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ABSTRACT 

 

BIOMETRIC IDENTIFICATION USING CONTACT–FREE 3D 
HAND SCANS 

 
 
 

The hand identification problem has been extensively studied in the biometrics literature. 

Commercially available identification systems based on hand geometry features have 

gained high user acceptance and found wide ranging applications for personal 

verification tasks. Nevertheless, there are several critical issues that remain to be 

addressed in order to make hand identification systems more robust and user-friendly. 

Major limitations of current two dimensional image based hand identification include its 

high vulnerability to spoof attacks, inconvenience caused to the user by the constrained 

imaging set up, especially to elderly and people suffering from limited dexterity, and 

hygienic concerns among users due to the placement of the hand on the imaging 

platform. Obviating the need for hand position restricting pegs and the imaging platform, 

however, introduces a highly challenging problem of having to handle hand pose 

variations in three dimensional (3D) space. This dissertation explores the use of 3D 

contact-free hand scans and the possibility of integrating three dimensional shape and 

intensity information in order to overcome the above limitations. A two step, fully 

automatic, approach for hand matching that handles large changes in pose is developed. 

In the first step, the acquired 3D hand is utilized to robustly estimate its orientation based 

on a single detected point on the hand. The estimated orientation information is then used 

to normalize the pose of the 3D hand along with its texture. In the second step, 
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multimodal hand features extracted from the pose corrected range and intensity images 

are utilized to perform identification. The extracted palmprint and finger geometry 

features are combined using a new dynamic fusion strategy. It is shown that the dynamic 

fusion approach performs significantly better than the straightforward fusion using a 

weighted combination rule. In order to extract discriminatory features from the palmprint 

region of the 3D hand, two approaches that exploit local surface details have been 

developed. The proposed 3D palmprint matcher is shown to be more robust against spoof 

attacks. For the purpose of 3D finger matching, two representations that characterize the 

3D finger surface features are extracted from the range images. The matching metrics 

proposed for the two finger geometry features effectively handle limited pose variations 

and perform partial feature matching in order to enhance the performance. Finally, an 

adaptive fusion framework based on hybrid particle swarm optimization (PSO) that 

chooses the optimal fusion rule and weight parameters for a desired level of security is 

developed.  Experiments are performed on synthetic as well as real biometric matching 

scores to demonstrate that the proposed fusion approach consistently outperforms the 

existing framework based on decision level fusion.  
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Chapter 1                            
Introduction 
 

1.1 Biometrics 
 
Biometrics refers to the methodologies for automated personal identification based on 

physical or behavioral traits. Traditional methods based on password and identity card 

provide simple ways to identify an individual. However, the major disadvantage of these 

techniques is that passwords and ID cards can be forgotten, stolen or lost leading to 

increased risk of them being fraudulently used. On the other hand, biometrics exploits 

biological traits that are unique and intrinsic to an individual and therefore provides a 

more robust (to circumvention) and reliable way of personal identification.  

Biometrics such as fingerprint recognition has long been used for law enforcement 

and forensic applications. However, it is only recently that biometrics found a prominent 

place in our everyday life. Due to the increased security concerns in the past decade, 

biometrics has seen enormous growth and has been employed for a wide variety of 

civilian applications. Major applications include access control, time-attendance 

monitoring, automated teller machines (ATM), computer login and web security.  

 Based on their nature, biometric traits can be broadly classified into two categories: 

1. Physiological characteristics: Include those biometric traits that are related to the 

physical shape of the body. Majority of the widely researched biometric traits fall 

into this category. Some of the examples for physiological characteristics include 
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fingerprint, face, iris, hand geometry, palmprint, palm vein and ear. Of these, face 

and hand geometry traits enjoy a very high user acceptance as these 

characteristics can be measured in a non intrusive manner, causing very little 

inconvenience to the user. Hand geometry systems are widely employed for 

personal authentication tasks because of its high user-friendliness and acceptance. 

Other hand based characteristics such as palmprint, palm vein and knuckle surface 

have drawn considerable attention from researchers only in the past few years and 

therefore these biometric traits have not yet established their presence in real 

world applications. Fingerprint, on the other hand, has been extensively 

researched and several major vendors are involved in developing fingerprint 

sensors and matching algorithms. Fingerprint identification remains the leading 

biometric technology in terms of revenue, despite it being relatively more 

intrusive than other hand based biometrics such as hand geometry.  

2. Behavioral characteristics: Include those biometric traits that are associated with 

the behavior of a person. Examples for behavioral characteristic include gait, 

signature, keystroke and voice. However, voice is often considered a combination 

of both behavioral and physiological characteristics since certain parts of the body 

are involved in synthesis of voice. Voice biometrics is widely used for 

applications such as personal authentication (speaker identification) over the 

phone. Human gait, on the other hand, is one of the few biometrics traits that can 

be acquired covertly and without the cooperation of the users. This feature makes 

it an attractive biometric trait for surveillance applications along with other 

biometrics such as face.  
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A typical biometric system operates in two modes. In identification mode, the feature 

extracted from an individual is compared (matched) to template features belonging to all 

users in the database in order to establish the identity of the individual. This is often 

known as one-to-many matching. In the verification mode, a biometric system performs 

one-to-one matching to validate the claimed identity. A basic biometric system comprises 

the following five major processing modules (refer to figure 1.1): 

1. Data acquisition module: This module comprises a device that detects (senses) the 

biometric data of an individual. Typical outputs of a sensor module in biometric 

systems include 1-D data (e.g., speech), 2-D data or image (e.g., face and 

fingerprint images) or 3-D data (e.g., 3D face and 3D ear).  

2. Preprocessing module: This module processes the acquired data in order to 

perform operations such as de-noising, enhancement and normalization prior to 

feature extraction.  The preprocessing may also include localizing and cropping a 

region of interest for feature extraction.  

3. Feature extraction module: The data from the preprocessing stage is further 

processed by this module to extract discriminatory features for an individual. 

During enrolment, the extracted features are stored in the database as template 

features.  

4. Feature matching module: This module computes the similarity between a pair of 

features. Specifically, the extracted feature is compared to the one stored in the 

database and a matching score that indicates the similarity/dissimilarity between 

the features is generated as the output.  
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5. Decision module: The similarity score generated in the matching stage is 

compared to the threshold of the system in order to either accept or reject the 

identity claim. In the identification mode, identity of the user is determined based 

on the highest similarity score among the set of scores generated by one-to-many 

matching.    

 
Figure 1.1: The block diagram of a typical biometric system showing the five major 
processing modules. 

 

Performance of a biometric system is generally specified in terms of a set of 

performance plots and indices. In the verification mode, the performance of the system is 

evaluated based on the Receiver Operating Characteristics (ROC) curve. The ROC is a 

plot of False Reject Rate (FRR) or Genuine Acceptance Rate (GAR) against False 

Acceptance Rate (FAR) (refer to figure 1.2(a)). FRR is the probability of a genuine user 

being rejected as impostor, while FAR is the probability of an impostor being accepted as 

genuine user by the system. FRR and FAR are usually computed for a range of values of 

the system threshold. Equal Error rate (EER), the rate at which FAR and FRR are equal, 
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is often used as scalar performance index to evaluate and compare the accuracy different 

matchers.  In the identification mode, Cumulative Match Characteristics (CMC) curve is 

commonly used to evaluate the accuracy of the system. A CMC curve is obtained by 

plotting the rank against the percentage of correct identification (refer to figure 1.2(b)), 

where rank-n is the number of top-n matching scores reported. 

 
Figure 1.2: Performance curves. Typical (a) Receiver Operating Characteristic (ROC) 
and (b) Cumulative Match Characteristic (CMC) curves.  

1.2 Hand Biometrics  
 
Human hand is rich with several unique and stable characteristics that can be useful for 

biometric identification. Figure 1.3 shows the inner and the dorsal surface of the hand. 
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This figure also depicts the regions where various biometric traits are located on the 

hand. The following sections provide a detailed description of the hand based biometric 

modalities, namely, fingerprint, palmprint, hand geometry, hand vein and finger surface.  

 

      
Figure 1.3: Two sides of the hand with locations of various biometric traits marked on it. 
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 1.2.1 Fingerprint 
 

Fingerprint is the pattern of ridges and valleys found on a fingertip. Fingerprint, as a 

biometric trait, has been extensively researched and widely used for forensic applications.  

The stigma associated with fingerprints due to its widespread use in criminal 

investigations has (to some extent) hampered its penetration and acceptability for civilian 

applications. However, with fingerprint scanners getting miniaturized it has become the 

preferred choice for personal authentication in portable devices such as laptops and 

mobile phones. Moreover, fingerprint identification continues to enjoy the highest market 

share among all biometric technologies. Fingerprint features are believed to be highly 

stable and discriminatory. However, the major disadvantage of the current fingerprint 

systems is that the images are acquired by pressing the finger against the sensing surface. 

Such contact based image acquisition systems not only cause hygienic concerns but also 

carry potential security threats. The fingerprint impressions left (by the users) on the 

imaging surface can easily be lifted and used to fabricate fake fingerprints.  

Features on the fingerprint are defined at three levels (refer to figure 1.4). Level 1 

features comprise the ridge pattern and its type (e.g., loop, arch and whorl), while the 

level 2 features include frictional ridge characteristics such as bifurcations and endings 

(minutiae). Level 3 features are the pores, incipient ridges and other details. While Level 

1 and Level 2 features can be extracted from the standard 500 ppi fingerprint images 

(refer to figure 1.4), Level 3 features requires fingerprint images of higher resolution 

(1000 ppi or higher). Although Level 3 features have long been used by forensic experts 

for identification, the majority of the current automated fingerprint identification systems 
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(AFIS) utilize only Level 1 and Level 2 features as these systems are based on 500 ppi 

fingerprint images. However, recently, researchers [7] have shown that incorporating 

Level 3 features into the matching framework significantly improves the performance of 

the fingerprint matcher.  

 

 

Figure 1.4: Fingerprint impressions (of the same finger) captured at two different image 
resolutions. (a) Features on a 500 ppi fingerprint image mainly include Level 1 and Level 
2 details while (b) Level 3 features (pores, incipient ridges) can also be extracted from a 
1000 ppi fingerprint image. 
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1.2.2 Palmprint  
 

Palmprint is the part of the inner surface of the human hand from the wrist to the base of 

the fingers. Much like fingerprints, this region contains highly discriminatory features 

such as palmlines, wrinkles, frictional ridges and minutiae. Palmprints have long been 

used by forensic experts in criminal investigations where latent palmprints picked up 

from the crime scenes are matched to the inked impressions captured on paper. Early 

research in this area also focused on identification using images of the palmprint 

impressions. These images were obtained by digitizing the inked impressions on the 

paper using a digital scanner. However, majority of the current research in the literature 

utilize low resolution images (about 100 ppi) of the palmprint acquired using a digital 

camera. Palmprint identification using low resolution images has certain distinct 

advantages over other popular hand based biometrics such as fingerprints and hand 

geometry. In contrast to fingerprint identification systems, the image acquisition in 

palmprint systems can be done in a contact-free manner. In addition, the quality of 

acquired palmprint image is less affected by factors such as dry skin and bruises/cuts, 

which can adversely affect the performance of the fingerprint systems. On the other hand, 

since a larger area needs to be captured, the image acquisition devices are often bulky. 

Therefore the physical size of the palmprint identification systems makes them 

impractical to be embedded into portable electronic devices. Palmprints provide more 

distinctive features and as a result, personal identification system based on palmprints 

achieves significantly higher accuracy than the one based on hand geometry features. The 

major drawback of a palmprint identification system is its high vulnerability to spoof 
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attacks. Fake palmprint can be easily generated by printing palmprint images on paper.  

However it may not be possible to obtain a good quality palmprint image without user’s 

cooperation.   

Discriminatory features on the palmprint include ridge characteristics (such as 

minutiae, pore and delta point) and palmar flexion creases (principal palm lines and 

wrinkles). Figure 1.5 shows palmprint images from the same hand at two different 

resolutions. While all palmprint features described above can be extracted from the high 

resolution image of the palmprint, only major palm lines and wrinkles (flexion creases) 

are visible in the low resolution image. However, texture features extracted from the low 

resolution palmprint images have been shown to be highly distinctive and useful for 

personal authentication.  

 
1.2.3 Hand Geometry  
 

Hand geometry, along with the fingerprint and palmprint, is one of the widely researched 

hand based biometric modalities. Hand geometry based biometric systems exploit various 

geometric features extracted from hand images to perform personal authentication. Due 

to limited discriminatory power of these features, hand geometry systems are rarely 

employed for applications that require performing identity recognition from a large scale 

database or applications where the highest level of security is desired. Moreover, hand 

geometry based biometric systems are highly vulnerable to impostor attacks, since fake 

hands created using paper is adequate to circumvent the system. Nevertheless, these 

systems have gained immense popularity and public acceptance as evident from their 

extensive deployment for applications in access control, time and attendance applications 
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and several other verification tasks. Major advantages of hand geometry systems include 

simple imaging requirements (features can be extracted from low resolution hand 

images), ability to operate under harsh environmental conditions (immune to dirt on the 

hand and other external factors), and low data storage requirements. In addition, hand 

geometry acquisition and verification is extremely fast. These distinct advantages over 

other biometrics helped the hand geometry systems capture a niche market.  

 

Figure 1.5: Human palmprint (of the same palm) captured at two different image 
resolutions. (a) Features on a low resolution (about 75 ppi) palmprint image include 
major flexion creases and a few minor creases while (b) finer features such as ridge 
pattern, minutiae and pores are also visible in a high resolution (1000 ppi) palmprint 
image.  
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Figure 1.6 shows typical hand geometry features extracted from the contour of the 

hand.  Finger length is computed as the distance from the finger tip to its base along the 

orientation of the finger. Finger width measurements are made at a number of evenly 

spaced points along the finger length. Finger perimeter refers to the number of pixels on 

the finger contour. All the measurements shown in figure 1.6 are usually made in terms 

of pixels.  In addition to these geometric measurements from the hand, the hand contour 

(silhouette) can also be used (as a shape feature) in establishing the identity.  

 
Figure 1.6: Typical hand geometry features marked on a hand silhouette. 

 

1.2.4 Hand Vein 
 
Human hand, in particular, the palmar region is abundant with blood vessels. These blood 

vessels (veins), which form an intricate and unique vascular pattern has attracted a lot of 

attention from biometric researchers [80],[72]. In addition, personal identification 

systems based on palm vein features are now available in the market [48]. Vein pattern 
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on the dorsum of the hand has also been investigated and found useful as a biometric 

identifier [29],[73],[16]. Much like the palmprint and hand geometry features, palm vein 

pattern can be acquired in a contract-free manner. This feature helps avoid the hygienic 

concerns among users, especially when a large number of people use the device. In 

addition, hand vein pattern has a distinctive feature of being internal to the human body, 

which makes them is extremely difficult to spoof and thereby enabling an extremely high 

level of security.  Moreover, these features are highly stable and are unaffected by 

external wounds and injuries and other external factors.   

Vascular pattern of an individual’s hand can be acquired using either active NIR 

(Near Infrared) or passive IR (thermal) imaging. Active NIR imaging of hand vein is 

based on the fact that hemoglobin in the deoxygenated blood flowing through the veins 

absorbs the NIR illumination and therefore the vein vessels appear prominently dark in 

the acquired NIR images (refer to figure 1.7). Thermal imaging, on the other hand, 

exploits the temperature gradient that exists between the vein and the surrounding tissues.  

Various discriminatory features like lines, minutiae points (vein ending and bifurcation) 

and texture can be extracted from the acquired IR images of the palm.  

 
Figure 1.7: NIR images of the hand showing vein pattern on (a) the dorsal surface and 
(b) the inner surface (palm-side) of the hand.  
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1.2.5 Finger Surface 
 

In addition to the above discussed major hand based biometric modalities, other 

characteristics such as finger creases (on inner surface of the finger) [103],[128] and 

finger knuckle (on back surface of the finger) [11] have also been investigated for its 

utility as biometric identifiers (refer to figure 1.8). Inner surface of the finger contain 

limited number of creases and therefore is more suitable to be used in combination with 

other hand characteristics such as palmprint and hand geometry to build a highly accurate 

biometric system.  The pattern of wrinkles and creases on the finger dorsum surface 

(finger knuckle), on the other hand, have been found to be highly distinctive [11]. 

 
Figure 1.8: Finger surface images. (a) Finger dorsal surface and (b) the inner surface 
captured at about 100 ppi image resolution. Respective regions of interest are zoomed in 
to show the details. 
 

 Texture features extracted from even a single finger knuckle carry enough 

discriminatory information to perform personal verification for a relatively large 

population. The major advantage of these finger based biometric traits, in particular, the 

finger knuckle is that only a small area on the finger surface needs to be captured. In 

addition, feature extraction can be performed using the finger surface images acquired at 

relatively lower resolutions (as compared to fingerprint). Small sensing area and low 
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image resolution help reduce the overall size of the biometric system and achieve faster 

processing of the acquired images. 

 
1.2.6 Challenges in Contact-free Hand Identification 
 

Over the past decade, hand based biometrics have received tremendous attention from 

researchers. As a result, the problem of hand identification using hand geometry and 

palmprint features have been extensively studied. However, most of the existing works in 

the literature employ image acquisition modules that constrain the position and placement 

of the hand. In an attempt to address hygienic concerns and make the hand biometrics 

more user-friendly, researchers have proposed to acquire images in a contact-free 

manner. This, however, leads to a number of issues that need to be addressed before such 

approaches can be adopted in real world applications. Some of the major challenges in 

contact-free hand identification include: 

1. Pose variation: Contact-free hand identification systems offer more freedom to the 

users in terms of the hand placement. A user is only expected to present his/her 

hand at a certain distance from the camera. The increased freedom, however, 

leads to large variations in 3D pose of the acquired hands.  Figure 1.9 illustrates 

the pose changes in the acquired (textured) 3D hands. The variation in 3D pose of 

the hand is major issue in hand based identification systems, since it causes 

significant deterioration in matching performance of the 2D as well as 3D 

matchers. Large pose variation is also likely to impede the process of extraction of 

the region of interest. It is, therefore, necessary to normalize the pose of the 

acquired hand images (range and intensity) prior to feature extraction. 
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2. Deformation/bending: Human hand is not strictly rigid and therefore the 

deformation due to the elasticity of the skin cannot be ignored. Movement and 

bending of the fingers can introduce considerable deformation in the hand, and is 

a major concern in the absence of any pegs or the imaging platform. The 

performance of the hand geometry matchers suffers the most in the presence of 

hand deformation. Palmprint features on the other hand are relatively less 

affected, since the palmprint region of the hand is not prone to large skin 

deformations.  

 

Figure 1.9: Effect of hand pose variations. (a) Textured 3D hand acquired from a user 
during enrolment. (b) Textured 3D hand acquired from the same user during verification. 
Large change in hand pose poses challenges for hand matching.  
 

3. Illumination variation: The contact-free hand identification systems also need to 

deal with illumination changes, since it may be impractical to acquire images in 

uniformly illuminated environments. 2D palmprint matching performance is 

adversely affected by the illumination variations present in the acquired palmprint 

images.  The problem is further compounded by changes in the hand pose, since 

the user hand presented at certain poses can introduce illumination changes in the 
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palmprint region due to shadowing effects (refer to figure 1.10), especially when a 

single light source is employed. The acquired palmprint images need to be re-

lighted with frontal lighting (illumination normalization) in order to enhance the 

2D palmprint matching performance. 

 

Figure 1.10: Effect of illumination variations. (a) 2D hand image (color) acquired from a 
user during enrolment. (b) 2D hand image acquired from the same user during 
verification. Large change in 3D hand pose results in illumination changes due to shadow 
effects and possible erroneous results for 2D palmprint matching.  

 

4. Vulnerability to impostor attacks: Hand identification systems based on two 

dimensional palmprint and hand geometry features can be effortlessly 

circumvented using fake hands generated by printing hand images on paper (refer 

to figure 1.11). It is, therefore, essential to develop anti spoofing measures to 

increase the robustness of the system against such attacks. Another approach 

would be to augment two dimensional palmprint and hand geometry features with 

other hand features that are simultaneously acquirable and extremely difficult to 

spoof.   
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5. Selection of the optimal fusion strategy: Hand geometry features extracted from 

the hand are not known to be very distinctive. Therefore, often these features are 

combined with palmprint, finger surface or knuckle surface features in order to 

enhance the hand matching performance. However, since there are several 

combination strategies available in the literature, it is difficult to choose the one 

that provides the best performance. Therefore it is important to develop an 

approach that chooses a fusion rule that is optimal in some sense.  

 
Figure 1.11: (a) A two dimensional palmprint image. (b) A fake palmprint generated by 
printing the palmprint image in (a) on a paper.  
 

1.3 Contributions of this Dissertation 
 

This dissertation attempts to address some of the issues (discussed in the previous 

section) associated with hand based identification systems. The proposed approach 

utilizes textured three dimensional hand scans to perform personal identification.  Figure 

1.12 plots the existing approaches in the area of hand identification along the two axes 

that represent the nature of image acquisition and the biometric modality (2D and 3D) 

utilized for identification. It should be noted that this figure only provides a few 
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representative and relevant approaches for each category. It may be observed from the 

figure 1.12 that the research work presented in this dissertation investigates into 

unexplored area of hand identification using textured 3D hand scans that are acquired in 

an unconstrained and contact-free manner. Moreover, none of the existing work 

addresses the problem of hand pose variations in the context of 3D hand identification. 

 

Figure 1.12: Illustration of current research in the area of hand biometrics. 
 

 The major contributions of this dissertation can be summarized as follows: 

1. A fully automatic hand identification approach that can reliably authenticate 

individuals even in the presence of significant hand pose variations (in 3D space) 

is presented. The acquired 3D hand data is utilized to automatically estimate its 

pose based on a single detected point on the palm. The estimated 3D orientation 
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information is then used to correct the pose of both the 3D and the corresponding 

intensity image of the hand. The approach also employs a new dynamic fusion 

strategy to combine palmprint and hand geometry matching scores.  

2. Two feature representations, namely, surface curvature and unit normal vector 

that characterize finger surface details are suggested for their usage in personal 

authentication based on 3D geometry of user hands. These representations 

explicitly capture local surface information by computing the local features for 

every data point on cross sectional segments extracted from the individual fingers. 

The proposed matching techniques perform a sliding match in order to handle 

partial cross sectional features and limited pose variations in the acquired hand 

images.  

3. In order to perform 3D palmprint matching, two representations that characterize 

the rich surface details present in the palm region of the acquired 3D hand are 

presented. The first representation for 3D palm surface is based on the local 

curvature features, while the second representation namely SurfaceCode, is based 

on the quantization and binary encoding of the shape index feature. The key 

advantage of the proposed SurfaceCode lies in its compact and effective 

representation of 3D palm features. 

4. An adaptive score level fusion framework based on hybrid particle swarm 

optimization (PSO) is developed for combination of multiple biometric 

modalities. The proposed fusion framework chooses the optimal rule from a pool 

of fixed combination rules and the corresponding weight parameters for a desired 
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level of security. This framework can be easily scaled up to accommodate any 

number of fusion rules and biometric modalities.  

1.4 Organization of this Dissertation 
 

This dissertation begins with a literature review of hand geometry and palmprint 

biometrics, detailed in Chapter 2. Various approaches available in the literature for image 

acquisition, feature extraction and feature matching are discussed in detail in this chapter. 

The chapter concludes with remarks on the status as well as the trend of research in this 

area.   

 

Figure 1.13:  An Overview with links between the chapters of this dissertation. 
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Chapter 3 introduces novel approaches for 3D palmprint identification. A multilevel 

framework is presented to efficiently combine 2D and 3D palmprint features. A novel 

representation, namely the curvature map that characterizes the 3D palm surface is 

presented, along with the corresponding matching metric. This chapter also investigates 

the vulnerability of existing 2D palmprint verification approaches to sensor level attacks 

using fake palms.    

Chapter 4 presents a unified framework for hand identification using 3D hand scans 

that are acquired in a contact-free manner. This chapter also presents novel 

representations and matching metrics for 3D hand geometry verification. Multimodal 

palmprint and hand geometry features extracted from the frontal hand scans are matched 

and the resulting matching scores are consolidated to build a highly accurate personal 

verification system.  

Chapter 5 addresses the highly challenging problem of 3D hand pose variations in 

contact-free hand identification. A simple but efficient pose normalization approach is 

presented to obtain the frontal scan from any arbitrary pose of the hand. A new dynamic 

approach is introduced to combine palmprint and hand geometry matching scores based 

on the quality of the features extracted from the pose corrected images.  

Chapter 6 presents a general framework for score level fusion that is adaptive to the 

security level requirement. Matching scores generated by matching individual hand 

features are combined using the optimal fusion rule and the corresponding optimal 

parameter set in order to achieve a desired level of security. The usefulness of the 

approach is first ascertained on a synthetic dataset followed by performance evaluation 

on two different hand databases.  
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Chapter 7 summarizes this dissertation with conclusions and presents directions for 

future work. 

Figure 1.13 summarizes the chapters in this dissertation. This figure also provides an 

overview with major contributions of each chapter and illustrates how the chapters are 

linked to each other.  
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Chapter 2                                     
Related Work 
 

2.1 Evolution of Hand Biometrics 

Hand based biometric systems, especially hand/finger geometry based verification 

systems are amongst the highest in terms of user acceptability for biometric traits. This is 

evident from their widespread commercial deployments around the world. Despite the 

commercial success, several issues remain to be addressed in order to make these systems 

more user-friendly. Major problems include, inconvenience caused by the constrained 

imaging set up, especially to elderly and people suffering from limited dexterity [5], and 

hygienic concerns among users due to the placement of the hand on the imaging 

platform. Moreover, shape features (hand/finger geometry or silhouette) extracted from 

the hand carry limited discriminatory information and therefore are not known to be 

highly distinctive.  

Over the years, researchers have proposed various approaches to overcome these 

problems. Several research systems have been developed to simultaneously acquire and 

combine hand shape and palmprint features and thereby achieving significant 

performance improvement.  Furthermore, a lot of researchers have focused on 

eliminating the use of pegs used for guiding the placement of the hand [82]. Recent 

advances in hand biometrics literature is towards developing systems that acquire hand 

images in a contact free manner.  Essentially, hand identification approaches available in 
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the literature can be classified in to three categories based on the nature of image 

acquisition: 

1. Constrained and contact based: These systems employ pegs or pins on the 

platform to constrain the position and posture of the hand. Image acquisition is usually 

done under controlled environments, with uniform illumination. Hand images acquired 

using such systems require minimum processing prior to feature extraction and thereby 

considerably reducing the time required for the process of authentication. Typical hand 

geometry features extracted from the acquired hand images include finger length, finger 

width, finger thickness, and palm width. Finger thickness features are computed from the 

lateral view of the hand, which can be easily acquired using a mirror with this kind of 

constrained imaging set up. Majority of the commercial systems and early research 

systems [99],[4],[3],[44] fall under this category.  

2. Unconstrained and contact based: Hand images are acquired in an 

unconstrained manner, often requiring the users to place their hand on flat surface 

[18],[36],[11] or a digital scanner [31],[119],[103],[45]. Some researchers have even 

employed a backlit surface with camera mounted on top to acquire high contrast hand 

images [49]. Landmark points (finger tips and finger valleys) on the hand image are 

commonly used to align images prior to feature extraction. An alternate approach is to 

extract features that are invariant to image plane transformations of the acquired hand 

images.   

3. Unconstrained and contact-free: This approach does away with the need for 

any pegs or platform during hand image acquisition. Users are given the freedom to hold 

their hand freely in the 3D space, usually at a fixed (approximately) distance from the 
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camera. The absence of any mechanism to constrain the placement of the hand introduces 

additional challenges in terms of variations in scale and out-of-plane transformations (3D 

pose) in the acquired hand images. Images acquired in cluttered backgrounds may also 

require sophisticated segmentation algorithms to localize the hand in the image. This 

mode of image acquisition is believed to be more user-friendly and have recently 

received increased attention from biometric researchers [102],[54],[17],[111],[30]. 

2.2 Hand Geometry 
 
History of hand geometry biometric technology/systems dates back over three decades. In 

fact, the hand geometry system – Identimat developed by Identimation is one of the 

earliest reported implementations of a biometric system for commercial applications. 

Since then, the hand geometry biometric systems have found applications in wide variety 

of fields ranging from airports to nuclear power plants [39]. Recognition systems [101] 

offers various time and attendance and access control solutions based on hand geometry 

biometrics. Their access control solution HandKey extracts over 90 measurements from 

the user’s hand image and stores the information into a 9 byte template. VeryFast access 

control terminal [25], manufactured by BioMet partners, captures the image of user’s two 

fingers. Features extracted by processing this image are encrypted and stored as a 20 byte 

template. Accu-Time systems manufactures a similar access control device based on 

user’s finger geometry [23]. Several units of the above mentioned systems have been 

installed at various places around the world. USPASS (formerly known as INSPASS) is 

the first and the largest hand geometry based biometric verification program undertaken 

by the US government to accelerate the process of immigration for authorized and 
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frequent travelers [39]. HandKey scanners were installed at certain airports in the US to 

accelerate the process of immigration for frequent fliers. Another large scale deployment 

was at 1996 Olympics Games in Atlanta, where hand geometry scanners were installed to 

restrict access to the Olympic Village.  

Despite the commercial development and success of the hand geometry technology, 

there was not much literature available in the public domain until late nineties. However, 

since as early as 1970, several U.S. patents have been issued for personal identification 

devices based on hand/finger geometry measurements [96],[58],[98],[40]. Table 2.1 

summarizes the inventions described in these patents. Most of the early work in the hand 

geometry literature was based on 2D images (intensity and color) of the human hand. 

However, with advancements in range image acquisition technology, a few researchers 

have also explored the utility of features extracted from range images of the hand. In the 

following sections, we describe in detail various methodologies proposed in the literature 

for 2D as well as 3D hand biometrics.  

Table 2.1: Summary of inventions on hand/finger geometry identification systems. 
Patent Invention 

[96] Mechanical device (using bars and springs) to measure length and width measurements of the 
hand, placed palm down on a flat surface 

[98] Mechanical contact members are employed to measure outer dimension of fingers, while 
photoelectrical sensing devices compare the measurements with the ones stored in an identity 
card 

[58] Optical scanning device to measure finger lengths of four fingers (thumb not considered). 
Optical sensors are embedded on the flat surface to sense measurements, with a light source on 
top 

[40] Device captures virtual 3D image of the hand using a mirror to reflect the side view. Flat 
surface has four pegs with an illumination source on top. Various measurements including 
finger lengths/widths, hand thickness, surface area and perimeter are computed  

 

2D hand geometry technology is based on the features extracted from two 

dimensional image of the human hand. Major processing modules in a 2D hand geometry 
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system are: Image acquisition system, preprocessing and feature extraction, feature 

matching and decision making. Following sections provide a detailed discussion on 

various approaches available for these processing tasks.  

 

2.2.1 Imaging Techniques 
 
A typical imaging set up for a two dimensional hand geometry system would involve the 

following components: A CCD camera, illumination source and a flat surface. CCD 

camera employed is usually low to medium resolution as the hand geometry features can 

be extracted from binary images of the hand. Joshi et al. [34] are one of the earliest 

researchers to build a prototype hand based biometric system.  Their system mainly 

comprised a CCD camera for imaging finger creases and a fluorescent tube for 

illumination. In order to minimize variations in imaging and subsequent performance 

deterioration, the placement of the fingers was constrained using a metal strip and a 

micro-switch, which also activates the frame grabber to capture images of the fingers. 

Another prototype hand geometry system developed by Jain et al. [4] employs image 

acquisition module that includes a camera, an illumination source and a flat surface with 

five pegs (similar to the one in patent [40]). A mirror was employed to project the lateral 

view of the hand on to the CCD. This enables the system to acquire top and lateral view 

of the user’s hand in a single image of 640 × 480 resolution. The hand geometry system 

developed by Sanchez-Reillo et al. [99] employs an image acquisition module similar to 

the one in [4],[3]. Pegs in their system, however, are equipped with pressure sensors to 

trigger the camera when a hand is detected on the platform.  
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Most of the early work in the literature employ pegs (on the flat surface where the 

user is required to place his/her hand) to restrict the position and movement of the hand 

during image acquisition. Though use of such constraints helps avoid 

registration/alignment of hand images before feature extraction, such systems cause 

inconvenience to the user and therefore are less user friendly.  For example, elderly or 

people with arthritis and other conditions that limit dexterity may have difficulty placing 

their hand on a surface guided by pegs. Hence, a lot of researchers have focused their 

efforts to eliminate the use of pegs. Kumar et al. [18] employed a peg free imaging set up 

to acquire hand images. Users were requested to place their hand on the imaging table, 

with a digital camera mounted on top. They did not employ any special illumination, as 

the images were acquired in a well lit indoor environment. Authors in [49] employ an 

image acquisition system that includes a flat surface (for hand placement) with a VGA 

resolution CCD camera mounted on top. A uniform illumination is provided underneath 

the flat surface. Such an arrangement helps to acquire high contrast hand images which 

can binarized by simple thresholding. A few researchers [74],[45]  have even used low 

resolution digital scanners to acquired hand images in a peg free manner. Though the 

approaches discussed above do not use pegs to constrain hand placement, they require the 

user to place his/her hand on a flat surface. Such contact may give rise to security as well 

as hygienic concerns among users. Fingerprint or palm-print impressions left on the 

surface by the user may actually be picked up and used to fabricate fake biometric 

samples. Zheng et al. [54] have addressed this problem by proposing a hand geometry 

technique using a non-contact, peg free imaging set up that allows users the freedom of 
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presenting their hands at any orientation, as long as the major part of the hand is captured. 

They employ a digital color camera to acquire hand images.  

A few researchers have also employed 3D scanners to acquire range images of the 

hand. Active 3D scanners are usually preferred as they can effectively capture dense and 

accurate 3D data. Woodard et al. [36] are perhaps the first researchers to work on the 

range images of the hand for biometric identification. Their approach uses laser based 

vivid 910 3D scanner [81] to simultaneously acquire color and registered range images of 

the hand. In order simplify the hand segmentation process, users were requested to place 

their right hand against a wall covered with black cloth.  In another system developed by 

Malassiotis et al. [102], users were asked to hold their hand in front their face while an 

in-house developed low cost 3D sensor was used to capture color and range images of the 

dorsal surface of the hand. 3D sensor employed in their system consisted of a color 

camera and a standard video projector.  

 
2.2.2 Preprocessing and Feature Extraction 
 
Prior to feature extraction, acquired hand images are usually processed to obtain a binary 

image of the hand or in some cases, a hand contour. In most cases, a simple thresholding 

scheme followed by morphological operations can be used to segment the hand from the 

background. Typical geometry features extracted from the hand include finger lengths, 

widths, finger area, finger perimeter and palm width.  Please note that measurements 

from thumb have been found to be unreliable [102] and therefore, in most cases hand 

geometry features are extracted only from the remaining four fingers.  This is especially 
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true in the case of peg free image acquisition systems where the variations in 

measurements of the thumb are extremely large.   

Hand geometry system described in [4] measures features such as finger length, 

finger width and thickness of the hand along 16 different axes. Finger thickness features 

is computed from the lateral view of the hand. Authors propose to model the gray level 

profile along the measurement axis for feature extraction. Instead of explicitly measuring 

geometry features on the hand, authors in [3] and [119] propose to align finger shapes 

(contours) from a pair of hand images. In order to deal with the deformation of the hand 

shape (contour) caused by the movement of fingers, authors individually align respective 

pairs of fingers from the hand images. Sanchez-Reillo et al. [99] extracted an extended 

set of geometry features from the contour of the hand. In addition to the length and width 

features from the fingers, various angles and deviations at specific points on the fingers 

are extracted. A feature selection scheme, based on the discriminatory power of the 

features, is used to reduce the dimension of the feature vector. 

Hand geometry systems that do not employ pegs to register/align hand images usually 

locate key points (commonly finger tips and valleys) in the hand image.  This information 

can be used to align hand images prior to feature extraction. An alternate approach would 

be to extract features that are invariant to translation and rotation of the hand in the image 

plane. Authors in [31] explored one such method by modeling finger contours using 

implicit polynomials and computing algebraic invariants (features) from polynomial 

coefficients. The approach proposed in [49] represents hand shapes using Zernike 

moments that are invariant to transformation and scale. The resulting high dimensional 

feature vector undergoes a dimensionality reduction technique - PCA. Yörük et al. [45] 



32 

 

applied dimensionality reduction techniques on the binary images of the hand that are pre 

aligned using orientations of the fingers. Zheng et al. [54] proposed hand geometry 

technique using projective invariant hand features. Feature points detected on the fingers 

creases are used to compute the projective invariant hand features. Kumar et al. [12] 

demonstrated that discretization of the hand geometry features leads to significant 

improvement in performance. Various hand geometry features such as finger 

lengths/widths, palm length/width, hand length and perimeter are extracted and 

discretized before matching.  

Segmentation of the hand in the acquired range images can be made simple by 

making use of the simultaneously captured (and registered) color or intensity image. 

Woodard et al. [36] worked on a combination of edge and skin detection algorithms to 

segment hand from the uniform background. Convex hull of the hand contour was used 

to locate finger valleys and to extract index, middle and ring fingers from the range image 

of the hand. Malassiotis et al. [102] employed a more complex approach to segment the 

hand from other parts of the body appearing in the image. Working solely on range 

images, authors use mixture of Gaussians to model and to subsequently segment hand.  

The approach proposed in [131]  investigates the pattern distorted by the shape (or 

curvature) of the hand. The distorted pattern captured by a CCD camera is coded by 

quad-tree to extract one dimensional binary feature. Though this approach does not 

extract 3D features from the range image of the hand, it essentially utilizes the 3D surface 

features in an indirect manner. Woodard et al. [36] computed shape index, defined in 

terms of principal curvatures, at every pixel in the range images of fingers and stored as 

feature templates for matching. The approach presented in [102] extracts two signature 
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functions, namely, 3D width and mean curvature for each of the four fingers (thumb 

excluded). Features computed for four fingers are concatenated to form a feature vector.  

 

2.2.3 Feature Matching  
 
Feature matching process computes the similarity (or dissimilarity) between the user’s 

feature vector and the one stored during the enrolment. Various matching metrics 

proposed in the literature include Euclidean distance [99],[4],[49],[54], absolute distance 

[4], hamming distance [99], normalized correlation [18], cosine similarity [45] and 

Mahalanobis distance [31]. In addition to these simple matching metrics various trainable 

classifiers such as radial basis function (RBF) [99], support vector machine (SVM) [12] 

and Gaussian mixture model (GMM) [99] have also been used to classify the user’s 

feature vector in to genuine or impostor class. Approaches based on alignment of hand 

contours use metrics such as mean alignment error [3], goodness of alignment [119] 

(based on finger width measurements) to compare a pair of hand shapes.  

 Match score generated from feature matching process is used to make a decision 

as to whether the user is a genuine or an impostor. This decision is usually made based on 

whether the match score is above or below a given threshold.  

 

2.2.4 Performance  
 

Hand geometry biometric systems based on 2D as well as 3D features have been shown 

to offer sufficiently high accuracy to reliably authenticate individuals. Researchers have 

been exploring various approaches (such as combining hand geometry features with other 
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biometric modalities) to improve the performance of the existing systems. Table 2.2 

provides a comparative summary of major hand geometry approaches discussed in this 

chapter.  This table also shows the performance achieved and the size of database 

employed for the experiments. However, one should also note that a one-to-one 

comparison of the approaches cannot be made as these performance statistics are 

obtained on different datasets, with non-standard experimental configurations.  

 As can be seen from the Table 2.2, early research [4],[3],[99] in the hand 

geometry literature employed pegs fixed on a flat surface to guide the placement of the 

hand. Most of the approaches [4],[99],[18],[12] shown in this table are based on the 

extraction of limited number of geometric features and hence achieve relatively high 

error rates. Moreover, the matching algorithms presented in [4],[3],[99],[31],[102],[49], 

[54] have only been evaluated on small databases (in terms of the number of users) and 

therefore the reported results may not provide a reliable measure of their performance.  A 

few researches [6],[102] have investigated the utility of 3D features for hand matching. 

Both of these approaches are based on the features extracted from the dorsal surface of 

the hand. Major drawback of such approaches is that they do not facilitate the 

combination of the extracted 3D features and with other hand based features (such as 

palmprint) located on the palmar surface of the hand. Moreover, the authors in [6],[102] 

have not examined the possibility of integrating 3D features with 2D features (such as 

finger knuckle) that can be extracted from the dorsal surface of the hand. Instead, their 

approaches rely entirely on the 3D features with limited discriminatory information and 

hence result in moderate performance as evident from the reported experimental results. 

Moreover, the approach proposed in [102] does not take into account the changes in 3D 

pose of the user hand. Therefore the performance of this approach is likely to deteriorate 

in the presence of considerable pose variations that are expected in a contact-free imaging 

scenario.  
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Table 2.2: Comparative summary of some of the major approaches for hand geometry 

authentication 

 

 

                                                 
1 Equal error rate has been approximated from the ROC plot reported in the paper 

2 System acquires hand images in a completely contact free manner 

Imaging Reference Methodology 
 

Modality 
 

Pegs 

Database size 
(Users) 

Performance 
(EER %) 

[4] Measurements are made along 16 different axes, and 

matched using weighted Euclidean distance 

2D 
 

YES 50 61 

[3] Individual finger shapes are aligned and a shape distance 
(Mean alignment error) is computed as match score 

2D 
 

YES 
 
 

53 2.5-31 

[99] Feature vector comprises several width, height and angle 
measurements. GMM is  used for matching 

2D 
 

YES 
 

20 61 

[18] Feature vectors comprising 16 geometry measurements are 
matched using normalized correlation 

2D 
  

NO 
 

100 8.5 

[31] Fusion of invariants from implicit polynomials and 
geometric features 

2D 
 

NO 
 

28 1 

[119] Individual finger shapes are aligned using a elliptical 
model and finger tip/valley information 

2D 
 

NO 
 

108 2.4 

[6] Shape index image is extracted from range images of 
fingers and is matched using normalized correlation 
coefficient 

3D 
  

NO 
 

177(probe) 
132(gallery) 

5.5 

[102] Feature vectors comprising 96 curvature and 3D finger 
width measurements are matched using L1 distance 

3D 
 

NO2 

 
73 3.6 

[45] Independent Component Analysis (ICA) on binary images 
of the hand. Feature vectors are matched using cosine 
similarity measure 

2D 
 

NO 
 
 

458 2 

[49] Principal Component analysis (PCA) on extracted higher 
order Zernike moment features. Reduced feature vectors 
are matched using Euclidean distance 

2D 
 

NO 40 2 

[12] Discretization of hand geometry features to improve the 
performance 

2D 
  
 

NO 
 

100 1.9 

[54] Feature points on finger creases are detected and used to 
compute projective invariant features. Feature vectors are 
matched using normalized Euclidean distance 

2D 
  
 

NO2 23 0 
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2.3 2D Palmprint 
 

Over the recent years, personal recognition based on two dimensional palmprint images 

has received tremendous attention from researchers. As a result, several approaches have 

been proposed in the literature [10]. Following sections provide a detailed discussion on 

various approaches available in the literature for palmprint recognition. 

 

2.3.1 Imaging Techniques 
 

Early research in this area utilized scanners to digitize the palmprint impression captured 

on a paper [42],[83]. Majority of the recent research, however, are focused on utilizing 

low resolution images of the palm. Researchers have developed ad hoc CCD based 

palmprint scanners [44], [26] that acquire palmprint images in a controlled environment. 

These devices also employ pegs on the scanning platform to restrict the position of the 

hand. In order to eliminate the use of pegs, researchers have proposed to employ digital 

cameras [18], and digital scanner [104],[103],[27] for hand image acquisition. In addition 

to being more user-friendly, these approaches have the advantage (over the ad hoc 

palmprint scanners) that a complete image of the hand can be acquired. Multiple 

discriminatory features including palmprint, hand geometry and finger surface can be 

simultaneously extracted (from such hand images) and combined to enhance the 

performance. The prototype system developed by Rowe et al. [97] acquires multispectral 

images of the whole hand. Multiple discriminatory features including fingerprint are 

extracted and combined in order to improve the performance.  In an attempt to address 
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hygienic concerns, researchers have proposed to acquire hand images in an unconstrained 

and contact-free manner. While Kumar [17] has employed a simple set up for palmprint 

imaging in the visible spectrum, the work presented in [130],[129] designed a dedicated 

imaging system that captures multispectral palm images.     

 
2.3.2 Preprocessing and Palmprint Extraction 
 

Prior to feature extraction, the acquired hand images are preprocessed to extract a region 

of interest (palmprint) from the center of the palm. Firstly, the acquired images are 

processed to localize the hand. This step usually involves a simple thesholding followed 

morphological operations, especially when the hand images are acquired in a controlled 

environment with uniform illumination. Most of the approaches in the literature use 

interfinger (valley) points as reference points to localize a rotation invariant region of 

interest [116]. Researchers, however, have proposed different methods to detect the 

interfinger points on the hand contour. The popular method (especially with images 

acquired using peg-free set up) involves traversing the hand contour (boundary pixels on 

the localized hand) to detect local minima and maxima corresponding to finger joints and 

finger tips [103],[88]. An alternative method detects high curvature points on the hand 

contour [27],[18]. Another approach [36] employs convex hull of the hand contour to 

locate finger valleys. Figure 2.1 shows a hand contour with finger valley and finger tip 

points marked on it. This figure also shows the localization of the region of interest 

(palmprint region) using the two finger valley points. An exception to the interfinger 

point based approach is proposed in [14], which uses distance transform and ellipse 

fitting to estimate the center of the palm and orientation of the hand respectively. Once 
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the center of the palm is located, a square [27],[18], circular [15] or half elliptical [32] 

region of interest is extracted from the hand image. The approaches [17],[130] that 

employ unconstrained and contact-free imaging set ups extract a variable size ROI 

(usually the largest palmprint region that can be extracted in the acquired image) and then 

normalize it to a predetermined size. This is done in order to take into account the scale 

variations that are inevitable in such imaging set ups. 

 

Figure 2.1: A hand silhouette with fingertips, finger valleys and the palmprint region 
marked on it. Two finger valley points are used to crop a sub image for the palmprint 
feature extraction.  
  

2.3.3 Feature Extraction and Matching 
 

The extracted region of interest is further processed for palmprint feature extraction. 

Various palmprint representation methods proposed in the literature can be roughly 

classified in to line feature, point feature, dimensionality reduction techniques, frequency 

domain transform [117],[127], wavelets [126],[75],[76] and Gabor feature coding based 
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approaches. Line based approaches [27],[123],[124],[125],[118],[70],[41],[115] employ 

edge detectors (such as canny edge detector or sobel operator) in order to extract 

principal lines and/or wrinkles on the palmprint. These approaches, however, do not 

utilize the crucial texture information present in the palmprint images. A few researchers 

have also studied feature point based matching for palmprints. The approach proposed in 

[83] extracts a set of feature points along the palm lines by binarizing a smoothed 

palmprint image and perform matching using a point set alignment algorithm. Another 

approach proposed in [2] explicitly utilizes ridge and minutiae features extracted from the 

high resolution (500 dpi) palmprint images. However, the applicability these approaches 

are largely limited to high resolution or latent palmprint matching, since the low 

resolution palmprint images lack well defined feature points for matching. Nevertheless, 

a SIFT (scale invariant feature transformation) feature point based approach has been 

investigated for matching a pair of low resolution palmprint images [59]. Dimensionality 

reduction based approaches simply employ linear [52],[122],[103],[71],[53],[107] and 

non linear subspace methods [50] (such as principal component analysis (PCA), linear 

discriminate analysis (LDA) and kernel PCA) in order to reduce the dimension of 

palmprint images or the extracted features. The computation of matching distance is 

performed using metrics such as Euclidean distance, cosine similarity or classifiers such 

as neural networks and support vector machines (SVM). The major disadvantage of 

dimensionality reduction techniques is that a large training set may be required to reliably 

learn the subspace coefficients. Moreover, small inaccuracies in the extraction of 

palmprint images may lead to significant performance deterioration as these approaches 

assume perfect alignment between a pair of palmprint images being compared.  The 
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texture features extracted using Gabor filters have often performed well for recognition 

tasks including iris, face, and fingerprint. In the case of palmprint recognition, it has been 

shown to outperform line based and appearance based approaches [13]. Several 

approaches have been proposed for palmprint identification based on binary encoding of 

quantized Gabor features [44],[8],[9],[132]. These approaches have gained popularity due 

to its efficient and compact representations, which are more suitable for online 

applications.  Binary encoding of orientation information extracted from palmprint 

images using have also been shown to perform well for palmprint identification 

[22],[132],[115]. Coding based approaches generally employ hamming distance in order 

to compute the matching distance between two binary features. In order to take into 

account small transformations (rotation and translation) between the pair of palmprint 

images being matched, multiple matches are performed by translating horizontally and 

vertically one of the 2D binary feature matrices over the other. The best matching score 

among all the computed scores is considered as the final matching score.   

 

2.3.4 Performance  
 

Table 2.3 provides a summary of some of the major palmprint recognition techniques 

reported in the literature. As can be seen in this table, the palmprint matching algorithms 

presented in [44],[132],[103],[88],[115] and [78] achieve significantly low error rates on 

considerably large databases. However, the majority of these techniques employ contact 

based (either constrained or unconstrained) image acquisition modules. A few of the 

approaches in the literature [27], [103] even use digital scanners to acquire hand images.  
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Table 2.3: Comparative summary of some of the major approaches for palmprint 
recognition. 

 

The slow acquisition speed and the large size of the digital scanners are likely to make 

them impracticable for real world applications. In order to address the problems 

associated with contact based imaging modules (such as hygienic concerns and 

inconvenience to the users), researchers have developed contact-free palmprint matching 

approaches [78], [17].  These approaches tackle a few challenges such as the changes in 
                                                 
3 Equal error rate has been approximated from the ROC plot reported in the paper 

4 System acquires hand images in a completely contact free manner 

Methodology Imaging Reference 
 

Features 
 

Matching metric 
 

Modality 
 

Pegs 

Database 
size 

(Users) 

Performance 
(EER %) 

[42] Line features represented as end 
points of straight line segments 
 

Euclidean distance, 
angle 

2D 
(Inked 
impression) 

NO 20 03 

[27] Line-like features extracted using 
Sobel and morphological operations 

Correlation function, 
Neural network 

2D 
 

NO 50 Not 
Reported  

[44] Texture features (Binary encoded 
phase) extracted using Gabor filter 

Normalized Hamming 
distance 

2D 
 

YES 
 
 

386 0.6 

[18] Standard deviation of line map 
computed using  four  directional 
masks 

Normalized 
correlation 

2D 
 

NO 
 

100 11-123 

[132] Binary encoding of the sign of 
ordinal comparison using a set of 
three orthogonal Gaussian filters 

Hamming distance 2D 
  

YES 
 

283 0.22 

[22] Binary encoding of dominant 
orientation extracted using a bank of 
six Gabor filters 

Angular distance 2D 
 

YES 
 

386 Not  
Reported 

[103] Subspace projection of palmprint 
images based on PCA  

Euclidean distance 2D 
 

NO 
 

237 0.58 

[88] Two class correlation filters Peak-to-correlation 
energy ratio 

2D 
  

YES 
 

385 
 

0.08 

[115] Binary encoding of orientation 
extracted using the finite radon 
transform 

Pixel-to-area 
comparison 

2D 
 

YES 386 0.4 

[78] Texture features extracted using 
Local Binary pattern (LBP) on the 
directional map 

Chi-square static, 
Probabilistic neural 
network (PNN) 

2D 
 

NO4 

 
 

320 0.74 

[17] Integrating cohort information with 
texture features  

Hamming distance 2D 
 

NO4 235 83 
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scale [17] and the segmentation of the hand image acquired in dynamic and uncontrolled 

environments [78]. However, there are major issues (such as variation in 3D pose of the 

hand) yet to be addressed in the literature for contact-free palmprint identification. 

Moreover, as evident in the table, all existing approaches for palmprint recognition are 

based on the two dimensional images of the palmprint. In other words, none of the 

existing research work in the palmprint literature has investigated the utility of 3D 

features for palmprint matching. The combination of 2D and 3D palmprint features is 

expected not only to enhance the matching performance but also to make the palmprint 

systems more robust against spoof attacks. Therefore, exploration of novel approaches 

for 3D palmprint feature extraction and matching offers a promising direction for future 

work in this area.  

 

2.4 Summary 
 

This chapter provided a discussion on various methodologies/techniques available for the 

hand geometry and palmprint biometrics. While the history of commercial hand geometry 

systems dates back over three decades, academic research addressing critical issues 

lagged behind and appears to have begun only in late nineties. However, literature 

currently available in the public domain clearly shows that the research has now caught 

up with and has in fact transcended the commercially available systems. Majority of the 

early systems employed pegs to restrict hand placement in order to simplify the 

subsequent processing steps. This, however, caused inconvenience to the users. Several 

researchers have addressed this problem by proposing approaches to do away with pegs 
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and thus contributed to the increase in user friendliness of the hand based biometric 

systems. Recently, a few researchers have gone even further and proposed techniques that 

allow users to simply hold their hand in front of the camera, in a completely 

unconstrained manner, in order to get authenticated.  However, these systems need to be 

rigorously evaluated on larger databases before they can be deployed for real world 

applications. In addition, only a few researchers have explored the use of 3D features for 

hand biometrics. Three dimensional hand features can be simultaneously extracted and 

combined to significantly improve the performance of the system. Therefore there is 

tremendous scope for further research in this direction. Finally, there is a pressing need to 

develop anti spoofing measures for hand based biometric systems, especially in view of 

the ease with which researchers have been able to circumvent a commercially available 

hand geometry system [57]. Anti spoofing measures proposed in the literature [38], [92] 

to detect fake fingerprints based on liveness detection can very well be employed in hand 

geometry systems. However, further research needs to be done to adapt these techniques 

and design hand geometry systems that can thwart attacks based on fake hands.  
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Chapter 3                                        
Three Dimensional Palmprint 
Identification   

 
 

The existing techniques for automatic palmprint identification are based on two-

dimensional palmprint images. These approaches primarily suffer from changes in 

imaging factors such as pose and illumination, which can adversely affect the 

performance of the system. Moreover, 2D image based palmprint recognition systems are 

vulnerable to various kinds of attacks. For instance, if one could draw some lines on the 

palm and make it look like another person’s palm, then a 2D palmprint recognition 

system could easily be circumvented.  It may also be possible for an impostor to present a 

genuine user’s fake palmprint image to gain access to restricted services.  However, the 

capability of current palmprint authentication systems against such spoof attacks has not 

yet been investigated. One of the possible ways to overcome the limitations associated 

with 2D palmprint authentication systems is to use 3D imaging devices for capturing 

surfaces of human palm and use this data in performing user identification. Such 

observations are relatively invariant to illumination and provide more information on 

depth and curvature of lines and wrinkles on the palm surface. 

This chapter presents a new personal authentication approach that simultaneously 

exploits 2D and 3D palmprint features. The objective of this work is to improve accuracy 

and robustness of existing palmprint authentication systems using 3D palmprint features. 

A multilevel framework for personal authentication that efficiently utilizes the robustness 
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(against spoof attacks) of the 3D features and the high discriminating power of the 2D 

features is presented. The approach uses an active stereo technique, structured light, to 

simultaneously capture 3D image or range data and a registered intensity image of the 

palm. A curvature based representation is investigated for 3D palmprint feature extraction 

while Gabor feature based competitive coding scheme is used for 2D palmprint matching. 

The 2D and 3D palmprint representations are comparatively analyzed for their individual 

performance and an attempt is made to achieve performance improvement using the 

proposed multilevel matcher that utilizes fixed score level combination scheme to 

integrate information. It is shown that improvement in performance can be achieved with 

the integration of 3D features as compared to the case when 2D palmprint features alone 

are employed. The experimental results also demonstrate that the proposed biometric 

system is extremely difficult to circumvent, as compared to the existing palmprint 

authentication approaches. The experiments reported in this chapter are based on a 3D 

palmprint range image database of 108 subjects. 

3.1 Background 
 
 
The automatic palmprint recognition has extensively been researched in recent years and 

several techniques have been proposed in the literature. Depending on the information 

they make use of, palmprint recognition techniques can be broadly classified into three 

types [13], namely texture, line and appearance based techniques. Most of these 

techniques are based on ideas from 2D image analysis [88], [66], [34], [44]. Although 

these methods have been shown to perform well on relatively large databases, efforts are 
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still required to achieve an automated, robust, and high accuracy palmprint recognition 

system capable of being deployed for high security applications.  

There are a few works in the field of hand geometry recognition that exploits 3D 

features of the hand/finger. Even though a typical hand geometry recognition system 

[4],[99]utilizes 3D features such as height of the finger and the palm, these systems rely 

entirely on intensity images of the hand for feature extraction. The authors in [36] 

investigated the use of finger back surface as a biometric feature. A laser triangulation 

based range scanner is used to capture the range image of the back surface of the hand. 

They report a recognition rate of 99.4% using data obtained on the same day, while it 

reduced to 74% when gallery and probe images were obtained on different days. The US 

patent [46] illustrates the process of acquisition of 3D finger and palmprint information 

using multi camera and light projection system. However, this patent does not describe 

any method for verification/ recognition using the acquired biometric information. 

Malassiotis et al. [102] have developed a biometric authentication system based on 

measurements of user’s 3D hand geometry. A low-cost 3D sensor is used to capture the 

range image of the user’s hand. Furthermore, in order to improve the performance, 

biometric researchers have combined 2D and 3D features for face [120],[67] and ear 

biometrics [94]. However, there has not been any previous study in the biometric 

literature that investigated the utility of 3D palmprint features.  

A robust biometric system has to deal with a number of security threats. Among 

various kinds of attacks [84], one of the simplest ways to attack a biometric system is to 

present a fake biometric to the acquisition device. Researchers have shown that biometric 

traits such as fingerprint [108] and gait [35] are vulnerable to spoof attacks. As a result, 
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various approaches have been proposed for fake fingerprint detection [1],[105],[92]. 

However, there has not been any attempt so far in the literature to analyze the 

vulnerability of palmprint systems to such attacks.  This has motivated us to explore the 

utility of 3D palmprint features and the possibility of combining them with 2D features 

for palmprint recognition in order to enhance the accuracy as well the robustness of the 

resulting biometric system. 

3.2 System Description 
 

The image acquisition device is based on the principle of structured light. Figure 3.1 

shows acquisition of a sample hand image using the 3D scanner. 

 

Figure 3.1: Palmprint range and intensity image acquisition using the device. 
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 Infrared sensors are employed to detect the presence of the hand on the acquisition 

device (see figure 3.2). When a hand is detected the device projects multiple light 

patterns onto the palm surface and acquires depth information using active triangulation.  

 

 

 
 Figure 3.2: Block diagram of the image acquisition module. 

 

Figure 3.3 illustrates a basic active triangulation system [87]. The origin of the 

reference 3D coordinate system lies at the center of the lens, with its z - axis aligned 

along the optical axis of the camera. The projector, located at a distance b  (baseline 

distance) from the camera, illuminates a 3D point ( , , )x y z on the surface of the object. 

The point ( , , )x y z  is projected (through the aperture of the camera) onto the image plane 
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at the pixel ( , )u v , as shown in the figure 3.3. Based on the similar triangles in this figure, 

we obtain the following equations: 

u x
f z
=  and v y

f z
=  

(3.1) 

where f is the focal length of the camera. Given the parameters ( , )f b  and the pixel 

coordinates ( , )u v , the 3D coordinates of the point can be computed as: 

.
( cot )

bx u
f uφ

=
+

, .
( cot )

by v
f uφ

=
+

 and .
( cot )

bz f
f uφ

=
+

 
(3.2) 

 

 

 
Figure 3.3:   Illustration of active triangulation geometry. 
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The above process computes the 3D coordinates for a single point on the surface of 

the object. In order to obtain dense 3D coordinate data and to speed up the computation 

of range values, a specific light pattern (structured light) is projected on to the scene. The 

system employed in this work uses a computer controlled Liquid Crystal Display (LCD) 

projector that generates stripe patterns and projects onto the surface of the object. A CCD 

camera is used to capture the images formed on the object. The sequence of images 

captured by the CCD camera is processed using the active triangulation technique to 

obtain the 3D palm data. This device acquires 3D data in point cloud form. It also 

acquires a registered (captured near simultaneously) intensity image in the course of its 

normal operation. The size of these images are set to 768 × 576 pixels.  

Each of the acquired 2D images is processed to extract the region of interest (ROI) 

using the method described in reference [44]. This method establishes a coordinate 

system with the gaps between the fingers as reference points and extracts a sub image of 

fixed size located at the central part of the palmprint. Since the 2D and the 3D data are 

acquired simultaneously, the two images are registered and the pixel coordinates of the 

2D sub image can be used to locate the ROI and extract the 3D sub image. 

Figure 3.5 shows samples of 3D and corresponding 2D sub images in our database. 

These 3D and 2D sub images are further processed to extract surface curvature (3D 

palmprint feature) and competitive code (2D palmprint feature) [22] respectively. The 

similarity between two curvature maps is then calculated using the local correlation 

method. If the matching score is greater than the threshold of Decision Module I, the query 

is rejected as a fake palm or an impostor and the process is terminated. This constitutes 

Level 1 of the proposed multilevel authentication approach. On the other hand, if the 
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matching score computed at Level 1 is below the threshold, matching proceeds to Level 2 

where the matching score from the 2D palmprint feature is combined with the 3D matching 

score from Level 1 to obtain a final matching score. This score is used to make a decision 

as to whether the claimant is a genuine user or impostor.  The entire process of the system 

is illustrated in Figure 3.4. 

 
Figure 3.4: Block diagram of the multimodal palmprint authentication system. 
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Figure 3.5: Samples of 3D (first row) and 2D (second row) palmprints in the database. 

 

3.3 3D Palmprint Matching 
 
The 3D palmprints offer unique and highly discriminatory information resulting from 

depth of palm lines and creases. As can be seen in figure 3.5, the range images of the 

palmprint (3D palmprint) are rich in local structural features. The surface curvature 

properties have been widely used to represent and recognize various surfaces. Properties 

such as mean and Gaussian curvatures are also used to classify points on a surface to 

different classes [55]. The following section presents a representation, namely, curvature 

map for 3D palmprint matching.  

The localized region of interest, i.e., 3D palmprint, is processed to extract 

principal curvatures at every data point. The principal curvatures are computed by fitting 

a surface over a local neighborhood and then estimating its partial derivatives. For an 

image patch surrounding a pixel, represented by X( , ) ( , , ( , ))u v u v f u v= , Gaussian 

curvature ( )K  and mean curvature ( )H  are calculated as follows [24]: 
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where, ,u vf f  and , ,uu vv uvf f f  are first and second order partial derivatives of ( , )f u v . 

Once the values of K  and H are computed at every point on the 3D palm surface, the 

principal curvatures 1k  and 2k  can be determined as:  

2
1 2,k k H H K= ± −  (3.4) 

In practice, these principal curvature values are computed by fitting a surface over a 

local neighborhood and then estimating first and second derivatives of the surface at the 

center pixel [90]. The key factor is to choose a 2D polynomial of appropriate order (at 

least twice differentiable, since we have to estimate its second order derivatives). While 

higher order polynomial, such as bicubic, better approximates the local surface shape, it 

can make the surface fit more sensitive to noise or outliers in the data. Therefore, we 

perform local surface fitting with a biquadratic polynomial of the following form: 

2 2
00 10 01 11 20 02( , )f u v a a u a v a uv a u a v= + + + + +  (3.5) 

 
The first and second derivatives of the fitted polynomial, evaluated at the center of the 

image patch ( 0, 0u v= = ) are given by: 

10 01 11 20 02 ,   ,   ,  2  ,  2u v uv uu vvf a f a f a f a f a= = = = =  (3.6) 
 

Therefore the process of polynomial fitting and computing partial derivative estimates 

reduces to solving equation (3.5) for polynomial coefficients using least squares. Solving 

a matrix formulation of equation (3.5), we obtain image filter like rectangular window 

operators which can be convolved with the range image to obtain its partial derivative 

estimates. Some specific examples of these window operators are discussed in [89],[86]. 

Since the above mentioned process involves the estimation of second order derivates, 

the estimated curvature values are sensitive to noise in the input 3D data. This problem 
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can be overcome by increasing the size of the local neighborhood used for fitting the 

surface. However, a large window size can smooth the image, resulting in the loss of 

minute details in the 3D palmprint image. In our experiments, we empirically fixed the 

size of window to be 9 × 9. 

 

3.3.1 Curvature Map Representation 
 

In order to represent the curvature of every point on the 3D palmprint image by a scalar 

value, we utilized the curvedness (C ) introduced in [63]. The positive value C is a 

measure of how sharply or gently curved a point is [55]. It is defined in terms of principal 

curvatures 1k  and 2k , as: 

2 2
1 2( ) 2C k k= +  (3.7)

 
Figure 3.6: Surface curvature maps for six different subjects. 

 

Thus a scalar value of curvature is obtained for every point on the 3D palmprint image 

and this can be stored in a 2D matrix or an image. A set of such scalar values is referred 
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to as surface curvature map. Figure 3.6 shows curvature maps for some of the 3D 

palmprint images in the database. It can easily be observed that the surface curvature 

maps obtained by the proposed feature extraction algorithm closely resembles the palm 

lines, especially the strong principal lines. 

The inputs for the matching algorithm are two sets of curvature maps of size 128 × 

128. The feature matching process establishes the similarity between the gallery and the 

probe templates. In this work, we employ an image matching technique, normalized local 

correlation for comparing two curvature maps. Result of this matching is a correlation 

value for every point in the input curvature maps. Average of these correlation values is 

considered to be the matching score. The expression for normalized local correlation is 

given by: 

2 2

( )( )

[ ( ) ][ ( ) ]

N N

ij ij
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(3.8) 

 

where ijP  and ijQ  are curvature values in the neighborhood of the points being matched 

in gallery and test curvature maps, respectively, and P  and Q  are the mean curvature 

values in those neighborhoods. (2 1)N +  × (2 1)N + is the size of the neighborhood in 

pixels. Clearly, the value of C lies in the range of [-1, 1] with values 1 and -1 indicating a 

perfect match and mismatch, respectively. Figures 3.7 and 3.8 illustrate the process of 

matching two curvature maps of the same and different users, respectively. Red (dark) 

colored pixels in the correlation map represent high values of correlation while blue 

(light) represents low correlation. Final matching score is the average of pixel values in 
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the correlation map. It can be observed from Figure 3.7 that genuine matching results in a 

correlation map with large regions of red colored pixels, indicating high correlation 

between the two curvature maps being matched. 

 

Figure 3.7: Matching curvature maps from the same subject. 
 

 

Figure 3.8: Matching curvature maps from different subjects. 
 

3.4 2D Palmprint Matching 
 
 
In this work, we acquire low resolution hand images and employ a 2D Gabor filter based 

competitive coding scheme [22] to extract features from the 2D palmprint. This approach 

uses a bank of 2D Gabor filters to extract information on the orientation of lines and 
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creases in the palmprint. A family of 2D Gabor wavelets, satisfying wavelet theory and 

the neurophysiological constraints can be derived from general complex 2D Gabor 

function as [109]: 

( )
2 2

2 2
2 4( cos sin ) ( sin cos ) ( cos sin )8 2( , , , )

2

o

o o
x y x y i x yo

ox y e e e
ω κθ θ θ θ ω θ ω θκωψ ω θ

πκ

− −+ + − +
+

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
 

(3.9) 

where oω is the radial frequency in radians per unit length and θ is the wavelet orientation 

in radians. κ  is a constant, value of which depends on the frequency bandwidth. The 

center frequency oω  of the Gabor filters can be derived to be κ
σ

[109]. Each of the 

extracted sub images is convolved with Gabor filters oriented in six different directions 

and a competitive rule is formulated to select the dominant orientation, pθ . This 

orientation is selected to be the one with minimum filter response and is defined as: 

arg  min ( ( , )* ( , , , ))j R jp I x y x yψ ω θ=  (3.10) 

where I is a 2D sub image, Rψ represents the real part of the Gabor filter, and ‘*’ denotes 

discrete convolution. Orientations of the filters are chosen to be / 6,  {0,1,...,5}j j jθ π= = . 

Since we considered only six orientations, the computed features (orientation index) are 

binary encoded using three bits. Figure 3.9 shows sample palmprint images from our 

database and their corresponding CompCode representations. The three parameters of the 

Gabor filter ( , , )filterSize σ ω are empirically determined to be (35, 2.6,0.7) respectively. 
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Figure 3.9: Sample 2D palmprint (intensity) images in (a) and (c), corresponding gray 
level CompCode representations in (b) and (d) respectively.     
. 

Angular distance described in [22] is employed for comparing features extracted 

from 2D palmprint images. Let P and Q be the two feature matrices (competitive codes). 

MP and MQ are the corresponding masks used for indicating the non palmprint pixels 

obtained by binarizing the palmprint images.  Angular distance ( , )D P Q  is defined by the 

following equation:  

3
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(3.11) 

where ∩ and ⊗ denote the bitwise AND and XOR operations respectively. ( )b b
i iP Q  is 

the i th
 bit plane of ( )P Q . In order to take into account the possible translations in the 

extracted sub image (with respect to the one extracted during the enrolment), multiple 

matches are performed with one of the features translated in horizontal and vertical 

directions. Minimum of the resulting matching scores is considered to be the final score. 
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3.5 Experimental Results  
 

3.5.1 Verification Experiments 
 

In order to evaluate the performance of the proposed system, verification 

experiments are performed on a database of 108 subjects. This database was collected at 

the Biometric Research Center, the Hong Kong Polytechnic University over a period of 

two months. The database was collected in two sessions, with an interval of 2 weeks and 

mainly consisted of volunteers and students from our university. Ideally, the database 

should include some fake palmprints to test the robustness of the proposed system. 

However, in this set of experiments, the primary focus is on analyzing 2D and 3D 

palmprint features. The main objective was to achieve performance improvement by 

combining 2D and 3D palmprint features that are simultaneously acquired from the 

imaging setup. However, the utility of our approach is not only limited to the 

performance improvement.  In the next section, we illustrate the experiments performed 

to analyze the robustness of the 3D palmprint features against spoof attacks.  The 

database for the experimental results reported in this section includes only real palmprint 

images.  All images were acquired using the capture device [43] shown in figure 3.1. For 

each subject, six samples of 2D and 3D palmprint images were captured and stored in the 

database.  Thus, there are a total of 648 palmprint images in our database. Therefore there 

are 1,620 genuine and 208,008 impostors matching scores for each of the two modalities. 

Figure 3.10 shows a scatter plot of the genuine and impostor score distributions obtained 

from 2D and 3D palmprint features. It can be observed that the two distributions are well 
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separated and a linear classifier would be able to discriminate the genuine and impostor 

classes. 

 
Figure 3.10: Genuine and impostor score distribution in 2D space. 

 
 
We first analyzed the individual achieved performance from 2D and 3D palmprint 

representation. Figure 3.11(a) and 3.11(b) show the performance, in terms of False 

Acceptance Rate (FAR) and False Rejection Rate (FRR) characteristics obtained from 2D 

and 3D features respectively. The Equal Error Rate (EER) achieved from the two 

separate experiments using 2D and 3D features are illustrated in Table 3.1. In figures 

3.11(a) and 3.11(b), it is important to note that the 2D palmprint representation clearly 

outperforms 3D in terms accuracy.   
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(a) 

 
(b) 

Figure 3.11: FAR and FRR plots. (a) 2D CompCode features. (b) 3D Curvature map 
features. 
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Figure 3.12: The selection of threshold for Decision Module I. 
 

Further experiments were carried out to ascertain the possible performance 

improvement by combining two (2D+3D) palmprint representations using the proposed 

multilevel matching framework. The threshold of the Decision Module I was selected 

such that no genuine users are rejected at Level 1. This can be achieved by setting the 

threshold to the operating point at which FRR for 3D palmprint features becomes zero. 

The value of this threshold was found to be 61.03 (refer to figure 3.12). All 3D matching 

scores (genuine as well as impostor) above this threshold are rejected at Level 1. After 

rejection at Level 1, there were 1620 genuine and 203,667 impostor scores for each of the 

two modalities. These scores were carried over to the next level. At this level (Level 2), 

since the genuine and impostor distributions are originally well separated (refer to figure 

3.10), we employ a simple weighted sum rule to combine the 2D and 3D matching 

scores. The combined score (Level 2 match score) is computed as: 
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2 3 1 2 2 3D D D DS w S w S+ = +  (3.12) 

where 2DS  is the 2D matching score normalized to (0,100) range. The 3D matching 

score, which originally is a dissimilarity score, is firstly normalized to (0,100) range and 

then converted to a similarity score to obtain 3DS . The weights 1w and 2w are tuned to 

provide the best verification results. The optimal values of 1w and 2w were empirically 

calculated and found to be 0.56 and 0.44 respectively. 

Results of our experiments are summarized in Table 3.1. Decidability index ( 'd ) is 

used as a measure to quantify the improvement in the separability of impostor and 

genuine matching score distributions. It is computed as: 

1 2'

2 2
1 2

2

d
μ μ

σ σ

−
=

+
 

(3.13) 

where 1μ and 2μ  are the mean values and 2
1σ and 2

2σ  are the variances of the genuine and 

impostor score distributions respectively. 

It can be observed from the Table 3.1 that the proposed multilevel approach for 

combination of 2D and 3D features achieves the best performance, i.e., Equal Error Rate 

(EER) of 0.0022% and decidability index of 7.45. This performance is significantly 

higher as compared to the case when either 2D or 3D palmprint features alone are used. 

Figure 3.13 shows the FAR and FRR plots for the case when both 2D and 2D features are 

employed.  
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Figure 3.13: FAR, FRR plots for (2D + 3D) features. 

 
A comparative Receiver Operating Characteristics (ROC) obtained from the three 

different sets of experiments is shown in figure 3.14. It can be ascertained from figure 

3.14 that the combination of 2D and 3D features for palmprint verification outperforms 

each individual scheme. 

 
Figure 3.14: The ROC curves for 2D, 3D and the proposed multilevel (2D+3D) features.  
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Table 3.1: Performance indices for 2D, 3D and the (2D+3D) palmprint representations. 
Palmprint Matcher EER (%) Decidability Index ( 'd ) 

2D 0.0621 6.50 
3D 0.9914 5.97 

Multi level (2D+3D) 0.0022 7.45 
 

3.5.2 Spoof Experiments 
 
 
In this set of experiments, we investigate the robustness of the 3D palmprint features 

against the sensor level spoof attacks. We also analyze the vulnerability of 2D image 

based authentication system against such attacks. Our experiments involved collecting 

data from five subjects, in two stages. In the first stage, subjects were asked to present 

their “real” hand, while in the second, images of the same users’ hand (palm side) printed 

on a paper were presented to the capture device. Figure 3.15 shows fake palmprints used 

for our experiments. The fake palmprints generated from genuine users’ palmprint 

images (Figure 3.15(a)-(d)) were simply pasted on one real palm, as shown in Figure 

3.15(e). This real hand, with fake palmprint, was presented to the image acquisition 

system (refer to figure 3.1) that can acquire both 2D and 3D palmprint images. Again, 

experiments were performed in a verification scenario, i.e., a user’s palmprint image 

captured in the first stage is matched to the one captured in the second stage.  A match is 

counted as correct if the resulting matching score is less than the system threshold. For 

the purpose of analysis we consider this threshold to be the operating point of EER as it 

represents commonly preferred operating point for most of the practical deployments. 

The results from this set of experiments are summarized in Table 3.2. 
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Figure 3.15: Fake palmprints. (a) - (d) Show the palmprint images printed on the paper 
to use as spoofs. (e) Shows a fake palmprint pasted on the hand to spoof the system. 

 
 
 

Table 3.2: Matching scores from fake palmprints (spoof attack analysis). 
 

User ID 
2D Matching Score 
(Threshold = 82.69) 

3D Matching Score 
(Threshold  = 58.19) 

2D+3D Matching Score 
(Threshold = 66.01) 

1 63.75 72.42 67.56 
2 66.69 75.68 70.65 
3 67.09 81.89 73.60 
4 59.46 74.59 66.10 
5 60.26 76.79 67.5 

 

The experimental results in Table 3.2 show that the user verification using 2D 

palmprint features fails to discriminate between real and fake palmprint samples for all 

users. As seen from the Table 3.2, matching scores for 2D palmprint features are well 

below the threshold at EER, which suggest that the system considers all matches as 

correct. On the other hand, Table 3.2 indicate that for the 3D and (2D+3D) features, the 

system would count all matches as incorrect or negative as the matching scores for 3D 

and 2D+3D  are above their corresponding thresholds. In fact, 3D performs better than 
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2D+3D (matching scores for 3D are well above the threshold, while 2D+3D scores are 

relatively closer to the threshold). This is why we rely entirely on 3D features to reject 

fake palmprints at Level 1 of the multilevel matching algorithm. It may be noted that the 

threshold for Decision Module I was set to 61.03, and all the 3D match scores in Table 

3.2 are above this threshold. This suggests that the proposed system will be successful in 

rejecting all fake palms at Level 1. The experimental results presented in Table 3.2 

demonstrate the utility of 3D palmprint features for enhancing the robustness (against 

spoof attacks) of the palmprint matching system. 

3.6 Discussion 
 
The previous section has presented experimental results from a multimodal palmprint 

authentication system that can simultaneously acquire and combine 2D and 3D palmprint 

features. Experimental results on a real palmprint database of 108 subjects demonstrate 

that with proper selection of weight parameters of fusion scheme, considerable 

performance improvement (over individual 2D and 3D representations) can be achieved. 

The experimental results presented in Section 3.5.1 illustrate a relative performance gain 

of 96% in EER (over the 2D palmprint matcher) and 14.6% in decidability index when 

the simultaneously acquired 3D features are combined with traditional 2D palmprint 

features. However, our comparative analysis, where 2D features achieve lower error rates 

compared to the 3D features, suggests that the 2D features are more discriminative than 

3D features for palmprint representation.  

The experiments performed in section 3.5.2 to investigate the robustness of 2D image 

based approaches, expose the vulnerability of such systems to spoof attacks.  On the other 
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hand, palmprint authentication systems based on 3D features, as well as combination of 

(2D+3D) features, utilize depth information from the palm surface, therefore making 

them extremely difficult to circumvent. It may also be noted that the proposed system is 

more robust to noise such as some text or lines drawn on the palmprint. This is because 

the 3D depth features extracted from such palms are unaffected by noise and therefore 

results in a more robust system compared to the 2D image based palmprint authentication 

systems.  

In fact, most 2D image based biometric systems have been shown to be vulnerable to 

sensor level spoof attacks. For example, the popular biometric trait, fingerprint can be 

easily reproduced by lifting the latent impressions left by the users [108]. In addition, 

experimental results in [113] have shown that iris, considered to be highly reliable 

biometric modality, is highly vulnerable to direct spoof attacks with fake iris generated 

by printing iris images on a piece of paper. Therefore there is compelling need to 

investigate the security of existing 2D palmprint systems against such attacks. However, 

it is important to note that the palmprint system [44] uses central part of human palm 

(acquires these images in a touch free manner) for recognition/authentication task, and 

therefore ruling out the possibility of users leaving any impressions on the scanner, which 

can be used to reproduce synthetic palmprints. It may also be noted that, 2D images of 

palmprint cannot be easily acquired as other biometric traits such as face, iris, which can 

be acquired covertly from a distance [51]. Despite the difficulty in covertly acquiring 

palmprint images, we have investigated the vulnerability of 2D palmprint systems 

without actually considering how these images can be acquired for printing on the paper. 
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The experimental results presented in this chapter has led us to believe that the 

proposed system effectively combines the high discriminatory power of 2D and 

robustness of 3D palmprint representations, resulting in a biometric system that has the 

potential to be deployed for security critical applications. Future research should be 

directed towards developing better 3D palmprint representations and exploring different 

fusion strategies. 

3.7 Summary 
 
This chapter has investigated the utility of 3D palmprint features and proposed a 

multilevel approach for the personal authentication using 3D and 2D palmprint images of 

the user. The surface curvature based feature, namely, curvature map is employed to 

represent the discriminatory information in the captured 3D palmprint images, while 

normalized local correlation is used to match a pair of curvature maps. The decision at 

Level 1 of the multilevel authentication approach is entirely based on the matching of 3D 

features. If the resulting match score is above a particular threshold, the query is rejected 

as a fake palm or an impostor and the matching process is terminated at Level 1. 

Otherwise matching proceeds to Level 2 where 2D and 3D matching scores are combined 

to decide if the user is a genuine or impostor. The experimental results presented in 

Section 3.5 demonstrate that the proposed combination of 2D and 3D matching scores 

results in significant performance improvement over the case when either 2D or 3D 

features are alone employed (relative improvement in EER of 96% and 99% over the 2D 

and 3D matchers respectively). We have also investigated the robustness (against spoof 
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attacks) of a 2D palmprint matcher and presented experimental results to demonstrate the 

utility of 3D palmprint features for enhancing the robustness of the proposed system.  
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Chapter 4                                               
Contact‐free 3D Hand Geometry 
Identification  

 

The personal verification technique introduced in Chapter 3 employs a contact based 

image acquisition module in order to acquire 3D and 2D palmprint images. The approach 

requires the user to place his/her hand on the imaging platform guided by pegs. As 

indicated earlier in the introduction chapter, the practicality of contact based image 

acquisition is limited by factors such as low user acceptance due to the hygienic concerns 

and inconvenience caused to the users. Moreover, the verification approach presented in 

Chapter 3 is entirely based on the palmprint region of the hand, while other parts of the 

hand such as fingers also contain highly discriminatory information that can be used in 

combination with palmprint to enhance the performance. The primary focus of the work 

presented in this chapter is to explore 3D hand/finger geometry features and to build a 

robust and reliable hand biometric system, without sacrificing user friendliness and 

acceptability.  

This chapter presents a new approach to achieve performance improvement by 

simultaneously acquiring and combining three dimensional (3D) and two dimensional 

(2D) features from the human hand. The approach utilizes a 3D digitizer to 

simultaneously acquire intensity and range images of the presented hands of the users in a 

completely contact-free manner. Two new representations that effectively characterize 

the local finger surface features are extracted from the acquired range images and are 



72 

 

matched using the proposed matching metrics. The proposed approach is evaluated on a 

database of 177 users acquired in two sessions. The experimental results suggest that the 

3D hand geometry features have significant discriminatory information to reliably 

authenticate individuals. Our experimental results demonstrate that consolidating 3D and 

2D hand geometry features results in significantly improved performance that cannot be 

achieved with the traditional 2D hand geometry features alone. Furthermore, this chapter 

also investigates the performance improvement that can be achieved by integrating five 

biometric features, i.e. 2D palmprint, 3D palmprint, finger texture, along with 3D and 2D 

hand geometry features, that are simultaneously extracted from the user’s hand presented 

for authentication.  

4.1 Background 
 
A number of techniques have been proposed in the literature for the personal verification 

based on hand geometry features. Often, users are required to place their hand on flat 

surface fitted with pegs to minimize variations in the hand position. Although such 

constraints make the feature extraction task easier and consequently result in lower error 

rates, such systems are not user friendly. In order to overcome this problem, a few 

researchers have proposed to do away with hand position restricting pegs. Feature 

extraction algorithm in their approaches takes care of possible rotation or translation of 

the hand images acquired without guiding pegs. However, users are still required to place 

their hand on a flat surface or a digital scanner. Such contact may give rise to hygienic as 

well as security concerns among users. Security concern on the contact based approaches 

arises from the possibility of picking up fingerprint or palm-print impressions left on the 
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surface by the user and thereby compromising the user’s biometric traits.  Moreover, 

most of the hand geometry systems/techniques proposed in the literature is based on 

users’ gray level hand images. These approaches extract various features from the 

binarized version of the acquired hand image. Unique information in such binary images 

is very limited, leading to low discriminatory power from the hand geometry biometric 

systems.  

Despite the advances in hand geometry research, very few researchers have 

explored the use of 3D surface features on the hand or fingers. Woodard and Flynn [36] 

investigated 3D finger surface as a potential biometric modality. Convex hull of the hand 

contour was used to locate finger valleys and to extract index, middle and ring fingers 

from the range image of the hand. Shape index, defined in terms of principal curvatures 

and computed at every pixel in the range images of fingers, is utilized as feature 

representation. Correlation coefficient is used to determine the matching distance 

between a pair of shape index images. Score level fusion of matching scores from 

individual fingers is then performed to obtain the final matching score. Authors achieved 

promising results when experiments were performed on data collected in a single session. 

However, rank one recognition rates dropped significantly when gallery and probe 

images were collected with a time lapse of one week. One of the limitations of this 

technique is the usage of large sized feature templates, as shape images of size 80 × 240, 

corresponding to each fingers, are required to be stored. In addition, the data acquisition 

method adopted in [36]  is not completely contact free and raises hygienic concerns. 

Malassiotis et al. [102] proposed a biometric system based on measurements 

extracted from user’s 3D finger. Mixture of Gaussians is used to model and to 
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subsequently segment hand from other parts of the body appearing in the acquired range 

images. 3D width and mean curvature of cross sectional segments are computed for four 

fingers (thumb excluded) and concatenated to form a feature vector. Finally, 1L  distance 

was employed for feature matching. The work detailed in [102] is promising but was 

evaluated on relatively smaller database and authors did not make any attempt to use the 

finger back surface features (2D features) that can be simultaneously extracted from the 

presented hands. 

There exists another class of hand shape based authentication approaches that do 

not explicitly acquire depth information from the hand [131], [21]. These approaches 

project a pattern onto the back surface of the hand and employ a CCD camera to capture 

the pattern distorted by the shape (or curvature) of the hand. Features extracted from the 

acquired 2D image are then used to perform identity verification. Although these 

approaches are relatively simpler in computation, they fail to explicitly characterize 

surface details and solely rely on the coarse-level hand shape features. More importantly, 

since a projector and a camera are employed, the cost of such systems when used for real 

world applications is identical to a 3D acquisition system based on structured light 

principle.    

4.2 System Description 
 
The block diagram of the proposed approach for biometric authentication that 

simultaneously employs multiple 2D and 3D hand features is shown in figure 4.1. Major 

computational modules of the proposed approach involve - image normalization (in the 

pre-processing stage), feature extraction and feature matching. The intensity and range 
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images of the user’s hand, acquired by a 3D digitizer, are processed to locate and extract 

individual fingers and palmprint. Feature extraction modules further process the 

respective regions of interest in order to extract the discriminatory features. Individual 

matching modules compute the matching distance by comparing the extracted features 

with the corresponding feature templates enrolled in the database. Multiple matching 

scores generated by the preceding stage are then combined at the fusion module, to obtain 

a consolidated match score. Finally, the decision module compares the consolidated 

match score with the pre-set threshold to determine whether the claimant is genuine or an 

impostor. The details of these key processing stages appear in the following sections. 

 

Figure 4.1: Block diagram of the personal authentication using 2D and 3D hand features. 
 

4.3 Preprocessing and Finger Extraction 
 
The acquired intensity images are first processed to automatically locate the finger tips 

and finger valleys. These reference points are then used to determine the orientation of 
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each finger and to extract them from the acquired hand image. Since the acquired 

intensity and range images are registered, we work only on the intensity image to 

determine the key points and the finger orientation. The key processing steps involved in 

the automated extraction of fingers are illustrated in figure 4.2. The gray level intensity 

images are firstly binarized using Otsu’s threshold [85]. Simple thresholding scheme is 

employed for the hand segmentation, as images are acquired with a uniform black 

background. The resulting binarized image is passed through a morphological opening 

operation to remove isolated regions that can sometimes appear as noise. Boundary pixels 

of the hand in the processed binary image are then identified using the 8-connected 

contour tracing of binary pixels [79]. Traversing the extracted hand contour, local minima 

and local maxima points, which correspond to finger tips and finger valleys, are located. 

In order to estimate the orientation of each finger, four points on the finger contour (two 

points each on both sides of the fingertip) at fixed distances from the finger tip are 

identified.  Two middle points are computed for corresponding points on either side and 

are joined to obtain the finger orientation (refer to figure 4.2(d)). This approach is similar 

to the one employed in [103], which automatically finds the line of symmetry. However, 

differing from their approach, we only consider points on the finger contour that are close 

to the finger tip. Points at the center and bottom part of the finger are not considered for 

the estimation of orientation, as some of the fingers are found to be non-symmetric at 

these parts.  Once the finger orientation and finger tip/valley points are determined, it is 

straightforward task to extract a rectangular region of interest from the fingers. Similarly, 

based on the two finger valley points (between little-ring and middle-index fingers) a 
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fixed ROI representing palmprint can be extracted [116]. Figure 4.2(e) shows the 

extracted region of interests for four fingers.  

 

Figure 4.2: Pre processing and finger extraction. (a) Acquired intensity image. (b) Binary 
hand image after thresholding and morphological operations. (c) Finger tips and valleys 
located. (d) Detected finger orientations. (e) Extracted individual fingers. 
 

The process of finger extraction discussed above can handle rotation and translation of 

the hand in the image plane, which are inevitable in a peg free data acquisition set up. 
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Region of interest (ROI) for finger texture features are extracted (from the individual 

fingers shown in figure 4.2(e)) as the largest rectangular regions around their centroids. 

These extracted images are then resized to obtain fixed size ROI images. Extracted 

individual fingers and corresponding finger texture images depicted in figure 4.3 

demonstrate that the approach employed in this work for finger extraction can effectively 

handle transformations of the hand in the image plane.  

 

 
Figure 4.3: Robustness of the finger extraction approach to rotation and translation of the 
hands.  Images in (a) and (b) show two samples of intensity images acquired from the 
same hand and the corresponding regions of interest. 

4.4 3D Finger Geometry 
 
4.4.1 Finger Modeling and Feature Extraction 
 
 
The finger localization algorithm described in the previous section is employed to locate 

and extract individual fingers from the acquired range images. Figure 4.4 shows the 3D 

visualization for a typical finger extracted from the range image of a hand. Each of the 
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four finger range images is further processed for feature extraction. The 3D feature 

extraction approach adopted in this work is inspired by the conventional finger width 

features in the hand geometry verification. For each finger, a number of cross sectional 

segments are extracted at uniformly spaced distances along the finger length (refer to 

Figure 4.4(b)). The next step in the feature extraction process is to compute two 

representations, namely, mean curvature and unit normal vector, for every data point on 

the extracted 3D finger segments. In order to compute these features, we firstly 

experimented by fitting one dimensional polynomial to the data points on a segment and 

computing 1-D curvature of the fitted polynomial. A one dimensional polynomial of 

degree two has the following form: 

2
1 2 3( )f x c x c x c= + +   (4.1)

Where 1c , 2c  and 3c are the coefficients of the polynomial. The curvature of the above 

polynomial, in terms of coefficients 1c  and 2c ,can be expressed as follows: 

( )( )
1

1 3/ 22
1 2

2

1 2
D

c

c x c
κ =

+ +
  (4.2)

Figure 4.5(a) shows one of the cross sectional segments extracted from the range image 

of the 3D finger shown in figure 4.4(a). The data points on the segment are fitted with a 

second degree polynomial as shown in figure 4.5(a). Figure 4.5(b) depicts the curvature 

value estimated at every data point on the segment.  
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Figure 4.4:  (a) Rendered view of a 3D finger and (b) the extracted cross sectional 
segments. 
 

 

Figure 4.5: (a) Polynomial fit on a cross sectional finger segment. (b) Computed 
curvature features.   
 
 

This approach, however, only considered the neighboring points in one direction 

while ignoring other surrounding points and the crucial finger surface detail in the cross 

sectional finger segments. As a result, the computed features lacked sufficient 

discriminatory information and the experiments yielded poor performance. Therefore, we 

further modified this approach and employed a two dimensional polynomial to model the 
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data point and its neighbors. The mean curvature and normal vector features can then be 

more effectively computed from the fitted 2D polynomial by estimating numerical partial 

derivates of the polynomial at each data point. Savitzky-Golay filters [114] are widely 

used to fit one dimensional polynomial and compute its numerical derivatives. The 

concept of one dimensional Savitzky-Golay filters can be easily extended to two 

dimensional polynomial fitting. In our experiments, we used the two dimensional 

Savitzky-Golay filters implementation available in [106]. The 2D polynomial                               

( , )f x y employed for modeling each of the fingers can be generalized as follows: 

2 2
00 10 01 11 20 02( , )f x y c c x c y c xy c x c y= + + + + +   (4.3)

where x  and y  are the two dimensional coordinates of a data point.  The degree of the 

polynomial (two) in the above equation and the neighborhood size N  (5×5) are 

determined empirically and was fixed.  In order to model the data point and its neighbors 

represented by a vector Td = [ (0) (1) ... ( )]d d d N , a matrix equation can be formulated as 

 M c = d×  (4.4)

where each of the N  rows of the matrix M,  takes the value 2 2[1     ]i i i i i ix y x y x y with 

0,1,..., 1i N= −  and c  is the column vector of polynomial coefficients. The above 

equation can be easily solved for finding polynomial coefficients using least squares 

approach. The next step in our approach is to extract the features from the fitted 

polynomial. The expression for mean curvature of a 2D polynomial in terms of its 

coefficients is given by  

2 2
10 02 01 20 10 01 11

2 2 2 3/ 2
10 01

(1 ) (1 )
(1 )D

c c c c c c c
c c

κ + + + −
=

+ +
 

 

(4.5)
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The mean curvature in the above equation is computed for every data point on the cross 

sectional finger segments and stored as feature templates. Figure 4.6(a) depicts a typical 

cross sectional finger segment extracted (same sample as in Figure 4.5(a)) from the 3D 

finger and the corresponding mean curvature plot. Note the presence of detailed 

information in this curvature plot (see Figure 4.6(b)), as compared to the one shown in 

figure 4.5(b). It can be observed from these figures that the feature extraction approach 

employed in this work effectively captures the local curvature information present on the 

cross sectional finger segments. 

In addition to the curvature feature, we also compute surface normal vector at 

every data point on the extracted finger segment. In order to compute surface normal 

vectors, let us define a parametric surface as follows:  

p( , ) ( , , ( , ))x y x y z x y=  (4.6)

Since the surface normal is parallel to the cross product of partial derivatives of this 

surface with respect to x and y , it can be obtained as follows:   

p pn
x y
∂ ∂

= ×
∂ ∂

 (4.7)

Computing the above cross product, expression for unit normal vector nu  at each data 

point (in terms of the fitted polynomial coefficients) simplifies to 

10 012 2
10 01

1n ( , ,1)
1

u c c
c c

= − −
+ +

 (4.8)

 Figure 4.6(c) shows a typical 3D finger segment and the corresponding normal vectors. 

These computed normal vectors are also utilized as feature templates for computing the 

matching distance. 
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Figure 4.6:  (a) A cross sectional finger segment and (b) its computed curvature features. 
(c) Normal features computed for a finger segment. 
 
 
 4.4.2 3D Finger Feature Matching 
 
In order to match 3D finger surface features, two simple but efficient matching distance 

metrics are introduced. The proposed metrics can effectively deal with small changes 

resulting from hand pose variations during the imaging process. Features extracted from 

each of the four fingers are matched individually and then combined to obtain a 

consolidated match score. 
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 Let the features extracted for sN number of cross sectional segments from 

template and probe (query) fingers are represented by iT and iQ respectively, where the 

subscript i  represents the index for fingers which can include the values from 1 to 4 for 

little, ring, middle and index finger respectively. The computation of matching distance 

(denoted as c
is ) for the curvature features from a corresponding pair of fingers is based on 

the cosine similarity metric and is computed as follows: 

1

. (1: )         
(1: )1 ,   where     

(1: ).
        

(1: )

s

j j j
j ji i T

T Qj j j
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(4.9)

where  j
Tl  and j

Ql  are the number of feature points on the j th cross sectional segment of 

the template ( j
iT ) and query ( j

iQ ) fingers respectively. The number of feature points j
Tl  

and  j
Ql  cannot be guaranteed to be equal, even when they are from the corresponding 

fingers (from different samples) of the same user. This is because, the feature points are 

computed at every data point on the cross sectional segment and the number of these data 

points recorded during the 3D imaging process varies from one sample to another. 

Therefore we perform multiple matches by sliding the shorter feature vector over the 

longer one and considering the best score among them as the final matching distance. 

This approach can also effectively accommodate limited variations in the hand pose. 

However, in order to minimize the computational complexity, the number of sliding 

matches has been limited to four.  

 The computation of matching distance from the unit normal vector features is 

achieved in a manner similar to the one described for curvature features. Angle in radians 
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between two feature points is considered to be the degree of agreement (match) between 

them. Therefore we refer to this matching distance as angular distance. For the template 

and query feature vectors represented by iT  and iQ  respectively, the angular distance 

(match score) is computed as  

1

1 sN
n j
i i
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N
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(4.10)

where  j
Tl  and  j

Ql  represents the length of template and query feature vectors 

respectively. In order to generate reliable matching distances in the presence of hand pose 

variations, multiple matches are performed between the unit normal feature vectors 

extracted from the cross sectional 3D finger segments. Match scores generated for four 

fingers by individually matching corresponding fingers are then averaged to obtain the 

final score for 3D normal feature.  Finally, the weighted sum rule is employed to combine 

scores from the two matchers. Therefore, the consolidated 3D finger match score 

3DFingerS is given by 

3 1 1(1 )DFinger curv normS w S w S= × + − ×

 

(4.11)

where curvS (=
4

1

1
4

c
i

i
s

=
∑ ) ,and  normS  (=

4

1

1
4

n
i

i
s

=
∑ ) are the matching scores generated from 

curvature and normal features respectively. The weight parameter 1w  is empirically 

determined from the training samples acquired during the registration stage.  
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4.5 Other Hand Features 
 
 4.5.1 3D Palmprint 
 
 
The Chapter 3 described the curvature map representation and the normalized local 

correlation based similarity metric for 3D palmprint matching. However, the utility of 

this approach for online usage is quite limited, mainly due to large feature size as well as 

the computationally intensive matching process required for the verification. This section 

presents a compact feature representation for 3D palmprints, namely SurfaceCode, and an 

efficient matching approach. Once the maximum ( maxk ) and the minimum ( mink ) 

principal curvatures are computed (refer to Section 3.3), a quantitative measure of shape 

of the palm surface at every point, i.e., shape index ( SI ) [28], is computed as follows: 

1 max min

max min

( ) ( )1 1( ) tan
2 ( ) ( )

k p k pSI p
k p k pπ

− ⎧ ⎫+
= − ⎨ ⎬−⎩ ⎭

 

(4.12)

Based on the value of shape index ( SI ) in the above equation, every point on the palm 

surface can be classified in to one of the nine surface categories [28]. Therefore a four bit 

binary code is employed to encode the shape feature at every point on the 3D palm 

surface. Figure 4.7 shows sample 3D palmprints from our database and the corresponding 

SurfaceCode representations. For a 3D palmprint of size 128 × 128 pixels, the proposed 

SurfaceCode representation results in feature templates of 8K bytes, as against 16K bytes 

for the curvature map representation. The matching distance between two N N×  

SurfaceCode representations, i.e., template (T ) and a query (Q ), is computed as follows: 
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(4.13)

where HD  denotes the Hamming distance between the two four bit codes. In order to 

take into account the possible translations in the extracted ROI (with respect to the one 

extracted during the enrolment), multiple matches are performed with one of the features 

translated in horizontal and vertical directions. Specifically, we perform two matches in 

steps of two pixels in each of the four different directions (left, right, up and down), 

resulting in a total of nine matches. Minimum of the resulting matching scores is 

considered to be the final score. 

 
Figure 4.7: Sample 3D palmprints in (a) and (c), corresponding gray level SurfaceCode 
representations in (b) and (d) respectively.   
 

4.5.2 2D Palmprint 
 
The 2D palmprint matching employed in this work is based on the competitive coding 

scheme presented in [22] (refer to Section 3.4 for details). This approach uses a bank of 

six Gabor filters oriented in different directions to extract discriminatory information on 

the orientation of lines and creases on the palmprint. Six Gabor filtered images are used 

to compute the prominent orientation for every pixel in the palmprint image and the index 

of this orientation is binary encoded to form a feature representation (CompCode). The 
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similarity between two CompCodes is computed using the normalized Hamming 

distance.  

4.5.3 2D Finger Texture 
 
Besides 2D and 3D palmprints, we also utilize the discriminatory information contained 

in the 2D finger texture, extracted from the acquired intensity images of the hand. Ribaric 

and Fratic [104],[103] are perhaps the first researchers to utilize the discriminatory 

features extracted from finger images for biometric identification. They presented a 

simple and computationally efficient matching approach based on the principal 

component analysis (PCA). However, since the finger texture images contain line 

features such as finger creases and wrinkles, we employ the competitive coding approach 

(same as the one described for 2D palmprint feature extraction) to effectively extract and 

match these features. The three parameters of the Gabor filter ( , , )filterSize σ ω are 

empirically determined to be (15, 2.4,0.7) respectively. Figure 4.8 shows two finger 

texture ROI images from the database and their corresponding CompCode 

representations. 

 

Figure 4.8: Finger surface features.  (a,c) Sample 2D finger texture images. (b,d) 
CompCodes representations for images in (a) and (c) 
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4.5.4 2D Hand Geometry 
 
 
2D hand geometry features are extracted from the binarized intensity images of the hand. 

The hand geometry features utilized in this work include – finger lengths and widths, 

finger perimeter, finger area and palm width. Measurements taken from each of the four 

fingers are concatenated to form a feature vector. The computation of matching score 

between two feature vectors from a pair of hands being matched is based on the 

Euclidean distance. A detailed description of the 2D hand geometry features is provided 

in Chapter 2.  

4.6 Experiments  
 
The performance of the proposed approach for hand authentication is evaluated on a 

database of 3,540 right hand images acquired from 177 subjects. Since there is no 

publicly available database of 3D and 2D (palm-side) hand images, we developed such a 

database in our university during October 2008 – March 2009. The details of our data 

collection process are described in the following section. 

4.6.1 Dataset Description 
 
The 3D hand images in the database were acquired using a commercially available 3D 

digitizer [81]. The data collection process spanned over 4 months and 177 subjects 

volunteered for the database. The participants were mainly the students and staff from our 

institute and were in the age range of 18 – 50 years, with multiple ethnic backgrounds. 

Each subject contributed 5 hand images (range and a registered intensity image acquired 

simultaneously) in the first session, followed by another 5 in the second session.  
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Figure 4.9: Hand image acquisition. (a) Contact-free image acquisition set up. 
(b) Acquired color image and (c) the rendered view of the acquired 3D data. 

 

Therefore our database currently has 3,540 hand images (of 3D and corresponding 2D). 

Time lapse between two data collection sessions was not fixed for all subjects; instead it 

ranged from a minimum of one week (only for 27 subjects) to three months. All the hand 

images were collected in indoor environment, with no restrictions on the surrounding 

illumination. In fact, our data collection process was carried out at three different 

locations which had notable variations in surrounding illuminations. During the image 

acquisition, every user is expected to hold his/her right hand in front of the scanner at a 

distance of about 0.7 m, empirically chosen to maximize the relative size of the hand in 
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the acquired image frame.  No constraints were employed to confine the position of the 

hand nor were the users instructed to remove any hand jewelry that they were wearing. 

However, in order to simplify the hand segmentation task, the background behind the 

user’s hand was ensured to be of black color. Users were only requested to hold their 

hand with their palm approximately parallel to the image plane of the scanner and inside 

the imaging area. This task was facilitated by providing the users a live visual feedback 

for positioning of the hand. In order to introduce variations in the database, users were 

asked to change their hand position after the acquisition of every image. Figure 4.9 shows 

a picture of the data acquisition set up employed in this work. Representative hand 

images (color as well as range) of our database are shown in figure 4.10, which clearly 

shows variations (in hand pose, finger bending and illumination) present in the acquired 

database. Acquired data are stored in the raw format and later converted to range and 

color images of size 640 × 480 pixels.  

 
4.6.2 Experimental Results 
 
Two sets of experiments are carried out in the verification mode to obtain performance 

estimates for the proposed scheme. In the first set, we evaluate the individual 

performance of the proposed 3D hand geometry features, and investigate the performance 

improvement that can be achieved by combining 3D and 2D hand geometry features. In 

addition, in order to ascertain the performance improvement from the proposed unified 

framework, we combined all the hand based biometric features, i.e., 3D hand geometry, 

2D hand geometry, 3D palmprint, 2D palmprint and finger texture, which are extracted 

from a pair of range and intensity hand images.  
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 Figure 4.10:  Representative samples for five users (row wise) in the database.  
 (a) Sample color and (b) the corresponding range images. 
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4.6.2.1 Hand Geometry 
 
In the first set of experiments, we evaluate the performance of the proposed hand 

geometry system that can simultaneously acquire and combine 3D and 2D hand geometry 

features. Five image samples collected from each user in the first session are used to 

generate feature templates, while another five hand images acquired in the second session 

constitute the query samples. A set of genuine matching scores are generated by matching 

features from each of the query samples with the user’s feature templates and taking the 

best score among them as the final match score. The same approach is followed for 

generating impostor matching scores. Therefore, 885 (177 × 5) genuine and 77,880 (177 

× 176 × 5/2) impostor matching scores are generated. The False Acceptance Rate (FAR) 

and False Reject Rate (FRR) are then computed using the generated matching scores (test 

data) and employed to generate the Receiver Operating Characteristics (ROC) curve. 

Genuine and impostor scores generated by matching 3D hand geometry features are 

firstly used to ascertain the matching performance from the individual fingers. Figure 

4.11 depicts the ROC curves from the four different fingers – little, ring, middle and 

index. These experimental results suggest that there is a marked difference in 

discriminatory power of fingers, with the middle finger carrying the highest 

discriminatory information among all fingers. The noticeable difference in performance 

could be due to their inherent distinctiveness among the population considered in this 

study. Poor performance from the little finger (compared to that from others) may also be 

attributed to factors such the high degree of rotation (and the resulting image distortion) 

involved in the image normalization and finger extraction stage. Figure 4.12 shows the 

ROC curves for the proposed verification scheme using 3D hand geometry features. 
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Figure 4.11: ROC curves from the individual 3D finger geometry representations. 

                     

Figure 4.12: ROC curves from the individual 3D hand geometry representations and 
their combined performance. 
 

 It also depicts the overall 3D hand geometry performance resulting from the combination 

of curvature and normal features. These features are combined using weighted sum rule 

as in equation (4.11), with empirically selected weights 0.7 and 0.3 for curvature and 

normal features respectively. Empirical selection of weight parameters was based on the 

performance only on the training data set, with genuine and impostor scores generated 

using the five samples collected in the first session. As shown in figure 4.12, the 
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combination of the proposed 3D hand geometry features achieves an Equal Error Rate 

(EER) of 3.5%. This result clearly demonstrates that the 3D hand geometry features carry 

significant discriminatory information for personal authentication. Moreover, the 

proposed 3D hand geometry features can be efficiently combined with simultaneously 

extracted 2D hand geometry features to further improve the performance of the system.  

 

Figure 4.13: Distribution of genuine and impostor matching scores from the 2D and 3D 
hand geometry features. 
 

 We also performed experiments to ascertain the performance improvement 

resulting from the combination of the 3D and 2D hand geometry features, which are 

simultaneously acquired. The matching scores (from the test data) corresponding to 3D 

and 2D hand geometry features are combined using the weighted combinations (with 

empirically selected weights 0.6 and 0.4 for 2D and 3D hand geometry scores 

respectively). Genuine and impostor matching score distributions (in the two dimensional 

space) for 2D and 3D hand geometry features are shown in figure 4.13. The results from 

this set of experiments are summarized in figure 4.14, which depicts ROC curves for 2D, 
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3D as well as their combination. As can be observed from this figure, simultaneous 

combination of 2D hand geometry features with the proposed 3D features can 

significantly improve the performance (relative EER improvement of 34% over 3D hand 

geometry), which cannot be achieved by either 2D or 3D hand geometry features alone. 

        

Figure 4.14: ROC curves from the proposed 3D hand geometry, 2D hand geometry 
features and their combination. 

 

 4.6.2.2 Unified Hand Verification 
 
 In this set of experiments, our objective was to ascertain the performance improvement 

that can be achieved from the unified fusion framework for hand authentication that can 

simultaneously extract and combine user’s 2D and 3D hand features. The hand based 

biometric features considered in this framework include – 3D hand geometry, 2D hand 

geometry, 3D palmprint, 2D palmprint and 2D finger texture features.  

Firstly, we compare the matching performance from the individual 2D and 3D 

palmprint representations, and their combination. Figure 4.15 shows the comparative 

ROC curves for 2D palmprint, 3D palmprint and their score level combination. As can be 
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observed from this figure, 2D palmprint representation consistently outperforms the 3D 

representation. This suggests that 2D palmprints carry are more discriminatory 

information than 3D palmprints [112]. Nevertheless, the combination of the two 

palmprint representations results in considerable performance improvement as shown in 

figure 4.15. More importantly, such a combination helps to increase the robustness of the 

palmprint verification to sensor level spoof attacks, since it is extremely difficult to 

fabricate 3D palm with fine surface details.  

 

Figure 4.15: ROC curves for 2D, 3D palmprint representations and their combined 
performance. 
 

Furthermore, we performed experiments to compare the performance of the 

proposed SurfaceCode representation with that of the 3D palmprint matching approach 

described in Chapter 3. As shown in figure 4.16, SurfaceCode representation for 3D 

palmprints achieves significantly better performance. The extraction of curvature as well 

as SurfaceCode features (based on shape index) involves the computation of second 

derivatives of the locally fitted polynomial. Therefore the computed features can be 

influenced by the noise present in the acquired 3D palm data. While the approach 
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described in Chapter 3 (refer to Section 3.3) directly employs the extracted curvature 

features for matching, the SurfaceCode representation is obtained by quantizing the shape 

index values into different categories and encoding the corresponding indices. The 

process of quantization and the subsequent encoding can reduce the influence of the noise 

in the feature extraction stage. This possibly explains why the proposed SurfaceCode 

representation outperforms the curvature map representation.  

 
Figure 4.16: ROC curves for 3D palmprint matching using the SurfaceCode and the 
curvature map representation.  

 

Figure 4.17: The ROC curves from the 2D finger texture details using eigenfingers and 
the CompCode representation. 
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The experimental results from the matching of finger texture (CompCode) 

features are shown in figure 4.17. For comparison purpose, this figure also depicts the 

performance from the eigenfingers approach proposed in [103]. It is evident from this 

figure that the CompCode feature representation outperforms eigenfingers for finger 

texture matching.  

Finally, experimental results from combining 3D and 2D hand geometry (figure 

4.14), 3D and 2D palmprint (figure 4.15) and finger texture (figure 4.17) features are 

presented in the form of ROC curve in figure 4.18. Table 4.1 provides a summary of our 

experimental results with EER as the performance index. It can be observed from this 

table that the combination of hand (3D shape and 2D texture) features results in the best 

performance and is significantly better than the performance obtained from any of the 

individual hand features considered in this study.  

 

 

Figure 4.18: The ROC curve for the proposed system utilizing multiple hand features. 
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Table 4.1: Performance indices from the experiments. 
Matcher EER (%) 

3D Hand Geometry 3.5 

2D Hand Geometry 6.3 

(2D+3D) Hand Geometry 2.3 

2D Palmprint 1.22 

3D Palmprint 3.16 

(2D+3D) Palmprint 0.56 

Finger Texture 6 

(2D+3D) Hand Geometry + 

(2D+3D) Palmprint + 

Finger Texture 

0.22 

 

Processing time (seconds) Matcher 
Feature 

Extraction 
Matching 

2D Hand Geometry 0.08 0.05 
3D Hand Geometry 0.84 0.08 

2D Palmprint 0.09 0.14 
3D Palmprint 1.20 0.23 

Finger Texture 0.24 0.10 
 

Table 4.2 provides the typical time required by the individual matchers for processing a 

sample range or the intensity image. All of these approaches are implemented in 

MATLAB and run on a computer with 1 GB of RAM and a 1.66GHz Intel Pentium 4 

CPU. It can be observed from this table that the typical time required for 3D feature 

extraction (Hand geometry and palmprint) is considerably higher than that for 2D 

features. On the other hand, the processing times for feature matching of the two 

modalities (2D and 3D) are quite comparable. This is due to the computationally simple 

3D matching metrics employed in this work. The use of parallel fusion strategy (such as 

Table 4.2: Time requirements of individual matchers 
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the weighted sum rule employed in this work) to combine 2D and 3D matchers may 

considerably increase the computational requirements of the resulting system. However, 

the processing time can be reduced by employing multithreading scheme for its 

implementation. 

4.7 Discussion  
 
This chapter has presented a unified approach for hand based authentication that utilizes 

simultaneously extracted 3D and 2D hand features. The experimental results presented in 

the previous section demonstrate that significant performance improvement can be 

achieved when matching scores from the 3D and the 2D hand geometry features are 

consolidated. It is important to note that the performance from the proposed 3D hand 

geometry features alone is comparable with those from the identification approaches 

proposed in [102] and [36].  

The major difference between the approach presented in this chapter and previous 

studies [102], [36], [131], [21] involving 3D hand features is that we acquire images from 

the palm-side of the user’s hand. This enables us to utilize much of the discriminatory 

features on the hand including the palmprint information.  Moreover, the proposed 

approach for 3D hand geometry based verification takes into account limited variations in 

hand pose (rotation of the hand in the 3D space). While image plane rotations (around z -

axis) are normalized by the finger extraction algorithm, out-of-plane rotations (only 

around x - axis) are handled by the sliding approach employed in the 3D finger matching 

stage. However, the current approach may fail in the presence large out-of-plane rotations 

of the hand and also in the case of considerable finger bending. In this context, the 
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approach makes the assumption that the user is cooperative while presenting his/her hand 

to avoid out-of-plane rotations. One way, to explicitly handle hand pose variations and to 

reduce subsequent erroneous matches, is to detect and normalize the 3D hand pose (by 

bringing it to the frontal pose). The problem of pose variation (between a pair of 3D 

hands being matched) may also be handled by registering the acquired 3D hands using 

geometric alignment algorithms such as Iterative Closest Point (ICP). ICP algorithm has 

found successful applications in identification systems utilizing 3D biometric traits such 

as 3D face or 3D ear, which contain significant amount of global (structural) information. 

Mean squared error (MSE) between the aligned 3D models is often considered as the 

match score. However, such approaches are not suitable for matching a pair of 3D 

fingers. This is because the global information from 3D finger surface is quite limited and 

generates poor performance due to large overlapping of genuine and impostor matching 

scores. 

The 3D palmprint feature representation presented in this chapter, SurfaceCode, 

has been shown to be highly compact and generates more reliable (refer to figure 4.16) 

performance as compared to the curvature map representation presented in Chapter 3 and 

thereby making it more suitable for online applications. The experimental results (refer to 

figure 4.17) from our comparison study demonstrated that CompCode representation 

outperforms eigenfingers approach [103] for finger texture matching. Possible reason for 

the significantly better performance from CompCode features could be that the small 

inaccuracies in localization and extraction of the ROI, which are inevitable in a contact 

free image acquisition system, can be easily accommodated in the matching phase of 

CompCode features. On the other hand, the appearance based approaches like 
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eigenfingers assume perfect alignment of the pair of ROI being matched. In addition, 

being a Gabor filter based approach, CompCode may be able to better characterize the 

local texture information present on the extracted 2D finger images.   

The experiments to ascertain the performance from the unified hand verification 

framework yielded promising results that demonstrate that a highly reliable 

authentication system can be developed by combining multiple features from the hand. 

The motivation for such a combination arises from the fact that all the hand features 

considered in this work have been simultaneously extracted from a pair of 3D and 2D 

hand images, acquired from the presented hand. It may be noted that our approach does 

not utilize fingerprint features on the hand since the extraction of fingerprint features 

requires higher resolution (500 dpi or more) images. The system developed by Rowe et 

al. [97] acquires images of the hand placed on a platen and combines multiple hand 

features including hand geometry, fingerprint and palmprint. However, since we acquire 

hand images in a contact free manner, the fingerprint modality is not suitable to be 

integrated in to the framework of touchless hand authentication. The development of 3D 

fingerprint and touch less fingerprint systems has been recently investigated and therefore 

these features can be possibly integrated in to the framework in the further extension of 

this work.  

One of the major drawbacks of the hand geometry systems has been the high degree 

of vulnerability of these systems to spoof attacks.  Researchers [57] have demonstrated 

how easily a commercial hand geometry system can be circumvented. One of the 

simplest ways to overcome this problem is to utilize multiple (available) features on the 

hand (such as the one presented in this chapter). Such an approach invariably leads to 
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increased robustness against various kinds of attacks directed at circumventing the 

system. In fact, even the hand geometry system (utilizing 3D hand geometry features) 

presented here is more robust to sensor level attacks (with fake hands) than a traditional 

2D image based hand geometry system. This is because, the approach explicitly captures 

finger surface information and therefore it is highly unlikely that an attacker can fabricate 

fake hands good enough to circumvent the system, without user’s cooperation. 

4.8 Summary 
 
This chapter presented a new approach to achieve reliable personal authentication based 

on simultaneous extraction and combination of multiple biometric features extracted from 

3D and 2D images of the human hand. The key advantage of the proposed approach is 

that it simultaneously acquires range and gray-level images from the palm side of user’s 

hand and thereby offers range of features (2D and 3D hand geometry, 2D and 3D palm-

print and finger texture) that can be simultaneously extracted and combined to achieve 

reliable and secure multimodal biometric authentication. The approach acquires hand 

images in a contact-free manner to ensure high user friendliness and also to avoid the 

hygienic concerns. Simultaneously captured range and intensity images of the hand are 

processed for feature extraction and matching. In order to extract discriminatory 

information for 3D hand geometry based biometric authentication, two representations, 

namely, finger surface curvature and unit normal vector are introduced. The proposed 3D 

hand geometry features explicitly capture curvature variation by computing the local 

features for every data point on cross sectional segments extracted from the individual 

fingers. Simple and efficient metrics, capable of handling limited variations in the hand 
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pose, are presented for matching a pair of 3D hands. The experimental results on a 

database of 177 subjects demonstrate that the 3D hand geometry features have high 

discriminatory information for biometric verification. In addition, the experimental 

results presented in this chapter further demonstrate that performance improvement can 

be achieved by combining the 3D hand geometry information with the 2D hand geometry 

features extracted from user’s 2D hand images.  

Besides hand geometry information, other hand biometric features such as 2D 

palmprint, 3D palmprint and 2D finger texture can also be simultaneously extracted from 

the acquired images. Therefore we investigated the potential of integrating these hand 

based features in to our unified framework and obtained the best performance when all of 

the features are combined. Although combining these hand features is a straight-forward 

task, there is actual need to quantify the performance improvement that can be achieved 

by such combinations, especially in the touchless imaging set up. Moreover, all hand 

biometric features considered in this work can be simultaneously extracted from the 

acquired images with little additional cost for imaging. Therefore it is prudent to combine 

all available biometric features. 

The work presented here can be expanded in many ways. Slow acquisition speed 

of 3D imaging device, such as the Vivid 910 3D digitizer employed in this work, limits 

the online usage of the proposed system for the civilian applications. This limitation can 

be potentially overcome by acquiring 3D data with alternative imaging technologies, such 

as stereo imaging. Also the 3D digitizer employed in this work is quite expensive and 

large in size. However, customized low cost and compact 3D scanners can be developed 

(similar to the one developed for 3D fingers in [102] or for 3D palm in [24]) to overcome 
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this problem. Another area for future work is to explore the possibility of combining the 

proposed 3D finger feature representations at the feature level. It would also be 

interesting to assess the vulnerability of the proposed 3D hand geometry approach to 

sensor level attacks using fabricated hand models. 
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Chapter 5                                          
Pose Invariant textured 3D Hand 
Identification 

 
The 3D hand identification approach presented in Chapter 4 acquires 3D scans of the 

user’s hand in a contact-free manner. However, this approach does not address the highly 

challenging problem of variations in 3D pose of the hand resulting due to the increased 

freedom offered to the users. The variation in the hand pose can be considerably high 

when the image acquisition process is unsupervised or when the users are not properly 

trained to provide their frontal scans. Large hand pose variations often lead to erroneous 

matches and subsequent deterioration in matching performance. Therefore, if the problem 

of changes in hand pose is not addressed, it can severely limit the performance and 

applicability of hand identification approaches.  

This chapter presents a novel approach that can achieve improved performance 

even in the presence of large hand pose variations. The proposed method utilizes a 3D 

digitizer to simultaneously acquire intensity and range images of the user’s hand 

presented to the system in an arbitrary pose. The approach involves determination of the 

orientation of the hand in 3D space followed by pose normalization of the acquired 3D 

and 2D hand images. Multimodal (2D as well as 3D) palmprint and hand geometry 

features, which are simultaneously extracted from the user’s pose normalized textured 3D 

hand, are used for matching. Individual matching scores are then combined using a new 

dynamic fusion strategy. Consistent (across various hand features considered) 
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performance improvement achieved with the pose correction demonstrates the usefulness 

of the proposed approach for hand based biometric systems with unconstrained and 

contact-free imaging. It is also shown that the dynamic fusion approach employed in this 

work helps to achieve performance improvement of 60 percent (in terms of EER) over 

the case when matching scores are combined using the weighted sum rule. The database 

for experiments includes 3D hand scans acquired from 114 subjects with large pose 

variations.  

5.1 Background 
 
Hand based biometric systems, especially hand/finger geometry based verification 

systems are amongst the highest in terms of user acceptability for biometric traits. 

Despite the commercial success, several issues remain to be addressed in order to make 

these systems more user friendly. Major problems include, inconvenience caused by the 

constrained imaging set up, especially to elderly and people suffering from limited 

dexterity [5], and hygienic concerns among users due to the placement of the hand on the 

imaging platform. Moreover, shape features (hand/finger geometry or silhouette) 

extracted from the hand carry limited discriminatory information and therefore are not 

known to be highly distinctive. Over the years, researchers have proposed various 

approaches to overcome these problems. Several research systems have been developed 

to simultaneously acquire and combine hand shape and palmprint features and thereby 

achieving significant performance improvement.  Furthermore, a lot of researchers have 

focused on eliminating the use of pegs used for guiding the placement of the hand. 
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Recent advances in hand biometrics literature is towards developing systems that acquire 

hand images in a contact free manner.  

Malassiotis et al. [102] have developed a system that authenticates users based on 

3D finger geometry information. Their system acquires range and color images of the 

hand held against the users’ face. Kumar [17] has presented promising results for touch 

less palmprint authentication on a large database of 235 users. The Work presented in 

[19] utilizes hand geometry features extracted from infra red images of the hand. Users 

need to place their hand freely in the 3D space in front of the camera at a fixed distance, 

in order to get authenticated. Authors in [111] proposed an approach to authenticate 

individuals based on the features extracted from range and intensity images of the hand 

held freely and approximately parallel to the image plane of a 3D scanner. Authors 

achieved encouraging results on a relatively large database. All of the above described 

approaches acquire hand images of the user in a contact free manner and perform 

identification using various features extracted from it. However, none of these 

approaches explicitly perform 3D pose normalization nor do they extract any pose 

invariant features. In other words, these approaches assume that the user's hand is being 

held parallel to the image plane of the camera during image acquisition, which may not 

always be the case, especially with such unconstrained imaging set up. Therefore these 

approaches may face serious challenges when employed for real world applications.    

Zheng et al. [54] are perhaps the first researchers to examine a hand identification 

approach based on extracting distinctive features that are invariant to projective 

transformations. Cross ratios formed by a set of landmark feature points on the finger 

creases constitute their feature vector. Authors have achieved promising results on a 
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rather small database of 23 subjects. However, the performance of their approach heavily 

relies on the accuracy of feature point detection on the hand images, which may 

deteriorate especially under large pose variations. Another drawback of their approach is 

that authors have not been able to utilize the palmprint information available in the 

acquired hand images, and therefore the lack such highly discriminatory information may 

pose limitations on the scalability of their approach.  

The work presented by Methani et al. [30] is based on the alignment of a pair of 

intensity images of the hand using the homographic transformation between them. Two 

out of four corresponding points required for the estimation of homographic 

transformation matrix are located on the edge map of the palmprint region. However, it 

should be noted that the palmprint region on the human hand lacks well defined features 

points and therefore it may not be possible to robustly estimate the homographic 

transformation. Moreover, even the more stable points, i.e., interfinger points used for 

estimating the homographic transformation cannot not always be accurately located, 

especially under hand large pose variations, as we show later in this chapter.  

 Approaches proposed in the literature for 3D ear recognition [56],[94],[93] 

employ Iterative Closest Point (ICP) algorithm in order to align a pair of 3D ears. These 

approaches can handle pose variation since the ICP computes a rigid transformation that 

aligns a pair of point clouds being matched.  However, ICP based approaches are not 

suitable for matching 3D hands as movement of one finger can introduce significant 

deformation that may lead to erroneous matches. ICP based matching may not be able to 

exploit the rich local surface details present in the palmprint region of a 3D hand [112]. 

Moreover, ICP based approaches do not explicitly perform pose normalization and 
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therefore cannot be employed to correct the pose of the corresponding intensity/color 

image. On the other hand, 3D face recognition algorithm proposed by Chang et al. [67] 

performs explicit 3D pose normalization using landmark points located on the face. As 

discussed earlier, the approaches based on detection multiple landmark points may not be 

reliable for hand identification.  

 As one can find in the literature, the problem of 3D pose variation has been well 

addressed in the context of 3D face and 3D ear recognition. However, little work has 

been done in this area for hand identification, despite it being one of the highly 

acceptable biometric traits. The approaches proposed for 3D face or ear recognition 

cannot be adopted directly as the hand identification poses its own challenges such as 

lack of well defined landmark points. This has motivated us to explore this area and 

develop an approach for pose invariant hand identification using textured 3D hands 

acquired in an unconstrained and contact-free manner.  

 
Figure 5.1: Block diagram of the hand pose normalization approach. 
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5.2 3D and 2D Hand Pose Normalization  
 
Figure 5.1 depicts the block diagram of the proposed 3D and 2D hand pose normalization 

approach. The key idea of the approach is to robustly fit a plane to a set of 3D data points 

extracted from the region around the center of the palm. The orientation of the plane 

(normal vector) in 3D space is then computed and used to estimate and correct the pose 

of the acquired 3D and 2D hand.  

The first preprocessing step is to localize the hand in the acquired hand images. 

Since the intensity and range images of the hand are acquired near simultaneously, these 

images are registered and have pixel to pixel correspondence.  Moreover, the hand 

images in our database are acquired using a uniform black background. Therefore we 

simply localize the hand by binarizing the intensity image using Otsu’s threshold [85]. 

These binary images are further refined by morphological open operators, which remove 

isolated noisy regions. Finally, the largest connected component in the resulting binary 

image is considered to be the set of pixels corresponding to the hand. In order to locate 

the palm center, we initially experimented with an approach based on inter finger (valley) 

points, commonly employed in the literature to extract the region of interest for palmprint 

identification [116],[88]. This approach traverses the foreground boundary pixels (hand 

contour) to detect local minima points corresponding to finger valleys between little-ring 

and middle-index fingers. Center of the palm is then located at a fixed distance along a 

line that is perpendicular to the line joining the two finger valley points. Finally, a set of 

3D data points inside a circular region around the center of the palm is extracted for 

further processing. Radius of this circular region of interest is empirically set to 60 pixels 
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(in the range image).  Figure 5.2 pictorially illustrates the above approach on a sample 

hand image in the database. This approach, however, fails to accurately detect the two 

inter finger points when the degree of rotation of the hand around the x - axis is 

considerably high. This is due to the overlapping of the fingers and subsequently leads to 

erroneous localization of the center of the palm. Therefore, a much simpler but robust 

method based on distance transform to locate the center of the palm is employed in this 

work. Distance transform computes the Euclidean distance between each foreground 

pixel (part of the hand) and its nearest pixel on the hand contour.  The point that has the 

maximum value for the distance transform is considered to be the center of the palm. 

Figure 5.3(a) shows a sample hand image in the database. It can be noticed that there is 

an overlap between fingers due to high degree of rotation. Figures 5.3(b) and 5.3(c) 

depict the located region of interest using the above described approaches.  Please note 

(in figure 5.3(c)) that the first approach based on landmark points locates a point which is 

far off the actual center of the palm. We also observed that the approach based on 

distance transform may not always locate the same palm center for different images from 

the same hand with varying poses. However, it still locates a point in the close vicinity of 

the actual center and such small error is permissible as we utilize a set of data points 

inside the extracted region, rather than a single feature point, for further processing.  
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Figure 5.2: Localization of circular palmar region using interfinger valley points. 

 

 
                                                                       (a) 

                                                 
                                                                       (b) 
Figure 5.3: (a) Incorrect localization of interfinger finger points and subsequently the 
center of the palm due to considerable pose variation of the hand and the resulting 
overlap between little and ring fingers. (b) Localization of circular palmar region using 
the distance transform approach. 

 

Once a set of 3D data points (represented by [ , , ] , 1... ,i i ix y z i mΤ =  where m  is the 

number of points) is extracted from the region of interest, a 3D plane is fit using the 

Iterative reweighted least squares (IRLS) approach. This approach solves a weighted least 
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squares formulation at every iteration until convergence. The weighted least squares 

optimization at iteration p can be formulated as follows 

( 1) ( 1) 2

1
arg min ( )

m
p p p

i i i
i

w z X
α

α α− −

=

= −∑  
(5.1) 

where 1 2 3[ , , ]α α α α Τ= are the three parameters of the plane and [1, , ]i i iX x y= . The iw is 

the weight given to each data point, the value of which depends on how far the point is 

from the fitted plane (in the previous iteration). A bisquare weighting function is 

employed to assign the weights when the least squares residual ( ir ) is less than a certain 

threshold and is defined as  

2 2(1 ( ) )i iw r= −  (5.2) 

where ( )i i ir z X α= − . For points farther than the threshold, its weight is set to zero. Once 

the plane approximating the region around the center of the palm is computed, it is 

straightforward task to compute its normal vector, which gives an estimation of the 

orientation of the hand in 3D space (refer to figure 5.4). Here we make an assumption 

that the human hand is a rigid plane, which may not always be true, especially in the case 

of inherent bend or skin deformations. Nevertheless, the IRLS approach employed here is 

robust and is less influenced by the outliers in the data, which in our case arise from the 

bend or the deformations of the hand.   

Let 3DH  be a 3 × n  matrix representing the point cloud data of the acquired 3D hand  
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where ,x y and z are the three coordinates of the data points. Given this point 

cloud data and its orientation (in terms of the normal vector to the plane and represented 

by n [ , , ]x y zn n n= ), the pose corrected point cloud '
3DH  is given by  

 '
3 3D DH R H=   (5.4) 

where R  is the transformation matrix and can be expressed as follows 
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where arctan( / )x y xn nθ = − and arctan( / )y x zn nθ = are the rotation angles about x  and y  

axis respectively. The rotation matrix R is also used to correct the pose of the intensity 

image of the hand. For this purpose, the original data can be represented as  
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where ,x y are the two coordinates and 1 2, ,..., nI I I are the intensity values corresponding 

to the hand in the acquired intensity image. The pose corrected data is given by 

 '
2 2 D DH R H=   (5.7) 

The pose corrected 3D and 2D data are a set of three dimensional points (point cloud) 

and need to be converted to range and intensity images respectively for further 

processing. This is achieved by re-sampling the pose corrected data on a uniform grid on 

the x y− plane. In our experiments, the grid spacing (resolution) is set to 0.45 mm , as the 

x  and y  axes resolution of the originally scanned data is found to be around this value. 

The process of pose correction and re-sampling introduces several holes in the pose 

corrected range and intensity images.  This is due to some regions, which are originally 
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not visible or occluded to the scanner, getting exposed after pose correction. Therefore, 

besides re-sampling, the post processing after pose correction involves hole filling using 

bicubic interpolation. Figure 5.5 shows the shaded view of a sample 3D hand and the 

corresponding pose normalized point cloud.  

 

Figure 5.4: Estimation of orientation of the hand. (a) Circular region of interest extracted 
from the region around the center of the palm. (b) The fitted 3D plane and the 
corresponding normal vector. (c) Rendered view of the 3D hand with the normal vector 
indicating its orientation.  
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Figure 5.5: (a) Shaded view of sample 3D hand point clouds before and (b) after pose 
correction. 

 

Figure 5.6 shows sample intensity hand images with varying pose in our database. 

The corresponding pose corrected and re-sampled images and the pose corrected images 

after hole filling are also shown in figure 5.6. As can be seen in figure 5.6(a), the hand in 

the third sample (refer to third row in figure 5.6) has a high degree of rotation about the 

x - axis. The pose correction on this image leads to large number of holes in the 

resampled image, and loss of significant information, especially around the finger edges. 

It should be noted that the 3D and 2D hands shown in figure 5.5(b) and 5.6(c) have not 

been corrected for their pose variations about the z - axis, since this process is a part of 

our subsequent feature extraction method.  
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Figure 5.6: (a) Sample intensity images with varying pose in the database. (b) The 
corresponding pose corrected and resampled images. (c) Pose corrected images after hole 
filling.  
 

5.3 Hand Feature Extraction 
 
The pose corrected range and intensity images are processed to locate regions of interest 

(ROI) for hand geometry and palmprint feature extraction. The detailed description of 

this method, which is based on the detection of inter finger points, can be found in 

Chapter 4. It may be noted that the inter finger points can be reliably located as there can 

be no overlap between fingers in the pose corrected hand images.  The regions of interest 

extracted from the range and intensity images undergo further processing in order to 

extract discriminatory palmprint and hand geometry features. Details of the feature 
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extraction and matching methods (for hand geometry as well as palmprint) are provided 

in Chapter 4. 

5.4 Dynamic Fusion  
 
Weighted sum rule based fusion is widely employed in the Multibiometrics to combine 

individual match scores.  The major drawback of such a fusion framework is that poor 

quality samples can have adverse influence on the consolidated score since fixed weights 

are given for all samples. In order to overcome this problem, researchers have come up 

with fusion approaches that can dynamically weight a match score based on the quality of 

the corresponding modality [68]. However, accurately computing the quality of a 

biometric feature can be very challenging. Therefore we develop a simple but efficient 

approach for combining palmprint and hand geometry scores that are simultaneously 

extracted from the pose corrected range and intensity images. For every probe hand, the 

orientation information estimated in the pose normalization step is utilized to selectively 

combine palmprint and hand geometry features. The motivation for such an approach 

arises from our observation that pose correction leads to loss of information around the 

finger edges and therefore results in incomplete (partial) region of interest for finger 

geometry feature extraction. The loss of crucial information in fingers is prominent when 

the hand is rotated about x - axis.  The process of matching finger/hand geometry 

features extracted from the pose corrected images generates poor match scores for such 

cases. We found from our observation that in such cases it is judicious to ignore the hand 

geometry information and rely only on the palmprint match scores to make a more 

effective decision. 
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Figure 5.7: Block diagram of the hand identification approach with dynamic framework 
for combination of palmprint and hand geometry match scores. 
 

The proposed dynamic combination approach attempts to identify and ignore 

those poor hand geometry match scores using the estimated orientation of the hand. The 

expression for consolidated score can be given as 
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where 2 3,DPalm DPalms s and 3DHGs are the matching scores from 2D palmprint, 3D palmprint 

and 3D hand geometry matchers respectively. xθ is the estimated angle of rotation of the 

hand about x  axis; t+ and t− are the two thresholds for clockwise and counter-clockwise 

rotation respectively. The weights 1w , 2w  and 3w  are empirically set to 0.4, 0.4 and 0.2 

respectively. Figure 5.7 shows the block diagram of the proposed pose invariant hand 

identification approach with dynamic fusion framework.  
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5.5 Experimental Results  
 
5.5.1 Dataset Description 
 
Since there is no publicly available 3D hand database where hand images are acquired in 

a contact-free manner, we developed our own database using a commercially available 

3D digitizer [81]. The image acquisition system employed in this work is the same as the 

one described in Chapter 4. Participants in the data collection process conducted at our 

institute included mainly students who volunteered to give their biometric data. The 

database contains 1140 right hand images (2D and 3D) acquired from 114 subjects. In 

order to introduce considerable pose variations in the database, subjects were instructed 

to present their hand in five different poses (refer to figure 5.8). Specifically, for every 

user, five images are acquired in the following scenario: 

1. Pose I: Frontal pose where hand is held approximately parallel to the image plane. 

2. Pose II: Hand is rotated in the clockwise direction about x - axis 

3. Pose III: Hand is rotated in the counter-clockwise direction about x - axis 

4. Pose IV: Hand is rotated in the clockwise direction about y - axis 

5. Pose V: Hand is rotated in the counter-clockwise direction about y - axis 

The amount of out-of-plane rotation (in Pose II through V) is normally not restricted 

and is left to the user’s discretion. Users are given the freedom to pose at any angle as 

long as the hand is inside the imaging volume of the scanner and there is no significant 

overlap of fingers in the acquired images that would make it impossible to locate and 

separate fingers before pose correction. This is done in order to perform experiments and 

evaluate the performance prior to pose normalization. Table 5.1 provides the absolute 
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mean and standard deviation of angles of rotation for each of the five poses in the 

database. It should be noted that the figures provided in this table are not accurate 

measurements (since the ground truth is not available), but are the angles of rotation 

estimated using the proposed approach. Nevertheless, the table gives an idea about the 

amount of pose variations present in our database. It can be observed that, the mean of 

angles about y - axis (Pose IV and V) is much lower compared to the case when the hand 

is rotated about the x - axis (Pose II and III).  This is due to the limitation posed by the 

scanner’s imaging volume. During image acquisition, we observed that a user’s hand 

cannot be scanned completely for larger angles of rotation around y - axis and therefore 

we restricted the angle of rotation to ensure that the hand is held well inside the imaging 

volume. We also observed that the users are more comfortable while rotating their hand 

about the x - axis. This might be the reason for higher angles of rotation about x - axis 

(refer to Pose IV and V in Table 5.1), when user were only instructed to rotate their hand 

about y - axis.  

Table 5.1: Statistics of the 3D hand database. 
Angle of rotation about x - 

axis 
(in degree) 

Angle of rotation about y -
axis 

(in degree) 

Pose 

Mean Std Mean Std 
Pose I 6.48  4.51 5.01  3.67 
Pose II 28.91  8.93 8.16  5.42 
Pose III 25.99  8.88  5.42  4.798 
Pose IV 13.71  8.05 15.17  10.93 
Pose V 8.81  7.67 18.50  8.08 
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Figure 5.8: Textured 3D hands showing five different hand poses (Pose I through V) for 
two users (column-wise) in the database. 
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5.5.2 Verification Experiments 
 
 
In order to ascertain the usefulness of the proposed pose correction and dynamic fusion 

approaches, we performed verification experiments on the acquired database. In the first 

set of experiments, we evaluate the performance improvement that can be achieved by 

employing the pose correction approach for the individual hand features. In the second 

set, experiments are performed to evaluate and compare the performance of the dynamic 

approach and weighted sum rule based fusion for hand features that are extracted from 

the pose corrected intensity and range images.  All experiments reported in this chapter 

follow leave-one-out strategy. In other words, in order to generate genuine match scores, 

a sample is matched to all the remaining samples of the user (considering them as 

training data) and the best match score is considered as the final score. This process is 

repeated for all the five samples of the user.  Therefore the number of genuine and 

impostor matching scores in the experiments are 570 and 32,205 respectively. Figure 

5.9(a) shows the match score distribution for 2D palmprint features extracted directly 

from the acquired intensity images. It can be observed that there is a large overlap of 

genuine and impostor match scores due to the considerable variations in pose present in 

the database. Genuine and impostor score distribution for 2D palmprint features extracted 

from pose corrected intensity images is shown figure 5.9(b). It is quite clear from this 

figure that the process of pose normalization has greatly reduced the overlap of genuine 

and impostor match scores.  Further, in order to ascertain this performance improvement, 

we computed FAR and FRR from the matching scores for the above two cases.  The 

corresponding ROC curves are shown in figure 5.10. The consistent improvement in 
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performance (with pose correction) seen in this figure demonstrates the usefulness of the 

pose normalization   approach for 2D palmprint features. We also performed experiments 

to investigate whether similar performance improvement can be achieved for 3D 

palmprint features. Match score distribution and ROC curves for 3D palmprint matcher 

with and without pose correction are shown figure 5.11 and figure 5.12 respectively. Two 

dimensional matching score distribution for 2D and 3D palmprint matchers shown in 

figure 5.13 shows significant reduction in overlap of genuine and impostor scores after 

pose correction. This indicates that a simple linear classifier such as weighted sum rule 

can be used to combine these matching scores.  In the case of hand geometry features, 3D 

features perform slightly better than 2D features. (refer to ROC curves in figure 5.14(a) 

and 5.14(b)). Table 5.2 provides a summary of this set of experiments with EER as the 

performance index.  

(a) (b) 
Figure 5.9:  (a) Genuine – Impostor score distribution for 2D palmprint matching before 
and (b) after  pose correction. 
 

Finally, we evaluate the performance from the combination of palmprint and hand 

geometry features using weighted sum rule and the proposed dynamic fusion approach. 
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As shown figure 5.15, the dynamic approach consistently outperforms the simple 

combination of match scores using the sum rule. Table 5.3 provides equal error rates 

from our experiments on combination of palmprint and hand geometry match scores.    

 
 

 
Figure 5.10: ROC curves for the 2D palmprint matching before and after pose 
correction. 

 

(a) (b) 
Figure 5.11:  (a) Genuine – Impostor score distribution for 3D palmprint matching 
before and (b) after pose correction. 
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(a) 

 
(b) 

Figure 5.13: (a) Two dimensional score distribution for 2D and 3D palmprint matchers 
before and (b) after pose correction. 

Figure 5.12: ROC curves for the 3D palmprint matching before and after pose correction. 
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(a) 

 
(b) 

Figure 5.14: (a) ROC curves for the 3D hand/finger geometry and (b) 2D hand geometry 
matching before and after pose correction. 

 
Figure 5.15: ROC curves for the combination of 2D, 3D palmprint and 3D hand 
geometry matching scores using weighted sum rule and the proposed dynamic approach. 
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Table 5.2:  Equal error rates of palmprint and hand geometry matchers before and after 

pose correction. 
Matcher EER (%) 

(Without Pose Correction) 
EER (%) 

(Pose Corrected) 
2D Palmprint 11.80 1.10 
3D Palmprint 16.32 1.61 

3D Hand Geometry 40.9 17.2 
2D Hand Geometry 28.69 22.15 

 
 
 
Table 5.3:  Equal error rates for combination of palmprint and hand geometry features. 

Matcher EER (%) 
 

(2D+3D) Palmprint 0.72 
(2D+3D) Palmprint + 3D 

Hand Geometry 
0.71 

Dynamic Fusion 0.28 

 
 

5.6 Discussion 
 
The experimental results presented in this previous section assume significance in the 

context of contact-free hand identification as it has been demonstrated that reliable 

identification can be performed even in the presence of significant pose variations. Most 

of the previous studies on unconstrained and contact-free hand identification do not deal 

with pose variations of the user hand. Instead these approaches implicitly make an 

assumption that the user is cooperative enough to acquire the frontal view of his/her 

hand. However in practice such approaches may require supervision in order to ensure 

that frontal views of the hand are acquired, especially for users who are not trained to use 
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the system.  More recently, researchers have developed pose invariant hand identification 

approaches that yield promising performance even when the hand images are acquired 

under large pose variations. However, these approaches are based on multiple land mark 

points located on the hand and therefore their performance largely relies on the accuracy 

of feature point detection.  The approach presented in this chapter exploits the acquired 

3D hand data to estimate the pose of the user’s hand. The advantage of the 3D data is that 

the orientation of the hand can be robustly estimated using a single point detected on the 

palm. In addition, discriminatory 3D features extracted from the pose corrected range 

images help to improve the performance of the system when used in combination with 

2D hand features.  

 Experimental results from our investigation on individual hand features indicated 

that the palmprint features (2D as well as 3D) are more suitable to be utilized, especially 

when the degree of rotation of the hand is considerably high. This is mainly because the 

palmprint features are less affected by occlusion. In other words, the major part of the 

palmprint region is visible to the scanner (even at higher angles of rotation) and therefore 

the complete palmprint can be extracted from the pose corrected range images. On the 

other hand, performance of the hand geometry features has been disappointing. Although 

there is significant improvement in performance with the proposed pose normalization 

approach, the hand (finger) geometry features suffer from loss of crucial information due 

to occlusion around the finger edges. The occlusion is noticeably severe when the hand is 

rotated about the x - axis as major part of finger around its edges is not visible to the 

scanner, resulting in significant loss of information during pose correction. Therefore 

only a partial region of interest for fingers can be recovered from the pose corrected 
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intensity and range images. Moreover, the assumption that the palm and fingers lie on a 

plane (coplanar) does not strictly hold good in most cases due to finger movement and 

bending. This also might have played a role in the poor performance of the hand 

geometry features.     

The experimental results also show that 3D hand geometry features performed 

slightly better than 2D features. This is because the computation of matching distance for 

3D finger features involves a sliding approach that performs multiple matches between 

the cross sectional finger features. This approach can effectively handle the partial 

matching of fingers to certain extent. On the other hand, two dimensional finger width 

features extracted from the pose corrected intensity images suffer the most when only 

partial finger is available for matching.  

Figure 5.15 shows the ROC curves for combination of palmprint and hand 

geometry features. As can be observed from this figure, a simple weighted combination 

of palmprint (2D as well as 3D) and 3D hand/finger geometry fails to achieve the desired 

results. In fact, the combination achieves only marginal improvement in EER (refer to 

Table 5.3) over the case when only 2D and 3D palmprint matching scores are combined. 

On the other hand, the new dynamic combination approach achieves a relative 

performance improvement of about 60 percent in terms of EER over the case when 

features are combined using weighted sum rule. As discussed earlier, the dynamic fusion 

approach can lessen the influence of the poor hand geometry match scores on the 

consolidated match score and thereby it helps to improve the verification accuracy. 
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5.7 Summary 
 

In this chapter, a fully automatic hand identification approach that can reliably 

authenticate individuals even in the presence of significant hand pose variations (in 3D 

space) is presented. The orientation (or the 3D pose) of the hand is estimated based on the 

acquired 3D hand.  The 3D orientation information is then used to correct pose of the 

acquired 3D as well as 2D hand. The Pose corrected intensity and range images of the 

hand are further processed for extraction of multimodal (2D and 3D) palmprint and hand 

geometry features. The major advantage of using 3D hand data is that the pose of the 

hand can be robustly estimated using only a single point (approximate palm center), 

unlike the existing approaches for 2D hand [54],[30] that require detection of multiple 

landmark points on the hand.  

A novel dynamic approach to efficiently combine these simultaneously extracted 

hand features has also been presented. This approach selectively combines palmprint and 

hand geometry features, while ignoring some of the poor hand geometry matching scores 

resulting from high degree of rotation of the user’s hand, especially about the x - axis. 

The motivation behind such an approach emerges from the observation (with the pose 

corrected hand data) that there is significant loss of hand/finger geometry information 

whenever the degree of rotation of the hand is considerably high. Therefore in such cases 

it is judicious to ignore hand geometry information and rely only on the palmprint match 

scores to make a more effective decision. The experimental results demonstrate that an 

explicit pose normalization step prior to matching significantly improves identification 

accuracy. It has also been shown that the dynamic approach to combining palmprint and 
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hand geometry matching scores consistently outperforms their straightforward fusion 

using weighted sum rule.  
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Chapter 6                                   
Adaptive Framework for Score Level 
Fusion 
 

Earlier chapters in this thesis introduced methods for personal identification using 3D 

hand scans. Matching scores from multiple features, namely, 3D palmprint, 3D hand 

geometry, 2D palmprint and 2D hand geometry are consolidated prior to decision 

making. The combination approach employed a single fusion rule (i.e., weighted sum 

rule) and a fixed set of parameters. The weight parameters of the fusion rule are selected 

based on the performance on a training dataset with EER as the performance measure. 

Although this score combination approach is simple, the resulting multibiometric system 

operates at a fixed operating point offering a fixed performance. In other words, the 

performance of such a system cannot be made adaptive to the varying security level 

requirement.  This chapter addresses the problem of combining multiple matching scores 

that are generated based on the matching techniques (for hand features) described in 

previous chapters and presents a fusion framework that is adaptive to the security level 

requirement. 

Most of the multimodal biometric systems employ a single fixed fusion rule to 

achieve the desired performance. The parameters of the fusion rule employed are tuned to 

provide the desired performance for a fixed security level. Therefore the performance of 

these systems is not adaptive to the security level requirement. However, there are 

applications where a biometric system with multiple levels of security is desirable. Figure 
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6.1 shows the Receiver Operating Characteristics (ROC) of a biometric system. The 

highlighted points on the curve indicate the desired operating points for different 

applications. There are also times when security levels of a biometric system should be 

set depending on the perceived threat.   

 

Figure 6.1: ROC curve for a typical biometric system. 
 

This chapter presents a framework for adaptive combination of match scores from 

multiple biometric systems. The matching scores from individual matchers are combined 

at the score level, which is expected to result in better performance than the decision level 

fusion approach. Four different score level fusion rules have been considered in this 

work. However, any number of new combination rules can be added to the proposed 

framework. A Particle Swarm Optimizer is employed to select the optimal fusion rule and 

the optimal decision threshold that minimizes a weighted error rate objective function. 

The experiments are performed on a set of simulated matching scores in order to 
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ascertain the usefulness of the proposed approach. Further, the proposed system is 

evaluated on the real biometric database of 3D hand scans. 2D palmprint, 3D palmprint 

and 3D hand geometry matching scores are generated based on the feature extraction and 

matching approaches described in the chapters 3 and 4. Experimental results on these two 

datasets demonstrate that the proposed method based on fusion at the score level 

consistently outperforms a similar approach based on the decision level fusion of 

individual biometric systems. 

 

6.1 Background 
 

Biometrics has emerged as the best access control solution for applications where 

resources or information need to be protected from unauthorized access.  Biometric traits 

such as fingerprint, face, palmprint, iris and hand-geometry have been well explored and 

matured approaches are available in order to perform personal identification. Yet, 

biometric systems that employ single biometric trait (unimodal biometric systems) suffer 

from inherent short comings such as limited discriminability, intra-class variations and 

vulnerability to spoof attacks.  A multimodal biometric system, on the other hand, 

provides enhanced security and has been shown to overcome some of these limitations. 

Although the multibiometrics has been extensively studied in the literature 

[20],[37],[47],[64],[110] there has been little work directed towards developing 

multimodal systems that can adapt to the varying security requirements.   

As indicated earlier, the design of reliable multimodal fusion algorithms that are 

adaptive to the variable security requirement and the traffic flow has received little 
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attention in the literature. The significance of an adaptive multibiometric system can be 

visualized in the following scenario: Consider a multimodal biometric system deployed 

to control access to a room. At any given point of time, based on the perceived threat, the 

proposed system tunes its parameters to achieve the desired performance. For example, if 

low security level is desired, the proposed system minimizes false rejection and thereby 

minimizing inconvenience caused to the users. This also helps to increase the traffic flow 

rate in to the room, by reducing the number of attempts required by genuine users to get 

authenticated. On the other hand, if high level of security is desired, the system can be 

made to tune its parameters to achieve it. This parameter setting can also be used when a 

decreased traffic flow is required. The scenario described above only considers two 

extreme levels of security. An adaptive system, however, should be able to provide 

multiple levels of security between the two extremes.  

The BioID system developed by Frischholz et al. [100] offers multiple security 

levels by employing different decision strategies on the biometric modalities (face, lip 

motion and voice) being fused. When the required security level is low, it may well be 

enough to make a decision based on the agreement of two out of three modalities. On the 

other hand, for high security applications, this system demands agreement of all the three 

modalities. However, BioID system does not provide a systematic way to vary the level 

of security. Instead, a system administrator makes a decision on the decision strategies to 

be adopted to achieve the desired performance. On the other hand, the adaptive 

multimodal biometric management algorithm (AMBM) proposed by Veeramachaneni et 

al. [69] employs a particle swarm optimizer to choose the optimal fusion rule and 

decision thresholds depending on the level of security required. AMBM considers all 
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possible fusion rules and selects the one that optimizes the system performance in terms 

of accuracy. However their approach combines multiple biometric decisions and 

therefore suffers from the inherent problems associated with any decision level fusion 

strategy. In addition, experimental results reported are based only on simulated 

distributions of match scores that follow Gaussian distribution.  

The adaptive fusion approach presented in this chapter employs a particle swarm 

optimizer to tune the system parameters by minimizing an objective function that reflects 

desired level of security (or level of perceived security threat). The following section 

provides a brief review of the particle swarm optimization algorithm.  

 

6.2 Particle Swarm Optimization 
 

Particle swarm optimization is an evolutionary search algorithm developed based on the 

social behavior of a flock of birds trying to fly to a favorable environment. The PSO is 

employed to find the solution for the adaptive selection of combination of individual 

points which are referred as the particles in multidimensional search space. Each particle 

(representing a bird the flock), characterized by its position and velocity, represents the 

possible solution in search space. Behavior of the particles in the PSO imitates the way in 

which birds communicate with each other, while flying. During this communication, each 

bird reviews its new position in the space with respect to the best position it has covered 

so far. The birds in the flock also identify the bird that has reached the best 

position/environment. Upon knowing this information, others in the flock update their 
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velocity (that depends on a bird’s local best position as well as the position of the best 

bird in the flock) and fly towards the best bird. The process of regular communication 

and updating the velocity repeats until the flock finds a favorable position.  In a similar 

manner, the particle in the PSO moves to a new position in multidimensional solution 

space depending upon the particle’s best position (also referred to as local best position) 

(pak) and global best position (pgk). The pak and pgk are updated after each iteration 

whenever a suitable, i.e. lower cost, solution is located by the particle. The velocity 

vector of each particle represents/determines the forthcoming motion details. The 

velocity update equation of particle a of the PSO, for instance (t +1), can be represented 

as follows [77]: 

 

( ) ( ))()()()()()1( 2211 txtrctxtrctvtv akgkakakakak −+−+=+ ρρω   (6.1) 

where ω is the inertia weight between 0-1 and provide a balance between global and local 

search abilities of the algorithm. The accelerator coefficients c1 and c2 are positive 

constants, and r1 and r2 are two random numbers in 0-1 range. The corresponding 

position vector is updated by 

)1()()1( ++=+ tvtxtx akakak   (6.2) 

The equation (6.1) indicates that the new velocity of a particle in each of its dimensions is 

dependent on the previous velocity and the distances from previously observed best 

solutions (positions of the particle).  

The particle swarm optimization approach detailed above operates on continuous 

space. However, there exists optimization problems where the particles are better 
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represented as discrete binary variables.  Such problems require that these binary 

particles be evolved to obtain an optimal solution. A binary version of the particle swarm 

optimization algorithm is also described in reference [95]. The position vector for each 

particle in binary PSO can have a value of either zero or one on each dimension. The 

formula for calculating the velocity update in binary PSO remains the same as real valued 

version, except that akρ , akx and gkρ  in equation (6.1) are binary valued. The velocity akv  

for binary PSO represents the probability of bit akx taking the value 1. A sigmoid function 

S is employed to limit the value of the probability akv  to the range [0, 1]. Therefore the 

position vector of a particle in binary PSO is updated as follows: 

⎩
⎨
⎧ +<

=+
Otherwise             0

))1((for                1
)1( 3 tvSr

tx ak
ak  

(6.3) 

where 
))1(exp(1

1))1((
+−+

=+
tv

tvS
ak

ak  and 3r is a random number in the interval [0, 1] 

with uniform distribution. 

 

6.3 Observations on the Adaptive Decision Level Fusion  
 
 
We observe that there are some discrepancies in the results reported in the paper [69] that 

originally presented an adaptive fusion approach for multimodal biometrics. Our 

experiments indicate that the authors have considered only a subset of all possible fusion 

rules, contradicting the statement that all possible rules have been considered. Moreover, 

the authors state that only monotonic rules can be optimal [91], and therefore all other 
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rules can be ignored. However, our experimental results examining all possible rules 

demonstrate that a non monotonic rule can also be an optimum fusion rule. 

In the paper [69], the authors propose an algorithm based on Particle Swarm 

Optimization (PSO) to optimally combine the individual biometric sensor decisions. The 

proposed algorithm selects the fusion rule and sensor operating points that minimize a 

given cost function. The cost function, formulated in terms of global false acceptance and 

rejection rates, is defined as: 

( ) (2 )( )
a d a dFA AR AR FA RR RRE C F F C F F= − + − −                              (6.4)                              

 where FAC  is the cost of falsely accepting an impostor. ( )
a aAR RRF F  and ( )

d dAR RRF F are the 

achieved and desired global false acceptance (rejection) rates. Enforcing the most 

stringent condition to achieve false acceptance rate of zero while ensuring zero false 

rejection ( 0 and 0
d dAR RRF F= = ), the cost function (Equation 6.4) reduces to: 

                                     ( ) (2 )( )
a aFA AR FA RRE C F C F= + −                                                 (6.5) 

An optimization problem, employing PSO is formulated to minimize the cost function 

given in equation (6.4). Each particle of PSO algorithm is defined as, 

       
1 2

{ , , }
m mm AR AR mX F F f=                                                         (6.6) 

where the first two dimensions are false acceptance rates of individual unimodal 

biometric systems and the last dimension is the four bit fusion rule. 

The authors in [69] claim that the proposed adaptive multimodal biometric algorithm 

(AMBM) comprehensively considers all fusion rules and all possible operating points of 

the individual sensors. However, we find that there are some discrepancies in the reported 

results. Our observations are summarized as follows: 
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1. The experimental results presented in [69] show that the AMBM algorithm 

considers only the monotonic rules. The results are quite contradictory to the 

claims in [69], i.e., ‘algorithm considers all fusion rules’.  

2. We find that some of the non monotonic rules perform as good as monotonic rules 

and therefore these rules cannot be ignored by the algorithm. 

 
Figure 6.2: Score distribution for sensor 1. 

 

6.3.1 Experimental Results 
 

We carried out the experiments under the same conditions, using the same parameter 

values and data reported in the paper [69]. Figure 6.2 and figure 6.3 show the genuine 

and impostor score distributions for individual biometric systems. These distributions are 

assumed to be Gaussian, with parameters described in the paper ([69], pp. 352, Table VI). 

For every cost of false acceptance ( FAC ) from 0 to 2, in steps of 0.1, the AMBM 

algorithm is run 100 times to select an optimal operating point and a fusion rule. 
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Figure 6.3: Score distribution for sensor 2. 

 
Figure 6.4: Probability of selection of fusion rules versus the cost of false acceptance. 

 

Figure 6.4 shows the number of times a rule has been actually selected versus the 

cost of false acceptance. It can be observed from Figure 6.4 that in the range of FAC from 

0 to 1.2, the five different rules, namely f8, f6, f14, f2 and f10 are selected. However, rules 
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f10 and f14 have never been selected in the reported experimental results in ([69], pp. 354, 

Figure 14). This is unlikely as the rules f6, f14 and f10 are equally good and can give the 

same minimum cost for a particular set of operating points. This is illustrated below: 

For rule f6: 

global 
2AR ARF F= , and global 

2RR RRF F=  

For rule f14: 

global 
1 2

1 (1 )AR AR ARF F F= − − , and global 
2 1
(1 )RR RR RRF F F= −  

For rule f10: 

global 
1 2 1 2

(1 )(1 )AR AR AR AR ARF F F F F= − − + , and global 
2 1 1 2
(1 ) (1 )RR RR RR RR RRF F F F F= − + −  

Therefore, when 
1

1ARF = and
1

0RRF = , rules f14 and f10 result in global error rates 

2AR ARF F=  ,
2RR RRF F= and as a result, all of the above rules give the same cost under 

these operating conditions. 

In addition, the results reported in [69] show that rules f6 and f8 are the optimal solutions 

when FAC is 0. Under these conditions, for rules f6 and f8 to selected, the individual 

biometric systems must be operating at 
2 2

1, 0AR RRF F= =  and 

1 2 1 2
( or ) 1,  ( or ) 0AR AR RR RRF F F F= =  respectively. However, we find through the 

experiments that, for 0FAC = , rules f6 and f8 are not the only optimal solutions and there 

are a number of other rules (including non monotonic ones) that result in the same 

minimum PSO cost and therefore they should have appeared in the results reported by the 

authors. Optimal rules selected (for 0FAC = ) in our experiments are summarized in Table 

6.1. 
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Table 6.1: Selection of optimal rules for 0FAC = . 
Rule Monotonic/Non 

monotonic 
Global FRR 

 ( )RRF  
Operating Point Cost(Eq.1) at 

operating 
point 

Number 
of times 
selected 

f2 Monotonic 
1 2 1 2
+ - RR RR RR RRF F F F  

1 2
, 0RR RRF F =  0 2 

f4 Monotonic 
1

 RRF  
1

0RRF =  0 12 

f6 Monotonic 
2

 RRF  
2

0RRF =  0 8 

f8 Monotonic 
1 2

 RR RRF F  
1 2
( or ) 0RR RRF F =

 

0 13 

f10 Non monotonic 
1 2 1 2
+ - 2RR RR RR RRF F F F  

1 2
, 0RR RRF F =  0 1 

f12 Non monotonic 
1 2 (1 )RR RRF F−  

1
0RRF =  0 12 

f14 Non monotonic 
2 1

 (1 )RR RRF F−  
2

0RRF =  0 10 

f16 Monotonic 0 NA 0 43 
 
Similarly, for 2FAC = , we obtain a number of optimal rules satisfying the performance 

criteria, where as there is only one rule, f1 appearing in the authors’ results.  These rules are 

summarized in Table 6.2. 

Table 6.2: Selection of optimal rules for 2FAC = . 
Rule Monotonic/Non 

monotonic 
Global FAR 

( )ARF  
Operating  

Point 
Cost(Eq.1) at 

operating 
point 

Number 
of times 
selected 

f1 Monotonic 0 NA 0 49 
f3 Non monotonic 

1 2
(1 )AR ARF F−  

2
1ARF =  0 11 

f5 Non monotonic 
2 1
(1 )AR ARF F−  

1
1ARF =  0 9 

f7 Non monotonic 
1 2 1 2

2AR AR AR ARF F F F+ −  
1 2
, 1AR ARF F =  0 2 

f9 Non monotonic 
1 2 1 2

1 AR AR AR ARF F F F− − +
 

1 2
( or ) 1AR ARF F =  0 13 

f11 Non monotonic 
2

1 ARF−  
2

1ARF =  0 5 

f13 Non monotonic 
1

1 ARF−  
1

1ARF =  0 6 

f15 Non monotonic 
1 2

1 AR ARF F−  
1 2
, 1AR ARF F =  0 5 

 

While selection of all the rules in Table 6.1 and Table 6.2 cannot be guaranteed 

(especially the ones with very low number of selections, due to stringent conditions on 
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operating points) on repeated runs of the simulation, complete absence of these rules as in 

[69] cannot be justified. Most of them did appear consistently in our experiments. 

 

6.4 Score Level Adaptive Fusion 
 
The block diagram in figure 6.5 shows the framework for combining match scores from 

multiple biometric traits. In this work, we considered four score level combinations, 

namely, weighted sum or average, product, exponential and tan-hyperbolic rules. In fact 

any number of score level combination rules can be incorporated by expanding the 

proposed framework.  

 

Figure 6.5: Block diagram of the proposed adaptive multimodal system based on score 
level fusion. 
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The consolidated match score S  from each of these combinations is computed as 

follows: 

 Sum rule: 
1

m

j j
j

S s w
=

=∑                                                                                     (6.7) 

Product rule: 
1

j
m

w
j

j

S s
=

=∏                                                                                   (6.8) 

Exponential rule: 
1

exp( )
m

j j
j

S s w
=

= ∑                                                                  (6.9) 

Tan Hyperbolic rule: 
1
tanh( )

m

j j
j

S s w
=

=∑                                                          (6.10) 

 

The Particle Swarm Optimizer (PSO) dynamically selects the optimum fusion rule and 

weight parameters to minimize the following weighted error rate (WER) function:  

( , ) ( ) (1 ) ( )WER FAR FRRα λ α λ α λ= + −   (6.11)

where the parameter [0,1]α ∈  offers the balance between FAR and FRR and determines 

the desired level of security. The parameter λ represents the decision threshold and an 

optimal value for this parameter is selected by the PSO. Therefore PSO selects optimal 

fusion rule, weight parameters and decision threshold for a fixed value of inputα . The 

value of α is input to the system depending on the level of security desired. The 

homeland security advisory [33] system represents a typical example of the qualitative 

assessment of the adaptive security requirement. Depending on the perceived threat or 

risk of attack, this system recommends citizens a set of appropriate actions. In a similar 

way, the risk of attack on a biometric system can be varying and therefore it is critical for 

it to provide multiple levels of security. By varying the parameterα , different levels of 
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security can be achieved for the proposed multimodal biometric system. The higher the 

value of α , the higher the cost of false acceptance in equation (6.11), and therefore PSO 

selects suitable operating points to achieve a low rate of false acceptance (FAR). The four 

fusion rules in equations (6.7) through (6.10) and the corresponding parameters are 

optimally chosen by the particle swarm optimizer. In our implementation for combining 3 

biometric sensors, each particle of the PSO is characterized by four continuous variables; 

the parameters of score level fusion rule 1w , 2w , 3w  and the decision threshold thr and a 

two bit discrete binary variable representing four different score level fusion rules. 

Therefore we employ a hybrid PSO with real valued and binary versions of the algorithm 

to determine the optimal fusion strategy and the corresponding fusion parameters.  The 

search process in PSO is initialized with a number of particles at random positions in the 

search space. Each particle is characterized by its position and velocity. Position, 

represented by ( )akx t , is the multidimensional vector (6 dimensions, as described above) 

and the velocity ( ( )akv t ) determines the direction and speed with which a particles moves 

from one position to another in the search space. At each iteration, the position and 

velocity vector of particles are updated (according to the equations (6.1) through (6.3)) in 

a way that drives the particles to converge at the global minima of the objective function 

given in equation (6.11). 
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6.4.1 Experimental Results  
 

6.4.1.1 Synthetic Dataset 
 

The proposed adaptive score level fusion approach is rigorously evaluated using synthetic 

as well as real biometric matching scores. The distribution of matching scores from 

biometric traits such as iris [60] has been shown to closely follow binomial distribution 

and the Poisson distribution can be considered as an approximation to the binomial 

distribution when the number of trials is large. Therefore, in our experiments, synthetic 

matching scores corresponding to genuine and impostor matches for two modalities are 

generated using the Poisson distribution. Figure 6.6 shows the distribution of these 

synthetically generated matching scores. There are 1000 genuine and 100,000 impostor 

scores for each of the two biometric modalities. Since the particle swarm optimizer finds 

multiple optimal operating points (generating varying results in each run), we ran the 

algorithm 100 times for every value of α from 0 to 1, insteps of 0.1 and the experimental 

results are presented in terms of average and standard deviation of the minimum cost 

achieved over the 100 runs. Figure 6.7(a) shows the average of the minimum WER 

achieved by the proposed adaptive score level approach and the one presented in [69]. It 

can be observed from this figure that the proposed approach consistently outperforms 

(with significantly lower WER) the AMBM algorithm for the complete range of the 

security levelα (0 through 1). In order to get an idea of how much the values of minimum 

WER vary (over 100 runs of the algorithms, for a fixedα ), we examined the standard 

deviation of minimum WER achieved. Figure 6.7(b) shows the comparative plot for the 

two algorithms. The lower values of standard deviation for the proposed algorithm 
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clearly suggests that every run of the algorithm achieved almost the same minimum 

WER, where as AMBM algorithm, though converged to a minimum on every run, 

exhibits higher instability and does not achieve the same (or nearly the same) minimum 

value for WER. 

 

(a) 

                                               (c) 
 

(b) 

             (d) 
 

Figure 6.6: (a)-(b) Genuine-Impostor match score distributions that follow Poisson 
distribution for two modalities. (c)-(d) Adaptive selection of fusion rules for score and 
decision level approaches. 
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                                               (a)                                                (b) 
Figure 6.7: Performance curves for combination of synthetic matching scores. 
Comparative plots of (a) average and (b) standard deviation of minimum cost for 
adaptive score and decision level combinations. 
 
 

6.4.1.2 3D Hand Dataset 
 
In order to further ascertain the superior performance of the proposed algorithm, we 

performed two sets of experiments using the real biometric matching scores. In the first 

set of experiments, 3D Palmprint database is employed to generate the genuine and 

impostor matching scores for the 2D and 3D palmprint matchers. Details of the database 

and the matching algorithms are provided in Chapter 3. The database consists of 6 

palmprint (2D as well as 3D) images for each of the 108 users, resulting in a total of 648 

images for 2D and 3D palmprint. Exhaustive matching results in 1,620 genuine and 

208,008 impostors matching scores for each of the two modalities. Figure 6.8(a) and 

6.8(b) show the score distributions for 2D and 3D palmprint matchers. 
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(a) 

                                               (c) 

(b) 

             (d) 
 
Figure 6.8: Genuine-Impostor match score distributions for (a) 2D palmprint and (b) 3D 
palmprint matchers. Adaptive selection of fusion rules for (c) score level and (d) decision 
level approaches. 
 

 

The performance curves from the adaptive combination of 3D and 2D palmprint 

biometrics is shown in figure 6.9 (a)-(b), while the adaptive selection of rules is shown in 

figure 6.8 (c)-(d). It can be observed from the figure 6.9 that the performance from the 

score level adaptive combination is significantly better as compared to the decision level 

combination, both in terms of the minimum and the standard deviation of the error (cost).   
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                                               (a)                                                (b) 
Figure 6.9: Performance curves for adaptive combination of two palmprint matchers. 
Comparative plots of (a) average and (b) standard deviation of minimum cost for the 
adaptive score and decision level combinations. 
 
 
 

In the second set of experiments on the real biometric samples, we combine three 

biometric modalities. The 3D hand database is employed to generate the genuine and 

impostor matching scores for the 2D palmprint, 3D palmprint and 3D hand geometry 

matchers. Figures 6.10(a), 6.10(b) and 6.10(c) depict the distributions of matching scores 

for the three modalities considered in this work. Adaptive selection of fusion rules for 

score level as well as decision level is shown figures 6.11(a) and 6.11(b), while the 

comparative plots for performance in terms of the average and the standard deviation of 

the minimum error is shown in figures 6.11(c) and 6.11(d) respectively. These results 

once again confirm the superiority of the adaptive score level approach over the decision 

level approach. The extremely low values of the standard deviation (nearly zero for all 

values of the security level α  ) suggests that the adaptive score level approach is highly 

stable and converges to the true optimal operating point on every run of the algorithm. 

Therefore the proposed approach requires significantly less number of runs to select the 



155 

 

optimal fusion rule and the corresponding parameters as compared to the decision level 

approach, which is highly instable and results in varying optimal operating pints on each 

run of the algorithm (refer to figure 6.11(d).  

 

(a) (b) 

   
(c) 

Figure 6.10: Genuine-Impostor match score distributions for (a) 2D palmprint, (b) 3D 
palmprint and (c) 3D hand geometry matchers.  
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(a) 

                                               (c) 

             (b) 

                                               (d) 
Figure 6.11: Adaptive selection of fusion rules and performance curves for combination 
three biometric matchers. (a)-(b) Adaptive selection of fusion rules for score and decision 
level approaches.(c)-(d) Comparative plots of average and standard deviation of 
minimum cost for adaptive score and decision level combinations. 
 
 
6.4.2 Discussion 
 

 

The experimental results presented in the previous section clearly demonstrate that the 

proposed adaptive approach to score level fusion consistently outperforms the decision 

level approach presented in [69]. The proposed approach not only yields lower error 
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rates, but also exhibits significantly lower variation in minimum cost achieved (low 

standard deviation) over 100 runs of the algorithm. This experimental finding assumes 

significance in the context of adaptive multimodal fusion as it provides more stable 

solutions than the decision level approach proposed in [69]. 

The major drawback of the technique presented in [69] is the large standard 

deviation of the minimum cost. The variation of minimum cost (achieved by the PSO) 

over 100 runs arises due to the fact that  not all solutions given by the PSO are truly 

optimal, instead some are suboptimal solutions with a minimum cost very close to the 

global (true) minimum cost. Since the number of fusion rules in a decision level fusion 

framework is extremely high ( 22
N

 rules for fusion of N modalities), the search space for 

potential optimal solutions becomes very large. This results in increased possibility of 

PSO converging to sub optimal solutions and thus causing higher standard deviation of 

minimum cost achieved. This is clear from the experimental results presented in [69] 

where authors run their PSO algorithm 100 times and then choose the solution (as 

optimal) that appears the most number of times. Extensive experimental results presented 

in this chapter on real as well synthetic matching scores clearly indicate that the PSO 

formulization in the proposed method generates fairly stable solutions, as compared to 

the decision level approach in [69]. Unlike the decision level fusion, number of rules in 

the proposed fusion framework does not depend on the number of modalities and is quite 

limited (4 rules considered in this work).  This explains why the PSO in the proposed 

framework exhibits less variation in the minimum cost achieved. Therefore the proposed 

approach requires significantly lower number of iterations to choose an optimal solution.  
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Observing the experimental results, we believe that the formulation of 

optimization problem using hybrid PSO and the score level fusion rules have contributed 

to the superior performance of the proposed methodology. In multibiometrics, a well 

designed fusion of match scores of individual classifiers/matchers is expected to yield 

better performance than combining abstract class labels (decision level fusion). This is 

because; match scores have higher information content (about the input biometric data 

and the matching) and therefore they often provide better representation than the class 

labels. Disagreement (by the individual classifiers) in the output of the matching process 

often deteriorates the performance of a multibiometric system. However, it is intuitive to 

think that these conflicting decisions by the matchers can have more adverse effect on the 

performance of decision level fusion than that of score level combination.  

Verification time of the proposed algorithm is comparable with that of any other 

score level fusion rules. PSO in the proposed framework takes up the major share of 

computational time. However, parameter tuning by the PSO can be performed offline by 

computing the optimal parameters (fusion rules, weights and decision threshold) for 

every value of input security level in the range 0 to 1(in steps of , say, 0.1) and storing it 

in a look up table. Therefore whenever there is a new value for security level at the input, 

optimal parameters for that particular security level can be retrieved from the look up 

table and used for performing authentication/verification tasks. That way the verification 

time the proposed methodology can be made equivalent to (or comparable with) any 

other non adaptive multimodal biometric system. Therefore the issue of verification time 

never arises in the implementation and deployment of the proposed system for real world 

applications. 
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6.5 Summary 
 
 
In the first part of this chapter, it has been experimentally demonstrated that a non 

monotonic rule can also be an optimum fusion rule, under certain operating conditions as 

illustrated in Table 6.1 and 6.2. This is in contrast to the statement in the original paper 

[69] - “an optimum fusion rule for any set of Bayesian costs is monotonic”. The results 

reported in [69]  also indicate that the search space has been limited to only few 

monotonic rules which can inherently prevent other optimum rules from being selected. 

Therefore the experimental results reported in [69] (figure 14, pp. 354) should be 

replaced/read as illustrated in figure 6.4 in this dissertation. 

 In the second part of this chapter, a novel framework for adaptive fusion of 

multiple biometric traits is presented.  The proposed method employed a hybrid particle 

swarm optimization to achieve the adaptive combination of multiple matching scores by 

selecting the optimal fusion rule and the corresponding fusion parameters. The 

experiments performed on real as well as synthetic datasets suggest that significant 

performance improvement can be achieved using the adaptive score level fusion 

approach. The experimental results also confirm that the proposed approach generates 

fairly stable performance and therefore requires smaller number of iterations to generate 

better performance as compared to the decision level approach. 
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Chapter 7                             
Conclusions and Future Directions 
 

7.1 Conclusions 
 

Hand geometry and palmprint biometrics have attracted tremendous interest from 

researchers and over the past decade, considerable research effort has been focused on 

developing hand identification approaches and systems. Nevertheless, there are still a few 

major issues that remain to be resolved. Traditional approaches utilizing 2D hand images 

and constrained image acquisition modules are plagued by various problems such as 

hygienic concerns, high degree of vulnerability to impostor attacks. On the other hand, 

very little research has been done to develop contact-free hand identification approaches 

and the existing methods do not address some of the key issues such as hand pose 

variations.  

This dissertation has investigated the use of contact-free 3D hand scans and the 

possibility of combining shape and texture information in order to improve the 

performance of hand matching.    A multilevel matching framework that utilizes 2D and 

3D features extracted from the palmprint region of the hand is presented in Chapter 3. 

The proposed matching framework helps to combine the robustness (against spoof 

attacks) and the high discriminating power of the 3D and 2D palmprint features. A novel 

representation, namely, curvature map that captures the local palm surface details is also 

presented. The normalized local correlation is used to compute the matching distance 
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between a pair of curvature maps being matched. The multimodal (2D and 3D palmprint) 

matching approach presented in Chapter 3 is evaluated on the database of 108 users and 

shown to enhance the matching performance of the palmprint system. Apart from the 

performance improvement, the key advantage of combining 2D and 3D palmprint 

information is the increased robustness of the resulting system against spoof attacks. Our 

experiments with fake palmprints have shown how effortlessly a 2D image based 

palmprint matcher can be circumvented by presenting palmprint images printed on paper. 

On the other hand, the proposed system utilizing 3D palmprint features is shown to be 

more robust against attacks at the sensor level.  

A new approach for contact-free 3D hand matching using the 3D geometry 

features is investigated and presented in Chapter 4. In order to extract discriminatory 

features from the range images of the hand, two new representations that characterize the 

finger surface are presented. The extracted features are then matched using two simple 

matching metrics (refer to equation 4.9 and 4.10) that can handle limited variations in the 

hand pose. The performance evaluation of this approach performed on a relatively large 

database of 177 users suggested that the 3D finger geometry features carry sufficient 

discriminatory information and therefore ascertained their usefulness for personal 

verification based on 3D hand matching. Further, our experiments on combination of 

multiple hand features (palmprint, hand geometry and finger texture), which are extracted 

simultaneously from a single hand image, achieved promising results (0.22% equal error 

rate on the database of 177 subjects). One limitation of this work is the assumption that 

the user presents his/her hands parallel to the image plane, which would facilitate the 

acquisition of frontal scans.  
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 The large variation in 3D pose of the hand (presented for identification) is one of 

the major challenges in matching hand images acquired in a contact-free scenario. In 

order to address this problem, a pose normalization approach that is tailored for the 

acquired 2D and 3D hand images is investigated and detailed in Chapter 5. This approach 

involves estimating the orientation of the hand in 3D space followed by a pose correction 

step in which the 3D hand is rotated to its frontal pose. The approach is robust to large 

variations in pose as it only requires detection of a single landmark point (approximate 

center of the palm) on the hand. The estimated orientation information is also utilized to 

correct the pose of the acquired intensity image. Our experimental results on a database 

with considerably large hand pose variations (refer to Table 5.1 for statistics of the 

database) shows that the pose correction for 3D and 2D hand images leads to significant 

improvement in matching performance (refer to Table 5.2). We also observed that 3D 

hand geometry matcher do not benefit significantly (marginal improvement in EER as 

reported in Table 5.2) from the pose normalization process, since there is significant loss 

of discriminatory information around the finger edges. In order to tackle this problem, a 

dynamic fusion approach, which selectively combines palmprint and hand geometry 

matching scores, is developed. The experimental results show that the dynamic fusion 

approach can achieve better performance (60% improvement in EER) than the 

straightforward fusion of matching scores using sum rule.  

Finally, our observations on the discrepancies in the experimental results in [69] 

are discussed in Chapter 6. We also demonstrated through the experiments that a non 

monotonic rule can also be an optimal fusion rule, which is contrary to the findings in 

[69]. Further, we developed an adaptive score level fusion framework to combine 
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multiple features that are simultaneously extracted from a single image of the hand. The 

approach is based on the hybrid particle swarm optimizer (PSO) to choose an optimal 

fusion rule and the corresponding weight parameters while minimizing the weighted error 

rate objective function. The proposed fusion framework is adaptive to the security level 

requirement, which is provided as an input to the system. The experiments are performed 

on a synthetic dataset with artificially generated matching scores to ascertain the 

usefulness of this approach. Our experimental results on the contact-free hand images 

further confirm the superiority (in terms of accuracy as well as stability) of this approach 

over the existing decision level fusion framework.  

The hand based biometric systems enjoy high user acceptance and are extensively 

deployed for applications such as access control, time and attendance monitoring etc. The 

personal verification approaches (namely, the 3D palmprint and 3D hand geometry) 

developed in this research can be utilized to enhance the performance of the traditional 

hand based biometric systems. The 3D hand pose normalization approaches introduced in 

this thesis can be utilized to significantly improve the matching performance, especially 

when the hand images are acquired in an unconstrained manner.   

7.2 Future Directions 
 

Finally, we conclude this dissertation with our remarks on the ways in which the current 

research can be advanced. The following paragraphs discuss some of the areas that can be 

further explored to develop robust and reliable hand biometric systems: 

1. The approaches presented in this dissertation for 3D and 2D palmprint 

identification do not take in to account scale variations in the acquired hand 
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images. Users were instructed to hold their hand at a fixed distance in front of the 

scanner during data collection. Therefore there is little scale variations in the 

datasets used for experiments in this dissertation. However, it is possible to 

acquire hand scans using different lenses in order to introduce considerable scale 

variations that may more closely represent a real world application scenario. A 

scale invariant ROI (palmprint) from the pose corrected 3D hand can be extracted 

based on the detection of a landmark feature point on the hand (inside the palm 

region). Once the landmark point (for example, the center of the palm) is located, 

all points in the data that are inside a predetermined distance (in 3D space) from 

this point can be extracted as belonging to ROI. Regions of interest of varying 

sizes thus extracted can be resampled to generated fixed size range and intensity 

palmprint images. However, the localization of landmark point can be very 

challenging, especially in the absence of any well defined feature point on the 

hand. Therefore further efforts are required to develop a robust hand identification 

approach that can accommodate considerable scale variations in the acquired hand 

scans.   

2. The estimation of orientation of the hand is based on fitting a plane to a set of 3D 

data points extracted from the palmar region. Therefore this approach makes an 

assumption that the hand (including the fingers) is a rigid plane. This assumption 

holds good for palmar region of the hand since this region is not prone to large 

skin deformations and is relatively flat. On the other hand, fingers are more prone 

to deformation arising from their movement or bending, especially towards the 

inner surface of the hand. The deformation in fingers leads to large differences in 
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their orientation with that of the palmprint region. The current approach may not 

be able to reliably estimate the orientation and correct the pose of the fingers 

under these circumstances. Therefore it needs to be investigated if the 

performance can be improved by estimating the 3D orientation of the individual 

fingers and then normalizing their pose. The challenging task, however, will be to 

localize individual fingers and estimate their 3D orientation.  

3. The current 3D hand identification approach employs a single scan (2.5D) of the 

inner surface of the hand. A complete model of the hand can be built during 

enrolment phase by acquiring and registering multiple 2.5D scans. Although the 

automatic generation of a complete model can be very challenging in the absence 

of well defined landmark points, a few landmark points can be manually 

identified during enrolment phase and multiple range images can be stitched 

together to build a model. If one could develop a method to match the 2.5D scans 

acquired during the verification stage with the complete model of the hand in the 

database, such an approach will be able to effectively handle large variations in 

the hand pose. It also needs to be investigated if a direct matching approach can 

be developed since the pose correction process leads to loss of crucial information 

around the finger edges.   

4. The experimental results presented in this dissertation demonstrated that 

integrating three dimensional shape information with texture leads to performance 

improvement for hand identification. However, the major limitation of this 

approach is the use of 3D scanner to acquire hand shape information. Scanning 

time, size and cost of this 3D scanner can be prohibitive for real world civilian 
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applications such as access control where real-time authentication is desirable. 

Therefore alternative imaging techniques need to be explored in order to develop 

a customized 3D hand scanner that can operate in real-time. Such a 3D scanner 

would be desirable for a practical 3D hand identification system.   

5. In this dissertation, the problem of variations in the hand pose is handled by 

normalizing the pose (by bring it to frontal pose) of the acquired 3D hand scan. 

However, a more efficient approach would be to extract features that are 

intrinsically invariant to hand pose changes. Although developing such an 

approach is challenging, it is more desirable as it may obviate the need for 

rotation of 3D hand and lead to concomitant reduction in the computational time.   

6. This dissertation has examined the vulnerability of 2D palmprint identification 

systems to spoof attacks using palmprint images printed on paper. It may seem 

intuitive that three dimensional features are more robust against such attacks, 

since it may be extremely difficult to fabricate 3D hand models that are good 

enough to circumvent the system. However, there is no scientific evidence to 

ascertain that three dimensional features are more robust against spoof attacks. 

Therefore there is an urgent need for an experimental assessment of the 

susceptibility of the proposed 3D hand identification approach to sensor level 

attacks using fabricated hand models.                                                                                   
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