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Abstract

The main purpose of this thesis is to study various properties of quadratically con-

strained quadratic programming problems. We concentrate on the existence of solutions

and global second-order sufficient conditions for the quadratic problems.

First, we study the existence of global solutions for general quadratic programming

problems. With the tool of asymptotical directions of sets, we provide an alternative

proof for the nonemptiness of intersection of a sequence of nested sets defined by a finite

number of convex quadratic functions, which can be applied to show the existence

results of the corresponding optimization problems. We also prove the existence of

global solutions of the convex quadratic program with convex quadratic constraints by

an analytic approach.

Next, we study the global quadratic growth condition and the global second-order

sufficient condition for the quadratic programming problems. By formulating the prob-

lem in the form of minimizing a maximum function of a finite number of quadratic

functions, we study the relation between the global quadratic growth condition and the

global second-order sufficient condition for the maximum function. As is shown, the

global second-order sufficient condition implies the global quadratic growth condition.

But the reverse implication is in general not true. We show that, when the solution

set is a singleton and the number of quadratic term is 2, the reverse implication holds.

For the homogeneous quadratic case, these two are equivalent. We then apply the

corresponding results to the constrained optimization problem in standard form.

Finally, we investigate the fractional programming problems. We present the S-

lemma for the fractional functions. We also obtain the attainability property of various

types of fractional programming problems.
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Chapter 1

Introduction

1.1 Quadratic Problem

Quadratically constrained quadratic program, which we refer to as the quadratic prob-

lem for simplicity, represents a special and also an important class of nonlinear program-

ming problems. Any twice differentiable function can be approximated by a quadratic

function in the neighborhood of a given point, so the quadratic problems are the most

natural.

In a narrow sense, as most of the optimization books show, the quadratic problem

refers to the problem of minimizing a quadratic function over a polyhedral constraint,

i.e. over a system of linear inequalities and/or equalities constraints. There are several

classes of problems that can be naturally expressed as this kind of quadratic problems.

Examples of such problems can be found in planning and scheduling, game theory, prob-

lems involving economies of scale, facility allocation and location problems, quadratic

assignment problems, problems in engineering design, and a number of problems in mi-

croeconomics. Besides, quadratic problems with linear constraints can be viewed as a

generalization of the linear programming problem with a quadratic objective function.

Therefore, it contains all linear programming problems.

The more general class of quadratic problems is the one with quadratic constraints.

It arises from various practical applications including facility location, product plan-
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ning, optimal design of water distribution networks, and most problems in chemical

engineering design. In early years since it was first introduced in the seminal paper of

Kuhn and Tucker [42], the only case considered was when there was only one quadratic

constraint in the problem.

In spite of its simple and clear structure, quadratic problem is difficult to solve.

Even if the Hessian of the objective function has a single negative eigenvalue, as is

shown by Pardalos and Vavasis [54], quadratic problem is NP-hard. Other complexity

results may also be found in [47, 51, 65, 71].

To characterize the global solutions and to design algorithms estimating the global

solutions of the quadratic problems, the standard nonlinear programming theories and

algorithms generally don’t work except for a few cases, such as under some convexity

assumptions. Their deficiency is due to the intrinsic multiextremality of the formula-

tion. One can observe that local tools such as gradients, subgradients, and the second

order constructions such as Hessians, cannot be expected to yield more than local so-

lutions. One finds, for example, that a stationary point is often detected for which

there is no guarantee of local minimality. Moreover, determining the local minimality

of such a point is known to be NP-hard in the sense of computational complexity even

in relatively simple cases. Apart from this deficiency in the local situation, classical

methods do not recognize conditions for global optimality. For these reseasons global

solution methods must be significantly different from standard nonlinear programming

techniques. However, with its special structure, we expect more promising results for

quadratic problems.

A popular and effective method of global optimization is successive approximation.

Outer or inner approximation of the constraint set by a sequence of simpler sets, such

as polyhedron, is a basic method of this kind. Also successive underestimation of

the objective function by convex or polyhedral functions is commonly used. Another

method is successive partition method, dividing the feasible set into smaller pieces and

refining the partition as needed, such as the branch and bound method. Details of these

methods may refer to the works of Horst and Tuy [37] and the references therein.

One particular quadratic problem that has received considerable attention is the

trust region problem, which involves minimizing a quadratic function over a sphere.
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Details may refer to [30, 68, 50, 28, 41, 33, 77, 78, 45, 60, 21].

Finally, we end this subsection by giving a practical model of quadratic prob-

lems [26].

Consider a case when n products are being produced, with xi being the number of

units of product i and ci being the cost of production per unit of product i. Usually,

as the number of units produced increases, the unit cost decreases. Often this can be

correlated by a linear functional:

ci = ci0 + eixi

where ei is a negative quantity and ci0 is a constant. Then, given constraints on the

production demands and availabilities of each product, the problem of minimizing the

total cost can be cast as

min{
m∑

i=1

xi(ci0 + eixi) : x ∈ D}

where D represents the demand and availability constraints, which are normally repre-

sented by quadratic functions.

1.2 Existence of Optimal Solution

When dealing with optimization problems, first and foremost, one cares about the ex-

istence of solutions or the solvability of the problems. Even under the convex assump-

tions, the optimization problems may have no optimal solutions, such as the problem

of minimizing an exponential function without constraints.

Baiocchi et al. [20] studied the following general optimization problem

min
x∈X

f(x),

where f(x) is an extended real-valued functional defined on a topological vector space

(X, σ). Under some coerciveness assumptions on f , we can easily get an existence

theorem. To relax the condition, one need to investigate the behavior at infinity of the

functional f . Therefore, by introducing the recession functionals (for convex cases) or

topological recession functionals (for general cases), Baiocchi et al. derived the sufficient

conditions for the existence of solutions of the problem and gave many applications
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in mechanics. Motivated by the works of Baiocchi et al., Auslender [4] refined the

conditions given by them and made it being necessary conditions for the existence of

optimal solutions of the problem. As an application, a new class of functions, termed

as asymptotically multipolyhedral functions, was introduced by Auslender and related

existence results were obtained. More details may also be found in [5, 6, 7].

In the finite dimension case, if f(x) is convex, we may refer to Rockefellar [63]

where various existence results are given and some duality characterizations of optimal

solutions also are obtained.

In quadratic case, Frank and Wolfe [27] first considered the existence of a global

solution of the quadratic problem with linear constraints. They showed that a quadratic

function bounded below over a polyhedron always attains its global optimal solution.

This is also known as the Frank-Wolfe theorem.

Several alternative proofs have been proposed by other authors. For example, Blum

and Oettli [13] offered an elementary analytical proof for the Frank-Wolfe theorem.

Eaves [23] gave a simplified proof of the Frank-Wolfe theorem via the linear comple-

mentarity theory and Eaves improved on the theorem by showing that if the problem

does attain its minimum over the polyhedron, it is unbounded from below on some

halfline contained in the polyhedron. Meanwhile, Eaves obtained the necessary and

sufficiency conditions for the existence of solutions of the quadratic problem. This pro-

vides us a criteria to check whether a quadratic function is bounded on a polyhedral

set or not. More details of the Frank-Wolfe theorem can be found in the book of Lee

et al. [43].

Many authors have discussed the generalizations of the Frank-Wolfe theorem. Per-

old [56] gave sufficient conditions under which a function either attains its minimum

over a convex polyhedral set or is unbounded from below on some halfline of that set.

Luo and Zhang [44] studied various variants of the quadratic problem and obtained a se-

ries of existence theorems for the general quadratically constrained quadratic programs.

Belousov and Klatte [9] generalized the theorem to convex polynomial programming.

Recently, Obuchowska [52] generalized the Frank-Wolfe theorem to the programs with

faithfully convex or quasi-convex polynomial objective functions and the feasible set

defined by a system of faithfully convex inequalities and/or quasi-convex polynomial
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inequalities. Some other references for generalizations of the Frank-Wolfe theorem can

be found in the article of Belousov and Klatte [9] and the references therein.

Only requiring the related functions to recede or retract along the asymptotical

nonpositive directions of the functions, Ozdaglar and Tseng [53] presented a unified

approach to establishing the existence of global minima of a constrained optimization

problem. Their results generalize some results presented by Auslender and Luo and

Zhang and also generalize the Frank-Wolfe theorem. For example, instead of requiring

the objective function to be quadratic, they only require it to be a polynomial over a

polyhedral set.

Bertsekas and Tseng [12] studied the nonemptiness property of the intersection of

a nested sequence of closed sets and applied it directly to obtain some existence results

of the optimization problems.

Some other conditions for global optimality may refer to the articles of Hiriart-

Urruty [34, 35, 36].

The Frank-Wolfe theorem also has various applications. For example, Cottle et

al. [22] used it as a main tool for obtaining the existence results for linear complemen-

tarity problems.

1.3 Second Order Analysis

Second order sufficient conditions of optimization problems are important for sensitiv-

ity analysis and numerical optimization, see Robinson [61], Fiacco and McCormick [25],

Ben-Tal and Zowe [10] and Polak [57]. In fact various results concerning optimality con-

ditions were obtained as byproducts of research on sensitivity analysis. Many authors

have studied the perturbation properties of the optimal solution and the value function

under various conditions. The differentiability properties of the optimal solutions were

first obtained by applying the classical implicit function theorem to the first order op-

timality conditions written in the form of equations see Fiacco [24, 25]. The hypothesis

of linear independence of the gradients of active constraints, strict complementarity,

and second order sufficient condition were needed. Jittorntrum [40], by relaxing the
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strict complementarity hypothesis and using a strong second order sufficient condition,

obtained the directional differentiability of a local solution. Shapiro [66], using the

Mangasarian-Fromovitz constraint qualification and some second order sufficient con-

dition, gave a second order analysis of the value function. The Mangasarian-Fromovitz

constraint qualification can be relaxed by using the hypothesis of Gollan [31, 32].

As we have seen in the traditional approaches for sensitivity analysis, the problems

need to satisfy some non-degeneracy assumptions, such as the assumption that the un-

perturbed problem has a unique solution or finite set of isolated points, some constraint

qualification, and a second order sufficient condition. And therefore, when dealing with

problems with non-isolated minima, the sufficient conditions cannot be applied. To

study a wider class of problems and to overcome these defects, some other tools are

needed. More attentive analysis of existing proofs, see, e.g. [1, 3, 18, 39, 57, 64, 67],

shows, that, at least as far as sensitivity analysis is concerned, what is needed and

efficient is the following quadratic growth condition:

f(x) ≥ c + αdist2(S, x),

where f is the cost function, S is a set on which f has constant value c, and α is

a positive parameter. Also, it turns out that stability properties of locally optimal

solutions, in a neighborhood of a feasible point, are closely related to a uniform version

of a quadratic growth condition.

In the case where S is a singleton, the standard second-order sufficient conditions

for optimality are sufficient for the quadratic growth condition; in fact, they often char-

acterize the quadratic growth condition in the presence of some constraint qualification,

such as the Mangasarian-Fromovitz constraint qualification, see Alt [2], Robinson [62].

This quadratic growth condition is also referred to as weak sharp minima of order

two by some authors. More generally, this type property is called weak sharp minima of

order m, for m being positive integers. For the characterizations of weak sharp minima

of order one, one may refer to the works of Burke and Ferris [19]. Characterization

and sufficient conditions for the quadratic growth condition are given by Bonnans and

Ioffe [16]. In [16] they studied the relations between the general second order sufficient

condition and the quadratic growth condition for the unconstrained optimization of a

simple composite function (maximum of a finite collection of smooth functions) and
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some sufficient conditions for the quadratic growth condition. In [15] they obtained

the characterization of the growth condition for the optimization problem in which

the objective and constraint functions are convex and smooth functions. Using the

tools of the Mordukhovich normal cone and the generalized directional derivatives,

Ward gave some necessary conditions for the quadratic growth condition not requiring

the data being twice differentiable in [72] and gave some sufficient conditions in [73],

respectively. In addition, Studniarski and Ward [70] proposed sufficient conditions and

characterizations of the quadratic growth condition for nonsmooth programming.

Shapiro [66] studied the perturbed mathematical programming problem with the

optimal solution set being not a singleton and showed that the optimal set-valued so-

lution function is upper-Lipschitzian and the optimal value function possesses a second

order derivative under some regularity assumption. Under the quadratic growth con-

dition assumption and other regularity conditions, Shapiro [67] studied the perturbed

optimization problem in Banach spaces and derived the Lipschitz continuity and direc-

tional differentiability properties of the optimal solution. In addition, without a priori

regularity assumption, Ioffe [39] studied in detail the perturbation properties of the

value function and the optimal solution set for unconstrained optimization involving a

simple composite function, under the growth-like condition hypothesis. The quadratic

growth condition determines the rates of convergence of the optimal solutions as the

perturbation goes to zero. This role of quadratic growth condition can be also found

in many classical analysis of convergence rate of various optimization algorithms. For

example, Polak [57] recurrently assumed the quadratic growth condition, although not

explicitly stated it, in the convergence rate analysis, such as of the Armijo gradient

method for unconstrained optimization, of the Newton method for min-max problems

and of algorithms for optimal controls, etc.. More researches on perturbation analysis

of optimization problems may refer to the review by Bonnans and Shapiro [17], the

book of Bonnans and Shapiro [18], and the references therein.

Finally, we review some results on the global second order optimality conditions

of optimization problems. Yang [75, 76] proposed a second order sufficient condition

of a global solution by introducing a generalized representation condition. Quadratic

functions and linear fractional functions satisfy this representation condition. For the

quadratic problems, second order optimality conditions for global solutions are also ob-
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tained for some problems of specific structures. For example, Gay [30] and Sorenson [68]

characterized the global solution of the trust region subproblem; Moré [49] studied the

quadratic problem with one quadratic constraint and obtained the necessary and suffi-

ciency optimality conditions for the global solution. For the quadratic problem with a

two-sided constraint, Stern and Wolkowicz [69] obtained the optimality conditions for

a global solution. They also showed that this problem is an implicit convex problem by

the duality argument. For all the above three special cases of quadratic problems, we

can see that there is no gap between the necessary and sufficient optimality conditions

for the global solution. However, for the quadratic problems with two quadratic con-

straints, Peng and Yuan [55] showed that the Hessian of the Lagrangian has at most

one negative eigenvalue at a global solution and this condition is not sufficient. More

results may be found in Hiriart-Urruty [35, 36].

In this thesis, we will mainly concentrate on the studying of the quadratic program-

ming problems, minimizing a quadratic function over a system of quadratic inequalities

and/or equalities constraints. Specifically, we will study the existence of global solu-

tions of a given quadratic problem and also study the global second-order optimality

conditions and its relations with the quadratic growth condition and finally we extend

some results to the quadratic fractional program problems.
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Chapter 2

Existence of solutions of QP

2.1 Introduction

Existence of solutions is always a central issue concerning to optimization problems. In

this chapter, we will consider the existence of solutions of the general quadratic pro-

grams or the extensions of Frank-Wolfe type theorems. As we all know, a fundamental

theorem of linear programming is that a bounded feasible problem always has a solu-

tion. As for the general nonlinear optimization problem, we can hardly say so. For

quadratic programs, Frank and Wolfe [27] stated that a quadratic function (not neces-

sary convex) bounded from below over a polyhedron attains its minimum. This result

is known as the Frank-Wolfe theorem. A short and elegant proof was also proposed by

Frank and Wolfe. Alternative proofs have been proposed by Blum and Oettli [13] and

Eaves [23].

Luo and Zhang [44] considered generalizations of the Frank-Wolfe theorem. They

obtained the following results for the quadratical programming problem with quadratic

constraints:

(1) If the objective function is convex and at least one of the constraint functions is

nonlinear and non-convex, the optimal value is in general not attainable.

(2) If the objective function is non-convex and at least two or more constraint functions

are nonlinear, the optimal value is in general not attainable.

(3) If the objective function is non-convex and at most one of the constraint functions
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are nonlinear but convex, the optimal value is always attained.

(4) If the objective function is quasi-convex over the feasible region and all the constraint

functions are convex, the optimal value is always attained.

In this chapter, we will make some complements to Luo and Zhang’s results. We

will provide a new proof for the continuity of the sequence of nested sets defined by a

system of convex quadratic inequalities which can be applied to prove the attainability

of the convex quadratic program with convex quadratic constraints. We will also prove

the attainability of the convex quadratic program with convex quadratic constraints

following the scheme proposed by Blum and Oettli.

2.2 Extensions of Frank-Wolfe Theorem

We begin with some elementary definitions used throughout this section.

We will confine our study in the finite dimensional Euclidean space Rn. For a

nonempty closed convex set C ⊂ Rn, the recession cone C∞ of C is defined by C∞ =

{d ∈ Rn|x + τd,∀τ ≥ 0, x ∈ C}. LC := C∞ ∩ −C∞ denotes the linearity space of C.

For a proper lower semi-continuous (lsc) convex function f : Rn → R, the recession

function f∞ of f is defined by

epi f∞ = epi f∞.

For convex quadratic function f(x) = 1
2
xtQx + qT x + c, we have

f∞(d) = qT d + δ(d|Qd = 0), (2.2.1)

where δ denotes the indicator function.

First, we take a look at a known result and its proof by Frank and Wolfe [27].

Theorem 2.2.1 (Frank-Wolfe theorem). If the problem

min{f(x) = xtQx + qT x : Ax ≤ b, x ∈ Rn}

is bounded from below, then the minimizer exists.

Proof. We may assume that the feasible set is unbounded, since a continuous function

always attains its extremum over a compact set.
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We use induction on the dimension m of the polyhedron.

For m = 1, let the feasible set F be of the form x + tv for some x, v ∈ Rn and

t ≥ 0 (if t takes all the value in R, the problem is unconstrained, a trivial case). Then,

since f(x + tv) = f(x) + t(qT v + 2xT Qv) + t2vT Qv for all t ≥ 0 is bounded from below,

vT Qv > 0 or vT Qv = 0 and qT v +2xT Qv ≥ 0. In either case, the minimum is attained.

Assume that the result is true for the case m = k. Now, consider the case m = k+1.

Assume the feasible set F of the form {s + µt|s ∈ S, t ∈ T, µ ≥ 0} with S being a

bounded convex polyhedron and T an intersection of a certain convex cone with the

unit sphere. Since for s ∈ S, t ∈ T , f(s+µt) = f(s)+µ(q+2sT Q)t+µ2tT Qt is bounded

for µ ≥ 0, tT Qt ≥ 0 for all t ∈ T .

If, on the one hand, tT Qt > 0 for all t ∈ T , then there exist δ > 0 and D < 0 such

that tT Qt ≥ δ and (q + 2sT Q)t ≥ D for all t ∈ T and s ∈ S, so that the minimum of f

is assumed on the compact set S + −D
δ

T .

Suppose, on the other hand, some tT0 Qt0 = 0. If for all x ∈ F we have x+µt0 ∈ F for

all µ (all the real numbers), then the boundedness of f(x+µt) implies (q+2xT Q)t0 = 0

for all x, so that the values of f on F are unchanged by projection into the k-dimensional

subspace normal to t0, to which the induction hypothesis may be applied.

Otherwise, if for some x0 ∈ F , x0 + µt0 /∈ F for some µ(< 0), then for all x ∈ F ,

x + µt0 /∈ F for some µ. So, for each x ∈ F , bx := x + min{µ|x + µt0 ∈ F}t0 lies on the

boundary of F , and f(bx) ≤ f(x), since (q + 2xT Q)t0 ≥ 0. Since the minimum of f on

each k-dimensional bounding hyperplane of F is assumed, so is it on F .

Lemma 2.2.1. [11] Let C a nonempty convex subset of Rn. Then for every subspace

S that is contained in the lineality space of C, we have

C = S + (C ∩ S⊥) (2.2.2)

Lemma 2.2.2. [7] For any proper function f : Rn → R ∪ {+∞} and any α ∈ R such

that the level set {x ∈ Rn|f(x) ≤ α} 6= ∅ one has

{x ∈ Rn|f(x) ≤ α}∞ ⊂ {d ∈ Rn|f∞(d) ≤ 0} (2.2.3)

Equality holds in the inclusion when f is lsc, proper, and convex.
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From this lemma, we have that any nonempty level sets of a convex quadratic

function have the same recession cone.

Lemma 2.2.3. [7] Let fi : Rn → R ∪ {+∞}, i ∈ I be a collection of proper functions

and let S ⊂ Rn with S 6= ∅. Define C := {x ∈ S|fi(x) ≤ 0,∀i ∈ I}. Then

C∞ ⊂ {d ∈ S∞|(fi)
∞(d) ≤ 0,∀i ∈ I}. (2.2.4)

The inclusion holds as an equation when C 6= ∅, S is closed and convex, and each fi is

lsc convex.

Lemma 2.2.4. [7] For any nonempty closed convex set C ⊂ Rn that contains no lines

one has C = conv(ext C) + C∞.

Lemma 2.2.5. [63](Helly’s Theorem) Let {Ci|i ∈ I} be a collection of nonempty closed

convex sets in Rn, where I is an arbitrary index set. Assume that the sets Ci have no

common direction of recession. If every subcollection consisting of n + 1 or fewer sets

has a nonempty intersection, then the entire collection has a nonempty intersection.

Proposition 2.2.1. Let X(ε) = {x ∈ Rn|fi(x) = xT Qix+2qT
i x+ci ≤ εi, i = 1, · · · , m}

with Qi being positive semi-definite. Assume that X(εk) is nonempty for some positive

sequence εk = (εk
1, · · · , εk

m)T , k = 1, 2, · · · approaching nonincreasingly to zero. Then,

the set X(0) is also nonempty.

With this proposition, as Luo and Zhang [44] shows, the attainability of the convex

program with only convex quadratic data involved easily follows. Below we provide a

new proof of this proposition. As to Luo and Zhang’s proof in [44], from the linear

system (4) on Page 90, they obtained the existence of a solution x̄k and a constant ρ,

independent of k such that they satisfy some inequality. It seems that the constant ρ is

dependent of k if the argument follows from the Hoffman bound. Our proof uses some

basic tools, linear transformation and decomposition of set, to avoid the argument used

in [44].

Proof of Proposition 2.2.1. First, all the sets X(εk) are nonempty closed convex sets

and
⋂

k∈I X(εk) 6= ∅ for any finite index set I by the monotonicity of the sets X(ε).

We know from Lemma 2.2.3 that X(εk) have the same recession cone, say X∞. And

we may assume that for any k, X(εk) contains no lines.

12



Otherwise, let d be the direction of the line. Then d, −d are both in X∞. Let

L = X∞ ∩ −X∞ be the linearity of X(εk). Hence, from lemma 2.2.1, there exists a

decomposition X(εk) = L + (X(εk) ∩ L⊥) with X(εk) ∩ L⊥ having no lines. And we

also have X(εk)∩L⊥ ⊂ (X(εk−1)∩L⊥). Hence, we may consider X(εk)∩L⊥ instead of

X(εk).

m = 1. After a nonsingular linear transformation, we may assume that f1(x) =∑
1≤i≤r λi(xi − x0

i )
2 +

∑
r+1≤i≤k qixi + c, r ≤ k ≤ n. If X(εk) 6= ∅, then we can easily

choose a point x̄ such that f1(x̄) ≤ 0. Just consider two cases: if r = n, then c ≤ 0 and

hence take x̄i = x0
i ; if r < n, it follows similarly. This implies that X(0) 6= ∅.

By induction, assume that for m = k, the conclusion is true. Now consider the case

m = k + 1. Let xk ∈ X(εk) be a sequence with the smallest norm. We claim that {xk}
is bounded. Otherwise, assume that ‖xk‖ → ∞ and xk

‖xk‖
→ d. Then Qid = 0, qT

i d ≤ 0.

Case 1. There is some i0, such that qT
i0
d < 0. Let i0 = k + 1. Then by induction

assumption, there is an x̄ such that fi(x̄) ≤ 0, 1 ≤ i ≤ k. Then fi(x̄+ td) ≤ 0, 1 ≤ i ≤ k

and fk+1(x̄+ td) = fk+1(x̄)+ tqT
k+1d ≤ 0 for t large enough. This is to say, x̄+ td ∈ X(0)

for some t, contradicting the unboundedness of the sequence {xk}.

Case 2. qT
i d = 0 for all i = 1, · · · , k+1. Then for any x ∈ X(εk), x+td ∈ X(εk),∀t ∈

R. This contradicts the assumption that X(εk) contains no lines.

This completes the proof.

Next, we prove the existence of a solution of the convex quadratically constrained

quadratic problem by adopting the analytical method of Blum and Oettli [13] proving

the Frank-Wolfe theorem.

Proposition 2.2.2. [44] Consider the convex quadratically constrained quadratic prob-

lem
min f0(x) = xT Q0x + 2qT

0 x + c0

subject to fi(x) = xT Qix + 2qT
i x + ci ≤ 0, i = 1, · · · , m,

(QCQP)

where fi(x) = xT Qix + 2qT
i x + ci, i = 0, 1, · · · , m, are convex.

Assume the feasible set F = {x ∈ Rn|fi(x) ≤ 0, i = 1, · · · , m} is nonempty and the

objective value is bounded from below on F . Then there is a global solution for the

problem.

13



Proof. Let I = {1, · · · , m}. Assume that x = 0 is in F . Then Fρ defined by F ∩B(0, ρ)

is nonempty compact. Let V̂ = infx∈F f0(x) and V (ρ) = infx∈Fρ f0(x). So, V (ρ) is

monotonely nonincreasing and limρ→∞ V (ρ) = V̂ . Since Fρ is compact, there exists at

least one xρ ∈ Fρ such that f0(xρ) = V (ρ). We claim that {xρ} is bounded. In this

case the result holds obviously. In the latter part, we prove by contradiction that the

converse case couldn’t occur. Without loss of generality, we can choose xρ to be the

one with this property of minimal modulus.

Assume on the contrary we can find a sequence ρk with ρk → ∞, ‖xρk
‖ = ρk.

Put xk = xρk
for brevity. Since xk ∈ F , fi(xk) ≤ 0,∀i ∈ I. Let I0 = {i ∈

I| lim supk→∞ fi(xk) = 0} and I1 = I \ I0.

Choose an ε > 0 and a subsequence {ρj} of {ρk} such that

fi(xj) → 0,∀i ∈ I0, and fi(xj) ≤ −ε, ∀i ∈ I1. (2.2.5)

Taking a subsequence if necessary, let tj =
xj

ρj
→ t. Then t is a unit vector.

Since fi(xj) = ρ2
j t

T
j Qitj + 2ρjq

T
i tj + ci and, since ρj → ∞, it follows in the limit and

(2.2.5) that

tT Qit = 0, qT
i t ≤ 0,∀i ∈ I0; (2.2.6)

tT Qit = 0, qT
i t ≤ 0,∀i ∈ I1. (2.2.7)

Similarly, by f0(xj) → V̂ , we have

tT Q0t = 0. (2.2.8)

We consider two different subcases: (i) qT
i t = 0,∀i ∈ I0, (ii) qT

i0
t < 0, for some

i0 ∈ I0.

Case (i): Since fi(xj + st) = fi(xj) + 2s(xT
j Qit + qT

i t) + s2tT Qit,

it follows from (2.2.6) and (2.2.7) that for i ∈ I0, fi(xj + st) = fi(xj) ≤ 0,∀s ≥ 0,

for i ∈ I1, fi(xj + st) ≤ −ε + 2sqT
i t ≤ −ε, ∀s ≥ 0,

So,

xj + st ∈ F,∀s ≥ 0. (2.2.9)

By f0(xj + st) ≥ V̂ , we similarly get

qT
0 t ≥ 0. (2.2.10)
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Now, choose ρj so large that tTj t > 0. Then, because of xT
j t →∞, it follows that

‖xj − λt‖ < ‖xj‖ = ρj for λ small. (2.2.11)

We also have, for all i ∈ I0,

fi(xj − λt) = fi(xj) ≤ 0,∀λ, (2.2.12)

and, for all i ∈ I1,

fi(xj − λt) = fi(xj)− 2λqT
i t ≤ −ε− 2λqT

i t ≤ 0, for all λ small enough.

Therefore,

xj − λt ∈ F for λ small enough. (2.2.13)

On the other hand, it follows from (2.2.8) and (2.2.10) that f0(xj − λt) = f0(xj)−
2λ(xT

j Q0t + qT
i t) ≤ f0(xj), ∀λ > 0.

Hence, we obtained that for x∗ = xj − λt,for some λ, x∗ ∈ F, ‖x∗‖ < ‖xj‖,
and f0(x

∗) < f0(xj). This contradicts the definition of xj as being a solution of

min{f0(x)|x ∈ Fρj
} having minimal modulus. Therefore, the optimal solution exists.

Case (ii): Let I ′0 = {i ∈ I0|qT
i t = 0} and I0\I ′0 = {1, · · · , r}, r ≥ 1. Claim that there

is an optimal solution x̄ for problem (QCQP), which contradicts the unboundedness of

the sequence {xρ} as the solution the approximate problems. Thus the sequence {xρ}
is bounded and the Proposition follows.

We make induction on r. For r = 1. Consider the problem

(P ′) min f0(x) s.t. fi(x) ≤ 0, i ∈ I ′0 ∪ I1.

There are three cases for problem (P ′): inf(P ′) = −∞; inf(P ′) < V̂ ; inf(P ′) = V̂ .

In the third case, the infimum is attainable from the proof of case (i). In all, by the

continuity of f0, there is an x′ feasible for (P ′) such that f0(x
′) = V̂ .

If f1(x
′) ≤ 0, then x′ is a solution of (QCQP). Assume f1(x

′) > 0. Since f0(xj) →
f0(x

′) and f0 is convex, (xj − x′)T∇f0(x
′) = f0(xj)− f0(x

′)− 1
2
(xj − x′)T Q0(xj − x′) ≤

f0(xj)− f0(x
′). Dividing ‖xj − x′‖ on both side of the above inequality and taking the

limit, tT∇f0(x
′) ≤ 0. Let s∗ = −f1(x′)

qT
1 t

and x̄ = x′+s∗t. We have s∗ > 0. We may easily

check that f1(x̄) = 0, fi(x̄) ≤ 0, i ∈ I ′0 ∪ I1 and f0(x̄) ≤ f0(x
′) = V̂ . This is to say x̄ is

an optimal solution for (QCQP).
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Assume the claim is true for k < r. Let k = r and consider the problem

(P ′′) min f0(x) s.t. fi(x) ≤ 0, i ∈ I\{r}.

Similarly, there are three cases for the problem (P ′′) and by the induction assumption,

there is an x′ feasible for (P ′′) such that f0(x
′) = V̂ . Also,two subcases are to be

considered. If fr(x
′) ≤ 0, it is trivial. If fr(x

′) > 0, we have tt∇fr(x
′) ≤ 0, as is shown

in the case m = 1. Similarly, define s∗ = −fr(x′)
qT
r t

and x̄ = x′+s∗t. We obtain an optimal

solution x̄ for the original problem (QCQP).

This completes the proof.

Remark. Belousov and Klatte pointed out in [9] that this result is even true if

f0, f1, · · · , fm are convex polynomials of arbitrary order, as proved by Belousov in his

1977 book [8]. Since this book is written in Russian, it is not readily available (at least

in the West) and hence a wide part of the optimization community is not aware of this

fact until recently.
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Chapter 3

Relations between QGC and GSO

3.1 Introduction

Second order optimality conditions of an optimization problem are closely linked with

the sensitivity analysis and with the study of the convergence properties of numerical

algorithms for solving optimization problems, see [18, 24, 25]. In fact, various results

concerning optimality conditions were obtained as byproducts of researches on sen-

sitivity analysis. Another condition closed linked with the sensitivity analysis is the

quadratic growth condition [14, 29, 39, 66, 67]. For standard nonlinear programming

problems, the weak second order sufficient condition is equivalent to the quadratic

growth condition as far as the set of minima consists of isolated points and some con-

straint qualification hypothesis holds [10, 14, 38]. In case of non-isolated minima set,

Bonnans and Ioffe [16] studied the relations between the general second order sufficient

condition and the quadratic growth condition. In [15], they devoted to a special case,

the convex problems, and gave a complete characterization.

Yang [75, 76] proposed a second order sufficient condition of a global solution by

introducing a generalized representation condition. Quadratic functions and linear frac-

tional functions satisfy this representation condition. For the quadratic problems, sec-

ond order optimality conditions for global solutions are also obtained for some problems

of specific structures, such as the trust region subproblem, quadratic problem with one

or two quadratic constraints and quadratic problem with a two-sided quadratic con-
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straint, see Sorenson [68], Moré [49], Peng and Yuan [55] and Stern and Wolkowicz [69].

In this chapter, we will give some characterizations of the global quadratic growth

condition and the global second order sufficient condition. Due to the hardness of

the global characterization, we will only study some specially structured problems,

such as the problem of min-max form and the quadratically constrained quadratic

problems. We can’t expect more for the global condition of the general problems. We

will generally follow the scheme proposed by Bonnans and Ioffe [16]. We will first study

the equivalence of the global quadratic growth condition and the global second-order

sufficient condition for the problem of min-max form. At last, we will apply these results

to the standard quadratically constrained quadratic problem via a reformulation.

3.2 The global quadratic condition and the global

second order condition

In this section, we study the problem of the following min-max form

min
x∈Rn

f(x) := max
1≤i≤m

fi(x), (3.2.1)

where fi : Rn → R, i = 1, · · · , m, are real-valued functions.

To start with, we introduce some notations and terminologies used in this section.

The index set I(x) := {i : 1 ≤ i ≤ m, fi(x) = f(x)} denotes the set of active indices of

f(x) at x. The function

L(λ, x) :=
m∑

i=1

λifi(x), (3.2.2)

is defined as the Lagrangian of f(x). The set

S m := {λ ∈ Rm : λ ≥ 0,
m∑

i=1

λi = 1}, (3.2.3)

denotes the standard simplex of Rm. The set

Ω(x) := {λ ∈ S m : λi ≥ 0, λi = 0 if i /∈ I(x);
m∑

i=1

λi∇fi(x) = 0} (3.2.4)

is the set of Lagrange multipliers of f at x and

Ωδ(x) := {λ ∈ S m : λi ≥ 0, λi = 0 if i /∈ I(x); ‖
m∑

i=1

λi∇fi(x)‖ ≤ δ} (3.2.5)
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the set of Lagrange δ−multipliers.

In the following, suppose that f(x) is a constant c0 on the set S.

Definition 3.2.1. A mapping π from a neighborhood U of S onto S will be called a

regular projection onto S if there exists ε > 0 such that

ε‖x− π(x)‖ ≤ dist(S, x), x ∈ U. (3.2.6)

Definition 3.2.2. We say f satisfies the quadratic growth condition (QGC) on S if :

there exists β > 0 and a neighborhood U of S such that

f(x) ≥ c0 + βdist2(S, x), ∀x ∈ U. (3.2.7)

We say that the (QGC) holds globally if the inequality (3.2.7) holds for all x ∈ Rn.

Definition 3.2.3. We say f satisfies the general second-order sufficient condition

(GSO) on S if :

for any δ > 0 there exists a neighborhood U of S,

a regular projection π : U → S and α > 0 such that, for all x ∈ U\S,

max
λ∈Ωδ(π(x))

[Lx(λ, π(x))h +
1

2
Lxx(λ, π(x))(h, h)] ≥ α‖h‖2, (3.2.8)

where h = x− π(x).

We say the (GSO) holds globally if the inequality (3.2.8) holds for all x ∈ Rn.

Definition 3.2.4. Let C, D be sets and x ∈ C
⋂

D. We say that C and D are nontan-

gent at x if

TC(x)
⋂

TD(x) = {0}.

Definition 3.2.5. We say that f satisfies the tangency condition (TC) on D ⊂ Rn if

for any x in D and for any i ∈ I(x), either i ∈ I(y) for all y ∈ D sufficiently close to

x, or D and {y : fi(y) = fi(x) = c0} are nontangent at x.
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For m = 1, we have the following results.

Proposition 3.2.1. If f(x) = xtQx + 2qtx, then global (QGC) is equivalent to global

(GSO).

Proof. We have Ω(x) = Ωδ(x) = {1} and Lx(λ, π(x))h+ 1
2
Lxx(λ, π(x))(h, h) = 2ht(Qx+

q) + htQh.

Suppose that (QGC) holds locally on S. Then S is the local solution set of f ,

∇f(x) = 2(Qx + q) = 0 on S and Q � 0. And S = {x : Qx + q = 0}, an affine set. Let

π be the projection mapping on S. Then for any x ∈ Rn\S,

max
λ∈Ωδ(π(x))

[Lx(λ, π(x))h+
1

2
Lxx(λ, π(x))(h, h)] = (x−π(x))tQ(x−π(x)) ≥ λmin‖x−π(x)‖2,

where λmin is the smallest nonzero eigenvalue of Q. The last inequality follows from the

spectral theorem for the symmetric matrix Q and the fact that x− π(x) is orthogonal

to the null space of Q.

Now suppose that global (GSO) holds and then the local (GSO) holds, i.e. ∀δ >

0,∃U ∈ N (S), a regular projection π : U → S and α > 0, s.t. ∀x ∈ U\S,

2ht(Qπ(x) + q) + htQh ≥ α‖h‖2,

where h = x− π(x). Then ∀x ∈ U and x0 = π(x),

f(x) = f(x0)+2(x−x0)
t(Qx0+q)+(x−x0)

tQ(x−x0) ≥ c0+α‖x−x0‖2 ≥ c0+αdist(S, x)2.

Hence (QGC) holds locally and therefore ∇f(x) = 0 on S and Q � 0. From the

necessity proof, we can let π be the projection mapping on S.

Then for any x ∈ Rn\U and x0 = π(x),

f(x) = f(x0) + (x− x0)
tQ(x− x0) ≥ c0 + λmin‖x− x0‖2 ≥ c0 + λmindist(S, x)2,

where λmin is the smallest nonzero eigenvalue of Q.

Let β = min{α, λmin}.
Then

f(x) ≥ c0 + βdist(S, x)2, ∀x ∈ Rn.

This completes the proof.
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We want to know whether the (QGC) holds globally in the presence of the (GSO)

hypothesis. Unfortunately, this is not in general true. In case of m ≥ 2, when the

(GSO) holds on a set S and S is the global optimal set of the quadratic program, the

global (QGC) may not hold. The following is a simple counter example.

Example 3.2.1. For f(x) = max{x,−x}, x = 0 is the global solution and the (GSO)

holds for any |x| ≤ 1, and therefore, from Theorem 1 of [16], (QGC) holds. If |x| ≥ Cx2

for some positive constant C, we have |x| ≤ C. It follows that the global (QGC) does

not hold.

However, under the global (GSO) condition assumption we have

Proposition 3.2.2. Let f(x) = max{fi(x)} and fi be quadratic functions. Then the

global (GSO) condition implies the global (QGC) condition.

Proof. If the global (GSO) holds, for any δ > 0, there exists a regular projection π :

Rn → S, and α > 0 such that, for all x ∈ Rn\S,

max
λ∈Ωδ(π(x))

[Lx(λ, π(x))h +
1

2
Lxx(λ, π(x))(h, h)] ≥ α‖h‖2,

where h = x− π(x).

Then, for any x ∈ Rn,

f(x)− c0 = f(π(x) + h)− f(π(x))

≥ max
λ∈Ωδ(π(x))

[L(λ, π(x) + h)− L(λ, π(x))]

= max
λ∈Ωδ(π(x))

[Lx(λ, π(x))h +
1

2
Lxx(λ, π(x))(h, h)]

≥ α‖h‖2 ≥ αdist2(x, S).

Then the global (QGC) holds.

Bonnans and Ioffe [16] showed that (QGC) and (TC) imply the (GSO). We want to

know whether the global (QGC) and (TC) imply the global (GSO) or not.

The following is a counter example when m = 4.
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Example 3.2.2. Let f1(x) = x2 − 1
5
x − 6

5
, f2(x) = −(x + 1)2 + 1

4
, f3(x) = −x2 + 2x,

and f4(x) = 0.

Then f(x) = max1≤i≤4 fi(x) =


x2 − 1

5
x− 6

5
if x ∈ (−∞, −9−

√
139

20
] ∪ [3

2
,∞)

−(x + 1)2 + 1
4

if x ∈ (−9−
√

139
20

,−1
2
)

0 if x ∈ [−1
2
, 0]

−x2 + 2x if x ∈ [0, 3
2
].

The global solution set S = [−1
2
, 0]. Then it can be easily checked that f(x) ≥

1
8
dist2(x, S).The global (QGC) holds.

Next, we verify the tangency condition. For any x ∈ intS, I(x) = {3}. It follows

that for any y ∈ S close to x, I(x) = I(y). If x = −1
2
, then I(x) = {2, 3}. It is easy to

see that 3 ∈ I(y) for any y ∈ S close to x and {y : f2(y) = f2(x)} = {−1
2
}, nontangent

to S. The case for x = 0 is similar. Hence the (TC) condition also holds.

It remains to check that, for any δ > 0,

max
λ∈Ωδ(π(x))

[Lx(λ, π(x))h +
1

2
Lxx(λ, π(x))(h, h)] ≥ α‖h‖2,

for all x ∈ R and some regular projection π : R → S, where h = x− π(x).

If π(x) ∈ (−1
2
, 0), then Lx(λ, π(x))h + 1

2
Lxx(λ, π(x))(h, h) = 0. Then inequality

would never hold. So, π(x) takes the value either −1
2

or 0. Simple calculations indicate

that Lx(λ, π(x)) ≡ 0 and Lxx(λ, π(x)) = −2λ3 if π(x) = 0,−2λ2 if π(x) = −1
2
. Hence

the global (GSO) does not hold since the left hand side is linear in h, which will less

than α‖h‖2 for x large enough.

In case of m = 3, the answer is also negative.

Example 3.2.3. Let f = max{x,−x, x2}. Then the global (QGC) and (TC) conditions

hold but the global (GSO) condition does not.

The above example involves affine functions. What about the case involving only

non-affine quadratic functions? Consider the following case.

Example 3.2.4. Let f(x) = max{f1(x), f2(x), f3(x)} with f1(x) = −x2 + 2x, f2(x) =

−x2−2x and f3(x) = 2x2−1. We have that x = 0 is the global solution and f(x) ≥ x2.

This is to say the global (QGC) condition holds. Since the optimal solution set is

a singleton, the tangency condition (TC) holds trivially. However, the global (GSO)
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doesn’t hold since the related Hessian is negative definite. In fact, since for any x ∈ Rn,

π(x) = 0, maxλ∈Ωδ(π(x))[Lx(λ, π(x))h + 1
2
Lxx(λ, π(x))(h, h)] = maxλ∈Ωδ(0){(4λ − 2)x −

x2}. Thus, the global (GSO) couldn’t hold.

Now we consider the case of m = 2 and the global solution set is a singleton. First,

we review a result by J. J. Moré [49].

Lemma 3.2.1. Consider the following problem

min{f0(x) : f1(x) ≤ 0},

where f0, f1 : Rn → R are quadratic functions. Assume that min{f1(x) : x ∈ Rn} < 0

and ∇2f1 6= 0. A vector x∗ is a global solution of the problem if and only if there is a

λ ≥ 0 such that

f1(x
∗) ≤ 0,

∇f0(x
∗) + λ∇f1(x

∗) = 0,

∇2f0(x
∗) + λ∇2f1(x

∗) ≥ 0.

Applying this Lemma, we may obtain the following result.

Proposition 3.2.3. Assume that max{f0(x), f1(x)} ≥ c + α‖x − x0‖2 where fi(x) =

xT Qix+2qt
ix+ci, i = 0, 1, and α is a positive constant. Then the global (GSO) condition

holds.

Proof. It suffices to prove that there are multipliers λ0 ≥ 0, λ1 ≥ 0 such that λ0+λ1 = 1,

λ0∇f0(x0) + λ1∇f1(x0) = 0 and λ0Q0 + λ1Q1 > 0.

To avoid the trivial case, we may assume that f0(x0) = f1(x0) = c. Otherwise,

there is at least one function being strictly convex. Note that max{f0(x), f1(x)} ≥
c+α‖x−x0‖2 ⇔ f0(x)+max{0, f1(x)−f0(x)} ≥ c+α‖x−x0‖2. Let y2 = max{0, f1−f0}.
Then (xT

0 , 0)T is the global solution of the problem (P ′) :

min{f0(x) + y2 − α‖x− x0‖2 : g(x, y) := f1(x)− f0(x)− y2 ≤ 0}.

It is obvious that g(x, y) satisfies the assumptions in the Lemma 3.2.1. Hence, there is

a λ ≥ 0 such that

∇f0(x0) + λ(∇f1(x0)−∇f0(x0)) = 0,
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(
Q0 − 2αI 0

0 2

)
+ λ

(
Q1 −Q0 0

0 2

)
≥ 0.

Similarly, max{f0(x), f1(x)} ≥ c + α‖x − x0‖2 ⇔ f1(x) + max{0, f0(x) − f1(x)} ≥
c + α‖x− x0‖2.

Then there is a λ′ ≥ 0 such that

∇f1(x0) + λ′(∇f0(x0)−∇f1(x0)) = 0,(
Q1 − 2αI 0

0 2

)
+ λ′

(
Q0 −Q1 0

0 2

)
≥ 0.

When λ > 0, λ′ > 0, we have λ′∇f0(x0)+λ∇f1(x0) = 0, and λ′∇2f0(x0)+λ∇2f1(x0) ≥
2αλλ′I.

Therefore, there are λ0, λ1 such that 0 ≤ λ0, λ1 ≤ 1, λ0 + λ1 = 1, λ0∇f0(x0) +

λ1∇f1(x0) = 0 and λ0Q0 + λ1Q1 ≥ α′I > 0. This completes the proof.

However, for the case the solution set is not a singleton, we have not obtained the

implication yet. In general case, under what circumstances or with what strengthened

conditions will the global quadratic growth condition and the global general second-

order sufficient condition be equivalent?

As a special case, we consider the following problem of homogeneous quadratic

forms:

min
x∈Rn

f(x) = max
1≤i≤m

xT Qix (P1)

Proposition 3.2.4. Assume that the problem (P1) is bounded from below and the

solution set S is bounded. Then x = 0 is the only global solution of the problem (P1)

and both the global (QGC) and global (GSO) hold.

Proof. The optimal value is 0; otherwise, if there exists an x ∈ Rn such that f(x) < 0,

by the homogeneity of order 2 of f , f is unbounded from below.

Next, we have that the solution set of the problem is either an unbounded set or

the origin point.

When the solution set is bounded, we claim that f(x) satisfies the quadratic growth

condition

f(x) ≥ α‖x‖2, for some positive constant α.
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Otherwise, assume there exists a sequence (xn)∞n=1 such that f(xn) < 1
n
‖xn‖2. Letting

yn = xn

‖xn‖ , and taking a subsequence, if necessary, we have f(yn) < 1
n

and yn → y0.

Then, we have f(y0) ≤ 0 and ‖y0‖ = 1, contradicting with the uniqueness of the solution

set of the problem.

Also, under the assumption of boundedness of the solution set, the global (GSO)

for f still holds. Since S = {0}, π(x) = 0 for any x ∈ Rn, Ωδ(π(x)) = Ωδ(0) = S m,

and Lx(λ, π(x)) = 0, Lxx(λ, π(x))(h, h) = maxλ∈T m

∑
λix

T Qix = max1≤i≤m xT Qix,

max
λ∈Ωδ(π(xn))

[Lx(λ, π(x))h +
1

2
Lxx(λ, π(x))(h, h)] = max

1≤i≤m
xT Qix.

From this, we see that the global (QGC) condition is the same as the global (GSO)

condition.

Remark. An alternative result from Yuan [79] is as follows:

max{xT Q1x, xtQ2x} ≥ 0,∀x ∈ Rn ⇔ ∃λ ∈ [0, 1], s.t. λQ1 + (1− λ)Q2 ≥ 0.

It is not true if there is more than two quadratic forms to be considered. This can be

seen from the following example from Martinez and Seeger [46].

Let f(x) = max{x2
1 + 4x1x2 − 3x2

2, x
2
1 − 8x1x2 − 3x2

2,−5x2
1 + 4x1x2 + 3x2

2}. Then,

f(x) ≥ 0 and for any λ = (λ1, λ2, λ3), the minimal eigenvalue of λ1Q1 + λ2Q2 + λ3Q3

is no larger than −1. Compared with Proposition 3.2.4, we may say that the global

(GSO) is a weaker form of second order condition.

3.3 Reformulation for the constrained programs

Consider the following standard form of nonlinear programming problem

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, · · · , k; fj(x) = 0, j = k + 1, · · · , m;
(P)

where fi : Rn → R, i = 0, 1, · · · , m, are real-valued functions.

First, we introduce the following reduction for problem (P).

Proposition 3.3.1. Let S be a closed subset of feasible points of the problem (P) such

that f0(x) = c on S. Set

f(x) = max{f0(x)− c, f1(x), · · · , fk(x), |fk+1(x)|, · · · , |fm(x)|}. (3.3.9)
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Then the following properties are equivalent:

(a) f0(x) > c for any feasible points outside of S;

(b) f(x) > 0 for any x ∈ Rn\S.

Proof. The implication of (b)⇒(a) is obvious. Conversely, if (a) holds, then f(x) ≥
f0(x) − c > 0 for any feasible x outside of S. On the other hand if x is not feasible,

then either fi(x) > 0 for some i = 1, · · · , k or |fi(x)| > 0 for some i = k + 1, · · · , m; in

either case f(x) > 0.

Thanks to this proposition we can reformulate the quadratic growth condition and

second order sufficient condition for the constrained program (P), using the specific

form of the function f given by (3.3.9).

The results of reformulation can be summarized as follows. Consider the set Λ(x)

of Lagrange multipliers of (P) at x:

Λ(x) = {λ = (λ0, · · · , λm) : λi ≥ 0, i = 1, · · · , k;

λifi(x) = 0, i = 1, · · · , k;
∑

λi∇fi(x) = 0}.

the set of δ−multipliers:

Λδ(x) = {λ = (λ0, · · · , λm) : λi ≥ 0, i = 1, · · · , k;

λifi(x) = 0, i = 1, · · · , k; ‖
∑

λi∇fi(x)‖ ≤ δ},

the subset of normalized multipliers and δ−multipliers:

ΛN(x) = {λ ∈ Λ(x);
∑

|λi| ≤ 1},

ΛN
δ (x) = {λ ∈ Λδ(x);

∑
|λi| ≤ 1},

and the critical cone for (P) at x:

K(x) = {h : ∇fi(x)h ≤ 0, i = 1, · · · , k,∇fi(x)h = 0, i = k + 1, · · · , m}.

Now we say that

Definition 3.3.1 (Global (QGCP )). Problem (P) satisfies the global quadratic growth

condition on S if f(x) defined by (3.3.9) satisfies global (QGC) on S.
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Definition 3.3.2 (Global (GSOP )). Problem (P) satisfies the general global second

order sufficient condition on S if there are regular projection π : Rn → S and an α > 0,

such that (3.2.8) is valid with Ωδ(π(x)) replaced by ΛN
δ (x).

Similarly, we have the following relation for the global (QGCP ) and global (GSOP ).

Proposition 3.3.2. Let fi(x), i = 1, · · · , m, be quadratic functions. Then the following

implication holds:

Global (GSOP ) =⇒ Global (QGCP ).

Next, we study a special case of quadratic problem, the two-sided constrained

quadratic problem.

Proposition 3.3.3. Consider the following two-sided constrained quadratic problem

minimize f0(x) = xT Ax + 2bT x + c

subject to α ≤ xT Bx ≤ β, x ∈ Rn.

Let x∗ be a feasible point of the problem and f0(x
∗) ≥ 0. Assume that Bx∗ = 0 implies α <

0 < β. Then the following two assertions are equivalent.

(1) There exists a λ0 ∈ R such that it satisfies:

(A− λ0B)x∗ = b, (3.3.10)

A− λ0B > 0, (3.3.11)

and

λ0(α− (x∗)T Bx∗) ≥ 0 ≥ λ0((x
∗)T Bx∗ − β). (3.3.12)

(2) There is some γ > 0 such that f(x) = max{f0(x), α−xT Bx, xT Bx−β} ≥ f0(x
∗)+

γ‖x− x∗‖2, for all x ∈ Rn.

Consequently, we have that x∗ is a unique global solution of the two-sided constrained

quadratic problem.

Proof. (1) ⇒ (2): From (1), we can derive that the global (GSO) holds for f(x). In

this case, L(λ, x) = λ1f0(x) + λ2(α − xT Bx) + λ3(x
T Bx − β). Under the assumption

(1), we may take λ1 = 1
1+λ0

, λ2 = λ0

1+λ0
, λ3 = 0 if α = (x∗)T Bx∗, λ1 = 1

1−λ0
, λ2 =

0, λ3 = −λ0

1−λ0
if β = (x∗)T Bx∗, or λ1 = 1, λ2 = 0, λ3 = 0 if α < (x∗)T Bx∗ < β. Then
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Lx(λ, π(x))h + 1
2
Lxx(λ, π(x))(h, h) = 1

k
[hT (A−λ0B)h] ≥ α̂‖h‖2, for some α̂ > 0, where

h = x − x∗, k = 1 − λ0 or 1 + λ0. And it follows that the global (GSO) holds for the

function f(x). Then, by Proposition 3.3.2, the global (QGC) holds for f(x).

(2) ⇒ (1): If condition (2) holds, and since f0(x
∗) ≥ 0, then f(x) = f0(x) ≥ f0(x

∗) +

γ‖x− x∗‖2, ∀x ∈ {x|α ≤ xT Bx ≤ β}. It follows that x∗ is the unique global minimizer

of the problem min{f0(x) − γ‖x − x∗‖2 : α ≤ xT Bx ≤ β} and also is the global

minimizer of the original problem. Applying the result of Stern and Wolkowicz, we

have that there is a λ0 ∈ R such that (A − λ0B)x∗ = b, A − λ0B ≥ γI > 0, and

λ0(α− (x∗)T Bx∗) ≥ 0 ≥ λ0((x
∗)T Bx∗ − β).
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Chapter 4

Fractional program

4.1 Introduction

One key technique frequently used in optimization community is S-lemma or S-procedure

which originally arose from the stability analysis of nonlinear systems, see, for example,

[74] and the references therein. The S-procedure concerns the problem when a quadratic

(in)equality is a consequence of other quadratic (in)equalities, such as

f0(x) ≥ 0 for f1(x) ≥ 0, · · · , fm(x) ≥ 0,∀x ∈ X.

To ease the complexity of the the problem, the S-procedure considers the solvability of

the following auxiliary function

S(x) = f0(x)− λ1f1(x)− · · · − λmfm(x) ≥ 0, λ1, · · · , λm ≥ 0.

When the functions fi(x), i = 1, · · · , m are linear or convex, the results of this kind

refer to the Farkas lemma or Farkas theorem. For more details for S-lemma, we may

refer to the article by Polyak [59]and the review by Pólik and Terlaky [58], and the

references therein.

A known variant of S-lemma states that, for quadratic functions fi : Rn → R, i =

1, 2, the following two assertions are equivalent:

(1) max{f1(x), f2(x)} ≥ 0,∀x ∈ Rn;

(2) ∃λ1, λ2 ≥ 0 s.t. λ1f1(x) + λ2f2(x) ≥ 0,∀x ∈ Rn.
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In this chapter, we will mainly concentrate on the quadratic fractional programming

problems. First, we will generalize the S-lemma to the quadratic fractional function

case. Then by applying S-lemma and previously presented Frank-wolfe theorem we will

obtain existence results for various kinds of the quadratic fractional programs.

4.2 Quadratic Fractional Programs

Consider the following quadratical fractional program

f(x) = max{f1(x), f2(x)}, ∀x ∈ H, (P)

where fi(x) = xT Aix
2(aT x+s)

, x ∈ Rn, i = 1, 2, H = {x ∈ Rn|aT x + s > 0}, Ai, i = 1, 2, are

n× n matrices, a ∈ Rn and s is a real.

We will characterize the conditions such that f(x) ≥ 0. Note that the problem

f(x) ≥ 0, ∀x ∈ H is equivalent to that max{xT A1x, xT A2x} ≥ 0, ∀x ∈ H. We have

the following result similar to the Yuan’s alternative theorem.

Proposition 4.2.1. The following two assertions are equivalent:

(i) max{xT A1x, xT A2x} ≥ 0, ∀x ∈ H;

(ii) ∃t ∈ [0, 1], s.t. tA1 + (1− t)A2 ≥ 0.

Proof. First, we have max{xT A1x, xT A2x} ≥ 0, ∀x ∈ H ⇔ max{xT A1x, xT A2x} ≥
0, ∀x ∈ Rn.

This follows from the two cases below:

(1) If 0 ∈ H, then there exists a ball B(0, r) ⊂ H. For any y ∈ Rn, ∃k > 0 s.t.

ky ∈ B(0, r) ⊂ H.

(2) Assume 0 /∈ H. We have that max{xT A1x, xT A2x} ≥ 0, ∀x ∈ H ⇔ max{xT A1x, xT A2x} ≥
0, ∀x ∈ {x|aT x > 0} ⇔ max{xT A1x, xT A2x} ≥ 0, ∀x ∈ {x|aT x ≥ 0} ⇔ max{xT A1x, xT A2x} ≥
0, ∀x ∈ Rn. For the equivalences, we used, respectively, the facts that {x|aT x > 0} is

a cone generated by H, the continuity of the max-function, and the symmetry of Ai.

Second, by the Yuan’s alternative theorem, the equivalence is obtained.

Proposition 4.2.2. Assume that s 6= 0. Then the following three assertions are equiv-

alent:

(i) f(x) = max{f1(x), f2(x)} ≥ 0, ∀x ∈ H;
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(ii) For any x ∈ H, ∃t ∈ [0, 1], s.t. t52 f1(x) + (1− t)52 f2(x) ≥ 0;

(iii) ∃t ∈ [0, 1], s.t. tA1 + (1− t)A2 ≥ 0.

Proof. That (i)⇔ (iii) follows from Proposition 4.2.1.

(ii)⇔ (iii): First, we do some calculus. The gradients and Hessians of fi, respectively,

are

5fi(x) =
2(aT x + s)Aix− (xT Aix)a

2(aT x + s)2
, (4.2.1)

and

52fi(x) =
(aT x + s)2Ai − (aT x + s)((Aix)aT + a(Aix)T ) + (xT Aix)aaT

(aT x + s)3
, i = 1, 2.

(4.2.2)

So,

yT 52 fi(x)y =
((aT x + s)y − (aT y)x)T Ai((a

T x + s)y − (aT y)x)

(aT x + s)3
, i = 1, 2, (4.2.3)

and

yT (t52 f1(x)+(1− t)52 f2(x))y

=
((aT x + s)y − (aT y)x)T (tA1 + (1− t)A2)((a

T x + s)y − (aT y)x)

(aT x + s)3
.

Hence, (iii) implies (ii).

For the converse, the semi-positiveness of tA1 + (1− t)A2 for some t ∈ [0, 1] follows

from the fact that there exists an x ∈ H such that the transformation y ∈ Rn 7→
(aT x + s)y− (aT y)x ∈ Rn is surjective, or equivalently, there is an x ∈ H such that the

matrix (aT x + s)I − xaT is nonsingular.

If 0 ∈ H, taking x = 0, then the transformation is surjective. Now assume that

0 /∈ H. Obviously that a 6= 0. Without loss of generality, assume that, the first

component of a, a1 6= 0. Let x = (ta1, 0, · · · , 0), for some λ > 0 large enough such that

aT x + s > 0. And therefore, det((aT x + s)I − xaT ) = s(λa2
1 + s)n−1 6= 0.

Remark. For the case fi =
xT Aix+2bT

i x+ci

aT x+s
with s 6= 0, we will have a similar result.

Let yT = (t, xT ), and Bi =

(
ci bT

i

bi Ai

)
, i = 1, 2. So, the program can be reformulated as

min
y∈H′

g(y) = max{g1(y), g2(y)},
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where gi(y) = yT Biy
(0,aT )y+s

, y ∈ Rn+1, i = 1, 2, and H ′ = {y ∈ Rn+1|(0, aT )y + s > 0} =

{(t, x)|t ∈ R, x ∈ H}.
So, we have g(y) ≥ 0,∀x ∈ H ′ if and only if ∃t ∈ [0, 1], s.t. tB1 + (1 − t)B2 ≥ 0 if

and only if, for any x ∈ H ′, ∃t ∈ [0, 1], s.t. t52 g1(x) + (1− t)52 g2(x) ≥ 0.

Another form of the above conclusion is given as follows.

Proposition 4.2.3. Assume that there is an x̄ ∈ H such that x̄T A2x̄ < 0. Then the

two assertions below are equivalent.

(i) There is no x ∈ H such that the following system holds:

xT A1x
aT x+s

< 0, xT A2x
aT x+s

≤ 0,

(ii) There exists a t ≥ 0 such that A1 + tA2 is positive semi-definite;

If s 6= 0, the above two assertions also equivalent to

(iii) For any x ∈ H, ∃t ≥ 0, s.t. 52 f1(x) + t52 f2(x) ≥ 0.

As a direct application of Proposition 4.2.2, we have

Proposition 4.2.4. Consider the following quadratic fractional program

minx∈H
xT A1x
aT x+s

subject to xT A2x
aT x+s

≤ 0,
(QFP)

where H = {x ∈ Rn|aT x+s > 0}. Assume that s > 0. Then x = 0 is the global solution

of the problem (QFP) if and only if there exists a t ∈ [0, 1] such that tA1 + (1− t)A2 is

positive semi-definite.

Next, we give a sufficient condition for a specific problem of the quadratic fractional

programs.

Proposition 4.2.5. Consider the following quadratic fractional program with a two-

sided quadratic fractional constraint:

minx∈H f1(x) = xT A1x
aT x+s

subject to γ ≤ f2(x) = xT A2x
aT x+s

≤ β,
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where H = {x ∈ Rn|aT x + s > 0} and s 6= 0. If there are a y ∈ H and a λ ∈ R such

that the following conditions hold:

2(aT y + s)((A1 − λA2)y)− (y(A1 − λA2)y)a = 0, (4.2.4)

A1 − λA2 ≥ 0, (4.2.5)

and

λ(γ − f2(y)) ≥ 0 ≥ λ(f2(y)− β). (4.2.6)

Then y is the global solution of the problem.

Proof. There are three cases to consider.

Case (i). Suppose that γ < f2(y) < β. Then λ = 0 from the condition (4.2.6) and

A1 ≥ 0. Since s 6= 0, by (4.2.3), 52f1(x) ≥ 0 on H, i.e. f1 is convex on the feasible

region. Then, y solves the problem.

Case (ii). Suppose that γ = f2(y). By (4.2.4), (4.2.5), y minimizes the Lagrangian

function

L(x, λ) = f1(x) + λ(γ − f2(x))

over Rn. That is

f1(y) = L(y, λ) ≤ L(x, λ),∀x ∈ Rn.

Since condition (4.2.6) implies λ ≥ 0, it follows that λ(γ − f2(x)) ≤ 0, for all feasible

x. Then, f1(y) ≤ f1(x), for all feasible x.

Case (iii). Suppose that f2(y) = β. This is similar to case (ii).

We now consider the existence of a global solution of a quadratic fractional problem

over a polyhedra:

min
x∈P

xT A1x + bT
1 x + c1

xT A2x + bT
2 x + c2

where P is a polyhedron.

Proposition 4.2.6. Assume that the above problem is bounded from below and xT A2x+

bT
2 x + c2 is positive and bounded over P . Then there exists a global solution x0 in P .

Proof. Let infx∈P
xT A1x+bT

1 x+c1
xT A2x+bT

2 x+c2
= α. Then, for any x ∈ P ,

xT A1x + bT
1 x + c1 ≥ α(xT A2x + bT

2 x + c2).
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That is,

xT A1x + bT
1 x + c1 − α(xT A2x + bT

2 x + c2) ≥ 0.

Note that

inf
x∈P

xT A1x + bT
1 x + c1 − α(xT A2x + bT

2 x + c2) = 0.

By Frank-Wolfe Theorem, we know that there is an x0 ∈ P such that

xT
0 A1x0 + bT

1 x0 + c1 − α(xT
0 A2x0 + bT

2 x0 + c2) = 0

and

xT
0 A2x0 + bT

2 x0 + c2 > 0.

Therefore, x0 is a global solution of the original problem.

Remark. If the denominator is not bounded over the polyhedron, the assertion

may not hold. For example, the problem min{ 1
x

: x ≥ 1} has no solutions.

Next, we extend the Proposition 4.2.2 to the multiple quadratic fractional case.

Let fi = xT Aix
2(aT x+s)

, i = 1, · · · , m, with m ≥ 3. Consider the following assertions:

(i) max1≤i≤m{ xT Aix
2(aT x+s)

} ≥ 0, for all x ∈ H = {x ∈ Rn|aT x + s > 0};
(ii) There exist ti ≥ 0, i = 1 · · · , m, with t1 + · · ·+ tm = 1, such that t1A1 + · · ·+ tmAm

is positive semi-definite;

(iii) There exist ti ≥ 0, i = 1 · · · , m, with t1 + · · · + tm = 1, such that t1 52 f1(x) +

· · ·+ tm 52 fm(x) is positive semi-definite for all x ∈ H.

Lemma 4.2.1. (Martinez-Legaz and Seeger) Let the symmetric matrices A1, · · · , Am,

have non-positive extradiagonal terms. Then the following two statements are equiva-

lent:

(1) max1≤i≤m{xT Aix} ≥ 0,∀x ∈ Rn;

(2) There exist ti ≥ 0, with t1 + · · · + tm = 1, such that t1A1 + · · · + tmAm is positive

semi-definite.

Applying this Lemma, we may obtain:

Proposition 4.2.7. Let s 6= 0. Suppose that there exists a nonsingular n×n matrix Q

such that QT A1Q, · · · , QT AmQ have non-positive extradiagonal terms. Then the above

statements (i),(ii), and (iii) are equivalent.
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Proof. First, similar to the case of m = 2, we have that max1≤i≤m{xT Aix} ≥ 0,∀x ∈
H ⇔ max1≤i≤m{xT Aix} ≥ 0,∀x ∈ Rn. Then, the equivalence between (i) and (ii)

follows from Lemma 4.2.1.

We can easily have

yT (
m∑

i=1

ti52fi(x))y

=
((aT x + s)y − (aT y)x)T (

∑m
i=1 ti 52 fi(x))((aT x + s)y − (aT y)x)

(aT x + s)3
.

The equivalence between (ii) and (iii) follows from the proof of Proposition 4.2.2.

Remark. If the matrices A1, · · · , Am commute pairwise, then they can be simul-

taneously diagonalized under an orthogonal transformation. Hence the pairwise com-

muting property is sufficient to the non-positive extradiagonal property.
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Chapter 5

Conclusions

In this thesis, we mainly concentrated on some global analysis for the quadratically

constrained quadratic programming problems. We studied the existence of global so-

lutions, the general global second-order sufficient condition, and the global quadratic

growth condition for the quadratic problems.

In chapter 2, as a complement to the existing theory of the existence results for the

quadratic problems, we only provided two new proofs for two assertions: the continuity

of a sequence of nested sets defined by a number of convex quadratic inequalities; the

attainability of the quadratic problem with all functions being convex.

In chapter 3, we studied the global second-order conditions for quadratic problems

with non-isolated global solutions. First, we defined the global quadratic growth condi-

tion and the general global second-order sufficient condition for the function of the form

of maximizing a finite number quadratic functions. Then, we investigated the relations

between the two conditions. It was shown that the global quadratic growth condition is

implied by the global second-order sufficient condition and that, when the solution set

is a singleton and the number of quadratic term is 2, the reverse implication also holds.

Finally, after a reformulation, we applied these results to the quadratically constrained

quadratic problems.

In chapter 4, we established some alternative results for quadratic fractional func-

tions. Then, we studied some corresponding quadratic fractional problems by applying
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these alternative results.
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