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ABSTRACT 

Abstract of thesis entitled:   Online Optimal Control of Multiple­Chiller Systems in 

Large Buildings 

 

Submitted by         :    Sun Yongjun 

For the degree of      :    Doctor of Philosophy 

at The Hong Kong Polytechnic University in September, 2009 

 

This thesis investigates the online optimal control of multiple­chiller systems in 

large buildings with enhanced robustness and cost efficiency. The control mainly 

includes chiller sequencing control, optimal start control and electrical demand 

limiting control. New strategies in the three subjects are proposed and validated on a 

dynamic simulation platform as well as using site data.  

In the first subject, i.e. chiller sequencing control, three methods are developed to 

enhance its robustness and reliability. Firstly, the data fusion method is proposed to 

obtain a more accurate and reliable cooling load measurements by combining the 

complementary advantages of two different load measurements. Secondly, a 

simplified model is developed to online compute the varying maximum cooling 

capacity of individual chiller. Thirdly, an online sensor fault detection and diagnosis 

(FDD) strategy is developed to ensure that the sensors used in the direct measurement 



 III 

work healthily.  

In the optimal start control, a model­based strategy is proposed for minimizing the 

energy consumption of the central chilling plant in the morning start period. The 

model­based strategy is realized in two steps. The first step is to identify a feasible set 

for the operating chiller number. The second step is to estimate the pre­cooling lead 

time using the simplified building model for each number inside the feasible range 

identified, and calculate the corresponding energy consumption.  

In the subject of electrical peak demand limiting control, a strategy of minimizing 

the monthly electricity bill is proposed via utilizing the building thermal mass. 

Previous studies can not to achieve maximized monthly cost saving because the 

demand cost reduction may be largely/completely traded off by the energy cost rise.  

Therefore, a strategy taking full consideration of the relationship is developed. The 

strategy consists of two phases. The first one is to predict a suitable monthly peak 

demand threshold. In the second phase, the extended pre­cooling lead time will be 

determined based on the difference between the demand threshold and the predicted 

daily peak demand.  

The developed strategies are validated through case studies, which show the 

satisfactory performances.   
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CHAPTER 1 INTRODUCTION 

1.1 Motivations 

The multiple­chiller systems are usually equipped in high rising commercial 

buildings. The control of them mainly includes the chiller group control, cooling 

tower control, water pump control, etc. Especially, the chiller group control is of great 

significance because it is the most sophisticated and power consuming component and 

its control result is usually taken as an important influential factor for the other related 

components control [Schneider, 1981]. For example, chiller operating number can 

simply be used to determine the number of operating cooling towers in practice. In 

this thesis, the online optimal control of multiple­chiller systems mainly focuses on 

the control of the chiller group. The control includes chiller sequencing control, 

chiller optimal start control, and demand­limiting control. Chiller sequencing control 

aims to switch on an appropriate number of operating chillers for satisfying the 

varying building cooling load with an energy efficient operation [ASHRAE 2007]. 

The chiller optimal start control is used to recover the indoor environment to a desired 

level prior to the occupation of buildings by scheduling the chiller morning start­up 

operation. The energy consumption can be minimized by choosing an appropriate 

operating chiller number and related lead time. The demand­limiting control is to 

restrain the short­term demand peak to an appropriate predefined threshold value for 

minimizing monthly electric bill. In this case, the operating chiller number is required 
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to be controlled for charging and discharging the cooling stored mass, e.g. building 

thermal mass.  

Thanks to the comprehensive building automation systems (BASs) equipped in 

the large commercial buildings, the possibility of enhancing and optimizing the 

operation and control of multiple­chiller system is allowed. In the last two decades, 

tremendous efforts have been made to develop optimal control strategies for 

multiple­chiller systems thanks to the growing scale of BAS integration and the 

convenience of collecting a huge amount of online operation data by the application 

of BASs [Ma, 2008]. A number of research papers and technical articles/reports have 

been yielded due to these efforts [Zaheer­uddin and Zheng 2000; Lu et al. 2005; 

Nassif et al. 2005; Sun and Reddy 2005; Braun 2007]. The conclusions drawn in these 

studies demonstrate that a substantial amount of energy/costs in multiple­chiller 

systems can be saved when optimal control strategies are used. Even a small overall 

increase in the operating efficiency would result in significant energy or cost savings. 

Other benefits can also be achieved including enhanced control robustness, improved 

thermal comfort of occupants, reduced maintenance costs, etc. However, most of 

existing optimal control strategies are either too mathematical or lack generality since 

the requirements and constraints of practical applications, i.e. control reliability, 

computational cost, memory demand, etc, were not cautiously considered during the 

development of these optimal control strategies [Wang and Ma 2008]. 
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 Inappropriate control and operation of multiple­chiller systems can cause 

substantial energy and cost waste. For example, if chillers being switched online are 

more than necessary, they will operate at a low efficiency due to the low part load 

ratio and result in significant energy and cost waste. Besides the energy and cost 

waste, improper chiller plant control and operation may cause serious system 

reliability problems as well as great indoor thermal comfort sacrifice. For instance, the 

developed building load based chiller sequencing control strategies usually perform 

poorly in terms of robustness. The major reason is that the building cooling load 

usually cannot be accurately measured due to the small temperature difference 

between chilled return and supply water (e.g. 5 ℃ or even less), which causes 

cooling load measurement vulnerable to temperature measurement uncertainties. 0.5

℃ uncertainty in each temperature measurement can result in 20% relative error of 

overall cooling loads measurement if temperature difference is taken as 5℃. No 

reliable chiller sequencing control can be expected based on such great load deviation. 

Meanwhile, the insufficient supplied cooling will cause serious occupants complaints 

when less than necessary chillers operate due to inaccurate cooling load 

measurements. 

In practice, proper and energy efficient operation of multiple­chiller system is a 

difficult engineering issue. Due to the increasing number of high­rise buildings and 

growing concerns on building energy consumptions/operating costs, the 

configurations and design philosophies of chiller plants are becoming more and more 

sophisticated. The difficulties related to optimal control and operation of these 
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complex multiple­chiller systems are therefore increased accordingly [Ma, 2008]. 

How to achieve reliable and energy efficient control and operation of multiple­chiller 

system to minimize their energy inputs/operating costs while providing the robust 

control performance is one of the major challenging issues encountered by building 

professionals and building operators nowadays. 

Therefore, the research in this thesis will focus on developing online optimal 

control strategies for chiller sequencing control, optimal start control, and demand 

limiting control, which are intended to be applied to a complex central chilling system 

equipped in the International Commerce Center (ICC) in Hong Kong. These online 

applicable strategies are expected to produce more efficient and reliable operations as 

well as cost savings with acceptable indoor thermal comfort. The implementation 

guidelines for applying the developed strategies are also provided.  

1.2 Aim and Objectives 

Online optimal control strategies of multiple­chiller systems in large buildings 

play important roles in reducing the overall energy consumption, in electricity bill of 

buildings, and in well satisfying the indoor thermal comfort requirements. However, 

the previous related studies in this field are far from sufficient. Therefore, the 

development and validation of online optimal multiple­chiller system control 

strategies with satisfying performance in terms of energy consumption, operation cost, 

and control accuracy and reliability is the main aim of this research. The aim can be 

accomplished by addressing the following major objectives: 
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(a) Develop and validate an algorithm for solving the long lasting inaccuracy 

problem in practical cooling load measurement by adopting data fusion 

technique. It is expected to obtain more accurate and reliable fused cooling 

load measurements after the temperature measurement uncertainties are 

alleviated or removed. Meanwhile, the quality of the fused cooling load will 

be evaluated systematically.  

(b) Develop and validate a chiller sequencing control strategy for control 

robustness enhancement and energy efficiency. The proposed strategy is 

intended to satisfy the requirements and constraints of practical applications 

(i.e., control accuracy, control reliability, computation load, etc.) and can be 

easily implemented. 

(c) Develop and validate a sensor fault detection and diagnosis (FDD) method 

which can promptly and effectively isolate faulty sensors in cooling load 

direct measurements. The healthy sensor operation can guarantee the high 

quality of fused cooling load measurements and further enhance the 

robustness of cooling load based chiller sequencing control.  

(d) Propose and validate an optimal chiller start control strategy for energy 

efficiency. The strategy intends to include chiller operating number as an 

influential factor as well as the outdoor and indoor temperatures. It targets 

at generating the optimal operating chiller number and its related lead time 

which cause the least energy consumption in this start period.  

(e) Develop and validate a demand limiting strategy which is used to minimize 
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the monthly electricity bill. The strategy will fully consider the relationship 

between the cost rise from the extra energy consumed for limiting the 

electrical peak demand and the cost saving from the related demand 

reduction. 

(f) Develop the associated software tools and provide the implementation 

guidelines for online application of these developed optimal control 

strategies. 

1.3 Organization of the Thesis  

The whole thesis is divided into 10 chapters. The main content of each chapter is 

presented as follows. 

Chapter 1 outlines the motivation of the research by presenting the need of online 

optimal control of multiple­chiller systems to enhance the energy or/and cost 

efficiency, the HVAC system control robustness and the indoor thermal comfort. The 

main aims and objectives are also included in the chapter. 

Chapter 2 presents a brief review of the previous related works about 

developments and applications of online optimal control strategies of multiple­chiller 

systems, and describes the research gaps which are intended to be bridged in this 

thesis. The analysis and evaluation of the main methods of online optimal control for 

multiple­chiller systems and optimization techniques developed and/or utilized in the 

HVAC field are provided.  
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Chapter 3 describes a super high­rising building and its complex central chilling 

system. Based on this complex central chilling system, a dynamic simulation platform 

is constructed. The major component interconnections to construct this dynamic 

simulation platform are presented. The following developed online optimal control 

strategies are tested on this dynamic simulation platform to analyze and evaluate their 

performances in terms of control robustness and energy efficiency. These validated 

control strategies are intended to be programmed into dynamic link libraries (DLLs) 

that will be used in the building automation (BA) system of the under construction 

ICC commercial building. 

In chapter 4, the data fusion technique has been adopted for solving the inaccuracy 

problem of cooling load direct measurement in practice. The two different cooling 

load measurements and their characteristics are analyzed respectively. The detailed 

mathematical processes for merging these two load measurements are provided when 

different sensor measurement uncertainties (i.e. noises, outliers and systematic errors) 

occur. The algorithms for calculating the associated confidence degree are as well 

illustrated. In the case study, the performance of the developed data fusion method is 

evaluated. A dedicated section is used to discuss the application issues including the 

main steps for practical usage and approach of parameters fitting. 

Chapter 5 presents a robust chiller sequencing control strategy in which the fused 

cooling load and calculated chiller maximum cooling capacity (MCC) are used 

instead of cooling load direct measurement and constant chiller rated capacity. The 
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development of a simplified model for online calculating the chiller MCC is 

introduced. The approach of using the confidence degree from the data fusion process 

to calibrate the computed MCC for energy saving is also provided. The related case 

studies are conducted to validate the proposed chiller sequencing control strategy and 

its related application issues are also discussed in the chapter. 

Chapter 6 focuses on developing and validating a sensor fault detection and 

diagnosis (FDD) approach. The FDD approach is used cooperating with the cooling 

load fused measurement algorithm. For faults occurring in different sensors (i.e. flow 

meter and temperature sensors), different diagnosing criteria are proposed. In case 

studies, typical faults including slow drafts and step changes are investigated in 

testing the efficiency of the developed strategy. The validation results are presented as 

well.  

In Chapter 7, a model­based optimal start control strategy is proposed. Two 

control variables, including the recovery capability (i.e. number of operating chillers) 

and pre­cooling lead time (i.e. the time from the moment of chiller start up to the 

moment that indoor temperature lower down to a desired level), are optimized to 

minimize the entire system energy consumption in the chiller start period. A case 

study is conducted to validate the proposed optimal start control strategy. The 

validation results and related application issues are provided in the chapter as well. 

Chapter 8 presents a demand limiting strategy of minimizing the building monthly 

electricity bill. In this strategy, approach for predicting a suitable monthly peak 
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demand threshold is firstly proposed. A new algorithm for lowering down the daily 

peak demand to a predetermined threshold by using the building thermal mass is 

developed. Case studies are performed to validate the proposed strategy.  

Chapter 9 presents the software tools and implementation guidelines for applying 

the proposed optimal control strategies in practice. An overview of the application 

software system to implement the online control software packages of the proposed 

strategies is provided.   

Chapter 10 summarizes the work conducted in this thesis, and gives 

recommendations for future research in the related areas. 
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CHAPTER 2 LITERATURE REVIEW  

A typical control schedule for multi­chiller systems is illustrated as Fig. 2.1, which 

consists of three modes: optimal start control in pre­cooling period, sequencing 

control as well as demand limiting control in occupied period and off­working control. 

Hence, this chapter gives literature reviews of the research and developments related 

to the controls mentioned above and identify associated research gaps need to be 

bridged. The fills of these research gaps help in developing more effective control 

strategies. 

 
Figure 2.1. Chiller plant operation schedule 

Section 2.1 specifies a long lasting application problem for cooling load 

measurement and presents a fusion technique which is used to solve the problem. A 

review of data fusion technique is as well provided. In Section 2.2, the previous 

studies of chiller sequencing control including their strengths and limitations are 

reviewed and a robustness enhanced chiller sequencing control strategy is provided. 
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In Section 2.3, the main fault diagnosis methods are categorized and their advantages 

and disadvantages for practical application are analyzed. In this section, an intention 

of developing a new online sensor fault diagnosis approach for strengthening the 

chiller automatic control performance is presented based on data fusion result 

introduced in section 2.1. Section 2.4 provides a review of optimal start control 

strategies in HVAC system. The main drawback of the existing studies is analyzed 

and therefore a new model­based optimal start strategy is proposed for overcoming 

the limitation. In Section 2.5, a review of the previous demand limiting control 

strategies in the passive and active commercial buildings is provided. A brief 

assessment of the existing strategies is analyzed and the main shortcoming of them is 

presented. Thus, a novel demand limiting strategy based on the cooling load 

prediction is proposed for minimizing the monthly electricity bill.  A summary of 

this chapter is given in Section 2.7. 

2.1 Cooling Load Measurement 

Accurate and reliable building load measurement is essential for robust chiller 

sequencing control, building air­conditioning system performance monitoring and 

optimization [Wang and Cui 2005; Xu and Wang 2008]. However, the automatic 

chiller sequencing control of multiple­chiller systems in practice is often switched to 

manual control due to inaccurate and unreliable measurement of building total cooling 

load [Kwan, 2001]. Measurement noises, outliers and systematic errors have a 

significant influence on the measurement of the building cooling load since the 
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differential temperature is usually small, e.g. 3 or 4oC. The small temperature 

measurement uncertainties may lead to a large deviation of total cooling load 

calculation, usually up to 30% [Kwan, 2001]. Reliable building air­conditioning 

system performance monitoring and control optimization were seriously affected if 

measurement errors exist [Yu and Chan, 2002; Wang et al., 2002, Du and Jin 2007]. 

Therefore, accurate and reliable measurement of building cooling load is of 

tremendous significance in system performance monitoring and control optimization.  

Available information about the cooling load can be obtained from two different 

sources: “direct measurement” and “indirect measurement”. “Direct measurement” is 

obtained simply by measuring the differential temperature of chilled water return and 

supply temperature and the total water flow rate, i.e.  , ,suppw w w w rtn wQ c M T T  . 

“Indirect measurement” uses a simplified inverse model of chillers, which establishes 

a relationship function between the cooling load and the instantaneous chiller 

electrical power input and the chiller operation condition variables. Both direct and 

indirect measurements might not be reliable or accurate in practice due to 

uncertainties associated with the measurement instruments and the chiller inverse 

model. In this case, data fusion technique is adopted to improve the total building 

cooling load measurement of building automation systems. 

Data fusion is a method which combines data derived from independent/different 

information sources such that the resulting information is more accurate, complete or 

dependable than when these sources were used individually [Ruhm, 2006]. 
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Measurement data are easily corrupted by two types of uncertainties: random errors 

and outliers or systematic errors (systematic errors are a kind of outliers but last for a 

longer time). The essential objectives of data fusion are to remove the outliers and 

systematic errors and to reduce the influence of noises. General schemes for data 

fusion and evaluation of the uncertainties associated with the final merged data can be 

described as follows [Urbanski and Wasowski, 2003]: 1) description and estimation of 

the uncertainties associated with each individual information source, 2) construction 

of appropriate aggregation operations to combine the outputs from different 

information sources, and 3) evaluation of the joint uncertainty of the different 

information sources and the propagation of uncertainty through merging processes.  

Current fusion methods are mainly based on statistical theory. Different estimators 

within the framework of statistics are available for data fusion. The most popular ones 

are: Minimum Variance Estimator (MVE), Maximum Likelihood Estimator (MLE) 

[Ozyurt and Pike, 2004], and estimator based on Bayes’ rule [Grewal, 2001]. These 

methods of statistical data fusion always lead to a weighted average of the 

observations from different sources. The presence of outliers and systematic errors 

sometimes invalidate the theoretical basis for statistical data fusion procedures, and 

thus it is essential that they are eliminated before the application of statistical data 

fusion [Abu­el­zeet and Becerra, 2002]. For this reason, a number of methods have 

been proposed to detect the presence of outliers and reduce their impact on the rest of 

the data or remove them completely [Soderstrom, Himmelblau and Edgar, 2001].  
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2.2 Chiller Sequencing Control 

Chiller sequencing control has been widely used in centralized chilling plants with 

multiple­chillers, which aims to provide economical loading/unloading of chillers, i.e. 

to make the operating chillers to achieve an overall coefficient of performance (COP) 

as high as possible while fulfilling the demanded cooling load [Hackner et al. 1984; 

Honeywell 1997; Chang et al. 2005]. It determines how many and which chillers are 

to be put into operation according to instantaneous building cooling load. Since over 

one third of total energy consumption in most of air­conditioned commercial 

buildings is used by chillers in the climate like in Hong Kong [Lam 2000], chiller 

sequencing control plays an important role for the energy efficiency in building 

automation systems.   

Various chiller sequencing control strategies have been developed for different 

buildings with different complexity in terms of control parameters and equipments. 

The differences in these strategies mainly lie in how the instantaneous building 

cooling load is measured or estimated. Four typical methods are commonly adopted in 

application, including return chilled water temperature­based sequencing control, 

bypass flow­based sequencing control, direct power­based sequencing control and 

total cooling load­based sequencing control [Honeywell 1997]. In principle, the total 

cooling load based sequencing control is the best approach for chiller sequence 

control [Honeywell 1997]. In this method, the optimal number of the chillers, which 
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are put into operation, is mainly determined by the building cooling load 

measurement and the chiller maximum cooling capacity 

 max,chiN Q Q                        (2.1) 

The building cooling load is generally measured using the chilled water flow rate 

and the differential temperature between the chilled supply water and the return water, 

i.e. cooling load direct measurement. Because the differential temperature cannot be 

measured accurately, the cooling load direct measurement­based sequencing control 

does not operate properly in practical applications [Kwan 2001].  

The improvement of building cooling load measurement will surely enhance the 

reliability of the chiller sequencing control. Data fusion has therefore been used to 

improve the measurement of building cooling load. The fusion algorithm is to 

combine the complementary advantages of the cooling load direct measurement with 

those of the cooling load indirect measurement. The details of the fusion algorithm 

will be illustrated in Chapter 4. The quality of the fusion algorithm has been 

systematically evaluated using a confidence degree of the fused measurement, which 

can also be used to identify measurement outliers or systematic errors in the direct 

measurements. The concept of chiller sequencing control is illustrated in Figure 2.2.  
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Figure 2.2. Total cooling load based chiller sequencing control 

Traditionally, the chiller maximum cooling capacity is assumed to be constant in 

chiller sequencing control, being equal to the chiller rated cooling capacity. However, 

the chiller maximum cooling capacity may vary greatly with the chiller operating 

conditions [Gordon et al. 2000; Ding and Fu 2005], such as the chiller evaporating 

temperature, the chiller condensing temperature, the suction temperature of chiller 

compressor etc. Therefore, even if the cooling load is measured exactly, it is still 

possible that the number of the chillers in operation given by the chiller sequencing 

controller is not appropriate due to the use of an inaccurate chiller maximum cooling 

capacity. As a consequence, the number will be either less than necessary (the cooling 

is deficient resulting in occupants’ thermal discomfort) or more than necessary (the 

cooling is excessive resulting in energy waste).  

In this thesis, a new strategy is proposed to improve the reliability of the chiller 

sequencing control and energy consumption efficiency. In addition to the use of the 

fused measurement of the building cooling load, a simple but reliable model of 
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chillers is developed to online identify the maximum cooling capacity of individual 

chillers. The chiller maximum cooling capacity is calibrated when the direct 

measurement suffers from systematic errors.  

2.3 Online Sensor Fault Detection and Diagnosis 

As mentioned in Section 2.1, the direct measurement of cooling load is usually 

corrupted by noises, outliers and systematic errors or other types of sensor faults. 

These faulty measurements may lead to inaccurate or even unreasonable cooling load 

calculation which finally severely influences the accuracy and reliability of chiller 

automatic control (e.g. chiller sequencing control). Therefore, it is of great 

significance for the building automation systems (BAS) to rapidly detect and diagnose 

these sensor faults for a better chiller automatic control performance in terms of 

supplying sufficient cooling with less energy consumed. 

For detecting and diagnosing various faults of facilities and sensors in HVAC 

systems, many studies [Piette et al 2001; Comstock et al. 1999; Peitsman 1996; Rossi 

1997; Yoshida et al, 1996, Ngo, 1999, House et al, 2001, Dexter, 2001 and Lee et 

al,1997] developed different kinds of strategies which, generally speaking, can be 

grouped into two categories, i.e. model based and model free. For the model based 

fault detection and diagnosis (FDD) methods, one major limitation is the complex 

process to set up an explicit model [Wang and Cui, 2005]. The model may be physical 

models, data driven models (black box models) or semi­physical model (grey box 

models). Although physical model can obtain the best final results of FDD, some 
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approximations need to make for solving the differential equation in the dynamic ones.  

These approximations will corrupt their accuracy. Further more, it is not convenient 

for the user to fit the required parameters due to the incomplete data offered by the 

device manufactures. Data driven models eliminate the complexity of building 

physical model, but the final results can not always ensure sufficient reliability and 

accuracy due to non­physical nature. More often, the semi­physical model need to be 

used for balancing the complexity of model construction and reliability of FDD 

results.  

Model free methods do not utilize an explicit mathematical model of the target 

system, e.g. physical redundancy for the sensor FDD. But its applications usually are 

limited by the cost, space and complexity of installing of redundant sensors. Even so, 

several model free FDD strategies have been proposed.  For instance, the limit 

checking method has been proved to be effective in univariate quality control [Haves, 

1999].  But it will not be able to detect the fault measurements that are within the 

limits but do not follow the normal correlation among the variables.  

For the faults occurring in sensor measurements, many methods have been 

specifically developed. For example, the systematic comparison and optimization 

method (SCOM) was proposed by Jiang and Zhu [Jiang et al, 1999] for detecting the 

slow drifts in sensors. Wang et al. [2002] developed a law­based strategy for sensor 

faults detecting, diagnosing and validating. The sensor validation and reconstruction 
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based on Principal Component Analysis (PCA) was developed by Wang and Chen 

[2004].   

However, the studies about the sensor FDD strategies for online implementation 

are still inadequate especially for those sensors (e.g. chilled water supply/return 

temperature sensor) whose performance can greatly influence the final result of 

optimal control strategies (e.g. chiller sequencing control). Therefore, an online sensor 

FDD strategy for promptly diagnosing the unhealthy sensors is essential to ensure 

satisfactory chiller automatic control performance.  

The strategy developed in the thesis presents an online sensor FDD method based 

on the cooling load fused result (Section 2.1) to detect and diagnose the faults 

occurred in the chilled water flow rate, supply and return temperature sensors. 

Chapter 4 specifically utilize a data fusion technique to fuse two kinds of cooling load 

measurement (i.e. direct measurement and indirect measurement based on a simplified 

inverse chiller model) into a more reliable and accurate one with an associated 

confidence degree indicating the quality of fused cooling load. When certain sensor 

faults, such as complete/partial failure or systematic errors, occur to the flow meter 

and/or temperature sensors, the confidence degree will stay low until the they are 

removed. The low confidence from the DF process is a reliable indicator of the faults 

occurring but without knowing which sensor suffering from faulty measurement. 

Therefore, an online sensor FDD method based on the generated confidence degree 

was proposed to further diagnose the faulty sensor measurements.  
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2.4 Optimal Start Control  

It has been recognized that the recovery ability, outdoor temperature and indoor 

temperature are three most influential factors in the pre­cooling period for energy 

efficiency [Seem, et al., 1989]. The recovery ability refers to the amount of cooling 

supplied to a building and it is mainly determined by the operating chiller number. 

Previous related studies have demonstrated that substantial energy and cost savings 

can be achieved by optimizing the pre­cooling operation [Jackson, 1976; Liptak, 1975; 

Seem, et al., 1989]. The simplest optimal start strategy is to use two different 

constants of the pre­cooling lead time for hot and cold seasons individually, and these 

two constants are manually tuned in typical operating conditions [Levenhagen and 

Spethmann, 1992]. However, daily cooling load in a season may change significantly 

and this simple method cannot achieve satisfactory performance. The pre­cooling lead 

time may be too short for a high daily load or too long for a low one. To overcome 

this problem, advanced methods have been developed in the last decades. For 

example, an adaptive control strategy was proposed in [Flórez, 1987], which 

calibrated the length of the pre­cooling lead time using a simple 

semi­empirically­derived relationship function according to the current indoor and 

outdoor temperature measurements. Seem et al. [1989] compared seven different 

methods for predicting the pre­cooling/heating lead time from night setback using 

TRANSYS simulation, and concluded that a quadratic relationship between the 

pre­cooling lead time and the initial room temperature can obtain a better prediction 

of lead time. Capitalizing on its great representational power, artificial neural 
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networks (ANN) were also utilized to predict the optimal start time. For example, 

Yang et al [2003] developed an optimal back­propagation ANN model to determine 

the optimal start time for a heating system.  

The recovery ability, however, was not considered in most of previous studies 

although it has been considered as an influential factor for energy efficiency. The 

reasons are probably (i) the case building is equipped with few numbers of chillers 

(i.e. only one or two chillers); (ii) the relationship among operating chiller numbers, 

the pre­cooling lead time and the indoor and outdoor temperatures is difficult to 

identify based on empirical studies. The influence of the recovery ability on 

pre­cooling is illustrated in Fig. 2.3. Larger recovery ability can speed up the 

pre­cooling process but with higher power consumption due to more operating 

chillers; while smaller recovery ability needs a longer pre­cooling lead time but with 

lower power consumption because of less operating chillers. The energy consumption, 

denoted by the shadowed area, will be different for different options.  

 

Figure 2.3. The average power consumption of a chiller plant as chiller number varies 
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In order to consider the recovery ability in pre­cooling operation, this thesis 

proposes a model­based chiller optimal start strategy for high­rise commercial 

buildings equipped with multi­chiller plants. The strategy is realized in two steps. The 

first step is to identify the appropriate range of the operating chiller number in which 

the building cooling load is predicted based on a simplified building model. The 

second step is to calculate the pre­cooling lead time and the associated periodical 

energy consumption for each possible operating chiller number (i.e. the number 

located in the range determined by the first step) using the supplied cooling and the 

simplified building model. The proposed strategy is able to properly select the chiller 

operating number and compute the corresponding pre­cooling lead time, which result 

in the least energy consumption. Comprehensive case studies are implemented to 

validate the proposed optimal start control strategy. 

2.5 Demand Limiting Control  

With more and more electrical equipment is used in commercial buildings, the 

commercial building electricity bill payment is usually large and becomes a great 

burden to the owner. The bill mainly consists of two parts. One is the charge for the 

monthly electrical peak demand which refers to the maximum energy consumed in a 

demand interval (e.g. 30 minutes) for a complete month; the other one is the cost for 

the overall energy consumption in the month. Although the price structures of 

different power companies are diverse, the monthly peak demand cost of a 

commercial building always contributes a great part to the bill, sometimes even more 
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than 50% [Seem, 1995]. The interest in developing efficient demand limiting control 

strategies for minimizing the total bill payment grows rapidly.   

For reducing the monthly peak demand, different strategies have been proposed 

for both active and passive commercial buildings. An active building refers to the 

building equipped with thermal storage devices, such as chilled­water or ice storage 

tank. For these buildings, an additional water loop for charging and discharging the 

storage tank is required. In contrast, the one without such storage facilities is referred 

as passive building in which only the building thermal mass can be utilized for 

cooling storage.  

For the demand limiting in active buildings, Henze et al. [1997] developed a 

predictive optimal controller for ice storage system. The predicted load and weather 

information were fed to the optimal controller for determining the optimal storage 

charging and discharging rate in discrete time steps. It was found that significant daily 

cost savings can be achieved due to the tradeoff between a slight cost increase of 

energy consumption and a significant cost reduction of daily peak demand under the 

real­time electricity price structure. Massie et al. [2004] developed a neural­network 

(NN) based optimal controller for ice storage systems. The controller firstly learned 

equipment responses to the environment and determined the necessary control settings, 

e.g. chilled water temperature set­points and primary loop three­way valve position. 

Then, it determined the control actions involving the chiller operation and ice tank 

charge/discharge rates that minimize total cost over a certain interval, e.g. half an hour. 
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A similar conclusion was drew on the daily cost saving. In [Drees and Braun, 1996], a 

rule­based control strategy was proposed by Drees and Braun. The near­optimal 

strategy was based on simple heuristics that were developed from daily or monthly 

simulations of central chilling systems with internal melt, area­constrained ice storage 

tanks. Great utility cost savings can be expected with the implementation of this 

strategy.   

For the demand limiting in passive building, Xu et al. [2006] conducted a site 

study in a medium­weighted building to demonstrate the good performance of a 

simple demand limiting strategy for reducing the daily peak demand. The strategy 

involved maintaining zone temperatures at the lower comfort limit during the off­peak 

period. When it came to the on­peak period, the zone temperatures floated up to the 

upper thermal comfort limit. In order to make the set­point varying strategy more 

practical and applicable, Lee and Braun [2008a] proposed three different approaches, 

i.e. semi­analytical (SA), exponential set­point equation­based semi­analytical (ESA), 

and load weighted­averaging (WA) methods. They were used to estimate the building 

zone temperature set­point trajectories which determined the discharging rate of the 

cooling stored in building thermal mass for lowering down the daily peak thermal 

load. All three methods had been evaluated in the companion paper [Lee and Braun, 

2008b], and they performed well in terms of peak cooling load reduction. However, it 

had not mentioned about whether the daily energy consumption increased or how 

much it increased after the implementation of such demand limiting strategies. The 

increased energy consumption needed to be taken into consideration because it may 
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compromise the benefits from the peak demand reduction in practice. Xu et al. [2005] 

developed another demand limiting approach that combined Lagrangian relaxation, 

neural networks (NN), stochastic dynamic programming, and heuristics to predict 

system dynamics and uncontrollable load and to optimize the set­points of heating, 

ventilation and air conditioning (HVAC) systems. In addition, Chen [2001] proposed 

a real­time predictive supervisory optimal operation to minimize the daily energy 

consumption and the daily operation cost with taking into account a number of 

practical constraints.  

For the combined usage of the passive and active building thermal storages, both 

Guo et al. [2005] and Henze [2005] had conducted different site investigations 

separately. The parametric analysis in [Guo et al., 2005] was performed to assess the 

effects of building mass, utility rate, building location and season, thermal comfort, 

central plant capacities, and economizer on the cost saving performance of demand 

limiting controls for active and passive building thermal storage inventory. And 

several key findings were presented. The analysis in [Gregor and Henze, 2005] 

indicated that the utility cost savings were significantly larger than either active or 

passive storage, but less than the sum of the individual and the peak demand of 

on­peak period was able to be reduced greatly. 

 However, most of the previous studies did not sufficiently explore the 

relationship between monthly electrical demand cost reduction and the related cost 

rise of the overall energy consumption after the proposed demand limiting strategies 
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implemented. They either solely focused on the daily electrical demand reduction 

without considering the related energy rise or only explored the relationship between 

demand reduction and energy rise on a daily basis. In this case, these strategies are not 

capable of achieving optimized monthly cost savings. The main reason is that the 

demand cost reduction may be largely/completely traded off by the associated overall 

energy cost rise.  

Therefore, a strategy aiming to optimize the monthly cost saving under the 

electricity price structure from the power company China Light and Power (CLP) is 

proposed in this paper. The strategy firstly predicts a suitable monthly peak demand 

threshold and further determines whether a specific demand limiting control needs to 

be implemented for a particular day by comparing the determined threshold and the 

predicted daily peak demand.  

Secondly, the strategy estimates an extended pre­cooling duration in which the 

required amount of cooling will be stored in advance and the trajectory of room 

temperature set­point for limiting the daily peak demand in occupation period is 

provided as well. In the case studies, the proposed strategy will be validated and the 

results are presented. 

2.6 Summary 

This chapter provides the literature reviews of the previous studies related to 

online optimal multiple­chiller system control strategies including chiller sequencing 
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control, optimal start control and demand limiting control. The basic assessments of 

the existent studies have been presented. It is clearly showed that the related research 

on  multiple­chiller system online optimal control is still inadequate in the following 

aspects: (1) Many strategies were developed from the viewpoint of academic research 

which are not suitable for online applications because practical constraints, problems, 

and requirements of realistic applications, such as control stability, computation 

performance, etc., were not seriously considered during the development of these 

optimal control strategies; (2) the existing optimal strategies may be developed for 

simple and typical air­conditioning systems. There still seems be no sufficient optimal 

control strategies available for complex air­conditioning systems consisting of 

multiple­chillers. It is still a long way for building HVAC scientists and professionals 

to propose updated multiple­chiller system online optimal control strategies which 

have more desirable and satisfactory performance in practical application. These 

proposed strategies with improved performance will further enhance the reliability 

and energy efficiency of the entire HVAC system.  
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CHAPTER 3 THE BUILDING SYSTEM AND ITS 

DYNAMIC SIMULATION PLATFORM 

 

The dynamic simulation platform, denoted as a virtual building system in this 

thesis, is a real­time simulation of a building and its HVAC system. It is mainly used 

to analyze and test the developed optimal strategies in terms of control, thermal 

comfort and energy performances under dynamic operating conditions. Based on the 

test results, a control strategy with satisfactory performance is selected for the control 

and operation of HVAC systems prior to its site implementation. It also provides 

convenience for testing the performances of the developed diagnosis strategies.  

Many well­designed commercial simulation software packages, e.g. EnergyPlus 

[Crawley et al. 2000], DOE­2 [Lawrence Berkeley Laboratory 1982], etc., are readily 

available for constructing such dynamic platform. However, the difficulties of 

integrating the building load calculation, water distribution system and air distribution 

system into a single one prevent them from being used to build the dynamic platform. 

In addition, the system configurations, i.e. the water system and air system 

configurations, in these simulation packages are very complicated and 

time­consuming or even frustrating. Therefore, limited help can be provided by these 

software packages for detailed dynamic simulation tests of proposed control strategies. 

In contrast, TRNSYS, HVACSIM+ and other simulation packages based on modelica 
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are more suitable for such dynamic simulation. In this study, TRNSYS was chosen to 

build the dynamic simulation platform. 

A dynamic simulation platform for a central chilling system equipped in a 

complex building is described in this chapter. The platform is the basis for studying 

the system stability and energy performance. The performance of the developed 

control strategy will be tested and evaluated on the constructed platform as well. 

Section 3.1 briefly introduces a super high­rise commercial building and its 

complex central chilling system concerned in this research. Based on this complex 

central chilling system, a dynamic simulation platform with necessary simplifications 

is constructed in Section 3.2. 

3.1 Building and System Description 

3.1.1 Building Description 

Figure 3.1 is the schematic profile of the International Commerce Center (ICC) 

building. This building is super high­rising of 490 meter high above the ground with 

about 440,000 m2, including a basement of four floors, a block building of 6 floors 

and a tower building of 112 floors. The basement, about 24,000 m2, is mainly used for 

car parking. The block building, from the ground floor to 5th floor, mainly serves as 

commercial center involving restaurants, shopping markets and exhibition halls. The 

gross area is about 67,000 m2. For the tower building, the 6th and 7th floors serve as 

mechanical floor (M1) to accommodate chillers, cooling towers, pumps etc. The 8th 

floor is a refugee floor. From the 9th to 98th floors, there are commercial office floors. 
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Each floor is with the length of 66 m and the width of 65 m. Among the commercial 

office floors, the 41st and 77th floors are used as refugee floors, and the 42nd (M2), 

78th (M3) and 99th (M4) floors are used as mechanical floors to accommodate 

mechanical equipments such as heat exchangers, pumps, PAU and fans etc. A six­star 

hotel is located from the 100th to 118th floors. 

The whole building is being constructed primarily of reinforced steel concrete. 

The external walls are mostly made of steel glass curtain with the heat transfer 

coefficient of 1.32 W/m2℃. The floor structure is about 125 mm slab of reinforced 

steel concrete. The transportation systems and AHU plants are located in the core of 

each floor with a quasi­rectangle of 45 m by 41 m. The blocking building is being in 

construction. The first phase from basement to 41st floor (Phase I) has been put into 

use at the end of 2008. 

 

Figure 3.1. Profile of International Commerce Center 
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3.1.2 Zones and System Description 

The building is divided into different zones considering the water pressure and 

human evacuation in case of a fire. The hotel, from the 100th floor to 118th floor, is a 

separated zone served using separate air­cooled chillers. Other floors of the tower 

building and the block building constitute four zones served using the chilled water 

sources provided by water­cooled chillers on the floor M1. To transfer cooling energy 

from lower zone to the upper zone, heat exchangers are used and act as a means of 

booster and installed at the mechanical floors of M2 an M3.   

 The floors below the 6th floor are Zone 1. Zone 2 includes the floors from the 

7th floor to 41st floor. Zone 3 is from the 43rd to 77th floor and Zone 4 is from the 

79th to 98th floor. The schematics of the central chilling system of these four zones 

are illustrated in Figure 3.2. 
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Figure 3.2 Schematics of the central chilling system. 

In the central chilling system, six identical single stage centrifugal chillers have 

been equipped to supply cooling. The rated capacity of them is 7,230kW with 10,000 

V high operating voltage. The nominal power consumption of each chiller is 1,346 

kW at the full load condition. Each chiller is associated with one constant condenser 

water pump and one constant primary chilled water pump. The chilled water supply 

temperature set­point is 5.5℃. The heat generated by the chiller compressor is mostly 

taken away by the refrigerant. The heat dissipated from the chiller condensers is 

rejected by eleven evaporative water cooling towers with a design capacity of 51,709 

kW. Taking into consideration plume abatement, two different types of cooling towers 

(named CTA and CTB, respectively) are used in this building. CTB refers to the 
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cooling towers with a heating coil installed at the air exhaust of each tower. CTA are 

the towers without heating coils. Each of the CTA towers (six in total) has a heat 

rejection capacity of 5,234 kW and a nominal power consumption of 152 kW at the 

design condition. The rated water flow rate and air flow rate of each CTA tower are 

250 L/s and 157.2m3/s, respectively. Each of the CTB towers (five in total) has a heat 

rejection capacity of 4,061 kW and a nominal power consumption of 120 kW at the 

design condition. The rated water flow rate and air flow rate of each CTB tower are 

194 L/s and 127.0m3/s, respectively. All cooling towers located in the sixth floor are 

of crossover flow type. 

In the secondary chilled water system, only Zone 2 (indicated as B in Figure 3.2) 

is supplied with the secondary chilled water directly; while the heat exchangers are 

used in the other three zones to transport the cooling energy from low zones to high 

zones to avoid the high water static pressure. The designed cooling load of Zone 2 is 

about 30% of the total cooling load. Zone 1 (denoted as A in Figure 3.2) is supplied 

with the cooling from the heat exchangers located on the sixth floor. The chilled water 

flows through the heat exchanger and serves as the cooling source. The designed 

cooling load of this zone is about 19% of the total one. The designed inlet and outlet 

water temperatures at the secondary side of heat exchangers are 11.3°C and 6.3°C, 

respectively. Zone 3 and Zone 4 (indicated as C in Figure 3.2) are supplied with the 

cooling from secondary chilled water of the first stage heat exchangers (HX­42 in 

Figure 3.2) located on the 42nd floor. The designed inlet and outlet water 

temperatures at the secondary side of the first stage heat exchangers are 11.3°C and 
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6.3°C, respectively. Part of the chilled water after the first stage heat exchangers is 

directly delivered to Zone 3 by the secondary chilled water pumps (SCHWP­42­01 to 

03) located on the 42nd floor. The rest chilled water is distributed to the second stage 

heat exchangers (HX­78 in Figure 3.2) located on the 78th floor by the secondary 

chilled water pumps (SCHWP­42­04 to 06) located on the 42nd floor. The designed 

inlet and outlet chilled water temperatures at the secondary side of the second stage 

heat exchangers are 12.1°C and 7.1°C, respectively. The water system after the second 

stage heat exchangers is the conventional primary­secondary chilled water system. All 

pumps in the chilled water system are equipped with variable frequency drivers (VFD) 

for energy efficient operation except those primary chilled water pumps dedicated to 

chillers. In addition, the water piping system of this building is a reverse­return 

system.  

Most of air­conditioning terminals are AHUs except that some fan coil units are 

used in the block building. For each floor of the tower building, two AHUs equipped 

in the core are used to handle the mixture of fresh air and re­circulated air from 

offices. The fresh air is delivered to each AHU through the shaft in the core by PAUs, 

which are located on mechanical floors. The PAUs cool down the outdoor air to 

16.5°C at the machine dew point. All fans in AHUs and PAUs are equipped with 

VFDs allowing the energy efficiency operation. The major specifications of main 

HVAC equipment, such as chillers, cooling towers, water pumps, AHU fans and PAU 

fans, are summarized in Table 3.1.  
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Table 3.1 Specifications of main equipment in the air­conditioning system 

Chillers N 
Mw,ev 

(L/s) 

Mw,cd 

(L/s) 

MCC 

(kW) 

P 

(kW) 

Ptotal 

(kW) 

WCC­06­01 to 06 6 345.0 410.1 7,230 1,346 8,076 

Cooling Towers N 
Mw 

(L/s) 

Ma 

(m3/s) 

Qrej 

(kW) 

W 

(kW) 

Wtot 

(kW) 

CTA­06­01 to 06 6 250.0 157.2 5,234 152 912 

CTB­06­01 to 05  5 194.0 127.0 4,061 120 600 

Pumps N 
Mw 

(L/s) 

Head 

(m) 

η 

(%) 

W 

(kW) 

Wtot 

(kW) 

CDWP­06­01 to 06 6 410.1 41.60 83.6 202 1,212 

PCHWP­06­01 to 06 6 345.0 31.60 84.5 126 756 

SCHWP­06­01 to 02 1 345.0 24.60 82.2 101 101 

SCHWP­06­03 to 05 2 345.0 41.40 85.7 163 326 

SCHWP­06­06 to 09 3  345.0 30.30 84.2 122 366 

SCHWP­06­10 to 12 2  155.0 39.90 78.8 76.9 153.8 

PCHWP­42­01 to 07 7 149.0 26.00 84.9 44.7 312.9 

SCHWP­42­01 to 03 2 294.0 36.50 87.8 120 240 

SCHWP­42­04 to 06 2 227.0 26.20 84.3 69.1 138.2 

PCHWP­78­01 to 03 3 151.0 20.60 84.3 36.1 108.3 

SCHWP­78­01 to 03 2 227.0 39.20 85.8 102 204 

PAU fan 29 / / / / 513 
Air­side 

AHU fan 152 / / / / 4,600 

Chillers  8,076 kW 43.38% 

Cooling towers  1,512 kW 8.12% 

Pumps 3,918.2 kW 21.04% 

AHU and PAU fans 5,113 kW 27.46% 

Design total  

power load  

Total 18,619.2 kW ­­­ 

    The designed total power load of the main equipment in this air­conditioning 

system is 18,619.2 kW. Chillers are the largest electricity consumer in this system, 

which contribute 43.38% of the designed total power load. The second largest 

electricity consumer is the fans of AHUs and PAUs contributing 27.46% of the 

designed total power. The designed power loads of the pumps and cooling tower fans 
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are 3,918.2 kW and 1,512 kW respectively, and they constitute about 21.04% and 

8.12% of the total load in the system individually. Based on the data in Table 3.1, it 

also can be observed that the designed total power load of the central chilling system 

takes about 72.5% of the designed total power load of the overall air­conditioning 

system. Therefore, the central chilling system must be controlled properly to achieve 

reliable and energy efficient operation. 

The nomenclatures in Table 3.1 are defined as follows. N is the number of 

components, M is the flow rate, MCC is the chiller nominal maximum cooling 

capacity, Q is the heat transfer rate, η is the efficiency, P is the power consumption, 

and subscripts w, a, ev, cd and rej  represent water, air, evaporator, condenser and 

rejection respectively. 

3.2 Development of the Dynamic Simulation Platform 

TRNSYS, a complete and extensible simulation environment for the transient 

simulation of systems, is selected to develop the complex dynamic simulation 

platform in this thesis. It is employed by engineers and researchers around the world 

to validate new energy concepts, from simple domestic hot water systems to the 

design and simulation of buildings and their equipment, including control strategies, 

occupant behavior, alternative energy systems (wind, solar, photovoltaic, hydrogen 

systems), etc.  
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One of the key factors in TRNSYS’ success over the last 25 years is its open, 

modular structure. The source code of the kernel as well as the component models is 

delivered to the end users. This simplifies extending existing models to make them fit 

the user’s specific needs.  

The DLL­based architecture allows users and third­party developers to easily add 

custom component models, using all common programming languages (C, C++, 

PASCAL, FORTRAN, etc.). In addition, TRNSYS can be easily connected to many 

other applications, for pre­ or post­processing or through interactive calls during the 

simulation (e.g. Microsoft Excel, Matlab, COMIS, etc.). TRNSYS applications 

include:  

• Solar systems (solar thermal and PV)  

• Low energy buildings and HVAC systems with advanced design features (natural 

ventilation, slab heating/cooling, double façade, etc.)  

• Renewable energy systems  

• Cogeneration, fuel cells  

• Anything that requires dynamic simulation  

Since the developed optimal control strategies mainly focus on optimizing the 

control of multiple­chiller systems to determine the suitable number of operating 

chiller for supplying sufficient cooling, the thermal balance is of major concern and 

the pressure flow balance in the water and air distribution loops have not been 
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considered. Therefore, the following simplifications have been made in construction 

of the dynamic platform. 

(a) A simplified typical zone was built instead of construction of multi­zones 

based on the practical situation in ICC. 

(b) A global AHU was used instead of multiple different AHUs for different 

zones in practice. 

(c) One proportional­integral­derivative (PID) controller was used to maintain 

the supply air temperature at its pre­defined set­point by adjusting the flow 

rate of chilled water circulating in the global AHU. 

(d) Another PID controller was used to maintain the indoor room temperature at 

its set­point through modulating the flow rate of the supply air. 

The constructed central chilling system is shown as Fig. 3.3. The six water cooled 

centrifugal chillers were interlocked with a constant speed chilled water distribution 

pump and a constant speed cooling water distribution pump. The rated volumetric 

flow rates of these pumps were 345L/s and 410L/s respectively. The chilled supply 

water was circulating in a global AHU, providing cooling for the building by cooling 

down the supply air temperature to a predefined set­point. The return chilled water 

was distributed evenly to the operating chillers. Eleven identical cross­flow cooling 

towers with designed water flow rate of 250kg/s were used to cool down the 

condensers in the chillers. The cooling return water was distributed evenly to the 
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operating cooling towers after it has exchanged heat with the condensers. The 

schematic diagram of the central chiller plant is shown as Fig.3.3. 

Figure 3.3. Schematic diagram of the chiller plant 

The multi­zone building model, Type 56 in the TRNSYS 16, was employed to 

simulate ICC building [TRNSYS. 2004] for computations of the building cooling load 

and room temperature. For simplification, the layout of each floor (98 floors in total) 

in the building was square and the floor area was 3200 m2. The wall had three layers 

and its height was 2.5 m. The outside and the inside layers were 5 mm thick concrete 

layer. The middle layer is a massive brick layer with thickness of 240mm. The ratio of 

window to each wall is 0.5. In addition, the typical local weather data including 

temperature, humidity, radiation, cloud level etc., is read from type 89d for the 

computation of solar load. 
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Figure 3.4. Building occupancy schedule 

 

 

Figure 3.5. Building equipment operation schedule 
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Figure 3.6. Building lighting schedule 

The heat loads from the occupants, equipment and lighting system were as well 

considered in the simulation. The schedule of the occupancy was weekly similar. In 

the normal weekdays, the occupancy started at 9 a.m. and ended at 18:30 p.m., and 

half of the occupants were assumed to go outside for lunch from 12:30 p.m. to 13:30 
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p.m. The profile of the occupancy in the normal weekdays is illustrated in Figure 3.4 

(the left plot). In Saturday, the occupants were supposed to work for half day which is 

usually observed in most of commercial buildings in Hong Kong. The profile of the 

occupancy in Saturday is illustrated in Figure 3.4 (the right plot). Sunday was a 

completely off­duty day and therefore no occupancy occurred. 

Fig. 3.5 illustrates the operating schedule of building equipment, including 

computers, printers, copiers, et al., in each floor for the weekdays and Saturday, and 

Fig. 3.6 describes the operating schedule of lighting system for the weekdays and 

Saturday. Both Figures show that the lighting and equipment were operating in line 

with the occupancy schedule although slight differences existed because part of the 

lighting systems and equipments were left running overnight. The associated 

parameters for the two PID controllers were well tuned prior to the validation of the 

proposed strategies.  

3.3 Summary 

This chapter introduces a super high­rise building and its complex central chilling 

system concerned in this research. Based on this complex central chilling system, a 

dynamic simulation platform was constructed with necessary simplifications. The 

performances of following developed optimal control strategies will be tested and 

evaluated in terms of robustness and energy efficiency based on this platform.  
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CHAPTER 4 BUILDING COOLING LOAD 

MEASUREMENT USING DATA FUSION TECHNIQUE 

 

Accurate and reliable building load measurement is essential for robust chiller 

automatic control, building air­conditioning system performance monitoring and 

optimization. This chapter presents a scheme adopting the data fusion technique to 

improve the quality of building cooling load measurement of building automation 

systems. Section 4.1 introduces the general framework of building load fused 

measurement. Realization of the fusion engine as a robust virtual sensor is presented 

in section 4.2. Two different available cooling load measurements as well as their own 

advantages and disadvantages are discussed in section 4.3. Capitalizing the 

characteristics of these two cooling load measurements, a data fusion algorithm is 

developed in section 4.4. In section 4.5, the identifications of the used parameters as 

well as periodical update algorithm for them are presented. The application case 

studies are performed in section 4.6. The final section 4.7 is the summary of this 

chapter.  

4.1 Framework of Building Cooling Load Fused Measurement  

The general framework of using data fusion to calculate building instantaneous 

cooling load of a typical central chilling plant is shown in Figure 4.1. Assume that the 

central chilling plant has n chillers. The direct way calculates the building cooling 
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load simply by measuring the differential temperature of chilled water return 

temperature Tw,rtn and supply temperature ,supwT ,  and the total water flow rate wM . 

The measurement provided by the direct way is denoted as dmQ . The indirect way 

uses simplified chiller inverse models, which relates the building cooling load to the 

instantaneous chiller electrical power input ,com iP  and the chiller operating condition 

variables, including the evaporating temperature ,ev iT  and the condensing 

temperature ,cd iT . The measurement provided by the indirect way is denoted as imQ . 

Data fusion are completed in the data fusion engine, which generates the fused 

measurement, denoted as fQ , and the confidence degree, denoted as f . The 

confidence degree indicates the quality of the fused measurements. Both of them are 

used by the building automation system (BAS) for the chiller sequencing control 

strategy.  

Chiller 1 Chiller n

Centrifugal Chilling Plant

Chiller 
model 1

Chiller 
model n

Direct 
measurement

Data fusion 
engine

Pcom,1,Tev,1,Tcd,1

+
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Qdm

Qim,1
Qim,n…

Monitoring 
and control

Indirect 
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Confidence degree

Fused measurement
fQ
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Figure 4.1. General framework of using data fusion to calculate building 

instantaneous cooling load 
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4.2 Realization of Fusion Engine as a Robust Virtual Sensor  

The data fusion engine can be realized in practice as a robust virtual sensor which 

connects the building automation system with the physical sensors (data collection) 

used in the central chilling plant, as shown in Figure 4.2. The robust virtual sensor 

accepts the measurements of ,w rtnT , ,supwT , wM , comP , cdT  and evT  as the inputs. It 

outputs the fused measurement of the building cooling load and the associated 

confidence degree. All the parameters of the fusion algorithm (described in section4.4) 

are the parameters of the robust virtual sensor. Other necessary parameters may also 

be needed, for example an on/off status to decide whether the fusion engine works or 

not. When the fusion algorithm is considered as a robust virtual sensor, it can be 

realized independently in programming. This makes it easy to imbed the fusion 

algorithm into the existent building automation system without resulting in significant 

changes in the building automation system.  

 

Figure 4.2. Realization of data fusion as a robust virtual sensor in BAS 
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4.3 Direct and Indirect Measurement of Building Cooling Load 

4.3.1 Direct Measurement and the Disadvantages  

The commonly­used building cooling load measurement based on the differential 

temperature and flow rate of chilled water is titled as “direct measurement” ( dmQ ) in 

this thesis, which is shown in equation (4.1). 

 , , , , , ,sup,dm k pw w k w k w rtn k w kQ c M T T                     (4.1) 

where k  denotes the time instant. pwc  is the water specific thermal capacity 

(kW/kg∙K), w  is the water density (kg/L). ,w kM  is the water flow rate (L/s). 

,w rtnT and ,supwT  are the temperature of the return and supply chilled water (℃). In 

practice, wM  is usually measured by water flow meters, ,w rtnT and ,supwT are 

measured by temperature sensors.  

In practical chilling systems in buildings, temperature sensors mostly cannot 

measure the water temperature directly due to high water pressure that results in 

higher potential of temperature measurement noise, outlier, systematic error or/and 

uncertainty [Wang et al., 1999]. The measurements suffer easily from noises and 

outliers or systematic errors. Figure 4.3 shows an example of temperature 

measurements of the entering chilled water in a working day. The measurement noises 

were obvious during 00:00am to 00:70 am in the morning when the water temperature 

is relatively constant. Outliers are observed when the chilling system starts to work 

(after 08:00am). These outliers are the spikes in the measurements and clearly 
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inconsistent with other measurements.  

Taking measurement noises and outliers or systematic errors into account, the 

temperature of the entering chilled water and the leaving chilled water are described 

by 

, , , , , ,
r

w rtn k w rtn k rtn k rtn kT T e b    

,sup, ,sup, sup, sup,
r

w k s k k kT T e b    

where , ,
r

w rtn kT  and ,sup,
r

s kT  are the true values of , ,w rtn kT  and ,sup,w kT . ,rtn ke  and 

sup,ke  are considered as white noise, following the normal distribution 

 20,rtn rtne N  and  2
sup, sup0,ke N  . ,rtn kb  and sup,kb  denote the possible outliers 

or systematic errors. Then, direct measurements have the form of 

, , , , ,
r

dm k k pw w w k n k pw w w k dm kQ Q c M e c M b                    (4.2) 

where r
kQ  is true value of the cooling load, ,n ke  and ,dm kb  are defined as 

, , sup,n k rtn k ke e e  , , , sup,dm k rtn k kb b b  . 

,n ke  is also white noise, following the normal distribution  20,e N  , where   

is given by    
22

suprtn    .    
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Figure 4.3. Temperature of the return chilled water in a working summer day 

The measurement noises and outliers or systematic errors have a significant 

influence on the values of ,dm kQ . For example, if , ,w rtn kT  diverges from its true value 

by 0.2℃ and ,sup,w kT  by ­0.2℃, the cooling load will diverge from its true value by 

335kw if 200wM  L/s. Since the temperature difference between the leaving and the 

entering chilled water is normally 4℃ to 6℃, this divergence is nearly 10% of the 

cooling load when the chiller works normally. However, since ,n ke   is assumed to be 

white noise, its effect on the sum of the direct measurements is reduced because 

,
1

0
N

n k
i

e


  if N  is large enough. When , 0dm kb   and ,w kM  is fixed,  

, , ,
1 1 1 1

N N N N
r r

dm k i k i pw w w k n k i k i
i i i i

Q Q c M e Q   
   

                 (4.3) 
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4.3.2 Indirect Measurement of Building Cooling Load 

“Indirect measurement” of building cooling load ( imQ ) in this thesis is based on 

the instantaneous chiller electrical power input and the evaporating/condensing 

temperature. The calculation of indirect measurement for system of multiple chillers 

is described in equation (4.4). 

 , ,im com cd evQ f T T P                       (4.4) 

where comP is the power consumption of a chiller (kw), evT is the evaporating 

temperature (℃) and cdT  is the condensing temperature (℃). i donates one of 

chillers in a chilling system. comP  is the major variable to reflect the size of the 

cooling load.  

The function  f   can be identified from the ideal refrigerating circle in a chiller. 

It is assumed that heat loss from the condenser is neglected, and steady state and 

uniform flow conditions exist in all elements in this circle as well as in the changes in 

kinetic potential energies [Wang et al., 2000]. A simplified inverse chiller model is 

developed and used in this study as shown in equation (4.5). The first fraction part is 

used to calculate the refrigerant mass flow rate based on the power consumption. With 

the refrigerant mass flow known, the total heat absorbed in the evaporator is 

computed by multiplying the mass flow with the specific enthalpy difference of 

gaseous refrigerant between evaporator inlet and outlet. Note, many models in other 

forms are available for such application. 
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( )
( )

com
im pl cd fg pg ev

pg ev cd

P
Q c T h c T

c T T






    

  
          (4.5) 

 

where   is the loss factor of variable part of electromechanical losses and   is 

constant part of the electromechanical losses (kw). fgh  is the latent heat at reference 

state pressure (kJ/kg). pgc  is the gaseous refrigerant specific heat at a constant 

pressure (kJ/K∙kg). plc  is the liquid refrigerant specific heat at constant pressure 

(kJ/K∙kg). 
,fg pgh c

 and plc
 are constants. comP  is measured electrical power input 

to a chiller. cdT  and evT  can be derived according to the condensing pressure cdp  

and evaporating pressure evp . For a chiller, the relationships between the 

temperatures and the pressures are determined by the refrigerant used in the chiller. 

The identification of   and   is described in [Wang et al., 2000]. In 

application,   and   can be identified using experimental data during 

commissioning. Good­quality data of temperature, fluid and pressure measurements 

should be collected. This is not difficult because during commissioning, the cooling 

load and its variations can be manually controlled to expected points. Then, regular 

model identification method, such as the least square method, can be used to compute 

  and  . Three variables, comP , cdp  and evp , are needed to be measured. The 

measurements of the three variables are generally reliable and usually suffer only 

from measurement noises. Because the differential temperature (or pressure) has a 

much larger size, usually over 20℃, the measurement noises have no significant 

influence on the indirect measurements as much as that of the measurement noises on 
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the direct measurements. A first­order low­pass filter is therefore used to filter the 

associated measurement noises with the three measurements.  

4.3.3 Characteristics of Indirect Measurement  

Model error is the main uncertainties associated with the indirect measurement 

,im kQ . Model error occurs when the model parameters,   and  , deviate from their 

true values, and when a model bias exists. The existence of the model bias is due to 

the assumption of the ideal refrigeration circle, which is used in the model 

identification. Hence, ,im kQ  has the form 

,
ˆr

im k k k kQ Q   
                           (4.6) 

where ˆ
k  denotes the error due to the parameter deviation and k  denotes the 

model bias. It is assumed that the model bias k  is relatively constant. 

The indirect measurement can provide relatively accurate measurement of the 

variations in cooling load. In order to show this, rewritten (4.5) as 

 , 1, 2,

1
im k k kQ  


                            (4.7) 

where 1,k  and 2,k  are 

 , , ,

1,

, ,

, ,

2,

, ,

( )

( )

com k pl cd k fg pg ev k

k

pg ev k cd k

pl cd k fg pg ev k

k

pg ev k cd k

P c T h c T

c T T

c T h c T

c T T






   


 

   


  

 

The increment in the ,im kQ  is given by 
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 , 1, 2,

1
im k k kQ   


                            (4.8) 

According to equation (4.6), the model bias is removed from the increment in the 

indirect measurement. Therefore ,im kQ  is mainly corrupted by the parameter 

uncertainties in   and  . However, 1,k  and 2,k  are generally much smaller 

than 1,k  and 2,k  in application. Figure 4.4 compares 1,k  and 2,k  with 1,k  

and 2,k  using the experimental data in a typical summer day. The absolute errors 

introduced by the model error in ,im kQ  are therefore greatly smaller than the errors 

in ,im kQ . For example, when 1.1488   and 697.8341  , the errors in ,im kQ  

are mostly less than 8kW when there are 10% mismatch in   and  . It is, however, 

210 kW in ,im kQ  without taking the model bias into account.  
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Figure 4.4. Comparison of  1,k  with 1,k  and 2,k  with 2,k  
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In summary, it was observed that measurement noises, outliers and system errors 

have a significant influence on the accuracy and reliability of the direct measurement 

of building cooling load. The indirect measurement can provide relatively accurate 

variations of the building cooling load although model error is the major error 

associated with indirect measurement. 

4.4 Using Data Fusion to Improve Measurement of Cooling Load 

The basic approach of the fusion strategy is illustrated in Figure 4.5. The main 

steps (or tasks) include: 1) to detect and remove outliers from the measurements; 2) to 

calibrate the direct measurement to reduce the influence of measurement noises; 3) to 

calibrate the indirect measurement to remove the influence of systematic errors; 4) to 

evaluate quantitatively the confidence degree of the merged measurement.  

Figure 4.5. Basic approach of the fusion strategy 
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4.4.1 Removing Outliers in Direct Measurements 

The first step in the data fusion strategy is to remove outliers. In order to detect 

outliers, kd is used to denote the difference between the increments in the direct 

measurements and in the indirect measurements 

, ,­k im k dm kd Q Q                               (4.9) 

,dm kQ  will be judged as an outlier when it satisfies 

,k m kd E                                  (4.10) 

where ,m kE  is the threshold to distinguish the outliers. In this case, ,dm kQ is discarded 

and replaced by  

, , 1 ,f k f k im kQ Q Q                             (4.11) 

where fQ  denotes the data after fusion. 

,m kE  is a user­defined parameter and it can be derived according to the characteristics 

of the noises in the direct measurements  

, ,2m k pw w w kE c M                         (4.12) 

The application of equation (4.10) to detect the outliers with mE  computed by (4.12) 

will cause less than 5% misjudgment when , 0dm kb  . To show this, write the 

increment ,dm kQ  as (when , 1 ,w k w kM M  )  

, , , 1 , , , ,
r

dm k dm k dm k k pw w w k n k pw w w k dm kQ Q Q Q c M e c M b                 (4.13) 

where ,dm kb  and ,n ke  are 

, , , 1dm k dm k dm kb b b    , , , , 1n k n k n ke e e     

,n ke  follows the normal distribution as well,  2
, 0,n ke N    and 2   . 
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Then, rewrite kd  as  

1, 2,k k kd d d                               (4.14) 

where 1,kd  and 2,kd  are defined as 

1, ,
r

k im k kd Q Q   , 2, , , ,k pw w w k n k pw w dm kd c M e c b      

Compared with 2,kd , 1,kd  is negligible (see Section 4.3). Since ,n ke  follows a 

normal distribution, i.e.  20,ne N   , the possibility of ne  lying in the range 

 2 , 2    will be over 95%. It implies that when , 0dm kb   the possibility of 

kd  inside the range  , ,2 , 2pw w w k pw w w kc M c M      is over 95%. 

4.4.2 Calibrating Direct Measurements Using Indirect Measurements  

,n ke  is assumed to be a white noise, and then the impact of the measurement 

noise can be reduced by smoothly averaging continuous measurements. It is 

impractical to use all the previous direct measurements. Hence, a moving window is 

defined with a horizon of wN samples. Two groups of data are stored in the window. 

The first group consists of direct measurements which suffer only from measurement 

noises (outliers are discarded), denoted as ,1 , 1 ,, ,Q ,
wdm dm N dm kQ Q 
  and another group 

is the corresponding indirect measurements, denoted as ,1 , 1 ,, ,Q ,
wim im N im kQ Q 
 . The 

superscript   indicates the current moving window and the subscript k  indicates 

the data at current time instant. The fusion equation developed for this case is 

 , ,S /t
f k dm k k wQ A Q N  

                        (4.15)                                                            

where  

 t
wA  = N ­1, ,1 , 

, , 1 ,2Q = , ,
w

t
k im k im N imQ Q Q 


    



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kQ


 is a vector consisting of the increment sequence in the indirect measurements in 

the moving window. , 1im iQ
 , 1, , 1wi N  , are given by 

, 1 , 1 ,­im i im i im iQ Q Q  
                             (4.16) 

with , ,wim N im kQ Q  . ,Sdm k  is the sum of the direct measurements in the moving 

window 

1

, , ,
1

S +Q
N

dm k dm i dm k
i

Q




                            (4.17) 

Since the increments 
,2 , 1 ,, , ,

wim im N im kQ Q Q 
   of indirect measurement are more 

accurate than the increments in the direct measurements, they are used to reconstruct 

the measurements in the moving window. Thus, 

, ,

, 1 , ,

, 2 , , , 1

,1 , , , 1 ,2

ˆ

ˆ

ˆ

ˆ

w

w w

w

dm k f k

dm N f k im k

dm N f k im k im N

dm f k im k im N im

Q Q

Q Q Q

Q Q Q Q

Q Q Q Q Q



 

  



 





  

  

    





 

According to the assumption that the measurement noise is white noise, the sum 

of the noise in equation (4.15) will be closed to zero when wN  is large enough. 

Therefore, the sum of the reconstructed measurements is assumed to equal to ,Sdm k . 

Then it follows that  

 
­1

, , , , , , 1 ,2
1

S = + ( 1) 2
w

w

N

dm k dm i dm k w f k w im k w im N im
i

Q Q N Q N Q N Q Q  




         
 


 

which finally produces equation (4.15). 
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The fusion formulation, i.e. equation (4.15), can be explained as a calibration of 

the direct measurements using the increments in the indirect measurements. To see 

this, rewrite equation (4.15) as 

, ,S / /t
f k dm k w k wQ N A Q N  

  

The first item in the right­hand side is the mean value of the direct measurements 

in the moving window, and the second item can be considered as a calibration, which 

depends on the weighted mean value of the increments in the indirect measurements. 

The measurement noises in ,f kQ  are reduced by averaging the data in the moving 

window. The uncertainty in ,f kQ  due to the model error are also relatively reduce, 

especially when Sdm  is much larger than t
kA Q


. For example, if there is 10% 

deviation in kQ


 from its true value, i.e., 1.1r
k kQ Q
 

, the relative error in ,f kQ  is 

 

which will be much smaller than 10% when St
k dmA Q

 .   

4.4.3 Calibrating Indirect Measurements to Avoid Systematic Errors  

In practice, system errors may occur in the direct measurements. Different from 

outliers, system errors might last for a long time, due to misalignments in 

measurement tools, etc. Generally, system errors are relatively constant or changing 

gradually with operating conditions so they cannot be detected as outliers using 

formulation (4.12) since their influence will disappear in the increments ,dm kQ  in 

the direct measurements. Therefore, the merging formulation, equation (4.15), cannot 

, 0.1

S 1.1

r t
k f k k

r t
k dm k

Q Q A Q

Q A Q

  


  




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remove it. The merging formulation, equation (4.11), can be used to produce the 

merged measurement. However, any error in the previous fusion measurements will 

accumulate since equation (4.13) works as an integrator. Here an alterative approach 

is developed. 

The differences between the direct measurements and the merged measurements 

are used to detect the existence of a systematic error 

, , ,f k im k f kE Q Q                           (4.18) 

A systematic error is detected when ,f kE  is outside the range ,f fE E   . In this 

case, ,f kQ  is recomputed  

, ,f k im k fQ Q E                            (4.19) 

where fE  is used to calibrate ,im kQ . A transient interval, i.e., , ,f k f fE E E     or 

, ,f k f fE E E     is defined in order to avoid sharp changes in ,f kQ  when it is 

computed using equation (4.19) instead of (4.15). During the transient interval, ,f kQ  

is recomputed by 

     , ,S / 1t
f k dm w im k fQ A Q N Q E      


            (4.20) 

where   is defined as 

 

 

,

,

,
,

, when ,

, when ,

f k f

f k f f

f f k
f k f f

E E
E E E

E E
E E E










 

 
  



                   (4.21) 
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Figure 4.6 illustrates the variation of , in which the value of   are shown by 

the darken line. 

fE
fE

,f kE



fE 
fE 

Figure 4.6. Transient intervals defined for ,f kE  

It should be pointed out that the reason for using the difference defined in 

equation (4.18) is that ,f kE  is found to be within a range, , ,f k f fE E E    , rather 

constantly when the direct measurements are not corrupted by systematic errors. It 

can be obtained experimentally when commissioning the chiller model, equation (4.5), 

and/or can be updated online. This range is considered as the uncertainty range in the 

indirect measurements introduced by the model error in the simplified inverse chiller 

model. The more accurate the model is, the smaller the errors are. fE can be 

computed according to fE  and fE , for example,  = / 2f f fE E E .  , which 

defines the length of the transient interval, is also an application­dependent parameter. 

It is found that    / 4f fE E    can always produce acceptable results. 

It should also be noted that the efficiency of detecting systematic error using the 

model uncertainty range depends on the size of the uncertainty range. If the size is too 

large, small systematic errors cannot be detected; on the other hand, if it is too small, 
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the possibility of misjudgment will increase. In applications, if the uncertainty range 

cannot be obtained from the chiller model commissioning, it should be given 

relatively conservative values of fE  and fE  at the beginning, and update these 

values when more and more information about the model uncertainty are collected.     

4.4.4 Confidence Degree of the Fused Measurements 

Confidence degree indicates the quality of the merged measurement and who 

much the users can trust them. It provides useful information to facilitate BAS to 

make good use of the merged measurement or inform BAS to take actions if the direct 

measurements are of poor quality. Confidence degree lies in the range [0, 1]. The 

higher the confidence degree is, the better the quality of the merged measurement. 

Since the direct measurements suffer from noises, outliers and system errors, 

thresholds 1   and 2  are defined to distinguish the confidence degree among the 

three cases, 1 2  . Based on this, the reliable degree is defined as 

 

   

1 k

1 1

2 1

1 k 2 1

1 1 , when equation (4.15) is used

, when equation (4.11) is used 

, when equation (4.19) is used

1 1 1 ,  when equation (4.20) is used

k

k
k

k

 

 


 

     







  



 

      

    (4.22) 

where k  is 

 
, ,

k
1

im k dm k

w m

S S

N E


  


 

 

,im kS  is the sum of the increments of the indirect measured cooling load and 
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,dm kS  is the sum of the increments of the direct measured cooling load, defined as 

, ,2 , 1 ,Q Q Q
w

k k
im k im im N im kS        

 

, ,2 , 1 ,Q Q Q
w

k k
dm k dm dm N dm kS        

 

The definition of confidence degree, equation (4.22), implies that when ,dm kS  is 

closed to ,im kS , the merged measurement has a higher degree since the direct 

measurements suffer little from noises in this case. The confidence degree will 

decrease with a rate of 1  when the measurements are continuously outliers or with 

a rate of 2  if a system error is detected.  

In practical application, a warning might be given if the confidence is k  , 

where   is a user­defined positive constant. Then some necessary actions should be 

taken to check whether there are some faults in the operating system or in the 

measurement tools. 

4.4.5 Computation Algorithm of Data Fusion Strategy  

The corresponding computation algorithm is summarized as follows. 

Computation Algorithm 

(Offline initialization) 

Step 1: Set the values of 1 2, , , , , ,f f fE E E     ; choose the horizon N of the moving 

window; 

(Online data fusion) 
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Step 2: read the new direct and indirect measurement ,dm kQ  and ,im kQ ; 

Step 3: Compute kd  using equation (4.9) and ,m kE  using equation (4.12); if 

,k m kd E  go to step 4 otherwise go to step 8; 

Step 4: Compute ,f kQ  using equation (4.11); go to step 8; 

Step 5: Update the moving window by adding the new data ,dm kQ  and ,im kQ ; 

Step 6: In the moving window 

Step 6.1: Compute ,Sdm k  using equation (4.17); 

Step 6.2: Compute ,f kQ  using equation (4.15); 

Step 6.3: Compute ,f kE  using equation (4.18);  

Step 6.4: If , ,f k f fE E E      or , ,f k f fE E E    , repeat ,f kQ computation 

using equation (4.20); if ,f k fE E  or ,f k fE E , repeat ,f kQ  computation using 

equation (4.19);  

Step 7: Compute the confidence degree k  using equation (4.22); give a warning if 

k  ;    

Step 8: Output the merged measurement ,f kQ  and the confidence degree k . Then, 

go back to step 2 at the next time instant. 
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4.5 Determining Data Fusion Parameters 

4.5.1 Parameter Setup 

The parameters of the fusion algorithm are listed in Table 4.1. The last three 

parameters in Table 4.1 are used in computing the confidence degree. The other six 

parameters have a significant effect on the quality of the fused measurement. 

Specially, the influences of wN , mE  and fE , fE  are stated as follows. 

 A larger 
wN  will improve the fused measurement robustness to measurement 

noises; but a larger 
wN  will increase the amount of data storage and enlarge the 

time delay in the detection of systematic errors; 

 A smaller mE  will improve the capability of the algorithm to detect outliers; but 

a smaller mE  will increase the possibility of misjudgment of outliers (to be 

detected as outliers but it is not); 

 A narrower range ( fE , fE ) will improve the capability of the algorithm to detect 

systematic errors; but a narrower range ( fE , fE ) will increase the possibility of 

misjudgment of systematic errors. 

Among these six parameters, 
wN  is a user­defined parameter and will be tuned 

online if necessary. The others will be determined during on­site commissioning, 

which is important to find appropriate values for these parameters. After collected m  

direct and indirect measurements during commissioning, mE  can be determined by 

the common used 95% confidence rule [Duta and Henry, 2005], i.e. mE  is 
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determined such that 95% of the direct measurements should not be taken as outliers 

when there are no systematic errors. An alternative way of determining mE  is 

according to the stochastic characteristics of the temperature sensors. Assume that the 

measurement noises in the temperature sensor are white noises and follow the normal 

distribution  2
10,N   and  2

20,N  . Provide that 2
1  and 2

2  are obtained after 

analyzing the obtained temperature measurements, then mE  is given by   

, ,2m k pw w w kE c M   with  2 2 2
1 22                              (4.23) 

fE , fE  denotes the uncertainty range in the indirect measurement introduced by 

the model errors in the simplified inverse chiller model [Wang et al. 2000]. The values 

of them can be determined by analyzing the difference between the fused 

measurement and the indirect measurement when all the indirect and fused 

measurements are of high quality. Assume that m  groups of measurements are 

obtained during commissioning, each group consisting of one fused measurement and 

the corresponding indirect measurement. The differences are computed by 

, , , , 1, ,f i im i f iE Q Q i m                           (4.24) 

Then fE  is chosen as the mean value of , , 1f iE i m   

,
1

1 m

f f i
s

E E
m 

                           (4.25) 
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  can also be calculated using the 95% confidence rule:   is chosen such that 

95% of , , 1, ,f iE i n   lies inside the range [ , ]f fE E    . When fE  and   

are known, fE  and fE  are computed by 

2 , 2f f f fE E E E                         (4.26) 

In application, if fE , fE  cannot be obtained appropriately, conservative values 

should be given at the beginning. These values will be updated when more and more 

information about the model uncertainty are collected. 

Table 4.1 Parameters of the data fusion algorithm 

Parameter Description 

mE  The threshold for determining the outliers 

wN  The length of the moving window 

fE , fE  The lower and upper threshold for determining systematic errors 

fE  The calibration value used in the case of systematic errors 

  The length of the transient interval 

1
 The declining rate of the confidence degree in the case of outliers 

2
 Te declining rate of the confidence degree in the case of systematic errors 

  The threshold of the confidence degree for warning 

4.5.2 Periodical Update of Fusion Algorithm Parameters 

When the chiller plant is used for significantly long time, the performance of 

chillers might change noticeably and the inverse chiller models may not be accurate 

any longer. The model error changes and hence the normal differences between the 
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fused measurements and the indirect measurements changes as well. The current 

fusion parameters , ,f f fE E E  and , which are used for detecting systematic errors 

and calibrating the indirect measurement in the case of systematic errors, are therefore 

required to be updated since all of them are determined according the differences. 

Periodic update of the fusion parameters can make them suitable for the new chilling 

plant condition or compensate for deteriorations in the efficiency of the chillers.  

Figure 4.7 shows the strategy of periodic updating the fusion algorithm parameters. 

The fused measurement and the confidence degree are used in chiller sequencing 

control and generating alarms to operators. The historical data stored in BAS can be 

used to update the parameters of the data fusion algorithm periodically.  

Since the confidence degree indicates the quality of the fused measurement and 

the direct and indirect measurements as well, it is used to choose which data sets are 

used in updating the parameter. Only the data sets, which have a high confidence 

degree and are obtained recently, are used to compute the lower and upper threshold 

,f fE E  for determining systematic errors and the calibration value fE . The new 

data of fE ,   and ,f fE E  are then computed using these selected data sets 

respectively by equation (4.25), the 95% confidence rule and equation (4.26).  
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fQ

f  

Figure 4.7. Application of building fused cooling load in building automation system  

4.6 Validation Case Study 

The fusion algorithm was applied to a chiller plant of a building in Hong Kong. 

The data used in the study were collected from 1st July to 31st July with the sampling 

interval being 1 minute. There are three identical 1540­ton centrifugal chillers for day 

mode and two identical 500­ton centrifugal chillers for night/holiday mode. 

Temperatures were measured using resistance thermometers and water flow rate was 

measured by the electromagnetic flow meter. Electric powers of individual chiller 

were measured using three­phase power transducers and evaporating and condensing 

pressures were measured by pressure transducers.    

The normal distributions of the noises, rnte  and supe , in the temperature 

measurements were estimated when the temperature sensors were used to measure the 

water temperature which was relatively constant. 38.1 10in    and 
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35.1 10out    were obtained by this way, which yielded 0.135  . Since the 

water flow rate wM  was relatively constant and averagely 194 L/s, ,m kE  219kW 

was used to distinguish outliers. The inverse chiller model was identified using the 

data ( , ,com cd evT TP ) in the first week, which yielded 1.1488, 697.8341   . The 

length of moving window was chosen to be 20wN  .  

4.6.1 Case without Systematic Errors 

Figure 4.8 compares the fused measurements with the direct measurements from 

08:00am to 16:00pm in the 15th July. The direct measurements are presented using 

the dotted line. It can be seen that the direct measurements are very noisy and suffers 

obviously from outliers. The maximal direct measurement was close to 6000kw while 

the minimum was close to 3000kw. Figure 4.9 shows the measured values of the 

chilled water entering temperature, leaving temperature as well as the flow rate, which 

can explain the noisy variation in the direct measurements. The fused measurements 

are illustrated in Figure 4.8 by the solid line. It shows that the influence of the 

measurement noises on the building cooling load measurements was obviously 

decreased. The strikes or the outliers in the direct measurements were efficiently 

removed. After fusion, the cooling load varied nearly between 3800kw and 5200kw, a 

range much smaller than those achieve in the direct measurement. Therefore, using 

the fused measurement in the chiller sequence control can avoid frequent switching 

on/off of chillers if there are no other approaches to limit the switch.  
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Figure 4.8. Comparison of the fused measurement with the direct measurement  
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Figure 4.9. The measurement of chilled water entering temperature, leaving 

temperature and flow rate 
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Figure 4.10 compares the variations in the number of the operating chillers when 

the direct measurements were used with the case when the fused measurements were 

used. The simple chiller sequencing control logic used in the comparison was  

 When the building cooling load increases: if it is larger than 2650kW then 2 

chillers are switch on; if it is larger than 5300kW; then 3 chillers are stitched on; 

 When the building cooling load decreases: if it is smaller than 4900kW then 2 

chillers are switch on; if it is smaller than 2450kW; then 1 chillers are stitched on 

It can be seen from Figure 4.7 that the number of the operating chillers varied 

frequently between 2 and 3 when the direct measurements were used. However, the 

switch frequency was significantly reduced when the fused measurements were 

adopted. 
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Figure 4.10. Variations in the number of the operating chillers determined when the 

fused measurements and the direct measurements were used  
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Figure 4.11 (upper) compares the fused measurements and the indirect 

measurements. As expected, the two kinds of measurements have similar variations. 

The differences between the fused measurements and the indirect measurements are 

shown in Figure 4.10 (bottom). The maximum difference was 5kW and the minimum 

was ­129kW. The average value was ­62kW. When there are no systematic errors in 

the direct measurement, this average value can be considered as the model errors. 
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Figure 4.11. Comparison of the fused measurement with the direct measurement 

(upper); differences between the fused measurement and the indirect measurement 

(bottom) 

Figure 4.12 (upper) compares the indirect measurements when the inverse chiller 

model used different values of ,  . The solid line represents the cooling load when 

,   was identified using the data from the first week (the original values); while the 

dotted line was obtained when ,   were only 90% of their original values. This 
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difference produced a large change in the indirect measurements of the cooling load. 

However, the difference has an insignificant influence on the fused measurement, as 

shown in Figure 4.12 (bottom). 
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Figure 4.12. Compare the indirect measurements when the inverse chiller model has 

different values of ,  (upper) and the corresponding fused measurements (bottom)  

4.6.2 Case with Systematic Errors  

According to the differences shown in Figure 4.10 (bottom), fE  was computed 

using (4.22) and   was derived using the 95% confidence rule, producing 

62fE   kW and 67  kW. Then fE  and fE  were 196fE   kW and 

72fE  kW computed by (4.23). These values were used to detect systematic errors 

and calibrate the indirect measurements when systematic errors were detected. Figure 

4.13 (upper) shows an artificial systematic error added to the direct measurements, 
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starting from 1100 to 1400 with the size of 250kW. The systematic error was nearly 

5% of the total building cooling load. Figure 4.13 (bottom) shows the confidence 

degree associated with the fused measurements. It can be seen that after 11:00, the 

confidence degree decreases quickly and the confidence degree becomes smaller than 

0.1 around 25 minutes. A warning will be given at this time if 0.1  . The 

systematic error was removed at 14:00. However, the confidence degree took nearly 

18 minutes to return to its normal value ( 1k  ) due to the time delay.  
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Figure 4.13. An artificial systematic error occurring in the direct measurement (upper); 

the corresponding confidence degree (bottom) 

Figure 4.14 shows the variations in the number of the operating chillers when a 

systematic error was detected, where the same sequencing logic was used as in the 

above subsection. When the direct measurement was used, the systematic error had 

obviously a significant effect on the chiller sequence control since more switches 

were observed when compared with Figure 4.10. However, this influence disappeared 
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when the fused measurement was adopted. The reason can be seen from Figure 4.15, 

which compares the fused measurement obtained when no systematic error occurred 

in the direct measurement with the case when a systematic error occurred. The 

differences are mostly smaller than 70kW, which is not over 2% of the total building 

cooling load.  
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Figure 4.14. Variations in the number of the operating chillers in the case of system 

error 
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Figure 4.15. Differences between the fused measurements when no systematic error 

occurred and when a systematic error occurred 
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4.7 Summary 

A method of utilizing fused measurement of building cooling load to improve the 

reliability of chiller system control and monitoring in building automation systems 

has been proposed. It has been shown that the fused measurement inherited the 

complementary advantages of the direct and indirect measurement of building cooling 

load. Application case study demonstrated that the fused measurements can 

effectively remove measurement noises, outliers and systematic errors in the direct 

measurement and the model errors in the indirect measurement. The periodical update 

of the fusion parameters allows the data fusion technique adaptable to the changes of 

the system characteristics. A general framework of using data fusion to obtain more 

accurate and reliable instantaneous building cooling load measurement has therefore 

been established and it can be used in practice large chiller plant to enhance the 

reliability of chiller system control and monitoring.  
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CHAPTER 5 CHILLER SEQUENCING CONTROL WITH 

ENCHANCED ROBUSTNESS  

 

In order to enhance the robustness of chiller sequencing control, a new strategy is 

proposed using cooling load fused measurement and calibrated chiller maximum 

cooling capacity in this chapter. The fused measurement of load is obtained from the 

data fusion method introduced in previous chapter. A simplified model is developed to 

calculate the chiller maximum cooling capacity of individual chillers online.  The 

calculated result will be calibrated to deal with the systematic errors occurring in the 

cooling load direct measurement.  

In Section 5.1, the robust chiller sequencing control strategy is outlined as well as 

the introduction of chiller MCC model. The validations of the MCC model and the 

proposed sequencing control strategy are carried out in Section 5.2 and 5.3. A 

summary of this chapter is given in Section 5.4. 

5.1 Robust Chiller Sequencing Control Strategy 

5.1.1 Outline of the Chiller Sequencing Control Strategy 

The basic idea of robust chiller sequencing control is illustrated in Figure 5.1. The 

fused measurement is used to replace the direct measurement used in the conventional 

chiller sequencing control. The maximum cooling capacity 
0MCC of individual 
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chillers is firstly computed online according to the chiller operating conditions using a 

simplified model. Then, it is calibrated according to the quality of the cooling load 

fused measurement indicated by the value of the confidence degree in order to deal 

with the impact of systematic errors on chiller sequencing control. Next, chiller 

sequencing control determines the chiller operating number based on the calibrated 

maximum cooling load MCC and the fused measurement Qf.    

Chiller 
Group

Chiller sequence 
control

Cooling load direct 
measurement

Cooling load indirect 
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Fusion 
engine

Monitor and 
performance evaluation

MCC 
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Figure 5.1. Schematics of robust chiller sequencing control 

5.1.2 A Simplified Chiller Maximum Cooling Capacity Model 

As the chiller cooling capacity is mainly controlled by modulating the chiller inlet 

vane, the simplified model for online calculating the maximum cooling capacity of a 

single stage centrifugal chiller with constant speed driver can be formulated as 

     
 0

273.15
v ev

fg pg ev pl cd

ev

q P
MCC h c T c T

R Z T


    

  
      (5.1) 
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The simplified model for calculating the maximum cooling capacity is derived 

based on the following simplifications: 

1). The inlet flow vector triangle of the impeller is a right­angle one and the 

gas relative velocity direction is in line with the vane angle [Brown 2005]; 

2). Various kinds of losses including the incidence and friction loss are 

neglected; 

3). The gaseous refrigerant at the inlet of the impeller is assumed to be 

saturated, and the pressure drop between the inlets of the compressor and the 

impeller is neglected; 

4). The liquid refrigerant is assumed to be saturated before it flows through 

the expansion device. 

D1

D2

U1

Vr1V1=Vm1

1

D1

D2

U1

Vr1V1=Vm1

11

 

Figure 5.2. Impeller inlet flow vector triangle 

The equation (5.1) is derived as follows. Firstly, when the centrifugal chiller 

operates at its maximum capacity, the inlet guide vane is fully open to allow 

maximum mass flow rate of the gaseous refrigerant [Stanford 2003]. The computation 
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of the maximum mass flow rate is illustrated by Figure 5.2. 

According to the simplification 1), the gas relative velocity can be computed by 

1 1 1/ cosrV U                         (5.2) 

Therefore, the volumetric flow rate qv of the gaseous refrigerant at the entry of 

impeller can be calculated using the following equation 

1 1 1/ cosvq A U                       (5.3) 

In Equation (5.3), A1 is a constant for a particular centrifugal compressor. Since 

the vane leading edge velocity is invariant due to the use of a constant speed driver 

and the vane inlet angle is also fixed, the maximum volumetric flow rate of gaseous 

refrigerant is a constant, which can be specified if the values of vane angle and the 

rotating speed are known.   

Secondly, according to the simplification 2) to 4), the maximum cooling capacity 

Qmax supplied by the chiller in a basic refrigeration circle can be computed by 

   0 1 2

1

v
m fg pg ev pl cd

q
MCC q h h h c T c T

v
                (5.4) 

When the perfect gas formula is used, the specific volume of gaseous refrigerant is 

    1

1

273.15
ev

ev

P

v R Z T


  
                      (5.5) 

Substituting Equation (5.3) and (5.5) to Equation (5.4), the equation (5.1) computing 

the maximum cooling capacity is obtained. It should be noted that qv cannot be 

computed directly in practice since A1 and β1 cannot be measured directly. An indirect 
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way is used to identify its value, which will be introduced in Section 5.2. 

5.1.3 Calibration of the Chiller Maximum Cooling Capacity  

When the confidence degree is low, the fused measurement is of poor quality 

since systematic errors may occur in the cooling load direct measurements. In this 

case, the fused measurement might be much larger or smaller than the actual building 

cooling load. Concerning about the energy efficiency, an approach is adopted to 

calibrate the maximum cooling capacity in order to maintain the number of the 

operating chiller as small as possible. The strategy of online calibrating the maximum 

cooling capacity is described by  

0 f

0

,  when 

,  otherwise

MCC
MCC

MCC

 




 


                      (5.6) 

where the calibrating factor ζ > 1.  

The calibrating factor ζ is a user­defined parameter, and its value will affect the 

control performance of the robust chiller sequencing control, as shown in the case 

studies in Section 5.3. A systematic way of choosing an appropriate value for the 

calibrating factor is difficult to develop. However, it should be reminded that the 

larger its value is, the larger the switch­on and the switch­off thresholds become. This 

enlargement aims to keep the number of the operating chillers as small as possible and 

hence ensure the energy performance. The strategy can provide enough cooling when 

the fused measurement of the building cooling load is larger than the actual one. 

However, if the fused measurement is less than the actual cooling load, the strategy 

may not be able to provide sufficient cooling. An additional scheme is therefore 
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needed, which monitors the supply chilled water temperature and switches on one 

more chiller if the temperature is significantly above its set­point for certain time 

period. It should be noted that the online calibration of the maximal cooling capacity 

is not an optimal solution since it might result in low control performance and likely 

low energy efficiency, especially the actual building cooling load is much smaller than 

the measurements. Therefore, the operators are suggested to check the measurement 

instruments (e.g. chilled water return and supply temperature sensors) in the case of 

low confidence degree and remove the measurement errors. 

5.1.4 Application Issues 

In chiller sequencing control, the following operation constraints are widely 

cosidered in practice [Chang 2005]. 

i) Switch­on/off threshold constraint: the threshold for switching on one more 

chillers is slightly larger than the threshold for switching off one more chillers (see 

Figure 2.2). Assume the current operating chiller number is N0 and the switch­on 

and off threshold, STon and SToff are separately defined by  

   
  

0

0

( )

1

on

off

ST N MCC db

ST N MCC db

 

  
                 (5.7) 

ii) Minimum up time constraint Tmu: a chiller should not be switched off immediately 

after it is switched on; 

iii) Minimum down time constraint Tmd: the chiller should not be switched on 

immediately after it is switched off.     

These constraints are mainly used to prevent chillers from frequently switching 
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on/off in order to avoid mechanic damages. With the application of the calibrated 

maximum cooling capacity and the fused cooling load measurement, the optimal 

number of operating chillers is 












offkf

onkf

c STQN

STQN
N

  if,1

  if,1

,0

,0
                  (5.8) 

Taken account of the minimum up/down time constraints, the improved chiller 

sequencing control strategy is summarized as follows. 

Robust chiller sequencing control algorithm 

Step 1: Compute the fused measurement of the building cooling load and the 

confidence degree using the algorithm referred to Chapter 4; 

Step 2: Compute the maximum cooling capacity by Equation (5.1); 

Step 3: Calibrate the maximum cooling capacity by Equation (5.6); 

Step 4: Compute the switch on/off thresholds by Equation (5.7); 

Step 5: Compute the number of chillers to be put into operation by Equation (5.8); 

Step 6: Check the satisfaction of the minimum up/down time constraints. If the 

constraints are satisfied, switch on/off one more chillers; otherwise, no action is 

taken; 

Step 7: Go back to step 1 at the next time instant. 

5.2 Case Study 1: Validation of the Maximum Cooling Capacity 

Model 

The unknown parameter qv in the simplified model (5.1) was identified by an 

associated preprocessor using chiller performance data under full load [Wang 1999]. 
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Several groups of site data, which were obtained by manually adjusting the chiller to 

its full load and collected from a chilling system in Hong Kong, were used here to 

validate the maximum cooling capacity model. These data are listed in Table 5.1. The 

refrigerant used in the chiller is R134a. The constants used in the model are R*Z: 

73.41kJ/(kgK); hfg: 197.9kJ/kg; cpg: 0.89kJ/( kgK), cpl: 1.27kJ/(kgK). The first four 

groups of data in Table 5.1 were used to calculate the parameter qv using least square 

method, which yielded qv = 1488.71m3/s. Using this value and the measurements of 

pev, Tev, Tcd, the maximum cooling capacity was computed by Equation (5.1). The 

computed values of the maximum cooling capacity were compared with these 

measurements. Figure 5.3(a) shows that the computed maximum cooling capacity 

matched the measurements well because the maximum relative error was less than 

0.5%. 

Table 5.1. Site data obtained from a middle­sized office building in Hong Kong 

    Variable 

Data no.  

pev (kPa) Tev (℃) Tcd (℃) 
Measured 

MCC (kW) 

1 245.6 4.83 41.79 2676 

2 257.7 5.82 42.18 2806 

3 270.1 6.81 42.54 2936 

4 282.8 7.8 42.89 3066 

5 257.2 5.78 34.45 2968 

6 257.2 5.78 36.41 2936 

7 257.4 5.8 38.27 2898 

The simplified formulation (5.1) was also compared with another sophisticated 

chiller model developed in [Wang 1999], which can also be used to compute the 
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chiller maximum cooling capacity but need more than 15 coefficients as well as 

iteration operations. A detailed simulation of a centrifugal chiller was used to generate 

validation data. The inlet vane angle of the chiller was fully open. The supply chilled 

water temperature varied from 4℃ to 7.5℃ with a step increment 0.25℃ and the 

supply cooling water temperature varied from 30℃ to 37℃ with a step increment 

0.25℃ in order to obtain the maximum cooling capacity under various operating 

conditions.  
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Figure 5.3. Comparison (a) between the computed and measured maximum cooling 

capacity; (b) between the simplified model and another sophisticated model 
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The comparison between the sophisticated model and the simplified model is 

illustrated in Figure 5.3(b), which shows that the difference between them was less 

than 4%. Note that there are no iteration operations in the model (5.1) and the 

computational burden is much lower than the sophisticated chiller model. Therefore, 

the simplified mode is more suitable for online application in practice. 

5.3 Case Study 2: Validation of the Robust Chiller Sequencing 

Control Strategy 

The improved chiller sequencing control strategy, illustrated in Figure 5.1, was 

validated using the dynamic simulation platform introduced in Section 3.2. The 

sequencing control strategy was programmed in MATLAB and embedded in 

TRNSYS 16 using the interface provided by TRNSYS 16. The proposed chiller 

sequencing control algorithm was used in the case study with the following 

parameters 

 The calibrating factor ζ = 1.02 (in Equation 5.6); 

 The calibrating threshold ε = 0.08 (in Equation 5.6); 

 The minimum up time constant τmu = 30 minutes; 

 The minimum down time constant τmd = 30 minutes.  

 The simulation period is 120 hours. 

The performance of the chiller sequencing control was evaluated using the total 

energy consumption ECtotal, the total switching number Num and the total integrated 

time τover of the thermal building’s average temperature being 0.4℃ over its set point. 
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Such a deviation may probably result in thermal discomfort and occupants’ 

complaints. The total energy consumption ECtotal consists of the energy consumed by 

the chillers ECchi, the pumps ECpum and the cooling towers ECct. In this study, 

comparison was mainly made between the conventional chiller sequencing control 

scheme with the improved one.  

5.3.1 without Systematic Errors in the Direct Measurement 

Figure 5.4(a) illustrates the performance of the improved chiller sequencing 

control strategy, including the number of the operating chillers (upper) and the 

variations in the average temperature of the thermal building (bottom). 

Correspondingly, Figures 5.4(b) shows the performance of the conventional chiller 

sequencing control scheme. It can be seen that the frequency of the chiller switch was 

greatly reduced by the improved strategy.  
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Figure 5.4. Control performance of the improved method (plots on the left) and the 

conventional method (plots on the right) 
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As listed in Table 5.2, the total switch number of the improved strategy was 34, 

half of the conventional one (68). Unnecessary switch­on/off actions were observed in 

the conventional strategy. For example, one chiller was unnecessarily switched off 

during the period from t = 12:00 to t = 20:00. Obviously, the switch­off action 

resulted in temperature rise in the average temperature of the thermal building 

(compare Figure 5.4(a) and 5.4(b)). An unnecessary switch­on action occurred during 

the period from t = 85:00 to t = 95:00, which certainly wasted energy. This can 

explain why both ECtot and τover of the conventional chiller sequencing control 

scheme were larger than the improved strategy. As shown in Table 5.2,  

τover of the conventional chiller sequencing control was 8.4 hours and it was 

reduced to 3.9 hours by the improved strategy, decreased by 53.57%. Total energy 

reduction consumed in the improved strategy was 4.73×105 kWh, reduced by 0.8% 

when compared with the consumption in the conventional strategy (4.77×105 kWh). 

Table 5.2. Control performance comparison between the robust and conventional 

strategies 

     Variables 

 

Strategy 

τover 

 (h) 

ECchi 

(kWh) 

ECpum 

(kWh) 

ECct 

(kWh) 

ECtot 

(kWh) 
Num 

Conventional 

Control 
8.4 3.26×105 7.45×104 7.66×104 4.77×105 68 

Robust Control 3.9 3.26×105 7.26×104 7.47×104 4.73×105 34 

Use Efr,k to denote the errors between the actual cooling load and the fused 

measurement 
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, , ,fr k f k r kE Q Q 
                          (5.9) 

The values of Efr,k are plotted in Figure 5.5 (middle). The average error was 317 kW 

and 95% of Efr,k were in the range [­1.1×103 kW, 1.1×103 kW]. The values over this 

range mainly occurred in the transients when a chilled was turned on or off, see 

Figure 5.5 (middle) the dotted boxes for example. During these transients, the indirect 

measurement was unstable and therefore the fused measurement was set to equal to 

the direct measurement. Due to the use of the minimum up/down time constraints, the 

fused measurement in the transients did not affect the reliability of chiller sequencing 

control. Since there were no systematic errors, the confidence degree was always high. 

Small values were observed occasionally due to the presence of outliers.  
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Figure 5.5. Comparison the direct measurement (upper) and the fused measurement 

(middle) with the real cooling load; and the confidence degree (bottom). 
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However, the difference between the direct measurements and the real values were 

much larger. Define Edr,k as the error between the direct measurement and the actual 

cooling load 

, , ,dr k d k r kE Q Q                          (5.10) 

Figure 5.5 (upper) shows the values of Edr,k,. The average value was 702 kW, twice 

larger than the average value of Efr,k. 95% of Edr,k was in the range [­2.6×103 kW, 

2.6×103 kW]. It was also found that the more the operating chillers were, the larger 

the differences were. Even when the chillers worked stably, the differences were 

sometimes over 5.0×103kW.   

The improvements were achieved by the use of the fused measurement of the 

building cooling load and the online computation of the maximum cooling capacity. 

Figure 5.6(a) illustrates the variations in the chiller maximum cooling capacity. The 

maximum value was 8.91×103kW while the minimum was 7.09×103kW. The 

maximum cooling capacity was set to 7230kw in the conventional chiller sequencing 

control scheme. In this case, the largest deviation was over 1650kw. That is another 

reason why the conventional scheme led to misbehaviours in chiller sequencing 

control sometimes.  

Figure 5.6(b) demonstrates the performance of the chiller sequencing control with 

the fused measurement but without online computation of the maximum cooling 

capacity. Delayed switch­on and off actions were observed when compared with 

Figure 5.4(a). The delayed switch­on actions yielded a rise in the average temperature 

of the thermal building and caused certain thermal discomfort accordingly when a 
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larger maximum cooling capacity than the real one was used. The switch­off actions 

were delayed probably because of the use of a smaller maximum cooling capacity 

than the real one. In this case, extra energy was consumed.    
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Figure 5.6. (a) Variations of the chiller maximum cooling capacity; (b) Control 

performance of the method which uses the fused measurement but do not use the 

calibrated maximum cooling capacity) 

5.3.2 with Systematic Errors in the Direct Measurement 

The performance of the improved chiller sequencing control strategy was also 

validated when systematic errors occurred. It is known that systematic errors affect 

significantly the accuracy of the cooling load measurement and therefore reduce the 

reliability of chiller sequencing control. Pseudo systematic errors with different 

magnitude were added in the measurements of the chilled water supply and return 

temperature. It can be seen from Figure 5.7 (upper) that those systematic errors 

influenced the direct measurements greatly. The largest error was close to 2.0×104kW 

when the systematic error was ­0.9℃ (0.9℃) in the chilled water supply (return) 
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temperature. As a consequence, misbehaviors in the chiller sequencing control 

increased. Examples of misbehaviors in the chiller sequence were given in Figure 

5.8(a). As listed in Table 5.3, τover (the total time of the chiller water supply 

temperature over its set point by 0.4℃) was 41.2 hours, much larger than that the case 

without systematic errors (3.9 hours). 

Table 5.3. Control performance comparison between the improved strategy and the 

conventional strategy 

     Variables 

 

Strategy 

τover 

(h) 

ECchi 

(kWh) 

ECpum 

(kWh) 

ECct 

(kWh) 

ECtot 

(kWh) 
Num 

Conventional 

CSC  
41.2 3.32×105 7.55×104 7.71×104 4.85×105 70 

Robust CSC 3.9 3.26×105 7.28×104 7.50×104 4.74×105 36 

In the improved chiller sequencing control strategy, those systematic errors were 

detected by the confidence degree. As shown in Figure 5.7 (bottom), the confidence 

degree decreased quickly to zero when the systematic errors were detected. In this 

case, the fused algorithm calibrated the indirect measurement to avoid the influence of 

these systematic errors [Huang et al. 2009]. Hence, the systematic error did not 

influence the fused measurement seriously, shown as Figure 5.7 (middle). For 

example, the average temperature of the thermal building over its set­point by 0.4℃, 

listed in Table 5.3, was also round 4 hours. However, there was a considerably large 

energy saving (2.31%) when the improved chiller sequencing control strategy was 

adopted in this case. The major reason was that many unnecessary switch­on 
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operations, which were caused by systematic errors and wasted extra part of energy, 

were avoided (compare Figure 5.8(a) and (b)).  

Once again, significant deviations of the fused measurement were observed during 

chiller switching­on transients, especially when systematic errors happened during 

this time (see Figure 5.7 (middle), the dotted box).  
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Figure 5.7. Comparison the direct measurement (upper) and the fused measurement 

(middle) with the real cooling load; and the confidence degree (bottom) when 

systematic errors occurred 

However, it did not affect the chiller sequence because of the minimum up/down 

time constraints. It should be noted that systematic errors may slightly cause the 



 92 

chiller sequence misbehaving (see Figure 5.8(b), the dotted box) since the indirect 

measurement was calibrated using a constant value [Huang et al. 2009].  
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Figure 5.8. Control performance of the conventional method (plots on the left) and the 

improved method (plots on the right) when systematic error occurred 

The calibrating factor ζ in the online calibration of the maximum cooling capacity 

is designed for energy efficiency in the case of systematic errors. Its choice will affect 

the control performance of the improved chiller sequencing control. As an example, 

Figure 5.9 shows the control performance when ζ = 1.2 was used. When a systematic 

error occurred, the switch­off/on threshold was enlarged. Hence, it was observed that 

chillers were switched off sometime earlier than necessary (see Figure 5.9, the dotted 

boxes). Although there is always a backup strategy to switch on one more chillers 

when insufficient cooling is supplied, it is still suggested that the chiller operator 

should check the measurement equipments to check and fix the possible faults and 
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maintain the chiller sequencing control work in its normal state (i.e. without 

systematic errors).  
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Figure 5.9. Control performance of the improved method when ζ = 1.2 

5.4 Summary 

This chapter has investigated the improvement of the reliability and energy 

efficiency of chiller sequencing control. The improved chiller sequencing control uses 

the fused measurement of building cooling load to replace the direct measurement, 

computes online the chiller maximum cooling capacity by a simplified model, and 

calibrates it according to the quality of the fused measurement. Case studies have 

shown that 
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 The improved strategy can greatly reduce unnecessary switches of chillers, which 

happens in the conventional chiller sequencing control scheme due to inaccuracy 

of the building cooling load measurement and the derivation of the chiller 

maximum cooling capacity from its actual value. The reduction can avoid 

potential damage to chillers due to chiller frequent switch­on and off actions and 

therefore reduce the maintenance cost.   

 The improved strategy is more robust to measurement systematic errors since 

these errors can be detected using the quality of the fused measurement and be 

dealt with directly.  

 Energy saving can be achieved while the average temperature of the thermal 

building can be maintained more stable at its set­point temperature 

Therefore, the improved chiller sequencing control strategy should be more 

applicable than the conventional chiller sequencing control scheme in building 

automation systems. It should be note that the proposed method improves the chilling 

plant performance by enhancing the measurement reliability and robustness. It can 

also cooperate with optimal chiller sequencing control to further improve the energy 

efficiency of chilling plants. 
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CHAPTER 6 ONLINE SENSOR FAULT DIAGNOSIS FOR 

ROBUST CHILLER AUTOMATIC CONTROL 

 

Site experience indicates that the measurements used for direct cooling load 

measurement (i.e. measurements of chilled water flow rate, supply and return 

temperatures) are easily corrupted by systematic errors or other measurement faults. 

These faults result in poor quality of cooling load fused measurement and 

consequently poor chiller automatic control. Thus, an online sensor fault detection 

and diagnosis (FDD) strategy based on the confidence degree generated from cooling 

load fusion engine is developed to promptly identify the faults.  

Section 6.1 presents the basic idea of the sensor fault diagnosis strategy for 

enhancing the chiller automatic control. The specific criteria for diagnosing the faults 

occurring in different sensors are proposed in section 6.2. Four different cases have 

been studied in section 6.3 to validate the developed diagnosis strategy in diagnosing 

the different types of faults added to the sensor measurements.  A brief summary is 

presented in the final section 6.4. 

6.1. Sensor Fault Diagnosis for Enhanced Chiller Automatic Control 

The basic idea of the chiller robust automatic control strategy is shown in Figure 

6.1, where there are two methods to measure building instantaneous cooling load. The 

first one is the building cooling load direct measurement. The other one is the 
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building cooling load indirect measurement. The direct and indirect measurements are 

taken as the inputs of the data fusion process, which generates a more accurate and 

reliable cooling load fused measurements. Chiller maximum cooling capacity 

calculated from a simplified model is calibrated according to the confidence degree. 

The fused cooling load together with the calibrated maximum cooling capacity is sent 

to chiller automatic control for determining the chillers operating number. 

dmQ
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Power

evp

cdp

 

Figure 6.1. Data fusion based chiller automatic control 

The fusion algorithm is also developed to detect systematic errors in the direct 

measurements by comparing the fused measurements with the indirect measurements. 

When the fused measurements fall outside of the acceptable region, defined as 

,im imQ E Q E     (see Figure 6.2), a systematic error is believed to occur in the 

direct measurements. Note that the acceptable region is used to account for the model 

error in the chiller inverse model of computing the building cooling load and its 

parameters ,E E  are set up experimentally during commissioning, see Chapter 4. 
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The existence of the systematic errors in the direct measurement is indicated by the 

confidence degree, which will decrease quickly to a threshold in this case.  
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Figure 6.2. Definition of the acceptable region for the fused measurement 

When the confidence degree is below the threshold, the chiller maximum cooling 

capacity is calibrated in order to deal with the impact of sensor measurement faults 

(e.g. systematic errors) on chiller automatic control. Although the robust chiller 

automatic control can guarantee enough supplied cooling even when a systematic 

error in the direct measurements is detected, the automatic control performance and 

the energy efficiency may deteriorate, especially when the actual building cooling 

load is much smaller than the measurements used for the automatic control. Therefore, 

prompt diagnosis of sensor faults is essential to improve the performance of chiller 

automatic control. The confidence degree is used as a trigger in the fault diagnosis 

strategy. 
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Sensor fault diagnosis aims at improving the performance of chiller automatic 

control by helping BAS operators to remove sensor faults quickly. Since the 

confidence degree becomes low when there is a considerable discrepancy between the 

fused and indirect cooling load measurements, faults might occur in either the direct 

or indirect measurements. It is known that a number of sensor fault diagnosis methods 

has been developed for dealing with the sensor measurements concerning individual 

chiller (e.g. volts, currents, evaporating and condensing pressure), for example by 

Wang and Chen [2004]. Therefore, this paper will focus on developing sensor fault 

diagnosis approach for isolating the faults occurring in the cooling load direct 

measurement, i.e., in the chilled water flow, supply and return temperature 

measurements.  

6.2. Online Sensor Fault Diagnosis Algorithm 

6.2.1 Outline of the Fault Diagnosis Algorithm 

The online sensor fault diagnosis algorithm is illustrated in Figure 6.3. The fault 

diagnosis algorithm follows a procedure of two steps. The first step is to check 

whether there is any fault in the chiller water flow and supply temperature 

measurements, both of which have expected values. The expected value of the chiller 

water flow rate in the header pipe is calculated based on mass balance between the 

header pipe and the interlocked pumps of chillers. The expected value of the chilled 

water supply temperature is its set point, which can be tracked by the chiller control 

system when the operating chillers can provide sufficient cooling. The Moffat 
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consistency test is conducted to diagnose fault by checking the Moffat distance 

between the measurements and their expected values [Moffat R.J., 1982]. The second 

step is to diagnose faults in the chilled water return temperature measurements. If no 

fault is found in the first step, a fault is believed to exist in the chilled water return 

temperature measurements and the diagnosis algorithm ends with a fault report to 

BAS. Otherwise, the diagnosis algorithm will continue to check whether there is any 

further fault. Since the chilled water return temperature varies with the building 

cooling load and the building cooling load is difficult to compute, the Moffat 

consistency test is not used in this case. The fault is diagnosed by reconstructing the 

confidence degree using the chilled water flow measurements (when a fault is 

detected) or its expected value (when no fault is detected) and the supply temperature 

measurements (when a fault is detected) of its expected value (when no fault is 

detected). Fault report is also sent to BAS. 
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Figure 6.3. Framework of the fault diagnosis algorithm 
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6.2.2 Fault Diagnosis of Chilled Water Flow Rate and Supply Temperature 

Measurements 

In the fault diagnosis for the header pipe chilled water flow measurements, the 

available redundant information in BAS include: 

 Header pipe chilled water flow measurements
hpM ; 

 Operating pump water flow direct measurements
,pum jM , 1, , pumj N  ; 

 Operating pump water pressure drop (or pump head loss) measurements
,pum jH .  

The pump water pressure drop is related to the pump water flow rate by the pump 

performance curve, which can be described as 

 
2* *

, 0 1 , 2 ,pum j pum j pum jH a a M a M    
                    (6.1) 

The pump water flow rate *
,pum jM , calculated from Eqn. 6.1, is titled as pump 

water flow indirect measurement. The diagnosis criterion for the header pipe water 

flow measurement is developed based on the mass balance between the header pipe 

water flow and the water flow in these operating pumps, i.e., the water mass flow 

through the header pipe is equivalent to the sum of the water mass flow through the 

operating pumps. The diagnosis criterion is descried as follows:     

Diagnosis criterion 1: In a moving window with Nw continuous measurements of the 

chilled water flow rate in the header pipe, if 80% of the Moffat distances between the 

header pipe chilled water flow measurements and the sum of the flow measurements 
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in these operating pumps are larger than unity, then there is a fault in the header pipe 

water flow measurement; otherwise, the header pipe water flow measurement is free 

of faults.  

The Moffat distance in Diagnosis Criterion 1 is defined by Eqn. 6.2, where the 

sum of the flow measurements in the operating pumps i
sumM  is calculated by Eqn. 

6.3 and the uncertainty wm  associated with i i
hp sumM M  is computed by Eqn. 6.4. 

In Eqn. 6.3, i
sumM  consists of two parts: the direct measurements ,

i
pum jM  from the 

operating pump flow meters which work healthily and the indirect measurements 

*,
,

i
pum jM  from the operating pump flow meters which work unhealthily, i.e., with 

systematic errors. 

,

i i
hp sumi

hs k

wm

M M
md





, 1, , wi N                  (6.2) 

*,
, ,

1 1

pum pum

pum

L N

i i i
sum pum j pum j

j j L

M M M
  

                       (6.3) 

The uncertainty 
wm  is derived as follows.  

2 2 *
, .

1 1

( ) ( )
pum pum

pum

L N

wm hp pum j pum j
j j L  

                      (6.4) 

When the header pipe water flow meter in primary loop is free of fault, the 

measurement 
i
hpM  can be written as 

,
i i i
hp hp act hpM M e  ,  20,hp hpe N                (6.5) 

According to the study reported in [Duta M., Henry M., 2005], the uncertainty 

associated with 
i
hpM  can be defined as 

1.96hp hp                         (6.6) 
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Similarly, when the pump flow meters work healthily, the direct measurements 

,
i
pum jM  have the form of 

, , , ,
i i i
pum j pum act j pum jM M e  ,  2

, ,0,pum j pum je N              (6.7)    

and the associated uncertainty is  

, ,1.96pum j pum j                        (6.8) 

When the pump flow meters work unhealthily, the indirect measurement *,
,

i
pum jM  is 

used to replace the direct measurements ,
i
pum jM . Considering about model mismatches 

introduced in the pump performance curve (see Eqn. 6.1), the indirect measurement 

*,
,

i
pum jM  can be expressed as 

*,
, , , ,

ˆi i i
pum j pum act j pum jM M   , *

, ,
ˆi

pum j pum j                  (6.9) 

Assume there are pumL  pump flow meters work healthily and pum pumN L  

pump flow meters work unhealthily. The sum of the operating pump flow 

measurements i
sumM  in Eqn. (6.3) is rewritten as  

 
, ,

1

ˆ
pumN

i i i i
sum pum act j sum sum

j

M M e 


  
; 

,
1

pumL
i i
sum pum j

j

e e


 
; 

,
1

ˆ ˆ
pum

pum

N

i i
sum pum j

j L

 
 

 
    (6.10) 

The mass balance between the header pipe water flow and the operating pump water 

flow gives 

 , , ,
1

pumN
i i
hp act pum act j

j

M M


                     (6.11) 

which yields  

ˆi i i i i
hp sum hp sum sumM M e e                      (6.12) 

Since the operating pump flow meters works independently with each other and 
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also with the header pipe flow meter,  i i
hp sume e  follows a normal distribution 

  2 2
,

1

0,
pumL

i i
hp sum hp pum j

j

e e N  


 
  

 
                (6.13) 

The total calculation uncertainty i
sum  lies in the range 

 
*

,
1

ˆ
pum

pum

N

i
sum pum j

j L


 

                        (6.14) 

Hence, the uncertainty associated with 
i i
hp sumM M  is 

 
2 2 *

, ,
1 1

1.96 ( ) ( )
pum pum

pum

L N

wm hp pum j pum j
i j L

 
  

                    (6.15) 

Then, Eqn. 6.4 is obtained according to Eqn. 6.6, 6.8 and 6.15.  

Diagnosis Criterion 1 indicates that if the header pipe water flow measurements 

are not consistent with the sum of the pump flow measurements, then there is a fault 

in the header pipe flow measurements. It should be noted that when the measurement 

uncertainties hp  and ,pum j , 1, , pumj L  , are appropriately set, a single Moffat 

consistency test still fails with 5% probability due to the normal distribution of the 

measurement noises [Duta M., Henry M., 2005]. Therefore, a moving window is 

adopted in Diagnosis Criterion 1, which is used to reduce the possibility of such 

misdiagnosis. The index 80% is set experimentally here because this value can 

produce an acceptable result in the case study in Section 4. 

The healthy operation of the pump flow meter is judged by examining the 

consistency between the pump water flow direct measurements and the corresponding 

indirect measurements. As in Diagnosis Criterion1, Moffat distances are used and 

defined as   
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, ,*,

, *
, ,

i i
pum j pum ji

pum j

pum j pum j

M M
md




  
                      (6.16) 

Once again, if 
*,

,
i

pum jmd  is larger than unity, then a fault is found in the 

corresponding flow meter; otherwise, the flow meter works healthily. Note that this 

judgment is based on the fact that the pressure measurement is reliable.     

Diagnosis Criterion 2: In a moving window with Nw continuous measurements of the 

supply temperatures, if 80% of the Moffat distances between chilled water supply 

temperature measurements and its set point are larger than unity, then there is a fault 

in the chilled water leaving temperature measurement. 

The Moffat distances in Diagnosis Criterion 2 are defined by 

sup, sup,

sup,

sup, sup,

, 1, ,

i
mes seti

k w

mes set

T T
md i N


 
  

                    (6.17) 

The development of Diagnosis Criterion 2 is similar to Diagnosis Criterion 1. 

When the chiller automatic control guarantees sufficient cooling supplied and the 

operating chillers are free of faults, the actual chilled water supply temperature can be 

manipulated to track its set point with small disturbances by the chiller closed­loop 

control. Hence, the chilled water actual supply temperature can be described by 

sup, sup, sup,
ˆ

act set setT T                        (6.18) 

The disturbance sup,set  occurs due to chiller imperfect closed­loop control as 

well as its unstable operating environment. Again, the disturbance sup,
ˆ

set  is assumed 
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to lie in an uncertainty range, i.e., sup, sup,
ˆ

set set   . Without systematic errors, the 

temperature measurement sup,mesT  is described by 

sup, sup, sup,mes act mesT T e  , 
2

sup, sup,~ (0, )mes mese              (6.19) 

Similar to Eqn. 6.6, the measurement uncertainty 
sup,mes  is 

sup, sup,1.96mes mes                         (6.20) 

The moving window is used in Diagnosis Criterion 2 for the same reason as it is used 

in Diagnosis Criterion 1. 

6.2.3 Fault Diagnosis of the Chilled Water Return Temperature Measurement 

As illustrated in Figure 6.3, two cases should be considered in the fault 

diagnosis of the chilled water return temperature measurements. The first case is that 

there are no faults found in both the chilled water flow and supply temperature 

measurements. In this case, the diagnosis criterion is described as follows.  

Diagnosis Criterion 3: When there is no fault found in the chilled water flow and 

supply temperature measurements, there is a fault in the chilled water return 

temperature measurements. 

The second case is that a fault is detected in either the chilled water flow 

measurements or the supply temperature measurements. In this case, the fault 

diagnosis algorithm will check whether there is a further fault in the return water 

temperature measurements. Because the chilled water return temperature varies with 

the building cooling load and the building cooling load is difficult to calculate 
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accurately, it is difficult to use the consistency test to diagnose fault. A confidence 

degree reconstruction scheme is developed to diagnose faults in the return water 

temperature measurements. In this scheme, the cooling load direct measurements are 

firstly reconstructed by 

, sup( )dm pw rtn mesQ c M T T                       (6.21) 

where  

, if no fault is found

, if a falut is found

hp

sum

M
M

M


 



 

sup,

sup

sup,

, if no fault is found

,  if a fault is found

mes

set

T
T

T


 



 

Then, the fusing algorithm developed in Chapter 4 is used to reconstruct the fused 

measurements and the confidence degree. Compared with the fusion algorithm in 

Chapter 4, the only difference is that the direct measurements ( dmQ ) is replaced by the 

reconstructed fused measurements ( dmQ ). The regenerated confidence degree f  is 

used for fault isolation in the return chilled water temperature measurements.  

Diagnosis criterion 4: If the reconstructed confidence degree 
f

 is still smaller than 

the threshold  , then there is a fault in the chilled water return temperature 

measurements.  

When sumM  and/or sup,setT  are used to replace the corresponding measurements 

hpM  and sup,mesT , the uncertainty ˆ
sum sume   and/or sup,

ˆ
set  will be introduced in the 

computation of dmQ . To see this, rewrite Eqn. (6.21) as Eqn. (6.22) when both sumM  

and sup,setT  are used 
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 , sup,dm pw sum rtn mes setQ c M T T                 (6.22) 

The nominal value of the direct measurements ,dm nomQ is the one without any faults 

in the water flow and chilled water supply temperature measurements  

 , , sup,dm nom pw hp rtn mes mesQ c M T T                 (6.23) 

Assume sum and sup,set are 

1
ˆ

sum sumM    and  sup, 2 , sup,
ˆ

set rtn mes setT T             (6.24) 

i.e., 1
ˆ ˆ

sum sum sume M     and  sup, 2 sup,
ˆ ˆ

set rtn setT T    . According to Eqn. 6.12, 

6.18 and 6.19, Eqn. 6.23 can be rewritten as 

 ,

, sup, sup, sup,

ˆ

ˆ

dm nom pw sum sum sum

rtn mes set set mes

Q c M e

T T e





   

     



             (6.25) 

Since the measurement noises sume  and sup,mese  are independent and with zero 

expectations, both of them will disappear in the fused measurement because the sum 

of a continuous sequence of dmQ is used to compute the fused measurement. However, 

the uncertainties ˆ
sum and sup,

ˆ
set cannot be removed in this way. Therefore, the 

uncertainty ˆ
sum and sup,

ˆ
set will enter into the reconstructed fused measurement as well 

as ˆ
f .  

The “worst” increment in the fused measurements is when 1
ˆ ˆ
sum sumM     and 

 sup, 2 , sup,
ˆ ˆ

set rtn mes setT T      

 1 2 1 2
ˆ ˆ ˆ ˆ

dm dmQ Q                        (6.26) 
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This increment dmQ   should be taken into account in reconstructing f  in 

order to avoid the decrease of f  due to the introduction of ˆ
sum  and sup,

ˆ
set . A 

simple way is to calibrate the acceptable region using dmQ  . The calibrated 

acceptable region is also shown in Figure 6.2 by the solid­dotted lines, where the 

calibration value is dmQ  , which is calculated according to sum  and sup,set . For 

example, when both the chilled water flow rate and supply water temperature 

measurement are with faults, dmQ   is be computed using Eqn. 6.26.      

6.2.4 Parameters Setup 

The parameters of the online sensor fault diagnosis algorithm are summarized in 

Table 6.1. All these parameters are required to be set during on­site commissioning. 

For example, hp  and sup,mes  can be calculated by analyzing the stochastic 

distribution of a sequence of chilled water flow and supply temperature continuous 

measurements when the measurands are relatively constant and the measurements are 

free of faults. Then, hp , ,pum j  and sup,mes  can be calculated using Eqn. 6.6, 6.8 

and 6.20 separately. The estimation of sup,set  requires a number of data when the 

chillers works at steady state. The common used 95% confidence rule can be used in 

this case, i.e., 95% of these measurements should fall inside the range specified by 

sup,set  [Duta M., Henry M., 2005]. As well, 
*

,pum j  can be also determined using the 

95% confidence degree. Other confidence rules can also be used.  
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Table 6.1. Parameters of the online sensor fault diagnosis algorithm 

Parameter Description 

hp  
Uncertainty associated with the water flow measurement in 

header pipe 

,pum j  Uncertainty associated with the water flow measurement for 

thj  operating pump 

*
,pum j  

Uncertainty associated with calculated water flow *
,p jM  for 

thj operating pump based on pressure drop 

sup,set  Uncertainty associated with the tracking control of 
sup,setT  

sup,mes  
Uncertainty associated with chilled water supply temp 

measurement 

wN  
Length of the moving window used in the diagnosis criteria 

However, it should be noted that when these uncertainty­related parameters, 

including
*

, , sup, sup,, , , ,hp pum j pum j set mes     , have a larger value, the diagnosis criterions 

become less sensitive to the faults. when the number of operating chillers are different, 

the uncertainty related to the sum of water flow of operating pumps sum  might be 

different and therefore different values of sum  should be used.   

The fault report consists of three items sup, ,w rtnF F F  denoting the fault status of 

the chilled water flow rate, supply and return temperature respectively. The value of 

these items is zero indicating there are no faults in the corresponding measurement; 
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while the value is unity indicating a fault is found. The fault report will be sent to 

BAS to notify system operators to repair the faults promptly. 

6.3. Validation Case Studies  

The dynamic simulation platform constructed in chapter 3 is used to validate the 

developed FDD strategy. For simulating the realistic sensor measurements, noises and 

outliers were deliberately added to the related measurements. The Gaussian noise with 

the distribution (0,0.01)N  was added to the measurements of temperature sensors. 

The outliers were set to 1℃ or ­1℃ randomly. Pseudo systematic errors were added 

to represent the faults occurred in the chilled water flow and temperature 

measurements. Four different cases were studied. In the first three cases, faults 

occurred solely in each of the three measurements; while in the last case, faults 

occurred in the three measurements simultaneously.  

The threshold of the confidence degree for detecting systematic error was set to 

0.001  . Least square fitting was used to identify the parameters of Eqn. 6.1, which 

yielded 0 1 2972.7, 3.0, 0.0032a a a    . Tests under different operating conditions 

showed that the relative error introduced by Eqn. 6.1 was less than 2%. Therefore, the 

uncertainty 
*
pum  was assigned the value 2% pumM . ,pum j  due to measurement 

noises was set to 20.58kg/s for operating pumps; while hp  for the header pipe was 

set to 35.8kg/s. The length of the moving window Nw was 8. The parameter sup,set , 

which is used to account for the imperfect close­loop temperature control of chillers 

as well as disturbances, was set to 0.18℃. It is because simulation study showed that 
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when the set point for the chilled water was 5.5℃ , 95% of the temperature 

measurements were inside the range [5.5±0.18] ℃. The standard deviation of the 

noise in the chilled water supply temperature measurement was 0.1℃, and hence 

sup,mes  0.196℃.  

Two different types of errors were employed in the simulation. One was used to 

represent the slow drift fault of the sensor measurement and it was entitled ramp error. 

The ramp errors started with different changing rate and were kept at their maximum 

absolute value after reached them. The second one was used to represent abrupt faults 

in the sensor measurement and it was called step error. Its value was maintained 

constant in the duration. 

6.3.1 Case with Fault Occurring in the Flow Meter 

Ramp and step errors were both added to the chilled water flow rate 

measurements. The durations of the ramp errors were 6 hours. One of the ramp errors 

reached its maximum absolute value (i.e. 15% of its total water flow rate) at the end 

of the duration; others changed with a greater rate and achieved the peak absolute 

value earlier. The step errors also lasted for 6 hours and their absolute values were 

assigned to 15% of the total water flow, shown in Figure 6.4 (top). The systematic 

errors were detected by the confidence degree of the fused measurement. It can be 

seen from Figure 6.4 (middle) that the confidence degree fell rapidly down to smaller 

than   until the systematic error disappear. The bottom one is the chiller automatic 

control performance. 
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 Figure 6.4. Confidence degree and chiller automatic control performance when faults 

only occurred in flow meter 

Figure 6.5 illustrates the results of the sensor fault diagnosis algorithm, which 

shows that all systematic errors were successfully isolated. It should be noted that 

there is delay in the fault diagnosis for the ramp errors as well as in the step errors. 

This is because the data fusion algorithm needs time to detect the systematic errors 

and the time is smaller than the time span of the moving window, usually less than 20 

minutes, see Section 4.6. Also, the moving window used in Diagnosis Criterion 1 will 

lead to short term time delay. Since the fusion algorithm needs longer time to detect 

the ramp errors, the delay in diagnosing the ramp errors was larger than in diagnosing 

the step errors, see Figure 6.5 the top plot.  
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Figure 6.5. Fault diagnosis results of the three measurements 

The fusion algorithm stopped working during transients (i.e., a chiller was 

switched on or off and the chilling system has not reached its stable state), the fault 

diagnosis algorithm also stopped working. This was the reason why the duration of 

diagnosed faults was shorter than the duration of the actual fault, which can be 

observed in Figure 6.5. 

6.3.2 Case with Fault Occurring in the Supply Temperature Sensor 

The systematic errors added to the supply water temperature measurement 

included both ramp and step errors. The maximum absolute value of the ramp errors 

was 0.9℃ and each of them lasted for 6 hours. The varying rates of them were 

different from each other. The step errors kept their values at either 0.9℃ or ­0.9℃ 
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for 6 hours, shown as Figure 6.6 (top). Figure 6.6 (middle) shows that all the faults in 

the supply temperature measurement were detected by the low confidence degree and 

they rose up when switch action of chiller occurred, shown in dotted box.  
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Figure 6.6. Confidence degree and chiller automatic control performance when faults 

only occurred in supply water temperature sensor 

Figure 6.7 presents the diagnosis results. It can be seen that all the faults were 

successfully diagnosed although delay in the diagnosis and the influence of the 

transients on the diagnosis results were still observed. Note that the performance of 

chiller automatic control in this case was slightly different from the one when faults 

occurred in the supply water flow measurements, which shows the necessity of fault 

diagnosis.    
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Figure 6.7. The fault diagnosis results of the three measurements 

6.3.3 Case with Fault Occurring in the Return Temperature Sensor 

The errors added to the return chilled water temperature measurement included 

two six hour­lasting ramp errors with different increasing rates and the same 

maximum value 0.9℃ and three step errors with assigned value ­0.9℃ lasting for six 

hours, shown as Figure 6.8. 
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Figure 6.8. The confidence degree and chiller automatic control performance when 

faults only occurred in return water temperature sensor 
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Figure 6.9. The fault diagnosis results of the three measurements 
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Figure 6.8 (middle) described the confidence degree, which shows that the 

systematic errors were successfully detected. Figure 6.8 (bottom) illustrates the 

operating chiller number given by chiller automatic control.  

Figure 6.9 shows the diagnosis results. Once again, the faults were isolated but 

with a slight delay. Note that in this case, Diagnosis Criterion 3 was used because 

there were no faults in both the chilled water flow measurements and the chilled 

supply water temperature measurements. 

6.3.4 Case with Multiple Faults Occurring in All Three Measurements 

For fully testifying the fault diagnosis strategy, all of the measurements were 

added systematic errors, see Figure 6.10 (the top three plots).  
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Figure 6.10. The confidence degree and chiller automatic control performance when 

faults occurred in all three measurements 
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Due to the simultaneous occurrence of these systematic errors, interruptions of 

chiller switching actions，the fault detection by the confidence degree became more 

difficult. However, these faults were detected by the confidence degree as shown in 

Figure 6.10. Since there are faults in the chilled water flow and supply temperature 

measurements, Diagnosis Criterion 4 was used to diagnosis faults in the chilled water 

return temperature measurements. Figure 6.11 presents the diagnosis results, which 

shows that these faults were also diagnosed correctly.  
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Figure 6.11. The fault diagnosis results of the three measurements 

Although the errors in the chilled water flow measurements and in the chilled 

water supply temperature measurements were the same with those used in previous 

subsections, the diagnosis results given by Diagnosis Criterion 1 and Diagnosis 
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Criterion 4 may be different due to the overlapping of these faults. For example, the 

first and the third fault diagnosed in the chilled water flow measurements in Figure 

6.5 were shorter than the corresponding faults shown in dotted box in Figure 6.11. As 

many other diagnosis strategies, parameter set­up is also significant for appropriate 

diagnosis in this strategy. Figure 6.12 gives an example when ˆ
dmQ  used a different 

value, i.e., ˆ 60dmQ kW  . Misjudgment was observed as shown in the dotted box in 

the diagnosis result in the chilled water return temperature. Therefore, in practical 

application, the parameters in these diagnosis criteria should be carefully set during 

commissioning.  
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Figure 6.12. The fault diagnosis results of the three measurements when ˆ
dmQ  was 

inappropriately set 
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6.4. Summary 

An online sensor fault diagnosis strategy based on the data fusion technology has 

been presented to diagnose sensor faults in building cooling load direct measurement 

for improving the robustness of chiller performance monitoring and automatic control. 

It has been shown that faults in the chilled water flow and supply temperature 

measurement can be efficiently diagnosed using the Moffat consistency test method 

since both measurements have an expected value while faults in the chilled water 

return temperature measurement can be diagnosed using the confidence degree 

reconstruction method.  

Tests results showed that whether faults occurred solely or simultaneously in the 

three measurements, they can be successfully isolated by the proposed strategy. It will 

be helpful to inform the operator to repair/replace the faulty measuring instruments in 

time. Hence the healthy sensor measurements are guaranteed which will further 

enhance the robustness of chiller performance monitoring and the reliability of 

automatic control for energy efficiency. It should be noted that the properly assigned 

values for the parameters used in the method are significant for ensuring a satisfactory 

diagnosis result. Therefore, careful parameters configuration in the commissioning 

period is required before the method is applied. 
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CHAPTER 7 MODEL-BASED OPTIMAL START 

CONTROL STRATEGY 

 

Chiller plant optimal start control aims to recover the indoor room temperature to 

a desired level before occupancy with as less energy consumption as possible. A 

model­based optimal start control strategy is proposed in this chapter, which considers 

both the recovery ability and the pre­cooling lead time as the optimizing variables. In 

most previous studies, only the pre­cooling lead time is of major concern.  

Section 7.1 briefly introduces the basic idea of the developed mode­based optimal 

start strategy. The essential cooling load prediction, estimation of pre­cooling lead 

time and calculation of energy consumption are as well addressed in this section. The 

validation of proposed strategy is performed in section 7.2. The associated application 

issues are discussed in section 7.3 and a brief summary of this chapter is presented in 

section 7.4. 

7.1 Model-Based Optimal Start Control Strategy 

7.1.1 Outline of the control Strategy 

Assume there are Nc chillers equipped in a commercial building. The two steps 

in the model­based optimal start control strategy are illustrated in Figure 7.1. In the 

first step, a feasible set is determined for the operating chiller number.  
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Figure 7.1. The schematic diagram of the proposed optimal start control strategy 

The feasible set should satisfy the condition that any number of chillers in the set 

is able to fulfill the building cooling load requirement, i.e. the building internal 

temperature can be cooled down to its set­point in a limited pre­cooling period. 

Denote the feasible set as Ec and define it as (7.1), where Nmin is the minimum number 

and Nmax is the maximum number. The minimum number is calculated according to 

the predicted building cooling load Qpre in the pre­cooling period and the chiller rated 

cooling capacity MCC, as shown by (7.2), where ceil(x) is a function to round x to the 

integer toward positive. The prediction of Qpre is performed using the measured 

weather data including global solar radiation Iglobal, outdoor temperature Tamb and the 

relative humidity RHamb at the time to run the program of generating the chiller 

optimal start schedule, usually one hour ahead of occupancy in the morning. 

 min max: :cE N N N N                         (7.1) 
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 min /preN ceil Q MCC
                        (7.2) 

Theoretically, any number larger than Nmin can satisfy the cooling load 

requirement. However, if the number is large enough, the risk of exceeding the 

pre­defined electrical demand limit will be high. Therefore, the maximum number in 

the feasible set should satisfy the building cooling load but not break the pre­defined 

electrical demand limit. It can be obtained from the related building demand limiting 

control strategy [J.E. Seem et al., 1989]. 

 In the second step, the pre­cooling lead time is estimated for each number in the 

feasible set as well as the corresponding energy consumption JN. Given the operating 

chiller number N for pre­cooling and the predicted cooling load (obtained in the first 

step), the simplified building model employed in the first step is used to compute the 

building pre­cooling lead time τBld,N. The model­based pre­cooling lead time 

calculation is presented in Section 2.3. The energy consumption of the chiller plant is 

computed by summarizing all the energy consumed by components, which is 

illustrated in Section 2.4. The optimal schedule is selected by comparing the total 

energy consumption of different numbers of operating chillers. 

7.1.2 Model-based Cooling Load Prediction 

Building cooling load is predicted using the measured weather data at the 

moment running the program of the start control strategy to generate the chiller 

optimal start schedule (e.g. one hour ahead of occupancy) and the simplified building 
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model developed by Wang and Xu [2006]. The prediction of cooling load for the 

central chilling system (i.e. building cooling load) is performed as (7.3), where these 

temperature variables Ts and resistance parameters Rs are defined in Figure 7.2; Qwin 

is the heat gain through the window; Qconv is the convection heat gain; Qfr is the heat 

gain introduced by the fresh air; and Qla,occup are the latent load from the building 

occupants. These heat loads computation processes are presented in details in [X.H. 

Xu, 2005.].   

,4( ) ( ) ,4( ) ( ) ,2( ) ( )

1 ,5 ,5 ,2

,

( )
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n
ei t in t rf t in t im t in t
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win conv fr la occup
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Q

R R R

Q Q Q Q



  
  

   


           (7.3) 

The simplified building model is in the electrical analogue pattern with 

resistance (R) and capacitance(C), as illustrated in Figure 7.2. For building cooling 

load prediction Qpre, the simplified model takes the measured weather data (Tamb, 

Iglobal, and RHamb) as its inputs and systematically calculates the various heat gains 

including heat transfer from walls, roofs and windows, heat charge and discharge 

through the internal mass and internal air. Heat gain from the fresh air, infiltration, 

lighting and equipments are also considered. It should be noted the latent load from 

occupants (shown as the dotted box part) has no impact on the node temperature in 

the thermal network. However, it is need to be considered if the humidity control is 

performed. In this calculation process, the internal room temperature is assumed to be 

its set­point. The simplified building is comprised of two parts. The first one is the 

building envelopes including walls and roofs represented with 3R2C. The resistance R 

and capacitance C in this part can be identified by matching frequency response 
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characteristics of physical walls with that of optimization from genetic algorithm 

(GA). The second part is the internal mass consisting of partitions, furniture, etc., 

represented with 2R2C. These four parameters are identified in a different way which 

is based on the heat balance principle [S.W. Wang, X.H. Xu. 2006] The main reason 

for the different parameters identification methods is the availability of the theoretical 

building envelope model and no theoretical internal mass model available. 
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Figure 7.2. Schematic structure of the simplified building thermal network 

The procedures for the building cooling load prediction are as follows. Firstly, the 

outdoor temperature Tamb and the wall absorbed radiation WRad calculated from the 

global radiation Iglobal (see the Appendix A) are used to calculate the solar air 

temperature Tsol by (7.4), where ̂  is the wall absorption coefficient; ̂  is external 

wall heat transfer coefficient; and the two coefficients are determined by the wall 

material. Then, the node temperatures such as Tei,4, Trf,4, Tim,2 are computed by solving 
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the differential equations after the solar air temperature Tsol, predicted RHamb and the 

identified resistance R and capacitance C are known . Details are referred to the 

reference [S.W. Wang, X.H. Xu. 2006]. 

ˆ
ˆ

Rad
sol amb

W
T T

 
 


                         (7.4) 

7.1.3 Model-based Pre-cooling Lead Time Prediction 

The simplified building model is also used to describe the indoor temperature 

variation, shown as equation (7.5), where Qsup is the cooling supplied from chiller 

plant. When the variables in the right hand side of (7.5), such as Qsup, Qwin, etc., are 

known, the indoor room temperature variation curve is obtained by solving (7.5). The 

building pre­cooling lead time τBld,N is the time span from the start moment to the 

moment as building internal temperature stabilized into the area defined by the indoor 

room temperature set­point with ±0.2℃ error. As an example, Figure 7.3 illustrates 

the indoor room temperature variation and the definition of the building pre­cooling 

lead time τBld,N , where N represents the number of operating chillers. The initial 

indoor and outdoor temperatures are measured at the beginning of start control 

implementation. 
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Figure 7.3. The indoor room temperature and supply air temperature variation curve 

7.1.4 Energy Consumption Estimation 

The total energy consumption is calculated using (7.6), where JN is the energy 

consumption of the chiller plant when N chillers operate; EC  is the energy 

consumption of the components and the subscripts ‘fan’,’cp’,’ct’, ‘chi’ and ‘vp’ 

represent supply fan in the air handling unit (AHU), constant speed pumps, cooling 

towers, centrifugal chillers and variable speed pumps respectively.  

N fan cp ct chi vpJ EC EC EC EC EC                        (7.6) 

The energy consumption of the AHU fans, the cooling towers and the 

constant­speed pumps are calculated by (7.7), (7.8) and (7.9) separately, where P is 

the rated power consumption, Num is the number of operating component.. Here, the 

power consumptions of these components do not change significantly in the 

pre­cooling process because they operate at a relatively constant speed (e.g. the 

supply fan in AHU maintains at its maximum speed prior to the building indoor 

temperature reaching its set­point).  
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,fan fan fan Bld NEC Num P   
                            (7.7) 

,CT ct ct Bld NEC Num P   
                            (7.8) 

,cp cp cp Bld NEC Num P   
                             (7.9) 

The calculation of the chiller energy consumption is divided into two parts: Phase 

I and Phase II. As shown in Figure 7.3, Phase I, denoted as the air­conditioning 

system pre­cooling lead time τAC,N, is the time interval from the chiller start moment 

to the moment when the supply air temperature is stabilized into its set­point area with 

±0.2℃ error. Phase II is the time span defined by τBld,N – τAC,N. The energy consumed 

in Phase I and Phase II is calculated by (7.10) based on the assumption that the 

cooling load variation in Phase II is negligible. In Phase I, Pchiller takes its rated power 

because the supplied cooling is insufficient for the supply air temperature reaching its 

set­point and chillers are controlled to operate at its maximum cooling capacity during 

this period. In Phase II, the chillers work at part load condition and hence the actual 

power consumption is calculated based on the predicted building cooling load and the 

chiller coefficient of performance (COP). The COP is calculated by (7.11), where 

PLR is the part load ratio between the single chiller actually supplied cooling Qsup and 

the chiller rated cooling capacity Qrated, i.e. supPLR Q / /( )rated pre ratedQ Q N Q   . 

c0,…,cn are the coefficients that can be obtained during commissioning.  

, , ,

 I  II

( ) /chiller chiller AC N pre Bld N AC N

Phase Phase

EC N P Q COP       
 

           (7.10) 

1 0...n
nCOP c PLR c PLR c                       (7.11) 

The energy consumption of the variable speed pumps, which are used to 
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distribute chilled water into the secondary loop, is calculated in a similar way, as 

shown in (7.12). The first part is the energy consumed in Phase I, during which the 

chilled water from the primary loop is assumed to be completely distributed to the 

AHU. In this part, Pvp is the rated power of the pump motor, Mpum,sup is the actual 

water flow rate which is determined by the operating chiller number N, operating 

variable speed pump number Numvp and the rated chilled water flow rate of single 

chiller Mchi,rated, as shown in (7.13). In the second part, the surplus chilled water will 

be bypassed and the actual distributed water flow rate is approximated by (7.14) with 

the assumption that the temperature difference ∆T in chilled supply and return water 

varies not significantly in the period. ,sup' pumM  is the actual water flow rate in the 

secondary phase; Mpum,rated represents pump rated water flow rate; and Q0 represents 

the cooling amount when rated chilled water flow is distributed.  

 
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M M
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    

      (7.12) 

,sup , /pum chi rated vpM N M Num                        (7.13) 

,sup ,sup

, , 0

' 'pum vp p pum pre

pum rated vp p pum rated

M Num C M T Q

M Num C M T Q

  
 
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              (7.14) 

The length of τAC,N is estimated as follows. Firstly, a first­order plus time­delay 

transfer function (7.15) is used to represent the supply air temperature descending 

process, where K, Г, ς are the process gain, time constant and time delay respectively. 

Since under different cooling load conditions, the time constant Г are different. 

Therefore, Equation (7.16) is derived based on the case study results to approximate 



 130 

the relationship between Г and the cooling load Qpre, where a0,N and a1,N are 

coefficients and can be identified using field data. The time delay ς is calculated as 

(7.17), where Lpipe is the pipe length and Λ is the cross area of the pipe. Then, the 

length of τ1 is given by (7.18), where ‘4’ is used because the settling time (±0.2℃ 

error) for a first­order system is approximately 4 times of the system time constant [K. 

Ogata. 1996]. 
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G s e

s


 

                          (7.15) 

1, 0,N N pre Na Q a                             (7.16) 
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
                           (7.17) 

, 4AC N N N                               (7.18) 

7.2. Validation Case Studies 

The reliability and accuracy of the strategy depends mainly on the reliability of 

the simplified building model and on the accuracy of calculating the air­conditioning 

system pre­cooling lead time τAC,N (the length of Phase I), building pre­cooling lead 

time τBld,N and JN (the energy consumption). Because the reliability of the simplified 

building model was studied in the references [Q. Zhou et al., 2009.] and [X.H. Xu. 

2005] separately, this paper focuses on validating the calculation accuracy of τAC,N, 

τBld,N and JN. Before these validations, the significance of selecting proper operating 

chiller number for pre­cooling was investigated. 
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7.2.1 Energy Consumption When Different Number of Chillers Operating 

Figure 7.4 presents the energy consumption in the pre­cooling period when the 

chiller operating number varies from 2 to 6 in the simulated building system. The case 

of only one chiller operating is omitted due to its incapability of cooling down the 

building to the desired condition. The Figure confirms that different number of 

operating chillers for pre­cooling results in different energy consumption in the 

pre­cooling period. If an inappropriate number of chillers is selected, a large amount 

of energy may be wasted. For instance, the energy consumed by two chillers on the 

22nd day was about as twice as that consumed by 4 chillers. The difference was 

mainly due to the significant difference in the length of the pre­cooling lead time. 

When two chillers were switched on for pre­cooling, the system took around 50 

minutes to cool down the building internal temperature to the desired level, while 4 

chillers took about 15 minutes.   
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Figure 7.4. Energy consumptions of 30 days in pre­cooling period when different 

number of chillers operate 
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7.2.2 Validation of Air Conditioning System Pre-cooling Lead Time 

The calculation of τAC,N by (7.18) is based on the assumption that the supply air 

temperature variation can be approximated by a first­order plus time delay model 

(7.15). The solid line in Figure 7.5 shows the supply air temperature variation when 

two chillers were used for pre­cooling. It can be observed that the first­order transfer 

function (i.e. dotted line) can well describe the supply air temperature descending 

process. This conclusion is also true when other numbers of chillers were used for 

pre­cooling.  
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Figure 7.5. The supply air temperature variation procedure: the dotted line 

obtained from the transfer function model (7.15) and the solid line obtained from the 

system response curve 

The data in the first week (obtained in the case study described in the previous 

section), including the cooling load and the values of Г, were use to identify the 

parameters in (7.18), i.e. a1 and a2, with the least square method. The identification 

results are listed in Table 7.1, which shows that the values of a1 and a2 were different 
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for different operating chiller numbers. In addition, the length and the cross area of 

the pipe for delivering the chilled water are 250m and 0.5m2 separately; and Mchl,rated 

is set to 0.345m3/s. The rest data obtained in the case study described in the section 

4.1 were used to validate the relationship function (7.18). Figure 7.6 shows the 

comparison of the values of τAC,N computed using (7.18) with those computed from 

the system response curves. The average relative errors were 13.6%, 7.7%, 5.20%, 

4.51% and 4.33% respectively when the number of operating chillers changed from 2 

to 6. A big error occurred when only two chillers were used. This is probably because 

the approximation (7.16) might not be accurate enough when the supply air 

temperature descending process has a significantly different time constant at different 

load condition.   
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Figure 7.6. Comparison of the length of air­conditioning system pre­cooling lead time  
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Figure 7.6 also shows that τAC,N decreases accordingly with the increase of the 

operating chiller number. There are drastic reductions in the time length when the 

operating chiller number was changed from two to three. However, this type of 

significant reductions was not observed when four or more chillers were used. The 

reason may be that since the building internal temperature is under feedback control, 

the more than necessary operating chillers are controlled to operate at low part load 

condition for solely ensuring the internal room temperature maintain at its set­point in 

the pre­cooling period. 

Table 7.1. The values assigned to the used parameters 

Nchiller  (Min.) 
1a  

0a  

1 6 ­­­­ ­­­­ 

2 3 1.3×10­3 ­15.00 

3 2 2.0×10­4 ­0.8607 

4 1.5 1.0×10­4 0.2781 

5 1.2 5.0×10­5 0.5884 

6 1 2.5×10­5 0.6682 

7.2.3 Validation of Building Pre-cooling Lead Time  

Figure 7.7 compares the values of τBld,N when they were computed from the 

simplified model (7.5) with those computed from the system response curves. The 

average relative errors were 14.5%, 4.58%, 3.20%, 2.93% and 2.31% respectively 

when the number of operating chillers changed from 2 to 6. It was also observed that 

the increase of chiller operating number from two to three was able to greatly reduce 

the pre­cooling lead time from 50 minutes to less than 25 minutes. However, further 
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increase of chiller operating number had less significant impact on the reduction in 

the pre­cooling lead time. This may due to the same reason explained in previous 

section. 
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Figure 7.7 Comparison of the length of the building pre­cooling lead time 

It should be noted that the building pre­cooling lead time should generally be no 

smaller than the air­conditioning system pre­cooling lead time. However, it was found 

in Figure 13 that in some days when there were two chillers used for pre­cooling, the 

building pre­cooling lead time was shorter than the air­conditioning system 

pre­cooling lead time. This is probably because the cooling provided by the operating 

chillers was not sufficiently enough. Therefore, it took a longer time to cool down the 

supply air to its set point than to cool down the zone indoor temperature to its set 

point.  
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7.2.4 Validation of Energy Consumption  

Table 7.2 lists the number of the components used in the simulated system and 

their rated power consumption. For calculating the energy consumption of chillers 

under partial load, n in (7.10) was selected to 2 which was able to well depict the 

relationship between COP and the partial load ration. The coefficients used in (7.10) 

were 
2 1 04.6; 7.32; 3.36c c c    .  

Table 7.2. The rated power of component and related total number in the chiller plant 

Component Rated Power (kW) Overall Number 

Supply Fan 6000 1 

Cooling Tower Fan 152 11 

Chiller Motor Size 1346 6 

Constant Speed Pump for Chilled Water 

Distribution 
110 6 

Constant Speed Pump for Cooling Water 

Distribution 
185 6 

Variable Speed Pump Motor Size 7980 1 

The energy consumption JN computed from (7.6) was compared with the actual 

energy consumption of the system, as shown in Figure 7.8. It can be seen that 

equation (7.5) can offer a satisfactory accuracy in the energy consumption prediction. 

The average relative errors were 7.08%, 5.51%, 6.94%, 8.18% and 8.76% 

respectively when the number of operating chillers changed from 2 to 6. Estimation 

deviations in the energy consumption were caused by the simplified approach for 

energy consumption computation as well as the deviation from the pre­cooling lead 

time estimation by the developed strategy.  
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Figure 7.8. Comparison of the energy consumption 

7.2.5 Validation of the Developed Optimal Start Control Strategy   

The optimal start control aims at finding the optimal operating chiller number 

and the associated pre­cooling lead time which lead to the least energy consumption 

in the pre­cooling period. Table 7.3 shows the optimal start schedules in a month 

(excluding the weekends) computed from the proposed strategy, and compares them 

with the ideal schedules which were obtained by repeatedly running the simulated 

system with different number of chillers for pre­cooling under the same weather 
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conditions. In the Table, Nopt, τopt and Jopt are the computed optimal chiller operating 

number, pre­cooling lead time and chiller plant energy consumption (i.e. the sum of 

the components energy consumption) from the developed strategy. '
optN , '

opt , '
optJ  are 

the corresponding ideal results.  

From the results shown in Table 7.3, only two days’ optimal chiller operating 

numbers computed from the strategy are different from the simulation result, i.e. 7th 

and 8th day. The computed pre­cooling lead time and related energy consumption are 

quite close to their ideal values. About 85% of the relative differences were smaller 

than 13%, which shows that in most cases, an acceptable accuracy of the developed 

strategy for choosing optimal start control can be achieved. 

Table 7.3. The optimal start control results comparison between the strategy and the 

simulation 

Proposed Strategy Ideal results Relative 

Difference 
Days 

optN  
opt  

(Min.) 

optJ  

(kWh) 

'
optN  

 

'
opt  

(Min.) 

'
optJ  

(kWh) 

'

'

opt opt

opt

 




 

(%) 

'

'

opt opt

opt

J J

J


 

(%) 

1 3 21 2531.6 3 19 2596.5 10.5 ­2.5 

2 3 17 2169.9 3 17 2091 0 3.7 

3 3 17 1989.1 3 16 1838.2 6.3 8.2 

4 2 16 1898 2 18 1653.5 ­11.1 14.8 

5 2 15 1752 2 17 1561.7 ­11.7 12.2 

6 4 19 3235.5 4 20 3671 ­5.0 ­11 

7 4 18 2804 3 21 3078 -14.3 -8.9 

8 4 18 2588.4 3 20 2797.7 -10 -7.5 

9 3 18 2350.7 3 18 2265.3 0 3.8 
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10 3 19 3350.7 3 18 3337.8 5.56 0.4 

11 2 12 1925 2 18 1636.8 ­33.3 17.7 

12 3 16 2040.4 3 16 1975.5 0 3.3 

13 2 18 1988 2 18 1774 0 12.1 

14 3 18 2169.9 3 17 2097.2 5.9 3.4 

15 3 18 2350.7 3 18 2358.2 0 ­0.3 

16 3 19 2364.7 3 18 2324 5.56 1.7 

17 3 20 2531.6 3 19 2578 5.26 ­1.8 

18 4 20 3235.5 4 20 3689.7 0 12.3 

19 3 20 2712.4 3 20 2934.7 0 ­7.5 

20 3 19 2350.7 3 18 2329 5.56 0.9 

21 2 15 1922 2 18 1672.5 ­16.7 14.9 

22 3 17 2364.5 3 18 2263.8 ­5.6 4.4 

23 3 18 2528.4 3 19 2603.2 ­5.3 ­2.9 

24 4 18 3019.8 4 19 3525.2 ­5.3 14.4 

25 3 20 2742.4 3 20 2780.8 0 ­1.4 

7.3. Application Issues 

The main steps for application of the model­based optimal start strategy are 

summarized as follows.  

1). Identify the simplified building model (3R2C). 

2). Measure the required weather data (i.e. global radiation Igloble, ambient 

temperature Tamb and relative humidity RHamb) at the moment one hour ahead 

of the occupancy. If the lead time is longer than one hour, the weather 

prediction module developed by Zhou et al [2009] can be used to predict 

weather condition in order to improve the accuracy of computing the cooling 
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load and the pre­cooling lead time. 

3). Compute the cooling load Qpre using the simplified building model according 

to the measured global radiation Igloble, ambient temperature Tamb and relative 

humidity RHamb. 

4). Specify the feasible set for operating chiller number. The minimum number 

Nmin is calculated by (7.1); the maximum number Nmax can be specified from 

the demand limiting strategy. If no special requirement in demand limiting, 

Nmax equals the total number of chillers Nc. 

5). Calculate the pre­cooling lead time ,Bld N  for each operating chiller number 

in the feasible set and the corresponding energy consumption. Note that in this 

step, the parameters 0, 1,,N Na a  for computing ,AC N  should be identified 

during commissioning. 

6). Select the optimal operating chiller number Nopt and the related building 

pre­cooling lead time opt  according to the energy consumption comparison. 

Note that no iterations are required in the proposed strategy, thus the 

computation burden of the model­based start strategy is not heavy. Due to the 

uncertainties associated with the simplified building model, the pre­cooling lead time 

should be little longer than the computed one in order to guarantee the building 

internal temperature can safely reach its set point before occupying. According to the 

case study, the uncertainty associated with the pre­cooling lead time is not larger than 

10% in most cases. Hence, the suggested pre­cooling lead time should be 10% longer 

than the computed one.   
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7.4. Summary 

This paper presented a model­based optimal start control strategy for 

multi­chiller plants in commercial buildings. A simplified building model has been 

used for predicting building cooling load, based on which the optimal operating 

chiller number and the related pre­cooling lead time can be identified. Case studies 

have showed that the operating chiller number plays an important role in energy 

efficiency during chiller pre­cooling period and the developed strategy considering 

the effects of both the recovery ability and the weather conditions can efficiently 

optimize the energy consumption during pre­cooling periods for multi­chiller plants. 

Also, the methods of computing the pre­cooling lead time and total energy 

consumption calculation used in the strategy is accurate and reliable. Therefore, the 

developed optimal start control strategy can offer advantages in practical application 

in multi­chiller plants in commercial buildings for energy saving. 
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CHAPTER 8 DEMAND LIMITING STRATEGY FOR 

MINIMIZING MONTHLY ELECTRICITY BILL 

 

The monthly peak demand limiting is of great significance in reducing the overall 

monthly electricity bill of commercial buildings. In this chapter, a new demand 

limiting strategy aiming to optimize the monthly cost saving is proposed. The new 

strategy is realized in two steps. The first one is to predict a suitable monthly demand 

threshold. In the second step, the extended pre­cooling duration will be computed 

based on the difference between the demand threshold and the predicted daily peak 

demand. The specific proportional­integral (PI) demand limiting algorithm is 

executed to restrain the daily peak demand under the given threshold by using the 

building thermal mass.  

In section 8.1, the necessity of suitable monthly peak demand threshold 

identification is discussed. Section 8.2 outlines of the proposed demand limiting 

strategy. The essential modules used in the demand limiting strategy are as well 

presented in this section. Section 8.3 conducts a comprehensive validation of the used 

modules and the whole demand limiting strategy. A brief summary is given in section 

8.4.  
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8.1 Necessity of a Suitable Monthly Peak Demand Threshold 

Identification 

 For optimizing the monthly cost savings, a monthly peak demand threshold is 

essential to eliminate the unnecessary daily peak demand reduction. Figure 8.1 is used 

to illustrate the unnecessary daily peak demand reduction when demand limiting 

strategy aiming to maximize the daily cost saving is performed.  

 Time 

1PD

NPD


monPD2PD

monPD
1monPD PD

 
Figure 8.1. Unnecessary daily peak demand reduction 

In the Figure, PD  represents the peak demand before the implementation of 

demand limiting strategy and PD is the value after its implementation. Subscripts 

1....N  indicate day index and monPD is short for monthly peak demand which is 

equivalent to the maximum value of daily peak ones, i.e. max( )mon iPD PD  . 

Symbol PD means the reduction of peak demand. Shown as Figure 8.1, the demand 

limiting strategy for maximizing daily cost saving will not reach an optimal result for 

the monthly electricity cost reduction due to the generated unnecessary daily demand 

reduction. For example, the demand reduction parts 1monPD PD  in day one 
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and NPD  in the thN  day are useless in reducing the monthly peak demand simply 

because they are above the new monthly peak demand monPD . Much worse, these 

useless demand reduction parts consume extra energy and cause further rise of related 

energy cost. Obviously, the elimination of these unnecessary daily peak demand 

reduction helps optimize the monthly electricity cost saving. It can be accomplished 

by identifying a monthly peak demand threshold ThresPD . The identified threshold only 

requires the days with daily peak demand larger than the threshold to implement a 

demand   limiting control for removing the exceeding demand part. For other days 

with peak demand smaller than the threshold, there is no need of such control action.  

The threshold also needs to be assigned a suitable value. Otherwise, only 

limited/none monthly cost saving can be reached. If an inappropriately high threshold 

is used, the limited demand cost reduction obtained results in limited overall monthly 

cost reduction. In contrast, the demand cost reduction may be completely 

compromised by the related energy rise cost part if an inappropriately low threshold is 

adopted. It should be mentioned that occupants’ thermal comfort could also be 

severely sacrificed in the low threshold case. The main reason is the low threshold 

may require switching off several operating chillers which causes insufficient cooling 

supplied.  Figure 8.2 is used to show the monthly peak demand and overall energy 

costs vary with the threshold. The suitable peak demand threshold ,Thres optPD  leads to 

the minimal total monthly electricity bill which is the sum of peak demand cost and 

energy cost. 
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Figure 8.2. Peak demand and energy cost variation with the threshold 

The saving of the total monthly electricity cost can be established as follows. 

1

ˆˆ
N

tot mon i
i

CS PD E 


                     (8.1)  

where totCS  is the overall cost saving (HKD) after a demand limiting strategy 

implemented; ,   are the unit prices for electrical demand and energy separately; 

monPD  is the monthly peak demand reduction (kVA); and iE  is the ith day energy 

rise for reducing the daily peak demand  iPD   by iPD after the implementation of 

demand limiting strategy. 

 

The relationship between daily peak demand reduction iPD and related energy 

rise iE  is described as  

( ); 0

0; 0
i i mon

i

i

f PD PD PD
E

PD

    
  

 
       (8.2) 

 

where ( )f   represents a non­negative function.  
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The optimal monthly peak demand reduction ,mon optPD , which maximizes the 

monthly cost saving totCS , is determined after the ( )f  function identified. With 

,mon optPD  known, suitable threshold ,Thres optPD is calculated as below. 


, ,monThres opt mon optPD PD PD             (8.3) 

8.2. Outline of the Control Strategy 

The basic idea of the proposed strategy is shown as Figure 8.3. Five different 

modules are used in this strategy. The monthly peak demand prediction module 

(Module I) and the optimal demand reduction prediction module (Module II) are used 

to compute the suitable monthly peak demand threshold ,Thres optPD . In Module I, the 

monthly peak demand value ,mon prePD  is predicted based on the similarities of same 

month peak demand in different years. Module II is used to estimate the optimal 

monthly peak demand reduction ,mon optPD  based on the electricity price structure 

and the identified function (8.2). The daily power profile P is predicted using Module 

III in cooperation with the predicted hourly cooling load and estimated central chilling 

system overall coefficient of performance (COP). With ,Thres optPD  and P known, the 

amount of the daily peak demand reduction is determined. The pre­cooling lead time 

will be estimated based on the determined reduction amount in Module IV. Module V, 

i.e. PI demand limiting algorithm, is a specific control approach to realize limiting the 

daily peak demand under the identified threshold ,Thres optPD  via varying the indoor 

room temperature set­points. The details of the essential modules will be described in 

the following sections. 
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,Thres optPD
P

max , ?Thres optP PD



,room setT

' '
,, room setT

,mon prePD

,mon optPD
 

Figure 8.3 Basic idea of the developed demand limiting strategy 

8.2.1 Module I for Monthly Peak Demand Prediction  

The module is used to predict the monthly peak demand 
,mon prePD based on the 

peak demand similarity of the same month in different years. The recorded data of the 

same months in previous years are used to compute the peak demand of current month, 

shown as (8.4).   

[ ] [ ]
, ,

1

n
j j

mon pre k prv k
k

PD a PD


 
       (8.4) 

Where 
,prv kPD  is the monthly peak demand of previous thk year; 

ka  is the related 

weighted factor which can be identified by least square method using history data; 

and superscript j represents the month index. 

8.2.2 Module II for Optimal Monthly Demand Reduction Prediction 

This module aimed to estimate the optimal monthly demand reduction 

,mon optPD  that maximizes the monthly cost savings
totCS . As shown in (8.1), 

,mon optPD can be identified after the specific electricity price structure and the 

relationship between the daily energy rise 
iE  and the daily peak demand 
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reduction
iPD  are identified. The electricity price used in this study is from power 

company CLP and the details are presented in section 8.2.4.  

 

A multinomial function is adopted to describe the relationship between 
iE  

and
iPD , shown as (8.5). 

1

0

( )
m

j
i j i

j

E b PD




   
               (8.5) 

where the coefficients 
jb  can be identified using least square method with historic 

data.   

 

Substitute (8.5) to (8.1), and the following equation is established. 

1

1 0 1

( ) ; ( )
N m N

j
tot mon j i mon i mon

i j i

CS PD b PD PD PD N PD 


  

            
  (8.6) 

Considering the constraint, (8.6) is reformed into  

, ,[ , ]tot tot lower tot upperCS CS CS         (8.7) 
where        1

,
0

1

,
0

( )

CS ( )

m
j

tot lower mon j mon
j

m
j

tot upper mon j mon
j

CS PD N b PD

PD b PD

 

 









      

     









 

The monthly peak demand reduction 
,mon optPD  is therefore located in the range 

as follows. 

, , ,[ , ]mon opt mon lower mon upperPD PD PD         (8.8) 
where 

, ,,mon lower mon upperPD PD   are the values that maximize the cost saving 

,Stotal lowerC and 
,CStotal upper

separately and they are obtained by solving the following 

equations. 

,, ( )( )
0; 0

( ) ( )
tot uppertot lower

mon mon

d CSd CS

d PD d PD
 

 

        (8.9) 
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8.2.3 Module III for Hourly Power Profile Prediction  

In the overall power profile prediction, the hourly cooling load prediction Qpre of 

next day is firstly yielded. For calculating the related power consumption, a simplified 

approach for computing the central chilling system overall coefficient of performance 

(COP) is proposed. With the Qpre and COPsys known, the power consumption Ppre is 

computed as follow.  

pre
pre

sys

Q
P

COP


           (8.10) 

                       
I) Model-based Cooling Load Prediction 

Hourly cooling load is predicted using a weather prediction model and a 

simplified building model. The weather prediction module, developed by Zhou et al. 

[2009], is used to predict the hourly weather data (including the solar radiation Iglobal, 

outdoor air temperature Tamb and relative humidity RHamb) of the coming day 

cooperating with the daily weather forecast from the local observatory. After the 

weather data are predicted, the simplified building model developed by Wang and Xu 

[2006] is used to estimate the building cooling load. Due to the fact that the used 

simplified building model has been introduced in previous chapter, this section mainly 

presents the weather prediction module.  

The weather prediction module outputs the hourly predicted solar radiation 

Iglobal,k, outdoor air temperature Tamb,k and relative humidity RHamb,k predictions, where 

k indicates kth hour. Note that k varies from 1,, 24.  
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The solar radiation hourly prediction Iglobal,k is calculated by (8.11), where b1, b2 

and b3 are the coefficients, which can be obtained using the recursive least square 

algorithm [Q. Zhou et al., 2009]; Tmax and Tmin are the daily maximum and minimum 

temperatures respectively which are usually available in the weather forecast from a 

local observatory; and Tamb,k is the predicted ambient temperature. I0 is daily 

extraterrestrial solar radiation constant for a particular region shown as (8.12), in 

which D is the day index number in a year; Iconst is a solar constant (1370Wm­2); and 

Cm is the average cloud coverage of the coming day based on the cloud amount 

forecasted.  

, min
, 0 1 2 3

max min

( 1 )
8

amb k m
glabal k

T T C
I I b b b

T T


    



       (8.11) 

0 [1 0.033 cos(2 )]
365

const

D
I I     

        (8.12) 

The outdoor air temperature (or relative humidity) at the kth hour in the coming 

day, i.e. Tamb,k (or RHamb,k), is predicted based on the measured temperature (humidity) 

at the same hour in the last several days. Usually previous five­day measured data are 

used. Since the prediction of Tamb,k and RHamb,k follows the same procedure, x is used 

to denote Tamb or RHamb in the following description.  

Assume previous five­day measurements of x  at the kth hour are denoted as 

[ 4] [0]
k kx x ， ，  where the superscript [i] denotes the previous (­i)th day and i = 0 is the 

current day. Then, define [ ]j
kX  as (8.13). The newly generated data 

sequence [ 4] [0], ,k kX X  , is approximated by an exponential function, shown as (8.14), 

where the empirical constants d1,k and d2,k can be determined by the least square 
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regression [Q. Zhou et al., 2009]. Equation (8.14) describes a first­order grey dynamic 

model (GM) proposed by Deng [1989]. The predicted value of X at the kth hour of the 

coming day, denoted as 
kX   is given by (8.15), and correspondingly the predicted 

value of x is calculated by (8.16). The empirical constants d1,k and d2,k is updated 

every day in order to reduce approximation errors.  

[ ] [ ]

4

j
j i

k k
i

X x


 
            (8.13) 

 1, 4[ ] [ 4] 2, 2,

1, 1,

[ ] kd jj k k
k k

k k

d d
X X e

d d

   
             (8.14) 

1,5[ 4] 2, 2,

1, 1,

[ ] kdk k
k k

k k

d d
X X e

d d
   

               (8.15) 

[0]
k k kx X X              (8.16) 

The study in [Q. Zhou et al., 2009] shows that the prediction accuracy of 
kx  

can be improved by the calibration (8.17), where xk is the calibrated value of 
kx ; the 

variable xavg is defined as (8.18); h and l are the scale factors, defined by (8.19). In 

Equation (8.18), xmin and xmax are the forecasted maximum and minimum value of x 

from the observatory; and 
minx  and 

maxx  in (8.19) are the minimum and maximum 

in the predicted sequence
kx , k =1,…, 24.  

,
ˆ

,

avg h k avg k avg

k

avg l avg k k avg

x x x When x x
x

x x x When x x





      
 

     

         (8.17) 

 
min max

2
avg

x x
x




                       (8.18) 

max min

max min

;
avg avg

h l
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x x x x

x x x x
 

 
 

 

                   (8.19) 
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II) Central chilling system overall Coefficient of Performance 

The overall COP is calculated by (8.20), where PLR is the part load ratio 

calculated by the central chilling system supplied cooling Qsup and its rated cooling 

capacity Qrated, i.e. 
supPLR Q / ratedQ . The supplied cooling is equal to the predicted 

cooling load, thus PLR /pre ratedQ Q . c0,…,cn are the coefficients that can be 

identified with historic recorded data. 

1 0...n
nCOP c PLR c PLR c                   (8.20) 

8.2.4 Module IV for Pre-cooling Duration Estimation 

This module aimed to estimate the extended pre­cooling duration 
i
 based on 

the required daily peak demand reduction
iPD  . The larger demand reduction 

iPD  

need more cooling stored in advance and therefore a lengthier pre­cooling
i
.  

 

A polynomial function is employed to depict the relationship between
i
  and

iKVA , 

shown as (8.21). 

1

0

ˆ ( )
m

j
i j i

j

e PD




  
                    (8.21) 

where the coefficients ˆ
je  can be identified using least square regression algorithm 

with the trial data obtained in the commissioning..  

8.2.5 Module V for Limiting Daily Peak Demand 

The idea of the PI demand limiting algorithm for reducing the daily peak demand 

is shown as Figure 8.4. 
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Figure 8.4. The schematics of PI demand limiting algorithm  

In this algorithm, the PI controller is used to maintain the overall power 

consumption of the chiller plant totP  at its set­point Pset by adjusting the room 

temperature set­point in a limited range, e.g. [22.5℃, 25.5℃]. With considering the 

control deviation, the Pset is calculated as .
ˆ

set Thres optP PD   .  ̂  represents the 

control deviation. The output of the PI controller is the variation of room temperature 

set­point k
room,setT . Superscript k represents the instant time interval. The variation is 

used to generate the current room temperature set­point with the previous set­point, i.e. 

k k­1 k
room,set room,set room,setT T T   .  

Through adjusting the room temperature set­point, the cooling stored in the 

extended pre­cooling can be released to lower down the instant cooling demand. The 

reduced load demand subsequently lowers down the overall power consumption. The 

detailed process is as follows. As the overall power is increasing, the room 

temperature set­point will be raised up which decrease the system power consumption 

due to the reduction of instant cooling demand. Meanwhile, the stored cooling will be 

released to satisfy the part of reduced instant cooling demand which further reduces 

the required amount of mechanical cooling from central chilling system. The room 

temperature will stop rising until the reduced power reaches its set­point Pset. In 
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contrast, as the overall power is decreasing, the room temperature set­point will be 

lowered down which increases the system power consumption due to the increased 

cooling load demand. The room temperature set­point will stop falling as the 

increased power reaches the demand set­point. Meanwhile, the reduced room 

temperature set­point will lower down the temperature of building thermal mass 

including building envelopes and indoor furniture. In this case, the building thermal 

mass is charged again and certain amount of cooling is stored compared with the case 

when a higher room temperature maintained. The restored cooling is helpful to lower 

down the rising power in the following period. To sum up, the overall power 

consumption is controlled to be maintained at a constant set­point by adjusting the 

room temperature set­point in which the cooling stored in building thermal mass will 

be released as overall power increases and the building thermal mass will be charged 

as overall power lower decrease. Note that the amount of the cooling stored in 

off­peak period has a significant impact on the amount of daily peak demand 

reduction. More cooling stored, more daily peak demand reduction can be achieved.  

Since the room temperature set­point is only allowed to be varied in a limited 

range mainly due to the consideration of the indoor thermal comfort, the amount of 

daily peak demand reduction is as well limited. Therefore a suitable value should be 

assigned to Pset which should be reachable and guarantee an acceptable indoor 

thermal comfort. The parameters for PI controller can be obtained in the 

commissioning period. 
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8.3. Validation Case Studies 

The proposed optimal start control strategy was validated using the dynamic 

simulation platform built in chapter 3. The Validation of PI demand limiting algorithm 

is firstly performed in section 8.3.1. The validation of the whole developed strategy as 

well as other modules was conducted in the following sections. 

8.3.1 Validation of Module V for Limiting Daily Peak Demand  

The PI demand limiting algorithm is used to maintain the overall power 

consumption at its peak demand set­point Pset by adjusting the room temperature 

set­point. For testing its performance, the comparison has been made between the 

three days in July with PI demand control implementations and the same days without 

them. In this study, the results from the days without demand limiting controls were 

taken as baselines. More specifically, the base case was the room temperature 

set­point was fixed at 24℃ in occupation period and  the pre­cooling time was set to 

0.5hr which was adequate to cool down the indoor room temperature to a desired 

level, e.g. 24 ℃.  In the PI demand limiting control, the proportional and integral 

parameters were assigned values P=0.007 and I=2 minute. The room temperature of 

occupation period was allowed to vary in the range [22.5℃, 25.5℃] for restraining 

the overall power consumption. The pre­cooling period varied from 1 hr to 9 hrs and 

the temperature set­point in these extended pre­cooing periods was set to be 22.5℃.    

For assuring the equivalent indoor thermal comfort, the predicted mean vote (PMV) 

module in the multi­zone building model [TRNSYS, 2004] was adopted to evaluate 
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the thermal comfort difference after the PI demand control was implemented. The 

PMV module fully considered the influential factors including temperature, air 

velocity, clothing level, occupant metabolic rate, and etc.  A pre­defined result range 

from PMV module, i.e. [­0.8, 0.8], indicated an acceptable indoor thermal comfort. A 

trial and error method was employed to search for the proper Pset. If the accumulated 

time of PMV result exceeding the defined range was larger than that in the base case, 

the set­point Pset for the PI control would be raised up until finally it was nearly the 

same as that in the base case.  Table 8.1 presented the acquired data. 
Table 8.1. Data obtained using trial and error method 

No. Pre­coo
­ling 
Time 
(hr) 

Control 
type 

Pset (kW)    Ei  
(105 kW) 

   PDi 
(104 kVA) 

ΔEi 
(104 kWh) 

ΔPDi 

(103 kVA) 

Accum 
­ulated 
time 
(min.) 
(PMV<­0.
8) 

Accum 
­ulated 
time 
(min.) 
(PMV>0.8
) 

9 PI 11500 1.5951 1.2113  2.82 3.09 1 5 

6 PI 12400 1.5312 1.2993 2.18 2.21 0 5 

3 PI 13200 1.4603 1.3783 1.47 1.42 0 4 

Day 

1 

0.5 Base 

Case 

N/A 1.3132 1.5203 0 0 0 5 

8 PI 11400 1.5240 1.2003 2.61 2.80 0 6 

5 PI 12300 1.4603 1.2892 1.97 1.91 0 6 

2 PI 13000 1.3827 1.3575 1.20 1.23 0 3 

Day 

2 

0.5 Base 

Case 

N/A 1.2632 1.4803 0 0 0 5 

7 PI 10800 1.4407 1.1403 2.11 2.80 0 6 

4 PI 11900 1.3967 1.2493 1.67 1.71 0 6 

1 PI 12500 1.3144 1.3063 
0.847 1.14 

0 5 

Day  

3 

0.5 Base 

Case 

N/A 1.2297 1.4203 0 0 0 5 

It should be noted that the actual daily peak demands after the demand control 

implementation still had certain differences from their set­points Pset. For instance, the 

9 hours pre­cooling in the day one finally reduced the daily peak demand from 15951 

kVA in base case to12113 kVA which had about a 600 kVA deviation from its 



 157 

set­point 11500 kVA. It is mainly caused by the parameters configuration in the PI 

control. Inappropriate settings may result in poor control accuracy and reliability.  

The detailed comparison results of the first day between 9 hours pre­cooling PI 

demand control and the related base case in terms of indoor room temperature
roomT , 

system power consumption 
sysP  and PMV results were presented in the following 

Figure. 
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Figure 8.5. Comparisons between the PI demand control and the base case 

It is observed that the PI demand control can effectively lower down the daily 

peak demand to a desired level without great change in indoor thermal comfort as 

they are compared with those from the base case. 
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8.3.2 Validation of Module IV for Pre-cooling Duration Estimation 

Based on the data in Table 8.1, the coefficients in (8.21) were identified, shown as 

(8.22). The relationship between pre­cooling time and the demand reduction can be 

described well by the established linear equation with an R square value 0.97.  

 0.0037 2.5222i iPD            (8.22) 
where   represents the pre­cooling duration. 

For further validating the proposed linear relationship in (8.22), more data of 

different days had been yielded using the same trial and error method adopted for 

generating the data in Table 8.1. The results calculated from (8.22) were of good 

accuracy in estimating the related pre­cooling duration 
i
 based on the required 

demand reduction
iPD , shown as Figure 8.6. More than 85% of the estimated 

pre­cooling durations had less than 15% relative errors compared with the actual 

values.   
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Figure 8.6. Comparison between the actual pre­cooling duration and the estimated 

ones 
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8.3.3 Validation of Module I for Monthly Peak Demand Prediction  

For validating the proposed monthly peak demand prediction module, 22 years 

operating data of the chilling system overall power consumption has been generated 

using the test platform introduced in Section 3. The first three years data were used to 

identify the coefficients in Equation (8.7) and the rest were used for validating the 

module by comparing them with the calculated result from (8.7). The parameters were 

identified as a1=1.3668, a2=­0.3536. Figure 8.7 is the validation results using the 

identified coefficients. More than 92% of the data were located in the relative error 

range [­15%, 15%] which indicated an acceptable accuracy of the predicted results.  
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Figure 8.7. Comparison between actual monthly peak demands and the predicted ones 
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8.3.4 Validation of Module II for Optimal Monthly Demand Reduction 

Estimation 

a) Identification of Unit Price for Electrical Demand and Energy 

The electricity price structure from CLP is depicted in Table 8.2. There are four 

different tariff types for the end­users in total. Each of them, except the first one, is 

mainly comprised of two items. One is the cost for the monthly peak demand; and the 

other is the cost for the overall energy consumption in a whole month. In addition, the 

prices for the on­peak and off­peak periods are different. The on­peak prices are much 

higher than those of off­peak, which is in attempt to encourage part of the on­peak 

load to be shifted into off­peak period. 

Table 8.2. Electricity price structure from CLP 

Composing    Items 

Demand Part (HKD/kVA) Energy Consumption Part (Cent/kWh) 

Tariff Type 

 

On­peak Period Off­peak Period On­peak Period  Off­peak Period 

96.3(First 5000 kWh) General Service 

Tariff 

0.0 0.0 

95.3(Exceeding part) 

66.5(First 650) 0.0(Less than the 

on­peak peak) 

68.9(First 200,000) Bulk Tariff 

(monthly no less 

than 20,000 

kWh) 

63.5(Exceeding 

part) 

26.0(Lager than 

the on­peak peak ) 

67.4(Exceeding part) 

61.4 

117.0(First 5000) 0.0(Less than the 

on­peak peak) 

52.4(First 200kWh/kVA) Large Power 

Tariff (monthly 

no less than 3000 

kVA) 

112.0(Exceeding 

part) 

33.0(Lager than 

the on­peak peak ) 

50.4(Exceeding part) 

42.9 

66.5(First 650) 0.0(Less than the 

on­peak peak) 

68.9(First 200,000) Ice­storage 

Air­conditioning 

Tariff 63.5(Exceeding 

part) 

26.0(Lager than 

the on­peak peak ) 

67.4(Exceeding part) 

61.4 

The on­peak period in CLP refers to the time span from 9:00 a.m. to 9:00 p.m. of 
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normal workday and the rest as well as the public holiday is the off­peak period. The 

different end­users are qualified to take diverse tariffs according to the requirements. 

For instance, the buildings with monthly peak demand larger than 3000kVA can take 

the third tariff (i.e. large power tariff) which may charge less in the electricity bill than 

the first two tariffs. If the buildings equipped with the ice or chilled water­storage 

storage system, they are eligible to take the last tariff which appears more favorable in 

the monthly peak demand charge compared with that of the large power tariff.  

For developing the demand limiting strategy, the third tariff (i.e. the large power 

tariff) is selected. In this case, the price for the first on­peak 5000 kVA is 117 

HKD/kVA; and the demand part exceeding 5000 KVA in the on­peak period will be 

charged 112 HKD/kVA. If the monthly peak demand in the off­peak period is larger 

than the monthly on­peak peak demand, extra cost will be charged for the exceeding 

part, i.e. 33 HKD/kVA. For the energy consumption cost, it is also divided into two 

parts, i.e. on­peak part and off­peak part. The load of the first 200 kWh/kVA in the 

on­peak period charges 52.4 Cent/kWh and the exceeding part charges 50.4 Cent/kWh. 

All the energy consumed in the off­peak period will be charged at a constant price, i.e. 

42.9 Cent/kWh. The tariff is described as (8.23). 

The off­peak load does not need to take into calculation in this study because the 

number of operating chillers in off­peak period is always much less than that in 

on­peak period, which makes the off­peak peak demand smaller than the on­peak one. 

Thus, (8.24) is used for calculating the actual monthly bill. 
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, , ,

, , , ,

5000 117 ( 5000) 112 ( ) 33
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mon mon on mon off mon on

Demand Cost

mon on mon on mon on mon off

Energy Cost

C PD PD PD

PD E PD E
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 (8.23) 
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200 0.524 ( 200 ) 0.504 0.429
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Demand Cost

mon on mon on mon on mon off

Energy Cost

C PD

PD E PD E
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



  (8.24) 

where 
monC  represents the total monthly electricity bill; and

,mon onE , 
,mon offE  are the 

monthly overall energy consumptions in the on­peak and off­peak periods 

respectively.  

A simplification can be made for the bill calculation if we ignore the slight price 

difference between the first limited part and the exceeding part, e.g. the unit demand 

price for the first 5000 kVA is 117 HKD and the part in excess is charged 112 

HKD/kVA. Such simplification will not affect the final monthly bill comparison 

results between the one with developed limiting strategy implementation and that of 

the base case. The bill difference is mainly from the tradeoff between reduced peak 

demand cost and increased energy cost as they take the same simplified price structure. 

Therefore, the parameters ˆˆ ,   are assigned the values as follows. 

ˆˆ 112; 0.504              (8.25)  

b) Identification and Validation of the Relationship between Energy Rise and Demand 

Reduction 

After the parameters ̂ and ̂  identified, the relationship between the daily 
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energy rise iE and the daily peak demand reduction iPD  need to be determined for 

the optimal monthly peak demand reduction ,mon optPD prediction. The data from 

Table 8.1 can also be used for identifying the coefficients in (8.5). Based on the data, 

a linear equation is established with a 0.90 R square value in description of the 

relationship between energy rise and related demand reduction, shown as (8.26).  

8.35 1764.2i iE PD                      (8.26) 
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Figure 8.8. Comparison between actual daily energy consumptions and the estimated 

ones 

For validating the developed relationship, the generated data employing trial and 

error method in previous section 8.3.1 were used. The comparison results showed that 

(8.26) was capable of obtaining an estimated energy rise with acceptable accuracy. 

More than 85% of the energy rise estimations located in the relative error range [­20%, 

20%], shown in Figure 8.8. 
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c) Identification of Optimal Monthly Demand Reduction 

Substitute (8.25) and (8.26) to (8.7), the following equation is established. 

[2.6 23119,107.8 889.2]tot mon monCS PD PD                 (8.27) 

Since ( )
( )

tot

mon

d CS
d PD

 is in the range [2.6, 107] which indicates the linear 

function totCS  is monotonic increase, the optimal monthly demand reduction 

,mon optPD  should be assigned the largest value. As equation (8.22) shown, the 

maximum peak demand reduction can be obtained as the longest pre­cooling duration 

taken. In the study, 9 hour was set as the upper limit of the pre­cooling duration. Thus, 

optimal monthly demand reduction is , 3114.1mon optPD kVA  . 

8.3.5 Validation of Module III for Hourly Power Profile Prediction  

The model­based cooling load prediction algorithm had already been validated by 

Zhou and Wang in [2009]. Hence, the coefficients identification of equation (8.20) 

and the related validation were of major concern in this section. One week simulation 

data had been adopted for identifying the coefficients using least square regression 

method. The other three weeks data were used for the related validation.  

It was found that a quadratic function was able to well depict the relationship 

between part load ratio PLR and the central chiller system overall COP. The identified 

coefficients in (8.20) are shown as 2 1 04.2417, 5.8675, 0.1199c c c    . 

The comparison results between the calculated system overall COP using (8.20) 
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and the actual ones are shown in Figure 8.9. More than 95% of the data were located 

in the relative error range [­10%, 10%] which indicated a good accuracy of the 

calculated COP results. 

 

0 1 2
0

1

2

Calculated System COP Using Eqn. (23)

A
c
tu

a
l 

S
y
s

te
m

 C
O

P

-10%

10%

 

Figure 8.9. Comparison between the actual system COPs and the calculated ones 

8.3.6 Validation of the Demand Limiting Strategy  

As the estimated optimal monthly demand reduction ,mon optPD and monthly peak 

demand prediction PDmon,pre known, the demand limiting threshold PDThres,opt is 

obtained using (8.3). With the predicted daily peak demand PDi from module III, the 

difference between PDi and PDThres,opt will determine the implementation of module 

IV and V. If they were needed for a particular day, the estimation of the pre­cooling 

duration i is attained from module IV and the varying room temperature set­point 
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Troom,set in the occupation period is outputted from the module 5, i.e. PI demand 

limiting algorithm. Meanwhile, the indoor thermal comfort is successively evaluated 

by the PMV model.  

Table 8.3. Variable values used in the case study 

Variables Values (104kVA) 

PDmon,pre 1.605 

∆PDmon,opt 0.3114 

PDThres,opt 1.294 

̂  ­0.06 

Pset 1.234 

For validating the entire developed strategy in terms of monthly cost savings, 

simulations of three continuous months (i.e. July, August and September) had been 

conducted. Firstly, the results from the base case with constant 24℃  room 

temperature set­point were obtained and set as baselines. Secondly, the proposed 

demand limiting strategy was implemented and the obtained monthly electricity bill 

and PMV results were compared with those in base case. The comparison results from 

these three months were similar to each other and the comparison results from August 

were selected as an example to show the effectiveness of the developed strategy. The 

estimated values from the individual module used in this study were shown as Table 

8.3.  

The comparison results are shown as the first two cases in table 8.4. The total 
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monthly cost saving with proposed demand limiting strategy implementation achieved 

8.51% compared with that from base case.  The cost saving was the tradeoff result 

between energy cost rise and peak demand reduction. The energy cost increased by 

5.0048*104 HKD because of the extended pre­cooling implementations and the 

demand cost decreased by 2.9792*105 HKD after the implementation of the 

developed demand limiting strategy. With further test whether the maximum monthly 

cost saving had been achieved, the Pset was manipulated to be varied in a large rang, 

shown as case 3 to case 11. It is observed that with the decrease of the Pset, the relative 

percentage of monthly cost saving accordingly increased compared with that in base 

case. However, the occupants’ thermal comfort may be sacrificed if an extremely low 

Pset was taken (e.g. Pset=10500 in case 3). The accumulated time of PMV in excess of 

0.8 in case 3 was much larger than that in base case. The case 5 with Pset equaled 

11500 actually achieved the largest cost saving (i.e. 10.45% or 3.05*105 HKD) with 

similar indoor thermal comfort to that in base case. The developed strategy did not 

achieve such account cost saving mainly because of the setting of the monthly peak 

demand set­point Pset. Thus, a suitable Pset is greatly important for maximizing the 

monthly cost saving and guaranteeing the acceptable indoor thermal comfort.  If it 

was set excessively large, limited cost saving was achieved, see case 11. In the 

opposite, if it was set excessively small, the occupants’ thermal comfort was 

sacrificed greatly, see case 3. 
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Table 8.4. Comparisons between results from base case and those from proposed 

demand limiting control with different Pset 

Case Control 

Type 

Pset 

(kW) 

Emon  

(10
6
 

kWh) 

PDmon 

(10
4
 

kVA) 

CSE 

 

(10
4
HKD

) 

CSPD  

(10
5
HKD

) 

CStot (%) Accumulate

d Time 

(min.)(PMV

<-0.8) 

Accumulated 

Time 

(min.)(PMV>

0.8) 

1 Base 

Case 

N/A 2.5558 1.5529 0 0 0 0 5 

2 PI 12340 2.6747 1.2983 ­5.005 2.9792 8.51 0 6 

3 PI  10500 2.8181 1.1497 ­11. 15 4.7169 12.36 1 35 

4 PI  11000 2.7646 1.1759 ­8.8613 4.4111 12.1 1 24 

5 PI 11500 2.7568 1.2196 ­8.5305 3.8996 10.45 1 5 

6 PI 12000 2.7382 1.2641 ­7.7309 3.3785 8.94 0 5 

7 PI 12500 2.6726 1.3123 ­4.9147 2.8151 7.97 0 6 

8 PI 13000 2.6589 1.3621 ­4.3307 2.2325 6.17 0 4 

9 PI 13500 2.6124 1.4221 ­2.3344 1.5298 4.45 0 2 

10 PI 14000 2.5723 1.4844 ­6.1502 8.0192 2.54 0 0 

11 PI 14500 2.5843 1.5020 ­1.1272 5.9517 1.66 0 0 

8.4. Summary 

This paper presented a demand limiting control strategy for optimizing the 

monthly cost savings of commercial buildings with acceptable indoor thermal comfort.  

A suitable demand threshold for demand limiting is firstly calculated based on the 

predicted monthly peak demand and the estimated optimal monthly demand reduction. 

For restraining the daily peak demand under the threshold, a specific PI demand 

limiting algorithm is proposed. Case studies have proved that  

(i). The developed demand limiting strategy can save up to 8.5% of the total 

monthly cost by adjusting the indoor room temperature set­points. Meanwhile, 
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the indoor thermal comfort had not been compromised comparing it with that in 

the base case.  

(ii). The monthly peak demand prediction module is capable of obtaining a result 

with acceptable accuracy based on the historic data. 

(iii). The results from the established linear relationship between the pre­cooling 

duration and daily demand reduction (i.e. Equation (8.19)) are of satisfactory 

accuracy. So is the linear relationship between daily energy rise and daily 

demand reduction (i.e. Equation (8.23)). 

(iv). The identified quadratic relationship between system overall COP and the part 

load ratios can well depict the actual situations. 

(v). The PI demand control algorithm is capable of lowering down the daily peak 

demand if a suitable demand set­point used.  

Therefore, the developed demand limiting strategy can result in considerable 

amount of monthly cost savings and guarantee acceptable indoor thermal comfort 

meanwhile. It is suitable for the practical application for reducing the monthly electric 

bill. 
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CHAPTER 9 IN-SITU IMPLEMENTATIONS OF THE 

ONLINE CONTROL STRATEGIES 

 

This chapter presents the in­situ implementation of the online control strategies 

developed in previous chapters for the optimal control of the multiple­chiller system. 

The developed optimal control strategies are compiled into related software packages 

and they are executed on a management and communication platform based on 

intelligent building integration and management system (IBmanager). The 

optimization results from these packages are used to enhance control robustness and 

energy efficiency. Section 9.1 addresses the implementation architecture of the 

developed software packages. In section 9.2, the basis of the management and 

communication platform, i.e. IBmanager, is firstly introduced. Secondly, the main 

functions and interfaces of the developed platform are addressed.  A summary of this 

chapter is provided in Section 9.3. 

9.1 Implementation Architectures of the Developed Control Software 

Packages 

The online control software packages of optimal control strategies were 

programmed using the application program of Matlab. All optimal control strategies 

(i.e., control functions) in the same package were programmed as subroutines, and 

were compiled as DLL modules which are convenient for the implementations in 
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IBmanager. In these online control packages, the practical constraints, such as 

minimum up/down time for the chiller sequencing control, have been taken into 

consideration. The in­situ implementation architecture of the online control software 

packages is shown in Figure 9.1. The packages developed in this thesis are executed 

in a dedicated PC station interfaced with the main station of the chiller plant control 

system. The interface or protocol for the communications between control software 

packages and the main station is provided by the contractors. It should be mentioned 

that the executions of these standalone control software packages are in parallel with 

the executions of control strategies provided by the HVAC&BMS contractors. 
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Figure 9.1 In­situ implementation architectures of online control software 

packages. 
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A decision supervisor in the chiller control system is designed for the operators to 

set whether the settings given by the online control software packages developed are 

used or not. For instance, when the chiller sequencing control is of concern, the 

related control software packages will provide the optimized operating number of 

chillers and the decision supervisor will determine to use it or not. This 

implementation approach provides conveniences in further improving the 

performances of optimal control strategies developed in this thesis by offering 

adequate update space and freedom. 
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Figure 9.2 Interface between the management and communication platform and 

the ATC system. 

The interface used for the interoperation of the management and communication 

platform based on IBmanger and ATC (Automatic Temperature Control) system is 

shown in Figure 9.2. It was developed based on a trial version of the BACnet SDK 
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(Software Development Kit) since the network of the BMS system was based on the 

BACnet protocol. IBmanager can read the system operation data through a NAE 

linked with local controllers, and BA outstations linked with sensors, actuators, etc. 

Meanwhile, IBmanager can send the optimized control settings to the ATC systems 

through the NAE for the practical control of the HVAC system to improve their 

operating efficiency.  

9.2 An Overview of the Management and Communication Platform 

9.2.1 Brief Introduction of IBmanager 

IBmanager is the basis of the developed management and communication 

platform, which was developed in The Hong Kong Polytechnic University. This open 

IBMS (Intelligent Building Management System) integration and management 

platform allows the integration and management of building automation systems from 

different vendors as well as remote monitoring and management services. The 

IBmanager using the middleware and web services technologies provides 

convenience for integrating full scale building automation and industrial automation 

(IA) systems. Different subsystems can be integrated in IBmanager for diverse 

functions, such as data acquisition, network communication, automation and 

information management. IBmanager, like other mature commercial software, 

provides software interfaces for the supervision, management and customized 

development. Figure 9.3 shows the interface connection and function blocks of 

IBmanager, which is divided into several parts, i.e., OPC (OLE for Process Control) 
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servers, historical database, BMS function components, BMS HMI (human machine 

interface) based on the Local Area Network (LAN) version, web services server and 

building management web server. The OPC servers can be installed in various PCs 

(Personal Computers) in the LAN. The BMS function components are used to execute 

the tasks of real­time data access, alarms & events process, historical data access, 

scheduling, parameter optimization of control strategies, performance/fault diagnosis 

of HVAC systems, etc. The LAN­based BMS HMI realizes the full BAS functions in 

the LAN applications. The COM/DCOM interfaces are converted to web services 

interfaces by the web services server. The Active Service Pages (ASP) and dynamic 

link library (DLL) files are deployed in the building management web server to 

communicate with the web services server and provide the user access interface (web 

pages) to users. There are several essential functions for BASs, such as real­time data 

sharing, alarm/event, historical data and trending, scheduling and network 

management. The real­time data access is accomplished by OPC DA (Data Access) 

server. The OPC HDA (historical data access) is used to realize historical data access. 

The alarms & events are carried out by OPC AE (Alarm & Event). The above 

mentioned functions can be wrapped as public web services interfaces for the 

communication and integration on the Internet. 



 175 

Unified OPC Interface (OPC Client Components)

Real Time

Data Access

Module

Historical

Data Access

Module

Event /

Alarm

Module

Schedule

Module

BMS HMI (Based on LAN)

OPC DA/EA Server

OPC Server

Driver
DDE 

Interface

BACnet

Driver

OPC HDA Server

Historical

Data

LonWorks

Driver

Devices BACnet

Devices

LonWorks

Devices

BAS (OPC 

Interface)

Control Net

BAS (DDE 

Interface)

Control Net

BAS (Other 

Interface)

Control Net

Other Interface

OPC Server Side

Web Services Server

Web Service Interfaces

DCOM/COM DCOM/COM

Building Management Web Server

BMS Functions 

ComponentsIntelligent

Control

Module

Intelligent 

Diagnosis

Module

 

Figure 9.3 Interface connection and function blocks of IBmanager. 

The typical applications of IBmanager can be divided into the following three 

categories: 

• Internet-based centralized management platform integrating multiple (vendor) 

systems: It is used to support centralized services and management on 

Intranet/Internet; 

• Supervision, integration and development platform for BA and IA systems: It is 

utilized to integrate field control stations of different vendors (protocols); 

• Supporting and management platform for independent online applications: It 

can add third­party or complicated application programs of added­value services to 

BA systems. 
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9.2.2 Main Functions and Interfaces of the Platform 

Figure 9.4 shows the home page of the developed platform denoted as IBMS 

(intelligent building management system). It is mainly used for the application of the 

online control software packages to achieve reliable and energy efficient control and 

operation of the chiller plant in the super high­rise building presented in Chapter 3. 

Six main functions constitute this platform and they are access management, history 

data, system setting, system configuration, system maintenance and real-time 

monitoring.  

 

Figure 9.4 Home page of the IBMS in the ICC site. 

Access Management is used to define the authority levels of different users. The 

users consist of supervisory user, advanced users and usual operators. The supervisory 

one has the highest authority and can manage the authority levels of the other users. 
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History Data is to write the system operation data into the database. These recorded 

operation data can be used to fit parameters, train model and diagnose faults. System 

Setting is to conFigure the system in terms of the protocols used in building 

automation systems and/or the building management systems. System Configuration 

is to set the data points of IBmanager based on the field installation information 

provided by the MVAC&BMS contractors. It can also set the parameters for different 

control strategies. System Maintenance is to provide the related log services. 

Real-Time Monitoring is to monitor the system and component operation, etc. With 

the assistance of the friendly human machine interface, some operation data can be 

monitored with visualization while others can be monitored in the form of tables. 

Figures 9.5 shows the monitoring interfaces of the real­time operation data with 

visualization for the chiller group. The main operation data including chilled water 

supply and return temperatures, etc. can be read from these monitoring interfaces. It 

provides the convenience for the operators to quickly estimate whether the 

system/corresponding component operate normally. Since the operation status of each 

individual chiller plays a significant role on the overall system energy efficiency, the 

major measurements of each chiller are monitored and displayed on a separate 

interface, shown as Figure 9.6. 
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Figure 9.5 Monitoring interface of the chiller operation status. 

 

Figure 9.6 Monitoring interface of the individual chiller operation status. 

9.3 Summary 

The in­situ implementation and test of the developed online optimal control 

strategies are of great significance to validate their operational performances in 

practice. Many practical issues including data communication, interface, etc., need to 
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be seriously considered for the implementation of the online control software 

packages in real building systems. In this chapter, the implementation architectures of 

the online control software packages as well as the essential interfaces used for 

communication and interoperation of the platform and ATC system is firstly 

introduced. Next, the basis of the developed management and communication 

platform which is used to implement the online control software packages of optimal 

control strategies is addressed briefly. At the end, an overview of the application 

software system including its main functions and interfaces which is used in the super 

high­rise building is provided. The system presented in this chapter is being tested and 

evaluated in the super high­rise building. 
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CHAPTER 10 SUMMARY AND RECOMMENDATIONS 

 

Optimal control strategies of multiple­chiller systems have significant impacts in 

enhancing the control and operation robustness as well as improving the energy and 

cost efficiency of HVAC systems. It is therefore highly desirable to develop 

robustness enhanced and cost efficient control strategies for building air­conditioning 

systems, especially for complex building air­conditioning systems. The presented 

thesis has addressed this need through making the following contributions. 

Conclusions on Main Contributions 

i. The main contributions of this thesis are the development and validation of the 

online   optimal control strategies for multiple­chiller systems. The software 

tools and implementation guidelines for applying these online optimal control 

strategies for enhancing robustness and cost efficiency have also been 

provided. 

ii. Another contribution of this thesis is the development of a dynamic simulation 

platform for the multiple­chiller systems, which was used for testing and 

analyzing the control reliability, environmental and energy performances of the 

developed optimal control strategies under dynamic working conditions prior to 

their site implementation. 
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iii. The data fusion technique has been used to develop an algorithm for obtaining 

a more accurate and reliable cooling load measurement through combining the 

complementary advantages of two different types of load measurements. This 

algorithm resolves the long lasting practical problem of inaccurate direct 

cooling load measurement.   

iv. The strategy for chiller sequencing control with robustness enhanced has been 

developed. In this strategy, the chiller sequencing control performance can be 

improved due to two main improvements. One is that the direct cooling load 

measurement is replaced by the more accurate and reliable cooling load fused 

measurement. The other one is the used chiller maximum cooling capacity is 

from a simplified model according to chiller operating conditions instead of a 

constant one.  

v. The optimal start strategy takes the chiller operating number as an optimizing 

variable as well as the pre­cooling lead time for the first time. The case studies 

confirmed the chiller operating number is important for optimizing the chiller 

plant energy consumption in the start period. The developed strategy can 

successfully determine the optimal number of operating chiller and estimate its 

associated pre­cooling lead time, which lead to the minimal energy 

consumption of chiller plant in the start period. 

vi. The developed demand limiting strategy is capable of greatly reducing the 

monthly electricity bill by taking into both the peak demand cost reduction and 

energy cost rise into consideration. The developed specific PI demand limiting 
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strategy is of satisfactory performance in restraining the daily peak demand to 

a pre­defined threshold. 

Performance Summary of the Cooling Load Fused Measurement 

For resolving the practical problem of inaccurate building cooling load 

measurement, a data fusion algorithm had been developed to combine the 

complementary advantages of two different types of cooling load measurements, i.e. 

cooling load direct measurement and cooling load indirect measurement. The case 

study results showed that the impacts of the sensor measurement noise, outliers and 

systematic errors in cooling load direct measurement had been greatly alleviated or 

eliminated. Thus, a more accurate and reliable fused measurement was generated 

using the developed fusion algorithm. An associated confidence degree for 

systematically evaluating the quality of fused cooling load was as well yielded. The 

confidence degree can be used as an indicator of sensor measurement faults existence 

by showing a lasting low value.  The cooling load fused measurement with improved 

accuracy and reliability is of great significance in strengthening the performance of 

chiller automatic controls, e.g. chiller sequencing control. 

Performances Summary of the Chiller Sequencing Control  

Chiller sequencing control aims to switch on right number of operating chiller for 

satisfying the varying building cooling load. However, such control in practice is 
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usually of unsatisfactory performance due to the inaccurate cooling load 

measurement.  

The developed chiller sequencing control strategy was based on the fused cooling 

load measurement and the chiller maximum cooling capacity calculated from a 

simplified model. The case studies results showed that the proposed control strategy 

greatly enhanced the robustness of chiller sequencing control and provided a better 

indoor thermal comfort environment with less energy consumption if compared with 

the conventional control strategy based on the direct cooling load measurement and 

constant chiller maximum cooling capacity.  

Performances Summary of the Data Fusion Based Online Sensor Fault Diagnosis Method  

For ensuring the healthy sensor operations in the cooling load direct 

measurements, a data fusion based online sensor fault diagnosis method was 

developed. The continuous low confidence degree from the data fusion engine was 

used to trigger the fault diagnosis process. For those faults occurring in the chilled 

water flow meter and supply temperature sensor, the associated Moffat distances were 

calculated to isolate them by checking the consistence between the sensor 

measurements and their expected values. If the distance was larger than unity, the 

faults existed. For those faults in chilled water return temperature sensor, a confidence 

reconstruction approach was taken for diagnosing. The small value of the 

reconstructed confidence degree implied the faults existence in the return temperature 

measurement. 
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Case studies had been performed to assess the performance of the developed 

sensor fault diagnosis method. The results showed that it can efficiently diagnose the 

faults no matter when they occurred separately or together.   It should be noted that 

the moving window length and the uncertainty bounds used in the strategy needed to 

be assigned proper values. Otherwise, the false diagnosis results ratio would increase 

largely. 

Performances Summary of the Model-based Optimal Start Control Strategy 

For minimizing the energy consumption of the central chilling system in the start 

period, a model­based optimal start control strategy has been developed and validated. 

The chiller operating number had been taken into consideration for the first time. The 

pre­cooling lead time would be shortened with the increase of chiller operating 

number. If less than necessary chillers were switched on, the insufficient supplied 

cooling would take forever to cool the indoor room temperature down to a desired 

level. 

The developed model­based optimal start control strategy has been tested on the 

constructed dynamic simulation platform. The results showed that it was capable of 

selecting optimal number of operating chiller and accurately estimating its related 

pre­cooling period which result in less chiller plant energy consumption compared 

with other options. 
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Summary of Performance of the Demand Limiting Control Strategy 

A demand limiting strategy for optimizing the monthly cost saving of the complex 

central chilling system was presented. It comprehensively considered the tradeoff 

between the cost saving from the demand reduction and the cost rise from the 

increased energy consumption after a demand limiting control is complemented. 

There were two main steps in the presented strategy. The first one was to estimate a 

suitable monthly peak demand threshold. An excessively high threshold would result 

in limited cost saving or even increased monthly bill, while an inappropriately low 

one may greatly sacrifice occupants’ thermal comfort. The second step was to limit 

the peak demand of particular day to the settled threshold by utilizing the thermal 

mass of building, i.e. PI demand limiting algorithm in this study.  

The performed cases studies demonstrated the proposed demand limiting control 

strategy can greatly reduce the monthly electricity bill of the central chilling system 

with no sacrifice of the occupants’ thermal comfort meanwhile. The results as well 

confirmed the importance of proper peak demand threshold selection and proper 

parameter setting in the PI demand limiting algorithm.  

Recommendations for Future Work 

Major efforts of this thesis are made on the development of the optimal control 

strategies for the chiller operation in multiple­chiller systems. It would be very 

desirable and valuable to make further efforts on the following three aspects related to 
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the research presented in this thesis. 

 In­situ implementation and validation of the developed optimal control 

strategies on complex building central chilling systems are needed. The 

feedback information is valuable for updating them to obtain desirable and 

satisfactory performances in practice. It is a time and energy consuming task 

to validate the proposed strategies in the practical commercial building. 

Therefore, essential efforts are required in the future. 

 The fixed chilled water and cooling water supply temperature were used 

in the study. For maximizing the operating efficiency of the overall 

air­conditioning system, optimized chilled water and cooling water supply 

temperatures are required, which could be developed based on the power 

consumption tradeoff between different components. For example, the 

optimized chilled water supply temperature will completely consider the 

power consumptions of chiller group and pumps.  The rise of chilled water 

supply temperature result in the decrease of chiller group power but an 

increased water pump power due to the growing chilled water flow rate 

demand.  

 For demand limiting research in the future, the control of phase change 

material (PCM) can be integrated to discuss the potential of demand reduction 

due to the usage of PCM. PCM has the great capacity of heat absorbing or 

cooling releasing when material phase changes. This particular feature can be 

perfectly used to curb peak demand cost by taking advantage of the great 
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difference between on­peak and off­peak electric price.   The PCM can be 

charged to store the cooling in the off­peak period, while the stored cooling 

can be controlled to release when peak load occurs in the on­peak period.  
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APPENDIX A--- WALL ABSORBED RADIATION 

CALCULATION 

The Iglobal is comprised of two parts: the direct normal radiation Idn and the 

horizontal diffusive radiation Idif which is usually obtained by multiplying a 

proportion factor   with the global radiation Iglobal 

global dn difI I I                                  (A1) 

dif globalI I                                   (A2) 

altSol

aziSol
aziSur

dnI

 

Figure A1. Radiation absorbed by the wall 

Figure A1 is used to explain the calculation of the wall absorbed radiation RadW , 

shown as  

(1 ) cos( ) cos( )

sin( )
global alt azi azi

Rad dif

alt

I Sol Sol Sur
W I

Sol

    
 

                (A3) 

where altSol  is the solar altitude; aziSol is the solar azimuth and aziSur is the wall 

surface azimuth which is the angle between the south orientation and the normal line 

of the wall surface. 
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APPENDIX B --- DLL SOFTWARE PACAKAGES 

******************************************************************************* 

DLL CODE OF DATA FUSION METHOD USED FOR MERGERING TWO LOAD 

MEASUREMETNS 

 

 

Developer: Sun Yongjun, June, 2008 

Department of Building Services Engineering 

The Hong Kong Polytechnic University 

******************************************************************************* 

 

function CL_output = entry(CL_input) 

  

*********************************************************************

**** 

% Inputs 

% 

% Includes three parts: measurements, parameters and previous results 

%  

% % measurements 

% 01­06     : Pev       % Evaporating temperature(C) 

% 07­12     : Pcd       % Condensing temperature(C) 

% 13­18     : Pcom      % chiller power (kw) 

% 19­24     : FR        % Flow rate of chiller 1 to 6 (l/s)    

% 25        : Tchin     % chilled water return temperature(C) 

% 26        : Tchout    % Chilled water supply temperature(C) 

% 27­30     : reserve for future use 

%  

% % preveous results  

% 31­50     : pre_direMeas      % previous N direct measurements  

% 51­70     : pre_indrMeas      % previous N indirect measurements 

% 71        : last_fuseMeas     % previous fused measurement 

% 72        : last_confDegr     % previous confidence degree 

% 73        : last_direMeas     % direct measurement at one step ahead 

% 74        : last_indrMeas     % indirect measurement at one step ahead 

% 75­80     : reserve for future use 

%  

% % parameters 

% 81        : E_mn      % The threshold for distinguishing the outliers for 

%                         the experimental data of 5 chillers(kW) 

% 82        : E_f_mean  % The value for calibrating the CL_im for the  

%                         experimental data of 5 chillers(kW) 
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% 83        : deta      % value identifying the threshold for system error 

% 84        : beta1     % decreasing rate confid. degree of outlier 

% 85        : beta2     % decreasing rate confid. degree of system error 

% 86­91     : LOSSES    % loss 

% 92­97     : Alpha     % loss factor 

% 98­99     : reserve for future use 

% 

% 

*********************************************************************

**** 

% Outputs 

%  

% 01        : fused measurement 

% 02        : confidence degree 

% 03­05     : reserve for future use 

% 06­25     : pre_direMeas      % previous N direct measurements  

% 26­45     : pre_indrMeas   % previous N indirect measurements 

% 46        : current direct measurement 

% 47        : current indirect measurement 

% 48­60     : reserve for future use 

%  

% 

*********************************************************************

**** 

%  

% variables 

% CL_indirect   : current indirect measurement  

% Curr_NM       : number of operating chillers  

% CL_indir      : indirect measurement for each chillers (6 items) 

% Para_DF       : vector to store fusion algorithm 

% CL_direct     : current direct measurement     

% CL1           : vector (2 items) to store current direct/indirect meas. 

% MWindow       : moving window 

% MLast         : vector (2 items) to store last direct/indirect meas. 

% CLprv         : vector (2 items) to store last fused meas. and confd. deg 

  

% measurements 

Pev     = CL_input(1:6); 

Pcd     = CL_input(7:12); 

Pcom    = CL_input(13:18); 

FR1      = CL_input(19); 

FR2      = CL_input(20); 

FR3      = CL_input(21); 

FR4      = CL_input(22); 
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FR5      = CL_input(23); 

FR6      = CL_input(24); 

Tchin   = CL_input(25); 

Tchout  = CL_input(26); 

  

  

% preveous results 

pre_direMeas    = CL_input(31:50); 

pre_indrMeas    = CL_input(51:70); 

last_fuseMeas   = CL_input(71); 

last_confDegr   = CL_input(72); 

last_direMeas   = CL_input(73); 

last_indrMeas   = CL_input(74); 

  

% parameters 

E_mn        = CL_input(81); 

E_f_mean    = CL_input(82); 

deta        = CL_input(83); 

beta1       = CL_input(84); 

beta2       = CL_input(85); 

LOSSES      = CL_input(86:91); 

Alpha       = CL_input(92:97); 

  

  

% filtering the foul inputs 

Pev_thre=10; 

Pcd_thre=10; 

FR_thre=0; 

Tchin_thre=0; 

Tchout_thre=0; 

for i=1:6 

    if Pev(i)<Pev_thre 

       Pev(i)=Pev_thre; 

    end 

    if Pcd(i)<Pcd_thre 

       Pcd(i)=Pcd_thre; 

    end 

end 

  

if FR1<FR_thre 

    FR1=FR_thre; 

end 

  

if FR2<FR_thre 
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    FR2=FR_thre; 

end 

  

if FR3<FR_thre 

    FR3=FR_thre; 

end 

  

if FR4<FR_thre 

    FR4=FR_thre; 

end 

  

if FR5<FR_thre 

    FR5=FR_thre; 

end 

  

if FR6<FR_thre 

    FR6=FR_thre; 

end 

  

FR=FR1+FR2+FR3+FR4+FR5+FR6; 

  

if Tchin<Tchin_thre 

    Tchin=Tchin_thre; 

end 

  

if Tchout<Tchout_thre 

    Tchout=Tchout_thre; 

end 

  

% constant parameters 

Cp      = 4.187;    % specific heat of water(kW/kg.C) 

Cpl     = 1.265;    % liquid refrigerant R134a specific heat(kW/kg.C) 

Hf0     = 200.000;  % enthalpy at reference state R134a (kJ/kg) 

Cpg     = 0.8925;   % gaseous refrigerant specific heat R134a(kW/kg.C) 

Hfg0    = 197.9;    % latent heat at reference state pressure R134a (kJ/kg) 

ON_OFF_Threshold = 50;  % Power threshold for judging chiller on­off status 

RZ      = 73.4143;      % gas constant times the compressibility  

                        % factor of the refrigerant R134a (kJ/(kg.C)) 

Gamma   = 1.072;        % Mean isentropic coefficient of R134a; 

Gm1G    = (Gamma­1.0)/Gamma; 

Ac1     = 17.4;         % Parameters for pressure and temp. convertion  

Bc1     = ­3297.2;      % for R134a 

  

% Indirect cooling load of six chillers 
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Tev=zeros(1,6); 

Tcd=zeros(1,6); 

Win=zeros(1,6); 

H0=zeros(1,6); 

H2=zeros(1,6); 

Hcomp=zeros(1,6); 

H4=zeros(1,6); 

Mref=zeros(1,6); 

CL_indirect = 0; 

Curr_NM     = 0;        % Currently operating number of chiller 

CL_indir    = zeros(1,6); 

for i = 1:6 

    if Pcom(i) <= ON_OFF_Threshold         % chiller is off or not 

        CL_indir(i) = 0; 

    else 

        % Evap. and cond. temp. obtained from corresponding pressure 

        Tev(i)  = ­273.15+Bc1/(­Ac1+log(Pev(i))); 

        Tcd(i)  = ­273.15+Bc1/(­Ac1+log(Pcd(i))); 

        Win(i)  = (Pcom(i)­LOSSES(i))/Alpha(i); 

        H0(i)   = Hf0+Hfg0+Cpg*Tev(i); 

        H2(i)   = Hf0+Hfg0+Cpg*Tcd(i); 

        Hcomp(i)= RZ*(Tev(i)+273.15)/Gm1G... 

            *(power((Pcd(i)/Pev(i)),Gm1G)­1)/1000; 

        H4(i)   = Hf0+Cpl*Tcd(i); 

        if Hcomp(i)>0 & H0(i)­H4(i)>0 

            Mref(i)     = Win(i)/Hcomp(i); 

            CL_indir(i) = Mref(i)*(H0(i)­H4(i)); 

        else 

            CL_indir(i)=0; 

        end 

        % calculating the number of operating chillers 

        Curr_NM = Curr_NM+1; 

    end 

    CL_indirect = CL_indirect+CL_indir(i); 

end 

  

% Specifying the value of the DF parameters 

Para_DF = [E_mn,E_f_mean,beta1,beta2,deta];  

Para_DF(1) = Curr_NM*Para_DF(1); 

Para_DF(2) = Curr_NM*Para_DF(2); 

Para_DF(5) = Curr_NM*Para_DF(5); 

  

% Direct cooling load 

CL_direct   = Cp*(Tchin­Tchout)*FR; 
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CL1         = [CL_direct; CL_indirect]; 

MWindow     = [pre_direMeas; pre_indrMeas]; 

CLprv       = [last_direMeas; last_indrMeas]; 

MLast       = [last_fuseMeas; last_confDegr]; 

[CL_fusion,CL_degree,MWindow]=DataFusion(MWindow,CL1,MLast,CLprv,Para_

DF); 

MLast       = [CL_fusion; CL_degree]; 

CLprv       = [CL_direct; CL_indirect]; 

  

% Outputs 

CL_output       = zeros(1,60); 

CL_output(1)    = CL_fusion; 

CL_output(2)    = CL_degree; 

CL_output(6:25) = MWindow(1,:); 

CL_output(26:45)= MWindow(2,:); 

CL_output(46)   = CL_direct;  

CL_output(47)   = CL_indirect; 

  

% End of the function 

% 

% sub­function 

% 

function [CL_fusion_k,CL_degree_k,MWindow] = ... 

    DataFusion(MWindow,CL1,MLast,CLprv,Para_DF) 

  

% parameters for data fusion 

NW      = 20;           % length of the moving window 

E_m     = Para_DF(1);   % The threshold for distinguishing  

                        % the outliers(kW) Fitted from the Cal_E_mn.m 

E_f_mean = Para_DF(2);  % The value for calibrating the CL_im(kW) 

beta1   = Para_DF(3);   % incling rate for reliable degree of outlier 

beta2   = Para_DF(4);   % incling rate for reliable degree of system error 

deta1   = Para_DF(5);   % The value for identifying the transient interval 

deta2   = deta1;  

E_f_low = E_f_mean­2*deta1;     % lower limit of system error(kW) 

E_f_upp = E_f_mean+2*deta2;     % upper limit of system error(kW) 

  

% initialize the moving window 

  

% data length 

Dlength = NW; 

for i = 1:20 

    if abs(MWindow(1,i)) < 1e­2 

        Dlength = Dlength­1; 
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    end 

end 

if Dlength < 1­1e­2     % No data at all 

    MWindow(1,1)= CL1(1); 

    MWindow(2,1)= CL1(2);  

    CLfusion    = MWindow(1,1); 

    CLdegree    = 1; 

    CL_fusion_k = CLfusion; 

    CL_degree_k = CLdegree; 

else 

    % previous results 

    CLfusion    = MLast(1); 

    CLdegree    = MLast(2); 

    CL_dm       = CL1(1); 

    CL_im       = CL1(2); 

    DCL_dm_k    = CL_dm­CLprv(1); 

    DCL_im_k    = CL_im­CLprv(2); 

    e_k         = abs(DCL_im_k­DCL_dm_k); 

    % In case of measure error 

    if e_k > E_m 

        CL_fusion_k = CLfusion+DCL_im_k; 

        CL_degree_k = beta1*CLdegree; 

    else 

        % in case of measure noise 

        % update the moving window 

        if Dlength > NW­1 

            MWindow = [MWindow(:,2:end),[CL_dm; CL_im]]; 

        else 

            MWindow (:,Dlength+1)= [CL_dm; CL_im]; 

        end 

        S_measure   = sum(MWindow(1,:)); 

        DCL_im      = MWindow(2,2:end)­MWindow(2,1:end­1); 

        N1          = size(MWindow,2); 

        CL_fusion_k = (S_measure+[1:N1­1]*DCL_im')/N1; 

        tv1         = CL_fusion_k; 

         

        DCL_dm      = MWindow(1,2:end)­MWindow(1,1:end­1); 

        S_m         = sum(abs(DCL_dm)); 

        S_c         = sum(abs(DCL_im)); 

        % reliable degree 

        CL_degree_k = 1­(1­beta1)*abs(S_c­S_m)/((N1­1)*E_m); 

        tv2         = CL_degree_k; 

         

        % store the fused data sequence 
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        E_fk        = CL_fusion_k­CL_im; 

        % 

        if E_fk <= E_f_low | E_fk >= E_f_upp 

            CL_fusion_k = CL_im+E_f_mean; 

            CL_degree_k = beta2*CLdegree; 

        end 

  

        % during the intervals 

        if E_fk > E_f_low & E_fk < E_f_low+deta1/10 

            lamda       = (E_fk­E_f_low)/deta1; 

            CL_fusion_k = lamda*tv1+(1­lamda)*(CL_im+E_f_mean); 

            CL_degree_k = lamda*tv2+(1­lamda)*(beta2*CLdegree); 

        end 

        if E_fk < E_f_upp & E_fk > E_f_upp­deta2/10 

            lamda       = (E_f_upp­E_fk)/deta2; 

            CL_fusion_k = lamda*tv1+(1­lamda)*(CL_im+E_f_mean); 

            CL_degree_k = lamda*tv2+(1­lamda)*(beta2*CLdegree); 

        end 

    end 

end 

  

% End of the subfunction 

 

******************************************************************************* 

DLL CODE OF DATA FUSION BASED CHILLER SEQUENCING CONTROL 

 

 

Developer: Sun Yongjun, June, 2008 

Department of Building Services Engineering 

The Hong Kong Polytechnic University 

******************************************************************************* 

function SeqCtrl_output = entry(SeqCtrl_input) 

  

% 06/05/2008 

% 

*********************************************************************

**** 

% Inputs 

% 

% Includes three parts: measurements, parameters and previous results 

%  

% % measurements 

% 01­06     : Pev       % Evaporating pressure(kPa) 

% 07­12     : Pcd       % Condensing temperature(kPa) 
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% 13        : CL_fusion % Fused cooling load(kW) 

% 14        : CL_degree % Fused cooling load quality 

% 15        : trnTime   % Current system time(minutes) 

% 16        : Tchout    % Chilled water supply temperature (C) 

% 17­20     : reserve for future use 

%  

% % previous results  

% 21       : OTime              % previous action occuring time (minute)  

% 22       : Num_previous       % current number of operating chiller 

% 23       : Pre_oper           % previous action:1 indicates staging one 

%                                 and ­1 indicates destaging one 

% 24­28    : reserve for future use 

%  

% % parameters 

% 29        : A=3150        % The parameter for determining the maximum 

cooling 

%                             capacity of single chiller 

% 30        : T_err=0.5     % The allowed temperature deviation (C) 

% 31        : Tset=5.5      % Chilled water supply temperature setpoint (C) 

% 32        : OPeriodThreshold=30  % Time limit for same action orientation 

% 33        : CPeriodThreshold=40  % Time limit for opposite action orientation 

% 34        : Deadband=5           % the band for preventing chiller from 

%                                    repeatedly switching 

% 35­39    : reserve for future use 

% 

*********************************************************************

**** 

% Outputs 

%  

% 01        : the number of operating chillers in next time instant (Num_previous) 

% 02        : the time of action occured last time (OTime) 

% 03        : the switching action of last time (Pre_oper) 

% 04        : Chiller maximum cooling capacity  (kW) 

% 5­8       : reserve for future use 

%  

% 

*********************************************************************

**** 

%  

% variables 

% CAP                     : Maximum cooling capacity of single chiller (kW) 

% ONum                    : number of chillers that could be changed   

% Period                  : time length between the current time and the 

%                           last action occuring time 
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% Q_load                  : fused cooling load (kW) 

% Q_state_threshold       : threshold for staging one more chiller (kW)  

% Q_Destate_threshold     : threshold for destaging one more chiller (kW) 

  

% measurement inputs 

Pev         = SeqCtrl_input(1:6); 

Pcd         = SeqCtrl_input(7:12); 

CL_fusion   = SeqCtrl_input(13); 

CL_degree   = SeqCtrl_input(14); 

trnTime     = SeqCtrl_input(15); 

Tchout      = SeqCtrl_input(16); 

  

% filtering the foul data 

Pev_thre=10; 

Pcd_thre=10; 

CL_fusion_thre=0; 

CL_degree_thre=0; 

Tchout_thre=0; 

for i=1:6 

    if Pev(i)<Pev_thre 

       Pev(i)=Pev_thre; 

    end 

    if Pcd(i)<Pcd_thre 

       Pcd(i)=Pcd_thre; 

    end 

end 

  

if CL_fusion<CL_fusion_thre 

    CL_fusion=CL_fusion_thre; 

end 

  

if CL_degree<CL_degree_thre 

    CL_degree=CL_degree_thre; 

end 

  

if Tchout<Tchout_thre 

    Tchout=Tchout_thre; 

end 

  

% previous results 

OTime           = SeqCtrl_input(21); 

Num_previous    = SeqCtrl_input(22); 

Pre_oper        = SeqCtrl_input(23); 
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% parameters 

A        = SeqCtrl_input(29); 

T_err    = SeqCtrl_input(30); 

Tset     = SeqCtrl_input(31); 

OPeriodThreshold       = SeqCtrl_input(32); 

CPeriodThreshold       = SeqCtrl_input(33); 

DeadBand               = SeqCtrl_input(34); 

  

% A = 3150;% the parameter to determine the maximum cooling capacity of chiller 

% Tset = 5.5;%Temp. setpoint 

% T_err = 0.5;        % temperature deviation allowed 

  

%parameters for pressure and temp. convertion for R134a 

Ac1=17.4; 

Bc1=­3297.2; 

% R134a thermophysical parameters 

Cpl     = 1.265;    % liquid refrigerant R134a specific heat(kW/kg.C) 

Cpg     = 0.8925;   % gaseous refrigerant specific heat R134a(kW/kg.C) 

Hfg0    = 197.9;    % latent heat at reference state pressure R134a (kJ/kg) 

RZ = 73.4143;       % gas constant times the compressibility factor of the 

refrigerant R134a 

  

[Pev_oper,N_oper] = min(Pev); 

Tev(N_oper)=­273.15+Bc1/(­Ac1+log(Pev(N_oper))); 

Tcd(N_oper)=­273.15+Bc1/(­Ac1+log(Pcd(N_oper))); 

Tev_oper = Tev(N_oper); 

Tcd_oper = Tcd(N_oper); 

CAP0 = 

(A*Pev_oper)*(Hfg0+Cpg*Tev_oper­Cpl*Tcd_oper)/(RZ*(273.15+Tev_oper)); 

%considering the real CAP with respect to the CL_degree 

if Tchout <= Tset+T_err 

    if  CL_degree>=0.8 

        CAP = CAP0; 

    else 

        CAP = CAP0*1.02; 

    end 

else 

    CAP = CAP0; 

end 

  

% 

*********************************************************************

* 

%   Updated Chiller sequence Control 
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% 

*********************************************************************

* 

% OPeriodThreshold = 30/60;   % the time period (hour) for two operations with 

same direction  

% CPeriodThreshold = 40/60;    % the time period (hour) for two operations with 

opposite directions  

% DeadBand = 5; 

% calculate the Q_load 

Q = CL_fusion; 

if Q < 0 

    Q_load = 0; 

else 

    Q_load = Q; 

end 

% % calculate the number of chillers in operation 

%  

% OTime = history.OTime; 

% Pre_oper = history.Pre_oper; 

%  

% % the number of chillers in operation 

  

Period = trnTime­OTime;     % the period 

if Period<0 

    Period=Period+24; 

end 

% the threshold for switching on/off a chiller 

Q_state_threshold = Num_previous*CAP*(1+DeadBand/100); 

Q_Destate_threshold = (Num_previous­1)*CAP*(1­DeadBand/100); 

  

% determine the number of chillers should be in operation 

  

% open a chiller 

if Q_load > Q_state_threshold & Num_previous < 6 

%     ONum = 1;    % start from the second one 

%     % which one should be open 

%     while CH(ONum).ONOFF >= 1 & ONum<6 

%         ONum = ONum+1; 

%     end 

          ONum=Num_previous+1; 

    % open the chiller 

    if ONum <= 6  

        if Period >= OPeriodThreshold & Pre_oper==1 

%             CH(ONum).ONOFF = 1; 



 201 

            %at the beginning of the state or destate the chiller power 

            %consumption can not indicate the supplied cooling  

            Pre_oper=1; 

            OTime = trnTime; 

            Num_previous = Num_previous+1; 

        elseif Period>= CPeriodThreshold & Pre_oper==­1 

            %at the beginning of the state or destate the chiller power 

            %consumption can not indicate the supplied cooling  

            Pre_oper=1; 

            Num_previous = Num_previous+1; 

            OTime = trnTime; 

        end 

    end 

end 

% close a chiller 

if Q_load < Q_Destate_threshold & Num_previous > 1 

      ONum=Num_previous; 

    % close the one 

    if ONum >= 2 

        if Period >= OPeriodThreshold & Pre_oper==­1 

            Pre_oper=­1;  

            Num_previous = Num_previous­1; 

            OTime = trnTime; 

        elseif Period >= CPeriodThreshold & Pre_oper==1 

            Pre_oper=­1; 

            Num_previous = Num_previous­1; 

            OTime = trnTime; 

        end 

    end 

end 

  

% Outputs 

SeqCtrl_output       = zeros(1,8); 

SeqCtrl_output(1)    = Num_previous; 

SeqCtrl_output(2)    = OTime; 

SeqCtrl_output(3)    = Pre_oper; 

SeqCtrl_output(4)    = CAP; 
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