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Abstract 

 

Flexible capacity strategy (FCS) has been well adopted in different industries, but limited 

analytical studies have investigated it and almost all of them focus on monopoly or 

duopoly. None of them has investigated firms’ decisions when facing multiple 

competitors and two strategies simultaneously. Moreover, there is an absence of research 

on addressing the issue of flexibility degree, which means to what extent FCS can be fully 

exploited. Furthermore, the value of long term FCS has not been studied in existing 

research. To fill these research gaps, this thesis investigates FCS from different 

perspectives with uncertain demand.  

 

First, this thesis identifies five possible production strategies to evaluate long term FCS 

with consideration of the production cost structure. By conducting a comprehensive 

series of comparative analyses between different strategies, this thesis evaluates long term 

FCS and provides the optimal production strategies under different costing environments. 

It is shown that FCS can benefit or damage a firm’s profit. 

 

Second, this thesis constructs a two-strategy asymmetric oligopoly competition model 

consisting of r firms with FCS and s firms with in-flexible capacity strategy (IFCS) under 

demand uncertainty. This thesis characterizes capacity and production decisions of each 

firm at equilibrium. The results verify that all the flexible firms make the same decisions at 

equilibrium, and so do all the in-flexible firms. It is shown that production cost is one of 

the key factors affecting whether a firm should adopt FCS or not.  

 

Third, this thesis further investigates the endogenous flexibility of FCS in an oligopoly 

model by allowing firms to freely switch their strategies to maximize their profits. The 

results show that two strategies may always coexist under some conditions regardless of 

the number of firms. It is shown that the strategies that eventually survive in a market are 

insensitive to the total number of firms under certain environments but are sensitive 

under other environments. This result is further extended to a perfect competition 

environment. A practical approach is proposed to determine at equilibrium the exact 

numbers of firms adopting FCS and IFCS under any given demand distribution.  
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Last but not least, this thesis probes into flexibility degree to quantify the performance of 

FCS in competition. This thesis develops a duopoly competition model in which two 

firms compete with each other with different flexibility degrees. The results characterize 

the equilibrium of the competition and show that a firm with a higher flexibility degree 

always secures a higher profit when the capacity costs are identical in the two firms.  

 

The research results highlight the strategic importance of the concept of FCS, provide 

insights on successful implementation of FCS, and propose suggestions to avoid the 

potential risk or damage of FCS. 
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Chapter 1    

Introduction 

 

1.1   Motivation and Background 

 

To enhance competitiveness and hedge against demand uncertainties, chase strategy has 

been a prevailing operation strategy in real business in the past two decades. The chase 

strategy enables a firm to better match supply and demand by adjusting its production 

level. Various operational ways of the chase strategy include varying workforce size by 

hiring or laying off workers, varying production rates through overtime or idle time, 

using part-time workers, subcontracting, deploying multi-trained employees, setup time 

reduction and design for manufacturing.  

 

A number of successful businesses in the real world have demonstrated the advantages 

of the chase strategy, such as Anheuser-Bsch (Heizer and Render, 2008), Snapper’s 

mower (Heizer and Render, 2008) and Dell (Magretta, 1998). Some data also indicate 

that the chase strategy has been widely used in different industries. In the 1990s, roughly 

90% of U.S. business and 95% of Fortune 500 firms used some forms of temporary 

employments (Kucera, 2009). A survey showed that the chase strategy was preferred in 

19 industries and the modified chase strategy was preferred in 12 industries over a total 

of 42 industries (Buxey, 2005). However, there are still a number of firms adopting the 

traditional level strategy that maintains a stable production level in firms. These firms 

argue that the level strategy is advantageous to ensure good quality of product and 

employee loyalty (Colvin, 2009). According to a number of empirical studies, both chase 

strategy and level strategy coexist in many industries, if not all. For example, in a study 

covering industries of electronics, machinery and automotive suppliers in 7 countries, 

roughly 44% of 211 firms equipped volume flexibility, which is the nature of chase 

strategy from strategic perspective (Hallgren and Olhager, 2009). By using the data from 

machinery and machine tool industries in Taiwan, the adoption ratio of volume 

flexibility is about 28% (23 firms out of a total 83 firms) (Chang et al., 2003).  
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According to a survey conducted in 2004, chase strategy is the main strategy in 19 

industries over a total of 42 industries (Buxey, 2005). These industries include ice cream, 

beer, petrol and oils, greetings and seasonal cards, refrigerators, etc. Meanwhile, level 

strategy is the main strategy in industries of motor vehicle batteries, color television sets, 

cricket balls and motor car radiators. From here, one can see that when demand 

fluctuation is larger, an industry favors the chase strategy more.  

 

Moreover, some research and surveys have shown that an increasing number of firms 

are using a mixed strategy with a combination of the chase strategy and the level strategy, 

e.g., ABB Motors in Sweden, in which 70% orders are made-to-stock and 30% orders 

are made-to-order (Bengtsson and Olhager, 2002). Another example is Nike’s 

repackaging facility in Memphis. Nike employed 120 permanent employees and 60 to 

225 temporary employees by Norrell Service (Kucera, 2009). A diversity of capacity 

strategies makes competition more complex and it is more difficult for firms to choose 

the optimal strategy and evaluate its effectiveness. Such complexity of competition gives 

rise to the following questions. (1) What is the long term impact of each strategy on 

each individual firm and on the entire market? (2) Which strategy is the optimal under 

different costing and competition environments? (3) What will be the market like in the 

face of strategy competition among multiple firms? (4) How should the mixed strategy 

be evaluated against the chase strategy and level strategy? (5) How do we distinguish the 

strategy differences between firms adopting the mixed strategy?  

 

This study aims to evaluate the chase strategy from a few perspectives in various 

environments to address the above research questions. The chase strategy is considered 

as a flexible capacity strategy (FCS) and the traditional level strategy is considered as an 

in-flexible capacity strategy (IFCS) throughout this thesis. The research results are able 

to evaluate the effectiveness of FCS and provide management suggestions for successful 

implementation of FCS under different environments. FCS equips firms with the ability 

to postpone their production until knowing the real demand by keeping the capacity 

greater than or equal to the production level. Such ability enables firms: (1) to avoid any 

production waste under demand uncertainty; (2) to be in a favorable position by having 

more flexibility to adjust their throughput in severe competition. Figure 1.1 illustrates 

firms’ decision-making process sequentially with FCS and IFCS. In the capacity decision 

stage, all the firms decide their capacity amounts to maximize their expected profits 
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throughout the entire decision-making process. In the production decision stage, firms 

adopting IFCS have to make production decisions before knowing the actual demand 

while firms adopting FCS postpone their production decisions until knowing the actual 

demand. In other words, firms with FCS have flexibility in adjusting their production 

levels. In the pricing stage, all the firms compete on quantity in the same market, i.e., 

Cournot competition. The market price of the product is determined by the product 

demand and the total product quantity in the market. 

  

 

Figure 1.1: Decision-making process of firms with FCS/IFCS. 

 

To explain the complexity of adopting FCS in various industries, four crucial issues 

should be taken into account as listed below. 

 

 

1.1.1   Evaluation of long term FCS 

 

The first crucial point is to evaluate long term FCS, which has been a debatable issue for 

FCS adoption in real business (Colvin, 2009). Considering different production 

capabilities that are reflected by the production cost structure in different market 

periods, firms can perform FCS differently. This motivates us to investigate long term 

FCS and identify its effectiveness. In each market period, a firm has to seek the most 

effective investments to augment its profit based on the existing production capability. 

The existing production capability is determined by several factors, such as the 

technology adopted, the equipment used, the organizational features, and the 

components of cost. On the other hand, in the long run spanning across a few market 
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periods, making investments to improve the existing production capability is also a 

practical way to augment a firm’s profit. With application of FCS, a firm needs to 

consider the interplay between the FCS complication and the existing production 

capability that is reflected by its production cost structure. This makes the evaluation of 

long term FCS crucial to successful implementation of FCS.  

 

 

1.1.2   Competition environment 

 

The second crucial issue is the competition environment that involves different 

numbers of firms in different industries. In a competitive environment consisting of a 

few firms with either FCS or IFCS, each firm has to compete with other firms in the 

same market. Facing multiple rivals with the same or different strategy, each firm needs 

to consider not only its decisions alone, but also the interplay among firms. Furthermore, 

every decision of each individual firm affects the market price and the resulting expected 

profit of each firm. Besides the coexistence of two strategies, FCS and IFCS, there are a 

few other factors influencing product sales and profits of firms. These factors include 

the number of firms adopting each strategy, the capacity costs of the two strategies, the 

production cost, and the market profit potential. Understanding in what ways these 

factors affect the profit of each firm is key to making the right decisions for firms in 

severe competition.  

 

 

1.1.3   Quick change in strategy 

 

The third key point is quick change in firms’ strategies. It is natural that firms always 

seek for the most effective means to maximize their profits. Facing globalization and 

fierce competition, if a firm thinks the other strategies are helpful to augment its profit, 

and then it changes its current strategy. Therefore, firms compete with one another not 

only in operational decisions, but also in strategy choice. This strategy competition 

continues until all the firms cannot increase their profits by switching strategies and the 

market reaches a stable status at equilibrium. Understanding of this stable status of the 
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market is helpful to predict the development of a market and choose the optimal 

strategies under various environments.   

 

 

1.1.4   Flexibility degree 

 

The fourth crucial consideration is flexibility degree, which means to what extent FCS 

can be fully exploited. In fact, both FCS and IFCS are two extremes of FCS 

implementation, one is full implementation and the other is none at all. However, there 

is a large space between these two extremes actually. In real business, many firms adopt 

a strategy called the mixed strategy, which is a combination of these two extremes. This 

means many firms implement FCS partially to different extents. This partial 

implementation of FCS can be due to various reasons. These reasons include changes of 

economic environments, political reasons, employee moral guarantee, labor, 

administrative regulars, technical problems, demand uncertainty, organization changes, 

and regional differences. All these factors cause different extents of FCS 

implementation and they distinguish firms’ actual strategies. Therefore, how to quantify 

flexibility degree is key to evaluating FCS and explaining the variety of FCS performance 

in the real world.  

 

 

1.2 Research Objectives 

 

Based on the motivation introduced above, the research objectives of this study are as 

follows. 

1. Evaluating the long term FCS with consideration of production cost curves; 

2. Investigating the oligopoly competition involving multiple flexible and in-

flexible firms, and identifying the competition equilibrium; 

3. Characterizing the endogenous flexibility of FCS among multiple firms; 

4. Formulating the mixed strategy and investigating the flexibility degree.  
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1.3   Research Problem 

 

To comprehensively investigate FCS, we first discuss the nature of FCS in this section. 

Then, to address the effects of the aforesaid four factors on decisions of firms, i.e., 

evaluation in the long run, competition environments, quick change in strategies, and 

flexibility degree, we investigate them in four chapters respectively in this thesis.  

 

1.3.1   Nature of FCS 

 

To understand the nature of the chase strategy from the strategic research perspective, 

we have reviewed the research agenda on manufacturing flexibility by Gerwin (1993). In 

his study, manufacturing flexibility is classified into severn categories, including four 

market-oriented categories and three process-oriented categories. Particularly, he points 

out that volume flexibility is derived from aggregate product demand uncertainty and its 

adaptive methods include high capacity limits and subcontracting. Comparing the chase 

strategy and the concept of volume flexibility, we conclude that volume flexibility is the 

nature of the chase strategy from strategic research perspective. In other words, the 

chase strategy is detailed operations to manifest volume flexibility from the perspective 

of operations management.  

 

1.3.2   Evaluation of long term FCS   

 

To evaluate long term FCS, we consider the total production cost structure in the model. 

The total production cost structure reflects the long term impact of the production 

capability on products. Some research has shown that the long run total production cost 

structure is associated with the technology flexibility in varying output levels under 

demand fluctuations. A higher level of technology flexibility leads to a flatter marginal 

production cost. Therefore, examination of FCS in the long run can be conducted by 

testing FCS and IFCS under environments with different technology flexibilities. 

Comparative analyses of the expected profits under different scenarios provide the pros 

and cons of FCS in the long run.   
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In this study, technology flexibility is measured by flexible level. Flexible level is 

reflected by an endogenous variable in a quadratic total production cost function. The 

means to improve technology level is expressed as a flexible technology investment in 

this thesis. Flexible technology investments can be made in various operations such as 

using advanced technology and upgrading the equipment of plants. The study 

establishes five possible production strategies comprising decisions on using FCS and 

flexible technology investment. Each strategy is carried out by a decision-making 

operation process embracing technology level, capacity amount, production quantity 

and price setting. By conducting a comprehensive series of comparative analyses 

between different strategies, the study also evaluates FCS under different costing and 

technology level environments.  

 

 

1.3.3   An asymmetric oligopoly model 

 

To emphasize the impact of the competition environment on firms’ decisions and 

profits, an asymmetric oligopoly model is established consisting of r flexible firms and s 

in-flexible firms. All the firms, both flexible and in-flexible, compete in the same market 

with the same market price that is determined by the product demand and total product 

quantity in the market. Both FCS and IFCS strategies are carried out by a decision-

making process, which is composed of capacity planning, production procedures, and 

market pricing.  

 

 

1.3.4   Endogenous flexibility of FCS among n firms  

 

To investigate the impacts of firms’ strategy changes on individual decisions of each 

firm and the entire market, we study the endogenous flexibility of FCS in a market 

involving totally n firms. In a competition model with n firms, the firms are allowed to 

freely choose and switch their strategies to augment their profits. With strategy changes, 

firms alter their optimal decisions in each stage. Furthermore, the market structure also 

changes when firms switch their strategies. Therefore, there is an unstable period in 

which firms compete with each other by seeking the optimal strategies. This unstable 
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period continues until all the firms can no longer augment their profits by switching 

strategies and by this time the market reaches a stable status. We name such a stable 

market “Final Equilibrium” throughout this thesis. The eventual surviving strategies, as 

well as the exact number of firms adopting each strategy constitute the Final 

Equilibrium.  

 

 

1.3.5 Duopoly competition model with different flexibility 

degrees 

 

Regarding the issue of flexibility degree, this study establishes a duopoly competition 

model in which two firms compete with each other with FCS of different flexibility 

degrees scaling from zero to 100%. Flexibility degree is defined as the percentage of the 

difference between a firm’s production upper bound (total capacity) and production 

lower bound (guaranteed or unchanged production level) over its total capacity. It 

reflects the extent to which FCS is exploited. A percentage zero represents the IFCS 

situation while a percentage of 100 represents the FCS situation in the aforementioned 

oligopoly model. Any other percentage between 0 and 100 represents the mixed strategy 

under which a firm’s flexibility capability varies between IFCS and fully FCS.  

 

 

1.4 Originality of the Study 

 

According to the literature review to be given in Chapter 2, the four objectives in this 

study have not been addressed in the literature.  

 

� There is no research to investigate the flexibility in manufacturing in the long run 

with consideration of production cost curves.  

 

� There is no research to study the flexibility in manufacturing in an asymmetric 

oligopoly market involving two strategies and multiple firms simultaneously.  
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� The endogenous flexibility in a market involving multiple firms has not been 

addressed in previous research.   

 

� The widely used mixed strategy has not been investigated by scholars from the 

modeling perspective. Further, there is no research to investigate the flexibility 

degree of FCS which reflects partial implementation of FCS.  

 

Therefore, this study is original in the research on manufacturing flexibility.  

 

 

1.5 Results of the Study 

 

1.5.1 Evaluating long term FCS  

 

The study formulates five possible production strategies comprising decisions on using 

FCS and flexible technology investment. For each strategy, the optimal operational 

decisions are calculated. With comparative analyses between different strategies, we 

show how market uncertainty, production cost structure, operation timing, and 

investment costing environments affect a firm’s strategic decisions. The results show 

that there are no sequential effects of the above two investments. We also illustrate how 

flexible technology and flexible capacity affect a firm’s profit under fluctuating demands. 

The results point out that flexible technology investment earns for a firm the same or a 

higher profit, whereas flexible capacity investment can be beneficial or harmful to a 

firm’s profit. Moreover, we prove that more flexibility does not guarantee a higher profit. 

We also identify the environments in which each possible strategy combination can be 

the optimal strategy, i.e., no flexibility at all, only flexible capacity, only flexible 

technology, and both flexible technology and flexible capacity. 

 

 

1.5.2 FCS in an asymmetric oligopoly competition model 

 

Focusing on FCS in an asymmetric oligopoly competitive market involving r flexible 

firms and s in-flexible firms under demand uncertainty, we characterize the equilibrium 
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of an asymmetric oligopoly competition. We find that firms adopting the same strategy 

make the same decisions and obtain the same profit regardless of the number of firms 

adopting each of two strategies, the strategy adopted, demand uncertainties, and costing 

environments. We prove that depending on the costing environment, the optimal 

strategy can be either FCS or IFCS. Further, contrary to the intuition that increasing 

costs are always harmful to a firms’ profit, we find that firms adopting FCS can benefit 

from an increasing production cost when there are enough in-flexible firms existing in 

the market. Moreover, previous research of FCS on monopoly, duopoly, and 

symmetrical oligopoly are shown to be special cases of our model.  

 

1.5.3 Endogenous flexibility of FCS in a competitive 

market with n firms 

 

The characterization of the endogenous flexibility of FCS in a competitive market with a 

total of n firms yields the surviving strategies after strategy competition. It further 

mathematically justifies that only effective strategies can survive in a market with profit 

potential. We find that the surviving strategies after strategy competition are insensitive 

to the total number of firms under certain environments but are significantly sensitive 

under other environments. The technical conditions of the classification of the costing 

environment are provided. We theoretically prove that perfect competition is only a 

special case of oligopoly competition when the total number of firms tends to infinity. 

Moreover, the study proposes an approach to practically determine the exact numbers 

of flexible and in-flexible firms in the market with endogenous flexibility of FCS under 

any given demand distribution and any given number of firms. The theoretical 

justification is also provided. Numerical examples are used to demonstrate the approach.  
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1.5.4 FCS in a duopoly competition model with flexibility 

degree 

 

Considering the flexibility degree of FCS, we establish a general mathematical model 

that can be used to simulate a full FCS, a mixed strategy and a zero FCS. The pattern of 

the optimal decisions with a certain flexibility degree is identified. Based on the 

conclusions of the monopoly model, we establish a duopoly competition model in 

which two firms with their respective flexibility degrees varying from zero to 100%. It is 

proved that two firms with the same flexibility degrees make the same optimal decisions 

under demand uncertainty. In an asymmetric duopoly model, the relationship between 

two firms’ optimal capacities is largely restricted by their flexibility degrees. The 

mathematical conditions are provided. We characterize the Nash equilibrium of the 

competition. Numerical examples show that a firm’s capacity increases as its flexibility 

degree increases, but decreases as the rival’s flexibility degree increases.  

 

 

1.6   Flowchart of the Thesis 

 

A flowchart of this thesis is shown in Figure 1.2. Relevant studies are reviewed to find 

out the research gaps in Chapter 2. The system features are described in Chapter 3. 

Chapter 4 evaluates long term FCS with consideration of cost. Chapter 5 discusses an 

asymmetric oligopoly competition model under demand fluctuations and characterizes 

the equilibrium of the competition. Chapter 6 further investigates endogenous flexibility 

of the asymmetric oligopoly competition model. The issue of flexibility degree is 

discussed in a duopoly competition model in Chapter 7. Finally, Chapter 8 presents 

some conclusions and recommendations for future research. All proofs are included in 

the Appendix-I. 
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Figure 1.2: Flowchart of the Thesis. 
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Chapter 2    

Literature Review 

 

 

In the literature, there are some studies investigating flexibility in firms manufacturing 

process to hedge against demand uncertainty. Most of these studies focused on 

monopoly model to capture the features of flexibility in manufacturing; limited studies 

addressed the flexibility in a duopoly model to consider the effects of competition; and 

studies to examine and evaluate the flexibility in a symmetric oligopoly model are also 

scarce. Moreover, we realize that there is an absence in studying the flexibility in 

manufacturing in an asymmetric oligopoly model involving two strategies and multiple 

competitors simultaneously. All these studies assume that production cost structure is 

unchanged during the manufacturing process. On the other hand, a few other studies 

investigated firms’ abilities to hedge against the demand uncertainty by improving the 

production cost structure in the long run. These studies focused on the relationship 

between technology level, production cost structure and firms’ ability to hedge against 

demand uncertainty spanning a few market periods.  

 

This chapter is divided into three sections. Section 2.1 reviews relevant studies about 

manufacturing flexibility under uncertain demand without considering the effects of 

production technology level in the long run. Section 2.2 focuses on research about 

manufacturing flexibility in a competition. Section 2.3 discusses previous research that 

focuses on relationship between technology level and firms’ capability to hedge against 

demand uncertainty. In Section 2.4, some research gaps are discussed.  

 

 

2.1   Research on Manufacturing Flexibility 

 

Slack (1987) studies the manufacturing flexibility in form of empirical observations. 

With respect to manufacturing flexibility on theoretical research and applied work, 

Gerwin (1993) establishes an agenda for flexibility studies from a strategic perspective. 

He indicates the value in studying generic flexibility strategies, the flexibility dimensions, 
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methods of delivery, and ways of evaluating and changing the flexibility of a process. 

The first stream investigates the effects of flexibility when a firm makes its decisions 

under demand uncertainty. 

 

One type of flexibility in supply chains can be referred to as early or late differentiation, 

which is embedded in the real case of Hewlett-Packard’s (HP) distribution centre (DC) 

localization strategy for Deskjet-plus printer division (Lee et al., 1993). In order to 

respond to demand uncertainty with large variety in different countries, the factory 

makes some design changes to the product. It produces a generic product without the 

power supply module and manual. The items of this generic product are shipped to 

non-US distribution centres and finished localization there. This DC-localization 

strategy results in 18% reduction of the total inventory investment. Such design for 

localization enables the firm to have a flexible production process to delay the 

customization until needed. Lee and Tang (1997) present a classification of possible 

design changes in the production and distribution process that leads to delayed product 

differentiation. They provide an analysis on determining the optimal operation 

sequences in order to achieve the optimal operational performance. Based on the case 

of HP, Aviv and Federgruen (2001a) examine the effects of environment on 

postponement strategy implication, i.e., under which environment, postponement will 

yield the major cost reduction. They consider multi-item inventory systems with random 

and seasonally fluctuating demands. There is a two-phase product-distribution process 

in their model. The generic products are manufactured in the first phase, whereas 

differentiating options and features are finished in the second phase. They investigate 

the benefits of various delayed product differentiation strategies, as well as the trade-off 

between the capacity and inventory investments. Aviv and Federgruen (2001b) study the 

postponement strategy in a Bayesian framework with unknown parameters of demand 

distribution. Ruetze (2006) shows that postponement strategy is adopted widely in 

different industries.  

 

Besides the strategy to postpone differentiation, product flexibility (or resource 

flexibility) is another type of strategy about flexibility in supply chains. Such strategy 

enables a firm to keep a trade-off between the cost of flexibility and the ability to hedge 

against the variety of demand. Acquiring such flexibility, a firm can use a flexible 
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resource to manufacture all products, while other dedicated resources can only be 

converted into dedicated products.  

 

Focusing on evaluating the benefits of using a flexible production technology in flexible 

manufacturing systems (FMSs), Fine and Freund (1990) develop a monopoly product-

flexible capacity investment model. A firm’s decision making process can be divided 

into two stages. Capacity decisions are made in the first stage before demand 

information revelation. In the second stage, the firm decides on the product quantities 

under capacity constraints after observing the actual demand. There is a trade-off 

between the cost of acquiring flexibility and the benefits provided by flexibility under 

uncertain demand. In their model, the pricing effect is implicitly considered by a 

concave revenue function. Following Fine and Freund’s (1990) model, Van Mieghem 

(1998) takes into account the role of price and cost mix differentials in a firm’s optimal 

decisions under uncertain demand. Using multi-dimensional newsvendor problem 

model with exogenous prices, they investigate the optimal strategy of flexible resource 

investment for a two-product firm. Their analysis highlights the importance of price and 

cost mix differentials when a firm makes decisions. They point out that investing in 

flexible resources is advantageous under multivariate demand uncertainty.  

 

After Fine and Freund (1990) and Van Mieghem (1998), a number of researchers extend 

the research on resource flexibility along various directions. One direction of extension 

is to consider flexible production process. Both models in Fine and Freund (1990) and 

Van Mieghem (1998) analyze the situation that a totally flexible plant can process all 

products. Jordan and Graves (1995) turn to limited flexibility versus total flexibility by 

considering the relationship between products and plants in a single-stage model. 

Through manufacturing process, flexibility enables a plant to produce a subset of 

products. They develop three principles for guiding investments of flexibility: (1) try to 

equalize the capacity to which each product is directly connected; (2) try to equalize the 

total expected demand to which each plant is directly connected; and (3) try to create a 

circuit(s) that encompasses as many plants and products as possible. Graves and Tomlin 

(2003) extend the work of Jordan and Graves (1995) to a general multi-stage model. 

They propose a flexibility measure, and show that increasing this measure provides 

higher protection against supply-chain inefficiencies. Another direction of extension 

from Fine and Freund (1990) and Van Mieghem (1998) is to take into account price 
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setting problem with different timing. Considering flexibility under uncertainty, Jones 

and Ostroy (1984) suggest that there will be opportunities to act after further 

information is received and current actions can influence either the attractiveness or the 

availability of different future actions. Therefore, it is plausible that timing difference 

between information and operations makes firms have different abilities to respond to 

uncertainty.  

 

Van Mieghem and Data (1999) propose the concept of pricing postponement strategy. 

They propose six possible postponement strategies and present comprehensive analyses 

of them with a two-stage model.  In the model, firms make three decisions: capacity 

investment, production quantity and price. The strategies differ in the timing of the 

operational decisions relative to the demand revelation. They show that compared to 

production postponement, price postponement makes the investment and production 

decisions relatively insensitive to demand uncertainty. They also consider a 

postponement strategy which makes ex-post decisions on price and production. Such 

price and production postponement strategy is adopted by Anupindi and Jiang (2008).  

 

Following Van Mieghem and Data (1999), some other studies take account of ex-post 

price setting into the model on resource flexibility. Bish and Wang (2004) incorporate 

ex-post price setting consideration into Van Mieghem’s (1998) model. The firm makes 

its resource investment under an uncertain demand in the first stage. In the second stage, 

the firm allocates its resource and sets price constrained by its earlier resource 

investment when the demand curves are realized. With exogenous demand realizations, 

they show that the flexible resource investment follows a threshold policy. Similar to 

Bish and Wang (2004), Chod and Rudi (2005) analyze the effects of resource flexibility 

and responsive pricing in a monopoly model under demand uncertainty. However, they 

focus on characterizing the key drivers of flexible resources by demand variability and 

correlation. They show that the optimal capacity of the flexible resource is always 

increasing in both demand variability and demand correlation. Both of their models do 

not consider production costs.  
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2.2   Research on Competition 

 

The second stream analyzes the competition game on a variety of strategic decisions. In 

the literature on economics, plenty of studies have focused on firms’ price competition 

and quantity competition. The former is referred to as Bertrand price competition 

model, or Bertrand-Edgeworth model, whose original reference is Bertrand (1883). The 

latter is referred to as Cournot quantity competition model, which can be traced back to 

Cournot (1838). Edgeworth (1897) takes into account capacity constraints in the 

Bertrand model. The existence of equilibrium is concerned by academics since payoff 

functions become discontinuous in such game. Dasgupta and Maskin (1986) establish 

two existence theorems for mixed-strategy equilibrium in games with discontinuous 

payoff functions.  

 

2.2.1 Competition on price 

 

Kreps and Scheinkman (1983) develop a two-stage duopoly model in which firms make 

their capacity decisions in the first stage, and compete on price in Bertrand fashion in 

the second stage. We refer to this model as K-S model. They identify conditions under 

which Cournot competition and Bertrand competition are coinciding with the unique 

equilibrium Cournot outcome. The conditions established in their research have been 

widely adopted in the game-theoretic literature within operations management. In 

contrast to the results of the K-S model, Davidson and Deneckere (1986) argue that the 

Cournot outcome is unlikely to emerge in the model in which firms decide capacities 

before engaging in Bertrand price competition. They argue that the results of K-S model 

depend critically on the assumption of how demand is rationed when the lower-priced 

firm cannot meet the market demand. Instead, they propose an alternative rationing rule. 

Both models discussed above assume deterministic demands, i.e., there is no demand 

uncertainty in the markets. 

 

Hviid (1990) reformulates the K-S model by allowing sequential capacity and price 

choices under demand uncertainty. He assumes that both capacity and price decisions 

are made before a firm observes the demand realization following a uniform distribution. 

Different sequential choice rules give rise to various types of two-stage games. The 
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study analyzes the consequences of uncertainty in various types of models. Particularly, 

Hviid (1991) focuses on price competition, with capacity constrained in a duopoly 

model under demand uncertainty. He demonstrates that no pure strategy Nash 

equilibrium exists in the price competition stage. Additionally, if capacity is endogenous 

and chosen before prices, this result always holds no matter if firms can observe the real 

demand information. This study may indicate that price competition modeled as a 

subgame of a two-stage model, in which firms decide capacity simultaneously followed 

by pricing competition, is not always a good approximation. Reynolds and Wilson (2000) 

investigate the effects of demand fluctuations on firms’ price competition in the K-S 

model. Firms make their capacity decisions before observing demand whereas they set 

prices after demand is revealed. They show that if variation of demand exceeds a 

threshold, a symmetric equilibrium in pure strategies for capacity is absent. All the 

models discussed above on firms’ competition assume that the firms compete on price 

after bringing productions to the market.  

 

 

2.2.2 Competition on quantity 

 

There are some studies in the literature on Cournot quantity competition model. Saloner 

(1987) establishes a Cournot model with two production periods without demand 

uncertainty. Firms choose output simultaneously in the first period. In the second 

period, the output becomes common knowledge and firms make decisions to determine 

how much more to produce before market clearance. He shows a continuum of 

equilibria including the Cournot and the Stackelberg outcomes. Pal (1991) generalizes 

Saloner’s (1987) model by allowing cost differences across production periods. He finds 

that the continuum of equilibria vanishes for any cost differential. If cost in the second 

period is slightly smaller than that in the first period, there are multiple leader-follow 

equilibria. Gabszewicz and Poddar (1997) study a two-stage model where firms make 

capacity decision at the first stage and production decision at the second stage under 

demand uncertainty. Firms compete on quantity in the market. They prove the existence 

of a symmetric subgame perfect equilibrium at which firms are in excess capacity 

compared with the capacity they choose in the Cournot certainty equivalent game. 

Maggi (1996) considers two firms’ investment competition under demand uncertainty. 
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He describes asymmetric equilibria under some general conditions. In equilibrium, one 

firm takes an early investment and the other firm follows a wait-and-see strategy. The 

emergence of asymmetric versus symmetric ex-post outcome demands on the 

comparison between the expected and the actual market profitability. If the market 

profitability is close to, or lower than, expected, firms end up with asymmetric sizes. If 

the market is highly profitable, then firms end up in symmetric position. 

 

 

2.2.3 Manufacturing flexibility in competitions 

 

In the literature, limited studies investigate flexibility in a competition environment. 

Rőller and Tombak (1990, 1993) investigate the effects of choosing different 

technologies in a multi-firm Cournot competition game under deterministic demand. 

Firms choose one type of technologies, flexible or inflexible, in the first stage and decide 

on the production quantities in the second stage under a Cournot competition. They 

show that, in equilibrium, firms more like to adopt flexible technology in a larger and/or 

more concentrated market. Capacity decision and demand uncertainty are not 

considered in their model. Boyer and Moreaux (1997) extend the study to take into 

account volatility and market size effects on acquiring flexible technology. Incorporating 

capacity investment competition into Rőller and Tombak’s (1993) model, Goyal and 

Netessine (2007) develop a duopoly model where each firm makes three decisions: 

technology choice (product-flexible or product-dedicated), capacity investment and 

production quantities. In each decision stage, firms play a simultaneous-move non-

cooperative game with complete information. They reveal the role of competition on 

firms investing in flexible technology under demand uncertainty. They find that flexible 

and dedicated technologies may coexist in equilibrium. All models discussed here 

concern the product flexibility (or resource flexibility), which enables firms to 

manufacture multiple products with a flexible resource. Incorporating the price setting 

problem into the flexibility competition model, Anupindi and Jiang (2008) investigate 

duopoly models where firms make capacity, production and price decisions in a market 

with uncertain demands. Capacity investment is always made ex-ante demand realization, 

whereas price decision is always set ex-post demand realization. The flexibility enables a 

firm to postpone its production decision until the actual demand is revealed. They 
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characterize the set of equilibria in a symmetric duopoly model under a general demand 

structure. In addition, they investigate the stochastic-order properties of capacity and 

profit of flexible firms under demand with a higher variability. Furthermore, they show 

that the strategic equivalence of price and quantity competition among flexible firms.  

 

Competitions in all of these researches are non-cooperative. Taking into account the 

relationship between competitors, i.e., cooperative and non-cooperative, Stuart (2005) 

considers a model with price competition following inventory decisions. He uses the 

biform game formalism of Brandenburger and Stuart (2004) to model the non-

cooperative inventory competition and the cooperative price competition. His analysis 

gives rise to two scenarios. When there is no demand uncertainty, the inventory decision 

is equivalent to the capacity decision in Cournot competition. When there is demand 

uncertainty, the result is equivalent to that of Cournot competition under some 

conditions on the demand curve.  

 

Another type of flexibility in a competitive market can be found in Anand and Girotra 

(2007). They analyze supply chain configurations, i.e., early or delayed differentiation, in 

a Cournot competition environment with clearance strategies. They analyze firms’ 

choices of supply chain configuration in terms of quantities sold, profits, consumer 

surplus, and welfare. Normalizing all production costs to zero, they show that delayed 

differentiation is not the preferred supply chain configuration to respond to demand 

uncertainty under competition.  

 

All the above models, discussed about flexibility competition, are static models. With 

the consideration of dynamic effects, Gaimon (1989) investigates the effects of new 

technology on a duopoly dynamic model where firms choose open-loop or close-loop 

strategy over time. Firms’ competition can be achieved by acquiring new technology or 

scrapping existing capacity. He shows that under close-loop strategies there is a more 

restricted acquisition of new technology and a larger reduction of existing capacity than 

those under open-loop strategies.  

 

Empirically, there are a number of studies investigating flexibility in various industries. 

Focusing on printed circuit-board plants in Europe, Suarez et al. (1996) show that 

different manufacturing flexibilities coexist in the same industry. Similar conclusion is 
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drawn by Chang et al. (2003) in a study investigating machinery and machine tool 

industries in Taiwan. Vickery et al. (1997) identify that flexibility is one of key 

dimensions in the furniture industry. Caniato et al., (2009) study the Italian luxury 

industry. They show that the adoption of flexibility varies largely in different industries. 

Stratton and Warburton (2003) explore the strategic integration of agile and lean supply 

in apparel industry. Their results show that both flexible and in-flexible strategies coexist 

in the apparel industry. Similar studies include Toni and Meneghetti (2000), Brun and 

Castelli (2008) and Sen (2008).   

 

 

2.2.4 Other relevant research on flexibility 

 

There are some other relevant papers investigating the role of flexibility in supply chains. 

These papers characterize the relationship between sellers and buyers. Eppen and Iyer 

(1997) analyze backup agreements in fashion buying and evaluate the value of upstream 

flexibility for fashion merchandising. Their results indicate that backup arrangements 

can have an impact on expected profits and may increase the committed quantity. 

Deneckere et al. (1997) investigate the relationship between demand uncertainty and 

price maintenance in a system consisting of one manufacturer and two competitive 

retailers. Their results show that profit of the manufacturer and inventory at equilibrium 

under resale price maintenance environment are higher than those under market-

clearing environment. Tsay and Lovejoy (1999) focus on quantity flexibility contracts in 

a supply chain. They propose local policies, which dictate the necessary actions to 

support flexibility promised to a customer by a supplier. Lariviere and Porteus (2001) 

examine a simple supply-chain contract governed by a price-only contract. They find 

that the manufacturer’s profit and sales quantity are increasing in market size, whereas 

the wholesale price is dependent on the pattern of the growth of the market. Barnes-

Schuster et al. (2002) analyze the effects of options in a buyer-supplier system by using a 

two-period model. They illustrate how flexibility is provided by options, to increase 

profits of both the supplier and the buyer. With consideration of supply chain risk, Tang 

and Tomlin (2008) investigate 5 different stylized flexibility models. Their results show 

that most of the benefit is obtained at low levels of flexibility. They also conclude that to 

mitigate supply chain risk, a firm does not need to invest in a high degree of flexibility.  
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2.3 Relationship between Technology Level and 

Production Cost Structure 

 

A few previous studies have investigated relationship between flexible technology 

investment and total production cost structure. Stigler (1939) investigates production 

and distribution features. He assumes that production costs consist of fixed costs 

(representing the return on a fixed “plant”) and variable costs (day labor, materials, fuel, 

etc.). He refers to the attributes of the production cost curve that reflects the production 

cost structure. Cost curves determine the manner of output to respond to demand 

fluctuations as “flexibility of operation”. Marschak and Nelson (1962) formalize the 

discussion about “flexibility of operation”. They persuasively argue that Stigler’s (1939) 

notion of “flexibility of operation” relates inversely to the curvature of the total 

production cost, or the slope of marginal production cost. Level of “flexibility of 

operation” is the lowest when the average production cost rises precipitously around the 

minimum and marginal production cost is steep. Level of “flexibility of operation” is 

higher when average production cost becomes flatter and the marginal production cost 

is less steep. It demonstrates that the minimum average production cost varies inversely 

with the level of “flexibility of operation”. Such relationship between the minimum 

average production cost and level of “flexibility of operation” indicates that system 

internal organization, which determines the level of “flexibility of operation” influences 

the unit production cost. A simulation model in Nelson (1968) displays such 

interactions among system internal organization, cost structure and demand fluctuation. 

The simulation results implicate different effects of a variety of factors on system design 

and control.  

 

Empirically, Barzel (1964) examines the relationship between production function and 

technical change in the steam-power industry. Zarnowitz (1956) studies technology and 

price structure in general interdependence system and compares different models. Ghali 

(2003) examines the slope of marginal cost in different industries.   

 

Following the theoretical ideas in Stigler (1939) and Marschak and Nelson (1962), Mills 

(1984) investigates the effect of demand fluctuation on firms’ endogenous flexibility in a 

competitive model. It assumes that there is a trade-off between endogenous firm 
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flexibility and static-efficiency. To outline explicit features of cost structures, he 

proposes a quadratic form of the total production cost curve with an endogenous 

flexibility variable. He establishes some properties of the competitive equilibria under 

demand fluctuation.  

 

A few studies investigate technology flexibility from different aspects based on Mills’ 

(1984) technology flexibility formulation. Mills and Schumann (1985) show that it is 

possible for a firm with higher minimum average production cost to compete with other 

firms by flexibly adjusting its production levels in a competitive market under 

fluctuating demands. With inventory holding cost consideration, Fraser (1984) shows 

that a firm can adjust either output or inventory to buffer demand fluctuations. 

Incorporating the responsive price issue into Mills’ (1984) model, Fluet and Phaneuf 

(1997) prove that price adjustment results in a flatter marginal cost curve due to 

application of flexible technique; while endogenous technique choice enables a firm to 

hedge against uncertainty with less price variations and more quantity variations. Using 

quadratic total production cost function, Rőller (1990) shows that trade-off exists within 

functional flexibility and size and slope properness of applicable region in an empirical 

study of Bell system. However, all these previous studies focus on production decision 

stage only. The decision-making process staged as capacity-production-pricing has not 

been addressed in the studies discussed above.  

 

 

2.4 Research Gaps 

 

The review of the previously most relevant studies shows that there are a few 

outstanding issues not studied sufficiently, or no relevant theoretical framework has 

been developed yet.  

 

� There is not sufficient research to investigate the flexibility in manufacturing in the 

long run which has been a debatable issue in adopting FCS in real business.  

 

� There is a research absence to study the flexibility in manufacturing in an 

asymmetric oligopoly market involving two strategies and multiple firms 
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simultaneously. In such case, the interplay among multiple firms and different 

strategies are overlooked.  

 

� The endogenous flexibility in a market involving multiple firms has not been 

addressed in the previous studies. Therefore, the interplay between firms’ switching 

strategies has not been investigated. Furthermore, the study of endogenous 

flexibility is helpful to understand in what environments, how many firms are 

willing to use each of two strategies, and so the eventual equilibrium of a market 

can be studied.   

 

� There is no research to investigate the flexibility degree of flexible capacity strategy 

which reflects partial implementation of FCS. Investigation of flexibility degree can 

also embody the mixed strategy widely used in reality between fully implementation 

of FCS and IFCS.  

 

This present study can fill these four research gaps by investigating flexibility in 

manufacturing from four perspectives which are discussed in Chapters 4-7 respectively. 
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Chapter 3  

System Features and Methodology 

 

 

Based on the background in Chapter 1 and the literature review of relevant research in 

Chapter 2, this chapter aims to provide a general description of flexible capacity strategy 

(FCS), including its concept and operational stages. Notations, assumptions, function 

definitions, and mathematical methods adopted throughout the thesis are also provided 

in this chapter.  

 

This chapter is divided into seven sections. Section 3.1 gives the notations, assumptions 

and some functions definitions used throughout the thesis. Section 3.2 gives a general 

description of the concept of FCS. Section 3.3 discusses three operational stages of FCS. 

In Section 3.4, the cost structures adopted in this thesis are discussed. Mathematical 

methods are presented in Section 3.5.  

 

 

3.1 Notations, Assumptions and Function 

Definitions 

 

3.1.1 Index sets 

 

Assuming there are r flexible firms and s in-flexible firms in a model, the total number 

of firms is srn += . This situation is referred to as n=(r, s) throughout the thesis. 

Define },...,2,1{ n=Ω to be the index set of all firms, },...,2,1{ r
F

=Ω  to be the index 

set of flexible firms, and },...,2,1{ nrr
N

++=Ω  to be the index set of in-flexible firms.  
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3.1.2 Variables 

 

The notations of variables and parameters used throughout the thesis are defined as 

follows. 

Π : the expected profit ; 

π : the ex-post expected profit; k : capacity amount;  

q : production quantity; p : market price; Q : total production quantity in the market; 

)(kC
c

: total capacity cost for capacity amount k ; 

)(qC
p

: total production cost for production quantity q ; 

α : the realization of the uncertain demand which is assumed to follow a general 

distribution with mean µ , cumulative distribution function )(⋅F  and probability 

density function )(⋅f ; 

),( Qp α : responsive price which is a function of α  and Q .  

Subscripts are used to represent some characteristics of variables or parameters. These 

subscripts are listed below.  

i: index of a firm;   e: quantity at equilibrium;   b: best response quantity . 

 

 

3.1.3 Assumptions  

 

To formulate the interaction between total production quantity in the market, i.e., Q , 

and market price p , responsive price is addressed by using inverse demand function, in 

which the market product price is affected by the total product quantity in the market, 

i.e., ),( Qpp α= .   

 

Market clearance rule is adopted in the model and it assumes that all products are sold 

in the market and firms do not hold back products to affect the price. Under this 

assumption, the product market price is actually determined by all products produced by 

all firms, i.e., ∑
Ω∈

=
i

i
qQ .  
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3.1.4 Function definitions 

 

To facilitate the presentation, we define four functions which are used throughout the 

thesis.  

Function 1: ∫
∞

−=
 

 
)()()(

x

dfxxL ααα , 0≥x . It can be proved that )(xL  is strictly 

decreasing and convex in x , and ],0()( µ∈xL  for 0≥x  whenever 

0)( >xF  for all 0≥x .  

Function 2: )(CX  is defined to be the inverse function of )(xL , i.e., CCXL =))(( . 

Then )(CX  is strictly decreasing in ],0( µ∈C . 

Function 3: ∫
∞

−=
 

  
)()2()(

x

dfxxG ααα . With the assumption of )(2)( xFxxf <  for 

all 0≥x , it can be proved that )(xG  is strictly decreasing in x . 

Function 4: Suppose )(2)( xFxxf <  for all 0≥x , define )(CY  to be the inverse 

function of )(xG , i.e., CCYG =))(( . Then )(CY  is strictly decreasing in 

C . 

 

To interpret the meaning of these four functions, we consider a model in which the 

inverse demand function is +
−= )(),( xxp αα  where x  is the production quantity. 

Therefore, the expected product price is ∫
∞

−=
 

 
)()()(

x

dfxxL ααα , which is Function 

1. For Function 2, )(CX  is the inverse function of )(xL . The expected revenue is 

∫∫
∞∞

+
−=−=

 

  

 

0  
)()()()()(

x

dfxxdfxxxR αααααα . The first-order derivative is 

)()()2()(
 

  

)1(
xGdfxxR

x

=−= ∫
∞

ααα (Function 3), which is the marginal revenue. For 

Function 4, )(CY  is the inverse function of )(xG . 

 

The assumption of )(2)( xFxxf < , where )(1)( xFxF −= , for all 0≥x , is adopted 

and discussed by previous studies (Van Mieghem and Dada, 1999; Anupindi and Jiang, 

2008). Detailed discussions are provided by Anupindi and Jiang (2008). Some common 

distributions readily satisfy this assumption. The results verify that this assumption is 

reasonable in real business.  
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3.2 Concept of Flexible Capacity Strategy (FCS) 

 

Flexible capacity investment refers to a firm’s ability to adjust its production level to 

respond different demands under capacity constraint, i.e., by keeping its production 

level within its capacity. A firm without investing in flexible capacity has a stable 

production level that equals its capacity amount because there is no need to invest in 

excess capacity. According to the capacity strategy of firms, they are categorized into 

flexible firms and in-flexible firms. Figure 3.1 illustrates a firm’s operations decision-

making process sequentially with and without flexible capacity investment, respectively. 

The details of each decision-making stage are discussed in Section 3.3. 

 

 

Figure 3.1: Decision-making process of firms with/without FCS. 

 

 

3.3 Three-Stage Decision-Making Process of FCS 

 

3.3.1 Capacity decision stage 

 

At capacity decision stage, all firms, flexible and in-flexible, aim at maximizing their 

expected profits by determining the optimal capacity amounts. For both flexible and in-

flexible firms, their capacity decisions can be formulated in a common formulation as 

below:  

Actual Demand 

Information  

Firms with 

FCS 

Firms with 

IFCS 

Capacity 

Decision 
Demand 

Satisfied 

Responsive 

Pricing 

Production 

Decision 

Production 

Decision 

time 

 

time 

kq ≤≤ *0  

kq =  
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Max   )()())(),(()(
 

0  
iCiPii

kCdfqCQpqk −−=Π ∫
∞

ααα , 

                          s.t.   0≥
i

k , Ω∈i .  

i
k  is the capacity amount of firm i. The production quantity 

i
q of firm i is determined at 

the production decision stage.   

 

 

3.3.2 Production decision stage 

 

At the production decision stage, restrained by individual capacity, firms make their 

individual production decisions within an allowable range to maximize its ex-post profit.   

 

For flexible firms, they have ability to postpone their production decision until knowing 

the actual demand. Therefore, they are able to determine the optimal production 

quantity between zero and its full capacity. This operation can be formulated as below: 

Max   )(),()(
iPiii

qCQpqq −= απ , 

                                           s.t.  
ii

kq ≤≤0 , F
i Ω∈ . 

For in-flexible-capacity firms, they have to make the production decision before 

knowing the actual demand. Since there is no need to invest in excess capacity and 

therefore, in-flexible firms produce at their full capacity, i.e., 
ii

kq = , for all N
i Ω∈ .  

 

 

3.3.3 Pricing stage   

 

At the pricing stage, firms compete in quantity in the same market, which is also 

referred to as Cournot competition. Under quantity competition, all firms compete with 

each other in the same market at the same price which is determined by the total 

production quantity.  
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3.4 Cost Structures  

 

3.4.1 Capacity cost 

 

To acquire volume flexibility, a firm needs to adopt some adaptive operations. Multi-

trained employees, advanced manufacturing technology and design for manufacturing 

are top three practices for firms acquiring volume flexibility (Hallgren and Olhager, 

2009). Besides these three practices, set-up time reduction has also attracted significant 

attention by firms with volume flexibility (e.g., Hallgren and Olhager, 2009). To carry 

out these practices, firms have to afford some additional investments. In this paper, we 

assume 
F

C  and 
N

C  are the unit capacity costs of flexible and in-flexible firms 

respectively. Further, we assume 0>≥
NF

CC . The linear function is adopted for total 

capacity cost calculation. Total capacity cost for a certain capacity amount k  is defined 

as )(kC
c

. According to Van Mieghem and Dada (1999), all results for linear capacity 

cost functions can be extended to convex capacity cost functions.  

 

 

3.4.2 Total production cost  

 

Considering the planning period, the total production cost is discussed in two scenarios.  

(1) In the long run, we adopt a quadratic function as 
γ

β
2

)(

2

i

iiP

q
qqC += , Ω∈i . 

(2) In the intermediate or short run, we adopt a linear function as 
iiP

qqC β=)( , 

Ω∈i . 

Parameter 0≥β  is assumed to be the same for all firms. β  is also the unit production 

cost in the short run or medium run.  
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3.5   Mathematical Methods 

 

Here we adopt the backward induction method to identify mathematically the best 

actions for achieving the desire results. Backward induction is the process of reasoning 

backwards along the time line to determine the optimal actions. It starts from the end of 

the decision making process where a decision maker identifies all possible decisions that 

might be made at this point of time for all known situation ns and determines what 

corresponding actions to be taken to deal with the situations. With reference to the 

derived information on decisions and actions, the decision maker can derive the next 

decisions and actions in the same manner for next earlier time towards the beginning of 

the problem. This process continues backwards until the first decision at the beginning 

of the problem. At this moment, the decision maker has determined the best actions for 

every possible situation at every point of time. 

 

Specifically, in a monopoly model, the problem can be viewed as a sequential 

optimization problem of the firm. We solve it by starting from the problem of price 

setting in the market, then deciding on the optimal production quantity, and finally 

deciding on the capacity investment. In a duopoly model or an oligopoly model, 

differing from the monopoly model, a firm needs to consider the action of the other 

firms at each decision-making stage, rather than its own decision only. We solve the 

competition to find the Nash equilibrium.  
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Chapter 4     

Evaluation of FCS with Consideration of 

Total Production Cost Structure   

 

 

In this chapter, the long-term effect of FCS is examined with consideration of 

production cost structure. It has been pointed out by some research that the 

improvement of the total production cost structure can be achieved by adopting flexible 

technology (e.g., Stigler, 1939; Marschak and Nelson, 1962; Mills, 1984; Fluet and 

Phaneuf, 1997). Therefore, the examination of long term FCS is conducted by 

comparing it with flexible technology adoption. In this chapter, five possible production 

strategies in terms of FCS and flexible technology investment are established in a 

monopoly model. A production strategy consists of the decisions about flexible 

technology and flexible capacity, i.e., whether or not to invest in each of them. With 

flexible capacity investment, a firm is able to postpone its production decision until 

knowing the actual demand. For the same product quantity, a firm with flexible 

technology investment is able to reduce the total production cost. Each production 

strategy can be carried out by a decision-making operation process with a stage sequence 

of either technology-capacity-production-pricing or capacity-technology-production-

pricing. Regardless of the stage sequence adopted, both technology and capacity 

decisions are made before knowing the real demand of each market period to determine 

a firm’s production cost structure and production capability. By comparing a firm’s 

profit under different production strategies, a comprehensive understanding of FCS in 

the long-run can be achieved.  

 

This chapter is organized in three sections. Section 4.1 first describes the system features 

followed by the demonstration of details of flexible technology investment and flexible 

capacity investment respectively. Section 4.2 proposes five possible production 

strategies with different investment decisions in terms of flexible technology and flexible 

capacity. The optimal quantities of decision variables and the optimal profit of a firm 

under each production strategy are calculated. In Section 4.3, a few comparisons 
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between different productions strategies are made to evaluate FCS in the long run and 

find out the interplay between FCS and flexible technology investment.  

 

 

4.1 Two Aspects of Production Strategy 

 

4.1.1 Flexible capacity investment 

 

Following the discussion of FCS operations decision-making process in Chapter 3, we 

use specific cost structures and inverse demand function in this chapter to evaluate long 

term FCS. The additive linear demand inverse function is adopted, i.e, 

+
−= )(),( QQp αα  (e.g., Van Mieghem and Dada, 1999; Aviv and Federgruen 2001). 

The linear capacity cost function and quadratic total production cost function are 

adopted in this chapter.  

 

 

4.1.2 Relationship between cost structure and flexible 

technology 

 

The relationship between cost structure and technology flexibility facing demand 

fluctuations is demonstrated in Figure 4.1, which is proposed by Stigler (1939) and used 

in a few subsequent studies (e.g., Mills 1984). In Figure 4.1, indices 1 and 2 represent 

two different cost structures with different marginal costs, 
i

MC , and average costs, 

i
AC . The minimum average costs for the two cost structures occur at the same output. 

Stigler (1939) and a few other studies (e.g., Marschak and Nelson, 1962; Mills, 1984) 

show that the cost structure with the flattest slope of marginal cost indicates a higher 

level of technology flexibility in adjusting the throughput in each production period. 

The means and the involved efforts to improve the existing technology level are referred 

to flexible technology investment in this chapter. There are a various operational 

options to achieve such flexible technology investments, such as using advanced 
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technology or upgrading equipment (Stigler, 1939; Mills, 1984). By doing so, a firm is 

able to improve its total production cost structure. 

 

Specifically, the level of such technology flexibility can be treated as an endogenous 

variable, γ , in the quadratic total production cost function )2()(
2 γβ qqqC

P
+= , 

where 
p

C  is the total production cost, q  is the production quantity, and 0>β  is a 

constant parameter (Mills, 1984). A larger γ  implies a higher technology level yielding a 

lower total production cost. The basic technology level without any additional 

investment is defined as 0>
N

γ . The constraint 
N

γγ ≥  stipulates that the adopted 

technology level is not lower than the basic technology level. This production cost 

function is first proposed by Mills (1984), and then adopted by a few subsequent studies 

to investigate flexible technology (e.g., Fraser, 1984; Fluet and Phaneuf, 1997). A flexible 

technology firm needs to determine the optimal technology level γ  and incurs the 

technology investment cost )()(
Nrt

CC γγγ −= , where 0>
r

C  is the technology 

investment cost per unit level of technology flexibility. 

 

 

Figure 4.1: Technology Flexibility and Cost Curves. 

 

With respect to technology investment cost function )()(
Nrt

CC γγγ −= , at the 

current stage of this study, we simplify technology investment cost in a linear form, 

which reflects that: (1) a higher technology level associates with a higher investment cost 

(or installation cost); (2) a larger adjustment on existing technology, a higher cost occurs.  
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4.1.3 Production strategy 

 

A production strategy is composed of a combination of investment decisions on flexible 

capacity (C) and flexible technology (T), i.e., whether or not to invest in each of them 

and the sequence of making the decisions. With the consideration of the investment 

sequence, a total of five possible production strategies are shown in Table 4.1. 

 

T            
C 

No Yes 

No 
NT+NC (No flexible 
capacity and no flexible 

technology) 

T-only (Flexible technology only) 

Yes 

 
C-only 

(Flexible capacity only) 

T+C 
(Flexible technology followed by 

flexible capacity strategy) 
C+T 

(Flexible capacity followed by flexible 
technology strategy) 

 

Table 4.1: Five possible production strategies. 

 

 

4.2   Five Production Strategies 

 

In this section we present the formulations of the five production strategies, followed by 

deriving the optimal decisions of each production strategy. The sequential decision 

variables of each strategy are listed in Table 4.2. Throughout this thesis, variables with 

superscripts N, T, C, T+C and C+T are defined as optimal values of the variables under 

the strategies NT+NC, T-only, C-only, T+C and C+T, respectively. To facilitate 

presentation, we let ααβααβα
β

dfCXdf
F

F

CX
F

CX

)())(()()(
  

)(  

2

4

1
)(  

  

2

4

1
0 ∫∫

∞

−+−=Π . 
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Production Strategy Sequential decision variables 

NT+NC Capacity amount 

T-only Technology level� Capacity amount 

C-only Capacity amount� Production quantity 

T+C Technology level� Capacity amount� Production quantity 

C+T Capacity amount � Technology level� Production quantity 

 

Table 4.2: Sequential decisions of each production strategy. 

 

4.2.1  Production decision stage  

 

As shown in Table 4.2, for strategies with flexible capacity investment, the production 

quantity is the decision variable that maximizes the ex-post profit after knowing the 

actual demand, given as follows: 

 Max ))2(()(),,(
2 γβααγπ qqqqkq +−−=

+ , s.t. kq ≤≤0 .         (4.1) 

The optimal production quantity is provided in Proposition 4.1.  

 

Proposition 4.1   For a firm investing in flexible capacity, with any given capacity k  

and technology level γ , the optimal production quantity as a function of demand 

realization α  is 

( ) ( )















≤
+

+

+
+<≤−

+

<≤

=

α
γ

γ
β

γ

γ
βαββα

γ

γ

βα

γα

kk

kkq

12
 if

12
 if

12

0 if0

, . 

□ 
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4.2.2 No flexible technology and no flexible capacity 

(NT+NC) strategy 

 

Under NT+NC strategy, a firm only determines the optimal capacity to maximize its 

profit, as : Max k
k

Cdfkkk

N

N

N
)

2
()()()(

 

0  γ
βααα ++−−=Π ∫

∞
+ , s.t. 0≥k .       (4.2) 

The optimal decisions of NT+NC strategy are provided by Proposition 4.2.  

 

Proposition 4.2  Under the NT+NC strategy, a firm’s optimal production quantity 

equals its capacity, i.e., NN
kq = , which satisfies βγ +=−

NN

NN
CkkG )( . The firm’s 

optimal expected profit is )2()()()(
22

N

NNNN
kkFk γ+=Π .                                    □           

 

 

4.2.3 Flexible technology only (T-only) strategy 

 

Under T-only strategy, Tγ and T
k are formulated as follows.  

Technology level decision 

 Max    )()
2

()()()(
 

0  
NrN

T
Ck

k
Cdfkk γγ

γ
βαααγ −−++−−=Π ∫

∞
+ , 

s.t.    
N

γγ ≥ ,                                                                                          (4.3) 

where k  is the optimal solution of the following capacity decision formulation.  

Capacity decision 

Max   k
k

Cdfkkk
N

T
)

2
()()()(

 

0  γ
βαααγ ++−−=Π ∫

∞
+ , s.t.  0≥k .      (4.4) 

 

Proposition 4.3  Under T-only strategy with given 
N

γ , β , 
N

C  and 
r

C ,  

(i) the optimal technology level is 





 −−≤<

=
otherwise

)(0 if},max{
2

2

1*

N

NrTN
T

βCµC

γ

γγ
γ , where 

r

rN

T

C

CCY

2

)2(
*

++
=

β
γ ; 
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(ii) if *

T

T γγ = , then the optimal production quantity equals the optimal capacity, 

which satisfies )2(
rN

TT
CCYkq ++== β  and the optimal profit is 

Nr

TTT
CkFk γ+=Π )()(

2 . If 
N

T γγ = , then the results are the same as those under 

the NT+NC strategy.                                                                                                     □ 

 

 

4.2.4 Flexible capacity only (C-only) strategy 

 

Under C-only strategy, C
k  and C

q formulated as below.  

Capacity decision     

Max    kCdf
q

qqk
F

N

C
−−−−=Π ∫

∞
+

 

0  
)()

2
)(()( αα

γ
βα ,  s.t. 0≥k ,                 (4.5) 

where q  is the optimal solution of the following production decision formulation.  

 

 

Production decision     

Max )
2

()(),(

2

N

q
qqqkq

γ
βααπ +−−=

+ , s.t. kq ≤≤0 .                  (4.6)  

 

Proposition 4.4  Under C-only strategy with given 
N

γ , β  and 
F

C , the optimal 

capacity is ))((
21

β
γ

γ
−

+
=

F

N

NC
CXk , the optimal production quantity is 

),(
N

CC
kqq γα= , and the optimal expected profit is 

0
21

2
Π

+
=Π

N

NC

γ

γ
.                     □ 

 

 

4.2.5 Flexible technology-flexible capacity (T+C) strategy 

 

Under T+C strategy, sequential decisions CT +γ , CT
k

+  and CT
q

+ are formulated as below.  

Technology level decision  
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      Max   )()()
2

)(()(
 

0  
NrF

CT
CkCdf

q
qq γγαα

γ
βαγ −−−−−−=Π ∫

∞
++ , 

 s.t.    
N

γγ ≥ ,                                                                                          (4.7) 

where k  and q  are the optimal solutions of capacity decision and production decision.  

Capacity decision    

Max   kCdf
q

qqk
F

CT
−−−−=Π ∫

∞
++

 

0  
)()

2
)(()( αα

γ
βαγ ,   s.t. 0≥k .      (4.8) 

Production decision    

Max   )
2

()(),,(

2

γ
βααγπ

q
qqqkq +−−=

+ , s.t. kq ≤≤0 .                 (4.9) 

 

Proposition 4.5  Under T+C strategy with given 
N

γ , β , 
F

C  and 
r

C , the optimal 

technology level, capacity, production quantity and expected profit are 

},max{
*

CTN

CT

+

+
= γγγ , ))((

21
β

γ

γ
−

+
=

+

+

+

FCT

CT

CT
CXk , ),(

CTCTCT
kqq

+++
= γα  

and )(
21

2
0 N

CT

rCT

CT

CT
C γγ

γ

γ
−−Π

+
=Π

+

+

+

+ , respectively, 

where )12(
2

1
0

*
−Π=+ rCT

Cγ .                                                                                    □ 

 

 

4.2.6 Flexible capacity-flexible technology (C+T) strategy 

 

Under C+T strategy, the optimal TC
k

+ , TC+γ  and TC
q

+ are determined over time.  

Capacity decision  

Max   kCCdf
q

qqk
FNr

TC
−−−−−−=Π ∫

∞
++

)()()
2

)(((
 

0  
γγαα

γ
βα , 

s.t.   0≥k .                                                                                            (4.10) 

Technology level decision   

Max   )()()
2

)(()(
 

0  
Nr

TC
Cdf

q
qqk γγαα

γ
βαγ −−−−−=Π ∫

∞
++ , 

s.t.   
N

γγ ≥ .                                                                                        (4.11) 
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Production decision  

The formulation of this stage is exactly the same as that of T+C strategy. 

 

We first test the sequential investment effect by comparing T+C strategy and C+T 

strategy. The difference between these two strategies is in what is determined first and 

the second decision is made based on the first decision. For example, flexible capacity 

investment can be achieved by managing workforce, such as using multi-skilled 

employees; flexible technology investment can be achieved by upgrading equipment, or 

using a new technology during the production process. Accordingly, T+C strategy 

means a firm choosing its technology and equipment first. Then, based on its chosen 

technology and equipment, a firm decides its optimal workforce. C+T strategy means 

that a firm determines its number of workers and type of workers, such as, high efficient 

or low efficient, multi-skilled or single-skilled workers. Based on this workforce 

management, the firm decides its technology choice and chooses its equipment.  

 

Theorem 4.1   Under T+C strategy and C+T strategy, a firm’s optimal capacity k , 

technology level γ , production quantity q and the optimal expected profit are exactly 

the same.                                                                                                                        □ 

 

Theorem 4.1 establishes that there is no sequential investment effect of a firm’s optimal 

decisions. In other words, the same investments lead to the same decisions and profit, 

regardless of the sequence of the investment decisions. Therefore, a firm only needs to 

decide which investment(s) to make. 

 

 

4.3 Strategy Comparisons 

 

In this section we make comparisons between the five strategies to evaluate each 

strategy’s pros and cons, with a view to understanding the relationship between flexible 

technology investment and flexible capacity investment, and finding out the optimal 

strategy.  
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4.3.1 Framework of strategy comparisons 

 

Due to the equivalence between the T+C strategy and the C+T strategy, there are only 

four production strategies to consider: NT+NC, T-only, C-only, and T+C, as shown in 

Figure 4.2. Each arrow and the number next to it represent a comparison and the 

comparison sequence, respectively, in the following discussion. The arrows in parallel 

indicate that there may be some similarities between the two comparisons as the 

investment difference between the strategies compared is the same, i.e., comparisons 

between (1) and (5), and between (2) and (4). To facilitate discussion of the comparative 

analyses between different strategies, we define the “bound” of a strategy as: If strategy 

A is said to be a lower (or an upper) bound of strategy B, then for all the possible 

situations, the expected profit of strategy A is always not greater (or less) than the 

expected profit of strategy B, i.e., BA
Π≤Π  (or BA

Π≥Π ). 

 

 

 

Figure 4.2: Structure of comparisons between different strategies. 

 

 

4.3.2 Comparison between NT+NC strategy and C-only 

strategy 

 

Comparison results between NT+NC strategy and C-only strategy are presented in 

Proposition 4.6.  

 

Proposition 4.6 Given 
N

C , 
N

γ , β :  

NT+NC 

C-only 

T-only 

T+C=C+T 

+C +T 

(2) (5) 

(3) 

(1) (4) 

+T 
+C 
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(i) For )(βLCC
FN

<≤ , the expected profit of C-only strategy is strictly 

decreasing in 
F

C  and 0))(()()( =Π>Π≥Π βLCC
C

F

C

N

C .  

(ii) There exists a unique ))(,[ˆ βLCC
NF

∈  satisfying N

F

C
C Π=Π )ˆ( ; 

F
Ĉ  is 

strictly increasing in ),0[ βµ −∈
N

C ;  

(iii) Profit comparison between NT+NC strategy and C-only strategy is: (1) when 

)(ˆ βLCC
FF

<< , CN
Π>Π ; (2) when 

FFN
CCC ˆ<≤ , NC

Π>Π .              □    

 

Proposition 4.6 points out that the C-only strategy can be beneficial or harmful to a 

firm’s expected profit under different environments. The comparison between the 

NT+NC strategy and the C-only strategy is shown in Figure 4.3. The comparison 

follows a threshold policy: there is a threshold of flexible capacity cost that leads to the 

same profit under the NT+NC strategy or the C-only strategy; a firm benefits from 

flexible capacity with a capacity cost lower than the threshold, but it incurs a loss when 

the capacity cost is higher than the threshold. Obviously, the C-only strategy is always 

better than the NT+NC strategy by avoiding excess production when 
NF

CC = . 

However, as the flexible capacity cost increases, there is a trade-off between the saving 

from avoiding production waste and the spending on expensive capacity costs. 

 

Figure 4.3: Comparison between NT+NC strategy and C-only strategy. 

 

 

0 
 

βµ－  

 

)(βL  

)(βL  

 

N
C  
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4.3.3 Comparison between NT+NC strategy and T-only 

strategy 

 

Comparison between NT+NC strategy and T-only strategy is provided by Proposition 

4.7.  

 

Proposition 4.7  Comparing NT+NC strategy and T-only strategy, we have 

(i) under T-only strategy, define },min{
rrrT

CCC = , the optimal capacity and 

expected profit are )2(
rTN

T
CCYk ++= β  and

NrT

TTT
CkFk γ+=Π )()(

2 , 

respectively; further, if
rr

CC ≤ , T
Π  is strictly decreasing in 

r
C ; if 

rr
CC > , 

T
Π  keeps constant as )(

r

T
CΠ ;  

(ii) the optimal decisions of NT+NC strategy can be obtained from resolving T-

only strategy with modified parameter
rr

CC = , and then )(
r

TN
Ckk =  and 

)(
r

TN
CΠ=Π ; 

where 2

2

1 )(0 βCµC
Nr

−−<<  satisfying 
N

r

rN

C

CCY
γ

β
=

++

2

)2(
.                         □ 

 

Part (i) of Proposition 4.7 describes the pattern of a firm’s expected profit under the T-

only strategy. There is a threshold of the flexible technology cost resulting in the same 

profit for the NT+NC strategy and the T-only strategy. Only when the flexible 

technology cost is lower than the threshold can a firm benefit from investing in flexible 

technology; otherwise the firm should maintain its basic technology level. This insight of 

flexible technology investment enables us to draw the conclusion of the part (ii) of 

Proposition 4.7: the NT+NC strategy is a particular case of the T-only strategy by 

replacing some parameters. Specifically, the NT+NC strategy can be regarded as a lower 

bound for the T-only strategy. This means that the T-only strategy completely 

dominates the NT+NC strategy and improves profit when the technology investment 

cost is less than the threshold. The relationship between the NT+NC strategy and the 

T-only strategy is shown in Figure 4.4. The cost threshold  
r

C  determines whether a 

firm should invest in flexible technology. A firm’s expected profit decreases with an 

increase in 
r

C  within the range ],0[
r

C  and remains constant as N
Π  if 

rr
CC >  . 
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Moreover, the optimal decision of the T-only strategy does not harm a firm’s profit. The 

difference in the expected profit under these two strategies is NT
Π−Π  as shown in 

Figure 4.4. While the C-only strategy can increase or decrease a firm’s profit under 

different costing environments, the T-only strategy ensures that a firm obtains the same 

or a higher profit as compared with the NT+NC strategy. However, this does not mean 

that the T-only strategy is better than the C-only strategy as analyzed in the following 

section. 

 

 

Figure 4.4: Optimal expected profit with different 
r

C  under T-only strategy. 

 

 

4.3.4 Comparison of T-only strategy and C-only strategy 

 

Theorem 4.2 tells the optimal investment if a firm only invests in either T-only or C-

only strategy.  

 

Theorem 4.2   Given
N

C ,
N

γ  and β , the comparison between T-only and C-only 

strategy is:  

(i) If )()(
r

T

N

C
CC Π<Π , then )()(

r

T

F

C
CC Π<Π  for all situations;  

(ii) If )()(
r

T

N

C
CC Π≥Π , then for each ],0(

rmr
CC ∈ , )()(

r

T

F

C
CC Π≤Π for all 

))(,[ βLCC
NF

∈ , where 






Π<Π

Π≥Π
=

)0()( if

)0()( if0

T

N

C
r

T

N

C

rm

CC

C

C  and ],0(
rr CC ∈  

satisfies )()(
N

C

r

T
CC Π=Π . Moreover, for each ),( ∞∈

rmr
CC , there exists a 

( )
r

T
CΠ  

( )0
T

Π  

N

r

T
C

Π=

Π )(
 

0 
r

C  
r

C  

( )
r

T
CΠ  

NT
Π−Π  
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unique ))(,( βLCC
NF ∈  such that 













<<

=

<≤

Π<

Π=

Π>

Π

)( if

 if

 if

)(

)(

)(

)(

βLCC

CC

CCC

C

C

C

C

FF

FF

FFN

r

T

r

T

r

T

F

C . 

Furthermore, the curve )()(
r

T
F

C
CC Π=Π  is strictly increasing for 

],(
rrmr

CCC ∈  and horizontal for ),[ ∞∈
rr

CC .                                                □ 

 

Theorem 4.2 provides the comparison results of the T-only and C-only strategies under 

various costing environments. Note that )(
r

TN
CΠ=Π . Only when the C-only 

strategy is better than the NT+NC strategy can the C-only strategy compete with the T-

only strategy. There is a unique division of profit in the comparison between the T-only 

strategy and the C-only strategy as shown in Figure 4.5. 

 

 

Figure 4.5: Comparison between C-only strategy and T-only strategy when 

( ) ( )
r

T

N

C
CC Π>Π  and ( ) ( )0

T

N

C
C Π≥Π . 

 

 

4.3.5 Comparison between C-only strategy and T+C 

strategy 

 

The comparison between C-only strategy and T+C strategy is given in Proposition 4.8.  

Proposition 4.8   Comparing C-only strategy and T+C strategy: For any given 
F

C ,   

F
C  

r
C  

N
C  

r
C  

T-only 

)(βL  ）（
rF CC  

FC  C-only 

0 
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(i) the optimal expected profit of T+C strategy )(
r

CT
C

+
Π is strictly decreasing in 

r
C  

for 
CT

rr
CC

+

≤<0 , and 
0

)21(2)( Π+=Π
+

NNr

CT
C γγ  for 

CT

rr
CC

+

≥ , where 

2

0

)21(

2

N

CT

rC
γ+

Π
=

+

; 

(ii) the C-only strategy can be reduced from T+C strategy by modifying the 

parameter
CT

rr
CC

+

= , and then )(
CT

r
CTC

Ckk
+

+
=  and )(

CT

r
CTC

C
+

+
Π=Π ; 

(iii) C-only strategy is a lower bound of T+C strategy; moreover, the increase in profit 

by T+C strategy relative to C-only strategy is %100
2

1
⋅≤

Π

Π−Π
=

+

N

C

CCT

γ
δ .     □ 

 

Based on the comparative analysis, we observe from Figure 4.6 two similarities as 

follows: (1) the expected profit of the T+C strategy has a similar pattern to that of the 

T-only strategy, and (2) the similar relationship between the NT+NC strategy and the T-

only strategy also exists between the C-only strategy and the T+C strategy. These 

observations indicate that flexible technology does not change a firm’s decision-making 

structure, but it provides a trade-off between investment costs, total production cost 

reduction, and revenue changes. Moreover, compared with the C-only strategy, the 

largest improvement of the T+C strategy is %100)2(1 ⋅
N

γ . However, the C-only 

strategy cannot always benefit a firm, nor can the T+C strategy. 

 

 

Figure 4.6: Optimal expected profit with different 
r

C  under T+C strategy. 
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4.3.6 Comparison between T-only strategy and T+C 

strategy (equivalent to C+T strategy) 

 

The aforementioned interpretation of the investment effects concludes that the T-only 

strategy dominates the NT+NC strategy, and the T+C strategy (equivalent to the C+T 

strategy) dominates the C-only strategy. Their expected profits can be ranked as 

TN
Π≤Π  and TCCTC ++

Π=Π≤Π . From the strategic perspective, the optimal 

production strategy is either the T-only strategy or the T+C strategy (equivalent to the 

C+T strategy). However, we note from our results that TN
ΠΠ ＝ and/or 

TCCTC ++
Π=ΠΠ ＝  under certain conditions. Under these conditions, flexible 

technology investment is not helpful to improve a firm’s profit. This indicates that some 

strategies result in the same profit from different investments. To facilitate discussion, 

we differentiate “effective strategy” and “efficient strategy” from the strategic 

perspective and the operations perspective, respectively, in the following.  

 

Effective strategy: Strategy A is said to be more effective than strategy B if strategy A 

makes more profit than strategy B. 

Efficient strategy: Strategy A is said to be more efficient than strategy B if strategy A 

makes the same profit with a fewer number of investments than strategy B. 

 

It is noted that under these two definitions, the efficiencies of two strategies are 

concerned only when the two strategies are equally effective. Therefore, it is not 

possible that a strategy A is more efficient and less effective than strategy B.  

 

Based on these definitions, Theorem 4.3 and Theorem 4.4 below draw conclusions from 

the comparative analyses from the strategic perspective and the operations perspective, 

respectively.  

Theorem 4.3 Define TCT
Π−Π=∆Π

+ . Let 
CT

FC
+

 satisfy 
2

0

)21(

)(2

N

CT

F

r

C
C

γ+

Π
=

+

. A 

unique *

r
C  satisfying 0),(

*
=∆Π

+CT

Fr
CC  exists. With a given

N
C , 

(i) if *
0

rr
CC << , then there exists a unique )(

*

rF
CC  satisfying  
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







≤<<

==

<≤>

∆Π

)()( if0

)( if0

)( if0

),(
*

*

*

βLCCC

CCC

CCCC

CC

FrF

rFF

rFFN

Fr
; 

(ii) if 
rrr

CCC ≤≤
* , then there exists a unique )(

~
rF

CC  satisfying  









≤<<

==

<≤>

∆Π

)()(
~

 if0

)(
~

 if0

)(
~

 if0

),(

βLCCC

CCC

CCCC

CC

FrF

rFF

rFFN

Fr
; 

(iii) if 
rr

CC < , then 








≤<<

==

<≤>

∆Π

)()(
~

 if0

)(
~

 if0

)(
~

 if0

),(

βLCCC

CCC

CCCC

CC

FrF

rFF

rFFN

Fr
. 

                                          □ 

 

From the strategic perspective, Theorem 4.3 states that the most effective production 

strategy is either the T-only strategy or the T+C strategy (equivalent to the C+T strategy) 

depending on the investment costing environment. Both T-only strategy and T+C 

strategy include technology investment which improves the total production cost 

structure. This means technology investment is always preferred from the strategic 

perspective. On the other hand, additional investment in flexible capacity may not 

increase, or even damage, a firm’s profit. This conclusion is similar to that of the 

comparison between the NT+NC strategy and the C-only strategy. The comparison 

results are trade-offs between cost saving from avoiding production waste and increase 

in revenues by controlling production, and the resulting product price, and spending on 

the expensive flexible capacity. The results of Theorem 3 are demonstrated in Figure 4.7. 
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Figure 4.7: Comparison between T-only strategy and T+C strategy 

with given 
N

C . 

 

As shown in Figure 4.7, there is a threshold 
F

C  that determines the most effective 

strategy under different investment costing environments. The most effective strategy is 

the T-only strategy when it is above the threshold, and is the T+C strategy when it is 

below the threshold. Affected by both flexible capacity investment cost and flexible 

technology investment cost, the comparison results between the T-only strategy and the 

T+C strategy embrace three situations. The first situation is ),0(
*

rr
CC ∈ , in which at 

the division curve both the T+C and the T-only strategies improve the technology level 

due to the comparatively lower technology investment cost. The second situation is 

),[
*

rrr
CCC ∈ , in which at the division curve the T-only strategy improves the 

technology level but the T+C strategy cannot. The third situation is ),[ ∞∈
rr

CC , in 

which at the division curve flexible technology investment is invalid for both the T-only 

strategy and the T+C strategy. Based on the analyses of these three situations, the most 

effective and efficient strategy (EES) that achieves the maximum profit using the 

minimum number of investments can be determined by Theorem 4.4 below from the 

operational perspective.  

  

Theorem 4.4  Given 
N

C , 
N

γ , β , assume )(βLCC
FN

≤≤ , following all definitions 

in Proposition 7.6, the most effective and efficient strategy (EES) is: 

r
C  

N
C

 

*

r
C  

0

 

T 

)(βL

T+C=C+T 

T  

r
C  

)(
*

rF
CC  

)(
~

rF
CC  

F
C
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(i) if *
0

rr
CC << , then EES =





 <≤+

otherwisestrategy,only -T

)( ifstrategy, CT
*

rFFN
CCCC

; 

(ii) if 
rrr

CCC ≤≤
* , then EES =













<≤

<≤+

+

+

otherwisestrategy,only -T

)(
~

 if strategy,only -C

 ifstrategy, CT

rFF

CT

F

CT

FFN

CCCC

CCC

; 

 (iii) if 
rr

CC < , then EES =













+

<≤

<≤+

+

+

otherwisestrategy, NCNT

)(
~

 ifstrategy,only -C

 ifstrategy, CT

rFF

CT

F

CT

FFN

CCCC

CCC

; 

For all environments, T+C strategy equals C+T strategy.                                              □ 

 

Theorem 4.4 is illustrated in Figure 4.8, which provides the most EES under different 

costing environments. Comparing Figure 4.7 and Figure 4.8, we see that the T-only 

strategy is equivalent to the NT+NC strategy under certain environments. An increase 

in flexible technology investment cost results in profit reduction until the profit equals 

that under the NT+NC strategy. The flexible technology investment cost at which the 

T-only strategy is equivalent to the NT+NC strategy is 
r

C . A firm only improves its 

technology level when the unit technology investment cost is lower than 
r

C . When the 

investment cost is higher than 
r

C , the flexible technology investment of the T-only 

strategy is actually invalid. Regarding the T+C strategy, based on a comparison of Figure 

4.7 and Figure 4.8, we can show that the T+C strategy is equivalent to the C-only 

strategy under some environments. The division is affected by both flexible capacity 

investment cost and flexible technology investment cost simultaneously. There is a 

decreasing curve 
CT

FC
+

 leading to the equivalence between the T+C strategy and the C-

only strategy, as shown in Figure 4.7. In the area below the curve 
CT

FC
+

, a firms invests 

in flexible technology, while the firm maintains the basic system technology level in the 

area above the curve. This indicates that the T+C strategy is equivalent to the C-only 

strategy in the area above the curve 
CT

FC
+

, i.e., the flexible technology investment of the 

T+C strategy is not helpful to improve technology level.  
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Figure 4.8: The optimal production strategy with given 
N

C . 

 

We see from Figure 4.8 that the most EES can be any one of the five possible strategies, 

i.e., NT+NC, T-only, C-only, T+C or C+T. Under all the environments, the T+C 

strategy is equivalent to the C+T strategy. The results illustrate that more flexibility may 

not guarantee more profit. Particularly, any flexibility investment cannot increase a 

firm’s profit within a specific area, i.e., )}()(
~

,|),{( βLCCCCCCC
FrFrrFr

<<< , in 

which the most EES is the NT+NC strategy; in other areas in which the most EES 

includes at least one type of investment, a firm benefits from flexible technology and/or 

flexible capacity investments. 
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Chapter 5    

Asymmetric Oligopoly Model 

 

 

In Chapter 4, we evaluate long term FCS with consideration of production cost 

structure. In this chapter, we focus on short term or medium term FCS in competitive 

environments. We construct an asymmetric oligopoly competition model consisting of r 

flexible firms and s in-flexible firms under demand uncertainty. The total number of 

firms is n, i.e., n = (r,s). Each firm carries out a decision-making operation process 

spanning capacity planning, production procedure and pricing stages, as discussed in 

Chapter 3. All firms compete on the quantity in a same market, i.e., Cournot 

competition. By characterizing the equilibrium, we find out interplays among decisions 

of multiple firms.  

 

This chapter consists of five sections. Section 5.1 describes the assumptions adopted in 

the model including notations used, demand function, competition mechanism and cost 

structure. Section 5.2 describes a three-stage decision-making operational process of 

both flexible firms and in-flexible firms. It also characterizes the decision pattern of 

firms which adopt the same strategy. Section 5.3 characterizes the Nash equilibrium of a 

competition involving flexible firms and in-flexible firms. The optimal capacity amount, 

production quantity and the expected profit of each firm at equilibrium are provided. 

Section 5.4 gives the sensitivity analyses of some influential factors. The individual 

profits of the flexible firms and in-flexible firms are compared in Section 5.5 to evaluate 

the performance of FCS and IFCS in an asymmetric oligopoly competition. 

 

 

5.1 Notations in an Asymmetric Oligopoly Model 

 

Assuming there are r flexible firms and s in-flexible firms in a two-strategy multiple-firm 

model, the total number of firms is srn += , i.e., n=(r, s). The superscript F (Flexible) 

and N (In-flexible) are used to specify variables of flexible and in-flexible firms, 
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respectively. Let ∑
Ω∈

=
F

i

F

i

F
qQ be the total production quantity of flexible firms; 

∑
Ω∈

=
N

j

N

j

N
qQ  be the total production quantity of in-flexible firms, and 

NF

l

l
QQqQ +==∑

Ω∈

 be the total production quantity of all firms. Also, we let 

∑
Ω∈

=
F

i

F

i

F
kk be the total capacity of all flexible firms; ∑

Ω∈

=
N

i

N

i

N
kk be the total capacity 

of all in-flexible firms.  

 

 

5.2 Three-Stage Decision-Making Operations in 

Asymmetric Oligopoly Model 

 

Following the three-stage decision-making process discussed in Chapter 3, we formulate 

each stage specifically under an oligopoly competition environment in a backward 

sequence in the following.  

 

5.2.1 Pricing stage 

 

Following the discussion at pricing stage in Chapters 3 and 4, the demand inverse 

function is ++
−−=−= )()(),(

NF
QQQQp ααα .    

 

 

5.2.2 Production decision stage 

 

Similar to the discussion in Chapters 3 and 4, for each in-flexible firm N
i Ω∈ , the 

production quantity equals its capacity amount, i.e., N

i

N

i
kq = , for all N

i Ω∈ .  

 

For each flexible firm, it aims at maximizing its ex-post profit by producing an optimal 

quantity under capacity constraints for different demand realizations. This can be 

formulated as:                               
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Max   ( ) F

i

F

ij

F

i

F

i
qQqijqq βααπ −−=Ω∈∀

+
)(}{\,, , 

                               s.t.    F

i

F

i
kq ≤≤0 , F

i Ω∈ .                                                       (5.1) 

To simply the notation, we define 

( )
i

ij

jiij

F

i

F

i

F

i

F

i
qqqqijqqqm βααπ −−−=Ω∈∀=

+

≠

∑ )(}{\,,)( .          (5.2) 

The optimal production decision of each firm is provided by Proposition 5.1.  

 

Proposition 5.1  Consider any feasible firm i. Suppose thatα , 
j

k , Ω∈j , and F

j
q , 

}{\ ij
F

Ω∈ , are given. Then the optimal production decision *F

i
q of the feasible firm i 

is 








<+

+≤<

≤

=

xkk

kxq

x

q

F

i

F

i

F

i

F

ib

F

i

β

ββ

β

2,

2,

,0
* , where N

ij

F

j
kqx −−= ∑

≠

)(αα and 
2

β−
=

x
q

F

ib
.       □ 

 

 

5.2.3 Capacity decision stage 

 

At capacity decision stage, both flexible and in-flexible firms aim at maximizing their 

expected profits. Their capacity decisions can be formulated respectively as below: 

For flexible firms: 

        Max    F

iF

NFF

i

F

i
kCdfkQqk −−−−=Π ∫

∞
+ ααβα )())(()(

 

0 
, 

s.t.    0≥
F

i
k , F

i Ω∈ .                                                                    (5.3) 

For in-flexible firms: 

Max   N

iN

NFN

i

N

i
kCdfkQqk −−−−=Π ∫

∞
+ ααβα )())(()(

 

0 
, 

s.t.    0≥
N

i
k , N

i Ω∈ .                                                                      (5.4) 

Specifically, for an in-flexible firm N
i Ω∈ , N

i

N

i
kq = ; for a flexible firm F

i Ω∈ , 

*F

i

F

i
qq = , F

i

F

i
kq ≤≤

*
0 , where *F

i
q  is the optimal production quantity to maximize the 

ex-post profit of the flexible firm F
i Ω∈ .  
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5.2.4 Pooling principle  

 

To simplify the discussion of firms’ decisions in this chapter, we define “pooling 

principle” as follows: If we say there is a pooling principle in a group, then all members 

in the group evenly share the risk and the profit of the group. In the following 

discussion in this section, to identify the decisions of each firm at equilibrium of 

asymmetric oligopoly competition, we characterize the decision pattern of firms which 

adopt the same strategy, either FCS or IFCS. We prove that firms adopting the same 

strategy make the same decisions regardless of the number of rivals, the strategy 

adopted, the demand uncertainties and costing environments. In other words, there is a 

general pooling principle among firms even in a market involving two strategies 

simultaneously. 

 

In the following, Propositions 5.2 - 5.5 provide some characterizations of the optimal 

capacity decisions of flexible and in-flexible firms. Based on the results of Propositions 

5.2 - 5.5, Theorems 5.1 and 5.2 state the pooling principle among flexible and in-flexible 

firms, respectively.  

 

Consider any feasible firm F
i Ω∈ . Suppose that

j
k , }{\ ij Ω∈ , and )(αF

j
q , 

}{\ ij
F

Ω∈ , are given. Let ( )NN

l

F

j

F

j

F

i

F

i

F

i

F
lkijqkkkA Ω∈≠∀Π= ,and,)(,)( α  be 

the expected profit of firm i. The objective of firm i is to maximize )(
F

i

F
kA . 

 

Proposition 5.2   In an oligopoly market competition with 0>r  flexible firms and 

0≥s  in-flexible firms, the optimal capacity of flexible firm F
i Ω∈  , i.e., *F

i
k , is either 

(i) 0
*

=
F

i
k  and 0)0(

)1(

≤
F

A ; or (ii) 0
*

>
F

i
k  and 0)(

*)1(
=

F

i

F
kA .                         □ 

 

Proposition 5.3   At the equilibrium of an oligopoly market competition with 0>r  

flexible firms and 0≥s  in-flexible firms, the optimal capacities of flexible firms are 

either 0
*

=
F

i
k , for all F

i Ω∈ ; or 0
*

>
F

i
k , for all F

i Ω∈ ; further,  

(i) 0
*

=
F

i
k , for all F

i Ω∈ , is equivalent to β−≥ )(
F

N
CXk ; 

(ii) 0
*

>
F

i
k , for all F

i Ω∈ , is equivalent to β−< )(
F

N
CXk .                        □ 
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Theorem 5.1   At the equilibrium of an oligopoly market competition with 0>r  

flexible firms and 0≥s  in-flexible firms, all flexible firms F
i Ω∈  make the same 

capacity decision and the same production decision. That is:  

(i) If β−≥ )(
F

N
CXk , then 0

**
==

F

i

F

i
qk  for all F

i Ω∈ . 

(ii) If β−< )(
F

N
CXk , then 0

1*
>==

FF

e

F

i
k

r
kk  for all F

i Ω∈ ; further, we 

have β−=++ )()1(
F

F

e

N
CXkrk . The individual profit of each flexible firm is 






 −−+−−

+
=Π ∫∫

∞

+

 

)( 

2
)( 

 

2

2
)())(()()(

)1(

1

F

F

N
CX

N

F

CX

k

NF

e
dfkCXdfk

r
ααβααβα

β
.  

The production decision of each flexible firm is F

e

F

i
qq =

*  for all F
i Ω∈ , 

 which is presented as 










<+++

+++≤<+
+

−−

+≤≤

=

αβ

βαβ
βα

βα

NF

e

F

e

NF

e

N

N

N

F

e

kkrk

kkrk
r

k

k

q

)1(,

)1(,
1

0,0

.    □ 

 

It should be noted that when N
k  is given, F

e
k  can be uniquely determined by Theorem 

5.1. Furthermore, we have corollary 5.1 as a direct consequence of Theorem 5.1. 

 

Corollary 5.1   At the equilibrium of an oligopoly market competition with 0>r  

flexible firms and 0=s  in-flexible firms, all flexible firms F
i Ω∈  make the same 

capacity decision and the same production decision. That is:  

(i) If )(βLC
F

≥ , then 0
**

==
F

i

F

i
qk  for all F

i Ω∈ . 

(ii) If )(βLC
F

< , then 0
1

)(*
>

+

−
==

r

CX
kk

FF

e

F

i

β
 for all F

i Ω∈ . The profit of 

each flexible firm is  






 −+−

+
=Π ∫∫

∞ 

)( 

2
)( 

 

2

2
)())(()()(

)1(

1

F

F

CX
F

CX
F

e
dfCXdf

r
ααβααβα

β
. The 

production decision of each flexible firm is F

e

F

i
qq =

*  for all F
i Ω∈ , where 










<

≤<
+

−

≤≤

=

α

αβ
βα

βα

)(,

)(,
1

0,0

F

F

e

F

F

e

CXk

CX
r

q .                      □ 
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Consider any in-feasible firm N
i Ω∈ . Suppose that

j
k , }{\ ij Ω∈ , and )(αF

j
q , F

j Ω∈ , 

are given. Let ( )FF

l

F

l

N

j

N

i

N

i

N

i

N
lqkijkkkA Ω∈≠∀Π= )(,and ,,)( α  be the expected 

profit of firm i. The objective of firm i is to maximize )(
N

i

N
kA . 

 

Proposition 5.4   In an oligopoly market competition with 0≥r  flexible firms and 

0>s  in-flexible firms, the optimal capacity of in-flexible firm N
i Ω∈  , i.e., *N

i
k , is 

either (1) 0
*

=
N

i
k  and 0)0(

)1(
≤

N
A ; or (2) 0

*
>

N

i
k , 0)(

*)1(
=

N

i

N
kA  and 

0)(
*)2(

≤
N

i

N
kA .                                                                                                    □ 

 

Proposition 5.5   At the equilibrium of an oligopoly market competition with 0≥r  

flexible firms and 0>s  in-flexible firms, the optimal capacities of in-flexible firms are 

either (1) 0
*

=
N

i
k , for all N

i Ω∈ ; or (2) 0
*

>
N

i
k , for all N

i Ω∈ ; further, we have  

(i) 0
*

=
N

i
k , for all N

i Ω∈ , is equivalent to βαα +≤∫
<

N

v

Cdvf

0

)( ; 

(ii) 0
*

>
N

i
k , for all N

i Ω∈ , is equivalent to βαα +>∫
<

N

v

Cdvf

0

)( , where 

NF
kQv −−= )(αα .                                                                                  □ 

 

Theorem 5.2   At the equilibrium of an oligopoly market competition with 0≥r  

flexible firms and 0>s  in-flexible firms, all in-flexible firms make the same capacity 

decision.  

(1) If βααα

α

+≤−−∫
<+

N

skrq

N

e

F

e
Cdfskrq

N

e

F

e

)()( , then 0
*

=
N

i
k , for all N

i Ω∈ . 

(2) If βααα

α

+>−−∫
<+

N

skrq

N

e

F

e
Cdfskrq

N

e

F

e

)()( , then 0
1*

>==
NN

e

N

i
k

s
kk , for all 

N
i Ω∈ ; further, we have βααα

α

+=+−−∫
<+

N

skrq

N

e

F

e
Cdfksrq

N

e

F

e

)())1(( . The 

individual profit of each in-flexible firm is )()(
2 N

e

N

e

N

e
skFk=Π .                      □ 
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Corollary 5.2   At the equilibrium of an oligopoly market competition with 0=r  

flexible firms and 0>s  in-flexible firms, all in-flexible firms make the same capacity 

decision.  

(1) If βµ −≥
N

C , then 0
*

=
N

i
k , for all N

i Ω∈ . 

(2) If βµ −<
N

C , then 0
1*

>==
NN

e

N

i
k

s
kk , for all N

i Ω∈ ; further, we have 

βααα +=+−∫
∞

N
sk

N

e
Cdfks

N

e

 

 
)())1(( . The individual profit of each in-flexible 

firm is )()(
2 N

e

N

e

N

e
skFk=Π .                                                                □                 

 

Theorems 5.1 and 5.2 prove that, in a two-strategy asymmetric oligopoly market, there is 

a pooling principle among firms adopting the same strategy: The same strategy leads to 

the same decisions and the same profit. This pooling principle always holds regardless 

of the competition environments and the number of rivals. All firms adopting the same 

strategy are pooling the profit and risk of this strategy. The interplay between the 

flexible-firm group and the in-flexible-firm group determines the profit potential 

allocation between the two strategies. Theorems 5.1 and 5.2 also demonstrate that, at 

the equilibrium of a two-strategy oligopoly market, a best way for a firm to augment its 

profit is to make unanimous decisions with other firms adopting the same, although in 

principle the firm can make decisions freely.  

 

Theorems 5.1 and 5.2 are consistent with previous study results that focuse on duopoly 

model (e.g., Anand and Girotra, 2007; Anupindi and Jiang, 2007; Goyal and Netessine, 

2007). However, in a duopoly model, a firm’s decisions are only affected by one firm 

rather than a handful of flexible and in-flexible firms simultaneously. From the strategic 

perspective in a duopoly model, a firm faces only one strategy adopted by its rival. 

Unlike the duopoly model, a firm in a two-strategy oligopoly model needs to compete 

with multiple rivals with the same or different strategy at the same time. Therefore, the 

different ways of how a firm’s decisions are affected by two strategies simultaneously 

cannot be found in a duopoly model. Our study not only generalizes previous studies, 

but also develops a mechanism controlling a market invisibly in a two-strategy 

asymmetric oligopoly market. This mechanism is also robust enough to be in a multi-

strategy oligopoly competition.  
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After description of the general pooling principle, we conduct analysis of the detailed 

operations of in-flexible firms and flexible firms. For in-flexible firms, the capacity 

investment threshold can be presented as 

βααα

α

+=−−∫
<+

N

skrq

N

e

F

e
Cdfskrq

N

e

F

e

)()( . 

Since the capacity amount equals the production quantity for in-flexible firms, β+
N

C  

is the constant marginal product cost (including in capacity decision and production 

decision stages). The left hand side of this threshold equation is the expected product 

price at the market. Therefore, for in-flexible firms, this threshold equation holds when 

marginal product cost equals the expected product price. Only when expected product 

price is higher than the marginal product cost, can in-flexible firms invest in capacity. 

 

For flexible firms, at production decision stage, production is conducted only when 

demand is larger than N
k+β . When NF

e

N
kkrk +++≤<+ )1(βαβ , flexible firms’ 

investments in capacity have no effect on their production quantities. When demand is 

large enough, i.e., αβ <+++
NF

e
kkr )1( , the production is conducted to full capacity; 

any additional capacity investment creates the same production for each flexible firm. At 

the capacity decision stage, flexible firms’ threshold to make capacity investment 

is β−= )(
F

N
CXk , i.e.,  

)()()(
 

 
ββααα

β
++=−∫

∞

+

N

F
k

N
kFCdfk

N
. 

It is known that β+
N

k  is the minimum demand level at which flexible firms produce 

the product, and so the probability of a unit capacity being produced into the product 

is )( β+
N

kF . As a result, the expected unit cost of a product for flexible firms 

is )( ββ ++
N

F
kFC . Therefore, the right hand side of this threshold equation is the 

expected unit product cost, whereas the left hand side of this threshold equation is the 

expected price when flexible firms produce the product. This indicates that this 

threshold equation holds when product price equals the marginal product cost. Flexible 

firms invest in capacity only when the product price is larger than the marginal product 

cost. Table 5.1 compares the costs of flexible and in-flexible firms. 

 

 



 

Evaluating Flexible Capacity Strategy under Demand Uncertainty                  YANG Liu 
 

 - 60 - 

 FCS IFCS 

Minimum demand to make 

production 

N
k+β  0 

Probability of one unit 

capacity is used to produce 

one unit product 

)(
N

kF +β  100% 

Unit production cost β  β  

Unit capacity cost F
C  

N
C  

Marginal product cost )( ββ ++
N

F
kFC  β+

N
C  

Price condition to invest in 

capacity 
)(),( ββα ++>

N

F

N
kFCQp  βα +>

N

F
CQp ),(  

 

Table 5.1: Cost Comparison between FCS and IFCS. 

 

Comparing the capacity investment conditions of in-flexible firms and flexible firms, we 

note that actually all firms follow the same mechanism to make capacity investment, i.e., 

only when expected product price is larger than the marginal product cost, do firms 

make the capacity investment. A difference between flexible and in-flexible firms is in 

the way of how they evaluate their marginal product costs and expected product prices 

in order to decide whether to invest in their capacities. Figure 5.1 plots the mechanism 

of decision-making for both flexible and in-flexible firms.  

 

 

Figure 5.1: Mechanism of making decisions for both flexible and in-flexible firms. 
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5.3 Equilibrium of n=(r, s) Competitive Market 

Model 

 

Although the decision pattern of each type of firms is known, it still needs to know the 

exact decisions and individual profit of each kind of firms to evaluate the performance 

of FCS and IFCS. This section characterizes the equilibrium of n=(r, s) competitive 

market with demand uncertainty. Let }0:),{( ∞<≤<=
FNFN

CCCCR  be the 

feasible region of all 
N

C  and 
F

C . According to Theorems 5.1 and 5.2, R  can be 

divided into four regions, resulting in four cases as listed in Table 5.2. 

 

 0>
N

e
k  0=

N

e
k  

0=
F

e
k  Case-B Case-A 

0>
F

e
k  Case-D Case-C 

 

Table 5.2:  Four possible equilibriums of an oligopoly competition. 

 

F

e

F
rkk =  and N

e

N
skk =  always hold for all cases. To facilitate the presentation, if 

1≥s , we define a function ],0(),0[: µ→∞Z  by ∫
∞ +

−=
 

 
)()

1
()(

x

dfx
s

s
xZ ααα . So 

we have 0)(
1

)(
1

)(
)1(

<
+

−= xF
s

s
xxf

s
xZ , and )(xZ  decreases as x increases. Let 

w
k  

be the unique solution satisfying β+=
Nw

CkZ )(  when µβ ≤+<
N

C0 . 

 

Technically, it is not easy to verify the conditions of the above four regions and results. 

To pave the way to find the analytical solutions of equilibrium and their theoretical 

conditions, the following Propositions 5.6 - 5.9 provide the optimal capacity and 

expected profit of each of the flexible and in-flexible firms in each case in Table 5.1. 

Then, Theorem 5.3 discusses these four cases together and provides the necessary and 

sufficient conditions for each case, i.e., Case-A to Case-D, and their analytical solutions.  
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Proposition 5.6   Given 0>r  flexible firms and 0>s  in-flexible firms, within the area 

}0:),{( ∞<≤<=
FNFN

CCCCR . For Case-A that 0==
N

e

F

e
kk  , we have 

0=Π=Π
N

e

F

e
 and a necessary condition for Case-A is: 

F
CL ≤)(β  and 

N
C≤− βµ . 

 □ 

 

Proposition 5.7   Given 0>r  flexible firms and 0>s  in-flexible firms, within the area 

}0:),{( ∞<≤<=
FNFN

CCCCR . For Case-B that 0=
F

e
k , 0>

N

e
k , we have 

0=Π
F

e
, )()(

1 2

2

NNN

e
kFk

s
=Π , and (i) a necessary condition for Case-B is: 

Fw
CkL ≤+ )(β  and βµ −<

N
C ; (ii) 0>

N

e
k  satisfies 

βααα +=+−∫
∞

N
sk

N

e
Cdfks

N

e

 

 
)())1(( , N

e

N
skk = .                                                        □ 

 

Proposition 5.8   Given 0>r  flexible firms and 0>s  in-flexible firms, within the area 

}0:),{( ∞<≤<=
FNFN

CCCCR . For Case-C that 0>
F

e
k , 0=

N

e
k , we have 






 −+−

+
=Π ∫∫

∞  

)( 

2
)( 

 

2

2
)())(()()(

)1(

1
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F

e
dfCXdf
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ααβααβα

β
, 0=Π

N

e
, and (i) a 

necessary condition for Case-C is: ( )
F

CL >β  and ))((
1

)(
FN

CL
r

r
C −

+
≤+− ββµ ; (ii) 

))((
1

1
β−

+
=

F

F

e
CX

r
k .                                                                                              □ 

 

Proposition 5.9   Given 0>r  flexible firms and 0>s  in-flexible firms, within the area 

}0:),{( ∞<≤<=
FNFN

CCCCR . For Case-D that 0>
F

e
k , 0>

N

e
k , we have 






 −−+−−

+
=Π ∫∫

∞

+

  

)( 

2
)( 

 

2

2
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e CX
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F

e
dfskCXdfsk

r
ααβααβα

β
; 

and )()(
2 N

e

N

e

N

e
skFk=Π . The solution of Case-D is: ))((

1

1 N

eF

F

e
skCX

r
k −−

+
= β  

and N

e
k satisfies ))((

1
)())1((

  

 
F

N

e
sk

N

eN
CskL

r

r
dfksC

N

e

−+
+

−+−=+ ∫
∞

βαααβ . A 

necessary condition for Case-D is: ))((
1

)(
FN

CL
r

r
C −

+
>+− ββµ  and 

)(
wF

kLC +< β .                                                                                                           □ 
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Theorem 5.3 Given 0>r  flexible firms and 0>s  in-flexible firms, within the area 

}0:),{( ∞<≤<=
FNFN

CCCCR . At equilibrium, F

e

F
rkk = , N

e

N
skk = , where F

e
k  

and N

e
k  together with F

e
Π  and N

e
Π  in different regions of R  are:   

(Case-A) if 
FNFN

CCCLC ≤≤≤− &)(& ββµ , then 0=
F

e
k , 0=

N

e
k , 

0=Π
F

e
, 0=Π

N

e
; 

(Case-B) if 
FNFwN

CCCKLC ≤≤+−< &)(& ββµ , then 0=
F

e
k ,  

N

e
k satisfies ∫

∞

+−=+
  

 
)())1((

N

e
sk

N

eN
dfksC αααβ , 0=Π
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e
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)()(
2 N

e

N

e

N

e
skFk=Π ;  

(Case-C) if 
FNFFN

CCCLCL
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r
C ≤>−

+
≤+− &)(&))((

1
)( βββµ , then  

1

)(
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CX
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FF

e

β
, 0=

N

e
k , 0=Π
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e
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
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ααβααβα
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(Case-D) if 
FNFNFw

CCCL
r

r
CCkL ≤−

+
>+−>+ &))((

1
)(&)( ββµβ ,  

then ))((
1

1 N

eF

F

e
skCX

r
k −−

+
= β ,  N

e
k satisfies  

))((
1

)())1((
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eN
CskL
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dfksC

N
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+
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∞

βαααβ , 
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=Π ∫∫

∞
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F

N

e CX

N
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e
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e
dfskCXdfsk

r
ααβααβα

β

)()(
2 N

e

N

e

N

e
skFk=Π .                                                                                  □ 

 

For situations of 0=r  or 0=s , we take the limiting cases and so Theorem 5.3 is 

reduced to Corollary 5.1 and Corollary 5.2. Theorem 5.3 provides analytical equilibrium 

solutions to a two-strategy three-decision-stage oligopoly competition. It is easy to show 

that the equilibrium solution in each case of the oligopoly competition is unique under 

the assumption )()( xFxxf <  for all 0≥x . This assumption is adopted and discussed 

by previous studies (e.g., Van Mieghem and Dada, 1999; Anupindi and Jiang, 2008). 

Furthermore, contrary to a belief that flexibility is preferred by managers or researchers, 

the results illustrate that both flexible strategy and in-flexible strategy can be beneficial 
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in some conditions, but otherwise harmful to firms’ profits under certain conditions. 

Moreover, previous studies on flexible capacity strategy (Van Mieghem and Dada, 1999; 

Anupindi and Jiang, 2008) are particular cases of this general oligopoly model. These 

studies including monopoly model, duopoly models and symmetrical oligopoly models 

are listed in the following Table 5.3.  

 

 r s n References 

Flexible monopoly model 1 0 1 
Van Mieghem and Dada, 

1999 

In-flexible monopoly model 0 1 1 
Van Mieghem and Dada, 

1999 

Flexible duopoly model  2 0 2 Anupindi and Jiang, 2008 

In-flexible duopoly model  0 2 2 Anupindi and Jiang, 2008 

Flexible vs. In-flexible duopoly model  1 1 2 Anupindi and Jiang, 2008 

Symmetrical flexible oligopoly model  n 0 n 
Van Mieghem and Dada, 

1999 

Symmetrical in-flexible oligopoly model  0 n n --- 

 

Table 5.3: Particular cases of asymmetric oligopoly model. 

 

Figure 5.2: Relationships among the four cases. 

Case-D 

Case-B Case-C 

Case-A 

0=
F

k  0=
N

k  
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k  
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k  
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k  0 =
F
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In the following we further discuss the case with 1≥r  and 1≥s  (Theorem 5.3). 

Specifically, FCS and IFCS are dominant strategy within Case-C and Case-B, 

respectively. However, in Case-D, two strategies coexist and neither one dominates. 

Furthermore, in Case-D if the total capacity of flexible firms is set to zero, the solution 

is Case-B; similarly, if the total capacity of in-flexible firms is set to zero in Case-D, the 

solution is Case-C. We present the relationships between these four cases in Figure 5.2 

to show that all cases can be developed from Case-D. The following is the 

interpretation of Figure 5.2: The partitions of four cases depend on five inter-influential 

factors, including production cost, flexible capacity cost, in-flexible capacity cost, 

number of flexible firms and number of in-flexible firms. However, if there is some 

interference from exogenous factors, such as lack of resources, government policy, the 

overseas competitors, large change in organization and new product innovation, to force 

flexible firms and/or in-flexible firms to set capacity zero, the equilibrium of Case-D 

switches over to another case.  

 

To provide intuitive understanding of the equilibrium, Proposition 5.10 characterizes 

the divisions of different cases so that the equilibrium can be plotted in the following 

Figure 5.3.  

 

Proposition 5.10   Given 0>r  flexible firms and 0>s  in-flexible firms, within the 

area }0:),{( ∞<≤<=
FNFN

CCCCR .  

(i) The boundary between Case-B and Case-D is )(
1 wF

kLC += β , which is 

defined as Curve-1;  

(ii) the boundary between Case-C and Case-D is 

)()(
11

2 ββµ L
r

r
C

r

r
C

NF
+−

+
−

+
= , which is defined as Curve-2;  

(iii) under the assumption 0)()( >− xxfxF , in both Curve-1 and Curve-2, 
F

C  

is strictly increasing in 
N

C , and within ],0[ βµ −∈
N

C , Curve-1 is always 

above Curve-2, except that they intersect at ))(,( ββµ L− ;  

(iv) further, in Curve-1
1F

C decreases in s with given 
N

C ; in Curve-2 
N

C  

decreases in r with given 
2F

C .                                                                     □ 
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Partitions of equilibrium under non-zero and zero production cost are plotted in Figure 

5.3(a) and Figure 5.3(b), respectively. It can be observed that two strategies only coexist 

in Case-D, which indicates that strategy competition only occur in this region. The 

interplay between flexible firms and in-flexible firms does not exist in Regions-A to C.  

 

For non-zero production cost situation, Curve-1 and Curve-2 represent the boundary of 

the Region-D in which ),( srn = , as shown in Figure 5.3(a). It is interesting that Curve-

1 depends only on the number of in-flexible firms (s) but is independent of the number 

of flexible firms (r). We consider a situation that there are more in-flexible firms 

entering the market but the number of flexible firms is unchanged, that is )',(' srn = , 

where ss >'  and ssnn −=− '' . Under the situation of )',(' srn = , Curve-1 goes down to 

Curve-1’ and Curve-2 is unchanged. The area between Curve-1 and Curve-1’ changes 

from Region-D to Region-B. In such case, in the area between Curve-1 and Curve-1’, 

the total profit of flexible firms changes from a positive value to zero, while in-flexible 

firms’ profits are always positive. This indicates that in this area, more in-flexible firms 

joining in the market enhances the competitiveness of IFCS but reduces the 

competitiveness of FCS. Similar characteristic can also be found in Curve-2, which is a 

straight line independent of the number of in-flexible firms and its slope is
r

r 1+
. 

Therefore, as more flexible and/or in-flexible firms join in the market, the strategy-

coexistence region (i.e., Region-D) becomes smaller with a more fierce competition.  
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Figure 5.3(a): Partitions at equilibrium for non-zero production cost situation. 

 

Figure 5.3(b): Partitions at equilibrium for zero production cost situation. 

Figure 5.3: Partitions at equilibrium. 
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For zero production cost situation, i.e., 0=β , it is surprisingly noted that Curve-2 is 

actually the point ),())(,(),( µµββµ =−= LCC
FN

. As a result, Case-C disappears, 

but other cases still exist, as shown in Figure 5.3(b). In such case, a market with profit 

potential can only be Case-B or Case-D. It is impossible for flexible strategy to be 

dominant. However, in-flexible firms always get profits for Case-B and Case-D whereas 

flexible firms only have limited chances to get profit. Comparing equilibrium for zero 

and non-zero production cost situations, it is shown that without considering 

production cost greatly underestimates the effectiveness of FCS. In fact, production 

cost is one of the key factors controlling whether a firm should adopt FCS or not.  

 

In this chapter, we assume that for each type of strategies all firms have the same unit 

production cost and the same unit capacity cost, based on the following considerations: 

 

(1) Considering the similarities between firms with the same strategy, we suppose that 

there is not large difference between their costs.  

 

(2) This study focuses on the effect of the number of each type of firms. To achieve 

this objective, we exclude other disturbing factors by simplification. Further, 

theoretical results also confirm that the number of firms in each type does affect 

the competition equilibrium and firms’ individual decisions. Interestingly, although 

all firms of the same type have the same unit production cost and the same unit 

capacity cost, their decisions at Nash equilibrium show that they cannot be treated 

as one firm. For example, in Case C, the total capacity and total profit of all the 

flexible firms depend on r, i.e.,  

))((
1

β−
+

=
F

F

e
CX

r

r
rk , 






 −+−

+
=Π ∫∫

∞  

)( 

2
)( 

  

2

2
)())(()()(

)1( F

F

CX
F

CX
F

e
dfCXdf

r

r
r ααβααβα

β
. 

 

This is due to the fact that they compete against each other. At Nash equilibrium, 

if one firm changes its decision while the others do not, it will suffer. If they are 

treated as one firm, then the change of any one of them will imply the change of 

all firms together within the same type. 
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(3) There is a research absence in investigating FCS in an asymmetric oligopoly 

competition model in which each firm competes with two strategies 

simultaneously. Although it is intuitively believed that firms within the same type 

will make the same decisions, there is neither any theoretical proof of this result, 

nor this result is unique, in the literature. This research gap is settled in the thesis. 

 

 

5.4 Sensitivity Analysis of Influential Factors 

 

From the equation expressions of equilibrium solutions, five factors are extracted: 

production cost, flexible capacity cost, in-flexible capacity cost and numbers of flexible 

and in-flexible firms. In the following, we conduct sensitivity analysis of these five 

factors.  

 

5.4.1 Effects of capacity costs on individual profit  

 

Effects of capacity costs on each firm’s individual expected profit in an oligopoly 

market are presented in Property 5.1.  

 

Property 5.1   Given 0>r  flexible firms and 0>s  in-flexible firms, relationship 

between capacity costs and expected profits can be presented as follows: 

(i) Flexible strategy is only effective in Region-D and Region-C; while in-flexible 

strategy is only effective in Region-D and Region-B. 

(ii) In Region-B, 0=Π
F

e
 and 0>Π

N

e
,  

(ii-1)  Given 
F

C , 0<
Π

N

N

e

dC

d
; (ii-2)  Given 

N
C , 0=

Π

F

N

e

dC

d
. 

(iii) In Region-C, 0>Π
F

e
 and 0=Π

N

e
,  

(iii-1)   Given 
F

C , 0=
Π

N

F

e

dC

d
; (iii-2)   Given 

N
C , 0<

Π

F

F

e

dC

d
. 

(iv) In Region-D, 0>Π
F

e
 and 0>Π

N

e
,  
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(iv-1)   Given 
F

C , 0<
Π

N

N

e

dC

d
; 0>

Π

N

F

e

dC

d
;(iv-2)   Given 

N
C , 0<

Π

F

F

e

dC

d
; 

0>
Π

F

N

e

dC

d
.                                                                                                         □ 

 

In a market with a dominant strategy, i.e., Region-B and Region-C, profits of firms 

adopting effective strategies are only affected by their own capacity costs, but 

independent of their rivals’ capacity costs. However, in a strategy-coexistence market, 

i.e., Region-D, a firm’s expected profit decreases with its own capacity cost, but 

increases with that of its rivals, which use the alternative strategy. As a result, a firm has 

to consider not only its capacity cost, but also the rivals’ capacity costs. Under this 

situation, cutting capacity cost down does not guarantee to augment a firm’s profit. 

 

 

5.4.2 Effects of production costs on individual profit 

 

Production cost effects on individual profit of each flexible firm and in-flexible firm are 

provided in Property 5.2.  

 

Property 5.2  Given 0>r  flexible firms, 0>s  in-flexible firms and capacity costs 

),(
FN

CC , the effects of production cost on each firm’s expected profit is:  

(i) In Region-A, no strategy is effective; 

(ii) In Region-B, only in-flexible strategy is effective, and 0<
Π

βd

d
N

e ; 

(iii) In Region-C, only flexible strategy is effective, and 0<
Π

βd

d
F

e ; 

(iv) In Region-D, both flexible and in-flexible strategies are effective, 0<
Π

βd

d
N

e  and  

(1) if 1
)()()1(

<
−+

s

kfkkFs
NNN

, then 0>
Π

βd

d
F

e ;  

(2) if 1
)()()1(

>
−+

s

kfkkFs
NNN

, then 0<
Π

βd

d
F

e .                                        □ 
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Intuitively, a firm’s expected profit decreases with its production cost regardless of its 

adoptive strategy. However, the results in Property 5.2 surprisingly demonstrate that this 

intuition is not always true to flexible firms. In a strategy-coexistence market, the 

individual profit of a flexible firm increases as the production cost increases under 

certain conditions, which is affected by the total inflexible capacity, number of in-

flexible firms and the demand distribution. In other words, flexible firms are able to 

augment their profits even though production cost increases. Further, making use of 

such advantages, flexible firms are able to enhance their competitiveness in a strategy-

coexistence market with an increasing production cost. Results of Property 5.2 highlight 

the importance of consideration of production cost in determining whether FCS is 

better than IFCS or not.  

 

 

5.4.3 Effects of number of flexible firms on total flexible 

and in-flexible capacities  

 

In a strategy-coexistence market consisting of n firms, the effects of the number of 

flexible firms r on total capacity of each strategy are provided in Property 5.3.  

Property 5.3   Given n firms and capacity costs ),(
FN

CC in a strategy-coexistence 

market consisting of 1≥r  flexible firms and 1≥s  in-flexible firms where nsr =+ . 

Within the range ]1,1[ −∈ nr , we have  

(i) total capacity of in-flexible firms is decreasing in r, i.e., 0<
dr

dk
N

; 

(ii) total capacity of flexible firms is increasing in r, i.e.,  0>
dr

dk
F

.                          □ 

 

The switch over of one firm’s strategy will affect all other firms simultaneously. If more 

in-flexible firms switch their strategy to flexible strategy, total in-flexible capacity 

decreases but total flexible capacity increases. Therefore, one type of capacity (flexible 

capacity or in-flexible capacity) decreases with the other type increases and the amount 

of change in total capacity is less than the change of at least one type of capacity. This 

rule enables a market to automatically adjust any change occurred within a market and 
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balance the weighting of each strategy to maintain a stable market without expanding 

infinitely.  

 

 

5.4.4 Characteristics of total capacity  

 

Property 5.4   Given ),(
FN

CC , the total capacity of all firms T
k is bounded under 

various situations: 

(i) If ),(
FN

CC is in Region-A, then 0=
T

k . 

(ii) If ),(
FN

CC is in Region-B, then T
k  is decreasing in 

N
C , and independent of 

F
C , 

furthermore, )()( ββ +<=≤−
N

NT

F
CXkkCX . 

(iii) If ),(
FN

CC is in Region-C, then T
K is decreasing in 

F
C , and independent of 

N
C ; 

furthermore, ))((
1

))((
2

1
ββ −

+
==<−

F

FT

F
CX

r

r
kkCX . 

(iv) If ),(
FN

CC is in Region-D, then ββ −<<−
+

)())((
1

F

T

F
CXkCX

r

r
.               □ 

 

Property 5.4 assures that the total capacity invested in the market is bracketed within the 

lower and upper bounds in any capacity costs. That is to say, the scale of a market with 

profit potential falls within a certain range. Attracted by the positive profit potential, 

firms are willing to make investments in the market, which results in the lower bound of 

total capacity investment in a market with profit potential. More and more capacity 

investment accumulate in the market until all profit potential has been fully explored, 

making total capacity investment expand to the upper bound. Property 5.4 points out 

that the total profit potential of a market is bounded and shared by all firms regardless 

of the strategies and total number of firms.  
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5.5 Comparison of Flexible and In-Flexible 

Individual Profits  

 

According to equilibrium solution in Theorem 5.3, there is no dominant strategy in 

Region-D, in which both FCS and IFCS exist. To determine the most appropriate 

strategy, Proposition 5.11 compares the individual profits of flexible and in-flexible 

firms in Region-D.  

 

Proposition 5.11    Given 0>r  flexible firms and 0>s  in-flexible firms, within 

Region-D, between Curve-1 and Curve-2, there exists a unique Curve-3 satisfying 

),(),(
FN

N

eFN

F

e
CCCC Π=Π ; in Curve-3, 

F
C  increases with 

N
C ; in the area above 

Curve-3, denoted as Region-D1, 0>Π>Π
F

e

N

e
; and in the area below Curve-3, 

denoted as Region-D2, 0>Π>Π
N

e

F

e
.                            □ 

 

Proposition 5.11 proves the existence and uniqueness of the threshold that leads to the 

same individual profits of flexible and in-flexible firms as shown in Figure 5.4. The 

division of the profit comparison is determined by both flexible and in-flexible capacity 

costs. This division is also determined by the number of flexible firms and number of 

in-flexible firms. It is noted that with a low flexible capacity cost flexible strategy is 

always the optimal strategy in the region. However, with a low in-flexible capacity cost, 

the optimal strategy can be flexible or in-flexible. This indicates that the difference 

between the flexible capacity cost and in-flexible capacity cost determines the benefit of 

flexible strategy. Specifically, when all firms have the same capacity cost, i.e.,
NF

CC = , 

the flexible strategy is always beneficial to a firm by avoiding production waste. For 

example, when a firm uses idle time or over time to acquire flexible capacity, but 

does not change the size or hourly pay of the workforce, then the flexible strategy 

gets the firm more profit. As flexible capacity cost increases, flexible firms make trade-

off between the saving from avoiding production waste and the expensive capacity cost 

spending.  
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Figure 5.4: Individual profit comparison. 
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Chapter 6    

Endogenous Flexibility of FCS in an n-Firm 

Competition 

 

In Chapter 5, we have already known the equilibrium of an asymmetric oligopoly 

competition with r flexible firms and s in-flexible firms, i.e., n=(r, s). In this chapter, we 

consider the numbers of firms adopting each of two strategies, i.e., r and s, are 

endogenously determined in a competition with a total of n firms. To do so, we allow all 

n firms to freely switch their strategies to maximize individual profits until this is fully 

utilized. This process can be regarded as a strategy competition involving multiple 

players. Consequently, if no firm switches strategy (i.e., from flexible to in-flexible 

strategy, or vice verse), the status is defined as “Final Equilibrium (FE)”. Among the 

n firms, the numbers of flexible and in-flexible firms at Final Equilibrium, i.e., 

),(
ee

srn = , is expressed as the endogenous flexibility of FCS in this thesis.  

 

This chapter is divided into five sections. Section 6.1 provides the equivalent 

mathematical conditions for the Final Equilibrium. Section 6.2 characterizes the 

endogenous flexibility from strategic perspective. The results of the model are extended 

to perfect competition in Section 6.3. In Section 6.4, a method is proposed to practically 

determine the exact numbers of flexible and in-flexible firms under a given demand 

distribution. The theoretical justification is also provided. Section 6.5 provides the 

numerical examples with different demand distributions to demonstrate the method. All 

notations are the same as those used in Chapter 5. 
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6.1 Conditions of Final Equilibrium with 

Endogenous Flexibility  

 

6.1.1 Conditions of final equilibrium 

 

Given n firms, and ),( srn = . The expected profit of each flexible firm is ),( sr
F

e
Π , and 

of each in-flexible firm is ),( sr
N

e
Π . Two possible scenarios of a firm’s strategy switch 

exist in an n-firm oligopoly competition.  

(1) If a firm switches from flexible strategy to in-flexible strategy, then 

)1,1( +−= srn , the expected profit of each flexible firm will be 

)1,1( +−Π sr
F

e
, and the expected profit of each in-flexible firm will be 

)1,1( +−Π sr
N

e
. 

(2) If a firm switches from in-flexible strategy to flexible strategy, then 

)1,1( −+= srn , the expected profit of each flexible firm will be )1,1( −+Π sr
F

e
, 

and the expected profit of each in-flexible firm will be )1,1( −+Π sr
N

e
. 

It is clear that, given n firms, the necessary and sufficient conditions of a Final 

Equilibrium at ),( srn =  are )1,1(),( +−Π≥Π srsr
N

e

F

e
 and )1,1(),( −+Π≥Π srsr

F

e

N

e
, 

where 0)1,1( =+−Π n
N

e
 and 0)1,1( =−+Π n

F

e
. 

 

 

6.2 Strategies of Endogenous Flexibility in an n-

Firm Competition 

 

Proposition 6.1   Referring to Curve-1, given total n firms and
N

C , 
F

C  is decreasing in 

s; referring to Curve-2, given total n firms and 
F

C , 
N

C  is decreasing in r.                     □ 

 

Proposition 6.2   Consider Curve-1, Curve-2, Curve-4 and Curve-5 defined as follows: 
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Curve-1 )(
wF

kLC += β , where 
w

k  satisfies βααα +=






 +
−∫

∞

N
k

w
Cdfk

s

s

w

)(
1

; 

Curve-2 )()(
11

ββµ L
r

r
C

r

r
C

NF
+−

+
−

+
= , i.e., ( )

FN
CL

r

r
C −

+
=+− )(

1
)( ββµ ; 

Curve-4  ββ ++= )()(
NF

CXCX ; Curve-5  )()( ββµ LCC
NF

+−−= . 

Then we have following conclusions:  

(i) Referring to each of these four curves, 
F

C  is increasing in 
N

C ; 

(ii) there is one and only one intersection point for ],0( βµ −∈
N

C . The 

intersection point is ( ))(,),( ββµ LCC
FN

−= ; 

(iii) define 
1F

C , 
2F

C , 
4F

C , 
5F

C  to be points on Curve-1, Curve-2, Curve-4, Curve-5, 

respectively, with given 
N

C . If 0>β , then  
2541 FFFF

CCCC >>>  for all 

),0( βµ −∈
N

C ; and, if 0=β , then 
2541 FFFF

CCCC >=>  for all 

),0( βµ −∈
N

C .                                                                                                 □ 

 

 

Proposition 6.3   Given ),( srn = and capacity costs ),(
FN

CC , we have the following 

conclusions about the Final Equilibrium: 

(i)   If ),(
FN

CC is in Region-A, then the Final Equilibrium is obtained for 

any ),( srn = ; 

(ii)    If ),(
FN

CC is in Region-B, then the Final Equilibrium is ),0(),( nsrn == ; 

(iii)   If ),(
FN

CC is in Region-C, then the Final Equilibrium is )0,(),( nsrn == .        □ 

 

To characterize the endogenous flexibility in an oligopoly competition, we first consider 

the boundaries of a market in which FCS and IFCS coexist (Region-D), i.e., Curve-1 

and Curve-2. According to Proposition 6.1 and Corollaries 5.1 and 5.2, there are two 

respective families of Curve-1 and Curve-2 with different ),( sr  for a given number of 

firms n , which is shown in Figure 6.1.  
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(1, n-1) 

(n, 0) 

F
C  

0 

(2, n-2) 

(3, n-3) 

N
C  )(βL  

)(βL  

βµ −  

Curve-2 

 

Figure 6.1: Families of Curve-1 and Curve-2. 

 

We use ),(

1

sr

F
C  and ),(

2

sr

F
C to represent Curve-1 and Curve-2, respectively, with respect to 

the combination of numbers of flexible and in-flexible firms ),( sr . According to 

Proposition 6.3, we know that in areas above curve ),0(

1

n

F
C  all firms transfer to in-flexible 

strategy at the Final Equilibrium when ],0[ βµ −∈
N

C  for all ),1[ ∞∈n ; in areas on 

the right of curve )0,(

2

n

F
C  all firms transfer into flexible strategy at the Final Equilibrium 

when )](,0[ βLC
F

∈  for all ),1[ ∞∈n . In areas between curves ),0(

1

∞

F
C  and )0,(

2

∞

F
C , 

two strategies may coexist in the market at Final Equilibrium for all ),2[ ∞∈n . In 

other areas, the endogenous flexibility is sensitive to number of firms in a market. In 

particular, for a given n, in areas above curve ),0(

1

n

F
C all firms transfer to in-flexible 

strategy at the Final Equilibrium when ],0[ βµ −∈
N

C ; at areas on the right of curve 

)0,(

2

n

F
C  all firms transfer into flexible strategy at the Final Equilibrium 

when )](,0[ βLC
F

∈ ; and in the area between these two curves, two strategies coexist 

in a market. These results are presented formally in Theorem 6.1.  

 

Theorem 6.1  For all ),1[ ∞∈n , given production cost β , within the area 

}0:),{( ∞<≤<
FNFN

CCCC , the Final Equilibrium can be characterized as below: 

 (i) in area
FNFN

CCCLC ≤≤≤− &)(& ββµ , for any ),( srn = , two 

strategies lead to zero profit for all ),1[ ∞∈n ; 

(n-1, 1) 

(n-2, 2) 

(0, n) 

(n-3, 3) 

N
C

F
C

0 

)(βL

βµ −

Curve-1 
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(ii) in area 
FNFwN

CCCkLC ≤≤+−<≤ &)(&0
1

ββµ , all firms transfer to 

in-flexible strategy, i.e., ),0(),( nsrn ==  for all ),1[ ∞∈n ;  

(iii) in area ( )
FNFFN

CCCLCLC ≤>−≤+− &&))((
2

1
)( βββµ , all firms 

transfer to flexible strategy, i.e., )0,(),( nsrn ==  for all ),1[ ∞∈n ;  

(iv) in area
FNFNFw

CCCLCCkL ≤−>+−>+ &))((
2

1
)(&)( 1 ββµβ , there 

are three sub-areas as below:  

 (iv-1) when ( ) 0)(( >−−− ββ
NF

CCXL , let 

ββ

ββ

−−−

−−
=

NF

FF

CCXL

CXFCX
N

))((

))(())((
:  

(iv-1-1) if Nn ≥ , then all firms transfer to in-flexible strategies, i.e., 

),0(),( nsrn == ;  

(iv-1-2) if Nn < , then at Final Equilibrium, both flexible and in-flexible firms 

coexist in the market; 

(iv-2) when 0))(( ≤−−− ββ
NF

CCXL  and 0)()( ≤−−−− βµβ
NF

CCL , both 

flexible and in-flexible firms coexist in the market regardless of number of firms; 

(iv-3) when 0)()( >−−−− βµβ
NF

CCL , let 
( )βµβ

βµ

−−−−

−−
=

NF

N

CCL

C
N

)(

~ :  

(iv-3-1) if Nn
~

≥ , then all firms transfer to flexible strategy, i.e., )0,(),( nsrn == ;  

(iv-3-2) if Nn
~

< , then at Final Equilibrium, both flexible and in-flexible firms 

coexist in the market. 

where 
1w

k  is the unique solution of the equation βααα +=−∫
∞

N
k

w
Cdfk

w

  

 
1

1

)()2( .      □ 

 

In the literature, the analyses of endogenous flexibility in a competition are provided 

only for zero production cost situation, i.e., 0=β . For non-zero production cost 

situation, i.e., 0>β , even in a duopoly model, there has not been any analyses on 

endogenous flexibility so far due to analytical difficulties (Anupindi and Jiang, 2008). 

However, Theorem 5.3 in Chapter 5 concludes that the production cost is one of key 

factors in determining whether a firm should use FCS or not. Moreover, the zero 

production cost situation deviates too far from the reality so that the effectiveness of 
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FCS in a competition is greatly underestimated. Ways of how production cost affects 

endogenous flexibility are further overlooked. To fill these research gaps, we 

characterize the endogenous flexibility of FCS in an n-firm competition for both zero 

production cost and non-zero production cost situations.  

 

Theorem 6.1 characterizes the endogenous flexibility of FCS for a variable ),1[ ∞∈n . 

Figure 6.2(a) plots the results under a non-zero production cost situation, i.e., 0>β . It 

can be proved that curves ),0(

1

∞

F
C  and )0,(

2

∞

F
C  partition the area between )1,0(

1F
C  and )0,1(

2F
C  

into three sub-areas. To our surprise, the endogenous flexibility of FCS in areas upper 

)1,0(

1F
C  and in areas lower )0,1(

2F
C  are completely insensitive to the number of firms, even 

though n varies from a certain number to infinity. In such case, the competition 

becomes a symmetric oligopoly competition eventually. In areas between curves )1,0(

1F
C  

and )0,1(

2F
C , the number of firms affects the endogenous flexibility in different ways to 

different extends.  

 

Figure 6.2(a): Final Equilibrium of non-zero production cost situation for all 

),1[ ∞∈n . 
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Figure 6.2(b): Final Equilibrium of zero production cost situation for all 

),1[ ∞∈n . 

 

Figure 6.2: Final Equilibrium for all ),1[ ∞∈n . 

 

Particularly, in sub-area-II (corresponding to part (iv-2)), the two strategies may coexist 

in an oligopoly market. Although the endogenous flexibility is insensitive to the number 

of firms from strategic perspective, the exact numbers of flexible and in-flexible firms 

are affected by the number of firms. Therefore, the endogenous flexibility in this area is 

partially insensitive to the number of firms. In sub-area-I and sub-area-III 

(corresponding to part (iv-1) and (iv-3), respectively), the endogenous flexibility is 

sensitive to the number of firms; moreover, it may even entirely switches over in nature. 

For each capacity costing ),(
FN

CC in these two areas, there is a threshold of the 

number of firms. When the number of firms is smaller than the threshold, two strategies 

may coexist in the market; as more firms join in the market and number of firms beyond 

the threshold, only one strategy can survive in the market. It means that the market 

structure entirely switches over to symmetrical oligopoly market when there are many 

firms in the market. It is further observed that the area of sensitive environments 

becomes smaller as more firms join in the market until the number of firms tends to be 

infinite, i.e., ∞→n . In such case, no sensitive environment exists and the strategies 

survived after strategy competition is determined. 
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For zero production cost, i.e., 0=β , it is found that curves ),0(

1

∞

F
C , )0,(

2

∞

F
C  and 

NF
CC =  overlap. Consequently, Region-C, sub-area-II and sub-area-III in Figure 6.2(a) 

disappear, whereas only region-A, region-B and sub-area-I exist, as shown in Figure 

6.2(b). In such case, only Region-B and sub-area-I are regions with profit potential. As a 

result, there is only very limited chance for firms willing to adopt FCS, whereas there is 

a large chance that all firms are willing to adopt IFCS. It is further impossible that all 

firms adopt flexible strategy at Final Equilibrium. 

 

For any given n , the Final Equilibrium of the competition is provided in Theorem 6.2.  

Theorem 6.2   For a given n, (i) if 
FNFN

CCCLC ≤≤≤− &)(& ββµ , then for 

any ),( srn = , two strategies lead to zero profit; (ii) if 

FNFwN
CCCkLC ≤≤+−<≤ &)(&0 ββµ , then ),0(),( nsrn == ; (iii) 

if
FNFFN

CCCLCL
n

n
C ≤>−

+
≤+− &)(&))((

1
)( βββµ , then )0,(),( nsrn == ; (iv) 

if
FNFNFw CCCL

n

n
CCkL ≤−

+
>+−>+ &))((

1
)(&)( ββµβ , then flexible and 

in-flexible firms may coexist in the market; where wk  is the unique solution of the 

equation βααα +=
+

−∫
∞

N
k

w Cdfk
n

n

w

  

 
)()

1
( .  

Proof 

Following the proof of Theorem 6.1, we can get Theorem 6.2 directly.               □ 

 

Theorem 6.2 characterizes the endogenous flexibility for a given n. For non-zero 

production cost situation, i.e., 0>β , the endogenous flexibility can be one of three 

situations under different capacity costing conditions, as shown in Figure 6.3(a), from 

strategic perspective. For zero production cost situation, i.e., 0=β , only two possible 

cases may exist after strategy competition, as shown in Figure 6.3(b). Comparing Figure 

6.3(a) and Figure 6.3(b), it is noted that for non-zero production cost situation there is a 

region in which all firms switch to FCS, whereas such region does not exist for zero 

production cost situation. The comparison emphasizes that production cost creates 

opportunity to enhance competitiveness for flexible firms. This implication is in line 

with Property 5.2 in Chapter 5 that under certain environments, flexible firms may be 
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benefited from increasing of production cost while in-flexible firms always suffer from 

increasing of production cost. 

 

Figure 6.3(a): Final Equilibrium for non-zero production cost situation with 

given n. 

 

Figure 6.3(b): Final Equilibrium for zero production cost situation with given n. 

 

Figure 6.3: Final Equilibrium with given n. 
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6.3 Strategies of Endogenous Flexibility in a Profit-

Driven Market 

 

Since Theorem 6.1 holds for all ),1[ ∞∈n , we consider a profit-driven market in this 

section to examine the adaptability of our model. The profit-driven market is defined as 

a market in which firms have total freedom to join or quit the market, to choose or 

switch their capacity strategy, and there is no limitation on the number of firms in the 

market. Decisions of firms are absolutely driven by pursuing profit. The Final 

Equilibrium of such profit-driven market is expressed as “Stable Market”.  

 

Theorem 6.3   In a profit-driven market, the Stable Market can be characterized as 

follows within the area }0:),{(
FNFN

CCCC ≤< . 

(i) If 
FNFN

CCCLC ≤≤≤− &)(& ββµ , then no firm will exist in the 

market eventually, i.e., 0=n ; 

(ii) If 0))(( >−−− ββ
NF

CCXL , i.e., above the curve 
),0(

1

∞

F
C , then the Stable 

Market stays at Case-B ),0( nn = , ∞→n  and 0),0( →Π n
N

e
;  

(iii) If 0)()( >−−−− βµβ
NF

CCL , i.e., below the curve 
)0,(

2

∞

F
C , then the Stable 

Market stays at Case-C )0,(nn = , ∞→n  and 0)0,( →Π n
F

e
;  

(iv) If 0))(( ≤−−− ββ
NF

CCXL  and 0)()( ≤−−−− βµβ
NF

CCL , i.e., area 

between Curve-4 and Curve-5, then the Stable Market stays at Case-

D ),( srn = , ∞→n , ∞→s , ∞→r , 0→Π
F

e
and 0→Π

N

e
.                         □ 

 

Theorem 6.3 points out that the Stable Market is only determined by the market profit 

potential. It is interesting that the Stable Market in a profit-driven market is actually a 

perfect competition. Theorem 6.3 concludes this and there is no dominant strategy for 

all costing environments and both FCS and IFCS may coexist in a market, even the 

number of firms is infinite. We draw a conclusion that the perfect competition is 

actually a particular case of an oligopoly market with number of firms tending to infinity.  
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In real business, a firm needs to consider other costs, such as set up costs, fixed costs, 

administrative costs, etc, besides capacity and production costs. So, a firm sets a profit 

bottom line to ensure its normal operations. As a result, a firm will not stay in a market 

with a profit lower than its bottom line. This rule controls a market scale so that the 

number of firms does not expand infinitely at whatever capacity costs are. With deep 

understanding of the relationship between market trends, endogenous strategy 

selections and cost factors, managers are able to determine appropriate strategies 

promptly, balance expenses and revenues, sketch a long term development plan, and 

avoid involving in marginal businesses. 

 

 

6.4 ),(
ee

sr  at Final Equilibrium Involving Two 

Strategies 

 

Although Theorem 6.1 and Theorem 6.2 fully characterize the endogenous flexibility, it 

is quite difficult to determine the exact numbers of flexible and in-flexible firms 

),(
ee

sr  in area between curves ),0(

1

n

F
C  and )0,(

2

n

F
C . Trying to overcome such difficulties, 

we propose an approach to determine the exact numbers of flexible firms and in-flexible 

firms ),(
ee

sr at Final Equilibrium which involves two strategies in this section. 

Theoretical justification of the approach is also provided.  

 

Based on the analysis of conditions of Final Equilibrium, we define a function )(rD  in 

this section so that the conditions can be totally presented in terms of the number of 

flexible firms. We define )1,1(),()( +−−Π−−Π= rnrrnrrD
N

e

F

e
, where nr ≤≤1 . 

Therefore, the necessary and sufficient condition of the Final Equilibrium can be 

rewritten as: 0)( ≥rD  and 0)1( ≤+rD . All curves 0)( =rD  where ],1[ nr ∈ , if exist, 

intersect at point ( ))(,),( ββµ LCC
FN

−= . Given 
0

rr = , ],1[
0

nr ∈ , define 

0)(),( 00 == rDrCCG
FN

, in terms of 
N

C  and 
F

C .  The existence and properties of 

the curve 0)(),( 00 == rDrCCG
FN

 is provided by Theorem 6.4.  
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Theorem 6.4   Given
0

rr = , ],1[
0

nr ∈ , there exists a unique curve satisfying 

0)(),(
00

== rDrCCG
FN

, on which 
F

C  increases as 
N

C  increases; in areas above 

the curve 0)(
0

=rD , we have 0)(),(
00

<= rDrCCG
FN

; in areas below the curve 

0)(
0

=rD , we have 0)(),(
00

>= rDrCCG
FN

.                                                        □ 

 

Based on Theorem 6.4, all curves 0)( =rD  where ],1[ nr ∈ intersect at point 

))(,(),( ββµ LCC
FN

−= . Specifically, consider two curves 0)( 0 =rD  and 

0)1(
0

=+rD  with a given value of 
0

rr = , where ]1,1[
0

−∈ nr . With respect to 

relative positions of the two curves 0)(),(
00

== rDrCCG
FN

 and 

0)1()1,(
00

=+=+ rDrCCG
FN

, there are three possible situations: The curve 

0)( 0 =rD  is above, overlap and below the curve 0)1( 0 =+rD . Incorporating the 

conditions of the Final Equilibrium, we have the conclusions in Theorem 6.5.  

 

Theorem 6.5   Given n firms, for every ]1,1[0 −∈ nr , consider curves 

0)(),(
00

== rDrCCG
FN

 and 0)1()1,(
00

=+=+ rDrCCG
FN

 within the area 

}0&)(&:),{(
FNFNFN

CCLCCCC ≤≤≤−≤ ββµ , then the Final 

Equilibrium ),(
ee

srn = can be categorized into one of the following five scenarios in 

terms of the exact numbers of flexible and in-flexible firms.  

(i) In areas below curve 0)(),(
00

== rDrCCG
FN

 and above curve 

0)1()1,(
00

=+=+ rDrCCG
FN

, we have ),(),(
00

rnrsrn
ee

−== ; 

(ii) in areas above curve 0)(),(
00

== rDrCCG
FN

 and below curve 

0)1()1,(
00

=+=+ rDrCCG
FN

, we have the Final Equilibrium does 

not obtained at 
0rr = ;  

(iii) if these two curves overlaps, with respect to points on the curves, we have 

either ),(),(
00

rnrsrn
ee

−==  or )1,1(),(
00

−−+== rnrsrn
ee

; 

(iv) in areas above all curves 0)(),(
00

== rDrCCG
FN

, ],1[
0

nr ∈ , we have 
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),0(),0( nnsrn
ee

==== ; 

(v) in areas below all curves 0)(),(
00

== rDrCCG
FN

, ],1[
0

nr ∈ , we have 

)0,(),0( nnsrn
ee

==== .                                                                      □ 

 

Theorem 6.5 shows that the equivalent condition of Final Equilibrium, i.e., 0)( ≥rD  

and 0)1( ≤+rD , can be reflected by the relative position of the two curves 0)( =rD  

and 0)1( =+rD . Such relationship ensures that theoretically the Final Equilibrium can 

be determined in terms of the exact numbers of flexible firms and in-flexible firms. 

Specifically, for the two curves 0)( =rD  and 0)1( =+rD , all possible situations in 

which these two curves have different relative positions are analyzed. As a result, the 

exact numbers of flexible and in-flexible firms can be determined theoretically by 

considering the two curves 0)( =rD  and 0)1( =+rD  for all possible values of r. 

Theorem 6.5 also concludes that the maximum number of equilibrium scenarios is 1+n  

as defined in the theorem. With application of Theorem 6.5 under a certain demand 

distribution, the exact numbers of flexible and in-flexible firms can be practically 

determined by plotting all curves 0)(),(
00

== rDrCCG
FN

, where ],1[0 nr ∈ . As 

no special assumptions about demand distributions are given, more detailed properties 

about the curve 0)( =rD  will be observed under certain demand distributions in the 

real decision-making operations.  

 

 

6.5 Numerical Examples  

 

As a demonstration, the proposed approach is applied to a three-firm model, i.e., 3=n , 

under some uniform and exponential distributions, respectively. Table 6.1 provides the 

parameters of the examples.  
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Distribution PDF )(xf  
Distribution 

parameters 
Mean ( µ ) 

Production cost 

( β ) 

Uniform 
b

xf
1

)( = , ],0[ bx ∈  40=b  20 2 

Exponential x
exf

λ
λ

−
=)( , ),0[ ∞∈x  1=λ  1 0.1 

 

Table 6.1: Parameters of numerical examples. 

 

Applying Theorem 6.5 under these two distributions, we obtain very similar patterns of 

the curves 0)(),(
00

== rDrCCG
FN

 where 3,2,10 =r , with respect to three 

observations: (1) all three curves intersect only at point ( ))(,),( ββµ LCC
FN

−= ; (2) 

the curve 0)( =rD  moves downward when r increases; (3) the area in which flexile and 

in-flexible strategies coexist is relatively small, comparing to the areas dominated by only 

one strategy (flexible or in-flexible). After plotting all the curves 

0)(),(
00

== rDrCCG
FN

, 3,2,10 =r , the endogenous flexibility can be fully 

determined in terms of the exact numbers of flexible and in-flexible firms.  

 

Figure 6.4 and Figure 6.5 include all the curves 0)(),(
00

== rDrCCG
FN

, 3,2,1
0

=r  

under some uniform and exponential distributions, respectively. The Final Equilibrium 

of these two examples can be described as follows: 

(i) With respect to points on the curves 0)(
0

=rD  ( 3,2,1
0

=r ), the Final 

Equilibrium stays at ),( 00 rnrn −= .  

(ii) In the area between 0)1( =D  and 0)2( =D , the Final Equilibrium stays at 

)2,1(3 = . 

(iii) In the area between 0)2( =D  and 0)3( =D , the Final Equilibrium stays at 

)1,2(3 = . 

(iv) In the area above curve 0)1( =D , the Final Equilibrium stays at )3,0(3 = . 

(v) In the area below curve 0)3( =D , the Final Equilibrium stays at )0,3(3 = . 
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Figure 6.4: Uniform distribution example. 

 

 

Figure 6.5: Exponential distribution example. 

 

It is observed in the numerical examples that the curve 0)( =rD  moves downward 

when r increases. This observation indicates the existence and uniqueness of pure 

strategy for competition involving multiple competitors. Based on this observation, we 

set: 
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Assumption A: The curve 0)( =rD  moves downward when r increases.  

Under Assumption A, Proposition 6.4 is obtained to characterize the endogenous 

flexibility.  

 

Proposition 6.4   Given n firms and cost parameters, if curve 0)( =rD  moves 

downward when r increases , then pure strategy exists at the equilibrium of the strategy 

competition; further, within the area }0:),{(
FNFN

CCCC ≤< , we have (1) in the area 

above 0)1( =D , Final Equilibrium stays at ),0( nn = ; (2) in areas below 0)( =nD , 

Final Equilibrium stays at )0,(nn = ; and (3) in areas below curve 0)(
0

=rD  and 

above curve 0)1(
0

=+rD , Final Equilibrium stays at ),( 00 rnrn −= .                                    

Proof  

Under the assumption that the curve 0)( =rD  moves downward when r increases, 

Proposition 6.4 can be obtained directly from Theorem 6.4.                  □ 

 

Under the assumption extracted from the numerical examples, Proposition 6.4 further 

describes the Final Equilibrium of a two-strategy oligopoly competition. It indicates 

endogenous flexibility follows a pattern as shown in Figure 6.6. It shows that the 

number of flexible firms at the Final Equilibrium can be any number from 0 to n. This 

finding emphasizes the complexity of the endogenous flexibility in an oligopoly 

competition; on the other hand, the pattern of endogenous flexibility reveals a regular 

order of the endogenous flexibility. In areas between the curves 0)1( =D  and 0)( =nD , 

for a given in-flexible capacity cost, more firms switch to flexible firm as flexible 

capacity cost decreases. Comparing to the areas with only one strategy, the area with 

two strategies coexisting is relatively narrow. This conclusion can be helpful in partially 

explaining that, in some industries, even though two strategies are available, all firms use 

the same strategy. 
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Figure 6.6: Oligopoly endogenous flexibility under Assumption A. 

 

The conclusions of endogenous flexibility enable managers to choose the correct 

strategies and predict the eventual market status. Moreover, the additional profit by 

capacity investments can be calculated. The complexity of endogenous flexibility 

reminds managers to be very careful in choosing the strategy since the beginning of the 

competition. Further, making analysis of the current status and eventual equilibrium 

prevent firms from involving in marginal business.  
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Chapter 7    

Modeling FCS with Flexibility Degree 

 

 

In previous chapters, a firm’s capacity strategy is either FCS or IFCS. With FCS, a firm 

is able to adjust its production quantity from zero to its capacity; while a firm with IFCS 

has to produce the quantity equal to its capacity. However, observation from the reality 

is that a large number of firms, if not the most, adopt a mixed strategy which is in 

between the two extremes: chase strategy (FCS) and level strategy (IFCS). Firms 

adopting the mixed strategy have the flexibility to adjust their throughput to some 

extent, but within limited ranges. Aiming at quantifying firms’ abilities in adjustment, 

and distinguishing different performance of firms’ FCS implementation, this chapter 

proposes the concept of Flexibility Degree to measure the FCS implementation. The 

flexibility degree is defined as the percentage of the difference between a firm’s 

production upper bound (total capacity) and production lower bound (guaranteed or 

unchanged production level) over its total capacity. It reflects the extent to which FCS is 

exploited.  

 

This chapter consists of 3 sections. Section 7.1 formulates flexibility degree in a 

monopoly model under demand uncertainty. With a given flexibility degree, the optimal 

decisions on total capacity and production quantity are derived in this section. Section 

7.2 establishes a duopoly model in which two firms with different flexibility degrees 

compete with each other under demand uncertainty. Section 7.3 provides some 

numerical examples to demonstrate the theoretical results and get an intuitive 

understanding of the flexibility degree effects on the optimal total capacities of two 

firms in a competition.  
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7.1 Flexibility Degree Concept 

 

7.1.1 Notations and assumptions  

 

We follow the notations used in Chapters 5 and 6, except that the superscripts {F, N} 

of variables in this chapter are deleted. It is because from a general perspective, all firms 

are supposed to be flexible firms with their own flexibility degree; and even firms 

adopting IFCS can be considered as a flexible firm with zero flexibility degree. This 

chapter aims at figuring out the relationship between firms’ decisions, their own 

flexibility degree and their rivals’ flexibility degrees in a competition. However, 

according to the results of Chapters 5 and 6, the additive inverse function results in zero 

capacity with a large chance under various environments. Therefore, the additive inverse 

demand function is not the best choice to achieve the objective of study in this chapter.  

Instead, we adopt in this chapter the multiplicative inverse demand function, which has 

been widely used in the literature (e.g., Anupindi and Jiang, 2008). Specifically, 

)(),( QaQp −= αα , where ∑=
i

i
qQ , Ω∈i , is the total production quantity in the 

market, and a  is a large enough constant so that ka 2> , { }
21

,max3 kka > , 

{ }
21

,max kk
C

a
F +

+
>

µ

β
 and 

µ

β )(6
F

C
a

+
≥ , where k  is the production capacity for 

monopoly case, and 
1

k  and 
2

k  are the production capacities for duopoly case.  

 

 

7.1.2 Demonstration of flexibility degree concept 

 

Inspired by the widely used mixed strategy in reality, which is actually in between the 

level strategy and the chase strategy, we construct a new model as shown in Figure 7.1. 

This figure also shows the decision variables, quantities and constraints at each decision-

making stage.  
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Figure 7.1: Decision-making process of a firm with flexibility degree. 

 

As shown in Figure 7.1, the production stage is divided into two sub-stages, namely, 

production decision-I and production decision-II. Let 
I

q  and 
II

q  be production 

quantities at production decision-I and production decision-II, respectively. The total 

production quantity is 
III

qqq += . At the stage of production decision-I, there is a 

stable production level 
I

q  which does not change under fluctuating demand. At the 

stage of production decision-II, the production level 
II

q  is affected by the fluctuating 

demand. After knowing the real demand, a firm is able to make production adjustment 

to maximize its ex-post profit under the constraint of the allowable capacity.  
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Since 
I

q is a stable production level, the allowable adjustment range at the production 

decision-II stage is ],0[
III

qkq −∈ . Accordingly, the total production quantity 

III
qqq +=  is within the range ],[ kqq

I
∈ . The maximum adjustment of production 

level is 
I

qk − . This adjustment range reflects a firm’s ability in making adjustment of its 

actual production level. Based on such relationship between the maximum adjustment 

and a firm’s ability to vary its throughput, Flexibility Degree is defined as 

%1001%100 ⋅







−=⋅

−
=

k

q

k

qk
IIη . Define 

k

q
m

I= , ]1,0[∈m , to be the In-

flexibility Degree.  The flexibility degree η  can be expressed in terms of the in-

flexibility degree, i.e., %100)1( ⋅−= mη . The relationship between flexibility degree 

and in-flexibility degree can also be presented as 1=+ mη . The definition of flexibility 

degree and in-flexibility degree are formally provided below.  

 

Flexibility Degree is defined as a percentage of the difference between a firm’s 

production upper bound (total capacity) and production lower bound (guaranteed or 

unchanged production level) over its total capacity.  

In-Flexibility Degree is defined as a percentage of a firm’s production lower bound 

(guaranteed or unchanged production level) over its total capacity. 

 

Similar to the analyses in the previous chapters, mathematical formulation of this 

problem involves a three-stage decision-making process, which is presented in the 

following section.  

 

 

7.2 FCS with Flexibility Degree in a Monopoly 

Model  

 

In a monopoly model, a firm needs to determine its optimal capacity and optimal 

production quantity with a certain flexibility degree. Given a firm’s in-flexibility degree 

]1,0[∈m , its flexibility degree is %100)1( ⋅−= mη . For example, a firm and its 

retailers sign a contract to ensure their deal like this: the firm guarantees 80% of product 
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supply regardless of costing or market situations; the rest 20% of product supply is 

determined by firm itself to respond various market situations.  

 

 

7.2.1 Capacity decision stage  

 

At capacity decision stage, a firm determines its capacity to maximize its expected profit 

of the whole decision-making process. The capacity is also the maximum of a firm’s 

production ability. The capacity decision can be formulated as  

Max   kCdfqaqk
F

−−−=Π ∫
∞ 

0  
)())(()( ααβα ,  s.t. 0≥k ,                (7.1) 

where q is the optimal solution in the production decision stage.  

 

 

7.2.2 Production decision stage 

 

At the production decision stage, a firm’s production quantity is bounded by 

kqmk ≤≤ . With any given demand realizationα , a firm aims to maximize its ex-post 

profit by determining the production quantity, which is formulated as  

 

Max qqqaq βαπ −−= )()( ,  s.t. kqmk ≤≤ .                           (7.2) 

 

A smaller m  indicates a larger span of production quantity adjustment, and vice versa. 

Based on the formulations at capacity decision and production decision stages, the fully 

FCS discussed in Chapters 5 and 6 can be formulated by setting 0=
I

q , i.e., %100=η ; 

while IFCS can be formulated by setting kq
I

= , i.e., 0=η . Any other percentage 

between 0 and 100 represents a firm’s flexibility capability between IFCS and FCS. 

Therefore, the flexibility degree reflects the extent to which FCS is exploited by 

formulating the adjustment span of a firm’s production decision. The optimal capacity 

and production quantity of a firm with a given in-flexibility degree ]1,0[∈m  in a 

monopoly model is provided by Theorem 7.1 below. 
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Theorem 7.1   In a monopoly model with ]1,0[∈m , we have:  

(i) The optimal capacity *
k  satisfies 

2
0

* a
k <<  and 

F
Cdfkadfmkam

R

L

=−−+−− ∫∫
∞ 

 

*
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.                                        □ 

 

 

Figure 7.2: Optimal production in a monopoly model. 

 

With in-flexibility degree m , a firm’s allowable adjustment range is kqmk ≤≤ . 

Theorem 7.1 shows that the optimal production of the firm is a three-piece function. By 

using q  and
α

β
 as coordinates, the production pattern can be plotted in Figure 7.2. A 

larger α  indicates a smaller value of 
α

β
.  In particular, when 1=m , the production 

curve is a straight line kq =  which is the situation of no flexibility at all. When 0=m , a 

q  

mka 2−  

mk  

α

β
 

k  

0  
ka 2−  
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production is possible for any value within ],0[ k  which is the situation of full 

flexibility.  

 

 

7.3 FCS with Different Flexible Degrees in a 

Duopoly Model 

 

In this section, we establish a duopoly model to consider the effects of competition on 

FCS. Subscript i  is used to describe firm i, 2,1=i . The total production quantity equals 

the sum of product produced by the two firms, i.e., 
21 qqQ += . Therefore, with the 

application of the market clearance rule, the demand inverse function is 

)()(),( 21 qqaQaQp −−=−= ααα . Note that 
21 qqa +>  in this model. 

 

7.3.1 Individual optimal production quantities at the 

production decision stage 

 

At the production decision stage, each firm determines its own production quantity with 

given in-flexibility degree ]1,0[∈
i

m  and capacity 0≥
i

k , 2,1=i . The formulation of 

each firm’s production decision is:  

                                    Max  
iiiiii

qqqqaq βαπ −−−=
−

)()(
3

 

s.t.   
iiii

kqkm ≤≤ , 2,1=i .                                                 (7.3) 

 

Proposition 7.1   In a duopoly model with 1,0 21 ≤≤ mm , the optimal production 

capacity of firm i , given 21 , kk  and 
i

q
−3

, is 
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2,1=i .                                                                                                                         □ 
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7.3.2 Individual optimal capacities at the capacity 

decision stage 

 

At the capacity decision stage, both firms determine their own capacities to maximize 

their respective profits under their flexibility restrictions. Consider firm }2,1{∈i , given 

10 ≤≤
i

m  and the rival’s production quantity 
i

q
−3

, the capacity decision of firm i  can 

be formulated as follows. 

Max   
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                         s.t.   0≥
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where *

i
q is the optimal production of firm i at the production decision stage.  

By Proposition 7.1, from (7.4), the optimal expected profit at the capacity stage for firm 
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Proposition 7.2 below characterizes the optimal capacity from the perspective of each 

individual firm. 

 

Proposition 7.2  In a duopoly model with 1,0 21 ≤≤ mm , given the production 

quantity of firm i ’s })2,1{( ∈i  rival 
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q −3
, we have:  
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From the perspective of each individual firm, Proposition 7.2 provides the optimal 

capacity and optimal profit a firm, given the rival’s production quantity. It can be seen 

that each firm’s decisions are affected by its rival and the interplay between the two 

firms is complex.  

 

To simplify the presentation, we will drop the superscript (*) of the individual optimal 

production quantities and capacities when we discuss about the Nash equilibrium in the 

following. Furthermore, without loss of generality, we will assume 
21 mm ≤  in the 

discussion. 

 

 

7.3.3 Nash equilibrium production quantities ) ,( 21 qq  with 

given 10 21 ≤≤≤ mm  

 

To find out the Nash equilibrium production quantities ) ,( 21 qq , it is necessary to 

compare the upper and lower bounds of the two firms’ individual optimal productions. 

Without loss of generality, we assume 10 21 ≤≤≤ mm . It indicates that at production 

stage, firm 1 has a larger portion of its capacity to make adjustments of the production 

quantity than that of firm 2. According to the ranking of the upper and lower bounds of 

the two firms, a total of five possible cases may occur under the assumption 

10 21 ≤≤≤ mm . Proposition 7.3 below provides the Nash equilibrium solution 

) ,( 21 qq  in each case.  

 

Proposition 7.3   In a duopoly model with 10 21 ≤≤≤ mm , given the capacities of the 

two firms 01 ≥k  and 02 ≥k , the production quantities of the two firms ) ,( 21 qq  at 

equilibrium are as follows. 
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(i) If 
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(iv) If  
212211 kkkmkm <<≤ , then  
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Proposition 7.3 provides five possible cases of the optimal productions at equilibrium. 

Among these five cases, Case (i) and Case (v) are symmetric; and Case (ii) and Case (iv) 

are symmetric. The patterns of optimal production quantities for firm 1 and firm 2, 

respectively, in each situation are plotted in Figure 7.3 - Figure 7.5.  
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Case (i)      
111222 kkmkkm ≤<≤  
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Figure 7.3: Optimal production quantities in situation 
111222 kkmkkm ≤<≤ . 
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Figure 7.4: Optimal production quantities in situation 
121122 kkkmkm <≤< . 
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Case (iii)    
122211 kkkmkm ≤≤≤  
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Figure 7.5: Optimal production quantities in situation 122211 kkkmkm ≤≤≤ . 

 

As shown in Figures 7.3 - 7.5, the ranking of two firms’ production upper and lower 

bounds affects two firms’ production decisions. As reflected by the figures, production 

decision functions can be very different from case to case. However, the commonality 

of these five cases is that a firm’s production function composes of three parts: the 

lower bound, the middle part and the upper bound. Specifically, the middle part which 

can be one-piece, two-piece or three-piece functions are strictly decreasing in 
α

β
, i.e., 

strictly increasing in demand realization α . It means that no matter which case, within a 

range of production quantities, more products are produced when demand increases, 

until it reaches the maximum capacity.  
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7.3.4 Nash equilibrium capacities ),(
21

kk  with given 

10 21 ≤≤≤ mm  

 

From Proposition 7.2, at Nash equilibrium, ),( 21 kk  satisfies 
2

0
3 i

i

qa
k

−
−

<<  and 

0)(
)1(

=Π
ii

k , 2,1=i ; further, ),( 21 qq  satisfies Proposition 7.3, which has 5 possible 

situations as illustrated in Figure 7.6 for the case of 02 ≠m . 

 

Figure 7.6: Five possible situations under duopoly equilibrium for the case of 

02 ≠m . 

 

By Propositions 7.2 and 7.3, each situation can be specifically characterized by the 

following Claim 7.1.  

 

Claim 7.1   Given 10 21 ≤≤≤ mm , there are five possible situations of the optimal 
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(ii)  Situation B   
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Claim 7.1 shows the complexity of the equilibrium. It seems that there are five possible 

equilibriums depending on the ranking of the two firms’ lower and upper bounds. This 

gives rise to one question: Does each of the possible equilibriums exist? Therefore, how 

to verify these five possible equilibriums is a key to find the actual equilibrium and the 

resulting solutions.  

 

 

7.3.4.1 Duopoly with symmetric flexibilities 
21 mm =  

 

We consider the situation of mmm == 21
, 10 ≤≤ m .  

Theorem 7.2    Given mmm == 21
, 10 ≤≤ m , then  

(i) the optimal capacity of firm 1 and firm 2 are 
e

kkk == 21
 at equilibrium;  

(ii) 
e

k is decreasing in ]1,0[∈m , i.e., 
e
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and 
e

k  satisfies 

F

ka

e

mka

e
Cdfkadfmkam

e

e =−−+−− ∫∫
∞

−

−
   

3
 

3
 

0   
)())3(()())3(( β

β

ααβαααβα .              □ 

 

Theorem 7.2 provides that two firms always make the same decisions in an uncertain 

market as long as they have the same flexibility degree swinging from zero to 100 

percent. Specifically, a higher flexibility degree leads to a larger amount of capacity of 

each firm at the equilibrium. When two firms both have no flexibility at all, i.e., 

121 == mm , they have the lowest capacity 
0k  which is still larger than zero. It means 

with the same flexibility degree, it is impossible that both firms do not make capacity 

investments.  

 

 

7.3.4.2 Duopoly with asymmetric flexibility  

 

In the following, we make analysis of each situation to determine the optimal decisions 

of each firm. Due to analytical complication of situations A - C, the analyses of situation 

D and situation E are provided first.  

 

Proposition 7.4    Given 10 21 ≤<≤ mm , then the optimal solution ),(
21

kk  is not in 

situation E.                                                                                                                    □ 

 

Proposition 7.5    Given 10 21 ≤≤≤ mm , then the optimal solution ),(
21

kk  is not in 

situation D.                                                                                                                    □ 

 

Proposition 7.4 and Proposition 7.5 rule out situation D and situation E, which point 

out that if 
21 mm < , then there must have 

21 kk ≥ . That means the firm with larger 

flexibility degree always make capacity investment not less than that with a smaller 

flexibility degree. Using the similar ways of proofs of Proposition 7.4 and Proposition 

7.5 it cannot rule out any one situation among situations A - C. Focusing on the analysis 

of situations A - C, it is found that the optimal solutions only occurs in situation C as 

long as 10 21 ≤≤≤ mm . Together with Proposition 7.4 and Proposition 7.5, the 
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optimal solutions of capacity and production decisions of two firms only occur in 

situation C. This is formally presented in the following Theorem 7.3.  

 

Theorem 7.3  Given 10 21 ≤≤≤ mm ,  

(i)  if 
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Figure 7.7: The equilibrium of the duopoly competition. 

 

Theorem 7.3 characterizes the equilibrium of an asymmetric duopoly competition 

model under demand uncertainty. Given two firms’ flexibility degrees 10 21 ≤≤≤ mm , 

the equilibrium only occurs in Case C, i.e., 
122211 kkkmkm ≤≤≤ , as shown in Figure 

7.7. 

 

 

7.4 Numerical Examples  

 

It is noted that during the proof of Theorem 7.3, we assume 
µ

β )(
6 F

C
a

+
≥ . Under 

this assumption, we can assure that the unique equilibrium only occurs in Situation C. 

However, trying to investigate of the generality of the model, we use a numerical 

example that does not satisfy this assumption to testify the model and its conclusions 

and get an intuitive image. The basic parameters are listed in Table 7.1.  
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Table 7.1: Parameters of numerical example. 

 

7.4.1 Feasible solutions in situations A - E 

 

We first test the optimal capacities of two firms under various in-flexibility degrees 

),( 21 mm , as shown in Figure 7.8 
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Figure 7.8: Optimal capacities ),( 21 kk  with given various ),( 21 mm . 

 

Figure 7.8 shows the optimal capacities ),( 21 kk  with any given in-flexibility degrees 

),( 21 mm . It verifies that the optimal capacities ),( 21 kk  only occur in situation C, i.e., 

122211 kkkmkm ≤≤≤ . In other situations, there is no feasible solution. Moreover, for 
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any given pair of in-flexibility degrees ),( 21 mm , the equilibrium is unique. Solutions of 

the optimal capacity at equilibrium fall into a limited closed area in situation C. It can be 

seen that when two firms have the same flexibility, i.e., 
21 mm = , their optimal capacities 

are in the line 
21 kk = meaning that two firms have the same capacity. Moreover, it can 

be observed that at equilibrium, the optimal capacity of firm 1 increases as its own 

flexibility degree increases, i.e., an decrease of 
1m ; while it decreases as the flexibility 

degree of firm 2 increases, i.e., a decrease of 
2m . The situation of firm 2 is symmetric to 

that of firm 1. Therefore, as seen in Figure 7.8, when 01 =m and 12 =m , firm 1 has the 

highest capacity while firm 2 has the lowest capacity. Also, it is noted that all capacities 

of the two firms are larger than zero. It means under this multiplicative demand 

structure, the market always have the profit potential. It is interesting to find that all 

results derived from the numerical example do not satisfy the assumption 

µ

β )(
6 F

C
a

+
≥ , but are completely consistent with the conclusions of Theorem 7.3, 

which is derived under the assumption 
µ

β )(
6 F

C
a

+
≥ . This observation verifies the 

significant generality of the model and its conclusions derived.  

 

 

7.4.2 Effects of flexibility degrees on the optimal 

capacities 

 

Given 10 1 ≤≤ m and 10 2 ≤≤ m , Figure 7.9 plots the respect capacity of each firm.  
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Figure 7.9(a): Firm 1’s capacity 
1k  under various in-flexibility degrees ),(

21
mm . 
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Figure 7.9(b): Firm 2’s capacity 2k  under various in-flexibility degrees ),(
21

mm . 

 

Figure 7.9: Capacities 
1k  and 2k  under various in-flexibility degrees ),( 21 mm . 

 

It can be seen that with any fixed 
1m , 10 1 ≤≤ m , firm 1’s capacity 

1k  is increasing in 

2m . It means firm 1’s capacity increases as firm 2’s flexibility degree )1( 2m−  decreases. 
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On the other hand, with any given 
2m  , firm 1’s capacity increases as it own flexibility 

degree )1( 1m−  increases. In other words, with identical capacity unit cost and 

production unit cost, a firm benefits from its own increasing flexibility degree and/or 

the rivals’ decreasing flexibility degree. The highest capacity of firm 1 occurs when 

01 =m  and 12 =m ; while the lowest capacity of firm 1 happens when 11 =m  and 

02 =m . Moreover, it is noted that with a fixed 
2m , the capacity of firm 1 is only 

affected by 
1m . Similarly, with a fixed 

1m , the capacity of firm 1 is only affected by 
2m . 

However, it can be seen that the difference between firm 1’s highest capacity and lowest 

capacity with a fixed 
2m  is larger than that with a fixed 

1m . This indicates that the 

capacity of firm 1 is more affected by 
1m  than 

2m . The capacity of firm 2 under various 

flexibilities ),(
21

mm  is symmetric to that of firm 1, as shown in Figure 7.9(b). 

 

Figure 7.10 plots the total capacity of the two firms under various in-flexibility degrees 

),( 21 mm . It can be seen that with fixed in-flexibility degree 
1m , the total capacity of 

the two firms decreases with 
2m , and vice versa. Therefore, the total capacity of two 

firms increases with an increase in the sum of two flexibility degrees )2( 21 mm −− , i.e., 

an decrease of 
21 mm + . This is consistent with the Figure 7.10, in which the highest 

total capacity occurs when 01 =m  and 02 =m , and the lowest total capacity occurs 

when 11 =m  and 12 =m .  
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Figure 7.10: Total capacity of two firms under various in-flexibility degrees 

),(
21

mm . 
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Chapter 8    

Conclusions 

 

 

To hedge against demand uncertainty, chase strategy has been popular in real business. 

Using chase strategy, a firm is able to produce the optimal production level after 

knowing the actual demand information. However, a number of firms still advocate that 

the traditional level strategy enables a firm to keep a stable production level. 

Furthermore, an increasing number of firms adopt mixed strategy, which is in between 

the chase strategy and the traditional level strategy. Inspired by these actual operational 

strategies in reality, this thesis aims at constructing a theoretical research framework and 

conducting comprehensive analyses of these strategies. The prevailing chase strategy is 

formulated as flexible capacity strategy (FCS) while the traditional level strategy is 

treated as in-flexible capacity strategy (IFCS) throughout the thesis. This study 

investigates FCS from four different perspectives. 

 

There are 5 sections in this chapter. Sections 8.1 - 8.4 sequentially summarize results of 

investigations of FCS from four aspects respectively: evaluation of long term FCS, FCS 

in an asymmetric oligopoly competition, endogenous flexibility of FCS in an n-firm 

competitive market and modeling FCS with flexibility degree. Section 8.5 suggests some 

the future research directions.  

 

 

8.1 Evaluation of Long Term FCS  

 

First, the study evaluates the long term FCS by considering a long term production cost 

structure. The improvement of the production cost structure can be achieved by 

increasing technology level of the existing plants, i.e., flexible technology investment. 

Flexible technology investment improves the total production cost structure while 

flexible capacity investment postpones the production quantity decision until after 

knowing the actual demand. In our model, a firm first chooses its production strategy 

that consists of investment decisions on flexible technology and flexible capacity, and 
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then it makes the respective operations decisions. A total of five production strategies 

are formulated and the optimal decision variables of each strategy are solved. With the 

comparative analysis between different strategies, we draw the following conclusions.  

 

1) The sequential investment effect does not exist if both flexible technology and 

flexible capacity are invested in.  

 

2) More flexibility cannot guarantee more profit, which may even be worse-off under 

some environments.  

 

3) Flexible technology always yields the same or a higher profit for a firm, while 

flexible capacity investment can be beneficial or harmful to a firm depending on the 

costing environment.  

 

4) The optimal investment decision is either flexible technology or flexible capacity in 

different costing environments for a firm that makes only one investment.  

 

5) The NT+NC strategy is a lower bound for the T-only strategy, and the C-only 

strategy is a lower bound for the T+C strategy.  

 

6) The unique optimal strategy can be any one of the five possible strategies, i.e., 

NT+NC, T-only, C-only, T+C or C+T strategy, depending on the investment 

costing environment.  

 

 

8.2 FCS in an Asymmetric Oligopoly Competition  

 

Second, focusing on the competition factor, the study investigates FCS in a two-strategy 

asymmetric oligopoly competition model with demand uncertainty in a competitive 

market consisting of r flexible firms and s in-flexible firms. All firms compete with each 

other in the same market at the same price, which is determined by the demand and the 

total production quantity in the market. By characterizing the equilibrium of the 

asymmetric oligopoly competition, we draw the following significant conclusions:  
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1) Firms adopting the same strategy always make the same decisions at equilibrium 

regardless of number of firms adopting each of the two strategies.  

 

2) We analytically identify the equilibrium of a competition consisting of r flexible 

firms and s in-flexible firms to demonstrate different ways of how a firm’s decisions 

are affected by flexible and in-flexible firms in the same market simultaneously.  

 

3) Increasing production cost damages in-flexible firms, but benefits flexible firms in a 

strategy-coexistent market under certain capacity costing conditions. 

 

4) Total capacity in a market is driven by market profit potential in to a bounded range, 

regardless of number of firms in the competition. 

 

5) We identify different environments in which whether FCS or IFCS is the optimal 

strategy.  

 

 

8.3 Endogenous Flexibility of FCS in an n-Firm 

Competition  

 

Third, to address the issue of firms switching strategies, we investigate endogenous 

flexibility of FCS in a competitive market involving totally n firms and two available 

strategies, FCS and IFCS. In the model, firms are able to freely choose and switch their 

strategies to augment their profits. When any one firm switches strategy, the profit of 

other firms is affected apart from its own. Furthermore, it may cause other firms to 

switch strategies and consequently, the entire market structure may be re-organized. 

Such strategy switching movements continue until no firm switches its strategy if there 

are no other firms making changes of their strategies. This is an equilibrium called 

“Final Equilibrium” in this study. A few important conclusions drawn are shown below.  

 

1) It is found that the eventual surviving strategies are insensitive under certainty 

costing environments while sensitive to n under other costing environments. We 
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also identified these sensitive environments and insensitive environments. In 

sensitive environments, two strategies coexist when n is small, but only one strategy 

left in the market when n becomes large.  

 

2) Production cost is proved to be one of the key factors in determining the eventual 

surviving strategies at Final Equilibrium. 

 

3) Allowing firms to freely join in or quit the market, it is shown that the market 

eventually becomes a perfect competition when the number of firms tends to 

infinity. 

 

4) To meet the real desire of decision-making operations, a practical approach is 

proposed to determine the exact numbers of flexible and in-flexible firms when 

demand distribution is given. The theoretical justification and numerical example 

demonstration have also been provided.  

 

 

8.4 FCS with Flexibility Degree in a Duopoly 

Competition  

 

Last but not least, aiming at quantifying firms’ implementation of FCS and formulating 

the widely used mixed strategy, we propose the concept of flexibility degree. We further 

establish a duopoly competition model in which two firms compete with different 

flexibility degrees. A firm’s production stage is composed of two sub-stages: first-

production stage and second-production stage. In the first-production stage, a firm has a 

stable production level which is not affected by uncertain factors. In the second-

production stage, the production level is adjustable under the capacity constraints. By 

measuring the adjustment production range over the total capacity, the flexibility degree 

reflects a firm’s ability in adjusting production level to hedge against demand uncertainty. 

Therefore, the flexibility degree indicates the extent to which the FCS is implemented. 

By characterizing the equilibrium of an asymmetric duopoly competition model with 

demand uncertainty, we draw a few conclusions as follows.  
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1) Full FCS is a particular case of a general capacity strategy with a flexibility degree of 

100%; and IFCS is a particular case of a general capacity strategy with zero flexibility 

degree.  

 

2) In a symmetric duopoly model in which two firms have the same flexibility degree, 

two firms make the same decisions at equilibrium. Furthermore, the individual 

capacity and profit increases with the flexibility degree. 

 

3) In an asymmetric duopoly model in which two firms have different flexibility 

degrees, the unique equilibrium is characterized with the analytical solutions. We 

also identify the relationship between flexibility degrees of two firms, their capacity 

decisions and their profits. There is an inclusive rule of the equilibrium solution. 

 

4) Numerical results show that a firm’s optimal capacity and the expected profit at 

equilibrium increase with its own flexibility degree, while decrease with its rival’s 

flexibility degree. However, a firm’s own flexibility degree is more powerful than its 

rival’s flexibility degree to influence a firm’s capacity and the maximum expected 

profit.  

 

5) The maximum of total capacity and the maximum of total profit occur 

simultaneously when two firms have 100% flexibility degrees; while the minimum of 

total capacity and the minimum of total profit occur when two firms have zero 

flexibility degrees.  

 

 

8.5 Future Research  

 

Based on current findings of FCS, the following are possible future research directions. 

 

1) Conducting empirical studies to test the applicability of the proposed practical 

approach in Chapter 5. 

 

2) Exploring an oligopoly competition model with flexibility degree. 
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3) Considering other different forms of manufacturing flexibility and conduct 

empirical study so that we can find out the relationship between the nature of 

product and type of flexibility investment. 

 

4) Investigating how manufacturing flexibility can be fully utilized to maximize firms’ 

profits while simultaneously reducing various risks that may exist in a whole 

supply chain.  
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Appendix-I 

 

Proofs of Theorems, Propositions, Properties and 

Corollaries 

 

Proofs in Chapter 4 

Proposition 4.1   For a firm investing in flexible capacity, with any given capacity k  and 

technology level γ , the optimal production quantity as a function of demand realization 

α  is 
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Proof:  

From (4.1), for α≥q , we get ),,()
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So we can restrict our search for the optimal q  within α≤≤ q0 . Then, 
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quadratic function of q  with roots at 0 and 02q , and attains its maximum at 
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q , where 
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This completes the poof of Proposition 4.1.                 □ 
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Proposition 4.2  Under the NT+NC strategy, a firm’s optimal production quantity 

equals its capacity, i.e., NN
kq = , which satisfies βγ +=−

NN

NN
CkkG )( . The firm’s 

optimal expected profit is )2()()()(
22

N

NNNN
kkFk γ+=Π .                                           

Proof:  

Since there is no flexible capacity investment, NN
kq = . From (4.2), we have 

k
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kGk γ . Therefore, )(k
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Π  is concave 

in k , and the unique optimal solution N
k satisfies its first-order condition, i.e., 
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k . That is, βγ +=−
NN

NN
CkkG )( . The optimal profit can be 

expressed as )2()()()(
22

N

NNNN
kkFk γ+=Π .             

This completes the poof of Proposition 4.2.                   □ 

Remark: In the above proof, if βµ −≥
N

C , then 0)0(
)1(

≤−−==Π βµ
N

N
Ck , and 

so 0=
N

k . Therefore, in order to have a meaningful model, we assume βµ −<
N

C  in 

chapter 4. 

 

Proposition 4.3  Under T-only strategy with given 
N

γ , β , 
N

C  and 
r

C ,  

(i) the optimal technology level is 
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(ii) if *

T

T γγ = , then the optimal production quantity equals the optimal capacity, which 

satisfies )2(
rN
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CCYkq ++== β  and the optimal profit is 
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TTT
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2 . If 
N

T γγ = , then the results are the same as those under the 

NT+NC strategy.                    

Proof:  
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Since there is no flexible capacity investment, we always have TT
kq ≡ . Following the 

proof of Proposition 4.2 by replacing 
N

γ  with γ , from (4.4) we have the optimal profit 

for given γ  is 
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Hence, the optimal Tγ  under T-only strategy is },max{
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into the objective function, we have: (1) If *
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T γγ = , then the results are the same as those 
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This completes the poof of Proposition 4.3.                         □ 
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Proposition 4.4  Under C-only strategy with given 
N

γ , β  and 
F

C , the optimal capacity 
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Proof:  

Based on Proposition 4.1, we get the optimal production quantity as ),(
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This completes the poof of Proposition 4.4.                   □ 

Remark: In the above proof, if )(βLC
F
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C , and so 0=

C
k . 

Therefore, in order to have a meaningful model, we assume )(βLC
F

<  in this chapter. 

 

Proposition 4.5  Under T+C strategy with given 
N
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F

C  and 
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C , the optimal 
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Proof:  

Following the proof of Proposition 4.3 by replacing 
N

γ  withγ , from (4.8) and (4.9) we 
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This completes the poof of Proposition 4.5.                        □ 

 

Theorem 4.1   Under T+C strategy and C+T strategy, a firm’s optimal capacity k , 

technology levelγ , production quantity q and the optimal expected profit are exactly the 

same.        

Proof 

By formulation of T+C strategy and C+T strategy, i.e., (4.7)~(4.11), T+C strategy and 

C+T strategy can be expressed in a common formulation as:  
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 with the same optimal k  and optimal 

γ , C+T strategy is equivalent to T+C strategy.             

This completes the poof of Theorem 4.1.                         □ 
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Proposition 4.6 Given 
N

C , 
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γ , β :  
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γ

α +>+−∫
∞

N
k

N

N

Cdfk
N

  

 
)())

1
2(( , implying that 

))((
21

β
γ

γ
−

+
<

N

N

NN
CXk . So 0

)(
<

N

N

dC

Cdϕ
 and )(

N
Cϕ  is strictly decreasing in 

),0[ βµ −∈
N

C . Furthermore, as βµ −→
N

C , 0)()( >−Π→ βµϕ C

N
C . Therefore, 

0)()()( >Π−Π=
N

N

N

C

N
CCCϕ  for all ),0[ βµ −∈

N
C . Therefore, 

))((0)()( βLCC
C

N

N

N

C
Π=>Π>Π . Since )(

N

N
CΠ  is independent of 

F
C , there 

exists a unique ))(,[ˆ βLCC
NF

∈  satisfying N

N

N

F

C
CC Π=Π=Π )()ˆ( . Therefore, 

CN
Π>Π when )(ˆ βLCC

FF
<< ; 

NC
Π>Π  when 

FFN
CCC ˆ<≤ . Further, 

0
)(

<−=
Π

N

N

N

N

k
dC

Cd
, so we have 0

ˆ
>

N

F

dC

Cd
.             

This completes the poof of Proposition 4.6.                     □    

 

Proposition 4.7  Comparing NT+NC strategy and T-only strategy, we have 
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(i) under T-only strategy, define },min{
rrrT

CCC = , the optimal capacity and 

expected profit are )2(
rTN

T
CCYk ++= β  and

NrT

TTT
CkFk γ+=Π )()(

2 , 

respectively; further, if
rr

CC ≤ , T
Π  is strictly decreasing in 

r
C ; if 

rr
CC > , T

Π  

keeps constant as )(
r

T
CΠ ;  

(ii) the optimal decisions of NT+NC strategy can be obtained from resolving T-only 

strategy with modified parameter
rr

CC = , and then )(
r

TN
Ckk =  and 

)(
r

TN
CΠ=Π ; 

where 2

2

1 )(0 βCµC
Nr

−−<<  satisfying 
N

r

rN

C

CCY
γ

β
=

++

2

)2(
.  

Proof  

Let 2

2

1 )( βCµC
Nrh

−−= . If 
rhr

CC ≤<0 , then by Proposition 4.2, we 

have },max{
*

TN

T γγγ = . Note that
r

rN

T

C

CCY

2

)2(
*

++
=

β
γ . Then, 0

*

<
r

T

dC

dγ
 and so 

*

T
γ  is strictly decreasing in

r
C . Since )(0)(lim

**

rhrTNrT
C

CCC
r

==>>∞=
∞→

γγγ , there 

exists a unique 
rhr

CC <<0  such that 









≤<<

==

<<>

\

*

 if

 if

0 if

rhrrN

rrN

rrN

T

CCC

CC

CC

γ

γ

γ

γ . So 
NT

γγ ≥
*  is 

equivalent to 
rr

CC ≤ . In this case, since 0
)( *

≤+−=
Π

NT

r

r

T

dC

Cd
γγ  with equality holds 

if and only if 
NT

γγ =
* , )(

r

T
CΠ  is strictly decreasing for 

rr
CC ≤ . For 

rr
CC ≥ , 

*

TN

T γγγ ≤=  and remains constant N

r

T
C Π=Π )(  for

rr
CC ≥ , by Proposition 4.2. 

The results follow.     

This completes the poof of Proposition 4.7.                     □ 

 

Theorem 4.2   Given
N

C ,
N

γ  and β , the comparison between T-only and C-only strategy 

is:  

(i) If )()(
r

T

N

C
CC Π<Π , then )()(

r

T

F

C
CC Π<Π  for all situations;  

(ii) If )()(
r

T

N

C
CC Π≥Π , then for each ],0(

rmr
CC ∈ , )()(

r

T

F

C
CC Π≤Π for all 
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))(,[ βLCC
NF

∈ , where 






Π<Π

Π≥Π
=

)0()( if

)0()( if0

T

N

C
r

T

N

C

rm

CC

C

C  and ],0(
rr CC ∈  

satisfies )()(
N

C

r

T
CC Π=Π . Moreover, for each ),( ∞∈

rmr
CC , there exists a 

unique ))(,( βLCC
NF ∈  such that 













<<

=

<≤

Π<

Π=

Π>

Π

)( if

 if

 if

)(

)(

)(

)(

βLCC

CC

CCC

C

C

C

C

FF

FF

FFN

r

T

r

T

r

T

F

C . 

Furthermore, the curve )()(
r

T
F

C
CC Π=Π  is strictly increasing for 

],(
rrmr

CCC ∈  and horizontal for ),[ ∞∈
rr

CC . 

Proof:   

(i) If )()(
r

T

N

C
CC Π<Π , then, by Propositions 4.6 and 4.7, we have 

)()()()(
r

T

r

T

N

C

F

C
CCCC Π≤Π<Π≤Π  for all 

F
C  and 

r
C . 

(ii) If )()(
r

T

N

C
CC Π≥Π , then we consider two sub-cases. 

(ii-1) If )0()(
T

N

C
C Π≥Π , then ))((0)()0()( βLCC

C

r

TT

N

C
Π=>Π>Π≥Π  for all 

],0(
rr

CC ∈  by Proposition 4.7. 

(ii-2) If )0()(
T

N

C
C Π<Π , then )()()0(

r

T

N

CT
CC Π≥Π>Π . Since, by Proposition 

4.7, )(
r

T
CΠ  is strictly decreasing in ],0(

r
C , there exists a unique 

],0(
rr CC ∈  such that 













≤<

=

<<

Π<

Π=

Π≥Π>

Π

rrr

rr

rr

N

C

N

C

F

C

N

C

r

T

CCC

CC

CC

C

C

CC

C

 if

 if

0 if

)(

)(

)()(

)( . 

Therefore, for all ],(
rrr

CCC ∈ , 

))((0)()()( βLCCC
C

r

T
r

T

N

C
Π=>Π>Π=Π . 

 

Let 






Π<Π

Π≥Π
=

)0()( if

)0()( if0

T

N

C
r

T

N

C

rm

CC

C

C . Combining Cases (ii-1) and (ii-2), for all 

],(
rrmr

CCC ∈   ))(()()( βLCC
C

r

T

N

C
Π>Π>Π . Since, by Proposition 4.6, )(

F

C
CΠ  

is strictly decreasing in ))(,[ βLC
N

, there exists a unique ))(,( βLCC
NF ∈  such that 
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











<<

=

<≤

Π<

Π=

Π>

Π

)( if

 if

 if

)(

)(

)(

)(

βLCC

CC

CCC

C

C

C

C

FF

FF

FFN

r

T

r

T

r

T

F

C . Differentiating )()(
r

T
F

C
CC Π=Π  with 

respect to 
r

C , we have 0
)(

)(

)1(

)1(

>
Π

Π
=

F
C

r

T

r

F

C

C

dC

Cd
. Thus, FC  is a strictly increasing 

function of ],(
rrmr

CCC ∈ . For all 
rr

CC ≥ , )()(
r

T

r

T
CC Π=Π , and so the results 

follow.             

This completes the poof of Theorem 4.2.                    □ 

  

Proposition 4.8   Comparing C-only strategy and T+C strategy: For any given 
F

C ,   

(i) the optimal expected profit of T+C strategy )(
r

CT
C

+
Π is strictly decreasing in 

r
C  

for 
CT

rr
CC

+

≤<0 , and 
0

)21(2)( Π+=Π
+

NNr

CT
C γγ  for 

CT

rr
CC

+

≥ , where 

2

0

)21(

2

N

CT

rC
γ+

Π
=

+

; 

(ii) the C-only strategy can be reduced from T+C strategy by modifying the 

parameter
CT

rr
CC

+

= , and then )(
CT

r
CTC

Ckk
+

+
=  and )(

CT

r
CTC

C
+

+
Π=Π ; 

(iii) C-only strategy is a lower bound of T+C strategy; moreover, the increase in profit 

by T+C strategy relative to C-only strategy is %100
2

1
⋅≤

Π

Π−Π
=

+

N

C

CCT

γ
δ .       .   

Proof:  

(i) By Proposition 4.5, )12(
2

1
0

*
−Π=+ rCT

Cγ  and 

)(
21

2
)( 0 N

CT

rCT

CT

r

CT
CC γγ

γ

γ
−−Π

+
=Π

+

+

+

+ . For 
2

0

)21(

2
0

N

CT

rr
CC

γ+

Π
=≤<

+

, we 

have 
NCT

γγ ≥
+

*  and so *

CT

CT

+

+
= γγ . Therefore, 0)(

)( *
≤−−=

Π
+

+

NCT

r

r

CT

dC

Cd
γγ  

with the equality holds if and only if 
CT

rr
CC

+

= . Thus, )(
r

CT
C

+
Π is strictly 

decreasing in 
r

C  for
CT

rr
CC

+

≤<0 . For 
CT

rr
CC

+

≥ , we have 
NCT

γγ ≤
+

*  and so 

N

CT γγ =
+ . Then, 

0
21

2
)( Π

+
=Π

+

N

N

r

CT
C

γ

γ
, independent of 

r
C . 
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(ii) Furthermore, if 
CT

rr
CC

+

= , then 
NCT

CT γγγ ==
+

+ * . By Propositions 4.3 and 4.4, 

we have C

F

N

NCT
kCXk =−

+
=

+
))((

21
β

γ

γ
 and C

N

NCT
Π=Π

+
=Π

+

0
21

2

γ

γ
. 

Therefore, T+C strategy is exactly the same as C-only strategy. 

From (i) and (ii), C-only strategy is a lower bound of T+C strategy. The increase in profit 

by T+C strategy relative to C-only strategy is 

%100
2

1

)21(2

)21(2)0()(

0

00 ⋅=
+Π

+Π−Π
=

Π

Π−=Π
≤

Π

Π−Π
=

++

NNN

NN

C

C

r

CT

C

C

r

CT
CC

γγγ

γγ
δ .       

This completes the poof of Proposition 4.8.                    □ 

 

Theorem 4.3 Define TCT
Π−Π=∆Π

+ . Let 
CT

FC
+

 satisfy 
2

0

)21(

)(2

N

CT

F

r

C
C

γ+

Π
=

+

. A 

unique *

r
C  satisfying 0),(

*
=∆Π

+CT

Fr
CC  exists. With a given

N
C , 

(i) if *
0

rr
CC << , then there exists a unique )(

*

rF
CC  satisfying  









≤<<

==

<≤>

∆Π

)()( if0

)( if0

)( if0

),(
*

*

*

βLCCC

CCC

CCCC

CC

FrF

rFF

rFFN

Fr
; 

(ii) if 
rrr

CCC ≤≤
* , then there exists a unique )(

~
rF

CC  satisfying  









≤<<

==

<≤>

∆Π

)()(
~

 if0

)(
~

 if0

)(
~

 if0

),(

βLCCC

CCC

CCCC

CC

FrF

rFF

rFFN

Fr
; 

(iii) if 
rr

CC < , then 








≤<<

==

<≤>

∆Π

)()(
~

 if0

)(
~

 if0

)(
~

 if0

),(

βLCCC

CCC

CCCC

CC

FrF

rFF

rFFN

Fr
. 

Proof:  

In the following, we consider the effects of variations of 
F

C  and 
r

C  on CT +
Π  and T

Π , 

so as to compare T+C strategy and T-only strategy under different environments. First, 

we consider the relationship between 
F

C  and 
2

0

)21(

)(2

N

F
CT

r

C
C

γ+

Π
=

+

, ))(,[ βLCC
NF

∈  

(Proposition 4.7). Differentiating w.r.t. to 
F

C , we get 0
)21(

)(
2

<
+

−
−=

+

N

F
CT

r

F

CX
C

dC

d

γ

β
.  
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So, 
CT

rC
+

 is a strictly decreasing function of ))(,[ βLCC
NF

∈ . Therefore, the inverse 

function exists, say 
CT

FC
+

, satisfying 
2

0

)21(

)(2

N

CT

F

r

C
C

γ+

Π
=

+

. Note that 
CT

FC
+

 is a strictly 

decreasing function of ],0(
CT

rr
CC

+
∈ , where 

2

0

)21(

)(2

N

NCT

r

C
C

γ+

Π
=

+
.  

For T+C strategy: Let CT
a

+
= γ . By Proposition 4.5, )12(

2

1
0

*
−Π=+ rCT

Cγ and 

)(
21

2
0 Nr

CT
aC

a

a
γ−−Π

+
=Π

+ . For T-only strategy, by Proposition 7.7 
r

C  satisfies 

N

r

rN

C

CCY
γ

β
=

++

2

)2(
. Define TCT

Fr
CC Π−Π=∆Π

+
),( . 

Case 1: },min{0
CT

rrr
CCC

+
≤<  and 

CT

FFN
CCC

+

≤≤  

For T+C strategy, following the proof of Proposition 4.8, we have 
NCT

a γγ ≥=
+

* . Thus, 

)12(
2

1
0 −Π=

r
Ca , 

r
C

a

2

)21(
2

0

+
=Π  and 

rN

CT
Ca )2(

2 γ+=Π
+ . Then, 

r

F

F
Ca

CX

C

a

)21(4

)(

+

−
−=

∂

∂ β
. For T-only strategy, by Proposition 4.6, we 

have
Nr

TTT
CkFk γ+=Π )()(

2 , where )2(
rN

T
CCYk ++= β . Then, 

)()(2),(
22 TT

rFr
kFkCaCC −=∆Π . With respect to

F
C , 

0))((
21

<−
+

−=
∂

∆Π∂
β

F

F

CX
a

a

C
. Therefore, for any given 

r
C  with 

},min{0
CT

rrr
CCC

+
≤< , ∆Π  is strictly decreasing in 

F
C , 

CT

FFN
CCC

+

≤≤ . 

When
NF

CC = , T-only strategy and T+C strategy can be expressed in a common 

formulation as:  

Max )()()
2

)(())(,,(
 

0  
NrN

CkCdf
q

qqqk γγαα
γ

βαγ −−−−−−=⋅Π ∫
∞

+ ,  

s.t.  kq ≤⋅≤ )(0 . 
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For T-only strategy, ))(,,(max
,

kqk
k

T
=⋅Π=Π γ

γ
; for T+C strategy, 

))(,,(maxmax
)(,

⋅Π=Π
⋅

+
qk

qk

CT γ
γ

. Since T-only strategy is more restricted than T+C 

strategy, we have TCT
Π≥Π

+ . Therefore, 0),( ≥∆Π
Nr

CC . 

When
CT

FF
CC

+

= , then 
N

CT
a γγ ==

+ . The T+C strategy is the same as the C-only 

strategy. Consider the curve
CT

FF
CC

+

= , where 
CT

FC
+

is a function of
r

C . 

)()(2),(
22 TT

rN

CT

Fr
kFkCCC −=∆Π

+

γ . With respect to
r

C , 0
2

2
2

>+=
∆Π

r

T

N

r C

k

dC

d
γ . 

Therefore, ∆Π  is strictly increasing in 
r

C , }],min{,0(
CT

rrr
CCC

+
∈ . At 

},min{
CT

rrr
CCC

+
= , we consider two cases:  

(i) If 
CT

rr
CC

+
≤ , then 

rr
CC =  and 

CT

FF
CC

+

= . We have 
NCTT

γγγ ==
+

** , 

rN

T
Ck 2γ= and 

0)2(2)2(22),(
222

≥=−=∆Π
+

rNrNrNrNrN

CT

Fr
CFCCFCCCC γγγγγ . 

(ii) If 
CT

rr
CC

+
> , then 

CT

rr
CC

+
=  and 

CT

FF
CC

+

= . We have 
NF

CC = . By above, we 

obtain 0),( ≥∆Π
Nr

CC . Therefore, 0)},,(min{ ≥∆Π
+

N

CT

rr
CCC . 

 

If 0→
r

C and 
CT

FF
CC

+

= , then )(βLCC
CT

FF
→=

+

 and 

0))(()(),(
2

<++−→∆Π
+

ββ
NN

CT

Fr
CYFCYCC . Therefore, when

CT

FF
CC

+

= , where 

CT

FC
+

is a function of
r

C , there exists a unique }],min{,0(
* CT

rrr
CCC

+
∈  such that 









≤<>

==

<<<

∆Π
+

+

},min{ if0

 if0

0 if0

),(
*

*

*

CT

rrrr

rr

rr

CT

Fr

CCCC

CC

CC

CC . Combining the results so far, we 

have conclusion that for *
0

rr
CC << , there exists a unique )(

*

rF
CC depending on

r
C , 

such that 0=∆Π . Therefore, if *
0

rr
CC ≤< , then 









≤<<

==

<≤>

∆Π
+CT

FFrF

rFF

rFFN

Fr

CCCC

CCC

CCCC

CC

)( if0

)( if0

)( if0

),(

*

*

*

; if },min{
* CT

rrrr
CCCC

+
≤< , then 
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0),( ≥∆Π
Fr

CC . Now we consider 0),( =∆Π
Fr

CC  for *
0

rr
CC ≤<  when 

N
C  is given. 

Then )()(2
22 TT

r
kFkCa = , where )2(

rN

T
CCYk ++= β  and 

)1)(2(
2

1
0 −Π=

rF
CCa . With respect to

r
C , we 

have
3

0

0
)2(

)(

2)(4

)(

r

F

r

F

rF

F

r C

C

dC

dC

CC

CX

dC

da Π
−

Π

−
−=

β
. Consider )()(2

22 TT

r
kFkCa = , 

with respect to
r

C , we have 
r

T

r

r

C

k

dC

da
aCa

2
42

2
−=+ . Therefore, 

r

T

r

FF

C

k
a

dC

dC

a

CXa

221

))((
−=−

+

−
−

β
 and 

))((

)21(

2

2

β−

+
⋅

−
=

Fr

r

T

r

F

CXa

a

C

Cak

dC

dC
. 

Since ( ) ( )TT

r
kFkCa

22
2 = , )(2

TT

r
kFkCa = . Therefore, 

))((

)21(

)(

)(

β−

+
⋅

−
=

F
TT

TTT

r

F

CX

a

kFk

kFkk

dC

dC
0

))((

)21(

)(

)(1
>

−

+
⋅

−
=

β
F

T

T

CX

a

kF

kF
.  

In order to complete the analyses, we consider the following two situations.  

Case 2: 
r

CT

rr
CCC <

+
},min{  and 

CT

FFN
CCC

+

≤≤  

(i) If 
CT

rr
CC

+
≤ , then 

rr
CC <  and 

CT

FFN
CCC

+

≤≤ . So, 

NrF
CCa γ≥−Π= )1)(2(

2

1
0

 and )2(
rN

T
CCYk ++= β . Therefore, 

N

r

rF

C

CC
γ21

)(2
0

+≥
−Π

 and so 
rNrNrF

CCCC γγ 2)21()(2
0

>+≥−Π . 

T
k is independent of 

r
C . Therefore,  

)()()(2),(
22

rrN

TT

rFr
CCkFkCaCC −+−=∆Π γ  

  )()(2
22 TT

r
kFkCa −> )2(2))(2(

2

1 22

0 rNrNrF
CFCCC γγ−−Π=  

       )2(22
22

rNrNrN
CFCC γγγ −> 0> . 

(ii) If 
CT

rr
CC

+
> , then 

r

CT

r
CC <

+
 and 

CT

FFN
CCC

+

≤≤ . We have a contradiction. 

Therefore, 0),( >∆Π
Fr

CC  if Case 2 exists. 

Case 3: )(},max{ βLCCC
F

CT

FN
<<

+
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Then, for T+C strategy, 
N

CT γγ =
+  and )(

21

2
0 F

N

NCT
CΠ

+
=Π

+

γ

γ
 which is independent 

of 
r

C . Further 0<
Π

+

F

CT

dC

d
 for )(},max{ βLCCC

F

CT

FN
<<

+

. For T-only strategy, for 

rr
CC ≤<0 , 

Nr

TTT
CkFk γ+=Π )()(

2 which is independent of 
F

C . Further, 

0<
Π

r

T

dC

d
 within 

rr
CC ≤<0 . T

Π  keeps constant as )(
r

T
CΠ  when 

rr
CC < . We 

consider three sub-cases as following. 

Case-3.1  if *
0

rr
CC << , then for given 

r
C ,  

0)( <Π−=Π<Π−Π=∆Π
+

++ T
CT

FF

CTTCT
CC .  

Case-3.2 if 
rrr

CCC ≤≤
* , then 0<

Π
+

F

CT

dC

d
 and 0<

Π

r

T

dC

d
. Therefore, 0<

∆Π

F
dC

d
 for 

given 
r

C ; 0>
∆Π

r
dC

d
 for given 

F
C . As )(},max{ βLCCC

F

CT

FN
<<

+

, we check 

boundaries. If 
CT

FF
CC

+

= , then 0>∆Π ; and if 
NF

CC = , then 0≥∆Π  as before. 

If )(βLC
F

→ , then 0<∆Π . Therefore, for any given 
r

C , 
rrr

CCC ≤≤
* , there 

exists a unique 
F

C
~
 such that 0=∆Π  and 

F
C
~
is a function of 

r
C . Consider the curve 

0=∆Π . With respect to 
r

C , we have 0=
∂

∆Π∂
+⋅

∂

∆Π∂

rr

F

F
CdC

dC

C
, so that 0>

r

F

dC

dC
. 

Therefore, 0

~

>
r

F

dC

Cd
.  

The results are 










<<<

==

<≤>

∆Π

+

)()(
~

 if0

)(
~

 if0

)(
~

 if0

),(

βLCCC

CCC

CCCC

CC

FrF

rFF

rFF

CT

F

Fr
. 

Case-3.3 if 
rr

CC < , then for any given 
F

C , T
Π keeps constant as )(

r

T
CΠ . Therefore, 

TCT
Π−Π=∆Π

+ keeps as constant as )(
r

C∆Π  with any given
F

C .  

This completes the proof of Theorem 4.3.                                           □ 

 

Theorem 4.4  Given 
N

C , 
N

γ , β , assume )(βLCC
FN

≤≤ , following all definitions in 

Proposition 4.6, the most effective and efficient strategy (EES) is: 
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(i) if *
0

rr
CC << , then EES =





 <≤+

otherwisestrategy,only -T

)( ifstrategy, CT
*

rFFN
CCCC

; 

(ii) if 
rrr

CCC ≤≤
* , then EES =













<≤

<≤+

+

+

otherwisestrategy,only -T

)(
~

 if strategy,only -C

 ifstrategy, CT

rFF

CT

F

CT

FFN

CCCC

CCC

; 

 (iii) if 
rr

CC < , then EES =













+

<≤

<≤+

+

+

otherwisestrategy, NCNT

)(
~

 ifstrategy,only -C

 ifstrategy, CT

rFF

CT

F

CT

FFN

CCCC

CCC

; 

For all environments, T+C strategy equals C+T strategy.  

Proof:  Following the proof of Theorem 4.3, we can get Theorem 4.4 directly.        □ 

 

 

Proofs in Chapter 5 

Proposition 5.1  Consider any feasible firm i. Suppose thatα , 
j

k , Ω∈j , and F

j
q , 

}{\ ij
F

Ω∈ , are given. Then the optimal production decision *F

i
q of the feasible firm i is 









<+

+≤<

≤

=

xkk

kxq

x

q

F

i

F

i

F

i

F

ib

F

i

β

ββ

β

2,

2,

,0
* , where N

ij

F

j
kqx −−= ∑

≠

)(αα and 
2

β−
=

x
q

F

ib
.  

Proof 

Let N

ij

F

j
kqx −−= ∑

≠

α . Then by (5.2), we have F

i

F

i

F

i

F

i

F

i
qqxqqm β−−=

+
)()( . There 

are three cases. 

Case 1  If 0<x , then  

0)( ≤−=
F

i

F

i

F

i
qqm β , 0)(

)1(

≤−= βF

i

F

i
qm , so that )(

F

i

F

i
qm is decreasing as 

F

i
q increases. The optimal solution under this situation is 0

*
=

F

i
q , so that 

0)(
*

=
F

i

F

i
qm . 

Case 2  If F

i
kx <≤0 , then we have two sub-cases.  
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(1) If F

i

F

i
kqx ≤≤ , then 0)( ≤−=

F

i

F

i

F

i
qqm β , 0)(

)1(

≤−= βF

i

F

i
qm , the optimal 

solution under this situation is xq
F

i
=

* . Therefore, we can restrict the search for the 

optimal quantity to the range xq
F

i
≤≤0 . 

(2) If xq
F

i
≤≤0 , then F

i

F

i

F

i

F

i

F

i
qqxqqm β−−= )()( , F

i

F

i

F

i
qxqm 2)(

)1(
−−= β , 

02)(
)2(

<−=
F

i

F

i
qm . So )(

F

i

F

i
qm is concave in F

i
q . By its first-order condition 

0)(
)1(

=
F

i

F

i
qm , 

2

)( β−
=

x
q

F

ib
. Therefore, we have  









<

≤<

≤

=
F

ib

F

ib

F

ib

F

ib

F

i

qxx

xqq

q

q

,

0,

0,0
*  , i.e., 









−<

<

≤

=

tion)(contradic ,

,

,0
*

β

β

β

xx

xq

x

q
F

ib

F

i
.  

Therefore, we have 




<

≤
=

xq

x
q

F

ib

F

i

β

β

,

,0
* .  

Case 3  If xk
F

i
≤ , then  

F

i

F

i

F

i

F

i

F

i
qqxqqm β−−= )()( . Similar to Case 2, )(

F

i

F

i
qm is concave in F

i
q , and so 









≤

≤<

≤

=
F

ib

F

i

F

i

F

i

F

ib

F

ib

F

ib

F

i

qkk

kqq

q

q

,

0,

0,0
* ,  i.e., 









<+

+≤<

≤

=

xkk

kxq

x

q

F

i

F

i

F

i

F

ib

F

i

β

ββ

β

2,

2,

,0
* .  

Combining Cases 1 - 3, we have 








<+

+≤<

≤

=

xkk

kxq

x

q

F

i

F

i

F

i

F

ib

F

i

β

ββ

β

2,

2,

,0
* . 

This completes the proof of Proposition 5.1.                           □ 

 

Proposition 5.2   In an oligopoly market competition with 0>r  flexible firms and 

0≥s  in-flexible firms, the optimal capacity of flexible firm F
i Ω∈  , i.e., *F

i
k , is either 

(i) 0
*

=
F

i
k  and 0)0(

)1(

≤
F

A ; or (ii) 0
*

>
F

i
k  and 0)(

*)1(
=

F

i

F
kA . 

Proof 

By (5.3),  ( )NN

l

F

j

F

j

F

i

F

i

F

i

F
lkijqkkkA Ω∈≠∀Π= ,and,)(,)( α  

                              .)()))(((
 

0 

* F

iF

NFF

i
kCdfkQq −−−−= ∫

∞
+ ααβαα                    (a5.1) 
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According to Proposition 5.1, for any given F

i
k , the optimal *F

i
q  is 









<+

+≤<

≤

=

xkk

kxq

x

q

F

i

F

i

F

i

F

ib

F

i

β

ββ

β

2,

2,

,0
*  ,  

where *
)()(

F

i

NFN

ij

F

j
qkQkqx +−−=−−= ∑

≠

αααα  and 2)( β−= xq
F

ib
. By (a5.1), 

the objective becomes finding the optimal *F

i
k to maximize )(

F

i

F
kA . Note that  










<++>−

+≤<>
+

≤

=−−

xkkkx

kx
x

xx

kQ

F

i

F

i

F

i

F

i

NF

ββ

βββ
β

β

αα

2,

2,
2

,

)( .  

Thus, if β≤x , then 0
*

=
F

i
q ; and if β>x , then 0)( ≥>−− βαα

NF
KQ . Together 

with (a501), we have .)())(()(
 

0 

* F

iF

NFF

i

F

i

F
kCdfkQqkA −−−−= ∫

∞

ααβαα  

Let 2)( β−== xqy
F

ib
, then 













<

≤<

≤

=

.,

;0,

;0,0

*

ykk

kyy

y

q

F

i

F

i

F

i

F

i
 

F

iF

F

i

F

i

F

i

F
kCdfqyqkA −−= ∫

∞

αα )()2()(
 

0 

**  

F

iF

yk

F

i

F

i

ky

kCdfkykdfyyy

F

i

F

i

−−+−= ∫∫
<≤<

αααα )()2()()2(

0

 

F

iF

yk

F

i

y

kCdfkydfy

F

i

−−−= ∫∫
<<

αααα )()()(
2

0

2 .                                       (a5.2) 

Let ∫
<

=

y

F

i
dfykB

0

2
)()( αα , and ∫

<

−=

yk

F

i

F

i

F

i

dfkykC αα )()()(
2 . Note that )(

F

i
kB is 

independent of F

i
k , i.e., 0

)(
=

F

i

F

i

dk

kdB
. Therefore, with respect to F

i
k , by (a5.2) we have  

F

yk

F

i

F

i

F
CdfkykA

F

i

−−= ∫
<

αα )()(2)(
)1(  and 0)(2)(

)2(
≤−= ∫

< yk

F

i

F

F

i

dfkA αα .  

Therefore, )(
F

i

F
kA  is concave. Note that 0)( ≥

F

i
kC  and 0>

F
C . It follows that, 

as ∞→
F

i
k , −∞→)(

F

i

F
kA . Therefore, there exists an 0>S , such that 0)( <

F

i

F
kA  for 
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all Sk
F

i
≥ . Since 0)0( =

F
A , we can restrict our search for the optimal F

i
k  in ],0[ S . 

Therefore, either (i) 0
*

=
F

i
k  and 0)0(

)1(

≤
F

A ; or (ii) 0
*

>
F

i
k  and 0)(

*)1(
=

F

i

F
kA . 

This completes the proof of Proposition 5.2.  □ 

 

Proposition 5.3   At the equilibrium of an oligopoly market competition with 0>r  

flexible firms and 0≥s  in-flexible firms, the optimal capacities of flexible firms are 

either 0
*

=
F

i
k , for all F

i Ω∈ ; or 0
*

>
F

i
k , for all F

i Ω∈ ; further,  

(i) 0
*

=
F

i
k , for all F

i Ω∈ , is equivalent to β−≥ )(
F

N
CXk ; 

(ii) 0
*

>
F

i
k , for all F

i Ω∈ , is equivalent to β−< )(
F

N
CXk . 

Proof 

We follow the notations in the proof of Proposition 5.2. Let 

βααθ −−−=−=
NFF

i
kQqy )(2

* , which is independent of i . By Proposition 5.2, 

there are two cases of *F

i
k .  

In case (i) 0
*

=
F

i
k  and 0)0(

)1(
≤

F
A , we have 0

*
=

F

i
q  and  

0)(2)0(

0

)1(
≤−= ∫

<

F

y

F
CdyfA αα , i.e., 

F
Cdf ≤∫

<θ

ααθ
0

)( .                       (a5.3) 

In case (ii) 0
*

>
F

i
k , 0)(

*)1(
=

F

i

F
kA , we have  

0)()(2)(
)1(

=−−= ∫
<

F

yk

F

i

F

i

F
CdfkykA

F

i

αα , i.e., ∫
<

−=

yk

F

i

F

F

i

dfky
C

αα )()(
2

.    (a5.4) 

When *F

i
ky > , ** F

i

F

i
kq = . Therefore, **

2)(
F

i

F

i
kky >+= θ  is equivalent to *F

i
k>θ . By 

(a5.4), we have 
F

k

F

i
Cdfk

F

i

=−∫
<θ

ααθ
*

)()(
* .  

Note that ∫∫∫
<<<

−≤−

θθθ

ααααθααθ
F

i

F

i
k

F

i

k

F

i
dfkdfdfk )()( )()(

0

. If 0)( =∫
<θ

αα
F

i
k

df , then 

for any 0>t , 0)()()()(0

000

=≤≤−≤ ∫∫∫
−<≤−<≤−<

F

i

F

i

F

i
ktktk

F

i
dftdftdfk

θθθ

ααααααθ . So,  

0)()(lim)()(

0

=−=−= ∫∫
≤−<

∞→
< tk

F

i
t

k

F

iF

F

i

F

i

dfkdfkC

θθ

ααθααθ , which is a contradiction. 

Therefore, 0)( >∫
<θ

αα
F

i
k

df . Since 0
*

>
F

i
k , we have  
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∫∫
<<

<−=

θθ

ααθααθ
0

)()()( dfdfkC

F

i
k

F

iF
, i.e., ( )

F
Cdf >∫

<θ

ααθ
0

.                   (a5.5) 

Since (a5.3) and (a5.5) are contradictory to each other and independent of i , we have at 

equilibrium either 0
*

=
F

i
k , for all F

i Ω∈ ; or 0
*

>
F

i
k , for all F

i Ω∈ . We discuss these 

two cases respectively.  

Case-I  0
*

=
F

i
k , for all F

i Ω∈ , then 0
*

=
F

i
q . By (a5.3),  

we have  
F

k

N
Cdfk

N
≤−−∫

∞

+β
ααβα )()( , i.e., β−≥ )(

F

N
CXk . 

Case-II  0
*

>
F

i
k , for all F

i Ω∈ ,  then by (a5.5),  

we have 
F

kQ

NF
CdfkQ

NF

>−−−∫
++> βαα

ααβαα

)(

)())(( . Therefore,  

∫∫
++>+>

−−≥−−

βααβα

ααβαααβα
NFN

kQ

N

k

N
dfkdfk

)(

)()()()(  

                               
F

kQ

NF
CdfkQ

NF

>−−−≥ ∫
++> βαα

ααβαα

)(

)())(( ,  

i.e., 
F

N
CkL >+ )( β . Equivalently, β−< )(

F

N
CXk . Therefore,  

(1)  0
*

=
F

i
k , for all F

i Ω∈ , is equivalent to β−≥ )(
F

N
CXk ;  

(2)  0
*

>
F

i
k , for all F

i Ω∈ , is equivalent to β−< )(
F

N
CXk .  

This completes the proof of Proposition 5.3.                   □ 

 

Theorem 5.1   At the equilibrium of an oligopoly market competition with 0>r  flexible 

firms and 0≥s  in-flexible firms, all flexible firms F
i Ω∈  make the same capacity 

decision and the same production decision. That is:  

(i) If β−≥ )(
F

N
CXk , then 0

**
==

F

i

F

i
qk  for all F

i Ω∈ . 

(ii) If β−< )(
F

N
CXk , then 0

1*
>==

FF

e

F

i
k

r
kk  for all F

i Ω∈ ; further, we have 

β−=++ )()1(
F

F

e

N
CXkrk . The individual profit of each flexible firm is 






 −−+−−

+
=Π ∫∫

∞

+

 

)( 

2
)( 

 

2

2
)())(()()(

)1(

1

F

F

N
CX

N

F

CX

k

NF

e
dfkCXdfk

r
ααβααβα

β
.  

The production decision of each flexible firm is F

e

F

i
qq =

*  for all F
i Ω∈ , 
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 which is presented as 










<+++

+++≤<+
+

−−

+≤≤

=

αβ

βαβ
βα

βα

NF

e

F

e

NF

e

N

N

N

F

e

kkrk

kkrk
r

k

k

q

)1(,

)1(,
1

0,0

.  

Proof 

We use the same notations as in the proof of Proposition 5.2. For any two flexible 

firms hj ≠ , F
hj Ω∈, . Without loss of generality, we assume ** F

h

F

j
kk ≤ . By (a5.5), we 

have ∫∫
<<

−=−

θθ

ααθααθ
**

)()()()(
**

F

h

F

j
k

F

h

k

F

j
dfkdfk . Assume that ** F

h

F

j
kk < . Since 

0)(
*

>∫
<θ

αα
F

h
k

df , we have  

∫∫
<<

−≥−

θθ

ααθααθ
**

)()()()(
**

F

h

F

j
k

F

j

k

F

j
dfkdfk  

                                 ∫∫
<<

−=

θθ

ααααθ
**

)()( 
*

F

h

F

h
k

F

j

k

dfkdf  

                                  ∫∫
<<

−>

θθ

ααααθ
**

)()( 
*

F

h

F

h
k

F

h

k

dfkdf ∫
<

−=

θ

ααθ
*

)()(
*

F

h
k

F

h
dfk . 

This is a contradiction. Hence, ** F

h

F

j
kk = .  

Therefore, we have 0
*

>=
F

e

F

j
kk  for all F

j Ω∈ .  Therefore, for any feasible firm 

F
i Ω∈ , together with Proposition 5.1, we have 









<

≤<

≤

=

θ

θθ

θ

F

e

F

e

F

e

F

i

kk

kq

,

0,

0,0
* , where 

βααθ −−−=
NF

kQ )(  is independent of i. So all *F

i
q , F

i Ω∈ , are equal. That means 

F

e

F

i
qq =

*  for all F
i Ω∈ , and we have F

e

F
rqQ = . Since there are r flexible firms, 

βαθ −−−=
NF

e
krq . Therefore, F

e

F

i
qq =

*  can be expressed as 










<+++

+++≤<+
+

−−

+≤≤

=

αβ

βαβ
βα

βα

NF

e

F

e

NF

e

N

N

N

F

e

kkrk

kkrk
r

k

k

q

)1(,

)1(,
1

0,0

. By (a5.5), we have 

F

krk

F

e

N
Cdfkrk

F

e

N

=+−−−∫
<+++ αβ

ααβα

)1(

)())1(( , i.e., 
F

F

e

N
CkrkL =+++ ))1(( β . So, we 

have β−=++ )()1(
F

F

e

N
CXkrk , i.e., 

1

)(

+

−−
=

r

kCX
k

N

FF

e
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We consider the individual expected profit of each flexible firm. By (a5.2) and (a5.4), 

∫∫∫
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Note that 
2
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xy . Then  

(1)  If N
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+
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Therefore, by (a5.7) we have  

∫∫
∞

+++

+++

+
+

+

−−
=

 

)1( 

2
)1( 

 

2
)()()()

1
()(

F

e

N

F

e

N

N
krk

F

e

krk

k

N

F

i

F
dfkdf

r

k
kA

β

β

β
αααα

βα
. Together 

with (a5.6), we have )()1(
F

F

e

N
CXkrk =+++ β  and so   

∫∫
∞

+
+

+

−−
=

 

)( 

2
)( 

 

2
)()()()

1
()(

F

F

N
CX

F

e

CX

k

N

F

i

F
dfkdf

r

k
kA αααα

βα

β
 

               ∫∫
∞

+ +

−−
+

+

−−
=

 

)(

2
)(

 

2
)()

1

)(
()()

1
(

F

F

N
CX

N

F
CX

k

N

df
r

kCX
df

r

k
αα

β
αα

βα

β
 

               ( ) 




 −−+−−

+
= ∫∫

∞

+

 

)(

2
)(

 

2

2
)())(()(

)1(

1

F

F

N
CX

N

F

CX

k

N
dfkCXdfk

r
ααβααβα

β
. 

This completes the proof of Theorem 5.1.                                    □ 

 

Corollary 5.1   At the equilibrium of an oligopoly market competition with 0>r  flexible 

firms and 0=s  in-flexible firms, all flexible firms F
i Ω∈  make the same capacity 

decision and the same production decision. That is:  

(i) If )(βLC
F

≥ , then 0
**

==
F

i

F

i
qk  for all F

i Ω∈ . 

(ii) If )(βLC
F

< , then 0
1

)(*
>

+

−
==

r

CX
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FF

e

F

i

β
 for all F

i Ω∈ . The profit of 

each flexible firm is  
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
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production decision of each flexible firm is F

e
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i
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*  for all F
i Ω∈ , where 
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Proof 

A direct consequence of Theorem 5.1                      □ 

 

Proposition 5.4   In an oligopoly market competition with 0≥r  flexible firms and 

0>s  in-flexible firms, the optimal capacity of in-flexible firm N
i Ω∈  , i.e., *N

i
k , is either 
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i
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=
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It is noted that as ∞→
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CkLkkA β . Therefore, there 

exists 01 >S , such that 0)( <
N

i

N
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1
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i
≥ . Since 0)0( =

N
A , to find the 

optimal *N

i
k , if any, we can restrict our search to the range ],0[ 1S . Because )(
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N
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continuous on ],0[ 1S . Hence, there exists ],0[
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i
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N
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N
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*)2(

≤
N

i

N
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This completes the proof of Proposition 5.4.  □ 

 

Proposition 5.5   At the equilibrium of an oligopoly market competition with 0≥r  

flexible firms and 0>s  in-flexible firms, the optimal capacities of in-flexible firms are 

either (1) 0
*

=
N

i
k , for all N

i Ω∈ ; or (2) 0
*

>
N

i
k , for all N

i Ω∈ ; further, we have  
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i
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)( , where 

NF
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Proof  

We follow the notations in the proof of Proposition 5.4. By Proposition 5.4, there are 

two cases.  
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In case (2) 0
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By the proof of Proposition 5.4, we get 0)(

0

>∫
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df αα . Since 0
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k , we have   
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Since (a5.9) and (a5.11) are contradictory to each other and independent of i, we have, at 

equilibrium, either 0
*

=
N

i
k , for all N

i Ω∈ ; or 0
*

>
N

i
k , for all N

i Ω∈ . Therefore, at 

equilibrium, there are two cases. 

Case-I  0
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0
*

>
N

i
k , for all N

i Ω∈ , is equivalent to βαα +>∫
<

N

v

Cdvf

0

)( . 

This completes the proof of Proposition 5.5.                          □ 

 

Theorem 5.2   At the equilibrium of an oligopoly market competition with 0≥r  flexible 

firms and 0>s  in-flexible firms, all in-flexible firms make the same capacity decision.  
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individual profit of each in-flexible firm is )()(
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Proof 

Following the notations in Proposition 5.5, we consider two in-flexible 

firms hj ≠ , N
hj Ω∈, . By (a5.10) we have ∫∫
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Hence, we get ** N
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kk = . Therefore, we have 0
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By Theorem 5.1, 
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There are three cases as follows.  

(1)  If N

e
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This completes the proof of Theorem 5.2.                               □ 

 

Corollary 5.2   At the equilibrium of an oligopoly market competition with 0=r  flexible 

firms and 0>s  in-flexible firms, all in-flexible firms make the same capacity decision.  
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This completes the proof of Corollary 5.2.            □                 
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Proposition 5.6   Given 0>r  flexible firms and 0>s  in-flexible firms, within the area 

}0:),{( ∞<≤<=
FNFN

CCCCR . For Case-A that 0==
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e
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By (a5.14), we have
F

CL ≤)(β ; by (a5.15), we have
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C≤− βµ . 

The individual expected profits of both flexible and in-flexible firms are 0=Π=Π
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This completes the proof of Proposition 5.6.                             □ 

 

Proposition 5.7   Given 0>r  flexible firms and 0>s  in-flexible firms, within the area 
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Proof 
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Therefore, by (a5.16) and (a5.19), 
w
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Theorem 5.2, the individual expected profit of in-flexible firms is )()(
1 2

2

NNN

e
kFk

s
=Π  

and N

e

N
skk = . A necessary condition for Case-B is: 

Fw
CkL ≤+ )(β  and βµ −<

N
C .  

This completes the proof of Proposition 5.7.                             □ 

 

Proposition 5.8   Given 0>r  flexible firms and 0>s  in-flexible firms, within the area 

}0:),{( ∞<≤<=
FNFN

CCCCR . For Case-C that 0>
F

e
k , 0=

N

e
k , we have 






 −+−

+
=Π ∫∫

∞  

)( 

2
)( 

 

2

2
)())(()()(

)1(

1

F

F

CX
F

CX
F

e
dfCXdf

r
ααβααβα

β
, 0=Π

N

e
, and (i) a 

necessary condition for Case-C is: ( )
F

CL >β  and ))((
1

)(
FN

CL
r

r
C −

+
≤+− ββµ ; (ii) 

))((
1

1
β−

+
=

F

F

e
CX

r
k . 

Proof 

We define Case-C as the case with solution of 0>
F

e
k , 0=

N

e
k . By Theorems 5.1 and 5.2, 

the conditions of Case-C are  

β−< )(
F

N
CXk ;                                                                                                (a5.20) 

βααα

α

+≤−−∫
<+

N

skrq

N

e

F

e
Cdfskrq

N

e

F

e

)()( .                                                             (a5.21) 

The solution satisfies β−=+ )()1(
F

F

e
CXkr , i.e., ))((

1

1
β−

+
=

F

F

e
CX

r
k .          (a5.22) 

By (a5.20), we have )(βLC
F

< .                                                                                     

By (a5.21), we have βααα

α

+≤−∫
<

N

rq

F

e
Cdfrq

F

e

)()( .                                               (a5.23) 

By Theorem 5.1, we have 










<++

++≤<
+

−

≤≤

=

αβ

βαβ
βα

βα

F

e

F

e

F

e

F

e

krrk

kr
r

r
rq

)1(,

)1(,
1

)(

0,0

. Therefore,  










<++−

++≤<
+

+

≤≤

=−

αβα

βαβ
βα

βαα

α

F

e

F

e

F

e

F

e

krrk

kr
r

r
rq

)1(,

)1(,
1

0,

. Thus, 0>−
F

e
rqα  for any 0>α . 

Therefore, by (a5.23) we have  
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βαααααβααααα
β

β

β

β

+≤−+







−

+
−+ ∫∫∫

∞

++

++

N
kr

F

e

kr

Cdfrkdf
r

r
df

F

e

F

e
 

)1( 

)1( 

 

 

0 
)()()()(

1
)(

 

i.e., ββµ +≤−
+

−
NF

CCL
r

r
))((

1
. Hence, ))((

1
)(

FN
CL

r

r
C −

+
≤+− ββµ . 

By Theorem 5.1, the individual expected profit of flexible firms is 

( ) 




 −+−

+
=Π ∫∫

∞  

)( 

2)( 

 

2

2
)()()()(

)1(

1

F

F

CX
F

CX
F

e
dfCXdf

r
ααβααβα

β
. Since 0=

N

e
k , 

we have 0=Π
N

e
. A necessary condition for Case-C is: 

F
CL >)(β  

and ))((
1

)(
FN

CL
r

r
C −

+
≤+− ββµ . 

This completes the proof of Proposition 5.8.                             □ 

 

Proposition 5.9   Given 0>r  flexible firms and 0>s  in-flexible firms, within the area 

}0:),{( ∞<≤<=
FNFN

CCCCR . For Case-D that 0>
F

e
k , 0>

N

e
k , we have 






 −−+−−

+
=Π ∫∫

∞

+

  

)( 

2
)( 

 

2

2
)())(()()(

)1(

1

F

F

N

e CX

N

eF

CX

sk

N

e

F

e
dfskCXdfsk

r
ααβααβα

β
; and 

)()(
2 N

e

N

e

N

e
skFk=Π . The solution of Case-D is: ))((

1

1 N

eF

F

e
skCX

r
k −−

+
= β  and 

N

e
k satisfies ))((

1
)())1((

  

 
F

N

e
sk

N

eN
CskL

r

r
dfksC

N

e

−+
+

−+−=+ ∫
∞

βαααβ . A necessary 

condition for Case-D is: ))((
1

)(
FN

CL
r

r
C −

+
>+− ββµ  and )(

wF
kLC +< β . 

Proof 

We define Case-D as the case with solution that 0>
F

e
k , 0>

N

e
k . By Theorems 5.1 and 

5.2, the conditions of Case-D are 

β−< )(
F

N
CXk                                                                                                (a5.24) 

βααα

α

+>−−∫
<+

N

skrq

N

e

F

e
Cdfskrq

N

e

F

e

)()(                                                               (a5.25) 

The solutions of Case-D satisfy the following (a5.26) and (a5.27).  

)()1(
F

F

e

N

e
CXkrsk =+++ β ;                                                                          (a5.26) 

βααα

α

+=+−−∫
<+

N

skrq

N

e

F

e
Cdfksrq

N

e

F

e

)())1(( .                                                     (a5.27) 
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By (a5.13), we have 










<+++

+++≤<+
+

−−

+≤≤

=

αβ

βαβ
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e

F

e
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e

F

e
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1

)(

0,0

. 

By (a5.27), we have the following three cases.  

Case 1: N

e
sK+≤≤ βα0 and 0>−−

N

e

F

e
sKrqα .  

In this case, 0=
F

e
rq  and 0>−=−−

N

e

N

e

F

e
skskrq αα . Therefore, we have 

N

e

N

e
sksk +≤< βα  and N

e

N

e

F

e
ksksrq )1()1( +−=+−− αα . 

Case 2: N

e

F

e

N

e
skkrsk +++≤<+ )1(βαβ  and 0>−−

N

e

F

e
skrqα .  

In this case, 
1

)(

+

−−
=

r

skr
rq

N

eF

e

βα
 and 

1

)(

+

−−
=−−

r

rsk
skrq

N

eN

e

F

e

βα
α . So, 

βα rsk
N

e
−≥ . Therefore, we have N

e

F

e

N

e
skkrsk +++≤<+ )1(βαβ  and 

1

)1(
)1(

+

+++−
=+−−

r

rkrs
ksrq

N

eN

e

F

e

βα
α . 

Case 3:  αβ <+++
N

e

F

e
skkr )1(  and 0>−−

N

e

F

e
skrqα .  

In this case, F

e

F

e
rkrq =  and 0>−−=−−

N

e

F

e

N

e

F

e
skrkskrq αα . So, N

e

F

e
skrk +>α . 

Therefore, αβ <+++
N

e

F

e
skkr )1(  and N

e

F

e

N

e

F

e
ksrkksrq )1()1( +−−=+−− αα .  

Hence, by (a5.26) and (a5.27), we have   
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r
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e
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)())1(()(
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e
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r
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e
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βααα . With respect to N

e
k ,  
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)1(
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+
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N

e

N

e

N

e

N

e

N

e
skF

r
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skFsskfskkR β . So, )(

N

e
kR  is 

decreasing as N

e
k  increases. Since 0>

F

e
k  and 0>

N

e
k , by (a5.26) we have 

s

CX

s

krCX
k

F

F

eFN

e

ββ −
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+−−
=<

)()1()(
0 , and 

so )0()()
)(

( RkR
s
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R

N

e

F <<
− β

.  
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. By (a5.24),  

β−<< )(0
F

N
CXk  and so 

F
CL >)(β . Therefore, we have  

0))((
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)( >−
+

>+−
FN

CL
r

r
C ββµ ,                                                                  (a5.28)  

and ( ) )()(
wNF

kZCCXZ =+<− ββ . Therefore, 
wF

kCX >− β)( ,  

i.e., )(
wF

KLC +< β .                                                                                           (a5.29) 

By Theorems 5.1 and 5.2, the individual expected profit of flexible and in-flexible firms 

are  
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skFk=Π , respectively. Therefore, the solution of Case-D is 
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= β ; A necessary condition for Case-D is: 

)(
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kLC +< β  and ))((
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+
>+− ββµ . 

This completes the proof of Proposition 5.9.                             □ 

 

Theorem 5.3 Given 0>r  flexible firms and 0>s  in-flexible firms, within the area 

}0:),{( ∞<≤<=
FNFN

CCCCR . At equilibrium, F

e

F
rkk = , N

e

N
skk = , where F

e
k  

and N

e
k  together with F

e
Π  and N

e
Π  in different regions of R  are:   

(Case-A) if 
FNFN

CCCLC ≤≤≤− &)(& ββµ , then 0=
F

e
k , 0=

N

e
k , 

0=Π
F

e
, 0=Π

N

e
; 

(Case-B) if 
FNFwN

CCCKLC ≤≤+−< &)(& ββµ , then 0=
F

e
k ,  
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N
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Proof  

From Propositions 5.6 - 5.9, it is noted that in Case D, if 0=
N

k , then 

))((
1

β−
+

=
F

F
CX

r

r
k , which is the same as Case-C; If 0=

F
k , then N

k satisfies 

∫
∞ +
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N
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N
dfk

s

s
C αααβ , which is the same as Case-B.  

 

It is easy to check that any two of the necessary conditions for Case-A to Case-D do not 

overlap, except Case-B and Case-C pair. In the following, we will show that even for the 

Case-B and Case-C pair, their necessary conditions do not overlap. 

 

The necessary condition for Case-B is: 
Fw

CkL ≤+ )(β  and βµ −<
N

C . 

The necessary condition for Case-C is: 
F

CL >)(β  and 

))((
1

)(
FN

CL
r

r
C −

+
≤+− ββµ . 
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Suppose that they overlap, i.e., there exists ),(
FN

CC  such that the above conditions hold.  

Then, )()(
11

)( ββµβ L
r

r
C

r

r
CkL

NFw
+−

+
−

+
≤≤+ . 

Let )(1 wF
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r

r
C

r
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+
=  be two functions of 

],0[ βµ −∈
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C . The curves of them are called Curve-1 and Curve-2, respectively. 

Recall that βααα +=
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. Therefore, under the assumption that 
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. Thus, 
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C  is increasing in 
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C , and its slope is strictly bounded above by 1. 

On the other hand, 1
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+
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r
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dC

N

F . Therefore, 
2F

C  is also increasing in 
N

C , but 

strictly bounded below by 1. 

 

Let  
21 FF
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C . Then, 01121 =−<−=
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. Thus, 

∆  is decreasing in 
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w
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w
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, we have 0=

w
k . So, 0=∆ . Therefore, for 

all ),0[ βµ −∈
N

C , 021 >−=∆
FF

CC . This is a contradiction. Hence, even for the 

Case-B and Case-C pair, their necessary conditions do not overlap. 

 

Therefore, any two of the necessary conditions for Case-A to Case-D do not overlap. 

This implies that the four conditions are necessary and sufficient conditions for Case-A 

to Case-D, respectively. They partition the region }0:),{( ∞<≤<=
FNFN

CCCCR  

into four parts. Hence, given r flexible firms and s in-flexible firms, we have the following 

conclusions on equilibrium within R : 
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(I) Case-A occurs if and only if 
F

CL ≤)(β  and 
N

C≤− βµ  ; 

(II) Case-B occurs if and only if 
Fw

CkL ≤+ )(β  and βµ −<
N

C ,; 

(III) Case-C occurs if and only if ( )
F

CL >β  and ))((
1

)(
FN

CL
r

r
C −

+
≤+− ββµ ; 

(IV) Case-D occurs if and only if )(
wF

kLC +< β  

and ))((
1

)(
FN

CL
r

r
C −

+
>+− ββµ . 

This completes the proof of Theorem 5.3.                           □ 

 

Proposition 5.10   Given 0>r  flexible firms and 0>s  in-flexible firms, within the area 

}0:),{( ∞<≤<=
FNFN

CCCCR .  

(i) The boundary between Case-B and Case-D is )(
1 wF

kLC += β , which is 

defined as Curve-1;  

(ii) the boundary between Case-C and Case-D is 

)()(
11

2 ββµ L
r

r
C

r

r
C

NF
+−

+
−

+
= , which is defined as Curve-2;  

(iii) under the assumption 0)()( >− xxfxF , in both Curve-1 and Curve-2, 
F

C  is 

strictly increasing in 
N

C , and within ],0[ βµ −∈
N

C , Curve-1 is always 

above Curve-2, except that they intersect at ))(,( ββµ L− ;  

(iv) further, in Curve-1 1F
C decreases in s with given 

N
C ; in Curve-2 

N
C  

decreases in r with given 
2F

C .          

Proof 

Comparing Case-B and Case-D, we notice that the boundary of Case-B and Case-D is the 

curve )(
wF

kLC += β , which is Curve-1 in the above discussion. Similarly, comparing 

Case-D and Case-C, we obtain the boundary of Case-C and Case-D as the 

curve )()(
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r

r
C

r

r
C

NF
+−

+
−

+
= , which is Curve-2 in the above discussion. 

Thus, all the results for these two curves are still valid. In particular, within 

],0[ βµ −∈
N

C , Curver-1 is always above Curve-2, except that they intersect at 

))(  ,(),( ββµ LCC
FN

−= . 
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For Curv-1 )(
1 wF

kLC += β , where 
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k  is defined as the one 
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= , given 
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C , we have 

0
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.  

This completes the proof of Proposition 5.10.                        □ 

 

Property 5.1   Given 0>r  flexible firms and 0>s  in-flexible firms, relationship 

between capacity costs and expected profits can be presented as follows: 

(i) Flexible strategy is only effective in Region-D and Region-C; while in-flexible 

strategy is only effective in Region-D and Region-B. 

(ii) In Region-B, 0=Π
F

e
 and 0>Π

N

e
,  

(ii-1)  Given 
F

C , 0<
Π

N

N

e

dC

d
; (ii-2)  Given 

N
C , 0=

Π

F

N

e

dC

d
. 

(iii) In Region-C, 0>Π
F

e
 and 0=Π

N

e
,  

(iii-1)   Given 
F

C , 0=
Π

N

F

e

dC

d
; (iii-2)   Given 

N
C , 0<

Π

F

F

e

dC

d
. 

(iv) In Region-D, 0>Π
F

e
 and 0>Π

N

e
,  

(iv-1)   Given 
F

C , 0<
Π

N

N

e

dC

d
; 0>

Π

N

F

e

dC

d
;(iv-2)   Given 

N
C , 0<

Π

F

F

e

dC

d
; 

0>
Π

F

N

e

dC

d
.                                                                

Proof 

By Theorem 5.3, in Region-A and Region-B, at equilibrium, the capacity of each flexible 

firm is zero. Consequently the individual profit of each flexible firm is zero, regardless the 

decisions of other firms. Therefore, only in Region-C and Region-D, the flexible strategy 
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leads to a positive profit. Similarly, we conclude that in-flexible strategy is only effective 

in Region-B and Region-D, in which in-flexible strategy results in a positive profit. In the 

other two regions, in-flexible strategy leads to zero profits. 

In Region-B, by Theorem 5.3, we have 0=Π
F

e
 and  )()(

1 2

2

NNN

e
kFk

s
=Π . 

N
k satisfies ∫

∞ +
−=+

  

 
)()

1
(

N
k

N

N
dfk

s

s
C αααβ .  With respect to 

N
C , we have 

N

N

NNN

dC

dk
kfk

s
kF

s

s
⋅







−

+
−= )(

1
)(

1
1 , so that 0<

N

N

dC

dk
. Therefore, given 

F
C ,  with 

respect to 
N

C , we have 0))()(2(
2

<⋅−=
Π

N

N

NNN

N

N

N

e

dC

dk
kfkkF

s

k

dC

d
.   Given 

N
C , 

with respect to 
F

C ,  we have 0=
Π

F

N

e

dC

d
. 

In Region-C, by Theorem 5.3, we have 0=Π
N

e
 and  






 −+−

+
=Π ∫∫

∞  

)(

2
)( 

  

2

2
)())(()()(

)1(

1

F

F

CX
F

CX
F

e
dfCXdf

r
ααβααβα

β
.  

Given 
N

C , with respect to
F

C , we have 0
)1(

))((2
2

<
+

−
−=

Π

r

CX

dC

d
F

F

F

e
β

. Given 
F

C , with 

respect to 
N

C , we have 0=
Π

N

F

e

dC

d
. 

In Region-D, by Theorem 5.3, we have  

Sub-Case-1 Given 
N

C , with respect to 
F

C , by Theorem 5.3, we have 

F

N

N

F

e

F

F

F

F

e

F

F

e

dC

dk

KdC

CdX

CXdC

d
⋅

∂

Π∂
+⋅

∂

Π∂
=

Π )(

)(
 

      
F

N

F

NN

F

dC

dk

r

CkL

r

kCX
⋅

+

−+
−

+

−−
−=

22
)1(

))((2

)1(

))((2 ββ
.                                 (a5.30) 

F

N

NNN

N

F

N

e

dC

dk
kfkkF

s

k

dC

d
⋅−=

Π
))()(2(

2
.                                                               (a5.31) 

By Theorem 5.3,  

( )
F

N

k

N

N
CkL

r

r
dfk

s

s
C

N
−+

+
−







 +
−=+ ∫

∞

)(
1

)(
1

βαααβ .                        (a5.32) 

With respect to
F

C , we have  
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0
1

)(
1

)())()((
1

=
+

+⋅







+

+
−+−−

r

r

dC

dk
kF

r

r
kFkfkkF

s
F

N

NNNNN β , which leads to 

0>
F

N

dC

dk
. Together with (a5.30) and (a5.31), we have 0<

Π

F

F

e

dC

d
 and 0>

Π

F

N

e

dC

d
.           

Sub-Case-2  Given 
F

C , with respect to 
N

C , by Theorem 5.3, we have  

N

N

F

N

N

N

N

F

e

N

F

e

dC

dk

r

CkL

dC

dk

KdC

d
⋅

+

−+
−=⋅

∂

Π∂
=

Π
2

)1(

))((2 β
.                                              (a5.33) 

N

N

NNN

N

N

N

e

dC

dk
kfkkF

s

k

dC

d
⋅−=

Π
))()(2(

2
.                                                           (a5.34) 

By (a5.32), with respect to
N

C , we have  

1)(
1

)())()((
1

=⋅







+

+
−+−−

N

N

NNNNN

dC

dk
kF

r

r
kFkfkkF

s
β , which leads to 

0<
N

N

dC

dk
.Together with (a5.33) and (a5.34), we have 0>

Π

N

F

e

dC

d
 and 0<

Π

N

N

e

dC

d
. 

This completes the proof of Property 5.1.                            □ 

 

Property 5.2  Given 0>r  flexible firms, 0>s  in-flexible firms and capacity costs 

),(
FN

CC , the effects of production cost on each firm’s expected profit is:  

(i) In Region-A, no strategy is effective; 

(ii) In Region-B, only in-flexible strategy is effective, and 0<
Π

βd

d
N

e ; 

(iii) In Region-C, only flexible strategy is effective, and 0<
Π

βd

d
F

e ; 

(iv) In Region-D, both flexible and in-flexible strategies are effective, 0<
Π

βd

d
N

e  and  

(1) if 1
)()()1(

<
−+

s

kfkkFs
NNN

, then 0>
Π

βd

d
F

e ;  

(2) if 1
)()()1(

>
−+

s

kfkkFs
NNN

, then 0<
Π

βd

d
F

e .                                  

Proof  

Part (i) can be obtained directly by Theorem 5.3. 
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Region-B  By Theorem 5.3, )()(
1 2

2

NNN

e
kFk

s
=Π , where N

k satisfies 

∫
∞ +

−=+
  

 
)()

1
(

N
k

N

N
dfk

s

s
C αααβ . With respect to β , we have 

0
)()()1(

<
−+

−=
NNN

N

kfkkFs

s

d

dk

β
.  

Therefore, by Theorem 5.3, we have 0)]()(2[
1

2
<⋅−=

Π

ββ d

dk
kfkkFk

sd

d
N

NNNN

N

e . 

Region-C    

By Theorem 5.3,  






 −+−

+
=Π ∫∫

∞  

)( 

2
)( 

  

2

2
)())(()()(

)1(

1

F

F

CX
F

CX
F

e
dfCXdf

r
ααβααβα

β
. With respect to 

β , we have 0])([
)1(

2
2

<−
+

−=
Π

F

F

e
CL

rd

d
β

β
. 

Region-D      By Theorem 5.3,  






 −−+−−

+
=Π ∫∫

∞

+

  

)( 

2
)( 

  

2

2
)())(()()(

)1(

1

F

F

N
CX

N

F

CX

k

NF

e
dfkCXdfk

r
ααβααβα

β
,    

)()(
1 2

2

NNN

e
kFk

s
=Π , where N

k satisfies  

))((
1

)()
1

(
  

 
F

N

k

N

N
CkL

r

r
dfk

s

s
C

N
−+

+
−

+
−=+ ∫

∞

βαααβ . With respect to β , we 

have 0
)()(

)(
1

)(

)(
1

1

<
−

++
+

−

+
+

−

−=

s

kfkkF
kF

r

r
kF

kF
r

r

d

dk

NNN

NN

N

N

β

β

β
. Then we have  

0)]()(2[
1

2
<⋅−=

Π

ββ d

dk
kfkkFk

sd

d
N

NNNN

N

e ;  

)1(])([
)1(

2
2 β

β
β d

dk
CkL

rd

d
N

F

N

F

e +⋅−+
+

−=
Π

. 

s

kfkkF
kF

r

r
kF

s

kfkkFs

CkL
rd

d

NNN

NN

NNN

F

N

F

e

)()(
)(

1
)(

1
)()()1(

])([
)1(

2
2

−
++

+
−











−

−+

⋅−+
+

−=
Π

β

β
β

. 

Therefore, we have  (1) if 1
)()()1(

<
−+

s

kfkkFs
NNN

, then 0>
Π

βd

d
F

e ;  
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                                   (2) if 1
)()()1(

>
−+

s

kfkkFs
NNN

, then 0<
Π

βd

d
F

e . 

This completes the proof of Property 5.2.                               □ 

 

Property 5.3   Given n firms and capacity costs ),(
FN

CC in a strategy-coexistence 

market consisting of 1≥r  flexible firms and 1≥s  in-flexible firms where nsr =+ . 

Within the range ]1,1[ −∈ nr , we have  

(i) total capacity of in-flexible firms is decreasing in r, i.e., 0<
dr

dk
N

; 

(ii) total capacity of flexible firms is increasing in r, i.e.,  0>
dr

dk
F

.       

Proof 

For given ),(
FN

CC  in a strategy coexisting market consisting of 1≥r  flexible firms 

and 1≥s  in-flexible firms, where nsr =+ . By Theorem 5.3, we have  









>

>−−
+

=

0

0))((
1

N

N

F

F

k

kCX
r

r
k β

,  where N
k  satisfies  

))((
1

)()
1

(
  

 
F

N

k

N

N
CkL

r

r
dfk

s

s
C

N
−+

+
−

+
−=+ ∫

∞

βαααβ .                        (a5.35)       

)()( ββ LkLCC
wFN

<+<≤  and ))((
1

)(
FN

CL
r

r
C −

+
>+− ββµ .             (a5.36) 

 

With respect to r , ),( rnrn −= , rns −= , by Theorem 5.3, we have 






 −−+−−

+
=−Π ∫∫

∞

+

  

)( 

2
)( 

  

2

2
)())(()()(

)1(

1
),(

F

F

N
CX

N

F

CX

k

NF

e
dfkCXdfk

r
rnr ααβααβα

β

)()(
)(

1
),(

2

2

NNN

e
kFk

rn
rnr

−
=−Π , where N

k is a function of r.  

By (a5.35) we have ))((
1

)()
1

(
  

 
F

N

k

N

N
CkL

r

r
dfk

rn

rn
C

N
−+

+
−

−

+−
−=+ ∫

∞

βαααβ .    

 

With respect to r, for given nCC
FN

,,, β , we have 

            
dr

dk
kFrkFr

r
kfkkF

rn

N

NNNNN









+−+

+
+−

−
− ))()()1((

1

1
))()((

1
β  
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        ))((
)1(

1
)(

)(

1
22 F

NNN
CkL

r
kFk

rn
−+

+
+

−
= β . Therefore, we have  

dr

dk
N












+−++−+−+−

−+−++
−=

))()()1)((1()())()(()1)((

))(()()()1(
22

22

NNNNN

F

NNN

kFrkFrrrnkfkkFrrn

CkLrnkFkr

β

β
 

0< . Therefore, N
k  is decreasing in r, for given nCC

FN
,,, β . Note that 

β−=+
+

)(
)1(

F

NF
CXkk

r

r
. We have 0

)1(
2

>−=⋅
+

dr

dk

r

k

dr

dk

r

r
NFF

, so that 

0
)1()1(

>⋅
+

−
+

=
dr

dk

r

r

rr

k

dr

dk
NFF

. Therefore, F
k  is increasing in r. 

This completes the proof of Property 5.3.                            □ 

 

Property 5.4   Given ),(
FN

CC , the total capacity of all firms T
k is bounded under 

various situations: 

(i) If ),(
FN

CC is in Region-A, then 0=
T

k . 

(ii) If ),(
FN

CC is in Region-B, then T
k  is decreasing in 

N
C , and independent of 

F
C , 

furthermore, )()( ββ +<=≤−
N

NT

F
CXkkCX . 

(iii) If ),(
FN

CC is in Region-C, then T
K is decreasing in 

F
C , and independent of 

N
C ; 

furthermore, ))((
1

))((
2

1
ββ −

+
==<−

F

FT

F
CX

r

r
kkCX . 

(iv) If ),(
FN

CC is in Region-D, then ββ −<<−
+

)())((
1

F

T

F
CXkCX

r

r
.     

Proof  

Region-A       By Theorem 5.3, in Case-A, capacity of all firms is zero, i.e., 0=
T

k . 

Region -B     By Theorem 5.3, in Case-B total capacity of all firms equals to that of all 

in-flexible firms, i.e., 0>=
NT

kk , which satisfies ∫
∞ +

−=+
  

 
)()

1
(

N
k

N

N
dfk

s

s
C αααβ . 

With respect to
N

C , 
))()(()(

NNNN

N

N

kfkkFkFs

s

dC

dk

−+
−= . With the assumption 

of )()( xxfxF > , we have 0<
N

N

dC

dk
. Therefore, total capacity in Case-B is decreasing in 
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N
C , and independent on 

F
C . Furthermore, by condition of Case-B, we have 

N

F
kCX <− β)( . Therefore, )()( ββ +<=<−

N

NT

F
CXkkCX .  

Region -C     By Theorem 5.3, in Case-C, total capacity of all firms equals to that of all 

flexible firms, i.e., ))((
1

β−
+

==
F

FT
CX

r

r
kk . With respect to

F
C , 

0
))(()1(

<
+

−=

FF

F

CXFr

r

dC

dk
. Therefore, total capacity in Case-C is decreasing in 

F
C , 

and independent on 
N

C . Moreover, since 1≥r ,  we have 

))((
1

))((
2

1
ββ −

+
==<−

F

FT

F
CX

r

r
kkCX . 

Region -D     By Theorem 5.3, in Case-D, total capacity of in-flexible firms is 0>
N

k , 

which satisfies ))((
1

)()
1

(
  

 
F

N

k

N

N
CkL

r

r
dfk

s

s
C

N
−+

+
−

+
−=+ ∫

∞

βαααβ ; total 

capacity of flexible  firms is 0))((
1

>−−
+

=
N

F

F
kCX

r

r
k β . So that we have total 

capacity of all firms is F

F

NFT
k

r
CXkkk

1
)( −−=+= β .  Therefore, we have 

))((
T

F

F
kCXrk −−= β  and ))(()1( β−−+=

F

TN
CXrkrk . 

Since 0>
N

k  and 0>
F

k , we can get lower and upper boundaries of total capacity of all 

firms in Case-D, i.e., ))(())((
)1(

ββ −<<−
+

F

T

F
CXkCX

r

r
.  

This completes the proof of Property 5.4.                              □ 

 

Proposition 5.11    Given 0>r  flexible firms and 0>s  in-flexible firms, within 

Region-D, between Curve-1 and Curve-2, there exists a unique Curve-3 satisfying 

),(),(
FN

N

eFN

F

e
CCCC Π=Π ; in Curve-3, 

F
C  increases with 

N
C ; in the area above 

Curve-3, denoted as Region-D1, 0>Π>Π
F

e

N

e
; and in the area below Curve-3, denoted 

as Region-D2, 0>Π>Π
N

e

F

e
.                            □ 

Proof 

By Theorem 5.3, in Case-D we have  

))((
1

)()
1

(
  

 
F

N

k

N

N
CkL

r

r
dfk

s

s
C

N
−+

+
−

+
−=+ ∫

∞

βαααβ ;                           (a5.37) 
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

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dfkCXdfk
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ααβααβα

β
; 

)()(
1 2

2

NNN

e
kFk

s
=Π . Note that βµ −<≤

N
C0  in Case-D.  

Let N

e

F

eFNe
CCM Π−Π=),( . Given ),0[ βµ −∈

N
C , by Property 5.1 (iv-2), we have 

0<
Π

F

F

e

dC

d
, 0>

Π

F

N

e

dC

d
, and so 0<

Π
−

Π
=

F

N

e

F

F

e

F

e

dC

d

dC

d

dC

dM
. Therefore, for each given 

N
C , 

e
M  is decreasing in 

F
C . Recall that Curve-1: )(

1 wF
kLC += β ,  

Curve-2: )()(
11

2 ββµ L
r

r
C

r

r
C

NF
+−

+
−

+
= ,                                                    (a5.38) 

where ∫
∞ +

−=+
  

 
)()

1
(

w
k

wN
dfk

s

s
C αααβ . When 

1FF
CC = , by Property 5.1 (ii), we 

have 0=Π
F

e
 and 0>Π

N

e
. Therefore, 0),(

1
<

FNe
CCM . When 

12 FFF
CCC <= , 

clearly 0>Π
F

e
. (Otherwise, 0=Π

F

e
 implies β+=

N

F
kCX )( 2

, i.e., )(2 β+=
N

F
kLC . 

Thus, ∫
∞ +

−=+
  

 
)()

1
(

N
k

N

N
dfk

s

s
C αααβ  and 

w

N
kk = , so 

12 FF
CC = , contradiction.) 

On the other hand, by (5.41) and (5.42) 
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ββαααµ LkL
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dfk

s

s N

k

N
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−+

+
−
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.  

Let the right hand side be )(
N

kV , 0≥
N

k . Then,  

0))(
1

)(())()((
1

)(
)1(

<+
+

−−−−=
NNNNNN

kF
r

r
kFkfkkF

s
kV β  implies that )(

N
kV  

is strictly decreasing. Since µ=)0(V  , we have 0=
N

K . Therefore, 0=Π
N

e
. Thus, 

0),( >Π−Π=
N

e

F

eFNe
CCM . Hence, when ),0[ βµ −∈

N
C  is given, there exists a 

unique ),( 12 FFF
CCC ∈  such that 0),( =

FNe
CCM , i.e., N

e

F

e
Π=Π . Clearly, when 

βµ −=
N

C , we can take )(12 βLCCC
FFF

===  and N

e

F

e
Π=Π . Thus, we obtain 

F
C  

as a function of 
N

C  so that 0),( =
FNe

CCM , ],0[ βµ −∈
N

C .  

Differentiating both sides w.r.t. 
N

C , we have 
N

N

e

N

F

e

dC

d

dC

d Π
=

Π
.  
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N

N

N

F

N

N

F

N

N

F

N

F

N

F

e

dC

dk

r

A

dC

dC

r

A

dC

dk

r

CkL

dC

dC

r

kCX

dC

d

⋅
+

−
+

−=

⋅
+

−+
−

+

−−
−=

Π

22

1

22

)1(

2

)1(

2
        

)1(

))((2

)1(

))((2 ββ

.                                  

N

N

N

N

NNN

N

N

N

e

dC

dk

s

B

dC

dk
kfkkF

s

k

dC

d
⋅=⋅−=

Π
22

))()(2( , where  

0)(1 >−−= βN

F
kCXA , 0)( >−+=

F

N
CkLA β ,  

0))()(2( >−=
NNNN

kfkkFkB . 

So, 
N

N

N

F

dC

dk

r

A

s

B

dC

dC

r

A
⋅








+
+=

+
−

222

1

)1(

2

)1(

2
                                                           (a5.39) 

By (a5.38), differentiating with respect to
N

C ,  

we have 
N

F

N

N

dC

dC

r

r

dC

dk
B

1
1 1

+
+−= ,                                                                          (a5.40) 

where 0)(
1

)())()((
1

1 >+
+

−+−= βNNNNN
kF

r

r
kFkfkkF

s
B . Therefore, using 

(a5.38) and (a5.40), 0

)
)1(

2
(

1)1(

2

)1(

2

222

11

22

>

+
+

+
+

+

+
+

=

r

A

s

B

r

r

r

BA

r

A

s

B

dC

dC

N

F . This shows that Curve-3 

is an increasing function of 
N

C .  

Furthermore, since for each given 
N

C , 
e

M  is decreasing in 
F

C , we obtain that in the 

area above Curve-3, 0>Π>Π
F

e

N

e
, and in the area below Curve-3, 0>Π>Π

N

e

F

e
.  

This completes the proof of Proposition 5.11.                          □ 

 

 

Proofs in Chapter 6 

Proposition 6.1   Referring to Curve-1, given total n firms and
N

C , 
F

C  is decreasing in s; 

referring to Curve-2, given total n firms and 
F

C , 
N

C  is decreasing in r.  

Proof  

According to Proposition 5.10, we have 0)(
)1(

1 <sC
F

 for given n and 
N

C .  
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By definition, Curve-1 is independent of r. Therefore, regarding Curve-1, for given n and 

N
C , 

F
C  is decreasing in s. 

According to Proposition 5.10, given 
2F

C , we have 0
)1(

<
+

−−
−=

rr

C

dr

dC
NN

βµ
. By 

definition, Curve-2  is independent of s . Therefore, for given n and 
F

C , 
N

C  is 

decreasing in r. This completes the proof of Proposition 6.1.         □ 

 

Proposition 6.2   Consider Curve-1, Curve-2, Curve-4 and Curve-5 defined as follows: 

Curve-1 )(
wF

kLC += β , where 
w

k  satisfies βααα +=






 +
−∫

∞

N
k

w
Cdfk

s

s

w

)(
1

; 

Curve-2 )()(
11

ββµ L
r

r
C

r

r
C

NF
+−

+
−

+
= , i.e., ( )

FN
CL

r

r
C −

+
=+− )(

1
)( ββµ ; 

Curve-4  ββ ++= )()(
NF

CXCX ; Curve-5  )()( ββµ LCC
NF

+−−= . 

Then we have following conclusions:  

(i) Referring to each of these four curves, 
F

C  is increasing in 
N

C ; 

(ii) there is one and only one intersection point for ],0( βµ −∈
N

C . The intersection 

point is ( ))(,),( ββµ LCC
FN

−= ; 

(iii) define 1F
C , 2F

C , 4F
C , 

5F
C  to be points on Curve-1, Curve-2, Curve-4, Curve-5, 

respectively, with given 
N

C . If 0>β , then  
2541 FFFF

CCCC >>>  for all 

),0( βµ −∈
N

C ; and, if 0=β , then 
2541 FFFF

CCCC >=>  for all 

),0( βµ −∈
N

C .  

Proof  

To distinguish each curve, we define
1F

C , 
2F

C , 
4F

C , 
5F

C  to be points on Curve-1, 

Curve-2, Curve-4, Curve-5, respectively, with given 
N

C . Then we have following 

discussion in terms of the slope of each curve.  

Curve-1  )(
1 wF

kLC += β  and βααα +=
+

−∫
∞

N
k

w
Cdfk

s

s

w

  

 
)()

1
( .                         (a6.1) 
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With respect to
N

C , we have 
N

w

w

F

N

F

dC

dk

dk

dC

dC

dC
⋅= 11 ; 0)(1 <+−=

w

w

F
kF

dk

dC
β ; 

)](
1

1
)([

1

1

www

N

w

kfk
s

kF
s

sdC

dk

+
−

+
−= . So 

)](
1

1
)([

1

)(
1

www

w

N

F

kfk
s

kF
s

s

kF

dC

dC

+
−

+

+
=

β
. 

Therefore, under the assumption  0)()( >− xxfxF , we have 01 >
N

F

dC

dC
.                             

Moreover,  1
)(

)(

)](
1

1
)([

1

)(
1 ≤

+
<

+
−

+

+
=

w

w

www

w

N

F

kF

kF

kfk
s

kF
s

s

kF

dC

dC ββ
.                        (a6.2) 

Curve-2  )()(
11

2 ββµ L
r

r
C

r

r
C

NF
+−

+
−

+
= . So that 1

12 >
+

=
r

r

dC

dC

N

F .             (a6.3) 

Curve-4  ( ))(
4

ββ ++=
NF

CXLC .  

Therefore, 0
))((

))((
4 >

+

++
=

β

ββ

N

N

N

F

CXF

CXF

dC

dC
.                                                             (a6.4)      

And if 0>β , then 1
))((

))((
4 <

+

++
=

β

ββ

N

N

N

F

CXF

CXF

dC

dC
.                                                (a6.5) 

If 0=β , then 1
))((

))((
4 =

+

++
=

β

ββ

N

N

N

F

CXF

CXF

dC

dC
.                                                       (a6.6) 

Curve-5        )()(
5

ββµ LCC
NF

+−−= . Therefore, 15 =
N

F

dC

dC
.                              (a6.7) 

Therefore,  we have 0>
N

Fi

dC

dC
, 5,4,2,1=i , i.e., 

F
C  is increasing in 

N
C  for each 

curve.  

Given βµ −=
N

C , then )(4321 βLCCCC
FFFF

==== . Therefore, four curves 

intersect at point ))(,(),( ββµ LCC
FN

−= . By (6.1) we have β+>
Nw

CkL )( ,  so that 

)( β+<
Nw

CXk .  

Hence, ( ))()( βββ ++>+
Nw

CXLkL , i.e., 
41 FF

CC > .                                          (a6.8) 
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If 0>β , then by (a6.3), (a6.5) and (a6.7), 14 <
N

F

dC

dC
, 15 =

N

F

dC

dC
and 12 >

N

F

dC

dC
, we have 

N

F

N

F

N

F

dC

dC

dC

dC

dC

dC
254 << . Since these three curves have an intersection at point 

))(,(),( ββµ LCC
FN

−= , so with given 
N

C , ),0[ βµ −∈
N

C , we always have  

 
254 FFF

CCC >> .                                                                                                    (a6.9) 

By (a6.8) and (a6.9), we have 
2541 FFFF

CCCC >>>  with given
N

C , ),0( βµ −∈
N

C . 

Similarly, if 0=β , then by (a6.3), (a6.5) and (a6.6), we have 
N

F

N

F

N

F

dC

dC

dC

dC

dC

dC
254 <= . 

Therefore, 
2541 FFFF

CCCC >=> with given
N

C , ),0( βµ −∈
N

C .  

This completes the proof of Proposition 6.2.                              □ 

 

Proposition 6.3   Given ),( srn = and capacity costs ),(
FN

CC , we have the following 

conclusions about the Final Equilibrium: 

(i)   If ),(
FN

CC is in Region-A, then the Final Equilibrium is obtained for any ),( srn = ; 

(ii)    If ),(
FN

CC is in Region-B, then the Final Equilibrium is ),0(),( nsrn == ; 

(iii)   If ),(
FN

CC is in Region-C, then the Final Equilibrium is )0,(),( nsrn == ; 

Proof  

By Theorem 5.3 we have following four case analyses.  

Case-A    




≤≤−

≤

FN

F

CC

CL

βµ

β )(
, and 







=

=

0

0

N

F

k

k
. We always have 0),(),( =Π=Π srsr

F

e

N

e
, 

for any ),( srn = , the status can be stable.  

Case-B    






>=

=

0

0

N

e

N

F

skk

k
.  

Fw
CkL ≤+ )(β , and βµ −<

N
C . We always have 0),(),( =Π>Π srsr

F

e

N

e
 for any 

),( srn = . There aren’t firms transferring from in-flexible to flexible strategy in the Case-

B. Given ),(
FN

CC , according to Proposition 6.2,  as firms transfer from flexible to in-

flexible strategies, the new equilibrium point still stays in Region-B as s increases. 

Therefore, all firms will transfer to in-flexible firms, i.e., ),0(),( nsrn == , as the final 

equilibrium. Particularly, it is noted that 0=Π>Π
F

e

N

e
 also holds in Curve-1, therefore, 
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all firms whose costing parameters are on Curve-1 will transfer to in-flexible firms. That 

is to say the Curve-1 will stay at ),0(),( nsrn == , i.e., )(
wF

kLC += β  where 
w

k  

satisfies βααα +=
+

−∫
∞

N
k

w
Cdfk

n

n

w

  

 
)()

)1(
( .  

Case-C   









=

>−
+

=

0

0))((
1

N

F

F

k

CX
r

r
k β

, F

e

F
rkk = ; )(βLCC

FN
<≤  and 

NF
CCh ≤− β)( , where ))((

1
)( βµ LC

r

r
Ch

FF
−

+
+= . We always have 

0),(),( =Π>Π srsr
N

e

F

e
 for any ),( srn = . There aren’t firms transferring from flexible 

to in-flexible. Given ),(
FN

CC , according to Proposition 6.2, as firms transfer from in-

flexible to flexible strategies, the new equilibrium point still stays in Region-C as r 

increases.  Therefore, all firms will transfer to FCS, i.e., )0,(),( nsrn == , as the final 

equilibrium. It is noted that )0,(),( nsrn ==  also holds on Curve-2. Therefore, at Final 

Equilibrium the Curve-2 will stay at )()(
11

ββµ L
n

n
C

n

n
C

NF
+−

+
−

+
= .   

This completes the proof of Proposition 6.3.                              □ 

 

Theorem 6.1  For all ),1[ ∞∈n , given production cost β , within the area 

}0:),{( ∞<≤<
FNFN

CCCC , the Final Equilibrium can be characterized as below: 

 (i) in area
FNFN

CCCLC ≤≤≤− &)(& ββµ , for any ),( srn = , two strategies 

lead to zero profit for all ),1[ ∞∈n ; 

(ii) in area 
FNFwN

CCCkLC ≤≤+−<≤ &)(&0
1

ββµ , all firms transfer to in-

flexible strategy, i.e., ),0(),( nsrn ==  for all ),1[ ∞∈n ;  

(iii) in area ( )
FNFFN

CCCLCLC ≤>−≤+− &&))((
2

1
)( βββµ , all firms 

transfer to flexible strategy, i.e., )0,(),( nsrn ==  for all ),1[ ∞∈n ;  

(iv) in area
FNFNFw

CCCLCCkL ≤−>+−>+ &))((
2

1
)(&)( 1 ββµβ , there 

are three sub-areas as below:  
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 (iv-1) when ( ) 0)(( >−−− ββ
NF

CCXL , let 

ββ

ββ

−−−

−−
=

NF

FF

CCXL

CXFCX
N

))((

))(())((
:  

(iv-1-1) if Nn ≥ , then all firms transfer to in-flexible strategies, i.e., 

),0(),( nsrn == ;  

(iv-1-2) if Nn < , then at Final Equilibrium, both flexible and in-flexible firms 

coexist in the market; 

(iv-2) when 0))(( ≤−−− ββ
NF

CCXL  and 0)()( ≤−−−− βµβ
NF

CCL , both 

flexible and in-flexible firms coexist in the market regardless of number of firms; 

(iv-3) when 0)()( >−−−− βµβ
NF

CCL , let 
( )βµβ

βµ

−−−−

−−
=

NF

N

CCL

C
N

)(

~ :  

(iv-3-1) if Nn
~

≥ , then all firms transfer to flexible strategy, i.e., )0,(),( nsrn == ;  

(iv-3-2) if Nn
~

< , then at Final Equilibrium, both flexible and in-flexible firms 

coexist in the market. 

where 
1w

k  is the unique solution of the equation βααα +=−∫
∞

N
k

w
Cdfk

w

  

 
1

1

)()2( .  

Proof  

To facilitate the proof, we first give expressions of a few curves.   

Curve-1 ),0(

1

n

F
C is )(

),0(

1 w
n

F
kLC += β where wk  is the unique solution of the equation 

βααα +=
+

−∫
∞

N
k

w Cdfk
n

n

w

  

 
)()

1
( .  

Curve-2  )0,(

2

n

F
C   is )()(

11)0,(

2 ββµ L
n

n
C

n

n
C

N

n

F
+−

+
−

+
= . Let 1=n , then 

)(
1

)1,0(

1 wF
kLC += β  where 

1w
k  is the unique solution of the equation 

βααα +=−∫
∞

N
k

w
Cdfk

w

  

 
1

1

)()2( ; )()(22
)0,1(

2
ββµ LCC

NF
+−−= , ],0[ βµ −∈

N
C . 

Let ∞→n , then ββ ++=
∞

)()(
),0(

1 NF
CXCX ; )()(

)0,(

2
ββµ LCC

NF
+−−=

∞ . 

According to Proposition  6.1, referring to Curve-1, 
F

C  is decreasing in s with given
N

C . 

Therefore, given 
N

C , )1,0(

1

),0(

1

),0(

1

),0(

1 F

i

F

n

FF
CCCC <<<

∞ , where ),1( ni ∈  and ),1[ ∞∈n . 

With regarding to Curve-2, 
N

C  is decreasing in r with given
F

C . Therefore, given 
F

C , 

)0,1(

2

)0,(

2

)0,(

2

)0,(

2 N

j

N

n

NN
CCCC <<<

∞  where ),1( nj ∈  and ),1[ ∞∈n . Therefore, in areas 
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above the Curve-1 )1,0(

1F
C the equilibrium is always Case-B for ],0[ βµ −∈

N
C ; in areas 

right of the Curve-2 )0,1(

2F
C , the equilibrium is always Case-C for )](,0[ βLC

F
∈ .  

According to Proposition 6.3, Part(i)~(iii) of Theorem 6.1 can be obtained.  

 

In the following discussion, we analyze the conditions of Final Equilibrium occurred 

within the area between curves )1,0(

1F
C  and )0,1(

2F
C . 

Case-B analysis  

Given nCC
FN

,,, β , if its final equilibrium occurs as Case-B, then by Theorem 5.3, in 

Case-B, we have 
Fw

CkL ≤+ )(β , and βµ −<
N

C , where 
w

k  satisfies 

βααα +=
+

−∫
∞

N
k

w
Cdfk

s

s

w

  

 
)()

1
( . It is noted that at Final Equilibrium, all firms on 

Curve-1 transfer to in-flexible firms, i.e., ),0(),( nsrn == . By 
Fw

CkL ≤+ )(β , we have 

β−≥ )(
Fw

CXk .  

Define ∫
∞ +

−=
 

 
)()

1
()(

z

dfz
s

s
zH ααα ; and 0)(

1
)(

1
)(

)1(
<

+
−= zF

s

s
zzf

s
zH . So, 

)(zH is decreasing in z. Therefore, at the Final Equilibrium we have  

∫∫
∞

−

∞

−
+

−≤
+

−=+
  

)( 

  

 
)()])((

1
[)()

1
(

β
ααβααααβ

Fw
CX

F
k

wN
dfCX

n

n
dfk

n

n
C . This is 

equivalent to ))(())((
1

))(( ββββ −−−−≤+
FFFN

CXFCX
n

CXLC , so that we 

obtain  

))((])([

))((1

ββ

ββ

−−

−−−
≤

FF

NF

CXFCX

CCXL

n
.                                                                         (a6.10) 

Therefore, two situations are discussed.  

Situation-(1)   If 0))(( >−−− ββ
NF

CCXL , then we have  

ββ

ββ

−−−

−−
≥

NF

FF

CCXL

CXFCX
n

))((

))(())((
.                                                                       (a6.11) 

By Proposition 6.1, all firms will transfer to in-flexible strategies, i.e., ),0(),( nsrn == .  

Situation-(2)   If 0))(( ≤−−− ββ
NF

CCXL , then there is a contradiction of (a6.10). 

So Case-B does not exist.  Therefore, if final equilibrium for a given nCC
FN

,,, β  
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occurs as Case-B, it has following properties: (i)  0))(( >−−− ββ
NF

CCXL ; (ii) 

ββ

ββ

−−−

−−
≥

NF

FF

CCXL

CXFCX
n

))((

))(())((
; (iii)  ),0(),( nsrn == . 

Case-C analysis  

Given nCC
FN

,,, β , if its final equilibrium occurs as Case-C, then by Theorem 5.3, in 

Case-C, we have )(βLCC
FN

<≤  and ))((
1

)(
FN

CL
r

r
C −

+
≤+− ββµ . It is noted 

that at the Final Equilibrium, all firms on the Curve-2 will transfer to flexible firms, i.e., 

)0,(),( nsrn == . Therefore, we have ))((
1

)(
FN

CL
n

n
C −

+
≤+− ββµ so that we have  

βµ

βµβ

−−

−−−−
≤

N

NF

C

CCL

n

)()(1 .                                                                                 (a6.12) 

Therefore, we have two situations to discuss.  

Situation-(1)   If ( ) 0)( >−−−− βµβ
NF

CCL , then  

)()( βµβ

βµ

−−−−

−−
≥

NF

N

CCL

C
n .                                                                               (a6.13) 

By  Proposition 6.3, all firms will transfer to F strategies, i.e., )0,(),( nsrn == .  

Situation-(2)   If 0)()( ≤−−−− βµβ
NF

CCL , then (a6.12) does not hold. Therefore, if 

final equilibrium for a given nCC
FN

,,, β  occurs as Case-C, it has following 

properties: (i)   0)()( >−−−− βµβ
NF

CCL ; (ii)  
)()( βµβ

βµ

−−−−

−−
≥

NF

N

CCL

C
n ; (iii)  

)0,(),( nsrn == . 

Case-D analysis 

Given nCC
FN

,,, β , if its final equilibrium occurs as Case-D, then by Theorem 5.3, in 

Case-D, we have two conditions as )()( ββ LKLCC
wFN

<+<≤  and 

))((
1

)(
FN

CL
r

r
C −

+
>+− ββµ . We discuss these two conditions respectively.  

Condition-1   )()( ββ LKLCC
wFN

<+<≤  
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By )(
wF

kLC +< β , we have β−< )(
Fw

CXk , where
w

k satisfies 

∫
∞








 +
−=+

wk
wN

dfk
s

s
C αααβ )(

1
. Noting that at the Final Equilibrium, all firms on 

Curve-1 transfer to in-flexible firms, i.e., ),0(),( nsrn == . Therefore, we have  

( )∫∫
∞

−

∞

−
+

−>
+

−=+
  

)( 

  

 
)(])(

1
[)()

1
(

β
ααβααααβ

Fw
CX

F
k

wN
dfCX

n

n
dfk

n

n
C , i.e., 

))(())((
1

))(( ββββ −−−−>+
FFFN

CXFCX
n

CXLC . Therefore, we have  

))(())((

))((1

ββ

ββ

−−

−−−
>

FF

NF

CXFCX

CCXL

n
.                                                                        (a6.14) 

Therefore, two situations are discussed.  

Situation-(1-i)   If 0))(( >−−− ββ
NF

CCXL , i.e., the point ),(
FN

CC is above the 

Curve-4, then we have 
ββ

ββ

−−−

−−
<

NF

FF

CCXL

CXFCX
n

))((

))(())((
.                                        (a6.15) 

Situation-(1-ii)   If 0))(( ≤−−− ββ
NF

CCXL , i.e., the point ),(
FN

CC is below the 

Curve-4,  then (a6.14) always holds.  

Condition-2   ))((
1

)(
FN

CL
r

r
C −

+
>+− ββµ  

Noting that at the Final Equilibrium, all firms on Curve-2 will transfer into flexible firms, 

i.e., )0,(),( nsrn == . Therefore, we have ββµ +>−
+

−
NF

CCL
n

n
))((

1
,so that 

βµ

βµβ

−−

−−−−
>

N

NF

C

CCL

n

)()(1
.                                                                                 (a6.16) 

Therefore, two situations are discussed.  

(1)   If 0)()( >−−−− βµβ
NF

CCL , i.e., the point ),(
FN

CC is below the Curve-5, 

then 
)()( βµβ

βµ

−−−−

−−
<

NF

N

CCL

C
n .                                                                         (a6.17) 

(2)   If 0)()( ≤−−−− βµβ
NF

CCL , i.e., the point ),(
FN

CC is above the Curve-5, 

then (a6.16) always holds.  
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By Proposition 6.2, Curve-4 is always above Curve-5, we can divide Region-D into three 

areas. Define Region-D-1 is area between Curve-1 and Curve-4; Region-D-2 is area 

between Curve-4 and Curve-5; Region-D-3 is area between Curve-5 and Curve-2. 

Therefore, if the final equilibrium occurs as Case-D, there are three possibilities.  

(i) If the final equilibrium stays at Region-D-1, i.e., 0))(( >−−− ββ
NF

CCXL , 

then at final equilibrium it must have 
ββ

ββ

−−−

−−
<

NF

FF

CCXL

CXFCX
n

))((

))(())((
.  

(ii) If the final equilibrium stays at Region-D-3, i.e., 0)()( >−−−− βµβ
NF

CCL ,  

then at final equilibrium it must have 
)()( βµβ

βµ

−−−−

−−
<

NF

N

CCL

C
n .  

(iii) If the final equilibrium stays at Region-D-2, i.e., 0))(( ≤−−− ββ
NF

CCXL  

and 0)()( ≤−−−− βµβ
NF

CCL , then any combinations of ),( srn = is 

possible.   

Sort out the analysis within the area between curves )1,0(

1F
C  and )0,1(

2F
C , then there are three 

possibilities. 

 (1)  If 0))(( >−−− ββ
NF

CCXL , then let 
ββ

ββ

−−−

−−
=

NF

FF

CCXL

CXFCX
N

))((

))(())((
:  

(1) if Nn ≥ , then all firms transfer to in-flexible strategies, i.e., ),0(),( nsrn == ;  

(2) if Nn < , then at Final Equilibrium, both flexible and in-flexible firms coexist in 

the market; 

(2) If 0))(( ≤−−− ββ
NF

CCXL  and 0)()( ≤−−−− βµβ
NF

CCL , then at Final 

Equilibrium, both flexible and in-flexible firms coexist in the market. 

(3) If 0)()( >−−−− βµβ
NF

CCL , then let 
)()(

~

βµβ

βµ

−−−−

−−
=

NF

N

CCL

C
N :  

(1) if Nn
~

≥ , then all firms transfer to flexible strategy, i.e., )0,(),( nsrn == ;  

(2) if Nn
~

< , then at Final Equilibrium, both flexible and in-flexible firms coexist in 

the market. 

This completes the proof of Theorem 6.1.                 □ 

 

 Theorem 6.3   In a profit-driven market, the Stable Market can be characterized as 

follows within the area }0:),{(
FNFN

CCCC ≤< . 
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(i) If 
FNFN

CCCLC ≤≤≤− &)(& ββµ , then no firm will exist in the 

market eventually, i.e., 0=n ; 

(ii) If 0))(( >−−− ββ
NF

CCXL , i.e., above the curve 
),0(

1

∞

F
C , then the Stable 

Market stays at Case-B ),0( nn = , ∞→n  and 0),0( →Π n
N

e
;  

(iii) If 0)()( >−−−− βµβ
NF

CCL , i.e., below the curve 
)0,(

2

∞

F
C , then the Stable 

Market stays at Case-C )0,(nn = , ∞→n  and 0)0,( →Π n
F

e
;  

(iv) If 0))(( ≤−−− ββ
NF

CCXL  and 0)()( ≤−−−− βµβ
NF

CCL , i.e., area 

between Curve-4 and Curve-5, then the Stable Market stays at Case-

D ),( srn = , ∞→n , ∞→s , ∞→r , 0→Π
F

e
and 0→Π

N

e
. 

Proof 

Assume that new firms are allowed to join market freely as long as the profit is positive; 

and quit market freely if there is no profit. Each firm joining market can choose their 

strategies, flexible or in-flexible. By Theorem 5.3 in Chapter 5, in Case-B, Case-C and 

Case-D, there is always positive profit in market. As a result, total number of firms tends 

to infinite, i.e., ∞→n .  Define )()(
2

0

NNN
kFk=Π ; 

∫∫
∞

+
−−+−−=Π

  

)( 

2
)( 

  

2

0 )())(()()(
F

F

N
CX

N

F

CX

k

NF
dfkCXdfk ααβααβα

β
.  

 

By Theorems 5.3 and 6.2, it can be concluded that  

(1)    If 




≤−

≤

N

F

C

CL

βµ

β )(
, then the solution is 0=Π=Π

F

e

N

e
, regardless r and s. As a result, 

there is no firm existing in market, i.e., 0=n .  

(2)  If 




−<≤

≤

βµ

β

N

F

C

CL

0

)(
, then the final equilibrium stays at ),0( nn = with 







>=

=

0

0

N

e

N

F

nkk

k
, and  N

w

wN

e

n
kF

n

k
n 022

2
1

)(),0( Π==Π . It can be proved that N

0
Π  

is bounded above by ))(())((
2 ββ −−

FF
CXFCX . Therefore, as ∞→n ,  

0),0( →Π n
N

e
. 
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(3)   If 




≤−

<

N

F

C

LC

βµ

β )(
, then the equilibrium stays at )0,(nn = with 







=

=

0
N

F

e

F

k

nkk
, and 

FF

e

n
n 02

1
)0,( Π=Π . It can be proved that F

0
Π  is bounded above by 

( ) )()(
2

ββ FCX
F

− . Therefore, as  ∞→n ,  0)0,( →Π n
F

e
. 

(4)    If 




−<

<

βµ

β

N

F

C

LC )(
, then there are three situations. 

(4-I)   If 0))(( >−−− ββ
NF

CCXL , i.e., above Curve-4, then we have following 

analysis. By Theorem 6.2, Case-B and Case-D may exist. As ∞→n , there are two 

situations: (1) ∞→s , and r is finite or ∞→r ; (2) s is finite, and ∞→r .  

(4-I-1) If ∞→s , and r is finite or ∞→r : 

As ∞→s , Curve-1 will approach )(
wF

kLC += β  where 
w

k  satisfies 

( ) βααα +=−∫
∞

N
k

w
Cdfk

w

)( , so that )( β+=
Nw

CXk . Therefore, we have 

))(( ββ ++=
NF

CXLC , i.e., ββ ++= )()(
NF

CXCX , which is Curve-4. 

Therefore, ),(
FN

CC  will eventually stay at Case-B in the Final Equilibrium. 

(4-I-2) If s is finite, and ∞→r : 

Considering Case-D, by Theorem 5.3, ))((
1

1 N

F

F

e
kCX

r
k −−

+
= β ; NN

e
k

s
k

1
= ; 

N
k satisfies ))((

1
)()

1
(

  

 
F

N

k

N

N
CkL

r

r
dfk

s

s
C

N
−+

+
−

+
−=+ ∫

∞

βαααβ ;  

FF

e

r
02

)1(

1
Π

+
=Π ; NN

e

s
02

1
Π=Π . It can be proved that F

0
Π  and N

0
Π  are 

bounded above. As ∞→r  and 
0

ss ≤  for some positive number
0

s , we have 

0→Π
F

e
 and ))(()()

1
(

  

 
F

N

k

N

N
CkLdfk

s

s
C

N
−+−

+
−=+ ∫

∞

βαααβ . Since 

0>
N

k  and 0)()(
1 2

2
>=Π

NNN

e
kFk

s
, there exists an r  so that  

0),()1,( →Π>+Π srsr
F

e

N

e
 for all rr ≥ . In this case, the number of in-flexible 

firms should increase. Continuing with this argument will eventually lead to 

0ss > . This is a contradiction. As a result, ∞→n , and Final Equilibrium occurs 

as Case-B, i.e., all firms become in-flexible.  
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(4-II)  If 0)()( >−−−− βµβ
NF

CCL , i.e., below Curve-5. Similar to the analysis of 

(4-I), we can draw the conclusion that ∞→n , and Final Equilibrium occurs as 

Case-C, i.e., all firms become flexible.  

(4-III) If 0))(( ≤−−− ββ
NF

CCXL  and 0)()( ≤−−−− βµβ
NF

CCL , i.e., area 

between Curve-4 and Curve-5. By Theorem 6.2, in this region, the stable status 

will be stayed at Case-D for any combination of ),( srn = . By Theorem 1, we 

have in Case-D, we always have 0>Π
F

e
and 0>Π

N

e
. Under the assumption that 

new firms will join the market as long as the profit is positive. Therefore, there 

are always new firms joining in market. We analyze these two possible situations.  

(4-III-1) ∞→s , and r is finite or ∞→r . By Theorem 5.3, in Case-D we have 

))((
1

N

F

F
kCX

r

r
k −−

+
= β ; N

K satisfies that  

))((
1

)()
1

(
  

 
F

N

k

N

N
CkL

r

r
dfk

s

s
C

N
−+

+
−

+
−=+ ∫

∞

βαααβ .  

The expected profit of each flexible firm is FNF

e

r
k 02

)1(

1
)( Π

+
=Π . 

The expected profit of each in-flexible firm is NNN

e

s
k 02

1
)( Π=Π . If ∞→s  and 

0
rr ≤  for some positive number 

0
r , then 0

)1(

1
)( 02

>Π
+

=Π
FNF

e

r
k , where 

N
k and F

0
Π  are functions of 

0rr ≤ . By Property 5.4, N

0
Π  is bounded above. 

Therefore, 0
1

)( 02
→Π=Π

NNN

e

s
k . Thus, there exists an s  such that 

0),(),1( →Π>+Π srsr
N

e

F

e
 for all ss ≥ . In this case, the number of flexible 

firms should increase. Continuing with this argument will eventually lead to 

0
rr > . This is a contradiction. Therefore, ∞→s  and ∞→r , and hence 

0→Π
F

e
 and 0→Π

N

e
.  

(4-III-2) s  is finite, and ∞→r : Similar to the analysis of ∞→s  situation, it is easy to 

draw the same conclusions.  

Considering these four cases, we have the following conclusions within 

}0:),{(
FNFN

CCCC ≤≤ . 



 

Evaluating Flexible Capacity Strategy under Demand Uncertainty                  YANG Liu 
 

 - 186 - 

(i) If 




≤−

≤

N

F

C

CL

βµ

β )(
, there is no firm existing in market, i.e., 0=n ; 

(ii) If ( ) 0)( >−−− ββ
NF

CCXL , i.e., above Curve-4, then Final Equilibrium stays 

at Case-B ),0( nn = , and ∞→n ,  0),0( →Π n
N

e
; 

(iii) If 0)()( >−−−− βµβ
NF

CCL , i.e., below Curve-5, then Final Equilibrium 

stays at Case-C )0,(nn = , and ∞→n ,  0)0,( →Π n
F

e
; 

(iv) If 0)( ≤−−−− ββµ
NN

CCL  and 0)()( ≤−−−− βµβ
NF

CCL , i.e., area 

between Curve-4 and Curve-5, then Final Equilibrium stays at Case-D, ),( srn = , 

∞→s , ∞→r , 0→Π
F

e
and 0→Π

N

e
.  

This completes the proof of Theorem 6.3.                               □ 

 

Theorem 6.4   Given
0

rr = , ],1[
0

nr ∈ , there exists a unique curve satisfying 

0)(),(
00

== rDrCCG
FN

, on which 
F

C  increases as 
N

C  increases; in areas above 

the curve 0)(
0

=rD , we have 0)(),(
00

<= rDrCCG
FN

; in areas below the curve 

0)(
0

=rD , we have 0)(),(
00

>= rDrCCG
FN

.        

Proof 

Let 
00

rns −=  and ]1,1[0 −∈ nr . Considering two cases ),( 00 srn =  and 

)1,1(
00

+−= srn , we have  

)1,1(),()(),(
000000

+−−Π−−Π== rnrrnrrDrCCG
N

e

F

eFN
.            (a6.18) 

It is noted that given totally number of n firms, Curve-1 and Curve-2 depend on value 

of ),( sr .  Given 
N

C , then  

Curve-1 )(
wF

kLC += β , where
w

k  satisfies βααα +=
+

−∫
∞

N
k

w
Cdfk

s

s

w

  

 
)()

1
( . 

Curve-2  )()(
1

βµβ LC
r

r
C

NF
+−+

+
= . 

We define Curve-1a and Curve-2a to be the curves corresponding to the case 

),(
00

srn = , and Curve-1b and Curve-2b to be the curves corresponding to the case 

)1,1(
00

+−= srn . These four curves can be presented as below.  
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Curve-1a )(
11 awaF

kLC += β , where βααα +=
+

−∫
∞

N
k

aw
Cdfk

s

s

aw

  

 
1

0

0

1

)()
1

( . 

Curve-2a  )()(
1

0

0

2
βµβ LC

r

r
C

NaF
+−+

+
= . 

Curve-1b )(
11 bwbF

kLC += β , where βααα +=
+

+
−∫

∞

N
k

bw
Cdfk

s

s

bw

  

 
1

0

0

1

)()
1

2
( . 

Curve-2b  )()(
10

0

2
βµβ LC

r

r
C

NbF
+−+

−
= . 

Given n firms, by Proposition 6.1, referring to Curve-1, 
F

C  is decreasing in s, i.e., 

increasing in r; referring to Curve-2, 
F

C  is decreasing in r. We relax the condition that 

NF
CC ≥  here in this section. This condition can be added back after the discussion. 

Therefore, given n firms and ],0[ βµ −∈
N

C , 
bFaFbFaF

CCCC
2211

>>> . Three sub-

areas are created between Curve-1a and Curve-2b. Define these three sub-areas as: (i) 

Area-D-1 is the area between Curve-2b and Curve-2a; (ii) Area-D-2 is the area between 

Curve-2a and Curve-1b; (iii) Area-D-3 is the area between Curve-1b and Curve-1a. Figure 

a6.1 shows these three areas. In the following, each sub-area is discussed.  

 

Figure a 6.1: Three areas created by Curve-1a~2b. 

F
C  

0 
N

C)(βL  

)(βL  

βµ −  

B 

C 

Infeasible  

Range 

A 

Curve-1a 

Curve-2b Curve-1b 

Curve-2a 

D-3 

D-1 

D-2 
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(i)  Area-D-1 

In this area, case ),(
00

srn =  occurs as Case-C, and case )1,1(
00

+−= srn  occurs as 

Case-D. By  Theorem 5.3, we have:  

In case ),( 00 srn = , we get )0(
)1(

1
),( 02

0

00

FF

e

r
rnr Π

+
=−Π ;                             (a6.19) 

In case )1,1(
00

+−= srn , we get )(
)1(

1
)1,1(

1

02

0

00
k

s
rnr

NN

e
Π

+
=+−−Π ,        (a6.20) 

where 1
k satisfies ))((

1
)()

1

2
(

1

0

0
  

 

1

0

0

1 F
k

N
CkL

r

r
dfk

s

s
C −+

−
−

+

+
−=+ ∫

∞

βαααβ .   (a6.21) 

(i-1) situation: Given 
N

C , with respect to 
F

C , by (a6.21) we have 0

1

>
F

dC

dk
. Together 

with (a6.18)~(a6.20), we have 

F

F

F
dC

dk
kfkkFk

s
CX

rdC

rdD
1

1111

2

0

2

0

0 )]()(2[
)1(

1
))((

)1(

2)(
⋅−

+
−−

+
−= β 0< .   

 (i-2) situation: Given 
F

C , with respect to 
N

C , by (a6.19) we have 0

1

<
N

dC

dk
. Together 

with (a6.18)~(a6.20), we have 
NN

dC

dk
kfkkFk

sdC

rdD
1

1111

2

0

0 )]()(2[
)1(

1)(
⋅−

+
−= 0> . 

(ii) Area-D-2 

If both cases ),( 00 srn =  and )1,1( 00 +−= srn are in Region-D-2, then the two cases 

occur as Case-D. We have the following discussion. By Theorem 5.3, we have 

)(
)1(

1
),(

0

02

0

00
k

r
rnr

FF

e
Π

+
=−Π ,                                                                         (a6.22) 

and )(
)1(

1
)1,1(

1

02

0

00
k

s
rnr

NN

e
Π

+
=+−−Π ,                                                        (a6.23) 

where 0
k satisfies ))((

1
)()

1
(

0

0

0
  

 

0

0

0

0 F
k

N
CkL

r

r
dfk

s

s
C −+

+
−

+
−=+ ∫

∞

βαααβ ,  (a6.24) 

as the total in-flexible capacity of case ),(
00

srn = ; 

1
k satisfies ))((

1
)()

1

2
(

1

0

0
  

 

1

0

0

1 F
k

N
CkL

r

r
dfk

s

s
C −+

−
−

+

+
−=+ ∫

∞

βαααβ ,             (a6.25) 

as the total in-flexible capacity of case )1,1( 00 +−= srn . 
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(ii-1) situation: Given 
N

C , with respect to 
F

C , by (a6.24) and (a6.25), we have 

0

0

>
F

dC

dk
 and 0

1

>
F

dC

dk
. Together with (a6.18), (a6.22) and (a6.23), we have 

)])((2))((2[
)1(

1)( 0

0

0

2

0

0
kCX

dC

dk
CkL

rdC

rdD

F

F

F

F

−−−⋅−+−
+

= ββ  

                  
F

dC

dk
kfkkFk

s

1

1111

2

0

)]()(2[
)1(

1
⋅−

+
− 0< .   

(ii-2) situation: Given
F

C , with respect to 
N

C , by (a6.24) and (a6.25), we have 

0

0

<
N

dC

dk
 and 0

1

<
N

dC

dk
. Together with (a6.18), (a6.22) and (a6.23), we have 

0)]()(2[
)1(

1
))((

)1(

2)( 1

1111

2

0

0

0

2

0

0 >⋅−
+

−⋅−+
+

−=
NN

F

N
dC

dk
kfkkFk

sdC

dk
CkL

rdC

rdD
β

     

 

(iii) Area-D-3 

In this area, case ),(
00

srn =  occurs as Case-D, and case )1,1(
00

+−= srn  occurs as 

Case-B. By  Theorem 5.3, we have  

)(
)1(

1
),(

0

02

0

00 k
r

rnr
FF

e
Π

+
=−Π ,                                                                         (a6.26) 

and )(
)1(

1
)1,1(

1

02

0

00 k
s

rnr
NN

e
Π

+
=+−−Π ,                                                        (a6.27) 

0
k satisfies ))((

1
)()

1
(

0

0

0
  

 

0

0

0

0 F
k

N
CkL

r

r
dfk

s

s
C −+

+
−

+
−=+ ∫

∞

βαααβ ;             (a6.28) 

1
k satisfies ∫

∞

+

+
−=+

  

 

1

0

0

1
)()

1

2
(

k
N

dfk
s

s
C αααβ .                                                    (a6.29) 

(iii-1) situation: Given 
N

C , with respect to 
F

C , by (a6.28),  0

0

>
F

dC

dk
. Note that in 

Case-B, 0

1

=
F

dC

dk
. Together with (a6.18), (a6.26) and (a6.27), we have 0

)( 0 <
F

dC

rdD
.                 

(iii-2) situation: Given
F

C , with respect to 
N

C , by (a6.28) and (a6.29), we have 

0

0

<
N

dC

dk
 and 0

1

<
N

dC

dk
. Together with  (a6.18), (a6.26) and (a6.27), we have 
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0)]()(2[
)1(

1
))((

)1(

2)( 1

1111

2

0

0

0

2

0

0 >⋅−
+

−⋅−+
+

−=
NN

F

N
dC

dk
kfkkFk

sdC

dk
CkL

rdC

rdD
β

.  Considering these three sub-areas together, given n firms, in the areas between Curve-

1a and Curve-2b, we have  

(1)  0
)( 0 <

F
dC

rdD
 with given ],0[ βµ −∈

N
C ;                                                         (a6.30) 

(2) 0
)( 0 >

N
dC

rdD
 with given  )](,0[ βLC

F
∈ .                                                         (a6.31) 

Consider the curve 0)( 0 =rD , ]1,1[
0

−∈ nr , given n firms. With respect to 
N

C , we 

have  0
)()( 00 =

∂

∂
+⋅

∂

∂

NN

F

F
C

rD

dC

dC

C

rD
, so that 

FNN

F

C

rD

C

rD

dC

dC

∂

∂

∂

∂
−=

)()( 00 .                   (a6.32) 

By (a6.30) and (a6.31), we have 0
)( 0 <

F
dC

rdD
 and 0

)( 0 >
N

dC

rdD
 in the areas between Curve-

1a and Curve-2b. Therefore, by (a6.32) we have 0>
N

F

dC

dC
. 

To relax the condition that 
NF

CC ≥  here in this section, we extend Curve-2a and 

Curve-2b to 0=
N

C . Consider areas between Curve-1a and Curve-2b. By (a6.30) in this 

area, 0
)( 0 <

F
dC

rdD
.  

By (6.18), on Curve-2b,  

0)0(
)1(

1
)1,1(),()( 02

0

00000 >Π
+

=+−−Π−−Π=
FN

e

F

e

r
rnrrnrrD ;  

on Curve-1a,  

0)(
)1(

1
0)1,1(),()(

1

02

0

00000
<Π

+
−=+−−Π−−Π= k

s
rnrrnrrD

NN

e

F

e
,  

where 1
k satisfies ∫

∞

+

+
−=+

  

 

1

0

0

1
)()

1

2
(

k
N

dfk
s

s
C αααβ .  

Curve-1a and Curve-2b intersect at point ))(,(),( ββµ LCC
FN

−= . Note that at this 

point, 0)1,1(),(
0000

=+−−Π=−Π rnrrnr
N

e

F

e
. Therefore, we have 0)( 0 =rD . The 

point ))(,(),( ββµ LCC
FN

−=  is a common end of curves 0)( 0 =rD , ]1,1[
0

−∈ nr . 

Therefore, in area between Curve-1a and Curve-2b, there exists a unique curve which 

satisfies 0)(),(
00

== rDrCCG
FN

.  
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By (a6.30), given a 
N

C , )(
0

rD is decreasing in 
F

C . Therefore, in areas above the 

curve 0)(
0

=rD , we have 0)(
0

<rD ; in areas below the curve 0)(
0

=rD , we have 

0)(
0

>rD .  

This completes the proof of Theorem 6.4.                              □ 

 

Theorem 6.5   Given n firms, for every ]1,1[
0

−∈ nr , consider curves 

0)(),(
00

== rDrCCG
FN

 and 0)1()1,(
00

=+=+ rDrCCG
FN

 within the area 

}0&)(&:),{(
FNFNFN

CCLCCCC ≤≤≤−≤ ββµ , then the Final Equilibrium 

),(
ee

srn = can be categorized into one of the following five scenarios in terms of the 

exact numbers of flexible and in-flexible firms.  

(i) In areas below curve 0)(),(
00

== rDrCCG
FN

 and above curve 

0)1()1,(
00

=+=+ rDrCCG
FN

, we have ),(),(
00

rnrsrn
ee

−== ; 

(ii) in areas above curve 0)(),(
00

== rDrCCG
FN

 and below curve 

0)1()1,(
00

=+=+ rDrCCG
FN

, we have the Final Equilibrium does not 

obtained at 
0

rr = ;  

(iii) if these two curves overlaps, with respect to points on the curves, we have 

either ),(),(
00

rnrsrn
ee

−==  or )1,1(),(
00

−−+== rnrsrn
ee

; 

(iv) in areas above all curves 0)(),(
00

== rDrCCG
FN

, ],1[
0

nr ∈ , we have 

),0(),0( nnsrn
ee

==== ; 

(v) in areas below all curves 0)(),(
00

== rDrCCG
FN

, ],1[
0

nr ∈ , we have 

)0,(),0( nnsrn
ee

==== .                                                                       

Proof  

By Conditions of Final Equilibrium, Parts (i)~(iii) is proved.   

In areas above all curves 0)(),(
00

== rDrCCG
FN

, ]1,1[
0

−∈ nr , by Theorem 6.3, 

we have for all ]1,1[
0

−∈ nr , 0)( 0 <rD . Therefore, 0),0()1,1()1( <Π−−Π= nnD
N

e

F

e
, 

which leads to that firms will use in-flexible strategy. By Theorem 6.2, the Final 

equilibrium will stay at ),0( nsrn
ee

=== . This completes the proof of Part (iv).  
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In areas below all curves 0)(),(
00

== rDrCCG
FN

, ],1[
0

nr ∈ , by Theorem 5.3, we 

have for all ],1[
0

nr ∈ , 0)(
0

>rD . Therefore, 0)1,1()0,()( >−Π−Π= nnnD
N

e

F

e
, which 

leads to that firms will use flexible strategy. By Theorem 6.2, the Final equilibrium will 

stay at )0,( ===
ee

snrn .This completes the proof of Part (v).    

This completes the proof of Theorem 6.5.                                    □ 

 

 

Proofs in Chapter 7 

Theorem 7.1   In a monopoly model with ]1,0[∈m , we have:  

(i) The optimal capacity *
k  satisfies 

2
0

* a
k <<  and 

F
Cdfkadfmkam

R

L

=−−+−− ∫∫
∞ 

 

*
 

0  

*
)())2(()())2((

α

α

ααβαααβα .  

(ii) The optimal production quantity 













≤

<≤

<≤

=

αα

ααα

αα

R

RLb

L

k

q

mk

q

,

,

0,

*

*

* . 

(iii) The optimal profit is 

∫∫∫
∞

++=Π
 

 

2*
 

 

2
 

0  

2*
)()()()()()(

R

R

L

L

dfkdfqdfmk
b

α

α

α

α

ααααααααα , 

where 
*

2mka
L

−
=

β
α , 

*
2ka

R

−
=

β
α  and )(

2

1

α

β
−= aq

b
.  

Proof 

At the production decision stage, by (7.2), the first- and second-order derivatives of 

)(qπ are βαπ −−= )2()(
)1(

qaq , απ 2)(
)2(

−=q . If 0=α , then 0)(
)1(

≤−= βπ q  and 

we take mkq =
* . If 0>α , then 02)(

)2(
<−= απ q . So, )(qπ  is concave in q and its 

unconstrained optimal solution is )(
2

1

α

β
−= aq

b
. Note that kqmk ≤≤ . Hence, the 
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optimal production quantity 













≤

<≤

<≤

=

αα

ααα

αα

R

RLb

L

k

q

mk

q

,

,

0,

*

*

* , where
mka

L

2−
=

β
α  and 

ka
R

2−
=

β
α . 

At the capacity decision stage, by (7.1) and the above results, we have  

kCdfkakdfqdfmkamk
Fb

R

R

L

L

−−−++−−=Π ∫∫∫
∞ 

 

 

 

2
 

0  
)(])([)()()(])([

α

α

α

α

ααβααααααβα

 

F
Cdfkadfmkamk

R

L

−−−+−−=Π ∫∫
∞ 

 

 

0  

)1(
)())2(()())2(()(

α

α

ααβαααβα . 

0)(2)(2)(
 

 

 

0  

2)2(
<−−=Π ∫∫

∞

R

L

dfdfmk
α

α

αααααα . Thus, )(kΠ is concave in k. Let 

a

β
α =0

. Recall that 
2

0
a

k <≤ . 

0

)()()()(

)()()()()0(

 

 

 

0  

 

 

 

0  

)1(

0

0

0

0

>−−=

−−+−≥

−−+−=Π

∫∫

∫∫
∞

∞

F

F

F

Ca

Cdfadfa

Cdfadfam

βµ

ααβαααβα

ααβαααβα

α

α

α

α

  

As 
2

a
k → , 0)())2(()(

 

 

)1(
<−→−−−≤Π ∫

∞

FF
CCdfkak

R
α

ααβα . Therefore, the 

optimal capacity *
k  satisfies 

2
0

* a
k <<  and 0)(

*)1(
=Π k , i.e., 

F
Cdfkadfmkam

R

L

=−−+−− ∫∫
∞ 

 

*
 

0  

*
)())2(()())2((

α

α

ααβαααβα , and so  

∫∫∫
∞

++=Π
 

 

2*
 

 

2
 

0  

2*
)()()()()()(

R

R

L

L

dfkdfqdfmk
b

α

α

α

α

ααααααααα . 

This completes the proof of Theorem 7.1.                    □ 

 

Proposition 7.1   In a duopoly model with 1,0 21 ≤≤ mm , the optimal production 

capacity of firm i , given 21 , kk  and 
i

q
−3
, is 













≤

<≤

<≤

=

αα

ααα

αα

Rii

RiLiib

Liii

i

k

q

km

q

,

,

0,

*  for 2,1=i , 
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where )(
2

1
3 iib

qaq −−−=
α

β
, 

iii

Li

qkma −−−
=

32

β
α  and 

ii

Ri

qka −−−
=

32

β
α  for 

2,1=i . 

Proof  

By (7.3), for firm i , with respect to 
i

q , we have βαπ −−−=
−

)2()(
3

)1(

iiii
qqaq  and 

απ 2)(
)2(

−=
ii

q . If 0=α , then 0)(
)1(

≤−= βπ
ii

q  and we take 
iii

kmq =
* . If 0>α , 

then 02)(
)2(

<−= απ
ii

q . So, )(
ii

qπ  is concave in 
i

q , and its unconstrained optimal 

solution is )(
2

1
3 iib

qaq −−−=
α

β
. Note that 

iiii
kqkm ≤≤ . Hence, the optimal 

production quantity  













≤

<≤

<≤

=

αα

ααα

αα

Rii

RiLiib

Liii

i

k

q

km

q

,

,

0,

* . 

This completes the proof of Proposition 7.1.                     □ 

 

Proposition 7.2  In a duopoly model with 1,0 21 ≤≤ mm , given the production quantity 

of firm i ’s })2,1{( ∈i  rival 
i

q
−3
, we have:  

(i) Firm i ’s optimal capacity *

i
k  satisfies 

2
0

3* i

i

qa
k

−
−

<<  and 

Fiiiiii
Cdfkqadfkmqam

Ri

Li

=−−−+−−− ∫∫
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3 )())2(()())2((
α

α
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(ii) Firm i ’s optimal profit 

∫∫∫
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α

α

α
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2* , 

where )(
2

1
3 iib
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α

β
, 

iii

Li
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=

3

*
2

β
α  and 

ii

Ri

qka −−−
=

3

*
2

β
α , 

2,1=i . 

Proof 

For firm }2,1{∈i , with respect to 
i

k , by (7.5) we have 

Fiiiiiiii
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 This completes the proof of Proposition 7.2.                  □ 

 

Proposition 7.3   In a duopoly model with 10 21 ≤≤≤ mm , given the capacities of the 

two firms 01 ≥k  and 02 ≥k , the production quantities of the two firms ) ,( 21 qq  at 

equilibrium are as follows. 
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(ii) If 
121122 kkkmkm <≤< , then  
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(v) If  
222111 kkmkkm <≤≤ , then  
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Proof 

By Proposition 7.1, Figure 7.3 shows all possible cases of two firms’ production decisions, 

as well as their production quantities, where )(
2

1
3 iib

qaq −−−=
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β
, 
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Li
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α  and 
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Figure a7.1: Possible cases of two firms’ production decisions. 
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the following, we make an analysis on the solution and equivalent conditions of each 

possible case in Figure 7.3. 

Case-I  
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Case-VI 
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Case-IX 
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Since 10 21 ≤≤≤ mm , there are five possible situations.  

Situation 1    
111222 kkmkkm ≤<≤  

Among cases I - IX, only five possible cases hold. They can be connected as 

I�IV�VII�VIII�IX for increasing α  in ),0[ ∞ . This results in the solution ) ,( 21 qq  

in Case (i). 

Situation 2   121122121122 kkkmkmkkkmkm <≤<⇔≤≤<  
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Among cases I - IX, only five possible cases hold. They can be connected as 

I�IV�V�VIII�IX for increasing α  in ),0[ ∞ . This results in the solution ) ,( 21 qq  in 

Case (ii). 

Situation 3   
122211 kkkmkm ≤≤≤  

Among cases I - IX, only five possible cases hold. They can be connected as 

I�II�V�VIII�IX for increasing α  in ),0[ ∞ . This results in the solution ) ,( 21 qq  in 

Case (iii).  

Situation 4   
212211 kkkmkm <<≤  

Among cases I - IX, only five possible cases hold. They can be connected as 

I�II�V�VI�IX for increasing α  in ),0[ ∞ . This results in the solution ) ,( 21 qq  in 

Case (iv).  

Situation 5   
222111 kkmkkm <≤≤  

Among cases I - IX, only five possible cases hold. They can be connected as 

I�II�III�VI�IX for increasing α  in ),0[ ∞ . This results in the solution ) ,( 21 qq  in 

Case (v).   

This completes the proof of Proposition 7.3.                          □ 

 

Theorem 7.2    Given mmm == 21
, 10 ≤≤ m , then  

(i) the optimal capacity of firm 1 and firm 2 are 
e

kkk == 21
 at equilibrium;  

(ii) 
e

k is decreasing in ]1,0[∈m , i.e., 
e

k is increasing in flexibility degree η , m−= 1η ;   

(iii) 
0

kkk
ef

≤≤  where 
0

k  satisfies 
F

ka

Cdfka =−−∫
∞

−

  

3
 

0

0

)())3((β ααβα  and 

)(
3

1

µ

β+
−= F

f

C
ak ;  

(iv) The expected profit of each firm is 
e

Π=Π=Π
21

, where  

∫∫∫
∞

−

−

−

− +−+=Π
  

3
 

23
 

3
 

23
 

0   

2
)()()(

9

1
)()(

e

e

e

e

ka

e

ka

mka

mka

ee
dfkdfadfmk β

β

β

β

αααααα
α

β
ααα

and 
e

k  satisfies 

F

ka

e

mka

e
Cdfkadfmkam

e

e =−−+−− ∫∫
∞

−

−
   

3
 

3
 

0   
)())3(()())3(( β

β

ααβαααβα . 

Proof 
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Without loss of generality, we assume 
21 kk ≥ . Thus, we do not need to consider situations D 

and E. Since the optimal capacities satisfy 0)( 1

)1(

1 =Π k  and 0)( 2

)1(

2 =Π k , we have 

0)()( 2

)1(

21

)1(

1 =Π−Π kk . The analysis for situations A - C are as follows. 

For Situation A   
1122 kmkkmk ≤<≤  

In this case, 0≠m ; otherwise, 00 12 =<< mkk , which is a contradiction. 

By Claim 7.1, we have 0)()(
5

1

2

)1(

21

)1(

1 ==Π−Π ∑
=i

Ai
kk ς , where 
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0)()(
  

2
 

125

21

<−= ∫
∞

−− kka

A
dfkk β ααας . 

Thus, 0
5

1

<∑
=i

Ai
ς , which is a contradiction. 

 

For Situation B   
1212 kkmkmk <≤<  
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In this case, 0≠m ; otherwise, 00 12 =<= mkmk , which is a contradiction. 

By Claim 7.1, we have 0)()(
4

1

2

)1(

21

)1(

1 ==Π−Π ∑
=i

Bi
kk ς , where 

0)()( 21 2
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12

2

1 ≤−= ∫ −− mkmka

B
dfkkm
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ααας ; 

[ ] 0)()3(
2

1
1

21

3
  

2
 

12 ≤−−= ∫ −
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B
dfmkam

β

β ααβας ; 

[ ] 0)()3(
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3
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−

kka

ka

B
dfka

β

β ααβας ; 

0)()(
   

2
 

124

21

<−= ∫
∞

−− kka

B
dfkk β ααας . 

Thus, 0
4

1

<∑
=i

Bi
ς , which is a contradiction. 

 

For Situation C  
1221 kkmkmk ≤≤≤ , by Claim 7.1, we have  

If mmm == 21
, Situation C is the line 

e
kkk ==

21
. Therefore, 

F

ka

e

mka

e
Cdfkadfmkamk

e

e −−−+−−=Π ∫∫
∞
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−
   

3
 

3
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2 )())3(()())3(()( β

β

ααβαααβα .  

So the optimal solution satisfies 0)()( 2

)1(

21

)1(

1 =Π=Π kk , i.e.,  
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)())3(()())3((
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e
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dfkadfmkamC β

β

ααβαααβα .  

By Propositions 7.2 and 7.3, the expected profit of each firm is 
e

Π=Π=Π 21 , where  

∫∫∫
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With respect to m , we have  
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0
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Therefore, 0≤
dm

dk
e , ]1,0[∈m . That means 

e
k  is decreasing in ]1,0[∈m .  
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When 0=m , set )0(
0

== mkk
e

, then it can be proved that there exists a unique 
0

k  

satisfying ( )
F

ka

Cdfka =−−∫
∞

− 03

0
)()3(β ααβα . When 1=m , set )1( == mkk

ef
, then 
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−
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3

0
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
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 +
−=

µ

β
F

f

C
ak

3

1
. Hence, with given 

]1,0[∈m , 
0

kkk
ef

≤≤ .  

This completes the proof of Theorem 7.2.                                                         □ 

 

Proposition 7.4    Given 10 21 ≤<≤ mm , then the optimal solution ),( 21 kk  is not in 

situation E.  

Proof  

For situation E   
222111 kkmkkm <≤≤ , by Claim 7.1 we have  
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In the following, we analysis these 5 terms respectively,  
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Therefore, 0)()( 2
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Therefore, the optimal solution ),( 21 kk  is not in situation E.   

This completes the proof of Proposition 7.4.                    □ 

 

Proposition 7.5    Given 10 21 ≤≤≤ mm , then the optimal solution ),(
21

kk  is not in 

situation D.  

Proof  

Situation D  
212211 kkkmkm <<≤ , then by Claim 7.1, we have 
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Therefore, the optimal solution ),(
21

kk  is not in situation D.    

This completes the proof of Proposition 7.5.                    □ 

 

Theorem 7.3  Given 10 21 ≤≤≤ mm ,  

(i)  if 
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1 << ;  

(ii-1)  the optimal productions )(
*

2

*

1 qq  are   
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



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 (ii-2)  the optimal capacity decisions ),(),(
2121 ee

kkkk =  at equilibrium satisfy  
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β
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α

β
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(ii-3)  the optimal profits of firm 1 and firm 2 are 

∫∫ ∫ −− ++=Π
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where )(
2

1
2211

α

β
−−=− kmaq

b
, )(

3

1
21

α

β
−=− aq

b
, )(

2

1
231

α

β
−−=− kaq

b
, 

)(
3

1
2

α

β
−= aq

b
; 

ee

L

kmkma 2211

1
2 −−

=
β

α , 
ee

R

kka 21

1
2 −−

=
β

α ; 
e

L

kma 22

2
3−

=
β

α , 

e

R

ka 2

2
3−

=
β

α . 

Proof 

Define )( 1

)1(

11 kJ Π=  and )( 2

)1(

22 kJ Π= . The optimal solution ),( 21 kk  satisfies 

0)( 1

)1(

11 =Π= kJ and 0)( 2

)1(

22 =Π= kJ . Set
1

2

1

2
k

m

m
ky −= , i.e., 

1

2

1

2
k

m

m
yk += . It is 

noted that situation A we have
1120 kmk << ; for situation B we have

1

2

1

211
k

m

m
kkm << ; 
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for situation C we have
121

2

1
kkk

m

m
<< . Therefore, (1) if 0>y , then the optimal 

solution is in situation C; (2) if 0<y , then the optimal situation is in situation A or 

situation B.  

Given
1m , 121 ≤≤ mm . Consider 

1k  and y as functions of 2m .  Then we have  

( )
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

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where 
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Consider situation C 
121

2

1
kkk

m

m
<< . Substitute 

1

2

1

2
k

m

m
yk +=  into 

0)(
21

)1(
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=Π= kkJ and 0)(
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)1(
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=Π= kkJ  we can get: 
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∂
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m
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Therefore, by (a7.2) and (a7.4) we have 
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By (a7.1), we have 
∆

∆
= 2

2dm

dy
. Consider the situation of 0=y , i.e., 2211 kmkm = . 

Therefore, (1) if 02 >∆ , then 02

2

>
∆

∆
=

dm

dy
, which implies only situation C occurs; (2) 
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if 02 <∆ , then 02

2

<
∆

∆
=

dm

dy
 which implies that situation B or situation A may occur. 

For situation of 
2211 kmkm = , there are two cases (1) 

2211 kmkm =  and
21 mm = ; 

(2)
2211 kmkm =  and

21 mm < . 

Case-i      if 
2211 kmkm =  and

21 mm = .  

By Theorem 7.2, we have ],[
021

kkkkk
f

∈== , and 012 =
RR

µ . By (a7.5) we have  
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By the optimal solution’s necessary condition 0)(
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=Π= kkJ , we have  
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Together with   (a7.6) we have  
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ααβαµµ . By Proposition 7.5, we 

have )(
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1
1

µ

β+
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f

C
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(
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1
4 1

µ

β+
−−≤− F

C
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C
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α
ααβα . Therefore, 02 >∆ , i.e., 0

2

>
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.  

Therefore, when
21 mm = , the optimal situation is in Situation C.  

Case-ii    if 
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21 mm < , then we can get  
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By the optimal solution’s necessary condition
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Consider situation C 

By 01 =J , we have  

0)())2(()())2((
 

 
21

 

0  
22111

1

1

=−−−−+−−− ∫∫
∞

F
Cdfkkadfkmkmam

R

L

α

α

ααβαααβα . 

By 
2211

1
2 kmkma

L

−−
=

β
α , we have ( ) 0)()2(

1 

0  
22111

<−−−∫
L

dfkmkmam
α

ααβα . 

Therefore, by 01 =J , we must have ( ) 0)()2(
 

 
21

1

>−−−∫
∞

R

dfkka
α

ααβα , which requires 

02 21 >−− kka .  

Therefore, we have akk <+ 212 .                                                                            (a7.8) 

By 02 =J , we have  

∫ −−−=
1 

0 
221122 )()2(

L

dfkmkmamJ
α

αα
α

β
α ∫ −−+

2

1

 

 
222 )()3(

2

1L

L

dfkmam
α

α
αα

α

β
α  

         ∫ −−+
1

2

 

 
2 )()3(

2

1R

R

dfka
α

α
αα

α

β
α

F
Cdfkka

R

−−−−+ ∫
∞ 

 
21

1

)()2(
α

αα
α

β
α 0= .  

Then 0
1012

1

2 <−=
∂

∂
L

km
m

J
µ .  Therefore, 

2J  is decreasing in
1m , 10 21 ≤<≤ mm .  

Therefore,  we have 0),()( 212212 =≤= mmJmmJ . Set )( 2122 mmJI == . Therefore,  

( )∫ −+−=
1 

0  
21222

)())2((
L

dfkkmamI
α

ααβα ( )∫ −−+
2

1

 

 
222 )()3(

2

1 L

L

dfkmam
α

α
ααβα  

          ( )∫ −−+
1

2

 

 
2 )()3(

2

1 R

R

dfka
α

α
ααβα ( )

F
Cdfkka

R

−−−−+ ∫
∞ 

 
21

1

)()2(
α

ααβα 0< .  

With respect to 
2m , we have ( )∫ +− −+−=

∂

∂
)2(2

 

0   
212

2

2
212 )())2(2(kkma dfkkma

m

I
β

ααβα     

                                                            ∫ −

+−

−−+ 22

212

3
 

)2(2
 

22 )())6((
2

1
kma

kkma

dfkma

β

β ααβα 0≤ . 

Therefore, 0)1( 222 ≤≤= ImI . 0)2()1( 1222 ≤−−−−==
F

CkkamI βµ ,  



 

Evaluating Flexible Capacity Strategy under Demand Uncertainty                  YANG Liu 
 

 - 211 - 

i.e., 
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Since 
2211 kmkm =  and 10 21 ≤<≤ mm , we have
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The following discussion is to determine the feasible range of 
1k and 2k . 
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By (a7.7), (a7.10) and (a7.11), we have 
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It is noted that (a7.11) and (a7.12) are contradictions to each other. Therefore, the 

feasible solutions are not in this case.  
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(a7.10) and (a7.13) contradict to each other. Therefore, the feasible solutions are not in 

this case. Therefore, there is no feasible optimal solution in case 
2211 kmkm =  

and
21 mm < . Therefore, the only Situation C occurs.                        

This completes the proof of Theorem 7.3.                                         □ 
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Appendix-II 

 

Papers written and presentations made during my PhD study 

 

Journal Papers 

� Yang, L., C.T. Ng and T.C.E. Cheng, 2010. Evaluating the effects of distribution 

centres on the performance of vendor-managed inventory systems. European 

Journal of Operational Research, 201(1), 112-122.  

 

� Yang, L. and C.T. Ng. Flexible capacity strategy in an asymmetric oligopoly 

market with competition and demand uncertainty. Submitted to Management Science.  

 

� Yang, L., C.T. Ng and T.C.E. Cheng. Optimal production strategy under 

fluctuating demands: technology versus capacity. Submitted to Operations Research.  

 

� Yang, L. and C.T. Ng. Endogenous flexibility of flexible capacity strategy in an n-

firm competition under demand uncertainty. Working Paper.  

 

� Yang, L. and C.T. Ng. Modeling capacity strategies with different flexibility 

degrees in a competitive market under fluctuating demands. Working Paper. 

 

 

Conference Presentations 

� Yang, L. and C.T. Ng, 2009. Optimal production strategy under fluctuating 

demands: technology versus capacity. Proceedings of The 23th European  Conference on 

Operational Research.  5-8 July 2009, Bonn, German. (CD-ROM).  

 

 

� Yang, L. and C.T. Ng, 2008. Investments in flexibility and productivity with 

demand uncertainty. Presented in International Forum on Shipping, Ports and Airports 

2008 Conference. 25-28 May 2008, HK.  
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� Yang, L., C.T. Ng and T.C.E. Cheng, 2009. Effects of distribution centre on 

vendor-managed inventory system with multiple retailers. Presented in International 

Forum on Shipping, Ports and Airports 2009 Conference. 24-27 May 2009, HK. 
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