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ABSTRACT 

 

In this project, an analytical model of rotational hybrid vibration absorber 

(RHVA), which is coupled with a flexible structure, is derived for controller 

design and vibration suppression. Unlike the case of translational HVA, it is 

easier to tune the passive absorption frequency of the rotational HVA. A novel 

controller, which is applicable to either rotational HVA or translational HVA, is 

developed on the basis of the pole placement method. The proposed controller 

introduces active damping to a flexible structure and attenuates vibration of the 

entire structure. This controller, hereinafter, is called a global structural vibration 

controller.  

 

The proposed rotational HVA and the global structural vibration controller was 

coupled to the end position of a cantilever beam for global structural vibration 

control in simulation tests, when random disturbance was applied at either a 

single point or a portion of the beam structure. Two indices, which are used to 

quantify the structural vibration motion, were calculated from the numerical test 

results. They include mean square motion which can be used to observe vibration 

motion at a single point, and spatial average mean square motion which can be 

used to observe average vibration motion of the beam structure. Simulation 

results demonstrate that the rotational HVA can mitigate more than 85% of mean 

square motion at the coupling point and more than 85% of spatial average mean 

square motion along the entire beam structure. This indicates that a rotational 

HVA can significantly suppress both point and entire beam structural vibration 

simultaneously. 

 

Groundhook damper and translational HVA, which are conventional devices 

used for structural vibration control, were also coupled with the same cantilever 

beam at the end position for global structural vibration control in separated 

simulation tests. Numerical results show that a groundhook damper and a 

translational HVA can alleviate more than 83% and more than 79% of mean 

square motions at their respective coupling points, and can alleviate more than 
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85% and more than 80% of spatial average mean square motions along the entire 

beam structure respectively. This signifies that a rotational HVA could provide 

better vibration attenuation ability than a translational HVA in global structural 

vibration control and similar vibration attenuation performance as a groundhook 

damper. 

 

Experimental rotational HVA and beam structure were fabricated to verify the 

proposed controller. The proposed analytical model of the rotational HVA and 

the global structural vibration controller were validated by the experimental 

results. Mean square motions and spatial average mean square motions were 

calculated from the experimental results and compared with those values 

calculated from the numerical results. It was found that experimental results are 

reasonably close to the numerical results. 

  

This investigation provides better understanding on the performance and design 

of a rotational HVA and its active controller. Numerical results clearly 

demonstrate that a rotational HVA itself can be an effective device and is 

feasible as a better alternative device to a groundhook damper or a translational 

HVA for global structural vibration control of a cantilever structure. 
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1 INTRODUCTION 

 

1.1 Scope and Background 

 

Vibration attenuation is a well-known and important problem for civil or mechanical 

engineers, because violent vibration can cause structure damage or machine failure 

and may even inflict severe damage on assets and lives of human being. Vibration 

control of structures and mechanical systems, therefore, becomes a significant 

research topic for vibration engineers and researchers to study. In the past, lots of 

approaches were developed to suppress the structural and mechanical vibration by 

different researchers and engineers. In the literature, skyhook/groundhook viscous 

damper and vibration absorber are two of the major devices used for vibration 

attenuation. 

Typically, a groundhook viscous damper shown in Figure 1-1 is mounted between a 

vibrating body and a fixed boundary such as ground. The mounting base is used to 

provide a reaction force for the damper. With the help of the viscous damper, 

vibration energy of the vibrating body can be dissipated. Actually, the application of 

a damper is a simple and low cost approach for vibration mitigation, but its demand 

on the mounting base may cause it unfeasible to be installed for some structures such 

as cantilever beam. In real practice, tall building or wing of a plane can be 

considered as a cantilever beam structure. For a cantilever beam, violent vibration 

typically exists at the tip position of the beam structure. In these cases, the 

skyhook/groundhook damper cannot be coupled with the cantilever beam structure 

at its tip position since mounting base is not available. 

 

Figure 1-1 Schematic of a groundhook damper 
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In contrast, vibration absorber can avoid the requirement on the mounting base; and 

can be directly mounted on the vibrating body to achieve vibration alleviation. 

Vibration absorbers shown in Figure 1-2 mainly can be categorized into 

passive/dynamic vibration absorber (DVA), adaptive passive/dynamic vibration 

absorber (ADVA), active vibration absorber (AVA) and hybrid vibration absorber 

(HVA). Basically, DVA is composed of passive elements such as spring and damper. 

ADVA is an advanced design on the DVA in which the parameters of the passive 

elements can be automatically changed with time-variant disturbance. AVA is a pure 

active element. HVA consists of both passive and active elements and can be 

considered as an integration of DVA and AVA. Among the 4 types of vibration 

absorbers, hybrid vibration absorber is more advanced in its design and possesses 

the advantages of the other three types of absorbers. It can suppress vibration for a 

frequency band, introduce active damping into the structure-absorber coupled 

system and require lower power consumed actuator.  

 

 

Figure 1-2 Schematic of DVA, ADVA, AVA and HVA 

 

In some HVA designs, its passive counterpart should be tuned with respect to a 

target resonance before HVA can be installed in a vibrating structure. The tuning 

procedure actually is the same as the conventional passive vibration absorber (DVA). 

In the literature, Wong et al. (2007) proposed a DVA designed in rotational form. 

Comparing with the translational DVA, the rotational DVA is easier to tune its 

resonant frequency. Since the HVA can be either in translational or rotational form, 

one would like to see whether a rotational HVA can provide similar ability to 

suppress vibration as the translational HVA. If the answer is positive, then the 
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rotational HVA would be a better alternative because of the ease of tuning its 

resonant frequency. 

On the other hand, control algorithms are necessary for generation of the control 

signal in an active HVA application. In the literature, there are lots of prior research 

works on the controller design and zero-pole placement method is one of the designs. 

Yuan (2001) indicated that applying zero-pole placement method into a closed-loop 

of a structure-absorber coupled system can simultaneously introduce an absorption 

band and enhance the damping effect of the system, and this advantage cannot be 

achieved by most of the controllers. In his work, he proposed a 

Proportional-Integral-Derivative (PID) controller, which can use a single 

acceleration feedback as the control signal, on the basis of the zero-pole placement 

method for local point structural vibration control. Recently, more and more 

research works [Jacquot (2003); Dayou (2006)] focus on global structural vibration 

control which aims at suppressing the vibration of entire beam structure instead of 

suppressing a point vibration. This is because vibration attenuated at a point may 

enhance vibration at ambient locations. Global structural vibration control, therefore, 

becomes significant to prevent vibration magnification at the structural ambient 

locations. Comparing with point vibration control, global structural vibration control 

is more complicated. However, the prior knowledge on point vibration control still 

can be helpful in the global structural vibration control problem. Typically, an active 

element can introduce active damping into the structure-absorber coupled system at 

the controlled point in point vibration control. Therefore, the feasibility of 

introducing active damping to the entire beam structure with the active element for 

global structural vibration control is still a worthy research question. In addition, it is 

of interest to design a global structural vibration controller on the basis of the 

zero-pole placement method to introduce absorption frequency and active damping 

simultaneously to the entire beam structure to achieve the global structural vibration 

control. 
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1.2 Research Objectives 

 

From the background information, three research questions can be aroused. First, a 

skyhook/groundhook damper can be an effective method to dissipate vibration 

energy of the vibrating structure, but its demand on the mounting base causes it 

unfeasible to install in some cantilever beam structures such as tall building or wing 

of a plane. However, HVA can be directly mounted on a vibrating structure for 

structural vibration attenuation. Implementing a HVA to replace the application of a 

skyhook/groundhook damper for structural vibration control, therefore, can be a 

significant research question. Second, rotational passive vibration absorber (DVA) 

has the advantage on its ease of tuning. As rotational HVA is composed of similar 

passive counterpart as the DVA, rotational HVA may also possess the advantage on 

its ease of tuning than the translational HVA. It is, therefore, worth to investigate 

whether rotational HVA can provide similar vibration mitigation ability as the 

translational one and has the possibility as a better alternative design of HVA to 

solve the practical tuning difficulty. Third, local point vibration control may enhance 

the vibration amplitude of the structural ambient locations, global structural 

vibration control, however, can guarantee the vibration attenuation of entire structure. 

In view of structure protection, global structural vibration control can be more 

effective and reliable to protect the structure from damage. In prior research works, 

controller designed on the basis of zero-pole placement method has been 

demonstrated to provide an excellent vibration suppression performance to a flexible 

structure in point vibration control. With the prior knowledge in point vibration 

control, further study on controller designed with zero-pole placement method and 

developing it as a global structural vibration controller can be another important 

research question. 

 

From the above three research questions, five objectives are established for this 

project: 

1) Establish an analytical model for a rotational HVA which is coupled with a 

 flexible structure. 
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2) Design a novel global structural vibration controller, which is applicable to 

 either translational or rotational HVA, on the basis of pole placement method 

 to introduce active damping and an absorption frequency to the entire flexible 

 structure. 

3) Evaluate whether a rotational HVA can be a better alternative design of HVA 

 by measuring its local and global vibration suppression performance and 

 comparing those values with a translational HVA numerically. 

4) Evaluate whether a rotational HVA can be implemented to replace a 

 groundhook damper, which is mounted between a vibrating structure and a 

 fixed base, by measuring its local and global vibration suppression performance 

 and comparing those values with the damper numerically. 

5) Validate the established analytical model of the rotational HVA and the 

 developed global structural vibration controller by comparing its local and 

 global vibration suppression performance between experimental and  numerical 

 results. 

 

To achieve the above five objectives, ten tasks should be performed: 

1) Establish an analytical model on the basis of Euler-Bernoulli beam equation for 

 the proposed rotational HVA (RHVA). 

2) Develop a global structural vibration controller, which is applicable to either 

 translational or rotational HVA, on the basis of pole placement method and 

 Bezout equation to introduce active damping and an absorption frequency to 

 the entire beam structure. 

3) Model beam-rotational HVA coupled system, beam-translational HVA coupled 

 system and beam-groundhook damper coupled system by commercial software 

 “MatLAB” and conduct simulation tests. 

4) Calculate the mean square motions, which can be used to observe the structural 

 vibration amplitude at a single point, and the spatial average mean square 

 motions, which can be used to observe the average vibration amplitude of the 

 entire beam structure, to quantify the structural vibration amplitude from the 

 simulation results for a rotational and a translational HVA separately, and 
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 hence use these values to evaluate and compare the vibration suppression 

 performance between a rotational HVA and a translational HVA. 

5) Calculate the mean square motions and the spatial average mean square 

 motions for a rotational HVA and a groundhook damper separately from the 

 simulation results, and hence use these values to evaluate and compare the 

 vibration suppression performance between the rotational HVA and the 

 groundhook damper. 

6) Design and fabricate a test rig which is composed of a beam and a rotational 

 type HVA. 

7) Conduct the experiment, collect data and analyze data. 

8) Calculate the mean square motions and the spatial average mean square 

 motions for the rotational HVA from the experimental results. 

9) Conduct the simulation test for the beam-rotational HVA coupled system with 

 real experimental parameters such as beam modal damping ratio, beam mass 

 and absorber mass. 

10) Calculate the mean square motions and the spatial average mean square 

 motions for the rotational HVA from the numerically results, and use the 

 values to compare with the experimental one. 

 

1.3 Project Significance 

 

This project has both academic value and practical significance to the industry if the 

project objectives can be achieved. An analytical model for the proposed rotational 

HVA, which is rarely found in the literature, is established. This model can be useful 

for further development on similar type of rotational HVA. A novel controller, 

which is applicable to either translational HVA or rotational HVA, is developed to 

introduce active damping and an absorption frequency to entire beam structure, and 

to achieve global structural vibration control. For global structural vibration control, 

the proposed rotational HVA is expected to have similar vibration suppression 

performance as the conventional translational HVA. Since it is easier to tune the 

passive absorption frequency of rotational HVA than the translational one, the 
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rotational HVA can be a better alternative design of HVA. The proposed rotational 

HVA is also able to replace a skyhook/groundhook damper, it thus can provide a 

better alternative way to solve the global structural vibration control problem in case 

skyhook/groundhook damper is not available to be installed. 

 

1.4 Layout of Present Thesis 

 

The thesis includes both numerical and experimental study reports presented in 

seven chapters. 

 

Chapter 1 provides an overview of the scope and background of the present project. 

Research questions, project objectives, tasks and its significance are also presented. 

 

Chapter 2 offers a complete literature review on skyhook/groundhook damper, the 

four kinds of vibration absorbers and active control algorithms. Summary of the 

literature review is reported in the end of this chapter. Idea on development of a new 

design of rotational HVA and a novel global structural vibration controller are 

inspired from the prior research works.  

 

Chapter 3 presents the new design of the proposed rotational HVA, the structure of 

the conventional translational HVA and the limitation of skyhook/groundhook 

damper. The analytical model of the rotational HVA – beam coupled system under 

point and distributed disturbance is derived. The well-known analytical models of 

translational HVA – beam coupled system and groundhook damper – beam coupled 

system under point and distributed disturbance are also derived. 

 

Chapter 4 proposes the idea on the global structural vibration controller design. Its 

design is on the basis of the pole placement method and the Bezout equation. 

Implementation method of the proposed controller on real application and stability 

of the proposed controller are discussed. 
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Chapter 5 reports the numerical results of the rotational HVA – beam coupled 

system, translational HVA – beam coupled system and groundhook damper – beam 

coupled system under point and distributed random disturbance. Calculation, 

comparison and discussion on some indices, which are used to quantify the 

structural vibration, are also presented for these systems.  

 

Chapter 6 describes the experimental configuration and experimental methodology. 

Experimental results are reported. Indices, which are used to quantify the structural 

vibration, are calculated with the experimental results and compared with the 

simulation results. 

 

Chapter 7 concludes all the important findings in this investigation. Suggestions on 

future works on this project are also discussed. 
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2 LITERATURE REVIEW 

 

Vibration is an important dynamic problem in the engineering world. Violent 

vibration can damage structures, buildings and machines. It can also introduce 

acoustic problems such as noise and hence cause discomfort to human-being when 

vibration propagates from an operating machine to its thin case. Isolating or 

attenuating vibration from its source, therefore, is a significant engineering problem 

for engineers. In the literature, skyhook/groundhook damper and vibration absorber 

are two possible devices used for isolation or attenuation of vibration. For the 

vibration absorbers, there are mainly four kinds of absorbers including 

passive/dynamic vibration absorber (DVA), adaptive passive/dynamic vibration 

absorber (ADVA), active vibration absorber (AVA) and hybrid vibration absorber 

(HVA). 

 

2.1 Review of Skyhook/Groundhook Damper 

 

Viscous damper is a well known device used for structural vibration control [Main 

and Krenk (2005); Mansoori and Moghadam (2009); Occhiuzzi (2009)]. It is a cheap, 

low cost and effective device. One of the special and ideal cases for the application 

of viscous damper is a skyhook/groundhook damper [Jacquot (2000); Engelen et al. 

(2007)]. Skyhook/groundhook viscous damper shown in Figure 2-1 is a translational 

viscous damper which is mounted between a vibrating structure and a fixed 

mounting base. The word “skyhook” or “groundhook” means the damper is hooked 

at an inertial reference point such as wall or ground which can provide absolute zero 

displacement and velocity to the damper. Generally, skyhook/groundhook damper 

can provide better vibration suppression performance to the vibrating structure since 

the mounting base provides reaction force to the damper. However, it is difficult to 

offer a mounting base to the skyhook/groundhook damper in some of the cases like 

cantilever beam. For example, wing of a plane or a building structure can be 

considered as a cantilever beam. Normally, violent vibration exists at the tip position 
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of the vertical cantilever beam. Coupling the skyhook damper to its tip position can 

effectively attenuate the vibration of the entire beam structure, but it is impossible to 

install the damper since mounting base is not available in this case. To overcome 

this limitation, it is, therefore, necessary to seek an alternative device to replace the 

skyhook/groundhook damper in which the replaced device should provide similar or 

better vibration mitigation performance as the skyhook/groundhook damper. In this 

project, it is found that a rotational hybrid vibration absorber (RHVA) can provide 

similar vibration attenuation performance as the skyhook/groundhook damper. 

Moreover, RHVA can avoid the demand on a mounting base since it can be directly 

mounted on the tip position of a cantilever beam. The details of the RHVA on its 

structure and its vibration suppression performance are discussed in later chapters. 

 

Figure 2-1 Schematic of a skyhook and a groundhook viscous dampers 

 

2.2 Review of Passive/Dynamic Vibration Absorber (DVA) 

 

Passive/dynamic vibration absorber (DVA), which was invented for almost a 

century [Hermann (1909)], is a well-known device used to cease vibration of a 

vibrating system under harmonic excitation and to protect the vibrating system from 

vibration. DVA shown in Figure 2-2 is a translational DVA (TDVA) and has 

translational DOF. It is basically composed of an auxiliary mass which is mounted to 

a vibrating system by spring and damping devices. After proper tuning, it can be 
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used to absorb vibration energy from the vibrating source of a primary structure 

[Hunt (1979); Inman (1994)] or to isolate vibration from the primary structure [von 

Flotow et al. (1994)]. Optimum tuning theories for conventional DVA tuning were 

initially proposed by Den Hartog (1956) and Snowdon (1968). 

Primary 

Structure

Auxiliary 

Mass

Damping 

device

Spring

Support
 

Figure 2-2 Schematic of a translational dynamic vibration absorber 

Although DVA can reduce vibration of a primary system, DVA application still 

accompanies with a number of restrictions. DVA can effectively suppress vibration 

amplitude at the pre-tuned resonant frequency but not function well at other resonant 

frequencies. If DVA coupling position is in a nodal position of a structure, coupled 

DVA may not be able to absorb vibrating energy from the primary structure [Tang 

(2004)]. As structural resonant frequencies and disturbance frequency may vary 

under different ambient conditions or time passing, a pre-tuned DVA may provide 

unexpected performance to the structure due to mistuning of parameters. The worst 

case could be enhancement of vibration level to the primary structure at certain 

frequencies [Sun et al. (1995)]. Another detrimental effect of using DVA is 

elicitation of one extra resonant peak in the primary frequency spectrum. As DVA 

with single degree of freedom (DOF) is coupled with the primary structure, the DOF 

of the integrated system is increased by one. One extra resonant peak, therefore, is 

elicited in the integrated system after mounting with DVA [Korenev and Reznikov 

(1993)]. 

F=F0sinωt 
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Making DVA more flexible to be used in real applications, different kinds of prior 

research works have been done. Researchers tried to modify the design of a 

conventional DVA [Hagood and von Flotow (1991); Igusa and Xu (1994); Wu 

(1998); Jang and Choi (2007); Wong and Cheung (2008)] for better vibration 

alleviation. Some researchers found a set of optimal parameters including damping 

ratio, tuning ratio and coupling position for one or multiple DVA(s) aiming at 

vibration mitigation of a vibrating system over a frequency band [Warburton (1982); 

Kwanami and Seto (1984); Chiba and Sugimoto (2003); Jacquot (2003); Dayou 

(2006); Lee et al. (2006); Li and Zhu (2006); Taniguchi et al. (2008); Bai and 

Grigoriadis (2009); Cheung and Wong (2009)]. 

Apart from the discussed translational DVA, there is another design of DVA which 

has rotational DOF called rotational DVA (RDVA). In real practice, vibrating 

system may have more than one DOF, so its motion can basically be modeled by 

translational and rotational motions in one dimensional consideration. RDVA, 

therefore, can be used to absorb the rotational vibration of the primary vibrating 

system. The fundamental design of RDVA could be a pendulum-like absorber as 

shown in Figure 2-3.  

 

Figure 2-3 Schematic of a pendulum-like rotational dynamic vibration absorber 

Some prior research works have been studied on implementing a pendulum absorber 

for vibration suppression of a primary system [Cartmell and Lawson (1994); Ertas et 

al. (2000); Vyas and Bajaj (2001); Cicek and Ertas (2002); Cuvalci et al. (2002)]. 

Researchers found that non-linearity exists in the pendulum-structure coupled 

system if the pendulum absorber is under violent vibration. The non-linear effect 
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causes instability of the coupled structure, and induces bifurcation and chaos 

problems [Haxton and Barr (1972); Mustafa and Ertas (1995); Warminski and Kecik 

(2009)]. Although non-linearity problems exist in the pendulum absorber application, 

this can be avoided if the motion of pendulum absorber is small. Linear assumption, 

therefore, still can be used for the pendulum absorber. Webster and Semke (2005) 

designed and analyzed an effective RDVA for the use in space borne remote sensing 

with linear assumption. The presented RDVA demonstrated performance 

improvement over nearly the entire anticipated operational range. Recently, 

researchers attempted to design new kind of DVA by combining two kinds of 

DVA(s) including TDVA and RDVA as one for further vibration alleviation. Cha 

and Zhou (2006) presented an idea of imposing points with zero displacements and 

zero slopes at any location of interest along a linear structure which is under 

harmonic excitations. Their study showed that nodes can be introduced at any 

location of interest on a beam by using a combined type of absorber. Wong et al. 

(2007) proposed using the combined type absorber for vibration isolation of a beam 

which is under point or distributed harmonic disturbance. They proved a segment of 

beam with zero amplitude can be obtained if the combined type absorber is attached 

at a suitable location on the beam. Most researchers, up to now, have focused on the 

design and the working performance of the TDVA, however, very few research 

reports can be found on the design and the working performance of the RDVA in the 

literature. On the basis of the RDVA presented by Wong et al. (2007), a pure 

rotational DVA is much easier to fabricate, tune and implement into a vibrating 

system than the conventional translational one.  

 

Figure 2-4 Schematic of a rotational dynamic vibration absorber 
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The presented RDVA shown in Figure 2-4 is simply composed of a beam and a 

mass. Its mass is attached onto the connecting beam of the RDVA. This design 

allows easy RDVA tuning by changing the mass position along the connecting beam 

vertically. As the RDVA can provide a tunable moment arm for the mass, inertial 

moment can be easily changed. Comparing with the conventional TDVA, its tuning 

should be accompanied with replacement of spring or mass. RDVA, therefore, can 

provide greater tuning flexibility. With the advantages of simply fabrication, easy 

tuning and effective attenuation of vibration, further research works on RDVA 

studies and designs for vibration suppression is necessary in the future. 

 

2.3 Review of Adaptive Passive/Dynamic Vibration Absorber (ADVA) 

 

Structural resonant frequencies or disturbance frequencies may vary under different 

ambient conditions or time passing, attenuated performance of an accurately 

pre-tuned DVA, therefore, may degrade and hence even evoke vibration 

enhancement to the primary vibrating structure. To overcome the restriction of DVA 

on accurate tuning, an adaptive technique is used to dynamically modify the passive 

characteristics such as stiffness or damping of the DVA. This kind of modified DVA 

is called adaptive passive/dynamic vibration absorber (ADVA) [Sun et al. (1995)]. 

ADVA can effectively alleviate vibration level of a primary vibrating structure 

under parametric exciting such as operating machine with varying rotating speed or 

structure under wind induced vibration. A number of prior research works have been 

done on different adaptive design including spring stiffness variation [Fujino et al. 

(1993); Ryan et al. (1994); Buhr et al. (1997); Nagarajaiah and Varadarajan (2005); 

Williams et al. (2005); Deng et al. (2006); Sun et al. (2008)], piezoelectric-based 

device stiffness variation [Davis and Lesieutre (2000); Niederberger et al. (2004)] 

and damping variation [Hrovat et al. (1983); Anusonti-Inthra and Gandhi (2004)]. 

As control signal is required to vary the dynamic parameters of the ADVA, active 

control scheme is vital for generation of control signal. Active control scheme could 

be fuzzy logic controller [Lai and Wang (1996); Kidner and Brennan (2002)], 

fuzzy-PD controller [Rustighi et al. (2005)], hierarchical fuzzy logic controller [Lin 
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(2007)] and fuzzy-genetic algorithm controller [Kim and Roschke (2006)]. Although 

ADVA can effectively suppress vibration for structure under parametric excitation, 

restrictions are still bounded by its design. von Flotow et al. (1994) indicated three 

kinds of delays including logic delay, actuation delay and dynamic delay that may 

affect the performance of ADVA and restrict its application to slowly-varying 

disturbance frequencies. Morgan and Wang (2002) also noted ADVA is not suitable 

to be used for multiple frequencies or broadband excitation since its design is 

difficult to achieve fast and accurate tuning. 

 

2.4 Review of Active Vibration Absorber (AVA) 

 

Apart from the discussed DVA and ADVA, active vibration absorber (AVA) is the 

third kind of vibration absorber. It is mainly composed of a controller and active 

components. With the help of the active component, AVA can provide a 

counter-counting force or moment to the vibrating structure and hence achieve the 

goal of zero vibration to the primary structure [Williams et al. (2002)]. AVA shown 

in Figure 2-5 is different from the conventional DVA, it can be treated as a virtual 

DVA which is composed of virtual spring-damper-mass system. It is a special type 

of dynamic compensator which possesses a second order dynamic equation in the 

same form of that of a physical DVA. In the closed-loop form, it is equivalent to a 

composite system in which the physical primary structure and the virtual structure 

are connected through virtual springs, dashpots and acceleration dampers. The 

dynamic parameters of the virtual absorber can hence be tuned by different active 

control schemes [Bruner et al. (1992); Xu (1993); Lee Glauser et al. (1995)].    
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Figure 2-5 Schematic of an active vibration absorber 

Since the controller is critically important to control signal synthesis for the AVA, a 

number of research efforts have been done on the controller design in the past 

including linear quadratic optimal based controller [Balas (1978); Gupta (1980); 

Chung et al. (1989); Sievers and Von Flotow (1989); Lee Glauser et al. (1995)], 

Fuzzy-PD controller [Lin et al. (2007)] and Fuzzy-Genetic Algorithm controller 

[Pourzeynali et al. (2007)]. Studies of implementing AVA into real applications for 

vibration control have also been done including vibration control of flexible space 

structures [Kaplow and Velman (1978); Wie and Gonzalez (1990)], beam structures 

[Chung et al. (1989); Wu et al. (2007)], vehicle seat [Wu and Chen (2004)] and 

system damping enhancement [Rockwell (1965); Lindquist and Yakubovich (1997); 

Bhatta and Sinha (2003)]. 

With the help of active elements, robustness of AVA to changes in excitation 

frequencies can be improved. Vibration attenuation over a frequency band can be 

achieved [Xu (1993); Williams et al. (2002)]. Active damping can also be 

introduced into multi-resonant structures [Rockwell (1965)]. Although AVA can be 

an effective approach used for vibration mitigation, restrictions on implementation 
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of AVA into real applications still exist. As all counter efforts used for vibration 

suppression are generated by the actuator, its power should be sufficiently large in 

case of implementing AVA for large structural vibration control. The power 

consumption and actuator size, therefore, may be very large [von Flotow et al. 

(1994); Franchek et al. (1996); Wu et al. (2007)]. Another restriction is that 

mounting sometimes necessary for the skyhook/groundhook type actuator to 

generate its reaction force in AVA implementation [Rockwell (1965); Balas (1978); 

Wu and Chen (2004) Wu and Shao (2007)], this kind of design sometimes may not 

be practical in real structural application. Reliability and maintenance problems are 

also important considerations for AVA implementation. As the suppression 

performance of AVA relies on the actuator and its controller, failure of either 

component may cause malfunction of the entire vibrating control system. Comparing 

with DVA or ADVA which are fully or partially dependent on the passive 

components, AVA, however, may have lower reliability.  

 

2.5 Review of Hybrid Vibration Absorber (HVA) 

 

To achieve the goal of structural vibration control for random disturbance with lower 

power consumed actuator, an advanced design of vibration absorber called hybrid 

vibration absorber (HVA) is proposed. A typical translational HVA (THVA) shown 

in Figure 2-6 basically is an integration of a DVA and a force actuator [Sun et al. 

(2007)]. Reaction mass is supported by an active element which is parallel to 

resilient elements including spring and damper. Comparing with DVA and AVA, 

HVA seems possessing their advantages. In fact, HVA can cover a wider band 

frequency for vibration suppression and have higher control authority in case of 

comparing with DVA [Sun et al. (1995); Burdisso and Heilmann (1998)]. As passive 

spring is integrated in the HVA, it can help to share part of the counter-disturbance 

effort and the power requirement of the actuator can hence be much minimized [Wu 

et al. (2007)]. With the help of reaction mass and resilient elements, passive 

counterpart of the HVA can act as a DVA. In view of structural vibration protection, 
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HVA can be considered as a fail-safe device since it can perform as a DVA to 

continuously suppress structural vibration in case of active elements failure 

happened [Sun et al. (1995)]. In real practice, designers take the advantage of the 

characteristic of HVA which is composed of passive elements and active element. 

They design the HVA to work into two modes including active mode and passive 

mode. Active mode is used to control relatively small vibration of the primary 

structure while passive mode is used to control strong and violent vibration [Sun et 

al. (1995)]. Moreover, inertial actuator of HVA does not require mounting base to 

provide its reaction force, it can be directly installed in a vibrating structure [Benassi 

and Elliott (2004)]. This makes HVA more practical to implement into real 

application.  

Simply 

support 

beam

Sensor

Auxiliary 
Mass

Damping 

device

Spring Actuator

 

Figure 2-6 Schematic of a translational hybrid vibration absorber 

In the past, different kinds of actuator designs have been studied in previous research 

works. Most of these actuators are designed in translational form. These designs 

include dual mass HVA [Burdisso and Heilmann (1998); Du et al. (2005)], 

voice-coil type electromagnetic actuator [Yasuda et al. (1996); Nagem et al. (1997); 

Ikai et al. (2000); Chen et al. (2005)], electro-hydraulic actuator [Zhang and Alleyne 

(2003)] and hybrid piezoelectric absorber [Tang and Wang (2001); Morgan and 

Wang (2002)]. In real practice, researchers have implemented HVA(s) into real 

application including vibration control for bridges [Patten et al. (1996)], buildings 

[Chang and Soong (1980); Lee Glauser et al. (1995); Nonami et al. (1996)] and 

vehicles [Hirata et al. (1995); Huang and Lin (2003)]. Up to now, lots of researchers 

have focused on the development of translational-type HVA. Very few researchers, 

F=F0sinωt 
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however, focused on the development of rotational HVA (RHVA). Since HVA is 

composed of both active and passive elements, pre-tuning of its passive counter part 

is necessary in some kinds of absorber design [Yasuda et al. (1996); Yuan (2000)]. 

Its tuning process basically is the same as the DVA tuning. In the review of DVA, 

advantage of rotation type DVA on its ease of tuning has been presented. It is, 

therefore, of interest to investigate whether a rotational HVA can also possess the 

same advantages as the pure rotational DVA, whether a rotational HVA can provide 

similar vibration suppression ability as the conventional translational HVA and 

hence can be a better alternative design of HVA. 

Since the active element is integrated into the HVA, control algorithm is required to 

generate control signal for the actuator. There are basically two types of control 

schemes including modal control scheme and simple control scheme in the literature. 

HVA(s) controlled by modal control scheme and simple control scheme, hereinafter, 

are called modal hybrid vibration absorber (modal HVA) and simple hybrid 

vibration absorber (simple HVA) respectively [Yuan (2001)]. 

In modal control scheme, modal states of the primary structure are used as a 

reference in the control process. The modal states basically cannot be measured 

directly and should be recovered from its feedback measurements via modal filter. 

This, therefore, requires a large amount of sensors for the feedback measurements 

[Balas (1978)]. In addition to modal state feedback, modal control scheme is highly 

dependent on the exact mode functions of the primary structure in order to recover 

the modal states. In practice, it is very difficult for us to obtain the exact mode 

functions of the primary structure. Incorrect or inaccurate modal functions may lead 

to modal error and unsatisfactory control performance [Yuan (2001)]. Apart from 

the dependence of the exact mode functions and modal state feedback, modal control 

scheme needs on-line computation for the modal states recovery and hence leads to 

slower control performance [Yuan (2001)]. In the past, controllers designed on the 

basis of the modal control scheme have been studied by different researchers [Chang 

and Soong (1980); Nonami et al. (1994); Hirata et al. (1995); Yasuda et al. (1996); 

Lee Glauser et al. (1997); Adachi et al. (2004)]. 
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Comparing with modal control scheme, simple control scheme does not need to 

recover the modal states of the primary structure in the control process. It can 

directly process and use the sensor feedback signals for vibration control. With the 

help of simple control scheme, the amount of feedback sensors can be significantly 

minimized. Moreover, simple control scheme can save the on-line computation and 

avoid modal error since exact mode functions of the primary structure are 

unnecessary to recover the modal states [Yuan (2001)]. In the literature, a number of 

simple control schemes have been studied in the prior research works. They include 

delayed resonator [Olgac and Holm Hansen (1994)], PD controller [Elmali et al. 

(2000)], PID controller [Yuan (2000); Benassi and Elliott (2004)], feedforward 

controller [Burdisso and Heilmann (1998)], band-pass scheme [Filipovic and 

Schröder (1998)], neural network controller [Ma and Sinha (1996)], hierarchical 

fuzzy controller [Jalili (2000)], virtual passive devices [Wu et al. (2007)], active 

resonator [Filipovic and Schröder (1999)] and adaptive active resonator [Sun et al. 

(2007)]. Among those of the simple control schemes, Yuan (2001) indicated that 

most of the simple control algorithms can only assign closed-loop poles but lack the 

ability to assign closed-loop zeros and poles simultaneously to a structure-absorber 

coupled system. In fact, zeros and poles play important roles in a linear vibrating 

system. It can affect the frequency response of the system such as zeros can 

introduce absorption band and poles can attenuate resonance peaks. In his work, he 

presented using a PID controller, which is designed on the basis of the zero-pole 

placement method, with a HVA to assign closed-loop zeros and poles to a 

beam-absorber coupled system. This approach successfully attenuates resonant 

peaks of multi-modes and introduces an absorption frequency at the HVA coupling 

location for point vibration control. On the other hand, there are rare studies working 

on the controller designed with zero-pole placement method in the prior research 

works. Since zero-pole placement method has been clearly demonstrated its 

effectiveness on vibration mitigation of a vibrating system, further research works 

on controller design with zero-pole placement method are significantly important.  

Recently, more and more research works [Dayou and Brennan (2003); Jacquot 

(2003)] focus on global structural vibration control which aims at suppressing the 
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vibration of an entire beam structure instead of suppressing a point vibration. This is 

because vibration attenuated at a point may enhance vibration at ambient locations. 

Global structural vibration control, therefore, becomes significant to prevent 

vibration magnification at the structural ambient locations. Comparing with point 

vibration control, global structural vibration control is more complicated. However, 

the prior knowledge on point vibration control still can be useful on the global 

structural vibration control problem. Typically, active element can introduce active 

damping to the structure-absorber coupled system at the controlled point for point 

vibration control [Rockwell (1965); Bhatta and Sinha (2003)]. Therefore, the 

feasibility of introducing active damping to the entire beam structure with the active 

element for global structural vibration control is still a worth research question. In 

addition, it is of interest to design a global structural vibration controller with the 

zero-pole placement method to introduce absorption frequency and active damping 

simultaneously to the entire beam structure to achieve global structural vibration 

control. 

 

2.6 Summary of Literature Review 

 

Generally, skyhook/groundhook damper can be used for structural vibration control 

since it is an effective device used to dissipate vibration energy of a vibrating 

structure. However, its demand on the mounting base causes it unfeasible to install 

in some structures such as tall building or wing of a plane. On the other hand, HVA 

can be directly mounted on a vibrating structure for structural vibration attenuation 

and avoid the necessity of the mounting base. Implementing a HVA to replace the 

application of a skyhook/groundhook damper for structural vibration control, 

therefore, can be a significant research question. 

In addition, rotational passive vibration absorber (DVA) is easier to tune its 

absorption frequency when comparing with the translational one. As rotational HVA 

is composed of similar passive counter part as the DVA, rotational HVA may also 

possess the advantage on its ease of tuning. Therefore, it is worth to investigate 
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whether rotational HVA can provide similar vibration mitigation ability as the 

translational one and has the possibility as a better alternative design of HVA. 

Moreover, local point vibration control may enhance vibration amplitude of the 

structural ambient locations, global structural vibration control, however, can 

guarantee the vibration attenuation of the entire structure. In view of structure 

protection, global structural vibration control can be more effective and reliable to 

protect the structure from damage. In prior research works, controller designed on 

the basis of zero-pole placement method has been demonstrated to provide an 

excellent vibration suppression performance to a flexible structure in point vibration 

control. With the prior knowledge in point vibration control, further study on 

developing a global structural vibration controller with zero-pole placement method 

can be another important research question. 
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3 MATHEMATICAL MODELS 

 

In this chapter, the structure of a conventional translational hybrid vibration absorber 

(THVA), a new design of rotational hybrid vibration absorber (RHVA) and the 

limitations of a skyhook/groundhook damper are discussed. Analytical model of the 

RHVA, which is coupled with a beam structure, is derived when random disturbance 

is acting on a point or a portion of beam span; whereas this analytical model is rarely 

found in the literature. Well-known analytical models of a THVA and a groundhook 

damper, which are separately coupled with a beam structure, are also derived for 

further comparison with the RHVA on their vibration attenuation performance. 

Those analytical models are finally derived into their closed-loop transfer function 

for further controller design. 

 

3.1 Conventional Design of a Translational Hybrid Vibration Absorber 

 (THVA) 

 

 

Figure 3-1 Structure of a translational hybrid vibration absorber 

 

Conventional translational hybrid vibration absorber (THVA) shown in Figure 3-1 is 

basically composed of a linear spring, a linear damper, an inertial mass and a force 

actuator. The inertial mass is supported by the passive elements and the force 

actuator, which is in parallel with the passive elements. Typical force actuator can be 
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voice-coil electromagnetic actuator or electro-hydraulic actuator. Unlike the pure 

passive sprung-mass resonator, HVA typically can be used to achieve vibration 

mitigation within a frequency band since active element is integrated. In some HVA 

applications, its passive part can be tuned with respect to a disturbance frequency for 

vibration absorption. The absorption frequency fp of its passive counterpart in rad/s 

can be simply tuned with equation (3-1) where k and m are the stiffness and mass of 

the passive elements. 

 
m

k
f p =              (3-1) 

 

3.2 Mathematical Model of a Translational Hybrid Vibration Absorber 

 (THVA) – Beam Coupled System 

 

Mathematical model of a THVA, which is coupled with a beam, is derived for the 

cases of applying disturbance at a point and a portion of the beam structure 

separately. The models are finally derived to their closed-loop transfer functions for 

further controller design. 

 

3.2.1 Point Disturbance 

 

Figure 3-2 Point disturbance on a THVA-beam structure 
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A THVA shown in Figure 3-2 is coupled with a beam. The THVA consists of a 

sprung-mass as the passive part and an actuator as the active part. The beam is 

connected by two pairs of rotational and translational springs with different stiffness 

at its end points. Different types of boundary conditions can, therefore, be modeled 

via varying the stiffness of the springs. The beam has length l and its linear 

displacement is denoted as ),( xtw  while linear displacement of the THVA is 

denoted as )(twa . A disturbance )(td  acts at point xd and the THVA couples with 

the beam at point xa. The beam is assumed to satisfy the Euler-Bernoulli hypothesis. 

The system dynamics are described by the following equations: 

 

)()()(),(),( aad xxFxxtdxtwEIxtw −+−=′′′′+ δδρ && ,  lx <<0    (3-2) 

actaaaaaaa FxtwtwkxtwtwvF +−+−= )],()([)],()([ &&       (3-3) 

aaa Ftwm −=)(&&              (3-4) 

 

Equation (3-2) is the dynamic equation of the beam in terms of its translational 

motions where ρ  is the mass density per length; E is the Young’s modulus; I is the 

moment of inertia of the cross section of the beam; ),( xtw&&  is the second derivative 

of the linear displacement of the beam with respective to time, ),( xtw ′′′′  is the 

fourth derivative of the linear displacement of the beam with respective to x and 

( )axx −δ  is the Dirac delta function. Equation (3-3) models the coupling force aF  

with its active part Fact generated by the actuator. ),( axtw&  is the first derivative of 

the linear displacement of the beam at point xa with respect to time and )(twa
&  is the 

first derivative of the linear displacement of the THVA with respect to time. 

Parameters av  and ak  represent the damping coefficient and the stiffness of the 

translational passive part. The damping effect is assumed coming from the spring 

friction and as proportional damping. Equation (3-4) is a Newton’s equation where 

ma is the mass of the translational passive part and )(twa
&&  is the second derivative of 

the linear displacement of the THVA with respect to time. 
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From the above formulation, the total linear displacement of the coupled system is 

represented by a vector ( )[ ])(,, twxtwW a

T = . In general, it is difficult to solve a 

coupled system which consists of lumped-parameter system and 

distributed-parameter system. An easier alternative is to focus on the linear 

displacement of the beam ( )xtw ,  and decompose it into modal space through inner 

products. Separation of variables method is applicable to transform the spatial- 

temporal beam linear displacement ( )xtw ,  to an infinite series with its separated 

spatial and temporal terms. 

 ∑
∞

=

=
1

)()(),(
i

ii tqxxtw ϕ            (3-5) 

where )(xiϕ  and )(tqi  are the i
th

 mode eigen-function of translational motion and 

the i
th

 modal coordinate respectively.  

The inner products are volume integrals over the beam structure with its i
th

 mode 

eigen-function of translational motion ( )xiϕ . 
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In equations (3-6) and (3-7), )(tqi  and )(tqi
&&  represent the i

th
 modal coordinate and 

the secondary derivative of the i
th

 modal coordinate with respect to time respectively; 

while iω  denotes the natural frequency of the beam at the i
th

 mode. Using 

equations (3-6) and (3-7), equation (3-2) can be transformed to 

)()( 2 tqtq iii ω+&& ∫∫ −+−=
l

aia
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di dxxxxFdxxxxtd
00
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l

aiai ∫ −=
0

)()()( δϕϕ  
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Applying Laplace transformation to equations (3-9), (3-3), (3-4) and (3-5) a set of 

dynamic equations can be derived and written as 

22

)()(
)(

i

aaidi
i

s

Fxdx
sq

ω
ϕϕ

+

+
= ,      ...3,2,1=i   (3-10) 

actaaaaa FxswswkvsF +−+= )],()()[(         (3-11) 

aaa Fswms −=)(2             (3-12) 

∑
∞

=

=
1

)()(),(
i

ii sqxxsw ϕ            (3-13) 

Using equations (3-10) and (3-13), linear displacement of the beam can be expressed 

as spatial-temporal equations. 

∑∑
=

∞

=









+

+
≈=

m

i i

aaidi
pi

i
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ω
ϕϕ

ϕϕ ,      (3-14) 

where xp is the feedback sensor location and m is the truncated number of modes. 

Equation (3-14) can be written in vector-matrix form. 
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≈ ,       (3-15) 

 

where )]()([)( 1 pmp

T

p xx ϕϕϕ L= , )]()([)( 1 dmd

T

d xx ϕϕϕ L= , 

  )]()([)( 1 ama

T

a xx ϕϕϕ L= , and  
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Equation (3-15) can be further derived into the following transfer function form. 

 

pw   )(
1

)()(
1

)(
2222 aa

T

pd

T

p F
s

diagd
s

diag ϕ
ω

ϕϕ
ω

ϕ 





+

+





+

=   

 })()({
)(

1
)()( afd

p

afd FsBdsB
sA

FsHdsH +=+= ,         (3-16) 

where d

T

pd
s

diagsH ϕ
ω

ϕ 





+

=
22

1
)()( ; a

T

pf
s

diagsH ϕ
ω

ϕ 





+

=
22

1
)()( ; 

In equation (3-16), ∏ =
+=

m

i ip ssA
1

22 )()( ω  is the common denominator; )(sBd  is 

the numerator of )(sH d  and )(sB f  is the numerator of )(sH f .   

Once the feedback sensor collocates with the THVA, one may substitute equations 

(3-12) into equations (3-11) and obtain 

actp

a

a
aaa Fw

ms

F
kvsF +−−+= ])[(

2
         (3-17) 

where actF  is the active force and may be synthesized by 

pact wsGF )(−= ,            (3-18) 

where )(sG  is the controller transfer function of the THVA and to be discussed in 

the next chapter. 

A substitution of equation (3-18) into equation (3-17) leads to 
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[ ] paaa wsGkvs
sK

s
F )(

)(

2

++−= ,         (3-19) 

where 
a

a

a

a

m

k

m

v
sssK ++= 2)(   

One may substitute equation (3-19) into equation (3-16) and obtain the closed-loop 

transfer function. 

 

)()()(

)()(
2 sGsBssQ

sBsK

d

w

f

dp

+
= ,          (3-20) 

where ))(()()()( 2

aafp kvssBssKsAsQ ++=   

In real practice, coefficients of )(sQ , )(sBd  and )(2 sBs f  can be obtained via 

offline system identification. Equation (3-20), therefore, can be expressed in its 

discrete-time form written as 

 

)()()(

)()(

zGzBzQ

zBzK

d

w

f

dp

+
= ,          (3-21) 

 

Equation (3-21) is the closed-loop transfer function of the THVA-beam coupled 

system when arbitrary disturbance is acting on a point of the beam structure. A 

global structural vibration controller is developed on the basis of the transfer 

function and introduced in the next chapter. 
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3.2.2 Distributed Disturbance 

 

 

 

Figure 3-3 Distributed disturbance on a THVA-beam structure 

 

The same THVA is coupled with the same beam at point xa and shown in Figure 3-3. 

The beam detail has been described in the section 3.2.1 for Figure 3-2. A distributed 

disturbance modeled by )()( xatd  acts on a portion of the beam span from its 

mounting position to point xd . )(td  is a temporal function and )(xa  is a spatial 

function bounded everywhere except at a finite number of points (a possible 

example is 
lxx

xx
xa

d

d

<<

<<





=
0

0

1
)( ). The system dynamics are described by the 

following equations: 

)()()(),(),( aa xxFxatdxtwEIxtw −+=′′′′+ δρ && , ,0 lx <<     (3-22) 

actaaaaaaa FxtwtwkxtwtwvF +−+−= )],()([)],()([ &&       (3-3) 

aaa Ftwm −=)(&&              (3-4) 

Equation (3-22) is the dynamic equation of the beam in terms of its translational 

motions. All beam parameters have the same meaning as described in the section 

3.2.1 for Figure 3-2. Since the THVA coupling detail is the same as the one shown 

in Figure 3-2, equations (3-3) and (3-4) are used to model the THVA coupling 
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force aF . The prior presented equations are shown here for convenient reading 

purpose only. 

Linear displacement of the beam ),( xtw is decomposed into modal space via inner 

products. The inner products are volume integrals over the beam structure with its i
th

 

mode eigen-function of translational motion ( )xiϕ . 

 

Using equations (3-6) and (3-7), equation (3-22) can be transformed to 

 

)()( 2 tqtq iii ω+&& ∫∫ −+=
l

aia

l

i dxxxxFdxxaxtd
00

)()()()()( δϕϕ , ...3,2,1=i   

      aaii Fxd )(ϕα +=          (3-23) 

where )(tdd = , ∫=
l

ii dxxax
0

)()(ϕα  and ∫ −=
l

aiai dxxxxx
0

)()()( δϕϕ  

 

Applying Laplace transformation to equation (3-23), the dynamic equation of the 

beam can be derived and written as 

 

22

)(
)(

i

aaii
i

s

Fxd
sq

ω
ϕα
+

+
= ,       ...3,2,1=i   (3-24) 

 

Using equations (3-24) and (3-13), linear displacement of the beam can be expressed 

as spatial-temporal equations. 
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where xp is the feedback sensor location and m is the truncated number of modes. 

Equation (3-25) can be written in vector-matrix form. 
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where )]()([)( 1 pmp

T

p xx ϕϕϕ L= , ][)( 1 m

T ααα L= , 

  )]()([)( 1 ama
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a xx ϕϕϕ L= , and 
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Equation (3-26) can be further derived into the following transfer function form. 
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2222 aa
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s

diag ϕ
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ϕα
ω

ϕ 





+

+





+

=   

 })()(ˆ{
)(

1
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where α
ω

ϕ 





+

=
22

1
)()(ˆ

s
diagsH T

pd ; a

T

pf
s

diagsH ϕ
ω

ϕ 





+

=
22

1
)()( ; 

In equation (3-27), ∏ =
+=

m

i ip ssA
1

22 )()( ω  is the common denominator; )(ˆ sBd  is 

the numerator of )(ˆ sH d  and )(sB f  is the numerator of )(sH f .   
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Once the feedback sensor collocates with the THVA, one may substitute equation 

(3-19) into equation (3-27) and obtain the closed-loop transfer function. 

 

)()()(

)(ˆ)(
2 sGsBssQ

sBsK

d

w

f

dp

+
= ,          (3-28) 

where 
a

a

a

a

m

k

m

v
sssK ++= 2)(  and ))(()()()( 2

aafp kvssBssKsAsQ ++=  

 

In real practice, coefficients of )(sQ , )(ˆ sBd  and )(2 sBs f  can be obtained via 

offline system identification. Equation (3-28), therefore, can be expressed in its 

discrete-time form written as 

 

)()()(

)(ˆ)(

zGzBzQ

zBzK

d

w

f

dp

+
= ,          (3-29) 

 

Equation (3-29) is the closed-loop transfer function of the THVA-beam coupled 

system when random disturbance is acting on a portion of the beam span. In fact, 

equation (3-29) is very similar to equation (3-21), which is the closed-loop transfer 

function of the THVA-beam coupled system when the disturbance is applied at a 

point of the beam structure. The major difference between the two transfer functions 

is at their closed-loop numerators. The closed-loop numerator in equation (3-21) is 

composed of )()( zBzK d  and the one in equation (3-29) is composed of 

)(ˆ)( zBzK d . The numerators clearly demonstrated )(zBd  and )(ˆ zBd  are basically 

related to the position of the disturbance. This signifies that the disturbance location 

can only affect the closed-loop numerator instead of the closed-loop denominator. 

Therefore, the stability of the closed-loop system is not affected by the disturbance. 

This characteristic is briefly discussed in the chapter 4. 
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3.3 New Design of a Rotational Hybrid Vibration Absorber (RHVA) 

 

Figure 3-4 Structure of a rotational hybrid vibration absorber 

 

A new design of a rotational hybrid vibration absorber (RHVA) is proposed and 

shown in Figure 3-4. It simply consists of an inertial mass, a connecting beam and a 

moment actuator. The inertial mass is mounted on the connecting beam and can be 

slid along the beam vertically. The moment actuator can be small motor or 

piezoelectric actuator. In this project, a pair of piezoelectric actuators is used and 

attached to both sides of the connecting beam near the root position of the beam. The 

actuators are used to provide an active moment for the RHVA in the control process. 

Similar to the translational hybrid vibration absorber (THVA), the passive 

absorption frequency fp of the RHVA in rad/s can be tuned with its passive 

parameters in the following equation.  

 
2mr

k

J

k
f p ==            (3-30) 

where parameters k and J are the effective rotational stiffness of the connecting 

beam and second moment of inertia of the inertial mass respectively. m and r are the 

mass value and moment arm of the inertial mass. 

Unlike the THVA, it is easier to tune the passive absorption frequency fp of the 

RHVA by changing the moment arm r of its inertia mass. This can be achieved in 

the proposed design via sliding the inertial mass along the connecting beam 

vertically. The proposed RHVA can also avoid bulky linear actuators such as 

voice-coil electromagnetic actuator or electro-hydraulic actuator used in the THVA. 
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3.4 Mathematical Model of a Rotational Hybrid Vibration Absorber 

 (RHVA) – Beam Coupled System  

 

Mathematical model of a RHVA, which is coupled with a beam structure, is derived 

for the cases of applying disturbance at a point and a portion of the beam structure 

separately. The models are finally derived to their closed-loop transfer functions for 

further controller design. 

 

3.4.1 Point Disturbance 

 

Figure 3-5 Point disturbance on a RHVA-beam structure 

 

The proposed RHVA is coupled with a beam and shown in Figure 3-5. The structure 

of the beam is the same as the one described in the section 3.2.1 for Figure 3-2. The 

beam has length l and its linear displacement is denoted as ),( xtw ; the angular 

displacement of the beam is denoted as ),(),( xtw
x

xt
∂
∂

=θ ; while angular 

displacement of the RHVA is denoted as )(taθ . A disturbance )(td  acts at point xd 

and the RHVA couples with the beam at point xa. The beam is assumed to satisfy the 
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Euler-Bernoulli hypothesis. The system dynamics are described by the following 

equations: 

x

xxM
xxtdxtwEIxtw aa

d ∂

−∂
+−=′′′′+

)]([
)()(),(),(

δ
δρ && , ,0 lx <<   (3-31) 

actaaaaaaa MxttkxttvM +−+−= )],()([)],()([ θθθθ &&      (3-32) 

aaa MtJ −=)(θ&&             (3-33) 

 

Equation (3-31) is the dynamic equation of the beam in terms of its translational 

motions. It is modified from Cheung and Wong (2008). Where ρ  is the mass 

density per length; E is the Young’s modulus; I is the moment of inertia of the cross 

section of the beam; ),( xtw&&  is the second derivative of the linear displacement of 

the beam with respective to time, ),( xtw ′′′′  is the fourth derivative of the linear 

displacement of the beam with respective to x and ( )axx −δ  is the Dirac delta 

function. Equation (3-32) models the coupling moment aM  with its active part Mact 

generated by the actuators. ),( axtθ  is the angular displacement of the beam at point 

xa and ),( axtθ&  is its first derivative with respect to time; while )(taθ  is the 

angular displacement of the RHVA and )(taθ&  is its first derivative with respect to 

time. Parameters va and ka represent the damping coefficient and the stiffness of the 

rotational passive part. The damping effect is assumed coming from the connecting 

beam friction and as proportional damping. Equation (3-33) is a Newton’s equation 

where Ja is the second moment of inertia of the rotational passive part and )(taθ&&  is 

the second derivative of the angular displacement of the RHVA with respect to time. 

From the above formulation, the total angular displacement of the coupled system is 

represented by a vector ( )[ ])(,, txt a

T θθ=Θ . In general, it is difficult to solve a 

coupled system which consists of lumped-parameter system and 

distributed-parameter system. An easier alternative is to focus on the angular 

displacement of the beam ( )xt,θ  by decomposing the linear displacement of the 

beam ),( xtw  into modal space through inner products. Separation of variables 
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method is applicable to transform the spatial-temporal beam angular displacement 

( )xt,θ  to an infinite series with its separated spatial and temporal terms. 

 )()(),(
1

tqxxt i

i

i∑
∞

=

′= ϕθ           (3-34) 

where )(xiϕ ′  and )(tqi  are the i
th

 mode eigen-function of angular motion and the 

i
th

 modal coordinate respectively. 

The inner products are volume integrals over the beam structure with its i
th

 mode 

eigen-function of linear motion )(xiϕ . 

,),()(),()()(
020

dxxtwx
EI

dxxtwxtq
l

x
i

i

l

x
ii

′′′′== ∫∫ ==
ϕ

ρω
ϕ  ...3,2,1=i   (3-6) 

,),()()(
0

dxxtwxtq
l

x
ii

&&&& ∫ =
= ϕ       ...3,2,1=i   (3-7) 





=∫ = 0

1
)()(

0
dxxx

l

x
ji ϕϕ     

  1,2,3  

  1,2,3  

…=≠

…==

j  i,ji

j  i,ji
    (3-8) 

 

Equations (3-6) to (3-8) are presented in the section 3.2.1 and shown here for 

convenient reading purpose only. In equations (3-6) and (3-7), )(tqi  and )(tqi
&&  

represent the i
th

 modal coordinate and the secondary derivative of the i
th

 modal 

coordinate with respect to time respectively; while iω  denotes the natural 

frequency of the beam at the i
th

 mode. Using equations (3-6) and (3-7), equation 

(3-31) can be transformed to 

)()( 2 tqtq iii ω+&& ∫∫ ∂

−∂
+−=

l
a

ia

l

di dx
x

xx
xMdxxxxtd

00

)]([
)()()()(

δ
ϕδϕ ,    ...3,2,1=i  

      aaidi Mxdx )()( ϕϕ ′−=         (3-35) 

where )(tdd = , ∫ −=
l

didi dxxxxx
0

)()()( δϕϕ , ∫ ∂

−∂
=′−

l
a

iai dx
x

xx
xx

0

)]([
)()(

δ
ϕϕ  

 (http://mathworld.wolfram.com/DeltaFunction.html)
 

Applying Laplace transformation to equations (3-35), (3-32), (3-33) and (3-34), a set 

of dynamic equations can be derived and written as 
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22
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actaaaaa MxssksvM +−+= )],()()[( θθ         (3-37) 

aaa MsJs −=)(2 θ             (3-38) 

∑
∞

=

′=
1

)()(),(
i

ii sqxxs ϕθ            (3-39) 

Using equations (3-36) and (3-39), angular displacement of the beam can be 

expressed as spatial-temporal equations. 
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where xp is the feedback sensor location and m is the truncated number of modes. 

Equation (3-40) can be written in vector-matrix form. 

































′

′

−





































+

+
′′≈= a

am

a

dm

d

m

pmppp M

x

x

d

x

x

s

s

xxxs

)(

)(

)(

)(

1
00

00

00
1

)]()([),(

11

22

2

1

2

1

ϕ

ϕ

ϕ

ϕ

ω

ω
ϕϕθθ MMOL

  )(
1

)(
22 aad

T

p Md
s

diag ϕϕ
ω

ϕ ′−





+

′≈        (3-41) 
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T
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Equation (3-41) can be further derived into the following transfer function form. 
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In equation (3-42), ∏ =
+=

m

i ip ssA
1

22 )()( ω  is the common denominator; )(sBd  is 

the numerator of )(sH d  and )(sBm  is the numerator of )(sH m . 

 

Once the feedback sensor collocates with the RHVA, one may substitute equation 

(3-38) into equation (3-37) and obtain 

 

actp

a

a
aaa M

Js

M
ksvM +−−+= ])[(

2
θ         (3-43) 

where actM  is the active moment and may be synthesized by 

 

pact sGM θ)(−=             (3-44) 

where )(sG  is the controller transfer function for the RHVA and will be discussed 

in the next chapter. 

A substitution of equation (3-44) into equation (3-43) leads to 

[ ] paaa sGksv
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M θ)(
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One may substitute equation (3-45) into equation (3-42) and obtain the closed-loop 

transfer function. 

 

)()()(

)()(
2 sGsBssQ

sBsK

d m

dp

+
=

θ
,          (3-46) 

where ))(()()()( 2

aamp ksvsBssKsAsQ ++=   

 

In real practice, coefficients of )(sQ , )(sBd  and )(2 sBs m  can be obtained via 

offline system identification. Equation (3-46), therefore, can be expressed in its 

discrete-time form written as 

 

)()()(

)()(

zGzBzQ

zBzK

d m

dp

+
=

θ
,          (3-47) 

 

Equation (3-47) is the closed-loop transfer function of the RHVA-beam coupled 

system when random disturbance is acting on a point of the beam structure. A global 

structural vibration controller is developed on the basis of the transfer function and 

discussed in the next chapter. 
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3.4.2 Distributed Disturbance 

 

 

Figure 3-6 Distributed disturbance on a RHVA-beam structure 

  

The same RHVA is coupled with the same beam at point xa and shown in Figure 3-6. 

The beam detail has been described in the section 3.4.1 for Figure 3-5. A distributed 

disturbance modeled by )()( xatd  acts on a portion of the beam span from its 

mounting position to point xd. )(td  is a temporal function; )(xa  is a spatial 

function bounded everywhere except at a finite number of points (a possible 

example is 
lxx

xx
xa

d

d

<<

<<





=
0

0

1
)( ). The system dynamics are described by the 

following equations: 

x

xxM
xatdxtwEIxtw aa

∂
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+=′′′′+

)]([
)()(),(),(

δ
ρ && , ,0 lx <<    (3-48) 

actaaaaaaa MxttkxttvM +−+−= )],()([)],()([ θθθθ &&      (3-32) 

aaa MtJ −=)(θ&&             (3-33) 

 



CHAPTER 3 – MATHEMATICAL MODELS 
 

 42 

Equation (3-48) is the dynamic equation of the beam in terms of its translational 

motions. It is modified from Cheung and Wong (2008). All beam parameters have 

the same meaning as described in the section 3.4.1 for Figure 3-5. Since the RHVA 

coupling detail is the same as the one shown in Figure 3-5, equations (3-32) and 

(3-33) are used to model the RHVA coupling moment aM . The prior presented 

equations shown here are for convenient reading purpose only. 

Angular displacement of the beam ),( xtθ  can be obtained by decomposing the 

linear displacement of the beam ),( xtw  into modal space via inner products. The 

inner products are volume integrals over the beam structure with its i
th

 mode 

eigen-function of linear motion )(xiϕ . 

Using equations (3-6) and (3-7), equation (3-48) can be transformed to 
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ii dxxax
0
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)]([
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Applying Laplace transformation to equation (3-49), the dynamic equation of the 

beam can be derived and written as 

 

22

)(
)(

i

aaii
i

s

Mxd
sq

ω
ϕβ
+

′−
=       ...3,2,1=i    (3-50) 

Using equations (3-50) and (3-39), angular displacement of the beam can be 

expressed as spatial-temporal equations. 

∑∑
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i i

aaii
pi

i

ipip
s
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xsqxxs

1
22

1

)(
)()()(),(

ω
ϕβ

ϕϕθ ,       (3-51) 

 

where xp is the feedback sensor location and m is the truncated number of modes. 

Equation (3-51) can be written in vector-matrix form. 
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+

′≈        (3-52) 

 

where )]()([)( 1 pmp

T

p xx ϕϕϕ ′′=′ L , ][)( 1 m

T βββ L= , 

  )]()([)( 1 ama

T

a xx ϕϕϕ ′′=′ L , and  
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Equation (3-52) can be further derived into the following transfer function form. 

pθ )(
1

)()(
1

)(
2222 aa

T

p

T

p M
s

diagd
s

diag ϕ
ω

ϕβ
ω

ϕ ′





+

′−





+

′=  

{ }amd

p

amd MsBdsB
sA

MsHdsH )()(ˆ
)(

1
)()(ˆ +=+=     (3-53) 

where β
ω

ϕ 





+

′=
22

1
)()(ˆ

s
diagsH T

pd ;  a

T

pm
s

diagsH ϕ
ω

ϕ ′





+

′−=
22

1
)()( . 

In equation (3-53), ∏ =
+=

m

i ip ssA
1

22 )()( ω  is the common denominator; )(ˆ sBd  is 

the numerator of )(ˆ sH d  and )(sBm  is the numerator of )(sH m . 

 

Once the feedback sensor collocates with the RHVA, one may substitute equation 

(3-45) into equation (3-53) and obtain the closed-loop transfer function. 
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)()()(

)(ˆ)(
2 sGsBssQ

sBsK

d m

dp

+
=

θ
,          (3-54) 

 

where 
a

a

a

a

J

k

J

v
sssK ++= 2)(  and ))(()()()( 2

aamp ksvsBssKsAsQ ++=  

In real practice, coefficients of )(sQ , )(ˆ sBd  and )(2 sBs m  can be obtained via 

offline system identification. Equation (3-54), therefore, can be expressed in its 

discrete-time form written as 

 

)()()(

)(ˆ)(

zGzBzQ

zBzK

d m

dp

+
=

θ
,          (3-55) 

 

Equation (3-55) is the closed-loop transfer function of the RHVA-beam coupled 

system when random disturbance is acting on a portion of the beam span. 

 

3.5 Limitation of a Skyhook/Groundhook Damper 

 

Skyhook/groundhook damper is a damper which is mounted between a vibrating 

body and a fixed base such as wall or ground. It is a conventional and effective 

device used for structural vibration control. The mounting base is useful to provide a 

reaction force for the skyhook/groundhook damper but it may not always be 

available for the damper installation. RHVA could be a better alternative to be used 

for structural vibration control in case installation of a skyhook/groundhook damper 

is restricted. Mathematical model of a translational groundhook damper is derived in 

this section. The model to be used in further simulation tests can evaluate the 

vibration suppression performance of a groundhook damper and compare with a 

RHVA. 
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3.6 Mathematical Model of a Groundhook Damper – Beam Coupled System 

 

Mathematical model of a groundhook damper, which is mounted between a beam 

and a fixed base, is derived for the cases of applying disturbance at a point and a 

portion of the beam span separately. 

 

3.6.1 Point Disturbance 

 

Figure 3-7 Point disturbance on a groundhook damper-beam structure 

 

A groundhook damper is coupled with a beam and shown in Figure 3-7. The 

structure and detail of the beam are the same as the one described in the section 3.2.1 

for Figure 3-2. The beam has length l and its linear displacement is denoted as 

),( xtw . A disturbance )(td  acts at point xd and the groundhook damper couples 

with the beam at point xdam. The beam is assumed to satisfy the Euler-Bernoulli 

hypothesis. The system dynamics are described by the following equations: 

 

)()()(),(),( damdamd xxFxxtdxtwEIxtw −+−=′′′′+ δδρ &&  ,0 lx <<   (3-56) 

)],([ damdamdam xtwvF &−=            (3-57) 

Equation (3-56) is the dynamic equation of the beam in terms of its translational 

motions where ρ  is the mass density per length; E is the Young’s modulus; I is the 

moment of inertia of the cross section of the beam; ),( xtw&&  is the second derivative 
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of the linear displacement of the beam with respective to time, ),( xtw ′′′′  is the 

fourth derivative of the linear displacement of the beam with respective to x and 

( )damxx −δ  is the Dirac delta function. Equation (3-57) models the coupling force 

damF . ),( damxtw&  is the first derivative of the linear displacement of the beam at 

point xdam with respect to time. Parameter damv  represents the damping coefficient 

of the groundhook damper. 

Linear displacement of the beam ( )xtw ,  is decomposed into modal space via inner 

products. The inner products are volume integrals over the beam structure with its i
th

 

mode eigen-function of translational motion ( )xiϕ . 

Using equations (3-6) and (3-7), equation (3-56) can be transformed to 

 

)()( 2 tqtq iii ω+&& ∫∫ −+−=
l

damidam

l

di dxxxxFdxxxxtd
00

)()()()()( δϕδϕ , ...3,2,1=i   

   damdamidi Fxdx )()( ϕϕ +=        (3-58) 

where )(tdd = , dxxxxx
l

didi ∫ −=
0

)()()( δϕϕ  and dxxxxx
l

damidami ∫ −=
0

)()()( δϕϕ  

Applying Laplace transformation to equations (3-58) and (3-57), a set of dynamic 

equations of the beam can be derived and written as 

 

22

)()(
)(

i

damdamidi
i

s

Fxdx
sq

ω
ϕϕ
+

+
= ,     ...3,2,1=i   (3-59) 

)],([ damdamdam xswvsF −=           (3-60) 

 

Using equations (3-59) and (3-13), linear displacement of the beam can be expressed 

as spatial-temporal equations. 
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22
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ω
ϕϕ

ϕϕ       (3-61) 

 

where xp is the monitor sensor location and m is the truncated number of modes. 

Equation (3-61) can be written in vector-matrix form. 
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≈ ,       (3-62) 

 

where )]()([)( 1 pmp

T

p xx ϕϕϕ L= , )]()([)( 1 dmd

T

d xx ϕϕϕ L= , 

  )]()([)( 1 dammdam

T

dam xx ϕϕϕ L= , and  
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Equation (3-62) can be further derived into the following transfer function form. 

 

pw   )(
1

)()(
1

)(
2222 damdam

T

pd

T

p F
s

diagd
s

diag ϕ
ω

ϕϕ
ω

ϕ 





+

+





+

=   

 })()({
)(

1
)()( damdamd

p

damdamd FsBdsB
sA

FsHdsH +=+= ,        (3-63) 

where d

T

pd
s

diagsH ϕ
ω

ϕ 





+

=
22

1
)()( ; dam

T

pdam
s

diagsH ϕ
ω

ϕ 





+

=
22

1
)()( ; 

 

In equation (3-63), ∏ =
+=

m

i ip ssA
1

22 )()( ω  is the common denominator; )(sBd  is 

the numerator of )(sH d  and )(sBdam  is the numerator of )(sH dam . 

 

Once the monitor sensor collocates with the groundhook damper, one may substitute 

equation (3-60) into equation (3-63) and obtain the closed-loop transfer function. 
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damdamp

dp

vssBsA

sB

d

w

)()(

)(

+
=           (3-64) 

 

In real practice, coefficients of )(sAp , )(sBd  and )(ssBdam  can be obtained via 

offline system identification. Equation (3-64), therefore, can be expressed in its 

discrete-time form written as 

 

damdamp

dp

vzBzA

zB

d

w

)()(

)(

+
=           (3-65) 

 

Equation (3-65) is the closed-loop transfer function of the groundhook damper-beam 

coupled system when random disturbance is applied on a point of the beam 

structure. 

 

3.6.2 Distributed Disturbance 

 

Figure 3-8 Distributed disturbance on a groundhook damper-beam structure 

 

The same groundhook damper is coupled with the same beam at point xdam and 

shown in Figure 3-8. The beam detail has been described in the section 3.6.1 for 

Figure 3-7. A distributed disturbance modeled by )()( xatd  acts on a portion of the 

beam span from its mounting position to point xd . )(td  is a temporal function and 
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)(xa  is a spatial function bounded everywhere except at a finite number of points (a 

possible example is 
lxx

xx
xa

d

d

<<

<<





=
0

0

1
)( ). The system dynamics are described by 

the following equations: 

 

)()()(),(),( damdam xxFxatdxtwEIxtw −+=′′′′+ δρ && , ,0 lx <<    (3-66) 

)],([ damdamdam xtwvF &−=            (3-57) 

 

Equation (3-66) is the dynamic equation of the beam in terms of its translational 

motions. All beam parameters have the same meaning as described in the section 

3.6.1 for Figure 3-7. Since the groundhook damper coupling detail is the same as the 

one shown in Figure 3-7, equation (3-57) is used to model the groundhook damper 

coupling force damF . The prior presented equation shown here is for convenient 

reading purpose only. 

Linear displacement of the beam ( )xtw ,  is decomposed into modal space via inner 

products. The inner products are volume integrals over the beam structure with its i
th

 

mode eigen-function of translational motion ( )xiϕ . 

Using equations (3-6) and (3-7), equation (3-66) can be transformed to 

 

)()( 2 tqtq iii ω+&& ∫∫ −+=
l

damidam

l

i dxxxxFdxxaxtd
00

)()()()()( δϕϕ ,  ...3,2,1=i   

   damdamii Fxd )(ϕα +=         (3-67) 

where )(tdd = , dxxax
l

ii ∫=
0

)()(ϕα  and dxxxxx
l

damidami ∫ −=
0

)()()( δϕϕ  

 

Applying Laplace transformation to equation (3-67), a dynamic equation of the 

beam can be derived and written as 

22

)(
)(

i

damdamii
i

s

Fxd
sq

ω
ϕα
+

+
= ,       ...3,2,1=i  (3-68) 
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Using equations (3-68) and (3-13), linear displacement of the beam can be expressed 

as spatial-temporal equations. 
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where xp is the monitor sensor location and m is the truncated number of modes. 

Equation (3-69) can be written in vector-matrix form. 
































+





































+

+
≈= dam

damm

dam

m

m

pmppp F

x

x

d

s

s

xxxsww

)(

)(

1
00

00

00
1

)]()([),(

11

22

2

1

2

1

ϕ

ϕ

α

α

ω

ω
ϕϕ MMOL  

   )(
1

)(
22 damdam

T

p Fd
s

diag ϕα
ω

ϕ +





+

≈        (3-70) 
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Equation (3-70) can be further derived into the following transfer function form. 
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p F
s
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s

diag ϕ
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)(

1
)()(ˆ
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damdamd FsBdsB
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where α
ω
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=
22

1
)()(ˆ

s
diagsH T

pd ; dam

T

pdam
s

diagsH ϕ
ω
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+

=
22

1
)()( ; 

In equation (3-71), ∏ =
+=

m

i ip ssA
1

22 )()( ω  is the common denominator; )(ˆ sBd  is 

the numerator of )(ˆ sH d  and )(sBdam  is the numerator of )(sH dam . 
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Once the monitor sensor collocates with the groundhook damper, one may substitute 

equation (3-60) into equation (3-71) and obtain the closed-loop transfer function. 

damdamp

dp

vssBsA

sB

d

w

)()(

)(ˆ

+
=           (3-72) 

 

In real practice, coefficients of )(sAp , )(ˆ sBd  and )(ssBdam  can be obtained via 

offline system identification. Equation (3-72), therefore, can be expressed in its 

discrete-time form written as 

damdamp

dp

vzBzA

zB

d

w

)()(

)(ˆ

+
=           (3-73) 

 

Equation (3-73) is the closed-loop transfer function of the groundhook damper-beam 

coupled system when random disturbance is acting on a portion of the beam span. 

 

3.7 Summary 

 

In this chapter, structures of a conventional translational hybrid vibration absorber 

(THVA) and a new design of rotational hybrid vibration absorber (RHVA) are 

discussed. The limitation of implementing a skyhook/groundhook damper for 

structural vibration control is discussed. Analytical models for a THVA, a RHVA 

and a groundhook damper, which are separately coupled with a beam structure, are 

derived when random disturbance are applied on a point or a portion of the beam 

span. Those analytical models are finally derived into their closed-loop form for 

further controller design and analysis on their vibration suppression performance. 
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4 DESIGN OF GLOBAL STRUCTURAL VIBRATION 

  CONTROLLER 

 

In this chapter, a global vibration controller is designed with the pole-placement 

method. The controller can introduce active damping to an entire structure for global 

vibration control, and is applicable to either RHVA or THVA device. The 

closed-loop transfer function of the RHVA-beam coupled system, derived in the 

chapter 3, is used as a tool for the controller design. A novel approach is presented to 

select closed-loop poles, and Bezout equation is employed to calculate the controller 

parameters. Implementation technique of the proposed controller on a real 

HVA-beam coupled system is also discussed. Stability problem of the proposed 

controller is presented thereafter. 

 

4.1 Design of a Global Structural Vibration Controller 

 

The proposed global vibration controller is applicable to both RHVA and THVA 

devices. The controller design procedure is basically the same for either RHVA or 

THVA device. Since locations and forms of disturbance have no effects on the 

design procedure, the random disturbance on a point of a beam, which is coupled 

with a RHVA, is used as an example for demonstration of the controller design. The 

controller design is based on the closed-loop transfer function. 

Equation (3-50) is the closed-loop transfer function of the aforementioned case in its 

discrete-time form. It has been derived in the chapter 3 as 

 

)()()(

)()(

zGzBzQ

zBzK

d m

dp

+
=

θ
.          (3-50) 

 

In the closed-loop denominator, )(zG  is the controller transfer function. It may be 

designed as a rational function 
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)(

)(
)(

zU

zP
zG =               (4-1) 

where ∑
+

=

−=
12

0

)(
m

i

i

i zpzP , ∑
+

=

−+=
12

1

1)(
m

i

i

i zusU , with m being the order of the 

open-loop system. After substituting into equation (3-50), one can obtain 

 

)()()()(

)()()(

zPzBzQzU

zBzKzU

d m

dp

+
=

θ
           (4-2) 

 

Equation (4-2) is the new closed-loop transfer function of the coupled system in 

which the proposed controller is integrated. It clearly shows that )(zK  is part of the 

closed-loop numerator. Actually )(zK  is directly related to the passive counterpart 

of the HVA. In equation (3-48), it can be found that 
a

a

a

a

J

k

J

v
sssK ++= 2)(  in its 

continuous-time form. That means passive counter part of the HVA can introduce 

tunable zeros into the closed-loop system with a proper set of passive parameters. A 

tunable absorption frequency, therefore, can be introduced into the frequency 

response of a structure. 

Now the focus is on the closed-loop denominator. In general, the resonance of a 

structure is basically related to its closed-loop poles. Placing the closed-loop poles to 

suitable positions, therefore, can significantly suppress the resonant peaks of the 

structure. In general, stable closed-loop poles should be placed within a unit circle 

for discrete-time control system. One way to do this is to damp down open-loop 

poles and zeros. This is equivalent to introduce active damping to the structure. In 

equation (4-2), components of controller transfer functions, )(zP  and )(zU , 

become parts in the closed-loop denominator. With the help of Bezout equation, 

components )(zP  and )(zU  can be selected to place closed-loop poles to the 

desired positions. The closed-loop denominator of equation (4-2), hence, is used to 

construct a Bezout equation via 
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)()()()()( zTzPzBzQzU m =+ ,             (4-3) 

where ∑
+

=

−+=
34

1

1)(
m

i

i

i ztzT  is a prototype polynomial that introduces 4m+3 tunable 

poles to the closed-loop system. Roots of T(z) can be obtained via reciprocating or 

damping down the open-loop poles and zeros, which are the roots of the )(zQ  and 

)(zBm . If bjaRti ×+=  is one of the roots of )(zQ  and )(zBm , one may obtain 

the damped roots with the following equation. 

α×=′
i

i
Rt

tR
1

,   1>iRt ,              (4-4a) 

α×=′ ii RttR ,   1<iRt ,            (4-4b) 

 

where 10 <<α . The closer α to zero, the stronger active damping is introduced to 

the root. The prototype polynomial T(z) is constructed by 

 

)()( 34

1 i

m

i tRzzT ′−∏= +
= .            (4-5) 

 

The Bezout equation can be solved in the following matrix equation: 
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where ∑
+

=

−+=
22

1

1)(
m

i

i

i zqzQ and ∑
+

=

−=
22

1

)(
m

i

i

im zbzB  are available via offline system 

identification in real implementations. Coefficients of )(zU  and )(zP  can be 

calculated with equation (4-6) for the construction of controller transfer function 

)(zG . 

 

4.2 Implementation of the Proposed Controller on Real Application with 

 Off-line System Identification Method 

 

In section 4.1, it is clear that the controller design depends on roots of )(zQ  and 

)(zBm . Typically, stability of the closed-loop control system mainly depends on the 

accuracy of these roots. In real practice, one popular approach to obtain the accurate 

roots is via offline system identification. Offline system identification can identify 

an open-loop transfer function between the actuator and the monitor sensor. It 

utilizes a large amount of system input signals ku  and feedback signals ky  to 

construct the finite difference equation and finally identifies its open-loop transfer 

function. The finite difference equation is 

 

∑∑
=

−
=

− +−=
n

i

iki

n

i

ikik udycy
01

           (4-7) 

where ic , id  are the coefficients of the open-loop transfer function and n is the 

order of the system. Applying z-transformation to equation (4-7), one may obtain 

 

)(

1
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0 zG
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zY
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i
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i

n

i

i

i

=
+

=

∑

∑

=

−

=

−

           (4-8) 

where )(zGo  is the open-loop transfer function between the actuator and the 

feedback sensor. In real practice, equation (4-7) can be expressed in the following 

matrix form. 
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where [ ]Tkkk yyyyyy 1221 LL−−= , 

  [ ]Tkkk 1221 ττττττ LL−−= , 

  [ ]Tnn dddccc LL 1021 −−−=χ  
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Equation (4-9) can be simplified as  

τχ +=Vy                 (4-10) 

where χ  is composed of the coefficients ic  and id , and τ  is the identification 

residue. If coefficients ic  and id  are very close to their real values, the 

identification residue becomes very small and 0≈ττ T . Coefficients ic  and id  of 

the open-loop transfer function can, therefore, be identified by solving the following 

matrix equation in case the rank of V is 2n+1. 

[ ] yVVV TT 1−
=χ                (4-11) 

 

In real practice, the accuracy of coefficients ic  and id  depends on the system 

order n. If accurate system order is used to identify the open-loop transfer function, 

the residue error τ  can be minimized and the accuracy of the coefficients can be 
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increased. To roughly evaluate the system order n, a feasibility function J is used 

and shown below. 

)()( χχ VyVyJ T −−=               (4-12) 

 

This function measures the error of the identified coefficients and is used to check 

the “fitness” of the identified transfer function. In general, the value of the feasibility 

function J decreases as system order n increases. However, the reduction of J ceases 

to be significant when n becomes greater than the true system order. Therefore, the 

real system order can be roughly evaluated by this principle. 

In the RHVA-beam coupled system, )(zQ  and )(zBm  are the open-loop transfer 

functions in the discrete-time form. Hereinafter the focus is how to identify the 

open-loop transfer functions from a real RHVA-beam coupled system via offline 

system identification. One may start at the continuous-time form of the open-loop 

transfer function. The open-loop transfer function between the RHVA actuator and 

its collocated feedback sensor in s-domain can be obtained from equations (3-45) 

and (3-46). They have been derived in the chapter 3 and shown here again. 

})()({
)(

1
amd

p

p MsBdsB
sA

+=θ          (3-45) 

actp

a

a
aaa M

Js

M
ksvM +−−+= ])[(

2
θ         (3-46) 

Equation (3-46) can be expanded as 

)()(

)( 22

sK

Ms

sK

ksvs
M act

p
aa

a +






 +
−= θ          (4-13) 

where 
a

a

a

a

J

k

J

v
sssK ++= 2)(  

Substituting equation (4-13) into equation (3-45), one obtains 

[ ]actmdp MsBsdsBsK
sQ

)()()(
)(

1 2+=θ         (4-14) 

where ))(()()()( 2

aamp ksvsBssKsAsQ ++=  

Expressing equation (4-14) to its block diagram form, one may obtain 
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Figure 4-1 Block diagram of actuator, disturbance and feedback in RHVA-beam 

system 

If disturbance is not applied on the beam, equation (4-14) can be simplified to 

act
m

p M
sQ

sBs

)(

)(2

=θ             (4-15) 

and its block diagram can be expressed as 

 

 

Figure 4-2 Continuous-time open-loop transfer function from actuator to feedback 

sensor in RHVA-beam system 

 

In general, it is difficult to obtain the accurate transfer functions of a system in an 

analog approach. A better alternative is to identify them via offline system 

identification method in discrete-time domain. As described in the beginning of this 

section, offline system identification can identify an open-loop transfer function 

from a large amount of system input and feedback signals with the finite difference 

equation. In reality, this can be achieved by applying a random noise to the active 

control element of the coupled RHVA and recording both the noise and feedback 

signals. The identified open-loop transfer function, therefore, can be expressed as  

act
m

p M
zQ

zB

)(

)(
=θ             (4-16) 
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and shown as the following block diagram. 

 

 

Figure 4-3 Discrete-time open-loop transfer function from actuator to feedback 

sensor in RHVA-beam system 

 

After solving equation (4-11) with the measured data, coefficients of )(zQ  and 

)(zBm  can be identified from the real RHVA-beam coupled system. Controller can 

be further designed with the roots of the identified transfer functions )(zQ  and 

)(zBm .  

 

4.3 Stability of the Closed-Loop Control System 

 

In general, stability of a closed-loop control system mainly depends on its 

closed-loop denominator. In a discrete-time control system, stable closed-loop poles 

should be placed within a unit circle. With the help of equations (4-4a) and (4-4b), 

the prototype polynomial ))(zT  can assign stable closed-loop poles to the 

closed-loop system. However, instability still can arise from the closed-loop 

denominator, because a stable closed-loop can be guaranteed only if accurate 

open-loop transfer functions can be obtained. In real practice, the accuracy of 

open-loop transfer functions can be affected by different factors including, but not 

limited to, plant dynamics, sensor dynamics, actuator dynamics, filter dynamics and 

amplifier dynamics. However, lots of controller designs may only concern with the 

plant dynamics and neglect the remaining. In fact, neglecting some of the dynamics 

may cause instability of the closed-loop control system. 

The actuator and sensor dynamics, for example, may be considered as a 

transfer-function Mact=Gsd(z)u, where u is the actuation signal. Integrating it into 

equation (4-16), one may obtain 
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u
zQ

zB
u

zQ

zGzB msdm
p

)(

)(
~

)(

)()(
==θ         (4-17) 

where )()()(
~

zGzBzB sdmm =  and its block-diagram can be expressed as 

 

Figure 4-4 Open-loop transfer function from actuation signal u to feedback signal θp 

in RHVA-beam system with actuator/sensor dynamics 

Via offline system identification, all dynamic effects can be identified and integrated 

into an open-loop transfer function 
)(

)(
~

zQ

zBm . This open-loop transfer function can 

provide more accurate roots to the proposed prototype polynomial and is closer to 

the real system dynamics. Therefore, stable closed-loop poles can be guaranteed to 

assign to the closed-loop system with the prototype polynomial and hence to prevent 

instability of the system arising from neglect of partial system dynamics. This 

advantage makes the proposed controller different from many popular controllers. 

On the other hand, disturbance may be another factor to cause instability of a 

closed-loop control system. Disturbance actually is an uncertainty in real practice. 

The direction, acting position and form of the disturbance cannot be expected, 

stability problem arisen from the disturbance, therefore, should be addressed. 

However, the related stability problem has been briefly discussed in the end of 

section 3.2.2. Referring to equations (3-21) and (3-29), they are the closed-loop 

transfer functions for a THVA-beam coupled system when the disturbance is acting 

at a point and a portion of the beam span respectively. They have been derived in the 

chapter 3 and shown here again. 

)()()(

)()(

zGzBzQ

zBzK

d

w

f

dp

+
= ,          (3-21) 

)()()(

)(ˆ)(

zGzBzQ

zBzK

d

w

f

dp

+
= ,          (3-29) 
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The major difference between the two transfer functions is at their closed-loop 

numerators. The closed-loop numerator in equation (3-21) is composed of 

)()( zBzK d  and the one in equation (3-29) is composed of )(ˆ)( zBzK d . The 

numerators clearly demonstrated )(zBd  and )(ˆ zBd  are basically related to the 

position of the disturbance. In fact, )(zBd  and )(ˆ zBd  are the open-loop transfer 

functions between the disturbance and the feedback sensor. They may vary with 

different positions and forms of disturbance. Since )(zBd  and )(ˆ zBd  can only 

affect their respective closed-loop numerator instead of their respective closed-loop 

denominator, the stability of the closed-loop system is not affected by the 

disturbance. 

 

4.2 Summary 

 

In this chapter, a global structural vibration controller is designed on the basis of the 

pole-placement method. This controller can introduce active damping to an entire 

structure for global vibration control, and is applicable to either RHVA or THVA 

device. The closed-loop transfer function of the RHVA-beam coupled system is used 

as an example for controller design. A novel approach is presented to assign stable 

closed-loop poles to the closed-loop control system on the basis of its open-loop 

transfer function. Bezout equation is employed to calculate the controller parameters. 

On the other hand, passive parameters of the HVA is presented on its ability to 

assign closed-loop zeros to the closed-loop system. Offline system identification is 

discussed on how to identify an open-loop transfer function, which integrates with 

the system dynamics, from a real HVA-beam coupled system. Stability problems of 

the closed-loop control system related to the accurate identification of system 

dynamics and the disturbance are also discussed. 
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5 NUMERICAL SIMULATIONS 

 

In this chapter, three indices including mean square motion, spatial average motion 

and spatial average mean square motion [Jacquot (2003)] are introduced to quantify 

a point vibration motion, average vibration motion of an entire beam for a single 

frequency and a frequency band respectively. State-space models which were used 

to conduct the simulation tests are presented on their construction. A RHVA, a 

THVA and a groundhook damper have been separately applied to control a vibrating 

cantilever beam in simulation tests. Numerical results obtained from the simulation 

tests are presented. The introduced indices are calculated from the simulation results 

for each of the control devices. The percentages of reduction on these indices are 

used as references to evaluate the control performance for the RHVA, THVA and 

groundhook damper on their attenuation abilities of local and global vibration 

motions of a cantilever beam. Discussions and conclusions are finally presented on 

the basis of the calculated indices. 

 

5.1 Measuring Indices for Vibration Motions 

 

Mean square motion, spatial average motion and spatial average mean square motion 

are introduced in this section. They are used to observe the structural vibration 

amplitude at a single point, the average vibration amplitude of the entire beam 

structure at a single frequency and a frequency band respectively. Percentages of 

reduction on the mean square motion and the spatial average mean square motion 

can be used as references to evaluate the respective suppression performance of 

vibration motions at a point and on the entire beam structure for a device. 

 

5.1.1 Mean Square Motion 

 

Mean square motion is used to observe the structural vibration amplitude at a single 

point. It can be expressed in terms of translational and rotational motions to observe 
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the respective linear and angular vibration amplitudes of the beam structure at a 

point. They are denoted as )(2

mw xσ  and )(2

mxθσ  respectively where mx  is the 

monitor sensor location. Let 2|),(| m

j xew ω−  and 2|),(| m

j xe ωθ −  be power spectrum 

densities (PSDs) of their respective linear displacement ),( mxtw  and angular 

displacement ),( mxtθ . The translational mean square motion )(2

mw xσ  and 

rotational mean square motion )(2

mxθσ  are obtained with the following equations in 

discrete-time simulation tests. 

ω
π

ω
π

σ ωπ

π

ω ∆≈= ∑∫
=
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−

−
N

k

m

j

m

j
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1
|),(|
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222 |),(|
2

1
|),(|

2
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)( ,    (5-2) 

where 2|),(| m

j
xew kω−

 and 2|),(| m

j
xe kωθ −

 are the respective PSDs of ),( mxtw  and 

),( mxtθ  at the kth discrete frequency; N is the number of discrete frequency; ω∆  

is the frequency interval. 

 

5.1.2 Percentage of Reduction on Point Vibration Motion 

 

Respective percentage of reduction on the translational mean square motion 

)( mw xLR  and the rotational mean square motion )( mxLRθ  is used as reference to 

evaluate the suppression performance of translational and rotational vibration 

motions of a beam structure at a point for a device. They are obtained by 

%100
)(

)()(
)(

2

22

×
−

=
NoControlmw

ControlmwNoControlmw
mw

x

xx
xLR

σ
σσ

,       (5-3) 

%100
)(

)()(
)(

2

22

×
−

=
NoControlm

ControlmNoControlm
m

x

xx
xLR

θ

θθ
θ σ

σσ
,       (5-4) 

where Controlmw x )(2σ  and NoControlmw x )(2σ  are translational mean square motions for 

the cases with and without control respectively; Controlmx )(2

θσ  and NoControlmx )(2

θσ  

are rotational mean square motions for the cases with and without control 

respectively. 
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5.1.3 Spatial Average Motion 

 

Spatial average motion is used to observe the average vibration amplitude of the 

entire beam structure at a single frequency. It can be expressed in terms of 

translational and rotational motions to observe their respective average linear and 

angular vibration amplitudes of the entire beam structure at a single frequency. They 

are denoted as )(2

kw ωσ  and )(2

kωσθ  respectively where kω  is the interested 

frequency. Since the spatial average motions are used to observe the average 

vibration amplitudes of the entire beam structure at a certain frequency, its value 

should be taken on averaging the signals measured at different locations of the beam. 

In the simulation tests, the beam was separated into twenty equal species and 

twenty-one check points were established. The translational spatial average motion 

)(2

kw ωσ  and the rotational spatial average motion )(2

kωσθ  were calculated from 

the measured signals and obtained with the following equations in discrete-time 

simulation tests. 

 

∑∫
=

−− ≈=
M

i
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j
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M

dxxew
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M
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1

|),(|
1

)( ωω
θ θθωσ ,      (5-6) 

 

where 2|),(| xew jω−  and 2|),(| xe jωθ −  are the respective PSDs of θ(t,x) and w(t,x); 

2|),(| i

j xew ω−  and 2|),(| i

j xe ωθ −  are the respective PSDs of θ(t,x) and w(t,x) at the 

ith check point and M is the number of check points. Spatial average motions were 

used for plotting of the frequency spectrums in the sections of 5.3 and 5.4 to 

demonstrate the simulation results. Actually, it is similar to the power spectrum 

density but considering the average vibration magnitude of entire beam instead of a 

single point. 
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5.1.4 Spatial Average Mean Square Motion 

 

Spatial average mean square motion is similar to the spatial average motion but used 

to observe the average vibration amplitude of the entire beam structure within a 

frequency band. It can be expressed in terms of translational and rotational motions 

to observe their respective average linear and angular vibration amplitudes of the 

entire beam structure within a frequency band. They are denoted as )(2 Globalwσ  

and )(2 Globalθσ  respectively. The translational spatial average mean square motion 

)(2 Globalwσ  and the rotational spatial average mean square motion )(2 Globalθσ  

are obtained by integrating their spatial average motions over a frequency band. 
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where )(2

jw ωσ  and )(2

jωσθ  are the translational and rotational spatial average 

motions respectively at the jth discrete frequency; N is the number of discrete 

frequency and ω∆  is the frequency interval. 

 

5.1.5 Percentage of Reduction on Vibration Motion of Entire Beam 

 

Respective percentage of reduction on the translational spatial average mean square 

motion )(2 Globalwσ  and the rotational spatial average mean square motion 

)(2 Globalθσ  is used as reference to evaluate the suppression performance of average 

translational and rotational vibration motions of the entire beam within a frequency 

band for a device. They are obtained by 
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where Controlw Global)(2σ  and NoControlw Global)(2σ  are translational spatial average 

mean square motions for the cases with and without control respectively; 

ControlGlobal)(2

θσ  and NoControlGlobal)(2

θσ  are rotational spatial average mean 

square motions for the cases with and without control respectively. 

 

5.2 State-Space Model 

 

State-space models were constructed according to the previous derived mathematical 

models for different coupled systems. The general form of a state-space model is 

shown below. 

uBdBAxx 21 ++=&                (5-11) 

DuCxy +=                 (5-12) 

where A is the state matrix; B1 and B2 are the input matrices for the respective 

disturbance and control signals; C is the output matrix and D is equal to zero;  

x is the state vector; d and u are the input vectors which represent the disturbance 

and control signals; y is the output vector. 

 

THVA-beam coupled system is used as an example to demonstrate on how to use 

the state-space model for simulation test. Referring to equation (3-9), the modal 

coordinate of the system is aaidiiii Fxdxqq )()(2 ϕϕω ++−=&& . In general, a slight 

damping is introduced into the model to avoid infinite resonance and simulation 

error. The modal coordinate is, therefore, expressed as  

 

aaidiiiiii Fxdxqq )()(22 ϕϕωξω ++−−=&&           (5-13) 

where iξ  is the modal damping ratio of the ith mode and its state-space model is 

expressed as 
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where [ ]Tmm qqqqqqx &&L&&&&&L&&&
2121= ;  

  [ ]Tmm qqqqqqx &L&&L 2121= ;  
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xd, xa and xm are the respective disturbance, feedback sensor and monitor sensor 

locations; d and Fa are the respective disturbance and control signals; m is the 

truncated number of modes. 
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5.3 Comparison of RHVA and THVA on Local and Global Vibration 

 Suppression 

 

Simulation tests were conducted to test control performance of the RHVA and 

THVA. Angular and linear vibration amplitudes at the HVA coupling position and 

the twenty-one check points were measured in the simulation tests. Mean square 

motions, spatial average motions and spatial average mean square motions were 

calculated in terms of translational and rotational motions for the cases with and 

without HVA control on the basis of the simulation results. Percentages of reduction 

on mean square motions at the HVA coupling point were calculated to evaluate and 

compare the vibration suppression performance of the RHVA and THVA at the local 

coupling point. Percentages of reduction on the spatial average mean square motions 

were calculated to evaluate and compare the global vibration suppression 

performance of the RHVA and THVA on the entire beam structure. Spatial average 

motions were calculated and used for plotting of its PSDs. 

 

5.3.1 Simulation Details on RHVA-THVA Comparison Tests 

 

In the numerical tests, a cantilever beam was used as a tested structure. White noise 

was used as a disturbance and separately applied to a single point and a portion of 

the beam span. The point disturbance was acted at a point lxd 2.0=  and the 

distributed disturbance was applied on a portion of the beam span from its mounting 

position to point lxd 2.0= . Figures 5-1 and 5-2 show the schematics of a point 

disturbance on a cantilever beam which is coupled with a RHVA and a THVA 

respectively. Figures 5-3 and 5-4 show the schematics of a distributed disturbance 

on a cantilever beam which is coupled with a RHVA and a THVA respectively.  
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Figure 5-1 Point disturbance on a cantilever beam-RHVA system 

 

 

 

 

Figure 5-2 Point disturbance on a cantilever beam-THVA system 
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Figure 5-3 Distributed disturbance on a cantilever beam-RHVA system 

 

 

Figure 5-4 Distributed disturbance on a cantilever beam-THVA system 

 

In the figures, ),( xtθ  and )(taθ  denotes the angular displacements of the beam 

and the RHVA; ),( xtw  and )(twa  denotes the linear displacements of the beam 

and the THVA; )(td  denotes a point disturbance and )()( xatd  denotes a 



CHAPTER 5 – NUMERICAL SIMULATIONS 
 

 72 

distributed disturbance in which )(td  is a temporal function and )(xa  is a spatial 

function bounded everywhere except at a finite number of points (a possible 

example is 
lxx

xx
xa

d

d

<<

<<





=
0

0

1
)( ). The simulation details of the cantilever beam 

and the HVA(s) are shown in the following table. 

 THVA-Beam Coupled 

System 

RHVA-Beam Coupled 

System 

Beam length l 3 meter 

Beam width w 0.05 meter 

Beam thickness t 0.003 meter 

Beam density per length ρ  0.405 kg/m 

Young’s modulus of Beam E 91065×  N/m
2
 

Moment of inertia of cross section 

of beam I 

410125.1 −×  m
4
 

Beam mass 1.215 kg 

Modal damping of each mode iξ  0.005 

Truncated number of modes m 5 

HVA coupling position xa l 

Feedback sensor location xp l 

Inertial mass of HVA ma 0.1215 kg 

Second moment of inertia of the 

inertial mass J 
- 0.0109 kgm

2
 

Effective stiffness of the HVA 

spring k 
0.3348 N/m 0.0301 Nm/rad 

Passive absorption frequency 
am

k
=1.66 rad/s 

J

k
=1.66 rad/s 

Table 5-1 Simulation details on RHVA-THVA comparison 

 

In the simulation tests, the models were truncated to the first five modes and this is a 

reasonable approximation of the models. The eigen-function of the cantilever beam, 

which was used to construct the eigen-function-based state-space model, is shown 

below: 
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[ ] [ ])sinh()sin()cosh()cos()( xxxxx iiiiii λλµλλϕ −−−= ,        (5-16) 

 

where x is a position variable of the cantilever beam; )(xiϕ  is the ith mode of 

the eigen-function of the cantilever beam at position x; 
)sinh()sin(

)cosh()cos(

ll

ll

ii

ii
i λλ

λλ
µ

+
+

=  is 

a constant and liλ  is the eigen-value of the ith mode;  

The eigen-values of the first five modes are 1.875, 4.694, 7.854, 10.995 and 14.137. 

The natural frequencies can be expressed by 
4

2)(
l

EI
lii ρ

λω = . The beam 

characteristic parameters were on the basis of aluminum 6061 material and shown in 

the above table. The natural frequencies are 1.6600, 10.4032, 29.1292, 57.0816 and 

94.3600 rad/s. The sampling frequency at the simulation test is 220 rad/s. 

Referring to equations (3-2) and (3-31), the respective dynamic equation of the 

cantilever beam-THVA and cantilever beam-RHVA coupled systems when applying 

a point disturbance to the cantilever beam at the point xd=0.2l are shown below:  

 

( ) ( ) ( )lxFlxtdxtwEIxtw a −+−=′′′′+ δδρ 2.0),(0,(&& ,  ,0 lx <<      (5-17) 

x

lxM
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∂

−∂
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)]([
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δ
δρ && , ,0 lx <<      (5-18) 

 

Referring to equations (3-22) and (3-48), dynamic equations of the cantilever 

beam-THVA and cantilever beam-RHVA coupled systems, when applying a 

distributed disturbance to the cantilever beam from its mounting position to the point 

xd=0.2l, are shown below: 

 

( ) ( )lxFxatdxtwEIxtw a −+=′′′′+ δρ )(),(),(&& ,          (5-19) 
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The feedback sensor was collocated with the HVA at the tip position of the 

cantilever beam. This is because the end position of a cantilever beam is an antinode 

for all of its modes. Same inertial mass value was used for the RHVA and THVA. 

This is because one aim of the simulation tests is to test their control performance in 

case both of the HVA(s) carried with the same inertial mass. The passive absorption 

frequency of each HVA was tuned to the first resonant frequency 1.66 rad/s. 

Parameter α , which was used to damp the roots, was set as 0.96. This value was 

found to be the best for the HVA to introduce active damping to the cantilever beam 

by trial and error methods in which the percentage reduction on spatial average 

mean square motion was used as the reference. Theoretically, the closer α  to zero, 

the stronger active damping is introduced to the root. However, it was found that 

better attenuation performance can be achieved with less active damping. 

Eigen-function-based state-space models were constructed on the basis of the 

previous derived models with the toolbox “simulink” of the commercial software 

MatLAB. The constructed state-space models were then transformed to 

discrete-time-based models with MatLAB toolbox. This is to emulate the real 

experimental situation since those measured experimental signals are in the 

discrete-time form.  

 

5.3.2 Local Vibration Suppression Performance on a Cantilever Beam with 

 Point Disturbance 

 

This section is focused on the control performance of the RHVA and THVA on the 

vibration suppression performance of translational and rotational vibration motions 

at the HVA coupling point. This suppression performance is called local vibration 

suppression performance since it considers the motions of the local HVA coupling 

point. For the case of applying a point disturbance at point lxd 2.0=  of a cantilever 

beam which was separately coupled with a RHVA and a THVA at its end position, 

Figures 5-5 and 5-6 show the PSDs of ),( axtw  and ),( axtθ  for the cases with and 

without controls of RHVA and THVA. 
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Figure 5-5 PSDs of w(t,xa) with/without RHVA and THVA (point disturbance at 

xd=0.2l) 

 

 

 

 

 

Figure 5-6 PSDs of θ(t,xa) with/without RHVA and THVA (point disturbance at 

xd=0.2l) 

valley 

valley 
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In figures 5-5 and 5-6, a valley appears at the first mode of the respective PSDs of 

the translational and rotational motions for RHVA and THVA. The valley indicates 

that both the RHVA and THVA can introduce an absorption frequency to the first 

mode of the cantilever beam for absorption of its translational and rotational 

vibration motions at the respective HVA coupling point. This absorption frequency 

in reality can be simply tuned with the passive parameters of the RHVA and THVA 

by 
am

k
 and 

J

k
 respectively. On the other hand, the resonant peaks of both 

translational and rotational motions were significantly damped down by RHVA and 

THVA in all modes. This clearly demonstrates that the proposed controller can 

successfully introduce active damping to the cantilever beam at the respective HVA 

coupling position. 

To quantify the vibration motions of the local HVA coupling point, the translational 

and rotational mean square motions at the HVA coupling position, )(2

aw xσ  and 

)(2

axθσ , were calculated on the basis of the simulation results for the RHVA and 

THVA separately for the cases with and without control. The respective percentage 

of reduction on the translational and rotational mean square motions, )( aw xLR  and 

)( axLRθ , was calculated separately for the RHVA and THVA to evaluate their 

vibration attenuation performance at the local coupling point. The calculated results 

show that RHVA can suppress 92.7% of the translational mean square motion and 

87.5% of the rotational mean square motion while THVA can suppress 91.1% of 

translational mean square motion and 80.5% of rotational mean square motion. This 

shows that the RHVA has better mitigation ability than the THVA on the rotational 

vibration motion but similar attenuation performance on the translational vibration 

motion at its local coupling point. To obtain better understanding on how the 

disturbance location affects the control performance of the HVA, the point 

disturbance was acted at different location of xd including 0.2l, 0.4l, 0.6l, 0.8l and l. 

The respective percentage of reduction on translation and rotational mean square 

motions for RHVA and THVA is shown in the following table. 
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RHVA THVA Disturbance 

location xd )(%)( aw xLR  )(%)( axLRθ  )(%)( aw xLR  )(%)( axLRθ  

0.2l 92.7 87.5 91.1 80.5 

0.4l 94.3 92.5 93.4 85.9 

0.6l 95.3 95.7 94.9 92.9 

0.8l 96.1 96.9 95.7 96.4 

l 96.5 96.0 96.0 95.1 

Table 5-2 Local percentage reductions by RHVA and THVA (point disturbance) 

 

Table 5-2 shows that the respective percentage reduction on the local translational 

and rotational mean square motions, )( aw xLR  and )( axLRθ , for RHVA and THVA 

when a point disturbance was applied at different locations of a cantilever beam. The 

readings show that the RHVA generally has better alleviation ability than the THVA 

on the local rotational vibration motion but similar attenuation performance on the 

local translational vibration motion at its local coupling point even a point 

disturbance was applied in different locations. 

 

5.3.3 Global Vibration Suppression Performance on a Cantilever Beam 

 with Point Disturbance 

 

This section is focused on the control performance of the RHVA and THVA on the 

vibration suppression performance of the average translational and rotational 

vibration motions of the entire cantilever beam. This suppression performance is 

called global vibration suppression performance since it considers the motions of 

entire beam instead of the local HVA coupling point. For the case of applying a 

point disturbance at point lxd 2.0=  of a cantilever beam which was separately 

coupled with a RHVA and a THVA at its end position, Figures 5-7 and 5-8 show the 

respective PSD of translational spatial average motion )( kw ωσ  and rotational 

spatial average motion )( kωσθ  within a frequency band for the cases with and 

without controls of RHVA and THVA. 
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Figure 5-7 PSDs of translational spatial average motion with/without RHVA and 

THVA (point disturbance at xd=0.2l) 

 

Figure 5-8 PSDs of rotational spatial average motion with/without RHVA and 

THVA (point disturbance at xd=0.2l) 

 

In figures 5-7 and 5-8, a valley appears at the first mode of the respective PSD of the 

translational and rotational spatial average motions for RHVA and THVA. The 

valley indicates that both the RHVA and THVA can introduce an absorption 

frequency to the first mode of the cantilever beam for suppression of its translational 

valley 

valley 
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and rotational vibration motions at all the measuring check points. This absorption 

frequency in reality can be simply tuned with the passive parameters of the RHVA 

and THVA by 
am

k
 and 

J

k
 respectively. On the other hand, the resonant peaks 

of both translational and rotational spatial average motions were remarkably damped 

down by RHVA and THVA in all modes. This clearly shows that the proposed 

controller can successfully introduce active damping to the cantilever beam at all the 

measuring check points and the goal of introducing global active damping to the 

entire cantilever beam for global broadband structural vibration control was 

achieved. 

To quantify the average vibration motions of the entire cantilever beam, the 

translational and rotational spatial average mean square motions of the entire 

cantilever beam, )(2 Globalwσ  and )(2 Globalθσ , were calculated on the basis of the 

translational and rotational spatial average motions for the RHVA and THVA 

separately for the cases with and without control. The respective percentage of 

reduction on the translational and rotational spatial average mean square motions, 

wGR  and θGR , was calculated separately for the RHVA and THVA to evaluate 

their global vibration suppression performance on the entire cantilever beam. The 

calculated results show that RHVA can suppress 90.3% of the translational spatial 

average mean square motion and 86.9% of the rotational spatial average mean 

square motion while THVA can suppress 88.6% of translational spatial average 

mean square motion and 81.4% of rotational spatial average mean square motion. 

This indicates that the RHVA has better mitigation ability than the THVA on the 

average rotational vibration motion of the entire cantilever beam but similar 

attenuation performance on the average translational vibration motion of the entire 

cantilever beam. To obtain better understanding on how the disturbance location 

affects the control performance of the HVA, the point disturbance was acted at 

different location of xd including 0.2l, 0.4l, 0.6l, 0.8l and l. The respective 

percentage of reduction on translation and rotational spatial average mean square 

motions for RHVA and THVA is shown in the following table. 
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RHVA THVA Disturbance 

location xd (%)wGR  (%)θGR  (%)wGR  (%)θGR  

0.2l 90.3 86.9 88.6 81.4 

0.4l 92.2 91.5 91.7 87.3 

0.6l 93.8 94.3 93.9 93.0 

0.8l 95.1 95.7 95.1 95.6 

l 96.0 95.8 95.6 95.1 

Table 5-3 Global percentage reductions by RHVA and THVA (point disturbance at 

different locations) 

Table 5-3 shows that the respective percentage reduction on the translational and 

rotational spatial average mean square motions, wGR  and θGR , for RHVA and 

THVA when a point disturbance was applied at different locations of a cantilever 

beam. The readings show that the RHVA generally has better suppression ability 

than the THVA on the average rotational vibration motion of the entire cantilever 

beam but similar attenuation performance on the average translational vibration 

motion of the entire cantilever beam even a point disturbance was applied in 

different locations. 

 

5.3.4 Local Vibration Suppression Performance on a Cantilever Beam with 

 Distributed Disturbance 

 

This section is focused on the control performance of the RHVA and THVA on the 

local vibration suppression performance, when a distributed disturbance was applied 

at a portion of the cantilever beam span from its mounting position to point xd = 0.2l. 

Figures 5-9 and 5-10 show PSDs of ),( axtw  and ),( axtθ  for the cases with and 

without controls of RHVA and THVA.  
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Figure 5-9 PSDs of w(t,xa) with/without RHVA and THVA (distributed disturbance 

from x=0 to xd=0.2l) 

 

Figure 5-10 PSDs θ(t,xa) with/without RHVA and THVA (distributed disturbance 

from x=0 to xd=0.2l) 

 

In figures 5-9 and 5-10, a valley appears at the first mode of the respective PSD of 

the translational and rotational motions for RHVA and THVA. Similar to the case of 

applying a point disturbance to the cantilever beam, the valley indicates that both the 

RHVA and THVA can introduce an absorption frequency to the first mode of the 

valley 

valley 
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cantilever beam for attenuation of its translational and rotational vibration motions at 

the respective HVA coupling point. On the other hand, the resonant peaks of both 

translational and rotational motions were notably damped down by RHVA and 

THVA in all modes. This indicates that the proposed controller can successfully 

introduce active damping to the cantilever beam at the respective HVA coupling 

position even distributed disturbance acting on the cantilever beam span. 

The respective percentage of reduction on the translational and rotational mean 

square motions, )( aw xLR  and )( axLRθ , was calculated separately for the RHVA 

and THVA to evaluate their vibration alleviation performance at the local coupling 

point. The calculated results show that RHVA can suppress 92.2% of the 

translational mean square motion and 85.4% of the rotational mean square motion 

while THVA can suppress 90.5% of translational mean square motion and 79.6% of 

rotational mean square motion. This shows that the RHVA has better mitigation 

ability than the THVA on the rotational vibration motion but similar attenuation 

performance on the translational vibration motion at its local coupling point. To 

obtain better understanding on how the disturbance location affects the control 

performance of the HVA, the distributed disturbance was acted from the beam’s 

mounting position to different location of xd including 0.2l, 0.4l, 0.6l, 0.8l and l. The 

respective percentage of reduction on translation and rotational mean square motions 

for RHVA and THVA is shown in the following table. 

RHVA THVA Disturbance boundary 

from x=0 to xd )(%)( aw xLR  )(%)( axLRθ  )(%)( aw xLR  )(%)( axLRθ  

xd = 0.2l 92.2 85.4 90.5 79.6 

xd = 0.4l 93.5 90.3 92.3 82.7 

xd = 0.6l 94.5 93.3 93.8 87.3 

xd = 0.8l 95.3 95.5 94.8 92.3 

xd = l 95.9 96.8 95.5 95.7 

Table 5-4 Local percentage reductions by RHVA and THVA (distributed 

disturbance at different locations) 
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Table 5-4 shows that the respective percentage reduction on the local translational 

and rotational mean square motions, )( aw xLR  and )( axLRθ , for RHVA and THVA 

when distributed disturbance was applied at different locations of a cantilever beam. 

The readings show that the RHVA generally has better mitigation ability than the 

THVA on the local rotational vibration motion but similar suppression performance 

on the local translational vibration motion at its local coupling point when a 

distributed disturbance was applied in different locations of the cantilever beam. 

 

5.3.5 Global Vibration Suppression Performance on a Cantilever Beam 

 with Distributed Disturbance 

 

This section is focused on the control performance of the RHVA and THVA on the 

global vibration suppression performance of the entire cantilever beam, when a 

distributed disturbance was applied at a portion of the cantilever beam span from its 

mounting position to point xd = 0.2l. Figures 5-11 and 5-12 show the respective 

PSDs of translational spatial average motion )( kw ωσ  and rotational spatial average 

motion )( kωσθ  within a frequency band for the cases with and without controls of 

RHVA and THVA. 

 

Figure 5-11 PSDs of translational spatial average motion with/without RHVA and 

THVA (distributed disturbance from x=0 to xd=0.2l) 

valley 
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Figure 5-12 PSDs of rotational spatial average motion with/without RHVA and 

THVA (distributed disturbance from x=0 to xd=0.2l) 

 

In figures 5-11 and 5-12, a valley appears at the first mode of the respective PSD of 

the translational and rotational spatial average motions for RHVA and THVA. 

Similar to the case of applying a point disturbance at the cantilever beam, the valley 

indicates that both the RHVA and THVA can introduce an absorption frequency to 

the first mode of the cantilever beam for alleviation of its translational and rotational 

vibration motions at all the measuring check points. On the other hand, the resonant 

peaks of both translational and rotational spatial average motions were effectively 

damped down by both RHVA and THVA in all modes. This clearly shows that the 

proposed controller can successfully introduce damping effect to the cantilever beam 

at all the measuring check points even a distributed disturbance was applied to the 

cantilever beam span. This signifies the goal of introducing global active damping to 

the entire cantilever beam for global broadband structural vibration control was 

achieved. 

The respective percentage of reduction on the translational and rotational spatial 

average mean square motions, wGR  and θGR , was calculated separately for the 

RHVA and THVA to evaluate their global vibration suppression performance on the 

entire cantilever beam. The calculated results show that RHVA can suppress 89.8% 

valley 
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of the translational spatial average mean square motion and 85.1% of the rotational 

spatial average mean square motion while THVA can suppress 87.7% of 

translational spatial average mean square motion and 80.1% of rotational spatial 

average mean square motion. This indicates that the RHVA has better mitigation 

ability than the THVA on the average rotational vibration motion of the entire 

cantilever beam but similar attenuation performance on the average translational 

vibration motion of the entire cantilever beam. To obtain better understanding on 

how the disturbance location affects the control performance of the HVA, the 

distributed disturbance was acted from the beam’s mounting position to different 

location of xd including 0.2l, 0.4l, 0.6l, 0.8l and l. The respective percentage of 

reduction on translation and rotational spatial average mean square motions for 

RHVA and THVA is shown in the following table. 

 

Disturbance boundary 

from x=0 to xd 

RHVA THVA 

 (%)wGR  (%)θGR  (%)wGR  (%)θGR  

xd = 0.2l 89.8 85.1 87.7 80.1 

xd = 0.4l 91.2 89.5 90.2 84.0 

xd = 0.6l 92.6 92.2 92.2 88.6 

xd = 0.8l 93.8 94.1 93.7 92.5 

xd = l 94.8 95.4 94.7 94.9 

Table 5-5 Global percentage reductions by RHVA and THVA (distributed 

disturbance at different locations) 

 

Table 5-5 shows that the respective percentage reduction on the translational and 

rotational spatial average mean square motions, wGR  and θGR , for RHVA and 

THVA when a distributed disturbance was applied at different locations of a 

cantilever beam. The readings show that the RHVA generally has better suppression 

ability than the THVA on the average rotational vibration motion of the entire 

cantilever beam but similar attenuation performance on the average translational 
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vibration motion of the entire cantilever beam when a distributed disturbance was 

applied in different locations of the cantilever beam. 

 

5.3.6 Conclusion on RHVA-THVA Comparison Tests 

 

The above figures and tables show that implementation of the proposed controller 

with either RHVA or THVA can introduce a passive absorption frequency to both 

the local HVA coupling point and the measuring check points. Unlike the THVA, 

RHVA is easier to tune its passive absorption frequency in real application via 

varying the second moment of inertia of the HVA inertial mass. This, therefore, 

gives the practical advantage to the RHVA and makes the user easier to use the 

HVA.  

From the calculated indices, RHVA can at least suppress 85% of mean square 

motions and 85% of spatial average mean square motions while THVA can at least 

suppress 79% of mean square motions and 80% of spatial average mean square 

motions. Those values will change when disturbance is acting at different locations 

of the cantilever beam with different form. In general, the RHVA has better 

suppression performance on the rotational vibration motions but similar attenuation 

performance on the translational vibration motions of a cantilever beam at a local 

HVA coupling point and on the entire beam structure. 

For the disturbance, the readings of the discussed tables demonstrate that the 

disturbance form and location can affect the vibration alleviation performance of the 

HVA and the proposed controller. The simulation results show that disturbance 

variation can reduce about 8% and 15% of the global attenuation performance on the 

translational and rotational vibration motions for THVA respectively and reduce 

about 6% and 10% of the global attenuation performance on the translational and 

rotational vibration motions for RHVA respectively. These results can be calculated 

by subtracting the maximum and minimum values of percentages discussed in the 

tables 5-2, 5-3, 5-4 and 5-5 for the respective HVA. For example, the maximum and 

minimum percentages of reduction on translational spatial average mean square 

motion among the four tables for THVA are 95.6% and 87.7%, the percentage 
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reduction on its global attenuation performance due to disturbance variation is 

therefore equal to 8%. This signifies that the RHVA can provide more stable 

mitigation performance than the THVA for the structure when disturbance form and 

location are changed. Integrating all of the above discussed vantages, RHVA, 

therefore, can be considered as a better alternative HVA design than the 

conventional THVA. 

For the proposed controller, the figures indicate that all the resonant peaks of the 

cantilever beam can successfully damp down for all modes at both local HVA 

coupling point and the measuring check points no matter a point or a distributed 

disturbance was applied on the beam structure. This signifies that the proposed 

controller can successfully introduce global active damping to the entire beam 

structure for global structural vibration control within a frequency band. Besides, the 

figures in tables 5.2 to 5.5 show that the controller has better vibration attenuation 

performance if the disturbance is near to the sensor and RHVA coupling location. 

Generally, this is because collocation between the disturbance, sensor and RHVA 

can improve the vibration suppression performance of the controller. 

 

5.4 Comparison of RHVA and Groundhook Damper on Local and Global  

 Vibration Suppression Performance 

 

Simulation tests were conducted to test and compare control performance of the 

RHVA and groundhook damper. Angular and linear vibration amplitudes at the 

RHVA or groundhook damper coupling position and the twenty-one check points 

were measured in the simulation tests. Mean square motions, spatial average 

motions and spatial average mean square motions were calculated in terms of 

translational and rotational motions for the cases with and without control on the 

basis of the simulation results. Percentages of reduction on mean square motions at 

the device coupling point were calculated to evaluate and compare the vibration 

suppression performance of the RHVA and groundhook damper at the local 

coupling point. Percentages of reduction on the spatial average mean square motions 

were calculated to evaluate and compare the global vibration suppression 
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performance of the RHVA and groundhook damper on the entire beam structure. 

Spatial average motions were calculated and used for plotting of its frequency 

spectrum. 

 

5.4.1 Simulation Details on RHVA-Groundhook Damper Comparison Tests 

 

In the numerical tests, a cantilever beam was used as a tested structure. White noise 

was used as a disturbance and separately applied to a single point and a portion of 

the beam span. The point disturbance was acted at a point lxd 2.0=  and the 

distributed disturbance was applied on a portion of the beam span from its mounting 

position to point lxd 2.0= . The respective schematic of separately applying a point 

disturbance and a distributed disturbance to a cantilever-beam-RHVA coupled 

system were shown in Figures 5-1 and 5-3. Figures 5-13 and 5-14 show the 

respective schematic of a cantilever beam-groundhook damper coupled system when 

a point disturbance and a distributed disturbance were separately applied to the beam 

structure.  

 

Figure 5-13 Point disturbance on a cantilever beam-groundhook damper system 
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Figure 5-14 Distributed disturbance on a cantilever beam-groundhook damper 

system 

 

In the figures, ),( xtθ  and )(taθ  denotes the angular displacements of the beam 

and the RHVA; ),( xtw  denotes the linear displacements of the beam; )(td  

denotes a point disturbance and )()( xatd  denotes a distributed disturbance in 

which )(td  is a temporal function and )(xa  is a spatial function bounded 

everywhere except at a finite number of points (a possible example is 

lxx

xx
xa

d

d

<<

<<





=
0

0

1
)( ). The simulation details of the cantilever beam, RHVA and 

groundhook damper are shown in the following table. 

 
RHVA-Beam Coupled 

System 

Groundhook 

Damper-Beam 

Coupled System 

Beam length l 3 meter 

Beam width w 0.05 meter 

Beam thickness t 0.003 meter 

Beam density per length ρ  0.405 kg/m 

Young’s modulus of Beam E 91065×  N/m
2
 

Moment of inertia of cross section 

of beam I 

410125.1 −×  m
4
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Beam mass 1.215 kg 

Modal damping of each mode iξ  0.005 

Truncated number of modes m 5 

Device coupling position xa =l xdam =l 

Feedback/monitor sensor location  xp =l xm =l 

Inertial mass of HVA ma 0.1215 kg - 

Second moment of inertia of the 

inertial mass J 
0.0109 kgm

2
 - 

Effective stiffness of the HVA 

spring k 
0.0301 Nm/rad - 

Passive absorption frequency 
J

k
=1.66 rad/s - 

Damping coefficient of the 

groundhook damper 
- 0.4 Ns/m 

 

Table 5-6 Simulation details on RHVA-groundhook damper comparison 

 

In the simulation tests, the models were truncated to the first five modes and this is a 

reasonable approximation of the models. The eigen-function of the cantilever beam, 

which was used to construct the eigen-function-based state-space model, was 

presented in equation (5-16). The eigen-values of the first five modes are 1.875, 

4.694, 7.854, 10.995 and 14.137. The beam characteristic parameters were on the 

basis of aluminum 6061 material and shown in the above table. The natural 

frequencies are 1.6600, 10.4032, 29.1292, 57.0816 and 94.3600 rad/s. The sampling 

frequency in the simulation test is 220 rad/s. 

Referring to equation (3-56), the respective dynamic equation of the cantilever 

beam-groundhook damper coupled system, when applying a point disturbance to the 

cantilever beam at the point xd=0.2l, is shown below:  

 

( ) ( ) ( )lxFlxtdxtwEIxtw dam −+−=′′′′+ δδρ 2.0),(),(&& , ,0 lx <<      (5-21) 

Referring to equation (3-66), the respective dynamic equation of the cantilever 

beam-groundhook damper coupled system, when applying a distributed disturbance 
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to the cantilever beam from its mounting position to the point xd=0.2l, is shown 

below: 

 

( ) ( )lxFxatdxtwEIxtw dam −+=′′′′+ δρ )(),(),(&& , ,0 lx <<       (5-22) 

where ,0 lx <<   
lxl

lx
xa

<<

<<





=
2.0

2.00

0

1
)(          

 

For the cantilever beam-RHVA coupled system, its system dynamic equations can 

be referred to equations (5-18) and (5-20) for the point disturbance and distributed 

disturbance respectively. 

The feedback sensor was collocated with the RHVA at the tip position of the 

cantilever beam. The passive absorption frequency of the RHVA was tuned to the 

first resonant frequency 1.66 rad/s. Parameter α , which was used to damp the roots, 

was set as 0.96. The damping coefficient of the groundhook damper was set as 0.4 

Ns/m. In general, the vibration attenuation performance of a groundhook damper can 

be enhanced by increasing its damping coefficient. However, it is meaningless to use 

a very large damping coefficient to conduct the numerical tests and compare the 

results with the RHVA. This is because very large damping coefficient will 

significantly change the boundary condition of the cantilever beam from fixed-free 

to fixed-support condition. This study is to evaluate whether a RHVA can provide 

similar vibration attenuation performance as a groundhook damper. In the simulation 

tests, the damping coefficient of the groundhook damper was selected as 0.4 Ns/m. 

This value can provide similar percentage reductions on mean square motions and 

spatial average mean square motions as the RHVA when a point disturbance was 

applied at the point xd=0.2l of the cantilever beam. It was used as the reference 

damping coefficient for the groundhook damper in all of the simulation tests. 

Eigen-function-based state-space models were constructed on the basis of the 

previous derived models with the toolbox “simulink” of the commercial software 

MatLAB. The constructed state-space models were then transformed to 

discrete-time-based models with MatLAB toolbox. This is to emulate the real 
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experimental situation since those measured experimental signals are in the 

discrete-time form.  

 

5.4.2 Local Vibration Suppression Performance on a Cantilever Beam with 

 Point Disturbance 

 

This section is focused on the control performance of the RHVA and groundhook 

damper on the vibration suppression performance of translational and rotational 

vibration motions at the coupling point of the respective device. For the case of 

applying a point disturbance at point lxd 2.0=  of a cantilever beam which was 

separately coupled with a RHVA and a groundhook damper at its end position x=l, 

Figures 5-15 and 5-16 show the respective PSD of ),( ltw  and ),( ltθ  for the cases 

with and without controls of RHVA and groundhook damper. 

 

 

Figure 5-15 PSDs of w(t,l) with/without RHVA and groundhook damper (point 

disturbance at xd=0.2l) 

 

valley 
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Figure 5-16 PSDs of θ(t,l) with/without RHVA and groundhook damper (point 

disturbance at xd=0.2l) 

 

In figures 5-15 and 5-16, the resonant peaks of all modes in the respective PSD of 

the translational and rotational motions can be damped down by the groundhook 

damper. This shows the groundhook damper can effectively dissipate the vibrating 

energy of the cantilever beam at its coupling point. For the RHVA, a valley appears 

at the first mode of the respective PSD of the translational and rotational motions. 

This valley was introduced by the RHVA when its passive absorption frequency was 

tuned to the first resonant frequency of the cantilever beam. The valley can 

remarkably reduce the translational and rotational vibration motions of the first 

resonant mode of the cantilever beam at the RHVA coupling point. On the other 

hand, the RHVA can also significantly damp down the resonant peaks of both 

translational and rotational motions of the cantilever beam in all modes. This is 

because the RHVA introduces active damping to the cantilever beam at the RHVA 

coupling point. 

To quantify the vibration motions of the device coupling point, the translational and 

rotational mean square motions at the device coupling position, )(2 lwσ  and )(2 lθσ , 

were calculated on the basis of the simulation results for the RHVA and groundhook 

damper separately for the cases with and without control. The respective percentage 

valley 
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of reduction on the translational and rotational mean square motions, )(lLRw  and 

)(lLRθ , was calculated separately for the RHVA and groundhook damper to 

evaluate their vibration attenuation performance at the local coupling point. The 

calculated results show that RHVA can suppress 92.7% of the translational mean 

square motion and 87.5% of the rotational mean square motion while groundhook 

damper can suppress 95.6% of translational mean square motion and 87.1% of 

rotational mean square motion. This shows that the RHVA has similar mitigation 

ability to the groundhook damper on both translational and rotational vibration 

motions at its local coupling point. To obtain better understanding on how the 

disturbance location affects the control performance of the groundhook damper and 

RHVA, the point disturbance was acted at different location of xd including 0.2l, 0.4l, 

0.6l, 0.8l and l. The respective percentage of reduction on translation and rotational 

mean square motions for groundhook damper and RHVA is shown in the following 

table. 

 

RHVA Groundhook Damper Disturbance 

location xd )(%)(lLRw  )(%)(lLRθ  )(%)(lLRw  )(%)(lLRθ  

0.2l 92.7 87.5 95.6 87.1 

0.4l 94.3 92.5 96.8 93.8 

0.6l 95.3 95.7 97.1 96.1 

0.8l 96.1 96.9 97.1 96.9 

l 96.5 96.0 97.1 96.2 

Table 5-7 Local percentage reductions by RHVA and groundhook damper (point 

disturbance at different locations) 

Table 5-7 shows that the respective percentage reduction on the local translational 

and rotational mean square motions, )(lLRw  and )(lLRθ , for RHVA and 

groundhook damper when a point disturbance was applied at different locations of a 

cantilever beam. The readings show that the RHVA has similar alleviation ability to 

the groundhook damper on the local translational and rotational vibration motions 
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when a point disturbance was applied in different locations. The maximum 

performance difference between the RHVA and groundhook damper is about 3%. 

 

5.4.3 Global Vibration Suppression Performance on a Cantilever Beam 

 with Point Disturbance 

 

This section is focused on the control performance of the RHVA and groundhook 

damper on the vibration suppression performance of the average translational and 

rotational vibration motions of the entire cantilever beam. This suppression 

performance is called global vibration suppression performance since it considers 

the motions of entire beam instead of the coupling point of device. For the case of 

applying a point disturbance at point lxd 2.0=  of a cantilever beam which was 

separately coupled with a RHVA and a groundhook damper at its end position, 

Figures 5-17 and 5-18 show the respective PSD of translational spatial average 

motion )( kw ωσ  and rotational spatial average motion )( kωσθ  within a frequency 

band for the cases with and without controls of RHVA and groundhook damper. 

 

Figure 5-17 PSDs of translational spatial average motion with/without RHVA and 

groundhook damper (point disturbance at xd=0.2l) 

valley 
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Figure 5-18 PSDs of rotational spatial average motion with/without RHVA and 

groundhook damper (point disturbance at xd=0.2l) 

In figures 5-17 and 5-18, the resonant peaks of all modes in the respective PSD of 

the translational and rotational spatial average motions can be damped down by the 

groundhook damper. This indicates the groundhook damper can effectively dissipate 

the vibrating energy of the entire cantilever beam. For the RHVA, a valley appears 

at the first mode of the respective frequency spectrum of the translational and 

rotational spatial average motions. This valley was introduced by the RHVA when 

its passive absorption frequency was tuned to the first resonant frequency of the 

cantilever beam. The valley can notably reduce the translational and rotational 

vibration motions of the first resonant mode of the cantilever beam at all the 

measuring check points. On the other hand, the RHVA can also significantly damp 

down the resonant peaks of both translational and rotational spatial average motions 

of the cantilever beam in all modes. This is because the RHVA introduces active 

damping to the cantilever beam at all the measuring check points. 

To quantify the average vibration motions of the entire cantilever beam, the 

translational and rotational spatial average mean square motions of the entire 

cantilever beam, )(2 Globalwσ  and )(2 Globalθσ , were calculated on the basis of the 

translational and rotational spatial average motions for the RHVA and groundhook 

damper separately for the cases with and without control. The respective percentage 

valley 
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of reduction on the translational and rotational spatial average mean square motions, 

wGR  and θGR , was calculated separately for the RHVA and groundhook damper to 

evaluate their global vibration suppression performance on the entire cantilever 

beam. The calculated results show that RHVA can suppress 90.3% of the 

translational spatial average mean square motion and 86.9% of the rotational spatial 

average mean square motion while THVA can suppress 95.5% of translational 

spatial average mean square motion and 88.9% of rotational spatial average mean 

square motion. This indicates that the groundhook damper has better mitigation 

ability than the RHVA on the average translational vibration motion but similar 

suppression ability on the average rotational vibration motion of the entire cantilever 

beam. To obtain better understanding on how the disturbance location affects the 

control performance of the RHVA and groundhook damper, the point disturbance 

was acted at different location of xd including 0.2l, 0.4l, 0.6l, 0.8l and l. The 

respective percentage of reduction on translation and rotational spatial average mean 

square motions for RHVA and groundhook damper is shown in the following table. 

RHVA Groundhook Damper Disturbance 

location xd (%)wGR  (%)θGR  (%)wGR  (%)θGR  

0.2l 90.3 86.9 95.5 88.9 

0.4l 92.2 91.5 96.7 94.7 

0.6l 93.8 94.3 97.0 96.5 

0.8l 95.1 95.7 97.1 97.0 

l 96.0 95.8 97.1 96.6 

Table 5-8 Global percentage reductions by RHVA and groundhook damper (point 

disturbance at different locations) 

 

Table 5-8 shows that the respective percentage reduction on the translational and 

rotational spatial average mean square motions, wGR  and θGR , for RHVA and 

groundhook damper when a point disturbance was applied at different locations of a 

cantilever beam. The readings show that the groundhook damper has better 

suppression ability than the RHVA on the average translational vibration motion but 
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similar attenuation ability on the average rotational vibration motion of the entire 

cantilever beam when a point disturbance was applied in different locations. 

Although groundhook damper is superior to the RHVA on its global attenuation 

performance, the maximum performance difference between the RHVA and the 

groundhook damper is about 5%. In the simulation tests, the RHVA generally can 

alleviate more than 87% of the average vibration motions of the entire cantilever 

beam when a point disturbance was applied to the beam structure. This signifies that 

the RHVA can provide an excellent global suppression performance to the entire 

cantilever beam for global structural vibration control. 

 

5.4.4 Local Vibration Suppression Performance on a Cantilever Beam with 

 Distributed Disturbance 

 

This section is focused on the control performance of the RHVA and groundhook 

damper on the local vibration suppression performance when a distributed 

disturbance was applied at a portion of the cantilever beam span from its mounting 

position to point xd = 0.2l. Figures 5-19 and 5-20 show PSDs of ),( ltw  and ),( ltθ  

for the cases with and without controls of RHVA and groundhook damper. 

 

Figure 5-19 PSDs of w(t,l) with/without RHVA and groundhook damper (distributed 

disturbance from x=0 to xd=0.2l) 

valley 
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Figure 5-20 PSDs of θ(t,l) with/without RHVA and groundhook damper (distributed 

disturbance from x=0 to xd=0.2l) 

 

In figures 5-19 and 5-20, the resonant peaks of all modes in the respective PSD of 

the translational and rotational motions can be damped down by the groundhook 

damper. This shows the groundhook damper can effectively dissipate the vibrating 

energy of the cantilever beam at its coupling point when a distributed disturbance 

was applied on the beam. For the RHVA, a valley appears at the first mode of the 

respective PSD of the translational and rotational motions. The valley can 

remarkably reduce the translational and rotational vibration motions of the first 

resonant mode of the cantilever beam at the RHVA coupling point. On the other 

hand, the RHVA can significantly damp down the resonant peaks of both 

translational and rotational motions of the cantilever beam in all modes since active 

damping was introduced by the RHVA. 

The respective percentage of reduction on the translational and rotational mean 

square motions, )(lLRw  and )(lLRθ , was calculated separately for the RHVA and 

groundhook damper to evaluate their vibration attenuation performance at the local 

coupling point. The calculated results show that RHVA can suppress 92.2% of the 

translational mean square motion and 85.4% of the rotational mean square motion 

while groundhook damper can suppress 95.0% of translational mean square motion 

valley 
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and 83.0% of rotational mean square motion. This shows that the RHVA has similar 

mitigation ability to the groundhook damper on both translational and rotational 

vibration motions at its local coupling point. To obtain better understanding on how 

the disturbance location affects the control performance of the groundhook damper 

and RHVA, the distributed disturbance was acted from the beam’s mounting 

position to different location of xd including 0.2l, 0.4l, 0.6l, 0.8l and l. The respective 

percentage of reduction on translation and rotational mean square motions for 

groundhook damper and RHVA is shown in the following table. 

 

RHVA Groundhook Damper Disturbance boundary 

from x=0 to xd )(%)(lLRw  )(%)(lLRθ  )(%)(lLRw  )(%)(lLRθ  

xd = 0.2l 92.2 85.4 95.0 83.0 

xd = 0.4l 93.5 90.3 96.3 91.5 

xd = 0.6l 94.5 93.3 96.8 94.6 

xd = 0.8l 95.3 95.5 97.0 96.1 

xd = l 95.9 96.8 97.1 96.9 

Table 5-9 Local percentage reductions by RHVA and groundhook damper 

(distributed disturbance at different locations) 

 

Table 5-9 shows that the respective percentage reduction on the local translational 

and rotational mean square motions, )(lLRw  and )(lLRθ , for RHVA and 

groundhook damper when a point disturbance was applied at different locations of a 

cantilever beam. The readings show that the RHVA has similar alleviation ability to 

the groundhook damper on the local translational and rotational vibration motions 

when a distributed disturbance was applied in different locations of the cantilever 

beam. The maximum performance difference between the RHVA and groundhook 

damper is about 3%. 
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5.4.5 Global Vibration Suppression Performance on a Cantilever Beam 

 with Distributed Disturbance 

 

This section is focused on the control performance of the RHVA and groundhook 

damper on the global vibration suppression performance of the entire cantilever 

beam when a distributed disturbance was applied at a portion of the cantilever beam 

span from its mounting position to point xd = 0.2l. Figures 5-21 and 5-22 show PSDs 

of translational spatial average motion )( kw ωσ  and rotational spatial average 

motion )( kωσθ  within a frequency band for the cases with and without controls of 

RHVA and groundhook damper. 

 

 

Figure 5-21 PSDs of translational spatial average motion with/without RHVA and 

groundhook damper (distributed disturbance from x=0 to xd=0.2l) 

 

valley 
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Figure 5-22 PSDs of rotational spatial average motion with/without RHVA and 

groundhook damper (distributed disturbance from x=0 to xd=0.2l) 

 

In figures 5-21 and 5-22, the resonant peaks of all modes in PSDs of the translational 

and rotational spatial average motions can be damped down by the groundhook 

damper. This indicates the groundhook damper can effectively dissipate the 

vibrating energy of the entire cantilever beam when a distributed disturbance was 

applied on the beam structure. For the RHVA, a valley appears at the first mode of 

the respective frequency spectrum of the translational and rotational spatial average 

motions. The valley can notably reduce the translational and rotational vibration 

motions of the first resonant mode of the cantilever beam at all the measuring check 

points. On the other hand, the RHVA can also effectively damp down the resonant 

peaks of both translational and rotational spatial average motions of the cantilever 

beam in all modes since active damping was introduced to the cantilever beam at all 

the measuring check points. 

The respective percentage of reduction on the translational and rotational spatial 

average mean square motions, wGR  and θGR , was calculated separately for the 

RHVA and groundhook damper to evaluate their global vibration suppression 

performance on the entire cantilever beam. The calculated results show that RHVA 

can suppress 89.8% of the translational spatial average mean square motion and 

valley 
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85.1% of the rotational spatial average mean square motion while damper can 

suppress 94.9% of translational spatial average mean square motion and 85.2% of 

rotational spatial average mean square motion. This indicates that the groundhook 

damper has better mitigation ability than the RHVA on the average translational 

vibration motion but similar suppression ability on the average rotational vibration 

motion of the entire cantilever beam. To obtain better understanding on how the 

disturbance location affects the control performance of the RHVA and groundhook 

damper, the distributed disturbance was acted from the beam’s mounting position to 

different location of xd including 0.2l, 0.4l, 0.6l, 0.8l and l. The respective 

percentage of reduction on translation and rotational spatial average mean square 

motions for RHVA and groundhook damper is shown in the following table. 

 

RHVA Groundhook Damper Disturbance boundary 

from x=0 to xd (%)wGR  (%)θGR  (%)wGR  (%)θGR  

xd = 0.2l 89.8 85.1 94.9 85.2 

xd = 0.4l 91.2 89.5 96.2 92.7 

xd = 0.6l 92.6 92.2 96.8 95.3 

xd = 0.8l 93.8 94.1 97.0 96.5 

xd = l 94.8 95.4 97.1 97.0 

Table 5-10 Global percentage reductions by RHVA and groundhook damper 

(distributed disturbance at different locations) 

 

Table 5-10 shows that the respective percentage reduction on the translational and 

rotational spatial average mean square motions, wGR  and θGR , for RHVA and 

groundhook damper when a distributed disturbance was applied at different 

locations of a cantilever beam. The readings show that the groundhook damper has 

better suppression ability than the RHVA on the average translational vibration 

motion but similar attenuation ability on the average rotational vibration motion of 

the entire cantilever beam when a distributed disturbance was applied in different 

locations. Although groundhook damper is superior to the RHVA on its global 

attenuation performance the maximum performance difference between the RHVA 
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and the groundhook damper is about 5%. In the simulation tests, the RHVA 

generally can suppress more than 85% of the average vibration motions of the entire 

cantilever beam when a distributed disturbance was applied to the beam structure. 

This indicates that the RHVA can provide an excellent global suppression 

performance to the entire cantilever beam for global structural vibration control. 

 

5.4.6 Conclusion on RHVA-Groundhook Damper Comparison Tests 

 

The above figures and tables show that groundhook damper is an effective device to 

suppress structural vibration control at the local coupling point and the entire beam 

structure. It can dissipate the vibrating energy of the vibrating cantilever beam at the 

local coupling point and the measuring check points.  

For the RHVA, a valley, which is introduced by its passive absorption frequency, 

can be applied to reduce vibration of the entire cantilever beam at a pre-tuned 

resonant mode. Unlike the groundhook damper, RHVA can provide flexibility to the 

user to reduce the vibration of certain dominant resonant frequency. RHVA can also 

introduce active damping to the entire cantilever beam to damp down the resonant 

peaks of the remaining modes.  

From the calculated indices, the groundhook damper can suppress at least 83% of 

the mean square motions and 85% of the spatial average mean square motions while 

the RHVA can at least suppress 85% of mean square motions and 85% of spatial 

average mean square motions. Those values will change when disturbance is acting 

at different locations of the cantilever beam with different form. In general, 

groundhook damper has similar local attenuation performance but better global 

suppression performance than the RHVA. Although groundhook damper is superior 

to the RHVA, the maximum performance difference between them is about 5%. This 

signifies that RHVA still can provide an excellent alleviation performance to the 

vibrating cantilever beam for global structural vibration control. Comparing with the 

groundhook damper, RHVA does not need a mounting base for installation and can 

be directly mounted on a structure for vibration control. RHVA, therefore, provides 
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a better alternative choice for engineer to choose in case base mounting is not 

available for the groundhook damper.  

 

5.5 Summary 

 

In this chapter, indices of mean square motion, spatial average motion and spatial 

average mean square motion are introduced and used to quantify the local and global 

vibration motions of a cantilever beam. Percentage reductions on mean square 

motion and spatial average mean square motion are discussed and used to evaluate 

the local and global vibration suppression performance of the RHVA, THVA and 

groundhook damper. Simulation tests are conducted for cantilever beam-RHVA, 

cantilever beam-THVA and cantilever beam-groundhook damper, subject to a point 

and a distributed disturbance. Numerical results of the above systems are presented. 

The local and global vibration attenuation performance between RHVA and THVA 

and also between RHVA and groundhook damper are compared. Conclusions are 

drawn for each of the devices. The RHVA is found to be a better alternative to 

THVA and groundhook damper. 
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6 EXPERIMENTAL ARRANGEMENT AND RESULTS 

 

In this chapter, the apparatus used in the experiment, are described in the section of 

experimental configuration. The experimental methodology discusses on how to do 

the experiment. In the section of results and discussion, experimental results are 

presented. Simulation test was conducted with real experimental parameters and its 

results are presented. Indices, including mean square motion, spatial average motion 

and spatial average mean square motion, are calculated separately with the 

experimental and simulation results. The calculated indices are finally used to verify 

the analytical model of the RHVA and the global structural vibration controller. 

 

6.1 Experimental Configuration 

 

A number of apparatus were used in the experiment and their application detail in 

the experiment will be discussed in this section. 

 

6.1.1 Piezoelectric Sensor and Accelerometer 

 

Piezoelectric sensor shown in Figure 6-1 and accelerometer shown in Figure 6-2 

were used in the experiment to measure the angular and linear displacements of a 

cantilever beam. In the experiment, two piezoelectric film sensors were used and 

adhered to a cantilever beam. One of the piezoelectric sensors was used as the 

feedback sensor and collocated with the RHVA. It provided the angular 

displacement of the beam at the RHVA coupling point. This feedback signal was 

sent back to the control system for generation of control signals. Another 

piezoelectric sensor was used as a monitor sensor to measure the corresponding 

angular displacement of the cantilever beam at different measuring check points. An 

accelerometer was also used as a monitor sensor to measure the corresponding linear 

displacement of the cantilever beam at different measuring check points. 
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Figure 6-1 Piezoelectric film sensor 

 

 

Figure 6-2 Accelerometer 

 

6.1.2 Piezoelectric Actuator 

 

Piezoelectric actuator was used to generate the active moment for the RHVA and 

apply random disturbance to the cantilever beam. In the experiment, a pair of 

piezoelectric actuators in plate shape was adhered to both sides of the connecting 

beam of the RHVA at its root position. Four pairs of piezoelectric actuators, shown 

in Figure 6-3, were adhered to both sides of the cantilever beam at its root position. 

The piezoelectric actuators were connected in opposite phase. When one 

piezoelectric plate extends, the other one contracts simultaneously. This combination 

makes the piezoelectric actuators generate active moment to the RHVA and random 

disturbance to the cantilever beam. The contraction and extension depend on the 

respective control signals.  
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Figure 6-3 Piezoelectric actuator pair 

 

6.1.3 Sensor Amplifier 

 

Charge amplifiers shown in Figure 6-4 were used to amplify the measuring signals 

for the piezoelectric film sensors and the accelerometer. In the experiment, 

piezoelectric sensor provided direct angular displacement measurement, so charge 

amplifier was used to amplify the measured signal. Unlike the piezoelectric sensor, 

accelerometer provided linear acceleration of the cantilever beam as the measuring 

signal, so charge amplifier was used to integrate the acceleration signal back to the 

linear displacement and amplified this converted signal. 

 

Figure 6-4 Charge amplifier for sensor 

 

6.1.4 Piezoelectric Actuator Amplifier 

 

A voltage amplifier shown in Figure 6-5 was used to amplify the disturbance signals 

and control signals. The amplified signals were used to drive the pairs of 

piezoelectric actuator.  
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Figure 6-5 Charge amplifier for piezoelectric actuator 

 

6.1.5 dSPACE Control System 

 

A dSPACE controller board with model DS1104 was used as the control system. It 

was a PCI card and plugged into the motherboard of the computer. MatLAB code 

can be directly converted to C code and loaded to the memory of the DS1104 

controller with the commercial software ControlDesk provided by dSPACE. This 

controller card equips with the analogue to digital (A/D) converter and digital to 

analogue (D/A) converter. Sensor signals were sampled by the card with a pre-tuned 

sampling frequency and converted to digital form by the A/D converter. The 

sampled signals were further processed and control signals were generated according 

to the written control algorithm. Control signals were then converted from digital 

form to analogue signal by the D/A converter. This analogue signals were finally 

amplified by the charge amplifier and used to control the piezoelectric actuator. 

 

 

Figure 6-6 dSPACE controller card 
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6.1.6 Low-Pass Filter 

 

An Alligator AAF-3PCI low-pass filter shown in 6-7 was used to filter high 

frequency signal to avoid aliasing and instability arising from the frequency signal of 

the higher residue modes. It was a PCI card and plugged in the motherboard of the 

computer. The low-pass filter equips with 8 channels and the sampling frequency of 

each channel can be tuned by a program provided by the Alligator company. 

 

Figure 6-7 Low-pass filter 

 

 

6.1.7 Rotational Hybrid Vibration Absorber 

 

The rotational hybrid vibration absorber (RHVA) shown in Figure 6-8 was 

composed of a pair of acyclic plates and a stainless steel strip of dimension 0.02 m x 

0.1 m x 0.003 m. The total mass of the RHVA is about 48.5 grams and was 

considered as a lumped mass. Its structure is the same as the one described in Figure 

3-4. A pair of inertial mass was clamped onto the stainless steel strip by bolts and 

nuts and can be slid along the strip vertically for tuning of the passive absorption 

frequency. A pair of piezoelectric actuators was adhered to both sides of the strip at 

its root position. The piezoelectric actuators were connected in opposite phase. They 

can generate active moment to the RHVA via self contraction and extension. One 

end of the RHVA was fixed on the tested cantilever beam by bolts and nuts. 
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Figure 6-8 Rotational hybrid vibration absorber 

 

6.1.8 Cantilever Beam 

 

A 0.3 m x 0.05 m x 0.003 m cantilever beam, shown in Figure 6-9, was fabricated 

with stainless steel 304 for structural vibration control. Its angular and linear 

displacements were measured by the piezoelectric sensor and accelerometer. It was 

mounted on a pneumatic isolation table to isolate external vibration. 

 

Figure 6-9 Cantilever Beam 

 

 

 

 

cantilever beam 
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6.2 Experimental Methodology 

 

This section will discuss on the experimental details including the whole set-up of 

the test rig, tuning method of the RHVA, procedure of processing off-line system 

identification, controller calculation, and vibration measurement of the cantilever 

beam and analysis of the experimental data. 

 

6.2.1 Test Rig 

 

Figure 6-10 shows the schematic of the experimental setup for testing the control 

performance of the RHVA. Figure 6-11(a) shows the real experimental setup. Figure 

6-11(b) shows the illustration of the experimental setup. In the experiment, a 

cantilever beam was mounted on an isolation table. White noise was used to 

generate random disturbance at a point of the cantilever beam by piezoelectric 

actuator pairs. The piezoelectric actuator pairs were adhered to the sides of the beam 

at the position of 0.05 meter from its mounting position. RHVA was coupled at the 

tip position of the cantilever beam. A pair of piezoelectric actuators was adhered to 

the sides of the stainless steel strip of the RHVA to provide active moment. 

Feedback piezoelectric sensor was adhered to the cantilever beam and collocated 

with the RHVA. Accelerometer and another piezoelectric sensor were used as the 

monitor sensors to measure the respective linear and angular vibration amplitudes of 

the cantilever beam at five points. These five points were separated by equal interval. 

The captured data were stored in the MAT file and further analyzed by the MatLAB 

software. Other apparatus including charge amplifiers, low-pass filter and the 

dSPACE controller were connected according to the illustration of the experimental 

set-up.  
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Figure 6-10 Experimental setup for testing the RHVA 

 

 

Figure 6-11(a) Real experimental setup 
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(1) Brüel & Kjær charge accelerometer Type 4374 used as monitor sensor for linear displacement 

 measurement 

(2) Shielded piezo film sensor SDT1-028K used as monitor sensor for angular displacement 

 measurement 

(3) Shielded piezo film sensor SDT1-028K used as feedback sensor for angular displacement 

 measurement 

(4) Brüel & Kjær charge amplifier Type 2635 

(5) Brüel & Kjær charge amplifier Type 2635 

(6) Brüel & Kjær charge amplifier Type 2635 

(7) Alligator AAF-3PCI low-pass filter 

(8) dSPACE PCI controller card Model DS1104 plugged into a computer 

(9) Cedrat charge amplifier Model LC/LA75A 

(10) Rotational hybrid vibration absorber (RHVA) 

(11) Piezoelectric actuator pair used to generate active moment for the RHVA 

(12) Piezoelectric actuator pairs used to generate random disturbance for the cantilever beam 

(13) 0.3 m x 0.05 m x 0.003 m stainless steel 304 cantilever beam  

(14) Mounting for the cantilever beam 

(15) Monitor 

Figure 6-11(b) Illustration of the experimental setup 
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6.2.2 Filtering of Higher Frequency Signals 

 

In the experiment, only the first three resonant modes of the cantilever beam were 

focused. This is because the first three modes typically are the dominant modes of a 

cantilever beam and truncation can minimize the demand on the processing speed of 

the controller. The three resonant frequencies of the tested cantilever beam are 164 

rad/s (26Hz), 1002 rad/s (159Hz) and 2100rad/s (334Hz). To achieve the truncation 

in real practice, higher frequency signals were filtered by the low-pass filter. 

According to the sampling theorem, the sampling frequency should be twice the 

highest frequency of interest. In the experiment, the highest frequency of interest 

was set as 3770 rad/s (600Hz), therefore, the sampling frequency was set as 7540 

rad/s (1200 Hz) and frequency signals higher than the highest frequency of interest 

were filtered out by the low-pass filter. Apart from the truncation, the low-pass filter 

can enhance the system stability from higher residue modes. In general, feedback 

signal used for control contains signals from the truncated number of modes and the 

higher residue modes, but the controller only makes effects to the truncated number 

of modes and neglects the residue number of modes. The instability of the 

closed-loop control system, therefore, arises from the un-processed residue signals. 

With the help of the low-pass filter, signals with the higher residue modes can be 

filtered out and avoid entering the closed-loop control system. Instability problem of 

the closed-loop control system, therefore, can be prevented. 

 

6.2.3 Tuning of RHVA 

 

As described in the section 4.1, passive parameters of the RHVA can introduce an 

absorption frequency to the closed-loop control system. Therefore, passive 

absorption frequency of the RHVA was tuned to the first resonant mode of the 

cantilever beam before operating the control process of the experiment. The tuning 

method was very convenient by moving the inertial mass of the RHVA along the 

stainless steel strip vertically. Once finishing the tuning process, the passive 

absorption frequency of the RHVA was checked with the following steps. A random 
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disturbance was applied to the piezoelectric actuator pair, which was adhered to the 

sides of the stainless steel strip of the RHVA at its root position, from the DS1104 

controller card by the software ControlDesk. The vibrating signals of the RHVA 

were measured by an accelerometer. The measured signals were sent back to the 

controller card and stored as MAT file by the ControlDesk. The collected signals 

were further analyzed by Fast Fourier Transformation (FFT) technique with 

MatLAB and the tuned passive absorption frequency of the RHVA can be checked. 

 

6.2.4 Processing of Off-Line System Identification 

 

After tuning of the passive absorption frequency of the RHVA, open-loop transfer 

function between the RHVA and the feedback sensor was identified with the off-line 

system identification for further controller design. The identification detail was 

discussed in the section 4.2. In the experiment, the tuned RHVA was coupled with 

the tested cantilever beam at its end position. A piezoelectric sensor was adhered to 

the beam’s surface and collocated with the RHVA. This sensor was used as a 

feedback sensor to measure the angular displacement of the cantilever beam at the 

RHVA coupling position. A random disturbance was applied to the piezoelectric 

actuator pair, which was adhered to the roots of the RHVA, from the DS1104 

controller card with the software ControlDesk, angular vibration signal measured by 

the feedback sensor was sent back to the controller card again. The disturbance and 

the feedback signals were collected in MAT file by ControlDesk. The collected 

signals were then used to identified the open-loop transfer function between the 

RHVA and the feedback sensor with a self-written MatLAB program on the basis of 

the equations (4-9) and (4-11). Feasibility function J was used to roughly evaluate 

the system order n. Figure 6-12 is a plot of feasibility function J against system order 

n of the real experimental data. Referring to Figure 6-12, the system order n was set 

as 20 in the experiment. 
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Figure 6-12 Feasibility function J against system order n 

 

6.2.5 Set-Up of Global Structural Vibration Controller 

 

After identifying the open-loop transfer function between the RHVA and the 

feedback sensor, the global structural vibration controller was then calculated by a 

self-written MatLAB program on the basis of the equation (4-6). In the experiment, 

the active damping factor α  described in equations (4-4a) and (4-4b) was set as 

0.96 and the prototype polynomial T(z) was established with the damped roots of the 

identified transfer function. 

 

6.2.6 Vibration Measurements on the Cantilever Beam 

 

In the experiment, a piezoelectric sensor, which was collocated with the RHVA, was 

used as a feedback sensor to measure the angular displacement of the cantilever 

beam at the RHVA coupling position. The feedback signals were sent back to the 

controller and used to generate the control signals. An accelerometer and a 

piezoelectric sensor were used as monitor sensors and measured the respective linear 

and angular displacements of the cantilever beam at five check-points separately. 
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6.2.7 Analysis of Experimental Data 

 

The signals measured by the monitor sensors were stored in MAT files by the 

ControlDesk. The data was further analyzed by the FFT technique with the MatLAB. 

Mean square motions, spatial average motions and spatial average mean square 

motions were calculated from the analyzed data. The respective percentage of 

reduction on the local vibration motions and the average vibration motions of the 

entire cantilever beam were also calculated on the basis of the mean square motions 

and the spatial average mean square motions. Local and global vibration suppression 

performances of the RHVA were finally evaluated from the calculated percentages. 

 

6.3 Results and Discussion 

 

In this section, the experimental results will be presented. Simulation was conducted 

with the real experimental parameters including beam characteristics and RHVA 

properties to compare with the experimental results. Indices, including mean square 

motions, spatial average motions and spatial average mean square motions, were 

calculated separately with the experimental and simulation results. They will be used 

to evaluate the local and global vibration suppression performances of the RHVA. 

Comparison between the experimental and simulation results will also be discussed. 

 

6.3.1 Local Vibration Suppression Performance 

 

Local vibration suppression performance of the RHVA focuses on the attenuation of 

the vibration motions at the RHVA coupling point of the tested cantilever beam.  

Figures 6-13 and 6-14 show power spectral densities (PSDs) of ),( ltw  and ),( ltθ , 

for the cases with and without control of RHVA in the experimental test. 
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Figure 6-13 PSDs of w(t,l) with/without RHVA (experiment) 

 

 

 

Figure 6-14 PSDs of θ(t,l) with/without RHVA (experiment) 
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Simulation was conducted with the experimental parameters and compare with the 

experimental results. The following table shows the beam characteristics and the 

RHVA detail. 

 RHVA-Beam Coupled 

System 

Beam length l 0.3 meter 

Beam width w 0.05 meter 

Beam thickness t 0.003 meter 

Beam density per 

length ρ  
1.17 kg/m 

Young’s modulus of 

Beam E 
910200×  N/m

2
 

Moment of inertia 

of cross section of 

beam I 

410125.1 −×  m
4
 

Beam mass 0.35 kg 

Modal damping of 

each mode iξ  
0.002  

(Calculated by half-power method) 

Truncated number 

of modes m 
3 

Disturbance location 0.05 meter 

RHVA coupling 

position xa 
0.3 meter 

Feedback sensor 

location xp 
0.3 meter 

Inertial mass of 

RHVA ma 
0.0485 kg 

Second moment of 

inertia of the inertial 

mass J 

0.000485 kgm
2
 

Effective stiffness 

of the RHVA spring 
12.75 Nm/rad 

Passive absorption 

frequency J

k
=162 rad/s 

Table 6-1 Beam characteristics and RHVA details 

 

Figures 6-15 and 6-16 show PSDs of ),( ltw  and ),( ltθ  of the tested cantilever 

beam for the cases with and without control of RHVA in the simulation test. 
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Figure 6-15 PSDs of w(t,l) with/without RHVA (simulation) 

 

Figure 6-16 PSDs of θ(t,l) with/without RHVA (simulation) 

From figures 6-13 to 6-16, the natural frequencies of the PSDs are different between 

the experimental and simulation results. This may cause by the material 

characteristics since the real beam characteristics are different from the theoretical 

values. In the figures, the resonant peaks of all the PSDs were effectively damped 

down in all modes. This indicates that the proposed controller can successfully 

introduce active damping to the cantilever beam at the RHVA coupling position. 

Now focusing on the first mode of the cantilever beam, PSDs shown in figure 6-15 

valley 

valley 
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and 6-16 have a valley at their respective first resonant mode but PSDs shown in 

Figures 6-13 and 6-14 do not have. In fact, this valley was introduced by the passive 

absorption frequency of the RHVA. The passive absorption frequency gives the 

RHVA flexibility to further suppress the vibration motions of the cantilever beam at 

certain resonant mode. The absence of the valleys indicates that the passive 

absorption frequency of the RHVA can effectively suppress the local vibration 

motions of the cantilever beam at the first resonant mode in the simulation but not 

effective in the experiment. Actually this may cause by the damping of the RHVA. 

In general, the depth of the valley decreases when damping of the RHVA increases. 

In the experiment, the RHVA was coupled with the cantilever beam by bolts and 

nuts and damping may exist in the fasteners of the RHVA. Although the valleys do 

not exist in Figures 6-13 and 6-14, the attenuation of the translational and rotational 

vibration motions in their respective first resonant mode still larger than the second 

and the third modes. This signifies that the passive absorption frequency of the 

RHVA was able to further alleviate the vibration motions of the first mode of the 

cantilever beam. 

The respective percentage of reduction on the translational and rotational mean 

square motions, )(lLRw  and )(lLRθ , was separately calculated for the 

experimental and simulation results. They are used to evaluate the vibration 

alleviation performance of the RHVA at the local coupling point. The results are 

shown in the following table.  

 )(%)(lLRw  )(%)(lLRθ  

Experimental Results 64.6 67.3 

Simulation Results 82.2 78.1 

Table 6-2 Local control performance of RHVA (experiment and simulation) 

 

Table 6-2 clearly demonstrates that the local vibration suppression performance of 

the RHVA is reasonably closed between the experiments and the simulation tests. 

The maximum performance difference between the experimental and simulation 

results is about 18%.  

 



CHAPTER 6 – EXPERIMENTAL ARRANGEMENT AND RESULTS 
 

 123 

6.3.2 Global Vibration Suppression Performance 

 

Global vibration suppression performance of the RHVA focuses on the attenuation 

of the average vibration motions of the entire cantilever beam. Figures 6-17 and 6-18 

show PSDs of translational spatial average motion )( kw ωσ  and rotational spatial 

average motion )( kωσθ  of the tested cantilever beam for the cases with and 

without control of RHVA in the experimental test. 

 

 

 

 

Figure 6-17 PSDs of translational spatial average motion with/without RHVA 

(experiment) 
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Figure 6-18 PSDs of rotational spatial average motion with/without RHVA 

(experiment) 

Figures 6-19 and 6-20 show the respective PSDs of translational spatial average 

motion )( kw ωσ  and rotational spatial average motion )( kωσθ  of the tested 

cantilever beam for the cases with and without control of RHVA in the simulation 

test. 

 

Figure 6-19 PSDs of translational spatial average motion with/without RHVA 

(simulation) 

valley 
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Figure 6-20 PSDs of rotational spatial average motion with/without RHVA 

(simulation) 

 

From figures 6-17 to 6-20, the resonant peaks of all PSDs were remarkably damped 

down in all modes. This reflects that the controller introduced active damping to the 

entire cantilever beam. Now focusing on the first mode of the cantilever beam, 

frequency spectrums shown in Figures 6-19 and 6-20 have a valley at their 

respective first resonant mode but PSDs shown in Figures 6-17 and 6-18 do not have. 

The reason of the absence of the valley is similar to the one discussed in the previous 

section. It is because of the existing of the damping induced by the fasteners of the 

RHVA. Although the valleys do not exist in Figures 6-17 and 6-18, the attenuation 

of the translational and rotational spatial average motions in their respective first 

resonant mode is still larger than the second and the third modes. This signifies that 

the passive absorption frequency of the RHVA was able to further alleviate the 

average vibration motions of the first mode of the entire cantilever beam. 

The respective percentage of reduction on the translational and rotational spatial 

average mean square motions, wGR  and θGR , was separately calculated for the 

experimental and simulation results. They are used to evaluate the global vibration 

suppression performance of the RHVA. The results are shown in the following table.  

valley 
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 (%)wGR  (%)θGR  

Experimental Results 63.7 65.2 

Simulation Results 80.1 76.4 

Table 6-3 Global control performance of RHVA (experiment and simulation) 

 

Table 6-3 demonstrates clearly that the global vibration suppression performance of 

the RHVA is acceptable in the experiments and the simulation tests. The maximum 

performance difference between the experimental and simulation results is about 

17%. This indicates that the experimental results are reasonably close to the 

simulation results. Therefore, the proposed global structural vibration controller and 

the analytical model of the RHVA can be validated by both the experimental and 

simulation results. 

 

6.4 Summary 

In this chapter, apparatus used in the experiment and the experimental methodology 

are discussed. Experimental and simulation results of testing the RHVA 

performance are presented. Indices used to evaluate the local and global vibration 

suppression performance of the RHVA are calculated separately with the 

experimental and simulation results. The indices are finally used to verify the 

analytical model of the RHVA and the global structural vibration controller. 
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7 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

 

7.1 Conclusions 

 

This project aimed to design a new type of rotational hybrid vibration absorber 

(RHVA) and a global vibration controller which is applicable to either rotational 

HVA or translational HVA (THVA). The proposed RHVA was compared with the 

THVA and groundhook damper on their local and global vibration suppression 

performance, and checked on the feasibility of implementing it as a better alternative 

device to THVA and skyhook/groundhook damper. The whole project was 

successfully performed via the following tasks. 

 

1) An analytical model on the basis of Euler-Bernoulli beam equation was derived 

 for the proposed RHVA. 

2) A global structural vibration controller, which is applicable to either THVA or 

 RHVA, was developed on the basis of pole placement method and Bezout 

 equation. This controller is able to introduce active damping and an 

 absorption frequency to entire beam structure for global structural vibration 

 control. 

3) Analytical models of three types of coupled systems including cantilever 

 beam-RHVA coupled system, cantilever beam-THVA coupled system and 

 cantilever beam-groundhook damper coupled system were written as MatLAB 

 codes and used for further simulation tests. 

4) Indices including mean square motions, spatial average motions and spatial 

 average mean square motions were calculated from the numerical results for 

 each of the three coupled system.  

5) The RHVA and THVA were compared on their local and global vibration 

 suppression performance with the calculated indices. 

6) The RHVA and groundhook damper were compared on their local and global 

 vibration suppression performance with the calculated indices. 
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7) A test rig consisted of a beam and a rotational type HVA was fabricated and 

 used for experimental test. 

8) Simulation test with real experimental parameters was conducted. 

9) Indices were calculated separately with the experimental and simulation results. 

 The analytical model of the RHVA and the global structural vibration controller 

 were validated by the calculated indices. 

 

After performing the investigations on the above nine tasks, the following 

conclusions were obtained: 

 

1) An analytical model was derived for the proposed RHVA, which is coupled 

 with a flexible structure. 

2) A novel global structural vibration controller was developed on the basis of 

 pole placement method. This controller is applicable to either THVA or 

 RHVA. It can introduce active damping and an absorption frequency to the 

 entire flexible structure. 

3) RHVA can be a better alternative design of HVA. Its mitigation performance 

 can be prior to the THVA on the rotational vibration motion but similar to the 

 THVA on the translational vibration motion. Comparing with the THVA, 

 RHVA can be easier to tune its passive absorption frequency. 

4) RHVA can be a better alternative to replace a skyhook/groundhook damper. Its 

 suppression performance can be similar to a skyhook/groundhook damper in 

 case the damping coefficient of the damper was fixed to certain value. 

 Comparing with the skyhook/groundhook damper, RHVA can be mounted 

 directly on a vibrating structure and do not require mounting base. It can also 

 provide a tunable passive absorption frequency to further alleviate the vibration 

 motions of a vibrating structure at certain dominant frequency. 

5) The analytical model of the proposed RHVA and the global structural vibration 

 controller were validated by both the experimental and simulation results.  
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7.2 Suggestions for Future Work 

 

After performing this study, some tasks are suggested for future work: 

 

1) Optimum value of the active damping factor α  is not considered in this study. 

 Basically, the attenuation performance of the RHVA depends on the value of 

 the active damping factor α . In general, the smaller value of the active 

 damping factorα , the stronger active damping can introduce to the system. 

 However, too small or too large value of active damping factor α  may 

 significantly affect the attenuation performance of the RHVA. Up to now, it 

 was found that slight active damping can provide better local and global 

 vibration suppression performance to the RHVA. Therefore, finding the 

 optimum value of the active damping factor α  can be useful to improve the 

 attenuation performance of the RHVA. One of the simple methods to find the 

 optimum value of the active damping factor α  is used the spatial average 

 mean square motion of the beam structure as an objective function. Optimum 

 value of the active damping factor α  can be the one provided with the 

 minimum spatial average mean square motion. This process can be achieved 

 by numerical simulations with different values of active damping factor α . 

2) The optimum coupling location of the RHVA is not considered in this project. 

 Generally, it was found that coupling the RHVA at the nodal position of certain 

 resonant mode of a vibrating structure may remarkably affect the alleviation 

 performance of the RHVA. In this study, the RHVA was coupled to the end of 

 a cantilever beam to avoid this problem since the tip position of the cantilever 

 beam was the anti-node of all modes. However, studying the optimum coupling 

 location of the RHVA can be a significant research task. One way to find the 

 optimum coupling location of the RHVA is used the spatial average mean 

 square motion of the beam structure as an objective function. A number of 

 check points can be initially established on the beam structure in which the 

 beam is separated by very small and equal intervals. By coupling the RHVA at 

 different locations of the beam structure in the simulation tests, the optimum 
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 coupling location of the RHVA can be the one accompanied with the minimum 

 spatial average mean square motion. 

3) In this project, RHVA was designed to control vibration of a beam structure. 

 In general, a beam can be considered as one-dimensional case. However, the 

 case of implementing the proposed design of RHVA into two-dimensional 

 structure such as plate or multi-dimensional structure for vibration control is 

 not considered. One way to solve this problem may increase the degree of 

 freedom. However, coupling effect may exist between different degrees of 

 freedom. Therefore, more advanced analytical model and its experimental 

 validation may be necessary for advanced design of RHVA which is capable to 

 control vibration for multi-dimensional structures. 
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