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Abstract 

A model for magnetic iron where atoms are treated as classical particles with 

intrinsic spins is developed. The atoms interact via scalar many-body forces as well 

as via spin-dependent forces of the Heisenberg form. The coupling between the 

lattice and spin degrees of freedom is described by a coordinate-dependent 

exchange function, where the spin-orientation-dependent forces are proportional to 

the gradient of this function. A spin-lattice dynamics simulation approach extends 

the existing magnetic-potential treatment to the case where the strength of 

interaction between the atoms depends on the relative non-collinear orientations of 

their spins. An algorithm for integrating the linked spin-coordinate equations of 

motion is based on the 2nd order Suzuki-Trotter decomposition for the 

non-commuting evolution operators for both coordinates and spins. The notions of 

the spin thermostat and the spin temperature are introduced through the combined 

application of the Langevin spin dynamics and the fluctuation-dissipation theorem. 

We investigate several applications of the method, performing microcanonical 

ensemble simulations of adiabatic spin-lattice relaxation of periodic arrays of 180o 

domain-walls, and isothermal-isobaric ensemble dynamical simulations of 

thermally equilibrated homogeneous systems at various temperatures. The 

isothermal magnetization curve evaluated using the spin-lattice dynamics algorithm 

is well described by the mean-field approximation and agrees satisfactorily with the 

experimental data for a broad range of temperatures. The equilibrium 

time-correlation functions of spin orientations exhibit the presence of short-range 

magnetic order above the Curie temperature. Short-range order spin fluctuations 
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are shown to contribute to the thermal expansion of the material. Simulations on 

thermal expansion and elastic response of bulk bcc iron, and magnetization in bcc 

iron thin films are also performed and the results discussed. Our analysis illustrates 

the significant part played by the spin directional degrees of freedom in the 

dynamics of atomic motion in magnetic iron and iron-based alloys, and shows that 

the spin-lattice dynamics algorithm provides a viable way of performing realistic 

large-scale dynamical simulations of magnetic materials. 
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Chapter 1: Introduction 

1.1  Motivations 

Magnetic materials are playing increasingly important roles in engineering 

developments of the 21st century. Applications involving materials properties 

governed by the magnetic nature of electron spin are quickly becoming an essential 

ingredient in the more advanced technologies in many important areas of 

engineering. These applications range from the direct exploitation of the spin 

degree of freedom of the electron in the storage, recovery, transportation, 

manipulation and processing of information, to quantum computing, to issues 

arising from the magnetic nature of the irradiation damage-resistant 

ferritic-martensitic steels, a prime candidate material for the structures of both 

advanced fission and fusion reactors. 

In the field of advanced fission and fusion materials, modeling the dynamical 

processes occurring in steels at high temperature or/and under irradiation is one of 

the major mathematical challenges. Steels are very unusual systems in that their 

properties are determined by the magnetism of iron and solute (e.g. chromium or 

nickel) atoms or, in other words, by the effects of electron exchange and 

correlations. Probably the most convincing argument confirming the pivotal role 

played by the exchange and correlation effects comes from the fact that the 

body-centred cubic (bcc) crystal structure of iron itself is anomalous. A simple 

examination of the Periodic Table shows that in the absence of magnetism, iron 

would adopt the hexagonal closed packed (hcp) structure, and hence the 
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stabilization of its bcc structure is a magnetic phenomenon [1]-[3]. The structure of 

radiation defects in transition metals also reflects this magnetic anomaly, with a 

self-interstitial defect in iron adopting the 110  dumbbell configuration, whereas 

in all the non-magnetic bcc metals a self-interstitial defect is a 111  crowdion 

[4],[5].  

The main challenge associated with the modeling of steels is the fact that their 

structural and mechanical properties are determined by magnetism. This requires 

developing new physical approximations and mathematical algorithms capable of 

describing the entire complexity of phenomena resulting from the interplay 

between magnetism and elastic deformations, phase transformations, the finite 

temperature effects, excitation of spin waves and magnon-phonon interactions, and 

the presence of magnetic solute atoms and impurities. In this thesis, the first step is 

made towards addressing this complexity by implementing a new method for the 

treatment of the dynamics that has to link the kinematics of atoms and the 

precession of their spins. 

 

1.2  Origin of Atomic Spins 

In a transition metal, the angular moments (spins) of atoms, and the associated 

magnetic moments, are formed due to the exchange interaction between 

intra-atomic d-electrons in the partially filled atomic d-shells. According to Hund’s 

rule, for an isolated atom with a given number of d-electrons, the adopted 

electronic configuration is the one that maximizes the total magnetic moment. For 
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example, an individual iron atom containing seven d-electrons (Figure 1.1) has a 

magnetic moment of 3μB in agreement with the fact that the difference between the 

number of electrons in the full spin-up sub-shell, containing five d-electrons, and 

the number of electrons in the spin-down sub-shell, containing the remaining two 

electrons, equals three.  

 

Figure 1.1 – The electron configuration of an individual iron atom containing seven 

d-electrons, according to Hund’s rule 

In a metal, on the other hand, the d-electrons (or, more precisely, s- and d- 

electrons) are hybridized and their s-character allows them to become itinerant, 

hopping or tunneling from one lattice site to another, while their d-character 

governs their localization near the atomic nuclei [6]. This kind of collective 

behavior for strongly interacting electrons is the main cause of magnetism. The 

saturation magnetization can be determined from the difference of the Fermi energy 

of the majority and minority spin sub-bands (Figure 1.2), the formation of which is 

to minimize the total energy as governed by the Stoner instability [7]. The interplay 

between the intra-atomic exchange and inter-atomic quantum hopping affects both 

the magnitudes and directions of the moments, which accordingly adopt a 

ferromagnetic, antiferromagnetic, or a complex non-collinear magnetic 

configuration. The concept of a localized “atomic spin” is thus justified for 

itinerant magnets, a simple example of which is given, in a tight-binding treatment, 

by the single-band Hubbard model [6]. An effective interatomic spin-spin 
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interaction of the Heisenberg form can also be introduced using the concept of an 

effective intersite exchange coupling function. Dudarev and Derlet [8] showed that 

a more sophisticated tight-binding multi-band Hamiltonian could be mapped into a 

semi-empirical potential with scalar and vector parts, which resemble the 

embedded atom method (EAM) form and Heisenberg form respectively. 

 

Figure 1.2 – Density of states plot illustrating the occupation of the majority and minority 

3d-bands in the ferromagnetic configurations of the bcc α-iron. (Reprinted from Ref. [7] 

with the premission from authors.) 

Due to the simultaneously localized and itinerant nature of the hybridized 

electrons in a transition metal, the directions and magnitudes of the atomic spins 

are both variable quantities [9]. In the ferromagnetic ground state of α-Fe (bcc iron), 

all the atomic spins are aligned in the same direction and with saturation 

magnetization 2.2μB [10]. Any deviation from this perfect alignment caused, for 

example, by thermal agitation, propagates through the material in the form of a spin 

wave via the exchange coupling between spins [11] (Figure 1.3). The spin wave 

theory corrects the inadequacy of the Stoner model treatment of magnetization at 

relatively low temperatures [11]-[13] by supplying the missing low-energy 

lbsc
Rectangle
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many-body excited states.  

 

Figure 1.3 – Schematic representation of a spin wave 

 

1.3  DFT Spin Dynamics  

Density functional theorem (DFT) [14] is a popular method to investigate the 

ground state of many-body systems. It is rooted on the Hohenberg-Kohn (H-K) 

theorem and Kohn-Sham (K-S) method. The H-K theorem proved that the ground 

state wave-function of a many-body system is a unique functional of the ground 

state electron density, and the ground state electron density minimizes the total 

energy. The K-S method formally replaced the many-body problem by 

non-interacting electrons moving in an effective potential, but the effective 

potential contains the exchange and correlation interaction, which is in an unknown 

form. In practice, an approximate functional form of the effective potential must be 

introduced, e.g. local density approximation (LDA) and generalized gradient 

approximation (GGA). Within the framework of DFT, an enormous amount of 

studies has been performed by using the adiabatic treatment of non-collinear 

magnetic ground states and spin dynamics (SD), investigating spin configurations 

[15],[16], spin wave spectra [17],[18], the dynamical spin susceptibility [19], etc. 
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Based on the full-potential linearized augmented plane wave (FLAPW) method, 

Kurz et al. [15] introduced a non-collinear ab-initio method for the investigation of 

the magnetic ground state, metastable state and magnetic phase diagram, with 

examples on Cr, α-Fe and γ-Fe (fcc iron). Grotheer et al. [16] presented a 

tight-binding linear-muffin-tin-orbital (LMTO) method, which explicitly included 

the intra-atomic non-collinearity, to calculate the ground state spin configuration of 

α-Fe, in the presence of a small transverse external field. They concluded that the 

atomic-sphere approximation (ASA) for the spin directions may lead to errors 

proportional to the external field. They [17] also calculated the adiabatic spin wave 

spectra of Fe, Co, Ni, Ni3Fe and CoFe by frozen magnon and transverse 

susceptibility method. Using the LMTO+ASA method, Morán et al. [18] 

investigated the spin wave spectrum of α-Fe. They showed the anomalous behavior 

of the exchange parameters with respect to the lattice constant and the distances 

between the 1st, 2nd, 3rd and 4th nearest neighbors. Savrasov [19] employed the time 

dependent (TD) DFT with LDA and GGA to calculate the dynamical spin 

susceptibilities of Fe, Ni and Cr. Capelle et al. [20] also performed TDDFT 

calculations on the SD and spin current. Tawil and Callaway [21] did energy band 

calculations of iron by employing the tight-binding method with a basis set 

consisted of atomic wave functions expressed as linear combination of 

Gaussian-type orbitals determined from the self-consistent potential. Singh et al. 

[22] advanced such method to include the spin-orbit interaction. Autès et al. [23] 

investigated the magnetic anisotropy energy of the surface and monatomic wire of 

iron by using a parameterized tight-binding model. Many-body excited states such 

as due to the excitation of magnons (spin waves) are not considered in these 
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calculations. 

While most of the DFT calculations only concern the ground state behavior at 

0K, Lichtenstein et al. [24] attempted to introduce temperature effects by quantum 

Monte Carlo (MC) technique. They combined the LDA and the dynamical mean 

field theory (DMFT), and calculated the magnetization curves, magnitudes of 

magnetic moments and Curie temperatures cT  of Fe and Ni. However, their cT  

are 100% overestimated. Kakehashi [25] commented that the overestimation is due 

to the use of an Ising type Hamiltonian which neglected the transverse exchange 

coupling. Based on the dynamical coherent potential approximation (DCPA) with 

single-site approximation (SSA), Kakehashi [25] treated spin and charge 

fluctuations associated with the electron correlation. The effect of spin waves was 

included statistically by using MC technique [25],[26], or the harmonic 

approximation [27]. The equilibrium magnetization evaluated as a function of 

temperature agrees well with the experiment. Kakehashi et al. [28] also introduced 

the so-called “Molecular Dynamics approach” to model the high temperature 

behavior of magnetic moments. However, the dynamics of the lattice was not really 

addressed, despite the name molecular dynamics (MD). 

 

1.4  DFT Spin-Lattice Coupling  

 The occurrence of magnetic anisotropy, mageto-elasticity, and 

magnetostriction provides evidence that coupling exists between atomic spin 

orientations and the symmetry of the lattice. For example, coupling between the 
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spin waves and phonons was explicitly included in the thermodynamic treatment of 

the ferromagnetic free energy in the early work by Kittel and Abrahams [29]. 

However, the coupling between the spin and the lattice subsystems, although taken 

into account, is not treated with full self-consistency. Thus, only the spin-wave 

would affect the behavior of the lattice subsystem, but not the other way round. In 

the works of Kakehashi and his colleagues [25]-[28] mentioned in the foregoing 

subsection, although the magnetic moments was treated dynamically, the lattice 

was only treated statically, and the full dynamics of the system does not follow. 

The non-interacting spin-phonon approximation is often applied to treat low 

temperature cases where the densities of both the phonons and spin waves are low 

[11]. The oscillation of the crystal field can be treated as a perturbation that leads to 

electronic excitations, e.g. the transition from 3d to 4p in iron. This facilitates 

momentum transfer by creation or annihilation of spin waves q , 'q  and phonons 

k , 'k , with ' '+ = +k q k q . The one-phonon and two-phonon processes are 

known as the direct and Raman processes respectively [30]. The mechanism that 

furnishes energy transfer from one normal mode to another is caused by the 

coupling of the anharmonic terms [31]. Sabiryanov and Jaswel [32] studied the 

magnons and magnon-phonon interactions of bcc and fcc iron using the magnon 

dispersion curves with and without phonon excitation. Unfortunately, this 

approximation fails at higher temperatures where the elementary excitations due to 

the spin and lattice vibrations can no longer be treated as independent, and where 

full dynamical simulations describing the interacting spin waves (magnons) and 

lattice waves (phonons) [11] have to be implemented.  
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Antropov et al. [33] made the first attempt to deal with the coupled spin and 

lattice subsystems at finite temperature about ten years ago. They combined 

ab-initio SD with ab-initio MD to take into account spin-lattice interactions. 

Although both the stochastic (based on the Fokker-Planck equation) and 

deterministic (based on the Nose-Hoover thermostat) methods were noted as 

possible ways of treating the finite temperature case, no finite temperature 

calculations had actually been performed. Stocks et al. [34] further criticized that 

since the method proposed by Antropov et al. [33] was based on the local spin 

density approximation (LSDA), it was only valid for the ground state of the system, 

and hence the non-collinear states treated in the simulations were not sufficiently 

well defined. Stocks et al. [34] proposed a constrained local moment model for the 

ab-initio spin dynamics. They introduced a constraint field to the LSDA by 

Lagrange multipliers, which ensured the iterative output of the local magnetization 

is in the same direction of the prescribed direction that is calculated from the 

classical equation of spin motion. Later on, Stocks et al. [35] introduced an 

empirical dissipative term and applied the new simulation scheme to the treatment 

of magnetism at surfaces and in nanostructures. Nevertheless, a full treatment of 

the temperature effects has yet to be developed. 

 

1.5  Classical Spin Dynamics 

In cases where the transfer of energy and angular momentum in and out of the 

spin subsystem has to be considered in the non-adiabatic context, the 

Landau-Lifshitz (LL) or the Gilbert equations [36] have been applied to treat spin 
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dynamics within the classical approximation, where interaction with the thermal 

reservoir is simulated via a model dissipative force. In the literature, the LL 

(equation 1.1) and Gilbert equations (equation 1.2) are usually written in the form 

for magnetization of a small volume [36],[37]: 

( )eff efft M
αγγ∂

= − × − × ×
∂
M M H M M H        (1.1) 

' efft M t
αγ∂ ∂

= − × + ×
∂ ∂
M MM H M         (1.2) 

where 0γ >  is the gyromagnetic ratio, ( )2' 1γ γ α= + , M is the magnetization 

per unit volume, eff
Hδ

δ
= −H

M
 is the effective field and H is the Hamiltonian. The 

magnitude of the dimensionless damping constant 0α >  characterizing the rate of 

dissipation can be estimated from the ferromagnetic resonance (FMR) absorption 

linewidth [38]-[43]. Theoretical and experimental arguments suggest that the 

damping constant depends on the temperature [39],[40], composition [41],[42] and 

topological symmetry [42],[43] of a particular system. For example, the damping 

constant shows a slow increase in Co and Fe when temperature increases [39]. In 

the FexCo1-x alloy films [41], the damping constant is almost constant from x = 0.5 

to 1, but gradually increases as the cobalt-contend increases. Furthermore, the 

equations of spin motion derived from DFT suggest that a tensor representation 

reflecting the symmetry of the crystal may be needed to provide a more accurate 

treatment of the dissipation [44]. 

At this point, it is to be noted that classical approximation may inhibit some 
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quantum behaviors especially at low temperatures. Since the formation of magnetic 

moments or atomic spins are due to the strong electron interaction that is of 

quantum nature, observables calculated in the classical limit and those measured 

experimental may differ quantitatively, but the qualitative trend should not differ. 

Moreover, both the original LL and Gilbert equations are purely dissipative (Figure 

1.4). Thus, if one follows the spin dynamics equations and assumes a constant 

dissipation rate, all the atomic spins will eventually become stationary and 

collinear as the spin subsystem relaxes towards the ground-state configuration. 

 

Figure 1.4 – Schematic representation of the magnetization precession with damping, 

according to Gilbert equation 

Therefore, the LL and Gilbert equations do not describe the thermal 

equilibration of the spin subsystem. If one defines the spin temperature sT  and 

assumes that the heat flow in and out of the spin subsystem is proportional to the 

temperature difference ΔT between the spin and the reservoir [45], the dissipation 

rate can be taken as being proportional to ΔT and hence can be positive or negative, 

driving the transfer of energy and angular momentum in and out of the spin 
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subsystem. However, defining the spin temperature proves to be a subtle problem 

because spin dynamics is described by a set of first order differential equations. 

The notion of the kinetic energy cannot be introduced to define the temperature as 

it is normally done in conventional MD.  

In order to tackle the subtlety of spin temperature, Brown [46] proposed a 

stochastic method based on the fluctuation-dissipation theorem (FDT) [47],[48] for 

classical spin systems, through which the spin temperature can be defined by 

matching the solution of the corresponding Fokker-Planck equation to the Gibbs 

distribution. Due to the constraint imposed on the fluctuation and dissipation terms, 

the system is driven to an equilibrium state with respect to the desired temperature. 

In this way, FDT may provide, for example, the definition of the temperature of a 

Brownian particle interacting with its environment [48]. García-Palacios and 

Lázaro [49] used the stochastic Gilbert equation to evaluate the susceptibility of 

interacting spin waves and the dynamics of magnetic nano-particles, whereas 

Fähnle et al. [50] implemented the stochastic classical spin dynamics equation to 

speed up ab-initio calculations in a combination of atomistic and micro-magnetic 

approaches. In fact, the works by Brown also form part of the foundation of the 

current thesis. The FDT for classical spins will be discussed in more detail in a later 

chapter of this thesis. 

 

1.6  MD for Magnetic Materials 

The treatment of dynamical processes in a many-body system at a finite 
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temperature requires treating excited many-body electronic states, for which the 

effectiveness of ab-initio calculations is limited. At present, much of the 

understanding of finite temperature properties of materials is derived from MD 

simulations. As opposed to an electronic structure based order-N3 approach, an MD 

simulation is an order-N method, making it possible to investigate processes on the 

scale that is many orders of magnitude greater. The evolution of an atomic system 

at a finite temperature is modeled by integrating, starting from a certain initial 

configuration, the equations of motion for classical particles interacting via a 

certain interatomic potential. Compliance with thermodynamic equilibrium/ 

quasi-equilibrium conditions is achieved by imposing some appropriate statistical 

mechanical constraints. 

Similarly, at a fundamental level the behavior of a magnetic material is 

completely determined by their spin-dependent electronic structure. The ab-initio 

approaches to the treatment of electronic structure are, with current computation 

power, only able to describe very small systems containing no more than ~1000 

atoms. However, central to the capability to foretell material performance and 

device functionality is a good understanding of the involved dynamic processes. At 

the same time, simulating the dynamics of formation and migration of defects, 

dislocations, magnetic domains and grain boundaries, phase transformations, 

fracture toughness, plasticity and collision cascades initiated by incident energetic 

particles requires treating mega-systems containing in excess of a million atoms. A 

realistic simulation must also be able to describe various saddle-point 

configurations and the many-body excited states associated with those processes. 

Also, it has to describe energy dissipation and entropy production due to scattering 
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of interacting phonons and magnons. There is as yet no atomistic simulation 

method comparable with MD that would provide a mathematical framework 

suitable for this purpose.    

Within the embedded atom method (EAM) formalism [51]-[53], one can 

construct semi-empirical many-body potential for MD simulations by fitting to an 

unending list of properties that can be obtained from experiments and ab-initio 

calculations, e.g. elastic constants, vacancy and interstitial formation energies, 

surface relaxation and etc. Nevertheless, in magnetic materials, e.g. α-Fe, 

magnetism does contribute to the structural stability. The coupling between the 

spins of neighboring atoms must be taken into account in the treatment of 

interactions between atoms. Formalisms aimed at including magnetic effects in the 

interatomic potentials were discussed by Dudarev and Derlet [54] and by Ackland 

[55]. The magnetic potential developed for iron by the former authors (the DD 

potential) is based on a combination of the Stoner ‘local band’ treatment of 

ferromagnetism and the Ginzburg-Landau model, relating the strength of 

inter-atomic interaction to the magnitude of the local atomic magnetic moment. 

The size of the system that can be simulated using the magnetic potential is many 

orders of magnitude larger than that accessible to DFT. For example, large-scale 

MD simulation based on the DD potential made it possible to investigate 

magnetic/non-magnetic transformations occurring in amorphous iron under 

pressure at 0K [56]. Various applications of the DD potential to the treatment of 

defects and dislocations in magnetic iron in the limit of large system size were 

reviewed in Ref. [7]. Recently, Björkas and Nordlund [57] adjusted the short range 

part of the DD potential and compared cascade damage simulations in Fe using 
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three different potentials. They showed that all of the potentials produce concurrent 

results on the defect production within statistical uncertainty. 

 

1.7  Spin-Lattice Dynamics Simulation  

The magnetic interatomic potentials of Dudarev and Derlet [7] and Ackland [54] 

treats magnetism as a 0K phenomenon, with magnetic moments evaluated using 

total energy minimization, assuming perfectly collinear atomic spins. The 

complication of non-collinear spin configurations is not considered. The 

fundamental dynamics problem associated with coupled motions of the atoms and 

their spins that should be taken into account at a finite temperature remains 

unsolved. As opined in the foregoing, the challenge comes from the interaction 

between the spin waves (magnons) and lattice vibrations (phonons), which require 

an explicit consideration of the directional spin degrees of freedom. Omitting these 

degrees of freedom prevents a conventional MD simulation from balancing the 

flow of energy between the lattice and the spin subsystems, and restricts its 

application to the limit of weak spin-lattice coupling, or low temperatures. The 

currently available atomistic models of iron based on the magnetic potential 

formalism do not consider the directions of magnetic moments as independent 

variables, and hence do not capture the effects of the thermal orientational disorder 

of magnetic moments on the interatomic forces.  

 Recently, Kadau et al. [58] considered a classical Hamiltonian for the coupled 

lattice and spin degrees of freedom, and investigated the phase stability of the 
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lattice. The simulation is a combination of MD and MC techniques. The 

Hamiltonian consists of a Lennard-Jones pair potential and a Heisenberg term. The 

lattice part is governed by the equations of motion and simulated by MD, while the 

temperature excitation of the spin part was simulated using MC. The Invar effect 

and the antiferromagnetic ordering of spins in a FeNi alloy were successfully 

simulated, confirming the significant effect of the spin degrees of freedom on the 

lattice stability and elastic properties of the material. However, though they 

employed a coordinate-dependent exchange function, they used an Ising model 

which neglected the spin wave excitation. Moreover, the MC approach cannot 

really reproduce the dynamics of the interacting lattice and spin subsystems.  

 The goal of this thesis is to develop a reformulation of MD that includes the 

spin degrees of freedom on an equal footing with the degrees of freedom of the 

lattice. The coupled spin and lattice excitations are treated within a unified 

simulation framework, taking the positions of atoms and orientations of atomic 

spins as independent variables. The equations of motion for spins are derived from 

a generalized Heisenberg Hamiltonian, where the exchange coupling function is 

fitted to the ab-initio data. The scalar part of the inter-atomic interaction is given 

by the magnetic DD potential [8],[54]. These equations form the basis for the 

Spin-Lattice Dynamics (SLD) algorithm. They are integrated using the symplectic 

2nd order Suzuki-Trotter decomposition (STD) [59]-[63] technique for the 

non-commuting evolution operators for the lattice and the spin degrees of freedom. 

The position of each atom and the orientation of its spin are determined at each 

simulation time step. The coordinate dependence of the exchange coupling 

function links evolutions of the spin and the lattice subsystems, and is responsible 
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for the spin-orientation-dependent part of inter-atomic forces. The “spin 

temperature” is introduced using the stochastic Langevin dynamics formulation 

proposed by Brown [46] combined with the fluctuation-dissipation theorem (FDT). 

Since it is not feasible to work on large-scale systems without parallel 

programming, a special parallel algorithm for the STD is developed. Several 

applications will then be addressed, which show the importance of including spin 

degrees of freedom in the dynamics simulations. 

 

1.8  Validation and Applications 

As mentioned in the foregoing, both the direction and magnitude of the 

magnetic moment of each atom are changing during the simulation. To gain the 

necessary experience, a conventional MD simulation was performed to study the 

magnetic properties of μ-Fe (amorphous iron) under pressure by using the DD 

potential at 0K, in which the spin direction does not change with time. As the 

density increases the magnitude of the average magnetic moment reduces, 

accompanied by the transformation of an increasing proportion of atoms from a 

magnetic to a non-magnetic configuration. It shows the relationship between the 

magnitude of magnetic moment and the local environment. Then, the directions of 

spins are incorporated by the newly developed SLD method. It is tested in a 

simulation of adiabatic relaxation of a periodic array of 180o domain-walls in 

ferromagnetic α-Fe. Transient processes involving non-equilibrium spin-spin and 

spin-lattice relaxations are investigated. Sound wave is produced during the decay 

of domain walls. The relaxation time for energy equilibration between the spin and 
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lattice subsystem obtained from our simulation is in good agreement with 

experimental result.  

One may note that for an isolated system, conservation of energy and angular 

momentum have to be satisfied. For this reason, it is impossible to introduce 

temperature in the spin subsystem because of the associated change in angular 

momentum. The FDT is employed to generalize the SLD simulation scheme to 

provide the option of treatment for a system that can exchange energy and angular 

momentum with a physically meaningful thermostat. Using this scheme, 

isothermal-isobaric ensemble simulations of spin-lattice relaxation at various 

temperatures can be performed to investigate equilibrium magnetic properties of 

the material. The equilibrium magnetization curve so calculated follows closely the 

mean-field classical approximation, and agrees satisfactorily with experimental 

data all the way up to the Curie temperature. The equilibrium time-correlation 

function of spin orientations, which can only be observed in a dynamics system, is 

also investigated. The lattice constants and elastic constant for bulk α-Fe as a 

function of temperature are calculated. They are compared with experiment and 

EAM potentials without spin degrees of freedom. A strong magneto-mechnical 

effect is found for temperatures higher than ~600K. The observed anomaly of the 

elastic constants in experiments is reproduced only when the spin degree of 

freedoms is incorporated. In the case of surfaces and thin films, the magnitude and 

direction of magnetic moment is shown to compete with each others. It explains the 

change of magnetization profile across the thin film according to temperature, and 

the difference between DFT calculations and experimental results.
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Chapter 2: Molecular Dynamics 

2.1  Background and History 

Although 50 years is about the mean half-life of human beings (where 

vampire is not counted), it is just a blip compared to the history of magnetism since 

its recorded use by Huang Di (黃帝) to direct his army to victory more than 5000 

years ago. Molecular Dynamics (MD) [1] only has 50 years of history, but it has 

already become an almost indispensable tool in a wide range of research areas. 

Briefly, MD is a computer simulation method that models the dynamics of an 

ensemble of atoms or molecules, and hence its collective properties under a given 

set of thermodynamic driving forces and boundary conditions, as a collection of 

classical particles interacting via classical interatomic forces. Although it is based 

on the deterministic solution of Newton’s equations of motion, the stochastic nature 

of the atomic motion is taken into account via the constraints of thermodynamics 

and statistical mechanics. MD was first introduced in 1957 by Alder and 

Wainwright [2] in their work on a system of hard spheres moving at constant speed 

between perfect elastic collisions. Rahman [3] successfully carried out in 1964 the 

MD simulation of a collection of argon atoms treated as Lennard-Jones particles. 

More realistic than hard spheres, the forces between Lennard-Jones particles 

change continuously as the particles move. 

During the last decade, the size of ensembles that can be treated by MD 

simulation has increased rapidly with the fast expansion of computing power. In 

1964, Rahman [3] could only work with a model of 864 atoms. Four decades 
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afterwards, in year 2006, Buehler and Gao [4] reported results of investigation of 

crack-tip propagation obtained from MD simulations with 4 millions atoms. Indeed, 

works on pushing the MD simulation to the scale of billion [5] or multi-billion [6] 

atoms are on going, but the computer resource requirements are tremendous. This 

rapid expansion, of course, cannot occur without the confidence gained by 

successful applications experienced by many users. In this regard, MD simulation 

does not only provide insight into what actual happens in the atomic scale, but 

more importantly, the connection between the often hypothesized microscopic 

world and the macroscopic one, where experiments cannot be preformed. In 

statistical mechanics, most problems are not directly solvable except for a small 

number of idealized models (e.g. perfect gas) and non-trivial problems (e.g. 2D 

Ising model). In this regard, MD simulation is privileged in its capability to provide 

essentially exact solutions, or at least insights, to otherwise unsolvable problems in 

statistical mechanics.  

The statistical nature of MD is justified by the ergodic hypothesis, which 

states that the statistical ensemble averages are equal to the time averages of the 

system. Moreover, it is reasonable to assume that an experimental observable, say 

Aobs, is equal to its time average. i.e.: 

obs time ens
A A A= =           (2.1) 

where  

 ( ){ } ( ){ }( ) ( ){ } ( ){ }( )
0

0
1

1 1 , ,
t M

i i i n i ntime
nt

A dt A t t A t t
M

τ

τ

+

=

= ≈ ∑∫ p r p r  (2.2) 
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and 

 
{ } { }( ) { } { }( )

{ } { }( )
, exp ,

exp ,

N N
i i i i i i B

ens N N
i i i i B

d d A H k T
A

d d H k T

⎡ ⎤−⎣ ⎦=
⎡ ⎤−⎣ ⎦

∫
∫

p r p r p r

p r p r
   (2.3) 

where ip  and ir  are linear momentum and position respectively. It is to be noted 

that such assumption only holds when the probability density function for the 

ensemble is stationary, i.e. when the system is at equilibrium or steady-state.  

The simulation results, therefore, may provide us with information of 

materials and systems well beyond the limits of experimentation. Indeed, from the 

utilization point of view, MD can provide information where exceptionally hostile 

operational environment prevails, involving extreme temperatures, stresses, electric, 

magnetic, and neutron fields, etc, well beyond human experience. MD is also 

helpful in revealing details of the system behavior at the atomic and molecular 

level, far beyond what is achievable by the finest equipment available to this date. 

If more details are desired beyond what can be provided by the brief outline in this 

thesis, the reader may consult the authoritative book by Allen and Tildesley [1] for 

an excellent comprehensive picture on the origin, derivation and implementation of 

MD. At the same time, a brief description of MD will be presented in the 

following. 

 

2.2  Equations of Motion 

Within an inertial reference frame, the state of a closed system of classical 
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particles is expected to be describable as a function of the positions { }ir  and 

momentums { }ip  of all the particles, the values of which are independent of time 

progression. The Hamiltonian H, which is proven to be equal to the total energy [7], 

is such a state function, provided that it does not contain any explicit time 

dependence, and has potential and kinetic energies independent of each other. The 

Hamiltonian of a classical system is usually written in the following form: 

{ }( )
2

i
i

i i

H U
m

= +∑ p r            (2.4) 

where im  is the mass of atom i. In terms of the Hamiltonian, the motions of atoms 

can be described through the following set of differential equations [5]. 

 
i

i i

i
i

i i

H U

H
m

∂ ∂⎧ = − = −⎪ ∂ ∂⎪
⎨ ∂⎪ = =
⎪ ∂⎩

p
r r

pr
p

&

&

          (2.5) 

By solving the set of equations 2.5, we may obtain all the information of the 

classical system, i.e. positions, momentums and forces. In principle, the system is 

now deterministic and predictable. Comparing the Hamiltonian’s equations with 

Newtonian dynamics yields: 

i i i i i im m= = =F a r p&& &           (2.6) 

where iF  is the force and ia  the acceleration. In Newtonian dynamics, motion is 

a result of external forces, while in Hamiltonian dynamics, motion occurs to 

preserve the total Hamiltonian. 
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2.3  Solution of the equation of motion: Integration 

Algorithms 

The forces acting on an ensemble of atoms are continuously changing during 

its motion. However, numerically it is obvious that only the forces on the atoms at 

discrete times can be calculated, from which the positions and velocities of the 

particles over a certain discrete time-interval (step) can be predicted subjected to 

some numerical error depending the size of the time-interval. Normally, a time-step 

that is two orders of magnitude smaller than the typical atomic vibration cycle of 

~0.1 picosecond (10-13 s) is sufficiently small to avoid significant discretization 

errors. However, MD may still accumulate fatal numerical errors due to energy and 

momentum non-conservation as a result of the enormous number of time steps. 

Energy and momentum conservations are therefore important issues in the selection 

of integration scheme. A suitable algorithm can enhance the overall accuracy and 

performance significantly. 

The set of simultaneous equations in equation 2.5 can be recast into the 

following form [8]: 

( )
( )

( )

( )

( )
( )

( ) ( )
( )

( )
( )

ˆ0
ˆ 0

Ut tUd
t tdt KK

t t
t t

∂⎛ ⎞−⎜ ⎟ ⎛ ⎞⎛ ⎞ ⎛ ⎞−∂⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎜ ⎟∂⎝ ⎠
⎛ ⎞ ⎛ ⎞

= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

rp pr
r rp

p

p p
r r

K U H

     (2.7) 

where ( )1 2 3, , , , N=r r r r rL , ( )1 2 3, , , , N=p p p p pL , ( )K p  is the kinetic energy, 
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( )U r  is the potential energy, K̂  and Û  are their corresponding operators, such 

that ( ) ( )K̂ t K∂
=

∂
p p

p
, ( ) ( )Û t U∂

= −
∂

r r
r

, and 
0 0
ˆ 0K

⎛ ⎞
≡ ⎜ ⎟

⎝ ⎠
K , 

ˆ0
0 0

U⎛ ⎞−
≡ ⎜ ⎟

⎝ ⎠
U . 

The formal solution of this first order differential equation is [8]: 

 
( )
( )

( )
( )
0
0

tt
e

t
ΔΔ⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟Δ⎝ ⎠ ⎝ ⎠

p p
r r

H           (2.8) 

Exponential operator is usually hard to handle. A straightforward way is to 

diagonalize the Hamiltonian operator H. However, the kinetic component K  can 

only be diagonablized in the momentum space, whereas the potential component 

U is only diagonablizable in the coordinate space. These two terms are 

non-commutative, which makes the Hamiltonian operator intractable. Perturbation 

approximation may be introduced for small Δt by expanding the exponential 

operator in a Taylor series. 

 ( )2 2 31
2

te I t t O tΔ = + Δ + Δ + ΔH H H        (2.9) 

The positions and momentums can then be updated as follows [8]: 

 
( )
( ) ( ) ( )

( )

( )

( )

Ut tt t t
I t

Kt t t t t

∂⎛ ⎞− Δ⎜ ⎟+ Δ⎛ ⎞ ⎛ ⎞ ∂⎜ ⎟≈ + Δ =⎜ ⎟ ⎜ ⎟ ∂+ Δ ⎜ ⎟⎝ ⎠ ⎝ ⎠ + Δ⎜ ⎟∂⎝ ⎠

pp p r
r r r

p

H      (2.10) 

Higher order terms can also be included, but the infinite tail must be truncated. 

Since the evolution is an approximate solution, the volume of phase space does not 
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conserve. This kind of approximation necessarily introduces dissipative 

perturbations to the Hamiltonian system, which causes the total energy to deviate 

from the starting value.  

Therefore, it is necessary to find another approximation scheme that has 

symplecticity, i.e., conserves the volume in phase space [8]. The Suzuki-Trotter 

decomposition (STD) is an approximation method that provides a way to achieve 

this goal. Its 2nd order form is expressed as follows: 

 ( ) ( ) ( ) ( )2 2 3A B t A t A tB te e e e O t+ Δ Δ ΔΔ= + Δ        (2.11) 

where A and B are arbitrary operators. It is easy to prove the validity of equation 

2.11 by expanding both sides. If A=U and B=K , since 2 2 0= =U K , all the higher 

order terms vanish, and 

 
t

t

e I t
e I t

Δ

Δ

⎧ ≡ + Δ⎪
⎨

≡ + Δ⎪⎩

U

K

U

K
           (2.12) 

The evolution of the positions and momentums can be calculated one by one 

according to the sequence as expressed in equation 2.11. The kinetic and potential 

operators are treated exactly, except for trajectory and machine errors. The 

symplecticity is attained. No dissipation and approximation is introduced in each 

operation.  

In this scheme, the equation of motion, i.e., equation 2.8, becomes 
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    (2.13) 

which is indeed equivalent to the velocity Verlet algorithm [1]: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

21
2

2

i i i i

i i
i i

t t t t t t t

t t t
t t t t

+ Δ = + Δ + Δ

+ + Δ
+ Δ = + Δ

x x v a

a a
v v

      (2.14) 

This shows that the velocity Verlet algorithm is symplectic, and is superior to other 

algorithms in the context of energy conservation. An example in Ref. [8] shows 

that the perturbation method (equation 2.10) leads to numerical energy dissipation 

in closed systems for long runs. On the other hand, using the symplectic method, 

the total energy only fluctuates around the starting value, despite the 2nd order 

accuracy. 

 

2.4  Periodic Boundary Condition 

The size of the simulation box is usually limited by the storage capacity and 

execution speed of the host computer. MD simulations with tens or maybe a 

hundred millions of atoms would be the current upper limit of most research groups, 

far below the Avogadro’s number (~6.02×1023). Due to this limitation, surface 

effects will normally overwhelm bulk properties easily. To mimic an infinite bulk 
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lattice, the periodic boundary condition [1] is often used. 

 

Figure 2.1 – Schematic picture of a 2-dimension periodic system 

In principle, the periodic boundary condition is to attach the simulation box to 

its own images side by side. A schematic picture of a 2-dimension periodic system 

is shown in Figure 2.1. The center part in grey is the entire simulation box. The 

remaining white boxes are images. When an atom leaves the simulation box, its 

image enters the box at the same time, crossing the boundary on the opposite side. 

It remedies at least part of the problem caused by the small surface to volume ratio 

for bulk samples, as surfaces are eliminated in such an arrangement. In the 

3-dimensional case, the only difference is the number of images, 26 instead of 8. 

Nevertheless, the question of how well this infinite periodic system represents 

a real bulk sample is still nontrivial. In general, if the simulation box is large 

enough, most artifacts due to the boundary condition may be avoided resulting in a 

meaningful simulation of equilibrium thermodynamics properties [1]. However, 

several other issues still require attention. Firstly, the simulation box must be 
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sufficiently large to avoid the interaction of the simulation cell with its own images. 

Secondly, the periodicity of the simulation cells sets a limit to the permissible 

wavelengths of phonons or magnons according to the cell dimensions. For example, 

phonons or magnons with wavelengths longer than the cell dimensions will be cut 

off. This may suppress or change the order of some phase transitions that requires 

the participation of macroscopic fluctuations. 

 

2.5  Temperature Control 

In the real world, closed system seldom occurs. A system always interacts 

with its environment. In the microscopic view, energy and momentum exchange 

occurs among particles via scatterings and collisions. Eventually, an open system 

attains thermodynamic equilibrium with its environment and maintains constant 

temperature and/or pressure. Therefore, computer simulations must be able to 

mimic conditions that would be encountered in real experiments. In statistical 

mechanics, the nature of a system is usually classified by the ensemble it belongs to, 

namely, the micro-canonical (NVE), canonical (NVT), grand-canonical (μVT) and 

isothermal-isobaric (NPT) ensemble, where the symbols N, μ, V, P, E and T mean 

constant number of atoms, chemical potential, volume, pressure, energy and 

temperature, respectively.  

In order to control temperature, various types of thermostats have been 

developed, e.g. Berendsen [9], Nosé-Hoover [10],[11] and Langevin [12] 

thermostats. The Berendsen thermostat is a kind of rescaling method that adjusts 
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the temperature by multiplying a factor to the velocities of atoms directly. 

Sometime, the factor may contain a relaxation time. Nové-Hoover thermostat 

introduces additional degrees of freedom into the Lagrange equation of motion, 

which drive the system to the desired temperature by a fictitious force.  

In this thesis, the Langevin thermostat based on the fluctuation-dissipation 

theorem (FDT) [12] is adopted. In this approach, the stochastic nature of atomic 

motion is explicitly taken into account, and the deterministic equation of motion is 

replaced by a stochastic equation of motion: 

( )d Um t
dt

γ ξ∂
= = − − +

∂
v p v

r
v

&          (2.15) 

where γ  is the coefficient of dissipative friction characterizing the “viscosity” of 

the system and ( )tξ
v

 is a delta-correlated random thermal force,  

 ( ) ( ) ( )' 't t t tξ ξ μδ⋅ = −
v v

         (2.16) 

where μ is a constant. Equation 2.15 mimics the stochastic motion of atoms in the 

sea of electrons. In addition to the deterministic forces from the potential field, the 

motion of the atoms is also driven by dissipative random forces due to the 

scattering of electrons. Two assumptions are made [12]. Firstly, the random forces 

are Gaussian distributed, in accordance with the central limit theorem. Secondly, 

the impact time is short compare with the timescale of atomic motion and 

successive impacts are delta correlated.  

In the present model, the dissipative and random natures of electron scattering 
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are responsible for transforming the energy of the system into or from heat of the 

reservoir. There should be a relationship between the viscosity characterized by γ , 

the energy dissipated in the form of heat flow into the reservoir, related to T and the 

strength μ of the random forces. Indeed, under thermodynamic equilibrium, the 

Gibbs distribution  

 0 exp
B

EW W
k T

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
          (2.17) 

is given by the probability density function governed by the Fokker-Planck 

equation [10]. Substituting the Gibbs distribution into the Fokker-Planck equation 

yields the relationship: 

 6 Bk Tμ γ= ,            (2.18) 

where the temperature T, the coefficient of dissipative friction γ  and the strength 

of the random forces μ, are explicitly related. In this model, the deterministic 

atomic motion is perturbed by frictional and random forces, driving the whole 

system to the Gibbs distribution at the desired temperature. It is effectively 

switching the system between micro-canonical ensembles. 

 

2.6  Applied Stresses  

To specify the applied stress in the simulation, several methods have been 

proposed [9],[13]-[15]. The Anderson method [13] considers the volume as an 
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external variable and couples the system with a piston that has mass. The 

simulation box can be expanded or shrunk isotropically. Parinello-Rahman [12] 

extended the Anderson method to allow the change of the box-shape. The 

Constraint method [15] maintains the constant pressure by introducing the 

Lagrange multiplier into the equation of motions, where the volume is also 

considered as a variable. In this thesis, a generalized form of the Berendsen [9] 

method is adopted. 

Firstly, we can start from considering the local stress tensor on an atom i, 

which is defined by the decomposed virial theorem [1],[16]-[18]: 

1 1
2

i
i ij ij

j ii

m v v f r
Vαβ α β α βσ

≠

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑         (2.19) 

where α, β denotes the Cartesian components. The 1st term comes from the kinetic 

nature of atoms according to the ideal gas law, while the 2nd term corresponds to 

the traction exerted by the interatomic forces.  

In this thesis, stresses in simulations are applied via normal forces on the 

orthogonal surfaces of the simulation cell. The rectangular co-ordinate system in 

which the surface normals form the co-ordinate axes is the principal co-ordinate 

system in which the stress tensor is diagonal. The stress component sαα  (where  

α = x, y or z) is the force per unit normal area along the α direction. The 

equilibrium configuration of the simulation cell under the applied stress sαα  is 

obtained by adjusting its dimensions { }Lα  gradually, until the average atomic 

stress balances the external applied stress, i.e. isαα αασ= . On each time step tΔ , 
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the Lα  and coordinates of all atoms are rescaled, 

 

'
'
'
'

i x i

i y i

i z i

L L
x x
y y
z z

α α αχ
χ
χ

χ

=⎧
⎪ =⎪
⎨ =⎪
⎪ =⎩

            (2.20) 

where the ( )1
3

iC

R

t s
tα αα αα

βχ σΔ
= − − , which is the rescaling parameter that 

slightly deviate from 1. Both Rt  and Cβ  are adjustable parameters, where Rt  is 

the relaxation time, Cβ  is the compressibility. Physically, it is equivalent to 

coupling the system to a “stresses bath”. 

 As an example, suppose the sample is under a hydrostatic stress, i.e. 

xx yy zzs s s= = , equation 2.20 becomes,  

1 3

'
'i i

V Vχ

χ

=⎧
⎨

=⎩r r
            (2.21) 

where x y zV L L L=  is the volume of the simulation cell, { }, ,i i i ix y z=r  is the 

position vector of atom i, ( )1x y z C
R

t P
t

χ χ χ χ β Δ
= = − −P  using the approximation 

of ( )1 31 1
3
xx+ ≈ + , the desired pressure P sαα=  and the instantaneous internal 

pressure P is equivalent to the internal hydrostatic stress 
3

i i i
xx yy zz

i

σ σ σ+ +
= ∑P . 

Then, equation 2.20 reduced back the original Berendsen [7] method, i.e. equation 

2.21. 
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The lattice configuration in the simulation box may not always have the same 

symmetry axes as the simulation box. In such cases, the co-ordinate axes are not in 

the principal directions and the Cartesian stress-tensor is not diagonal. This 

obviously complicates simulations involving external stresses on non-cubic crystals. 

Even in cubic crystals, the deformation strain field due to thermal expansion, phase 

transition, point defects and dislocations, or a general applied stress, etc., may not 

have the same principal axes along the co-ordinate axes of the simulation cell. In 

such cases, we also need to deal with the non-diagonal shear terms of the stress 

tensor. The most sophisticated method to relax the pure shear stresses is changing 

the shape of simulation box, but a simpler scheme is adopted here. The boundary 

across the simulation box and its imagines is mismatched [1] (Figure 2.2).  

 

Figure 2.2 – Schematic picture to mismatch the boundary across the simulation box and its 

images. 

The mismatch length hαβΔ  is enhanced or reduced according to the i
αβσ . Then, 

the coordinate of atoms are relocated in the new positions. Using the x – y direction 
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as an example, if 0i
xy xys σ− ≠ , 

 
( )

( )

'

'

ii
i i D xy xy

y R

i
xy xy D xy xy

R

y tx x s
L t

th h s
t

β σ

β σ

Δ
= + −

Δ
Δ = Δ + −

        (2.22) 

where the Dβ  is a constant representing the deformability. Applying the scheme to 

x – y, x – z and y – z directions simultaneously, one can deal with all the 

non-diagonal shear terms. 

 

2.7  Magnetic Potential 

The inter-atomic potential is an essential component of an MD simulation, 

with which energies and forces are calculated. The construction of a reliable 

potential model may require a very substantial effort. First of all, the functional 

form of the potential is guessed according to certain physical behavior. For 

example, a pair potential mimics both the attractive and repulsive behavior between 

two atoms. Then, a basket of simulations would be performed with some 

preliminary parameters. Parameters or even the functional form is further refined to 

best fit the ab-initio and/or experimental data. This process would iterate several 

times, until the predictions of the model are within acceptable tolerance. 

The functional form base on the embedded atom method (EAM) [16]-[18] is 

commonly used in the construction of empirical many-body potential. The EAM 

potential is superior to the pair potential in the context of elastic constants. It has 
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the following functional form: 

[ ] ( )
, ,

1
2

N N

i ij
i i j i j

U F V rρ
≠

= +∑ ∑          (2.23) 

where [ ]F Aρ ρ= −  and ( )
,

ij
j i j

f rρ
≠

= ∑ . In addition to the repulsive term 

( )V r , the model also has a bonding term that is the square root of the effective 

electron density, which has its origin from the many-atoms interaction. In addition, 

( )f r  is the pairwise electron-density radial function that describes the magnitude 

of the hopping integrals.  

Generally, EAM potentials for transition metals can be constructed [19] with 

good agreement to ab-initio calculations and experiments. However, the situation 

becomes complicated in the case of ferromagnetic iron. The presence of magnetism 

stabilizes the bcc phase of iron at low temperature [20]. The strong coupling 

between the magnetic moments of neighboring atoms due to exchange and 

correlation interaction of their shared electrons presents non-trivial problems. 

Although semi-empirical potentials for iron [21]-[23] have been derived within 

EAM formalism, they may not always be useful in the study of magnetic properties, 

since the magnetic contribution to the total energy of interaction between atoms 

may not be separable. Ackland [24] discussed the inclusion of magnetic effects in a 

potential for a d-band magnetic metal, but never did practice his proposed scheme 

in an actual magnetic potential. By using a combination of the Stoner ‘local band’ 

treatment of ferromagnetism and the Ginzburg-Landau model, Dudarev and Derlet 

(DD) [25],[26] developed a many-body ‘magnetic’ interatomic potential for iron, in 



Chapter 2: Molecular Dynamics                              MA, Pui Wai 

 40 

which the total potential energy of N atoms is written in the same form as equation 

2.23, except that,  

[ ] ( )1 ln 2
ln 2 c

c c

BF A ρ ρρ ρ ρ ρ
ρ ρ

⎛ ⎞ ⎛ ⎞
= − − − − Θ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

    (2.24) 

Here A and B are constants; ( )xΘ  is the Heaviside step function; cρ is the critical 

electron density at which magnetism vanishes. In addition to the usual many-body 

contribution (i.e., the first term in equation 2.24) describing the collective 

interaction of an atom with its environment, this potential explicitly takes into 

account the local magnetic structure of the environment of a given atom and relates 

it to the effective local electron density (the second term in equation 2.24), and 

includes the magnetic contribution to the total energy in the determination of the 

local atomic configuration. We may understand the physical meaning of such a 

functional form via the regular band model, where the energy per atom can be 

written as [25],[26]: 

( )

2

2

4

1
2 2 2

E E E I

W W IN n N
n n

ζ

ζ

↑ ↓= + −

⎛ ⎞= − − + −⎜ ⎟
⎝ ⎠

       (2.25) 

The E↑  and E↓  are the energies of spin up and spin down sub-bands 

respectively; I is the Stoner parameter; ζ  is the magnetic moment; W is the width 

of the band; n is the total number of d orbitals per atoms; N is the total number of 

electrons. It can be seen that the energy is minimized in the non-magnetic state (ζ = 

0) when 2I W N<  and in fully saturated magnetic state when 2I W N> . 
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Similarly, the magnetic effect represented by the second term in equation 2.24 

vanishes for cρ ρ> , when the electron correlation is suppressed. It should be 

noted that both equations 2.24 and 2.25 are only valid for T = 0K, when all the 

atomic spins are collinear and total magnetic moment is either zero or fully 

saturated. At finite temperatures, the atomic spins are non-collinear. In that case, 

the interatomic interaction and the degree of non-collinearity are mutually 

dependent, a point we shall consider in detail in Chapter 4. 

To facilitate fast evaluation of forces, the interatomic interaction in the DD 

potential takes a convenient functional form following the EAM formalism. The 

magnitude of the local magnetic moment can be explicitly calculated using a 

simple power law: 

1
c

C
γ

ρζ
ρ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
, 

where C and γ are parameters fitted to the relationship between the magnetic 

moment and the average volume of bcc iron. Thus, when the system is compressed, 

the effective electron density increases and the local magnetic moment decreased. 
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Chapter 3: Amorphous Iron at T = 0K 

3.1  Brief Introduction 

Amorphous materials are produced under non-equilibrium conditions 

inhibiting crystallization, such as rapid quenching from the melt [1],[2]. The 

topological disorder constitutes a major factor that dominates properties of such 

materials. For example, amorphous magnets are soft magnetic materials which 

show easy magnetization due to the lack of long-range order and 

magneto-crystalline anisotropy [2]. Due to their non-crystalline structure they 

exhibit high electrical resistivity, high elastic limit, high magnetic permeability and 

attractive corrosion resistance [2],[3], which make them useful for many 

applications, such as high-frequency devices, power distribution transformers, 

magneto-mechanical transducers and magneto-acoustic devices [3]. However, 

fabricating pure amorphous iron (μ-Fe) samples presented a number of practical 

challenges, and the properties of μ-Fe were extrapolated from those of amorphous 

systems with very high iron concentration [4]-[6]. The results often proved 

ambiguous due to the presence of other components in the system. Pure μ-Fe only 

in powder form can now be prepared by the sono-chemical technique [7]-[10]. 

In the theoretical aspect, magnetism in the ground state of μ-Fe was studied 

almost exclusively using the electronic structure based methods. Kakehashi et al. 

[11]-[17] developed a treatment based on the degenerate-band Hubbard model and 

proposed that the ground state of μ-Fe was a spin-glass. Kakehashi et al. 

investigated the magnetic phase diagram of μ-Fe as a function of temperature T and 
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the d-electron occupation number N. The phase diagram shows a paramagnetic, a 

collinear ferromagnetic, a non-collinear ferromagnetic and a spin glass state. Turek 

and Hafner [18] performed electronic structure based molecular dynamics (MD) 

simulations using interatomic forces calculated using a method that combines the 

nearly-free-electron and tight-binding-bond approximations. They also performed 

density functional calculations using 64-atoms supercells in the 

linear-muffin-tin-orbital (LMTO) approximation. Upon compression, a sample of 

μ-Fe transforms from an inhomogeneous ferromagnetic state into an 

antiferromagnetic state and then further into a spin-glass state. Krauss and Krey [19] 

and Krey et al. [20] used a LCAO approach combining the Slater-Koster 

parameterization of the hopping matrix elements of a tight-binding Hamiltonian 

with the Hartree-Fock treatment of on-site interaction between electrons, and 

generated the spin configurations for an amorphous cluster containing 54 atoms of 

iron. Initially, they adopted the conventional spin-up and spin-down approximation 

and discovered an inhomogeneous ferromagnetic state. Subsequently they 

generalized the treatment to non-collinear magnetic structures, and found 

asperomagnetic or speromagnetic energetically favourable configurations. Lorenz 

and Hafner [21], using tight-binding parameterization of the Hubbard Hamiltonian, 

showed that as the density of the material increases, μ-Fe transforms from the 

ferromagnetic state into an asperomagnetic state and then into a speromagnetic 

state. Liebs et al. [22],[23] performed ab-initio calculations using supercells with 

16 or 32 atoms. At low density, the system remained ferromagnetic. At higher 

density, calculations showed the formation of non-collinear magnetic structures. 

All the above calculations were based on density functional theory and/or the 
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tight-binding Hubbard Hamiltonian. With more than a hundred energy states per 

atom, the treatment of this Hamiltonian is computationally very demanding and in 

practice it proves difficult to investigate systems containing more than a few 

hundred atoms. Thus, the extension of ab-initio approaches to the treatment of μ-Fe 

beyond the few hundred atoms scale is problematic. In the DD potential [24],[25], 

the expression for the energy of interaction between atoms takes a convenient 

functional form similar to that of the embedded atom method (EAM) [26]-[28] 

formalism, hence enabling fast evaluation of interatomic forces as well as the 

magnitude of the local magnetic moment of an atom in a large-scale MD 

simulation. Using the magnetic DD potential, the relationship between the local 

topological structure, and magnetic properties of large samples of μ-Fe, and the 

magnetic/non-magnetic transformation occurring under the applied external 

pressure are investigated. Within the DD approximation, one can investigate how 

the magnitude of the local magnetic moment (but not its direction) depends on the 

parameters characterizing the structure, such as the local Voronoi volume of an 

atom and the number of the nearest neighbors. At this point, let us point out that the 

calculations in this chapter are only valid at zero temperature, at which the spins 

are perfectly collinear as the bcc Fe crystal at its many-body ground state. To model 

the crystal at finite temperatures, the increased internal energy means that the 

many-body excited state with interacting phonons and magnons must be considered 

in addition to the interacting atoms. This requires the treatment of the Spin-Lattice 

Dynamics (SLD) simulation that will be presented in the following chapters.  
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3.2  Simulation Scheme 

The DD potential allows calculating the local magnetic moment of an atom (in 

units of Bμ ) as well as the forces acting on it. Both quantities depend on the local 

environment of the atom. In the following simulations, samples of μ-Fe of eight 

different densities were prepared by rapidly quenching atomic configurations from 

the melt. MD simulations of the heating and the subsequent quenching process 

were performed using canonical (NVT) ensembles for eight different mass densities, 

namely 7.04 g/cm3, 7.46 g/cm3, 7.88 g/cm3, 7.92 g/cm3, 8.41 g/cm3, 8.95 g/cm3, 

9.53 g/cm3 and 10.2 g/cm3. The density of 7.88 g/cm3 corresponds to the stress-free 

equilibrium configuration of bcc iron. By varying the density of the material we 

simulate the effect of applied hydrostatic stress. In each case, the system consists of 

approximately 16 thousand atoms initially placed in a regular bcc lattice 

corresponding to a chosen value of mass density. The size of the simulation cell 

was approximately 60 Å×60 Å×60 Å in the 111 , 211  and 011  directions, 

respectively. Periodic boundary conditions were applied in all three directions. 

To simulate the formation of an amorphous structure by quenching a sample 

of liquid iron, two complementary methods were used. The first method is to 

follow Ref. [18] and fast quench the system from the melt at the rate of 1015K/s to 

50K, and then slowly quenched it to 4K, and continued further to 0K. In the second 

method, the velocity of each atom is equated to zero repeatedly at every time step 

of an MD simulation and effectively followed the steepest descent trajectory in the 

phase space for the entire duration of the simulation of the order of 1ns. A better 

relaxed configuration is achieved by using the second method, with the maximum 
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remnant force reduced to less than 10-4 eV/Å, which is an order of magnitude lower 

than that found using the first method. The results obtained using the two methods 

are very similar, and in what follows only those structures simulated using the 

second method will be described. 

 

3.3  Topological Structure 

The topological structure of the atomic arrangement in an amorphous material 

is generally explained in terms of dense random packing [29],[30] and is best 

described by the radial distribution function (RDF) g(r). Experimentally, the RDF 

of μ-Fe has only been investigated for thin films and powder samples. It is 

probably one of the most significant and interesting properties of pure μ-Fe studied 

both experimentally [9],[29],[30] and by computer simulation [31],[32]. 

A typical plot of the RDF obtained in the simulations is shown in Figure 3.1 

for the density of 7.88 g/cm3. The blue bars represent the RDF of the corresponding 

perfect bcc lattice up to the fifth nearest neighbor, with the density of the first 

nearest neighbor normalized to one. It can be seen that instead of discrete values 

found for a perfect crystal lattice, distances between neighboring atoms in an 

amorphous metal are statistically distributed and showed up as broadened peaks.  

As indicated, the peaks in the RDF of μ-Fe are labeled 1a, 1b, 1c, 2a and 2b. Their 

presence is independent of the size of the simulation cell. The 1a peak is below 

2.31Å, the 1b and 1c peaks are between 2.31Å and 3.21Å. The three peaks merge 

at 300K (Figure 3.1 (b)) showing good agreement with experimental data. The 
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splitting of the 2nd peak (2a & 2b), with 2a peak higher than the 2b peak was 

proposed to serve as evidence for the formation of an amorphous state [29].  

 

Figure 3.1 – Radial distribution function (RDF) ( )g r  of amorphous iron with density = 

7.88 g/cm3 (a) at T = 0K and no. of atoms = 288 & no. of atoms = 16126. The blue bars 

represent the RDF of the corresponding perfect bcc lattice up to fifth nearest neighbors, 

with the density of first nearest neighbor normalized to one. (b) at T = 300K and no. of 

atoms =16126 & experimental data from T. Ichikawa. 

One can observe good correlation between the positions of the 1b, 1c, 2a, 2b 

peaks in μ-Fe and those of bcc-Fe. On the other hand, there is no such 

correspondence for the 1a peak. Due to the difficulty with resolving such a narrow 

peak in finite temperature data, it may be experimentally undetectable even if it 

existed. Maeda and Takeuchi [31] reported a similar observation of a narrow peak 

in the RDF, but attributed their finding to an artifact of the Johnson potential. In 

another calculation using ab-initio MD [18], the resulting RDF of μ-Fe did not 

show the 1a peak. At the same time, that simulation did not show the splitting of 

the 2nd peak either, whereas this should be expected to occur in a real amorphous 

structure. The relatively low level of resolution of RDF found in ab-initio MD 
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simulations is likely attributable to the small size of the simulation cell. The RDF 

calculated for other amorphous metals [33]-[36] also show only a single broad peak, 

without the sharp 1a peak. The fact that ab-initio calculations of self-interstitial 

defect structures in crystalline bcc iron (see below) show that atoms in the core of a 

defect approach each other as close as 1.95 Å suggests that clusters of atoms 

separated by very small distances may actually form in amorphous iron. 

 

Figure 3.2 – Radial distribution function (RDF) ( )g r  of amorphous iron at different 

densities. (a) 2 Å < r < 10 Å (b) 2.15 Å < r < 2.31 Å (c) 2.3 Å < r < 3.3 Å (d) 3.0 Å < r < 

6.0 Å 

Figure 3.2(a) and (b) show the RDFs and changes in the structure of the 1a 
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peak for a range of varying densities. The most prominent feature that should be 

noted is the small width (< ~0.01 nm) of the 1a peak, which remains sharp 

independently of the changes in the density of the material. This probably indicates 

that neighboring atoms corresponding to this peak are linked into clusters by bonds 

with a well-defined bond length. As the density increases, the 1a peak grows taller 

and shifts toward shorter interatomic separation distances, suggesting that the 

proportion of clustered atoms increases. The increase in the density does not alter 

the low cutoff value of the RDF that still remains at 2.31Å. Figure 3.2(c) shows the 

corresponding behavior of the 1b and 1c peaks, both of which shrink as the density 

increases. Figure 3.2(b) and (c) together show that as the density increases, there is 

a reduction in the proportion of atoms with the neighboring environment of an 

approximate bcc structure, to feed the simultaneous growth of the proportion of 

clustered iron atoms. Figure 3.2(d) shows the behavior of the 2a and 2b peaks. 

Despite similar positions (see Figure 3.1(a)), these peaks do not correspond to the 

3rd to 5th nearest neighbors of the bcc lattice. Indeed, these peaks can be well 

explained in terms of conventional dense random packing [29],[30]. As the density 

increases, there is a general shift of the 2a and 2b peaks to smaller interatomic 

separations, accompanied by changes in the peak structure. It evolves from a 

structure formed by a superposition of two broad peaks to the one with a single 

broad peak and two superimposing sharp peaks located at around 4.40Ǻ and 4.61Ǻ. 

Smoothened lines for 7.04g/cm3 and 10.2 g/cm3 are shown in the insert of Figure 

3.2(d). According to Figure 3.2, the effect of an applied hydrostatic stress on the 

topological structure of the atomic environment of μ-Fe extends at least to the 5th 

nearest neighbor distance. Figure 3.3 shows that the percentage of atoms with at 
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least one neighbor at interatomic separation smaller than 2.31Å increases 

monotonically as a function of density. 

 

Figure 3.3 – Percentage of atoms for various densities with at least one neighbor with a 

separation of less than 2.31 Å. 

 

3.4  Magnetic/non-magnetic Transition  

To assess the accuracy of simulations performed using the DD potential 

against ab-initio calculations, the structure and the magnitude of magnetic 

moments are calculated using density functional calculations [37] (Figure 3.4(a)) 

and compared with the one evaluated using the DD potential (Figure 3.4(b)). 

Comparison of structures in Figure 3.4(a) and (b) shows that the positions of atoms, 

as well as the magnitude of magnetic moments predicted by the DD potential agree 

satisfactorily with those found in ab-initio calculations. The self-interstitial 110  

dumbbell configuration shown in Figure 3.4 represents the most energetically 

stable, as well as one of the most strongly distorted structures occurring in bcc iron. 
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The fact that this structure is well described by the semi-empirical magnetic 

potential used in this work, suggests that the structures and magnetic configurations 

described below are representative of those of μ-Fe. 

 

Figure 3.4 – (a) Atomic configuration and magnetic moments for the 110 dumbbell 

configuration in bcc iron calculated using density functional theory and (b) the same 

configuration modeled using the magnetic interatomic potential. The differences between (a) 

and (b) are associated with the approximate treatment of interatomic forces and magnetic 

moments within the magnetic interatomic potential formalism. 

The calculated probability distribution of magnetic moments (MMD) shown 

in Figure 3.5(a) exhibit a reduction in the mean magnetic moment and broadening 

of its probability distribution as a function of mass density of μ-Fe. This trend 

agrees very well with results reported in the literature (see e.g. Figure 2 of Ref. 

[18]). The large scale simulations allow better statistical representation of data and 

offers clearer view of the trend relating the density of the material and the 

magnitude of the magnetic moment. Figure 3.5(b) shows the proportion of 

non-magnetic iron atoms plotted as a function of density, indicating that μ-Fe 

remains magnetic at 0K until the density reaches 8.41 g/cm3, beyond which the 
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proportion of non-magnetic atoms increases sharply and the sample progressively 

loses its magnetic properties. At the density of 10.2 g/cm3, practically all the atoms 

become non-magnetic, completing the magnetic/non-magnetic transition driven by 

the increasing hydrostatic pressure. The corresponding pressure is shown in the 

inset of Figure 3.5(b). The pressure is calculated according to virial theorem. At the 

density of 8.95 g/cm3, the pressure is ~12.7 GPa. One can also observe a linear 

regime in the pressure-density relationship for smaller pressures before the sample 

gradually loses its magnetism. 

 

Figure 3.5 – (a) Magnetic moment density versus magnetic moment at different densities. (b) 

Percentage of nonmagnetic atoms versus density. 

Figure 3.6(a) and (b) show the mean and the standard deviation of the MMD 

as a function of mass density. The figures show plots comparing cases where the 

non-magnetic atoms were included or excluded from statistical analysis. We see 

that although there is an overall reduction in the magnetic moment of iron atoms as 

a function of density, the disappearance of magnetism with increasing density is 

primarily the result of the sharp increase in the fraction of non-magnetic atoms. The 

corresponding standard deviation of the MMD in Figure 3.6(b) shows a turning 
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point at the density of 9.53 g/cm3, where the proportion of magnetic and 

nonmagnetic atoms is comparable, and it drops again at the density of 10.2 g/cm3 

where the majority of atoms are non-magnetic. Figure 3.6 shows that μ-Fe loses its 

magnetic properties gradually as the hydrostatic pressure increases. Similarly to the 

situation occurring in the core of the self-interstitial defect shown in Figure 3.4(a), 

the origin of the magnetic/non-magnetic transition is driven by mechanical effects 

(increase of hydrostatic pressure) and is dissimilar to the temperature-driven 

order-disorder transition occurring in a ferromagnetic material at the Curie 

temperature.  

 

Figure 3.6 – The mean (a) and standard deviation (b) of magnetic moment versus the 

number density including/excluding atoms with magnetic moment equals to zero. 

In Figure 3.7, the magnitude of the magnetic moment of an atom is plotted 

against its Voronoi volume. The positive correlation seen for all densities does not 

fully agree Turek and Hafner’s result [18] suggesting that the correlation between 

local volume and magnetic moment ceases to exist in the high density limit. 

However, only a reduction is observed in this correlation at high pressure, hence 

making the simulations more consistent with the picture proposed by Krauss and 
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Krey [19]. The relation between the absolute value of magnetic moment M, and the 

Voronoi volume V in Figure 3.7 can be represented by a best-fit equation M = aln(V 

− c) + b. The blue line is fitted using all the atoms in the simulation cell. The fitted 

values are 0.59147 0.00125a = ± , 1.42286 0.00132b = ± , 9.00275 0.00054c = ± , 

and value of the correlation coefficient is 0.80172. The orange line is fitted with the 

nonmagnetic atoms excluded, and the corresponding fitting parameters 

are 0.48479 0.00084a = ± , 1.65911 0.00086b = ± , 9.3355 0.00054c = ±  with the 

correlation coefficient of 0.82168. The magneto-volume relation for μ-Fe is close 

to that for the antiferromagnetic state in fcc iron, which is consistent with the 

close-packed structure of this phase [11]. At the same time, one should notice that 

volume is not the only factor that determines the magnitude of magnetic moment. 

This is evident from the spatial fluctuations of magnitudes of magnetic moments of 

individual atoms, which can be very large, particularly near the Voronoi volume of 

9.5Å3 per atom. In this case even for atoms occupying the same Voronoi volume, 

the magnetic moment can vary from 0 Bμ  to nearly 2 Bμ . 

 

Figure 3.7 – (a) Magnetic moment versus Voronoi volume at different densities. (b) The 

magnetic moment fitted as a function of the Voronoi volume. The blue line represents 
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fitting to all atoms and the red line represents fitting without the nonmagnetic atoms. 

 

3.5  Relationship between Local Structure and Magnetic 

Moment 

To analyze the effect of local environment on the magnitude of magnetic 

moment further, Figure 3.8 plotted the mean value of the local magnetic moment as 

a function of the number of neighbors within the radius of 3.21Å. Intuitively, one 

would expect that as the number of neighbors increases, the mean magnetic 

moment would decrease due to the higher electron density on an atom. However, 

Figure 3.8 shows a surprising increase in the mean magnetic moment as the 

number of neighbors increases. A further examination is done on the respective 

situations in the 1a, 1b&1c peaks separately, and find that in the 1a peak, the 

magnetic moment indeed decreases as the number of neighbors increases. In the 

1b&1c peaks, on the other hand, the magnetic moment increases with the 

increasing number of neighbors. Thus, this forced us to also consider the 

relationship between the Voronoi volume and the number of neighbors of a given 

atom to arrive at a consistent picture of the magnetic/non-magnetic transition. 
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Figure 3.8 – The mean of magnetic moment vs. number of neighbors for (a) rij < 3.21 Å (b) 

rij < 2.31 Å (c) 2.31Å < rij < 3.21Å 

In Figure 3.9, the number of neighbors is plotted versus the Voronoi volume. 

The figure shows the expected decrease in the Voronoi volume as a function of the 

number of neighbors in the 1a peak, and the opposite trend for the 1b&1c peaks. It 

is supposed that owing to their small interatomic separation, iron atoms forming the 

1a peak develop local structures characterized by a specific bond length, so that as 

the number of neighbors increases, the volume occupied by each atom is reduced. 

On the other hand, atoms in the 1b&1c peak are more loosely bonded via the usual 

metallic bonding mechanism. Atomic positions here are more flexible, i.e. they are 
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energetically less sensitive to the exact positions of atoms. An additional atom 

keeping its atomic volume tends to repel other atoms and this causes the Voronoi 

volume of the centre atom to increase, resulting in a larger size of the local 

magnetic moment. 

 

Figure 3.9 – Average Voronoi volume vs. number of neighbors  (a) rij < 3.21 Å (b) rij < 

2.31 Å (c) 2.31Å < rij < 3.21Å 

Figure 3.10(a) shows the statistical distribution of the number of neighbors 

corresponding to various densities. The curves represent the best fit to Gaussian 

distributions. The close-to-perfect correlation means that the distribution of the 
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number of neighbors in amorphous iron is random. The mean number of neighbors 

versus density shown in Figure 3.10(b) exhibits a linear relationship N a bρ= +  

between the mean number of neighbor N  and the density ρ , with 

8.45666 0.17889a = ± , 0.58613 0.02109b = ± , and the correlation coefficient of 

2 0.99614R = . Using the Johnson’s potential, Srolovitz et al. [32] observed that 

structures with 13 neighbors form the largest part of the population. This is similar 

to our results shown in Figure 3.10(a). 

 

Figure 3.10 – (a) The distribution of number of nearest neighbors at different densities. (b) 

The mean of the number of neighbors versus density. Red line is the linear fitting. 

Figure 3.11(a) shows the magnitude of magnetic moment as a function of the 

percentage fluctuation of the interatomic separation 1/ 2Δ . In comparison with 

Figure 5 of Ref. [14], the fluctuation of our result is about twice the value reported 

there. According to the results shown in Figure 3.11(b) the fluctuation varies almost 

linearly as a function of density. 
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Figure 3.11 – (a) The local magnetic moment versus the local fluctuation of the interatomic 

separations at different density; the yellow dot is the mean of magnetic moment versus the 

average fluctuations of interatomic separations ( )
1/221/2 R RδΔ = . (b) The average 

fluctuations of interatomic distance versus the number densities. 

Figure 3.12 shows atomic structures and color-coded magnetic moments of 

atoms in the simulation cell displayed for several values of the mass density of the 

material. As the density increases, the number of nonmagnetic (dark) atoms 

increases and beyond a critical value of mass density the material completely loses 

its magnetic properties. The structures shown in Figure 3.12 illustrate the fairly 

complex nature of the magnetic/non-magnetic transition occurring in μ-Fe under 

applied pressure. The origin of the transition from a magnetic to a non-magnetic 

state is associated with the local widening of the electronic d-band due to the 

increase of the local hopping integrals, and the resulting violation of the local 

Stoner criterion for magnetism [24],[25]. The increase of the amplitude of the local 

hopping integrals is due to the local deformation of atomic structure such as that 

occurring in the core region of a self-interstitial atom defect shown in Figure 3.4.  

In this regard the mechanism of the magnetic/non-magnetic transition observed in 

the current simulations is entirely different from that of the order-disorder 
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ferro/paramagnetic transition occurring in crystalline bcc iron at the Curie 

temperature. 

 

Figure 3.12 – Atomic structures and magnetic moments of atoms simulated using the 

magnetic potential for systems containing approximately 16 thousand atoms for different 

values of mass density. Darker color represents atoms with lower magnetic moments. The 

figure illustrates the gradual nature of the magnetic/non-magnetic transition occurring in 

amorphous iron under increased external pressure. 

There are two possible scenarios for the magnetic/non-magnetic transition, 

namely that it occurs either via inhomogeneous nucleation and growth of a small 
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number of non-magnetic clusters of atoms, or via homogeneous nucleation driven 

by the uniform increase in the fraction of nonmagnetic atoms in the simulation cell. 

Those results presented here offer support to the second scenario. Examination of 

three-dimensional magnetic structure of simulated configurations show that the 

non-magnetic atoms form largely disconnected clusters, with the loss of magnetic 

properties driven by local mechanical distortions. To verify this conclusion, a 

non-magnetic fifteen-atom cluster is added at the centre of the computational cell, 

and found that this cluster did not grow. Magnetism did not vanish through the 

growth of nonmagnetic islands, and remained a fluctuating entity throughout the 

simulation. To what extent this picture is affected by the correlation between 

magnetic moments driven by inter-atomic exchange remains to be investigated. 

 

3.6  Brief Conclusion 

 Large-scale molecular dynamics simulations were performed to investigate 

magnetic properties of amorphous iron under external pressure. The simulations 

were performed using the recently developed magnetic DD interatomic potential. It 

is found that as the density of the material increased, an increasing fraction of 

atoms became nonmagnetic. Above a critical density the fraction of nonmagnetic 

atoms increased sharply, yet homogeneously. The magnetic/non-magnetic 

transition occurred continuously and homogeneously, and did not involve 

nucleation and growth of individual non-magnetic clusters. The local magnetic 

moment density is correlated with the Voronoi volume per atom, and the relation 

between the two follows a logarithmic law. Evidence was found for the significant 
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role played by the local atomic environment. However, all the current calculations 

are limited to zero temperature only. At finite temperature, phonons alone cannot 

account for all the elementary excitations in a magnetic material. The excitation of 

magnons and their interactions with the phonons must also be considered. 

Moreover, the current methodology cannot be used to treat the order/disorder 

ferro/paramagnetic transition that has a completely different physical origin from 

the magnetic/non-magnetic transition considered in this chapter. There is as yet no 

simulation scheme in the literature that can deal with the simultaneous presence of 

phonons, magnons and their interactions in a unified manner. The usefulness of the 

MD scheme provides us with the perfect reason to develop a more general 

simulation scheme that also includes the spin degree of freedom. In the following 

chapter, a rigorous reformulation of the molecular dynamics simulation for this 

purpose will be presented, which is entitled Spin-Lattice Dynamics (SLD) 

simulation. 
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Chapter 4: Spin-Lattice Dynamics 

4.1  Brief Introduction 

The ground state of most materials prefers a non-magnetic state, i.e. the 

number of spin up electrons is equal to the number of spin down electrons. In the 

treatment of these materials, the spin character of electrons is usually neglected and 

does not have significant effect. The eigenvalues Eα  of the corresponding 

Hamiltonian, which is obtained by solving the Schrödinger equation, would be 

independent of spins, and so is the density of states  

( ) ( )D E E Eαα
δ= −∑           (4.1) 

Here the summation is performed over all the eigenstates { }α  of the system. The 

energy of this system can be trivially evaluated by integrating the density of states 

up to the Fermi energy. 

( )2 F

totalE D E dE
ε

= ∫            (4.2) 

where Fε  is the Fermi energy, and the factor of 2 comes from summation over 

spins. In this case, the only practical problem associated with the evaluation of 

totalE  and with the development of a numerical scheme for MD simulations is in 

establishing a suitable approximation for ( )D E . This may be accomplished for 

example by using the tight-binding approximation and the Green’s functions 

approach [1].  
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However, some materials would prefer magnetic ground state, where 

magnetism is a collective effect of interacting electrons. In ferromagnetic iron, it is 

the interacting d-character electrons that are mainly responsible for its magnetic 

nature. For magnetic materials, the treatment in the foregoing presents a much 

more difficult problem and hence “few subjects in science are more difficult to 

understand than magnetism1” [2]. A phenomenological approach is to introduce in 

the Hamiltonian a Stoner term, specifying the contribution of energy due to the 

appearance of the atomic magnetic moment [3],[4].  

To model the microscopic behavior of iron at a finite temperature, one must 

include in the treatment not only the interactions between atoms, as usually done in 

MD, but also those between the electrons in terms of their spins. As mentioned in 

earlier chapters, the interaction between the electron spins in the case of an itinerant 

magnetic material like ferromagnetic iron can be taken into account via the concept 

of atomic spins. In this context, ferromagnetic iron can be modeled on the basis of 

an ensemble of interacting classical particles with interacting intrinsic spins. 

In this chapter, a simulation scheme is proposed where the lattice dynamics 

(or molecular dynamics) and spin dynamics are unified into a single simulation 

scheme, and hence the name Spin-Lattice Dynamics (SLD). The atoms of 

ferromagnetic iron, modeled as classical particles with intrinsic spins, interact via 

scalar many-body forces as well as via spin-dependent forces of the Heisenberg 

form. At the same time, the spins interact via a coordinate-dependent exchange 

function. This extends the existing magnetic-potential treatment to the case where 

                                                 
1 Encyclopedia Britannica, 15th Edition, 1989 
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the strength of interaction between the atoms depends on the relative orientations 

of their non-collinear spins, and couples the spin and lattice subsystems. Instead of 

only treating close systems, the spin temperature is introduced via the 

fluctuation-dissipation theorem (FDT). Following the framework established by 

Brown [5], one can derive the relationship between the dissipative coefficient and 

random forces, as in the case of the lattice (equation 2.18). The integration 

algorithm for SLD would also be presented. Similar to the case without spins, the 

2nd order Suzuki-Trotter decomposition (STD) is adopted, in order to minimize 

numerical energy dissipation.  

 

4.2  Hamiltonian 

For a system of N magnetic atoms, the total “potential” energy is a function of 

positions { }kR  of atoms and their vector magnetic moments { }kM . Since the 

quantum mechanical Hamiltonian of the system is invariant with respect to the 

choice of the spin quantization axis, the energy must also be invariant with respect 

to the choice of this axis. A sufficiently general expression satisfying this 

invariance principle is [4] 

{ } { }( ) ( ) { }( ) ( ) { }( )
( ) { }( )( )
( ) { }( )

0 1 2

22 2

3

,

,

 

k k k k i
i

k i
i

k i j
i j

E E E

E

E

= +

+

+ ⋅ +

∑

∑

∑

R M R R M

R M

R M M L

    (4.3) 

The first three terms in the above expansion can be grouped together and 



Chapter 4: Spin-Lattice Dynamics                             MA, Pui Wai 

 71 

incorporated into a single many-body potential term, which can be treated as a 

“scalar” component of the energy, independent of the orientations of the atomic 

spins. The last term is the lowest-order exchange coupling term. By minimizing the 

energy with respect to the magnitude of the magnetic moments, eliminating in this 

way the high-energy part of the spectrum of electronic excitations, and by retaining 

only the lowest order exchange coupling term, the above equation can be written in 

as [4]: 

{ } { }( ) { }( ) { }( )
,

1,
2k k k ij k i j

i j

E U J= − ⋅∑R e R R e e      (4.4) 

where ke  is a unit vector of atomic spin direction, and the magnitude of the 

magnetic moments is absorbed in the definition of the exchange function 

{ }( )ij kJ R .  

The corresponding effective classical Hamiltonian can now be written as 

[6]-[9]: 

2

,

1
2 2

i
ij i j

i i ji
i j

H U J
m

≠

= + − ⋅∑ ∑p e e         (4.5) 

This classical Hamiltonian treats the lattice and spin degrees of freedom as coupled 

subsystems. The third term describes the coupling between atomic spins due to the 

exchange interaction, which can be considered as an inter-atomic potential 

depending on the relative spin-orientation [10]. Low-energy elementary excitations 

of a system of interacting classical particles arranged in a crystal lattice take the 

form of lattice waves or phonons, originating from the atomic vibrations about their 
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zero-temperature positions. Similarly, low-energy excitations in a system of atomic 

spins take the form of spin waves or magnons, originating from the oscillation of 

the atomic spins directions about their zero-temperature collinear directions. Thus, 

low-energy excitations of a ferromagnetic crystal like bcc-iron must include the 

interaction among the phonons and magnons, i.e., the interacting lattice and spin 

waves, as governed by the spin-lattice dynamics. This picture explains the 

problems of the mean-field Stoner model [11] that does not include the low-energy 

collective magnetic excitations. It also highlights the limitations of models in 

which the lattice dynamics and the spin dynamics are taken as independent and 

linearly additive. 

To facilitate discussion, the third term of equation 4.5 is given the name 

spin-potential, as opposed to the usual many-body inter-atomic potential U 

describing the “scalar” interaction between the atoms. The dynamics of the system 

is now 8-dimensional, since in addition to the 6 degrees of freedom per atom in the 

coordinate and linear momentum space, we now have two additional degrees of 

freedom (i.e. θ and φ) for the direction of its spin. One can note that the 

spin-potential is a function of the relative spin orientation, and in a general case it 

is also a many-body function of atomic positions. Since an accepted method to 

derive the functional form of this potential from a many-body quantum 

Hamiltonian is not yet available [4], the following approximation is used: 

( )

( )

2

2

,

2

1 1
2 2

groundi
DD spin spin

i i

i
DD ij i j

i i ji

H H H H
m

H J
m

= + + −

= + − ⋅ −

∑

∑ ∑

p

p e e
       (4.6) 
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where the first term is the kinetic energy of the atoms, DDH  is the DD magnetic 

potential [12], ( ) ,
1 2spin ij i ji j

H J= − ⋅∑ e e  is the spin Hamiltonian, and ground
spinH  is 

the ground state energy for the collinear spin subsystem at 0K. Using this notation, 

one can write ( ) ,
1 2DD iji j

U H J= + ∑ . The functional form of Hamiltonian in 

equation 4.6 ensures that the energy and the atomic forces are correctly defined at 

0K. 

 

4.3  Exchange Function 

In fixed lattice models, i.e., when lattice vibrations are neglected, the 

exchange function ijJ  is given by a set of discrete values corresponding to a fixed 

set of inter-atomic distances for a particular lattice [10],[13]. In the current 

formulation, it is treated as a continuous function of atomic positions [9],[14]. Here 

ijJ  is expressed as a pairwise function of inter-atomic separations and treated as a 

mid- to long-range part of the Bethe-Slater curve [15]. Using ab-initio calculations, 

Morán et al. [16] and Sabiryanov et al. [17] investigated how the exchange 

function varied as a function of inter-atomic distance. The parameterization of ijJ  

in this work is obtained by fitting to the data given in Table 1 of Ref. [16] and in 

Figure 2 of Ref. [17]. 

Our fitting strategy followed the convention where the dependence of the 

potential on the distance between the atoms ij i jr = −R R  is described by a sum 

of third-order polynomials: 
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( ) ( ) ( )3

1
1

N
n n n

ij ij c c ij
n

f r f r r r r
=

= − Θ −∑        (4.7) 

where n
cr  is the cut-off distance for the nth polynomial, nf  is the nth polynomial 

expansion coefficient, and ( )n
c ijr rΘ −  is the Heaviside step function. Given the 

approximate nature of the fit and the pairwise representation for the exchange 

function, only a single polynomial is used, so that 

( ) ( ) ( )3

0 1ij ij ij c c ijJ r J r r r r= − Θ −         (4.8) 

The cut-off radius 3.75cr = Å is chosen to locate between the second and the third 

nearest neighbor distance for bcc iron.  

 

Figure 4.1 – Exchange function ijJ  shown as a function of interatomic distance ijr  and 

compared with data taken from Ref. [16] and Ref. [17]. The assumed form for the exchange 

function is ( ) ( ) ( )3

0 1ij ij ij c c ijJ r J r r r r= − Θ − , where 0 904.90177meVJ =  and 

3.75cr = Å. 

Figure 4.1 shows the fitted curve for 0 904.90177J = eV, and the original data 
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points taken from Ref. [16] and [17]. The fitted curve is likely to become fairly 

inaccurate in the limit of small interatomic separations. However, it is hard to 

investigate this point here because of the lack of ab-initio data describing this limit. 

A more accurate representation for ijJ  can be implemented once more extensive 

ab-initio data and more accurate functional forms for ijJ  become available. 

Indeed, ijJ  should also be a function of the electronic temperature since thermal 

excitations affect the Fermi-Dirac statistics of electrons and alter the equilibrium 

magnitudes of magnetic moments. 

 

4.4  Equations of Motion 

The equations of motion for the atoms and the spins can be derived using the 

method of Poisson brackets [9] or by adopting the classical equation of motion for 

the undamped magnetization field [18],[19]. To use the Poisson brackets, one 

should consider the actual atomic spins kS , rather than the unit direction vectors 

ke . Starting from the atomic spin Hamiltonian, 

,

1
2

A
A ij i j

i j

H J= − ⋅∑ S S ,          (4.9) 

one can derive the equation of motion for kS  as 

[ ] 1, Ak
A i ik i k

i

d i H J
dt

− ⎛ ⎞= = ×⎜ ⎟
⎝ ⎠
∑S S S S

h h
       (4.10) 
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Comparing AH  and spinH , the above equation becomes 

1k
k ik i k

i

k
k k ik i

i

dS J
dt

d J
dt

− ⎛ ⎞= ×⎜ ⎟
⎝ ⎠

⎛ ⎞
⇒ Π = ×⎜ ⎟

⎝ ⎠

∑

∑

e e e

e e e

h
         (4.11) 

where k
k k

B

MS
gμ

Π = =
h

h , and the g-factor is taken as a positive quantity. kM  is 

the magnitude of an atomic magnetic moment, which we can evaluate directly from 

the DD potential [20].  

Equation 4.11 is derived quantum mechanically using the Heisenberg operator 

formalism. In the classical limit, i.e. when the magnitude of atomic spin kΠ  is 

many times the spin of a single electron, the system of atoms and spins evolves 

along the classical trajectories. For ferromagnetic iron at 0K, 2.2k BM μ≈ , which 

is not much greater than 1. We can expect that quantum effects would be 

significant, but will be neglected if the approximation of classical spin is adopted. 

However, for the purpose of the present thesis, we may assume that classical spin is 

sufficient to give us insights on the coupled spin and lattice subsystems. 

One may also note that the equations of motion for the spin subsystem differ 

by a factor of kΠ  from those derived by Omelyan et al. [6]-[8] and by Tsai et al. 

[21],[22], who also used the Poisson bracket approach. This difference is 

significant since the precession frequency depends on kΠ  in a way analogous to 

the dependence of the acceleration of a particle on its mass. To confirm the 

accuracy of our equations, an independent alternative derivation is performed, by 
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starting from the classical equation of motion for the undamped magnetization field 

[18],[19],  

( )k
k k

d
dt

γ ′= − ×
M M H           (4.12) 

where Bgμγ =
h

 is the gyromagnetic ratio and M
k

k

Hδ
δ

′ = −H
M

 is the effective field. 

The Hamiltonian for the effective magnetic moment is: 

 
,

1
2

M
M ij i j

i j

H J= − ⋅∑ M M  ,         (4.13) 

from which it follows that 

Mk
k ik i

i

d J
dt

γ ⎛ ⎞= − ×⎜ ⎟
⎝ ⎠

∑M M M          (4.14) 

Comparing MH  and spinH  and taking into account that the direction of the 

magnetic moment is opposite to that of the atomic spin, equation 4.14 is 

transformed to: 

k k
k ik i

i

k
K k ik i

i

M d J
dt

d J
dt

γ
⎛ ⎞ ⎛ ⎞

= ×⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠
⎛ ⎞⇒ Π = ×⎜ ⎟
⎝ ⎠

∑

∑

e e e

e e e
         (4.15) 

which is the same as equation 4.11.  

The final equations of motion for the atoms and their spins are given by 
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( )
,

1
2

k k

k k

ijk
i j

i jk k k

d H
dt m

Jd H U
dt

∂⎧ = =⎪ ∂⎪
⎨ ∂∂ ∂⎪ = − = − + ⋅
⎪ ∂ ∂ ∂⎩

∑

R p
p

p e e
R R R

      (4.16) 

and 

 k
k k k

d
dt

Π = ×
e e H            (4.17) 

where k ik i
i

J= ∑H e  is the effective exchange vector field acting on spin k. kΠ  

plays the role of moment of inertia for the dynamics of angular motion of the spin 

vector. Equations 4.16 and 4.17 show that the dynamics of the lattice and spin 

subsystems are explicitly coupled through the dependence of ijJ  on the atomic 

positions { }kR  via the gradient term ij kJ∂ ∂R  in equation 4.16 and the ijJ  

term in equation 4.17. Note that the formulation in the foregoing does not take into 

account the spin-orbit coupling between the lattice and the spin subsystems. 

 

4.5  Conservation Laws 

The equations of motion derived in the foregoing is for a closed system and 

must satisfy the total energy and total angular momentum conservation laws. Let us 

first consider energy conservation. In this case, the time derivative of the total 

energy from equation 4.5 is: 
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( ) ( )
, ,

1 1
2 2

k k k

k kk k

ij k
i j ij i j

i j k i jk

d ddE U
dt m dt dt

J d dJ
dt dt

∂
= +

∂
∂

− ⋅ − ⋅
∂

∑ ∑

∑∑ ∑

p p R
R

R e e e e
R

    (4.18) 

Grouping the 2nd and the 3rd terms together, we have 

( )

( )
,

,

1
2

1
2

ijk k k
i j

k k i jk k k

ij i j
i j

Jd ddE U
dt m dt dt

dJ
dt

∂⎡ ⎤∂
= + − ⋅⎢ ⎥∂ ∂⎣ ⎦

− ⋅

∑ ∑ ∑

∑

p p Re e
R R

e e
    (4.19) 

The expression in square brackets in this equation is the negative of the right-hand 

side of the equation describing the evolution of the momentum (Equation 4.16), 

and k k kd dt m=R p . Therefore, only the last term remains, i.e., 

( )
,

1
2 ij i j

i j

dE dJ
dt dt

= − ⋅∑ e e          (4.20) 

Now, 

( )
, ,

,

1 1

j i
ij i j ij i j

i j i j

ij i j j i i j
i j j i

d ddJ J
dt dt dt

J

⎡ ⎤
⋅ = ⋅ + ⋅⎢ ⎥

⎣ ⎦
⎡ ⎤

= ⋅ × + × ⋅⎢ ⎥
Π Π⎢ ⎥⎣ ⎦

∑ ∑

∑

e ee e e e

e e H e H e
   (4.21) 

The exchange function is symmetric, i.e. ij jiJ J= . 
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( )
, ,

,

2

2

2

0

ij i j ij i j j
i j i j j

ij i j kj k
i j kj

ij i j kj k
j i kj

dJ J
dt

J J

J J

⎡ ⎤⋅ = ⋅ ×⎣ ⎦Π

⎡ ⎤
= ⋅ ×⎢ ⎥Π ⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞= ⋅ ×⎢ ⎥⎜ ⎟ ⎜ ⎟Π ⎝ ⎠ ⎝ ⎠⎣ ⎦
=

∑ ∑

∑ ∑

∑ ∑ ∑

e e e e H

e e e

e e e

    (4.22) 

because ij i kj k
i k

J J=∑ ∑e e  and for any arbitrary two vectors [ ] 0⋅ × =A B A . Thus, 

the total energy is conserved, and remains constant while the individual energies of 

the lattice or the spin subsystems separately vary as functions of time. 

Similarly, by considering the time derivative of the total angular momentum 

of the system i i
i

Π∑ e , one can show that for pure spin dynamics this quantity is 

also conserved. This can be proved by a series of transformations involving the 

transposition of summation indices, namely 

( ) ( ) ( )

( ) ( )
, ,

, ,

0

i i ji i j ji j i
i i j i j

ij i j ji i j
i j i j

d t J J
dt

J J

Π = × = ×

= − × = − × =

∑ ∑ ∑

∑ ∑

e e e e e

e e e e
    (4.23) 

where ij jiJ J=  and that for any two vectors A and B their vector product changes 

sign if the vectors are transposed × = − ×A B B A .  
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4.6  Spin Temperature 

Total angular momentum conservation imposes an unusually severe constraint 

on the dynamics of the spin system. Considering the case where initially the atomic 

spins are completely collinear, conservation of energy and angular momentum 

requires the spins to remain permanently collinear and cannot respond to changes 

of lattice vibration despite the coupling provided by the Hamiltonian, thus ruling 

out the dependence of magnetization as a function of temperature. Numerical 

studies performed for a microcanonical ensemble and described in the coming 

chapters indeed confirm this behavior. In terms of the general methodology of 

atomistic simulations, this is very unusual. To avoid complications with 

temperature control in MD simulations, microcanonical simulations for a very large 

system is generally believed to be the strategy to maintain best accuracy. 

Constraints due to angular momentum conservation thus rule out fundamentally the 

application of this strategy to SLD. In this regard, the dynamics of a large closed 

system of interacting spins is fundamentally different from the dynamics of a large 

closed system of interacting atoms, where inter-atomic interactions ultimately 

result in the statistical equilibration of positions and velocities asymptotically. 

In order to perform a simulation of a non-isolated system, a method for 

controlling the temperature of the system has to be developed. The fact that the 

SLD equations conserve both the total energy and spin angular momentum shows 

that interaction between a system of magnetic atoms and the environment (i.e. the 

thermal bath or the thermal reservoir) has to involve both dynamic quantities. To 

facilitate the interchange of the spin angular momentum, it is necessary to 
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introduce the notion of spin temperature. In this regard, the deterministic spin 

dynamics equation (Equation 4.17) is replaced by the stochastic Langevin-type 

equations of the form [5],[23]: 

( ) ( )k
k k k k k k k

d
dt

η⎡ ⎤Π = × + − × ×⎣ ⎦
e e H h e e H       (4.24) 

where kh  is a delta-correlated random fluctuation of the field kH , satisfying the 

condition: 

( ) ( ) ( )' " ' "i j ijh t h t t tμδ δ= −          (4.25)  

where μ is the amplitude of the random noise, and indices i and j denote the 

Cartesian x, y, z coordinates. In equation 4.24, η is a dimensionless damping 

constant, which together with the random fluctuation kh  describe the interaction 

between the spin subsystem and the thermostat, and the resulting exchange of 

energy and the angular momentum between the spin subsystem and the 

thermodynamic reservoir. Note that with equation 4.24, the spin angular 

momentum is no longer conserved.  

The temperature of the spin subsystem is then defined by applying the 

fluctuation-dissipation theorem (FDT) [24],[25]. FDT introduces temperature via a 

relationship between the systematic and random forces, which indeed comes from 

the same origin. Since the random fluctuation kh  is assumed to be Gaussian and 

Markoffian, the stochastic equation 4.24 can be mapped into the Fokker-Planck 

equation [25]: 
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( ) ( )
21

2i ij
i i j

P A P B P
t x x x

∂ ∂ ∂
= − +

∂ ∂ ∂ ∂
        (4.26) 

where 1x θ= , 2x φ=  and ( ), ,P tθ φ  is the probability distribution function of 

energy at time t. The parameters 
0

1limi it
A x

tΔ →
= Δ

Δ
 and 

0

1limij i jt
B x x

tΔ →
= Δ Δ

Δ
 are 

the drift and diffusion coefficients in probability space, respectively, which can be 

obtained following the procedure described by Brown [5]: 

2

2

2
2
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⎛ ⎞∂ ∂−
= −⎜ ⎟Π ∂ ∂⎝ ⎠

=
Π

=
Π

= =

      (4.27) 

where k k kE = − ⋅H e . 

 In thermodynamic equilibrium (i.e. 0W t∂ ∂ = ), one can identify the energy 

distribution of the spin subsystem with the Gibbs distribution. i.e. 

 0 exp
B

EW W
k T

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
          (4.28) 

Since the unit surface in the spherical coordinate is “ sin d dθ θ φ ” instead of 

“ d dθ φ ”, the P and W are related as: 

 sinP W θ=             (4.29) 
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After substituting equations 4.27 – 4.29 into the Fokker-Planck equation 4.26, the 

R.H.S. of equation 4.26 goes to zero if and only if: 

2 k Bk Tμ η= Π ,           (4.30) 

where T is the absolute temperature of the spin thermostat. This gives a relationship 

between the amplitude μ of random fluctuations, the damping constant η , and the 

desired temperature T of the spin subsystem. In the numerical implementation of 

the method, the random noise is modeled with Gaussian random numbers. 

 

4.7  Integration Algorithm 

Conservation of both the energy and angular momentum is important for a 

large-scale SLD simulation to yield physically realistic results. However, to control 

the accumulation of numerical errors to an acceptable level over tens of millions of 

time steps is not a trivial task. Preliminary investigations showed that standard 

predictor-corrector methods that have been successfully implemented in MD 

simulations did not have sufficient accuracy in energy conservation to be of 

practical use for SLD. Omelyan et al. [6]-[8] and Tsai et al. [21],[22] investigated 

the application of symplectic integration algorithms for both the spin and the lattice 

degrees of freedom. These authors also suggested the possibility of modeling the 

exchange function using a pairwise inter-atomic function. However, the actual 

spin-lattice dynamic simulation has not been carried out. On the other hand, Tsai et 

al. did the simulations, but without the coupling between the lattice and the spin 
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degrees of freedom. Both integration schemes were based on the 2nd order 

Suzuki-Trotter Decomposition (STD) scheme. The integration algorithm presented 

here follows the same route. 

In the current case, the set of SLD equations 4.16 and 4.17 have to be solved 

simultaneously. Within a small time step Δt, we may assume that there is a 

Hamiltonian operator H that operates on the generalized coordinate x, satisfying the 

equation of motion: 

d
dt

=
x xH ,             (4.31) 

where x is an element of the direct sum of the coordinate space R, momentum 

space P and spin-direction space S , i.e. ∈ ⊕ ⊕x R P S . Referring to equations 

4.16 and 4.17, H can be decomposed into the sum of three operators, representing 

the atomic force F, atomic velocity P, and spin velocity S, defined as 

( )
,

1s.t. 
2

s.t. 

s.t. 

ij
i j

i j

i i
i

JU

m
J

∂∂
⊕ → ≡ − + ⋅

∂ ∂

→ ≡

⊕ → ≡ ×

∑

∑

x e e
R R

px

x e e

R S P

P R

R S S

F : , F

P : , P

S : , S

     (4.32) 

In this equation, it is to be noted that the operation of F is on elements of R and S, 

but keeps these spaces unchanged. It only affects the corresponding element in P. 

The operation of P is on elements of P, and similarly only affects the corresponding 

element in R. The operation of S is the only one that also affects elements of S on 

which the operator is defined. The treatment of the S operator in a self-consistent 

way is considered as we proceed. Using these three operators, the equations of 
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motion (equation 4.16 – 4.17) can be written as  

( )≡ + +x xH P F S            (4.33) 

and 

( ) ( )
,

1
2

ij
i j

i j

i i
i

m
Jd U

dt
J

⎛ ⎞
⎜ ⎟
⎜ ⎟⎛ ⎞

∂∂⎜ ⎟⎜ ⎟ = + + = − + ⋅⎜ ⎟⎜ ⎟ ∂ ∂⎜ ⎟ ⎜ ⎟⎝ ⎠ ×⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑

p

R
p x e e

R R
e

e e

P F S ,     (4.34) 

If we assume that H is constant within a small time interval between time t and 

t t+ Δ , the solution of equation 4.31 can be formally written as 

( ) ( )t t e tΔ+ Δ =x xH t .          (4.35) 

According to STD,  

( ) ( ) ( ) ( ) ( )2 2 3t t t tte e e e e O tΔ Δ Δ ΔΔ = = + Δx x xP+F+ S S F+P SH      (4.36) 

Physically, when one deals with the operation of ( )F + P , only variables related to 

the lattice is affected, but not the spin-directions { }ke , i.e., they are frozen 

constant within the duration of the operation of ( )F + P , and equation 4.16b 

becomes 

( )
,

1 '
2

ijk
i j

i jk k k

Jd U U
dt

∂∂ ∂
= − + ⋅ = −

∂ ∂ ∂∑p e e
R R R

,      (4.37) 
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Then, equation 4.16 reduces to the conventional MD case without spin. The 

detailed symplectic integration algorithm for this case has already been presented 

in Chapter 2.  

The exponential operation of S  does not affect the lattice, which can be 

considered frozen during the evolution of x under the operation of S. However, 

operations involving the spins create complications because the effective field 

encountered by a particular spin is a self-consistent field determined by other spins. 

Indeed, the equation 4.17 represents a set of coupled 1st order differential equations 

for all spins, instead of a single equation. Unlike the case of coordinates and 

momenta the spin-velocity operators S produces changes in itself via its operation 

in the spin space S. Therefore, an important aspect of the integration algorithm is 

associated with keeping track of the non-commuting spin variables. By using the 

2nd order STD, we can transform this messy problem into a series of single spin 

rotations, but with the trade off of the ( )3O tΔ  trajectory error. To treat this 

situation, the spin-direction space is further decomposed into a direct sum of 

subspaces, each of which contains the spin direction of a single atom.  The 

spin-velocity operator S can then be written as the sum of a series of single 

spin-velocity operators, i.e. ( )1 2 -1... N N+ + + +S = S S S S , so that  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 2 12 2 2 2 2 2 3N NNe e e e e e e e Oτ τ τ τ τ τττ τ− −= +x xL L
S S S S S SSS   (4.38) 

Since the rotation of a single spin is analytically solvable [26] involving no 

numerical dissipation of the total energy, this leads to the symplecticity of the 

method. In this regard, recasting equation 4.17 into: 
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k
k k

d
dt

ω= ×
e ev             (4.39) 

where k k kω = − ΠHv , the updated spin orientation takes the form: 

 ( ) ( ) ( ) ( ) ( )expk k k k kt t tτ τ τ+ = =e e D eS ,      (4.40) 

where  

( ) ( ) ( )2sin 1 cosk k k k kτ ω τ ω τ⎡ ⎤= + + −⎣ ⎦D I W Wv v      (4.41) 

The kW  is a skew-symmetric matrix with Cartesian components 

, ,k xy k z kW ω ω= − v , , ,k xz k y kW ω ω= v  and , ,k yz k x kW ω ω= − v . In practice, since 

numerical evaluation of “sin” and “cos” function in extremely small angles is not 

sufficiently accurate due to truncation errors, the rotation of each spin is performed 

according to [7], 
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( ) ( ) ( )( ) ( )
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2 2
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2 2
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2 2

1
2

k k

k k
k k k k k k
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ω τ

⎡ ⎤
⎡ ⎤+ × + ⋅ −⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦= +

+

e

e
e e e

v
v v v

v

S

, (4.42) 

derived directly from equations 4.39 – 4.41. Higher-order STDs have also been 

investigated [8], but the 2nd order STD algorithm is found to be sufficient for 

practical simulations.  

Since the integration algorithms for both the spin and lattice subsystems are 
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symplectic, the current integration algorithm is symplectic too, which can resist 

numerical energy dissipation in the long run. We should note that the symplecticity 

does not originate from the 2nd order STD. However, it is facilitated by supplying a 

framework within which the operations can be evaluated analytically. Since no 

approximation is taken in each operation, it eliminates all the calculation error, 

despite the ( )3O tΔ  trajectory error and machine error. This is the real reason of 

the symplecticity. In practice, Omelyan et al. decomposed the system as:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 3t t t tt tt t e t e e e e e t O tΔ Δ Δ ΔΔ Δ+ Δ = = + Δx x xF P P FH F   (4.42) 

whereas Tsai et al. decomposed it as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 3t t t tt tt t e t e e e e e t O tΔ Δ Δ ΔΔ Δ+ Δ = = + Δx x xS F F SH P   (4.43) 

For convenience, we denote Omelyan’s method by ( ), , , ,F P S P F  and Tsai’s 

approach by ( ), , , ,S F P F S , neither of which have been used for the current SLD 

numerical scheme. Instead, the ( ), , , ,S P F P S  decomposition is used to minimize 

operations involving F , which is the most time consuming step of the algorithm 

due to the force evaluation.  

When stochasticity is incorporated in the Langevin spin dynamics equation 

4.24, the numerical integration is adjusted. The formulism is the same as equation 

4.39, but with ( ) ( )1
k k k k k kω η− ⎡ ⎤= −Π + − ×⎣ ⎦H h e Hv , which is complicated by the 

presence of ( )k te  itself. We solve this problem by proceeding as in the 2nd order 

Runge-Kutta method [27]. To advance from time-step n to n+1, one can write:  
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( )3
1 2n ny y k O t+ = + + Δ           (4.44) 

where 2 1
1 1,
2 2n nk f x t y k t⎛ ⎞= + Δ + Δ⎜ ⎟

⎝ ⎠
 and ( )1 ,n nk f x y t= Δ . A trial step is made 

to the midpoint of the interval, and then the value at midpoint is used to calculate 

the real step across the whole interval. The error is ( )3O tΔ . Using the similarity 

with the linear case, one may first advance the atomic spin from t  to / 2t t+ Δ , 

i.e.,  

( ) ( ) ( )exp2 2kk s k
t tt L tΔ Δ+ =e e         (4.45) 

with ( ) ( ){ }1
k k k k k ktω η− ⎡ ⎤= −Π + − ×⎣ ⎦H h e Hv . Then, we can substitute this 

midpoint value into kωv  and follow the evolution again from t  to t t+ Δ : 

 ( ) ( ) ( )exp
kk s kt t L t t+ Δ = Δe e          (4.46) 

where ( ) ( ){ }1 / 2k k k k k kt tω η− ⎡ ⎤= −Π + − + Δ ×⎣ ⎦H h e Hv . Since the error of STD is of 

the order of ( )3O tΔ , the method is fully justified. 

From the discussion above one might get the superficial impression that since 

the ( ), ,F P F  decomposition is equivalent to the velocity Verlet algorithm, one can 

simply add two “ S ” parts to an existing MD program. Unfortunately, this naïve 

recipe is invalid, because in a ( ), , , ,S F P F S  decomposition, the “F ” part depends 

both on the atomic and the spin configurations. Therefore, after the application of 
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the first “ S ” operator, the forces acting on atoms have to be recalculated. In the 

velocity Verlet algorithm, forces are evaluated at the current and the preceding time 

steps to find the new velocity. Also, the force corresponding to the preceding time 

step is normally taken from the calculation in the previous time step. In the STD, 

evolution of each degree of freedom is coupled to all the other variables. This 

makes the parallelization of the algorithm a challenging task, the solution of which 

will form the subject of the next chapter. 

 

4.8  Brief Conclusion 

The methodology of Spin-Lattice Dynamics (SLD) simulation is established 

in this chapter where the coupled dynamics of the spin and lattice subsystems are 

treated on equal footing. The equations of motion are derived for a system of 

particles with interacting intrinsic spins. The particles interact via a many-body 

potential and the spins via a Heisenberg-type Hamiltonian with an exchange 

function depending on the interatomic separation, which couples the lattice and 

spin subsystems. To facilitate energy and angular momentum interchange of the 

ferromagnetic system with the environment, the concept of a reservoir is used. The 

spin temperature is introduced by the fluctuation-dissipation theorem (FDT). 

Following the framework established by Brown [5], the relationship between the 

dissipative coefficient and random forces is derived. The 2nd order Suzuki-Trotter 

decomposition approach is adopted to design the integration algorithm for SLD, to 

minimize numerical energy dissipation. Treatment for the spin subsystem has to be 

specifically designed to tackle the problem of entanglement. The modification on 
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the numerical scheme for the stochastic equation is also presented. 
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Chapter 5: Parallel Algorithms for 

Suzuki-Trotter Decomposition 

5.1  Brief Introduction 

In the previous chapter, the physical background and the numerical scheme for 

the Spin-Lattice Dynamics (SLD) are presented. The associated computer program 

is structured following a conventional molecular dynamics (MD) simulation, with 

the intrinsic (classical) spin degrees of freedom and its coupling to the lattice 

subsystems taken into account via the exchange function. Similar to MD, 

large-scale simulations that involve millions of atoms and tens of millions of 

time-steps can be most efficiently carried out using parallel programming 

techniques to reduce often extremely long computation time (or run-time) [1]-[6]. 

In addition, a stable integration algorithm that allows a larger time-step can also 

enhance the overall performance. In comparison to predictor-corrector method, a 

symplectic Suzuki-Trotter decomposition (STD) method [6]-[13] is shown be 

superior, because of the resistance to the numerical energy dissipation. Reasons are 

already mentioned in Chapter 2 and 4. 

Normally, parallel programming can be readily performed with STD only in 

procedures in which the spin system is not involved. In STD the decomposition of 

the spin subsystem has to be performed sequentially, as explained in the previous 

chapter. To design a parallel algorithm for the STD scheme in such cases is not 

straightforward. In this chapter, a proposed methodology to tackle the problem is 
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presented. The designed algorithm has been verified in computer systems with 

share memory architecture (e.g. using OpenMP), and is capable of achieving a gain 

in speed of 6-7 times with 8 threads. 

 

5.2  Current Parallel Algorithms 

Parallel algorithms of MD are usually designed based on three types of 

decomposition schemes: atomic, force and spatial [1],[5]. The purpose of the 

algorithm is to distribute the workload over a set of processors/threads to speed up 

the computation by allowing independent procedures to be carried out 

simultaneously. Trobec et al. [6] reviewed several symplectic integration methods 

with parallel algorithms in MD simulation. Although the Leap-Frog-Verlet (LFV) 

and Split Integration Symplectic Method (SISM) are different on how the 

Hamiltonian is split, both of them belong to the 2nd order STD. The LFV algorithm, 

or called velocity Verlet algorithm, is indeed equivalent to equations 2.11 and 2.12, 

with solution, 

 ( ) ( ) ( ) ( )2 2 3t t t tt t e t e e e t O tΔ Δ Δ Δ+ Δ = = + Δx x xH F P F    (5.1) 

for the operator ( )H = F + P  and x  is the generalized co-ordinates, as defined in 

previous chapter. Within a single time step, three evolutionary steps have to be 

processed sequentially. Thus, parallel algorithm of any of the 3 types of 

decompositions can only be implemented within each evolutionary step [6]. 



Chapter 5: Parallel Algorithms for Suzuki-Trotter Decomposition    MA, Pui Wai 

 97 

 

Figure 5.1 – Schematic picture of 1D spin chain containing 10 spins, where the 

Suzuki-Trotter decomposition is (top) sequential; (bottom) parallelized 

 This type of algorithms is effective only when each evolution operation can 

simultaneously involve a sufficiently large number of variables. However, in SLD 

simulations, the evolution of the spin of each atom has to be treated sequentially. 

This situation may be most easily visualized in the pure spin dynamics example of 

a 1D spin chain system with 10 spins, as depicted schematically in the top half of 

Figure 5.1. The evolution of the spin chain from time t to t + Δt in the STD scheme 

can be written as:  

( ) ( ) ( )101 2 2 12 2 2 2 3... ...SS S S SΔΔ Δ Δ Δ+ Δ = + Δtt t t tt t e e e e e t O te e    (5.2) 

where S Δk te  is the evolution operator of ( )k te  over the time interval (t, t +Δt) 

and ( ) ( ){ }kt t=e e  is the system of unit atomic spin vectors. In equation 5.2, the 

evolution of the spin system is processed from spin No. 1 to No. 10, then reversely 

from spin No. 10 to No. 1. For simplicity, it may be represented as (1, 2, 3, 4, 5, 6, 
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7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). In other words, the evolution of spin No. 1 

depends on spin No. 2, the evolution of which depends on spin No. 3, … up to spin 

No. 10. It is impossible to do any parallel programming under such circumstances.  

 

5.3  Grouping Independent Atoms  

In most computer simulations, a cutoff distance for the interatomic potential is 

needed due to the presence of screening effects or simply to cut down unnecessary 

computation. The dynamics of an atom and its spin thus only depend on others in a 

defined neighborhood, and are independent of those outside this neighborhood. In 

other words, the evolution of an atom and its spin only depends on information 

from a selected number of atoms to which it is linked, rather than from the entire 

system.  

For the 1D spin chain shown in Figure 5.1, for example, the evolution of spin 

No. 1 is independent of spins No. 4 and No. 7 (the bottom of Figure 5.1) if the 

exchange coupling is assumed to extend to the 2nd nearest neighbors only. In 

addition, according to STD, 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
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+ +
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= +

x

x

x

x

       (5.3) 

Thus, the order of the operation is immaterial if they are interchanged according to 

equation 5.3. This property allows us to rearrange (1, 2, …, 10, …, 2, 1) into (1, 4, 
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7, 2, 5, 8, 3, 6, 9, 10, 9, 6, 3, 8, 5, 2, 7, 4, 1) or ({1,4,7}, {2,5,8}, {3,6,9}, 10, 

{3,6,9}, {2,5,8}, {1,4,7}). Because atoms No. 1, 4 and 7 in {1,4,7} are independent, 

they evolve independently and can be processed simultaneously in different threads, 

followed by the group {2,5,8} and then {3,6,9}, and so on. For the remaining atom 

No. 10, it is a group on its own. We may use this approach to formulate a parallel 

algorithm in which atoms are collected into groups within which members are all 

independent and can therefore be processed simultaneously in different threads. Of 

course, it is important that before starting any calculation on a specific group, one 

must ensure the calculation on the previous group is completed. In other words, a 

“barrier” directive is needed. 

 

Figure 5.2 – A 2D system that is cut into 25 link-cells with periodic boundary condition. All 

the cells are allocated into group A to group H. 

In 2D and 3D cases, although one may still use the atomic delinking approach, 

the spatial delinking approach may be more convenient. As in conventional MD, 

the simulation box is usually divided into many smaller boxes, called link-cells 

[14]. Since the edge of each cell is larger than the cutoff distance(s) of interatomic 
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potential and/or exchange coupling, the forces on a particular atom or spin can only 

come from atoms within its own cell or surrounding cells. The implementation of 

link cells greatly enhances the computation efficiency by reducing redundant 

calculations. Figure 5.2 is an illustration of a 2D system divided into 25 link cells 

with periodic boundary condition. Treating each cell as a subsystem, they may be 

group into groups A to H (Figure 5.2), so that any atom in a member cell of a group 

is independent of any atom in any other cell of the same group. As a result, cells in 

the same group can be processed simultaneously in different threads. For example, 

cells {1,3,11,13} constitute group A, {2,4,12,14} group B, etc. Then, cell No. 1, 3, 

11 and 13 can be processed concurrently. The working sequence (1,2,…,25…,2,1) 

can be recast into a different one (A, B,…,H,…,B, A), i.e.  

 ( ) ( )1 2 2 1
252 2 2 2 2 2 2 2... ... ... ...A B B A

H

t t t t t t t tL L L L L L L LL t L te e e e e t e e e e e t
Δ Δ Δ Δ Δ Δ Δ Δ

Δ Δ→x x   (5.4) 

It is to be noted that atoms/spins within a link-cell has to be processed sequentially 

according to STD. The 3D case is similar to 2D, but the number of cells in a group 

is increased to 26. In practice, a subprogram can be written to allocate members 

into groups automatically.  

Essentially, the parallel algorithm works to rearrange the order of the 

evolutionary operations, without violating the validity of STD. Then, one can 

gather them into groups in which the cells are independent, so that in each group 

evolutionary step, all the cells in the group can be processed simultaneously in 

parallel. Of course, the evolutionary operation of different groups still has to be 

treated sequentially.  
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5.4  Integrity of the Algorithm 

The integrity of the algorithm is checked by Bernstein’s conditions [15] and 

Leslie Lamport’s sequential consistency model [16]. Bernstein’s condition states 

that when there are two program fragments iP  and jP , with input ( )i jI and output 

( )i jO variables, they can be calculated simultaneous if ( ) ( )i j j iI O∩ = ∅  and 

i jO O∩ = ∅ . It means that the same memory cannot be shared between different 

threads, except for inputs only. Otherwise, it causes race condition. Since each 

operator only needs information on itself and its surroundings, they do not need 

data from other members of the same group nor alter any of their properties. 

Therefore, it satisfies the Bernstein’s condition. Moreover, working on the same 

group members in sequential or parallel should be the same, as all processors are 

just calculating according to the same set of equations of motion, and each 

calculation is independent of the output of its group member, unless one of those 

processors produces different result. It satisfies the Leslie Lamport’s sequential 

consistency model. 

 Indeed, the foregoing spatial decomposition scheme can also be applied to 

MD simulations. It has the advantage of saving the necessity of protective locks 

[16] on memory in the evaluation of forces. Since forces are calculated in pairs 

(Newton’s 3rd Law), the outputs do not only modify the data within a particular 

link-cell, they also modify those in surrounding. Within the present method, a lock 

within its own link-cell is unnecessary. When a lock is applied (E.g. OpenMP, the 

directive in C/C++ is “#pragma omp atomic”), it may slow down the program. 

Surely, there is tradeoff between this and the load balance. From the above example 
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of 2D case, one may notice that idle processors are unavoidable. 

 

5.5  Efficiency 

In the following, the efficiency of the proposed algorithm will be evaluated by 

realistic simulations. For this purpose, simulations are performed according to the 

SLD equations of motion (i.e., equation 4.16 and 4.17) in a micro-canonical (NVE) 

ensemble. The same spatial decomposition schemes as mentioned in section 4.3 are 

applied to the spin and lattice subsystems. In each case, atoms are initially placed 

in a regular bcc lattice in [100] directions with lattice constant a = 2.8665Ǻ. Five 

different lattice configurations are used. They are all cubes with edge sizes 20a, 30a, 

40a, 50a and 80a, with numbers of atoms 16000, 54000, 128000, 250000 and 

1024000 respectively. The velocities of all the atoms are initially set to zero. All the 

spins in the left-hand side of the simulation cell are initialized to point upwards 

whereas those on the right hand side point downwards, making a 180° domain wall 

structures. Periodic boundary conditions are applied along x, y and z. The edge of 

each link-cell is larger than the cutoff distance of the interatomic potential and 

exchange function for spin-spin interaction.  

The actual run-time of the above model (i.e. ( )H = F + P + S ) and the one 

with only spin part (i.e. H = S  only; a fixed lattice system) is recorded for 10000 

time-steps. A computer with 2 Intel Xeon Quad-core x5355 CPU and 4GB RAM is 

used. Totally there are 8 cores. Due to the hardware limitation, only the efficiency 

from 1 to 8 threads is tested. In the software aspect, Scientific Linux 5.0 and Intel 
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C++ compiler 10.0 with OpenMP package is used. The efficiency is defined as 

[17]: 

( ) ( )
( )
1T

Eff n
nT n

=           (5.5) 

where ( )Eff n  is the efficiency and ( )T n  is the run-time for n  threads. The 

term efficiency does not relate directly to the actual run-time. For example, if a 

program needs 10 minutes to finish the calculation by using a single thread, and it 

takes 6 minutes by 2 threads, actually it runs faster, but it efficiency is only 83%. 

Figure  5.3 and Figure  5.4 show the run-time and efficiency of spin only 

system, while Figure  5.5 and Figure  5.6 show the run-time and efficiency of 

systems with coupled spin and lattice dynamics. In both cases, they show similar 

behavior. The run-time always decreases with more threads, independent of the size 

of the systems (ranging from ten thousands to million spins and atoms). However, 

they tend to reach saturation for about 8 threads. It should be due to Amdahl’s law 

[18], which states that because of the sequential part, a parallelized program cannot 

be speedup more than n times and the usefulness of those parallel parts. Fortunately, 

the run-times appear to increase linearly with the systems’ size. Because of the 

order-N nature of the link-cell system, the total calculation time on forces increases 

only linearly when the number of atoms. When 8 threads are used, the run-time for 

1024000 (which is more than one million) atoms is about 2.3s and 8.4s per 

time-step for spin only and spin-lattice systems, respectively. If one uses a 

time-step of 1 femtosecond, it takes about 2.7 days and 9.7 days to reach 0.1 

nanosecond. It should be acceptable to have such speed on a single machine. 
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Figure 5.3 – The actual run-time of spin only system (top) versus number of threads with 

16000, 54000, 128000, 250000 and 1024000 spins; (bottom left) versus number of spins 

with threads from 1 to 4; (bottom right) versus number of spins with threads from 5 to 8.  

 

Figure 5.4 – The efficiency of spin only system (left) versus number of threads with 16000, 

54000, 128000, 250000 and 1024000 spins; (right) versus number of spins with threads 

from 1 to 8. 
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Figure 5.5 – The actual run-time of spin-lattice system (top) versus number of threads with 

16000, 54000, 128000, 250000 and 1024000 spins; (bottom left) versus number of spins 

with threads from 1 to 4; (bottom right) versus number of spins with threads from 5 to 8. 

 

Figure 5.6 – The efficiency of spin and lattice coupled system (left) versus number of 

threads with 16000, 54000, 128000, 250000 and 1024000 spins; (bottom) versus number of 

spins with threads from 1 to 8 
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The curves of efficiency generally show monotonic decreasing, but with 

fluctuations. This behavior may be due to the resources wastage on the idle 

processors time. For example, in the spin-only system, the one with 1024000 spins 

is separated into 18 groups. There are 8 groups with 19683 members, 2 groups with 

2783 members, 2 groups with 1431 members, 2 groups with 207 members, 1 group 

with 31 members, 1 group with 30 members and 2 groups with 4 members. 

Suppose each link-cell (i.e. member) needs about the same calculation time, one 

can count when using 3 threads, it got 7 units idle processors time. But for 2 

threads, it got 15 units idle processors time. Therefore it is not surprising to see the 

sudden increase in the efficiency of 3 threads. Of course, it is not the only reason. It 

also depends on various others factors, such as the architecture of compiler, OS, 

processor, memory etc. Moreover, since each link-cell is not required to contain the 

same number of atoms, load-balance is another important issue in this kind of 

spatial decomposition algorithm.  

As a whole, one can see that the overall trend of the efficiency is decreasing 

linearly from 100% to about 60~70%, when 1 to 8 threads are used. Comparing to 

some other parallel algorithms, such as certain force decomposition method [3], 

which can attain 98.88% efficiency, the current method are certainly inferior. 

However, one must remember that we are dealing with an extreme case of STD, in 

which most parallel processing schemes do not work.  
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5.6  Stability 

Stability is another important aspect to consider. Figure 5.7 shows that the 

total energy per atom of the 180° domain wall system with 54000 atoms and spins 

as a function of computation time using respectively the ( ), , , ,S F P F S  and the 

( ), , , ,S P F P S  algorithms, with the proposed parallel algorithm already 

incorporated. Both the ( ), , , ,S F P F S  and the ( ), , , ,S P F P S  algorithms perform 

well, and the total energy per atom remains constant within ~ 510− eV and 

sometimes ~ 610− eV. This demonstrates the stability of our program for the long 

runs (>1ns). Furthermore, the speed of the ( ), , , ,S P F P S  SLD algorithm is 

recorded. It is found to be approximately half the speed of the velocity Verlet 

algorithm, when compared with conventional MD. Moreover, the ( ), , , ,S F P F S  

algorithm is approximately 60% slower than the ( ), , , ,S P F P S  algorithm. 

 

Figure 5.7 – The total energy per atom versus time for a microcanonical ensemble 

simulation of the dynamical relaxation of a 180° domain wall. Two algorithms, the 
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( ), , , ,S F P F S  and the ( ), , , ,S P F P S , in both of which the parallel algorithm for STD is 

incorporated, are compared. The ( ), , , ,S P F P S  algorithms is found to be ~60% faster than 

the ( ), , , ,S F P F S  algorithm  

 

5.7  Brief Conclusion 

 A parallel algorithm is developed for application to the STD method for spin 

dynamics (SD) and spin-lattice dynamics (SLD) simulations, where each 

evolutionary step for the spin subsystem has to be processed sequentially, one spin 

at a time. Indeed, the parallel algorithm for STD is simply to rearrange the order of 

the evolution operations in groups, and making sure they are independent of each 

other within a group. The efficiency is about 60~70% when using 8 threads. The 

run-time per time step is linearly proportional to the system size. Such algorithms 

can also be implemented on conventional MD and SD programs, without handling 

complicated mathematics. It can be applied to very large system (>million atoms 

and/or spins). It also shows satisfactory stability and conservation of energy in long 

runs of >1×106 time-steps, corresponding to 1 ns. No iteration or further 

approximation is needed within our algorithm. Only the trajectory error with 

( )3O tΔ  from the STD remains. The proposed method is not mutually exclusive to 

other decomposition methods. For example, one can use spatial decomposition 

twice, which gives two layers of decomposition. The first layer can be distributed 

within the cluster by MPI (Message Passing Interface) and the second layer is 

distributed within the machine by OpenMP. 
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Chapter 6: Equilibration Processes in a 

Microcanonical Ensemble 

6.1  Brief Introduction 

According to Van Kranendonk and Van Vleck [1], spin-spin relaxation of 

perturbations that “spoil the constancy of the spatial components of magnetic 

moment” take place via the exchange interactions. Spin-lattice relaxation, on the 

other hand, occurs through the “modulation of the spin interaction energies, i.e. the 

spin waves, by the crystalline vibration” [1] or, in other words, through the 

variation of the exchange function due to thermal vibrations of atoms in the lattice 

[2]. Since spin-spin relaxation is an equilibration process whereby non-equilibrium 

states introduced by an external perturbation are eliminated, locally triggered 

magnetic reversal could be smeared out during the relaxation. In addition, if the 

spin and lattice subsystems are not in equilibrium with each other, spin-lattice 

relaxation may modify the magnetization by creating or annihilating magnons via 

phonon-magnon interaction. Therefore, it is of technological importance to 

understand the timescales and the detail mechanisms of these two processes. In 

particular, spin-spin and spin-lattice relaxation times are crucial to data integrity in 

high-speed magnetic storage devices, and a wide range of magneto-optical 

experiments [3]-[11] have been performed to generate the needed information for 

design purposes, in addition to the obvious scientific interest.  

In pure spin dynamics, spin-spin relaxation is usually described by the 
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damping term in the Landau-Lifshitz or Gilbert equation [12] (equation 1.1 and 

1.2), which restores the direction of magnetization when misorientation occurs. In 

that case, the spin-spin relaxation time ssτ  can be interpreted as a quantity 

inversely proportional to the damping constants. Experimentally, one may obtain a 

measurement of ssτ  from the linewidth of the ferromagnetic resonance (FMR) 

signal. Such measurements for iron [13]-[15] found ssτ  to be in the range of 1 to 

10ns. Conversely, in the pulsed laser pump-probe experiment by Scholl et al. [6] 

and the magneto-optical Kerr effect (MOKE) experiment by Koopmans et al. [7], 

the spins in Ni thin films was found to equilibrate within a timescale of a few tens 

of picoseconds. Since the exchange coupling of Fe is much stronger than Ni, one 

would expect that ssτ  of Fe is shorter, or at least of the same order as Ni. 

Obviously, the two-orders-of-magnitude difference in these results needs 

understanding, and a SLD simulation would be useful for this purpose. 

In the case of spin-lattice relaxation, Vaterlaus et al. [16]-[18] performed the 

only direct experiment on Fe to measure the relaxation time slτ . The sample was 

hit by 20ns and 30ps laser pulses and the spin-polarized photoelectron emission 

was examined. The sample surprisingly remained ferromagnetic, even after the 

sample melted under the high-pulsed intensity of the 30ps pulses. The authors 

concluded that the upper and lower bounds of slτ  are 20ns and 30ps respectively. 

Subsequently, with an improved technique they obtained a 100 80slτ = ± ps for Gd. 

However, no further work was done on Fe. A few years later, Scholl et al. [6] 

obtained a value of 500slτ ≈ ps for Ni thin film via a pump-probe experiment, 
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which is the same experiment in which ssτ  had been measured. They found that 

two relaxation mechanisms are distinguishable in the demagnetization curve, which 

has a very short plateau in the short-time regime and a much longer gradual 

reduction at longer times. Theoretically, Hübner et al. [19]-[22] calculated for Gd a 

value of 48slτ = ps by attributing the relaxation mechanism to the spin-orbit 

interaction caused by the magnetocrystalline anisotropy of the surface energy. 

However, the same mechanism does not seem applicable to bulk α-Fe, in which the 

orbital moments of the 3d-electron are nearly quenched, and the coupling between 

the orbital moments and the lattice via the anisotropic crystal field is weak [23]. 

The transfer of energy between the spin and the lattice subsystems via spin-orbit 

interaction should be negligible. The uncertainty surrounding slτ  in Fe can also be 

clarified using a SLD simulation.  

In the following, microcanonical simulations using SLD are performed to 

investigate the rate of energy transfer within the spin subsystem and between the 

spin and lattice subsystems. A 180° domain wall system is presented as an example. 

The characteristics of spin-spin and spin-lattice relaxations obtained from this 

investigation will be used to understand the conflicting experimental results in the 

foregoing discussions. The detailed behavior of the system at the very beginning of 

the relaxation process very often depends on how the initial and boundary 

conditions are applied, such as the geometry of the simulation box. The role played 

by the simulation box in this regard will be discussed. Nevertheless, it must be 

emphasized that the origin of the ultrafast demagnetization [4]-[10] caused by 

electron thermalization and the corresponding electron-spin and electron-phonon 
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interactions are highly complex and are outside the scope of this thesis. 

 

6.2  Equilibration Process – Part I (from Spin to Lattice) 

Microcanonical simulations were performed for a system of 54000 atoms 

initially placed in a regular bcc lattice with the lattice parameter a = 2.8665 Ǻ. The 

dimensions of the cubic simulation cell were 30 30 30a a a× × , with periodic 

boundary conditions applied along the x, y and z directions. The sample 

temperature was initially set at 0K, with a spin configuration such that all the spins 

in the left-hand side of the simulation cell (0 < x < 15a) were all collinear and 

pointing upwards whereas the spins in the right hand side (15a < x < 30a) were also 

all collinear but pointing downwards (Figure 6.1). Small perturbations are added 

into the spin subsystem to initiate the evolution, i.e. four atoms are randomly 

chosen and their spins are slightly deviated. The system was thermodynamically 

isolated. From the dynamics of the system, the characteristics of and mechanisms 

responsible for the adiabatic spin-spin and spin-lattice relaxations of the periodic 

array of 180o domain walls were studied. We should note that in the current model 

it is the scalar part of the inter-atomic potential and the exchange function ( )ijJ R  

that fully define the dynamics of the atoms and their spins. The evolution follows 

the conservative dynamics equations 4.16 and 4.17, in which both the total energy 

and the total angular momentum of the system remain constant during the 

simulation.  



Chapter 6: Equilibration Processes in a Microcanonical Ensemble   MA, Pui Wai 

 115 

 

Figure 6.1 – Schematic picture of the unrelaxed 180° domain wall system. All the spins in 

the left-hand side of the simulation cell (0 < x < 15a) pointed upwards whereas the spins in 

the right hand side of the cell (15a < x < 30a) pointed downwards. 

To describe the degree of collinearity of spins in a volume containing N atoms, 

it is convenient to introduce the spin collinearity parameter 1
C iiN

ξ = ∑ e . Cξ  is 

a statistical measure of directional order in the spin subsystem characterizing 

collective orientations of spins irrespective of the magnitude of the magnetic 

moments.  For example, if 1Cξ =  then the spin orientations are fully collinear, 

whereas 0Cξ =  corresponds to a fully disordered spin configuration. 

In the simulations considered here, the velocities of all the atoms were set to 

zero initially, and energy was stored solely in the spatially heterogeneous spin 

configuration of the domain wall. The system starts with a sharp magnetic 

boundary and evolves to maximize its entropy, subjected to the conservation of 

energy, linear momentum and angular momentum. The evolution of the spin system 

is shown in Figure 6.2. The initial spin configuration remains unchanged for about 

0.24ps before the geometrical symmetry is broken by the lattice vibrations arriving 
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from nearest domain boundaries. Spin waves (magnons) then begin to appear and 

propagate with energy expended from the spin-spin interaction. The collinearity 

Cξ  of spins on planes parallel to the domain boundary starts to decrease and the 

spin configuration becomes progressively more disordered as the initial sharp 

domain boundary relaxes via magnon creation (spin-spin relaxation) during the 

next several picoseconds. By 1.5 ps, the original sharp domain boundary has 

already been relaxed substantially, and by 11 ps, there is no sign of it any more, and 

the orderliness has started to return. After that, the magnon density slowly reduces 

to come to an equilibrium value by transferring energy to the phonon subsystem 

(see further discussion below) as the relaxation of the spin system continues to 

proceed via spin-lattice relaxation, a process that lasts hundreds of picoseconds. 
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Figure 6.2 – Projections of the unit vectors of atomic spins corresponding to the 

microcanonical ensemble simulation of the dynamical relaxation of a 180° domain wall 

system. 

Figure 6.3 shows the collinearity Cξ  of y-z planes at different x (i.e. the nth 

lattice plane) as a function of time in logarithmic scale. The most striking feature in 

this figure is the loss of collinearity as reflected by the reduction of Cξ  as the 

magnon number density increases during spin-spin relaxation in the picosecond 

range. The relaxation of the domain boundary proceeds initially through the 

creation of magnons that almost immediately redistribute, destroying ~90% of the 

initial collinearity throughout the simulation region within a few tenths of a 

picosecond. Relaxation of the magnon system via magnon-magnon interaction 

(spin-spin relaxation) starts to re-establish the collinearity quickly. Over 60% of the 

collinearity is recovered within about 1-2ps. After that, spin-lattice interaction 

starts to become effective. The excitation of phonons by the magnons helps 
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re-establish the phonon-magnon equilibrium and produces further relaxation by 

energy transfer from the spin-subsystem to the lattice subsystem, producing further 

recovery of the collinearity. It is remarkable that more than 90% of the Cξ  has 

already been re-established at about 20 ps. Nevertheless, due to the mismatch 

between the timescales of evolution of the spin and lattice vibrations, the 

magnon-phonon coupling is relatively weak, resulting in a much longer total 

relaxation time with half-life ~0.25ns. 

 

Figure 6.3 – The collinearity Cξ  of y-z planes at the nth lattice plane along the x direction 

as a function of time in logarithmic scale. 

To further understand the relaxation process and the re-established magnetic 

structure, Figure 6.4 plotted the average unit spin vectors of y-z planes along the 

x-axis, for several time instances. The projections on the x-y, x-z and y-z planes are 

also plotted. Projections on the x-y and x-z atomic planes represent the Neel’s 

components, and those on the y-z plane the Block component, of the domain-wall 

structure. The two unfilled circles denote the two y-z planes at 0 and 29.5 lattice 
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constant spacing along the x-axis, i.e., the first and last planes in Figure 6.2. The 

arrows denote the sequence of atomic planes in between from left to right. The 

motion of these two circles reflects the motion of domain walls. It can be seen that 

the domain walls have mixed Neel-Block characters, which changes with time, and 

are already mobile as early as between 20 and 40 ps at least, but could be even 

earlier. Comparison of the magnetic structure at various times shows that the 

steady-state magnetic structure is probably dynamic and not static. However, this 

may instead be due to the periodic boundary condition, which is different form the 

real sample that must have a finite size and fixed boundaries. 
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Figure 6.4 – Magnetic structure for various times after spin-spin relaxation. Each dot 

represents the direction of the unit vectors of atomic spins averaged over the nth lattice 

plane parallel to the initial sharp domain boundary. The projections of the unit vectors in the 

three Cartesian directions are also shown. The unfilled circles denoted the first and the last 

planes. The dark green arrows represent the increase of plane index along x direction. 

Contrary to the spins, the atoms in the immediate neighborhood of the domain 

boundary were already moving at ~0.03 ps (Figure 6.5). The kinetic energy of the 

motion was supplied from the exchange interaction between the atoms, i.e., through 

the time variation of R in the exchange parameter ( )ijJ R . In this process, 

phonons with parallel wave vectors in the x direction are first created. The initial 

atomic oscillations can be seen to maintain planar coherency with wave vectors 

parallel to the x direction for approximately two cycles, each occurring on the 

Debye timescale of ~0.1 ps (see Figure 6.6a). At about 0.24 ps, phonons with 

non-parallel wave vectors started to appear due to the scattering by the freshly 
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created magnons (see Figure 6.5), in which the associated phonon-magnon 

coupling is governed by the exchange interaction, with a magnitude proportional to 

ijJ . The loss of coherency and order from then on, as clearly shown in both Figure 

6.2 and Figure 6.5, is due to the increase of the phonon density caused by the 

relaxation of the spin system towards equilibrium as phonon creation by magnon 

destruction continues.  
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Figure 6.5 – The x-components of the deviations of atomic positions (i.e. Δx) from their corresponding perfect 

lattice points along the x direction in the 10fs timescale. 

The evolution of the various energy components are shown in Figure 6.6(a) to 

(d) at different time scales. The initial atomic oscillations, the beginning of the 

spin-spin relaxation (i.e., relaxation within the spin subsystem) at ~ 0.24ps, and at 

the same time the start of the equipartition of the lattice kinetic and the potential 

energies, can be seen from Figure 6.6(a) & (b) which shows in greater detail the 

rapid emergence of energy equipartition during the first few picoseconds, signaling 

the attainment of quasi-equilibrium of the lattice and spin subsystems separately. 

The increase of the equilibrated lattice total energy is driven primarily by the 

energy transfer from the spin subsystem via phonon-magnon scattering. At the 

same time, the spin subsystem gradually loses its order due to the continued 

accumulation of magnons, created to relax the initial sharp magnetic boundary. 

This produces a gradual increase of the system entropy (see Figure 6.2). The spin 
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system also evolves into a quasi-equilibrium configuration, which can be 

approximately described by an incoherent superposition of spin waves, in a 

timescale of about 20ps that the collinearity recovered 90% (Figure 6.3). This is 

consistent with the experimental results of Scholl et al. [6] and Koopmans et al. [7] 

in which ssτ  was found to be about a few tens of picoseconds for Ni, where the 

ssτ  is supposed to be shorter for Fe due to the stronger exchange coupling. 

 

Figure 6.6 – Time evolution of the kinetic, potential and the spin energy contributions 

determined in simulations of dynamical relaxation of a sharp 180°domain wall and shown in 

the (a) 0.1 ps, (b) 10 ps and (c) 1ns timescale. Figure (d) is the same as (c) but the x-axis is 

in log10 scale. The velocities of all the atoms were initialized to zero at t=0. The curves 

show the variation of energy contributions with respect to their initial values. K.E. and L.E. 
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respectively refer to the kinetic and the scalar (lattice) part of the potential energy defined 

by equation 4.5, whereas the spin energy S.E. refers to the Heisenberg spin-spin interaction 

energy (last term in equation 4.5). The sum of the lattice and the spin energies equals the 

total energy of the system. 

Figure 6.6(c) shows the continued energy transfer from the spin subsystem to 

the lattice subsystem via magnon-phonon interaction due to the supersaturation of 

magnons and the thermodynamic tendency to equilibrate the two subsystems. It can 

also be seen that the relaxation half-life for this process is approximately ~0.25ns, 

which is two-orders of magnitude longer than the relaxation time associated with 

magnon process i.e., the excitation of spin waves. The long duration of this 

relaxation process is derived from the relative weakness of the coupling between 

the spin wave and the lattice wave. The spin-lattice relaxation process is driven by 

the phonon-magnon coupling due to the exchange interaction. The nanosecond 

timescale of the phonon-magnon thermalization found in our simulations agreed 

with the analytical estimates by Sinha and Upadhyaya [24]. We note that the final 

equilibrated system configuration here has to be subjected to the conservation of 

total angular momentum of the spin subsystem, which puts a restriction on the 

modes of evolution of the spin subsystem. At this stage, the kinetic energy of the 

lattice subsystem gradually increased, corresponding to an effective temperature 

increase from 0K to about 28K (~0.36eV per atom). By the time t = 1ns, the initial 

sharp domain structure becomes a collection of correlated spin waves with zero 

total angular momentum any time. Relaxation by further minimization of the 

free-energy is prevented by angular momentum conservation, and the relaxed spin 

configuration shown in Figure 6.2 continues to oscillate. 
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Figure 6.7 – The phase trajectory of an atom (left) and the spin direction (right) in a 54000 

atom microcanonical simulation, thermally equilibrated at T = 300K.  

At this point, it is instructive to compare the timescales characterizing the 

microscopic evolution of the atomic and the spin degrees of freedom. Each 

individual atom and each individual spin are coupled to the surrounding atoms and 

spins, and can be treated as closed classical thermodynamic systems evolving 

under a time-dependent external force. Figure 6.7 illustrates the phase trajectories 

for the coordinates and the spin direction drawn for an arbitrarily chosen atom in a 

system thermalized at 300K. (The thermalization process for a system of spin will 

be discussed in the next chapter.) One can see that the characteristic timescale of 

the quasi-periodic motion of an atom is of the order of 0.1ps (which is the inverse 

Debye frequency of the material), whereas the dynamics of precession of an atomic 

spin is characterized by a timescale about an order of magnitude smaller. This 

indicates a spin stiffness that is proportionately larger than that of the lattice. The 

fundamental difference between the 3D dynamics of atoms and the 2D dynamics of 

spins, and the mismatch between the frequencies of the quasi-periodic modes of 

motion shown in Figure 6.7, may be responsible for the relatively long 
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equilibration timescale characterizing the interaction between the spin and the 

lattice subsystems. 

 

6.3  Equilibration Process – Part II (from Lattice to Spin) 

The previous section considers a relaxation process in which energy flows from 

the spin to the lattice subsystem. Lattice vibrations or phonons are created by the 

phonon-magnon interaction. The spin-lattice relaxation takes about 1ns for the full 

equilibration. It is reasonable to ask the following questions. Are there relaxation 

processes in which energy flow in the reverse direction, i.e. from the lattice to the 

spin subsystem? Will the rate of relaxation be the same? To answer these questions 

the following simulations were performed, in which extra energy is introduced into 

the lattice subsystem after the spin-lattice system has been equilibrated. 

The simulation is performed starting from the relaxed 180° domain wall system 

described in the foregoing section. Only the kinetic energy is rescaled to 300K 

instantaneously. Since the coupling between kinetic energy (K.E.) and the lattice 

potential energy or lattice energy (L.E.) is very strong, Figure 6.8(a) shows that the 

lattice subsystem is in quasi-equilibrium almost from the very beginning. Within 

the first 0.2ps, the K.E. pumped ~17meV to L.E., or equivalently, the temperature 

drops from 300K to 162K, as evidenced by the equipartition of the kinetic and 

potential energies. This can also be understood as a local energy transfer within the 

lattice subsystem, so it is extremely fast. At such a short timescale, a transient 

effect also happens where the energy flows from the spin to lattice subsystem, 



Chapter 6: Equilibration Processes in a Microcanonical Ensemble   MA, Pui Wai 

 130 

which is contrary to intuition (Figure 6.8(b)). This is just because the R in 

( ) ( ),
1 2  ij i ji j

J− ⋅∑ R e e  was changed abruptly by the instantaneous rescaling of 

K.E, which leads to the loss of S.E., without any phonon-magnon interaction 

happening here. In the timescale of 1ns, Figure 6.8(c) shows that energy flows from 

the lattice subsystem to the spin subsystem as expected, through the 

phonon-magnon interaction. When the new equilibrium is attained, the K.E. is 

equivalent to a temperature of 129K. 

 

Figure 6.8 – After the relaxation of the 180° domain wall system, the kinetic energy of the 

atoms is rescaled to 300K instantaneously. The time evolution of the kinetic (K.E.) and 

potential energies (L.E.) of the lattice and the spin energy (S.E.) are shown in (a) & (b) in 
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timescales of 1 ps, and in (c) of 1ns, respectively. (b) is the same as (a) but with the y-scale 

enlarged about 40 times to show the details of the K.E. and L.E. and the energy 

equipartition. The curves show the variation of various energy components with respect to 

their initial values. 

Results of further investigation done with the system rescaled to 100K and 

600K are shown in (Figure 6.9(a)). The sample temperatures drop to 64K and 302K 

within the first 0.2ps, and eventually equilibrate at 55K and 237K respectively. The 

relaxation time is shorter for the higher temperature simulation. Since higher 

temperature means more phonons, it is expected to have a higher frequency of 

phonon-magnon scattering and so a stronger coupling between the spin and lattice 

subsystem. Furthermore, one can plot the half-lives against the inverse of 

temperature as in Figure 6.9(b). The half-lives are obtained by fitting the S.E. 

curves to the Boltzmann function that produces a sigmoidal curve, the one that 

rescaled to 600K is shown in Figure 6.9(c) as an example. From this, one can 

obtain the half-lives that are indeed at the inflexion points of the curves. Then, a 

linear least square fit is applied to the data, which may be extrapolated to 0.245ns 

when temperature goes to infinity. Together with these and previous simulations, it 

can be seen that the spin-phonon interaction can transfer energy in both directions 

with a characteristic time slτ  under 1ns. This agrees with experiments by 

Vaterlaus et al. [16]-[18] and Scholl et al. [6]. 
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Figure 6.9 – (a) The time evolution of the kinetic + potential (scalar) and the spin energy 

terms are shown in 1ns timescale, where the kinetic energy is rescaled to 100K, 300K or 

600K instantaneously after the relaxation of the 180° domain wall. The curves show the 

variation of energy terms with respect to their initial values. (b) The relationship between 

the half-life of the spin-lattice relaxation and the inverse of temperature. The half-life is 

obtained by fitting the curve of S.E. by the Boltzmann function that produces a sigmoidal 

curve. Tinitial = 28K and Tfinal = 100K, 300K or 600K. The grey line is the linear least square 

fit to the data with the y-intercept at 0.245ns. (c) the one that rescaled to 600K is shown as 

an example, where the red curve is the fitting line. 

 

6.4  Size Effects of the Simulation Box 

All simulations considered in this chapter are for isolated systems under the 
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constraints of the conservation laws. Size effects may be important because of the 

finite volume of the simulation box and the imposition of the periodic boundary 

conditions. Indeed, such effects are evident in Figure 6.5, from which it can be seen 

that the spin wave had a wavelength equal to the x-dimension of the box, the 

minimum value allowed under the constraint of total angular momentum 

conservation.  

Another issue concerns the dependence of slτ  on the dimensions of the 

simulation box. We consider this issue with the same set-up as the 180° domain 

wall system, but the edge length is reduced to 16a and 20a. Figure 6.10(a) shows 

the variation of the spin energy with respect to their equilibrium values. It reveals 

that all of the systems with different sizes response similarly under the same initial 

conditions. The red lines in Figure 6.10(b) are linear least square fits to the middle 

part of the curves. The half-life is then plotted against the inverse of the volume of 

simulation box in Figure 6.10(c). This shows clearly that smaller box has a shorter 

slτ . This behavior may be due to a higher energy density of the initial spin 

configuration in the smaller box, i.e., more walls per unit volume. Due to the 

consequently higher magnon density, the magnon-phonon reaction rate increases, 

resulting in a faster relaxation and a shorter slτ . 
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Figure 6.10 – (a) Time evolution of the spin energy terms determined in simulations of 

dynamical relaxation of a 180° domain wall with the edge length of the simulation box 

being 16a, 20a and 30a. The curves show the variation of spin energy with respect to their 

equilibrium values. The (b) is the same as (a), but the x-axis is in linear scale and y-axis is 

in log scale. Those red lines are linear least square fit to the middle part of the curves. (c) 

The relationship between the volume of the simulation boxes and the half-lives, where the 

half-lives are the inverse of the slope of those red lines. The grey line is the linear least 

square fit to the data points with the y-intercept at 0.355ns.  
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6.5  Brief Conclusion 

Microcanonical Spin-Lattice Dyanmics simulations are preformed. The 

relaxation of a 180° domain wall system is treated as an example. The relaxation is 

achieved mainly via the coordinate dependence of the exchange function that 

facilitates the transfer of energy between the spin and the lattice subsystems. For 

ferromagnetic α-Fe, the current simulations suggest that the relaxation occurs in 

two stages, via two different mechanisms, namely, the spin-spin relaxation and the 

spin-lattice relaxation. The spin-spin relaxation is achieved via the production and 

destruction of spin waves, i.e., magnons, and re-establishing the collinearity with a 

characteristic time of few picoseconds. The spin-lattice relaxation is achieved via 

the production of phonons, either directly from the elastic relaxation of the sharp 

domain boundary through the action of the spin-oriented-dependent forces, or from 

the conversion of the supersaturated magnons, produced also directly from the 

magnetic relaxation of the domain boundary. It appears that the magnetic relaxation 

is a much faster process and creates a high supersaturation of magnons quickly at 

the beginning of the relaxation process. However, magnon creation does not allow 

magnetic energy to leave the spin subsystem, the spin system soon comes to a 

quasi-equilibrium, and further relaxation has to be through the conversion of 

magnons to phonons. Due to the mismatch between the timescales of evolution of 

the spin and lattice vibrations, the magnon-phonon coupling is relatively weak, 

resulting in a much longer total relaxation time lasting hundreds of picoseconds. 

The relaxation may, nevertheless, be speeded up by enhancing the phonon-magnon 

interaction with an increase of the phonon or mangon densities,. The simulation 

scheme is shown to enable the energy flow from spin to lattice subsystem or vice 
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versa. The size of the simulation box does affect the relaxation speed via the initial 

energy density. Further investigation is needed. The effect of attaching a reservoir 

will be presented in the next chapter.   
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Chapter 7: Spin Thermalization and 

Related Effects 

7.1  Brief Introduction 

Hübner and Zhang [1] pointed out that “the concept of spin temperature is 

questionable not only due to the nonequilibrium, but also due to the absence of 

well-defined quasiparticle statistic for the spin.”.  Yet, the introduction of spin 

thermostat and the associated spin temperature is essential to the simulation of 

non-isolated systems for which conservation laws cannot be applied as in a 

micro-canonical ensemble. The concept of spin thermostat and spin temperature 

have been introduced in Chapter 4 of this thesis via Langevin spin dynamics [2],[3] 

using the fluctuation-dissipation theorem (FDT) [4],[5]. In this scheme, 

temperature is incorporated in the numerical scheme of Spin-Lattice Dynamics 

(SLD) for classical atomic spins, assuming a Gibb’s energy distribution. Both 

energy and angular momentum of the spin subsystem and the reservoir are allowed 

to interchange to establish thermodynamic equilibrium under specified conditions. 

In this chapter, several applications aimed to test the feasibility of the Langevin 

SLD model at elevated temperatures will be reported.  

As a first example, a bulk sample of bcc iron is considered. It was 

isothermally and isobarically heated up to thermal equilibrium at various 

temperatures from 0K, when all spins are initialized with perfect collinearity 

1Cξ = . In this case, the experimental isothermal magnetization curve is 
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well-known to be describable over a broad range of temperatures in terms of the 

mean-field classical approximation. Since the spin equilibration process in the 

Langevin SLD simulation is governed by a physically meaningful coupling 

constant η  (equation 4.30), the characteristic time of the process reveals in detail 

the response of the system as a function of temperature. The spatial correlation and 

time-correlation functions of spin orientations can also examined. 

In the second example, magnetic thin films of bcc Fe are considered at finite 

temperatures. These thin films are of technological importance and have found 

important applications in magneto-electric devices, such as those based on giant 

magneto-resistance. In ferromagnetic iron, both ab-initio calculations [6],[7] and 

calculations using the newly developed magnetic many-body potential [8] predict 

that the magnetic moments at the surface are enhanced. Indeed, the reduction of the 

coordinate number on the metal surface leads to band narrowing that should 

increase the corresponding magnetic moment. Experimental results [9]-[11] , on the 

other hand, only support an enhancement of magnetization at very low 

temperatures. Reduction of the magnetization was observed even at temperatures as 

low as room temperature. Hasegawa [12] partially resolved this problem by 

considering the spin fluctuations at the surface. He calculated the average magnetic 

moment layer-by-layer by the functional integral method within the static and 

single-site approximation. Although his calculated bulk Curie temperature cT  is 

double the experimental value, he did successfully show the enhancement of the 

average magnetic moment on the surface at low temperatures, and the reduction at 

high temperatures. In this chapter, the magnetization in a Fe thin film is 

investigated within the scheme of SLD. It will be shown that with spin-wave 
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excitation taken into account magnetization on the film surface indeed should 

behave as experimentally observed.  

In a third example, Langevin SLD simulations are tested in cases involving 

magneto-mechanical effects, such as exhibited in thermal expansion and elasticity. 

It is well-known [13]-[16] that magnetic contributions made up a significant part of 

the total free energy, and would affect the mechanical properties significantly. 

Hasegawa and Pettifor [13] and Friák et al. [14] showed that magnetism is essential 

to stabilize the bcc phase of Fe at low temperatures. Hasegawa et al. [15] 

calculated the temperature dependence of elastic constants with the influence of 

magnetic moments, and observed the softening of the tetragonal shear constant C’. 

Dever [16] noticed in his experiments that the nonlinear temperature dependence of 

the elastic constants is associated with the amount of spin alignment. Our 

simulation results are expected to be able to shed some light in this regard.  

 

7.2  Temperature-Dependent Spontaneous Magnetization 

Isothermal-isobaric simulation using the Langevin SLD scheme is performed to 

understand the thermal equilibration process of the spin subsystem at various 

temperatures. The simulation cell consists of 54000 atoms initially forming a 

regular bcc lattice with the lattice parameter a = 2.8665 Ǻ. The initial dimensions 

of the cell are 30a×30a×30a, with periodic boundary conditions applied along x, y 

and z directions. All spins are initially perfectly collinear. The simulation cell is 

first allowed to expand or shrink under stress-free condition until a steady-state 
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configuration is established. The degree of collinearity Cξ  of spins of a group of N 

atoms is defined as the magnitude of the mean unit spin-vector of the group, 

i.e., 1
C i

iN
ξ = ∑e , as defined in the previous chapter. The mean magnetization of 

the group is the product of Cξ  and the averaged magnitude of the atomic magnetic 

moment defined by the magnetic potential. 

Figure 7.1 shows the collinearity of the thermalized spin subsystem at various 

temperatures, calculated using Langevin SLD as a function of time with perfectly 

collinear initial spins ( 1Cξ = ). The simulation traces the dynamics of the 

thermalization process of the spin subsystem interacting with a thermostat. The 

strength of the coupling to the thermostat is determined by a damping constant η  

(Equation 4.30) set to 10-3. The thermalization process was allowed to continue for 

a sufficiently long period of time to ensure equilibrium. It can be seen that at low 

temperatures, equilibrium values of Cξ  are finite, but decreases with increasing 

temperature. For temperatures higher than about 1100K, collinearity vanishes with 

Cξ  fluctuating around zero, signifying a disordered spin state. We should note that 

Cξ  is positive definite and cannot drop below zero. The residual positive 

collinearity is due to the randomly fluctuating spins. 
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Figure 7.1 – Examples of dynamical simulations performed using the Langevin SLD 

algorithm for 310η −=  for several temperatures of the thermostat. 

Physically, it is expected that the magnitude of η only affects the duration of 

the transients, but not the values of Cξ  at equilibrium. To show that this is indeed 

the case, isothermal relaxations were performed for two different values of 

310η −=  and 410− , respectively, at the thermostat temperature of 300K. Figure 7.2 

shows the resulting evolution of Cξ  as a function of time. It can be seen, as 

expected, that the value of the damping constant only affects the speed of 

equilibration, and not the final equilibrium value of Cξ . 
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Figure 7.2 – Examples of Langevin SLD simulation of thermal relaxation at T = 300K of 

the spin subsystem interacting with the thermostat, performed for two different values of 

the damping constant. 

It is obvious that in Figure 7.1, the characteristic time for thermal equilibration 

process varies for different temperatures. The half-life of the equilibration process 

can be obtained approximately as shown in the Figure 7.3(a) and plotted as a 

function of time in Figure 7.3(b). In Figure 7.3(a), the logarithm of Cξ  is plotted 

against the time after the minimum collinearity is first subtracted. For low 

temperatures, e.g. 500K, a linear least square fit to the long-time part of the curve, 

and the negative of the inverse of the slope is the estimated thermalization half-life 

time. When the temperature is higher than the cT , e.g. 1300K, the collinearity 

already drops to zero, and it is meaningless to analyze the long-time part of the 

curve because it only represents totally disordered random fluctuations. The linear 

least square fit then refers to the flat part of the curve where a finite degree of 

collinearity still sustains. After plotting and fitting for temperature from 0K to 

1700K, Figure 7.3(b) shows a peak at around 1000K to 1100K, near cT  of Fe. It 

reveals that near the phase transition point the magnetic order of the system would 
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be most persistent, i.e., rigid.  

 

Figure 7.3 – (a) Logarithm of the collinearity minus the minimum value of the curve as a 

function of time at 500K and 1300K. The red straight lines are linear least square fit to the 

flat part of the curves, where their slopes are approximately the negative of the inverse of 

the thermalization half-life times. (b) The thermalization half-life was presented as a 

function of temperature. The red line is a Lorantzian peak function fitted to data for the 

purpose of eyes guiding only. 

Unlike a Monte Carlo simulation, the dynamic simulation of thermalization 

performed here is derived from the Fokker-Planck equation, which “does not 

merely label the sequential order of generated states when sampling the phase 

space, but is related to physical time.” [3]. Although the rate of thermalization is a 

function of η  as shown in Figure 7.2, the general trend of the characteristic time 

of thermalization as a function of temperature should not depend on η . The 

thermalization-time peak may be understood as arising from the intense 

competition between the magnetic order, favored by internal energy minimization, 

and the disorder favored by entropy maximization at higher temperatures near the 

phase transition point, which tends to prolong the duration for the system to reach 

equilibrium. 
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In Figure 7.4, the calculated equilibrium values of the spin collinearity Cξ  are 

plotted as a function of absolute temperature. Also shown on the same graph are the 

corresponding experimental data [17] and the average magnetization curve 

predicted by the mean-field approximation, to be further described in the following.  

 

Figure 7.4 – The equilibrium magnetization curve showing the average atomic spin 

evaluated dynamically using canonical ensemble simulations for various temperatures. 

Experimental data were taken from Ref. [17] and the mean field approximation curve was 

evaluated using the method described in text. 

The experimental cT  of bcc Fe is 1043K. The calculated mean-field value of 

cT  obtained using the exchange function ijJ  adopted in this thesis is 1357K. Our 

simulations predict a cT  between 1050K and 1100K. Given that these results are 

based on the same ab-initio form for the exchange function, it is encouraging that 

the present treatment correctly describes the order/disorder nature of the 

ferro/paramagnetic transition in bulk bcc iron, which also lends confidence to the 

SLD algorithm. One may note that the calculations presented here are the first 

successful dynamical simulation of the ferro/paramagnetic phase transition, 



Chapter 7: Spin Thermalization and Related Effects               MA, Pui Wai 

 147 

performed via a method in which the reduction of spin collinearity with 

temperature is related to the spin-lattice coupling caused by the space dependence 

of the interatomic exchange interaction. The trend of the temperature dependence 

of the calculated spin collinearity curve is closer to the classical mean-field spin 

approximation than to the experimental data. This finding corroborates the 

conclusion of Hubbard [18] who interpreted this deviation as the result of the use 

of a classical statistical approach to the treatment of a (real) quantum system of 

atomic spins. The higher cT  in the mean-field calculation is reasonable, since it 

does not include the spin wave excitation in the z-direction.  

For the sake of completeness, the following page will be used to review the 

mean field theory of magnetization for a classical spin system [18],[19]. The 

Hamiltonian for the spin subsystem in the Heisenberg form is given by 

( ) ,
1 2spin ij i ji j

H J= − ⋅∑ e e . The mean field theory assumed that the effective field 

is spatially homogeneous and that all the spins are aligned. The spin energy for a 

particular atom k is now 

1 1
2 2
1 1
2 2

k ik i k ki k i
i i

z z z z
ik k ki k

i i
z

eff k

E J J

J e e J e e

H e

= − ⋅ − ⋅

= − −

= −

∑ ∑

∑ ∑

e e e e

       (7.1) 

where z
eff iki

H e J= ∑ . It is to note that only the z projection of spin z
i e=e  is 

non-zero. With a partition function for classical particles, 
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where eff eff BH H k Tζ β= = . The ensemble average value of spin as a function of 

temperature is 

( )
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z Z
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∂
=

∂

+ −
= −
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         (7.3) 

The ze  can be obtained by iteration starting with initial values following the 

superheating path and using the exchange parameters for the 1st and 2nd nearest 

neighbors, i.e. ( ) ( ) ( )8 3 / 2 6ik ik ij iji
J R J a J a= +∑ . Eventually, we can arrive at 

the magnetization curve shown in Figure 7.4 

 

7.3  Correlation functions 

An order/disorder ferro/paramagnetic phase transition is characterized by the 

disappearance of the long-range order in the spin subsystem. To investigate the 

remaining short-range order in the spin subsystem at equilibrium, the 

corresponding spatial spin-spin correlation functions are calculated and shown in 

Figure 7.5 for the first twelve nearest neighbor (N.N.) shells. It can be seen that the 
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1st and 2nd nearest neighbors are strongly correlated even for temperatures higher 

than cT . The correlation functions remain non-negative for all the sites up to the 

12th nearest neighbor.  

 

Figure 7.5 – The spin-spin spatial correlation functions shown as functions of absolute 

temperature for the 1st, 2nd … 12th nearest neighbour atoms. 

To analyze the dynamics of atomic spins at thermal equilibrium, the 

time-dependent spin-spin autocorrelation function 

( ) ( ) ( ) ( )1
i i i i

i
t t t t

N
τ τ⋅ + = ⋅ +∑e e e e  is calculated from a NVE model of a 

thermally equilibrated ensemble. Figure 7.6 shows the oscillating behavior of 

( ) ( )i it t τ⋅ +e e  found for short timescales of the spin precession trajectories 

similar to that shown in Figure 6.7, where it can be seen that the transverse 

component of the spin orientation vector increases due to the increase of the 

average precession angle treated as a function of temperature. At ~700K the 

fluctuations shown in Figure 7.6 reach a maximum and then gradually die out. It is 

to be noted that in the limit τ → ∞  the autocorrelation function asymptotically 
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approaches the square of the spin collinearity at equilibrium.  

 

Figure 7.6 – The time-dependent spin-spin on-site autocorrelation functions evaluated 

dynamically using microcanonical ensemble simulations performed for fully thermalized 

initial configurations. 

To estimate the spin autocorrelation dephasing time, an exponential decay 

function was least-square fitted to the upper envelope curve for low temperatures, 

and to the entire curve for high temperatures. The results are plotted in Figure 7.7, 

which shows that the spin autocorrelation dephasing time was approximately 10fs. 

This result corroborates very well the findings of Hübner and Zhang [1] who 

estimated, by calculating the optical susceptibility of metallic Ni, that the 

dephasing time was of the order of 10fs. 
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Figure 7.7 – The spin autocorrelation dephasing times for the curves shown in Figure 7.6. 

 

7.4  Magnetization in Fe Thin Films 

In this section, the magnetization profile in thin films is considered. Atomic 

blocks of bcc Fe with (100), (110) and (111) surfaces are prepared by cutting from 

thermally equilibrated bulk samples. The sample sizes are all the same, about 

85Å×85Å×75Å. Periodic boundary condition is applied on the x and y directions 

only. Along the z direction, there are in total 52, 36 and 90 layers for films with 

(100), (110) and (111) surfaces respectively, where the number of atoms in each 

lattice plane are 900, 1296 and 504. The surfaces are allowed to relax until the 

sample attains stress-free condition and the total energy attains equilibrium again. 

After that, the magnetic properties of these samples are examined layer-by-layer 

through the depth of the film. 
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Figure 7.8 – The average of the magnitude of magnetic moment calculated layer-by-layer 

for various temperatures and for (100), (110) and (111) surfaces. 

The average of the magnitudes of the atomic magnetic moments im  of 

each layer is calculated and plotted in Figure 7.8. It should be emphasized that this 

is different from the magnitude of the average magnetic moment which takes into 

account the direction of the magnetic moment of each atom. This value can also be 

obtained directly from the DD potential as in Ref. [8], in which the surface 

properties of Fe is investigated at 0K only. The current results agree well with the 

ab-initio [6],[7] and the magnetic potential results [8] that the im  is enhanced for 

all three kinds of surfaces. It clearly predicts that even at high temperature its value 
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is still increased on the surface, which contradicts the experimental results [9]-[11]. 

 

Figure 7.9 – The collinearity calculated layer-by-layer for various temperature and for (100), 

(110) and (111) surfaces. 

The layer-by-layer collinearity Cξ  of the thin-film is shown in Figure 7.9 for 

different surface crystallography. In the middle of the film, Cξ  keeps the bulk 

value, but its value drops approaching the surface because of the decrease of 

neighboring atoms, thus weakening the effective field that maintains the spin order. 

As a result, the atomic spins on the surface becomes more disordered 

corresponding to a lower degree of collinearity and a smaller value of Cξ . 
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Figure 7.10 – The average of magnetic moment calculated layer-by-layer for various 

temperature and for (100), (110) and (111) surfaces. 

Since the magnetic moment vector is given by k k km= −M e , its average is 

governed by both im  and Cξ , where the magnitude of the average of magnetic 

moment of a layer ( )
th thn layer n layer

1 1
i i i i i i Ci i

m m m
N N

ξ= − ≈ =∑ ∑M e e , 

providing that the im  of all atoms in a layer are about the same. In Figure 7.10, 

the iM  on the surface can be seen to increase at low temperatures and decrease 

at higher temperatures as a result of the combined effects of im  and Cξ . This 

fits both the ab-initio result at 0K, where 1Cξ = , and the experimental ones for 
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finite temperatures. We should note that the average magnetization iM  at the 

room temperature on all the surfaces in the current calculations shows enhancement, 

which is not in quantitative agreement with experiments [9]-[11]. Yet, the trend of 

decreasing magnetization on the surface from positive to negative as temperature 

increases is clear in the current work. At the same time, the mechanism responsible 

for this rather complicated behavior is also clearly established. 

 

7.5  Magnetic Effects on Elastic Constants 

In this section, magneto-mechanical effect is considered. The first property that 

can most easily be examined is the thermal expansion. The equilibrium zero 

pressure lattice constants at various temperatures can be obtained by taking the 

time average of the dimensions of the simulation box, after the system has attained 

equilibrium. Figure 7.11 compares the lattice constants calculated with and without 

spin-lattice coupling, plotted as a function of temperature. The results obtained 

without spin-lattice coupling is a conventional MD simulation with the DD 

potential [20].  
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Figure 7.11 – Equilibrium zero pressure lattice constant of bcc iron evaluated using SLD 

simulations, conventional MD simulations performed for the Ackland potential [21], the 

magnetic DD potential [20], and experimental data taken from Nix and MacNair [22] 

shown for a range of temperatures. 

The striking difference reflects the significant effect of spin-lattice coupling on 

the temperature-dependent equilibrium lattice constant, which is one of the most 

basic properties of the material. MD results using the Ackland potential [21] and 

the experimental results of Nix and MacNair [22] are also plotted for comparison. 

One can see that taking into account the spin-lattice coupling within the present 

scheme produces generally better agreement with observations, even though 

deviations from experimental values still exist. We should particularly note the 

inflection point of the predicted curve near cT . This is evidently related to the spin 

part of the Hamiltonian and to the effect of spin-spin correlations on inter-atomic 

forces, a feature neither the DD nor Ackland potentials manage to produce. 

Comparing the values of lattice constant calculated with and without the 

spin-lattice interaction, one can conclude that the effect of the exchange interaction 

at a finite temperature favors the expansion of the lattice, a result one could have 
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guessed from the spatial dependence of the exchange function. 

The elastic constants ( )11 12' 2C C C= −  and 11 122C C+  are next calculated. 

'C  is obtained by applying a very small uniaxial tensile stress on the simulation 

box along the z direction, letting the box to shrink in the x and y directions and thus 

allowing a tetragonal shear to occurs. 11 122C C+  is obtained by calculating the 

stresses in two samples, one given a small expansion and the other a small 

contraction. Then, it was calculated from the hydrostatic stresses and the 

volumetric strains. 11C  and 12C  are deduced algebraically. To obtain 44C , a pure 

shear strain is applied through progressive mismatching periodic boundary 

conditions. The calculated elastic constants are shown in Figure 7.12 as functions 

of temperature, with and without the spin degree of freedom. Results obtained 

using MD with Ackland potential, and experimental results by Dever [16] are also 

shown for comparison.  
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Figure 7.12 – Elastic constant of bcc iron evaluated using SLD simulations, conventional 

MD simulations performed for the Ackland potential [21], the magnetic DD potential [20], 

and experimental data taken from Dever [16] shown for a range of temperatures. 

In general, the SLD results are close to the MD results using the DD potential 

at temperatures lower than about 600K. For higher temperatures, the effects of 

spin-lattice dynamics become important, causing increasingly bigger deviations 

between the MD and SLD results. An outstanding feature in this regard is the 

experimentally observed anomalous behavior near cT , such as the characteristic 

cusp in 12C , which can only be discerned in the SLD results. Indeed, despite the 

lack of good supporting evidence, Dever [16] also speculated that such anomalous 

behavior might have their origin as a magnetic effect. In addition, although 'C  
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was not softened with temperature increase as suggested by Hasegawa [15], an 

inflexion point can nevertheless be discerned, in good agreement with the 

experiment curve. From the differences between the respective results from the DD 

potential, the Ackland potential and experiments, one would expect that the SLD 

can reproduce better results if the DD potential is fitted to the experimental elastic 

constants at low temperatures. Although the Ackland potential also did not manage 

to reproduce the elastic constants, its trend is closer to experiment, i.e., without the 

sharp drop at low temperatures of 12C  and 44C  calculated from the DD potential. 

From the SLD results of lattice constant and elastic constant, one may conclude 

that the inter-atomic interactions at 0K can be approximated by a function that 

depends only on the lattice configuration. However, at finite temperatures, the 

correlated behavior of the spin subsystem in the form of spin waves becomes 

important to the collective properties of the solid. Phase stability of the lattice is 

maintained by the combined action of two fluctuating forces, one arising from the 

scalar inter-atomic potential, and the other from the gradient of the exchange 

function in the Heisenberg spin-spin Hamiltonian. The temperature dependence of 

the first contribution comes from the anharmonicity of scalar inter-atomic forces 

via phonon-phonon interactions, whereas the second part comes from the spin 

fluctuations via phonon-magnon interactions.  

 

7.6  Brief Conclusion 

The dynamics of thermalization under NPT conditions was investigated, 
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where the system exchanges energy and angular momentum with an external 

thermal reservoir. The temperature dependence of the average magnetization of 

bulk bcc Fe obtained from our SLD simulations agrees with experimental 

observations within the limits imposed by classical statistical mechanics. The 

thermalization time is the longest near the Curie temperature, which may be 

understood as due to the competition between the order and disorder states. For a 

bcc Fe thin film, the increase of magnetism at low temperature is found to be due to 

the enhancement of the magnitude of magnetic moment at the surface, while the 

decrease of magnetism at relatively high temperature is due to the reduction of the 

degree of collinearity Cξ . The current results explain the apparent contradiction 

between the ab-initio calculation and experimental results.  

The dynamics of the spin degrees of freedom is also found to affect 

equilibrium properties of the system, such as the thermal expansion coefficient and 

the elastic constants. Experimentally observed anomaly of the elastic constants near 

the transition temperature can only be reproduced in SLD simulations, and does not 

occur in MD simulations. Comparison with experiments and MD simulations 

illustrates the significance of including the spin degrees of freedom in dynamical 

simulations of magnetic materials. Although only a few applications have been 

performed for ferromagnetic iron, these examples not only show us the feasibility, 

but also allow us a glimpse into the power of the Langevin Spin-Lattice Dynamics 

(SLD) simulation scheme designed and reported in this thesis. 



Chapter 7: Spin Thermalization and Related Effects               MA, Pui Wai 

 161 

REFERENCES 

[1] W. Hübner and G. P. Zhang, Phys. Rev. B 58, R5920 (1998) 

[2] W. F. Brown Jr., Phys. Rev. 130, 1677 (1963)  

[3] J. L. García-Palacios and F. J. Lázaro, Phys. Rev. B, 58 14937 (1998) 

[4] S. Chandrasekhar, Rev. Mod. Phys., 15, 1 (1943) 

[5] R. Kubo, Rep. Prog. Phys., 29, 255 (1966)  

[6] O. Šipr and M. Košuth and H. Ebert, Phys. Rev. B 70, 174423 (2004) 

[7] M. Chakraborty, A. Mookerjee and A. K. Bhattacharya, J. Magn. Magn. Mater. 

295, 210 (2005) 

[8] P. Van Zwol, P. M. Derlet, H. Van Swygenhoven and S. L. Dudarev, Surf. Sci. 

601, 3512 (2007) 

[9] L. N. Liebermann, D. R. Fredkin and H. B. Shore, Phys. Re. Lett. 22, 539 

(1969) 

[10] J. C. Walker, R. Droste, G. Stern and J. Tyson, J. Appl. Phys. 55, 2500 (1984) 

[11] J. Tyson, A. H. Owens and J. C. Walker, J. Appl. Phys. 52, 2487 (1981)  

[12] H. Hasegawa J. Phys. F.: Met. Phys. 17, 165 (1987)  

[13] H. Hasegawa and D. G. Pettifor, Phys. Rev. Lett., 50, 130 (1983)  

[14] M. Friák, M. Šob and V. Vitek, Phys. Rev. B, 63, 052495 (2001) 

[15] H. Hasegawa, M. W. Finnis and D. G. Pettifor, J. Phys.: Met. Phys., 15, 19 

(1985) 

[16] D. J. Dever, J. Phys. Phys., 43, 3293 (1972)  

[17] J. Crangle and G. M. Goodman, Proc. Royal Soc. London Ser. A, Math. Phys. 

Sci., 321, 477 (1971)  

[18] J. Hubbard, Phys. Rev. B, 19, 2626 (1979); J. Hubbard, Phys. Rev B, 11, 4584 



Chapter 7: Spin Thermalization and Related Effects               MA, Pui Wai 

 162 

(1979)  

[19] J. H. Van Vleck, Rev. Mod. Phys. 17, 27 (1945)  

[20] S. L. Dudarev and P. M. Derlet, J. Phys.: Condens. Matter, 17, 7097 (2005) 

[21] G. J. Ackland, D. J. Bacon, A. F. Calder and T. Harry, Phil. Mag. A, 75, 713 

(1997)  

[22] F. C. Nix and D. MacNair, Phys. Rev, 60, 597 (1941)  



Chapter 8: Summary and Conclusion                           MA, Pui Wai 

 163 

Chapter 8: Summary and Conclusion 

Computer simulation of the Spin-Lattice Dynamics (SLD) for itinerant 

ferromagnets at finite temperatures is developed, in which each atom is considered 

as a classical particle with an intrinsic angular momentum and an associated 

magnetic moment. The set of SLD equations of motion, on which the simulation is 

based, is derived from a Hamiltonian expressed in terms of the magnetic 

interatomic potential and the Heisenberg spin-spin interaction with a 

coordinate-dependent pair-wise exchange function. The coupling between the 

dynamics of the spin and lattice subsystems is explicitly considered. Within the 

present scheme, simulations of both isolated and non-isolated systems can be 

performed. In the former case, constraints on the dynamics and energetics of the 

system due to the conservation of energy and angular momentum must be taken 

into account in the design of the simulation and the interpretation of the results. In 

the latter case, energy exchange between the reservoir and the spin subsystem is 

realized via the spin temperature, which is introduced via the 

fluctuation-dissipation theorem (FDT).  

To control numerical errors accumulated over tens of millions of time steps 

during the integration of a set of highly coupled equations of motion is not a trivial 

task. In the present scheme, the integration is performed using the 2nd order 

Suzuki-Trotter decomposition (STD) scheme which, for a proper decomposition of 

the evolution operator, is symplectic. Its usage may avoid numerical energy 

dissipation, despite the trajectory and machine error. The SLD scheme, together 
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with the parallel algorithm, exhibits good stability as a simulation method. The 

numerical scheme has been tested for accuracy and is suitable for simulating 

systems containing many (~106) atoms over relatively long intervals of time (>1ns). 

The computational resources required for the implementation of the algorithm are 

only twice those needed for conventional MD. In this regard, besides being able to 

include many-body effects due to the excitation of phonons and magnons and their 

interactions in the simulation, the present scheme is capable of simulating the 

dynamical behavior of systems. This capability is well beyond the reach of any 

electronic structure-based spin dynamics approach. 

The scheme is firstly validated in the simulation of adiabatic relaxation of a 

periodic array of 180o domain-walls in ferromagnetic bcc iron. Magnons are 

initially created near the magnetic boundary. The relaxation of the domain 

boundary proceeds initially through the creation of magnons that almost 

immediately redistributes, destroying ~90% the initial collinearity throughout the 

simulation region within a few tenths of a picosecond. Relaxation of the magnon 

system via magnon-magnon interaction (spin-spin relaxation) starts to 

re-establishes the collinearity quickly. Over 60% of the collinearity is recovered 

within about 1-2ps. After that, spin-lattice interaction starts to become effective. 

The excitation of phonons that caused by the magnons helps re-establish the 

phonon-magnon equilibrium and produces further relaxation by energy transfer 

from the spin subsystem to the lattice subsystem, producing further recovery of the 

collinearity. Due to the mismatch between the timescales of evolution of the spin 

and lattice vibrations, the magnon-phonon coupling is relatively weak, resulting in 

a much longer total relaxation time with half-life ~0.25ns. The simulation scheme 
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is shown to enable the energy flow from spin to lattice subsystem or vice versa. 

Applications to simulate the dynamics of thermalization under NPT conditions 

and the related effects have also been investigated. The average magnetization 

obtained from this simulation as a function of temperature agrees very well with 

the mean-field theory as well as experimental observations. The order/disorder 

ferro/paramagnetic transition is successfully reproduced. The thermalization time is 

the longest near the Curie temperature, which may be due to the competition 

between the order and disorder states.  

For bcc Fe thin films, an increase of magnetism on the film surfaces at low 

temperature is due to the enhancement of the average of magnetic moment caused 

by the reduction of electron density on the surface. The decrease of magnetism at 

higher temperatures is due to the decrease of collinearity, which explains the 

contradiction between the ab-initio calculation and experimental results. 

Simulations of magneto-mechanical effects are also performed. Equilibrium 

properties e.g. the thermal expansion coefficient and the elastic constants are found 

to be affected by the magnetization. Experimentally observed anomalies of the 

elastic constants near the transition temperature are reproduced in our SLD 

simulations, but not in the corresponding MD simulations. This illustrates the 

importance of including the spin degrees of freedom in dynamical simulations of 

magnetic materials.  

In conclusion, a SLD simulation scheme for ferromagnetic iron has been 

designed and reported in this thesis, and its feasibility and applicability have been 
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shown. This scheme may be potentially useful as a basis for generalization to more 

extensive applicability. Several applications have been performed and the results 

are found to agree well with experimental results, illustrating the importance of 

including the spin degrees of freedom in dynamical simulations of magnetic 

materials. 




