametric transformation model. In particular, when h(·) is totally unspecified,

the rank likelihood, which uses the ranks of the responses and estimates β sep-

arately from h, has been proposed and studied by Cox (1972), Pettitt (1982),

Clayton and Cuzick (1985), Dabrowska and Doksum (1988). In general, however,

the rank likelihood is intractable and may not attain the same precision as the

full likelihood. Other estimators requiring kernel smoothing have been studied by

Horowitz (1996) and Wang and Ruppert (1996), among others. Recently, the pro-

file likelihood, which estimates h(·) at observed failure times, was applied to the

proportional odds model by Murphy et al. (1997), and the sieve likelihood was

used to estimate the proportional odds model by Shen (1998). These procedures,

however, may need to select a smoothing parameter, are computationally intensive,

and involve complex distributional theory for the estimators. As a result, inference

using these methods may be impractical (Cheung, et al. 2001).

While semiparametric transformation models have been extensively applied

to the analysis of survival data, they have been seldom considered for long-term

survivors, except in June (1996) and Subramanian (2001), which estimated the

long-term survival rate using estimating equations. On the other hand, Maller

and Zhou (1996) raised the issue of extending the Cox Proportional Hazards (PH)

model to the analysis of survival data with long-term survivors, but they did not

follow it through. Recently, Hu (1998) successfully extended the pseudo maximum

likelihood approach, proposed by Gong and Samaniego (1981) for the paramet-

ric models, to pseudo M-estimator and Z-estimator approaches for semiparametric

models. In this chapter, based on the ideas of Maller and Zhou (1996) on the PH

model and of the pseudo Z-estimator approach, we propose a simple and explicit

approach to estimate the unspecified transformation function h(·), the coefficients

of covariates, and the proportion of long-term survivors in semiparametric trans-
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formation models. The large-sample properties of the estimators are derived based

on the work of Hu (1998). Our proposed method has some merits over other types

of methods. For example, it utilizes all the data to estimate the transformation

function, so that the statistical inferences of the pseudo Z-estimators can overcome

the drawbacks of intractability and imprecision of using rank likelihood, and the

computational intensity of the kernel smoothing.

We would also point out that, while the idea of the “two-step” method is

similar to Cheung and Fine (2001), our proposed method is different from theirs.

More details on the difference are discussed in Section 4.2 below.

In Section 4.2, we specify semiparametric transformation models for the anal-

ysis of survival data with long-term survivors. Estimators of the transformation

function h are given in Section 4.3. Section 4.4 presents pseudo Z-estimators of the

coefficient vector β and the parameter p for the proportion of susceptibles. Large

sample properties of the estimators are provided in Section 4.5. Section 4.6 reports

some simulation results. An example of application is discussed in Section 4.7,

followed by concluding remarks in Section 4.8.

4.2. Model Specification

Following the usual formulation in survival analysis, we postulate a “true”

survival time T ∗
i for each individual i, which is only observed if it does not exceed

the censoring time ci of individual i; otherwise, we observe ci. We also know

whether T ∗
i is censored or not, through a censoring indicator δi = I(T ∗

i ≤ ci).

That is, δi = 1 if T ∗
i is an actual failure time (uncensored) and δi = 0 if T ∗

i is

censored. The observable survival time Ti, possibly censored, is then given by

Ti = T ∗
i ∧ ci = min(T ∗

i , ci), i = 1, . . . , n.

In general, both T ∗
i and ci are random variables, so are Ti and δi. We fur-
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ther assume that T ∗
i is independent of ci for each i, and (T ∗

i , ci), i = 1, . . . , n,

are independent pairs. In addition, ci are assumed to have the same cumulative

distribution function G, which is referred to as an independent and identically

distributed (i.i.d.) censoring model. The distribution of T ∗
i , on the other hand,

are not necessarily identical, and may depend on such covariates as age, gender,

treatment method, etc.

Let T ∗ denote a nonnegative random variable representing the survival time

of an individual, with cumulative distribution function (cdf) F (t, z), and z a q × 1

vector of covariates associated with T ∗. The Cox Proportional Hazards (PH) model

specifies the survival function of T ∗ with covariate vector z by

S(t, z) = (1 − F0(t))
exp(z>β)

, (4.2)

where F0(t) is a baseline cdf, independent of covariates, and β = (β1, . . . , βq)>

is an unknown vector of regression parameters (coefficients of covariates) to be

estimated.

As discussed in Maller and Zhou (1996), an individual with survival time T ∗ is

referred to as a “long-term survivor” (or a “cured” or “immune” individual) if the

cdf F (t, z) of T ∗ is improper, i.e., F (∞) = P(T ∗ <∞) < 1. To incorporate possible

existence of long-term survivors into the Cox PH model, we allow the baseline cdf of

an individual’s survival time to be improper with the form pF0(t). The parameter p

can be interpreted as the proportion of “susceptible” individuals (who are not long-

term survivors) when the covariates have no effects on the survival times. Therefore

we propose, as suggested in Maller and Zhou (1996), to model the hazard function

of a survival time with covariate z by

S(t, z) = (1 − pF0(t))
exp(z>β)

. (4.3)

Let Fi(t) = F (t, zi) = 1 − (1 − pF0(t))
exp(z>

i
β), which yields

log{− log[1 − Fi(t)]} = z>
i β + log{− log[1 − pF0(t)]}. (4.4)
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If T ∗
i has distribution function Fi(t), then we can write

h(T ∗
i ) = −z>

i β + εi, (4.5)

where h(t) = log{− log[1− pF0(t)]} and εi = log{− log[1− Fi(T ∗
i )]}. And {εi} are

independent random variables with cdf

Vi(x) =
{

1 − exp{− exp(x)}, if x < z>β + log{− log(1 − p)},
1 otherwise,

(4.6)

which is also an improper distribution function. From the definition of h(t) in

model (4.5) we see that h(t) is an increasing and upper bounded function (as

h(t) ≤ log{− log[1 − p]}).

We still call (4.5) a semiparametric transformation model. But with an im-

proper cdf pF0(x), it appears to have been seldom investigated, and the distribution

of error variables εi may depend on covariate zi and/or some unknown parameters.

In this chapter, we focus on the case of an unspecified (nonparametric) h(t) in model

(4.5). We first give a consistent estimator of h(·) via an empirical process, then

apply the pseudo Z-estimator approach, inspired by Gong and Samaniego (1981)

and further studied by Hu (1998), to obtain the estimators of covariate coefficients.

Chueng and Fine (2001) also investigated semiparametric transformation model by

using a “two-step” (or “three-step”) method based on the works of Cheng et al.

(1995,1997). But our proposed method is a new “two-step” method. We devise

an estimator of the monotone transformation h(·) via an empirical process rather

than rank estimators in Cheung and Fine (2001). More importantly, the method

of Cheung and Fine was based on the works of Cheng et al. (1995, 1997), which

rely on a completely specified distribution of the error variable εi, hence it is not

applicable to our model.

To begin, following Doksum (1987), we assume that T ∗
1 , . . . , T

∗
n follow model

(4.5) with covariates satisfying
n∑

i=1

zij = 0 and z = (zij )n×q having rank q. (4.7)
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4.3. Estimation of the Transform Function

In order to obtain the pseudo Z-estimator β̂, we shall first give a consistent

estimator of h(t). Following Doksum (1987) we write h(T ∗
i ) = −µi + εi and µi =

∑q
j=1 zijβj , which are assumed not all zero. Let Fi and W denote the cdf’s of T ∗

i

and εi respectively. Since h is an increasing function, we have

Fi(t) = P(T ∗
i ≤ t) = P(h(T ∗

i ) ≤ h(t)) = Vi(h(t) + µi)

and so h(t) = V −1
i {Fi(t)} − µi. By (4.7),

∑n
i=1 µi = 0, hence

h(t) =
1
n

n∑

i=1

V −1
i (Fi(t)). (4.8)

Note that in pseudo score function (see (4.16) in Section 4.4 below), we focus

on h(t) for t < τF0 and our consistent estimator for h(t) is defined for t < τF0 . By

(4.6), Vi(x) has a common form 1−exp(− exp(x)) when x < z>i β+log(− log(1−p)).

For any observed time ti < τF0 , h(ti) + µi < z>i β + log(− log(1 − p)). Hence (4.8)

can be rewritten as

h(t) =
1
n

n∑

i=1

W−1(Fi(t)), t < τF0 . (4.9)

where W (x) = 1 − exp(− exp(x)), x ∈ R. As a result, the theorems in Doksum’s

(1987) for i.i.d. case can be applied and extended to our case of h(t) in (4.9).

Doksum (1987) gave two consistent estimators of h(t) with uncensored data.

We now extend them to the case with censored data and long-term survivors.

4.3.1. Fixed parameters case

We consider the non-local case (see Doksum 1987) with fixed βj and µi as the

sample size increases. From (4.9), we can first estimate Fi and then h(t). This can

be done in the analysis of variance (ANOVA) model with multiple observations per
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cell. The ANOVA model can be written as h(tjk) = θj + εjk , k = 1, 2, . . . , nj , j =

1, 2, . . . , q, where θj and nj are the mean and sample size in cell j, respectively.

Let λjn = nj/n, where n = n1 + · · · + nq, Fj be the cdf of tjk, and F̂j the

Kaplan-Meier estimator of Fj in cell j. Assume limn→∞ λjn = λj , 0 < λj < 1,

j = 1, 2, . . . , q. We can write h(t) =
∑q

j=1 λjnW
−1(Fj(t)) and estimate it by ḣ(t) =

∑q
j=1 λjnW

−1(F̂j (t)).

Throughout the rest of this chapter, we will assume that

F̃ (t) = lim
n→∞

n−1
n∑

i=1

Fi(t)

exists for all t ∈ [0, τF0 ], where τF0 = sup{t : F0(t) < 1} is the right extreme point

of F0. Let T̃ = max1≤i≤nTi and denote h(·∧ T̃ ) by hT̃ (·). Define Sj(t) = 1−Fj(t),

Cj(t) =
∫ t

0

dFj(u)
[1− Fj(u)]2[1−G(u)]

and U(t) =
∫ t

0

dG(u)
[1−G(u)]2[1 − F̃ (u)]

,

(4.10)

where G is the censoring distribution function. We establish weak convergence of

ĥT̃ (t) on the space D(0, τF0 ).

Theorem 4.1. Suppose that W has a continuous derivative w bounded away from 0

and ∞ on [W−1(Fj(0)),W−1(Fj(τF0))], Fj is continuous on [0, τF0 ], τF0 ≤ τG, and

supi

∫ τF0
0

[1−G(u−)]−1dFi(u) <∞. Then the process
√
n[ḣT̃ (t) − hT̃ (t)] converges

weakly on D(0, τF0 ) to the Gaussian process

q∑

j=1

√
λjSj(t)Bj(Cj(t))
w {W−1(Fj (t))}

,

where B1(·), . . . , Bn(·) are independent standard Brownian Motion processes.

Note thatW−1(Fj (t)) = h(t)+µj , hence by Theorem 4.1, ḣ(t) is approximately

normally distributed with mean h(t) and variance

q∑

j=1

λjSj(t)
2
Cj(t)

w2(h(t) + µj)
.
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4.3.2. Local parameter set

The method in Section 4.3.1 requires multiple observations per cell. If that is

not available for a given data set, we may adopt an alternative approach described

below. Following the notations of Doksum (1987), if E(εi) exists, without loss of

generality we can view µi =
q∑

j=1

zijβ as the mean of h(y). Moreover, by (4.7),

µ̄ = n−1
n∑

i=1

µi = 0. We will assume that β belongs to the set

Ωn =

{
β :

n∑

i=1

µ2
i ≤ C2, max

1≤i≤n
|µi| → 0

}
, (4.11)

where C2 is a constant independent of n, while β and µi may depend on n although

this is suppressed in the notations.

Define L̄(·) = 1 − L(·) for any distribution function L(·). Define F (n)(y) =

n−1#[Ti > y] to estimate each H̄i(y), and let ˆ̄G(y) be the Kaplan-Meier estimator

for the censoring survival function Ḡ. Because for each y,

W̄ (h(y) + µi) = F̄i(y) =
H̄i(y)
Ḡ(y)

,

where H̄i(y) = P(Ti > y), h(y) can be estimated naturally by

ḣ(y) = W̄−1
(
F (n)(y)/ ˆ̄G(y)

)
.

Theorem 4.2 Suppose that W has a continuous derivative w bounded away from 0

and ∞ on R1, G is continuous on [0, τG], τF0 ≤ τG,
∫ τG

0
[1− F̃ (u−)]−1dG(u) <∞,

and R(t1, t2) = lim
n→∞

n−1Fi(t1)Fi(t2) exists for any t1, t2 ≥ 0. Then the process
√
n[ḣT̃ (y) − hT̃ (y)] converges weakly on (0, τF0) to a Gaussian process.

4.3.3. Proofs of Theorems 4.1-4.2.

Proof of Theorem 4.1. Write ujn = F̂j(t), u = Fj(t) and

Djn =
√
n[W−1(F̂j(t)) −W−1(Fj(t))] =

W−1(ujn) −W−1(u)
ujn − u

√
n[ujn − u].
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Note that P(Ti ≥ τF0) > 0 for the long-term survival time T ∗
i , hence the conditions

of Theorem 7.3.1 in Shorach and Wellner (1986, pp. 304-306) hold . Then for any

t ∈ (0, τF0), this together with Theorem 3.1 of Gill (1983b) implies that Djn(t∧ T̃ )

converges weakly to Sj(t)Bj (Cj(t))/
√
λjwW

−1(Fj(t)). As a result,

√
n[ĥT̃ (t) − hT̃ (t)] =

q∑

j=1

Djn(t ∧ T̃ ) d→
q∑

j=1

√
λjSj(t)Bj (Cj(t))
w{W−1(Fj (t))}

.

Proof of Theorem 4.2. Note that P(Ti ≥ τF0) > 0 for the long-term survival

time T ∗
i , hence for any t ∈ (0, τF0 ),

√
n( ˆ̄GT̃ − ḠT̃ ) converges weakly to a Gaussian

process [1−G(t)]B(U(t)) (Zheng, 1987, p.72, also Shorach and Wellner, 1986, pp.

327-328), where B is a standard Brownian process and U(t) is defined in (4.9). Let

vn = F (n)(y)/ ˆ̄G(y), v = W̄ (h(y)), and

Dn(y) =
√
n[ḣ(y) − h(y)] =

W̄−1(vn) − W̄−1(v)
vn − v

√
n[vn − v].

Then

vn − v =
Ŵn(h(y), µ)

ˆ̄G(y)
− W̄ (h(y))

= n−1
n∑

i=1

[
I[εi > (h(y) + µi)]

ˆ̄G(y)
− W̄ (h(y) + µi)

]

+ n−1
n∑

i=1

[
W̄ (h(y) + µi) − W̄ (h(y))

]
.

where the first term converges uniformly to a zero mean Gaussian process by the

results in Appendix B of Cheng et al. (1997, p.234), and the second term converges

uniformly to zero by the Taylor expansion |W̄ (h(y) + µi) − W̄ (h(y)| = w(h(y0))µi

with |h(y)−h(y0)| ≤ |µi| (see Doksum,1987, p. 341). Finally, note that [W−1(vn)−

W−1(v)]/(vn − v) converges to 1/wW−1(F̃ (y)) as in the proof Theorem 4.1. The

proof is thus complete.

Remark 4.1. In any sample, ḣ(y) = −∞ for y ≤ T(1), ḣ(y) = +∞ for y ≥

T(n), where T(1), . . . , T(n) are the order statistics of T1, . . . , Tn. To ensure that the
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estimator is finite outside the range of the data with small n, Cheung and Fin

(2001) proposed a modified estimator of h(·), say ĥ(·), i.e.,

ĥ(y) = {ḣ(T+
(1)), y ≤ T(1); ḣ(y), T(1) < y < T(n); ḣ(T−

(n)), y ≥ T(n)}. (4.12)

Since with probability 1 the interval (0, τF0) contains (T(1), T(n)) as n→ ∞. Hence

Theorems 4.1-4.2 but with ḣ(·) replaced by ĥ(·) also hold for y ∈ (0, τF0).

4.4. Pseudo Z-Estimators

Consider a set of random variables Ti, i = 1, 2, . . . , n, to be observed from

probability density functions pθ0,w0 belonging to the following class of semipara-

metric models:

P = {Pθ,w : θ ∈ Θ ⊂ Rq, w ∈W ⊂ Rl},

which is indexed by two sets of unknown parameters:

(i) the parameters of interest θ = (θ1, θ2, . . . , θq) representing the scientific objec-

tive; and

(ii) the nuisance parameters w = (w1, w2, . . . , wl) that are needed in order to fully

specify the probability model.

The parameters θ and w take values in some subsets of the q- and l-dimensional

Euclidean spaces, respectively. As usual, let θ0 and w0 denote the true but unknown

values of the parameters, and Pθ0,w0 the true probability distribution that generates

the observed data.

In order to find a value θ̂ from the set Θ that most likely represents θ0 based

on the observed data, we may use an estimation procedure called the pseudo-

likelihood approach, proposed by Gong and Samaaniego (1981). Its key idea is to

replace the true (but unknown) nuisance parameter w0 with a consistent estimator

ŵ = ŵ(T1, T2, . . . , Tn) in the likelihood function L(θ,w) = L(θ,w|T1, T2, . . . , Tn),
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where ŵ is developed by some ad-hoc approach other than the maximum likelihood

estimator (MLE). Then treat L(θ, ŵ), which is called the pseudo likelihood function,

as a usual likelihood function of θ only. The estimator θ̂ is then obtained by

applying the usual method of maximum likelihood, but on the pseudo likelihood

function L(θ, ŵ). Such a θ̂ is called a pseudo M-estimator.

Instead of restricting to the likelihood-based approach, Hu (1998) considered

more general estimation procedures. Let Ψ : Θ × W → Rq+l be a suitable

deterministic function with values in Euclidean space Rq+l. The “true value”

(θ0, w0) ∈ Θ×W is the solution of Ψ(θ,w) = 0. A natural way to estimate θ0 is to

find a sequence {Ψn : Θ ×W → Rq+l} (which need not be measurable) such that

Ψ is the asymptotic version of {Ψn} as n→ ∞, then replace w by some consistent

ad-hoc estimator ŵ, and finally find θ̂ such that Ψn(θ̂, ŵ) is as close as possible to

zero. This estimator θ̂ is called the pseudo Z-estimator. In some cases, however,

the pseudo Z-estimator θ̂ may only satisfy: Ψn(θ̂, ŵ) = 0p∗(1/
√
n). Hu (1998, p.41)

also considered such cases and show that the asymptotic properties of θ̂ remain

intact.

Hu (1998) further studied the pseudo M-estimator and Z-estimator approaches

and successfully extended the work from parametric models to semiparametric

models by allowing some components of the nuisance parameter w = (w1, w2, . . . ,

wl) to be in an infinite-dimensional space, such as a class of uniformly bounded

real-valued functions endowed with a seminorm ‖ · ‖. Large-sample properties of

the pseudo M-estimator and Z-estimator are extensively discussed in his paper.

In this chapter, inspired by Gong and Samaniego (1981), Hu (1998), and Dok-

sum (1987), we construct the pseudo Z-estimators of regression parameters in model

(2.4).

Similar to the Z-estimators defined in Van der Vaart and Wellner (1996, Chap.
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3.3), we can find pseudo Z-estimators β̂ as follows. Suppose that a set of inde-

pendent random vectors (T ∗
1 , z1), (T

∗
2 , z2), . . . , (T

∗
n , zn) are observed from the semi-

parametric transformation model (4.5). Note that h(T ∗
i ) + z>

i β, i = 1, . . . , n, are

independent random variables with a distribution function Wi defined by (4.6).

Let β ∈ Θn be a finite (q-) dimensional parameter space and h ∈ H ⊂ B, where

B is an infinite-dimensional Banach space. We also say that εi is censored if and

only if T ∗
i is censored.

By (4.5)–(4.6), given the covariate value z, the survival function of T ∗ can be

rewritten as S(t|z) = exp{− exp[h(t) + z>β]} for h(t) ≤ log{− log(1 − p)}. Hence

the conditional density function is

f(t|z) = h′(t) exp
{
h(t) + z>β − exp[h(t) + z>β]

}
. (4.13)

For possibly censored observations {(t1, z1, δ1), . . . , (tn, zn, δn)}, the likelihood func-

tion for (h, β) is then given by

L(h, β|T, δ) =
n∏

i=1

[f(ti|zi)(1 −G(ti|zi))]
δ[S(ti|zi)g(ti|zi)]

1−δ
, (4.14)

whereG(·|z) and g(·|z) are the censoring cdf and density function given z (generally,

we assume that the censorship is independent of covariate z). By (4.13),

L(h, β|T, δ) ∝
n∏

i=1

{
h′(ti) exp(h(ti) + z>i β)

}δi exp
{
− exp(h(ti) + z>i β)

}
, (4.15)

which is valid for any ti ≥ 0 such that h(ti) ≤ log{− log(1 − p)}.

Remark 4.2. If we replace h(t) with some consistent ad-hoc estimator ĥ(t) defined

in (3.5) and h′(t) with some consistent estimator, then we can find pseudo M-

estimator β̂ such that L(β̂, ĥ|T, δ) nearly maximizes L(β, ĥ|T, δ) (see Hu (1998,

p.56) and Van der Vaart (1995)). The estimation of h′(t), however, is more difficult.

Although a reasonable estimator of h′(t) may be given by ĥ′(t) = ∆ĥ(t) = ĥ(t+)−

ĥ(t), there is no guarantee that it is consistent. Fortunately, this difficulty can be
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sidestepped by an alternative approach, pseudo Z-estimator approach, which we

will discuss below.

By (4.15), the score function of the likelihood function L(h, β|T, δ) is given by

Ψ(h, β|T, δ) =
n∑

i=1

l̇β(β, h|T, δ) =
n∑

i=1

{zi [δi − exp(h(ti) + zi
>β)]} . (4.16)

Then the pseudo score function is Ψ(ĥ, β|T, δ) and we can find pseudo Z-estimator

β̂ such that Ψ(β̂, ĥ|T, δ) is as close to zero as possible. In Section 4.5, we will derive

the asymptotic properties of the pseudo Z-estimator.

Finally, we mention the estimation of the susceptible proportion parameters p

and pi = 1− (1 − p)exp(z>
i

β), i = 1, . . . , n. Recall h(t) = log {− log(1 − pF0(t))}, so

that p = 1 − exp{− exp(h(∞))}. Thus a natural estimator of p is given by

p̂ = 1 − exp{− exp(ĥ(T(n)))}, (4.17)

where T(n) = max1≤i≤n Ti, and pi can then be estimated by

p̂i = 1 − (1 − p̂)exp(z>
i β̂)

, i = 1, . . . , n. (4.18)

4.5. Asymptotic Properties of Parameter Estimators

4.5.1. Estimators of covariate coefficients

In this subsection, we investigate some asymptotic properties of estimators.

We should mention that our results are based on the case of independence but with

non-identical distribution (cf. Hu (1998, p.5) together with chap. 3.9 in Shorach

and Wellner (1996)). We first introduce some notations which are convenient in

the theory of empirical process. Throughout the rest of this section, we will denote,

for every (β, h) ∈ Θn×H, the distribution function of X̃ = (T, δ, z) by Pβ,h and its

density function by pβ,h. Let Pn be the empirical distribution of X̃i, i = 1, . . . , n,
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and PnM =
∫
MdPn = n−1

∑n
i=1M(X̃i) for any function M(x). Similarly, PM =

n−1
∑n

i=1

∫
M(x)dP i

β,h(x) for the true distribution of X̃i. Then the log-likelihood

function for single observation is defined as l(β, h|X̃) ≡ log pβ,h(X̃), and the score

function for β is denoted by l̇β(β, h|X̃) = ∂
∂β l(β, h|X̃). The true values of (β, h) is

denoted by (β0, h0), which is in Θn⊗H ⊂ Rq×B. The true distribution and density

function Pβ0,h0 and pβ0,h0 are sometimes simplified to P0 and p0, respectively. And

throughout the rest of this chapter, we assume that P0

[
l̇β(β, h|X̃)

]j
, j = 1, 2,

exist in sense that

P0

[
l̇β(β, h|X̃)

]j
= lim

n→∞

1
n

n∑

i=1

∫ [
l̇β(β, h|x)

]j
dP i

β,h(x) <∞, j = 1, 2. (4.19)

Let l̈.. be the second derivative of β or h. Also assume that P0l̈..(β, h|X̃) <∞ and

Lyapunov condition holds for random variables l̇β(β0, h0|X̃). Hence for independent

observations X̃1, . . . , X̃n, the score function can be written as

1
n

n∑

i=1

∂ logL(β, h|X̃i)
∂β

= Pnl̇β(β, h|·) =
1
n

n∑

i=1

l̇β(β, h|X̃i).

We define the parameter space as follows. Denote the set of all monotone functions

f : R→ [0, 1] by Q. For some large A > 0 and small η > 0, let

C0 = {β : β>β < A}, Cη = {h ∈ H : ‖h− h0‖ ≤ η}, (4.20)

where H = {h : h = log {− log(1 − pF0)} , F0 ∈ Q, p ∈ (0, 1)} and ‖ ·‖ is the usual

supremum norm.

In order to prove our asymptotic properties Theorems 4.3-4.5, we need some

Lemmas 4.1-1.4 and these lemmas follow from the following Conditions 1-5, thus

we first state some conditions from Hu (1998, pp.43-52). Note that p∗(1) in the

following representations indicates that the left-hand side convergence to zero in

outer probability in case that the term on the left is not Borel measurable.

Condition 1. (Stochastic Equicontinuity Condition)

|
√
n(Pn − P0)l̇β(β̂, ĥ) −

√
n(Pn − P0)l̇β(β0, h0)|

1 +
√
n|β̂ − β0|

= op∗(1), (4.21)
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where |β̂ − β0| = op∗(1) and ‖ĥ− h0‖ = op∗(1).

Condition 2.
√
nPnl̇β(β0, h0) = Op∗(1).

For i.i.d. observations and Θn ⊂ Rq, the Pnl̇β(β0, h0) in Condition 2 will be an

average of the form Pnl̇β(β0, h0). So Condition 2 holds automatically if P0 l̇
2
β(β0, h0)

< ∞ by the central limit theorem (Hu, 1998, p.45). For independent but not

identically distributed observations, Condition 2 holds if Lyapunov Condition holds

for l̇β(β0, h0).

Condition 3. (Smoothness Condition) Assume that P0 l̇β(β, h) is differentiable

at (β0, h0) in the sense that there exists a continuous and nonsingular q× q matrix

P0l̈ββ(β0, h0) : (Θn − β0) → Rq and a continuous linear function P0l̈βh(β0, h0) :

Ḣ → Rq such that

|P0l̇β(β, h) − P0l̇β(β0, h0) − P0 l̈ββ(β0, h0)(β − β0) − P0l̈βh(β0, h0)(h − h0)|

= o(|β − β0| +O(‖h− h0‖)

for (β, h) ∈ D =
{
(β, h) : |β − β0| ≤ ηn ↓ 0, ‖h− h0‖ ≤ cn−1/2

}
, where c is a

constant.

Condition 4.
√
nP0 l̈βh(β0, h0)|ĥ− h0| = Op(1).

Condition 5. under the true probability Pβ0,h0 ≡ P0,

√
n

[
(Pn − P0)l̇β(β0, h0)

ĥ− h0

]
d→ Λ =

[
Λ1

Λ2

]
(4.22)

where Λ1 = (Λ11, . . . ,Λ1q)> ∼ Nq (0,Σ11) with Σ11 being a q × q positive definite

matrix, and Λ2 = Λ2(t) is a zero-mean Gaussian process on T with auto-covariance

function Σ22(t, t
′
) = Cov(Λ2(t),Λ2(t

′
)) for any t, t

′ ∈ T. The cross-covariance

function between Λ1i and Λ2(t) for t ∈ T is denoted by Σ1i2 = Cov(Λ1i,Λ2(t)).

Remark 4.3. Conditions 1-4 are used to prove the rate of convergence for esti-

mators and Condition 5 is for the proof of asymptotic normality of estimators.
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In the work of Hu (1998, p.5, pp.48-49), it is allowed the rate of convergence for

ĥ to be nε for some ε > 0. Thus it often requires a lot of work to verify Condition

4 for certain estimator ĥ which converges at a slower rate than
√
n. However for

our problems in this Chapter, we have established the
√
n-consistent estimator ĥ

in Theorems 4.1-4.2, then just as Hu (1998, p.49) show that this condition holds

automatically for
√
n−consistent estimator, since the linear operate l̈βh(β0, h0) is

continuous, which implies that
√
n | l̈βh(β0, h0)[ĥ−h0] |≤

√
nc ‖ ĥ−h0 ‖= Op∗(1).

The following Lemmas 4.1–4.4 are due to Hu (1998, pp.42-56).

Lemma 4.1. (Consistency) Suppose that β0 is the unique solution to P0 l̇β(β, h0) =

0 and ĥ is an estimator of h0 such that ‖ĥ− h0‖ = op∗(1). If

sup
β∈Θn,‖h−h0‖≤ηn

|Pnl̇β(β, h) − P0l̇β(β, h0)|
1 + |Pnl̇β(β, h)| + |P0l̇β(β, h0)|

= op∗(1) (4.23)

for every sequence {ηn} ↓ 0, then β̂ almost solving equation Pnl̇β(β̂, ĥ) = op∗(1)

converges in outer probability to β0.

Lemma 4.2. Suppose that the class of functions

{ψ(β, h) : |β − β0| < γ, ‖h− h0‖ < γ}

is P0-Donsker for some γ > 0, and that P0|ψ(β, h|X) − ψ(β0, h0|X)|2 → 0, as

|β − β0| → 0 and ‖h− h0‖ → 0. If β̂ p∗

→ β0 and ‖ĥ− h0‖
p∗

→ 0, then

|
√
n(Pn − P0)

(
ψ(β̂, ĥ) − ψ(β0, h0)

)
| = op∗(1).

Note that the conditions of Lemma 4.2 provide a set of simple sufficient con-

ditions for Condition 1 to hold, so we will only verify these conditions in Theorem

4.4 below.

Lemma 4.3. (Rate of Convergence) Suppose that β̂ satisfies Pnl̇β(β̂, ĥ) = op∗( 1√
n
)

and is a consistent estimator of β, which is the unique point for which P0l̇β(β, h0),
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and ĥ is an estimator of h0 satisfying ‖ĥ− h0‖ = Op∗(n−1/2) .Then under condi-

tions 1-4,
√
n(β̂ − β0) = Op∗(1).

Lemma 4.4. (Normality) Suppose that β0 is the unique solution to P0l̇β(β, h0) = 0

and ĥ is an estimator of h0 satisfying ‖ĥ − h0‖ = Op∗(1). Then under Condition

1 and Conditions 3-5, we have
√
n(β̂ − β) d→ (−P0 l̈ββ(β0, h0))

−1
Nq (0, V ) , where

V = V ar(Λ1 + P0l̈βh(β0, h0)Λ2).

Now we return to the asymptotic properties of the pseudo Z-estimator β̂. From

(4.15), we can see that the log-likelihood function for a single observation is given by

l(β, h|x̃) = δ
{
log(h

′
(t)) + h(t) + z>β

}
− exp{h(t) + z>β}, and the first derivative

of l(β, h|x̃) with respect to β is

l̇β(β, h|x̃) = z {δ − exp(h(t) + z>β)} . (4.24)

Furthermore, since E {exp(2h(T ))} <∞ (which holds for exponential F0(t)) and

E(δ2) = E(δ) = P(T ∗ ≤ c) =
∫

R

[1 −G(u)]dF (u) <∞, (4.25)

then taking the population average in (4.24), we have

P0l̇β(β, h|X̃) <∞. (4.26)

Also by Lebesgue’s Dominated Convergence Theorem and (4.7),

P0|l̇β(β, h)) − l̇β(β0, h0))|
2

= op(1), (4.27)

where |β − β0| ≤ ηn ↓ 0 and ‖h − h0‖ ≤ cn−1/2. Note that β0 is the unique point

such that l̇β(β, h0|x̃) = 0, we obtain β̂ by solving l̇β(β, ĥ|x̃) = 0.

Theorem 4.3. Suppose that covariate |z| ≤ C, C is a positive constant; p ∈ (0, 1),

parameter spaces are as in (4.20); ĥ is a consistent estimator of h given in Section

4.3. Then β̂ solves equation Pnl̇β(β̂, ĥ) = op∗(1/
√
n) almost surely and converges

in outer probability to β0, where l̇β(β, h) is defined in (4.24).
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Theorem 4.4. Under the conditions of Theorem 4.3,
√
n(β̂ − β0) = Op∗(1).

Theorem 4.5. If β is univariate, then under the conditions of Theorem 4.3 and

(4.7),
√
n(β̂ − β0) is asymptotically normal with mean 0 and variance V .

Remark 4.4. For the asymptotic variance V of
√
n(β̂−β) in Theorem 4.5, a precise

representation can be found in Corollary 3.1.4 of Hu (1998, p.54) for our i.i.d. setup

since there exists a zero-mean α(X̃, β0, h0) such that
√
nP0l̈ββ(β0, h0)[ĥ − h] =

√
nPnα(·, β0, h0) + op(1), where α(·, β0, h0) is defined by (3.1.21) in Hu (1998,

p55). In such a case

V = V ar[l̇β(β0, h0|X̃)] + V ar[α(X̃ , β0, h0)].

Without such an α(X̃, β0, h0), however, the close form of V is not available. In that

case we can estimate V by bootstrap method, which will be discussed in Section

4.5.3 below.

4.5.2. Estimator of susceptible proportion

We next investigate the asymptotic properties of the estimators for susceptible

proportion parameters p and pi, which are defined in Section 4.4 as

p̂ = 1 − exp{− exp(ĥ(T(n))}

and

p̂i = 1 − (1 − p̂)exp(ziβ̂)
, i = 1, . . . , n,

where T(n) = max1≤i≤nTi.

Ti’s are independent but not necessarily identically distributed. The cdf of Ti

is given by Hi = 1− (1 − Fi)(1 −G), where 1− Fi(t) = S(t, zi) is defined in (4.4).

Mimicking Theorems 3.1–3.2 in Maller and Zhou (1996), we have the following

Theorems.
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Theorem 4.6. If τF0 ≤ τG, supi|zi| < C, and β is given in (4.20), then T(n) ↑ τG

a.s.

Theorem 4.7. Suppose that h is continuous at τG in case τG < ∞. Under the

conditions of Theorems 4.2 and 4.6, p̂ → p a.s. and
√
n(p̂ − p) converges in

distribution to a zero mean normal variable.

Similarly we can discuss the asymptotic properties of the estimators of p̂i,

i = 1, . . . , n. The details are omitted here.

4.5.3. Bootstrap methods for standard errors of pseudo Z-estimators

In Subsections 4.5.1–4.5.2, we discussed the asymptotic properties of estima-

tors. For the purpose of statistical inference, however, we also need the asymptotic

variances of β̂ and p̂, which appear to be intractable due to lack of explicit forms.

Therefore we resort to bootstrap methods to estimate the variances of the estima-

tors.

The bootstrap technique was introduced by Efron (1979) originally as a tool for

“estimating” ad-hoc-estimators that cannot be calculated explicitly due to lack of

a closed presentation using a Monte-Carlo study (see also Efron, 1982, and Efron

and Tibshirani, 1986). Meanwhile, results of Singh (1981), Bickel and Freedan

(1981) and others show that bootstrap as an estimator for the distribution of

a (standardized) estimator often gives an even better approximation to the true

distribution than the limiting distribution. It may be expected that similar results

would also hold for our model as well.

We emphasize that our model (4.5) is essentially from the Cox proportional

hazards model. Since the PH model allows an “improper” baseline function, any

bootstrap method for the PH model should naturally apply to our model as well.

For the bootstrap method related to the PH model, Efron and Tibshirani (1986)
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simply re-sampled from the triples (Ti, zi, δi), i = 1, . . . , n, ignoring the special

structure provided by the PH model. This plan is likely to be “model-robust” (cf.

Hjort, 1992) in that it is less sensitive to departures from the PH model. In this

chapter, we follow Efron and Tibshirani (1986) and use the Monte Carlo algorithm

in two steps to obtain our bootstrap estimators as follows.

(i) We sample with replacement from the triples {(T1, z1, δ1), . . . , (Tn, zn, δn)},

which is given a probability mass of 1/n at each point (Ti, zi, δi), i = 1, . . . , n.

Hence we have bootstrap samples, say d∗(1), . . . , d∗(B). For each of the boot-

strap data set d∗(b), evaluate ĥ∗(b) (hence p̂∗(b) and p̂∗i (b)) and β̂∗(b) for

b = 1, . . . , B;

(ii) Calculate the sample mean and standard deviation of the statistics of interest.

For example, the mean and standard deviation of β̂∗ are given respectively by

β̂∗(·) =
1
B

B∑

b=1

β̂∗(b) and σ̂β =

(
1

B − 1

B∑

b=1

{β̂∗(b) − β̂∗(·)}
2

)1/2

. (4.28)

Before closing up this section, we would also mention other bootstrap schemes

for the PH model. Recently, Karrison (1990), Loughin (1995, 1998) and Loughin

and Koeler (1996) investigated alternative bootstrap techniques for the PH models,

including a residual bootstrap (Loughin, 1995) and a semiparametric bootstrap

(Loughin and Koehler, 1996). We may follow Loughin and Koehler (1996) to

bootstrap data (T ∗b
i , c∗i ), i = 1, . . . , n, from Ŝi and Ĝ, respectively while keeping

z∗i = zi and Ŝi(t) = exp
{
− exp(ĥ(t) + z>i β̂)

}
. ĥ(t), β̂ are reasonable estimators of

h and β (cf. Hjort, 1992, p.384) and the Kaplan-Meier estimator Ĝ is a suitable

estimator for the censoring distribution of G. This is a natural semiparametric

bootstrap technique for the PH models. According to Karrison (1990), Efron and

Gong (1983) remarked that these two methods are “asymptotically equivalent but

can perform quite differently in small-sample situation”. This bootstrap scheme

may be of interest for further research work.
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4.5.4. Proofs

Proof of Lemma 4.1. See Hu (1998, p.42) Theorem 3.1.1.

Proof of Lemma 4.2. See Hu (1998, p.44) Lemma 3.1.1.

Proof of Lemma 4.3. See Hu (1998, p.49) Theorem 3.1.3.

Proof of Lemma 4.4. See Hu (1998, p52) Corollary 3.1.2.

Proof of Theorem 4.3. To prove the consistency of pseudo Z-estimator β̂, by

Lemma 4.1 we only to show that

sup
β∈Θn,‖h−h0‖≤ηn

|Pnl̇β(β, h) − P0l̇β(β, h0)| = op∗(1) (4.29)

for every sequence {ηn} such that ηn ↓ 0. Since

|Pnl̇β(β, h) − P0 l̇β(β, h0)| ≤ |(Pn − P0)l̇β(β, h)| + |P0(l̇β(β, h) − l̇β(β, h0))|,

and by (4.26) the second term obviously tends to zero when |h − h0| ≤ ηn ↓ 0, it

suffices to show that the class of functions Fη ≡ {l̇β(β, h) : β ∈ C0 ⊂ R, |h−h0| ≤ η}

is a VC-class for some η > 0, where C0 is defined in (4.20). This implies that the

uniform strong law of large numbers holds, i.e., supf∈Fη
(Pn−P0)f

p→ 0 (see Van der

Vaart and Wellner (1996, Chap. 2.6–2.7) for details). We first note the following

facts:

(1) The set Q of all monotone functions is a Donsker for every probability measure

by Van der Vaart and Wellner (1996, Example 2.6.21). Also, similar to the

proof of Lemma 5.1.1 in Hu (1998, p.110), we can verify that Qp = {pF0 : F0 ∈

Q, p ∈ (0, 1)} is a VC-class by the boundedness of p ∈ (0, 1).

(2) As φ(x) = log(− log x) is a monotone function, H = {h = log{− log(1−pF0)} :

F0 ∈ Q, p ∈ (0, 1)} is a VC-class by Lemma 2.6.18 of Van der Vaart and

Wellner (1996, p. 147). Hence the Cη defined in (4.20) is a VC-class.

89



These imply that Fη is a VC-class and so (4.29) holds. The consistency of β̂

then follows from Lemma 4.1.

Proof of Theorem 4.4. First note that

l̇β(β, h) − l̇β(β0, h0) = z {exp(h0) exp(z>β0) − exp(h) exp(z>β} . (4.30)

To verify the stochastic equicontinuity condition:

|
√
n(Pn − P0)(l̇β(β̂, ĥ) − l̇β(β0, h0)| = op∗(1), (4.31)

let Fγ = {z(exp(h0) exp(z>β0) − exp(h) exp(z>β)) : |β − β0| ≤ γ, ‖h− h0‖ ≤ γ}.

Since φ(x) = exp(x) is a monotone function, the class of functions Fγ is VC-class

by Lemma 2.6.18 in Van der Vaart and Wellner (1996, p.147). Thus (4.31) follows

from (4.27) and Lemma 4.2.

Next, the Condition 3 holds by (4.26)-(4.27). Moreover Pnl̇β(β0, h0) converges

in distribution to a normal random variable by the central limit theorem (under

Lyapunov Condition). Thus
√
n|β̂ − β| = Op∗(1) by Lemma 4.3.

Proof of Theorem 4.5. By Theorems 4.1 and 4.2 in Section 4.3 together with

Slutsky’s theorem and the central limit theorem, we can see that (4.22) holds with

Λ1 being normally distributed with mean zero and positive variance, and
√
n(ĥ−h0)

converges weakly to Gaussian process Λ2. Hence by Lemma 4.4,
√
n(β̂ − β) is

asymptotically normal with mean 0 and variance {P0l̈ββ(β0, h0)}
−2
V , where V =

V ar(Λ1 + P0 l̈βh(β0, h0)Λ2).

Proof of Theorem 4.6. Note that supi τHi = τG and P(T(n) ≤ y) =
∏n

i=1Hi(y).

Under the assumptions of Theorem 4.7 we have, for any y < τG,

∞∑

n=1

P(T(n) ≤ y) =
∞∑

n=1

n∏

i=1

Hi(y) <∞.

So
∑

P(Y(n) ≤ y) converges for y < τG and T(n) ≤ τG a.s. It then follows from the

Borel-Cantelli lemma that T(n) → τG a.s.
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Proof of Theorem 4.7. Note that

ĥ(T(n)) − h(τG) = {ĥ(T(n)) − h(T(n))} + {(h(T(n)) − h(τG)},

and h(T(n)) → h(τG) a.s. by Theorem 4.6, where ĥ is defined in Theorems 4.1–4.2.

Using Slutsky theorem we can prove that p̂ → p a.s., while the convergence of
√
n(p̂ − p) to a normal distribution follows from the standard delta-method.

4.6. Some Simulation Results

In the simulation study, we compare the performance of the pseudo Z-esti

mators (PZEs) with the true values. The calculations can be seen more clearly in

special cases. We consider a two-sample problem with exponentially distributed

lifetimes. The two samples are of sizes, say, n1 and n2, respectively, n1 + n2 = n,

with sample membership being indicated by the dummy variable

zi =
{
−1, if individual i is in sample 1
1, if individual i is in sample 2 , i = 1, 2, . . . , n.

Data are generated from the survival functions S1(t) = (1 − pF0(t))
exp(−β) (with

respect to sample 1) and S2(t) = (1 − pF0(t))
exp(β) (with respect to sample 2). Let

F0(t) be an exponential distribution with parameter ψ = 0.058. The proportion of

susceptible without covariate effects is p = 0.90 and the coefficient of covariates is

β = 0.3581. Censoring times c are generated from a uniform distribution between

0 to 100. For this simulation, ĥ is given in Theorem 4.2 and samples of sizes

n1 = n2 = 100 and n1 = n2 = 400 were replicated 10000 times.

Let p1 and p2 denote the susceptible proportions in samples 1 and 2 re-

spectively. Then p1 = 1 − (1 − p)exp(−β) = 1 − 0.1exp(−0.3581) = 0.8000 and

p2 = 1 − (1 − p)exp(β) = 1 − 0.1exp(0.3581) = 0.9629. Let (p̂(1), p
(1)
1 , p

(1)
2 , β(1))

and (p̂(2), p
(2)
1 , p

(2)
2 , β(2)) denote the estimators of (p, p1, p2, β) under the pseudo

Z-estimator approach with sample sizes n1 = n2 = 100 and n1 = n2 = 400 re-
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spectively. The means and the standard deviations of the simulated estimates are

displayed in Table 4.1 below.

Table 4.1. Simulation results on the estimators of β = 0.3581 and p = 0.9

β(1) β(2) p
(1)
1 p

(1)
2 p

(2)
1 p

(2)
2 p̂(1) p̂(2)

Mean 0.3555 0.3565 0.7691 0.9483 0.7725 0.9504 0.8761 0.8788

STD 0.072 0.0388 0.0551 0.0201 0.0286 0.0101 0.0331 0.0168

From Table 4.1, we see that the pseudo Z-estimates are reasonably close to

the true values of the parameters respectively, and the accuracy improves as the

sample sizes increase from n1 = n2 = 100 to n1 = n2 = 400.

We also performed bootstrap analysis to estimate our parameters for com-

paring its effects with the above Monte Carlo simulations. The bootstrap sam-

ples are re-sample from one set of data {(Ti, zi, δi), i = 1, . . . , n} with sample size

n1 = n2 = 100 and another set with n1 = n2 = 400, generated by the Monte Carlo

simulations described above. In each case the number of resamples is B = 200. We

then use (4.23) to calculate the means and standard deviations from the resamples.

The results are reported in Table 4.2 below, where the notations are of the same

meanings as in Table 4.1.

Note that the standard deviations in Table 4.1 are from replications with

known parameter values, which cannot be obtained in practice with one sample.

The standard deviations in Table 4.2, on the other hand, are calculated from the

resamples of a single sample, and hence the same can be done in practical situations

with one set of data.

Table 4.2 shows that the bootstrap pseudo Z-estimators are also close to the

true values of the parameters. It is interesting to note that the bootstrap estima-

tors give somehow better approximations to the true values of parameters than

the averages of a large number (10,000) of replicates from ordinary Monte Carlo
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simulations, and the standard deviations obtained from the bootstrap are close to

those from Monte Carlo simulations.

Table 4.2. Summary of bootstrap estimators of β = 0.3581 and p = 0.9

β(1) β(2) p
(1)
1 p

(1)
2 p

(2)
1 p

(2)
2 p̂(1) p̂(2)

Mean 0.3499 0.3517 0.7701 0.9484 0.7992 0.9579 0.8761 0.8928

STD 0.0831 0.0364 0.0521 0.0098 0.0285 0.0091 0.0228 0.0167

4.7. An Example of Application in Criminology

An important issue of interest in criminology is the “recidivism” of individuals,

who return to prison (or are rearrested) some time after being released from the

last imprisonment. Of interest is the proportion of recidivists among those released

after their first imprisonment, and the rate of return to prison (or re-arrest).

If we view the time that an individual remains out of prison, or the time

elapsed before a rearrest, as the “survival time”, then we can fit the investigation

into the area of survival analysis. The return times are censored by the need to

restrict follow-up of released prisoners to a finite time, such as a “cutoff” date

for the records. Since prisoners were released at different time points, however,

the recidivism times may be censored at any point from the time of their initial

release till the cutoff time. A proportion of released prisoners may never commit

another crime – they are the “long-term survivors”, also referred to as “immune”

individuals, in our terminology.

We now demonstrate the application of the methodology in this chapter on a

set of recidivism data consisting of 5324 individuals released from Western Aus-

tralian prisons. The data record the times of successive arrests of these individuals

with a number of covariates. For simplicity of illustration, we consider the “sur-
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vival time” to the second arrests, and the effects of one covariate: “bail” or “no

bail and the others”. Individuals are classified into two groups: Group 1 consists

of 2374 individuals of “bail” and Group 2 has 2950 individuals with “no bail and

the others”.

Figure 4.1 shows the Kaplan-Meier estimators for the second rearrest times,

respectively, of the two groups, with the proportions 0.7673 for Group 1 and 0.8391

for Group 2.

The covariate z is taken as z = 1 for Group 1 and z = −0.8047 (cf. (4.7))

for Group 2. Based on our semiparametric transformation model, the pseudo Z-

estimators of the parameters p, p1, p2, and the covariate coefficient β, are p̂ =

0.8044, p̂1 = 0.7562, p̂2 = 0.8449 and β̂ = −0.1451, which show that p̂1 and p̂2 are

close to the Kaplan-Meier estimates 0.7673 and 0.8391.

Table 4.3 below gives the bootstrap pseudo Z-estimates and their standard

deviations for the parameters.

Table 4.3. Bootstrap pseudo Z-estimates and standard deviations

for the recidivism data

p̂ p̂1 p̂2 β̂

Mean 0.8056 0.7586 0.8451 −0.1424

STD 0.0229 0.0257 0.0213 0.0182

4.8. Concluding Remarks

In this chapter we propose a new methodology to analyze survival data with

long-term survivors and covariates, which in particular covers the widely applied
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proportional hazards models. Although semiparametric transformation models

have been extensively studied for censored samples, the previous methods are

mainly based on the likelihood functions and little has been done on semipara-

metric regression. Our approach is based on a semiparametric transformation of

the response variable. We first use semiparametric techniques to estimate the un-

known transform function, then use the pseudo Z-estimator method to estimate

the coefficients of covariates. The asymptotic properties of the estimators are in-

vestigated, and the estimation of susceptible proportions is discussed based on the

estimator of the semiparametric transformation. This new “two-step” estimation

procedure provides a simple and effective methodology to analyze survival data

with long-term survivors and covariates.

The simulation study indicates that the proposed procedure can produce effi-

cient estimators for both semiparametric and parametric components of the model.

An application of the proposed model is also demonstrated with a set of crime data

on the issue of recidivism.

The semiparametric transformation models we have considered assume a lin-

ear relationship between the transformed response variable and the covariates. In

practice, however, this may not always be adequate to model the relation between

the response and covariates. Hence a useful extension to our work may allow a

non-linear function g(z) of covariates to replace the linear form z>β. The function

g(z) may be either parameterized or nonparametric. Alternatively, if the infor-

mation suggests that h(T ) is linearly dependent on some covariate vector z, but

unknown on other covariate w, then a partially linear model h(T ) = z>β+g(w)+ε

may be considered. These extensions are certainly interesting topics that require

further research efforts. Another issue worth for further study is whether and how

alternative approaches, such as the Class-k method proposed by Zheng (1984), can

be applied to the semiparametric transformation models considered in this chapter.
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Chapter 5

Discrete-time Survival Analysis for

Survival Data with Long-term Survivors

5.1. Introduction

Conventional event history models typically assume that the entire popula-

tion is at risk of experiencing the event of interest throughout the observation

period. There are, however, many situations where some individuals will never

experience such events as death from a particular cancer or arrest for a crime, who

are commonly referred to as cured individuals, immunes, or long-term survivors.

For continuous-time survival analysis, two types of models have been prevalent in

handling survival data with long-term survivors. One is the mixture model, which

was developed by Farewell (1982) and further researched by, among others, Kuk

and Chen (1992), Peng and Dear (2000), Sy and Taylor (2000), Yamaguchi (1992),

which assume a latent subpopulation that can be considered a priori to have a zero

risk of experiencing the event. In such a situation, it may be preferable to model

jointly the probability of long-term survivors and the timing of event occurrence.

Another model, which will be referred to as the non-mixture model, incorporates the

probability of cure into the proportional hazards model by assuming a bounded cu-

mulative hazard. This model has been studied by Chen, Ibrahim and Sinha (1999),

Tsodikov (1998) and Yakovlev and Tsodikov (1996) and so on, and is different from

the mixture model in many aspects.

When covariates are included, however, mixture models do not have a pro-

portional hazards structure even if the survival function for the timing of event

occurrence does. For non-mixture models, on the other hand, Chen et al. (1999)
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showed that if the survival function for the timing of event occurrence has pro-

portional hazards, then the distribution for the entire population no longer does

so. In order to retain the proportional hazards structure, Maller and Zhou (1996)

proposed an alternative model via a different motivation from other cure models,

but it has not been further investigated in the literature.

Although continuous-time survival models are suitable and frequently used in

many settings, discrete-time survival models are often more natural in social and

behavioral science applications, where the data typically possess three features:

(i) The event histories are discrete times. This is because in some situations

events can only occur at regular, discrete time points. In other cases, the

available data may only record particular time intervals in which each event

occurs (Allison, 1982).

(ii) There are often ties among the uncensored event histories (failure times).

(iii) Survival data may contain concomitant information, such as demographics,

account balances and payments associated with economic values for customer

databases, and the occurrence of other events such as the acquisition of new

products and services. The covariates are often time-dependent as present

single irreversible events may occur at some point in the customer life time

such as paying off an installment loan.

Therefore, discrete-time survival analysis models may be more appropriate to

model such data as the economic values for customer retention, and are often well

suited to analyze these kinds of data.

Discrete-time survival analysis techniques have recently been used to analyze

customer history data extracted from operational customer databases, which con-

tain histories of vital events such as cancelation of products and services (churn),
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downgrading, acquiring add-on products or upgrading, product return, loan pre-

payment etc. (Potts, 2004). The purpose was to build predictive models for cus-

tomer retention, cross-selling and other database marketing endeavors; cf. Linoff

(2004), Mosler (2003), Rosset et al. (2002), Baesens et al. (2004), Van den poel

and Lariviere (2004), Lariviere and Van den poel (2004, 2005), Stepanova and

Thomas (2000), among others. In order to ensure the success of a customer re-

tention management (CRM ) strategy, it is crucial that customers remain loyal at

least to a certain extent to the company in case. This is a latest research topic of

long-life customer within the group of customers in terms of spending and its evo-

lution (Reinartz and Kumar, 2000). The economic value of long-life customers has

been widely recognized in the literature, which includes: (a) Long-life customers

buy more (Paulin et al., 1998), and, if satisfied, may provide new referrals through

positive word-of-mouth for the company (Colgate et al., 1996); (b) Long-life cus-

tomers become less costly to serve due to the bank’s great knowledge of the existing

customer and to decreased servicing costs (Paulin et al., 1998). These economic

values for customer retention with long-life customers can be naturally modeled

by discrete-time model for survival data with long-term survivors - representing

long-life customers.

There has been plenty of literature to investigate survival data with long-term

survivors, such as Kuk and Chen (1992), Yakovlev (1992), Yakovlev et al. (1993),

Maller and Zhou (1996), Chen et al. (1999), and Tsodikov et al. (2003), among

others. However, apart from Stephen (2001), little has been done to model such

discrete-time observations as the customer economic values with long-life customers

by using existing models. Inspired by the works of Linoff (2004) and Potts (2004),

in this chapter we will first review some existing discrete-time survival models

that have been used to analyze survival data from social and behavioral science,

and then extend them to accommodate long-term survivors. The proposed models
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and approaches can be directly applied to analyze survival data from social and

behavioral science such as the economic values for customer retention with long-life

customers.

In Sections 5.2-5.3 next, we elaborate on specifications of existing discrete-

time survival models and their extensions to allow long-term survivors. Estimation

problems are discussed in Sections 5.4-5.5, and large-sample properties of the pro-

posed estimators are presented in Section 5.6. Section 5.7 reports some simulation

results, and an example of application is shown in Section 5.8. Finally, Section 5.9

concludes.

5.2. Existing Model Specifications

In this section, we specify some discrete-time survival analysis models, which

will be extended to accommodate long-term survivors in Section 5.3. Models in

Subsections 5.2.1-5.2.3 have been discussed by many authors. The grouped related

risk model was given by Kalbfleisch and Prentice (1973). The related risk model

was introduced by Cox (1972), which has been discussed extensively with regard to

inferential problems, and relevant references are given in Chapter 4 of Kalbfleisch

and Prentice (2002). The discrete related risk model was proposed by Prentice

and Kalbfleisch (2003). Cox (1972) suggested the linear logistic model for the

discrete-time model. The piecewise exponential model can be found, for example,

in Holford (1976), and was used by Potts (2004) to model customer event history

data.

Let T0 be a discrete random variable taking values a1 < a2 < · · · with associ-

ated probability function

f0(ai) = Pr(T0 = ai), i = 1, 2, . . . , (5.1)
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and survival function

S0(t) =
∑

l:al>t

f0(al). (5.2)

The hazards at ai, denoted by λi0, is defined as the conditional probability of failure

at ai given that the individual has survival to ai, i.e.,

λi0 = Pr(T0 = ai|T0 ≥ ai) =
f0(ai)
S0(ai−)

, i = 1, 2, . . . , (5.3)

where S0(a−) denotes the left limit of S0(t) at a. Then the survival function

and the probability function can be expressed respectively by (see Kalbfleisch and

Prentice, 2002, pp.8-9)

S0(t) =
∏

i:ai≤t

(1 − λi0) (5.4)

and

f0(ai) = λi0

i−1∏

l=1

(1 − λl0). (5.5)

As in the continuous-time case, the discrete hazards function (λi0, i = 1, 2, . . .)

uniquely determines the distribution of the failure time variable T0.

5.2.1. Grouped related risk model

A discrete analog of the related risk model with fixed covariates can be ob-

tained by applying the survival function relationshipSs(t) = [S0(t)]
exp(z>β) directly

to a discrete model. Let the failure time T s given basic covariates z have a discrete

distribution with masses at 0 ≤ a1 < a2 < · · · . Let z> = (z1, z2, . . . , zq) be a vector

of covariates and β a vector of regression coefficients to be estimated, where >

denotes the transpose, and S0(t) represent the baseline survival function for z = 0.

The corresponding survival function for covariates z is

Ss(t) =
∏

i:ai≤t

(1 − λi0)
exp(z>β)

. (5.6)

The hazards function at ai for covariate z is then

λs
i = 1 − (1 − λi0)

exp(z>β)
. (5.7)
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It is of interest to note that the discrete model (5.7) can also be obtained by

grouping the continuous model with λ0(t) being a continuous function of t,

λs(t, z) = λ0(t) exp(z>β). (5.8)

Thus if continuous failure times arising from the related risk model (5.8) are

grouped into disjoint intervals [0, c1), [c1, c2), . . . , [cK−1, cK = ∞), the hazards of

failure in the ith interval for an individual with covariate z is

Pr {T s ∈ [ci−1, ci)|T s ≥ ci−1} = 1 − (1 − λi0)
exp(z>β)

, (5.9)

where λi0 = exp
[∫ ci

ci−1
λ0(u)du

]
. This discrete model is then the uniquely appro-

priate one for grouped data from the continuous related risk model. If the discrete

baseline cumulative hazards function is written as Λ0(t) =
∑

ai≤t λi0, then model

(5.7) can be rewritten as

dΛs(t, z) = 1 − [1 − dΛ0(t)]
exp(z>β)

. (5.10)

Model (5.10) is grouped related risk model proposed by Kalbfleisch and Prentice

(1973).

5.2.2. Discrete related risk model

In terms of hazards relationship, a simplest discrete, mixed or continuous

model proposed and discussed by Kalbfleisch and Prentice (2003) is given by

dΛs(t, z) = dΛ0(t) exp(z>β), (5.11)

which retains the multiplicative hazards relationship of the proportional hazards

structure. Kalbfleisch and Prentice (2003) refer to this model as the discrete and

continuous related risk model. In the continuous case, model (5.11) reduces to (5.8)

and its survival function is given by Ss(t) = [S0(t)]
exp(z>β). For the discrete case,

by (5.4), the corresponding survival function can be depicted by

Ss(t) =
∏

i:ai≤t

[
1 − λi0 exp(z>β)

]
, (5.12)
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where λi0 is the hazards function corresponding to the baseline survival func-

tion S0(t). The model has the advantage of retaining the relative risk interpre-

tation of multiplicative factor exp(z>β) for both the continuous and discrete cases

(Kalbfleisch and Prentice, 2002, 2003).

5.2.3. Discrete logistic model

The discrete-time logistic model was proposed by Cox (1972), which specifies

a linear log odds model for the hazards probability at each potential failure time.

Thus if Λ0(t) is an arbitrary discrete or continuous cumulative hazards function,

then the hazards for an arbitrary z is dΛs(t, z), which satisfies

dΛs(t, z)
1 − dΛs(t, z)

=
dΛ0(t)

1 − dΛ0(t)
exp(z>β). (5.13)

This is a linear logistic model with an arbitrary location parameter corresponding

to each discrete failure time point. For a continuous Λ0(t), model (5.13) also

reduces to (5.8). The effect of the covariates is to act multiplicatively, not on

the hazards but on the discrete odds (Kalbfleisch and Prentice, 2003). Thus the

interpretation of exp(z>β) is as an odds ratio rather than a related risk. This

model was considered by many authors, such as Kalbfleisch and Prentice (2002,

2003) and Potts (2004).

After some algebra, we can find from (5.13) that for the discrete-time case,

λs
i =

exp(di0 + z>β)
1 + exp(di0 + z>β)

.

Hence the survival function is given by

Ss(t) =
∏

i|ai≤t

[
1 − exp(di0 + z>β)

1 + exp(di0 + z>β)

]
, (5.14)

where di0 = log[λi0/(1 − λi0)].
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5.2.4. Piecewise exponential model

The piecewise exponential model (Holford, 1976) allows for a wide variety of

hazard rate shapes. Assume that the period of follow-up is divided into K intervals

(b0 = 0, b1], (b1, b2], . . . , (bK−1, bK = ∞). It is further assumed that the baseline

hazard rate λi0(t) is constant over each interval (bi−1, bi]. If the hazards rate is

approximated by a step function

λs
i (t) = λi0(t) exp(z>β), t ∈ (bi−1, bi], (5.15)

then the survival times within each interval are exponentially distributed. The

distribution function F s(t) = 1 − Ss(t) is then given by

F s(t) = 1 − exp

{
−λs

i (t − bi−1) −
i−1∑

l=1

λs
l (bj − bj−1)

}
(5.16)

for t ∈ (bi−1, bi], i = 1, 2, . . . ,K. We note that when K = 1, F s(t) reduces to

the parametric exponential model. This model was also considered by Chen et

al. (1999) (see, also Ibrahim et al., 2001), where model (5.16) is referred to as a

semiparametric model.

Before closing this section, we should mention that models (5.10), (5.11) and

(5.13) may be encompassed by the following formulation

h[dΛs(t, z)] = h[dΛ0(t)] + z>β, (5.17)

where h is a monotone-increasing and twice-differentiable function mapping from

[0,1] into [−∞,∞] with h(0) = −∞ (Kalbfleisch and Prentice, 2002). Obviously

these models all reduce to the Cox model for the continuous case, and very similar

if all of the discrete hazard contributions λi0 are small (Kalbfleisch and Prentice,

2002). Furthermore, Steele (2003) also considered the logistic model in which the

hazard rate in (5.4) is modeled as λi0 = exp(z>β)/(1 + exp(z>β)) in the sense that

the effect of covariates is on the baseline hazard rate λi0, which is different from

the above models introduced in Sections 5.2.1-5.2.4.
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5.3. Cure Models with Covariates

A cure model is applicable when there are “long-term survivors” present in

survival data. As a result, cured subjects must be censored since they never fail.

In contrast, “susceptible” subjects will eventually experience the event if they are

followed for long enough. For continuous survival times it is common to model

survival data with long-term survivors using mixture cure models. Thus the pop-

ulation is a mixture of two latent subpopulations: one consists of susceptibles who

have a positive risk of experiencing the event, even though this may not be ob-

served during the study period; and the other consists of long-term survivors (or

cured subjects) who are not subject to the event of interest, hence will be observed

up to the end of study and so always appear as right-censored.

Recently, non-mixture cure models have been proposed to model survival data

with long-term survivors. In this section, we review the approaches for cure models

with covariates. Three different types of approaches are prevalent in the literature,

which are reviewed in Subsections 5.3.1–5.3.3. We will extend these models to

accommodate long-term survivors.

5.3.1. Mixture cure models with covariates

A mixture model formulation is an attractive approach to analyzing such data,

in that it contains two parts which can be interpreted separately by adding structure

to the standard survival model. The model can be formulated as follows. Assume

that the failure time can be decomposed as

T ∗ = ηT s + (1 − η)∞, (5.18)

where T s <∞ denotes the failure time of a susceptible subject and η indicates, by

the value 1 or 0, whether the sampled subject is susceptible or not. If we assume

the proportion of the susceptibles to be Pr(η = 1) = p, where p ∈ (0, 1], then the

105





in the works of Kuk and Chen (1992), Sy and Taylor (2000) and Peng and Dear

(2000), in which they considered a semiparametric Cox proportional hazards model

for the failure time process.

For the discrete case of S0(t), Steele (2003) modeled it as

S0(t) =
∏

i:ai≤t

(1 − λi0)

with λi0 of a logistic form

λi0 =
exp(x>i γ)

1 + exp(x>i γ)
.

Note that for the continuous case of Ss(t) our models (5.6), (5.12) and (5.14) all

reduce to Cox model, thus model (5.19) reduces to the case of Kuk and Chen

(1992). For the discrete case of Ss(t), however, this is no longer the case and no

literature other than Steele (2003) accommodates a cure model with a discrete-

time susceptible distribution. In this section, we will model a cure model with a

discrete-time Ss(t). Following Kuk and Chen (1996), our idea is to model (5.19)

with those Ss(t) defined in Section 5.2, i.e., S0(t) is replaced by Ss(t) in (5.19). As

preliminary results, we now elaborate on the survival function S(t) and the related

hazard rate λ. Note from (5.19), (5.5) and (5.3) that the survival function S(t),

the probability function f(ai) and the hazard rate λi can be defined as below:

S(t) = pSs(t) + (1 − p) = 1 − pF s(t), (5.22)

f(ai) = S(ai−) − S(ai) = pfs(ai) = pλs
i

∏i−1
l=1(1 − λs

l ), (5.23)

λi =
f(ai)
S(ai−)

=
pfs(ai)

1 − pF s(ai−)
=

pfs(ai)
pSs(ai−) + (1 − p)

. (5.24)

Then we obtain corresponding discrete-time cure models by inserting Ss(t) (or

F s(t)), fs(ai) and λs
i given in Subsections 5.2.1-5.2.4 into models (5.22)-(5.24).

For example, for grouped related risk cure model we have

S(t) = p





∏

i:ai≤t

(1 − λi0)
exp(z>β)



 + (1 − p), (5.25)
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f(ai) = p
{

1 − (1 − λi0)
exp(z>β)

} i−1∏

l=1

(1 − λl0)
exp(z>β)

. (5.26)

The hazards function at ai for covariate z is then given by λi = f(ai)/S(ai−).

Finally we should note that our structure for discrete-time cure models is different

from that of Steele (2003), in which the effect on covariates is added to (5.19) by

S(t) = p
∏

i:ai≤t(1 − λi0) + (1 − p) with λi0 = exp(z>i β)/(1 + exp(z>i β)).

5.3.2. An alternative mixture model with covariates

It is easy to see that in the presence of covariates, the aforesaid mixture cure

models S(t) does not have a proportional hazards structure even if Ss(t) does.

In this subsection, we study an alternative mixture model with covariates, which

does have a proportional hazards structure and was proposed by Maller and Zhou

(1996) but has not further investigated so far. Their idea is to extend Cox model

S(t) = [S0(t)]
exp(z>β) with a parametric or completely unspecified baseline S0(t)

to “improper” (semiparametric baseline) Cox model defined by

S(t) = [S0(t)]
exp(z>β) = [1 − pF0(t)]

exp(z>β)
, (5.27)

where F0(t) is a proper distribution function which may be parameterized or com-

pletely unspecified. We term this model as an improper proportional hazards model.

Assume that F0(t) is a discrete-time distribution function, its survival function

is defined in (5.4) as F0(t) = 1 −
∏

l:ai≤t(1 − λl0). Then model (5.27) is further

specified by

S(t) =


1 − p+ p

∏

l:al≤t

(1 − λl0)




exp(z>β)

. (5.28)

The probability function f(ai) and the hazards rate function λi can be derived

by the formulations of f(ai) = S(ai−) − S(ai) and λi = f(ai)/S(ai−) = 1 −

S(ai)/S(ai−). Thus the hazard function may be given by

λi = 1 −
[

1 − p+ p
∏i

l=1(1 − λl0)

1 − p+ p
∏i−1

l=1(1 − λl0)

]exp(z>β)

. (5.29)
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Note that model (5.29) reduces to model (5.7) when p = 1.

We close this section by introducing anther generalization of the continuous

failure model (5.27) rather than model (5.28). Note that (5.27) for continuous λ0(t)

is equivalent to

λ(t) = λ0(t) exp(z>β),

where λ0(t) = pf0(t)/(1−pF0(t)) and F0(t) is a continuous distribution with density

function f0(t). Now if F0(t) (hence f0(t)) is a discrete time distribution defined as

before, then following (5.4) and (5.5) we have

λi =
pλi0

∏i−1
l=1(1 − λl0)

1 − p+ p
∏i−1

l=1(1 − λl0)
exp(z>β). (5.30)

Model (5.30) does have a proportional hazards structure for discrete-time variables,

and its hazard rate is different from the one in (5.29) for model (5.28). Note that

model (5.30) reduces to model (5.11) as p = 1 and is equivalent to model (5.29) if

β = 0 (i.e., no effects of covariates).

5.3.3. Non-mixture cure models with covariates

In order to retain the proportional hazards structure, Yakovlev and Tsodikov

(1996), Tsodikov (1998) and Chen, Ibrahim and Sinha (1999) proposed a model

termed as “non-mixture” models, which can accommodate long-term survivors and

also have the proportional hazards structure, and are different from model (5.27).

In these models, the probability of cure is incorporated into the proportional haz-

ards model by assuming a bounded cumulative hazard G̃0(t) with G̃0(∞) = ζ.

One way to enforce this is to write G̃0(t) = ζG0(t), where G0(t) is the distribution

function of a nonnegative random variable. Then the survival distribution S(t) for

the population can be written as

S(t) = exp{−ζG0(t)}. (5.31)
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We can see from (5.31) that the cured proportion is limt→∞ S(t) = e−ζ . Chen et

al. (1999) showed that if S(t) is taken to have a proportional hazards structure,

then the conditional survival function for the susceptible group no longer has a

proportional hazards structure. Hence in the non-mixture model, the survival

distribution S(t) for the entire population is modeled as a proportional hazard

model, whereas in the mixture cure models, the non-cured group is often modeled

as a proportional hazards model.

Covariates can be incorporated into the non-mixture cure model through ζ.

One example is to use ζ(x) = exp(x>γ). Tsodikov (1998) treated G0(t) as nuisance

and used marginal likelihood to estimate the cure rate ζ(x). Chen et al. (1999)

specified a parametric discrete form forG0(t) and used a Bayesian approach. Brown

and Ibrahim (2003) extended this non-mixture cure model to include longitudinal

covariates.

Inspired by Kuk and Chen (1999), in this section we propose an alternative

form of G0(t) as Ss(t) = [S0(t)]
exp(z>β), where Ss(t) = 1 − G0(t) is the survival

function of G0(t), in which the covariates can also be modeled throughG0(t). Then

non-mixture model (5.31) can be re-specified as

S(t) = exp {ζSs(t) − ζ} , Ss(t) = [S0(t)]exp(z>β). (5.32)

Model (5.32) was also proposed and studied by Tsodikov (2002) for the continuous

distribution S0(t). When S0(t) is a discrete survival function defined in Section 5.2,

proceeding along the line of Subsection 5.3.1, we can obtain the survival function

S(t) and the related hazard rate λ. This discrete distribution for S(t) appears to

have not studied so far.

Note from (5.32), (5.5) and (5.3) that the survival function S(t) can be defined,
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such as by (5.6), by

S(t) = exp



ζ


 ∏

i|ai≤t

(1 − λi0)
exp(z>β)


 − ζ



 . (5.33)

Thus the probability function f(ai) and the related hazards rate function λi can

be derived by the similar formulations in Subsection 5.3.1.

Other discrete-time non-mixture cure models can also be obtained by inserting

Ss(t) or F s(t), fs(ai) and λi
s defined in Section 5.2 into model (5.32).

5.4. Parametric Estimation for Discrete-time Models

We consider survival studies in which n items or individuals are put on test

and data of form {Tj , δj , zj}, j = 1, 2, . . . , n, are collected. Here δj is an indicator

variable (δj = 0 if the jth item is censored; δj = 1 if the jth item failed), Tj is the

corresponding failure or censoring time, and zj is a vector of covariates that will

be incorporated into the failure time model, which is presumed specified up to an

unknown parameter vector β.

To obtain the likelihood function of β, it is necessary to consider the nature

of the censoring mechanism. For most cases in survival analysis, we assume that

the censoring times cj’s are i.i.d. random variables with survival function G, and

are independent of the failure times Tj ’s and covariates zj ’s. We only observed

Tj = min(T ∗
j , cj) and δj = I(T ∗

j ≤ cj). This is called the i.i.d. random censoring

mechanism.

Consider the discrete regression models discussed in Section 5.2, the inferences

about the regression parameter β and the baseline cumulative hazards function Λ0

based on the i.i.d. random censoring mechanism sample have been investigated

by Kalbfleisch and Prentice (2002, Section 4.8), where they assume Λ0 to be a

discrete baseline cumulative hazards function with masses λ10, λ20, . . . , λK0 at the
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discrete time points a1, a2, . . . , aK , where 0 < a1 < a2 < · · · < aK , so that Λ0 =
∑K

j=1 λj0I(aj ≤ t). Note that the number of possible mass points K included

in the study is fixed so that the baseline hazards will be specified in terms of a

finite number K of parameters. This allows straightforward asymptotic arguments

applied to the maximum likelihood estimator (Kalbfleisch and Prentice, 2002).

A full maximum likelihood analysis of models (5.6), (5.12) and (5.14) were

considered in Section 4.8.1 of Kalbfleisch and Prentice (2002) and they also consid-

ered some specific analyses available for models (2.12) and (2.14) in their Sections

4.8.2-4.8.3, where Breslow-Peto approximate partial likelihood were used to in-

fer parameter β. Large-sample properties were also investigated by using discrete

time martingale in Chap. 5 of Kalbfleisch and Prentice (2002). In this section,

we sketch the estimation procedures proposed by Kalbfleisch and Prentice (2002)

for the discrete-time models in Section 5.2 under right censoring (and possibly left

truncation as well).

5.4.1. Maximum likelihood estimation

As in Kalbfleisch and Prentice (2002), for a fixed K we assume Λ0 to be

a discrete baseline cumulative hazards function with masses λ10, λ20, . . . , λK0 at

discrete times a1, a2, . . . , aK , where 0 < a1 < a2 < · · · < aK , so that Λ0 =
∑K

j=1 λj0I(aj ≤ t). Let Di represent the set of labels attached to individuals

failing at ai and Ri the set of labels attached to individuals censored at ai or

observed to survive past ai. Then the log-likelihood function of (λ>0 , β>) can be

written as (cf. Kalbfleisch and Prentice, 2002, p.137, (4.35))

logLg(θ) =
K∑

i=1





∑

ji∈Di

log λs
ji

+
∑

ji∈Ri

log
(
1 − λs

ji

)


 , (5.34)

where λs
ji

is the hazard function of the jth individual with covariates zj and failure

time point ai, which is pertaining to the discrete-time survival functions Ss(t)

112



defined in Section 5.2. For the grouped related risk cure model,

λs
ji

= 1 − (1 − λi0)
exp(z>

j β)
, (5.35)

for discrete related risk model,

λs
ji

= λi0exp(z>j β), (5.36)

and for discrete logistic model with di0 = log[λi0/(1 − λi0)],

λs
ji

=
exp(di0 + z>j β)

1 + exp(di0 + z>j β)
). (5.37)

Denote λ0 = (λ10, λ20, . . . , λK0)> and β = (β1, β2, . . . , βq)>. The components of

the score vector θ = (λ>0 , β>) are

∂ logLg(θ)
∂λi0

, i = 1, 2, . . . ,K, and
∂ logLg(θ)

∂β
.

Then the maximum likelihood estimator (λ̂>0 , β̂
>) is a solution to

(
∂ logLg(θ)

∂λ10
, . . . ,

∂ logLg(θ)
∂λk0

,
∂ logLg(θ)

∂β1
, . . . ,

∂ logLg(θ)
∂βq

)>

= 0.

Calculations of (λ̂>0 , β̂
>) by a Newton-Raphson iteration require second derivative

of logLg. The Fisher’s information matrix can be written as

H = −




∂2 log Lg
∂λ0∂λ0

∂2 log Lg
∂λ0∂β

∂2 log Lg
∂β∂λ0

∂2 log Lg
∂β∂β




2×2

. (5.38)

5.4.2. Approximate partial likelihood estimation for model (5.11)

We consider model (5.11) in Section 5.2. Just as mentioned above, model

(5.11) does have a proportional hazards structure, hence Breslow-Peto approximate

partial likelihood for tied observations can be applied to draw statistical inferences.

To estimate β in this model, express the likelihood function as

L =
k∏

i=1

exp[s>i (ai)β]

{
∑

l∈Ri
exp[z>l (ai)β]}di

. (5.39)
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where si(ai) =
∑di

l=1 zl(ai), di is the number of individuals failed at time ai, and

Ri is the set of individuals at risk just prior to time ai. The likelihood in (5.39)

gives rise to the following estimating equation for β:

U(β) =
K∑

i=1

[si(ai) − diE(β, ai)] = 0, (5.40)

where E(β, ai) =
∑

l∈Ri
zl(ai)Pl(β, ai) with

Pl(β, ai) =
exp(z>l (ai)β)∑

j∈Ri
exp(z>j (ai)β)

.

As with the partial likelihood estimating equation, under suitable regularity con-

ditions, a central limit theorem for standard version of the score U(β) might be

expected to apply as the sample size becomes large. Prentice and Kalbfleisch (2003)

show that the estimator β̂ that solves (5.40) is consistent for β, and further, that
√
n(β̂−β) is asymptotically normal with zero mean and covariance matrix that can

be estimated using a standard sandwich type of estimator. Prentice and Kalbfleisch

(2003) also show that an unbiased estimate of the variance of U(β) is given by

VU (β) = I(β) −
K∑

j=1

∑

l∈R(tj)

[zl(tj) − E(β, tj )]⊗2 exp[2z>l (tj )β]α̂0(β, tj), (5.41)

where

α̂0(β, tj) =
dj(dj − 1)

{
∑

l∈R(tj)
exp[z>l (tj )β]}2 −

∑
l∈R(tj)

exp[2z>l (tj)β]
, (5.42)

and

I(β) =
K∑

j=1

djV(β, tj) (5.43)

is the observed information arising from the Breslow-Peto approximate partial like-

lihood (5.40), and

V(β, tj) =
∑

l∈Rj

[zl(tj) − E(β, tj )]
⊗2 Pl(β, tj).
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The asymptotic covariance of β̂ − β is estimated by

I(β̂)−1VU (β̂)I(β̂)−1. (5.44)

Prentice and Kalbfleisch (2003) present simulations that suggest this variance es-

timator to perform better than the naive estimator I(β̂)−1 in yielding confidence

intervals with more actuate converge.

A natural estimate for Λ0 =
∑K

i=1 λi0 with given β is the Nelson-Aalen type

estimator,

Λ̂0(β, ai) =
i∑

j=1

dj∑
l∈R(aj)

exp(z>l (aj)β̂)
, i = 1, 2, . . . ,K. (5.45)

Thus λi0 can be estimated by di

{∑
l∈R(ai)

exp(z>l (ai)β̂)
}−1

. The asymptotic

properties for Λ̂0(β, ai) were also considered in Prentice and Kalbfleisch (cf. pp.

115-116, Prentice and Kalbfleisch, 2002). Then the asymptotic properties for λ̂i0

can be obtained. We omit the details here.

We can see that (5.45) gave a reasonable estimator for λi0, which does, how-

ever, has some unsatisfactory feature, for example, the estimated hazard contribu-

tion can exceed one, this contradict the constraint that the hazard do not exceed

one. Nonetheless, it is a reasonable estimate when hazards are relatively small and

one is looking at events relatively early in the failure time distribution (Prentice

and Kalbfleisch , 2002.)

Finally we mention that the partial likelihood for the discrete logistic model is

just as (5.39), but with the parameter β measuring the effect on a logit scale. More-

over, the piecewise exponential model (5.16) has also been considered by Holford

(1976).
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5.5. Parametric Estimation for Discrete-time Cure Models

Consider customer event history data, which is observed under a different cen-

soring and possibly truncation mechanism rather than the i.i.d random censoring.

They are represented by an observed event time Tj = min(T ∗
j , a−Bj), j = 1, 2, . . . ,

where T ∗
j is the target event time of the jth customer, and its survival function

S(t) is defined in Section 5.3. Since at the time the data was extracted for anal-

ysis, all customers usually have not experienced the event, only target event time

T ∗
j ≤ a − Bj can be observed; otherwise, it is considered to be (right) censored.

The event indicator is δj = I(T ∗
j ≤ a − Bj). The data of origin, Bj, can vary

among customers. Typically, Bj represents the data that an account was opened.

In this censoring scheme (generalized type I censoring), there is a fixed point a,

when the extracted data was current (for each customer the variables are measured

from the moment they became customer until the moment of lapsing or censoring).

Another possible cause of censoring is the occurrence of an independent and mutu-

ally exclusive competing event. For example, if event of interest is the cancelation

of a service, then a customer that moves out of service area might be considered

as being censored (Potts 2004).

The data used for mining customer histories consist of retrospective samples

extracted from large operational databases. In some applications, the available

data consist of a cross-sectional snapshot of customers that were active as of some

fixed data c. Such a sample is considered to be truncated on the left. The sample

is length-biased because, for given start data, Bj , only the lengthier event times

appear in the sample (Potts 2004).

In many situation of survival analysis, however, we may encounter left and

right censored (LCRC) data. In Section 5.5.1, we first discuss maximum likelihood

estimation for three models for left and right censored data. For the case of left
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truncated and right censored (LTRC) data, we will sketch its maximum likelihood

estimation in Remark 5.2 below. Then in Section 5.5.2, some specified technique,

namely the Breslow-Peto approximate partial likelihood, will be applied to our

model proposed in Subsection 5.3.2 under the LTRC mechanism.

Now assume that the event time T ∗
j , which is distributed as S(t) in Section

5.3, a discrete-time cure survival function with covariates z. However, our interests

focus on the estimation for the proportion of the susceptible population. To start,

we begin by constructing our likelihood function for proposed models in Section

5.3.

Here for brevity we only present three full likelihood functions for the grouped

related risk cure mode in (5.25), the improper proportional hazards cure model

in (5.29), and the discrete-time proportional hazards model in (5.30), respectively.

The other combinations of discrete-time cure models proposed in Section 5.3 can

be dealt with in the same way.

5.5.1. Maximum likelihood estimation

As in Section 5.4, we assume Λ0 to be a discrete baseline cumulative hazards

function with masses λ10, λ20, . . . , λK0 at the discrete times a1, a2, . . . , aK , where

0 < a1 < · · · < aK , so that Λ0 =
∑K

j=1 λj0I(aj ≤ t). Assume that independent

random variables Tj are distributed with a discrete survival function S(t) defined

in Section 5.3. T ∗
j may be right censored at cj = a − Bj . We only observe

Tj = min(T ∗
j , cj) and δj = I(T ∗

j ≤ cj). If the data are also left censored at

lj = c−Bj, then we only observe Xj = max{min(T ∗
j , cj), lj} and δj defined below:

Xj =





lj , T ∗
j < lj,

T ∗
j , lj ≤ T ∗

j ≤ cj,
cj , T ∗

j > cj ,
, δj =





−1, T ∗
j < lj,

0, lj ≤ T ∗
j ≤ cj ,

1, T ∗
j > cj.

(5.46)

It follows that the likelihood for the full sample is L =
∏n

j=1 Lj where

Lj = f(xj )(1−δ2
j )[S(xj)](δ

2
j +δj)/2[1− S(xj−)](δ

2
j−δj)/2. (5.47)
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Now let xj denote the failure time at which the jth individual experiences the event

in period ai, or the censoring time of the jth individual if it is right-censored. Then

we can rewrite (5.47) by using the hazards function as follow:

Lj = λ
(1−δ2

j )

ji

ji−1∏

k=1

[1 − λjk ][1+(δj−δ2
j )/2] [1 − λji ]

(δ2
j+δj)/2

[
1 −

ji−1∏

k=1

(1 − λjk )

](δ2
j−δj)/2

(5.48)

where λji is the hazard function of the jth individual with covariate zj and fail-

ure time point ai, corresponding to the discrete-time cure survival functions S(t)

defined in Section 5.3. For the grouped related risk cure model (cf. (5.24) and

(5.7)),

λji =
p
[
1 − (1 − λi0)

exp(z>
j β)

]∏i−1
l=1 (1 − λl0)

exp(z>
j β)

p
[∏i−1

l=1 (1 − λl0)
exp(z>

j
β)

]
+ (1 − p)

; (5.49)

for the improper proportional hazards model (cf. (5.28) and (5.29)),

λji = 1 −
[

1 − p+ p
∏i

l=1(1 − λl0)

1 − p+ p
∏i−1

l=1(1 − λl0)

]exp(z>
j β)

; (5.50)

and for discrete-time proportional hazards cure model (cf. (5.30))

λi =
pλi0

∏i−1
l=1(1 − λl0)

1 − p+ p
∏i−1

l=1(1 − λl0)
exp(z>β). (5.51)

Thus the full likelihood estimator for (p, λ>0 , β
>) can be obtained by maximizing

the likelihood function given by (5.47) or (5.48).

Remark 5.1: Assume that the duration of study is made up of K time periods (cf.

(5.16)). A single nonrepeated event is considered so that data collection (and the

observation of risk) is discontinuous for individual j in time period aji for one of

three reasons: 1) the jth individual experiences the event in aji ; 2) the individual

drops out of the study in aji ; and 3) the individual experiences the event before

aji (cf. Muthen and Masyn, 2005, p. 32). In the first case, Tj = aji . In the second

case, it is only known that Tj > aji−1, since the individual drops out of during the

period aji , whether Tj > aji is not known. In the last case, it is only known that
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Tj ≤ aji , since the individual experiences the event before aji , it is not known if

Ti ≤ aji−1. For the failure time Tj = aji , the likelihood may be expressed in terms

of the hazard as

Pr(Tj = aji ) = fji (θ) = λji

ji−1∏

k=1

(1 − λjk ). (5.52)

For individual with Tj > aji−1, the likelihood is

Pr(Tj > aji−1) = Sji−1(θ) =
ji−1∏

k=1

(1 − λjk ). (5.53)

For individual with Tj ≤ aji , the likelihood is

Pr(Tj ≤ aji ) = 1 − Sji(θ) = 1 −
ji∏

k=1

(1 − λjk). (5.54)

Thus the likelihood function is given by

Lj = fji (θ)
(1−δ2

j )[Sji−1(θ)](δ
2
j +δj)/2[1 − Sji(θ)]

(δ2
j −δj)/2. (5.55)

Remark 5.2: If the data are left-truncated and right-censored (LTRC), then we

observe X = min(T, c), l and η, where η = 1 if l ≤ T ≤ c and η = 0 if c < T ,

conditional on T ≥ l. Nothing is observed if T < l. In effect, observations are

made from the distribution of (X, l, η) conditional on T ≥ l (cf. Tsai, 1988). Then

the conditional likelihood of the observed data {(xj , lj , ηj), j = 1, 2, . . . , n}, given

Tj ≥ lj , is

L ∼
n∏

j=1

[f(xj )]ηj [S(xj)]1−ηj

S(lj−)
=

n∏

j=1



[λji ]

ηj

ji∏

k:ak≥lj

(1 − λjk )



 , (5.57)

where Tji denotes that the jth individual with covariate zj fails at point ai, f(·)

and S(·) are defined in Section 5.2 (for the case p = 1). The conditional likelihood

function defined in (5.57) is also used by Potts (2004) (see also Tsai, 1988, and

Allison, 1982, page 74). For the case of p ≤ 1 (with long-term survivors), we also
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have (5.56) (hence (5.57)) with S(·) defined in Section 5.2 replaced by S(·) defined

in Section 5.3 (cf. (5.62) below).

Note from Section 5.4.1, where left truncation is allowed, that the large sample

properties for the estimators solved from (5.57) are straightforwardly derived from

that of Kalbfleisch and Prentice (2002). In fact (5.57) is equivalent to (5.34) as

p = 1.

5.5.2. Approximate partial likelihood estimation for model (5.30)

Approximate partial likelihood estimators for model (5.30) are similar to that

for model (5.11). The hazards function for the jth individual is not changed by left

truncation/censoring at duration aji because it is defined already conditional on

“survival” until duration d and therefore it makes no difference to also condition

on “survival” until aji (aji < d) (Hougaard (2000), Karlson (2005)). Then the

inference procedure for model (5.11) can apply to model (5.30), so do the large-

sample properties for the estimators.

Furthermore, since (cf.(5.30))

λs
i =

pλi0

∏i−1
l=1(1 − λl0)

1 − p+ p
∏i−1

l=1(1 − λl0)
, (5.58)

a natural estimate for Λ0 =
∑K

i=1 λ
s
i for given β is the Nelson-Aalen type estimator,

Λ̂0(β, ai) =
i∑

j=1

dj∑
l∈R(ai)

exp{z>l (ai)β̂}
, i = 1, 2, . . . ,K. (5.59)

Thus λi0 and p can be estimated by (5.58). The asymptotic properties for Λ̂0(β, ai)

and λ̂s
i can also be obtained in a similar way as Prentice and Kalbfleisch (cf. pp.

115-116, Prentice and Kalbfleisch, 2002). Then the asymptotic properties for λ̂i0

and p̂ would follow.
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5.6. Asymptotic Properties for MLEs for LCRC Case

In this section, we discuss some asymptotic properties of maximum likelihood

estimators for proposed models in Subsection 5.1. The sample properties for full

maximum likelihood estimator for survival data subject to left and right censoring

have been investigated by Liu (1996a,1996b), where the censoring are assumed

to be random (but may be non-identically distributed) and the failure times are

assumed to be continuous and i.i.d. random variables. In this chapter, we extend

the existing results to the case where

(i) the survival functions for the failure time are assumed to be independent but

not identically distributed with discrete-time distributions; and

(ii) survival times are subject to fixed but unequal left censoring; and generalized

type I right censoring.

The following Lemma 5.1 for fixed (left and/or right) censoring case is straight-

forwardly derived from Lemma 2 in Ghitany et al. (1994), where the right censoring

is assumed to be random. We will omit its proof. Following the notations defined

above, we have

Lemma 5.1. For 1 ≤ j ≤ n, and any measurable function Q : R→ R,

E{(1 − δ2j )Q(Xj )} =
∫ cj

lj
Q(s)dFj (s) =

∑
k|lj≤ak≤cj

Q(xk)f(ajk ),

E
{

δ2
j−δj

2 Q(Xj )
}

= Q(lj )[1 − S(lj)],

E
{

δ2
j+δj

2 Q(Xj )
}

= Q(cj)S(cj),

where Fj(s) = 1−Sj(s) and Sj(s) is defined in, such as (5.25), but with z replaced

by zj ; and f(aji ), S(cj) and S(cj) are defined in (5.61), (5.62) and (5.63) below.

Next we list some conditions (referred as L-Condition) below.
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L-Condition: For any i = 1, 2, . . . ,K; j = 1, 2, . . . , n,

(A) fji (θ) > 0 are continuous for θ = (p, λ>0 , β
>).

(B)
∂fji (θ)
∂θs

,
∂Sji (θ)
∂θs

,
∂2fji (θ)
∂θs∂θt

,
∂2Sji(θ)
∂θs∂θt

(s, t = 1, 2, 3) are continuous for θ.

(C) For any θ0 ∈ Θ, there exists µθ0 = {θ : ‖θ − θ0‖ ≤ ηθ0} ⊂ Θ such that for

θ ∈ µθ0 ,
∣∣∣∣
∂fji (θ)
∂θs

∣∣∣∣ ≤ Hj
s ,

∣∣∣∣
∂2fji (θ)
∂θs∂θs

∣∣∣∣ ≤ Hj
st,

∣∣∣∣
∂2 log fji (θ)
∂θs∂θs

∣∣∣∣ ≤ Φj
st,

∣∣∣∣
∂2 logSji(θ)
∂θs∂θs

∣∣∣∣ ≤ Φj
st,

∣∣∣∣
∂2 log[1 − Sji(θ)]

∂θs∂θs

∣∣∣∣ ≤ Ψj
st,

where

∞∑

j=1

Hj
s <∞,

∞∑

j=1

Hj
st <∞,

∞∑

j=1

[
Φj

st

]2

fji (θ0) <∞,

sup
j

[
Φj

st

]2

Sji(θ0) <∞, sup
j

[
Ψj

st

]2

[1 − Sji (θ0)] <∞,

fji (θ) and Sji(θ) are defined in (5.52) and (5.53).

Let f(aji ) denote the probability function that individual j with covariates zj

fails at time point ai, such as (5.25) and (5.26) in grouped related risk cure model.

Then we have

S(aji ) = p

{
i∏

k=1

(1 − λk0)
exp(z>

j β)

}
+ (1 − p), (5.60)

f(aji ) = p
{

1 − (1 − λi0)
exp(z>

j β)
} i−1∏

k=1

(1 − λk0)
exp(z>

j β)
. (5.61)

(D) There exist (Ti, δi) 6= (Tj , δj) for i 6= j, i, j = 1, 2, . . . , n and n ≥ 2, such that

an unique solving from (5.50).

(E) li < ci, i = 1, 2, . . . , n (if the censoring and truncation are to assumed to be

random, Condition E should be instead Pr(l < c) = 1 (cf. Tsai, 1988, p.319).
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(F) For any j, the following sequences are all linearly independent,

∂ log fji (θ0)
∂θ1

,
∂ log fji (θ0)

∂θ2
, . . . ,

∂ log fji (θ0)
∂θK+q+1

;

∂ logSji(θ0)
∂θ1

,
∂ logSji(θ0)

∂θ2
, . . . ,

∂ logSji (θ0)
∂θK+q+1

;

∂ log[1 − Sji(θ0)]
∂θ1

,
∂ log[1− Sji(θ0)]

∂θ2
, . . . ,

∂ log[1 − Sji(θ0)]
∂θK+q+1

,

(G)
∞∑

j=1

(
∂ log fji (θ0)

∂θs
)4fji (θ0) <∞, sup

j
(
∂ logSji(θ0)

∂θs
)4Sji(θ0) <∞

sup
j

(
∂ log[1 − Sji (θ0)]

∂θs
)4[1− Sji (θ0)] <∞, s = 1, 2, . . . ,K + q + 1.

Now we state our theorem for the asymptotic properties. The rigid proof for

this theorem is similar to those in Liu (1996a,b) by using the law of large numbers

and the central limit theorem for independent but non-identical distributions. We

omit the details here for brevity.

Theorem 5.1. Assume that Conditions (A)-(E) hold, and the maximum likelihood

estimator θ̂n for θ is solved from (5.47). Then

Pθ0

{
lim

n→∞
θ̂n = θ0

}
= 1 (θ0 ∈ Θ).

Furthermore, if Conditions (F)-(G) also hold, then

√
n

(
θ̂n − θ0

)
d→ N(0, V −1(θ0)),

where d→ denotes convergence in distribution, V (θ0) = (vst(θ0))(K+q+1)×(K+q+1)

with

vst(θ) = lim
n→∞

n−1
n∑

j=1

∑

i:lj≤ai≤cj

∂ log fji (θ)
∂θs

∂ log fji (θ)
∂θt

fji (θ)

+ lim
n→∞

n−1
n∑

j=1

∂ logS(cj)
∂θs

∂ logS(cj)
∂θt

S(cj)

+ lim
n→∞

n−1
n∑

j=1

∂ log[1 − S(lj)]
∂θs

∂ log[1 − S(lj)]
∂θt

[1 − S(lj)],
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which can be derived from Lemma 1, and S(cj) and S(lj) are given by, from (5.60),

S(cj) = p
∏

k:ak≤cj

(1 − λk0)
exp(z>

j β) + (1 − p), (5.62)

S(lj) = p
∏

k:ak≤lj

(1 − λk0)
exp(z>

j β) + (1 − p). (5.63)

5.7. Simulation Results

We now investigate the performance of the proposed models and methods via

some simulations. In this section we report three simulation results. The first is

based on model (5.49) by using maximum likelihood estimator; the second is based

on models (5.50) and (5.51) for two-sample problem by using maximum likelihood

estimator; and the last is to investigate the approximate partial likelihood estimator

under model (5.58) for two-sample problem. We simulated data from models (5.49)-

(5.51),(5.58), with p = 0.9 and β = 0.3581. The baseline hazards λi0, valued at

0.2,0.375,0.3,0.7143,1, are from a discrete-time distribution with K = 5 failure time

points, and whose probability functions are f(ai), valued at 0.2, 0.3, 0.15, 0.25, 0.1,

respectively. Note that λ10 = f(a1) and λK0 = f(aK ) ≡ 1, hence we only need

to estimate λi0, i = 1, 2, . . . ,K − 1. The censoring distribution is assumed to be

discrete uniform on [3, 7] and the left censoring/truncations are discrete uniform

on [1, 3]. The covariates zi are generated from the uniform distribution over [0, 1]

for model (5.49). For two-sample problem models (5.50)-(5.51) and (5.58), we take

zi = 0 for group one and zi = 1 for group two. The sample sizes are taken as

n = 500 for model (5.49), n1 = n2 = 250 for model (5.50) and n1 = n2 = 300

for models (5.51) and (5.58), and the simulations are repeated 500 times. The

simulation results are reported in Tables 5.1-5.4 below. From these tables we can

see that the proposed models and related methods performed reasonably well.
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Table 5.1. Maximum likelihood estimators for model (5.49)

p̂ β̂ λ̂10 λ̂20 λ̂30 λ̂40

Mean 0.9072 0.3609 0.1991 0.3780 0.2951 0.7121

STD 0.0960 0.0148 0.0021 0.0068 0.0109 0.0049

Table 5.2. Maximum likelihood estimators for model (5.50)

p̂ β̂ λ̂10 λ̂20 λ̂30 λ̂40

Mean 0.8898 0.3747 0.2059 0.3879 0.3102 0.7214

STD 0.0225 0.0769 0.0198 0.0217 0.0268 0.0400

Table 5.3. Maximum likelihood estimators for model (5.51)

p̂ β̂ λ̂10 λ̂20 λ̂30 λ̂40

Mean 0.9068 0.3570 0.2011 0.3730 0.2922 0.7154

STD 0.0574 0.0136 0.0095 0.0119 0.0332 0.0136

Table 5.4. Approximate partial likelihood estimators for model (5.58)

p̂ β̂ λ̂10 λ̂20 λ̂30 λ̂40

Mean 0.8952 0.3653 0.2025 0.3776 0.3029 0.7157

STD 0.0245 0.0092 0.0563 0.0654 0.0621 0.0256

5.8. An Example of Application with Reanalysis Bladder

Tumors Recurrence Data

Byar (1980) discussed a randomized trial, conducted by the Veteran’s Admin-

istration Cooperative Urological Group, among patients having superficial bladder

tumors. One question of interest concerned the effect of the treatment thiotepa on

the rate of tumor recurrence. Tumors present at baseline were removed transure-

thrally prior to randomization. In addition to the effect of the treatment, there
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was interest in the relation between the recurrence rate and the number of pre-

randomization tumors as well as the size of the largest such tumors.

Prentice and Kalbfleisch (2003) investigated these data, and gave the param-

eter estimators based on the discrete-time survival analysis. However, its Kaplan-

Meier estimator (cf. Figures 5.1-5.2) indicates the presence of “long-term survivors”

in that data set. In this section, we will reanalyze these data with consideration of

long-term survivors.

Table 5.5 below, extracted from Andrews and Herzberg (1985, pp. 254-259),

shows a part of data from this trial, including possibly right censored times to first

post-randomization recurrence. There were 48 patients assigned to the placebo

group of whom 29 experienced at least one recurrence, and 38 patients assigned to

thiotepa group of whom 18 experienced at least one recurrence, over a trial with 31

months of follow-up. Recurrence times were recorded monthly, which resulted in

some tied recurrence times, including eight tied recurrence times at two and three

months each, among others.

Table 5.6 below reports the analysis following a grouping of the recurrence

times into six month intervals. We originally considered 10 intervals, but then

merged the last four intervals since the last failure occurs in the seventh interval.

We take the covariates to be 0 for Placebo Group and 1 for Thiotepa Group. Our

analyses are based on models (5.50) and (5.51) for maximum likelihood estimation

and model (5.51) for approximate partial likelihood estimation. In Prentice and

Kalbfleisch (2003), only estimators for the coefficients of covariates were reported.

In this chapter, we report the estimators of the susceptible proportions and the

discrete-time baseline function F0(t), which are determined by the baseline hazards

rates λi0, i = 1, 2, . . . , 7. We see that our estimators for λi0 is reasonable in view of

(5.45) since the related estimators λ̂i0 all are less one. The results for the maximum

likelihood estimators (MLEs), the estimators for the variances of the MLEs, and
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Table 5.5. Bladder tumors recurrence data extracted from

Andrews and Herzberg (1985, pp.254-259)

Initial Tumors1 Recurrence Initial Tumors Recurrence Initial Tumors Recurrence2

Number Size Time Number Size Time Number Size Time

Placebo 3 1 29 1 1 17
1 3 1∗ 1 2 37∗ 1 1 22∗

2 1 4∗ 4 1 9 1 3 25∗

1 1 7∗ 5 1 16 1 5 25∗

5 1 10∗ 1 2 41∗ 1 1 25∗

4 1 6 1 1 3 1 1 6
1 1 14∗ 2 6 6 1 1 6
1 1 18∗ 2 1 3 2 1 2
1 3 5 1 1 9 1 3 1∗

1 1 12 1 1 18 8 3 26
3 3 23∗ 1 3 49∗ 1 1 38∗

1 3 10 3 1 35∗ 1 1 22
1 1 3 1 7 17 6 1 4
3 1 3 3 1 3 3 1 24
2 3 7 1 1 59∗ 3 2 41∗

1 1 3 3 2 2 1 1 41∗

1 2 26∗ 1 3 5 1 1 1
8 1 1 2 3 2 1 1 44∗

1 4 2 1 1 0∗ 6 1 2
1 2 25 1 2 45∗

1 4 29∗ 1 4 2
1 2 29∗ Thiotepa 1 4 46∗

4 1 29∗ 1 2 9∗ 3 3 49∗

1 6 28 1 1 10∗ 1 1 50∗

1 5 2 1 1 13∗ 4 1 4
2 1 3 2 6 3 3 4 54∗

1 3 12 5 3 1 2 1 38
1 2 32∗ 5 1 18∗ 1 3 59∗

2 1 34∗ 1 3 17 8 1 5
2 1 36∗ 5 1 2 1 1 1∗

1Initial number of tumors of eight denotes 8 or more. Size denotes the diameter of

tumor in centimeters.

2Recurrence times are measured in months. An asterisk denotes right censoring.
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the approximate partial likelihood estimators are given in Table 5.6. It shows that

these estimators are reasonable, and the results for the baseline are close between

models (5.50) and (5.51).

Table 5.6. Maximum likelihood estimates under models (5.50) and (5.51)

p̂ β̂1 β̂2 β̂3 λ̂10 λ̂20 λ̂30 λ̂40 λ̂50 λ̂60

MLE(50) 0.575 0.141 0.086 −0.768 0.412 0.271 0.322 0.169 0.576 0.455
STD(50) 0.001 0.002 0.004 0.004 0.009 0.031 0.004 0.001 0.004 0.001
MLE(51) 0.573 0.127 0.075 −0.676 0.403 0.274 0.324 0.170 0.599 0.464
STD(51) 0.005 0.008 0.015 0.015 0.036 0.125 0.017 0.002 0.016 0.004

APLE(51) 0.581 0.119 0.073 −0.690 0.409 0.273 0.323 0.173 0.594 0.450

MLE(50): Maximum likelihood estimates for model (5.50)

MLE(51): Maximum likelihood estimates for model (5.51)

APLE(51): Approximate partial likelihood estimates for model (5.51)

where β̂1, β̂2 and β̂3 are the estimators of the covariate coefficients corresponding

to number of baseline tumors, size (cm) of largest baseline tumor and treatment

(0-placebo; 1-thiotepa) respectively, and STD(5.50), STD(5.51) are the estimators

of the standard deviations of the MLEs based on models (5.50), (5.51) respectively.

Prentice and Kalbfleisch (2003) analyzed this data set without considering

long-term survivors. In this section, however, we fit the data using survival cure

models. The first question is, are there really long-terms survivors in the data? This

raises the problem of testing the null hypothesis H0 : p0 = 1. Such a hypothesis

leads to a “boundary-value” test in which the parameter p0 lies on the boundary

of is parameter space (0, 1]. The large-sample properties of such boundary tests

are now well understood. We can apply some recently derived theory of Vu and

Zhou (1997) to obtain them easily for model (5.50). Let θ̂ denote the (unrestricted)

maximum likelihood estimator of the parameter (vector) θ and θ̇ be the restricted

maximum likelihood estimator of θ under H0. Then the deviance statistic, defined
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as dn = 2(Ln(θ̂)−Ln(θ̇)), is a 50-50 mixture of a chi-square random variable with

1 degree of freedom and a point mass at 0 asymptotically, where Ln(θ̂) and Ln(θ̇)

are the values of the log-likelihood function at θ̂ and θ̇ respectively.

Following the above result, we next test H0 based on models (5.50) and (5.51).

The estimate θ̂ of θ = (p0, β1, β2, β3, λ10, . . . , λ60) is given in Table 5.6. For model

(5.51), the restricted maximum likelihood estimators under H0 is

θ̇ = (1, 0.1450, 0.0886,−0.5924, 0.2174, 0.1184, 0.1117, 0.0489,0.1846, 0.0569).

This gives a deviance dn = 15.84 and a p-value less than 0.01, and so the null

hypothesis H0 : p0 = 1 is strongly rejected. Therefore we can conclude with

confidence that long-term survivors indeed exist in the data. Similarly for model

(5.50), the maximum likelihood estimator of θ under H0 is

θ̇ = (1, 0.1635, 0.0966,−0.7756, 0.2335, 0.1213, 0.1150, 0.0505,0.1891, 0.0590),

with a deviance dn = 16.74. Thus we again obtain strong evidence for the presence

of long-term survivors.

The strong evidence for long-term survivors in the above tests suggests that we

should not ignore them in the analysis of the data in Table 5.5, and the estimates of

(β1, β2, β3, λ10, . . . , λ60) given in Table 5.6 are more credible than those in θ̇ which

ignore long-term survivors.

Furthermore, the estimates of the standard deviations of the approximate

partial likelihood estimators (β̂1, β̂2, β̂3) under model (5.51) (cf. (5.44)) are cal-

culated as (0.0824, 0.1089, 0.5309). Since β̂2 = 0.073, the 95% confidence interval

of β2 is (−0.1403, 0.2864), which includes 0. Hence we would accept H0 : β2 = 0.

This result, however, is not supported by the maximum likelihood models (5.50)

and (5.51), which produce 95% confidence intervals for β2 as (0.0782, 0.0938) and

(0.0456, 0.1044) respectively, both exclude 0 and indicate β2 > 0. This phenomenon
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may be due to the fact that the maximum likelihood estimation utilizes full informa-

tion from the data, whereas the partial likelihood utilizes only partial information.

5.9. Concluding Remarks

In this chapter we reviewed four existing discrete-time survival models and

then extend them to discrete-time cure survival models for survival data with long-

term survivors. It is natural to use these discrete-time cure survival models to

analyze the economic values of customer retention with long-life customers whose

data typically possess three features: discrete time, ties, and concomitant infor-

mation. Although discrete-time survival models have been used recently to model

the economic values of customer retention, the proposed models for long-term sur-

vivors have not been previously addressed. We also investigated the estimation

approaches - full maximum likelihood for the proposed discrete-time cure survival

models and approximate partial likelihood for some special discrete survival data

with long-term survivors subject to fixed but non-identical left truncation and right

censoring. Then we discussed the asymptotic properties of the maximum likelihood

estimators. The simulation study indicates that the proposed procedure can pro-

duce efficient and reasonable estimates. An application on a set of Bladder tumors

recurrence data is also demonstrated.

The discrete-time cure survival models we have considered here assume time-

independent covariates. In practice, however, this may not always be adequate to

model the relation between the response and varying-time covariates or longitudinal

data. Hence a useful extension to our work is to consider varying-time covariates

to replace the time-independent covariates. Furthermore, the proposed estimating

approaches in this paper are available to the interior case where the parameter

space Θ is assumed to be an open set. Since the proportion of the susceptibles may

be equal to 1, which lies on the boundary of the parameter space, another useful
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extension to our work in this chapter would include boundary case of the parameter

space. Finally we mention that some covariates may be related to the incidence

probability p, such as a logistic relationship discussed in Maller and Zhou (1996).

These extensions are certainly worthwhile topics for further research efforts.
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Figure 5.1.The Kaplan−Meier estimator for bladder tumors recurrence data
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Figure 5.2.The Kaplan−Meier estimator for grouped bladder tumors recurrence data
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Appendix A

Let F0(t, ψ) = 1 − exp(−ψt). Then

αh(t, θ) =
pψ exp(−ψt)
1 − pF0(t, ψ)

exp(Zhβ).

In order to simplify the notations we will omit h of αh(t, θ) and of Zh, these

derivatives of α(t, θ) and logα(t, θ) with respect to θ are listed below:

∂3

∂p3
α(t, θ) =

6[−1 + exp(−ψt)]2ψ exp[−ψt+ zβ]
[1 − pF0(t, ψ)]4

, (A.1)

∂3

∂ψ3
α(t, θ) = (−1 + p){(p2ψt + 3p2) exp(−2ψt) + (4p2ψt+ 4pψt) exp(−ψt)

+(p2 +−2p+ 1)ψt − (3p2 − 6p+ 3)}ψt
2 exp[−ψt+ zβ]

[1 − pF0(t, ψ)]4
, (A.2)

∂3

∂β3
α(t, θ) =

pz3ψ exp[−ψt+ zβ]
1 − pF0(t, ψ)

, (A.3)

∂3

∂p2∂ψ
α(t, θ) = −2{(1 − 2p− 2ψt) exp(−ψt) + (p+ pψt) exp(−ψt)

+(ψt− pψt+ p− 1)} exp[−ψt+ zβ]

[1 − pF0(t, ψ)]4,
(A.4)

∂3

∂p2∂β
α(t, θ) =

−2z(−1 + exp(−ψt))ψ exp[−ψt+ zβ]

[1 − pF0(t, ψ)]3
, (A.5)

∂3

∂p∂ψ2
α(t, θ) = {(2p2 + pψt) exp(−2ψt) + (4p2ψt − 4pψt) exp(−ψt)

+(1 − 2p+ p2)ψt + (4p − 2)} t exp[−ψt+ zβ]
[1 − pF0(t, ψ)]3

, (A.6)

∂3

∂p∂β2
α(t, θ) =

z2ψ exp[−ψt+ zβ]

[1 − pF0(t, ψ)]2
, (A.7)

∂3

∂ψ2∂β
α(t, θ) =

zp(p − 1)t{(pψt + 2p) exp(−ψt)
1 − pF0(t, ψ)

}

+
zp(p − 1)t(p − 1)ψt + (2 − 2p)

1 − pF0(t, ψ)
, (A.8)
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∂3

∂ψ∂β2
α(t, θ) =

pz2[1 − p+ p exp(−ψt) + (p− 1)ψt] exp[−ψt+ zβ]

[1 − pF0(t, ψ)]2
, (A.9)

∂3

∂p3
logα(t, θ) =

2
p3

− 2(−1 + exp(−ψt))3

[1 − pF0(t, ψ)]3
, (A.10)

∂3

∂ψ3
logα(t, θ) =

pt3 exp(−ψt)
1 − pF0(t, ψ)

− 3pt3 exp(−2ψt)

[1 − pF0(t, ψ)]2

+
2p3t3 exp(−3ψt)

[1 − pF0(t, ψ)]3
+

2
ψ3
, (A.11)

∂3

∂p2∂ψ
logα(t, θ) =

(2 − 2 exp(−ψt))t exp(−ψt)
[1 − pF0(t, ψ)]3,

(A.12)

∂3

∂p∂ψ2
logα(t, θ) =

t2 exp(−ψt)(p exp(−ψt) − 1 + p)

[1 − pF0(t, ψ)]3
, (A.13)

∂2

∂p∂ψ
logα(t, θ) =

t exp(−ψt)
[1 − pF0(t, ψ)]2

, (A.14)

∂2

∂p2
logα(t, θ) =

−1
p2

+
(−1 + exp(−ψt))2

[1 − pF0(t, ψ)]2
, (A.15)

∂2

∂ψ2
logα(t, θ) =

−1
ψ2

− pt2 exp(−ψt)
1− pF0(t, ψ)

+
p2t2 exp(−2ψt)
[1 − pF0(t, ψ)]2

, (A.16)

∂

∂p
logα(t, θ) =

1
p

+
1 − exp(−ψt)
1− pF0(t, ψ)

, (A.17)

∂

∂ψ
logα(t, θ) =

1
ψ

− t+
pt exp(−ψt)
1 − pF0(t, ψ)

, (A.18)

∂

∂β
logα(t, θ) = z, (A.19)

and the other derivatives we needed are zero.
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Appendix B

It is well known that the survival proportion reflected in the right tail of

a standard marginal survival curve at the end of the follow-up period may not

adequately estimate the curve fraction. Farewell (1986) showed that it is hard

to distinguish a censored individual in the susceptible group from a long-term

survivor. This leads to difficulty in distinguishing models with a large proportion

of susceptibles and long tails of the latency distribution from those with a small

proportion of susceptibles and short tails of the latency distribution. As a result,

the identifiability of a cure model becomes very important in order to obtain unique

estimates of the model parameters.

In this appendix we will investigate the identifiability of the related cure model.

To start we give some notations and definitions.

B.1. Identifiability for SCR and BCH Models

Let T+ be an arbitrary large time (possibly infinity) beyond which we have

no interest. In the general case, the proportion for the susceptible p depends on

covariates x through a function p(x), and the “proper” distributions F0(t) in the

SCR model orG0(t) in the BCH model are independent of any covariate x. Without

loss of generality, assume that x is one-dimensional.

Let F0 = {F0(t, ψ) : ψ ∈ Ψ} be the class of proper failure time distributions

and G0 = {G0(t) : G0(t) is a proper distribution on [0,∞)}. Let X be the design

space, for convenience, we assume X to be the closed interval [a0, a1]. Denote the

space of incidence probability function by P = {p(x) : p(x) 6= 0, 1 for all x ∈ X}

and ζ = {ζ(x) : ζ(x) 6= 0,∞, for allx ∈ X}.

Denote the class of SCR models and the class of BCH models by, respectively,
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H1 = {S(t, p(x), ψ) = 1 − p(x)F0(t, ψ), t < T+, p(·) ∈ P, F0(·, ψ) ∈ F0} (B.1.1)

and

H2 = {S(t, ζ(x)) = exp(−ζ(x)G0(t), t < T+, x ∈ X , ζ(x) ∈ ζ,G0(t) ∈ G0}. (B.1.2)

Definition B.1.1. The class H1 of SCR models is identifiable if for any two

members S(t, p(x), ψ) = 1 − p(x)F0(t, ψ) and S4(t, p(x), ψ) = 1 − p4(x)F0(t, ψ4)

of H1, the following two conditions hold:

(i) S(t, p(x), ψ) ≡ S4(t, p(x), ψ) if and only if p(x) ≡ p4(x) for x ∈ X ; and

(ii) F0(t, ψ) ≡ F0(t, ψ4) for almost all t ∈ (0, T+).

Definition B.1.2. The class H2 of BCH models is identifiable if for any two

members S(t, ζ(x)) = exp{−ζ(x)G0(t)} and S4(t, ζ(x)) = exp{−ζ4(x)G4
0 (t)} of

H2, the following two conditions hold:

(i) S(t, ζ(x)) ≡ S4(t, ζ(x)) if and only if ζ(x) ≡ ζ4(x) for x ∈ X ; and

(ii) G0(t) ≡ G4
0 (t) for almost all t ∈ (0, T+).

Thus, similar to the proofs of Theorem 1-5 in Li et al. (2001), we can show

the following Theorems B.1.1-B.1.5. We only sketch them here, the details can be

found in their literature.

Theorem B.1.1. Let x be a continuous covariate in the design space X = [a0, a1],

where −∞ < a0 < a1 <∞. Then the model given by

S(t, p(x)) = 1 − p(x)F0(t), t < T+, (B.1.3)

is not identifiable in each of the following three cases:

(i) p(x) is unspecified, unless F0(T+) = 1 and maxx∈Xp(x) = 1;

(ii) p(x) is a constant parameter;
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(iii) p(x) is specified as a logistic function

p(x) =
exp(a + bx)

1 + exp(a + ba)

with b 6= 0.

Theorem B.1.2. Let x be a continuous covariate in the design space X = [a0, a1],

where −∞ < a0 < a1 <∞. Then the model

S(t, p(x)) = 1 − p(x) + p(x)[S0(t)]
r(x)

, t < T+, (B.1.4)

is identifiable if r(x) ∈ R, where r(x) > 0 is the related hazards function of the

conditional survival function and S0(t) = 1 − F0(t).

Theorem B.1.3. The model

S(t, p(x), ψ) = 1 − p(x)F0(t, ψ)], t < T+, (B.1.5)

is identifiable regardless of whether p(x) is parametric or not.

Theorem B.1.4. The model

S(t, ζ(x)) = exp{−ζ(x)G0(t)}, x ∈ X , t < T+, (B.1.6)

is not identifiable if

(i) G0(t) and ζ(x) are unspecified; or

(ii) G0(t) is unspecified and ζ(x) = exp(a + bx) with a 6= 0.

Theorem B.1.5. The model

S(t, ζ(x)) = exp{−ζ(x)G0(t, ψ)}, x ∈ X , t < T+, (B.1.7)

is identifiable if ζ(x) is either unspecified or equal to exp(a + bx).
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B.2. Identifiability for Improper PH Model

For our “improper” PH model, we should re-establish its identifiability for its

special structure which is different from that of SCR and BCH models.

Now we assume p to be a constant parameter in the sense that p is independent

of any covariate x. Define

H3 = {S(t, p, ψ) = [1− pF0(t, ψ)]r(x)
, t < T+, x ∈ X , p ∈ (0, 1], F0(t, ψ) ∈ F0}.

(B.2.1)

Then following the notations in Section B.1, we can define the identifiability of the

“improper” PH model.

Definition B.2.1. The class H3 of “improper” models is identifiable if for any

two members, say S(t, p) = [1 − pF0(t)]
r(x) and S4(t, p4) = [1 − p4F4

0 (t)]
r4(x)

,

the following two conditions hold:

(i) S(t, p) ≡ S4(t, p4) if and only if r(x) ≡ r4(x) for x ∈ X ; and

(ii) F0(t) ≡ F4
0 (t) for almost all t ∈ (0, T+),

(ii) p = p4.

Definition B.2.2. The class H3 of “improper” PH models is identifiable if for

any two members of H3, say S(t, p, ψ) = [1 − pF0(t, ψ)]r(x) and S4(t, p4, ψ4) =

[1 − p4F0(t, ψ4)]r
4(x), S(t, p, ψ) ≡ S4(t, p4, ψ4) holds if and only if p ≡ p4,

r(x) ≡ r4(x) and F0(t, ψ) ≡ F0(t, ψ4) for x ∈ X and almost all t ∈ (0, T+).

Next we establish our Theorems for the identifiability of the “improper” PH

model.

Theorem B.2.1. Let x be a continuous covariate in the design space X = [a0, a1],
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where −∞ < a0 < a1 <∞. Then the model

S(t, p) = [1− pF0(t)]
r(x)

, t < T+ (B.2.2)

is not identifiable.

Theorem B.2.2. Let x be a continuous covariate in the design space X = [a0, a1],

where −∞ < a0 < a1 < ∞. Assume that exists a interval d = [d1, d2] ∈ (0,∞)

such that F (t, ψ) is continuous for t on d, where d1 < d2. Then the model

S(t, p, ψ) = [1− pF0(t, ψ)]r(x)
, t < T+ (B.2.3)

is identifiable.

Proof of Theorem B.2.1. We need to contradict that S(t, p) ≡ S4(t, p4) if and

only if p ≡ p4, r(x) ≡ r4(x) and F0(t) ≡ F4
0 (t) for almost all t ∈ (0, T+).

For any given S(t, p) = [1 − pF0(t)]r(x), take c 6= 1 and let

r4(x) ≡ r(x)
c
, p4 = 1 − (1 − p)c

and

F4
0 (t) =

1 − [1 − pF0(t)]c

p4
=

1 − [1 − pF0(t)]c

1 − (1 − p)c
.

Then

S4(t, p4) = [1 − p4F4
0 (t)]r

4(x) = [1 − (1 − [1 − pF0(t)]c)]r(x)/c

= {[1 − pF0(t)]c}r(x)/c = [1 − pF0(t)]r(x) = S(t, p)

for all t ∈ (0, T+), whereas r(x) 6≡ r4(x) (as c 6= 1). This shows that the model in

(B.2.2) is not identifiable.

Proof of Theorem B.2.2. We need to show that S(t, p, ψ) ≡ S4(t, p4, ψ4) if and

only if p ≡ p4, r(x) ≡ r4(x) and F0(t, ψ) ≡ F0(t, ψ4) for almost all t ∈ (0, T+).
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The “if” part is clearly true, so we concentrate on the “only if” part. Suppose that

S(t, p, ψ) ≡ S4(t, p4, ψ4). Then

r4(x)
r(x)

≡ log(1 − pF0(t, ψ))
log(1 − p4F0(t, ψ4))

. (B.2.4)

Since the left-hand side depends only on x and the right-hand side depends only

on t, the ratios in (B.2.4) must be a positive constant, say 1/c, which does not

depend on x and t. Consequently,

r4(x)
r(x)

≡ 1
c

and 1 − p4F0(t, ψ4) ≡ [1 − pF0(t, ψ)]c. (B.2.5)

The second equality in (B.2.5) holds only if c = 1 since F (t, ψ) is continuous for t

on d. Thus (B.2.5) gives

r(x) ≡ r4(x) and
p4

p
≡ F0(t, ψ)
F0(t, ψ4)

. (B.2.6)

It follows that

F0(t, ψ4) ≡ c1F0(t, ψ) and p4 = p/c1 (B.2.7)

for some positive constant c1. Let t → T+ in the first equality of (B.2.7), we get

c1 = 1. Therefore, by (B.2.7), F0(t, ψ4) ≡ F0(t, ψ) and p4 = p, which together

with the first equality of (B.2.6) proves the “only if” part, and so completes the

proof.

Before close this section, we should mention that, as a special case, our “im-

proper” PH model reduces to the ordinary Cox’s PH model when p = 1. Similar to

the proofs of Theorems B.2.1-B.2.2 we can show that model S(t) = [1 − F0(t)]
r(x)

is not identifiable while model S(t) = [1 − F0(t, ψ)]r(x) is identifiable. The details

will be omitted here.
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