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Abstract 

Human face recognition is one of the most useful techniques for identifying or 

authenticating a person. Although research on this topic has been conducted for more 

than twenty years, many problems still remain, and better techniques for facial feature 

detection and face recognition are needed. Therefore, the objective of this thesis is to 

devise and develop efficient methods for preprocessing facial images and recognizing 

human faces. In this thesis, different approaches for facial feature extraction and 

human face recognition are reviewed. Facial feature extraction is one of the 

preprocessing steps for automatic human face recognition. Its accuracy will directly 

affect the performance of the recognition system. In addition, the location of a face, 

the facial expression and the lighting conditions in an image may be unknown. The 

head orientation, face scale and the image quality of faces may be different between 

the query image and the stored image. The recognition procedure will become more 

difficult and computationally intensive in order to reduce the effect of the above 

mentioned problems. Therefore, human face recognition is a challenging research 

topic. 

In this research, we propose a modified shape model which can adapt to face 

images under perspective variations. To make the model represent a face more 

flexibly, the representations of the important facial features, i.e. the eyes, nose and 
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mouth, and the face contour are separated. An energy function is defined that links up 

these two representations of a human face. In order to represent a face image under 

different poses, three models are employed to represent the important facial features: 

the left-viewed, right-viewed, and frontal-viewed models. Furthermore, the genetic 

algorithm (GA) is applied to search for the best representation of a face image. 

One of the major difficulties in human face recognition systems is the pose 

variation problem. Most of the face recognition approaches assume that the pose of an 

input face is of upright and frontal view. In our work, we estimate the pose angle of 

the input face image by the shape model parameters, which are derived from a 

training data set. Then we use Gabor wavelets as local feature information extracted at 

the facial feature points for classification. The high-dimensional Gabor feature vectors 

are reduced by the Principal Component Analysis (PCA). The weighting similarity 

measure based on the pose angle is proposed in classification. The weighting function 

incorporates class discriminability of feature parameters to emphasize the significance 

of feature parameters to a particular pose. The face recognition approach proposed in 

this thesis can provide a reasonable performance level. 
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CHAPTER 1  

Introduction 
 

1.1 Background 

Face recognition is an important capability of human beings in their everyday 

social interactions. People can easily recognize one another by looking at each other’s 

face. Recognizing a human face is such a fundamental task that even a child can do it. 

Hence, it is logical for us to imagine that a computer can be easily taught how to 

recognize an individual by looking at his/her face. However, many researchers have 

discovered that such a “trivial” task is not simple for a computer to perform. 

Computers are known to be capable of performing highly repetitive tasks, so much 

effort is still being made to “teach” them to recognize human faces. 

Interest and research activities in the development of automatic human face 

recognition have been increasing significantly over the past 20 years, especially 

during the past few years. This is because security is now considered an increasingly 

important task in recent years. People are looking for more secure methods to protect 

their assets and valuable information without losing their identity. Three main types of 

security approach are commonly used: (1) password, (2) smart cards and (3) biometric 
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personal identification. Generally, we need both a password and a smart card to get 

cash from an ATM, and a password to access a computer control or internet services. 

However, these methods are not really secure. For example, passwords can be guessed 

easily, as people often pick ones that are easy to remember, such as a nickname, their 

child’s name or a favorite pet’s name; while a smart card can be easily lost or stolen. 

Only biometric characteristics cannot be borrowed, stolen or forgotten. People cannot 

pass these characteristics onto anyone else. As mentioned above, the biometric 

approach is the most secure identification method of the three security approaches. 

The common biometric personal identification methods include fingerprints, head 

geometry, palm geometry, retina, iris, speech, and face. Different technologies may be 

appropriate for different applications and environments. A comparison of some 

common biometrics is presented in Table 1.1 [1]. 

 

 Fingerprint Retina Iris Speech Face 
Accuracy (error 
rate) 

High Very High Very High Medium High 

Ease of use High Low Medium High Medium 
Barrier to attack High Very High Very High No Medium 
Uses personally 
distinct 
characteristics  

High Very High Very High Medium High 

User friendliness Medium High Medium Medium High 

Table 1.1 Comparison of biometrics. 
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In the comparison of the biometric technologies, the retina and iris are the most 

secure identification methods. However, they are not user friendly. This is because 

people feel that these kinds of identifications are intrusive. In general, human face 

recognition is the most user friendly method and the most natural. Face recognition 

provides us with a convenient way to identify and recognize a person in a database. 

With face recognition, we can recognize a person by just taking a photo of that person. 

The user no longer needs to touch anything to scan his/her personal characteristics for 

personal identification, but just to stand in front of a camera. The system can then 

check its database to recognize the person from the image or video captured.  

Apart from the convenience provided by face recognition, it can also be applied in 

a multimedia search engine. Fast-growing multimedia and Internet technologies now 

allow for searches for multimedia data such as video clips. However, information 

retrieval within a huge amount of multimedia data is still a challenging task. With 

face recognition and video segmentation technology, we can easily find a particular 

person in video clips by simply feeding a picture of that person into the search engine. 

Currently, the accuracy and reliability of existing face recognition are still limited; we 

therefore focus this thesis on investigating efficient algorithms for face recognition. 



 13

1.2 Investigated Approaches 

The objectives of this research are to investigate and develop efficient techniques 

for human face recognition under perspective variations. The human face recognition 

has raised much attention in recent years due to its wide application in area such as 

access control, surveillance and multimedia search engine. Most face recognition 

approaches assume that the pose of an input face is an upright view; they seldom 

consider the face images under different poses. In this research work, we are primarily 

interested in both facial feature extraction and face recognition under perspective 

variations. Face detection or facial feature extraction should be performed before face 

recognition is carried out. 

The system consists of two major parts: the first part is facial feature extraction 

based on a modified face shape model, and the second part is human face recognition 

based on the Gabor feature used as local feature information extracted at the facial 

feature points. In the first part, the location of important facial points such as the face 

contour, eyes, nose and mouth are extracted by a modified shape model which can 

adapt to face images under perspective variations. After that, the extracted facial 

features are projected into a face shape model to estimate the corresponding pose 

angle. Finally, the Gabor features at each location of the facial feature points are 

extracted. In addition, an appropriate weighting function based on estimated the pose 
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angle is employed in the similarity measure to provide a better classification 

performance level. 
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Facial feature extraction is a part of the preprocessing step in automatic human 

face recognition. It is also a key part of the animation and recognition of facial 

expressions. Face detection and facial feature extraction are always achieved 

simultaneously, as indicated in Figure 1.1. For example, face detection may employ 

the characteristics of facial features, such as the eyes, so these features are also 

extracted simultaneously with face detection. Otherwise, a human face is detected 

first, and then the respective facial features can be extracted based on the geometric 

structure of a human face.  

Techniques for facial feature detection and extraction can be divided into three 

approaches: the feature-based approach, the template-based approach, and the 

structural matching-based approach. The feature-based method identifies facial 

features based on their geometric properties. However, this method is computationally 

intensive and inflexible to scene and noise variations. The template-based approach 

models the boundary shape of natural objects such as the eyes and mouth. However, 

the template-based approach is associated with problems such as slow convergence 

and a lengthy processing time. To detect the features more reliably, recent approaches 

have used the structural matching-based approach. This approach is based on 

statistical methods. Hence, it may not be able to provide a good fit if the shapes are 
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quite different from the training data set. Consequently, efficient and reliable methods 

for face and facial feature detection are still under investigation. 

  In an automatic human face recognition system, a face region is extracted and 

then normalized based on the position of the two eyes. The normalized human face is 

aligned with those human faces in a database, and they are then compared. In other 

words, the accuracy of face detection and facial feature extraction will significantly 

affect the performance of an automatic human face recognition system. 

Many techniques for human face recognition have been proposed, and can be 

divided into three categories: holistic-based approaches, feature-based approaches and 

hybrid approaches. In the holistic-based approach, recognition takes into account the 

global properties of a pattern, such as the whole face region, as the raw input to the 

recognition system. One of the most widely used representations of the face region is 

the eigenface [2], which is based on principal component analysis (PCA). The 

eigenface method represents a human face by a linear combination of weighted 

eigenvectors. However, to achieve a reasonable performance, the images under 

consideration must also be aligned to each other. In the feature-based approaches, 

local features such as the eyes, nose and mouth are, typically first extracted, and their 

locations and local statistics (geometric and/or appearance) are fed into a classifier. 

Hybrid approaches such as the human perception system use both local features and 
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the whole face region to recognize a face. A machine recognition system should use 

as much relevant information as possible in the training and recognition process. One 

can therefore argue that the methods based on the hybrid approach should potentially 

offer the best performance. 



 19

1.4 Organization of this Thesis 

The rest of this thesis will introduce the existing techniques for facial feature 

extraction and human face recognition, as well as the respective techniques devised 

and developed in this thesis. Chapter 2 is a review of the state-of-the-art technologies 

in facial feature extraction and human face recognition. Chapter 3 outlines our 

efficient approach for facial feature extraction under perspective variations. The 

technique used in our approach includes three statistical face shape models under 

three different poses. A modified face shape model is also proposed. In order to 

represent a face more flexibly, the representations of the important facial features, i.e. 

the eyes, nose and mouth, and the face contour are separated. The models are then fit 

to a human face by means of the genetic algorithm. In Chapter 4, an effective method 

for pose estimation will be described. Two shape model parameters in the statistical 

face shape model are used in our approach. They can provide more detailed 

information about the pose of a human face, and so can be used to make the estimate 

more accurately and reliably. In Chapter 5, our proposed efficient approach for human 

face recognition based on the Gabor features and weighting similarity measurement 

will be presented. The experimental results show that our proposed method 

outperforms normal similarity measures. Finally, a summary of the major 

developments and a conclusion of this research work are provided in Chapter 6. 
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CHAPTER 2  

Literature Reviews 

 

2.1 Introduction 

The first step in any automatic human face recognition system is the detection of 

faces in images or video sequences. After a face has been detected, the task of feature 

extraction is to obtain features for face classification. Depending on the type of 

classification system, the features can be a holistic face or local features such as lines 

or facial features. Face detection may also employ facial features in the detection 

process, during which facial features and the face are extracted simultaneously. Facial 

feature extraction is also a key component of the animation and recognition of facial 

expressions. 

The performance of an automatic human face recognition algorithm is quite 

dependent on the accuracy of face detection and facial feature extraction. In other 

words, without accurate face and facial feature location, noticeable degradation in 

recognition performance is observed. The close relationship between facial feature 

extraction and face recognition motivates us to review a few extraction methods and 

face recognition methods that are used in the human face recognition approaches.  



 21

2.2 Facial Feature Extraction 

 The importance of facial features for face recognition cannot be overstated. 

Many face recognition systems need facial features in addition to the whole face. It is 

well known that even the holistic-based approaches, e.g. eigenfaces [2] and 

Fisherfaces [3], need accurate locations of some key facial features such as the eyes, 

nose, and mouth to normalize the detected faces [4, 5].  

Facial feature extraction is one of the most challenging research topics, even 

though it might not be difficult for people to perceive human faces and facial features 

in an image. A lot of research on facial feature extraction has been presented in [6-21]. 

The techniques in [6-9] define a head model for extracting the facial features after the 

human faces have been detected. Various approaches to extracting the position of the 

facial features have been proposed. However, they can only roughly estimate the 

position. One of the early approaches is to compute the horizontal and vertical 

projections of an [6, 9, 10] image to determine the position of the eyes and the mouth. 

As the eyes, nose and mouth regions appear darker than other regions in a face, the 

summation of the grey-level intensities for these regions will exhibit as a local 

minimum. 

 In the following sections of this chapter, we will describe three popular 

algorithms namely active contour model (snakes) [22-25], deformable template 
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[14-20] and active shape model (ASM) [26-33] for facial feature extraction.  

2.2.1 Active Contour Model 

Active contour model (Snake) was first proposed by Kass et al. [22] in 1987 as an 

application for representing image contour. The snake can stick to edges accurately. 

The model is an energy-minimizing spline that can be operated under the influence of 

internal contour forces, image forces and external force. It is represented as a 

parametric curve v(s) = [x(s), y(s)], where the arc length s is a parameter. The energy 

functional [24] of a snake is given as follows: 

∫

∫
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=
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0
constraintimageinternal

1

0
snake

*

)]([)]([)]([            

)]([  

dssvEsvEsvE
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        (2.1) 

The solution to the energy function can be found using different calculus, but this 

method has the problem of numerical stability. The difficulty in the initialization and 

slow processing speed are the drawbacks of this approach. Hence, a fast iteration 

process approach has been proposed, the greedy algorithm [24], which allows a 

contour with controlled first- and second-order continuity to converge in an area with 

high image energy. Another fast approach based on the greedy algorithm was 

presented in [23, 24]. In this approach, two alternate search patterns are used, and a 

reduction in execution time of about 30% can be achieved with the same performance 

as the greedy algorithm. 
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The eye template has totally eleven parameters represented by ( cx
G , ex

G , p1, p2, r, a, 

b, c, θ). This template is modeled by two parabolic curves representing the upper and 

lower parts of the boundary. It has a center ex
G , with a width of 2b, maximum heights 

of a and c for the upper and lower boundaries, and an angle of orientation θ. r is the 

radius of the iris represented by a circle centered at cx
G . 

For the mouth template, its center is at point mx
G  and its orientation is θ. The 

widths of the left and right parts of the mouth template are b1 and b2 from mx
G , 

respectively. The lower two parabolas have maximum distances of a and a+c from the 

central line. The intersection of the upper two parabolas, u1 and u2 occurs at a height 

of h above mx
G . These templates act on three representations of an image, which are 

the peak, valley, and edge, as well as on the image itself. An energy function is 

devised based on these four representations and used to guide the deformation of 

these templates. The final size, shape and orientation of the eye and mouth templates 

are obtained by determining the local minimum of the respective energy functions. It 

is a time consuming procedure to determine all the parameters through the 

optimization process. Furthermore, in order to extract the eye, the template must be 

started at or below the eye. If it is started above the eye, the valley force from the 

eyebrows may cause problems. Hence, [15, 16, 20] and [17, 18] introduced a reliable 

method to locate the eye and the mouth, respectively. In [15, 16], the corners of an eye 
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are first located by means of a corner detection scheme. Based on the corner position, 

the shape of the eye can be estimated accurately. The exact shape of the eye is then 

extracted by a new scheme which is similar to snake [22]. In [17, 18], a mouth 

boundary curve is initially formed by three control points. The exact locations of these 

control points are then determined through an optimization process by using a set of 

cost functions. 

 

2.2.3  Active Shape Model 

Active Shape Model (ASM), proposed by Cootes and Taylor [26] in 1992, is a 

commonly used technique for facial feature extraction. This technique is similar to the 

snakes, but has the advantage that instances of an ASM can only deform in the ways 

found in its training set. ASM also allows considerable variability in shape modeling, 

but the model is specific to the class of target objects or structures that it intends to 

represent. 

 

The Shape Model 

A shape model is described by n landmark points that represent the important 

positions in the object to be represented. These points are generated based on a set of 

training shapes. Each training shape x is represented as a shape vector, which is a 

collection of landmark points called a point distribution model [26], 
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T
nnkk yxyxyxyx ),,,,,,,,,( 111100 −−= ……x , (2.2) 

where T represents the transpose operation, and (xk, yk) are the coordinates of the kth 

landmark point. Figure 2.3 shows a training image with its landmark points marked. 

 

 

Figure 2.3 Locations of the points used to represent a face. 

 

The training shapes are all aligned by translation, rotation and scaling for 

minimizing the sum of squared distances between their corresponding landmark 

points. Then, the mean shape x  and the deviation of each training shape from the 

mean are calculated. Principal component analysis (PCA) is then applied to capture 

most of the shape variations. Therefore, a shape model can be approximated as 

follows: 

Pbxx +≈ ,  (2.3) 

where P = (p1 p2 … pt) is the matrix whose columns are the first t eigenvectors with 

the largest eigenvalues arranged in descending order, and T
tbbb )( 21 …=b  is a 
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weight vector for the t eigenvectors, referred to as the shape parameters. When fitting 

the shape model to an object, the value of bi is constrained to lie within the range 3±  

standard deviations. This can ensure that this range of the shape parameters can 

represent most of the shape variations in the training set. The number of eigenvectors 

t to be used is determined such that the eigenvectors can represent a certain amount of 

the shape variations in the training shapes, usually ranging from 90% to 95%. The 

desired number of eigenvectors t is given by the smallest t which satisfies 

∑∑
==

≥
N

i
i

t

i
i

11
95.0 λλ ,             (2.4) 

where N is the total number of eigenvectors available. 

 

Modeling the Gray-Level Appearance 

The gray-level appearance model [29], which describes the local texture feature 

around each landmark, is the normalized derivative of the profiles sampled 

perpendicular to the landmark contour and centered at the landmark. This gray-level 

information is used to estimate the best position of the landmarks in the searching 

process. The normalized derivative of the profiles is invariant to the offsets of the 

gray levels. 

The gray-level profile, gij, of the landmark j in the image i is a (2n+1)-D vector, 

in which n pixels are sampled on either side of the landmark under consideration, 
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[ ])12(10 += nijijijij ggg …g , (2.5) 

where gijk, k = 0, …, 2n+1, is the gray-level intensity of a corresponding pixel. The 

derivative profile of gij has a length of 2n, and is given as follows: 

[ ])2()12(1201 nijnijijijijijij ggggggd −−−= +…g  (2.6) 

The normalized derivative profile is given by 

∑
=

= n

k
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ij
ij

dg

d
2

0

g
y , (2.7) 

where ijkkijijk ggdg −= + )1( . The covariance matrix of the normalized derivative 

profile for N training images is 

( )( )∑
=

−−=
N

i
jijjijyj N 1

1 yyyyC , (2.8) 

where jy is the mean profile. The ASM employs the information obtained from 

modeling the gray-level statistics around each landmark to determine the desired 

movement or adjustment of each landmark such that a face shape model can fit into 

the target object accurately. To determine the movement of a landmark, a search 

profile (Figure 2.4) − which is a line passing through the landmark under 

consideration and perpendicular to the contour formed by the landmark and its 

neighbors − is extracted. A number of sub-profiles will be generated when the best set 

of shape parameters is being searched. These sub-profiles are matched to the 

corresponding profiles obtained from the training set. The difference between a 
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Different approaches [30-32] can be used to search for a better position for the points. 

The simplest way is to find the strongest edge along the searching profile. Another 

approach is to create the gray-level appearance model or profile of each point, which 

will maximize the probability of the gray-level profile, as described in the last section. 

After searching, the shape parameters T
tbbb )( 21 …=b  and the pose parameters 

(i.e. rotation, scale, and translation of the model) are adjusted in such a way as to 

minimize the overall distance between the new position of the points and the position 

of the original points. The adjusting process is repeated until no significant change in 

the model points is observed. 
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2.3 Human Face Recognition 

Many methods of face recognition have been proposed during the past 20 years, 

and many literature reviews of face recognition have been conducted [35, 36]. Face 

recognition is such a challenging and interesting problem, which is why the literature 

on face recognition is so vast and diverse. A single face recognition system involves 

mixture techniques. The use of these mixture techniques makes it difficult to classify 

the type of techniques in a system used. In order to categorize the techniques more 

clearly, we use the following categorization: 

(1) Holistic-based approaches: These methods use the whole face region as the raw 

input to a recognition system. One of the most widely used representations of the face 

region is the eigenface [3, 4], which is based on Principal Component Analysis. 

(2) Feature-based approaches: Typically, in these methods, local features such as the 

eyes, nose and mouth are first extracted and their locations and local statistics 

(geometric and/or appearance) are fed into a structural classifier. 

(3) Hybrid approaches: Just as the human perception system uses both local features 

and the whole face region to recognize a face, a successful face recognition system 

should use both. These methods should potentially offers a better performance level 

than the other two. 

In this section, some examples of these three approaches will be presented. 
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2.3.1 Holistic-based Approaches 

Eigenface 

The eigenface [2] was proposed by Alex. P. Pentland and Matthew A. Turk of 

MIT in 1991. The main idea of the eigenface is to obtain the features in a 

mathematical sense instead of the physical face feature by using a mathematical 

transform for recognition.  

There are two phases for face recognition using eigenfaces. The first phase is the 

training phase. In this phase, a large group of individual faces acts as the training set. 

These training images should be a good representation of all the faces that one might 

encounter. Their size, orientation and light intensity should be standardized. For 

example, all images are of size 128 × 128 pixels and all are frontal faces. Each of the 

images in the training set is represented by a vector of size N × N, with N representing 

the size of the image. With the training images, a set of eigenvectors is found by using 

Principal Component Analysis (PCA).  

The basic idea of PCA is to take advantage of the redundancy existing in the 

training set for representing the set in a more compact way. Using PCA, we can 

represent an image using M eigenvectors, where M is the number of eigenvectors used, 

(M << N2). As M is much smaller than N2, the comparing computation required for 

two feature vectors is greatly reduced.  
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PCA is done by first finding the average face ψ by averaging the training set 

images {T1, T2, ……TM} with Ti representing each of the vectors in the set. Then we 

form a matrix A = {φ1, φ2, ……φM} with column vector φi = Ti– ψ, which is the 

difference vector of the training images and the average face. We can then compute 

the covariance matrix C = AAT, as well as the eigenvectors and the associated 

eigenvalues of C. 

After the eigenvectors have been calculated, the eigenvectors are sorted 

according to the magnitudes of their respective eigenvalues. These vectors are known 

as eigenfaces. M’ (M’<M) eigenfaces with the largest eigenvalues are chosen, which 

are considered the best eigenvectors to represent a face. The span of the M’ eigenfaces 

are called a face space. 

 The second phase of this algorithm is to recognize a face image. In this phase, a 

new or query face image is available. To recognize this image, we first subtract it by 

the average face ψ. Then, we calculate the dot products of the input vector and the 

eigenfaces. This makes a projection of the input image onto the face space. Similarly, 

we make projections of the training images onto the face space. The projection of an 

image onto the face space appears as a point in the plane. The Euclidean distances 

between the projection of the input face and that of each face in the database are then 
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computed. The image in the database which has the minimum distance to the input 

should be the best match. 

 

Fisherface 

 Fisherface [3] was proposed by Peter N. Belhumeur, Joao P. Hespanha and David 

J. Kriegman of Yale Univeristy in 1997. This approach is similar to the eigenface 

approach, making use of the projection of images into a face space, with improved 

insensitivity to large variation in lighting and facial expression. 

The eigenface method uses PCA for dimensionality reduction, which yields 

projection directions that maximize the total scatter across all classes of images. The 

PCA is the best method for representing images from a low dimensional basis. 

However, this method does not consider the between-class scatter of the different 

subjects in a database. The projection may not be optimal in terms of discrimination 

in different classes. Let the total scatter matrix ST be defined as follows:  

( )( )
1

N
T

T k k
k

S T Tψ ψ
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= − −∑ .           (2.10) 

The projection Wopt is chosen to maximize the determinant of the total scatter 

matrix of the projection samples, i.e. 

WSWW T
T

W
opt maxarg=

            (2.11) 

   = [w1, w2,……,wm] 
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where {wi| i=1,2 … … ,m} is the set of n–dimensional eigenvectors of ST  

corresponding to the m largest eigenvalues. 

The Fisherface method uses Fisher’s Linear Discriminant (FLD), formulated by 

R.A. Fisher. This projection maximizes the ratio of between-class scatter to that of 

within-class scatter. The idea is that it tries to “shape” the scatter in order to make it 

more reliable for classification. Let the between-class scatter matrix be defined as 

( )( )
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B l l l
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S N ψ ψ ψ ψ
=

= − −∑            (2.12) 

where C is the total number of classes and Nl is the number of samples in l class.  

and the within-class scatter matrix be defined as follows 
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where ψl is the mean image of class Tl. The optimal projection Wopt is chosen as the 

matrix with orthonormal columns, which maximizes the ratio of the determinant of 

the between-class scatter matrix of the projected samples to the determinant of the 

within-class scatter matrix of the projected samples, i.e. 

WSW
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W
opt maxarg=

           (2.14) 

  = [w1, w2,……,wm] 

where {wi| i=1,2 … … ,m} is the set of n–dimensional eigenvectors of SB/SW 

corresponding to the m largest eigenvalues.  
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2.3.2 Feature-based Approaches 

 Many methods in the feature-based approaches have been proposed, including 

many early methods based on the geometry of local features [37, 38] as well as 1D 

[39] and pseudo-2D [40] HMM methods. One of the most successful of these 

approaches is Elastic Bunch Graph Matching (EBGM) [41], which is based on 

Dynamic Link Architecture (DLA) [42, 43]. This approach uses an elastic bunch 

graph to automatically locate the facial feature points on a face (eyes, nose, mouth, 

etc.) and to recognize the face according to these facial features. 

The representation of facial features is based on the Gabor wavelet transform. 

Gabor wavelets are biologically motivated convolution kernels in the shape of plane 

waves restricted by a Gaussian envelope function. The family of Gabor kernels is 

given as follows: 
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This function is in the shape of plane waves with wave vector jk
K

, restricted by a 

Guassian envelope. EBGM employs a discrete set of 5 different frequencies, index v 

= 0, 1,…,4, and 8 orientations, with indexµ = 0, 1,…,7, i.e. 
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where index j =µ +8v and σ = 2π . 
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Figure 2.5 shows the Gabor wavelet transformation, which is done by 

convolving the original image with the 40 Gabor filters. The set of 40 coefficients 

obtained for one image point is referred to as a “jet”. A collection of these jets, 

together with their relative location, form an image graph, as shown on the right of the 

Figure 2.5. 

Jet

Image Graph

Original Image

Gabor Waveletes

Real Part Magnitude

Figure 2.5 Convolution of an image and Gabor wavelets, jet of a point, image graph 
of the face. 

 To represent a face, we need to build an image graph from a set of feature points 

such as at the pupils, the mouth corners, the tip of the nose, the tops and bottoms of 

the ears, etc. A labeled graph G representing a face consists of N nodes at position nxK , 

n = 1, …,N and E edges between them. An image graph is shown on the right side of 

Figure 2.5, which looks like a grid. For this image graph, 9 feature points are used as 

the nodes. 
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For an automatic face recognition system, the feature points must be located in 

order to automatically build an image graph for an input image. This can be done by 

matching the input image with a stack-like general representation of faces, called the 

Face Bunch Graph (FBG). A FBG consists of bunches, which are sets of jets, and can 

represent a wide range variation of face appearances. A face bunch graph, as shown in 

Figure 2.6, is a set of jets at the nodes representing the local appearance at the feature 

points, each with different variations. For example, the eye bunch may consist of jets 

of open eye, closed eye, male and female eye. With the variations, people with 

different facial expressions can be matched accordingly. Figure 2.7 shows the overall 

step of image graph matching for an image. 

 For the matching between an input graph and the FBG, a function called graph 

similarity is employed. This function measures the jet similarity and the distortion of 

the input image grid relative to the FBG grid. For an image graph Ig  with nodes n = 

1,…,N and edges e = 1,…,E, and an FBG B with model graphs m = 1,…,M, the 

similarity is defined as 
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where λ  determines the relative importance of the jets and the matrix structure, Jn 

represents the jets at nodes n, and exK∆  is the distance vector for edge e. 
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To recognize an image, we simply compare the image graph to all the model 

graphs and select the one with the highest similarity value. The similarity function is 

an average over the similarities between pairs of corresponding jets. If gI is the image 

graph, gM is the modal graph, and node nn’ is the modal graph corresponding to node 

n’ in the image graph, the graph similarity is defined as 

' '
1( , ) ( , )

' '

I M I M
g aS g g S J Jn nN n

= ∑           (2.18) 

where the sum runs only over the N’ nodes in the image graph with a corresponding 

node in the modal graph. 
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2.3.3  Hybrid Approaches 

Hybrid approach uses both global and local features for face recognition. For 

example, the modular eigenface approach [44] uses both the global eigenfaces and the 

local eigenfeatures such as the eigeneyes, eigenmouth, etc. Different recognition 

approaches succeed and fail at different pose angle or illumination conditions. Due to 

this drawback, various individual recognition classifiers should be used in a 

recognition system. For example, if multiple views of a face image are considered in 

face recognition, we can employ two different approaches to handle the images. The 

first approach uses all the images and constructs a set of eigenfaces that represent all 

the images from all the views. The other approach uses separate eigenspaces for 

different views, so that the collection of images taken from each view has its own 

eigenspace. The second approach, known as the view-based eigenspaces [44], 

performs better.  

Apart from the above approaches, Gordon [45] described a hybrid approach, 

which combines a frontal template and a profile template for face recognition in 1995. 

This approach extracts facial features to perform normalization and define template 

regions used for combined recognition of the frontal and profile regions in a classical 

template matching process (Figure 2.8). 
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After identifying head bounds in a frontal view, eye candidates are extracted 

using general eye templates, pupil detection and structural knowledge about the 

human head. A similar approach is used in the profile case by first extracting the 

profile line and then estimating the nose and chin tip. Overall template matching is 

subject to a scoring of five facial templates (left eye, right eye, nose, mouth and 

profile). 

 

Figure 2.8 Frontal and profile templates for hybrid face recognition. 
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CHAPTER 3  

An Accurate Active Shape Model 

for Facial Feature Extraction 

 

3.1 Introduction 

In Chapter 2, we presented the problem of facial feature extraction. Various 

approaches to human facial feature extraction have been described presented to solve 

the problem. In this chapter, we will introduce a modified shape model, which can 

adapt to face images under different orientations. 

Modeling faces under different poses is a challenging problem, since the 

appearance of the facial features will significantly differ. The conventional active 

shape model (ASM) [26] uses a single face model to represent a face; this model 

cannot extract facial features in face images under different perspective variations 

accurately. The ASM is constructed based on a linear combination of a set of 2D face 

appearances, which are usually frontal view images. Consequently, if the input face is 

not of frontal view, the model cannot work properly. Therefore, in our approach, we 

model the face contour and the facial features separately. The shape of a face contour 

will be changed to a much lesser extent than those facial features under different 
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perspective variations. For the facial features, three models are used to represent the 

features when the face is frontal view, turned left, and turned right, respectively. 

To extract the facial features in an image, we need to fit the defined face model 

to a face image. To search for the best match between the model and the face image 

optimally, the genetic algorithm (GA) [46] is used in our algorithm. The GA operates 

on a population of possible solutions, which evolves by means of the crossover and 

mutation operations to search for the optimum solution. Each solution represents the 

parameters of a facial feature model for the representation of a face image. The GA 

has been successfully applied to many areas, such as motion estimation for video 

coding [47], object recognition [48], human face detection [49, 50], facial feature 

extraction [51, 52], etc. In our approach, we use the GA to search for the facial feature 

model (either frontal-, left-, or right-viewed) to be used and the parameters of the 

corresponding model to represent a face. 

The organization of this chapter is as follows. Our new face models and the GA 

used in our algorithm are described in Section 3.2. Experimental results are given in 

Section 3.3. Finally, a conclusion is drawn in Section 3.4. 
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3.2 Our Proposed Algorithm 

3.2.1 A New Face Model 

The ASM encodes the a priori information about an object’s shape using the 

Principal Component Analysis (PCA), and matches an object by applying geometrical 

transformation to the PDM. This method may not be able to match a new target object 

accurately if the shape to be represented is not present in the training set. Facial 

feature extraction is challenging because the human face is a three-dimensional (3-D) 

object, and the perspective variations of a face will affect the accuracy of extracting 

the facial features (e.g. eyes, nose and mouth). In our proposed approach, two shape 

models that are linked by a cost function are used to represent the shape of a human 

face. One of the shape models represents the facial features, including the two 

eyebrows, two eyes, nose, and mouth. The other one models the face contour only. 

The reason for using separate models for the facial features and the face contour is 

that they are affected by perspective variations to different degrees. The facial feature 

model is constructed by using 31 points, while 21 points are used for the face contour 

model. Figure 3.1 illustrates all the feature points used to represent a face, and Figure 

3.2 shows the facial feature model and the face contour model. The shape of a face 

model can be changed using the shape parameters in (2.3), which are the weights of 

the respective eigenvectors or principal components generated from the corresponding 
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training set. Figure 3.3 plots the point distribution models based on the first three 

principal shape parameters varied from its mean values to their corresponding 

maximum and minimum values 3±  standard deviations. Varying the value of b1 will 

elongate the entire facial feature. The second parameter b2 will change the model from 

facing downward to facing upward. The third parameter b3 will rotate the head to 

different perspectives by raising the eyebrows and opening/closing the mouth.  

 

 

Figure 3.1 Locations of the points used to represent a face. 

 

  
(a) (b) 

Figure 3.2 The shape models for (a) the facial features and (b) the face contour. 
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b1

b2

b3

Mean sd3+sd3−
 

Figure 3.3 The effect of the first three shape parameters (b1, b2, and b3) on shape 

variations. 

The two individual feature models, i.e. the facial feature model and the face 

contour model, have their own shape variations. When they are combined, a more 

flexible representation of a face can be achieved. If a single face model is used to 

represent a whole face image, it may not be able to capture the local shape variations 

effectively under different facial expressions and perspective variations. Figure 3.4 

illustrates some results based on the ASM, which show that it is difficult to locate the 

landmark points of the eyes and nose accurately if a whole-face model is used. The 

facial features in the whole-face shape model are related to each other in the ASM. 

The face model is fitted to the target object by changing the global variations of the 

point distribution model; the local shape variations may not be represented effectively. 
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For example, while changing the shape parameters to represent an open or close 

mouth, other facial features and the face contour will also be modified. This is the 

drawback of the ASM model. Moreover, ASM is restricted to a narrow view because 

the model can only represent a shape that is a linear combination of the 2D 

appearance in the training set. To solve this problem, nonlinear models or mixture 

models are adopted to model the face under perspective variations [33, 34]. Therefore, 

we use two separate shape models, one for the face contour and the other for the 

remaining facial features, with some constraints on the shapes and relative position of 

these two models. 

In the optimization process, the facial feature model and face contour model have 

their own transformation parameters (or pose parameters), which include the scaling 

factor, the rotation angle, and the (x, y) translation. Consequently, this allows the 

respective shape models to deform according to the corresponding features, and the 

two shape models are combined to represent a face more accurately. 

The ASM is restricted to representing faces form a narrow frontal view. Figure 3.5 

illustrates that the ASM cannot effectively extract the face image under different 

viewing angles. To extract the facial features under different viewing angles during 

the searching process, three facial feature models are used for their respective angles. 

The left-viewed model describes faces with a viewing angle θ  between 10° and 45° 
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to the left (i.e. -45°<θ <-10°), the frontal-viewed model for faces with an angle 

between -10° and 10° (i.e. -10°<θ <10°), and the right-viewed model for faces 

viewing between 10° and 45° to the right (i.e. 10°<θ <45°). Since the ASM is 

constructed based on a linear combination model, the feature model cannot capture a 

full range of pose change. These three models are shown in Figure 3.6. The aim is to 

use the facial feature model which best represents the local facial features under the 

corresponding viewing angle. The differences between these three models are in their 

representations of the nose and in their appearances under the different viewing angles. 

A closed contour is used for the nose in the frontal view model, while an open contour 

for the two side-viewed models. The number of points for a nose represented by the 

closed contour is more than that represented by the open contour. The PDMs for the 

frontal view and the two side views are illustrated in Figure 3.7. Each of these three 

models is trained based on a set of face images under a corresponding range of 

viewing angles, and the points for the PDMs are labeled manually. As the left-viewed 

and right-viewed models are the reflected version of each other, so these two models 

can be trained together. 
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Figure 3.4 Some results of applying ASM to frontal face images. 

 

     

Figure 3.5 Some results of applying ASM to faces under perspective variations. 

 

   
Left view Frontal view Right view 

-45°<θ <-10° -10°< θ <10° 10°<θ <45° 

Figure 3.6 The left-viewed, right-viewed and frontal-viewed face models, and their 
corresponding ranges of viewing angles. 

 

   
Left Frontal Right 

Figure 3.7 Examples of training images for the three different facial feature models. 
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3.2.2 Facial Feature Extraction Using the Genetic Algorithm 

In this section, we present the use of the face shape models and the genetic 

algorithm (GA) to extract a face image in a gray-scale image. The three face shape 

models, as described in Section 3.2.1, are randomly generated and evenly distributed 

in the initial population. The fitness value of each candidate in a population is 

measured based on the gray-level appearance and the edge information. When the 

population evolves, the number of candidates with the correct face shape model will 

gradually dominate. The process will be stopped either when the average fitness value 

of the population does not change significantly over a number of iterations or after a 

certain number of iterations have been done. Finally, the parameters of the best 

candidate in the population are used to represent the face image. 

The genetic algorithm is used to search the correct facial feature model and its 

corresponding optimal shape and pose parameters in representing a human face. This 

is an effective approach when the searching space is large. Each candidate in a 

population is associated with a fitness value, which measures how well the candidate 

can represent the required solution. The solution represented by a candidate is 

encoded as a chromosome, which is the basic element in the GA. In each iteration, a 

new population is generated based on the three genetic operators: selection, crossover 

and mutation. In our approach, candidates are selected for the new population based 
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on their corresponding fitness values with the roulette wheel selection [46]. In other 

words, a candidate with a higher fitness value will have a higher probability of being 

selected for the next generation. The crossover and mutation operations are applied to 

the selected candidates to form the new population. For crossover, two selected parent 

chromosomes are cut at a random bit position and are then combined in a crossover 

manner to form two new children. For mutation, each bit in a chromosome may be 

mutated, i.e. changing from 0 to 1 and vice versa, with a certain probability. 

 

Structure of a Chromosome 

Each possible set of parameters of the face shape models is represented by a 

chromosome, which is in binary form. In our algorithm, a model is described by two 

components: the shape parameters and the pose parameters. The shape parameters are 

used to represent the variation of the shape model, while the pose parameters 

correspond to the scale, rotation, and position of the model. Both the facial feature 

model and the face contour model have the same number of pose parameters, i.e. 

scale, rotation, and the x and y translation of the model. However, we use 7 shape 

parameters for the facial feature model and 3 for the face contour model. This is 

because the facial features are more complicated and require more shape parameters 

in order to achieve an accurate representation. The structure of a chromosome and a 
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summary of the parameters are illustrated in Figure 3.8 and Table 3.1, respectively. 

The 7 shape parameters used for the facial feature model, which are used to describe 

the eyes, nose, mouth, etc, can capture 95% of the variations in 80 training samples. 

These training samples are randomly selected from a database with a similar face 

scale but a different facial expression. Hence, 7 shape parameters (b1, b2, …, b7) and 4 

pose parameters (scaling s1, rotation θ1, Tx1, and Ty1) are defined for the facial feature 

model. The face contour is represented as a smooth curve, so 3 shape parameters are 

sufficient to represent most of its variations in the training set. Consequently, a total 

of 18 parameters (10 shape parameters and 8 pose parameters) are to be determined in 

the GA optimization process. The relationships between the two feature models are 

enforced by a cost function, which will be described in the next section. The allowed 

changes in scale on both the facial feature and the face contour models are within 

±10% of their respective original sizes. In our approach, four bits are used to represent 

the change in scale. In addition, the difference in size between the two models is 

limited to 20%. The range of the in-plane rotation angle is within the range [-32°, 32°], 

which is represented by using 6 bits. The translation of a model in each of the 

directions (horizontal and vertical) is also represented by using 6 bits. The variations 

in each of the shape parameters, bi, is within the corresponding three standard 
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With different combinations of the facial feature models and the face contour 

model, a population of possible face models with different locations, sizes, and 

orientations can be generated. The initial population is formed by selecting the three 

facial feature models randomly and in equal proportion. Therefore, if the population 

size is N, the numbers of left-viewed, right-viewed, and frontal-viewed face models 

are equal to N/3. The top n candidates with the highest fitness values for each of the 

facial feature models are retained and passed on to the next generation without 

performing the genetic operations. After a number of generations, one of the face 

models will dominate in the population. Then, all the candidates will employ this 

dominated facial feature model, and the final population size is reduced to N/3. The 

fitness of a face model is determined by means of the gray-level appearance model 

and edge information. Finally, the iteration will be terminated if there is no further 

improvement in the fitness value of the population or a maximum number of 

generations have been evolved. Then, the chromosome with the maximum fitness 

value is selected as the optimal solution. The corresponding parameters of the 

chromosome can provide a good representation of the face image under consideration. 

In our GA implementation, we have proposed two modifications. (1) The size of the 

population is reduced to one-third of the initial population when a dominant facial 

feature model has been identified. In addition, the population size is reduced by 10% 
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after each generation, until it becomes one-third of the initial population. This allows 

us to have a large population to make the search more effective at the beginning, and 

reduces the population and the required computation when potential candidates have 

been identified. In order to determine the optimal population size to be used, 270 

testing face images were selected, and the initial population sizes for each of the three 

facial feature models were set at 50, 100, and 150. Table 3.2 tabulates the average 

pixel errors for the three different initial population sizes. It is found that the lowest 

average pixel error can be achieved when the population size for each of the facial 

feature models is 100. Therefore, in our following experiments, the initial population 

size is set at 300, which will gradually be reduced to 100. Furthermore, the maximum 

number of generations is set at 100. (2) A chromosome is composed of four 

components (two for the shape parameters and the other two for the pose parameters). 

The crossover operation is carried out within each of the components. The crossover 

process is illustrated in Fig. 3.9 Four sets of probabilities are employed, and are 

changed in two stages of the GA process. In the first stage, the crossover and mutation 

probabilities for the two sets of pose parameters are assigned with higher values, 

while smaller probabilities are adopted for the shape parameters. This is because, at 

the beginning of the search, the local optimal face location must be searched; 

otherwise the shape parameters will be meaningless. In our algorithm, the 
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probabilities of crossover and mutation for the pose parameters are 0.8 and 0.05, 

respectively, and the corresponding probabilities for the shape parameters are 0.3 and 

0.01, respectively. When one of the face models dominates the population (we set it at 

80% of the total population), the GA will jump to the second stage. However, if an 

input face has a viewing angle in between of the frontal view and a side view, the 

population will not be dominated by a single face model. In this case, the population will 

consist mainly of faces represented by the frontal-view model and the side-view model. 

Consequently, the GA will not jump to the next stage. The iteration will stop under the 

same conditions and the population size also decreases to one-third of the initial 

population by a factor of 10% after each generation. 

In second stage, the crossover and mutation probabilities for the pose parameters 

are reduced to 0.3 and 0.01, respectively. Therefore, the pose parameters for the face 

model will be subject to a smaller perturbation. However, the crossover and mutation 

probabilities for the shape parameters will be increased to 0.8 and 0.05, respectively. 

This will allow the algorithm to search for the optimal shape parameters more 

effectively. The above setting of the probabilities is obtained based on experiments 

that can achieve the best representation results for our algorithm. 
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To improve the fitting performance of the face model to a face image, we employ 

not only the edge information but also the gray-level appearance of the image. 

Therefore, the fitness value of a chromosome is computed based on both the edge 

intensities and gray-level appearance of the image under consideration. The fitness 

functions for facial feature representation, ffacial, and face contour representation, 

fcontour, are defined as follows: 
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where λi (i = 1, …, 6) represent the weighting factors, E(x, y) is the edge intensities of 

the image, S is the number of pixels in the face model C, ( )ii yy ,Μ  is the 

Mahalanobis distance between a new profile, yi, and the mean profile , iy , and N1 and 

N2 are the number of points on the facial feature model and the face contour model, 

respectively. Maxlength represents the maximum length of the profile on one side. For 

example, if the profile length is 19 pixels (9 pixels on both side, and itself), the 

Maxlength is equal to 9. Each of these cost functions is divided by their corresponding 

maximum value for normalization. Both (3.2) and (3.3) have the same form but with 

different weighting factors for the respective terms. The first term is the average edge 

intensity over the model used. The edges of the image are smoothed by means of a 
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The two end points of the face contour model are connected to the corresponding 

eye center on its side to form the angles θ left and θ right with the baseline. To 

determine the angles θleft and θright , let (xe, ye) and (xc, yc) be the coordinates of an end 

point of the face contour model and the eye center, respectively. Then, the distance d1 

between (xe, ye) and the baseline and the length d2 between (xe, ye) and (xc, yc) are 

given by 
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The angle can therefore be calculated as follows: 
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The fitness function for this constraint model is: 

 ( ){ }21exp θθθθ −++−= RightLeftconf , (3.7) 

where θ1 and θ2 are the rotation angles of the facial facture and face contour models. 

To maximize this fitness value, θ left, θ right, and |θ1 − θ2| will be forced to be as small 

as possible. In additional, an associated penalty term will be added in the fitness 

evaluation to prevent overlapping the two models in the next generation. If any of the 

five points shown in Figure 3.12 is outside the face contour model, the weighting 

value w3 will be set to a large negative number. Hence, with these constraints, the two 

models can be linked up to form a valid representation of a face in the optimization 

process. 
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Figure 3.12 Additional constraints on some points in the facial feature model. 

 

3.3 Experimental Result 

To evaluate the accuracy of our proposed algorithm, the average error, e, is 

defined as the average distance between the landmark points searched by the ASM or 

other algorithms and their actual positions. Therefore, e can be computed as follows: 
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where bi = (bi,x, bi,y) represents the correct position of the landmark points for a face 

image, ai = (ai,x, ai,y) the corresponding positions obtained by a search algorithm, and 

N the total number of points used in the face model. 

The experiments were performed with the Olivetti Research Lab (ORL) face 

database. The ORL database contains 40 distinct subjects, with ten images per subject. 

The facial images of each subject are taken at different time instances, with varying 

perspective variations, facial expressions, facial details (glasses or no glasses), and 

each image is of size 92×112. All subjects are in the upright, frontal position, with up 
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to 45 degrees of perspective change. The face images are divided into three categories 

according to the viewing angles (left, right, frontal), and the landmark points in the 

images are manually labeled. Fifty-two landmark points are used for frontal view 

images, and 50 for left- or right- side views. The number of face images in the 

respective categories, and the corresponding numbers of training images and testing 

images are tabulated in Table 3.3. For each of the left- and right-viewed categories, 25 

labeled face images were randomly selected as the training samples, and the 

remaining 30 and 28 face images were used as the testing set. Therefore, a total of 50 

training samples were used to form the left- and right-viewed model, as the 

left-viewed model is simply a reflection of the right-viewed model. For the 

frontal-view category, 80 faces were also selected randomly to form the training 

samples, and the remaining 212 faces form the testing set. 

Category Number of face images Training set size Testing set size 

Left 55 25 30 

Right 53 25 28 

Frontal 292 80 212 

Total 400 130 270 

Table 3.3 The numbers of face images in each of the three categories for the ORL 
database. 
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Two sets of experiments were conducted. The first experiment compares the 

performance of both the ASM and our algorithm by using the frontal-view images 

only. The second experiment explores the performance of the ASM and our algorithm 

when the faces are under different perspective variations. In the first experiment, both 

the ASM and our algorithm were trained with the same 80 frontal-view face images, 

and the remaining 212 images were used for testing. For each testing image, 25 

different initial positions − which are horizontally and vertically displaced from the 

true position by 0, 10 and 20 pixels − are considered in our experiment. The mean 

face model is used as the initial shape in the ASM search. Only the frontal-view facial 

feature model with different shape, scale, orientation and translation parameters were 

generated randomly for the initial population in our algorithm. The searching process 

will stop unless the results converge or the number of iterations for both ASM and our 

proposed algorithm is more than 100. By using the frontal-view images in the 

experiments, the overall average errors of ASM and our proposed approach are 3.97 

and 2.03, respectively. Some results based on these two methods are illustrated and 

compared in Figure 3.13. These results show that the locations of the eyes and mouths 

achieved by our approach are more accurate than those achieved by ASM. Our 

algorithm employs the GA, which holds a population of possible solutions and 

performs the search in parallel. This can therefore provide a more effective search for 
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the optimal solution. For ASM, the search will take a much longer time and the 

accuracy will become poorer if the initial candidate is not close to the target face 

image concerned. 

With a 1.4GHz Pentium IV computer system, the average runtime for ASM is 

210ms only. Our proposed algorithm, which requires 2.8s on average, is much more 

computationally expensive. This is because the GA requires a lot of overheads to 

encode a face model to a bit-string chromosome, and to decode the chromosome back 

to the face model in order to evaluate the fitness value. 

Our algorithm can search for the correct face model (frontal, left, or right) to be 

used to represent a face, and can then use that model to represent the face accurately. 

In the second experiment, we used 130 training images and 270 testing images, and 

measured the accuracy of selecting the face models by means of our algorithm. The 

results are illustrated in Table 3.4, which shows that the respective accuracies of our 

algorithm are 93.3%, 96.4%, and 98.1%, for the left-, right- and frontal-view face 

images. On average, the accuracy is 95.9%, i.e. 263 out of 270 faces are represented 

with a correct face model. Of these 263 face images, the average error is 2.21. The 

results, based on both ASM and our algorithm, are shown in Figure 3.6. Figure 3.15 

illustrates other results using our algorithm; the images are in the left- or right-views. 

For the purposes of comparison, the same setting, i.e. the number of training images 
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and testing images, is used to evaluate the accuracy of the ASM under the three 

categories of viewing angles. The results are presented in Figure 3.5, which shows 

that the ASM fails to locate the face contour and nose for the left- and right-viewed 

faces. Table 3.5 also shows the average errors based on the ASM and our algorithm. It 

can be seen from the table that our algorithm is much more accurate than the ASM. In 

addition, the average errors based on the ASM and our algorithm for frontal-view 

images are higher than those in the first experiment. It is because the training set used 

in this experiment includes two extra face models with different viewing angles. 

Some failed results are shown in Figure 3.16, where it can be seen that the mouth and 

nose features cannot be extracted successfully. The failure of our algorithm is mainly 

due to the fact that the edge intensities over the lips are very weak or, in some cases, a 

mustache is present or covers most parts of the mouth region. 
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 Correct Fail Accuracy in % 

Left 28 2 93.3% 

Right 27 1 96.4% 

Frontal 208 4 98.1% 

Table 3.4 The accuracy of selecting a correct face model. 
 

 Number of Test Images ASM (µ ± σ) Our algorithm (µ ± σ) 

Left 30 5.07 ± 0.60 2.68 ± 0.35 

Right 28 4.93 ± 0.65 2.48 ± 0.30 

Frontal 212 4.46 ± 0.61 2.20 ± 0.32 

Average  4.58 2.28 

Table 3.5 The average errors based on ASM and our algorithm under the three 
categories of viewing angles. 
 

    
(a) Results based on ASM. 

    
(b) Results based on our algorithm. 

Figure 3.13 Some matching results for frontal-view images based on the ASM (top 
row) and our proposed approach (bottom row). 
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(a) Results based on ASM. 

    
(b) Results based on our algorithm. 

Figure 3.14 Results for left-viewed and right-viewed face images based on the ASM 
(top row) and our approach (bottom row). 

 

    

    

Figure 3.15 Other results for left-viewed (top row) and right-viewed (bottom row) 
face images based on our approach. 

 

    

Figure 3.16 Some failed results. 
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Conclusion 

The original ASM considers the frontal view face images in facial feature 

extraction. This method cannot perform well when the face image concerned is not of 

frontal view. In order to extract facial features accurately under different perspective 

variations, we have proposed a face model that consists of a facial feature model and a 

face contour model. Three individual views for the facial feature model (left-side, 

right-side and frontal model) are employed, and the GA is applied for searching for 

the face model to be adopted, so that the face image can be represented accurately. 

These three face models are also incorporated with the specific local texture features 

around each of their landmark points in the fitness function. Experimental results 

show that our proposed algorithm can search for the face model and the facial features 

of a face image accurately. The face model can also be used to estimate the head pose 

of the face image. The improvement achieved by our algorithm is mainly due to the 

use of separated models for facial features and face contour, a fitness function that 

considers the edges, texture, and the constraints on combining the two models, and the 

GA, which can search for the optimal solution accurately. 
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CHAPTER 4   

Pose Estimation Based on 

Shape Model Parameters 
 

4.1 Introduction 

In Chapter 3, we presented an efficient and reliable approach for extracting the 

facial features such as eyes, nose, mouth and face contour. Based on the relative 

position of the facial features, we can estimate the head pose for face recognition. In 

general, face recognition will not achieve an accurate result when the pose of the 

input face is significantly different from those in the training set. Therefore, pose 

estimation should be performed, and the input image in the matching process should 

be changed accordingly. As we know, once the pose of a new input face is known, we 

can either modify the face in order to compensate the effect of the pose or compare 

the input to those faces in the database with the same pose. For the latter approach, the 

face images of a class must be divided according to their corresponding poses. 

There are many existing methods for head pose estimation. These methods can be 

roughly divided into two categories: appearance-based approaches [53-55] and 

model-based approached [56, 57]. Appearance-based approaches treat the whole face 

as a feature vector in some statistical subspaces and do not require facial feature 
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detection for preprocessing. It has recently become a popular method. 

Appearance-based approaches generally use multi-view classification [58] for head 

pose estimation. The multi-view classification methods divide the range of angle of a 

face into several intervals. A classifier is required to be built for each interval. Its 

accuracy depends on the classification performance for each interval and the angle 

range in each interval. T.F. Cootes and C.J. Taylor [57] described a model-based 

approach for locating a face outline. The model used is derived from a set of training 

face images. The shapes of the main features and the spatial relationships between 

them are represented by a Point Distribution Model (PDM). This provides a compact, 

parameterized description of shape for any instance of a face. Cootes and Taylor used 

the first and third parameters of the shape model, which are extracted from the PDM, 

for estimating the 3D pose of human faces. In this chapter, we propose a reliable 

method for estimating the pose of a human face. The idea of T.F. Cootes’s 

model-based approach is employed. The 3D pose angle is further represented by using 

more shape model parameters. We first evaluate the shape variation of the face shape 

model with respect to each of the shape parameters, and then determine those reliable 

shape parameters which can provide useful information about the pose of a human 

head. Based on the analysis of these parameters, multiple regression is used to 

calculate the relationship between the range of pose angles and the shape parameters. 
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4.2 Building the Shape Variation Model 

Firstly, principal component analysis (PCA) is applied to model the shape 

variation of human faces under different poses. We manually locate the facial feature 

points on 200 face images, which are selected randomly from the ORL face database. 

Since the ORL database contains face images of different poses, these images are 

useful for constructing the shape variation model. Some of the face images are shown 

in Figure 4.1. The coordinates of the facial feature points are collected to form a shape 

vector T
nnkk yxyxyxyx ),,,,,,,,,( 111100 −−= ……x , where (xk, yk) are the coordinates of 

the kth feature point. PCA can approximate any of the original points in the 

N-dimensional space with smaller dimension t, where t<<N. The vector b is defined as 

a set of shape model parameters as follows: 

)( xxPb −=              (4.1) 

where x is the mean shape vector and P contains the t eigenvectors corresponding to 

the largest eigenvalues.  

By varying the elements of b, we can generate new examples of the face shape 

model. The resultant shapes obtained by varying the first six shape parameters 

independently are shown in Figure 4.2. As illustrated in the first row, varying the first 

parameter b1 rotates the head in the yaw direction and changes the eyes, nose and face 

contour vertically. Varying the second parameter b2 changes the length of the face. 
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Varying the third parameter b3 moves the head in the tilt direction. Varying the fourth, 

fifth and sixth parameters controls the mouth (open/close), the shape of the chin 

contour, and the direction of the nose bridge, respectively. These 3D pose variations 

in the shape model can therefore be found in the first several shape model parameters. 

By changing these six parameters at the same time, we can construct different 3D 

pose variations such that the faces have different yaw and tilt angles and different 

appearance at the eyes, nose, mouth and chin. Figure 4.3 illustrates some examples of 

the 3D poses generated. The effect of the remaining parameters on pose variation is 

much smaller then the first several parameters from the principal component analysis. 

These remaining shape parameters also produce similar kinds of effect, but the effect 

is implicit.  

   

   

   

Figure 4.1 Sample face images from the ORL database. 
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Figure 4.2 Shape variation by varying the first six shape model parameters. 
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Figure 4.3 Different 3D pose variations. 
 

In order to understand the relationships between the pose angle and the first 

shape parameter, Figure 4.4 plots b1 against the yaw angle from – 40 to + 40 degrees. 

In this figure, the face images of ten different subjects under different perspective 

variations are used. Some of the sample images are shown in Figure 4.5. Linear 

regression is employed to understand the relationship between the first shape model 

parameter b1 and the pose angles. Figure 4.4 shows that the angle increases linearly as 

b1 decreases. Hence, a simple linear equation, bxay += , having a negative slope, is 

calculated from the data set.  

From Figure 4.2, we can observe that the face shape variations caused by the 

sixth shape parameter b6 include the viewing angle of a face, the direction of the nose 

bridge, and the direction of the mouth contour. Hence, we assign an appropriate yaw 

angle for each value of b6, and plot the graph b6 against the yaw angle ranging from – 

40 to + 40 degrees, as shown in Figure 4.6. In our approach, we extend the original 

pose estimation, which is based on the linear relationship between the angle and a 

single parameter, by employing more than one shape model parameter. Hence, the 
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two shape parameters b1 and b6 are used to estimate the yaw angle. They are 

combined to form a multiple linear regression model as follows: 

0 1 1 2 6y b bβ β β= + +             (4.2) 

where y is the estimated angle, and β0, β1 and β2 are the regression coefficients. 

When a new face image is presented, the coordinates of the facial feature points 

are extracted by means of the active shape model described in the previous chapter. 

Then, the shape parameters b are calculated by projecting the shape vector x onto the 

principal components. The resulting value of b1 and b6 are recorded for pose angle 

estimation. The pose estimation of yaw are analyzed in our investigation, the tilt 

variation can be approximated with the same way as the yaw variation. 
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Figure 4.4 Graph of b1 against angle range from – 40 to + 40 degrees in yaw. 

 

Figure 4.5 Face image samples (angle range from – 40 to + 40 degrees in yaw). 
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Figure 4.6 Graph of b6 against angle range from – 40 to + 40 degrees in yaw. 
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4.3 Experimental Results 

The accuracy of pose angle estimation is tested based on 70 test images, which 

were selected from the FERET face database. The FERET database is chosen because 

it consists of 200 subjects, each of which has a series of images with slightly different 

facial expressions and poses in a range of ± 40 degrees from the frontal pose (see 

Figure 4.5). Experimental results based on using b1 only, b6 only, and our approach 

(i.e. combining the two parameters) are tabulated in Table 4.1. From the results, we 

can obverse that our approach is robust to pose angles. This estimated pose can be 

employed for face recognition such that either compensation for the pose can be 

performed, or faces with the same pose in the database can be used. 

 

Angle error within ±5° ±10° ±15° 

Accuracy using b1 77% 89% 98% 

Accuracy using b6 71% 85% 89% 

Accuracy using b1 and b6 80% 92% 100% 

Table 4.1 Pose estimation results. 
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4.4 Conclusion 

In this chapter, a model based approach for estimating the head pose has been 

described. The shape variation of the face model based on the first several shape 

parameters has been investigated. Besides using the first shape parameter b1 for 

estimating the head pose, another appropriate shape parameter b6, which also provides 

useful information about the pose of a human head, is added. Each of these two 

parameters can form a linear model to estimate the pose. In our approach, we combine 

these two parameters to construct a multiple linear model. Experimental results have 

proven that the combined model outperforms that based on individual parameters, and 

a more accurate estimation can be achieved. 
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CHAPTER 5   

Face Recognition using the Gabor 

Feature under Pose Variation 

 

5.1 Introduction 

Research on face recognition has attracted significant interests in the last 20 

years. Various approaches on face recognition have been presented in Chapter 2. In 

this Chapter, we mainly focus on two types of feature representation for face 

recognition. The first type is the geometric position of a set of facial feature points, 

which are automatically extracted by our proposed algorithm, as described in Chapter 

3. Since head pose variation can be considered as a geometric problem, we simply use 

the geometric information to determine the pose angle of an input test face image. The 

second type is a set of multi-scale, multi-orientation Gabor wavelet coefficients 

extracted at the respective facial feature points. A Gabor-based face recognition 

technique with a weighting feature similarity measure is proposed to enhance the face 

recognition performance when the faces are at different poses. Our approach is 

illustrated in Figure 5.1.  

This chapter is organized as follows. The facial feature representation is 

introduced in Section 5.2. The weighting feature distance measure based on class 
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5.2 Facial Feature Representation 

Extracting useful data from a face image is the main process for a successful face 

recognition system. These kinds of data are called facial features. A lot of research 

has been conducted into feature extraction. In general, pixel intensity and geometric 

information about a face image are the basic facial features. However, face images 

vary with a change of head position, size, expression, and illumination. Therefore, 

facial features based on the pixel intensity are insufficient to identify the individual. A 

more effective form of representation is based on the Gabor wavelets [59, 60], which 

have been used for texture detection [61] and facial feature extraction [62, 63]. The 

responses of a Gabor filter have some useful characteristics. First, it provides 

robustness against varying brightness and facial expression in the image. Second, it 

can represent the characteristics of the local face region effectively. In other words, 

the Gabor feature is more effective than using the original face image directly. As 

Gabor filers of different scales and orientations are employed, the dimension of the 

Gabor feature is much larger than the original image; therefore principal component 

analysis (PCA) is applied for dimensional reduction. Finally, this low dimensional 

feature representation is used in the face classification process. 
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5.2.1 Gabor Filter Response 

The processing of facial images using Gabor filters is based on their biological 

relevance and computational properties [64-66]. The Gabor filter kernels are similar 

to the responses of the receptive fields of simple cells in the primary visual cortex. In 

other words, they are multi-scale and multi-orientation kernels. The response of a 

Gabor filter describes a small patch of gray values in an image I(x) around a given 

pixel x = (x, y). The responses of the Gabor wavelet to a facial feature point are 

collectively called a ‘Gabor jet’, which is obtained by convolution between the image 

and the Gabor wavelet functions, as shown below: 

')'()'()( 2 xxxxx dJ jj −= ∫ ψ  ,          (5.1) 

where )(xjψ  represents the Gabor kernels as follows: 
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Gabor kernel is a two-dimensional plane wave with wavelet vector jk  restricted by a 

Gaussian envelope function.  
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In our algorithm, we employ 5 different scales, i.e. v = 0, …, 4, and 8 

orientations, i.e. µ = 0, …, 7. The corresponding index j for jk is j = µ + 8v. Thus, 

there are 40 features in each Gabor jet. The width k/σ  of the Gaussian is controlled 

by the parameter πσ 2= . The second term in the bracket of Eq. (5.2) makes the 

kernels DC-free. The Gabor kernels and the corresponding Gabor filter responses are 

shown in Figures 5.2 and 5.3. In our approach, only the magnitudes are used, since 

they are insensitive to the position while the phases are very sensitive to position. 

 

Figure 5.2 The real part of the Gabor kernels with 5 scales and 8 orientations.  
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(a) 

   

   

   

   

   

(b) 

Figure 5.3 (a) Original face image and (b) the magnitudes of the Gabor filter 
responses. 
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5.2.2 Dimensional Reduction of the Gabor Feature 

Each image is represented by a Gabor feature vector, which is formed by 

concatenating the Gabor jets at 52 important facial feature points. These facial feature 

points are automatically located using our proposed approach, as described in Chapter 

3. The Gabor feature vector is represented as  

T
k ],,[ 21 JJJG …= ,            (5.4) 

],,[ 11 kjkkk JJJ …=J ,             (5.5) 

where k is 52 and j is 40, and where k and j are the number of feature points and the 

number of Gabor wavelet kernels used, respectively. 

In summary, each image is represented by a vector of dimension 2,080 (40×52). 

After computing the Gabor feature vector, the high dimensional feature vectors are 

projected onto the principal components. Since the high-dimensional Gabor feature 

vector requires more bytes in its representation and much more computation in the 

classification process for face recognition, dimensional reduction should be performed 

by means of PCA before being utilized for classification and database storage. If N 

training images is used, the corresponding Gabor feature Gi, where i = 1,…, N is 

computed. The covariance matrix of G, i.e. TGG is of dimension 2,080 × 2,080. To 

reduce the computation required to solve this large matrix, we consider the covariance 

matrix GTG first, which is of dimension N×N only. If the eigenvectors of GTG are 
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denoted as ui, then the corresponding eigenvectors of GGT are Gui. Let P be the 

projection matrix whose column vectors are the leading eigenvectors of the 

covariance matrix. The number of eigenvectors used is much smaller than the 

dimension 2080. Hence, the Gabor feature vector of a face image can be represented 

in the reduced subspace as follows: 

)( GGPx −= i ,             (5.6) 

where Gi is the input Gabor feature vector and G  is the mean of the Gabor feature 

vectors in the training set. This dimensional reduction is important as it can reduce the 

computations required when face recognition is performed. 
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5.3 The Weighting Feature Similarity Measure Based on 

Poses 

PCA can provide the best representation of data in a low-dimensional space, but 

this does not necessarily imply the best representation results in the best 

discrimination of the data. In this section, we propose a weighting function for 

different similarity measures, which can emphasize those with greater discrimination 

power. Suppose that each of the feature parameters extracted from the PCA has a 

different degree of discriminating characteristic for the different pose variations. 

Hence, a weighting function based on the pose angle is defined according to the class 

discriminability of each of the feature parameters, as follows: 

B
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where Bσ and Wσ  are the between-class and within-class distance values, respectively, 

iX  represents feature vectors belonging to the ith class, mi and m denote the mean of 

the ith class and the mean of all the training samples, and ni is the number of samples 

in the ith class. In order to measure class discriminability on different poses with 

respect to the frontal view, each class contains two samples only  one frontal view 
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and one side view with a particular pose. To obtain a better discrimination of a feature 

parameter for a particular pose, the larger weighting factor for that feature parameter 

is used. The feature parameters with the best discrimination are chosen to maximize 

the ratio of inter-person variance to intra-person variance. Therefore the distance 

between vectors corresponding to images of different people should be large 

compared to the distance between vectors corresponding to images of the same 

person. 

In our approach, the weighting value is determined by the experiment, which is 

set proportional to the discriminability value. Following is a definition of the 

weighting feature similarity measure:  

Given two face images I1 and I2, which are represented by Gabor feature vectors G1 

and G2, respectively. The corresponding feature vectors after performing PCA are 

denoted as x1 and x2 
M∈\ , respectively. The similarity measure of these two vectors 

is: 

1 2 1 2
1

( , ) ( , )
M

tot k k k k
k

Sim Sim x xθβ
=

=∑x x ,        (5.8) 

where k
θβ  is the kth weighting function based on the pose θ with the restrictions that 

0 1k kk
andθ θβ β> =∑ , and M is the dimension of the reduced Gabor feature 

vector. 1 2( , )k k kSim x x can be of any similarity measure between the kth feature of x1 
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and x2. If the feature k is more useful for face recognition with faces at a pose θ, we 

expect k
θβ to be high, and vice versa.  

In order to evaluate the efficiency of our proposed similarity measure, we 

compare its performance to the L1, L2 and cosine similarity measures based on the 

nearest neighbor classification rule for face recognition. The nearest neighbor 

classification rule is defined as follows: 

( , ) min ( , )k jj
Sim Sim=x x x x          (5.9) 

The feature vector x is classified to the closest class k based on the similarity measure. 

The similarity measures compared in our experiments include the L1 distance, L2 

distance, cosine similarity measure, weighted L1 distance, weighted L2 distance, and 

weighted cosine similarity measure, which are defined as follows: 
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1 2
11 2

1 M

WCOS k k k
k

Sim x xθβ
=

= − ∑x x
         (5.15) 

where i  denotes the norm operator. Note that the cosine similarity measure 

includes a minus sign in (5.12) because the nearest neighbor rule applies minimum 

distance measure rather than maximum similarity measure. 
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5.4 Experimental Results 

To evaluate the performance of our face recognition algorithm based on the 

different weighting feature similarity measures, the FERET face database [67] was 

used in the experiment. It contains 200 subjects, and each subject has a series of 

images with different poses. In our experiments, 100 subjects are used as the training 

samples in the principal component analysis. The remaining of 100 subjects from the 

database were selected to evaluate the recognition performance. Each of the subjects 

has one upright frontal view and six different poses. The size of each image is 256 × 

384, and some examples are shown in Figure 5.5.  

The experiment set-up was as follows: the upright frontal view of each subject 

was chosen to form our database. The remaining 6 images of different poses were 

used as testing images, so we have a total of 600 testing images. Each of the testing 

images was then compared to each face in the database. The 52 facial feature points in 

each of the face images are located manually. To construct the subspace for 

dimensional reduction, 50 eigenvectors, which represent 98% of the shape variations, 

are selected from the projection matrix. For comparison purposes, the different 

normal similarity measures and our proposed weighted similarity measures were 

evaluated in the experiments. These experiments were performed in the 

dimensionality reduced subspace by PCA. Figure 5.4 shows the face recognition 
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performance by using the 
1LSim  (L1), 

1WLSim  (WL1), 
2LSim  (L2), 

2WLSim  (WL2), 

COSSim  (Cos), and WCOSSim  (WCos) similarity measures. The results show that face 

recognition rates based on the three normal similarity measures improve when our 

proposed weighting function is applied. Table 5.1 tabulates the best recognition rate 

of each similarity measure, and the corresponding results under different pose angles 

are listed in Table 5.2. From these two tables, we can find that (1) the performance of 

our proposed approach is better than that of the normal similarity measures, and (2) 

our approach achieves 100% recognition accuracy when the pose angle is within 15˚ 

of the left or right and 50 features are used. 
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Figure 5.4 Face recognition rate using L1, L2 and cosine similarity measures. 
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 Normal  Weight 

L1 distance 81% 88% 

L2 distance 73% 76% 

Cosine distance 59% 62% 

Table 5.1 The best results of each similarity measure. 

 

Pose angle -40˚ -25˚ -15˚ 15˚ 25˚ 40˚ 

L1 distance 0.67 0.83 0.92 0.94 0.79 0.68 

Weighted L1 distance 0.74 0.92 1.00 1.00 0.89 0.76 

Table 5.2 Recognition rates using 50 features under different pose angles. 
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Figure 5.5 Some examples of the images in the FERET face database. 
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5.5 Conclusion 

In this chapter, a new weighting feature similarity measure based on pose 

estimation is proposed for face recognition. The discrimination power of each feature 

parameter for a range of pose angles is different. Therefore, it is necessary to conduct 

a quantitative evolution in different poses. Our new weighting function can emphasize 

those feature parameters with a higher discriminate power for a particular pose. To 

achieve a high recognition performance level, Gabor features are extracted at 52 

predefined facial feature points instead of a whole face region. This can help to 

alleviate the effect of variations in both illumination and small facial expression. In 

order to classify the faces more effectively, the high dimensional Gabor feature vector 

is reduced by PCA. Experimental results based on the FERET database show that this 

new approach outperforms the normal similarity measures in terms of recognition rate. 

In particular, the weighted L1 similarity measure achieves 100% recognition accuracy 

under ±15˚ pose angles when 50 features are used. 
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CHAPTER 6   

Conclusion and Future Work 

 

6.1 Conclusion 

In this thesis, we have provided an overview of a human face recognition system 

and introduced some existing techniques for facial feature extraction and face 

recognition. For facial feature extraction, the active contour model (snake), 

deformable template and active shape model (ASM) have been reviewed. The active 

contour model and the deformable template have been widely adopted; they can 

achieve a good performance level in facial feature extraction, such as the mouth, the 

eyes and the face contour. However, these methods are computationally intensive due 

to the fact that a large number of parameters are involved during the optimization 

process. In the active shape model, points are used to describe the details of a face 

shape object and are controlled by a several main modes of shape variation derived 

from a training data set. The major advantage of using ASM is that no heuristic 

assumptions are made as to the legal shape. However, the ASM can not be able to 

provide a good fit to those face shapes that are quite different from the training data 

set. 
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For face recognition, three approaches, namely the holistic-based, feature-based 

and hybrid approaches, have also been presented. The holistic-based approach 

considers the global properties of a human face as the raw input to the recognition 

system. The performance of this approach will be degraded if the face to be 

recognized is not aligned well. In the feature-based approach, local features such as 

the eyes, nose and mouth are first extracted, and their locations (geometric) and local 

statistics (appearance) are fed into the classification system. Its success relies mainly 

on the accuracy of the facial feature extraction. In order to suppress the weaknesses of 

those two approaches, a combination of different techniques based on the global and 

local features of a human face is employed in the hybrid approach. As the hybrid 

approach combines all the strengths of the different techniques, it should potentially 

offer a better performance than other the two approaches work independently. 

In our research, we have proposed efficient methods for facial feature extraction 

and human face recognition. To extract the location of facial feature such as the eyes, 

nose, mouth, and face contour under perspective variations, a more accurate approach 

based on the genetic algorithm and active shape model has been proposed. In order to 

make the model represent a face more flexibly, the representations of the important 

facial features, i.e. the eyes, nose and mouth, and the face contour are separated. An 

energy function is defined that links these two representations of a human face. To 
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represent a face image under different poses, three models are employed to represent 

the important facial features: the left-viewed, right-viewed and frontal-viewed models. 

In additional, the genetic algorithm is applied to search for the best representation of 

face images. Experimental results show that the facial features can be extracted more 

reliably and accurately under different perspective variations. 

In this research, pose estimation based on the shape model parameters has also 

been investigated to determine the approximate pose angles of an input face image. 

We have improved the performance of pose estimation by investigating the 

relationships between the first few shape model parameters. We have also modeled 

the relations between two of the shape parameters by the multiple linear regression 

model. Experimental results show that this approach can provide a better performance 

level than using the first shape parameter for pose estimation. 

For face recognition, we have employed the Gabor filters to extract the facial 

features at the predefined feature points, instead of directly using pixel gray values 

and applying the PCA to reduce the dimension of the Gabor feature vectors. Since the 

discrimination power of each feature parameter for a range of pose angles is different, 

we conducted a quantitative discriminability evaluation for different poses. Hence, a 

new weighting function that can emphasize the significance of the feature parameters 

in a particular pose is proposed. We have conducted different similarity measures for 
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comparison purposes. Experimental results show that this new weighting similarity 

measure can achieve a higher recognition rate than the normal similarity measure. 

In practice, our proposed facial feature extraction approach can be used as the 

first stage of an automatic face recognition system. Then, the pose estimation is the 

second stage, which estimates the pose based on the extracted facial feature points. 

Finally, with the estimated pose angle, we can select a set of appropriate weights on 

the similarity measure for face classification. This overall system architecture is 

presented in Figure 5.1. Since we cannot guarantee that the testing face image is 

always in an upright frontal view, our proposed automatic face recognition system can 

reduce the effect of variations in the pose angle, so only a single frontal view image of 

a person needs to be stored in a database. 

In our research, the facial feature extraction process is more computationally 

intensive than the face recognition process because the genetic algorithm is employed, 

which is computational in the encoding/decoding of the chromosomes and measuring 

the fitness of candidate in application. Nevertheless, this computational process has to 

be performed once for a query input, and the runtime is in the order of 2 to 3 seconds. 

Although the time required to capture two faces is very short, it will take much longer 

if the database concerned contains thousands of faces. As a consequence, the time for 

facial feature detection will become relatively short. In addition, the accuracy of the 
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facial feature detection will directly affect the accuracy of the face recognition. To 

create a real-time face recognition system, parallel processing or dedicate hardware 

should be employed to process the genetic algorithms. The encoding/decoding 

process for each chromosome and he fitness evaluations for each candidate solution 

can be calculated independently. This means that all the candidates can be computed 

in parallel.   
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6.2 Future Work 

In our research, face detection and facial feature extraction are the first step to be 

performed for face recognition. As we know, a robust and successful face detection 

step will increase the recognition performance. Implementing such a face detection 

method is an important future task for successful face recognition applications. 

Moreover, only local facial features are considered in our proposed face recognition 

algorithm. In order to achieve a more robust face recognition system, we can also 

employ the global texture features. In general, the global texture features of a face 

image vary much more than the local features due to changes in head pose, facial 

expression and environment illumination. One possible way to overcome this problem 

is to use shape free features. The shape-free feature is a normalized shape-free 

gray-level patch that is enclosed by the mean face shape warped from the original 

images. The global texture image has the same edges and contours and is insensitive 

to shape variation due to the differences in head pose and facial expressions. 

Therefore, our feature work should consider the combination of the global texture and 

local features in face recognition system. 
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