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Abstract

Flexible capacity strategy (FCS) has been well adopted in different industries, but limited
analytical studies have investigated it and almost all of them focus on monopoly or
duopoly. None of them has investigated firms’ decisions when facing multiple
competitors and two strategies simultaneously. Moreover, there is an absence of research
on addressing the issue of flexibility degree, which means to what extent FCS can be fully
exploited. Furthermore, the value of long term FCS has not been studied in existing
research. To fill these research gaps, this thesis investigates FCS from different

perspectives with uncertain demand.

First, this thesis identifies five possible production strategies to evaluate long term FCS
with consideration of the production cost structure. By conducting a comprehensive
series of comparative analyses between different strategies, this thesis evaluates long term
FCS and provides the optimal production strategies under different costing environments.

It is shown that FCS can benefit or damage a firm’s profit.

Second, this thesis constructs a two-strategy asymmetric oligopoly competition model
consisting of r firms with FCS and s firms with in-flexible capacity strategy (IFCS) under
demand uncertainty. This thesis characterizes capacity and production decisions of each
firm at equilibrium. The results verify that all the flexible firms make the same decisions at
equilibrium, and so do all the in-flexible firms. It is shown that production cost is one of

the key factors affecting whether a firm should adopt FCS or not.

Third, this thesis further investigates the endogenous flexibility of FCS in an oligopoly
model by allowing firms to freely switch their strategies to maximize their profits. The
results show that two strategies may always coexist under some conditions regardless of
the number of firms. It is shown that the strategies that eventually survive in a market are
insensitive to the total number of firms under certain environments but are sensitive
under other environments. This result is further extended to a perfect competition
environment. A practical approach is proposed to determine at equilibrium the exact

numbers of firms adopting FCS and IFCS under any given demand distribution.

- 1ii -
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Last but not least, this thesis probes into flexibility degree to quantify the performance of
FCS in competition. This thesis develops a duopoly competition model in which two
firms compete with each other with different flexibility degrees. The results characterize
the equilibrium of the competition and show that a firm with a higher flexibility degree

always secures a higher profit when the capacity costs are identical in the two firms.

The research results highlight the strategic importance of the concept of FCS, provide
insights on successful implementation of FCS, and propose suggestions to avoid the

potential risk or damage of FCS.

_iv_
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Chapter 1

Introduction

1.1  Motivation and Background

To enhance competitiveness and hedge against demand uncertainties, chase strategy has
been a prevailing operation strategy in real business in the past two decades. The chase
strategy enables a firm to better match supply and demand by adjusting its production
level. Various operational ways of the chase strategy include varying workforce size by
hiring or laying off workers, varying production rates through overtime or idle time,
using part-time workers, subcontracting, deploying multi-trained employees, setup time

reduction and design for manufacturing.

A number of successful businesses in the real world have demonstrated the advantages
of the chase strategy, such as Anheuser-Bsch (Heizer and Render, 2008), Snapper’s
mower (Heizer and Render, 2008) and Dell (Magretta, 1998). Some data also indicate
that the chase strategy has been widely used in different industries. In the 1990s, roughly
90% of U.S. business and 95% of Fortune 500 firms used some forms of temporary
employments (Kucera, 2009). A survey showed that the chase strategy was preferred in
19 industries and the modified chase strategy was preferred in 12 industries over a total
of 42 industries (Buxey, 2005). However, there are still a number of firms adopting the
traditional /feve/ strategy that maintains a stable production level in firms. These firms
argue that the level strategy is advantageous to ensure good quality of product and
employee loyalty (Colvin, 2009). According to a number of empirical studies, both chase
strategy and level strategy coexist in many industries, if not all. For example, in a study
covering industries of electronics, machinery and automotive suppliers in 7 countries,
roughly 44% of 211 firms equipped volume flexibility, which is the nature of chase
strategy from strategic perspective (Hallgren and Olhager, 2009). By using the data from
machinery and machine tool industries in Taiwan, the adoption ratio of volume

flexibility is about 28% (23 firms out of a total 83 firms) (Chang et al., 2003).
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According to a survey conducted in 2004, chase strategy is the main strategy in 19
industties over a total of 42 industries (Buxey, 2005). These industries include ice cream,
beer, petrol and oils, greetings and seasonal cards, refrigerators, etc. Meanwhile, level
strategy is the main strategy in industries of motor vehicle batteries, color television sets,
cricket balls and motor car radiators. From here, one can see that when demand

fluctuation is larger, an industry favors the chase strategy more.

Moreover, some research and surveys have shown that an increasing number of firms
are using a mixed strategy with a combination of the chase strategy and the level strategy,
e.g., ABB Motors in Sweden, in which 70% orders are made-to-stock and 30% orders
are made-to-order (Bengtsson and Olhager, 2002). Another example is Nike’s
repackaging facility in Memphis. Nike employed 120 permanent employees and 60 to
225 temporary employees by Norrell Service (Kucera, 2009). A diversity of capacity
strategies makes competition more complex and it is more difficult for firms to choose
the optimal strategy and evaluate its effectiveness. Such complexity of competition gives
rise to the following questions. (1) What is the long term impact of each strategy on
each individual firm and on the entire market? (2) Which strategy is the optimal under
different costing and competition environments? (3) What will be the market like in the
face of strategy competition among multiple firms? (4) How should the mixed strategy
be evaluated against the chase strategy and level strategy? (5) How do we distinguish the

strategy differences between firms adopting the mixed strategy?

This study aims to evaluate the chase strategy from a few perspectives in various
environments to address the above research questions. The chase strategy is considered
as a flexible capacity strategy (FCS) and the traditional level strategy is considered as an
in-flexible capacity strategy (IFCS) throughout this thesis. The research results are able
to evaluate the effectiveness of FCS and provide management suggestions for successful
implementation of FCS under different environments. FCS equips firms with the ability
to postpone their production until knowing the real demand by keeping the capacity
greater than or equal to the production level. Such ability enables firms: (1) to avoid any
production waste under demand uncertainty; (2) to be in a favorable position by having
more flexibility to adjust their throughput in severe competition. Figure 1.1 illustrates
firms’ decision-making process sequentially with FCS and IFCS. In the capacity decision

stage, all the firms decide their capacity amounts to maximize their expected profits

2.
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throughout the entire decision-making process. In the production decision stage, firms
adopting IFCS have to make production decisions before knowing the actual demand
while firms adopting FCS postpone their production decisions until knowing the actual
demand. In other words, firms with FCS have flexibility in adjusting their production
levels. In the pricing stage, all the firms compete on quantity in the same market, i.e.,
Cournot competition. The market price of the product is determined by the product

demand and the total product quantity in the market.

Actual Demand

Information
Firms with | | | | time
1 > l
FCS 1 I f i | "
| Production
. Decision
gap'aflty | Responsive || Demand
ECISTON | Pricing Satisfied
Production |
Firms with | Decision | I I
I »
IFCS [ | | | | " time
v

Figure 1.1: Decision-making process of firms with FCS/IFCS.

To explain the complexity of adopting FCS in various industries, four crucial issues

should be taken into account as listed below.

1.1.1 Evaluation of long term FCS

The first crucial point is to evaluate long term FCS, which has been a debatable issue for
FCS adoption in real business (Colvin, 2009). Considering different production
capabilities that are reflected by the production cost structure in different market
periods, firms can perform FCS differently. This motivates us to investigate long term
FCS and identify its effectiveness. In each market period, a firm has to seek the most
effective investments to augment its profit based on the existing production capability.
The existing production capability is determined by several factors, such as the
technology adopted, the equipment used, the organizational features, and the

components of cost. On the other hand, in the long run spanning across a few market
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periods, making investments to improve the existing production capability is also a
practical way to augment a firm’s profit. With application of FCS, a firm needs to
consider the interplay between the FCS complication and the existing production
capability that is reflected by its production cost structure. This makes the evaluation of

long term FCS crucial to successful implementation of FCS.

1.1.2 Competition environment

The second crucial issue is the competition environment that involves different
numbers of firms in different industries. In a competitive environment consisting of a
tew firms with either FCS or IFCS, each firm has to compete with other firms in the
same market. Facing multiple rivals with the same or different strategy, each firm needs
to consider not only its decisions alone, but also the interplay among firms. Furthermore,
every decision of each individual firm affects the market price and the resulting expected
profit of each firm. Besides the coexistence of two strategies, FCS and IFCS, there are a
few other factors influencing product sales and profits of firms. These factors include
the number of firms adopting each strategy, the capacity costs of the two strategies, the
production cost, and the market profit potential. Understanding in what ways these
factors affect the profit of each firm is key to making the right decisions for firms in

severe competition.

1.1.3 Quick change in strategy

The third key point is quick change in firms’ strategies. It is natural that firms always
seek for the most effective means to maximize their profits. Facing globalization and
fierce competition, if a firm thinks the other strategies are helpful to augment its profit,
and then it changes its current strategy. Therefore, firms compete with one another not
only in operational decisions, but also in strategy choice. This strategy competition
continues until all the firms cannot increase their profits by switching strategies and the

market reaches a stable status at equilibrium. Understanding of this stable status of the
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market is helpful to predict the development of a market and choose the optimal

strategies under various environments.

1.1.4 Flexibility degree

The fourth crucial consideration is flexibility degree, which means to what extent FCS
can be fully exploited. In fact, both FCS and IFCS are two extremes of FCS
implementation, one is full implementation and the other is none at all. However, there
is a large space between these two extremes actually. In real business, many firms adopt
a strategy called the mixed strategy, which is a combination of these two extremes. This
means many firms implement FCS partially to different extents. This partial
implementation of FCS can be due to various reasons. These reasons include changes of
economic environments, political reasons, employee moral guarantee, labor,
administrative regulars, technical problems, demand uncertainty, organization changes,
and regional differences. All these factors cause different extents of FCS
implementation and they distinguish firms’ actual strategies. Therefore, how to quantify
flexibility degree is key to evaluating FCS and explaining the variety of FCS performance

in the real world.

1.2 Research Objectives

Based on the motivation introduced above, the research objectives of this study are as
follows.
1. Evaluating the long term FCS with consideration of production cost curves;
2. Investigating the oligopoly competition involving multiple flexible and in-
flexible firms, and identifying the competition equilibrium;
3. Characterizing the endogenous flexibility of FCS among multiple firms;

4. Formulating the mixed strategy and investigating the flexibility degree.
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1.3 Research Problem

To comprehensively investigate FCS, we first discuss the nature of FCS in this section.
Then, to address the effects of the aforesaid four factors on decisions of firms, i.e.,
evaluation in the long run, competition environments, quick change in strategies, and

flexibility degree, we investigate them in four chapters respectively in this thesis.

1.3.1 Nature of FCS

To understand the nature of the chase strategy from the strategic research perspective,
we have reviewed the research agenda on manufacturing flexibility by Gerwin (1993). In
his study, manufacturing flexibility is classified into severn categories, including four
market-oriented categories and three process-oriented categories. Particularly, he points
out that volume flexibility is derived from aggregate product demand uncertainty and its
adaptive methods include high capacity limits and subcontracting. Comparing the chase
strategy and the concept of volume flexibility, we conclude that volume flexibility is the
nature of the chase strategy from strategic research perspective. In other words, the
chase strategy is detailed operations to manifest volume flexibility from the perspective

of operations management.

1.3.2 Evaluation of long term FCS

To evaluate long term FCS, we consider the total production cost structure in the model.
The total production cost structure reflects the long term impact of the production
capability on products. Some research has shown that the long run total production cost
structure is associated with the technology flexibility in varying output levels under
demand fluctuations. A higher level of technology flexibility leads to a flatter marginal
production cost. Therefore, examination of FCS in the long run can be conducted by
testing FCS and IFCS under environments with different technology flexibilities.
Comparative analyses of the expected profits under different scenarios provide the pros

and cons of FCS in the long run.
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In this study, technology flexibility is measured by flexible level. Flexible level is
reflected by an endogenous variable in a quadratic total production cost function. The
means to improve technology level is expressed as a flexible technology investment in
this thesis. Flexible technology investments can be made in various operations such as
using advanced technology and upgrading the equipment of plants. The study
establishes five possible production strategies comprising decisions on using FCS and
flexible technology investment. Each strategy is carried out by a decision-making
operation process embracing technology level, capacity amount, production quantity
and price setting. By conducting a comprehensive series of comparative analyses
between different strategies, the study also evaluates FCS under different costing and

technology level environments.

1.3.3 An asymmetric oligopoly model

To emphasize the impact of the competition environment on firms’ decisions and
profits, an asymmetric oligopoly model is established consisting of r flexible firms and s
in-flexible firms. All the firms, both flexible and in-flexible, compete in the same market
with the same market price that is determined by the product demand and total product
quantity in the market. Both FCS and IFCS strategies are carried out by a decision-
making process, which is composed of capacity planning, production procedures, and

market pricing.

1.3.4 Endogenous flexibility of FCS among n firms

To investigate the impacts of firms’ strategy changes on individual decisions of each
firm and the entire market, we study the endogenous flexibility of FCS in a market
involving totally # firms. In a competition model with # firms, the firms are allowed to
freely choose and switch their strategies to augment their profits. With strategy changes,
firms alter their optimal decisions in each stage. Furthermore, the market structure also
changes when firms switch their strategies. Therefore, there is an unstable period in

which firms compete with each other by seeking the optimal strategies. This unstable
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period continues until all the firms can no longer augment their profits by switching
strategies and by this time the market reaches a stable status. We name such a stable
market “Final Equilibrium” throughout this thesis. The eventual surviving strategies, as
well as the exact number of firms adopting each strategy constitute the Final

Equilibrium.

1.3.5 Duopoly competition model with different flexibility

degrees

Regarding the issue of flexibility degree, this study establishes a duopoly competition
model in which two firms compete with each other with FCS of different flexibility
degrees scaling from zero to 100%. Flexibility degree is defined as the percentage of the
difference between a firm’s production upper bound (total capacity) and production
lower bound (guaranteed or unchanged production level) over its total capacity. It
reflects the extent to which FCS is exploited. A percentage zero represents the IFCS
situation while a percentage of 100 represents the FCS situation in the aforementioned
oligopoly model. Any other percentage between 0 and 100 represents the mixed strategy

under which a firm’s flexibility capability varies between IFCS and fully FCS.

1.4 Originality of the Study

According to the literature review to be given in Chapter 2, the four objectives in this

study have not been addressed in the literature.

» There is no tesearch to investigate the flexibility in manufacturing in the long run

with consideration of production cost curves.

» There is no research to study the flexibility in manufacturing in an asymmetric

oligopoly market involving two strategies and multiple firms simultaneously.
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» The endogenous flexibility in a market involving multiple firms has not been

addressed in previous research.

» The widely used mixed strategy has not been investigated by scholars from the
modeling perspective. Further, there is no research to investigate the flexibility

degree of FCS which reflects partial implementation of FCS.

Therefore, this study is original in the research on manufacturing flexibility.

1.5 Results of the Study

1.5.1 Evaluating long term FCS

The study formulates five possible production strategies comprising decisions on using
FCS and flexible technology investment. For each strategy, the optimal operational
decisions are calculated. With comparative analyses between different strategies, we
show how market uncertainty, production cost structure, operation timing, and
investment costing environments affect a firm’s strategic decisions. The results show
that there are no sequential effects of the above two investments. We also illustrate how
flexible technology and flexible capacity affect a firm’s profit under fluctuating demands.
The results point out that flexible technology investment earns for a firm the same or a
higher profit, whereas flexible capacity investment can be beneficial or harmful to a
firm’s profit. Moreover, we prove that more flexibility does not guarantee a higher profit.
We also identify the environments in which each possible strategy combination can be
the optimal strategy, ie., no flexibility at all, only flexible capacity, only flexible

technology, and both flexible technology and flexible capacity.

1.5.2 FCS in an asymmetric oligopoly competition model

Focusing on FCS in an asymmetric oligopoly competitive market involving r flexible

firms and s in-flexible firms under demand uncertainty, we characterize the equilibrium

_9._
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of an asymmetric oligopoly competition. We find that firms adopting the same strategy
make the same decisions and obtain the same profit regardless of the number of firms
adopting each of two strategies, the strategy adopted, demand uncertainties, and costing
environments. We prove that depending on the costing environment, the optimal
strategy can be either FCS or IFCS. Further, contrary to the intuition that increasing
costs are always harmful to a firms’ profit, we find that firms adopting FCS can benefit
from an increasing production cost when there are enough in-flexible firms existing in
the market. Moreover, previous research of FCS on monopoly, duopoly, and

symmetrical oligopoly are shown to be special cases of our model.

1.5.3 Endogenous flexibility of FCS in a competitive

market with n firms

The characterization of the endogenous flexibility of FCS in a competitive market with a
total of #» firms yields the surviving strategies after strategy competition. It further
mathematically justifies that only effective strategies can survive in a market with profit
potential. We find that the surviving strategies after strategy competition are insensitive
to the total number of firms under certain environments but are significantly sensitive
under other environments. The technical conditions of the classification of the costing
environment are provided. We theoretically prove that perfect competition is only a
special case of oligopoly competition when the total number of firms tends to infinity.
Moreover, the study proposes an approach to practically determine the exact numbers
of flexible and in-flexible firms in the market with endogenous flexibility of FCS under
any given demand distribution and any given number of firms. The theoretical

justification is also provided. Numerical examples are used to demonstrate the approach.

-10 -
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1.5.4  FCS in a duopoly competition model with flexibility
degree

Considering the flexibility degree of FCS, we establish a general mathematical model
that can be used to simulate a full FCS, a mixed strategy and a zero FCS. The pattern of
the optimal decisions with a certain flexibility degree is identified. Based on the
conclusions of the monopoly model, we establish a duopoly competition model in
which two firms with their respective flexibility degrees varying from zero to 100%. It is
proved that two firms with the same flexibility degrees make the same optimal decisions
under demand uncertainty. In an asymmetric duopoly model, the relationship between
two firms’ optimal capacities is largely restricted by their flexibility degrees. The
mathematical conditions are provided. We characterize the Nash equilibrium of the
competition. Numerical examples show that a firm’s capacity increases as its flexibility

degree increases, but decreases as the rival’s flexibility degree increases.

1.6 Flowchart of the Thesis

A flowchart of this thesis is shown in Figure 1.2. Relevant studies are reviewed to find
out the research gaps in Chapter 2. The system features are described in Chapter 3.
Chapter 4 evaluates long term FCS with consideration of cost. Chapter 5 discusses an
asymmetric oligopoly competition model under demand fluctuations and characterizes
the equilibrium of the competition. Chapter 6 further investigates endogenous flexibility
of the asymmetric oligopoly competition model. The issue of flexibility degree is
discussed in a duopoly competition model in Chapter 7. Finally, Chapter 8 presents
some conclusions and recommendations for future research. All proofs are included in

the Appendix-I.
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Chapter 2

Literature Review

In the literature, there are some studies investigating flexibility in firms manufacturing
process to hedge against demand uncertainty. Most of these studies focused on
monopoly model to capture the features of flexibility in manufacturing; limited studies
addressed the flexibility in a duopoly model to consider the effects of competition; and
studies to examine and evaluate the flexibility in a symmetric oligopoly model are also
scarce. Moreover, we realize that there is an absence in studying the flexibility in
manufacturing in an asymmetric oligopoly model involving two strategies and multiple
competitors simultaneously. All these studies assume that production cost structure is
unchanged during the manufacturing process. On the other hand, a few other studies
investigated firms’ abilities to hedge against the demand uncertainty by improving the
production cost structure in the long run. These studies focused on the relationship
between technology level, production cost structure and firms’ ability to hedge against

demand uncertainty spanning a few market periods.

This chapter is divided into three sections. Section 2.1 reviews relevant studies about
manufacturing flexibility under uncertain demand without considering the effects of
production technology level in the long run. Section 2.2 focuses on research about
manufacturing flexibility in a competition. Section 2.3 discusses previous research that
focuses on relationship between technology level and firms’ capability to hedge against

demand uncertainty. In Section 2.4, some research gaps are discussed.

2.1 Research on Manufacturing Flexibility

Slack (1987) studies the manufacturing flexibility in form of empirical observations.
With respect to manufacturing flexibility on theoretical research and applied work,
Gerwin (1993) establishes an agenda for flexibility studies from a strategic perspective.

He indicates the value in studying generic flexibility strategies, the flexibility dimensions,
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methods of delivery, and ways of evaluating and changing the flexibility of a process.
The first stream investigates the effects of flexibility when a firm makes its decisions

under demand uncertainty.

One type of flexibility in supply chains can be referred to as early or late differentiation,
which is embedded in the real case of Hewlett-Packard’s (HP) distribution centre (DC)
localization strategy for Deskjet-plus printer division (Lee et al., 1993). In order to
respond to demand uncertainty with large variety in different countries, the factory
makes some design changes to the product. It produces a generic product without the
power supply module and manual. The items of this generic product are shipped to
non-US distribution centres and finished localization there. This DC-localization
strategy results in 18% reduction of the total inventory investment. Such design for
localization enables the firm to have a flexible production process to delay the
customization until needed. Lee and Tang (1997) present a classification of possible
design changes in the production and distribution process that leads to delayed product
differentiation. They provide an analysis on determining the optimal operation
sequences in order to achieve the optimal operational performance. Based on the case
of HP, Aviv and Federgruen (2001a) examine the effects of environment on
postponement strategy implication, i.e., under which environment, postponement will
yield the major cost reduction. They consider multi-item inventory systems with random
and seasonally fluctuating demands. There is a two-phase product-distribution process
in their model. The generic products are manufactured in the first phase, whereas
differentiating options and features are finished in the second phase. They investigate
the benefits of various delayed product differentiation strategies, as well as the trade-off
between the capacity and inventory investments. Aviv and Federgruen (2001b) study the
postponement strategy in a Bayesian framework with unknown parameters of demand
distribution. Ruetze (2006) shows that postponement strategy is adopted widely in

different industries.

Besides the strategy to postpone differentiation, product flexibility (or resource
flexibility) is another type of strategy about flexibility in supply chains. Such strategy
enables a firm to keep a trade-off between the cost of flexibility and the ability to hedge

against the variety of demand. Acquiring such flexibility, a firm can use a flexible
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resource to manufacture all products, while other dedicated resources can only be

converted into dedicated products.

Focusing on evaluating the benefits of using a flexible production technology in flexible
manufacturing systems (FMSs), Fine and Freund (1990) develop a monopoly product-
flexible capacity investment model. A firm’s decision making process can be divided
into two stages. Capacity decisions are made in the first stage before demand
information revelation. In the second stage, the firm decides on the product quantities
under capacity constraints after observing the actual demand. There is a trade-off
between the cost of acquiring flexibility and the benefits provided by flexibility under
uncertain demand. In their model, the pricing effect is implicitly considered by a
concave revenue function. Following Fine and Freund’s (1990) model, Van Mieghem
(1998) takes into account the role of price and cost mix differentials in a firm’s optimal
decisions under uncertain demand. Using multi-dimensional newsvendor problem
model with exogenous prices, they investigate the optimal strategy of flexible resource
investment for a two-product firm. Their analysis highlights the importance of price and
cost mix differentials when a firm makes decisions. They point out that investing in

flexible resources is advantageous under multivariate demand uncertainty.

After Fine and Freund (1990) and Van Mieghem (1998), a number of researchers extend
the research on resource flexibility along various directions. One direction of extension
is to consider flexible production process. Both models in Fine and Freund (1990) and
Van Mieghem (1998) analyze the situation that a totally flexible plant can process all
products. Jordan and Graves (1995) turn to limited flexibility versus total flexibility by
considering the relationship between products and plants in a single-stage model.
Through manufacturing process, flexibility enables a plant to produce a subset of
products. They develop three principles for guiding investments of flexibility: (1) try to
equalize the capacity to which each product is directly connected; (2) try to equalize the
total expected demand to which each plant is directly connected; and (3) try to create a
circuit(s) that encompasses as many plants and products as possible. Graves and Tomlin
(2003) extend the work of Jordan and Graves (1995) to a general multi-stage model.
They propose a flexibility measure, and show that increasing this measure provides
higher protection against supply-chain inefficiencies. Another direction of extension

from Fine and Freund (1990) and Van Mieghem (1998) is to take into account price
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setting problem with different timing. Considering flexibility under uncertainty, Jones
and Ostroy (1984) suggest that there will be opportunities to act after further
information is received and cutrent actions can influence cither the attractiveness or the
availability of different future actions. Therefore, it is plausible that timing difference
between information and operations makes firms have different abilities to respond to

uncertainty.

Van Mieghem and Data (1999) propose the concept of pricing postponement strategy.
They propose six possible postponement strategies and present comprehensive analyses
of them with a two-stage model. In the model, firms make three decisions: capacity
investment, production quantity and price. The strategies differ in the timing of the
operational decisions relative to the demand revelation. They show that compared to
production postponement, price postponement makes the investment and production
decisions relatively insensitive to demand uncertainty. They also consider a
postponement strategy which makes ex-post decisions on price and production. Such

price and production postponement strategy is adopted by Anupindi and Jiang (2008).

Following Van Mieghem and Data (1999), some other studies take account of ex-post
price setting into the model on resource flexibility. Bish and Wang (2004) incorporate
ex-post price setting consideration into Van Mieghem’s (1998) model. The firm makes
its resource investment under an uncertain demand in the first stage. In the second stage,
the firm allocates its resource and sets price constrained by its eartlier resource
investment when the demand curves are realized. With exogenous demand realizations,
they show that the flexible resource investment follows a threshold policy. Similar to
Bish and Wang (2004), Chod and Rudi (2005) analyze the effects of resource flexibility
and responsive pricing in a monopoly model under demand uncertainty. However, they
focus on characterizing the key drivers of flexible resources by demand variability and
correlation. They show that the optimal capacity of the flexible resource is always
increasing in both demand variability and demand correlation. Both of their models do

not consider production costs.
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2.2 Research on Competition

The second stream analyzes the competition game on a variety of strategic decisions. In
the literature on economics, plenty of studies have focused on firms’ price competition
and quantity competition. The former is referred to as Bertrand price competition
model, or Bertrand-Edgeworth model, whose original reference is Bertrand (1883). The
latter is referred to as Cournot quantity competition model, which can be traced back to
Cournot (1838). Edgeworth (1897) takes into account capacity constraints in the
Bertrand model. The existence of equilibrium is concerned by academics since payoff
functions become discontinuous in such game. Dasgupta and Maskin (1986) establish
two existence theorems for mixed-strategy equilibrium in games with discontinuous

payoff functions.
2.2.1 Competition on price

Kreps and Scheinkman (1983) develop a two-stage duopoly model in which firms make
their capacity decisions in the first stage, and compete on price in Bertrand fashion in
the second stage. We refer to this model as K-S model. They identify conditions under
which Cournot competition and Bertrand competition are coinciding with the unique
equilibrium Cournot outcome. The conditions established in their research have been
widely adopted in the game-theoretic literature within operations management. In
contrast to the results of the K-S model, Davidson and Deneckere (19806) argue that the
Cournot outcome is unlikely to emerge in the model in which firms decide capacities
before engaging in Bertrand price competition. They argue that the results of K-S model
depend critically on the assumption of how demand is rationed when the lower-priced
firm cannot meet the market demand. Instead, they propose an alternative rationing rule.
Both models discussed above assume deterministic demands, i.e., there is no demand

uncertainty in the markets.

Hviid (1990) reformulates the K-S model by allowing sequential capacity and price
choices under demand uncertainty. He assumes that both capacity and price decisions
are made before a firm observes the demand realization following a uniform distribution.

Different sequential choice rules give rise to various types of two-stage games. The
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study analyzes the consequences of uncertainty in various types of models. Particularly,
Hviid (1991) focuses on price competition, with capacity constrained in a duopoly
model under demand uncertainty. He demonstrates that no pure strategy Nash
equilibrium exists in the price competition stage. Additionally, if capacity is endogenous
and chosen before prices, this result always holds no matter if firms can observe the real
demand information. This study may indicate that price competition modeled as a
subgame of a two-stage model, in which firms decide capacity simultaneously followed
by pricing competition, is not always a good approximation. Reynolds and Wilson (2000)
investigate the effects of demand fluctuations on firms’ price competition in the K-§
model. Firms make their capacity decisions before observing demand whereas they set
prices after demand is revealed. They show that if variation of demand exceeds a
threshold, a symmetric equilibrium in pure strategies for capacity is absent. All the
models discussed above on firms’ competition assume that the firms compete on price

after bringing productions to the market.

2.2.2 Competition on quantity

There are some studies in the literature on Cournot quantity competition model. Saloner
(1987) establishes a Cournot model with two production periods without demand
uncertainty. Firms choose output simultaneously in the first period. In the second
period, the output becomes common knowledge and firms make decisions to determine
how much more to produce before market clearance. He shows a continuum of
equilibria including the Cournot and the Stackelberg outcomes. Pal (1991) generalizes
Saloner’s (1987) model by allowing cost differences across production periods. He finds
that the continuum of equilibria vanishes for any cost differential. If cost in the second
period is slightly smaller than that in the first period, there are multiple leader-follow
equilibria. Gabszewicz and Poddar (1997) study a two-stage model where firms make
capacity decision at the first stage and production decision at the second stage under
demand uncertainty. Firms compete on quantity in the market. They prove the existence
of a symmetric subgame perfect equilibrium at which firms are in excess capacity
compared with the capacity they choose in the Cournot certainty equivalent game.

Maggi (1996) considers two firms’ investment competition under demand uncertainty.
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He describes asymmetric equilibria under some general conditions. In equilibrium, one
firm takes an eatly investment and the other firm follows a wait-and-see strategy. The
emergence of asymmetric versus symmetric ex-post outcome demands on the
comparison between the expected and the actual market profitability. If the market
profitability is close to, or lower than, expected, firms end up with asymmetric sizes. If

the market is highly profitable, then firms end up in symmetric position.

2.2.3 Manufacturing flexibility in competitions

In the literature, limited studies investigate flexibility in a competition environment.
Réller and Tombak (1990, 1993) investigate the effects of choosing different
technologies in a multi-firm Cournot competition game under deterministic demand.
Firms choose one type of technologies, flexible or inflexible, in the first stage and decide
on the production quantities in the second stage under a Cournot competition. They
show that, in equilibrium, firms more like to adopt flexible technology in a larger and/or
more concentrated market. Capacity decision and demand uncertainty are not
considered in their model. Boyer and Moreaux (1997) extend the study to take into
account volatility and market size effects on acquiring flexible technology. Incorporating
capacity investment competition into Réller and Tombak’s (1993) model, Goyal and
Netessine (2007) develop a duopoly model where each firm makes three decisions:
technology choice (product-flexible or product-dedicated), capacity investment and
production quantities. In each decision stage, firms play a simultancous-move non-
cooperative game with complete information. They reveal the role of competition on
firms investing in flexible technology under demand uncertainty. They find that flexible
and dedicated technologies may coexist in equilibrium. All models discussed here
concern the product flexibility (or resource flexibility), which enables firms to
manufacture multiple products with a flexible resource. Incorporating the price setting
problem into the flexibility competition model, Anupindi and Jiang (2008) investigate
duopoly models where firms make capacity, production and price decisions in a market
with uncertain demands. Capacity investment is always made ex-ante demand realization,
whereas price decision is always set ex-post demand realization. The flexibility enables a

firm to postpone its production decision until the actual demand is revealed. They
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characterize the set of equilibria in a symmetric duopoly model under a general demand
structure. In addition, they investigate the stochastic-order properties of capacity and
profit of flexible firms under demand with a higher variability. Furthermore, they show

that the strategic equivalence of price and quantity competition among flexible firms.

Competitions in all of these researches are non-cooperative. Taking into account the
relationship between competitors, i.e., cooperative and non-cooperative, Stuart (2005)
considers a model with price competition following inventory decisions. He uses the
biform game formalism of Brandenburger and Stuart (2004) to model the non-
cooperative inventory competition and the cooperative price competition. His analysis
gives rise to two scenarios. When there is no demand uncertainty, the inventory decision
is equivalent to the capacity decision in Cournot competition. When there is demand
uncertainty, the result is equivalent to that of Cournot competition under some

conditions on the demand curve.

Another type of flexibility in a competitive market can be found in Anand and Girotra
(2007). They analyze supply chain configurations, i.e., early or delayed differentiation, in
a Cournot competition environment with clearance strategies. They analyze firms’
choices of supply chain configuration in terms of quantities sold, profits, consumer
surplus, and welfare. Normalizing all production costs to zero, they show that delayed
differentiation is not the preferred supply chain configuration to respond to demand

uncertainty under competition.

All the above models, discussed about flexibility competition, are static models. With
the consideration of dynamic effects, Gaimon (1989) investigates the effects of new
technology on a duopoly dynamic model where firms choose open-loop or close-loop
strategy over time. Firms’ competition can be achieved by acquiring new technology or
scrapping existing capacity. He shows that under close-loop strategies there is a more
restricted acquisition of new technology and a larger reduction of existing capacity than

those under open-loop strategies.

Empirically, there are a number of studies investigating flexibility in various industries.
Focusing on printed circuit-board plants in Europe, Suarez et al. (1996) show that

different manufacturing flexibilities coexist in the same industry. Similar conclusion is
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drawn by Chang et al. (2003) in a study investigating machinery and machine tool
industries in Taiwan. Vickery et al. (1997) identify that flexibility is one of key
dimensions in the furniture industry. Caniato et al., (2009) study the Italian luxury
industry. They show that the adoption of flexibility varies largely in different industries.
Stratton and Warburton (2003) explore the strategic integration of agile and lean supply
in apparel industry. Their results show that both flexible and in-flexible strategies coexist
in the apparel industry. Similar studies include Toni and Meneghetti (2000), Brun and
Castelli (2008) and Sen (2008).

2.2.4 Other relevant research on flexibility

There are some other relevant papers investigating the role of flexibility in supply chains.
These papers characterize the relationship between sellers and buyers. Eppen and Iyer
(1997) analyze backup agreements in fashion buying and evaluate the value of upstream
flexibility for fashion merchandising. Their results indicate that backup arrangements
can have an impact on expected profits and may increase the committed quantity.
Deneckere et al. (1997) investigate the relationship between demand uncertainty and
price maintenance in a system consisting of one manufacturer and two competitive
retailers. Their results show that profit of the manufacturer and inventory at equilibrium
under resale price maintenance environment are higher than those under market-
clearing environment. Tsay and Lovejoy (1999) focus on quantity flexibility contracts in
a supply chain. They propose local policies, which dictate the necessary actions to
support flexibility promised to a customer by a supplier. Lariviere and Porteus (2001)
examine a simple supply-chain contract governed by a price-only contract. They find
that the manufacturer’s profit and sales quantity are increasing in market size, whereas
the wholesale price is dependent on the pattern of the growth of the market. Barnes-
Schuster et al. (2002) analyze the effects of options in a buyer-supplier system by using a
two-period model. They illustrate how flexibility is provided by options, to increase
profits of both the supplier and the buyer. With consideration of supply chain risk, Tang
and Tomlin (2008) investigate 5 different stylized flexibility models. Their results show
that most of the benefit is obtained at low levels of flexibility. They also conclude that to

mitigate supply chain risk, a firm does not need to invest in a high degree of flexibility.
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2.3 Relationship between Technology Level and

Production Cost Structure

A few previous studies have investigated relationship between flexible technology
investment and total production cost structure. Stigler (1939) investigates production
and distribution features. He assumes that production costs consist of fixed costs
(representing the return on a fixed “plant”) and variable costs (day labor, materials, fuel,
etc.). He refers to the attributes of the production cost curve that reflects the production
cost structure. Cost curves determine the manner of output to respond to demand
fluctuations as “flexibility of operation”. Marschak and Nelson (1962) formalize the
discussion about “flexibility of operation”. They persuasively argue that Stigler’s (1939)
notion of “flexibility of operation” relates inversely to the curvature of the total
production cost, or the slope of marginal production cost. Level of “flexibility of
operation” is the lowest when the average production cost rises precipitously around the
minimum and marginal production cost is steep. Level of “flexibility of operation” is
higher when average production cost becomes flatter and the marginal production cost
is less steep. It demonstrates that the minimum average production cost varies inversely
with the level of “flexibility of operation”. Such relationship between the minimum
average production cost and level of “flexibility of operation” indicates that system
internal organization, which determines the level of “flexibility of operation” influences
the unit production cost. A simulation model in Nelson (1968) displays such
interactions among system internal organization, cost structure and demand fluctuation.
The simulation results implicate different effects of a variety of factors on system design

and control.

Empirically, Barzel (1964) examines the relationship between production function and
technical change in the steam-power industry. Zarnowitz (19506) studies technology and
price structure in general interdependence system and compares different models. Ghali

(2003) examines the slope of marginal cost in different industries.

Following the theoretical ideas in Stigler (1939) and Marschak and Nelson (1962), Mills
(1984) investigates the effect of demand fluctuation on firms’ endogenous flexibility in a

competitive model. It assumes that there is a trade-off between endogenous firm
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flexibility and static-efficiency. To outline explicit features of cost structures, he
proposes a quadratic form of the total production cost curve with an endogenous
flexibility variable. He establishes some properties of the competitive equilibria under

demand fluctuation.

A few studies investigate technology flexibility from different aspects based on Mills’
(1984) technology flexibility formulation. Mills and Schumann (1985) show that it is
possible for a firm with higher minimum average production cost to compete with other
firms by flexibly adjusting its production levels in a competitive market under
fluctuating demands. With inventory holding cost consideration, Fraser (1984) shows
that a firm can adjust either output or inventory to buffer demand fluctuations.
Incorporating the responsive price issue into Mills’ (1984) model, Fluet and Phaneuf
(1997) prove that price adjustment results in a flatter marginal cost curve due to
application of flexible technique; while endogenous technique choice enables a firm to
hedge against uncertainty with less price variations and more quantity variations. Using
quadratic total production cost function, Réller (1990) shows that trade-off exists within
functional flexibility and size and slope properness of applicable region in an empirical
study of Bell system. However, all these previous studies focus on production decision
stage only. The decision-making process staged as capacity-production-pricing has not

been addressed in the studies discussed above.

2.4 Research Gaps

The review of the previously most relevant studies shows that there are a few
outstanding issues not studied sufficiently, or no relevant theoretical framework has

been developed yet.

» There is not sufficient research to investigate the flexibility in manufacturing in the

long run which has been a debatable issue in adopting FCS in real business.

» There is a research absence to study the flexibility in manufacturing in an

asymmetric oligopoly market involving two strategies and multiple firms
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simultaneously. In such case, the interplay among multiple firms and different

strategies are overlooked.

» The endogenous flexibility in a market involving multiple firms has not been
addressed in the previous studies. Therefore, the interplay between firms’ switching
strategies has not been investigated. Furthermore, the study of endogenous
flexibility is helpful to understand in what environments, how many firms are
willing to use each of two strategies, and so the eventual equilibrium of a market

can be studied.

» There is no research to investigate the flexibility degree of flexible capacity strategy
which reflects partial implementation of FCS. Investigation of flexibility degree can
also embody the mixed strategy widely used in reality between fully implementation

of FCS and IFCS.

This present study can fill these four research gaps by investigating flexibility in

manufacturing from four perspectives which are discussed in Chapters 4-7 respectively.
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Chapter 3
System Features and Methodology

Based on the background in Chapter 1 and the literature review of relevant research in
Chapter 2, this chapter aims to provide a general description of flexible capacity strategy
(FCS), including its concept and operational stages. Notations, assumptions, function
definitions, and mathematical methods adopted throughout the thesis are also provided

in this chapter.

This chapter is divided into seven sections. Section 3.1 gives the notations, assumptions
and some functions definitions used throughout the thesis. Section 3.2 gives a general
description of the concept of FCS. Section 3.3 discusses three operational stages of FCS.
In Section 3.4, the cost structures adopted in this thesis are discussed. Mathematical

methods are presented in Section 3.5.

3.1 Notations, Assumptions and  Function

Definitions

3.1.1 Index sets

Assuming there are 7 flexible firms and s in-flexible firms in a model, the total number

of firms is n=r+s. This situation is referred to as #=(r, 5) throughout the thesis.
Define Q ={1,2,...,n} to be the index set of all firms, QF = {1,2,...,r} to be the index

set of flexible firms, and QY = {r+1,r+2,..,n} to be the index set of in-flexible firms.
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3.1.2 Variables

The notations of variables and parameters used throughout the thesis are defined as

follows.

I1: the expected profit ;

7 : the ex-post expected profit; k : capacity amount;

q : production quantity; p : market price; Q: total production quantity in the market;

C. (k) : total capacity cost for capacity amount & ;

C,(q): total production cost for production quantity g ;

@ : the realization of the uncertain demand which is assumed to follow a general
distribution with mean 4, cumulative distribution function F(-) and probability
density function f(-);

p(a,Q): responsive price which is a function of @ and Q.

Subscripts are used to represent some characteristics of variables or parameters. These
subscripts are listed below.

z index of a firm; e quantity at equilibrium; 4: best response quantity .

3.1.3 Assumptions

To formulate the interaction between total production quantity in the market, i.e., O,
and market price p, responsive price is addressed by using inverse demand function, in
which the market product price is affected by the total product quantity in the market,

te, p=p(a,0).

Market clearance rule is adopted in the model and it assumes that all products are sold
in the market and firms do not hold back products to affect the price. Under this

assumption, the product market price is actually determined by all products produced by

all firms, ie, Q=) g, .

i€Q

- 26 -



Evaluating Flexible Capacity Strategy under Demand Uncertainty YANG Liu

3.1.4 Function definitions

To facilitate the presentation, we define four functions which are used throughout the

thesis.

Function 1: L(x) :J.j (—x)f(o)da, x20. It can be proved that L(x) is strictly
decreasing and convex in x , and L(x)e (0, y] for x =20 whenever
F(x)>0 forall x>0.

Function 2: X(C) is defined to be the inverse function of L(x), i.e., L(X(C))=C.
Then X (C) is strictly decreasing in C e (0, #].

Function 3: G(x) :Ij(a—Zx)f(a)da. With the assumption of xf(x) < ZF(x) for
all x 2 0, it can be proved that G(x) is strictly decreasing in x.

Function 4: Suppose xf(x) < ZF(x) for all x>0, define Y(C) to be the inverse
function of G(x), i.e.,, G(Y(C))=C. Then Y (C) is strictly decreasing in
C.

To interpret the meaning of these four functions, we consider a model in which the

inverse demand function is p(&,x)=(&—x)" where x is the production quantity.
Therefore, the expected product price is L(x) = J m(a —x) f(@)da , which is Function
1. For Function 2, X(C) is the inverse function of L(x). The expected revenue is

R(x) = j :x(a—x)+ f(@yda = j “x(@—x)f(@)da . The first-order derivative is

RV (x)= Jm(a— 2x) f(a)da = G(x) (Function 3), which is the marginal revenue. For

Function 4, Y(C) is the inverse function of G(x).

The assumption of xf(x) < 2f(x) , where f(x) =1-F(x), for allx 20, is adopted
and discussed by previous studies (Van Mieghem and Dada, 1999; Anupindi and Jiang,
2008). Detailed discussions are provided by Anupindi and Jiang (2008). Some common
distributions readily satisfy this assumption. The results verify that this assumption is

reasonable in real business.
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3.2 Concept of Flexible Capacity Strategy (FCS)

Flexible capacity investment refers to a firm’s ability to adjust its production level to
respond different demands under capacity constraint, i.e., by keeping its production
level within its capacity. A firm without investing in flexible capacity has a stable
production level that equals its capacity amount because there is no need to invest in
excess capacity. According to the capacity strategy of firms, they are categorized into
flexible firms and in-flexible firms. Figure 3.1 illustrates a firm’s operations decision-
making process sequentially with and without flexible capacity investment, respectively.

The details of each decision-making stage are discussed in Section 3.3.

Actual Demand

Information
I
Firms with | : 0< ql* <k | I .
FCS } | | | | R
| PI‘Odl.l(Etion
CDilc)?sci(iz | Decision Respomsive Der-na.nd
| Pricing Satisfied
Pl‘Odl.l(EtiOIl |
Firms with Decision | | I
o I i M I I > time
qg=k

Figure 3.1: Decision-making process of firms with/without FCS.

3.3 Three-Stage Decision-Making Process of FCS

3.3.1 Capacity decision stage

At capacity decision stage, all firms, flexible and in-flexible, aim at maximizing their
expected profits by determining the optimal capacity amounts. For both flexible and in-
flexible firms, their capacity decisions can be formulated in a common formulation as

below:
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Max  II(k;) = _fo(élip(a, Q) -Cplg)f(@)yda—Cq(k,),
st. k,20,ie Q.
k, is the capacity amount of firm 7 The production quantity g, of firm 7is determined at

the production decision stage.

3.3.2 Production decision stage

At the production decision stage, restrained by individual capacity, firms make their

individual production decisions within an allowable range to maximize its ex-post profit.

For flexible firms, they have ability to postpone their production decision until knowing
the actual demand. Therefore, they are able to determine the optimal production

quantity between zero and its full capacity. This operation can be formulated as below:
Max 7,(q,) = q,p(2,Q)~ C,(q,),
st. 0<¢q, <k,,ieQ".
For in-flexible-capacity firms, they have to make the production decision before
knowing the actual demand. Since there is no need to invest in excess capacity and

therefore, in-flexible firms produce at their full capacity, i.c., g, =k, , forall ie Q"

3.3.3 Pricing stage

At the pricing stage, firms compete in quantity in the same market, which is also
referred to as Cournot competition. Under quantity competition, all firms compete with
each other in the same market at the same price which is determined by the total

production quantity.
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3.4 Cost Structures

3.41 Capacity cost

To acquire volume flexibility, a firm needs to adopt some adaptive operations. Multi-
trained employees, advanced manufacturing technology and design for manufacturing
are top three practices for firms acquiring volume flexibility (Hallgren and Olhager,
2009). Besides these three practices, set-up time reduction has also attracted significant
attention by firms with volume flexibility (e.g., Hallgren and Olhager, 2009). To carry

out these practices, firms have to afford some additional investments. In this paper, we

assume C, and C, are the unit capacity costs of flexible and in-flexible firms
respectively. Further, we assume C, = C, > 0. The linear function is adopted for total

capacity cost calculation. Total capacity cost for a certain capacity amount k is defined
as C_(k). According to Van Mieghem and Dada (1999), all results for linear capacity

cost functions can be extended to convex capacity cost functions.

3.4.2 Total production cost

Considering the planning period, the total production cost is discussed in two scenarios.
2
(1) In the long run, we adopt a quadratic function as C,(q,) = fBq, + Z—’ ,ie Q.
/4

(2) In the intermediate or short run, we adopt a linear function as C,(g,) = g, ,
ie Q.
Parameter 20 is assumed to be the same for all firms. f is also the unit production

cost in the short run or medium run.
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3.5 Mathematical Methods

Here we adopt the backward induction method to identify mathematically the best
actions for achieving the desire results. Backward induction is the process of reasoning
backwards along the time line to determine the optimal actions. It starts from the end of
the decision making process where a decision maker identifies all possible decisions that
might be made at this point of time for all known situation ns and determines what
corresponding actions to be taken to deal with the situations. With reference to the
detived information on decisions and actions, the decision maker can derive the next
decisions and actions in the same manner for next earlier time towards the beginning of
the problem. This process continues backwards until the first decision at the beginning
of the problem. At this moment, the decision maker has determined the best actions for

every possible situation at every point of time.

Specifically, in a monopoly model, the problem can be viewed as a sequential
optimization problem of the firm. We solve it by starting from the problem of price
setting in the market, then deciding on the optimal production quantity, and finally
deciding on the capacity investment. In a duopoly model or an oligopoly model,
differing from the monopoly model, a firm needs to consider the action of the other
firms at each decision-making stage, rather than its own decision only. We solve the

competition to find the Nash equilibrium.
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Chapter 4
Evaluation of FCS with Consideration of

Total Production Cost Structure

In this chapter, the long-term effect of FCS is examined with consideration of
production cost structure. It has been pointed out by some research that the
improvement of the total production cost structure can be achieved by adopting flexible
technology (e.g., Stigler, 1939; Marschak and Nelson, 1962; Mills, 1984; Fluet and
Phaneuf, 1997). Therefore, the examination of long term FCS is conducted by
comparing it with flexible technology adoption. In this chapter, five possible production
strategies in terms of FCS and flexible technology investment are established in a
monopoly model. A production strategy consists of the decisions about flexible
technology and flexible capacity, i.e., whether or not to invest in each of them. With
flexible capacity investment, a firm is able to postpone its production decision until
knowing the actual demand. For the same product quantity, a firm with flexible
technology investment is able to reduce the total production cost. Each production
strategy can be carried out by a decision-making operation process with a stage sequence
of cither technology-capacity-production-pricing or capacity-technology-production-
pricing. Regardless of the stage sequence adopted, both technology and capacity
decisions are made before knowing the real demand of each market period to determine
a firm’s production cost structure and production capability. By comparing a firm’s
profit under different production strategies, a comprehensive understanding of FCS in

the long-run can be achieved.

This chapter is organized in three sections. Section 4.1 first describes the system features
followed by the demonstration of details of flexible technology investment and flexible
capacity investment respectively. Section 4.2 proposes five possible production
strategies with different investment decisions in terms of flexible technology and flexible
capacity. The optimal quantities of decision variables and the optimal profit of a firm

under each production strategy are calculated. In Section 4.3, a few comparisons
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between different productions strategies are made to evaluate FCS in the long run and

find out the interplay between FCS and flexible technology investment.

4.1 Two Aspects of Production Strategy

4.1.1 Flexible capacity investment

Following the discussion of FCS operations decision-making process in Chapter 3, we
use specific cost structures and inverse demand function in this chapter to evaluate long

term  FCS. The additive linear demand inverse function is adopted, i.e,
p(a,Q)=(x—Q)" (e.g, Van Mieghem and Dada, 1999; Aviv and Federgruen 2001).

The linear capacity cost function and quadratic total production cost function are

adopted in this chapter.

4.1.2 Relationship between cost structure and flexible

technology

The relationship between cost structure and technology flexibility facing demand
fluctuations is demonstrated in Figure 4.1, which is proposed by Stigler (1939) and used
in a few subsequent studies (e.g., Mills 1984). In Figure 4.1, indices 1 and 2 represent

two different cost structures with different marginal costs, MC,, and average costs,

AC,;. The minimum average costs for the two cost structures occur at the same output.

Stigler (1939) and a few other studies (e.g., Marschak and Nelson, 1962; Mills, 1984)
show that the cost structure with the flattest slope of marginal cost indicates a higher
level of technology flexibility in adjusting the throughput in each production period.
The means and the involved efforts to improve the existing technology level are referred
to flexible technology investment in this chapter. There are a various operational

options to achieve such flexible technology investments, such as using advanced
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technology or upgrading equipment (Stigler, 1939; Mills, 1984). By doing so, a firm is

able to improve its total production cost structure.

Specifically, the level of such technology flexibility can be treated as an endogenous
variable, 7, in the quadratic total production cost function C,(q) = ,Bq+q2 / 2y,
where C, is the total production cost, ¢ is the production quantity, and 8>0 is a
constant parameter (Mills, 1984). A larger ¥ implies a higher technology level yielding a
lower total production cost. The basic technology level without any additional
investment is defined as ¥, >0. The constraint y > ¥, stipulates that the adopted

technology level is not lower than the basic technology level. This production cost
function is first proposed by Mills (1984), and then adopted by a few subsequent studies
to investigate flexible technology (e.g., Fraser, 1984; Fluet and Phaneuf, 1997). A flexible

technology firm needs to determine the optimal technology level ¥ and incurs the
technology investment cost C,(y)=C, (¥ —7¥y), where C, >0 is the technology

investment cost per unit level of technology flexibility.

AC
: ac,

MC,

/L
7/

MC,

x

Figure 4.1: Technology Flexibility and Cost Curves.

With respect to technology investment cost function C,(¥)=C,(y—¥,), at the

current stage of this study, we simplify technology investment cost in a linear form,
which reflects that: (1) a higher technology level associates with a higher investment cost

(or installation cost); (2) a larger adjustment on existing technology, a higher cost occurs.
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4.1.3 Production strategy

A production strategy is composed of a combination of investment decisions on flexible
capacity (C) and flexible technology (T), i.e., whether or not to invest in each of them
and the sequence of making the decisions. With the consideration of the investment

sequence, a total of five possible production strategies are shown in Table 4.1.

X No Yes

NT+NC (No flexible T-only (Flexible technology only)
No capacity and no flexible
technology)
T+C
C-only (Flexible technology followed by
v (Flexible capacity only) flexible capacity strategy)
es C+T

(Flexible capacity followed by flexible
technology strategy)

Table 4.1: Five possible production strategies.

4.2 Five Production Strategies

In this section we present the formulations of the five production strategies, followed by
deriving the optimal decisions of each production strategy. The sequential decision
variables of each strategy are listed in Table 4.2. Throughout this thesis, variables with
supersctipts N, T, C, T+C and C+T are defined as optimal values of the variables under
the strategies NT+NC, T-only, C-only, T+C and C+T, respectively. To facilitate

presentation, we let TT, = [ :(C"} (@=p)f(@da+[ HX(CH-p’f@da.
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Production Strategy Sequential decision variables

NT+NC Capacity amount

T-only Technology level> Capacity amount

C-only Capacity amount=> Production quantity

T+C Technology level> Capacity amount=> Production quantity
C+T Capacity amount = Technology level> Production quantity

Table 4.2: Sequential decisions of each production strategy.

4.2.1 Production decision stage

As shown in Table 4.2, for strategies with flexible capacity investment, the production
quantity is the decision variable that maximizes the ex-post profit after knowing the

actual demand, given as follows:
Max 7(glk,7,0) = q(@—q)" —(Pg+q°[(29)),st. 0< g <k. 4.1)

The optimal production quantity is provided in Proposition 4.1.

Proposition 4.1 For a firm investing in flexible capacity, with any given capacity k

and technology level ¥, the optimal production quantity as a function of demand

realization & is

0 ifo<a<p
qladk,y)= Y (a-p) if,b’Sa<,B+27+1k-

2y+1

k it g+ <
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4.2.2 No flexible technology and no flexible capacity
(NT+NC) strategy

Under NT+NC strategy, a firm only determines the optimal capacity to maximize its

profit, as : Max (k)= J.:k(a—kff(a)da—(CN +,3+2L)k ,st. k>0, (4.2)

N

The optimal decisions of NT+NC strategy are provided by Proposition 4.2.

Proposition 4.2 Under the NT+NC strategy, a firm’s optimal production quantity

equals its capacity, i.e., ¢" = k", which satisfies G(k")—k" [y, =C,, + B. The firm’s

optimal expected profitis ITV = (k™) F(k™)+ (k"™)?/2y,). O

4.2.3 Flexible technology only (T-only) strategy

Under T-only strategy, 7" and k" are formulated as follows.

Technology level decision
. N k
Max ' (p)= [ k@=k)' f(@da—(C, HPA k=Cr=1),

st Y=Yy, (4.3)

where k is the optimal solution of the following capacity decision formulation.

Capacity decision

Max 1" (k|y) = j :k(a—k)* f(eyda—(C,, + ﬁ+2i7)k, st. k20, (4.4

Proposition 4.3 Under T-only strategy with given ¥,, S, C, and C,,

@)  the optimal technology level is
o |max{yy, 7} if0<C, <5(u-Cy - p)’ . Y(C,+B+42C,)
Vo= , where ¥, = ;

¥ otherwise 2C,
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(i) if " =y, , then the optimal production quantity equals the optimal capacity,
which satisfies ¢' =k =Y(C, + f+42C,) and the optimal profit is

" = (kT)zf(kT)+ Cuyy. It ]/T =7,, then the results are the same as those under

the NT+NC strategy. o

4.2.4 Flexible capacity only (C-only) strategy

Under C-only strategy, k¢ and ¢ formulated as below.

Capacity decision
Max ncw):ﬁy«a—qy—ﬁ—aiafamda—q¢,&tkzo, (4.5)
N

where ¢ is the optimal solution of the following production decision formulation.

Production decision

2
Max 77(qlk, @) = g(a—q)" —(Bg+ 2q

),st. 0<g<k. (4.6)

N

Proposition 4.4 Under C-only strategy with given ¥, , S and C,, the optimal

capacity is k€ 2#()( (C.)—p) , the optimal production quantity is
T2Yn

2
q¢ = q(a’lkc ,¥y), and the optimal expected profit is 1 = Vn I1,. o

1+2y,

4.2.5 Flexible technology-flexible capacity (T+C) strategy

T+C T+C
, k

Under T+C strategy, sequential decisions and g"*€ are formulated as below.

Technology level decision
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Max TT"“(n)=[ q(a-q) —ﬂ—ziy)f(a)da—CFk—C,W— V)

st Y2V, (4.7
where k and g are the optimal solutions of capacity decision and production decision.

Capacity decision
Max IT7(k|y) = j :q((a—q)+ - ﬁ—zi) f@da-C,k, st. k=0. (4.8)
v

Production decision

2

Max  7(qlk, 7,@) = g(a—q)* —(,Bq+;l—), st 0<g<k. 4.9)
y

Proposition 4.5 Under T+C strategy with given ¥, , B, C, and C,, the optimal

technology level, capacity, production quantity and expected profit are

T+C

Y =max(yy, Ve, K= HJ/ZT(X(CF)_ﬂ) N (LN
27T+C
and e = mno -C.(y"* -y , respectively,

where ¥y, = %(,/mo/c, -1). o

4.2.6 Flexible capacity-flexible technology (C+T) strategy

C+T

Under C+T strategy, the optimal k™", ¥“*" and ¢“*" are determined over time.

Capacity decision
Max T (k = [ “q((@—g)" —ﬂ—%/)f(a)da— C,(y=7y)-Cik,

st. k0. (4.10)

Technology level decision
Max T°701K0 = [ Ja((@=a) == ) f@xda=C.r-1y),

st Y27, (4.11)
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Production decision

The formulation of this stage is exactly the same as that of T+C strategy.

We first test the sequential investment effect by comparing T+C strategy and C+T
strategy. The difference between these two strategies is in what is determined first and
the second decision is made based on the first decision. For example, flexible capacity
investment can be achieved by managing workforce, such as using multi-skilled
employees; flexible technology investment can be achieved by upgrading equipment, or
using a new technology during the production process. Accordingly, T+C strategy
means a firm choosing its technology and equipment first. Then, based on its chosen
technology and equipment, a firm decides its optimal workforce. C+T strategy means
that a firm determines its number of workers and type of workers, such as, high efficient
or low efficient, multi-skilled or single-skilled workers. Based on this workforce

management, the firm decides its technology choice and chooses its equipment.

Theorem 4.1 Under T+C strategy and C+T strategy, a firm’s optimal capacity k ,
technology level 7, production quantity gand the optimal expected profit are exactly

the same. |

Theorem 4.1 establishes that there is no sequential investment effect of a firm’s optimal
decisions. In other words, the same investments lead to the same decisions and profit,
regardless of the sequence of the investment decisions. Therefore, a firm only needs to

decide which investment(s) to make.

4.3 Strategy Comparisons

In this section we make comparisons between the five strategies to evaluate each
strategy’s pros and cons, with a view to understanding the relationship between flexible
technology investment and flexible capacity investment, and finding out the optimal

strategy.
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4.3.1 Framework of strategy comparisons

Due to the equivalence between the T+C strategy and the C+T strategy, there are only
four production strategies to consider: NT+NC, T-only, C-only, and T+C, as shown in
Figure 4.2. Fach arrow and the number next to it represent a comparison and the
comparison sequence, respectively, in the following discussion. The arrows in parallel
indicate that there may be some similarities between the two comparisons as the
investment difference between the strategies compared is the same, i.e., comparisons
between (1) and (5), and between (2) and (4). To facilitate discussion of the comparative
analyses between different strategies, we define the “bound” of a strategy as: If strategy
A is said to be a lower (or an upper) bound of strategy B, then for all the possible

situations, the expected profit of strategy A is always not greater (or less) than the

expected profit of strategy B, i.e., [1* <TI” (or IT* > I1°%).

M

Figure 4.2: Structure of comparisons between different strategies.

4.3.2 Comparison between NT+NC strategy and C-only

strategy

Comparison results between NT+NC strategy and C-only strategy are presented in

Proposition 4.6.

Proposition 4.6 Given C,, 7, B:
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@) For Cy <C, <L(f) , the expected profit of C-only strategy is strictly
decreasing in C, and HC(CN) > HC(CF) >T1°(L(B) =0.

(i)  There exists a unique C,€[Cy, L(B)) satisfying I1°(C,)=T1"; C, is
strictly increasing in C\, € [0, u—f);

(iif) Profit comparison between NT+NC strategy and C-only strategy is: (1) when

C, <C,<L(f), I" >TI°; (2) when C, <C, <C,, II¢ >TI". 0

Proposition 4.6 points out that the C-only strategy can be beneficial or harmful to a
firm’s expected profit under different environments. The comparison between the
NT+NC strategy and the C-only strategy is shown in Figure 4.3. The comparison
follows a threshold policy: there is a threshold of flexible capacity cost that leads to the
same profit under the NT+NC strategy or the C-only strategy; a firm benefits from
flexible capacity with a capacity cost lower than the threshold, but it incurs a loss when
the capacity cost is higher than the threshold. Obviously, the C-only strategy is always

better than the NT+NC strategy by avoiding excess production when Cp =C, .

However, as the flexible capacity cost increases, there is a trade-off between the saving
from avoiding production waste and the spending on expensive capacity costs.

CF

4
L(p)

¢, (0)

I »
0 pu=p LB Cn
Figure 4.3: Comparison between NT+NC strategy and C-only strategy.
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4.3.3 Comparison between NT+NC strategy and T-only

strategy

Comparison between NT+NC strategy and T-only strategy is provided by Proposition
4.7.

Proposition 4.7 Comparing NT+NC strategy and T-only strategy, we have

@) under T-only strategy, define C,, =min{C,, C,}, the optimal capacity and
expected profit arek” =Y (Cy, + B+4/2C,; ) and 1" = (k") F(k")+C, 7y,
respectively; further, if C, <C,, I1" is strictly decreasing in C,; if C, > C,,
IT" keeps constant as I1" (C,);

(i1) the optimal decisions of NT+NC strategy can be obtained from resolving T-

only strategy with modified parameter C, =C,, and then k" =k"(C,) and
n" =1'(,);

Y(Cy+B+42C,)
J2c, )

where 0< C, <1(u—C, - B)* satisfying

N

Part (i) of Proposition 4.7 describes the pattern of a firm’s expected profit under the T-
only strategy. There is a threshold of the flexible technology cost resulting in the same
profit for the NT+NC strategy and the T-only strategy. Only when the flexible
technology cost is lower than the threshold can a firm benefit from investing in flexible
technology; otherwise the firm should maintain its basic technology level. This insight of
flexible technology investment enables us to draw the conclusion of the part (i) of
Proposition 4.7: the NT+NC strategy is a particular case of the T-only strategy by
replacing some parameters. Specifically, the NT+NC strategy can be regarded as a lower
bound for the T-only strategy. This means that the T-only strategy completely
dominates the NT+NC strategy and improves profit when the technology investment
cost is less than the threshold. The relationship between the NT+NC strategy and the
T-only strategy is shown in Figure 4.4. The cost threshold C, determines whether a

firm should invest in flexible technology. A firm’s expected profit decreases with an

increase in C, within the range [0,C,] and remains constant as IV if C, >C, .
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Moreover, the optimal decision of the T-only strategy does not harm a firm’s profit. The

difference in the expected profit under these two strategies is II" —IT" as shown in
Figure 4.4. While the C-only strategy can increase or decrease a firm’s profit under
different costing environments, the T-only strategy ensures that a firm obtains the same
or a higher profit as compared with the NT+NC strategy. However, this does not mean
that the T-only strategy is better than the C-only strategy as analyzed in the following

section.

0 C

Figure 4.4: Optimal expected profit with different C, under T-only strategy.

4.3.4 Comparison of T-only strategy and C-only strategy

Theorem 4.2 tells the optimal investment if a firm only invests in either T-only or C-

only strategy.

Theorem 4.2  GivenC, , ¥, and B, the comparison between T-only and C-only
strategy is:
@) IfTII°(C,)<II"(C,),then II°(C,)<II"(C,) for all situations;
(i) If II°(C,)=T1"(C,), then for each C, € (0,C, 1, II°(C,)<II"(C,) for all
0 ifI1°(C,)=10"(0) —
C,elCy, L(B)), where C,, =1_ and C, e (0,C,]
C, ifI1°(C,)<TI1"(0)

satisfies I—IT(Er) = HC(CN). Moreover, for each C, € (C,,,), there exists a
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>TI"(C,) ifCy,<C, <Cr
unique Cre (Cy, L(B)) such that II°(C,)y=11"(C,) if C, =Cr
<II"(C,) if Cr <C, <L(B)

Furthermore, the curve II€(Cr)=I1"(C ,) is strictly increasing for

C.e(C,,.C,] and horizontal for C, € [C,,). |

Theorem 4.2 provides the comparison results of the T-only and C-only strategies under
various costing environments. Note that ITY =T1"(C,) . Only when the C-only

strategy is better than the NT+NC strategy can the C-only strategy compete with the T-
only strategy. There is a unique division of profit in the comparison between the T-only

strategy and the C-only strategy as shown in Figure 4.5.

CF
A
L(p)
_ T-only
Cr(C) oo |
( : C-only
C, i
0 c > C,

<

Figure 4.5: Comparison between C-only strategy and T-only strategy when

(c,)>17(c,) and 1°(C, ) =117 (0).

4.3.5 Comparison between C-only strategy and T+C

strategy

The comparison between C-only strategy and T+C strategy is given in Proposition 4.8.

Proposition 4.8 Comparing C-only strategy and T+C strategy: For any given C,.,
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@)  the optimal expected profit of T+C strategy I1"*“(C,)is strictly decreasing in C,

—T+C T+C _ —T+C
for 0<C,<C, ,and II""°(C,) =2y, /0+2y )], for C,>C, , where
ET+C _ 211,
(1+2y,)*"
(i) the C-only strategy can be reduced from T+C strategy by modifying the
parameter C, = EZ+C, and then k¢ = k"¢ (E?C) and T1€ =T17*¢ (EZ+C );
(i) C-only strategy is a lower bound of T+C strategy; moreover, the increase in profit
T+C c
I -II < 1

——<—100%. O
1 27,

by T+C strategy relative to C-only strategy is 0 =

Based on the comparative analysis, we observe from Figure 4.6 two similarities as
follows: (1) the expected profit of the T+C strategy has a similar pattern to that of the
T-only strategy, and (2) the similar relationship between the NT+NC strategy and the T-
only strategy also exists between the C-only strategy and the T+C strategy. These
observations indicate that flexible technology does not change a firm’s decision-making
structure, but it provides a trade-off between investment costs, total production cost
reduction, and revenue changes. Moreover, compared with the C-only strategy, the

largest improvement of the T+C strategy is 1/(2,)-100% . However, the C-only

strategy cannot always benefit a firm, nor can the T+C strategy.

I—IT+C (Cr )

A

Figure 4.6: Optimal expected profit with different C, under T+C strategy.
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4.3.6 Comparison between T-only strategy and T+C

strategy (equivalent to C+T strategy)

The aforementioned interpretation of the investment effects concludes that the T-only
strategy dominates the NT+NC strategy, and the T+C strategy (equivalent to the C+T
strategy) dominates the C-only strategy. Their expected profits can be ranked as
MY <" and M° <™ =T“" . From the strategic perspective, the optimal
production strategy is either the T-only strategy or the T+C strategy (equivalent to the

C+T strategy). However, we note from our results that I[T"=II" and/or

M°=I""° =17 under certain conditions. Under these conditions, flexible
technology investment is not helpful to improve a firm’s profit. This indicates that some
strategies result in the same profit from different investments. To facilitate discussion,
we differentiate “effective strategy” and “efficient strategy” from the strategic

perspective and the operations perspective, respectively, in the following,

Effective strategy: Strategy A is said to be more effective than strategy B if strategy A
makes more profit than strategy B.
Efficient strategy: Strategy A is said to be more efficient than strategy B if strategy A

makes the same profit with a fewer number of investments than strategy B.

It is noted that under these two definitions, the efficiencies of two strategies are
concerned only when the two strategies are equally effective. Therefore, it is not

possible that a strategy A is more efficient and less effective than strategy B.

Based on these definitions, Theorem 4.3 and Theorem 4.4 below draw conclusions from
the comparative analyses from the strategic perspective and the operations perspective,
respectively.

201,(Cr )

Theorem 4.3 Define ATI=TI"*" ~TI" . Let C;  satisfy C, = .
(1+27y)

unique C, satisfying AH(C:,E?C) =0 exists. With a givenC,,

(i) if 0< C, < C,, then there exists a unique C,. (C,) satisfying
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>0 if Cy, <C, <C.(C,)
ATI(C,,C,) {=0 if C, =C.(C,) ;
<0 if CL(C,)<C, <L(B)

(i) if C, <C, <C,, then there exists a unique éF (C,) satistying

>0 ifCy <C, <C,(C,))
AII(C,,C,) {=0 if C, =C,(C,) ;
<0 if C,(C,)<C, <L(B)

>0 if C, <C, <C,(C,)
(iii) if C, <C,, then AII(C,,C,) {=0 if C, =C,(C,)
<0 if C,(C,)<C, <L(B)

From the strategic perspective, Theorem 4.3 states that the most effective production
strategy is either the T-only strategy or the T+C strategy (equivalent to the C+T strategy)
depending on the investment costing environment. Both T-only strategy and T+C
strategy include technology investment which improves the total production cost
structure. This means technology investment is always preferred from the strategic
perspective. On the other hand, additional investment in flexible capacity may not
increase, or even damage, a firm’s profit. This conclusion is similar to that of the
comparison between the NT+NC strategy and the C-only strategy. The comparison
results are trade-offs between cost saving from avoiding production waste and increase
in revenues by controlling production, and the resulting product price, and spending on

the expensive flexible capacity. The results of Theorem 3 are demonstrated in Figure 4.7.
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Cy

; »C
0 C

Figure 4.7: Comparison between T-only strategy and T+C strategy

with given C, .

As shown in Figure 4.7, there is a threshold C, that determines the most effective
strategy under different investment costing environments. The most effective strategy is
the T-only strategy when it is above the threshold, and is the T+C strategy when it is
below the threshold. Affected by both flexible capacity investment cost and flexible
technology investment cost, the comparison results between the T-only strategy and the
T+C strategy embrace three situations. The first situation is C, € (0,C.), in which at
the division curve both the T+C and the T-only strategies improve the technology level
due to the comparatively lower technology investment cost. The second situation is

C,e[C.,C,), in which at the division curve the T-only strategy improves the

technology level but the T+C strategy cannot. The third situation is C, € [C,,0), in
which at the division curve flexible technology investment is invalid for both the T-only
strategy and the T+C strategy. Based on the analyses of these three situations, the most
effective and efficient strategy (EES) that achieves the maximum profit using the
minimum number of investments can be determined by Theorem 4.4 below from the

operational perspective.

Theotem 4.4 Given Cy, 7, B, assume C, < C, < L(f), following all definitions

in Proposition 7.6, the most effective and efficient strategy (EES) is:
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) T+Cstrategy, if C, <C, <C,(C,)
(@)if 0<C, <C,, then EES = ;
T - only strategy, otherwise
. —T+C
T + Cstrategy, if Cy, <C,.<Cr
(i) if C, <C, <C,, then EES ={C-only strategy, if Cr' < C,<C,(C);

T - only strategy, otherwise

T + Cstrategy, it C, <C, < Cr*
(iii) if C, < C,, then EES ={C-onlystrategy, if Cr <C, <C,(C,);

NT + NC strategy, otherwise

For all environments, T+C strategy equals C+T strategy. o

Theorem 4.4 is illustrated in Figure 4.8, which provides the most EES under different
costing environments. Comparing Figure 4.7 and Figure 4.8, we see that the T-only
strategy is equivalent to the NT+NC strategy under certain environments. An increase
in flexible technology investment cost results in profit reduction until the profit equals

that under the NT+NC strategy. The flexible technology investment cost at which the
T-only strategy is equivalent to the NT+NC strategy is C,. A firm only improves its
technology level when the unit technology investment cost is lower than C,. When the
investment cost is higher than C,, the flexible technology investment of the T-only
strategy is actually invalid. Regarding the T+C strategy, based on a comparison of Figure
4.7 and Figure 4.8, we can show that the T+C strategy is equivalent to the C-only

strategy under some environments. The division is affected by both flexible capacity

investment cost and flexible technology investment cost simultaneously. There is a

decreasing curve E?C leading to the equivalence between the T+C strategy and the C-

. i —T+C .
only strategy, as shown in Figure 4.7. In the area below the curve Cr , a firms invests

in flexible technology, while the firm maintains the basic system technology level in the

area above the curve. This indicates that the T+C strategy is equivalent to the C-only

. =I+C . . .
strategy in the area above the curve Cr , i.e., the flexible technology investment of the

T+C strategy is not helpful to improve technology level.
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NT+NC

T+C=2C+T

o C, cre

r =r

Figure 4.8: The optimal production strategy with given C, .

We see from Figure 4.8 that the most EES can be any one of the five possible strategies,
ie.,, NT+NC, T-only, C-only, T+C or C+T. Under all the environments, the T+C
strategy is equivalent to the C+T strategy. The results illustrate that more flexibility may

not guarantee more profit. Particularly, any flexibility investment cannot increase a
firm’s profit within a specific atea, i.e., {(C,,C,)IC, < Cr,éF (C,)<C, <L(P)}, in
which the most EES is the NT+NC strategy; in other areas in which the most EES

includes at least one type of investment, a firm benefits from flexible technology and/or

flexible capacity investments.
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Chapter 5
Asymmetric Oligopoly Model

In Chapter 4, we evaluate long term FCS with consideration of production cost
structure. In this chapter, we focus on short term or medium term FCS in competitive
environments. We construct an asymmetric oligopoly competition model consisting of »
flexible firms and s in-flexible firms under demand uncertainty. The total number of
firms is n, i.e., n = (1,5). Each firm carries out a decision-making operation process
spanning capacity planning, production procedure and pricing stages, as discussed in
Chapter 3. All firms compete on the quantity in a same market, ie., Cournot
competition. By characterizing the equilibrium, we find out interplays among decisions

of multiple firms.

This chapter consists of five sections. Section 5.1 describes the assumptions adopted in
the model including notations used, demand function, competition mechanism and cost
structure. Section 5.2 describes a three-stage decision-making operational process of
both flexible firms and in-flexible firms. It also characterizes the decision pattern of
firms which adopt the same strategy. Section 5.3 characterizes the Nash equilibrium of a
competition involving flexible firms and in-flexible firms. The optimal capacity amount,
production quantity and the expected profit of each firm at equilibrium are provided.
Section 5.4 gives the sensitivity analyses of some influential factors. The individual
profits of the flexible firms and in-flexible firms are compared in Section 5.5 to evaluate

the performance of FCS and IFCS in an asymmetric oligopoly competition.

5.1 Notations in an Asymmetric Oligopoly Model

Assuming there are 7 flexible firms and s in-flexible firms in a two-strategy multiple-firm
model, the total number of firms is n =r+s, i.e., #=(r, 5). The superscript F (Flexible)

and N (In-flexible) are used to specify variables of flexible and in-flexible firms,
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respectively. Let QF = Zti be the total production quantity of flexible firms;

ieQ”

oV = quv be the total production quantity of in-flexible firms, and

jeQV

QzZq, =Q" +0" be the total production quantity of all firms. Also, we let

eQ

k" = Zkip be the total capacity of all flexible firms; k" = ZkiN be the total capacity

icQf ieQV

of all in-flexible firms.

5.2  Three-Stage Decision-Making Operations in
Asymmetric Oligopoly Model

Following the three-stage decision-making process discussed in Chapter 3, we formulate
cach stage specifically under an oligopoly competition environment in a backward

sequence in the following.
5.2.1 Pricing stage
Following the discussion at pricing stage in Chapters 3 and 4, the demand inverse

functionis p(a,Q)=(a-Q)" =(@-Q0" —0")*.

5.2.2 Production decision stage

Similar to the discussion in Chapters 3 and 4, for each in-flexible firm ie QY| the

production quantity equals its capacity amount, i.e., qiN = kiN ,forall ie QV.

For each flexible firm, it aims at maximizing its ex-post profit by producing an optimal
quantity under capacity constraints for different demand realizations. This can be

formulated as:
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2,q,,9j € Q\{i})= g/ (@-0Q)" - g,

st. 0<q” <k, ieQ". (5.1)

1

Max 7/ (qu

To simply the notation, we define

mi (g =7l g g, Vie Vi) =g (@—q, - q))" - B (2

J#i

The optimal production decision of each firm is provided by Proposition 5.1.

Proposition 5.1 Consider any feasible firm 7 Suppose thate, k;, je Q, and qu,

je Q" \{i}, are given. Then the optimal production decision g/ of the feasible firm 7

0, x<p
is g =145, ,b’<xszkf+,b’,wherex=“—2‘1f(“)_k1v"‘ndq£=x;ﬁ' )
kiF, 2le+ﬁ<x J#El

5.2.3 Capacity decision stage

At capacity decision stage, both flexible and in-flexible firms aim at maximizing their
expected profits. Their capacity decisions can be formulated respectively as below:

For flexible firms:
Max  TIk) = [ g (@=Q" =k™)" = p)f (@da-C k!,
st. kI >0,ie Q”. (5.3)
For in-flexible firms:
Max TV = [ g (@=Q" —k™) = B)f (@)da—C k',
st. kN >0,ie Q" (5.4)

Specifically, for an in-flexible firmie QY , g =k ; for a flexible firmie Q" ,

1

qf =q,0<q" <kl where g is the optimal production quantity to maximize the

ex-post profit of the flexible firm ie Q" .
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5.2.4 Pooling principle

To simplify the discussion of firms’ decisions in this chapter, we define “pooling
principle” as follows: If we say there is a pooling principle in a group, then all members
in the group evenly share the risk and the profit of the group. In the following
discussion in this section, to identify the decisions of each firm at equilibrium of
asymmetric oligopoly competition, we characterize the decision pattern of firms which
adopt the same strategy, either FCS or IFCS. We prove that firms adopting the same
strategy make the same decisions regardless of the number of rivals, the strategy
adopted, the demand uncertainties and costing environments. In other words, there is a
general pooling principle among firms even in a market involving two strategies

simultaneously.

In the following, Propositions 5.2 - 5.5 provide some characterizations of the optimal
capacity decisions of flexible and in-flexible firms. Based on the results of Propositions
5.2 - 5.5, Theorems 5.1 and 5.2 state the pooling principle among flexible and in-flexible

firms, respectively.

Consider any feasible firm ie Q" . Suppose that k;, jeQ\{i}, and qu(a’) ,

J

je Q" \(i), arc given. Let A" (k") =TI (k! [k, ¢/ (@) Vj#i, and k", 1€ Q") be

the expected profit of firm 7 The objective of firm 7is to maximize A" (k).

Proposition 5.2 In an oligopoly market competition with 7 >0 flexible firms and

5 20 in-flexible firms, the optimal capacity of flexible firm ie Q" | ie., k, is either

k" =0 and A" (0)<0;0r (i) k" >0 and A"V (k") =0. 0

Proposition 5.3 At the equilibrium of an oligopoly market competition with r >0

flexible firms and s 20 in-flexible firms, the optimal capacities of flexible firms are

either kiF* =0, forall ie Q" ;or kiF* >0, forall ie Q" ; further,
6) k" =0, forall ie Q" is equivalent to k" > X(C,) - f3;

(if) k" >0, forall ie Q" is equivalent to k" < X(C,)— /. m
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Theorem 5.1 At the equilibrium of an oligopoly market competition with r >0
flexible firms and s >0 in-flexible firms, all flexible firms i€ Q° make the same
capacity decision and the same production decision. That is:

@) If k" 2 X(Cp)—f,then k[ =¢q/" =0 forall ie Q".

1
(i) If k" < X(Cp)—pf, then k" =kl =—k" >0 for all ie Q" ; further, we
r

have k" +(r + )k = X (C,)— B. The individual profit of each flexible firm is

P L (pxen oy o, - .
= _(r+1)2 UkN+ﬁ (@=k"=p) f(a)da+.[x<cp>(X(CF) km=pB) f(a)da),

The production decision of each flexible firm is ¢/ = ¢ forall ie Q"

0, O<a<p+k"
. 3 F _ Ol—ﬁ—kN N F N
which is presented as ¢, = T B+k" <a<p+(r+Dk, +k". O
r+
kr, B++Dkf +k" <a

It should be noted that when k" is given, k. can be uniquely determined by Theorem

5.1. Furthermore, we have corollary 5.1 as a direct consequence of Theorem 5.1.

Corollary 5.1 At the equilibrium of an oligopoly market competition with r >0

flexible firms and s =0 in-flexible firms, all flexible firms i€ Q° make the same

capacity decision and the same production decision. That is:
@) If C, 2L(B),then k[ =g/ =0 forall ie Q".

— X(CF)_ﬁ

(i) If C, <L(B), then k" =k[
r+1

e

>0 for all ie Q" . The profit of

each flexible firm is

P 1 XC - .
H"_(r+1)2Uﬁ @-pf@da+[  (X(C)-p) f(a)da) . 'The

production decision of each flexible firm is ¢/ =g for all ie Q" , where

0, 0<asp

I = a_ﬂ, B<a<X(C,). -
r+1
k!, X(CpH<a
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Consider any in-feasible firmie Q" . Suppose that k;, je Q\{i}, and q; (), je Q"
are given. Let AY (k™) =TI ("[k", Vj#i,and k' .q/ (@) l€ Q") be the expected

profit of firm 7 The objective of firm 7is to maximize A" (k").

Proposition 5.4 In an oligopoly market competition with r 20 flexible firms and
s >0 in-flexible firms, the optimal capacity of in-flexible firm ie QY | ie., k", is
cither (1) k" =0 and AP (0)<0 ; or 2 k' >0, A" %" )=0 and

AV (k) <0. O

Proposition 5.5 At the equilibrium of an oligopoly market competition with r =0

flexible firms and s > 0 in-flexible firms, the optimal capacities of in-flexible firms are

either (1) kiN* =0, forall ie Q";or (2) kiN* >0, forall ie Q"; further, we have

() k)" =0, forall ie Q" is equivalent to fvf(a)da <Cy+p;

O<v

(if) k' >0, for all ie QY is equivalent to Jvf(a)da> Cy+ B, where

O<v

v=a-0" (a@)-k". O

Theorem 5.2 At the equilibrium of an oligopoly market competition with r =0
flexible firms and s > 0 in-flexible firms, all in-flexible firms make the same capacity

decision.

(1) If j(a—rqj —sk¥)f(@)da<Cy + 3, then k¥ =0, forallie Q.

rgf +sk <o

) If I(a—rqf —skM)f(yda>C, + B, thenk =k” L >0, for all
N

rgf +skY <a

ie QV; further, we have  [(@—rg —(s+ Dk} ) f(@)da=Cy +f . The

rgf +sk <a

individual profit of each in-flexible firm is Hf_,v = (kév )zf(skév) . O
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Corollary 5.2 At the equilibrium of an oligopoly market competition with r =0
flexible firms and s >0 in-flexible firms, all in-flexible firms make the same capacity

decision.
() If Cy, 2 u—f,then k" =0, forallie Q".

. 1
@ If Cy<pu—pB, thenk! =k =—k" >0, for all ie Q"; further, we have
s

j : (@—(s+Dk™) f(@)da=C,, + . The individual profit of each in-flexible

firm is TTY = (k") F(sk) . O

Theorems 5.1 and 5.2 prove that, in a two-strategy asymmetric oligopoly market, there is
a pooling principle among firms adopting the same strategy: The same strategy leads to
the same decisions and the same profit. This pooling principle always holds regardless
of the competition environments and the number of rivals. All firms adopting the same
strategy are pooling the profit and risk of this strategy. The interplay between the
flexible-firm group and the in-flexible-firm group determines the profit potential
allocation between the two strategies. Theorems 5.1 and 5.2 also demonstrate that, at
the equilibrium of a two-strategy oligopoly market, a best way for a firm to augment its
profit is to make unanimous decisions with other firms adopting the same, although in

principle the firm can make decisions freely.

Theorems 5.1 and 5.2 are consistent with previous study results that focuse on duopoly
model (e.g., Anand and Girotra, 2007; Anupindi and Jiang, 2007; Goyal and Netessine,
2007). However, in a duopoly model, a firm’s decisions are only affected by one firm
rather than a handful of flexible and in-flexible firms simultaneously. From the strategic
petspective in a duopoly model, a firm faces only one strategy adopted by its rival.
Unlike the duopoly model, a firm in a two-strategy oligopoly model needs to compete
with multiple rivals with the same or different strategy at the same time. Therefore, the
different ways of how a firm’s decisions are affected by two strategies simultaneously
cannot be found in a duopoly model. Our study not only generalizes previous studies,
but also develops a mechanism controlling a market invisibly in a two-strategy
asymmetric oligopoly market. This mechanism is also robust enough to be in a multi-

strategy oligopoly competition.
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After description of the general pooling principle, we conduct analysis of the detailed
operations of in-flexible firms and flexible firms. For in-flexible firms, the capacity

investment threshold can be presented as

[(@=rgl —sk))f(@yda=Cy+B.

rgf +sk <o
Since the capacity amount equals the production quantity for in-flexible firms, C,, +
is the constant marginal product cost (including in capacity decision and production
decision stages). The left hand side of this threshold equation is the expected product
price at the market. Therefore, for in-flexible firms, this threshold equation holds when
marginal product cost equals the expected product price. Only when expected product

price is higher than the marginal product cost, can in-flexible firms invest in capacity.

For flexible firms, at production decision stage, production is conducted only when
demand is larger than S+k". When S+ k" <a < S+ (r+ 1)k + k", flexible firms’
investments in capacity have no effect on their production quantities. When demand is
large enough, i.e., B+ (r+ 1)k + k" < a, the production is conducted to full capacity;

any additional capacity investment creates the same production for each flexible firm. At

the capacity decision stage, flexible firms’ threshold to make capacity investment

isk” =X(Cp)-pB,ie,
J.kojv+ﬁ(a_kN)f(a)da=CF+ﬂF(kN+ﬂ)

It is known that k" + f is the minimum demand level at which flexible firms produce

the product, and so the probability of a unit capacity being produced into the product

is F(kN + ). As a result, the expected unit cost of a product for flexible firms

isC, + ﬁf(kN + ). Therefore, the right hand side of this threshold equation is the

expected unit product cost, whereas the left hand side of this threshold equation is the
expected price when flexible firms produce the product. This indicates that this
threshold equation holds when product price equals the marginal product cost. Flexible
firms invest in capacity only when the product price is larger than the marginal product

cost. Table 5.1 compares the costs of flexible and in-flexible firms.
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one unit product

FCS IFCS
Minimum demand to make "
_ B+k 0
production
Probability of one unit
capacity is used to produce f( L+k™) 100%

Unit production cost

B

B

Unit capacity cost

CF

CN

Marginal product cost

C, +BFK" + )

Cy+ 5B

Price condition to invest in

capacity

p(@,0")>C, + BF(K" + )

p(a,0")>Cy +p

Table 5.1: Cost Comparison between FCS and IFCS.

Comparing the capacity investment conditions of in-flexible firms and flexible firms, we

note that actually all firms follow the same mechanism to make capacity investment, i.e.,

only when expected product price is larger than the marginal product cost, do firms

make the capacity investment. A difference between flexible and in-flexible firms is in

the way of how they evaluate their marginal product costs and expected product prices

in order to decide whether to invest in their capacities. Figure 5.1 plots the mechanism

of decision-making for both flexible and in-flexible firms.

\

Minimum Expected
required p{ production |
demand cost

! +
1
I Unit
ni
Whether to make .
duction? capacity
pro ) cost

Marginal
production
cost

| Price
>

condition

A

Whether to make
capacity investment?

Figure 5.1: Mechanism of making decisions for both flexible and in-flexible firms.
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5.3 Equilibrium of n=(, s) Competitive Market
Model

Although the decision pattern of each type of firms is known, it still needs to know the
exact decisions and individual profit of each kind of firms to evaluate the performance

of FCS and IFCS. This section characterizes the equilibrium of #=(7, §) competitive
market with demand uncertainty. Let R={(C,,C,):0<C, <C, <o} be the
feasible region of all C, and C,. According to Theorems 5.1 and 5.2, R can be

divided into four regions, resulting in four cases as listed in Table 5.2.

kY >0 kY =0
kKl =0 Case-B Case-A
kKl >0 Case-D Case-C

Table 5.2: Four possible equilibriums of an oligopoly competition.

k" =rk[ and k" = sk} always hold for all cases. To facilitate the presentation, if

s>1, we define a function Z : [0,00) — (0, 4] by Z(x) = j m(a—s—ﬂx) f(a)da. So
X S

1 +1—
we have ZV (x) == xf(x) i F(x) <0, and Z(x) decreases as x increases. Let k
s s

be the unique solution satisfying Z(k,,)=C, +  when 0<C, + < u.

Technically, it is not easy to verify the conditions of the above four regions and results.
To pave the way to find the analytical solutions of equilibrium and their theoretical
conditions, the following Propositions 5.6 - 5.9 provide the optimal capacity and
expected profit of each of the flexible and in-flexible firms in each case in Table 5.1.
Then, Theorem 5.3 discusses these four cases together and provides the necessary and

sufficient conditions for each case, i.e., Case-A to Case-D, and their analytical solutions.
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Proposition 5.6 Given r >0 flexible firms and s >0 in-flexible firms, within the area
R={(C,,C,):0<C, <C, <o} . For Case-A that k! =k =0 , we have

I17 =T1Y =0 and a necessary condition for Case-A is: L(f)< C, and 4—B<C,,.

Proposition 5.7 Given r >0 flexible firms and s > 0 in-flexible firms, within the area

R={(C,.C,):0<C, £C, <oo} . For Case-B that kf =0, k({v >0, we have

n’=o0, mm¥ ziz(kN)zf(kN) , and (i) a necessary condition for Case-B is:
s

L(B+k,)<C, and C,<u-p ; (i) kY >0 satisfies

[* @ (s+Dk) flarda=Cy+ B, k" = sk .

Proposition 5.8 Given r > 0 flexible firms and s > 0 in-flexible firms, within the area
R={(C,,C,):0<C, <C, <} . For Case-C that k/ >0, k" =0, we have

I’ = !
C O (r+1)?

([} @-pr r@da+ | (X(C)-p?f@da), T =0, and () 2
necessary condition for Case-C is: L(B)>C, andu—(C, + ) < ﬁ(L(,B) —C,); (i)
r

K= xc)-p. a
r+1

Proposition 5.9 Given r >0 flexible firms and s >0 in-flexible firms, within the area

R={(C,,C,):0<C, <C, <} . For Case-D that k' >0, kY >0, we have

= ([ ek B p@da [ (K€ sk! - fl@de)
and TIY = (kV)>F(sk"). The solution of Case-D is: k” zﬁ(X(CF)—,B—skj’)
and k" satisfies CN+,3:LZN(a—(wl)kbf(a)da—ﬁ(L(ﬁJrsk;V)—cF). A
necessary condition for CaseD is:  g—(Cy +f) >ﬁ(L(,B) -C,) and

C,<L(f+k,). ]
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Theorem 5.3 Given r >0 flexible firms and s >0 in-flexible firms, within the area
R={(C,,C,):0<C, £C, <oo}. At equilibrium, k" =rk, k" = sk, where k.

and k! together with I17 and IT" in different regions of R are:

(Case-A) if u—B<C, & L(B<C, & C,<C, , then k' =0, k" =0,
" =0, 0¥ =o;

(Case-B) if C, <u-pf & L(B+K,)<C, & C, <C,,then k] =0,
kY satisfies cN+,8=LZN(a—(s+1)keN)f(a)da , =0

Y = (k)) F(sk);
(Case-C) if u—(Cy +f) < ﬁ(L(ﬁ) —C,) & L(B)>C, & C, <C,, then
r

kF = X(CF)_:B

) ,ksz,Hf’zO,
r+1 ' '

P 1 X, a0 o P .

. T (r+1)? Uﬁ‘ @-5) f(a)da-’_.'-x(CF)(X(CF) 2 f(a)da)’

(CaseD) if L(B+K,)>Cp & p=(Cy+B)>——(LB)=C;) & Cy<Cy,
r

then k :ﬁ(X(CF)—,B—skeN), kY satisfies
r

Cy+B=[ " (@=(s+Dk)) f(@da-——(L(B+sk))-C,),
sk r+1

F_ 1 XCr) N 2 > LN 2
e U pon @5k =B flepda+ [ (X(C)=sk! =) f(a)da),

Y = (k") F(skY). o

For situations of r =0 or s =0, we take the limiting cases and so Theorem 5.3 is
reduced to Corollary 5.1 and Corollary 5.2. Theorem 5.3 provides analytical equilibrium
solutions to a two-strategy three-decision-stage oligopoly competition. It is easy to show

that the equilibrium solution in each case of the oligopoly competition is unique under
the assumption xf(x) < f(x) for all x>0. This assumption is adopted and discussed
by ptevious studies (e.g., Van Mieghem and Dada, 1999; Anupindi and Jiang, 2008).

Furthermore, contrary to a belief that flexibility is preferred by managers or researchers,

the results illustrate that both flexible strategy and in-flexible strategy can be beneficial
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in some conditions, but otherwise harmful to firms’ profits under certain conditions.

Moreover, previous studies on flexible capacity strategy (Van Mieghem and Dada, 1999;

Anupindi and Jiang, 2008) are particular cases of this general oligopoly model. These

studies including monopoly model, duopoly models and symmetrical oligopoly models

are listed in the following Table 5.3.

References

Flexible monopoly model

Van Mieghem and Dada,
1999

In-flexible monopoly model

Van Mieghem and Dada,
1999

Flexible duopoly model

Anupindi and Jiang, 2008

In-flexible duopoly model

Anupindi and Jiang, 2008

Flexible vs. In-flexible duopoly model

Anupindi and Jiang, 2008

Symmetrical flexible oligopoly model

Van Mieghem and Dada,
1999

Symmetrical in-flexible oligopoly model

Table 5.3: Particular cases of asymmetric oligopoly model.

Figure 5.2: Relationships among the four cases.
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In the following we further discuss the case with r 21 and s2=1 (Theorem 5.3).
Specifically, FCS and IFCS are dominant strategy within Case-C and Case-B,
respectively. However, in Case-D, two strategies coexist and neither one dominates.
Furthermore, in Case-D if the total capacity of flexible firms is set to zero, the solution
is Case-B; similarly, if the total capacity of in-flexible firms is set to zero in Case-D, the
solution is Case-C. We present the relationships between these four cases in Figure 5.2
to show that all cases can be developed from Case-D. The following is the
interpretation of Figure 5.2: The partitions of four cases depend on five inter-influential
factors, including production cost, flexible capacity cost, in-flexible capacity cost,
number of flexible firms and number of in-flexible firms. However, if there is some
interference from exogenous factors, such as lack of resources, government policy, the
overseas competitors, large change in organization and new product innovation, to force
flexible firms and/or in-flexible firms to set capacity zero, the equilibrium of Case-D

switches over to another case.

To provide intuitive understanding of the equilibrium, Proposition 5.10 characterizes
the divisions of different cases so that the equilibrium can be plotted in the following

Figure 5.3.

Proposition 5.10  Given r >0 flexible firms and s >0 in-flexible firms, within the
area R={(C,,C,):0<C, <C, <oo}.
(@) The boundary between Case-B and Case-D is C,, = L(f+k,), which is

defined as Curve-1;
(i1) the boundary between Case-C and Case-D is

Cpp= r+l C, - r_+1(lu — B)+ L(f), which is defined as Cutve-2;
r r

(i)  under the assumption F(x) —xf(x) >0, in both Curve-1 and Curve-2, C,.
is strictly increasing in C),, and within C,, € [0, 4 — ], Cutve-1 is always
above Curve-2, except that they intersect at (¢ — f,L(f));

(iv) further, in Curve-1 Cp, decreases in s with given C, ; in Curve-2 C,

decreases in rwith given C,. o
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Partitions of equilibrium under non-zero and zero production cost are plotted in Figure
5.3(a) and Figure 5.3(b), respectively. It can be observed that two strategies only coexist
in Case-D, which indicates that strategy competition only occur in this region. The

interplay between flexible firms and in-flexible firms does not exist in Regions-A to C.

For non-zero production cost situation, Curve-1 and Curve-2 represent the boundary of
the Region-D in which n = (r,s), as shown in Figure 5.3(a). It is interesting that Curve-
1 depends only on the number of in-flexible firms (5) but is independent of the number
of flexible firms (7). We consider a situation that there are more in-flexible firms
entering the market but the number of flexible firms is unchanged, that is n'=(r,s'),
where §'> s and n'-n = s'=s. Under the situation of n'=(r,s"), Curve-1 goes down to
Curve-1’ and Curve-2 is unchanged. The area between Curve-1 and Curve-1" changes
from Region-D to Region-B. In such case, in the area between Curve-1 and Curve-17,
the total profit of flexible firms changes from a positive value to zero, while in-flexible
firms’ profits are always positive. This indicates that in this area, more in-flexible firms
joining in the market enhances the competitiveness of IFCS but reduces the
competitiveness of FCS. Similar characteristic can also be found in Curve-2, which is a

r+1

r

straight line independent of the number of in-flexible firms and its slope is

Therefore, as more flexible and/or in-flexible firms join in the matket, the strategy-

coexistence region (i.e., Region-D) becomes smaller with a more fierce competition.
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Figure 5.3(a): Partitions at equilibrium for non-zero production cost situation.
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Figure 5.3(b): Partitions at equilibrium for zero production cost situation.

Figure 5.3: Partitions at equilibrium.
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For zero production cost situation, ie., =0, it is surprisingly noted that Cutve-2 is
actually the point (C, C,)=(u—pB, L(B))=(u, u).Asaresult, Case-C disappears,

but other cases still exist, as shown in Figure 5.3(b). In such case, a market with profit
potential can only be Case-B or Case-D. It is impossible for flexible strategy to be
dominant. However, in-flexible firms always get profits for Case-B and Case-D whereas
flexible firms only have limited chances to get profit. Comparing equilibrium for zero
and non-zero production cost situations, it is shown that without considering
production cost greatly underestimates the effectiveness of FCS. In fact, production

cost is one of the key factors controlling whether a firm should adopt FCS or not.

In this chapter, we assume that for each type of strategies all firms have the same unit

production cost and the same unit capacity cost, based on the following considerations:

(1)  Considering the similarities between firms with the same strategy, we suppose that

there is not large difference between their costs.

(2) This study focuses on the effect of the number of each type of firms. To achieve
this objective, we exclude other disturbing factors by simplification. Further,
theoretical results also confirm that the number of firms in each type does affect
the competition equilibrium and firms’ individual decisions. Interestingly, although
all firms of the same type have the same unit production cost and the same unit
capacity cost, their decisions at Nash equilibrium show that they cannot be treated
as one firm. For example, in Case C, the total capacity and total profit of all the

flexible firms depend on 1, i.e.,

k" =—_(x(,)-p),
r+1

mn=—" (j’“c”(a—ﬂ)zf(a)da+j;cF)(X(cF)—ﬂ)zf(a)da).

Tt Us

This is due to the fact that they compete against each other. At Nash equilibrium,
if one firm changes its decision while the others do not, it will suffer. If they are
treated as one firm, then the change of any one of them will imply the change of

all firms together within the same type.
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(3) 'There is a research absence in investigating FCS in an asymmetric oligopoly
competition model in which each firm competes with two strategies
simultaneously. Although it is intuitively believed that firms within the same type
will make the same decisions, there is neither any theoretical proof of this result,

nor this result is unique, in the literature. This research gap is settled in the thesis.

5.4  Sensitivity Analysis of Influential Factors

From the equation expressions of equilibrium solutions, five factors are extracted:
production cost, flexible capacity cost, in-flexible capacity cost and numbers of flexible
and in-flexible firms. In the following, we conduct sensitivity analysis of these five

factors.
5.4.1 Effects of capacity costs on individual profit

Effects of capacity costs on each firm’s individual expected profit in an oligopoly

market are presented in Property 5.1.

Property 5.1  Given r >0 flexible firms and s> 0 in-flexible firms, relationship
between capacity costs and expected profits can be presented as follows:
@ Flexible strategy is only effective in Region-D and Region-C; while in-flexible

strategy is only effective in Region-D and Region-B.

(i) In Region-B, I1" =0 and 1Y >0,

dI1l dr
(i-1) Given C,, ~<0; @1-2) Given C,, —==0.
dCN dCF

(i)  In Region-C, I17 >0 and I1) =0,

F dI'IF
¢ =0;({i-2) Given C,, —<<0.
dc

N F

dll
iii-1) Gi C.,
(iii-1) ven Cp 1C

(iv)  InRegion-D, IT} >0 and I1) >0,
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dHN dHF F
iv-1)  Given C,, ~—<0; ~>0;@Gv-2) Given C, , =~ <0;
dC, dcC, F
N
~>0. o
dC,

In a market with a dominant strategy, i.e., Region-B and Region-C, profits of firms

adopting effective strategies are only affected by their own capacity costs, but

independent of their rivals’ capacity costs. However, in a strategy-coexistence market,

ie., Region-D, a firm’s expected profit decreases with its own capacity cost, but

increases with that of its rivals, which use the alternative strategy. As a result, a firm has

to consider not only its capacity cost, but also the rivals’ capacity costs. Under this

situation, cutting capacity cost down does not guarantee to augment a firm’s profit.

5.4.2 Effects of production costs on individual profit

Production cost effects on individual profit of each flexible firm and in-flexible firm are

provided in Property 5.2.

Property 5.2 Given r >0 flexible firms, s >0 in-flexible firms and capacity costs

(Cy, Cp), the effects of production cost on each firm’s expected profit is:

@ In Region-A, no strategy is effective;
N
(i1) In Region-B, only in-flexible strategy is effective, and d,Bg <0;

F
(i)  In Region-C, only flexible strategy is effective, and 7 = <0;

(@v)  In Region-D, both flexible and in-flexible strategies are effective,

(1) if (s + DFGUT) k7 fKT) <1, then dH—fF>0;
dp
o if (s+DF (") = k" f (k™) dIl

>1, then —=<0.
s d
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Intuitively, a firm’s expected profit decreases with its production cost regardless of its
adoptive strategy. However, the results in Property 5.2 surprisingly demonstrate that this
intuition is not always true to flexible firms. In a strategy-coexistence market, the
individual profit of a flexible firm increases as the production cost increases under
certain conditions, which is affected by the total inflexible capacity, number of in-
flexible firms and the demand distribution. In other words, flexible firms are able to
augment their profits even though production cost increases. Further, making use of
such advantages, flexible firms are able to enhance their competitiveness in a strategy-
coexistence market with an increasing production cost. Results of Property 5.2 highlight
the importance of consideration of production cost in determining whether FCS is

better than IFCS or not.

5.4.3 Effects of number of flexible firms on total flexible

and in-flexible capacities

In a strategy-coexistence market consisting of # firms, the effects of the number of

flexible firms r on total capacity of each strategy are provided in Property 5.3.

Property 5.3 Given # firms and capacity costs (C,, C,)in a strategy-coexistence
market consisting of r =1 flexible firms and s2>1 in-flexible firms wherer+s=n.
Within the range r € [1, n—1], we have

N

<0;

@ total capacity of in-flexible firms is decreasing in 7, iL.e.,

F
>0. |

(i1) total capacity of flexible firms is increasing in 7, i.e.,
B

The switch over of one firm’s strategy will affect all other firms simultaneously. If more
in-flexible firms switch their strategy to flexible strategy, total in-flexible capacity
decreases but total flexible capacity increases. Therefore, one type of capacity (flexible
capacity or in-flexible capacity) decreases with the other type increases and the amount
of change in total capacity is less than the change of at least one type of capacity. This

rule enables a market to automatically adjust any change occurred within a market and
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balance the weighting of each strategy to maintain a stable market without expanding

infinitely.

5.4.4 Characteristics of total capacity

Property 5.4 Given (Cy,C}), the total capacity of all firms k" is bounded under

various situations:

() If (C,,C,)isin Region-A, then k" =0.

(i) If (C,,C,)is in Region-B, then k" is decreasing in C,, , and independent of C,,
furthermore, X(C,)— <k’ =k <X(C, + /).

(iiiy If (C,,,C,)is in Region-C, then K" is decreasing in C,, and independent of C,;

furthermore, l(X(CF)—,B) <k" =k" =L(X(CF)_,B)-
2 r+1

(iv) If (C,,,C,)is in Region-D, then LI(X(CF )= B) <k’ <X(C,)-J. o
r+

Property 5.4 assures that the total capacity invested in the market is bracketed within the
lower and upper bounds in any capacity costs. That is to say, the scale of a market with
profit potential falls within a certain range. Attracted by the positive profit potential,
firms are willing to make investments in the market, which results in the lower bound of
total capacity investment in a market with profit potential. More and more capacity
investment accumulate in the market until all profit potential has been fully explored,
making total capacity investment expand to the upper bound. Property 5.4 points out
that the total profit potential of a market is bounded and shared by all firms regardless

of the strategies and total number of firms.
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5.5 Comparison of Flexible and In-Flexible

Individual Profits

According to equilibrium solution in Theorem 5.3, there is no dominant strategy in
Region-D, in which both FCS and IFCS exist. To determine the most appropriate
strategy, Proposition 5.11 compares the individual profits of flexible and in-flexible

firms in Region-D.

Proposition 5.11 Given r >0 flexible firms and s> 0 in-flexible firms, within

Region-D, between Curve-1 and Curve-2, there exists a unique Curve-3 satisfying

n’«,,c,)=1Yc,.C,); in Curve-3, C, increases with C, ; in the area above
Curve-3, denoted as Region-D1, Hf_,v >H5 >0 ; and in the area below Curve-3,

denoted as Region-D2, I17 >TIY > 0. m

Proposition 5.11 proves the existence and uniqueness of the threshold that leads to the
same individual profits of flexible and in-flexible firms as shown in Figure 5.4. The
division of the profit comparison is determined by both flexible and in-flexible capacity
costs. This division is also determined by the number of flexible firms and number of
in-flexible firms. It is noted that with a low flexible capacity cost flexible strategy is
always the optimal strategy in the region. However, with a low in-flexible capacity cost,
the optimal strategy can be flexible or in-flexible. This indicates that the difference
between the flexible capacity cost and in-flexible capacity cost determines the benefit of

flexible strategy. Specifically, when all firms have the same capacity cost, i.e.,C, =C,,

the flexible strategy is always beneficial to a firm by avoiding production waste. For
example, when a firm uses idle time or over time to acquire flexible capacity, but
does not change the size or hourly pay of the workforce, then the flexible strategy
gets the firm more profit. As flexible capacity cost increases, flexible firms make trade-
off between the saving from avoiding production waste and the expensive capacity cost

spending.
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Figure 5.4: Individual profit comparison.
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Chapter 6
Endogenous Flexibility of FCS in an n-Firm

Competition

In Chapter 5, we have already known the equilibrium of an asymmetric oligopoly
competition with 7 flexible firms and s in-flexible firms, i.e., n=(r, s). In this chapter, we
consider the numbers of firms adopting each of two strategies, i.e.,  and s, are
endogenously determined in a competition with a total of 7 firms. To do so, we allow all
n firms to freely switch their strategies to maximize individual profits until this is fully
utilized. This process can be regarded as a strategy competition involving multiple
players. Consequently, if no firm switches strategy (i.e., from flexible to in-flexible
strategy, or vice verse), the status is defined as “Final Equilibrium (FE)”. Among the

n firms, the numbers of flexible and in-flexible firms at Final Equilibrium, i.e.,

n=(r,,s,),is expressed as the endogenous flexibility of FCS in this thesis.

This chapter is divided into five sections. Section 6.1 provides the equivalent
mathematical conditions for the Final Equilibrium. Section 6.2 characterizes the
endogenous flexibility from strategic perspective. The results of the model are extended
to perfect competition in Section 6.3. In Section 6.4, a method is proposed to practically
determine the exact numbers of flexible and in-flexible firms under a given demand
distribution. The theoretical justification is also provided. Section 6.5 provides the
numerical examples with different demand distributions to demonstrate the method. All

notations are the same as those used in Chapter 5.
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6.1 Conditions of Final Equilibrium with

Endogenous Flexibility

6.1.1 Conditions of final equilibrium

Given 7 firms, and n=(r,s) . The expected profit of each flexible firm is Hf (r,s), and

of each in-flexible firm is I1Y (r,s). Two possible scenarios of a firm’s strategy switch

exist in an #-firm oligopoly competition.
(1) If a firm switches from flexible strategy to in-flexible strategy, then

n=(r-1s+1) , the expected profit of ecach flexible firm will be
I (r—1,5+1) , and the expected profit of each in-flexible firm will be

Hiv(r—l,s+1).
(2) If a firm switches from in-flexible strategy to flexible strategy, then

n=(r+1,5—1), the expected profit of each flexible firm will be H: (r+1,s-1),

and the expected profit of each in-flexible firm will be ITY (r+1,5—1).
It is clear that, given # firms, the necessary and sufficient conditions of a Final

Equilibrium at n=(r,s) are Hf(r,s)ZHiV(r—l,s+l) andHff (r,5) 2Hf(r+l,s—1),

where TIY (=1,n+1)=0 and II* (n+1,-1)=0.

6.2 Strategies of Endogenous Flexibility in an n-

Firm Competition

Proposition 6.1 Referring to Curve-1, given total # firms and C,,, C,. is decreasing in

5; referring to Curve-2, given total # firms and Cp, C, is decreasing in 7. |

Proposition 6.2 Consider Curve-1, Curve-2, Curve-4 and Curve-5 defined as follows:
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Curve-1 C, = L(f+k,), whetre k, satisfies J:o (a—s—ﬂkwjf(a)da =C, +f;
s

1 1
CmN&ZCF=£;—CN—L;%ﬂ—j%+Lu%,m”ﬂ—{CN+ﬂ)=7£ﬂLu%—CFL

Cutve-4 X(C,)=X(Cy, +B)+;Curve-5 C, =C, —(u—p)+L(p).
Then we have following conclusions:

(@)  Referring to each of these four curves, C,. is increasing in C,;

(i) there is one and only one intersection point for C, € (0, u—/f] . The
intersection pointis (Cy,C,) = (/1 - B, L(,B));

() define C4;, Cp,, Cpy, Crs to be points on Curve-1, Curve-2, Curve-4, Curve-5,
respectively, with given Cy . If f>0, then C,, >C,, >C.s >C,, for all
Cye@ u-p) ; and, if f=0, then C, >C,, =C,s>C,, for al

C,e(0, u-p). o

Proposition 6.3 Given n = (r,s)and capacity costs (Cy, C), we have the following
conclusions about the Final Equilibrium:

@ If (Cy, C,)is in Region-A, then the Final Equilibrium is obtained for
anyn =(r,s);

i) If (Cy, C,)isin Region-B, then the Final Equilibrium isn = (r,s) = (0,n);

(iii)y If (Cy, Cj)isin Region-C, then the Final Equilibrium isn = (r,s) = (n,0) . o

To characterize the endogenous flexibility in an oligopoly competition, we first consider
the boundaries of a market in which FCS and IFCS coexist (Region-D), i.e., Curve-1
and Curve-2. According to Proposition 6.1 and Corollaries 5.1 and 5.2, there are two

respective families of Cutrve-1 and Curve-2 with different (r, s) for a given number of

firms n, which is shown in Figure 6.1.
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Figure 6.1: Families of Curve-1 and Curve-2.

We use C{;” and C{;"to represent Curve-1 and Curve-2, respectively, with respect to
the combination of numbers of flexible and in-flexible firms (r, s). According to
Proposition 6.3, we know that in areas above curve Ci}" all firms transfer to in-flexible
strategy at the Final Equilibrium whenC, € [0, g — ] for allne [l, oo); in areas on
the right of curve C{5” all firms transfer into flexible strategy at the Final Equilibrium
when C, € [0, L(f)] for all ne[l, «). In areas between curves C\™ and Cyy”,
two strategies may coexist in the market at Final Equilibrium for all n€ [2, o). In
other areas, the endogenous flexibility is sensitive to number of firms in a market. In
particular, for a given #, in areas above curve Ciy™ all firms transfer to in-flexible
strategy at the Final Equilibrium whenC,, € [0, t— fB]; at areas on the right of curve
C&” all firms transfer into flexible strategy at the Final Equilibrium
whenC,. € [0, L(f)]; and in the atea between these two curves, two strategies coexist

in a market. These results are presented formally in Theorem 6.1.

Theorem 6.1 For all ne[l, =), given production cost B, within the atrea
{(Cy.Cr):0<C, < C, <oo}, the Final Equilibrium can be characterized as below:
() in area u—pG<C, & L(B)<C, & C,<C, , for any n=(r,s) , two

strategies lead to zero profit for all ne [1, oo);
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(ii) in area 0SC, <u—-pB & L(B+k,)<C, & C, <C,, all firms transfer to

wl

in-flexible strategy, i.e., n = (r,s) =(0,n) forall ne[l, o);
(i) in atea u—(C, +f)< %(L(,B)—CF) & L(ﬂ)> C, & C, <C,, al firms
transfer to flexible strategy, i.e.,n = (r,s) = (n,0) forall ne[l, o);

(iv) in area L(f+k

wl

)>C, & ,u—(CN+,B)>%(L(,3)—CF) & C, <C,, there

are three sub-areas as below:

(iv-1) when L((xcc,H-p)-C,-p>0 , let

(X(C)-PFXC)-B)
LX(C)-B-Cy-B

N =

(iv-1-1) if n>N , then all firms transfer to in-flexible strategies, ie.,

n=(r.s)=(0.n);

(v-1-2) if n< N , then at Final Equilibrium, both flexible and in-flexible firms

coexist in the market;
(iv-2) when L(X(C,)—-f)—Cy — <0 and L(B)-C,—(u—-C, — ) <0, both

flexible and in-flexible firms coexist in the market regardless of number of firms;

iv-3) when L(B) ~C ,~( = Cy = ) > 0, let f=—— #=C =8,
(v-3) whenL(f) =€~ =Cy = > 0.let N= o 0~

(iv-3-1) if n> N, then all firms transfer to flexible strategy, i.e., n=(r,s) = (n,0);

(iv-3-2) if n< N, then at Final Equilibrium, both flexible and in-flexible firms

coexist in the market.

where k, is the unique solution of the equation J.: (a-2k,)f()da=C,+p. O

In the literature, the analyses of endogenous flexibility in a competition are provided
only for zero production cost situation, ie., f=0. For non-zeto production cost
situation, i.e., >0, even in a duopoly model, there has not been any analyses on
endogenous flexibility so far due to analytical difficulties (Anupindi and Jiang, 2008).
However, Theorem 5.3 in Chapter 5 concludes that the production cost is one of key
factors in determining whether a firm should use FCS or not. Moreover, the zero

production cost situation deviates too far from the reality so that the effectiveness of
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FCS in a competition is greatly underestimated. Ways of how production cost affects
endogenous flexibility are further overlooked. To fill these research gaps, we
characterize the endogenous flexibility of FCS in an n-firm competition for both zero

production cost and non-zero production cost situations.

Theorem 6.1 characterizes the endogenous flexibility of FCS for a variablen e [1, o).
Figure 6.2(a) plots the results under a non-zero production cost situation, i.c., #>0. It
can be proved that curves C'v™ and C3” partition the area between C\o" and C\”
into three sub-areas. To our surprise, the endogenous flexibility of FCS in areas upper
CO" and in areas lower C}y” are completely insensitive to the number of firms, even
though n varies from a certain number to infinity. In such case, the competition
becomes a symmetric oligopoly competition eventually. In areas between curves C\}"”
and C{y”, the number of firms affects the endogenous flexibility in different ways to

different extends.

CF A
n=(r,s) = n=(r,s) =
B n=(0,n) n=(r,s)

R !
cyl ., n=(r,s) = :
Sub-I "7 [ 1 = (n0) |
Lt I |
Oe) 7 R4 | |

Fl_.= ’ | C
LB+X(BY ™ Sub-1 | :
n=(s) = ./ o | |
n=(.s,) il :
p - Sub-II I |
, : Infeasible |
S | Range |
/s C;‘Z ) I |
/. I I
5 I
Lp)+pB-u : I
| |

! | R
0 u—p L(B Cy

Figure 6.2(a): Final Equilibrium of non-zero production cost situation for all
nell, o).
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Figure 6.2(b): Final Equilibrium of zero production cost situation for all
nell, ).

Figure 6.2: Final Equilibrium for all ne [1, ).

Particularly, in sub-area-II (corresponding to part (iv-2)), the two strategies may coexist
in an oligopoly market. Although the endogenous flexibility is insensitive to the number
of firms from strategic perspective, the exact numbers of flexible and in-flexible firms
are affected by the number of firms. Therefore, the endogenous flexibility in this area is
partially insensitive to the number of firms. In sub-area-1 and sub-area-III
(corresponding to part (iv-1) and (iv-3), respectively), the endogenous flexibility is
sensitive to the number of firms; moreover, it may even entirely switches over in nature.

For each capacity costing (C, C,)in these two areas, there is a threshold of the

number of firms. When the number of firms is smaller than the threshold, two strategies
may coexist in the market; as more firms join in the market and number of firms beyond
the threshold, only one strategy can survive in the market. It means that the market
structure entirely switches over to symmetrical oligopoly market when there are many
firms in the market. It is further observed that the area of sensitive environments
becomes smaller as more firms join in the market until the number of firms tends to be
infinite, i.e.,, n — oo. In such case, no sensitive environment exists and the strategies

survived after strategy competition is determined.
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For zero production cost, ie., =0, it is found that curves C\7™ , C\3” and
C, = C, ovetlap. Consequently, Region-C, sub-area-II and sub-area-I1I in Figure 6.2(a)
disappear, whereas only region-A, region-B and sub-area-I exist, as shown in Figure
6.2(b). In such case, only Region-B and sub-area-I are regions with profit potential. As a
result, there is only very limited chance for firms willing to adopt FCS, whereas there is

a large chance that all firms are willing to adopt IFCS. It is further impossible that all

firms adopt flexible strategy at Final Equilibrium.

For any given 7, the Final Equilibrium of the competition is provided in Theorem 6.2.

Theorem 6.2 Foragivenn () if u—Bf<C, & L(B)<C, & C, <C,, then for
any n=(r,s) , two  strategies lead to  zero  profit; (i) if

0<C, <p-pf & L(B+k,)SC, & Cy<C, , then n=(r,s)=(0,n) ; (i
if 11— (C, +ﬂ)s%(L(ﬂ) —C,) &L(B)>C, &C,<C,, then n=(r,s)=(n0); (iv)
n

if L(B+kw)>C, &pu—(Cy +ﬂ)>L1(L(ﬂ)—cF) &C, <C, , then flexible and
n+

in-flexible firms may coexist in the market; where k. is the unique solution of the

equation J.;(a—n—ﬂh)f(a)da: Cy+p5.
w n

Proof

Following the proof of Theorem 6.1, we can get Theorem 6.2 directly. o

Theorem 6.2 characterizes the endogenous flexibility for a given # For non-zero
production cost situation, i.e., >0, the endogenous flexibility can be one of three
situations under different capacity costing conditions, as shown in Figure 6.3(a), from
strategic perspective. For zero production cost situation, i.e., =0, only two possible
cases may exist after strategy competition, as shown in Figure 6.3(b). Comparing Figure
6.3(a) and Figure 6.3(b), it is noted that for non-zero production cost situation there is a
region in which all firms switch to FCS, whereas such region does not exist for zero
production cost situation. The comparison emphasizes that production cost creates
opportunity to enhance competitiveness for flexible firms. This implication is in line

with Property 5.2 in Chapter 5 that under certain environments, flexible firms may be
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benefited from increasing of production cost while in-flexible firms always suffer from

increasing of production cost.

C, A
n=(r,s) = n=(r,s) =
n=(0,n) n=(r,s) A/
Lpy—————————— '
B n=(r,s) = |
(0.m)
CFI I n= (n,O) I
D ' |
I
C | I
n=(r,s) = |
co |
n= (re ’ Se ) | Infeasible :
I

| Range |
| I
| I
| I
| I
| I

l ! >

0 u-p L(B) Cy

Figure 6.3(a): Final Equilibrium for non-zero production cost situation with

given 1.
A
Cr A
M ——————————, |
n=(r,s) = B |
n=(0,n) :
(0.n)
¢ D |
n=(r,s) = :
n=(r,,s,) |
Infeasible |
Range :
|
|
|
|
0 u EN

Figure 6.3(b): Final Equilibrium for zero production cost situation with given n.

Figure 6.3: Final Equilibrium with given n.
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6.3 Strategies of Endogenous Flexibility in a Profit-

Driven Market

Since Theorem 6.1 holds for all n€ [1, o), we consider a profit-driven market in this

section to examine the adaptability of our model. The profit-driven market is defined as
a market in which firms have total freedom to join or quit the market, to choose or
switch their capacity strategy, and there is no limitation on the number of firms in the
market. Decisions of firms are absolutely driven by pursuing profit. The Final

Equilibrium of such profit-driven market is expressed as “Stable Market”.

Theorem 6.3 In a profit-driven market, the Stable Market can be characterized as

follows within the area{(C,,C,):0<C, <C.}.

(i) If u—p<C, & L(B)SC, & C, <C,, then no firm will exist in the
market eventually, i.e., n=0;

(if) If L(X(C,)—p)—C, —B>0, ic., above the curve Cr ', then the Stable
Market stays at Case-B n =(0,n), n — o and Hf_,v 0,n) > 0;

(i) If L(B)—C,~(u—C, —B)>0, ic., below the curve Ciy ', then the Stable
Market stays at Case-C n = (n,0), n — o and Hf (n,0) > 0;

(iv) If L(X(C,)-p)-Cy—PB<0 and L(B)—C,—(u—-Cy—-p)<0, ie., area
between Curve-4 and Curve-5, then the Stable Market stays at Case-

Dnz(r,s),n—)oo,s—)oo,r—>oo,Hf—>OandHiV%0. O

Theorem 6.3 points out that the Stable Market is only determined by the market profit
potential. It is interesting that the Stable Market in a profit-driven market is actually a
perfect competition. Theorem 6.3 concludes this and there is no dominant strategy for
all costing environments and both FCS and IFCS may coexist in a market, even the
number of firms is infinite. We draw a conclusion that the perfect competition is

actually a particular case of an oligopoly market with number of firms tending to infinity.

_84 -



Evaluating Flexible Capacity Strategy under Demand Uncertainty YANG Liu

In real business, a firm needs to consider other costs, such as set up costs, fixed costs,
administrative costs, etc, besides capacity and production costs. So, a firm sets a profit
bottom line to ensure its normal operations. As a result, a firm will not stay in a market
with a profit lower than its bottom line. This rule controls a market scale so that the
number of firms does not expand infinitely at whatever capacity costs are. With deep
understanding of the relationship between market trends, endogenous strategy
selections and cost factors, managers are able to determine appropriate strategies
promptly, balance expenses and revenues, sketch a long term development plan, and

avoid involving in marginal businesses.

6.4 (r

e

s,) at Final Equilibrium Involving Two

Strategies

Although Theorem 6.1 and Theorem 6.2 fully characterize the endogenous flexibility, it

is quite difficult to determine the exact numbers of flexible and in-flexible firms
(r,, s,) in area between curves C'v" and C5” . Trying to overcome such difficulties,

we propose an approach to determine the exact numbers of flexible firms and in-flexible

firms (r,, s,) at Final Equilibrium which involves two strategies in this section.

Theoretical justification of the approach is also provided.

Based on the analysis of conditions of Final Equilibrium, we define a function D(r) in
this section so that the conditions can be totally presented in terms of the number of
flexible firms. We define D(r) =I1! (r,n—r)-11Y (r—Ln—r+1), where 1<r<n.
Therefore, the necessary and sufficient condition of the Final Equilibrium can be

rewritten as: D(r) 20 and D(r+1)<0. All curves D(r) =0 wherer € [1, n], if exist,
intersect at point (C,, C,)= (,u—,B, L(ﬂ)) . Given r=r,, r,e[l, n], define
G(«C,, CF|rO) =D(ry) =0, in terms of C, and C,. The existence and properties of

the curve G(C,, C, |r0) = D(r,) =0 is provided by Theorem 6.4.

-85 -



Evaluating Flexible Capacity Strategy under Demand Uncertainty YANG Liu

Theorem 6.4  Givenr=r7,, r,€[l, n], there exists a unique curve satisfying
G(Cy, Cp| 1r,)=D(r,) =0, on which C increases as C, increases; in areas above
the curve D(r))=0, we have G(C,, CF| r,) = D(r,) <0; in areas below the curve

D(1,) =0, we have G(Cy, C,| r,)=D(r,)>0. D

Based on Theorem 6.4, all curves D(r) =0 where re[l, n] intersect at point
(Cy, Cp)=(u—-p, L(B)) . Specifically, consider two curves D(r,)=0 and
D(r, +1)=0 with a given value of r=r,, where r,e[l, n—1]. With respect to
relative  positions of the two curves G(C,, CF| r,)=D(ry;)=0 and
G(Cy, CF| r, +1)=D(r, +1)=0, there are three possible situations: The curve

D(r,)=0 is above, ovetrlap and below the curve D(r, +1)=0. Incorporating the

conditions of the Final Equilibrium, we have the conclusions in Theorem 6.5.

Theorem 6.5 Given # firms, for every ry,e([l, n—1] , consider curves
G(Cy. Cp 7)=D(r,)=0 and G(Cy, C,| r, +1)=D(r, +1)=0 within the area
{(Cy,Cp):Cysu—p & C, <L(P) & 0<Cy<C,} , then the Final
Equilibrium n = (r,, s,)can be categorized into one of the following five scenatios in

terms of the exact numbers of flexible and in-flexible firms.

(i) In areas below curve G(Cy, Cp| 1,)=D(r,)=0 and above curve
G(Cy. Cp| 1, +D)=D(r, +1)=0, we have n=(r,, 5,)=(r,, n—1,);

(ii) in areas above curve G(C,, cF| r)=D(r,)=0 and below curve
G(Cy. Cp| 1, +1)=D(r, +1)=0, we have the Final Equilibrium does

not obtained at r =7,;
(i) if these two curves overlaps, with respect to points on the curves, we have

either n=(r,, s,)=(r,, n—ry) ot n=(r,, s,)=(r,+1, n—r,—1);

(iv) in areas above all curves G(C,,, CF| r,)=D(r,) =0, r,e[l, n], we have
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n=(r,=0, s, =n)=(0, n);
) in areas below all curves G(C,,, CF| r,) =D(r,) =0, r,e[l, n], we have

n=(r,=0, s,=n)=(n, 0). O

Theorem 6.5 shows that the equivalent condition of Final Equilibrium, ie., D(r) 20
and D(r+1) <0, can be reflected by the relative position of the two curves D(r) =0
and D(r+1)=0. Such relationship ensures that theoretically the Final Equilibrium can
be determined in terms of the exact numbers of flexible firms and in-flexible firms.
Specifically, for the two cutves D(r) =0 and D(r+1)=0, all possible situations in
which these two curves have different relative positions are analyzed. As a result, the
exact numbers of flexible and in-flexible firms can be determined theoretically by
considering the two curves D(r) =0 and D(r+1)=0 for all possible values of r.
Theorem 6.5 also concludes that the maximum number of equilibrium scenarios is n+1
as defined in the theorem. With application of Theorem 6.5 under a certain demand

distribution, the exact numbers of flexible and in-flexible firms can be practically
determined by plotting all curves G(C,, CF| r,) =D(r,) =0, where 7, € [1, n]. As
no special assumptions about demand distributions are given, more detailed properties

about the cutve D(r) =0 will be observed under certain demand distributions in the

real decision-making operations.

6.5 Numerical Examples

As a demonstration, the proposed approach is applied to a three-firm model, i.e.,n =3,
under some uniform and exponential distributions, respectively. Table 6.1 provides the

parameters of the examples.
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Distribution Production cost
Distribution PDF f(x) Mean (&)
parameters 5
Uniform f(x)= %, x€[0,b] b =40 20 2
Exponential | f(x)=Ae ™, xe [0,) A=1 1 0.1

Table 6.1: Parameters of numerical examples.

Applying Theorem 6.5 under these two distributions, we obtain very similar patterns of
the curves G(C,, CF‘ r,)=D(r,) =0 where 1, =1, 2, 3, with respect to three
observations: (1) all three curves intersect only at point (C,, C;) = (;l -5, L(ﬁ)); 2)

the curve D(r) =0 moves downward when rincreases; (3) the area in which flexile and
in-flexible strategies coexist is relatively small, comparing to the areas dominated by only

one strategy  (flexible or in-flexible). After plotting all the curves
G(C,, CF‘ r,)=D(r,) =0, r,=123, the endogenous flexibility can be fully

determined in terms of the exact numbers of flexible and in-flexible firms.

Figure 6.4 and Figure 6.5 include all the curves G(C,,, CF‘ r,)=D(r,)=0,1r,=123

under some uniform and exponential distributions, respectively. The Final Equilibrium

of these two examples can be described as follows:

(@) With respect to points on the curves D(r,)=0 (r, =1, 2, 3), the Final
Equilibrium stays at n=(r,,n—1,).

(i1) In the area between D(1)=0 and D(2)=0, the Final Equilibrium stays at
3=(1, 2).

(iid) In the area between D(2)=0 and D(3)=0, the Final Equilibrium stays at
3=2, 1.

(iv) In the area above curve D(1) =0, the Final Equilibrium stays at 3= (0, 3).

) In the area below curve D(3) =0, the Final Equilibrium stays at3=(3, 0).
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n=3 Uniform
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
o1 2 3 4 5 B g8 & 10 11 12 13 14 15 16 17 18 19
Cn
Figure 6.4: Uniform distribution example.
n=3 Exp oase
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Figure 6.5: Exponential distribution example.

It is observed in the numerical examples that the curve D(r) =0 moves downward

when 7 increases. This observation indicates the existence and uniqueness of pure

strategy for competition involving multiple competitors. Based on this observation, we

set:
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Assumption A: The curve D(r) =0 moves downward when 7 increases.

Under Assumption A, Proposition 6.4 is obtained to characterize the endogenous

flexibility.

Proposition 6.4 Given 7 firms and cost parameters, if curve D(r) =0 moves
downward when 7 increases , then pure strategy exists at the equilibrium of the strategy

competition; further, within the area {(C,,C,):0<C, < C,}, we have (1) in the area
above D(1) =0, Final Equilibrium stays at n=(0, n); (2) in areas below D(n) =0,
Final Equilibrium stays at n=(n, 0); and (3) in areas below curve D(r,) =0 and
above curve D(r, +1) =0, Final Equilibrium stays at n = (r,, n—r,).

Proof

Under the assumption that the curve D(r) =0 moves downward when r increases,

Proposition 6.4 can be obtained directly from Theorem 6.4. o

Under the assumption extracted from the numerical examples, Proposition 6.4 further
describes the Final Equilibrium of a two-strategy oligopoly competition. It indicates
endogenous flexibility follows a pattern as shown in Figure 6.6. It shows that the
number of flexible firms at the Final Equilibrium can be any number from O to z This
finding emphasizes the complexity of the endogenous flexibility in an oligopoly
competition; on the other hand, the pattern of endogenous flexibility reveals a regular
order of the endogenous flexibility. In areas between the curves D(1) =0 and D(n) =0,
for a given in-flexible capacity cost, more firms switch to flexible firm as flexible
capacity cost decreases. Comparing to the areas with only one strategy, the area with
two strategies coexisting is relatively narrow. This conclusion can be helpful in partially
explaining that, in some industries, even though two strategies are available, all firms use

the same strategy.
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D(1)=0
D(2) =0
D(3)=0

D(4) =0

Infeasible

Dn-1)=0 Range

D(n)=0

0 u—p LB c,

Figure 6.6: Oligopoly endogenous flexibility under Assumption A.

The conclusions of endogenous flexibility enable managers to choose the correct
strategies and predict the eventual market status. Moreover, the additional profit by
capacity investments can be calculated. The complexity of endogenous flexibility
reminds managers to be very careful in choosing the strategy since the beginning of the
competition. Further, making analysis of the current status and eventual equilibrium

prevent firms from involving in marginal business.

-91 -



Evaluating Flexible Capacity Strategy under Demand Uncertainty YANG Liun

Chapter 7
Modeling FCS with Flexibility Degree

In previous chapters, a firm’s capacity strategy is either FCS or IFCS. With FCS, a firm
is able to adjust its production quantity from zero to its capacity; while a firm with IFCS
has to produce the quantity equal to its capacity. However, observation from the reality
is that a large number of firms, if not the most, adopt a mixed strategy which is in
between the two extremes: chase strategy (FCS) and level strategy (IFCS). Firms
adopting the mixed strategy have the flexibility to adjust their throughput to some
extent, but within limited ranges. Aiming at quantifying firms’ abilities in adjustment,
and distinguishing different performance of firms> FCS implementation, this chapter
proposes the concept of Flexibility Degree to measure the FCS implementation. The
flexibility degree is defined as the percentage of the difference between a firm’s
production upper bound (total capacity) and production lower bound (guaranteed or
unchanged production level) over its total capacity. It reflects the extent to which FCS is

exploited.

This chapter consists of 3 sections. Section 7.1 formulates flexibility degree in a
monopoly model under demand uncertainty. With a given flexibility degree, the optimal
decisions on total capacity and production quantity are derived in this section. Section
7.2 establishes a duopoly model in which two firms with different flexibility degrees
compete with each other under demand uncertainty. Section 7.3 provides some
numerical examples to demonstrate the theoretical results and get an intuitive
understanding of the flexibility degree effects on the optimal total capacities of two

firms in a competition.
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7.1  Flexibility Degree Concept

7.1.1 Notations and assumptions

We follow the notations used in Chapters 5 and 6, except that the superscripts {F, N}
of variables in this chapter are deleted. It is because from a general perspective, all firms
are supposed to be flexible firms with their own flexibility degree; and even firms
adopting IFCS can be considered as a flexible firm with zero flexibility degree. This
chapter aims at figuring out the relationship between firms’ decisions, their own
flexibility degree and their rivals’ flexibility degrees in a competition. However,
according to the results of Chapters 5 and 06, the additive inverse function results in zero
capacity with a large chance under various environments. Therefore, the additive inverse
demand function is not the best choice to achieve the objective of study in this chapter.
Instead, we adopt in this chapter the multiplicative inverse demand function, which has

been widely used in the literature (e.g,, Anupindi and Jiang, 2008). Specifically,
pa,Q)=a(a—Q), where Q = Zqi , 1€ Q, is the total production quantity in the

market, and a is a large enough constant so that a>2k , a>3maxik,,k,},

B+Cy 6(f+C;)
Y7

a>""—F + max{k,,k,} and a > , where k is the production capacity for

monopoly case, and k, and k, are the production capacities for duopoly case.

7.1.2  Demonstration of flexibility degree concept

Inspired by the widely used mixed strategy in reality, which is actually in between the
level strategy and the chase strategy, we construct a new model as shown in Figure 7.1.
This figure also shows the decision variables, quantities and constraints at each decision-

making stage.
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Real Demand
Information
[ Demand
| Satisfied
Firm with |
flexibility I |I ] I I >
d
egree v time
Capacity Production Production Responsive
Decision Decision -1 Decision-1I Pricing
Determining a
variables k 4q; 9n p(2.0)
Total \A /
quantities at — p(a,0)
each stage k 4=49; " 4u
Constraints at £
each stage k>0 g, <q< k p(a,Q)

Flexibility _
Degree n= k k% -100% :( —%)-100%

Figure 7.1: Decision-making process of a firm with flexibility degree.

As shown in Figure 7.1, the production stage is divided into two sub-stages, namely,
production decision-I and production decision-II. Let g, and g, be production
quantities at production decision-I and production decision-II, respectively. The total
production quantity is ¢ =¢q, +¢q, . At the stage of production decision-I, there is a
stable production level g, which does not change under fluctuating demand. At the
stage of production decision-II, the production level g,, is affected by the fluctuating

demand. After knowing the real demand, a firm is able to make production adjustment

to maximize its ex-post profit under the constraint of the allowable capacity.
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Since g, 1s a stable production level, the allowable adjustment range at the production
decision-1I stage is ¢, € [0,k—¢q,] . Accordingly, the total production quantity
q=q, +q, is within the range g€ [g,,k]. The maximum adjustment of production
level is k — g, . This adjustment range reflects a firm’s ability in making adjustment of its

actual production level. Based on such relationship between the maximum adjustment

and a firm’s ability to wvary its throughput, Flexibility Degree is defined as

k_
n= k‘fl .100%:( —%j-loo%. Define m=%, me [0, 1], to be the In-

flexibility Degree. The flexibility degree 7) can be expressed in terms of the in-
flexibility degree, ie., § =(1—m)-100% . The relationship between flexibility degree
and in-flexibility degree can also be presented as 7 +m =1. The definition of flexibility

degree and in-flexibility degree are formally provided below.

Flexibility Degree is defined as a percentage of the difference between a firm’s
production upper bound (total capacity) and production lower bound (guaranteed or
unchanged production level) over its total capacity.

In-Flexibility Degree is defined as a percentage of a firm’s production lower bound

(guaranteed or unchanged production level) over its total capacity.

Similar to the analyses in the previous chapters, mathematical formulation of this
problem involves a three-stage decision-making process, which is presented in the

following section.

7.2 FCS with Flexibility Degree in a Monopoly
Model

In a monopoly model, a firm needs to determine its optimal capacity and optimal

production quantity with a certain flexibility degree. Given a firm’s in-flexibility degree
me [0, 1], its flexibility degree is 77 =(1—m)-100% . For example, a firm and its

retailers sign a contract to ensure their deal like this: the firm guarantees 80% of product
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supply regardless of costing or market situations; the rest 20% of product supply is

determined by firm itself to respond various market situations.

7.2.1 Capacity decision stage

At capacity decision stage, a firm determines its capacity to maximize its expected profit
of the whole decision-making process. The capacity is also the maximum of a firm’s

production ability. The capacity decision can be formulated as
Max TI(k)= j :q(a(a —q)-B) f(@da—C,k, st k>0, (7.1)

where ¢ is the optimal solution in the production decision stage.

7.2.2 Production decision stage

At the production decision stage, a firm’s production quantity is bounded by
mk < g < k. With any given demand realization @, a firm aims to maximize its ex-post

profit by determining the production quantity, which is formulated as
Max #(q)=a(a—q)q—Pq, st. mk<qg<k. (7.2)

A smaller m indicates a larger span of production quantity adjustment, and vice versa.
Based on the formulations at capacity decision and production decision stages, the fully
FCS discussed in Chapters 5 and 6 can be formulated by settingg, =0, i.e., 7 =100%;
while IFCS can be formulated by setting g, =k, ie, 7 =0. Any other percentage
between 0 and 100 represents a firm’s flexibility capability between IFCS and FCS.
Therefore, the flexibility degree reflects the extent to which FCS is exploited by
formulating the adjustment span of a firm’s production decision. The optimal capacity

and production quantity of a firm with a given in-flexibility degree me [0, 1] in a

monopoly model is provided by Theorem 7.1 below.
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Theorem 7.1 In a monopoly model with m e [0, 1], we have:

(i) The optimal capacity k~ satisfies 0< k” <% and

j : m(a(a—2mk") - B) f(@)da+ j : (a(a-2k")-B) f(@)da=C,.

mk’, O<a<a,
(i) The optimal production quantity ¢ =1g,, a, fa<a,.
Kk, a,. <a
(iii) The optimal profit is
M=["mk'V'of @da+ [ (g,  of (da+ [ &) of (@de,

B B B

1
hete @, =———, &, = _and g, ==(a-E
whete a=-2mk"" % a-2%k" anc 4 2(a o

). O

v

R >

0

a-—2k a—2mk

Figure 7.2: Optimal production in a monopoly model.

With in-flexibility degree m , a firm’s allowable adjustment range is mk <g<k .

Theorem 7.1 shows that the optimal production of the firm is a three-piece function. By

using ¢ andﬁ as coordinates, the production pattern can be plotted in Figure 7.2. A
a

larger @ indicates a smaller value of ﬁ In particular, when m =1, the production
a

curve is a straight line g = k which is the situation of no flexibility at all. When m =0, a
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production is possible for any value within [0, k] which is the situation of full

flexibility.

7.3 FCS with Different Flexible Degrees in a
Duopoly Model

In this section, we establish a duopoly model to consider the effects of competition on

FCS. Subscript i is used to describe firm 7 i =1,2. The total production quantity equals

the sum of product produced by the two firms, i.e.,, Q =g, +¢g,. Therefore, with the
application of the market clearance rule, the demand inverse function is

p(O.a)=a(a—-Q)=a(a-q, —q,). Note that a > g, + g, in this model.

7.3.1 Individual optimal production quantities at the

production decision stage

At the production decision stage, each firm determines its own production quantity with
given in-flexibility degree m; € [0,1] and capacityk, 20, i =1, 2. The formulation of
each firm’s production decision is:

Max 7,(q;) = ea—qs,; = q,)9; = B4,

st. mk, <q, <k, i=12. (7.3)

Proposition 7.1 In a duopoly model with 0 <m,,m, <1, the optimal production

mk, O<a<a,
capacity of firm i, given k,,k, and ¢, ,, is ¢, =14, o, <a<ay, fori=1, 2,
k;, Op <
where g, =l(a—£—q3_,-) , ay Y Oy I A
2 a-2mk, —q,._, a—-2k;—q,,
i=1 2. O
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7.3.2 Individual optimal capacities at the capacity

decision stage

At the capacity decision stage, both firms determine their own capacities to maximize

their respective profits under their flexibility restrictions. Consider firm i€ {1,2}, given
0<m,; <1 and the rival’s production quantity g,_,, the capacity decision of firm i can

be formulated as follows.
Max T1,(k) = [ (@a-qy—4))a; = fa) f (@) da-C,k,,
st. k, 20, (7.4)

where ¢; is the optimal production of firm 7 at the production decision stage.

By Proposition 7.1, from (7.4), the optimal expected profit at the capacity stage for firm
i is

IT, (k;)

= Sk (aa=g,,—mk)=B) f(@)da+ | "gp(@a-g,,~q,)- B f (@da

+J.; (a(a—q,; —k)k,— pk,) f(@)da—C k. (7.5

Proposition 7.2 below characterizes the optimal capacity from the perspective of each

individual firm.

Proposition 7.2 In a duopoly model with 0 <m,,m, <1, given the production

quantity of firm i’s (i€ {1,2}) rival g,_;, we have:

(i) Firm i’s optimal capacity k, satisfies 0 <k’ <479 and
! 2

[ m(aa=q,,~2mk)=p)f@da+[ (@a=q,,~2k)~pf@da=C,
(ii) Firm i’s optimal profit
I, = [ k) of @da+ [ "(q,) of (da+ [ () of (@)da,
B

1
where qibza(a—g—q3_i) , au:a—2mk*—q and o, =
i 3—i

b
a-— 2ki* — 45

b

i=1 2. O
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From the perspective of each individual firm, Proposition 7.2 provides the optimal
capacity and optimal profit a firm, given the rival’s production quantity. It can be seen
that each firm’s decisions are affected by its rival and the interplay between the two

firms is complex.

To simplify the presentation, we will drop the superscript (*) of the individual optimal
production quantities and capacities when we discuss about the Nash equilibrium in the
following. Furthermore, without loss of generality, we will assume m; <m, in the

discussion.

7.3.3 Nash equilibrium production quantities (¢,,q,) with

iven 0<m, <m, <1
1 2

To find out the Nash equilibrium production quantities (g,,q,), it is necessary to
compare the upper and lower bounds of the two firms’ individual optimal productions.
Without loss of generality, we assume 0 <m, <m, <1. It indicates that at production

stage, firm 1 has a larger portion of its capacity to make adjustments of the production
quantity than that of firm 2. According to the ranking of the upper and lower bounds of

the two firms, a total of five possible cases may occur under the assumption

0<m, <m, <1 . Proposition 7.3 below provides the Nash equilibrium solution

(4, ¢q,) in each case.

Proposition 7.3 In a duopoly model with 0 <m, <m, <1, given the capacities of the
two firms k;, 20 and k, 20, the production quantities of the two firms (q,,q,) at

equilibrium are as follows.
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i  If myk, <k, <mk, <k, then

(mk,,myk,), 0<a< p
a—mk, —2m,k,
(mk, s Gy 1)s p sa< p
a—mk, —2m,k, a—mk, -2k,
B B
=<(mk,, k,), — << ———
(@02 = Ik, k) a—mk, —2k, a—2mk, —k,
(Gup-3-k), Lga<L
a—2mk, —k, a—2k —k,
(k,, k,), s <a
a—2k, —k,
i) If mk, <mk, <k, <k, then
(mk,,myk,), 0<a< p
a—mk, —2m,k,
(myky, gy 1) b s b
a—mk, —2m,k, a—3mk,
B . B
= b — b —_— a
(91-9,) =112 G2p) a—3mk, a—3k,
B B
Jky), <a
sk = ok
k) —P <
a—2k, —k,
(i) If mk, < mk, <k, <k,, then
(mk,,myk,), 0<a< p
a—2mk, —m,k,
(G112 Mk5), 5 sa b
a—2mk, —m,k, a—3m,k,
B B
= s -2 /s S o
(91>9,) =1 (@1p-2> G2) a—-3mk, a—3k,
B B
k), <«
R T e s
(k;, k,), _5 <a
a—2k —k,
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iv) If mk, <m,k, <k, <k,,then

(mk,,myk,), 0<a<

(qlb—l 4 m2k2 )’

_ ), <a<
(9,-9,) =12 G2p-2) a—3mk, a-3k,
B B
k R 2), fa<
(kys q2p3) a—3k, a—k, -2k,
(ky, k), S sa
a—k, -2k,

V) If mk <k <mk, <k,,then

(mk,,myk,), 0<a< b
a—2mk, —m,k,
(qlb_l, m2k2 ), ﬂ <a< L
a—2mk, —m,k, a—2k, —m,k,
B B
=<(k,,myk,), <a< ,
(- 42) (k) a—2k, —m,k, a—k, —2m,k,
(kl’ qd>,3 )7 IB <a< ﬁ
a—k, —2m,k, a—k, -2k,
kiky), —— P <a
a—k, =2k,
1 1 1
where  q,,, =—(a—myk, _ﬁ) s Gy, ==(a _ﬁ s Qus =—(a—k, _ﬁ) >
2 o 3 o 2 a
1 1 1
Qop = (@—mk, _ﬁ)’ Grp-2 :_(a_ﬁ) and ¢,, 3 =—(a—k, _ﬁ) |
2 o 3 o 2 a

Proposition 7.3 provides five possible cases of the optimal productions at equilibrium.
Among these five cases, Case (1) and Case (v) are symmetric; and Case (i) and Case (iv)
are symmetric. The patterns of optimal production quantities for firm 1 and firm 2,

respectively, in each situation are plotted in Figure 7.3 - Figure 7.5.
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Case i)  myk, <k, <mk, <k,

w =a-2k —-k,, w,=a-2mk, —k,, o, =a-mk, -2k,, @, =a—-mk, —2m,k,

B B

1 1
s =—(a—k,—=), gy, == (a—mk, ——)
2 a 2 o

Figure 7.3: Optimal production quantities in situation m,k, <k, <mk, <k,.

Case (i) myk, <mk, <k, <k,

R >

w =a-2k —k,, w,=a-3k,, o, =a-3mk,, &, =a—-mk —2m,k,

1 1
’B), 91p-2 :_(a_ﬁ), 92p-2 :_(a_ﬂ

1 1 Jij
91/773:3(‘1_]‘2_; 3 E 3 ;), QZh—IZE(a_mlkl_;)'

Figure 7.4: Optimal production quantities in situation m,k, < mk, <k, <k;,.
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Case (i) mk, <myk, <k, <k

=
v
R ™

@, W, @, @,

w =a-2k —k,, @, =a-3k,, &, =a-3myk,, @, =a—-2mk, —m,k,
1 1 1
qys3 =—(a—k, _ﬁ), 91— =—(a—£), Gy = —(a—m,k, _ﬁ)’
2 o 3 a 2 o
B
(04

1
92p-2 =§(a— ).

Figure 7.5: Optimal production quantities in situation mk, <m,k, <k, < k.

As shown in Figures 7.3 - 7.5, the ranking of two firms’ production upper and lower
bounds affects two firms’ production decisions. As reflected by the figures, production
decision functions can be very different from case to case. However, the commonality
of these five cases is that a firm’s production function composes of three parts: the

lower bound, the middle part and the upper bound. Specifically, the middle part which
can be one-piece, two-piece or three-piece functions are strictly decreasing in —, i.e.,
(44

strictly increasing in demand realization @ . It means that no matter which case, within a
range of production quantities, more products are produced when demand increases,

until it reaches the maximum capacity.
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7.3.4 Nash equilibrium capacities (k, k,) with given

0<m, <m, <1

From Proposition 7.2, at Nash equilibrium, (k,k,) satisfies 0<k <39 and
' 2

" (k,)=0, i=1.2; further, (¢,,q,) satisfies Proposition 7.3, which has 5 possible

situations as illustrated in Figure 7.6 for the case of m, #0.

Figure 7.6: Five possible situations under duopoly equilibrium for the case of
m, #0.

By Propositions 7.2 and 7.3, each situation can be specifically characterized by the

following Claim 7.1.

Claim 7.1 Given 0 <m, <m, <1, there are five possible situations of the optimal
capacities of two firms at equilibrium. The five situations are:

(i) Situation A m,k, <k, <mk, <k,
" (k) = j : ma(a—2mk, —m,k, —g) foda

B

[ “Lmata-3mk ~2) f@da + [ mata—2mk ~k,~ L) f(@)da
o, D o 2 @

'B)f(a)da—CF,

[ a(a =2k —k, =
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H(zl)(kz) = J.:“ m,0(a—mk, —2m,k, _g)f(a)da
o _ _ _ﬁ akll _ _ﬁ
+| . a=mk =2k, =) f()dar + | o5 =3k =) f(@)da

+j: a(a—kl—2k2—§)f(a)da—CF,

S A AR —
a—2mk, —k, a—2k, —k, a—mk, —2m,k,
=P
a—mk, —2k,

(i) Situation B myk, <mk, <k, <k,

I (k) = [ mya(a—2mk —myk, —g)f(a)da

a, 1
+| . Mea=3mk, —g) flada

+j: a(a—2kl—k2—g)f(a)da—CF;

Y (k) = [ myata—mk, —2mk, —g)f (@)da
(L ota—3t,-8) parda
ag, D o

+j: a(a—kl—2k2—§)f(a)da—CF;

where @, :—ﬂ , Oy :—'B ;o O, = p ,
a—3mk, a—2k —k, a—mk, —2m,k,
B
Oy, = .
a—3k,

(iii) Situation C  mk, < mk, <k, <k,

I (k) = [ ma(a—2mk, —mk, —g)f(a)da

+j: a(a—2k1—k2—§)f(a)da—CF,
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1Y (k) = [ maa—myk, —2myk, —g) f(@da
+ L, —mza(a 3m,k, 'B)f(a)da + j —a(a—-3k, —ﬁ)f(a)da
[ a(a—k1—2k2—£)f(a)da—CF,
73 (94

B B B

e P (harier e S gl
a—2nyKy —Nyk, a— 2Ky =Ky a—2om,K,

ﬁ .
a—3k,

R2 ™

(iv) Situation D mk, < myk, <k, <k,

I (k) = [ ma(a—2mk, —mok, —g)f(a)da

+[™ ‘o— (a 3k, —ﬁ)f(a)da+J a(a 2k, —k, —ﬁ)f(a)da Cr,

e73}

H(zl) (k)= J:Ll m,a(a—mk, —2m,k, — g)f(a)da
(7%} 1
+| 5 Me0a=3mk, = g) f(oda
+j°° a(a—k, -2k, —ﬁ)f(a)da—cF,
Or> (04

B B B

Where aLl = 5 aRl = 5 aLZ = >
a—2mk, —m,k, a—3k, a—3m,k,

s
a—k, -2k,

R2 T

(v) Situation E mk, <k, <m,k, <k,

I (k) = [ mata—2mk, —mok, —g)f(a)da
+| “ a(a -2k, —myk, _B, fleyde
73} (94

+ja Sata=3k —ﬁ)f(a)da +j a2k -k, —ﬁ)f(a)da C,,
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H(zl)(kz) = J.:L] m,o(a—mk, —2m,k, _g)f(a)da

B

a1
+| M@ =3mk =) f(@)da

+ [ myata—k ~2mk, —g) f(@da

Py rayda-c,

o

B B B

vhere O =k ks T T ok —mk T T a2k
a— 2nyKy —myk, a— 2k —myk, a—ky —zmyk,

B
a—k, —2k,

+[ " ata—k -2k, -

>

aR 2

Claim 7.1 shows the complexity of the equilibrium. It seems that there are five possible

equilibriums depending on the ranking of the two firms’ lower and upper bounds. This

gives rise to one question: Does each of the possible equilibriums exist? Therefore, how

to verify these five possible equilibriums is a key to find the actual equilibrium and the

resulting solutions.

7.3.4.1 Duopoly with symmetric flexibilities m, =m,

We consider the situation of m; =m, =m, 0<m<1.

Theorem 7.2 Given m; =m, =m, 0<m<1, then

0
()
(i)

(iv)

the optimal capacity of firm 1 and firm 2 are k, =k, =k, at equilibrium;

k,is decreasing in m € [0,1], i.e., k,is increasing in flexibility degree 77, 7 =1—m;

k, <k <k, where k, satsfies [ 5 (@(a=3k)—pB)f(@da=C, and
a=3k,
kf - l (a— CF—+'B) ;
3 U

The expected profit of each firm is II, =II, =II,, where
H_a—fmk k)2 d 1% B d T k2 d
e—fo < (mk,)"of () a+§f ) @-SVaf@da+ |, Ko (@da

a=3mk, o a=3k,
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and k, satisfies

A o
mjdo-”"ke (a(a—3mk8)—,b’)f(a)da+ji(af(a—3ke)—,3)f(05)d05=CF- 0

a-3k,

Theorem 7.2 provides that two firms always make the same decisions in an uncertain
market as long as they have the same flexibility degree swinging from zero to 100
percent. Specifically, a higher flexibility degree leads to a larger amount of capacity of
each firm at the equilibrium. When two firms both have no flexibility at all, ie.,
m, =m, =1, they have the lowest capacity k, which is still larger than zero. It means
with the same flexibility degree, it is impossible that both firms do not make capacity

investments.

7.3.4.2 Duopoly with asymmetric flexibility

In the following, we make analysis of each situation to determine the optimal decisions
of each firm. Due to analytical complication of situations A - C, the analyses of situation

D and situation E are provided first.

Proposition 7.4  Given 0 <m, <m, <1, then the optimal solution (k;, k,) is not in

situation E. |

Proposition 7.5  Given 0 <m, <m, <1, then the optimal solution (k;, k,) is not in

situation D. m|

Proposition 7.4 and Proposition 7.5 rule out situation D and situation E, which point
out that if m; <m,, then there must have k; 2 k,. That means the firm with larger
flexibility degree always make capacity investment not less than that with a smaller
flexibility degree. Using the similar ways of proofs of Proposition 7.4 and Proposition
7.5 it cannot rule out any one situation among situations A - C. Focusing on the analysis
of situations A - C, it is found that the optimal solutions only occurs in situation C as

long as 0<m,; <m, <1. Together with Proposition 7.4 and Proposition 7.5, the
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optimal solutions of capacity and production decisions of two firms only occur in

situation C. This is formally presented in the following Theorem 7.3.

Theorem 7.3 Given 0<m, <m, <1,

0 if j;a(a—ﬁ)f(a)das C,,then k, =k,, =0and II, =1, = 0;
” o

le;

i) if I;a(a—g)f(a)da> C,,then k, >0, k,, >0 and "2k, <k, <k

2

(ii-1) the optimal productions (g, g,) are

(mk,  myk,), asa

(G Myky), O, <a<a&p,
(qf q;) =G Ga)s O SAS Oy,

(4,5 ky), Oy <O <Oy,

(k, k,), o <a

(ii-2) the optimal capacity decisions (k;, k,)=(k,,, k,,) at equilibrium satisfy

P 5 r@aa=c,

2e

| :“mla(a—2mlk —m,k, _b ) f @da+ j aa=2k, -
and

[ mata—mk,—2myk, _b O @da j —mzaf(a 3mk,, -2 5 r@da

+ ’“la( —3k2€—g)f(a)dmj;a(a—kle—2k26—§>f(0’>d“=cf;

75

(ii-3) the optimal profits of firm 1 and firm 2 are

I, (k) = (mk)’ [ ' of @da+ [ g7, of (da+[ g}, of (@)da
+[ Mg of @da+ [ Kof @da;

I, (k,) = (mok,)* [ of (@)da+ [ g3,of (@)dar+ [ Kof (@)da:
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1 1 1
where %b—lza(a_mzkz_g) ) %b—zzg(a_g) ) qlb—3:§(a_k2_§) >

B B B
‘hb:_(a_g);au_ Op =77 O =""",

3 T a-2mk, —mk,,’ a—-2k, —k,

e

k,
A
k, =k,
=M
C k2 - m2 kl
> k,
0

Figure 7.7: The equilibrium of the duopoly competition.

Theorem 7.3 characterizes the equilibrium of an asymmetric duopoly competition
model under demand uncertainty. Given two firms’ flexibility degrees 0 <m, <m, <1,
the equilibrium only occurs in Case C, i.e., mk, < m,k, <k, <k, as shown in Figure

7.7.

7.4 Numerical Examples

(B+Cp)
yZi

this assumption, we can assure that the unique equilibrium only occurs in Situation C.

It is noted that during the proof of Theorem 7.3, we assume a =6 . Under

However, trying to investigate of the generality of the model, we use a numerical
example that does not satisfy this assumption to testify the model and its conclusions

and get an intuitive image. The basic parameters are listed in Table 7.1.
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Parameter of the inverse | Production Capacity Demand distribution
demand function cost cost function
a B Cr f(x)
10 2 3 f(x)=e*, xe[0,)

Table 7.1: Parameters of numerical example.

7.4.1 Feasible solutions in situations A - E

We first test the optimal capacities of two firms under various in-flexibility degrees

(m,,m,), as shown in Figure 7.8

K1=0.8K2

Figure 7.8: Optimal capacities (k,,k,) with given various (m,,m,).

Figure 7.8 shows the optimal capacities (k,,k,) with any given in-flexibility degrees
(m,,m,). It verifies that the optimal capacities (k,,k,) only occur in situation C, ie.,

mk, < myk, <k, < k,. In other situations, there is no feasible solution. Moreover, for
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any given pair of in-flexibility degrees (m,,m,), the equilibrium is unique. Solutions of
the optimal capacity at equilibrium fall into a limited closed area in situation C. It can be
seen that when two firms have the same flexibility, i.c., m, = m,, their optimal capacities
are in the line k; = k, meaning that two firms have the same capacity. Moreover, it can
be observed that at equilibrium, the optimal capacity of firm 1 increases as its own

flexibility degree increases, i.e., an decrease of m,; while it decreases as the flexibility
degree of firm 2 increases, i.e., a decrease of m,. The situation of firm 2 is symmetric to

that of firm 1. Therefore, as seen in Figure 7.8, when m; =0and m, =1, firm 1 has the

highest capacity while firm 2 has the lowest capacity. Also, it is noted that all capacities
of the two firms are larger than zero. It means under this multiplicative demand
structure, the market always have the profit potential. It is interesting to find that all

results derived from the numerical example do not satisfy the assumption

+C
a2 6M, but are completely consistent with the conclusions of Theorem 7.3,
U
e , B+Cr) . , ,
which is derived under the assumption a =2 6———. This observation verifies the
U

significant generality of the model and its conclusions derived.

7.4.2 Effects of flexibility degrees on the optimal

capacities

Given 0 <m, <land 0<m, <1, Figure 7.9 plots the respect capacity of each firm.
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K1 for any m1 and m2

Figure 7.9(a): Firm 1’s capacity k, under various in-flexibility degrees (m,, m,).

K2 for given m1 and m2

Figure 7.9(b): Firm 2’s capacity k, under various in-flexibility degrees (m,, m,).

Figure 7.9: Capacities k, and k, under various in-flexibility degrees (m;, m,).

It can be seen that with any fixed m;, 0 <m, <1, firm 1’s capacity k, is increasing in

m,. It means firm 1’s capacity increases as firm 2’s flexibility degree (1—m,) decreases.
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On the other hand, with any given m, , firm 1’s capacity increases as it own flexibility
degree (1—m,) increases. In other words, with identical capacity unit cost and

production unit cost, a firm benefits from its own increasing flexibility degree and/or

the rivals’ decreasing flexibility degree. The highest capacity of firm 1 occurs when

m, =0 and m, =1; while the lowest capacity of firm 1 happens when m, =1 and
m, = 0. Moreover, it is noted that with a fixed m,, the capacity of firm 1 is only

affected by m;,. Similarly, with a fixed m,, the capacity of firm 1 is only affected by m,.
However, it can be seen that the difference between firm 1’s highest capacity and lowest

capacity with a fixed m, is larger than that with a fixed m,. This indicates that the
capacity of firm 1 is more affected by m, than m,. The capacity of firm 2 under various

flexibilities (m,, m,) is symmetric to that of firm 1, as shown in Figure 7.9(b).

Figure 7.10 plots the total capacity of the two firms under various in-flexibility degrees
(m,, m,). It can be seen that with fixed in-flexibility degree m,, the total capacity of
the two firms decreases with m,, and vice versa. Therefore, the total capacity of two
firms increases with an increase in the sum of two flexibility degrees (2—m, —m,), i.e.,
an decrease of m, +m,. This is consistent with the Figure 7.10, in which the highest
total capacity occurs when m;, =0 and m, =0, and the lowest total capacity occurs

when m; =1 and m, =1.
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K1+K2 for given m1 and m2

m2

flexibility degrees

rious in-

Total capacity of two firms under va

Figure 7.10

(m,, m,).
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Chapter 8

Conclusions

To hedge against demand uncertainty, chase strategy has been popular in real business.
Using chase strategy, a firm is able to produce the optimal production level after
knowing the actual demand information. However, a number of firms still advocate that
the traditional level strategy enables a firm to keep a stable production level.
Furthermore, an increasing number of firms adopt mixed strategy, which is in between
the chase strategy and the traditional level strategy. Inspired by these actual operational
strategies in reality, this thesis aims at constructing a theoretical research framework and
conducting comprehensive analyses of these strategies. The prevailing chase strategy is
formulated as flexible capacity strategy (FCS) while the traditional level strategy is
treated as in-flexible capacity strategy (IFCS) throughout the thesis. This study

investigates FCS from four different perspectives.

There are 5 sections in this chapter. Sections 8.1 - 8.4 sequentially summarize results of
investigations of FCS from four aspects respectively: evaluation of long term FCS, FCS
in an asymmetric oligopoly competition, endogenous flexibility of FCS in an n-firm
competitive market and modeling FCS with flexibility degree. Section 8.5 suggests some

the future research directions.

8.1 Evaluation of Long Term FCS

First, the study evaluates the long term FCS by considering a long term production cost
structure. The improvement of the production cost structure can be achieved by
increasing technology level of the existing plants, i.e., flexible technology investment.
Flexible technology investment improves the total production cost structure while
flexible capacity investment postpones the production quantity decision until after
knowing the actual demand. In our model, a firm first chooses its production strategy

that consists of investment decisions on flexible technology and flexible capacity, and
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then it makes the respective operations decisions. A total of five production strategies
are formulated and the optimal decision variables of each strategy are solved. With the

comparative analysis between different strategies, we draw the following conclusions.

1) The sequential investment effect does not exist if both flexible technology and

flexible capacity are invested in.

2) More flexibility cannot guarantee more profit, which may even be worse-off under

some environments.

3) Flexible technology always yields the same or a higher profit for a firm, while
flexible capacity investment can be beneficial or harmful to a firm depending on the

costing environment.

4) The optimal investment decision is either flexible technology or flexible capacity in

different costing environments for a firm that makes only one investment.

5) The NT+NC strategy is a lower bound for the T-only strategy, and the C-only

strategy is a lower bound for the T+C strategy.

6) The unique optimal strategy can be any one of the five possible strategies, i.e.,
NT+NC, T-only, C-only, T+C or C+T strategy, depending on the investment

costing environment.

8.2 FCSin an Asymmetric Oligopoly Competition

Second, focusing on the competition factor, the study investigates FCS in a two-strategy
asymmetric oligopoly competition model with demand uncertainty in a competitive
market consisting of 7 flexible firms and sin-flexible firms. All firms compete with each
other in the same market at the same price, which is determined by the demand and the
total production quantity in the market. By characterizing the equilibrium of the

asymmetric oligopoly competition, we draw the following significant conclusions:
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1) Firms adopting the same strategy always make the same decisions at equilibrium

regardless of number of firms adopting each of the two strategies.

2) We analytically identify the equilibrium of a competition consisting of r flexible
firms and s in-flexible firms to demonstrate different ways of how a firm’s decisions

are affected by flexible and in-flexible firms in the same market simultaneously.

3) Increasing production cost damages in-flexible firms, but benefits flexible firms in a

strategy-coexistent market under certain capacity costing conditions.

4) Total capacity in a market is driven by market profit potential in to a bounded range,

regardless of number of firms in the competition.

5) We identify different environments in which whether FCS or IFCS is the optimal

strategy.

8.3 Endogenous Flexibility of FCS in an n-Firm

Competition

Third, to address the issue of firms switching strategies, we investigate endogenous
flexibility of FCS in a competitive market involving totally #» firms and two available
strategies, FCS and IFCS. In the model, firms are able to freely choose and switch their
strategies to augment their profits. When any one firm switches strategy, the profit of
other firms is affected apart from its own. Furthermore, it may cause other firms to
switch strategies and consequently, the entire market structure may be re-organized.
Such strategy switching movements continue until no firm switches its strategy if there
are no other firms making changes of their strategies. This is an equilibrium called

“Final Equilibrium” in this study. A few important conclusions drawn are shown below.

1) It is found that the eventual surviving strategies are insensitive under certainty

costing environments while sensitive to # under other costing environments. We
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also identified these sensitive environments and insensitive environments. In
sensitive environments, two strategies coexist when 7 is small, but only one strategy

left in the market when 7 becomes large.

2) Production cost is proved to be one of the key factors in determining the eventual

surviving strategies at Final Equilibrium.

3) Allowing firms to freely join in or quit the market, it is shown that the market
eventually becomes a perfect competition when the number of firms tends to

infinity.

4) To meet the real desire of decision-making operations, a practical approach is
proposed to determine the exact numbers of flexible and in-flexible firms when
demand distribution is given. The theoretical justification and numerical example

demonstration have also been provided.

8.4 FCS with Flexibility Degree in a Duopoly

Competition

Last but not least, aiming at quantifying firms’ implementation of FCS and formulating
the widely used mixed strategy, we propose the concept of flexibility degree. We further
establish a duopoly competition model in which two firms compete with different
flexibility degrees. A firm’s production stage is composed of two sub-stages: first-
production stage and second-production stage. In the first-production stage, a firm has a
stable production level which is not affected by uncertain factors. In the second-
production stage, the production level is adjustable under the capacity constraints. By
measuring the adjustment production range over the total capacity, the flexibility degree
reflects a firm’s ability in adjusting production level to hedge against demand uncertainty.
Therefore, the flexibility degree indicates the extent to which the FCS is implemented.
By characterizing the equilibrium of an asymmetric duopoly competition model with

demand uncertainty, we draw a few conclusions as follows.
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D

2)

3)

9

5)

Full FCS is a particular case of a general capacity strategy with a flexibility degree of
100%; and IFCS is a particular case of a general capacity strategy with zero flexibility

degree.

In a symmetric duopoly model in which two firms have the same flexibility degree,
two firms make the same decisions at equilibrium. Furthermore, the individual

capacity and profit increases with the flexibility degree.

In an asymmetric duopoly model in which two firms have different flexibility
degrees, the unique equilibrium is characterized with the analytical solutions. We
also identify the relationship between flexibility degrees of two firms, their capacity

decisions and their profits. There is an inclusive rule of the equilibrium solution.

Numerical results show that a firm’s optimal capacity and the expected profit at
equilibrium increase with its own flexibility degree, while decrease with its rival’s
flexibility degree. However, a firm’s own flexibility degree is more powerful than its
rival’s flexibility degree to influence a firm’s capacity and the maximum expected

profit.

The maximum of total capacity and the maximum of total profit occur
simultaneously when two firms have 100% flexibility degrees; while the minimum of
total capacity and the minimum of total profit occur when two firms have zero

flexibility degrees.

8.5 Future Research

Based on current findings of FCS, the following are possible future research directions.

D)

2)

Conducting empirical studies to test the applicability of the proposed practical

approach in Chapter 5.

Exploring an oligopoly competition model with flexibility degree.

-121 -



Evaluating Flexible Capacity Strategy under Demand Uncertainty YANG Liun

3)

4

Considering other different forms of manufacturing flexibility and conduct
empirical study so that we can find out the relationship between the nature of

product and type of flexibility investment.

Investigating how manufacturing flexibility can be fully utilized to maximize firms’
profits while simultaneously reducing various risks that may exist in a whole

supply chain.
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Appendix-I

Proofs of Theorems, Propositions, Properties and

Corollaries

Proofs in Chapter 4

Proposition 4.1 For a firm investing in flexible capacity, with any given capacity k and

technology level ¥, the optimal production quantity as a function of demand realization

a is
0 if0<a<p
glefk,7) ==L (a-p) if p<a<p+2L Ly
2y+1
k it g+ <
Proof:

From (4.1), for g =2 &, we get 7(q

k7,0) =—q(B+-L) < —a(B+-L) = nalk, y,a).
2y 2y

So we can restrict our search for the optimal g within 0<g<a . Then,

k7, Q) = q(a—q)—(/)’wg—y) =(a-f)g— 1+

ﬂ' R
(q >

1
)q2 , which is a concave
4

quadratic function of g with roots at 0 and 2¢,, and attains its maximum at ¢, where

/4 y+1 14 . .
=—"—(a—-p).Note that ¢ — g, = o+ >0, implying that g, < & .
4, 27+1( B) . Note that & —g, il 27+1ﬁ’ plying that ¢,

2y +1

Thus, if 0Sa</f, then ¢, <0 and g(afk,y)=0. If f<a<f+ k , then

b

2y +1

0<g, <k and g(afk,y) =q,.1f B+ k<a,then k<gq, and q(alk,y)=k.

This completes the poof of Proposition 4.1. o
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Proposition 4.2 Under the NT+NC strategy, a firm’s optimal production quantity
equals its capacity, i.c., ¢" =k", which satisfies G(k")—k"/y, =C, + . The firm’s
optimal expected profitis 1V = (k™)? F(k") +(k")?/2y,).

Proof:

Since there is no flexible capacity investment, g" =k" . From (4.2), we have

" (k) = j “k(a—k) f(a)da—(C, + B+— )k . Therefore,
‘ 27y
MU =G —(Cy+ B+ . TO%h=0)=u-Cy-p>0  and
N

MYV (k=) =—0< 0. IV (k) =G (k) —1/y, <0. Therefore, 1" (k) is concave
in k, and the unique optimal solution k" satisfies its first-order condition, i.e.,
oYY x¥y=0 . That is, G(k")—k"/y, =C, +f . The optimal profit can be
expressed as 1V = (k™)? F(kV) + (k") /2y,).

This completes the poof of Proposition 4.2. o

Remark: In the above proof, if C,, = u—f, then M"Y (k=0)=u-C, - <0, and
so k" =0. Therefore, in order to have a meaningful model, we assume C, < &— f3 in

chapter 4.

Proposition 4.3 Under T-only strategy with given 7, B, C, and C,,

| | C [max{z. 7} if0<C, <Eu-Cy-p)
(i) the optimal technology level is ' = ,
Vn otherwise

. Y(C,+p+42C,)
where ¥, = ;

2C

r

(i) if " =y, then the optimal production quantity equals the optimal capacity, which
satisfies  ¢" =k” =Y(Cy +B+4/2C,) and  the  optimal  profit  is
n = (kT)zf(kT)+ Cuyy It y' = Vx> then the results are the same as those under the
NT+NC strategy.

Proof:
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Since there is no flexible capacity investment, we always haveq' =k’ . Following the
proof of Proposition 4.2 by replacing ¥, with ¥, from (4.4) we have the optimal profit

. . T 1. T T\2 /7. T (kT)2 T kT
for given y is II"(k"|p)=G*")’ F(k )+2— , where G(k")=C, +[+—
/4 /4

(k" >0 is unique for any given ¥ >0). Differentiating with respect to ¥, we get

T T\2
dar' () _ &' .

2 r

T T/, 2
dk =—= k / Y . Together with (4.3), we have
dy 2F(")-k"f(k")+1y dy 2y

d’' () _ ') 2Fk") -k f*K")
dy’ Y M2FKT) k" f(kT)]+1

Furthermore,

<0 for all 20 . By

7 =0, we mean the right hand limit.)
dIt’ (y)
dy
@ If 0<C, <i(u—-C,—p)°, then Cy+B+2C, <u. Let ¥, be a solution of

Thus, IT" (7) is concave and is decreasing for ¥ =2 0.

T *T sT
setting a7 =0. Then, }’; = kzﬁ , where G(k™) = C,+pB+ k — . Therefore,
, Vr
. . Y(Cy+p+y2C
k" =Y(Cy +B+4J2C,) and y, = €y +h ) >0 (unique solution). If

2C

r

Yy >Vy » then ¥ =9, and ¢ =k" =Y(C, + B+,J2C,) . If y, <y, , then
dil’ (y) _ dll’ (y;)

a7 i =0 forall ¥ >y,.Then, ¥ =7,.

T

(b) If C, >L(u=Cy — B)*, then Cyy + B+~2C, > > G(k") = Cy + S+~ and so
4

T2 T
(k Z < C, . Therefore, ar )
2y dy

<0 forall y>y,.Thus, ¥ =y,.

Hence, the optimal " under T-only strategy is ¥° =max{y,, ¥,}. Substituting 7"
into the objective function, we have: (1) If " =y, , then ¢" =k” =Y(C, + S ++/2C,)

and T1" = (kT)zf(kT)+Cr}/N. ) Ify" =y, then the results are the same as those

under NT+NC strategy.

This completes the poof of Proposition 4.3. o
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Proposition 4.4 Under C-only strategy with given ¥, , B and C,, the optimal capacity

is k€ =#(X(CF)—,B) , the optimal production quantity is ¢ = q(alkc,j/N) ,
T2V

2¥x

and the optimal expected profit is I1€ =
P P P 1+2y,

I,

Proof:

Based on Proposition 4.1, we get the optimal production quantity as q(Ol|k,7N)

Substituting it into 4.5), we have
c 1+ 2}/N
- h
1€ (k)= jﬁ 2 2 )(a B) f(a)da+j k(a 2, 2N k) f(@)da—Cok , where
2yy +1 c
a, =p+——k ) Therefore, n="()=L«,)-Cp ,
Yy
V% =0)=L(B)-C, >0 and MV (k =00)=—-C, <0
c@) %V+1— 2y, +1
NPk =—"""F(a, )< -2 ", f(a, ) <0 for all k>0 . Therefore,

N N

I1€(k) is concave in k , and the unique optimal solution satisfies the first-order

condition, i.e., IT" (k) =0. Thatis, k€ = %(X(CF )— f), the optimal production
+27

N
quantity q¢ = q(alkc VN and the optimal profit
e g, - 1429 27
= — a)do — k" f(a)da = I1,.
=l Ay @ @dar | SR f@da =,
This completes the poof of Proposition 4.4. o

Remark: In the above proof, if C, > L(f), then II°“(k=0)<0, and so k° =0.

Therefore, in order to have a meaningful model, we assume C, < L(f) in this chapter.

Proposition 4.5 Under T+C strategy with given ¥, , B, C, and C,, the optimal

technology level, capacity, production quantity and expected profit are

T+C

Y = max{yy, o), K¢ =L (X(C - B), 4" = g™,y and
1+2y
T+C 27" T+C * 1
m- :12—T+CH0 —C,(y ™" —yy), respectively, where ;. - =§(1/2H0/Cr -1).
T2y
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Proof:

Following the proof of Proposition 4.3 by replacing ¥, with ¥, from (4.8) and (4.9) we

get the optimal capacity k"€ =L(X(CF)—,3) , and the optimal production

1+2y
quantity ¢' ¢ = q(a|kT+C,7). From (4.7), we have I1"* () = %HO -C.(y=7y)-
+2y
Furthermore, HT+C(1)(7) = %HO -C, and HT+C(2)(7) = —%HO <0 for
1+2p 1+2p

all >y, . Therefore, I1""“(y) is concave for y >y, . Let 7;+C be a solution of

H”C(l)(}/) =0. We obtain ¥, =%(1/2H0/Cr —1), and so the solution is unique. If

T+C

Vree2Vy > then YO =y. . Suppose  that  Ype <7y

2 2

7+ (1) = _C <
Dy T ey

II,-C, =0 for all y2y, . Therefore,

y'e = ¥y - Hence, ye = max{y,, 7/;+c }. The results follow.

This completes the poof of Proposition 4.5. o

Theorem 4.1  Under T+C strategy and C+T strategy, a firm’s optimal capacity k,
technology level ¥, production quantity g and the optimal expected profit are exactly the
same.
Proof
By formulation of T+C strategy and C+T strategy, i.e., (4.7)~(4.11), T+C strategy and

C+T strategy can be expressed in a common formulation as:
Max TU(yk,q() = [ a(@—-q)’ —ﬁ—%/)f(a)da—CFk— C,(r=7),
st. 0<¢qg(")<k,k=20,y27,.
For C+T strategy, I17 = max max (y,k,q,(-)) ; and for T+C strategy,
" = m}?.X max II(y.k,q,()) , where II(y,k,q,())= nql(a)xH(}/,k,q(-)) . Since
m]flx m}.’le II(y.k,q,() = m}.’le m]flx II(y.k,q,(-)) with the same optimal k and optimal

¥, C+T strategy is equivalent to T+C strategy.

This completes the poof of Theorem 4.1. o
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Proposition 4.6 Given C,,, 7, B:

@ For C, £C, < L(f), the expected profit of C-only strategy is strictly decreasing
in C, and TI°(C,) 2T1°(C,) >T1°(L(B)) =0.

(if) There exists a unique C, € [C,,, L(f)) satisfying I1°(C,)=T1"; C, is strictly
increasingin C,, € [0, u—/f);

(i)  Profit comparison between NT+NC strategy and C-only strategy is: (1) when
C,<C, <L), I" >TI°; 2) when C, <C, <C,, I1¢ >TI".

Proof:

dric(c
From Proposition 4.4, we have ( F) S (X(C,)-p) <0. Therefore,
dC, 1+2y,

[°(C,) is strictly decreasing in C, for C, <C,<L(f) . Furthermore,
°(C,) 2 TI°(C, ) > I (L(B)) = 0. Define 9(C, ) =I1°(C, = C,,)~T1"(C,,) . With

dp(Cy) _ 7y
dc, 1+2y,

(X(Cy)—P)+k". From Proposition 4.2,

respect to C,, we have

it can be proved that j;(a—(2+i)kN) f(eyda>C,+f , implying that
Vn

de(Cy)

<0 and @(C,) is strictly decreasing in
dc,

<—2 (xc.)-B). S
1+27/N( (N) ,B) O

C, €10, u—p).Furthermore,as C,, — u— B, ¢(C,) =1 (u— ) > 0. Therefore,
P(C,)=T1°(C,)-TI"(C,)>0 for all Cye[0, u—B) . Therefore,
°(C,) > (C,)>0=TI(L(B)) . Since T1"(C,) is independent of C, , there
exists a unique C, € [Cy, L(B)) satisfying I1(C,)=T1"(C,)=1I" . Therefore,

Y >TI¢ when C, <C, <L(f) ; I >T" when C, <C, <C, . Turther,

dn’ (¢ d¢
#z—kN<0,sowehave £>0.

dcC, dcC,
This completes the poof of Proposition 4.6. o

Proposition 4.7 Comparing NT+NC strategy and T-only strategy, we have
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(i) under T-only strategy, define C, =min{C,, C,}, the optimal capacity and
expected profit are kT =Y(Cy + f+4/2C,;) and 1" = (k" )’ F(k")+C %y
respectively; further, if C, < C,, T1" is strictly decreasing in C,;if C, >C,, I1"
keeps constant as I1" (C,);

(i1) the optimal decisions of NT+NC strategy can be obtained from resolving T-only

strategy with modified parameter C, =C and then k" =k"(C,) and

=r »

n" =1"(,);

Y(C, +f++2C
where 0<C, <4 (i~ Cy  §)° satifying — fc S

r

Proof

Let C,=%(u-Cy,—p)° . If 0<C,<C, , then by Proposition 4.2, we

Y(C, +B+42C,)

. dy;
have ¥’ = max R . Note thaty, = . Then, T
vey {7N Vr } Vr 2°C d Cr

r

<0 and so

¥, is strictly decreasing in C, . Since Jim 7, (C)=00>y, >0=y,(C,=C,), there

>yy if0<C <C,
exists a unique 0<C, <C,, such that y'i=y ifC =C, . So yr =y, is
<yy i C <C, =<C,
an’ (c . 4 .
equivalent to C, < C . In this case, since% =—¥; + ¥y <0 with equality holds

if and only if y, =7, , [1I"(C,) is strictly decreasing for C, <C,. For C, 2C,,
7" =y, <y and remains constant 11" (C,)=T1" for C, >C,, by Proposition 4.2.

The results follow.

This completes the poof of Proposition 4.7. o

Theotem 4.2 GivenC),, ¥, and 8, the comparison between T-only and C-only strategy
is:
() IfTI°(C,) <" (C,),then TI°(C,) <I1"(C,) for all situations;

(i) If TI°(C,)=T1"(C,), then for each C, € (0,C, 1, I1°(C,)<II"(C,) for all
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0 ifI1°(C,) =117 (0)

C,e[Cy. L(B) , where C,, ={ and C, € (0,C,]

C, ifI°(C,)<I"(0)

satisfies T17(C,) =T1€(C,) . Moteover, for each C, € (C, o), there exists a
>TI"(C,) ifC, <C, <Cr

anique Cr € (C,, L(f)) such that II°(C,){=T1"(C,) if C, =Cr

<II"(C,) if Cr <C, <L(p)

Furthermore, the curve HC(EF):HT(C,) is strictly increasing  for

C,e (C,,,C,] and horizontal for C, € [C,,0).

rm?

Proof:

i If TI°(C,)<II"(C,) , then, by Propositions 4.6 and 4.7, we have
N r y p
[°(C,)<M°(C,)<M"(C,)<M"(C,) foral C, and C,.
(ii) If I1¢ (Cy) =z I (C,), then we consider two sub-cases.
(ii-1) If II°(C, ) 2117 (0), then T1°(C,) 21" (0) > I1" (C,) > 0 =T1°(L(f)) for all
C, € (0,C,] by Proposition 4.7.
(ii-2) If HC(CN) <I1"(0), then IT" (0) > HC(CN) >T1"(C,). Since, by Proposition
47, TI"(C,) is strictly decreasing in (0,C,] , there exists a unique

>TI°(C, ) =N°(C,) if0<C, <C,

C,e(0,C,] such that II"(C,{=T1°(C,) if C. =C,
<I°(C,) if C,<C, <C,
Therefore, for all C, e (Er, C.] ,

1°(C,)=T"(C,)>T"(C,) > 0=TI°(L()).

0 ifII°(C,) =117 (0)

Let C,,=9_ . Combining Cases (ii-1) and (ii-2), for all
C, ifII°(C,)<II7(0)

C,e(C,.C,] II°(C,)>T"(C,)>T1°(L(f)). Since, by Proposition 4.6, I1°(C})

rm?

is strictly decreasing in [Cy,L(f)), there exists a unique Cre (Cy, L(B)) such that
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>TI7(C,) if C, <C, <Cr
I°(C, ¥=17"(C,) if C, =C» . Differentiating I1(Cr)=T1"(C,) with
<M’ (C,) if Cr <C, <L(P)

dcr, _TI"V(C,)
dc, T“"(Cr)

respect to C,, we have >0 . Thus, Cr is a strictly increasing

r o

function of C, e (C,,,C,]. For all C, >C,, II"(C,)=T1"(C,), and so the results

rm?
follow.

This completes the poof of Theorem 4.2. o

Proposition 4.8 Comparing C-only strategy and T+C strategy: For any given C,.,

(i)  the optimal expected profit of T+C strategy I1' " (C,)is strictly decreasing in C,

—T+C T+C —T+C
for 0<C,<C, , and II"*°(C,) =2y, /(1+2y,)I1, for C,>C, , where
ET+C _ 2H0 .
A+2y,)%"

(i) the C-only strategy can be reduced from T+C strategy by modifying the

—T+C

parameter C, = E?C ,and then k€ =k"™°(C, ) and I1€ =T1"*° (E?C);
(i) C-only strategy is a lower bound of T+C strategy; moreover, the increase in profit

T+C C
I —-II <1

by T+C strategy relative to C-only strategy is & = c < -100% .
II 2yy
Proof:
@) By Proposition 4.5, Vi = %(Jzno/c, -1 and
2 T+C — 7y 201

7 (C,) = —L— 1, - C,(¥"*“ —yy). For 0<C, <C, " =——0 e

1+2y a+2yy)
have ¥,,. =7, and so ¥'*“ =y, .. Therefore, % =~Yrc = Vy) <0

with the equality holds if and only if C, -c, . Thus, II"(C,) is strictly
. . —T+C —T+C %
decreasing in C, for0<C, <C, .For C,2C, , we have ¥, <y, and so

2Yn
1+2y

N

yC =y, . Then, 1" (C,) = I1,, independent of C,.
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(i) Furthermore, if C, =EZ+C, then ¥"*“ =¥,.. = ¥, . By Propositions 4.3 and 4.4,

2
we hﬂ.Ve kT+C :7—N(X(CF)_ﬁ) — kC and HT+C — 7N H() :HC
1+2y, 1+2y,

Therefore, T+C strategy is exactly the same as C-only strategy.

From (i) and (ii), C-only strategy is a lower bound of T+C strategy. The increase in profit

by T+C strategy relative to C-only strategy is
e -I° 1", =0)-1¢ 10,-2y,0,/1+2
5= (C’C) J @ CO) =270/ 270) _ L0,
I I 200, /(+27,) 27,
This completes the poof of Proposition 4.8. o
NI (ET+C)
Theorem 4.3 Define AII=I1"* —II" . Let Cr satisfy C, =0—F2
1+2yy)

unique C, satisfying AH(Cf,E?JrC) =0 exists. With a givenC,,,
(i) if 0< C, < C,, then there exists a unique C, (C,) satisfying
>0 if C, <C, <Cy(C,)

AII(C,,C,) {=0 if C, =C,(C,) ;
<0 if C,(C,)<C, <L(f)

(i) if C, <C, <C,, then there exists a unique GF (C,) satistying

>0 if C, <C, <C,(C,)
AII(C,,C,) 4=0 if C, =C,(C,) ;
<0 if C,(C,)<C, <L(B)

>0 ifCy, <C, <C,(C,)
(i) if C, < C,, then AII(C,,C,) 4=0 if C, =C,(C,)
<0 if C,.(C,)<C, <L(p)
Proof:
In the following, we consider the effects of variations of C,, and C, on II"" and I1",

so as to compare T+C strategy and T-only strategy under different environments. First,

—r+c  2I1,(C})

we consider the relationship between Cp and C, =—"-—=, C, €[Cy,L(f))
d+2yy)
—7s X(C.)—
(Proposition 4.7). Differentiating w.r.t. to C,, we get d C f - _L)'ZB <0
dC, a+2yy)
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So, E?C is a strictly decreasing function of C, € [C,,L(f3)) . Therefore, the inverse

—T+C
— 2011, (C —
function exists, say C ?C , satisfying C, ZLF). Note that C IT;C is a strictly
d+2yy)
20T, (Cy)

decreasing function of C, € (O,Q?C] , where C17¢ =

For T+C strategy: Let a=7y"*. By Proposition 4.5, 7., =%(1/2H0/C, —1) and

HT+C _ 2a

—HHO —C,(a—7yy). For T-only strategy, by Proposition 7.7 C, satisfies
a
Y(C\y+pB+42C

€y fc —’):;/N.Deﬁne ATI(C,,C,)=T1"" —T1".

Case1: 0<C, <min{C,,C"*"} and C, <C, <Cr "

For T+C strategy, following the proof of Proposition 4.8, we have a = ;. = ¥, . Thus,
1+2a)’
a :%(,lzno/c, -n , 1, :%C, and 1" =(2a’ +y,)C, . 'Then,

X(Cp)-
da =- €=F . For T-only strategy, by Proposition 4.6, we
aC,. 4(1+2a)C,

have II7 =(k")*F(k")+C,y, , where k' =Y(Cy+fB++2C) . Then,
AII(C,,C,)=24°C, —(k")*F(k") .  With  respect to C,
OAIT a

=— X(C,)—p)<0 . Thetefore, for i C ith
aC. 1_’_2&( CH-p erefore or any given W

0<C, <min{C,,C""} , Al is strictly decreasing in C, , Cy <C, <Cr .
When C, =C, , T-only strategy and T+C strategy can be expressed in a common

formulation as:

Max 17k, gO) = [ a((@=0)" = B=5 D) f(@)da=Cok=C (7=7,).

st. 0<q()<k.
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For  T-only  strategy, n" = makx II(y,k,q(-)=k) ; for T+C  strategy,
2
e =makxm(a)XH(7,k,q(-)) . Since T-only strategy is more restricted than T+C
vk g

strategy, we have 1" >I1". Therefore, AII(C,,C,)=20.

When C. = Cr' , then a=y""" =y, . The T+C strategy is the same as the C-only

. T+C —T+C .
strategy. Consider the curve Cp, =Cr , where Cr is a function of C, .

AH(C,,C?C):zy,vzc,—(kT)zF(kT).Withrespecttoc,,@=2 LY

Yy t+
dac, " . Jac,
Therefore, AIl is strictly increasing in C, , C, e (0, min{C,,C."})] . At
C, =min{C, ,QZ+C }, we consider two cases:

, then C, =C, and C, = Cr . We have Vr=Vrc =Vn >
k" =y,./2C, and
ATI(C,.Cr ) =27,7C, 27, C, F(7,{2C,) =27, C,F(7,,/2C,) 2 0.

@) If C, >§f+c, then C, =§f+c and C, =E£+C. We have C, =C, . By above, we

T+C

0 If C,<C]

obtain AII(C,,C,) > 0. Therefore, All(min{C,,C."“},C,)>0.

—T+C

If C -0 ad C,=Cr ,  then C,=Cr —LB) and

r

—T+C ) — —T+C
ATI(C,,Cr ) > -Y*(Cy + B)F(Y(Cy + ) < 0. Therefore, whenC, = Cr , where

—T+C , . . : T+C
Cr is a function of C,, there exists a unique C. € (0, min{C,,C, " }] such that

<0 if0<C,<C;
AH(C,,E?C) =0 ifC, =C, . Combining the results so far, we
>0 if C. <C, <min{C,,C. "}

have conclusion that for 0< C, < C., there exists a unique C,.(C,) depending onC,,

such that AIT=0 . Therefore, if 0<C, <C, , then

>0 if Cy <C, <Cr(C,)
ATI(C,,C,) {=0 if C, =C,(C,) ; if C.<C, <min{C,,CI"“} , then
<0 if CL(C)<C, <Cr*

142 -



Evaluating Flexible Capacity Strategy under Demand Uncertainty YANG Liu

ATI(C,,C,) > 0. Now we consider ATII(C,,C,)=0 for0< C, <C, when C, is given.

Then  2a°C, =(k")’F(k”) , where k7 =Y(C,+B+2C,)  and

a= % (J2I1,(C,)/C, -1) . With respect to C, , we

da _ X(C,)-B dC, I, (C,)
dc,  4J1,(C)42C, dC, (J2C,)
da k"

we have 2a’+4aC,——=- . Therefore,

ac, — J2c,

_a(X(C,)-p) dC, e k" dc, k' -a 2C,  (1+2a)

and =

1+2a  dC, 2C dc, J2C€,  a(X(Cp)-p)

r

Since  2a°C, =" VF(k") .,  aJ2C, =k"\F(k") .  ‘Therefore,

dC, K —K'\F(K") (+2a) _1-{FG*')  (1+2a)
ac, . JFuTy  (XCoH-B  JFuT) X(Cp)-p)

have

. Consider 2a°C, =" F(") ,

with respect to C

r >

In order to complete the analyses, we consider the following two situations.

T+C

Case 2: min{C,,C"*“}<C, and C, <C, <Cr

T+C —T+C

G 1 C, <C then C,<C, and C,<C,<Cr . So

> —r r

a=SGRCHC, D2y, and K =Y(Cy+p+y2C) . Thercore,

b

“2H0(\72_)_\/C_r21+2}/]\, and so 1/2H0(CF)_\/C—r2(1+27N)\/C—r>27N\/C—r'

k" is independent of C,. Therefore,

ATI(C,,Cp) =2a’C, = (k") F(k" )+ 7, (C, - C,)
>2a°C, — (k") F(k") = %(,/2110(0,,) ~JC)? =27, C, F(yy4J2C,)

>2y3C, =27’ C, F(7,y/2C,) > 0.
() If C, >C.",then CI"° <C, and C,, <C, < Cr*. We have a contradiction.
Therefore, AII(C,,C,) >0 if Case 2 exists.

—T+C
Case 3: max{C,,Cr }<C, <L(B)
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2
Then, for T+C strategy, '€ =y, and I1"* = #Ho(cﬂ which is independent
+

N

T+C

of C,. Further <0 for maX{CN,ET:C} < C, <L(B). For T-only strategy, for

F
0<C,<C, , " =(k")*F(k")+C,y, which is independent of C, . Further,

dHT
dc

r

<0 within 0<C, <C, . I1" keeps constant as I1' (C,) when C, <C,. We

consider three sub-cases as following.

Case-3.1 if 0< C, < C,, then for given C,,

T+C

AT =T1"¢ —11" <TI"™*°(C, =Cr )-T" <0.

T+C T
<0 and Cclln < 0. Therefore, dAll

F r F

<0 for

Case-3.2 if C. <C, <C,, then

given C, ; %>O for given C, . As maX{CN,E?C}<CF < L(p), we check

r

—T+C

boundaries. If C, =Cr , then AIl >0; and if C, =C,,, then AIl 20 as before.
IfC, — L(f), then AI1<0. Therefore, for any given C,, C, <C, <C,, there

exists a unique C 7 such that AIT=0 and C r1s a function of C,. Consider the curve

aAH-ch +aAH=0, so that £>0.
aC, dC oC

r r r

ATl =0. With respect to C,, we have

>0.

Therefore, dc,
dc

>0 if Cr <C, <C,(C.)
The results ate AII(C,,C,) =0 if C, = GF(Cr)
<0 if C,(C,)<C, <L(p)
Case-3.3if C, < C,, then for any given C,., I1" keeps constant as I1" (C,). Therefore,

ATT =TT1"*C —T1" keeps as constant as AII(C,) with any given C, .

This completes the proof of Theorem 4.3. o

Theotem 4.4 Given C,, ¥y, B, assume C, <C, < L(f), following all definitions in

Proposition 4.6, the most effective and efficient strategy (EES) is:
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T+Cstrategy, if C, <C, <Cy(C,)
() if 0<C, <C,,then EES = ;
T - only strategy, otherwise

T + Cstrategy, ifC, <C, < E?C
(i) if C, <C, <C,, then EES ={C-only strategy, if Cr < C.< C’F (C);
T -only strategy, otherwise

—T+C

T + C strategy, ifCNSCF<C£
(iii) if C, < C,, then EES ={C-onlystrategy, if Cr <C, <C,(C,);

NT + NC strategy, otherwise

For all environments, T+C strategy equals C+T strategy.

Proof: Following the proof of Theorem 4.3, we can get Theorem 4.4 directly. o

Proofs in Chapter 5
Proposition 5.1 Consider any feasible firm 7 Suppose thata, k;, je€ Q, and qu,

je Q" \{i}, are given. Then the optimal production decision g, of the feasible firm 7is

0, x<p

C],—F*Z q;, ﬁ<x£2kf+ﬁ,where x:a—qu(a)—kNand qi:x;’g,
kF, 2kF+B<x i

Proof

Letx = OZ—quF — k™. Then by (5.2), we have m/ (¢ )=q  (x—q )" = fq| . There

#i
are three cases.

Casel If x<O0, then

m’ (g )=-pq <0, m" (g7)=-p<0, so that m/ (q]) is decreasing as

l

g/ increases. The optimal solution under this situation is g/ =0, so that
F F*
m’ (") =0.

Case 2 If 0< x <k, then we have two sub-cases.
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F

() If x<q <k, then m/ (g )=-pq <0, m (¢ )=-p <0, the optimal
solution under this situation is ¢ = x . Therefore, we can restrict the search for the
optimal quantity to the range 0< g/ < x.

@ If 0<q/ <x, then m/(q/)=¢q (x—q/)=pa] , m/(g/)" =x-B-2q] ,

F2) py_ F, Fx - . F . ..
m; (g, )=-2<0. So m; (g, )is concave in g, . By its first-order condition

. Therefore, we have

b

I’I’L-F(l)(ti):O iI; :(x_zﬂ)

1

07 qtllj < 0 O’ xs ﬂ
ti* = th ’ 0 < Qtllj S X b4 i'e" qu* = qi[;’ IB <X
X, x < ql.'; X,  x<-—p (contradiction)

0, x<p

Therefore, we have = .
o {qi, B<x

Case 3 If k| < x, then

m' (qf)=q/ (x—q)—Pq . Similar to Case 2, m (g )is concave ing/, and so

0, ;<0 0. x<h
ti* = th s 0< q; < kiF > i-e., q;F* = qll/: s IB <x< 2kiF + ﬁ .
kiF ) kiF < C],»I; kiF ) 2kiF +f<x
0, x<p

Combining Cases 1 - 3, we have ¢ =1{q,,, B<x<2k/ +p.
k', 2T+ B<x

This completes the proof of Proposition 5.1. o

Proposition 5.2  In an oligopoly market competition with r >0 flexible firms and

5 >0 in-flexible firms, the optimal capacity of flexible firm i€ Q" | ie., k", is either
Mk =0 and A" (0)<0;0r (i) k" >0 and A7V (k") =0.
Proof

By 53), A"(k))=T1' (k' k", ¢/ (@) Vj#i, and k", I Q")

J

= I: g (@-0" (a)—k™)" = p)f (@)da—C k. (a5.1)
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According to Proposition 5.1, for any given k/ , the optimal ¢ @ is

0, x<p
q =1q,, B<x<2k'+p,
kP, 2k +B<x

where x:a—ZqJ-F(a)—kN =a-0"(a)—k" +ti*

J#i

and g;, = (x—f)/2. By (a5.1),

the objective becomes finding the optimal k" to maximize A" (k). Note that

, x<pB
#w, B<x<2%’ +p.
x—kI >kl +B8, 2kl +p<x

X

a-0" (a)-k" =

Thus, if x< f, then ¢/ =0; and if x> £, then - Q" (@) - K" > f>0. Together
with (2501), we have A" (k)= [ "¢/ (@=Q" (@)~ k" - B)f (@)da—C k] .
0, y<0;

Let )’:q,-i:(x—ﬂ)ﬂ,then ti*: Y, 0<ySkiF;

kK, k<.

ATy =g @y—q/ ) f(@da—C k!
0

= [yey-yf@da+ [k Qy-ki)f(@da-Ck

O<y<kf K<y
= jy2f(a)da— I(y—kiF)zf(a)da—CFkiF. (a5.2)
O<y kiF<y

Let B(k") = j v f(@da , and Ck)= j (y—k!)? f(@)da . Note that B(k[) is
O<y kF<y
dB(k]")

k

independent of &, i.c., = 0. Therefore, with respect tok,” , by (a5.2) we have

ATy =2 [(y=kD) f@da—C, and A" (k)= =2 [ f(@)da<0.

K<y Kkl <y
Therefore, A" (k) is concave. Note that C(k/)>0 and C, >0. It follows that,

ask! — oo A" (k) — —oo. Therefore, there exists an S >0, such that A" (k) <0 for
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allkiF >§ . Since A"(0)=0, we can restrict our search for the optimal kiF in [0,S].

Therefore, either (i) k" =0 and A" (0)<0;or (i) k" >0 and A"V (k") =0.

This completes the proof of Proposition 5.2. O

Proposition 5.3 At the equilibrium of an oligopoly market competition with r >0

flexible firms and s =0 in-flexible firms, the optimal capacities of flexible firms are
citherk/” =0, forall ie Q";or k[ >0, forall ie Q" ; further,

(i) k" =0, forall ie Q" is equivalent to k" > X(C,)—-f3;

(i) k" >0, forall ie Q" is equivalent to k™ < X(C,)— .
Proof
We follow the notations in the proof of Proposition 52. Let
0=2y-q =a-Q"(@)-k" — B, which is independent of i. By Proposition 5.2,
there are two cases of k.

In case () k7" =0 and A" (0) <0, we have ¢/ =0 and

AFV0)=2 j yf(@da—C, <0,ie., j 6 f(a)da<C,. (a5.3)

0<y 0<6
In case (i) k[ >0, A"V (kiF*) =0, we have

A”“(kf)=2j(y—kf)f(a)da—cF=0,i.e.,C—2F= [-kD) f@da. @54

kf<y K<y

Wheny > k™, g =k Therefore, y=(@+k/")/2> k" is equivalent to @ > k. By

(a5.4), we have I(H - kf*)f(a)da =C,.

kf <6

Note that j O—k") f(@)da < j 6 f(@yda—k" j f(@da. If j f(@)da=0, then

k<6 0<6 k<6 kf<o

for any t>0 , 0< j(e—kf)f(a)dasz jf(a)dasz jf(a)dazo. So,

0<6—k] <t 0<6—k[ <t 0<6-k]

C, = j (0—k)f(@)da =lim j (6—k")f(@)da=0 , which is a contradiction.

k<6 0<6-k/ <t

Therefore, J.f(a)da > 0. Since kiF* >0, we have
kf<o
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C, = j O—kI) f(@)da < j & (@)da, ie., j o (a)da>C,. (a5.5)

k<6 0<6 0<6
Since (a5.3) and (a5.5) are contradictory to each other and independent of i, we have at
equilibrium eitherkiF* =0, foral ie Q"; or kiF* >0, for all ie QF . We discuss these
two cases respectively.

Case-1 kiF* =0, forall ie Q" then ti* =0. By (a5.3),
we have [ J@=k" =B f(@)da<Cpic, k" 2X(Cp)-B.
Case-I1 k" >0, forall ie Q" , then by (a5.5),

we have j (@—Q" (@)—k" = B)f(@)da > C, . Therefore,

a>0" (a)+kN +p

[ta-k"-pf@da>  [@-k"-pf(@da

a>kN+p a>0f ()+kN +p

> [@-0"@-k"-p)f@da>C,,

a>0f () +kN +p
ie, L(k" + ) > C,. Equivalently, k" < X(C,)— f3. Therefore,
(1) k" =0, forall ie Q" is equivalent to k" > X(C,)— B;
2 k" >0, forall ie Q" is equivalent to k" < X(C,)- .

This completes the proof of Proposition 5.3. o

Theorem 5.1 At the equilibrium of an oligopoly market competition with > 0 flexible
firms and s>0 in-flexible firms, all flexible firms i€ Q" make the same capacity
decision and the same production decision. That is:

() Ifk" 2X(C,)=p,then k" =¢q/" =0 forall ie Q".

. 1
(i) If k¥ < X(C,)—f,then k[ =k =—k" >0 for all ie Q" ; further, we have
r

kY +(r+ 1Dk = X(C,)— . The individual profit of each flexible firm is

P_ 1 X@C) oy o .
Me=0ae (LW (a=k"=p) f@yda+[ (X(C)=k"~p) f(a)da)

The production decision of each flexible firm is g = ¢! forall ie Q"
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0, O<a<pf+k"
_ _ 1N
which is presented as g, = a-p lk , BHkY <a< B+ (r+Dk] +k".
r+
k!, L+(r+Dkf +k" <a

Proof

We use the same notations as in the proof of Proposition 5.2. For any two flexible

firms j #h, j,he Q" . Without loss of generality, we assume kf* <k!". By (a5.5), we

have j(@—kj*)f(a)da: j(e—k,f*)f(a)da. Assume that k™ <k . Since

ki< ki "<

j f(@)da>0,we have

ki <o

j(e—kf*)f(a)daz j(e—kf*)f(a)da

ki< ki "<

= [o f@da—k]" [ f@)da

k<6 k<6
> jef(a)da—k{* jf(a)da: j(e—k{*)f(a)da.
k<o k<o k<6

.o R F* F*
This is a contradiction. Hence, k; =k, .

Therefore, we have kjF* =kl >0 for all je Q" . Therefore, for any feasible firm

0, 6<0
ie Q" | together with Proposition 5.1, we have g =16, 0<O<k! , where
k', k<@

O=a-Q" (@)—k" — B is independent of 7 So allg ,ie Q" are equal. That means

g =q! for allie Q" , and we have Q" =rq’ . Since there are r flexible firms,

O@=a-rq" —k" = . 'Therefore, ¢q =q° can be expressed as
0, O<a<f+k"
F Ol—ﬂ—kN N F N
q, = 1 B+k" <a<f+(r+Dk, +k . By (a55), we have
r+
k", B+ +Dk +k" <«

[(a=k" = B-(r+ Dk f(@da=C; e, L" + f+(r+Dk[)=C,. So, we
N+ B+(r+D)kf <
p_X(Cp)=p-k"
¢ r+1 '

have k™ +(r+ Dk = X(C,)-B,ie, k (a5.6)
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We consider the individual expected profit of each flexible firm. By (a5.2) and (a5.4),
A"(kD= [y f@da+ jk Qy -k f(@)da-2k] j(y kD) f(eyde

0<y<k! kF K<y

[y’ f@da+ [&) f@da. (25.7)

O<y<kf K<y

—(r=Dagf = k" -
Note that y:(x—ﬁ)/2:a (r )qz" ’B.Then

(1) IfO0<a< B+k" then ¢f =0, y=(a—k" - p)/2<0.

a-k"-p

Q) If B+kY <a<f+(r+Dk} +k", then g = T
r+

0<y:a_—_18<kF
r+1

—(r=Dk" —k" -
?3) Ifﬁ+(r+1)kf+k’v<a,thenqf:kf,y:a (r )2" '3>kf.

Therefore, by (a5.7) we have

AF(kFy = jkwww u) fl@da+] (k'Y f(@de . Together

kN 4+ B(r+)kF

with (a5.6), we have kY + B+ (r+1)keF =X(C,) and so

A =T pwaas [T ! e
[N EEy paaan [T KOO i
KN+ X (Cp r+1

1 X N an w .
BT [IM (a=k" =By fledda+ [ = (X(Cp)=k" = p) f(a)da).

This completes the proof of Theorem 5.1. o

Corollary 5.1 At the equilibrium of an oligopoly market competition with r >0 flexible

firms and s=0 in-flexible firms, all flexible firms i€ Q" make the same capacity

decision and the same production decision. That is:

() If C, 2L(B),then k[ =¢q/ =0 forall ie Q".

(i) If C, <L(B), then k" =k :ww for all ie Q" . The profit of
r+

each flexible firm is
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e 1 (J-x(cf-)(a—lg)2f(0[)d0!+J.:(CF)(X(CF)_IB)zf(a)daj . The

C T+ U

production decision of each flexible firm is g, ’ =g’ for all ie Q" , where

0, 0<asp
a_
o ={9P . peasx,. 0
r+1
Kl X(CpH<a
Proof
A direct consequence of Theorem 5.1 o

Proposition 5.4 In an oligopoly market competition with r =20 flexible firms and
s >0 in-flexible firms, the optimal capacity of in-flexible firm i€ Q" |ie., k\", is either
Mk =0 and AV (0)<0;0r (2 kY >0, A" (k)=0 and AN? k") <0.
Proof
By 54, AV(K")=T1"(k*[kY, Vj#i.and &/ .qf (@) le Q)
= [ K @=0" (@)=Y k) k') f(@)da—(Cy + Bk
p

< I: kY (a—kM) f(a)da—(C, + Bk
= [k @k f@da—(C, + Pk =k (LK)~ f~C,).

Let u=a—Q" (@)— ) k. Then,

J#i

AV = [ =k f@rda—(Cy + Bk (a5.8)

kN <u

AN Ny = [u=2k") f(@yda—(Cy + ).

K <u
It is noted that as k' — oo, AV (k) <k (L(k")-f—C,) — —oo. Therefore, there
exists S, >0, such that AN(kiN) <0 for all kiN > S, . Since AY(0)=0, to find the
optimalk¥", if any, we can restrict our search to the range [0,S,]. Because A" (k") is
continuous on [0, S,]. Hence, there exists kiN* € [0,5,] to maximize A" (kiN). Therefore,
either (1) kiN* =0 and AYP(0)<0 ; or (2 kiN* >0, AV (kiN*) =0 and

AY® (kN <0.
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This completes the proof of Proposition 5.4. O

Proposition 5.5 At the equilibrium of an oligopoly market competition with r 20

flexible firms and s >0 in-flexible firms, the optimal capacities of in-flexible firms are

either (1) kiN* =0, forall ie Q";or (2) kiN* >0, forall ie QY; further, we have

) k" =0, forall ie Q",is equivalentto [vf(@)da < C, + f;

O<v

(if) k' >0, for all ie Q" is equivalent to Ivf(a)da> Cy+ [, where

O<v
v=a-0" (a@)-k".
Proof
We follow the notations in the proof of Proposition 5.4. By Proposition 5.4, there are

two cases.

In case (1) k" =0 and AN (0)<0, then

AN UMY = [vf@da—(Cy+B) <0, ic, [vf(@da<C, +B. (a5.9)

O<v O<v

In case (2) k" >0 and AV (k") =0, then

[v=-k"f@da=Cy+p. (25.10)

O<v

By the proof of Proposition 5.4, we get If((l)d(l > 0. Since k" >0, we have

O<v

C,+f= j =k’ f(@)da = j v (ayda -k j flada < j vf(@)da,

O<v O<v O<v O<v

ic, [vf(@da>Cy+p. (a5.11)

O<v

Since (a5.9) and (a5.11) are contradictory to each other and independent of i, we have, at
equilibrium, either kiN* =0, for all ie QV; or kiN* >0, for all ie Q" . Therefore, at
equilibrium, there are two cases.

Case-1 kiN* =0, forall ie Q" then by (5.13) we have 'fvf(a)da SCy+p.

O<v

Case-11 kiN* >0, foral ie Q" then by (5.15) we have Ivf(a)da >Cy+ /.

O<v

Therefore, kiN* =0, forall iec Q" is equivalent to Ivf(a)da <Cy+p8;

O<v
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kM >0, forall ie Qs equivalent to J'vf(a)da >Cy+p.

O<v

This completes the proof of Proposition 5.5. o

Theorem 5.2 At the equilibrium of an oligopoly market competition with r >0 flexible

firms and s > 0 in-flexible firms, all in-flexible firms make the same capacity decision.

(1) If j(a—rqf —sk™)f(@)da < Cy + f3, then k¥ =0, forallie Q.

rgf +skN <a

2) If j(a—rqj —skM) f(@)da>C, + B, then k" =k :lk’V >0, for all

J N
rgf +skY <a

i€ Q" further, we have  [(@—rg] —(s+Dk))f(@da=C, +f . The

rgf +sk) <o

individual profit of each in-flexible firm is T = (k)? F(skX).
Proof

Following the notations in Proposition 5.5, we consider two in-flexible

firms j#h, j,he Q¥ . By (a5.10) we have j(v—ij*)f(a)da= j(v—k,jv*)f(a)da.

O<v O<v

This implies that (k,ﬁv* — kj.v*) jf(a)da =0.

O<v

To show [ f(@)da>0: By @5.10), we have [(v=k}")f(@)da=Cy + .

O<v O<v

If [ f@da=0 , then for any >k ,
0<v

j v—k¥) feyda >k j flayda>—k" j f(@)da=0 and
O<v<t O<v<t O<v

j(v—kf*)f(a)dasa—kj”*) jf(a)dasm)jf(a)da:o , implying
O<v<t O<v<t O<v

[o=k) f@da=0.
O<v<t

So, Cy+pf= j@—kj“)f(a)da:}irg j(v—kjv*)f(a)da=o . which is a

O<v O<v<t

contradiction. Therefore, J. f()da >0.

O<v
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Hence, we get k;" = kav* Therefore, we have k;v* =k >0 forall je Q". Since there
are 5 in-flexible firms, we have k" =sk)>0 , v=a-rq’ —sk}

and Ivf(a)da = j(a —rq’ —sk) f(@)da . Therefore, by Proposition 5.5,

0<v rgf +sk) <a

kiN* =0, forallie Q" is equivalent to J.(a_r45 _Skcfv)f(a)das Cyvth.

rgf +skN <a

kN >0, forallie QY is equivalent to j(a—rqf —sk™)f(a@)da>Cy +f3.

rgf +skN <a
_ F N F N
Iftv=a-rq, —sk, >0,thena >rg, +sk, .By (5.14) we have

I(O(—rqf—(s+1)keN)f(0{)d0{:CN +f4. Also, v=u—-k" =a-0" (@)—k", by

rgf +skY <o

(a5.10) we have j(u - 2ij )f(@)do =C, + B . Together with (a5.8), we have

kY <u

AN = (K =k f@da—(Cy + BK

kYN <u

= [k =k f@da-k" [@=20")f(@)da

kY <u k' <u
= [&"Y f@da=k!)  [f@da (a5.12)
sk <a-rg" sk <a-rq;
0, O<a<pf+sk!
By Theorem 5.1, rq’ = M, L+sk) <a<B+r+Dk! +sk) . (a5.13)
rk!, " L+r+Dkl +sk) <

There are three cases as follows.

1) If0<a<PB+sk) anda—rql >sk!, thenrg! =0, a-rq =a> sk, so we
have sk’ <a < f+sk!.

Q) If B+sk) <a<f+r+Dk! +sk) anda—rq! > sk, then

F =r(a'_ﬁ_Sk;V)

a+r(f+ sk
rqe F — r(lB s e )
r+1

a_
¢ r+1

> sk and so > sk} —rf.
Therefore, we have B+ sk <a < B+ (r+Dk! + sk .

B) If B+(r+Dk! +sk” <o andar—rq" > sk, thenrq! =rk!,

-155-



Evaluating Flexible Capacity Strategy under Demand Uncertainty YANG Liu

a-rqf =a—rk! >sk’ , and so a>rkl +sk) . Therefore, we
have B+ (r+Dk! + sk < .

Combine these three cases, the range of @ for @—rq’ > sk is sk < a. Therefore,
from (a5.12) we have A" (k)= (kf)zj:N flayda= k") F(sk).

This completes the proof of Theorem 5.2. o

Corollary 5.2 At the equilibrium of an oligopoly market competition with r =0 flexible
firms and s > 0 in-flexible firms, all in-flexible firms make the same capacity decision.
() If Cy 2 u—f,then k" =0, forallie Q".

@ If Cy<u-pB, thenk! =kY zlkN >0, for all ie Q" ; further, we have
s

.[‘:1:3' (ax—(s -l-l)kéfV )f(@)da=C, + . The individual profit of each in-flexible

firm is T1V = (k")> F(skY).
Proof
By Theorem 5.2, putting r =0:

=0, for all ie Q" . Thus,

4

If [(@-sk))f(@da<Cy+f , then k' =k

sk <o
ULC,+p.
If j(a—skj)f(a)da>cN +f, then k" =k :lk’v >0, for all ie Q" . Thus,
N S
sk, <a

u>LiskM)= j (@—sk™) f(@)da > C,, + . Therefore,

skY <a

(1) If C, 2u—f3,then k" =k =0, forallie Q".

@) If C, <u-p, then k" =k zlkN >0, for all ie Q" . Further results
s

follow directly.

This completes the proof of Corollary 5.2. o

- 156 -



Evaluating Flexible Capacity Strategy under Demand Uncertainty YANG Liu

Proposition 5.6 Given r >0 flexible firms and s > 0 in-flexible firms, within the area
R={(C,,C,):0<C, <C, <o} . For Case-A that k/ =k’ =0 , we have
I17 =TI =0 and a necessary condition for Case-A is: L(S)<C, and - <C,.
Proof

We define Case-A as the case with solution k; =k} =0. By Theorems 5.1 and 5.2, we

have
KN > X(CH-B; (a5.14)
[(@-rgf sk f(@yda<cCy+p, (a5.15)
rgf +skN <a

By (a5.14), we have L(f) < C,.; by (a5.15), we have u — < C,, .

The individual expected profits of both flexible and in-flexible firms are I17 =TI =0.

This completes the proof of Proposition 5.6. o

Proposition 5.7 Given r > 0 flexible firms and s > 0 in-flexible firms, within the area

R={(C,,C,):0<C, <C, <oo}.For Case-B that k" =0, k" >0, we have I17 =0,

Y = iz(kN )2F(kN) ,and (i) a necessary condition for Case-B is: L(f+k )< C, and
s

Cy <p—f3; (i) kY >0 satisfies j: (@—(s+DkY) f(@)da=Cy+f, k" =sk”.
Proof
We define Case-B as the case with solution that k[ =0, k' >0. By Theorems 5.1 and
5.2, the conditions of Case-B are:

sk > X(C.)-f; (a5.16)

[@=rgl sk f(@da>Cy+p. (a5.17)

rgf +sk <o

The solution satisfies I(O(— rqf —(s+ l)k;v Yf(@)da=C, +p. (a5.18)

rgf +skY <o

Sincek!” =0, we get ¢ =0. By (a5.17), we have u > L(sk')>C, + f3.

By (a5.18), Z(sk) = j: (@—(s+Dk¥) f(@)da=Cy+f. (5.19)

- 157 -



Evaluating Flexible Capacity Strategy under Demand Uncertainty YANG Liu

Therefore, by (25.16) and (5.19), X(C,)— S <sk) =k, . Thus, C, = L(k, + ). By

Theorem 5.2, the individual expected profit of in-flexible firms is IT" = iz(kN)Zf(kN)
s

and k™ = k. A necessary condition for Case-Bis: L(B+k,)<C, and C,, <pu—p.

This completes the proof of Proposition 5.7. o

Proposition 5.8 Given r >0 flexible firms and s >0 in-flexible firms, within the area

R={(C,,C,):0<Cy <C, <o} . For Case-C that k! >0, k' =0, we have

P 1 XC) © s N o_ .
= (], @ da [ (X(Co=pr f@da), T =0, and @ 4

necessary condition for Case-C is: L(8)>C, and £ —(C,, + ) < LI(L(,B) -C,); (i)
r+

K= (X (€)= B
Proof
We define Case-C as the case with solution of k) >0, k¥ =0. By Theorems 5.1 and 5.2,
the conditions of Case-C are
kY < X(C.)-8; (a5.20)

[@—rgl sk fl@yda<Cy+p. (a5.21)

rgf +sk <o
The solution satisfies (r+ k! = X(C,)— B, ie., kI = LI(X(CF)— 5. (a5.22)
r+

By (a5.20), we have C, < L(f3).

By (25.21), we have  [(@—rq) f(@)da<C, +B. (25.23)
gl <a
0, 0<a<p
By Theorem 5.1, we have rq! = r(f—glﬁ)’ LB<a<f+(r+Dk! . Therefore,
k!, L+(r+Dk! <a
a, 0<a<p
a-rq = a:—:f, B<a<pf+(r+Dkl . Thus, a—rqgf >0 for any @>0 .

a-rkl, B+r+Dk/ <a

Therefore, by (a5.23) we have
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Br(r+k}

r e F
; (a—m(a—ﬁ)jf (@)da+ j sy @R f(@da<C, +p

joﬁ of (@)der+ |

ie, f———(L(B)—C,) < Cy + B. Hence, f1—(Cy + B) <——(L(B)—C,).
r+1 r+l1

By Theorem 5.1, the individual expected profit of flexible firms is

o1 X o, - e ) ‘.
I, e Ul, (a-p) f(a)da+fX(CF)(X(CF) B) f(a)daj. Since kY =0,

we have IIY =0 . A necessary condition for Case-C is: L(f)>C,

and 1t —(Cy + f) < ——(L(J)~C,).
r+1

This completes the proof of Proposition 5.8. o

Proposition 5.9 Given r >0 flexible firms and s > 0 in-flexible firms, within the area

R={(C,,C,):0<C, <C, <o} . For Case-D that k' >0, k¥ >0, we have

P 1 XCH, oy o - . |
s (r+1)° Uﬁﬂk?’ (@=sk =p) f(a)da+jx(cp>(X(CF) ske =B f(a)da), and

n’ = (keN)ZF(skeN) . The solution of Case-D is: k. =L1(X(CF)—,3—sk;V) and
r+
kY satisfies Cy + = [~ (@—(s+Dk!") f(a)da—ﬁ(L(ﬁ+skj’ )=C,). A necessary
SK, r

condition for Case-D is: g —(C, + ) > LI(L(,B) —C,) and C, <L(B+k,).
r+

Proof
We define Case-D as the case with solution that k' >0, k¥ > 0. By Theorems 5.1 and

5.2, the conditions of Case-D ate

kY < X(C,)-B (a5.24)
[@-rgl sk f(@da>Cy +p (a5.25)
rgf +skY <a

The solutions of Case-D satisfy the following (a5.26) and (a5.27).

sk +(r+ Dkl + =X (C,); (a5.26)
[(@=rgl —(s+DK))fl@yda=C\ +B. (25.27)
rgf +sk <o
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0, 0<a<pf+skl
r(a—p-sk.)

By (a5.13), we have rg’ =
y (a5.13) q. i

, BHsk) <a<f+(r+Dk] +sk).

rk! LB+r+Dk! +sk) <o

By (a5.27), we have the following three cases.
Case 1: 0<a < f+sK”andar—rq" —sK" >0.

In this case, rq/ =0 and a-rq’ —sk) =a—sk >0 . Therefore, we have
sk <a<f+sk) and a—rqf —(s+ Dk} =a—(s+ Dk} .

Case2: S+sk) <a<f+(r+Dk/ +sk” and a—rq" —sk" >0.

a-f—sk” a—(skV —

In this case, rg’ =w and a—rq’ —sk” =—(S e ~1h) So,
r+1 ' r+1

a>sk) —rB . ‘Therefore, we have [S+sk) <a<pf+(r+Dk! +sk) and

a—(s+r+Dk) +rp
r+l1 '

a-rqf —(s+Dk) =

Case3: B+(r+Dk! +sk) <a and a—rq" —sk” >0.
In this case, rq] =rk] anda—rql —sk) =a-rk] —sk) >0. So, a > rk! + sk .
Therefore, S+ (r+ Dk +sk” <a and a—rq" —(s+ Dk =a—rk] —(s+Dk”.

Hence, by (a5.26) and (a5.27), we have

x<cf->(a+rﬁ_(r+s+1)kjv)f(“)d“

Brsky

. 1
Cy+B=["" (@=(s+Dk, f@da+— |

+| ;C (@—rk (s +Dk") f(@)da.
Therefore, Cy + = " (@ (s +1)kj")f(a)da—ﬁ(L(ﬁ+ sk™)=C,).
SK, r
Let RO =, (a—(s+1)ke’v)f(a)da—ﬁ(L(,B+ skM)=C,). With respect to k",
SK, r

R(”(ke’v):ske’vf(ske’v)—(s+l)F(sij)+i1F(,B+skjv)<0 . So, R(M) s
r+

decreasing as k) increases. Since k! >0 and k) >0 , by (a5.26) we have

X(Cp)-B-(r+Dk/ XC)-B
N N

0<k) =

, and

so R(

XCI=B)  re¥y < RO).
S
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. , ,
RO)=[ @ f@da-——(LpB)~Cp)=u-——(Lp)~Cp).

RECL [ @-Ex(C- pfada—— LB+ X (CH-H-Cp)

s X(Cp)-p
oo s+1
= j (@——"2(X(C,) - B)) f (@)da. Therefore,
X(Cp)-p S

s+1

J. « )—ﬁ(a__(X(CF)_ﬁ))f(a)da<CN+ﬁ<ﬂ_L(L(,B)—CF) . By (a5.24),
e § r+1

0<k" <X(C,)-f and so L(f) > C,.. Therefore, we have

H~(Cy +p)>——(L(B~C,) >0, (a5.28)
r+1
and Z(X(C,)-B)<C, +B=2Z(k,). Therefore, X(C,)- B>k,,
ie, C, <L(B+K,). (a5.29)

By Theorems 5.1 and 5.2, the individual expected profit of flexible and in-flexible firms

are

0! = ([ @k =By r@da [ (X(C)=sk! =B’ f(@dar

T (r+)? s

Hiv = (keN )ZF(SkeN) , tespectively. Therefore, the solution of Case-D is

kY = sk)'; k) satisfies Cy + B = 7 (a—(s+1)kjv)f(a)da—%(L(ﬁ+sk;V)—cF);
K, r
k" =rk] 5 k! =L1(X(CF)—,B—skaV); A necessaty condition for Case-D is:
r+

Cp <L(B+k,) and 4= (Cy + ) >——(LH=C,).
r

This completes the proof of Proposition 5.9. o

Theorem 5.3 Given r >0 flexible firms and s >0 in-flexible firms, within the area
R={(C,,C,;):0<C, £C, <oo}. At equilibrium, k" =rk , k" =sk , where k
and k! together with I17 and IT" in different regions of R are:

N=0’

e

(Case-A) if u-f<Cy & LB <C, & Cy<C, , then k=0, k
I, =0, I1 =0;

(Case-B) if C, <u—-pB & L(f+K,)<C, & C, <C,,then k! =0,
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4

kY satisfies CN+ﬁ=j:N(a—(sﬂ)kgv)f(a)da . =0 |
Y =) F(skM);
(Case-C) ify—(cN+,8)sﬁ(L(,8)—cF) & L(B)>C, & C, <C,,then
r

k! :—X(CF)I_ﬂ, kY =0,II) =0,
r+

P 1 X a0 o e .

. T (r+1)? Uﬁ @=5) f(a)da+J.x(cf-)(X(CF) p) f(a)daj,

(CaseD) if L(B+k,)>C, & u—(cN+ﬂ>>—:1<L</3>—cF> & Cy<C,,
r

then k/ Zﬁ(X(CF)—ﬂ—skeN), kY satisfies
r

Cy+B=[ " (@-(s+Dk)) f(@da-——(L(B+sk))-C,),
ske! r+1

F_ 1 XC) N py2 > N a2

07 = (@ sk =B fedas [ (X(C=sk! ~p) f(@rdar)
M =(k))’F(sk)).

Proof

From Propositions 5.6 - 5.9, it is noted that in Case D, if k" =0, then

k" =L1(X(CF)—,3) , which is the same as Case-C; If k" =0, then k" sadsfies
r+
o0 s+1 5 L
Cy+p= Ik” (Ol—Tk )f(@)da , which is the same as Case-B.
It is easy to check that any two of the necessary conditions for Case-A to Case-D do not

ovetlap, except Case-B and Case-C pair. In the following, we will show that even for the

Case-B and Case-C pair, their necessary conditions do not overlap.

The necessary condition for Case-Bis: L(f+k,)<C, and C, <u—f.

The necessary condition for Case-C is: L(p)>C, and

p=(Cy+ B S——(LPH~C,).
r+1
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Suppose that they ovetlap, i.e., there exists (C,,C) such that the above conditions hold.

Then, L(B+k,)<C, srT“cN —FTH(,u—ﬁHL(ﬂ).

Let Cp = L(B+K.) and Cpy = T e T BY 4 1(B) be two functions of
r r

C, €10, u— B]. The curves of them ate called Curve-1 and Curve-2, respectively.

Recall  that j”(a—s—“kw)f(a)da:cN+ﬁ . We have 9Cn _dCr dk,
£, s ac,  dk, dcC,

dCFl e dCN 1 e

Cn o FB+k)<0 5 SN o (s+DFk)—k, fk .S

ik (B+k,) ik s[(S VE(k,)—k, f(k,)] o

dc,, sF(B+k,)

Therefore, under the assumption that

dC, (s+)F(k,)—k, f(k,)

= dc F(B+k F(B+k
F(x)—xf(x) >0, we have 0 < —L = S_('B ) < (LB W)Sl.Thus,
dCy  (s+D)F(k,)—k, f(k,) F(k,)
C,, isincreasing in C,, and its slope is strictly bounded above by 1.
dC
On the other hand, —=* = r+l >1. Therefore, Cp, is also increasing in C, , but
N r

strictly bounded below by 1.

dA _dCy, _dCp, <1-1=0. Thus

Let A=C, —C,, for Cy e [0, 11— f]. Then, 22 =
¢ F1 r, for Cy €[0,u— f] € ac, _dc,  dc,

A is decreasing in C, . When Cy,=u—-pf , A=L(S+k,)—-L(p) . Since

J.:(a—s—ﬂkw)f(a)da:,u—ﬁ+ﬁ =p, we have k, =0. So, A=0. Therefore, for
w s

all C, el0,u—pB), A=C,, —C,, >0. This is a contradiction. Hence, even for the

Case-B and Case-C pair, their necessary conditions do not overlap.

Therefore, any two of the necessary conditions for Case-A to Case-D do not overlap.
This implies that the four conditions are necessary and sufficient conditions for Case-A
to Case-D, respectively. They partition the region R={(C,,C,):0<C, <C, <oo}
into four parts. Hence, given 7 flexible firms and s in-flexible firms, we have the following

conclusions on equilibrium within R :
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(@)  Case-A occurs if and only if L(f)<C, and u—<C, ;

() Case-B occurs if and only if L(S+k,)<C, and C, <u—f;

(IT) Case-C occurs if and only if L(B)> C, and u—(C,, + f8) < LI(L(ﬁ) —C,);
r+

(IV) Case-D occurs if and only if C, < L(S+k,,)

and 1= (Cyy + ) > ——(L(B)—C ).
r+1

This completes the proof of Theorem 5.3. o

Proposition 5.10 Given r >0 flexible firms and s > 0 in-flexible firms, within the area
R={(C,.C,):0<C, £C, <oo}.
(@) The boundaty between Case-B and Case-D is C,, = L(f+k, ), which is

defined as Curve-1;
(i) the boundary between Case-C and Case-D is

Cp, = r—HCN —r—+1(,u — B)+ L(f), which is defined as Curve-2;
r r

(iti) under the assumption f(x) —xf(x) >0, in both Curve-1 and Curve-2, C,. is
strictly increasing in C, , and within C, € [0, — ], Curve-1 is always
above Curve-2, except that they intersect at (¢ — S, L(/));
(iv)  further, in Curve-1 Cj, decreases in s with given C, ; in Curve-2 C,
decreases in rwith given C,.
Proof
Comparing Case-B and Case-D, we notice that the boundary of Case-B and Case-D is the
curve C, = L(f+k,), which is Curve-1 in the above discussion. Similatly, comparing

Case-D and Case-C, we obtain the boundary of Case-C and Case-D as the

curve C, = rtl Cy _r+l (u— )+ L(B), which is Curve-2 in the above discussion.
r r

Thus, all the results for these two curves are still valid. In particular, within

Cy€l0,u—p], Curver-1 is always above Curve-2, except that they intersect at

(CN’CF) = (ﬂ_ﬁ’ L(,B))
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For Curv-l1 C, =L(S+k,) , where &k, is defined as the one
D = s+1 dcC dc,, dk, A
satisfying C), +ﬂ=J‘kw (a—Tkw)f(a)da. dsFl = dKFWl . . Given C,, we have
— F

%=—F(ﬁ+KW)<O ; dk, =l' —kw (k) — So we have
dk, ds s (s+1)F(k,)—k, F(k,)

dC;, <0 for given C, .
ds

For Curve-2 C”:r—HCN—r—H(,u—,B)+L(ﬂ) , given Cp, , we have
r r

dCN __:u_CN_:B<0

dr r(r+1)

This completes the proof of Proposition 5.10. o

Property 5.1  Given r >0 flexible firms and s >0 in-flexible firms, relationship

between capacity costs and expected profits can be presented as follows:

@ Flexible strategy is only effective in Region-D and Region-C; while in-flexible
strategy is only effective in Region-D and Region-B.

(i)  InRegion-B, II' =0 and 11" >0,

art’ art?
(i-1) Given Cp, ——<0; (ii-2) Given C, ——=0.
dc, dC,

(i)  In Region-C, I17 >0 and I1) =0,

di’ dIl;
(ii-1) Given C,, —=0; @{i-2) Given C,, < <0.
Cy dC

(iv)  InRegion-D, IT} >0 and I1) >0,

dHN F dHF
@iv-1) Given C, , ~<0; ~>0 ;(v-2) Given C, , —=<0
dcC, dC, dCp
N
=>0.
dCp

Proof
By Theorem 5.3, in Region-A and Region-B, at equilibrium, the capacity of each flexible
firm is zero. Consequently the individual profit of each flexible firm is zero, regardless the

decisions of other firms. Therefore, only in Region-C and Region-D, the flexible strategy
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leads to a positive profit. Similarly, we conclude that in-flexible strategy is only effective
in Region-B and Region-D, in which in-flexible strategy results in a positive profit. In the

other two regions, in-flexible strategy leads to zero profits.
1 —
In Region-B, by Theorem 5.3, we have IT =0 and IT) = — (k") F (kM.
s

k" satisfies CN+,3=LD;(0{—S—+1k )f(a@)da . With respect to C, , we have

s+1—= dk" dk"
l=— —F(&" k k , so that < 0. Therefore, given C,., with
( (k™)— f( )J 1C iC given Cp

N N
dHN N N
respect to C, , we have =k—(2F(k Y=k f (k" )) dk <0. Given C,,
N N
N
with respect to C,, we have ~=0.
F

In Region-C, by Theorem 5.3, we have I1) =0 and

P 1 X(Cr) 2 o 2
W =il @B f@dat|  (X(C)=-py ferda)
artl  2(x -
Given C,,, with respect to C,, we have £ =— ( (CF)2 P <0. Given C,, with
dC, (r+1
F
respect to C,, , we have =0.
N

In Region-D, by Theorem 5.3, we have
Sub-Case-1 Given C,, , with respect to C., by Theorem 5.3, we have

iy _ oM dX(C,) om ak"
dC, 9X(C,) dC, 9KV dC,

2AX(Cp)=k" =B 2Lk +p)-C;) dk"

=- 5.30
(r+1)° (r+1)° dc,’ &>-30)
an’ ﬂ dk”
oy QF &)=k (")) i (a5.31)
By Theorem 5.3,
Cy+B=[, (a—s—”k jf(a)da—L(L(ﬁwN)—cF). (a5.32)
r+1

With respect to C ., we have
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_ _ _ N
—(l(F(kN)—ka(kN))+F(kN)—LF(kN +ﬁ))- K T _0), which leads to
s r+1 dC,. r+l1
N F N
dk > 0. Together with (a5.30) and (a5.31), we have ZHe <0 and a1, >0.
F F F

Sub-Case-2 Given C,, with respect to C, , by Theorem 5.3, we have

iy _ oM dk* _ 2Lk"+/)-C,) dk¥

- - 5.33
ac, K" dc, r+1) dc, >-39)
arn’ kv — dk"
< = QFE")Y=k" f(k"))- . 5.34
ic, 5 QF(k™) Sk™)) ic, (a5.34)

By (a5.32), with respect to C, , we have

_ _ _ N
—(l(F(kN)—k”f(k”))+F(kN)—LF(kN +ﬁ))- dk =1 , which leads to
s r+1 ac,
N dHF dHN
dk < 0.Together with (a5.33) and (a5.34), we have >0 and ~<0.
dcC, dcC, dcC,
This completes the proof of Property 5.1. o

Property 5.2 Given r >0 flexible firms, s >0 in-flexible firms and capacity costs
(Cy, Cp), the effects of production cost on each firm’s expected profit is:

@ In Region-A, no strategy is effective;

N
(i1) In Region-B, only in-flexible strategy is effective, and y, - <0;

F
(iif) In Region-C, only flexible strategy is effective, and . = <0;

dHN
(iv)  InRegion-D, both flexible and in-flexible strategies are effective, 7 <0 and
TNy _ LN N drir
(1) if (s+DF(T) k" f(k7) <1, then —~>0;
N
TNy _ LN N F
@ if SEDFERDZRTTRD) | pen e .
s d
Proof

Part (i) can be obtained directly by Theorem 5.3.
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1 J—
Region-B By Theorem 5.3, Hiv = —2(kN)2F(kN) , where k" satisfies
s

s+1

Cy+p= J.kr: (@——k")f(@)dae . With respect to f , we have
s
dk™ s
=- — <0
dp (s+DF &)=k f(k™)
N o N
Therefore, by Theorem 5.3, we have drllge = szN RF*,Y)—kN f(k")] djﬂ <0.
s

Region-C
By Theorem 5.3,

a1 “a-py ) -B)’ ith respect to
I, = 1)’ U/” (a-p) f(a)da"‘_'.x(cf_)(X(CF) B f(a)da) With respect t
drt” 2
e have £ =— L -C 0.

Region-D By Theorem 5.3,

P 1 (e o N av
I, e (IW (@—k"=p) f(a)da+jx(cm(X(CF) ) f(a)da),
" =i2(kN)2F(kN),where k" satisfies

S

CN+,B=Ik:(a—STHkN)f(a)da—ﬁ(L(,B+kN)—CF). With respect to B, we

- F&" + B

have dk =- r+l —— - - < 0. Then we have
Py~ + gy FED R TR
r+1 s
dHiV_LN_N_N N.de .
B —Szk [2F (k™) —k" f(k™)] 45 <0;
dil; 2 dk"”
- LK™ - (1 )
7 (r+1)2[ k" +p)-Cp]-(1+ d[),)
(<s+l>F<kN>—ka<kN)_1J
dri’ 2 s
=T (LN 4 B)-C, I —
ap D) F U= T+ pa FED K TG
r+1 )
Therefore, we have (1) if (s+DF(k") =k f(k )<1,then dg—ﬁ">0;
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TNy _ LN N dIit
) if (s+DF(kT)—k” f(k )>1,then—"’<0.
s dp
This completes the proof of Property 5.2. o

Property 5.3  Given # firms and capacity costs (C,, C,)in a strategy-coexistence

market consisting of r 21 flexible firms and s 21 in-flexible firms where r+s=n.

Within the range r € [, n—1], we have

N
@) total capacity of in-flexible firms is decreasing in 7 i.e., <0;
r
F
(i1) total capacity of flexible firms is increasing in 7, i.e., 0.
Proof

For given (C,, C,) in a strategy coexisting market consisting of r 21 flexible firms

and s2=1 in-flexible firms, where r+s=n . By Theortem 5.3, we have

K =—1(X(C,)-B-k")>0
r+1

N .
, where k" satisfies

kY >0
CN+,3=I:(O!—S—HkN)f(a)da—L(L(,B+kN)—CF). (25.35)
k ) r+1
Cy <Cp <L(B+k,)<L(B) and u—(Cy, + ) >ﬁ(L(,B) -C,). (a5.36)
r

With respecttor, n=(r, n—r), s=n—r, by Theorem 5.3, we have

N T p— U“C”(a—kN By f@da+ [ (X(C)-k" —,B)zf(a)daj

(r+1)* \J g

(k"V)? F(kN ), where k" is a function of .

Hév(’ _)=
r,n—r (

2
n—r

n—-r+1

By (25.35) we have Cy + 8= (@~ kN)f(a)da—ﬁ(L(,B+kN)—CF).
k r

n—r
With respect to 7, for given C,,, C,, B, n,we have

dk"
dr

—( d (F<kN>—ka<kN>)+i<(r+1)F(kN)—rf</)’+k”>))

n—r
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! KV F (kY )+ !

:(n—r)2 Y (L(B+k")—C,). Therefore, we have

dik™
dr

_ (r+DkYF™)+(n—r) (L(B+kY)-C,)
(n=r)r+D*(FE" )=k F" )+ —r)2(r+)((r+DF k") =rF(B+k™))

<0 . Therefore, k" is decreasing in r, for given C,, C,, B, n. Note that

F F N
ka+kN =X(C,)- B . We have (r+1)-dk :k_z_dk

r r dr r dr
dk* _ k" o 'de
dr (r+hr ((r+1) dr

>0, so that

F . . . .
> 0. Therefore, k" is increasing in .

This completes the proof of Property 5.3. o

Property 5.4  Given (C,,C,), the total capacity of all firms k' is bounded under

various situations:

(i) If (C,,C,)isin Region-A, then k" =0.

(i) If (C,,C,)is in Region-B, then k' is decreasing in C,, , and independent of C,,
furthermore, X(C,)— <k’ =k" < X(C, + ).

(iii) If (C,,,C,)is in Region-C, then K'is decreasing in C,, and independent of C,;

furthermore, l(X(CF)—,B) <k" =k" ZL(X(CF)_,B)-
2 r+l1

(iv) If (C,,C,)is in Region-D, then ﬁ(X(CF )= B) <k’ <X(C,)-pJ.
r

Proof

Region-A By Theorem 5.3, in Case-A, capacity of all firms is zero, i.c., k "=0.

Region -B By Theorem 5.3, in Case-B total capacity of all firms equals to that of all
© +1

in-flexible firms, i.e., k* =k" >0, which satisfies Cy+p= Jk” (a—s—kN)f(a)da.

s

N
With respect to Cy, dk =—— _ . With the assumption
dCy  sF(™)+(F(k™)=k" (k™))

N

— dk
fF(x)>xf(x), h
of F(x) > xf (x), we have 1C

< 0. Therefore, total capacity in Case-B is decteasing in
N
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C, , and independent on C, . Furthermore, by condition of Case-B, we have
X(C,)— B <k". Therefore, X(C,)-B <k’ =k" <X(C, +p).

Region -C By Theorem 5.3, in Case-C, total capacity of all firms equals to that of all

flexible firms, 1ie., kT:kF:Ll(X(CF)—,B) . With respect to C, ,
r+

dk”
=- . < 0. Therefore, total capacity in Case-C is decreasing in Cj,
dcC, (r+DHF(X(C,))

and independent on C, . Moreover, since r=21 |, we  have

Lxe-p <k =k" =" x(c,)-p).
2 r+1

Region -D By Theorem 5.3, in Case-D, total capacity of in-flexible firms is k™ >0,

s+1

which satisfies CN+,B=Ik:(a——kN)f(Ol)da—Ll(L(,B+kN)—CF) ; total
S r+

capacity of flexible firms is k" =L1(X(CF)—,B—/<N) >0. So that we have total
r+

capacity of all firms is k' =k" + k" =X(CF)—ﬁ—lkF. Therefore, we have
r

k" =rX(C)=B-k") and k¥ =(r+Dk" —r(X(C,)-p).

Since k" >0 and k" >0, we can get lower and upper boundaries of total capacity of all

firms in Case-D, i.c., — 5 (X(C)-B)<k” <(X(C,)-p).
+
This completes the proof of Property 5.4. o
Proposition 5.11 Given r >0 flexible firms and s >0 in-flexible firms, within

Region-D, between Curve-1 and Curve-2, there exists a unique Curve-3 satisfying

n’«,,c,)=1c,.C,); in Curve-3, C, increases with C, ; in the area above
Curve-3, denoted as Region-D1, Hi,v > Hf > 0 ; and in the area below Curve-3, denoted

as Region-D2, I17 >TIY > 0. O
Proof
By Theorem 5.3, in Case-D we have

s+1

Cy+B=[ (@="=k") f(@)da-——(L(B+k")-C,); (25.37)
K" s r+1
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I 1 Ux(c,)(a/—k’\’ _ﬂ)zf(a)da"‘J.;CF)(X(CF)—kN —ﬂ)zf(a)da);

T U
) = iz(kN)zf(kN) .Note that 0< C, < 4 — f in Case-D.
S

Let M, (C,,C,)=T1 —TIY. Given C, €[0,u— ), by Property 5.1 (iv-2), we have

dri’ drt” dM, dri’ g’
¢ <0, >0,and so —¢=—0 ¢
dc, dc, dC, dC, dC,

< 0. Therefore, for each given C,,

M, is decreasing in C,.. Recall that Curve-1: Cp, = L(B+k,),

Cutve-2:C,, = rTH C, - FT“ (u-PB)+L(p), (a5.38)

where C, +,B:J.:(a—ST+lkW)f(a)da. When C, =Cp,, by Property 5.1 (i), we

have I_IeF =0 and Hiv >0 . Therefore, M, (C),C;)<0. When C, =C,, <Cy,,
clearly TIF > 0. (Otherwise, I1 =0 implies X(C,,)=k" + S, ie, C., =L(k" + f).

Thus, CN+ﬁ:J;(0!—S—HkN)f(a)d0{ and kY =k
S

so Cp, =C,,, contradiction.)

wo

On the other hand, by (5.41) and (5.42)

s+1

u=|(@-2=k")f(@da———(LB+k")-L(B)).
k s r+l1

Let the right hand side be V(k"), k" > 0. Then,

r

1F(,[)’+k”))<0 implies that V (k")
r+

V“)(k”):—%(ﬂk”)—ka(kN»—(F(kN)—
is strictly decreasing. Since V(0) = , we have K N =0. Therefore, Hiv =0. Thus,
M,(C,,C,)=T1" —=TIY >0 . Hence, when C, €[0,1—f3) is given, there exists a
unique C, € (Cp,,C,,) such that M,(C,,C,)=0, ie, I =TI . Clearly, when
Cy=u—-pf,wecan take C, =C,, =C,, = L(f) and Hf :Hi\’_ Thus, we obtain Cj,
as a function of C,, so that M ,(C,,C,)=0, C, €[0,u— f].

a1t dm?
ac, dc,

Differentiating both sides w.r.t. C,,, we have
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dll; _ 2(X(C,)—-k"-p)dC, 2LK"+p)-C,) dk"
ac, (r+1)° ac, (r+1)° ac,
24, dC,  2A  dk" '

S (r+12dC, (r+l) dC,

dHN N _ N N
< :—2(2F(kN)—ka(kN))-dk zﬁz-dk , where
dCy s dC, dcC,

A=XCH-k"-B>0, A=L(k" +p)-C, >0,

B=kVQFKk")—=k" f(k"))>0.

24, dC N
A dey (B, 24 ) dk (a5.39)
(r+1)° dC, K (r+1 dc,
By (a5.38), differentiating with respect to C,,
N dC
we have 1=—B, & L Cor (a5.40)

+ ,
dC, ' r+1dC,

where B, =~ (F(kM)—k" f(k”))+F(kN)—L1F(kN+ B)>0 . Therefore, using
S r+

£+ 2A
s (r+1)?
2AB, r B 2A
>t -7t 2
(r+1) r+l s (r+1

> (. This shows that Curve-3

dC
5.38) and (a5.40), —F =
(35.38) and (a540), — -

N

)

is an increasing function of C .
Furthermore, since for each given C, , M, is decreasing in C, we obtain that in the

area above Curve-3, Hiv > H: >0, and in the area below Curve-3, Hf > Hiv >0.

This completes the proof of Proposition 5.11. o

Proofs in Chapter 6
Proposition 6.1 Referring to Curve-1, given total # firms and C,,, C,. is decreasing in s

referring to Curve-2, given total # firms and Cp., C, is decreasing in r.
Proof

According to Proposition 5.10, we have Cp," (s) <0 for given #and C,.
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By definition, Curve-1 is independent of 7. Therefore, regarding Curve-1, for given # and

C,, C, is decreasing in s.

dc -Cy —
According to Proposition 5.10, given C,,, we have v M p <0. By

dr r(r+1)

definition, Curve-2 is independent of s . Therefore, for given #» and C,., C, is

decreasing in 7. This completes the proof of Proposition 6.1. o

Proposition 6.2 Consider Curve-1, Curve-2, Curve-4 and Curve-5 defined as follows:

Curve-1 C, = L(B +k,), where k, satisfies | (0{— S—ij fleyda=C, +B;
w Ky

Curve2 C, :rT“cN —rTH(,u—,B)+L(ﬁ),i.e., u—(Cy +p) :ﬁ(uﬁ) -C,);

Curve-4 X(C.)=X(Cy+pB)+p;Curve-5 C, =C, —(u—-p)+L(B).
Then we have following conclusions:

(@)  Referring to each of these four curves, C,. is increasing in C,;

(i) there is one and only one intersection point for C,, € (0, g — f]. The intersection

pointis (C,,C,)=(u- B, L(B)):

(iii) define Cy, Cp,, Cry, Cps to be points on Curve-1, Curve-2, Curve-4, Curve-5,
respectively, with given C, . If >0, then C,, >C,, >C,5>C,, for all
Cye@ u-p) ; and, if =0, then C, >C,, =C,>C,, for all
Cye, u-p.

Proof

To distinguish each curve, we define C,,, Cp,, Cy,, Cps to be points on Curve-1,

Curve-2, Curve-4, Curve-5, respectively, with given C, . Then we have following

discussion in terms of the slope of each curve.

Cutve-1 C,, =L(B+k,) and j k”(a—s—“kw) fleyda=C,+p. (a6.1)
K}
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dc,, _dc,, dk,  dC

v ZEL - F(B+k,)<0 ;

With respect to C, , we have

ac,  dk, dc, ° dk,
dk, _ 1 o 4Cri _ F(,B+k )

+1 = ' +1 — '
dCy S—[F(k )——k Fk)] dCy F, >——kuf<k D

— dc
Therefore, under the assumption F(x)—xf(x) >0, we have 1.50.

Moteovet, dg” == P+ llcw) F(LB+ k) <I. (a6.2)
v EG) kS TR
Cutve-2 C,, = 1c —r—”( _B)+ L(B). So that 4Cr2 =Ty (a6.3)
N r

Cutve-4 C,, =L(B+X(C, + /).

Therefore, dCr, = F('B+ X(Cy +'B)) (a60.4)
dc, F(X(Cy + )

Andif f>0, then dCrs _ F(B+X(Cy +ﬁ)) (26.5)

dc, F(X(C + /)

If B=0, then ICre L FB+X(Cy+h) (a6.6)
dcy F(X(Cy +5)

Curve-5 C,s =C, —(u—- P+ L(p). Therefore, lec(:‘FS =1. (a6.7)

ac,.
Therefore, we have n>0,i=1,2,4,5, ie, C, is increasing in C, for each
N

curve.

Given Cy =u—pf , then C, =C,, =Cpy =C,, = L(f) . Therefore, four curves
intersect at point (C,,C,) = - B, L(B)).By (6.1) we have L(k,)) > C, + f, so that
k,<X(C,+p).

Hence, L(B+k,)>L(B+ X (Cy + B)),ic, Cp >Cp,. (26.8)
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dc dc dc
If B>0, then by (a6.3), (a6.5) and (a6.7), —=*+ <1, — =land —=2
dc, ac, ac,

>1, we have

dCp, < dCps < dCp,

ac, ~ac, S ac, . Since these three curves have an intersection at point
(Cy,Cr)=(u—-p, L(PB)),sowith given C,, C, €[0, u— ), we always have
Cp,>Cps>Cpy. (a6.9)

By (a6.8) and (a6.9), we have C,,, >C,, > C,, > C,, with givenC,,, C, € (0, u—p).

dCp, _dC,; _dC,,
dCy dC,  dC,

Similarly, if f=0, then by (a6.3), (a6.5) and (26.6), we have

Therefore, C,, >C,, =C,s >C,,with givenC,,, C,, € (0, u—p).

This completes the proof of Proposition 6.2. o

Proposition 6.3 Given n = (r,s)and capacity costs(C,,, C,), we have the following
conclusions about the Final Equilibrium:

@ If (Cy, C.)isin Region-A, then the Final Equilibrium is obtained for anyn =(r,s);
(i) If (Cy, C.)isin Region-B, then the Final Equilibrium isn = (r,s) = (0,n);

(iii) If (Cy, Cj)isin Region-C, then the Final Equilibrium isn = (r,s) = (n,0) ;

Proof

By Theorem 5.3 we have following four case analyses.

LB <C, {kF =0

Case-A { . We always have H:_,V (r,s)= Hf (r,s)=0,

, and
u-pB<C, <C, KV =0
for any n=(r,s), the status can be stable.

k" =0
Case-B .

kY =sk) >0
L(f+k,)<C,, and C, <pu—f. We always have I1" (r,s) >TI! (r,5) =0 for any
n=(r,s). There aren’t firms transferring from in-flexible to flexible strategy in the Case-

B. Given (C,, C,), according to Proposition 6.2, as firms transfer from flexible to in-

flexible strategies, the new equilibrium point still stays in Region-B as s increases.

Therefore, all firms will transfer to in-flexible firms, i.e., n=(r,s) =(0,n), as the final

equilibrium. Particularly, it is noted that IT" >TI’ =0 also holds in Curve-1, therefore,
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all firms whose costing parameters are on Curve-1 will transfer to in-flexible firms. That

is to say the Curve-1 will stay at n=(r,s)=(0,n), ie, C, = L(f+k,) where k,

D ) S Fyda=c, + .
n

satisfies Ik (a—

k=" (x(C,)-p)>0
r+1

kN =0

Case-C , k" =rkl ; C,<C,<L(f) and

hC,)-B<C, , where h(CF)z,u+ﬁ(CF—L(ﬁ)) . We always have
r

Hf (r,s)> Hi,v (r,s) =0 for any n=(r,s). There aren’t firms transferring from flexible
to in-flexible. Given (C,, C,), according to Proposition 6.2, as firms transfer from in-
flexible to flexible strategies, the new equilibrium point still stays in Region-C as r
increases. Therefore, all firms will transfer to FCS, i.e.,n=(r,s)=(n,0), as the final
equilibrium. It is noted that n = (r,s) = (n,0) also holds on Curve-2. Therefore, at Final

+1 +1
Equilibrium the Curve-2 will stay at C,. = UREYs N 1
n

(=P +L(p).

This completes the proof of Proposition 6.3. o

Theotem 6.1 For all ne[l, ) , given production cost B , within the area
{(Cy,Cr):0<Cy <Cp < oo}, the Final Equilibrium can be characterized as below:
() inatcau—p<C, & L(B)LC, & C, <C,, for any n=(r,s), two strategies
lead to zero profit forall ne[l, o0);
(i) inarea 0SC, <u-B & L(f+k,)<C, & C, £C,,all firms transfer to in-
flexible strategy, i.e., n = (r,s) =(0,n) forall ne[l, o0);
(i) in area u—(Cy+p)< %(L(,B) -C,) & L(B)>C, & C,<C, , al firms
transfer to flexible strategy, i.e.,n = (r,s) =(n,0) forall ne[l, o);
(iv) in area L(B+k,)>C, & u—(Cy+p) >%(L(,3)—CF) & C, £C, , there

are three sub-areas as below:

177 -



Evaluating Flexible Capacity Strategy under Demand Uncertainty YANG Liu

(iv-1) when L(xC,H-p)-C,-B>0

, let

(X(C)-BFX(CH-B)
LX(CH-P-Cy—-B

N =

(iv-1-1) if n>=N , then all firms transfer to in-flexible strategies, ie.,

n=(r.5)=(0.n);

(v-1-2) if n < N , then at Final Equilibrium, both flexible and in-flexible firms

coexist in the market;
(iv-2) when L(X(C,)-p)-Cy - B <0 and L(B)-C,—(u—-C, — ) <0, both

flexible and in-flexible firms coexist in the market regardless of number of firms;

iv-3) when L(B) ~C,~(u~Cyy = ) >0, let = H=Cu=F
(iv-3) when L(f3) r(u N B)>0,let N L(ﬂ)_cp_(/u_CN_ﬂ)

(v-3-1) if n> N, then all firms transfer to flexible strategy, i.e., n=(r,s) = (n,0);

(iv-3-2) if n< N, then at Final Equilibrium, both flexible and in-flexible firms

coexist in the market.
where k,, is the unique solution of the equation J.km (a=2k,)f(@)da=C,+p.

Proof

To facilitate the proof, we first give expressions of a few curves.

Curve-1 C3"is CY" = L(B+k.) where k. is the unique solution of the equation
o +1-

I% (a—n—kw)f(a)da= Cy+p.
w n

ntle Al B+ L) . et n=1, then
n

(n,0) : (n,0) __
Curve-2  C,5 is Cpy =

COV =L(B+k,) where k is the wunique solution of the equation

wl
|, (@=2k)f(@da=Cy+p: CiY =2C, ~2u= B+ L(), Cy €0, = pl.
Let n—oco , then X(CHy™)=X(Cy+B+p ; C5”=Cy—(u—-p+L(P)
According to Proposition 6.1, referring to Curve-1, C,. is decreasing in s with givenC,, .
Therefore, given C, , Co™ <CH™ < CH? < CHY, where i€ (1, n) and ne[l, ).
With regarding to Curve-2, C, is decreasing in » with given C,.. Therefore, given Cp,

CV<Cl? <cy? <y where je(l, n) and ne[l, =) . Therefore, in areas
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above the Curve-1 C\}" the equilibrium is always Case-B for C,, € [0, & — fB]; in areas

right of the Curve-2 C\3, the equilibrium is always Case-C for C, € [0, L(B)].

According to Proposition 6.3, Part(i)~ (iii) of Theorem 6.1 can be obtained.

In the following discussion, we analyze the conditions of Final Equilibrium occurred
1 (0,1) (1,0)

within the area between curves Cp;;” and Cp5" .

Case-B analysis

Given C,, C,, B, n,ifits final equilibrium occurs as Case-B, then by Theorem 5.3, in

Case-B, we have L(f+k,)<C, , and C,<u—-pf , where k, satisfies

oo +1
J.k (a—s—kw)f(a)da =Cy+ . It is noted that at Final Equilibrium, all firms on
w Ky

Curve-1 transfer to in-flexible firms, i.e.,, n = (r,s) =(0,n). By L(B+k,) < C,., we have

k,2X(C.)-p.

Define H(Z):.[ (x—2)f(@)da ; and HV(z2)=—zf(z1)——F(2) <0 . So,
z s s s

H (z) is decreasing in z. Therefore, at the Final Equilibrium we have

cy+B=["@-"i ) fdas[”  @-"Lxc)-pir@da . Ths is
k, n X(Cp)-B n

equivalent to CN+ﬂ£L(X(CF)—,B)—l(X(CF)—,B)f(X(CF)—ﬂ) , so that we
n

obtain
lS L(X(CF)__ﬁ)_CN_ﬁ . (a6.10)
n [X(CF)_IB]F(X(CF)_IB)

Therefore, two situations are discussed.

Situation-(1) If L(X(C,)—-pB)—C, — B >0, then we have

L(X(CF)_ﬂ)_CN _ﬁ
By Proposition 6.1, all firms will transfer to in-flexible strategies, i.e., n =(r,s) = (0, n).
Situation-(2) If L(X(C,)—pB)—C, — B <0, then there is a contradiction of (a6.10).

So Case-B does not exist. Therefore, if final equilibrium for a given C,,, C,, B, n
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occurs as Case-B, it has following properties: (i) L(X(C,)—pB)—Cy—B>0; (i)

0> (X(Cp)—-BF(X(C,)-p) ; (i) n=(r,s)=(0, n).
LX(Cp)=-p)-Cy - B

Case-C analysis

Given Cy, C,., B, n,ifits final equilibrium occurs as Case-C, then by Theorem 5.3, in

Case-C, we have C, <C, <L(f) and s—(Cy +f3) < LI(L(ﬁ) —C,). It is noted
r+
that at the Final Equilibrium, all firms on the Curve-2 will transfer to flexible firms, i.e.,

n=(r,s) =(n,0). Therefore, we have g —(C, + f) < Ll (L(f)—C ) so that we have
n+

1
n u=Cy - IB
Therefore, we have two situations to discuss.

Situation-(1) If L(B)—C,—(u—C, - )>0, then

LB Cr—u-Cy =P (26.12)

n> #=Cy-B . (a6.13)
L(:B) _CF_(IU - CN _ﬁ)

By Proposition 6.3, all firms will transfer to F strategies, i.e., n =(r,s) = (n, 0).
Situation-(2) If L(B)-C,—(u—C, — ) <0, then (a6.12) does not hold. Therefore, if

final equilibrium for a given C,, C,, B, n occurs as Case-C, it has following

propertes: () L(B)=Crw=Cy =f)>0: @) nz _‘é :—C(Z - gN ¢

n=(r,s)=(n, 0).
Case-D analysis

Given Cy, C,, B, n,ifits final equilibrium occurs as Case-D, then by Theorem 5.3, in

Case-D, we have two conditions as C, <C,<L(f+K,6)<L(f) and
u—(Cy,+p> Ll (L(B)—C ). We discuss these two conditions respectively.
r+

Condition-1 C, <C, <L(8+K,)<L(f)
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By C,<L(f+k, , we have k <X(C,)-f , where k, satisfies

w

k

Cy+B=] (a—STkaj f(a)da . Noting that at the Final Equilibrium, all firms on

Curve-1 transfer to in-flexible firms, i.e., n = (r,s) = (0, n). Therefore, we have

C, +,3:J.;(05—n7ka)f(a)da>J. L

X(Cp )_ﬁ n

X(Co-Plf @da , e,

C, +,B>L(X(CF)—,B)—l(X(CF)—,B)F(X(CF)—ﬂ).Therefore, we have
n

l> L(X(CF)__ﬂ)_CN_IB ' (a6.14)
n (X(Cp)-PFX(Cp)-P)

Therefore, two situations are discussed.

Situation-(1-i) If L(X(C,)—-pB)—-C, — >0, ie., the point (C,, C,)is above the

(X(C,)-BF(X(C,)-p)
LX(CH-P-Cy-B

Situation-(1-ii) If L(X(C,)—fB)—C, - B<0, ie., the point (C,, C,)is below the

Curve-4, then we have n < (a6.15)
Curve-4, then (a6.14) always holds.
Condition-2 41— (Cy + ) > Ll(L(ﬁ) -C,)
r+
Noting that at the Final Equilibrium, all firms on Curve-2 will transfer into flexible firms,

ie, n=(r,s)=(n, 0) . Therefore, we have u —Ll(L(,B) —C.)>C, + 3 ;50 that
n+

l> L(ﬂ) _CF_(IU_CN _ﬁ)
n IU_CN_ﬁ .

Therefore, two situations are discussed.

(26.16)

1 If L(B)-C,—(u—C, —pB)>0, ie., the point (C,, C,)is below the Curve-5,
.U_CN _ﬂ )

L(ﬁ) _CF_(:U_CN _ﬁ)

2 If L(BH-C,—(u—-C, —-p)<0, ie, the point (Cy, C,)is above the Curve-5,

then n < (a6.17)

then (26.16) always holds.

- 181 -



Evaluating Flexible Capacity Strategy under Demand Uncertainty YANG Liu

By Proposition 6.2, Curve-4 is always above Curve-5, we can divide Region-D into three

areas. Define Region-D-1 is area between Curve-1 and Curve-4; Region-D-2 is area

between Curve-4 and Curve-5; Region-D-3 is area between Curve-5 and Curve-2.

Therefore, if the final equilibrium occurs as Case-D, there are three possibilities.

6) If the final equilibrium stays at Region-D-1, ie., L(X(C,)-fB)-C, - 5>0,

_XC)-HFX(C)-P)
L(X(Cp)=p)-Cy-p

(if) If the final equilibrium stays at Region-D-3, ie., L(8)—C,—(u—Cy — ) >0,

“u-Cy-p .
L(B)=C,~(u=Cy = f)
(iii) If the final equilibrium stays at Region-D-2, i.e., L(X(C,)—fB)—-C, - <0

then at final equilibrium it must have n

then at final equilibrium it must have n <

and L(B)-C,—(u—C, —p)<0 , then any combinations of n=(r,s) is

possible.

Sort out the analysis within the area between curves Cy" and C{;”, then there are three

possibilities.

(X(C)=-PFX(C)-B)

(1) If (X(C,)-B)—C, —B>0,thenlet N =
g N LIX(C)-B)-Cy-p
Mitnz N , then all firms transfer to in-flexible strategies, i.e., n = (r,s) = (0,n);

(2) if n< N, then at Final Equilibrium, both flexible and in-flexible firms coexist in
the market;
2 If L(X(C,)-p)-C,—-B<0 and L(B)-C,—(u—C, —B)<0, then at Final

Equilibrium, both flexible and in-flexible firms coexist in the market.

_ —Cc, -8
3) If L(B)—C ,—~(1t—C,, — 8) >0, then let ¥ = H=Cw :
OIELp “ / NI -cmu-c, - P

(1)if n> N, then all firms transfer to flexible strategy, i.e., n = (r,s) = (n,0);

(2) if n< N, then at Final Equilibrium, both flexible and in-flexible firms coexist in
the market.

This completes the proof of Theorem 6.1. o

Theorem 6.3 In a profit-driven market, the Stable Market can be characterized as

follows within the area{(C,,C,):0<C, <C,}.
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@) If u—B<C, & L(B)<C, & C, <C,, then no firm will exist in the
market eventually, i.e., n=0;

(if) If L(X(C,)=B)—C, —B>0, ic. above the curve Cy; ~, then the Stable
Market stays at Case-B n=(0,n), n — o and Hiv 0,n) > 0;

i)y If L(B)—C,—(—C, —B)>0, ic., below the curve Cyy *, then the Stable
Market stays at Case-C n = (n,0), n — o and Hf (n,0) > 0;

(iv) If L(X(C,)-p)-Cy—B<0 and L(B)-C,—(u—-C,-p) <0, iec., area
between Curve-4 and Curve-5, then the Stable Market stays at Case-
Dn=(r,s),n—>o00,s oo, r =00, II"' = 0and [T — 0.

Proof

Assume that new firms are allowed to join market freely as long as the profit is positive;

and quit market freely if there is no profit. Each firm joining market can choose their

strategies, flexible or in-flexible. By Theorem 5.3 in Chapter 5, in Case-B, Case-C and

Case-D, there is always positive profit in market. As a result, total number of firms tends

to infinite, i.c., n —> 0o, Define TTY = (k" )> F(kV);

Iy =

X(Cr)

(@-k" —,6)2f(a)da+j;q)(X(CF)—kN - B) f(a)dar.

Bk

By Theotems 5.3 and 0.2, it can be concluded that

LB)<C,
1 If {ﬂ_ﬂch

there is no firm existing in market, i.e., n=0.

o I {L(ﬁ)scF

, then the solution is I1Y =TI” =0, regardless rand s. As a result,

then the final equilibrium stays at n=(0,n) with

0<C,<u-p8-°
kF =0 N kz_ 1 N N
,and IT, (0,n) =—-F(k,)=—1II;. It can be proved that II;
kY =nk} >0 n n

is bounded above by (X(CF)—,B)ZF(X(CF)—,B). Therefore, as n —>co |

1" 0,n) = 0.
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. |k =k
, then the equilibrium stays at n=(n,0) with N , and
k

o I {CF <L(p) 0

;U_;BSCN

Hf(n,O)szHg . It can be proved that II, is bounded above by
n

(X (C,)-B) F(B). Therefore,as n—>oo, TI7 (n,0) > 0.
C. <L
@ If { 4 ) , then there are three situations.
CN <H- IB
4D If L(X(C,)-p)—-C,—-pB>0, ie., above Curve-4, then we have following
analysis. By Theorem 6.2, Case-B and Case-D may exist. Asn — oo, there are two
situations: (1) § — oo, and r is finite or ¥ — oo; (2) sis finite, and 7 —> oo.
(4-1-1) If s — oo, and r is finite or r — oo:
As §—o0 | Curve-l will approach C, =L(S+k,) where k, satisfies
J.: (a—kw )f(a)da =Cy + [, so that k, = X(C, + ). Therefore, we have
C.,=L(S+X(Cy+P), ie, X(C,)=X(C\+p)+ B, which is Cutrve-4.
Therefore, (Cy, C,) will eventually stay at Case-B in the Final Equilibrium.
(4-1-2) If sis finite, and r —> oo:
1

1
Considering Case-D, by Theorem 5.3,k = 7 (X(CH=-B-k");kY =—k",
r+ S

k" satisfies C,,+ 8= °N°(a—s—“kN)f(a)da—L(L(ﬁJrkN)—CF);
k s r+1

1 1
- ) ; nY¥ =—1)

= 5 =— . Tt can be proved that I1} and II) are
(r+1)

0 » e 2
S

bounded above. As r — o and s <s, for some positive number s,, we have

" >0 and CN+ﬁ:J;(a—S—HkN)f(a)da—(L(,B+kN)—CF). Since
S

1 —
kY >0 and Hiv=—2(kN)2F(kN)>O, there exists an r so that
s

Hiv (I_", s+1)> HeF (r,s) >0 forall r= 7. In this case, the number of in-flexible

firms should increase. Continuing with this argument will eventually lead to

s > 8, . This is a contradiction. As a result, n — oo, and Final Equilibrium occurs

as Case-B, i.e., all firms become in-flexible.

184 -



Evaluating Flexible Capacity Strategy under Demand Uncertainty YANG Liu

(4-10) If L(B)—C,.—(u—-C, — B) >0, ie., below Curve-5. Similar to the analysis of
(4-I), we can draw the conclusion thatn — oo, and Final Equilibrium occurs as

Case-C, i.e., all firms become flexible.

(4-1I) If L(X(C,)—-p)—-Cy —-B<0 and L(B)—C,—(u—-Cy—-pB)<0, iec, area
between Curve-4 and Curve-5. By Theorem 6.2, in this region, the stable status
will be stayed at Case-D for any combination of n = (r,s). By Theorem 1, we
have in Case-D, we always have I1" > 0and ITY > 0. Under the assumption that

new firms will join the market as long as the profit is positive. Therefore, there
are always new firms joining in market. We analyze these two possible situations.

(4-111-1) s — oo, and 1 is finite or r —> oo. By Theorem 5.3, in Case-D we have

kF :ﬁ(X(CF)—ﬁ—kN); K" satisfies that
r

Cy+B=[ @i pada-——wp+r*)-c,).
k s r+1

1 F
r+1)>°

1
The expected profit of each in-flexible firm is ITY (k") = —ZHQI If § — o0 and
s

The expected profit of each flexible firm is TI7 (k") =

r <r, for some positive number r,, then IT (k") :—2H§ >0, where

(r+1

k" and TI] are functions of r <r,. By Property 5.4, II is bounded above.
1 -

Therefore, TIY (k") =—2H(1)V — 0 . Thus, there exists an § such that
s

Hf(r+l, s) > Hiv(r, s) =0 for all s > . In this case, the number of flexible
firms should increase. Continuing with this argument will eventually lead to

r>71,. This is a contradiction. Therefore, s — o0 and r — oo, and hence

17 -0 and I1Y — 0.
(4-111-2) s is finite, and r — oo: Similar to the analysis of § — oo situation, it is easy to

draw the same conclusions.

Considering these four cases, we have the following conclusions within

{(C,.C,):0<Cy <C,}.
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(@) , there is no firm existing in market, i.e., n =0;

It {L(,B)SCF
u—-p<Cy

()  If L(X(C,)-pB)-C, — B >0, ie., above Curve-4, then Final Equilibrium stays
at Case-B n=(0,n),and n — o, I1¥(0,n) > 0;

(i) If L(B)~C,~(u—Cy—B)>0, ic., below Curve-5, then Final Equilibrium
stays at Case-C n = (n,0),and n— oo, I17 (n,0) = 0;

(v) If Lu—Cy-B)—Cy—B<0 and L(B)—C,~(u—~C, -B) <0, ic., area

between Curve-4 and Curve-5, then Final Equilibrium stays at Case-D, n = (r,s),

s —o, r—>oo, I - 0and 1Y —0.
This completes the proof of Theorem 6.3. o
Theorem 6.4 Given r=r,, r,€[l, n], there exists a unique curve satisfying

G(C,, CF| r,) = D(r,) =0, on which C, increases as C, increases; in areas above
the curve D(r,) =0, we have G(C,, CF| r,) = D(r,) <0; in areas below the curve
D(r,)=0, we have G(C,, cF| r)=D(r,)>0.

Proof

Let s,=n-r1, and r,€[l, n—1] . Considering two cases n=(r, s,) and
n=(r,—1, s,+1), we have
G(Cy, CF| r)=D(@r) =" (r,,n—r) -0 (r, - L,n—r,+1). (a6.18)

It is noted that given totally number of # firms, Curve-1 and Curve-2 depend on value

of (r, s). Given C,, then
) o s+1
Curve-l C, = L(B+k,), wherek, satisfies jk (@—""2k ) f(@)da=C,+p.
w Ky

Carve2 €, ="YX, + B- )+ L(B).
r

We define Curve-la and Curve-2a to be the curves corresponding to the case

n=(r,, s,), and Curve-1b and Curve-2b to be the curves corresponding to the case

n=(r,—1, s,+1). These four curves can be presented as below.
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sy +1

Curve-a Cpy, = L(B+k,y,), where [~ (@=2"=k,,,) f(@)da=Cy + .

wla

0

Curve-2a C,,, = L +1(CN +B-)+L(p).

o

w Sot+2
(a—="
b sy +1

Curve-1b Cpyy = L(B+k,,), where [ k) f(@da=Cy+p.

wl

r
Cutve-2b C,,, = —Ol(cN +B-1)+L(p).

o —
Given # firms, by Proposition 6.1, referring to Curve-1, C, is decreasing in s, i.e.,
increasing in r; referring to Curve-2, C,. is decreasing in 7. We relax the condition that
C, 2C,, here in this section. This condition can be added back after the discussion.

Thetefore, given # firms and C, € [0, u—fl1, C,, >C;,, >Cpy, > Cpyy . Three sub-

areas are created between Curve-la and Curve-2b. Define these three sub-areas as: (i)
Area-D-1 is the area between Curve-2b and Curve-2a; (i) Area-D-2 is the area between
Curve-2a and Curve-1b; (iif) Area-D-3 is the area between Curve-1b and Curve-1a. Figure

a6.1 shows these three areas. In the following, each sub-area is discussed.

CF A
B A
LB ————————————> =
p Curve-1a PR
e |
| -
1 C :
| 7
- |
Curve-1b urve-2b - |
- |
D-2 1 I
- |
P
Curve-2a [ | . :
| Infeasible |
: Range |
| |
| |
| |
: i |
T / ' | >
0 u-p L(B) Cy

Figure a 6.1: Three areas created by Curve-la~2b.

- 187 -



Evaluating Flexible Capacity Strategy under Demand Uncertainty YANG Liu

(i) Area-D-1
In this area, case n=(r,, s,) occurs as Case-C, and case n=(r,—1, s,+1) occurs as

Case-D. By Theorem 5.3, we have:

In case n=(r,, s,),weget I1! (r,,n—r,) :%Hg(O); (a6.19)
(r,+1)
In case n=(r, -1, s,+1), we get Hiv(ro -Ln-r,+D= %Hg’(kl) , (a6.20)
' (s, +1)
where k'satisfies C, +,B:'|':(a S0+2k Yfla)yda . (a6.21)

1

(i-1) situation: Given C,, with respect to C,, by (a6.21) we have > 0. Together

with (a6.18)~(a6.20), we have
dD(}"O) 2 1 1 — 1 1 1 dkl
=- X(Cp)=-p)—————k [2F (k' )—k f(k)]- 0.
ic, (r0+1)2( (Cr)-p) e [2F (k") =k f (k)] ic, <

1
(i-2) situation: Given C,, with respect to C,, by (a6.19) we have

<0. Together

N

D) L ppFa) -k %

= >0.
dc, (s, +1)? dC,y

with (a6.18)~(a6.20), we have

(ii) Area-D-2
If both cases n=(r,, s,) and n=(r;—1, s,+1)are in Region-D-2, then the two cases

occur as Case-D. We have the following discussion. By Theorem 5.3, we have

1 F

! (r,n—r,) = D g (k%), (26.22)
0
and Hiv(ro—l,n—ro +1)=(S+1)2H(I)V(kl), (a623)
0
where k" satisfies C,, + 8= (@~ Sothoy rayda——" 1(L(ﬁ+k°)—CF), (a6.24)
So I

as the total in-flexible capacity of case n = (r,, §,);

So+2

k'satisfies C, + 8= j (a— (a6.25)

as the total in-flexible capacity of case n = (r, =1, s, +1).
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(ii-1) situation: Given C, , with respect to C,, by (a6.24) and (a6.25), we have

dk’ dk' ,
>0 and > 0. Together with (a6.18), (a6.22) and (a6.23), we have
dC, dC,
dD(r,) 1 0 dk’ 0
= -2(L(B+k")-C,)- -2X(CH)-p-k
ic, (r0+1)2[ (L(B+k")-Cp) iC. (X(Cp)=f—k")]
. 1
—%k‘[zF(k‘)—k‘f(kl)]- LY
(so+D dCy

(ii-2) situation: Given C, , with respect to C, , by (a6.24) and (a0.25), we have

0 1
dk <0 and dk < 0. Together with (a6.18), (a6.22) and (a6.23), we have
dcC, dcC,
dD 0 _ 1
U)o 2 ppek®y-c) B L ppFwy -k B
dcC, (r, +1) dC, (s, +1) dc,

(iii) Area-D-3
In this area, case n=(r,, §,) occurs as Case-D, and case n=(r, -1, s,+1) occurs as

Case-B. By Theorem 5.3, we have

1
nf@,n—-r)= s «°, 26.26
e ( 0 0) (I"O +1)2 0 ( ) ( )
1
ANV, -Ln-r+1)=——TY ("), 26.27
an g(() 0 ) (S0+1)2 ()( ) ( )
0 . bl SO +1 0 I’O 0
k° satisfies C + 5 = j (- k%) f()da - (L(B+k")—C,); (26.28)
k Sy r+1
1 . e S0+2 1
k'satisfies Cyy + = (@—=2"=k") f(@)da. (26.29)
k 5o +1

0
> (0. Note that in

(iii-1) situation: Given C, , with respect to C,, by (a06.28),
F

! dD
dk =0. Together with (a6.18), (a6.26) and (a6.27), we have ()

F F

Case-B, <0.

(iii-2) situation: Given C, , with respect to C, , by (a6.28) and (a6.29), we have

0 1
dk <0 and dk
dcC, dcC,

< 0. Together with (a6.18), (26.26) and (26.27), we have
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dD(r,) dk° 1 dk'
= - 2
ic. (0 e S(L(B+K")~C,)- . oD K'T2F (k") = k' f(k")]- .c.

. Considering these three sub-areas together, given # firms, in the areas between Curve-

>0

12 and Curve-2b, we have

@y PN o Githgiven €, €0, - B; (a6.30)
2) dfi)é o) >0 with given C, €[0, L(B)]. (a6.31)

Consider the curve D(r,) =0, r,e[l, n—1], given » firms. With respect to C,,, we

oD dc oD ac aD aD
have (r,) dC + (r) _ 0, so that —= = (I’O) (ro . (a0.32)
aC, dC, oC, ac,
dD
By (a6.30) and (a6.31), we have éro) <0 and abn,) > 0 in the areas between Cutve-
F N

Cr >0.

N

d
1a and Curve-2b. Therefore, by (a6.32) we have

To relax the condition that C, 2 C, here in this section, we extend Curve-2a and

Curve-2b toC,, =0. Consider areas between Curve-1a and Curve-2b. By (26.30) in this

dD
area, () <0.
dC,
By (6.18), on Curve-2b,
D(r)=T1" (ry,n—r))=T1Y(r,=Ln—r, +1) = 1 1)2 I’ 0)>0;
o
on Curve-1la,
D(r) =M (ry,n—r)-T"(r, - Ln—r, +1) =O—%H(I)V(kl) <0,
(s, +1)

Sy +2

where k'satisfies C,, + 8 = j :(0(— 1 K f(ayde.
+

0

Curve-1a and Curve-2b intersect at point (C,, C,)=(u— /L, L(f)). Note that at this
point, Hf (ry,n—ry) = Hiv (r,—Ln—r,+1)=0. Therefore, we have D(r,) =0 . The
point (C,, C,)=(u— B, L(B)) is a common end of curves D(r,) =0, r, €[, n—1].
Therefore, in area between Curve-la and Curve-2b, there exists a unique curve which

satisfies G(Cy,, C| 1) =D(r,) =0
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By (a6.30), given a C, , D(r)) is decreasing in C, . Therefore, in areas above the

curve D(7,) =0, we have D(7,) <0; in areas below the curve D(r,) =0, we have

D(r,)>0.
This completes the proof of Theorem 6.4. o
Theotem 6.5 Given # firms, for every rye[l, n—1] , consider curves

G(Cy, Cp| 7)=D()=0 and G(Cy, C;| r,+D)=D(r, +1)=0 within the area
{(Cy.Cr):Cysu—-p & C,.<L(B) & 0<C, <C,}, then the Final Equilibrium
n=(r,, s,)can be categorized into one of the following five scenarios in terms of the
exact numbers of flexible and in-flexible firms.

@ In areas below curve G(C,, CF| r,)=D(r,) =0 and above curve
G(Cy, CF| r,+1)=D(r, +1)=0,we have n=(r,, 5,)=(r,, n—r,);

(i1) in areas above curve G(C,, CF| r,)=D(r,) =0 and below curve
G C,, CF| r, +1)=D(r, +1) =0, we have the Final Equilibrium does not
obtained at r =r,;

(iit) if these two curves overlaps, with respect to points on the curves, we have
either n=(r,, s,)=(r,, n—r) ot n=(r,, s,)=(r,+1, n—r,—1);

(iv) in areas above all curves G(C,, CF| r,)=D(r,) =0, r, e[l, n], we have
n=(r,=0, s,=n)=(0, n);

) in areas below all curves G(C,, CF| r,)=D(r,) =0, r,e[l, n], we have
n=(r,=0, s, =n)=(n, 0).

Proof

By Conditions of Final Equilibrium, Parts (i)~ (iii) is proved.

In areas above all curves G(C,, CF| r,)=D(r,) =0, r,e[l, n—1], by Theotem 6.3,

we have for all r,e[l, n—1], D(r,) <0. Therefore, D(1) =TT} (1,n—1)-T1" (0,n) <0,

which leads to that firms will use in-flexible strategy. By Theorem 6.2, the Final

equilibrium will stay at n=(r, =0, s, =n). This completes the proof of Part (iv).
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In areas below all curves G(C,, CF| r,) =D(r,) =0, r,e[l, n], by Theorem 5.3, we

have for all 7, € [1, n], D(r,) > 0. Therefore, D(n) =17 (n,0) =1 (n —1,1) > 0, which
leads to that firms will use flexible strategy. By Theorem 6.2, the Final equilibrium will
stay at n = (r, =n, s, =0).This completes the proof of Part (v).

This completes the proof of Theorem 6.5. o

Proofs in Chapter 7

Theorem 7.1 In a monopoly model with m € [0, 1], we have:

(i) The optimal capacity k~ satisfies 0 <k <% and

j: m(a(a—2mk") —ﬁ)f(a)da+I; ((a—2k")-p) f(a)da=C,.

mk', O<a<a,
(i) The optimal production quantity ¢ =g, a <a<a,.
k-, a, <o
(iii) The optimal profit is
M=[" k") of @da+ (g, of (@da+ | &) of @da,
B B

1
where o, =———, @, = -and g, =—(a——).
a—2mk

Proof

At the production decision stage, by (7.2), the first- and second-order derivatives of
w(g)are 7V (q)=a(a—2q)- B, 7% (q)==2a. If @ =0, then 7" (¢g) =-B <0 and

we take ¢ =mk. If @ >0, then 7% (q) =—-2a < 0. So, 7(qg) is concave in g and its

B

. . . 1
unconstrained optimal solution is ¢, za(a——). Note that mk < g <k . Hence, the
o
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mk', O0<a<a,

)]
a—2mk

optimal production quantity q* =144q,, o, fa<da, , where o, = and

k, o <o

s
a—2k

ap
At the capacity decision stage, by (7.1) and the above results, we have

1 =" mkla(a—mk) - B f (@da+[ (g, of (@da+| kata—-k)-BIf (@da—Ck

k) = j: m(e(a—2mk) - ) f(a)da + j : (a(a—2k)-pB) f(@)da—C,.
12 (k) = —2m> j : of (@)da -2 j : of (@)da <0 . Thus, TI(k) is concave in 4. Let
o, = — . Recall that ng<§.

no) = ['maa-pf@da+] (aa-p)f@da-Cc,
[ (@a~pf@da+| (aa-p)f@da-C,
= pa—-p-C.>0

As kﬁg , DU <[~ (aa=2k)= B f(@da~C, —~C, <0 . Therefore, the

v

optimal capacity k" satisfies 0 < k" <% and TIV(k") =0, ie.,
[ : m(a(a—-2mk’) - B) f (@)da+[ “(ala=2k")=B)f(@da=C,,and so

= J:L (mk*)ZOQ‘(a)da+J:(qb)zag‘(a)da+ J'; k) of (@)da.

This completes the proof of Theorem 7.1. o

Proposition 7.1 In a duopoly model with 0 <m,,m, <1, the optimal production

mk., O0<a<a,
capacity of firm i, given k,,k, and ¢, ,, is ¢, =1q,,» o, <a<a fori=1, 2,
k;, Op <
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1

where qibz—(a—ﬁ—%_i), a/Ll,:# and aﬁ:# for
2 o a—2mk, —q,, a—2k, —q,,

i=1 2.

Proof

By (7.3), for firm i, with respect to gq,, we have 7" (q,) = a(a—2q, —q, ,)— 8 and
7P (q)="2a.1f a=0, then 7."(q,)=-B <0 and we take g, =mk,. If @ >0,

then 7”(q,)=-2a <0. So, 7,(q,) is concave in g,, and its unconstrained optimal

1
solution is g, =3(a—§—q3_,.) . Note that mk, <q, <k, . Hence, the optimal

mk., O<a<a,
production quantity ¢, =<q,,, o, S0<a, .

k;, O <
This completes the proof of Proposition 7.1. o

Proposition 7.2 In a duopoly model with 0 < m,,m, <1, given the production quantity

of firm i’s (i€ {1,2}) rival g, ,, we have:
(i) Firm i’s optimal capacity k; satisfies 0 <k, <a—72q3_,- and
[ mata=q.,—2mk)) =B f(@da+]| (aa=q,,~2k)-p)f(@da=C,;

(ii) Firm i’s optimal profit

I, = I:“ (m.k ) of (a)dor + I:fi(q,»,,)zt?a‘(a)da+ I; k;)of (@)da,

where  g;, = l(a - ﬁ —q) , 0= IB* and @y, = # )
2 a—=2mk; —q, a—=2k; —qy,

i=1, 2.

Proof

For firm ie{l,2} , with respect to k, , by (7.5 we have

Y k)= j: m.(e(a—qs.—2mk,)— ) f(a)da+ j : (a(a—qs_. —2k)— ) f(@)da—C,
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P (k) =—2m | : of (@da—2[" af (@)da<0. Thus, TT,(k,) is concave in k;. Let

oy = B . Note that OSki<%.

1

a—dqs
o) = I:m mi(a(a—q3_i)—ﬂ)f(a)da+'f;‘ ((a—q, )~ B f(@)da—-C,
| : (a(a—gy )=~ B f (@da+ | : (ala—q,,)-B) f(@)da—-C,
ua—q, )—-p-C.>0

\Y]

As k, > % , IO (k) < j: (a(a—q, ,—2k)-p) f(a)da—C, ——C, <0.
Therefore, the optimal capacity k; satisfies 0 <k < % and TIV (k) =0, i.c,

j: m.(o(a—q,_. —2mk)— B f (@)da+ j : (a(a—q,,-2k)-B) f(@da=C,, and
so I, = [ (mk)* f(@da+["(q,)* fl@)da+ [ k) f@da.

This completes the proof of Proposition 7.2. o

Proposition 7.3 In a duopoly model with 0 <m, <m, <1, given the capacities of the
two firms k;, 20 and k, 20, the production quantities of the two firms (gq,,q,) at

equilibrium are as follows.

@ If mk, <k, <mk, <k, then

(mk,,myk,), 0<a< B
a—mk, —2m,k,
(mk,, qy,,)s p S0{<L
a—mk, —2m,k, a—mk, —2k,
/2 )i
=q(mk,, k,), —F <ag<—F
(@ 42) =1 (mks. o) a—mk, -2k, a-2mk, —k,
(G1p-3- k), —ﬁ < a<¢
a—-2mk, —k, a—2k —k,
(klvkz)’ LSC{
a—2k -k,
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) If mk, <mk, <k, <k, then

(mk,,m)k,), 0<a< p
a—mk, —2m,k,
(myky, 1) b sa b
a—mk, —2m,k, a—3mk,
_ B B
(91, 9,) =112 G2p2)> a—3mk, a—3k,
B B
. ky), <a<
T a—2k —k,
R R
a—2k, —k,
(i) If mk, < mok, <k, <k, then
(mk,,myk,), 0<a< s
a—2mk, —m,k,
(411> M3k ), 5 <a b
a—2mk, —m,k, a—3m,k,
B . B
= 9 — b —_— a
(91-9,) =1 @1p-2> G2p2) a—3mk, a—3k,
B B
. ky), <a<
(sl S ok,
ok —P <
a—2k, -k,
(iv) If mk, <mk, <k <k,,then
(mk,,myk,), 0<a< p
a—2mk, —m,k,
(Gyp1> Myk,), p o p
a—2mk, —m,k, a—3m,k,
s B
= s Gopn)s fa<———
(91-9,) =125 G2p) a—-3mk, a—3k,
B B
k.,q, ), <a<
K das) TTop a—k —2k,
(k. k), 5 <a
a—k, -2k,
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) If mk <k <m,k, <k,,then

(mk,,myk,), 0<a< p
a—2mk, —m,k,
(91/;_1’ mzkz ), 'B <a< L
a—2mk, —m,k, a—2k, —m,k,
B B
=< (k,,myk,), —r  <og<—F——
(4, 9,) =k, myky ) a2k, —m,k, a—k —2mk,
(kys Gap3)s LSQ<L
a—k, —2m,k, a—k, -2k,
k),  —P <a
a—k, -2k,
1 1 1
where ¢, :E(a_mzkz _g) > Gy :g(a—g) s Qs :E(a_kz —g) ,
1 1 1
92p-1 :E(a_mlkl _g)’ 9252 :g(a_g) and ¢, ; :E(G_Iﬁ _g)

Proof

By Proposition 7.1, Figure 7.3 shows all possible cases of two firms’ production decisions,

B

1
as well as their production quantities, whete g, :E(G___%_i) ,
a

L :ﬁ and =ﬁ, i=1,2.1n
Fim1| O0<a<e,, a, Sa<ag ap <
Firm 2
1 1I 111
0O<a<a, q, = mk, q,=4q, q, =k,
q, =m,k, q, =m,k, q, =m,k,
v \Y VI
o, Sa<a, q, =mk, q, =4, q, =k,
4, =4y, q, =4y, 9> =49
VII VIII IX
oy, <o q, =mk, q, =4, q, =k,
q, =k, q, =k, q, =k,

Figure a7.1: Possible cases of two firms’ production decisions.
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the following, we make an analysis on the solution and equivalent conditions of each

possible case in Figure 7.3.

Case-I
q, =mk
1 B 1% g, =mk,
q, = myk, g, =mk
0<a<a, 2o
O<eo<a, 0<a <min p ) p }
‘ {a—2mlk1—mzk2 a—mk, —2m,k,
Case-II
— 1
4 = 9w 91:%/7:3(‘1_5_7”2]‘2)
=m,k
q, 2R & g, =mk,
a, <a<a p 5 5
O<a<a, Sa<min{ , }
a—2mk, —m,k, a—2k, —m,k, a-3m,k,
Case-III
q =k
1 _ 1 q, =k,
q, =myk, g, =mk
2 T R
A S 5 5
0<a<a — S O<—————
L2 a—2k, —m,k, a—k, —2myk,
Case-IV
q, =mk, q, =mk,
4, =4 1 B
& =q,, =—(a——-mk
O<a<a, 92 =42 2( o k)
O, SA< O, IB < o < min IB i ﬂ
a—mk, —2m,k, a=3mk, a-mk, -2k,
Case-V
1B
9 =4 ql_qlb_g(a_g
4, =45 1 B
Py = = — J A
o, <a<a, 9 =dn =3
<
Frp SE< Ay max B , B < a < min B , B
a-3mk, a-3m,k, a—3k, a-3k,
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Case-VI
a9, =k q =k,
4, =4 1
: » 1492 =4y =_(a_£_k1)
Op < 2 o
ansa<a, | B B | . P
a—=3k, a—k —2m,k, a—k, =2k,
Case-VII
q, =mk
: _ o q, =mk,
q, =k, g, =
0<a<a, ? TB 5
< fa
T2 =& a—mk, -2k, a-2mk, —k,
Case-VIII
- 1
41 = 4w ‘]1:‘]11725(51_5_](2)
=k
4 2 & 1q, =k,
a, <a<a 5 5 5
Ay, S max : <g<—F
a-2mk, —k, a-3k, a—2k —k,
Case-IX
q, =k
1 _kl g, =k,
q; =Ky —k
<, T8
o s s
Op, SO max , <a
" {a—2k1—kz a—k1—2k2}

Since 0 <m; <m, <1, there are five possible situations.

Situation1 m,k, <k, <mk, <k

Among cases I - IX, only five possible cases hold. They can be connected as
[2IV>VII2>VIII2>IX for increasing @ in [0,00). This results in the solution (g,,¢,)
in Case (i).

Situation 2 m,k, <mk, <k, <k, & mk, <mk <k, <k
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Among cases 1 - IX, only five possible cases hold. They can be connected as
[2IV>V>VII>IX for increasing & in [0,0). This results in the solution (g,,¢,) in
Case (1i).

Situation 3 mk, <m,k, <k, <k

Among cases 1 - IX, only five possible cases hold. They can be connected as
[21I2>V->VII>IX for increasing & in [0,00). This results in the solution (g,,¢,) in
Case (iti).

Situation 4 mk, < mk, <k, <k,

Among cases I - IX, only five possible cases hold. They can be connected as
[2II2>V>VI2IX for increasing & in [0,00). This results in the solution (g, q,) in
Case (iv).

Situation 5 mk, <k, <m,k, <k,

Among cases I - IX, only five possible cases hold. They can be connected as
[ 121> VI>IX for increasing ¢ in [0,00). This results in the solution (g,,¢,) in
Case (v).

This completes the proof of Proposition 7.3. o

Theorem 7.2  Given m; =m, =m, 0<m <1, then

(i)  the optimal capacity of firm 1 and firm 2 are k, =k, =k, at equilibrium;

(i)  k,is decreasing in me [0,1], i.e., k,is increasing in flexibility degree 17, 7 =1—m;
(i) k, <k <k, where Kk, satisfies [ ;5 (@a=3k)-pB)f(@da=C, and

a=3k,

1 Cp+
a-S2b),
3 H
(iv) 'The expected profit of each firm is IT, =II, =II,, where

B , 1 -2 B, o,
I, = J%-smkf (mk,)* of (@)da+ j % (a=") of (mda+ I - k;of (@)do

and k, satisfies

s -
m| “snk (l(a—3mk,) ~ B) f(@)da+ [ 5 (@a=3k)-pf@da=C,.

a-3k,

Proof
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Without loss of generality, we assume k, 2 k,. Thus, we do not need to consider situations D
and E. Since the optimal capacities satisfy Hil)(kl) =0 and H(zl)(kZ) =0, we have
" (k,) =TI (k,) = 0. The analysis for situations A - C are as follows.

For Situation A mk, <k, <mk, <k,

In this case, m # 0; otherwise, 0 <k, < mk, =0, which is a contradiction.

5
By Claim 7.1, we have IT{" (k) -1’ (k,) = Y ¢, =0, where

i=1

B
G =m’ (ky k) o435 of (@)da < 0;

1 B
S ==m| 2 [aa—3mk)) - Blf (@)da

2 a—m(k;+2k,)

s s
= %m [ [aa—mk, = 2k,) = Bf (@)da+mk, —mk,) [ 5% of (@)da

a-m(k;+2k,) a-m(k;+2k,)

3
< mk, —mk)) [ 2% of (@)de<0;

a-m(k;+2k,)

B
S = | g lalm=Da+ (1= 2mymk, +(2=mk,) - (m=DS]f (@)dax

a—mk,; -2k,

s _h
=(m-1) j 2~k [gr(a — mk, - 2k,) - Blf (@)da+mlk, — mk, ) j a2k of (@) d ot

a—mk, -2k, a—mk,—2k,

B
< mlk, —mk,) j 2k~ gf (ar)da < 0;

a—mk; -2k,
1 —2
Sae == [ lata=3k,) - Bl (@der
a—2mk;—k,
1 B B
== [ [aa—2mk, —ky) = B)lf (@da+ (k, —mic) [+ aof (@)da
a=2mk;—k, a=2mk,—k,

B
< (ky —mk)[“4% of (@)dar < 0;

a-2mk,—k,

gAS:(kz_kl)Iwﬁ 0g‘(0{)d05<0.

a=2k,—k,

5
Thus, Zg 4 <0, which is a contradiction.

i=1

For Situation B mk, < mk, <k, <k,
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In this case, m # 0; otherwise, 0 = mk, < mk, =0, which is a contradiction.

4
By Claim 7.1, we have IT{" (k;) =1’ (k,) = Y ¢ =0, where

i=1

3
gBl = mz(kz _kl)J. ao—mkl—kaz @l'(a)da < O’

B
¢ = % m[ g [ata—3mk) - Blf (@)da <0;

a—mk;—2mk,

1 i
S =5 [ [ata=3k) - Blr (@da < 0;

a-3k,

Sp =l —k)[ "5 of (@da<0.

a—2k,—k,

4
Thus, Z ¢ <0, which is a contradiction.
i=1

For Situation C mk, < mk, < k, < k,, by Claim 7.1, we have

If m =m,=m , Situation C is the line k =k,=k, . Therefore,

b -
H;“(kl)zmj a3k (g(a—3mk, )~ B) f(a)da+j p (a(a=3k,)-p)f(a)da-C,,

a-3k,

B -
n;”(kz):mj%—m (a(a—3mke)—,8)f(0{)da+J. p (a(a=3k,)-p)f(a)da—C;.

a=3k,

So the optimal solution satisfies Hil) (k)= H(zl) (k,)=0,1e,

B o
Cp =mf = (aa=3mk,) = B f(@da+[  (aa=3k)= B f (@da.

a=3k,
By Propositions 7.2 and 7.3, the expected profit of each firm is II; =II, =II,, where
B 1 -2 o
I, = j a3k, (mke)zcy‘(a)da'+§ j a3k (a—ﬁ)zog‘(a')da+ j s klof (da.
[ A— a A
a-3mk, a=3k,

With respect to m , we have

5 s -
j a3k, (o(a — 6mk,) — B)f (a)dor - (3m2 j a=3mk, off ()d o+ 3j s f (O!)daJ dk, _ o
0 0 — dm

a=3k,

dk
Therefore, d—“’ <0, me [0,1]. That means k, is decreasing in m € [0,1].
m
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When m =0, set k, =k,(m=0), then it can be proved that there exists a unique k,

satisfying Jmﬁ (a(a—3k0)—,6)f(a)da:CF. When m=1, set k, =k,(m=1), then

a—3k,

B oo
[ lata=3k) - B)f (@da+ [ (ata=3k,)- B)f(@da=C, : ie.,

a=3k;

+
(a—3k,)u—f=C, . Therefore, we have k, = %(d - CFTﬁ] . Hence, with given

me[01], k, <k, <k,.

This completes the proof of Theorem 7.2. o

Proposition 7.4  Given 0 <m, <m, <1, then the optimal solution (k,, k,) is not in
situation E.

Proof

For situation E  mk, < k; < m,k, < k,, by Claim 7.1 we have

" (k,) ~ 115 (k,)

—Ia—Zmlkﬁl—lmka[ma(a—ka —m,k —ﬁ)—m o(a—mk, —2myk L
=] 2 my 151 2Ky p 2 151 2Ky a

INf (@)da

A1 B
s Lmata-sng,-Esaria
- (4
a=2myk;—myk,
S
N J~ ah ko (a— 2k, —m,k, _ﬁ) —m,(a—k, —2m,k, —ﬁ)]f(a)da
o o

a=2k;—myk,

g)f(a)da +I s atkh,—k)f(@da

s
1
+ J' ahighe > o(a—3k, —

a—ly—2mak, aty—2k,
Set
Cp = _[Oa_zm'k'_'nzkz (m1a(a = 2mk, —myk, — ;) - m,a(a—mk, —2m,k, — ;)jf(a)da'Q
s
—Fr ]
Guo == gt —mya(a—3myk, — g) f@da;

a=2mk;—myk,

¢ :I”‘kl‘ﬁz’"zkza((a—Zk —mky =Ly my(a—k, —2mk —ﬁ)jf(a)dor
E3 B 1 2R o 2 1 2/ a >

a—=2k;—myk,
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B
Spa = ,[ a_kIBZkz la(a _3k1 -

a—k;=2myk,

’B)f(a)da; and

o

cis=[ 5 at,—k)f(@da.

a—k, 2k,

In the following, we analysis these 5 terms respectively,
B

0

e (mla(a —2mk, —m,k, — g) —m,a(a—mk, —2m,k, — g)j f(eda

0

S S 2k —m? -
— J.a—ZmIkl—mzkz (ml —m, )O{a " 2(m2 kz m, k1) " m,m, (kl kz) _ ﬁ}f(a)da
m, —m, m, —m, o

0 2(mik, —mk,) N mm, (k, —k,) —(a—2mk, —mk,) = m,(m,k, —mk,) <0

my—m, my, —m, my—m,

N 2(mk, —mlk,) L mm, (k, —k,)

So that a <a-2mk, —m,k,
my—m, my—m,
O<a< p , we have s >a-2mk, —myk, , and
a—2mk, —m,k, o

20m2k, —m’k k —k
a+ (myk, —m; l)+m1m2( 1 2)<£_The1cef01f€, ¢p 20.
m, —m, iy =1ty @

3
——r ]
C = _J‘ a=2kzmbs - —m, ot(a—3m,k, — g)f(a)da.

SO

a=2mk,—m,k,
As p <0{<L , then £>a—2k1—m2k22a—3m2k2 .
a—2mk, —m,k, a—2k, —m,k, o

Therefore, ¢, 2 0.

¢ =I“‘k1—ﬁ2"’zkza((a—2k —mky =Ly, —2mk —ﬁ)jf(a)da
E3 B 1 2l a 2 1 2l o

s
> J‘ a—k1—2mzk2a (a — 2k1 — m2k2 - ﬁ) - (a - kl - 2m2k2 - ﬁ) f(a)da
B o o
a—2k —myk,

£
= J ati2mks gf(myk, — k) f(@)da 2 0.

a—2k;—myk,

204 -



Evaluating Flexible Capacity Strategy under Demand Uncertainty YANG Liu

)il
Cra = _[ a_klzfzkz la(a _3k1 -

a—k;—2myk,

B

—<a-k, —2m,k, <a-3k,. Therefore,g,, 2 0.
o

ﬁ)f(a)da. ASL<C¥<L, then

a a—k, —2mk, a—k, 2k,

os=[ 5 atk,—k)f(@da>0.

a—k,~2k,

Therefore, IT{" (k,) =TT}’ (k,) > 0.
Therefore, the optimal solution (k,, k,) is not in situation E.

This completes the proof of Proposition 7.4. o

Proposition 7.5  Given 0 <m; <m, <1, then the optimal solution (k;, k,) is not in

situation D.

Proof

Situation D mk, < m,k, <k, <k, , then by Claim 7.1, we have

I (k) ~ 115 (k)

)
- I ¢(1)—2mlk1—mzk2 (mla(a —2mk, —myk, - ﬁ) -m,a(a—mk, —2m,k, — ﬁ)jf(a)da
a a
) _ B
—J a=3maks lmzaf(a —3m,k, —ﬁ)f(af)da + j a2k l0!(01 -3k, —ﬁ)f(a)da
_ a 2 a
a=2mk;—myk, a=3k

+j T, atk,—k)f(@da >0.

a—ky—2k,
Therefore, the optimal solution (k,, k,) is not in situation D.

This completes the proof of Proposition 7.5. o

Theorem 7.3 Given 0<m, <m, <1,

() if j;a(a—g)f(a)das C,,then k,, =k, =0and I, =1, =0;
(i) if J.;a(a—g) flayda>C, , then k,, >0, k,, >0 and %kle <k, <k,;
a 2

(ii-1) the optimal productions (g, ¢,) are
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(mk, myk,), asa;,

(G Mmyk,), o, <a<a;,
(%* q;)= Qo ) X, SAS O,

Gy k), Oy, <O <Oy

(k, k,), o, <o

(ii-2) the optimal capacity decisions (k;, k,)=(k,,, k,,) at equilibrium satisfy

j :“mla(a—Zmlk —m,k, _p Df(@da+ j ala=2k, —ﬁ)f(a)da C,

and

[ mata—mk, —2mk, _B O f@da+ j —mza(a 3k, B S 1 @da

+| “Lota—st, ~Lyrdar [ ata—k, -2k, by yyda=c,
[47°7) 2 (94 473} (94
(ii-3) the optimal profits of firm 1 and firm 2 are

I, (k) = (mk)* [ " of @da+ [ " aiy.of (da+ [ g}, of (@)da
[ g of @da+ | kiof (@da;

(k) = (mks)* [ of (@)da+ [ " g3yof (@dar+ [ Kof (@)da

1 b 1 p 1 b
where g, :E(Q_mzkz _;) > Gip :g(a_;) > G :5(‘1_ 2 _;) >
1 p B B B
Gy, =Z(a——); o, = s Oy =——(— 5 O, = >

3 o a—-2mk,, —m,k,, a—2k, —k,, a—3m,k,,
B
ao,, = .
2 a=3k,,
Proof

Define J, =IT\"(k,) and J, =T1{’(k,) . The optimal solution (k,, k,) satisfies

J,=NP%k)=0and J, =TTV (k,)=0. Set y =k, ——Lk,, i, k, = y+—Lk,. It is
2 m,

noted that situation A we have0 < k, < m,k,; for situation B we havemk, <k, <—k;;

2
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for situation C we have ﬂkl <k, <k, . Therefore, (1) if y >0, then the optimal
m,

solution is in situation C; (2) if y <0, then the optimal situation is in situation A or
situation B.

Givenm,, m; <m, <1. Consider k, and y as functions of m,. Then we have

Jl(kl(mz)’ y(m,), m2)=0 :
With  respect to m, , we  have
Tk Gmy), y(omy), my)=0
dJ, dk, +% dy +3J1 —0
ok, dm, dy dm, Oom,
o, dk, 9], dy , 9], :0'
ok, dm, dy dm, Jm,
dk, A,
) dm A
Therefore, if A # 0, we have , (a7.1)
dy A,
dm, A
A
_|ok, 9y
where A = % % , (a7.2)
ok, dy
A
_| om, dy
A= AL (a7.3)
om, dy
o,
|0k, om,
A =3 | (a7.4)
ok, om,
. o m, . m, .
Consider  situation C —k, <k, <k, . Substitute k,=y+—k, into
m, m,

J, =" (k |k,) =0and J, =T1{" (k,|k,) = 0 we can get:

J, = Hil) (k1|k2) = m1J.:L1 (a’(a —3mk, —m,y) _ﬂ)f(a)da
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+j (O((a (2+ )k y) - ﬁjf(a)d“ Crs
T, =T (fky) =m, [ (ata=3mk, ~2m,y) - B)f (@)dex
+; my [ (@(a=3mk, ~3m,y)= B f (@)dax
- j’“(a( —3 k =3y)-Bf(@da

+ (a(a (1+2—‘)k -2y)-pB) f(e)da—-C,.

2731

Define u,, = J.ja f(@)da. Then we have: % =-3m]ty,, — 2+ %),umm;
2

1

aJ dJ, m
=Bmym, o, = Heys = =~ Yo +— kMg
ay amz n,
aJ, 3 3m, m,
a_kl ==3mm, _Emlmzﬂmm - 2m, Hpopr — A+ m, Vg1 s
oJ 3 3
a_yz = _2m22:uou D) mzzluuLz - EIURZRI —2py;
o/, = I o (c(a—3mk, —4m,y) - ) f (@)de
om, 0

3mk, 2
= I (@a=3mk, = 6m,y) = ) f@)de =5 sy - ’”g He

2

Therefore, by (a7.2) and (a7.4) we have
_0J, dJ, 9], dJ,

_ 2 2 2 2 2
=3m} mz:uou +3mimy o My, +3m0 Rop Mgogy + 20my —mymy +my) g M.

+ 3m22:uL1L2:UR1m + 3IUR2R1:ule + 3:“12%» >0

__9J, dJ, N dJ, dJ,
2 ok, om, om, ok,

(a7.5)

By (a7.1), we have dy :ﬁ
dm, A

. Consider the situation of y=0, ie, mk, =m,k, .

A
Therefore, (1) if A, >0, then dy ==2 >0, which implies only situation C occurs; (2)
m,
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4 d A o o o
if A, <0, then 2 =22 20 which implies that situation B or situation A may occur.

m,
For situation of mk, =m,k, , there are two cases (1) mk, =m,k, and m, =m, ;
2)mk, = m,k, andm, <m,.
Case-i  if mk, =m,k, andm, =m,.

By Theorem 7.2, we havek, =k, =k € [k, k,1,and g,z = 0. By (a7.5) we have

A, =3(m 1, + mil L. )(m1 | 0”“ (a(a=3mk,)— B)f(a)da+ ki, j (a7.6)
By the optimal solution’s necessary condition J, = IT" (k1|k2) =0, we have
Since J, =m, | : (aa=3mik))— B)f (@)da+] : (a(a—-3k) - B)f(@)da—C, =0.

Together with (a7.6) we have

8 =3ttt €= [ (@a=3k) = B)f (@der+ k.
ml (2731

=3(m iy, L lem)(cF— j " (a(a—4k,)-B) f(a)daj. By Proposition 7.5, we
}’}’ll (473

4
have kIZkle(a—CF-i_ﬁ) , le, a—4k1S—l(a—(CF—+ﬁ)) . Assume that
3 3 U
a>4(CF—+ﬁ),WChave a—4k, <0.
U

Then C, — j " (a(a—4k,) - B)f(@)da > 0. Therefore, A, >0, ie., L

m,
Therefore, whenm, = m,, the optimal situation is in Situation C.
Case-ii if mk, = m,k, andm; <m,, then we can get

myd, =mJy = (m, =m)[ [a(a—mkl)— ,Bj f(@yda

2

= am(a(a—%kl)—'ij(a)da_(mz —m)Cp.

2 Yo, m,
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J, =0
By the optimal solution’s necessary condition{ : , we can have m,J, —m;J, =0.
2 =
. . = 2(m,+m,)
To hold this result, it must have j oa(a————2k)- B |f(@)da>0, so that
R1 )
2(m, +
a-— 2m, +my) k, > 0. Therefore, we have k, < M (a7.7)
m, 2(m, +m,)

Consider situation C

By J, =0, we have

m [ " @a=2mk,~mok) = B)f(@)da+ [ (@a~2k ~k)=B)f (@da—C, =0

By a,, = B , we have m, j “(ala—2mk, —m,k,) - B)f (@)dar <0 .
a—2mk, —m,k, 0

Therefore, by J, =0, we must have J. - (a’(a -2k, —k,)— ,B)f (@)da >0, which requires

Qg1
a—2k —k,>0.
Therefore, we have 2k, +k, <a. (a7.8)

By J, =0, we have

a;, a1
J2 = JO mzaf(a - m1k1 - 2m2k2 - g)f(a)da + J.a“ E mza(a - 3’/’12](2 - g)f(a)da

+j”’“—a(a—3k2—ﬂ ﬁ)f(a)da—CF=O.
o

S fleda + [~ ala—k -2k, -
agy D (94 273}

aJ
Then 72 =-m,k iy, <0. Therefore, J, is decreasing inm,, 0 <m, <m, <1.
1

Therefore, we have J,(m, =m,) < J,(m;,m,)=0.Set I, =J,(m, =m,). Therefore,

2

1 =m, [ (ala—m, k +2k,) - B)f (@)da +%mz [ (ata=3mk,) - B)f (@)dax

a

+%j:m(a(a—3k2)—ﬁ)f(0!)d0‘+I,: (@(a=k —2k,) - B)f (@)da—C, < 0.

B
dl, :J'a,2n12<kl+zkz>(a(a_gmz(kl +2k,)) - B)f (@)da
om, 70

With respect to m,, we have

_5
+%I%(“(a—6mzkz)—ﬁ)f(a)da <0.

a—=2m, (k;+2k,)

Therefore, I,(m, =1)< 1, <0. I,(m, =1) = u(a—2k, k) - f—C, <0,
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e 2, 4k 2a-P¥Cr _gp (a7.9)
U
r < l( ,3+C)
By (a7.8) and (47.9), we have 10 T2 <9 3 H
y (a7.8) and (a7.9), we have 2k1+k223kf’1'€" { 2AB+C,) .
ky2—~(a———)
3 H
_2B+C,)
Therefore, we getk—ZZ—’u.Assume aZSM,
k, ,3+CF U
at+"——F
U
we have ﬁ 2 1 . (a7.10)
k, 2

Since m k, = m,k, and0<m; <m, <1, we havek, > k,. J, =0 can be expressed as
aL o0 m
m [ (aa=3mk) - )f (@da+] (a(a—<2+;1>k1>—ﬁ]f<a>da—q =0
R1 2

B B

where ¢, =———, Op) =———.
a—3mk, a—2k, —k,

Therefore, [ (a(a=3mk)-B)f @da+[ | ata-2+29%)- B |f(@da<C,,
.[0 1™ gy m 1 F

ie., j: (0{( —(2+ )k) ,ij(a)dm j (a(2+ﬁ—3ml)lif(a)da

m,

+[” (a(a—(2+ﬁ)kl)—ﬁjf(a)dasCF.
(731 m2
Since j N (a(a (2+—)k )— ﬁJ f(a@)da <0, we have

[ (a(a (2+ )k) ﬁ]f(a)dm j (a(2+ﬂ—3ml)kljf(a)dascF,
m

2

i p(a—Q2+20k) = B+ u(2+ —3m,)k, < C, . Therefore, we can get

2 n,
> PGy ! oM (PG
2m, +m, U 1_2m2 +m =3mm, 2m, +m, U
H(2m, +m,)

The following discussion is to determine the feasible range of k and k, .
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k
By @77), @710) and @711), we have k<—22 KoLl
2(m, +m,) k, 2
+C

k, > e a-— B+C, ) . Therefore, we have

2m, +m, Yz,

_amy o omy _pHC am,
Yo2(my+my) 2m, +m, yz, 2(m, +m,)
+
- an, - B+Cr . Consider am, __f+Cy , we have two
2m, + m; \ 2(m, + m,) Y7, 2(m, +m,) Y7,
cases:
+
(1 if am___p+Cy 20 , then we have Mo | ad so
2(m, +m,) )7 m, 2(B+C,)
am,
> (a7.12)
2(m; +m,)

It is noted that (a7.11) and (a7.12) ate contradictions to each other. Therefore, the

feasible solutions are not in this case.

2) am___P+C, <0, then we have M, W Hence,
2m +my) K m ~ 2(B+C,)
2Ap+Cr)
LUNDS—— We assume aZ6M. Therefore ﬂ<l As
m, a_z(ﬁJGC) U m, 2
Y7

ky _ 1

mk, = m,k,, we have T 2 5 (a7.13)
1

(a7.10) and (a7.13) contradict to each other. Therefore, the feasible solutions ate not in
this case. Therefore, there is no feasible optimal solution in case mk, =m,k,
and m; < m, . Therefore, the only Situation C occurs.

This completes the proof of Theorem 7.3. o
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Appendix-II

Papers written and presentations made during my PhD study

Journal Papers

» Yang, L., C.T. Ng and T.C.E. Cheng, 2010. Evaluating the effects of disttibution
centres on the performance of vendor-managed inventory systems. Ewrgpean

Journal of Operational Research, 201(1), 112-122.

> Yang, L. and C.T. Ng. Flexible capacity strategy in an asymmetric oligopoly

market with competition and demand uncertainty. Submitted to Management Science.

» Yang, L., CT. Ng and T.CE. Cheng. Optimal production strategy under

fluctuating demands: technology versus capacity. Submitted to Operations Research.

» Yang, L. and C.T. Ng. Endogenous flexibility of flexible capacity strategy in an n-

firm competition under demand uncertainty. Working Paper.

» Yang, L. and C.T. Ng. Modeling capacity strategies with different flexibility

degrees in a competitive market under fluctuating demands. Working Paper.

Conference Presentations
» Yang, L. and C.T. Ng, 2009. Optimal production strategy under fluctuating

demands: technology versus capacity. Proceedings of The 23" European Conference on

Operational Research. 5-8 July 2009, Bonn, German. (CD-ROM).

> Yang, L. and CT. Ng, 2008. Investments in flexibility and productivity with
demand uncertainty. Presented in International Forum on Shipping, Ports and Airports
2008 Conference. 25-28 May 2008, HK.

-213 -



Evaluating Flexible Capacity Strategy under Demand Uncertainty YANG Liu

» Yang, L., C.T. Ng and T.C.E. Cheng, 2009. Effects of distribution centre on
vendor-managed inventory system with multiple retailers. Presented in International

Forum on Shipping, Ports and Airports 2009 Conference. 24-27 May 2009, HK.
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