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Abstract

The dissertation has three distinct but loosely complimentary components, which are

briefly concluded below.

(1) Geometric modeling of landmobile radiowave propagation channels.

“Geometric modeling” idealizes the spatial geometric relationships among the trans-

mitter, the scatterers, and the receiver in a wireless propagation channel - to produce

closed-form formulas of various channel-fading metrics, (such as the distribution of

the direction of arrival (DOA) and distribution of the time of arrival (TOA)) using

only a very few degrees-of-freedom. In Chapter 2, we thoroughly assessed geometric

models in terms of their DOA-distributions against all empirical data available from

the open literature. In Chapter 3 a new model for the uplink/downlink multipahs’

TOA-distribution is proposed, the proposed TOA-distribution is compared against

some certain empirical data and can better fit them than the customary geometric

models can.

(2) Near-field measurement model of a microphone-array called ”acoustic vector-sensors”

The acoustic vector-sensor is a practical and versatile sound-measurement system

in-room, open-air, or underwater. It consists of three identical but orthogonally

oriented velocity-sensors plus a pressure-sensor, all spatially collocated. Though its

far-field measurement-model has been known for over a decade, we, in chapter 4,

pioneer its near-field measurement-model, based on rigorous acoustic physics. Sec-

tion 4.1 to 4.3 derived the near-field model without any boundary near the acoustic

vector-sensor, the closed-form CRB is derived and analyzed. Section 4.4 extends the

measurement model from being without boundary to being with a boundary case.

(3) Microphone array source localization algorithms

In chapter 5, we propose a new algorithm to geolocate a source in 3D near-field

space using only one spatially spread acoustic vector-sensor. This algorithm re-

quires no prior knowledge of the temporal structure of the impinging signal, nor

any iterative solution. However, this method can allow only one incident source

with constant emitting power - a limitation common to basically all ”received signal

Strength Indication” (RSSI) methods of geolocation. A new adaptive ”beamform-

ing” signal-processing algorithm is developed in chapter 6 to locate noise-sources
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aboard a rail-car that passes by a track-side immobile microphone-array. This pro-

posed microphone-array beamformer tracks the rail-car’s spatial movement, with

the aid of two inaudible acoustic beacons placed abroad the rail-car. The proposed

scheme then localizes the noise-sources with reference to the rail-car’s coordinates.

No auxiliary infrastructure (e.g., no radar nor video-camera) is needed besides the

onboard beacons. Monte Carlo simulations and anechoic chamber experiments verify

the proposed scheme’s efficacy.
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Chapter 1

Introduction

This dissertation presents much of the candidate student’s research work during his past

2.5 years of study. The contents in this dissertation refer to 6 research projects, among

which two have been published or accepted to publish in IEEE journals or magazines, two

have been submitted to IEEE journals for peer-review, and two are under preparation.

This dissertation consists of six loosely related research topics, on geometric model-

ing of wireless channels (chapters 2-3) and on microphone array space-time processing

(chapters 4-6).

1.1 The Motivation & Significance of the Investigation

In wireless communications, a transmitted signal reaches a receiver via multiple propaga-

tion paths, undergoing various sequences of reflection, diffraction, and scattering. Each

such “multipath” carries its own propagation history, resulting in its particular amplitude,

propagation delay, direction-of-arrival, polarization, and Doppler shift. At the receiving

antenna, these multipaths are phasor-summed, constructively or destructively, to produce

that antenna’s measured data. Hence, the receiver “sees” the transmitter in space not as

a geometrically point-like source, but as spatio-temporally spread over a range of time-

of-arrival (TOA) and direction-of-arrival (DOA). It is important to model the wireless

channel’s DOA distribution at the receiver, for the development and analysis of smart-

antennas spatial-diversity schemes, such as space-division frequency re-use, beamforming,

emitter localization, etc. And it’s also important to model the the wireless channel’s TOA

distribution at the receiver, because the TOA probability-density function characterizes

the wireless propagation channel’s temporal delay spread and frequency incoherence, which

in turn determine the obtainable temporal diversity and the extent of inter-symbol inter-

ference in wireless communication. These constrain the capacity of information that can

be communicated between the transmitter and the receiver. Hence, modeling the wireless

propagation channel and investigating the DOA & TOA is always an active research area.

There exist various strategies to mathematically model the propagation channel. The

most direct and the most site-specific approach is empirical measurement at the particular

site / terrain / building of interest. Another approach, more labor-saving but still site-
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specific, is to approximate the particular site under investigation as an electromagnetic-

physics-based ray-tracing computer-model. These site-specific / terrain-specific / building-

specific approaches are faithful to the particular site’s idiosyncratic electromagnetic and

spatio-temporal complexities. Each such simulation produces a quantitatively accurate

model, but each simulation applies to only that one particular propagation setting under

investigation (e.g., a particular city’s particular cross-sectional street corner under a par-

ticular weather). With many simulations over many scenarios, the ray-tracing approach

can be generalized to a wider class of environments (e.g., the class of “bad urban” settings

of high-rises in all downtowns). In contrast, a “geometric model” can encapsulate the

essence of a wide class of diverse propagation settings.

Between any communication transmitter and receiver, there lies the channel, from

which much of the degradation effects arise. “Geometric modeling” idealizes the wire-

less electromagnetic propagation environment via a geometric abstraction of the spatial

relationships among the transmitter, the scatterers, and the base-station. (For example,

scatterers could be idealized as distributed evenly on only a small disc centered around

the mobile ) Geometric models attempt to embed measurable fading metrics (e.g., the

DOA distribution) integrally into the propagation channel’s idealized geometry, such that

only a very few geometric parameters (e.g., the single model-parameter of the ratio be-

tween the aforementioned disc’s radius R and the transmitter-receiver distance D) would

affect these various fading metrics in an inter-connected manner, to conceptually reveal

the channel’s underlying geometric dynamics. This modeling’s generic abstract geometry

involves no site-specific or terrain-specific nor building-specific information, such as those

used in empirical measurements or in ray-shooting / ray-tracing computer-simulation.

(Ch-2) Many geometric models have been proposed. However, numerous “geometric mod-

els” have emerged in the past decade, each based on a different spatial distribution of

the scatterers. Each would thus offer a competing closed-form distribution-formula

for the azimuth-DOA of the multipaths arriving at the receiver. Many authors pro-

posed their geometric models without verification by empirical data, though a few

were validated by a few empirical datasets pre-selected by the authors themselves.

It remains unclear which “geometric model” is how best under what field scenar-

ios and why. This literature gap is perhaps due to the labor-intensive nature of

such an investigation. Chapter 2 aims to be an impartial third party, to thoroughly

compare and contrast the accuracy of these competing geometric models’ derived

azimuth direction-of-arrival distribution in landmobile radiowave communications

against the open literature’s empirically measured data.

(Ch-3) Chapter 3 proposes a new geometric model for the arriving multipaths’ TOA-distribution.

The proposed model can better fit some certain empirical data from the field mea-

surement in the open literature.

Besides modeling of the wireless propagation channel, to passively locate single/multiple

sound sources in the wireless environment is also an important investigation topic in recent
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years. In these localization problem, sensor array is typically and frequently used. In this

thesis, two typical sensor array is presented, which are acoustic vector-sensor and custom-

ary two dimensional sensor-array. A new measurement model is proposed for the acoustic

vector-sensor with sound source in its near-field. Some novel localization algorithms are

also proposed in the later chapters.

An acoustic vector-sensor (a.k.a. vector-hydrophone) consists of three identical, but

orthogonally oriented, acoustic velocity-sensors, plus an acoustic pressure-sensor — all

spatially co-located in a point-like geometry. Each acoustic velocity-sensor measures one

Cartesian component of the incident acoustic particle-field vector. The entire acoustic

vector-sensor thus distinctly measures all three Cartesian components of the particle-

velocity vector plus the pressure scalar. This contrasts with a customary microphone or

hydrophone measuring only the acoustic pressure.

(Ch-4) Though a far-field measurement model was introduced to the signal-processing lit-

erature over a decade ago, the corresponding near-field measurement-model has not

been investigated. This overlooked issue is herein investigated. As will be shown in

the subsequent sections, the far-field measurement model’s independence from the

signal frequency, the source-sensor distance, and the propagation-medium in (4.1) is

invalid for the near-field case. This is investigated in chapter 4.

(Ch-5) When the pressure-sensor is spatially separated from the velocity-sensor triad, the

acoustic vector sensor can geolocate an emitter in three-dimensional space, not

merely in two-dimensional space as mentioned earlier in chapter 4. This 3D ge-

olocation (azimuth angle, elevation angle, and radial distance) is investigated in

chapter 5.

(Ch-6) Chapter 6 uses a two-dimensional array of identical microphones to scan a pass-by

train-carriage for any onboard noise sources. Like chapter 4 and 5, the emitters are

taken to emit from the sensors’ near-field. Moreover, the data are time-varying.

1.2 Literature Review

1.2.1 Literature Review of Geometric Modeling of Landmobile Wireless

Channel

Numerous two-dimensional “geometric models” [98], [45], [144], [177], [91], [48], [143], [67],

[133], [134] have been proposed for the radiowave outdoor landmobile cellular communi-

cation uplink’s azimuth direction-of-arrival distribution. “Geometric models” typically

model a multipath as the bouncing of the transmitted signal off one scatterer. A multi-

path’s azimuth direction-of-arrival is thus determined by the spatial location of the scat-

terer off which the multipath is reflected before reaching the receiver. Hence, one pivotal

character of any geometric model is how the model characterizes the scatterers’ spatial

distribution in relation to the transmitter and the receiver. Various geometric models dif-

ferently idealize the scatterers’ spatial distribution in relation to the transmitter and the
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receiver. Table 2.3 comparatively summarizes these two-dimensional geometric models’

contrasting scatterer spatial distributions and corresponding azimuth direction-of-arrival

distributions.

All above-mentioned geometric models make these common assumptions:

a) All transmitting and receiving antennas are omni-directional.

b) Polarizational effects may be ignored.

c) Each propagation path, from the mobile to the base-station, reflects off exactly one

scatterer.

d) Each scatterer acts (independently of other scatterers) as an omni-directional lossless

re-transmitter.

e) Negligible complex-phase effects in the receiving-antenna’s vector-summation of its

arriving multipaths. That is, all arriving multipaths arriving at each receiving-

antenna are assumed to be temporally in-phase among themselves.

All above models (except [91]) also ignore “propagation loss”, i.e., the power loss expe-

rienced as a signal travels outwards from the transmitter, due to the signal wavefront’s

expanding area.

These models’ different scatterer-distributions may be classified according to several

perspectives:

A) Whether the scatterers surround only the transmitter, or surround also the receiver.

B) The shape of spatial density of the scatterers around the transmitter.

C) Unimodal vs. bimodal vs. multi-modal spatial densities for the scatterers.

For an elevated base-station receiver (Rx) in a macro-cell, most significant scatterers

concentrate locally around the street-level transmitter (Tx) but away from the elevated

receiver. Hence, a “geometric model” could idealize its scatterers’ spatial support region as

enclosing (and centering around) the mobile transmitter, but as excluding the base-station

receiver itself. This is a “local scattering model” and is exemplified by the following models:

(1) a uniform density within a circular-disc support region of radius R, which is less

than the transmitter-receiver separation D [45], [144], [177], [48], [143].

(2) a uniform density within a hollow circular-disc support region of outer radius R ≤ D

[133]. Please refer to Figure 2.3a.

(3) an inverted-parabolic density within a circular-disc support region of radius R ≤ D

[134].

(4) a conical density within a circular-disc support region of radius R ≤ D [45].

(5) a uniform density within an elliptical-disc support region centered at the transmitter

but excluding the receiver [144].

18



On the other hand, for a micro-cell with a relatively low base-station height, significant

scatterers may locate near the base-station. This is modeled with the scattering region

enclosing both the base-station receiver and the mobile transmitter. The multipaths’

DOAs could impinge from any direction 360◦. The following models fall under this class.

(6) a uniform density within a circular-disc support region of radius R > D [45], [177],

[68].

(7) a uniform density within a support region of a 2β pie-shaped cut of a circular-disc

of radius R > D [68] (for a directional transmitter with a 2β azimuth beam-width).

Please refer to Figure 2.3b.

(8) a conical density within a circular-disc support region of radius R > D [45].

(9) a uniform density within an elliptical-disc support region focused at the transmitter

and the receiver [48].

(10) a Gaussian density centered at the transmitter [67], [3], [15], 1.

(11) a Rayleigh density centered at the transmitter [91].2

The six “geometric models” in rows #1-4 and 8-9 of Table 2.3 have uniform densities;

however, the remaining five models have unimodal densities peaking at the transmitter.

Among the non-uniform densities, the “conical circular” model [45] has the most concen-

trated scatterers around the transmitter followed by the “inverted-parabolic circular (Rx

outside)” model [134], then the “Rayleigh circular (Rx outside)” model [91], and lastly the

“Gaussian” model [67] (which has an infinite spatial support region for the scatterers).

All aforementioned “geometric models” produce unimodal probability densities for the

azimuth direction-of-arrival, except for the “uniform pie-cut (Rx inside)” model (row # 3

in Table 2.3) and the“uniform hollow-disc (Rx outside)” model (row # 4 in Table 2.3).

The “uniform hollow-disc (Rx outside)” model [133] has a bimodal DOA-density. It

generalizes the “uniform circular (Rx outside)” model of [45], [144], [177], [48], [143].

Figure 2.3a shows the “uniform hollow-disc (Rx outside)” model’s allowable locations for

the scatterers. When the “uniform hollow-disc (Rx outside)” model has r = 0, it becomes

the “uniform circular (Rx outside)” model. As r
R increases for the “uniform hollow-disc

(Rx outside)” model, the azimuth direction-of-arrival distribution’s two peaks become

narrower and “taller”, as well as getting further apart from each other.

The “uniform pie-cut (Rx inside)” model has a trimodal DOA-density.

1The Gaussian spatial distribution is also investigated in [103], but its derived formula is

A

2
√

2πσ
e

D2(cos2 θ−1)
2σ2 erfc

“
−D cos θ√

2σ

”
. This formula disagrees with that derived in [67] for the same model

and appears incorrect to the present authors. Hence, [103] will be ignored thereafter. Any subsequent

reference to a Gaussian scatterer model would mean [67]
2The Rayleigh scatterer distribution of [91] assumes that R

D
¿ 1, at which the DOA distribution would

approach that of the Gaussian scatterer model in [67]. For R
D
≈ 1, the DOA distribution fθ(θ) could

become negative, unless (and unstated in [91] that) the azimuth angle, θ, is restricted to
`−π

2
, π

2

´
. This

restriction turns out to be moot in this present work, as all empirical data-sets here satisfy the restriction.
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1.2.2 Literature Review of Source Localization with Sensor Array

Source localization is increasingly important in the sensor network. [109] and [198] overview

various localization methods which may be classified into 5 categories.

(1) Global Positioning System (GPS) offers very accurate localization, but requires com-

plicated hardware at each sensor-node. GPS is expensive, power-hungry, hence un-

suited for small networks or ad hoc networks.

(2) In the DOA (or AOA) approaches as [19], [87], [84], [28], [2], [94], [141], [75], [107],

the source’s DOA is estimated at each sensor-node with respect to that node, Each

DOA-estimate constitute a straight line of possible locations of the emitter. The

intersection of all such lines gives the emitter’s location. This DOA-based approach

requires at each node the complex and expensive hardware, e.g, antenna-array or

ultrasound receiver.

(3) Ranging techniques, such as TOA/TDOA and (Receiving Signal Strength Indicator)

RSSI. The TOA/TDOA approaches are often more accurate than RSSI approaches.

However, the former approaches require highly accurate time-synchronization and

iterative solution to the nonlinear equations. On the contrary, the RSSI-based ap-

proaches [96], [169], [30], [162], [29], [204], [90], [4], [49], and [197] require no addi-

tional hardware but are sensitive to any changes in the propagation environment.

(4) The Maximum Likelihood (ML) approaches [158], [131], [169], [204], [4], [130], [159],

[112], and [182]. can be highly accurate, but require prior knowledge of the noise

statistics, computationally an initial guess to start off the iteration.

1.3 Contributions of This Work

Listed below are the main contributions of my work presented in this thesis

(1) In chapter 2, numerous geometric models are compared, each advancing its own

closed-form DOA formula, each based on a different idealization of the spatial ge-

ometry of the scatterers. Lacking in the open literature is a comprehensive and

critical comparison among all such single-cluster geometric-model-based formulas of

the arriving multipaths azimuth direction-of-arrival distribution. This work fills this

literature gap. The comparison here uses all empirical data legibly available in the

open literature for landmobile wireless radiowave propagation. No one geometric

model is best by all criteria and for all environments. However, a safe choice is the

model with a Gaussian density of scatterers centered at the transmitter. Despite

this models simplicity of having only one degree of freedom, it is always either the

best fitting model or offers an LSE within one third of an order-of-magnitude as the

best fitting model for all empirical dataset of all environments.

(2) In chapter 3, A new geometric model is proposed and its TOA distributions of the

uplink and downlink multipath is derived. In contrast to the customary uniform-disc
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density, this ”conical” scatterer density indirectly accounts for the multipath scat-

tering power loss. These new TOA distribution formulas, herein derived explicitly in

terms of the model’s only two independent parameters, can better fit some empirical

data than can all earlier models that also confine all scatterers to within a circular

disc.

(3) The acoustic vector-sensor is a practical and versatile sound-measurement system,

for applications in room, open-air, or underwater. Its far-field measurement model

has been introduced into signal processing over a decade ago; and many direction-

finding algorithms have since been developed for acoustic vector-sensors, but only

for far-field sources. Missing in the literature is a near-field measurement model for

the acoustic vector-sensor. Chapter 4 fills this literature gap.

(4) To localize a non-cooperative acoustic source, a new synergy is proposed in chapter 5.

Unlike customary RSSI-based methods, the proposed approach needs only two (not

three or more) passive anchor-nodes: one pressure-sensor, and one triad of three

identical collocated acoustic velocity-sensors. This proposed algorithm is closed-

form, non-iterative, requiring no initial estimate, and applicable to any path-loss

exponent of known value.

(5) In chapter 6, a new adaptive “beamforming” signal-processing algorithm is devel-

oped to locate noise-sources aboard a rail-car that passes by a track-side immobile

microphone-array. This proposed microphone array beamformer tracks the rail-cars

spatial movement, with the aid of two inaudible acoustic beacons placed abroad the

rail-car. The proposed scheme then localizes the noise-sources with reference to the

rail-cars coordinates. No auxiliary infrastructure (e.g., no radar nor video-camera) is

needed besides the onboard beacons. Monte Carlo simulations and anechoic chamber

experiments verify the proposed schemes efficacy.
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Chapter 2

Landmobile Radiowave

Multipaths’ DOA-Distribution :

Assessing Geometric Models by

the Open Literature’s Empirical

Datasets

2.1 Preliminary

2.1.1 Distribution of the Azimuth Direction-of-Arrival of the Arriving

Multipaths

In wireless communications, a transmitted signal reaches a receiver via multiple propaga-

tion paths, undergoing various sequences of reflection, diffraction, and scattering. Each

such “multipath” carries its own propagation history, resulting in its particular amplitude,

propagation delay, direction-of-arrival, polarization, and Doppler shift. At the receiving

antenna, these multipaths are phasor-summed, constructively or destructively, to produce

that antenna’s measured data. Hence, the receiver “sees” the transmitter in space not as

a geometrically point-like source, but as spatio-temporally spread over a range of time-

of-arrival (TOA) and direction-of-arrival (DOA). The above propagation phenomenon is

labeled “small-scale fading”, “local fading”, or “microscopic fading” – because the multi-

paths’ vector-summation would vary greatly in magnitude even if the receiver is displaced

by a small distance at fractions of a wavelength. “Small-scale fading” is also called “fast

fading”, because a moving receiver would experience the small-scale fading’s spatial vari-

ability as a fast temporal variability. “Small-scale fading” contrasts against “large-scale

fading” (a.k.a. “slow fading”), which is caused by propagation-distance-related path-loss.

“Small-scale fading” also contrasts against “shadowing”, which is caused by sizeable ob-

stacles blocking the receiver from the transmitter.

It is important to model the wireless channel’s DOA distribution at the receiver, for
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the development and analysis of smart-antennas spatial-diversity schemes, such as space-

division frequency re-use, beamforming, emitter localization, etc. This DOA distribution

may be obtained by “normalizing” the arriving multipaths’ power distribution over all

directions-of-arrival, by magnitude-scaling the multipaths’ arrival-power distribution so

that the power distribution sums to one over the entire range of the direction-of-arrival.

2.1.2 “Geometric Models” Versus Other Modeling Approaches of Mi-

croscopic Channel Fading

There exist various strategies to mathematically model the propagation channel. The most

direct and the most site-specific approach is empirical measurement at the particular site /

terrain / building of interest. Another approach, more labor-saving but still site-specific,

is to approximate the particular site under investigation as an electromagnetic-physics-

based ray-tracing computer-model. These site-specific / terrain-specific / building-specific

approaches are faithful to the particular site’s idiosyncratic electromagnetic and spatio-

temporal complexities. Each such simulation produces a quantitatively accurate model,

but each simulation applies to only that one particular propagation setting under investi-

gation (e.g., a particular city’s particular cross-sectional street corner under a particular

weather). With many simulations over many scenarios, the ray-tracing approach can be

generalized to a wider class of environments (e.g., the class of “bad urban” settings of high-

rises in all downtowns). In contrast, a “geometric model” can encapsulate the essence of

a wide class of diverse propagation settings.

“Geometric modeling” idealizes the wireless electromagnetic propagation environment

via a geometric abstraction of the spatial relationships among the transmitter, the scatter-

ers, and the base-station. (For example, scatterers could be idealized as distributed evenly

on only a small disc centered around the mobile [45] [144] [177] [48] [143].) Geometric mod-

els attempt to embed measurable fading metrics (e.g., the DOA distribution) integrally

into the propagation channel’s idealized geometry, such that only a very few geometric pa-

rameters (e.g., the single model-parameter of the ratio between the aforementioned disc’s

radius R and the transmitter-receiver distance D) would affect these various fading metrics

in an inter-connected manner to conceptually reveal the channel’s underlying geometric

dynamics. This modeling’s generic abstract geometry involves no site-specific or terrain-

specific or building-specific information, such as those used in empirical measurements or

in any one ray-shooting / ray-tracing computer-simulation.

Much literature on “geometric models” involves little or no mathematically rigorous

derivation of the received signal’s measurable fading statistics, due to the inherent math-

ematical difficulties of such a rigorous derivation. Instead, a limited series of Monte Carlo

simulations would approximate the numerical values of the channel-fading metrics. Such

simulations can be performed only at relatively limited number of pre-set numerical val-

ues, which are geometrically independent of the model parameters. Hence, this would

produce no closed-form mathematical relationship among the fading metrics, in terms of

the geometric-model’s independent parameters. Such simulations thereby limit the insight
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obtainable from such a geometric model. This survey will focus only on those “geometric

models” for which rigorous analytical derivation have closed-form expressions of the uplink

azimuth direction-of-arrival distribution, explicitly in terms of the geometric parameters.

2.1.3 The Purpose of This Work

Geometric models of propagation-channels have been used in [24], [128], [53], [20], [150]

(among others) to analytically predict the performance of communications systems (and

not merely by computer-simulations). However, numerous “geometric models” have emerged

in the past decade, each based on a different spatial distribution of the scatterers. Each

would thus offer a competing closed-form distribution-formula for the azimuth-DOA of

the multipaths arriving at the receiver. Many authors proposed their geometric models

without verification by empirical data, though a few were validated by a few empirical

datasets pre-selected by the authors themselves. It remains unclear which “geometric

model” is how best under what field scenarios and why. This literature gap is perhaps

due to the labor-intensive nature of such an investigation.

This present work aims to be an impartial third party, to thoroughly compare and

contrast the accuracy of these competing geometric models’ derived azimuth direction-of-

arrival distribution in landmobile radiowave communications against the open literature’s

empirically measured data. More specifically, for every such empirical dataset available in

the open literature (and listed in Tables 2.1 and 2.2), it is used herein to calibrate every

known “geometric model” (listed in Table 2.3) for which a closed-form explicit formula

has been analytically derived for the azimuth direction-of-arrival. Such two-dimensional

modeling admittedly ignores the elevation, but often justifiably so, especially in a macro-

cell situation where the transmitter-receiver separation would greatly exceeds the heights

of the transmitter or the receiver. Conclusions are then drawn as to which, how, and why

specific geometric models best fit what field situations.

Admittedly, partial listings of these “geometric models” can be found in [47], [99],

[108]; however, those partial listings offer no comparative assessment of various “geometric

models” against empirical data. This present work will complete this missing link.

The rest of this manuscript is organized as follows: Section 2.2 will survey various

competing “geometric models”. Section 2.3 will characterize the empirical data-sets to

be used to calibrate the geometric models. Section 2.4 will define the least-squares errors

(LSE) metric to measure how well any geometric model fits any empirical data-set, as

well as fine points in the calibration algorithm. That section will also present calibration

least-squares errors. Section 2.5.1 will discuss, for unimodal datasets, which “geometric

models” best fits what types of field-scenarios and why, whereas Section 2.5.2 will do the

same for bimodal or multi-modal datasets. Section 6.6 will conclude this work.
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Table 2.1: Propagation & Measurement Environment for Empirical Datasets with a Uni-Modal Histogram.

Reference Setting Modal Type Environment Rx Height (m) Tx Height (m) LOS Frequency (GHz) Well-Fitting Model(s) Model-Fitting Curves in Figure #

Matthews [113] Fig. 7 rural unimodal open site, valley area 55 47 yes 0.87 Rayleigh circular (Rx outside) & Gaussian 2.4

flats, and few buildings

Pedersen [138] Fig. 1 rural unimodal unspecified 47 street level yes unspecified Uniform elliptical (Rx outside) 2.5

Kuchar [85] Fig. 3 suburban unimodal 3-5 storey buildings 50 on rooftop 50, on rooftop yes unspecified Rayleigh circular (Rx outside) & Gaussian 2.6

Takada [168] Fig. 4 suburban unimodal residential area, 4.4 2.7 no 8.45 Uniform elliptical (Rx outside) 2.7

8-meter-high houses

Fleury [51] Fig. 16 urban unimodal downtown area unspecified unspecified no unspecified Rayleigh circular (Rx outside), Gaussian 2.8

2 storey buildings & Uniform elliptical (Rx outside)

Mogensen [119] Fig. 3 urban unimodal irregular street layout 41 street level unspecified 1.8 Uniform elliptical (Rx outside) 2.9

3-5 storey buildings

a few taller buildings

Pedersen [140] Fig. 4 urban unimodal 4-6 storey buildings, 32, on rooftop street level no 1.8 Uniform elliptical (Rx outside) 2.10

(Aarhus) irregular street gird

Pedersen [140] Fig. 4 urban unimodal 4-6 storey buildings, 20, on rooftop street level no 1.8 Uniform elliptical (Rx inside) 2.11

(Stockholm) irregular street gird & Uniform elliptical (Rx outside)

Table 2.2: Propagation & Measurement Environment for Empirical Datasets with a Non-Uni-Modal Histogram.
Reference Setting Modal Type Environment Rx Height (m) Tx Height (m) LOS Frequency (GHz) Well-Fitting Model(s) Model-Fitting Curves in Figure #

Matthews [113] Fig. 8 suburban 4-modal open site, valley area 50 À 50 no 0.87 Uniform pie-cut (Rx inside) 2.12

flats, and few buildings

Pedersen [138] Fig. 5 urban bimodal 4-7 story buildings 20 street level no unspecified Uniform pie-cut (Rx inside) 2.13

Pedersen [140] Fig. 14 urban bimodal bad urban 21 on rooftop street level no 1.8 Uniform hollow-disc (Rx outside) 2.14

mixed with open areas,

densely built up zones,

4-6 story buildings

Kloch [83] Fig. 6 urban bimodal downtown area street level 4 unspecified 1.845 Uniform hollow-disc (Rx outside) 2.15

Blaunstein [17] Fig. 3 2 story buildings & Uniform circular (Rx inside)

Eggers [46] Fig. 6 urban 4-modal 4-5 story buildings 40 street level yes 2.145 Uniform pie-cut (Rx inside) 2.16

industrial buildings

at the river shore.
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Table 2.3: Two-dimensional “geometrical models” for outdoor radiowave cellular commu-

nication’s uplink azimuth direction-of-arrival distribution:
(D denotes the spatial separation between the base-station receiver and the mobile transmitter. The azimuth angle θ is defined with

respect to the axis linking the mobile to the base-station.)

Reference Scatterers’ Spatial Distribution
Azimuth Direction-of-Arrival (DOA) Distributionfθ(θ)

(wherefθ(θ) 6= 0)
fτ (τ) fθ,τ (θ, τ)

Eggers[45]

Piechocki[144]

Van Rheeden[177]

Ertel[48]

Petrus[143]

Uniform circular (Rx outside):

uniform density on a circular-disc

support region of radius R ≤ D

& centered at Tx

2
π

D
R

cos θ

r
1−

“
D
R

sin θ
”2

, ∀|θ| ∈
h
0, arcsin R

D

i
(42) in [48] (65) in [48]

Eggers[45]

Van Rheeden[177]

Jiang[68]

Uniform circular (Rx inside):

uniform density on a circular-disc

support region of radius R > D

& centered at Tx

1
2π

„
D
R

cos θ +
q

1− ( D
R

)2 sin2 θ

«2
, ∀|θ| ∈ [0, π] (8) of [70] not derived

Jiang [68]

Uniform pie-cut (Rx inside):

uniform density on a 2β pie-cut

support region from a circular-disc

of radius R > D

& centered at the Tx

“
D
R

”2 · sin2 β

2β sin2(β+|θ|) , |θ| ≤ θm

1
2β

"
D
R

cos θ +

r
1−

“
D
R

”2
sin2 θ

#2
, |θ| > θm

θm = arcsin

2
64 sin βr

1+
“

D
R

”2−2 D
R

cos β

3
75 , D

R
≥ cos β

θm = π − arcsin

2
64 sin βr

1+
“

D
R

”2−2 D
R

cos β

3
75 , D

R
< cos β

(10) of [70] not derived

Olenko [133]

Uniform hollow-disc (Rx outside):

uniform density on an hollow-disc

support region centered around Tx,

with outer radius R ≤ D,

& inner radius r < R

2 cos θ
π

r“
R
D

”2−sin2 θ−
r“

r
D

”2−sin2 θ
“

R
D

”2−
“

r
D

”2 , ∀|θ| ∈
h
0, arcsin r

D

i

2 cos θ
π

r“
R
D

”2−sin2 θ
“

R
D

”2−
“

r
D

”2 , ∀|θ| ∈
h
arcsin r

D
, arcsin R

D

i
(9) in [133] (3) in [133]

Olenko [134]

Inverted-parabolic circular (Rx outside):

inverted parabolic density on a

circular-disc support region

of radius R ≤ D

& centered at Tx

8 cos θ
3π

“
D
R

”4 »“R
D

”2 − sin2 θ

– 3
2

,

∀|θ| ∈
h
0, arcsin R

D

i (6) in [134] (3) in [134]

Eggers [45]

Conical circular (Rx outside):

conical density on a circular-disc

support region of radius R ≤ D

centered at Tx

3
2π

D
R

(cos θ)

(
2

r
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“
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9
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>;

∀|θ| ∈
h
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D

i not derived not derived

Eggers [45]

Conical circular (Rx inside):

conical density on a circular-disc

support region of radius R > D

centered at Tx

3
2π


1
3 + 2

3

“
D
R

”3 −
“

D
R

”2
+ D

R
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"„
2 D
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−
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R
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”2
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R
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>;

, ∀|θ| ∈ [0, π]

not derived not derived

Piechocki [144]

Uniform elliptical (Rx outside):

uniform density on an elliptical-disc

support region of major-axis 2a

& minor-axis 2b < 2a ≤ D,

centered at Tx but excluding the Rx.

2b3D2

πa5 ·
cos θ

»
cos2 θ−

„
cos2 θ+ a2

b2
sin2 θ

«„
1− a2

D2

«– 1
2

„
b2
a2 cos2 θ+sin2 θ

«2 ,

∀|θ| ∈ [0, θmax)

θmax = arctan
h

b
a

tan
“
arcsin a

D

”i
(24) in [164] not derived

Liberti[98]

Ertel[48]

Khan[78]

Uniform elliptical (Rx inside):

uniform density on an elliptical-disc

support region focussed on Tx & Rx,

of major axis L

1

2π L
D

r“
L
D

”2−1

2
4
“

L
D

”2−1
L
D
−cos θ

3
5
2

, ∀|θ| ∈ [0, π] (41) in [48] (32) in [48]

Janaswamy[67]

Andrade[3]

Bevan[15]

Gaussian:

Gaussian intensity with variance σ2

& centered at Tx

1
2π

e
−D2

2σ2 + D cos θ
2
√

2πσ
e

D2(cos2 θ−1)
2σ2 erfc

“−D cos θ√
2σ

”
, ∀|θ| ∈ [0, π]

not in

closed form
not derived

Laurila [91]

Rayleigh circular (Rx outside):

Rayleigh intensity with parameter

R ¿ D, & centered at Tx

1
2π

e
− 1

2

“
D
R

”2

n
1 + erf

“
cos θ√

2
D
R

”o(
1 +

q
π
2

D
R

(cos θ)e
1
2

“
D
R

cos θ
”2)

,

|θ| ∈ [0, π]

not in

closed form
not derived

2.2 The Candidate “Geometric Models” for the Arriving

Multipaths’ Azimuth-DOA Distribution

Numerous two-dimensional “geometric models” [98], [45], [144], [177], [91], [48], [143], [67],

[133], [134] have been proposed for the radiowave outdoor landmobile cellular communi-

cation uplink’s azimuth direction-of-arrival distribution. “Geometric models” typically
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model a multipath as the bouncing of the transmitted signal off one scatterer. A multi-

path’s azimuth direction-of-arrival is thus determined by the spatial location of the scat-

terer off which the multipath is reflected before reaching the receiver. Hence, one pivotal

character of any geometric model is how the model characterizes the scatterers’ spatial

distribution in relation to the transmitter and the receiver. Various geometric models dif-

ferently idealize the scatterers’ spatial distribution in relation to the transmitter and the

receiver. Table 2.3 comparatively summarizes these two-dimensional geometric models’

contrasting scatterer spatial distributions and corresponding azimuth direction-of-arrival

distributions. Figures 2.1 and 2.2 graphically contrast these direction-of-arrival distribu-

tions at comparable model parameter values.
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Figure 2.1: Azimuth DOA distributions for various “Rx outside” geometric models
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Figure 2.2: Azimuth DOA distributions for various “Rx inside” geometric models
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All above-mentioned geometric models make these common assumptions:

a) All transmitting and receiving antennas are omni-directional.

b) Polarizational effects may be ignored.

c) Each propagation path, from the mobile to the base-station, reflects off exactly one

scatterer.

d) Each scatterer acts (independently of other scatterers) as an omni-directional lossless

re-transmitter.

e) Negligible complex-phase effects in the receiving-antenna’s vector-summation of its

arriving multipaths. That is, all arriving multipaths arriving at each receiving-

antenna are assumed to be temporally in-phase among themselves.

All above models (except [91]) also ignore “propagation loss”, i.e., the power loss expe-

rienced as a signal travels outwards from the transmitter, due to the signal wavefront’s

expanding area.

These models’ different scatterer-distributions may be classified according to several

perspectives:

A) Whether the scatterers surround only the transmitter, or surround also the receiver.

B) The shape of spatial density of the scatterers around the transmitter.

C) Unimodal vs. bimodal vs. multi-modal spatial densities for the scatterers.

The following subsections will analyze these categories one by one.

2.2.1 Geometric-Model Classification by Whether the Receiver Lies Within

/ Outside the Scatterers’ Spatial Region

For an elevated base-station receiver (Rx) in a macro-cell, most significant scatterers

concentrate locally around the street-level transmitter (Tx) but away from the elevated

receiver. Hence, a “geometric model” could idealize its scatterers’ spatial support region as

enclosing (and centering around) the mobile transmitter, but as excluding the base-station

receiver itself. This is a “local scattering model” and is exemplified by the following models:

(1) a uniform density within a circular-disc support region of radius R, which is less

than the transmitter-receiver separation D [45], [144], [177], [48], [143].

(2) a uniform density within a hollow circular-disc support region of outer radius R ≤ D

[133]. Please refer to Figure 2.3a.

(3) an inverted-parabolic density within a circular-disc support region of radius R ≤ D

[134].

(4) a conical density within a circular-disc support region of radius R ≤ D [45].
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(5) a uniform density within an elliptical-disc support region centered at the transmitter

but excluding the receiver [144].

On the other hand, for a micro-cell with a relatively low base-station height, significant

scatterers may locate near the base-station. This is modeled with the scattering region

enclosing both the base-station receiver and the mobile transmitter. The multipaths’

DOAs could impinge from any direction 360◦. The following models fall under this class.

(6) a uniform density within a circular-disc support region of radius R > D [45], [177],

[68].

(7) a uniform density within a support region of a 2β pie-shaped cut of a circular-disc

of radius R > D [68] (for a directional transmitter with a 2β azimuth beam-width).

Please refer to Figure 2.3b.

(8) a conical density within a circular-disc support region of radius R > D [45].

(9) a uniform density within an elliptical-disc support region focused at the transmitter

and the receiver [48].

(10) a Gaussian density centered at the transmitter [67], [3], [15], 1.

(11) a Rayleigh density centered at the transmitter [91].2

2.2.2 Geometric-Model Classification by the Spatial Concentration of

the Scatterers Around the Transmitter

The six “geometric models” in rows #1-4 and 8-9 of Table 2.3 have uniform densities;

however, the remaining five models have unimodal densities peaking at the transmitter.

Among the non-uniform densities, the “conical circular” model [45] has the most concen-

trated scatterers around the transmitter followed by the “inverted-parabolic circular (Rx

outside)” model [134], then the “Rayleigh circular (Rx outside)” model [91], and lastly the

“Gaussian” model [67] (which has an infinite spatial support region for the scatterers).

The greater concentration of scatterers can be intuitively justified as follows: Recall

that all aforementioned “geometric models” idealize every scatterer as an omni-directional

lossless transmitter, thereby overlooking any power loss due to scattering. A unimodal

concentration is an indirect way to account for this neglected scattering loss. The bounce

off a distant scatterer in the model may correspond to only the last bounce in an actual

1The Gaussian spatial distribution is also investigated in [103], but its derived formula is

A

2
√

2πσ
e

D2(cos2 θ−1)
2σ2 erfc

“
−D cos θ√

2σ

”
. This formula disagrees with that derived in [67] for the same model

and appears incorrect to the present authors. Hence, [103] will be ignored thereafter. Any subsequent

reference to a Gaussian scatterer model would mean [67]
2The Rayleigh scatterer distribution of [91] assumes that R

D
¿ 1, at which the DOA distribution would

approach that of the Gaussian scatterer model in [67]. For R
D
≈ 1, the DOA distribution fθ(θ) could

become negative, unless (and unstated in [91] that) the azimuth angle, θ, is restricted to
`−π

2
, π

2

´
. This

restriction turns out to be moot in this present work, as all empirical data-sets here satisfy the restriction.
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Figure 2.3a: The support region of the “uni-

form hollow-disc (Rx outside)” model

Figure 2.3b: The support region of the “uni-

form pie-cut (Rx inside)” model

sequence of consecutive physical reflections farther and farther away from mobile. Each

such reflection incurs power loss. Hence, the farther from the transmitter is a scatterer,

the weaker its reflected path would be in actuality. Rather than accounting for such

scattering-loss explicitly in the mathematical derivation, it is mathematically simpler to

assume a denser distribution of “last-bounce” scatterers closer to the transmitter.

Far-off scatterers (like mountains, high-rises) could increase the angular spread and

may be accounted for in the “geometric model” by a larger scattering area. A larger

“normalized” radius R
D leads to less concentration of scatterers around the receiver.

For R ≤ D, the various “circular-disc (Rx outside)” models [45], [144], [177], [48], [143],

[134] or “uniform hollow-disc (Rx outside)” model [133] can have multipaths arriving from

only |θ| ∈ [
0, arcsin

(
R
D

)]
. The circular-disc models’ azimuth-DOA distribution’s unimodal

peak would have a width equal to 2 arcsin(R/D) radians in the azimuth direction-of-arrival.

As R
D decreases, fθ(θ) becomes narrower and “taller”, such that fθ(θ) → δ(θ) as R

D → 0.

Similar trends hold for the “Gaussian” model’s σ [67], the “Rayleigh circular (Rx outside)”

model’s R [91], and the “uniform elliptical (Rx outside)” model’s a [144].

2.2.3 Geometric-Model Classification by the Modality of the Scatterers’

Spatial Density: Unimodal, Bimodal, or Multi-modal

All aforementioned “geometric models” produce unimodal probability densities for the

azimuth direction-of-arrival, except for the “uniform pie-cut (Rx inside)” model (row # 3

in Table 2.3) and the“uniform hollow-disc (Rx outside)” model (row # 4 in Table 2.3).

The “uniform hollow-disc (Rx outside)” model [133] has a bimodal DOA-density. It

generalizes the “uniform circular (Rx outside)” model of [45], [144], [177], [48], [143].

Figure 2.3a shows the “uniform hollow-disc (Rx outside)” model’s allowable locations for

the scatterers. When the “uniform hollow-disc (Rx outside)” model has r = 0, it becomes
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the “uniform circular (Rx outside)” model. As r
R increases for the “uniform hollow-disc

(Rx outside)” model, the azimuth direction-of-arrival distribution’s two peaks become

narrower and “taller”, as well as getting further apart from each other.

The “uniform pie-cut (Rx inside)” model has a trimodal DOA-density.

2.3 Empirical Data from the Open Literature

Spread through the open literature are empirical data for the uplink azimuth direction-

of-arrival’s distribution in radiowave wireless landmobile communications. The present

authors have done an exhaustive search for such empirical data, which are listed in Tables

2.1 and 2.2. Surprisingly, only about a dozen readable data-sets can be located. To assure

consistence in extracting numerical data from data graphs, the present authors use the

software GetData instead of human visual reading. See http://www.getdata.com/

Excluded from Table 2.1 and Table 2.2 are many illegible graphical data from the open

literature, often presented in poor-quality three-dimensional plots or contour maps, from

which no numerical data can be reliably extracted. Examples of such numerically illegible

empirical datasets include: Figure 7, 11, 13, 17 and 19 of Laurila [92]; Figure 8 and 9 of

DeJong [36]; Figure 5, 9 and 10 of DeJong [37]; Figure 4 of DeJong [38]; Figure 5, 8, 9, 13,

14, 16, and 21 of Kuchar [86]; Figure 9 of Martin [111]; Figure 15-18 of Steinbauer [166];

Figure 7 and 8 of Thoma [171]; Figure 11 of Zhao [207]; Figure 6-9 of Zhu [208]; Figure 6

of Zhu [209]; Figure 1 of Toeltsch [174]; Figure 4 of Blanz [16]; Figure 4 and 6 of Kalliola

[74]; Figure 1 of Larsson [89].

Table 2.1 and Table 2.2 describe each numerically legible empirical data-set’s physical

environment and setting, the channel-sounding signal’s frequency, heights of the transmit-

ting antenna and the receiving antenna – where such information is given in the corre-

sponding reference. However, not all references give all of the above information.

Table 2.1’s and Table 2.2’s data-sets will provide the basis on which to compare what

geometric model(s) can best describe what types of empirical propagation environment.

The open literature appears to offer no such systematic and comparative validation of

various competing geometric models. This literature gap is filled by this work.

Table 2.1’s and Table 2.2’s data-sets may be classified by the measurement’s field

environment and by the measured data’s histogram shape:

2.3.1 Empirical Data-Set Classification by “Rural” vs. “Suburban” vs.

“Urban”

The measurement’s field environments may be roughly divided into the categories of “ru-

ral”, “suburban”, or “urban”:

(R) The “rural” environment consists of flat or hilly terrains with large open spaces. It

is mainly nature, possibly with forests or very few buildings.

(S) The “suburban” environment consists of small buildings of 3 to 5 stories, with much
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less open space than does the rural environment. An example is a suburban residen-

tial neighborhood in North America.

(U) The “urban” environment consists of high-rises with narrow streets and no open

space. An example is a downtown metropolis.

These categories are admittedly fuzzy but nonetheless often used in the literature. The

“suburban” versus “urban” classification partly depends on the researcher’s location.

Many European “urban” environments may well be considered as “sub-urban” in North-

east Asia. Moreover, as subsequent sections will show, a equally critical consideration is

the height of the transmitting antenna or receiving antenna relative to the surrounding

buildings’ height. Nonetheless, Table 2.1’s and Table 2.2’s rural / suburban / urban clas-

sification mostly honors each paper’s own self-characterization.3 The following datasets

have no self-classification: Figures 7 and 8 in Matthews [113], Figure 6 in Kloch [83].

2.3.2 Empirical Data-Set Classification by Histogram’s Modality

Another classification criterion is by the measured data’s histogram shape. Table 2.1

lists all unimodal datasets, whereas Table 2.2 lists all bimodal and higher-modal datasets.

This division will aid comparison with the “geometric models”, most of which are uni-

modal but one is bimodal and another is trimodal. Among Table 2.2’s five non-unimodal

empirical data sets: four are “urban”, only one is “suburban”, and none is “rural”. This

is intuitively reasonable, because multiple clusters of scatterers are more likely in densely

built-up environments.

2.4 The Goodness-of-Fit Metric & the Calibration Results

For each empirical dataset available in Table 2.1 and Table 2.2, this paper will use that

dataset to calibrate each “geometric model” in Table 2.3. Conclusions will then be drawn

in the next section as to what, how, when and why specific geometric models best fit what

field situations.

The goodness-of-fit of any calibrated geometric model to the calibrating empirical

data-set is the least-squares error (LSE) between the two. The first calibration-step is

to normalized each empirical dataset to give unity area under the data-set, to match the

unity area under each geometric-model’s DOA density-distribution. The least-squares

error (LSE) is defined as:

LSE =
1
N

N∑

n=1

[
yn − fθ

(
θn − θ(0)

)]2
(2.1)

where {(θn, yn), n = 1, . . . , N} denotes the normalized empirical dataset, fθ(.) repre-

sents the geometric model’s azimuth direction-of-arrival density distribution, N refers to
3The dataset from [83] is re-classified from “suburban” to “urban”, because its receiving antenna was

on the street level and was surrounded by two-storey buildings. The dataset from Figure 3 in [85] is

re-classified here as “urban”, despite its self-classification as “suburban”. This re-classification is because

both the transmitter and the receiver were placed atop buildings, thereby allowing LOS propagation.
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the dataset’s number of data points, and θ(0) is a nuisance-parameter to align the data-

set’s transmitter-receiver line-of-sight DOA. Many empirical datasets do not state this

transmitter-receiver line-of-sight DOA. The calibration here will search through all values

of θ(0) to identify the LSE. Note also that {θn, n = 1, . . . , N} may be unevenly spaced

along the θ coordinate. When a reference paper graphically presents its empirical data as

curves, {θn, n = 1, . . . , N} will be evenly spaced because a uniform grid is used with the

GetData software. However, {θn, n = 1, . . . , N} may be non-uniformly spaced when the

reference presents its data as discrete icons. Moreover, [fθ(−∞), fθ(θ1)) d (fθ(θN ), f(∞)]

does not contribute to the LSE. For most empirical data sets, yn is not near zero for n ≈ 1

or n ≈ N . Hence, it is unlikely that yn were zero for θ < θ1 or for θ > θN . Rather, the

empirical dataset has been truncated on both ends of the histogram. Consequently, the

LSE should be computed only for θ ∈ [θ1, θN ].

Table 2.4 lists the LSE for each of Table 2.3’s geometric model, calibrated by each

empirical data-set of Tables 2.1 and 2.2. The geometric models, that “well fit” each

empirical dataset of Tables 2.1 and 2.2, are listed in the second-to-last column thereof.

This includes any geometric model with a calibration-LSE within 110% of the best-fitting

geometrical model’s. Figures 2.4 to 2.14 each plot one empirical data-set of Tables 2.1 and

2.2, along with the DOA-distributions of the geometric models calibrated to that empirical

data-set.
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Table 2.4: Least-Square Errors (LSE) When Each “Geometrical Model” of Table 2.3 is Calibrated by Each Empirical Data-Set of Tables 2.1 and 2.2.
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Setting R R S S S U U U U U U U U

Uniform circular LSE 0.020934 9.9512 0.054238 0.29076 0.027377 0.058121 0.080796 0.5247 0.24605 1.3376 0.17065 0.0077162 0.09473

(Rx outside) R
D

0.23 0.04 0.2 0.06 0.01 0.19 0.18 0.14 0.25 0.19 1 1 1

Uniform circular LSE 0.29533 68.806 0.52424 2.7471 0.026014 0.31762 0.37981 2.681 1.0186 4.044 0.16572 0.0037308 0.08117

(Rx inside) R
D

1.0101 1.0101 1.0101 1.0101 1.2048 1.0101 1.0101 1.0101 1.0101 1.0101 1.2195 1.1905 1.4286

Uniform Pie-cut LSE 0.060911 2.6735 0.11829 0.42063 0.018143 0.059188 0.067282 0.17247 0.092347 0.58869 0.094049 0.0099959 0.04808

(Rx inside) R
D

, β 1, 7◦ 1, 1◦ 1, 5◦ 1, 2◦ 1.11, 19◦ 1, 5◦ 1, 6◦ 1, 3◦ 1, 6◦ 1, 4◦ 1, 137◦ 1, 46◦ 1.1, 21◦

Uniform hollow-disc, LSE 0.020948 9.9529 0.05426 0.29078 0.025019 0.058151 0.080841 0.52593 0.2466 1.2231 0.080347 0.0037231 0.074012

(Rx outside) R
D

, r
D

0.23, 0.0023 0.04, 0.0004 0.2, 0.002 0.06, 0.0006 0.78, 0.4056 0.19, 0.0019 0.18, 0.0018 0.14, 0.0014 0.25, 0.0025 0.18, 0.0522 0.66, 0.4686 1, 0.37 1, 0.51

Inverted-parabolic circular LSE 0.0080128 6.2716 0.017466 0.19749 0.031985 0.028218 0.0364 0.32988 0.14859 1.2118 0.21977 0.035098 0.12044

(Rx outside) R
D

0.31 0.05 0.25 0.07 1 0.23 0.22 0.17 0.3 0.24 1 1 1

Conical circular LSE 0.0061122 4.4233 0.010303 0.17439 0.032259 0.023144 0.028878 0.25407 0.11267 1.1492 0.23274 0.047145 0.12481

(Rx outside) R
D

0.33 0.05 0.27 0.08 1 0.25 0.23 0.18 0.33 0.25 1 1 1

Conical circular LSE 0.21752 65.717 0.45047 2.5717 0.023636 0.28307 0.31534 2.3385 0.76586 3.426 0.17252 0.0065201 0.079593

(Rx inside) R
D

1.0101 1.0101 1.0101 1.0101 1.6129 1.0101 1.0101 1.0101 1.0101 1.0101 2 1.8182 2

Uniform elliptical LSE 0.0054104 1.6483 0.0069964 0.12699 0.027536 0.020099 0.01438 0.084363 0.043075 0.99888 0.17236 0.0088632 0.096185

(Rx outside) b
a

, a
D

0.27, 0.81 0.03, 0.99 0.21, 0.81 0.05, 0.96 0.98, 0.99 0.17, 0.99 0.16, 0.99 0.11, 0.99 0.2, 0.99 0.14, 0.99 0.99, 0.99 0.99, 0.99 0.99, 0.99

Uniform elliptical LSE 0.0098299 39.696 0.032237 1.1525 0.021374 0.027642 0.01824 0.19629 0.040088 0.99239 0.17649 0.0095826 0.078971

(Rx inside) L
D

1.0204 1.0101 1.0101 1.0101 1.3514 1.0101 1.0101 1.0101 1.0204 1.0101 1.7857 1.6393 1.5873

Gaussian LSE 0.0041719 3.2328 0.0060807 0.14807 0.023555 0.019722 0.019087 0.19192 0.083137 1.1181 0.17199 0.0071247 0.08039
σ
D

0.14 0.02 0.11 0.03 0.66 0.1 0.1 0.07 0.13 0.1 0.85 0.78 0.84

Rayleigh circular LSE 0.0041526 6.3259 0.0060807 0.14178 0.028019 0.018841 0.018867 0.18705 0.081898 1.1168 0.20754 0.025242 0.10243

(Rx outside) R
D

0.139 0.027 0.11 0.032 0.5 0.104 0.098 0.073 0.134 0.102 0.5 0.5 0.5

36



2.5 Insights from Calibration

2.5.1 Insights from the Unimodal Empirical Datasets

For the uni-model datasets, the well-fitting models are “Rayleigh circular (Rx outside)”,

“Gaussian”, “uniform elliptical (Rx outside)”, and (in only one case) “uniform elliptical

(Rx inside)”.

In both the “Rayleigh circular (Rx outside)” and the “Gaussian” models, the scatterers

become denser as they are closer to the transmitter. Indeed, for whichever empirical

dataset well-fit by either the “Gaussian” model or the “Rayleigh circular (Rx outside)”

model, the other model is also well-fitting for that data-set. In such well-fitting cases,

the calibrated model parameters R
D ≈ σ

D ≈ 0.10, 0.15, for both of these geometric models.

(Please refer to Table 2.3 for all symbol-definitions in this section.) Moreover, such a

range of values for the “Gaussian” model’s σ
D implies that the receiver is far from most

scatterers, even though the “Gaussian” model has a nominally infinite spatial support

region for the scatterers.

Table 2.5: Comparing the Arriving Multipaths’ Azimuth-Spreads for the Empirical Data-

Sets Well-Fit by the “Uniform Elliptical (Rx Outside)” Geometric Model
Reference Setting b

a 2 arctan( b
a)

Pedersen [138] Fig. 1 Rural 0.03 3.4◦

Takada [168] Fig. 4 Suburban 0.05 5.7◦

Fleury [51] Fig. 16 Urban 0.17 19◦

Mogensen [119] Fig. 3 Urban 0.16 18◦

Pedersen [140] Fig. 4 (Aarhus) Urban 0.11 13◦

Pedersen [140] Fig. 4 (Stockholm) Urban 0.2 22◦

The well-fitting “uniform elliptical (Rx outside)” and the “uniform elliptical (Rx in-

side)” models have the model-parameter a/D ∈ [0.96, 1.02], i.e., the receiver is just

marginally inside or marginally outside the ellipse. Moreover, it is on the ellipse’s longer

axis that the receiver lies, showing that the “depth” is more important than the “breadth”

(i.e., the azimuth-spread) of the scatterers’ spatial distribution between the transmitter

and the receiver. Table 2.5 lists the azimuth-spreads of the arriving multipaths for the sev-

eral empirical datasets that are well-fit by the “uniform elliptical (Rx outside)” geometric

model. As the model-parameter of b/a ¿ 1 in all those cases, the azimuth-spread approxi-

mately equals 2 arctan(b/a). Table 2.5 shows that the arriving multipaths’ azimuth-spread

increases as the propagation environment setting moves from “rural” to “suburban” to “ur-

ban”, fitting the intuitive expectation that the more clustered environment will result in

multipaths arriving from a wider azimuth-spread. Note that the “uniform elliptical (Rx

outside)” model is the only unimodal geometric model with two degrees of freedom.

The “Rx inside” models are not well-fitting, except for one “urban” case. This conforms

to the intuitive expectations that the more urban is the propagation environment setting,
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the transmitter needs to be modeled as located more among the scatterers.

Which of the four above-mentioned well-fitting models is best for performance-analysis

of a communication system? Recall from Table 2.3 that both the “Gaussian” model and

the “Rayleigh circular (Rx outside)” model have open-form expressions for the arriv-

ing multipaths’ DOA-distribution; however, Gaussianity may ease further mathematical

analysis. As these two geometric models are comparable in their calibration-LSE, the

“Gaussian” model may be preferred over the “Rayleigh circular (Rx outside)” model. If

a closed-form DOA-distribution is required, the choice will be the “uniform elliptical (Rx

outside)” geometric model.

2.5.2 Insights from the Bimodal & Higher-Model Empirical Datasets

For the five bimodal and trimodal empirical datasets in Table 2.2, the best-fitting model is

either the “uniform pie-cut (Rx inside)” model or the “uniform hollow-disc (Rx outside)”

model.4 Both models have two degrees of freedom.

These two models are in fact the only two geometric models with more than one peak

in the DOA-distribution: the “uniform pie-cut (Rx inside)” model is trimodal, whereas the

“uniform hollow-disc (Rx outside)” model is bimodal. For the two tetra-modal empirical

data-sets, they are both best-fit by the “uniform pie-cut (Rx inside)” geometric model,

which alone (among all geometric models) offers three peaks.

Considering the three empirical datasets best-fit by the “uniform pie-cut (Rx inside)”

geometric model:

a. Two empirical datasets are “urban”, while one is “suburban”. This dove-tails with

the intuitive expectation that a more clustered propagation-environment would more

likely produce a non-unimodal DOA-distribution.

b. All calibrated “uniform pie-cut” models have a beamwidth under 45◦.

c. All calibrated “uniform pie-cut” models have the model-parameter 1 ≤ R
D ≤ 1.11,

i.e., the receiver is at or very close to the pie-cut rim. This suggests that the scatterers

at the receiver’s backside are of only marginal importance.

The “Gaussian” model, though best fitting for none of the five non-unimodal datasets

in Table 2.2, is at worst only roughly double the lowest LSE. The “Gaussian” model

can thus offer modeling simplicity for an LSE still within about one third of an order-of-

magnitude of the best fitting model.

2.6 Summmary

For the uni-modal datasets, the well-fitting geometric models are mainly “Rayleigh circular

(Rx outside)”, “Gaussian”, and “uniform elliptical (Rx outside)”. The “Gaussian” model

4The “uniform circular (Rx inside)” model comes in second for the one dataset from Figure 6 of Kloch

[83]. There, the receiver at the street level surrounded by two-storey buildings.
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may be preferred over the “Rayleigh circular (Rx outside)” model, because Gaussianity

may ease further mathematical analysis of a communication system’s performance. If a

closed-form DOA-distribution is required, the choice will be the “uniform elliptical (Rx

outside)” geometric model.

The non-uni-modal empirical datasets are best-fit by the “uniform pie-cut (Rx inside)”

geometric model or the “uniform hollow-disc (Rx outside)” geometric model, which have

three and two peaks, respectively.

Though no one geometric model is best by all criteria and for all environments, a safe

choice is the “Gaussian” model, with a Gaussian density of scatterers centered at the

transmitter. Despite this model’s simplicity with only one degree of freedom, it is always

either the best fitting model or offers an LSE within one third of an order-of-magnitude

as the best fitting model – The only other model that offers such robust fitting is the

“Rayleigh” model with two degrees of freedom.

39



−20 −10 0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

Azimuth Angle−of−Arrival, θ (in degrees)

θ

Empirical

Uniform circular (Rx outside)

Uniform pie−cut (Rx inside)

Uniform hollow−disc (Rx outside)

Conical circular (Rx outside)

Inverted−Parabolic circular (Rx outside)

Gaussian

Uniform elliptical (Rx outside)

Rayleigh circular (Rx outside)
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of Pedersen [138]

49



−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Azimuth Angle−of−Arrival, θ (in degrees)

θ

Empirical

Uniform circular (Rx inside)

Uniform pie−cut (Rx inside)

Uniform hollow−disc (Rx outside)

Conical circular (Rx inside)

Inverted−Parabolic circular (Rx outside)

Gaussian

Uniform elliptical (Rx outside)

Rayleigh circular (Rx outside)
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Chapter 3

A Geometric Model for the

Uplink/Downlink Multipaths’

TOA Distribution, Assuming the

Scatterers of a Conical Spatial

Density

3.1 Preliminary

3.1.1 The Propagation Delay in Wireless Communications

A signal, transmitted from a mobile user in a landmobile radiowave wireless cellular com-

munication system, arrives at the cellular base-station through multiple propagation mul-

tipaths. Each multipath carries its own propagation history of electromagnetic reflections

and diffractions and corruption by multiplicative noise — a history reflected in that multi-

path’s amplitude, Doppler, arrival angle, and arrival time delay at the receiving antenna(s).

The values of these amplitudes, Doppler frequency shifts, arrival angles and arrival time

delays depend on the electromagnetic properties of and the spatial geometry among the

mobile transmitter, the scatterers, and the receiving antennas. Each receiving antenna’s

data measurement sums these individually unobservable multipaths.

A channel’s impulse response (IR) may be represented by a linear time-invariant filter

fτ (τ), if the channel is (or can be approximated as) temporally stationary. The corre-

sponding spectrum would generally not have a flat magnitude over the frequency coordi-

nate, hence the term “frequency selective”. Only in the degenerate case of fτ (τ) being

a single impulse, would the channel’s spectrum have a flat magnitude-response over all

frequencies. That is, spreading along the delay coordinate τ produces (via a Fourier-type

transform) frequency distortions. These are to be distinguished from spreading in the fre-

quency coordinate, which corresponds to temporal variability in the channel (i.e., temporal

non-stationarity in the channel’s impulse response).
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For each uplink multipath that travels from the mobile transceiver to the base-station

transceiver, there could exist a corresponding downlink multipath traversing the same

spatial path but in the opposite direction from the base-station transceiver to the mobile

transceiver. Hence, the uplink fτ (τ) equals downlink fτ (τ).

The time-of-arrival (TOA) probability-density function characterizes the wireless prop-

agation channel’s temporal delay spread and frequency incoherence, which in turn deter-

mine the obtainable temporal diversity and the extent of inter-symbol interference in

wireless communication. These constrain the capacity of information that can be com-

municated between the transmitter and the receiver. Incidentally, many applications

(like single-input single-output communication systems) are interested only in the above-

mentioned temporal metric but not in any spatial metric.

This TOA-distribution could be measured (or computer-estimated) in site-specific

/ terrain-specific / building-specific empirical measurements (or ray-shooting and ray-

tracing computer simulations). However, such results would be applicable only to the

particular propagation setting under investigation and cannot be easily generalized to a

wider class of scenarios. A rough model applicable to a wide class of field scenarios could

be to the system-development engineer to develop his/her products, which must be usable

in a wide class of environments, like “bad urban” city blocks with high-rises as scatter-

ers on all sides, or “rural” settings with few scatterers close by an elevated base-station.

Hence, geometric modeling has also been applied to analyze the TOA-distribution.

3.1.2 Survey of Geometric Models to Derive TOA-Distribution

Within the geometric-modeling literature that analytically derives closed-form formulas

of the TOA-distribution explicitly in terms of the model-parameters, one simplest and

commonest class of geometric models are the “circular disc” models. There, all scatterers

are idealized to be spatially distributed only within a circular disc, according to different

spatial densities in different geometric models. This circular disc centers upon the mobile

transceiver, whereas the base-station transceiver may lie either inside or outside the disc.

Within this class of geometric models:

(1) The scatterers are modeled as uniformly distributed within the circular disc,

(1a) with the base-station transceiver lying outside the circular disc [48]. This model

could apply where an outdoor base-station transceiver is placed on an ele-

vated tower and thus has few scatterers in the base-station’s immediate vicinity.

Please see Figure 3.1a.

(1b) with the base-station transceiver lying within the circular disc [70]. This

model could apply for “bad urban” or indoor scenarios, where the base-station

transceiver is surrounded by scatterers. Please see Figure 3.1b.

(2) The scatterers are modeled as distributed on the circular disc according to an

inverted parabola shaped density, with the mobile transceiver lying outside the

circular disc for a base-station transceiver on an elevated tower outdoor and thus
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with few scatterers in the receiver’s immediate vicinity [134].1 Please see Figure

3.1a.

2

Unlike the abovementioned uniform-density models in (1a) and (1b), the “conical” spa-

tial density (like the inverted parabola shaped density of model (2)) can account for the

more frequent reflections off scatterers nearer to the mobile transceiver. Intuitively in the

above geometric abstraction, a reflection farther from the mobile transceiver may corre-

spond in physical reality to a sequence of consecutive reflections occurring spatially farther

and farther away from mobile, but these reflections incur power loss. The consequence

is roughly equivalent to more single-bounce scatterers closer to the mobile transceiver.

Rather than modeling the scatterers’ re-transmission power as spatially non-stationary, it

is mathematically simpler to model scatterers to have identical re-transmission character-

istics, but more densely spaced the closer to the mobile transceiver. Instead of assuming

lossy scatterers (which would further complicate the present mathematical derivation),

the present model has a lower spatial density of scatterers where the physical propaga-

tion paths would likely have their “last bounces” (and would have already suffered much

reflection power loss) before reaching the base-station transceiver.

The scatterers’ conical-distribution geometric model has in fact been first proposed in

[45], but only the azimuth direction-of-arrival (DOA) distribution was derived only for

the uplink. No TOA-distribution is yet derived in [45]. This paper will fill this literature

gap.

3.2 The Presently Advanced “Geometric” Models

Figures 3.1a and 3.1b show the spatial geometries relating the mobile transceiver, a scat-

terer, and the base-station transceiver. Let the base-station transceiver (BS) be located

at the origin of a two-dimensional plane, whereas the mobile transceiver (MS) is located

at the Cartesian coordinates (D, 0) with D being the BS-MS distance. Symbolize the

aforementioned circular disc’s radius as R. The scatterers’ spatial locations are idealized

1The open literature currently has no result for the case of the scatterers distributed on the circular

disc according to an inverted parabola shaped density, with the mobile transceiver lying inside the circular

disc.
2The above circular-disc support region has been generalized to:

(3) an hollow circular disc (on which the scatterers are uniformly distributed) [133],

(4) an elliptical disc (on which the scatterers are uniformly distributed)

(4a) focused at the mobile transceiver and the base-station transceiver [100], [48], [164],

(4b) centered at the mobile transceiver alone, with the base-station transceiver outside of the

ellipse [164], [5],

(5) a three-dimensional hemi− spheroid region above the mobile transceiver [135].
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Figure 3.1a: The scatterers’ spatial support

region in the proposed outdoor model with the

base-station (BS) transceiver on an elevated

tower and away the dominant scatterers.

Figure 3.1b: The scatterers’ spatial support

region in the proposed indoor model, with the

base-station (BS) transceiver lying among the

scatterers.

as conically distributed within this circular disc [45],

fx,y(x, y) =





(
1−

√
(x−D)2+y2

R

)
3

πR2 , if (x−D)2 + y2 ≤ R2;

0, otherwise.
(3.1)

Figure 3.2 illustrates this conical spatial density.

For an outdoor base-station on an elevated tower (and thus away from any dominant

scatterer), the D ≥ R case in Figure 3.1a applies. For an indoor or “bad urban” base-

station transceiver lying among from the scatterers, 3.1b’s D ≤ R case applies.

The propagation time-of-arrival (TOA) equals τ = rθ+rs

c for a propagation-path from

the mobile transmitter, reflecting off a scatterer at (x, y), and arriving at the base-

station transceiver, where c denotes the speed of propagation, τ symbolizes the propa-

gation time-of-arrival, θ refers to azimuth-angle of that scatterer as seen by the receiver,

rs =
√

(x−D)2 + y2, and rθ denotes the distance between the base-station transceiver

and any scatterer, as shown in Figure 3.1a.

Like all earlier papers that analytically derive closed-form explicit expression of the

TOA-distribution based on geometrical models, these following four standard assumptions

are made:

(A) Each propagation path, from/to the mobile transceiver to/from the base-station

transceiver, reflects off exactly one scatterer.

(B) Each scatterer acts (independently of other scatterers) as an omni-directional lossless

re-transmitter.

(C) Negligible complex-phase effects in the receiving-antenna’s vector-summation of its

arriving multipaths. That is, all arriving multipaths arriving at each receiving-

antenna are assumed to be temporally in-phase among themselves.

(D) Polarizational effects may be ignored.
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Figure 3.2: Conical spatial density, at R = 500 meters and D = 1000 meters.

3.3 The Conical Model’s TOA-DOA Joint Distribution

Towards deriving the time-of-arrival’s distribution density fτ (τ), first express the above

spatial density’s circular-disc support region in terms of the polar coordinates (rθ, θ),

giving: [134]

(rθ cos θ −D)2 + (rθ sin θ)2 ≤ R2. (3.2)

Applying the cosine law to the geometries in Figures 3.1a and 3.1b, [48], [134]

rθ(θ) =
D2 − τ2c2

2 (D cos θ − τc)
, (3.3)

Next, transform the bivariate spatial density into a bivariate density of the azimuth

direction-of-arrival (DOA) and the time-of-arrival (TOA). This is achieved through a Ja-

cobian transformation. For where the constraint in (3.2) is satisfied, [45], [48]:

fτ,θ(τ, θ) = |J1|frθ,θ(rθ, θ)

= |J1||J2|fx,y(x, y)|x=rθ cos θ,y=rθ sin θ

where

J1 =
∣∣∣∣
∂rθ

∂τ

∣∣∣∣ =
c
[(

τc
D

)2 − 2 τc
D cos θ + 1

]

2
(
cos θ − τc

D

)2 (3.4)

J2 =

∣∣∣∣∣
∂x
∂rθ

∂x
∂θ

∂y
∂rθ

∂y
∂θ

∣∣∣∣∣ =
D

[
1− (

τc
D

)2
]

2
(
cos θ − τc

D

) (3.5)
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Hence,

fτ,θ(τ, θ) =
Dc

[
1− (

τc
D

)2
] [(

τc
D

)2 − 2 τc
D cos θ + 1

]

4
(
cos θ − τc

D

)3

︸ ︷︷ ︸
=|J1||J2|

(
1−

√
(rθ cos θ −D)2 + (rθ sin θ)2

R

)
3

πR2

︸ ︷︷ ︸
=fx,y(rθ cos θ,rθ sin θ)

=
3c

4πR

[
1− (

τc
D

)2
] [(

τc
D

)2 − 2 τc
D cos θ + 1

]

R
D

(
cos θ − τc

D

)3

[
1−

(
τc
D

)2 − 2 τc
D cos θ + 1

2 R
D

(
τc
D − cos θ

)
]

. (3.6)

Where the constraint in (3.2) is violated, fτ,θ(τ, θ) = 0.

The TOA-distribution may then be obtained by integrating fτ,θ(τ, θ) with respect to

θ, as will be done in the next section.3

3.4 The Outdoor “Conical” Model’s TOA-Distribution

In outdoor propagation environments where a base-station transceiver is housed on an

elevated tower, few scatterers would surround the mobile transceiver. The scatterers may

thus be modeled to cluster only around the mobile transceiver. This corresponds to the

R ≥ D case in Figure 3.1a.

For any specific τ ∈ [
D
c , D+2R

c

]
, there exists a τ -constant spatial ellipse focusing at the

base-station’s and the mobile’s spatial locations. Any propagation path must bounce off

a scatterer lying on this ellipse’s rim. This elliptical rim intersects with the circle (within

which the scatterers lie) on at most two points, namely at rθ(θ0) = τc−R in Figure 3.1a,

where θ0 = arccos
(

( τc
D

)2+1−2 τc
D

R
D

2( τc
D
−R

D
)

)
. These considerations lead to an integration-range of

θ ∈ [−θ0, θ0].

Hence, the TOA’s marginal density equals:

f (Con,Out)
τ (τ) =

∫ θ0

−θ0

fτ,θ(τ, θ)dθ

=
3Dc

[
1− (

τc
D

)2
]

2πR2

∫ θ0

0

[(
τc
D

)2 − 2 τc
D cos θ + 1

]

(
cos θ − τc

D

)3

[
1−

(
τc
D

)2 − 2 τc
D cos θ + 1

2 R
D

(
τc
D − cos θ

)
]

dθ

=
3Dc

[
1− (

τc
D

)2
]

πR2

∫ x0

0

[(
τc
D

)2 − 2 τc
D

1−x2

1+x2 + 1
]

(1 + x2)
(

1−x2

1+x2 − τc
D

)3


1−

(
τc
D

)2 − 2 τc
D

1−x2

1+x2 + 1

2 R
D

(
τc
D − 1−x2

1+x2

)

 dx

where the last equality above has used the following transformations [134]: x = tan θ
2 ,

cos θ = 1−x2

1+x2 , dθ = 2dx
x2+1

, and x0 =
√

( R
D

)2−(1− τc
D

+ R
D

)2

(1+ τc
D
−R

D
)2−( R

D
)2

. Mathematica’s symbolic integration

produces a closed form of f
(Con,Out)
τ (τ) that explicitly depends on the model parameters

of R and D as follows:

f (Con,Out)
τ (τ) =

c

8πR

[
h(δ − 2ε + 1)(7δ2 − 4δε + 4ε2 − 4)− 6(2δ2 − 1)(δ − 2ε) arctan(h)

]

ε2
√

δ2 − 1
3The TOA must satisfy τ ∈ ˆD

c
, D+2R

c

˜
. This is because no propagation path can traverse the MS-

BS distance D under D
c

of propagation delay. On the other hand, the latest arriving propagation path

must have bounced off a scatterer on the circle’s circumference at a direction diametrically opposite the

BS-to-MS direction.
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Figure 3.3a: This figure helps to obtain the

appropriate integration range of θ. This result

is used towards deriving f
(Con,Out)
τ (τ).

Figure 3.3b: To show that the τ -constant el-

lipse can intersect with the circle at only two

or fewer points. This fact is used towards de-

riving f
(Con,Out)
τ (τ).

where δ = τc
D , ε = R

D , and h =
√

1−δ+2ε
1+δ−2ε .

The τ -constant ellipse can intersect the circle at not more than two points, as shown in

Figure 3.3a and 3.3b. Otherwise, R would exceed the distance from the mobile to certain

points on the elliptical rim — thereby contradicting the fact that the shortest distance

from the mobile to the elliptical rim is via point a in Figure 3.3b.

For ∀τ > D+2R
c , f

(Con,Out)
τ (τ) = 0.

To summarize, the “conical” model (for outdoor environments with an elevated base-

station) has a TOA-density equal to:

f (Con,Out)
τ (τ) =





c
8πR

[h(δ−2ε+1)(7δ2−4δε+4ε2−4)−6(2δ2−1)(δ−2ε) arctan(h)]
ε2
√

δ2−1
, τ ∈ [

D
c , D+2R

c

]

0, Otherwise
(3.7)

where δ, ε, h have been previously defined. Note that f
(Con,Out)
τ (τ) peaks at τ = τ

(Con,Out)
0 =

D
c . By reciprocity between the base-station and the mobile for the propagation delay, the

above derived formula applies for the uplink as well as the downlink.

3.5 The Indoor “Conical” Model’s TOA-Distribution

In indoor or “bad urban” environments, scatterers may be omni-present, even in the base-

station’s immediate vicinity. This corresponds to the R ≥ D case in Figure 3.1b, where

the base-station lies among the circular disc of scatterers.

For this indoor or “bad urban” model, the τ -constant ellipse intersects with the circle

(within which the scatterers lie) under three disjoint cases:

For ∀τ ∈ [
D
c , 2R−D

c

)
, the τ -constant ellipse lies wholly within the circular disc. Hence,

to obtain the TOA marginal density, fτ,θ(τ, θ) in (3.6) is to be integrated over θ ∈ [−π, π).
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Mathematica’s symbolic integration gives:

f (Con,In)
τ (τ) =

∫ π

−π
fτ,θ(τ, θ)dθ

=
3Dc

[
1− (

τc
D

)2
]

2πR2

∫ π

0

[(
τc
D

)2 − 2 τc
D cos θ + 1

]

(
cos θ − τc

D

)3

[
1−

(
τc
D

)2 − 2 τc
D cos θ + 1

2 R
D

(
τc
D − cos θ

)
]

dθ

=
3D2c

8R3

[
2

(
τc
D

)2 − 1
] (

2 R
D − τc

D

)
√(

τc
D

)2 − 1

=
3c

8R

(2δ2 − 1)(2ε− δ)
ε2
√

δ2 − 1

For ∀τ ∈ [
2R−D

c , 2R+D
c

]
, the τ -constant ellipse intersects with the circle at exactly two

points, just as in the preceding section. Here, the θ-integration range equals [−θ0, θ0].

Mathematica’s symbolic integration gives:

f (Con,In)
τ (τ) =

∫ θ0

−θ0

fτ,θ(τ, θ)dθ

=
3Dc

[
1− (

τc
D

)2
]

2πR2

∫ θ0

0

(
τc
D

)2 − 2 τc
D cos θ + 1

(
cos θ − τc

D

)3

[
1−

(
τc
D

)2 − 2 τc
D cos θ + 1

2 R
D

(
τc
D − cos θ

)
]

dθ

=
c

8πR

[
h(δ − 2ε + 1)(7δ2 − 4δε + 4ε2 − 4)− 6(2δ2 − 1)(δ − 2ε) arctan(h)

]

ε2
√

δ2 − 1

For all other τ values, f
(Con,In)
τ (τ) = 0.

To summarize, the “conical” indoor model’s (or the “conical” “bad urban” model’s)

TOA-density equals:

f (Con,In)
τ (τ) =





3c
8R

(2δ2−1)(2ε−δ)

ε2
√

δ2−1
, τ ∈ [

D
c , 2R−D

c

)

c
8πR

[h(δ−2ε+1)(7δ2−4δε+4ε2−4)−6(2δ2−1)(δ−2ε) arctan(h)]
ε2
√

δ2−1
, τ ∈ [

2R−D
c , D+2R

c

]

0, Others

.(3.8)

To obtain the τ value (to be labeled as τ
(Con,In)
0 ) at which f

(Con,In)
τ (τ) peaks, obtain

solution to the equation
d
“
f
(Con,In)
τ (τ)

”

dτ = 0, with
d2
“
f
(Con,In)
τ (τ)

”

dτ2 < 0. This gives:

τ
(Con,In)
0 =

D

c





ε

4
+
√

3Z2

12
+
√

6
12

[
3ε2 + 12− 3

√
Z1 − 18ε2 + 21

3
√

Z1
+

3
√

3ε3 − 18
√

3ε√
Z2

] 1
2



(3.9)

where Z1 = 189ε2 + 81 + 3
√−648ε6 + 1701ε4 + 756ε2 − 300, and Z2 = 3ε2 + 12 + 2 3

√
Z1 +

36ε2+42
3√Z1

.

By reciprocity between the base-station and the mobile for the propagation delay, the

above derived formulas for f
(Con,In)
τ (τ) and for τ

(Con,In)
0 apply for the uplink as well as the

downlink.

3.6 Comparing the “Conical Circular Disc” Models Against

Earlier “Circular Disc” Models

The above “conical disc models” are proposed as close variants and alternatives to the

customary “circular disc” models (1a), (1b) and (2) in Section 3.1.2 and further elaborated
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below:

(1a) The “Uniform Scatterer Density Circular Disc” Model for Outdoor: [48]

For this customary model (with the base-station lying outside the uniform-density

scatterer region), the TOA-distribution equals

f (Uni,Out)
τ (τ) =





c
πDε2

{
πδ2k2−δk2

2+πk2k2
1+δk2

1−2εk2
1

4k1k2
+ δ2k0k4+δk0k2

1

2k2
4+2k2

0k2
1

+ δ2+k2
1

2k1
arctan

(
k0k1
k4

)
− ε−δ

[4ε2−k2
3]

1/2

[
2ε2 + δk2

1k4(1+k2
0)

2k2
4+2k2

0k2
1

]}
, τ ∈ [

D
c , 2R+D

c

]

0, Otherwise

(3.10)

where k0 = tan
[

1
2 arccos

(
−δ2+1+2·εδ

2ε

)]
, k1 =

√
δ2 − 1, k2 =

√
1− 4ε2 − δ2 + 4εδ,

k3 = −δ2 + 1 + 2εδ, k4 = 1− δ. Note that f
(Uni,Out)
τ (τ) peaks at τ = τ

(Uni,Out)
0 = D

c .

(1b) The “Uniform Scatterer Density Circular Disc” Model for Indoor: [70]

If the base-station lies inside the uniform-density scatterer region, The TOA-distribution

of (1a) becomes:

f (Uni,In)
τ (τ) =





c(δ2+S2
1)

4Dε2S1
, τ ∈ [

D
c , 2R−D

c

)
c
D

[
S5

πε sin S0
+ δ2+S2

1
4ε2S1

− S6+S7
πε2

]
, τ ∈ [

2R−D
c , 2R+D

c

]

0, Otherwise

(3.11)

where S0 = arccos 1+2δε−δ2

2ε , S1 =
√

δ2 − 1, S2 = arctan
(√

δ+1
δ−1 tan S0

2

)
, S3 = δ −

1 + (δ + 1) tan2 S0
2 , S4 = δ − cos S0, S5 = δ − ε, S6 = δ sin S0

2S4
+ S2

1S5 cos S0

4εS4 sin S0
− δS2

1 sin S0

4εS2
4

,

S7 = δ
2S3

[
S2

1S5

ε(1+cos S0) sin S0
− tan S0

2

]
+ (δ2+S2

1)S2

2S1
.

Note that f
(Uni,In)
τ (τ) peaks at τ = τ

(Uni,In)
0 = 2R−D

c = D(2ε−1)
c . This is because

f
(Uni,In)
τ (τ) monotonously increases for τ ∈ [

D
c , 2R−D

c

)
but monotonically decreases

in τ ∈ [
2R−D

c , 2R+D
c

]
.

(2) The “Inverted Parabolic Scatterer Density Circular Disc” Model for Outdoor: [134]

This represents one nonuniform-density alternative to the outdoor model in (1a).

Again for a base-station lying outside the circular disc (within which lie the scatters),

but according to an inverted-parabola spatial density, the TOA-distribution equals:

f (Inv,Out)
τ (τ) =





c
96Q2πD(1−δ)ε4

{
48εδ3Q1Q2 − 18δQ3 + 23Q1Q2δ

−28εδQ1Q2 + 192ε2δ2Q3 + 23δ2Q1Q2 + 48δ5Q3

−36ε2Q1Q2 − 128ε3δQ1Q2 − 192ε2δ3Q3 + 96ε4Q1Q2

−28εδ2Q1Q2 − 96ε2Q3 + 18Q3 − 38δ4Q1Q2

−48ε3Q1Q2 − 38δ3Q1Q2 + 18Q1Q2ε− 48δ4Q3

+96δε2Q3 + 96ε2δ2Q1Q2 + 40ε2δQ1Q2

}
τ ∈ [

D
c , 2R+D

c

]

0 Others

(3.12)

where Q0 = δ + 1, Q1 =
{
−1+2δ−2ε−δ2+2δε
1+2δ−2ε+δ2−2δε

}1/2
, Q2 =

√
(δ − 1) (δ + 1), and Q3 =

arctan(Q0Q1/Q2).
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Common to the model-formulas of (3.7), (3.8), (3.10), (3.11) and (3.12) is the model-

variable ε = R
D which controls the shape of the model-geometry. Also common to

these equations is the model-variable D which scales the spatial size of the entire model-

geometry. Figures 3.4a through 3.5b compare all five TOA-distributions, illustrating the

followings:

(i) The support range of τ increases as R
D increases for all five models.

(ii) For each R
D value, f

(·,Out)
τ (τ) peaks at the initial value of τrec

D = 0 and monotonically

decreases towards zero as τc
D increases. That is, the first arriving non-line-of-sight

(NLOS) propagation-path is always the strongest propagation-path. Moreover, more

abrupt is the drop to zero for f
(Uni,Out)
τ (τ) than for f

(Con,Out)
τ (τ).

(iii) For each R
D value, no f

(·,In)
τ (τ) is any longer monotonic. That is, the first arriving

non-line-of-sight propagation-path is no longer always the strongest propagation-

path. Moreover, for any particular ε = R
D , it is always true that τ

(Con,In)
0 < τ

(Uni,In)
0 .

Figure 3.6a shows that the proposed (Con, Out) model (i.e., the base-station lies

outside the circular disc, wherein the scatterers follow a conical spatial density) better fits

certain empirical data [12] taken in urban Chicago than can the customary (Uni, Out)

and (Inv, Out) models. The abovementioned field-measurements involved an elevated

base-station atop a building and was 160 feet on average above the surrounding terrain.

The mobile receiver was in a vehicle and 2.7 meters aboveground. The channel-sounding

signal was 20 MHz in bandwidth and centered around 3.676 GHz. The model-calibration,

by the present authors, is via minimization of the mean squared error (MSE) between

the “normalized”4 empirical dataset of arrival-delay distribution {(τi, yi), i = 1, . . . , I}
and the corresponding values {(τi, f

X
(
τi − τ1 + D

c )
)
, i = 1, . . . , I} from the geometric

model’s TOA distribution,

MSE =
1
I

I∑

i=1

[
yi − f (X)

(
τi − τ1 +

D

c

)]2

(3.13)

where X ∈ {(Con, Out), (Con, In), (Uni, Out), (Uni, In)}. The best-fitting (Uni, Out)

model, at D = 707 meters and R = 169.68 meters, suffers an MSE of 0.012782. The

best-fitting (Inv, Out) model, at D = 326 meters and R = 208.64 meters, suffers an

MSE of 0.010255. In contrast, the best-fitting (Con, Out) model, at D = 262 meters and

R = 222.7 meters, suffers an MSE of only, 0.009325, which is 27% less than that of (Uni,

Out) and 9% less than that of (Inv, Out).

Likewise, Figure 3.6b shows that the proposed (Con, In) model better fits certain

in-building empirical data [34] than can the customary (Uni, In) model. The channel-

sounding signal has a 250 MHz bandwidth, in a seriously clustered environment. The
4This “normalization” is to ensure a unit-area under the empirical dataset. The normalization proceeds

as follows: Let ỹi denote the empirical value as presented in [152]; and let ai,i+1 denote the area of

a trapezoid with its four corners at (τi, 0), (τi, ỹi), (τi+1, 0), (τi+1, ỹi+1). Then the normalized empirical

value, at τi, is yi = ỹiPI−1
i=1 ai,i+1

.
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best-fitting (Con, In) model, at D = 4 meters and R = 28 meters, suffers an MSE of

1.2143, whereas the best-fitting (Uni, In) model, at D = 10 meters and R = 25 meters,

suffers a 57% higher MSE of 1.9039.

3.7 Summary

Presented in this chapter (for indoor or outdoor wireless cellular communications) is an

idealized spatial geometry among the base-station transceiver, the scatterers, and the

mobile transceiver. These scatterers are spatially confined to a circular disc centered

around the mobile transceiver. The scatterers are distributed according to a conical spatial

density, in contrast to the customary uniform density. The scatterers are modeled as omni-

directional lossless re-transmitters of incoming rays from the transmitter. Analytically

derived are closed-form expressions for the uplink/downlink multipaths’ time-of-arrival

distribution; these expressions are explicitly in terms of the two model-parameters of the

idealized geometry. This geometric model is shown to better-fit certain empirical TOA

data than the more customary uniform-density or inverted-parabola-density scatterer-

geometries.
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Figure 3.4a: The TOA-distribution of the cus-

tomary (Uni-Out) “geometric model” of (1a),

which has the base-station lying outside the

circular disc, wherein the scatterers follow a

uniform spatial density.
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tomary (Inv-Out) “geometric model” of (2),

which has the base-station lying outside the

circular disc, wherein the scatterers follow a

invert-parabola spatial density.
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Figure 3.4c: The TOA-distribution of

the herein advanced (Con-Out) “geometric

model”, which has the base-station lying out-

side the circular disc, wherein the scatterers

follow a conical spatial density.
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Figure 3.5a: The TOA-distribution of the cus-

tomary (Uni-In) “geometric model” of (1b),

which has the base-station lying inside the

circular disc, wherein the scatterers follow a

uniform spatial density.
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herein advanced (Con-In) “geometric model”,

which has the base-station lying inside the cir-

cular disc, wherein the scatterers follow a con-

ical spatial density.

64



−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Relative Delay (τ
re

), in µs

T
O

A
 D

e
n

s
it
y

 

 
Empirical Data
Proposed Conical Model
Customary Uniform Model
Customary Invert−Parabola Model

Figure 3.6a: The (Con, Out) model can better

fit this empirical dataset than the (Uni, Out)

and (Inv, Out) model.
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Chapter 4

The Acoustic Vector-Sensor’s

Near-Field Array-Manifold

4.1 The Acoustic Vector-Sensor & Particle-Velocity Wave-

field

An acoustic vector-sensor (a.k.a. vector-hydrophone) consists of three identical, but

orthogonally oriented, acoustic velocity-sensors, plus an acoustic pressure-sensor — all

spatially co-located in a point-like geometry. Each acoustic velocity-sensor measures one

Cartesian component of the incident acoustic particle-field vector. 1The entire acoustic

vector-sensor thus distinctly measures all three Cartesian components of the particle-

velocity vector plus the pressure scalar. This contrasts with a customary microphone or

hydrophone measuring only the acoustic pressure.

More precisely: for a point-source incident with unit-power from the far field 2, an

acoustic vector-sensor (located at the Cartesian coordinates’ origin) has this array man-

ifold, [125], [115]

afar
def=




u(ψ, φ)

v(ψ, φ)

w(ψ)

1




def=




sinψ cos φ

sinψ sinφ

cos ψ

1




(4.1)

where 0 ≤ ψ ≤ π symbolizes the elevation-angle measured from the vertical z-axis, 0 ≤
φ < 2π denotes the azimuth-angle measured from the positive x-axis, u(ψ, φ) refers to the

direction-cosine along the x-axis, v(ψ, φ) refers to the direction-cosine along the y-axis,

and w(θ) refers to the direction-cosine along the z-axis. Specifically, the first, second,

and third components in (4.1) correspond to the acoustic velocity-sensors aligned along
1Acoustic velocity-sensor technology has been used in underwater-acoustics and air-acoustics [95] for

over a century, and is the subject of recently renewed interest [14], [157]. Many different types of acoustic

velocity-sensors are available [93], with designs ranging from mechanically-based [71], to thermally based

[176], to optically-based [65], to derivative-based [165], [102], [180].
2An emitter (with a “characteristic source dimension” L, wavelength λ, and a distance of R from the

receiver) lies in the receiver’s acoustic far field, if 2R
L
À max{2, λ

2π
} and 2 R

L2 À π/λ.
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the x-axis, the y-axis, and the z-axis, respectively. These three Cartesian components

of particle-velocity field-vector has a Euclidean norm
(
[u(ψ, φ)]2 + [v(ψ, φ)]2 + [w(ψ)]2

)

equal to the unity pressure, for all ψ and φ.

This acoustic vector-sensor concept is practical. It has been implemented in hardware

in various forms for underwater or sea-surface applications [41, 42, 129, 39, 163, 160,

116], or for air-acoustic applications [35, 136]. Acoustic vector-sensors are commercially

available as the “Uniaxial P-U Probe” from Acoustech.3 Acoustic vector-sensors have

undergone sea trials [41, 42, 153, 154, 43, 23, 155, 44, 39, 156, 66, 211, 148, 31, 13, 54].

Acoustic vector-sensors have undergone in-building room trials or atmospheric trials [102].

Acoustic vector-sensors have been proposed for use for underwater port and waterway

security [161] and for underwater wireless communications [105, 190, 1, 202].

The acoustic vector-sensor concept is versatile for direction-finding, due to these prop-

erties:

(i) A single acoustic vector-sensor intrinsically possesses a two-dimensional azimuth-

elevation directivity, because all three Cartesian components of the acoustic velocity-

vector-field are simultaneously measured.

(ii) Multiple incident sources’ azimuth-angles and the elevation-angles may be estimated

and automatically matched with only one acoustic vector-sensor [190], [101], [172].

Direction-finding algorithms that exploit the acoustic vector-sensor’s unique array-

manifold have been developed in [23, 125, 63, 165, 187, 188, 58, 156, 189, 190, 191, 210,

50, 172, 55, 110, 25, 60, 26, 106, 56, 27, 205, 118, 33, 211, 196, 6, 7, 123, 199, 181, 200,

206, 201, 88, 147, 62]. DOA-tracking algorithms have been developed for the acoustic

vector-sensor in [126], [101], [192].

Though the above far-field measurement model in (4.1) was first introduced to the

signal-processing literature by [125] over a decade ago, the corresponding near-field measurement-

model has not been investigated. This overlooked issue is herein investigated. As will be

shown in the subsequent sections, the far-field measurement model’s independence from

the signal frequency, the source-sensor distance, and the propagation-medium in (4.1) is

invalid for the near-field case.

4.2 Derivation of the Acoustic Vector-Sensor’s Near-Field

No-Boundary Array-Manifold

Consider an acoustic vector-sensor located at the Cartesian origin, with a position-vector

r0 = [0, 0, 0]T . Let R denote the distance between the acoustic vector-sensor and an

emitting source located at

R [cos φ sinψ, sinφ sinψ, cos ψ]T︸ ︷︷ ︸
=r̄

. The source emits a signal into an half-space of infinite

radius of quiescent isotropic homogeneous fluid, such as air or water. A pressure-field

3http://www.acoustechcorporation.com
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p(r, t) (a scalar function at spatial location r and time t) and a corresponding particle-

velocity-field vector-field v(r, t) (a vector-function) will result. To relate p(r, t) to v(r, t),

apply Euler’s equation:4

ρ0
∂v(r, t)

∂t
= −∇p(r, t) (4.2)

where ρ0 refers to the ambient fluid density 5.

To avoid distraction from the present focus on the array-manifold, a simple signal-

model will be used: Let the emitted signal be a pure tone of angular frequency ω and

complex-amplitude A. This results in a complex-value pressure-field at the acoustic vector-

sensor

p(r0, t) =
A

|r0 −R r̄| exp
{
j
[
ωt− kT (r0 −R r̄)

]}
=

A

R
exp

[
j

(
ωt− 2π

λ
R

)]
(4.3)

where k = −ω
c r̄ denotes the incident wavenumber-vector pointing along the propagation-

direction and with modulus ω
c = 2π

λ , c symbolizes the propagation-speed, and λ signifies

the signal wavelength. Moreover,

−∇p(r0, t) = −∂p(r0, t)
∂R

r̄, (4.4)

because p(r0, t) depends on R, but not φ or ψ. Likewise, the particle-velocity vector

v(r0, t) may be represented as |v(r0, t)|̄rejωt at spatial location r0 and time t, where | · |
refers to the Euclidean norm of the vector inside the pair of vertical lines. Hence,

∂v(r0, t)
∂t

= jωv(r0, t) (4.5)

Combining the above equations,

v(r0, t) = − 1
jωρ0

∂

∂R

[
A

R
exp

{
j

(
ωt− 2π

λ
R

)}]
r̄

=
A

ρ0cR

(
1 +

λ

j2πR

)
exp

{
j

(
ωt− 2π

λ
R

)}
r̄

=
p(r0, t)

ρ0c

(
1 +

λ

j2πR

)
r̄ (4.6)

6

Using the definition of the source’s direction-vector r̄, (4.6) becomes:

v(r0, t) = p(r0, t)




cos φ sinψ

sinφ sinψ

cos ψ




√
1 +

(
λ

2πR

)2

ρ0c
exp

(
−j arctan

λ

2πR

)
(4.7)

From (4.34), the acoustic vector-sensor near-field array-manifold equals:

4Please see equation (1-3.7) in [145].
5For air-acoustic applications, ω

2π
∈ [20, 2 × 104] Hz, c = 343.3 m/s, the air density ρ0 = 1.204 kg/m3

at 20◦C, and hence ρ0c ≈ 413.3.
6In a far-field case where R À λ, it holds that λ

j2πR
→ 0. Thus, the pressure scalar field would relate

to the particle-velocity vector-field as in equation (2) of [59], which presumes a planar wavefront upon the

acoustic vector-sensor.
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anear =




cos φ sinψ

sinφ sinψ

cos ψ
ρ0cq

1+( λ
2πR)2

exp
(
j arctan λ

2πR

)




(4.8)

A complex-phase difference thus exists between the velocity-sensor triad measurements

and the pressure-sensor measurement in the near-field measurement-model in (4.8). This

phase-difference depends on the wavelength-normalized source-sensor distance R
λ and the

propagation-medium’s ρ0c, but not on the azimuth-elevation arriving angles.

As the wavelength-normalized distance R
λ → ∞, the near-field array-manifold con-

verges to



cos φ sinψ

sin φ sinψ

cos ψ

ρ0c




. (4.9)

The above is consistent with the far-field array-manifold in equation (2.5) in [125], which

normalizes the pressure-sensor gain from ρ0c to unity.

4.3 Cramér-Rao Bound Analysis of the Near-Field No-Boundary

Measurement Model

4.3.1 Defining the Statistical Data Model

To further characterize the acoustic vector-sensor’s array-manifold, this section will derive

the Cramér-Rao bound for near-field source-localization by an acoustic vector-sensor. To

avoid unnecessary distractions from focusing on the near-field array-manifold, a very sim-

ple signal statistical model will be used here: The emitted signal s(t) = ej(ωt+ε) is a pure

tone at angular frequency ω as before, now with an initial phase of ε. Both ω and ε are

deterministic unknown constants. At the m-th time-instant t = mTs, a 4× 1 data-vector

z̃(mTs) is collected by the four-component acoustic vector-sensor:

z̃(mTs) = anears(mTs) + ñ(mTs) (4.10)

where Ts refers to the time-sampling period and ñ(t) denotes a 4 × 1 vector of additive

zero-mean spatio-temporally uncorrelated Gaussian noise with an unknown deterministic

variance of σ2. With M number of time-samples, the collected data-set equals

z =
[
(z̃(Ts))T , · · · , (z̃(MTs))T

]T

= s⊗ anear︸ ︷︷ ︸
=µ

+
[
(ñ(Ts))T , · · · , (ñ(MTs))T

]T

︸ ︷︷ ︸
=n

(4.11)
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where s = ejε
[
ejTsω, ej2Tsω, · · · , ejMTsω

]T , ⊗ symbolizes the Kronecker product, n repre-

sents a 4M × 1 noise vector with a spatio-temporal covariance matrix of Γ = σ2I4M , and

I4M denotes a 4M × 4M identity matrix. Therefore, z ∼ N (µ,Γ).

The near-field source-localization problem is to estimate the azimuth-elevation arrival-

angles φ and ψ plus the radial distance R, based on the 4M × 1 collected data z.

4.3.2 Deriving the Cramér-Rao Bound for Near-Field Source-Localization

by an Acoustic Vector-Sensor

In the statistical data model in Section 4.3.1, there exist six deterministic unknown entities,

which are collected into a 6× 1 vector θ = [φ, ψ, R, ω, ε, σ2]T . The resulting 6× 6 Fisher

Information Matrix J would have its (i, j)th entry equal to7

Ji,j = 2 <
{(

∂µ

∂[θ]i

)H

Γ−1

(
∂µ

∂[θ]j

)}
+ Tr

{
Γ−1 ∂Γ

∂[θ]i
Γ−1 ∂Γ

∂[θ]j

}
(4.12)

where <{·} signifies the real part of the entity inside the curly brackets, Tr{·} denotes

the trace operation, and [·]i symbolizes the ith element of the vector inside the square

brackets.

Straightforward calculus manipulations can express the Fisher Information Matrix en-

tries in terms of the measurement-model parameters and statistical data-model parameters

7Please see equation (8.34) in [178].

70



as follows:

Jφ,φ = J1,1 =
2M

σ2
sin2 ψ, (4.13)

Jψ,ψ = J2,2 =
2M

σ2
, (4.14)

JR,R = J3,3 =
2M

σ2

[
ρ0(

ωR
c

)2 + 1

]2

ω2, (4.15)

Jω,ω = J4,4 =
2M

σ2





(
R2 − ω2R3

c

M + 1
fs

) [
ρ0(

ωR
c

)2 + 1

]2

+
(M + 1)(2M + 1)

6f2
s

[
1 + ω2R2ρ0

(
ρ0(

ωR
c

)2 + 1

)]}
, (4.16)

Jε,ε = J5,5 =
2M

σ2

[
1 + ω2R2ρ0

(
ρ0(

ωR
c

)2 + 1

)]
, (4.17)

Jσ2,σ2 = J6,6 =
4M

σ4
, (4.18)

JR,ω = J3,4 = J4,3 =
2M

σ2

[
ρ0(

ωR
c

)2 + 1

]2 [
ωR− ω3R2

c

M + 1
2fs

]
, (4.19)

JR,ε = J3,5 = J5,3 = −2M

σ2

[
ρ0(

ωR
c

)2 + 1

]2
ω3R2

c
, (4.20)

Jω,ε = J4,5 = J5,4 =
2M

σ2



−

ω2R3

c

[
ρ0(

ωR
c

)2 + 1

]2

+
M + 1

2fs

[
1 + ω2R2ρ0

(
ρ0(

ωR
c

)2 + 1

)]

 .

(4.21)

All other entries are zero in the Fisher Information Matrix. As a consequence,

J =




J1,1 0 0 0 0 0

0 J2,2 0 0 0 0

0 0 J3,3 J3,4 J3,5 0

0 0 J3,4 J4,4 J4,5 0

0 0 J3,5 J4,5 J5,5 0

0 0 0 0 0 J6,6




(4.22)

is block-diagonal. Hence,

CRB(φ) = J−1
1,1 =

σ2

2M sin2 ψ
, (4.23)

CRB(ψ) = J−1
2,2 =

σ2

2M
, (4.24)

CRB(R) =
[
J−1

]
3,3

=
J4,4J5,5 − J2

4,5

J3,3J4,4J55 + 2J3,4J4,5J3,5 − J3,3J2
4,5 − J5,5J2

3,4 − J4,4J2
3,5

, (4.25)

where [·]i,j represents the (i, j)-th entry of the matrix inside the square brackets.
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Substitution of (4.13) to (4.21) in (4.25) gives

(
2π

λ

)2

CRB(R) =
σ2

2M

(
1

ρ0c

)2
[(

1
ρ0c

)2
+ ( 2πR

λ )2

( 2πR
λ )2

+1

]

[
1

( 2πR
λ )2

+1

]2 [(
1

ρ0c

)2
+ ( 2πR

λ )2

( 2πR
λ )2

+1

]
−

[
2πR

λ

( 2πR
λ )2

+1

]4 + O(M−2),(4.26)

where O(M−2) refers to all terms that are multiples of M−2,M−3, · · · . For a sufficiently

large M , O(M−2) may be ignored.

4.3.3 Qualitative Observations

From (4.23) and (4.24), CRB(φ) and CRB(ψ) are both independent of the signal frequency

ω, the source-sensor distance R, the propagation-medium’s ρ0c, and even the source’s

azimuth-angle φ. Moreover, CRB(ψ) is also unaffected by the source’s elevation-angle

ψ. The (4.23) and (4.24) here for the near-field case are identical to their far-field

counterparts in equations (51) and (52) of [172].
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In contrast, the wavelength-normalized CRB(R) of (4.26) is approximately propor-

tional to the effective signal-to-noise ratio M
σ2 , and depends on the medium’s ρ0c and on

the wavelength-normalized source-sensor distance R
λ . Furthermore, CRB(R) is indepen-

dent of the azimuth-elevation arrival direction.

Figure 4.1a plots
(

2π
λ

)2CRB(R) at 20dB SNR, over ranges of R
λ and ρ0c relevant to air-

acoustics. Over the support-region shown there,
(

2π
λ

)2CRB(R) decreases almost linearly

with decreasing R
λ but does not vary much with ρ0c, until the near-field condition of

R
λ < 1

2π applies. There in the near field,
(

2π
λ

)2CRB(R) becomes largely constant with

respect to R
λ but decreases with increasing ρ0c.

Figure 4.1b plots
(

2π
λ

)2CRB(R) also at 20dB SNR, over ranges of R
λ and ρ0c relevant to

underwater acoustics. 8 Like the air-acoustics case in Figure 4.1a,
(

2π
λ

)2CRB(R) decreases
8Underwater acoustic applications have these typical values: ω

2π
∈ [10−3, 107] Hz, c = 1481 m/s, the

water density ρ0 = 998.2 kg/m3 at 20◦C, and hence ρ0c ≈ 1.48× 106.
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almost linearly with decreasing R
λ outside of the near-field, but becomes largely flat with

respect to R
λ inside the near field. Moreover,

(
2π
λ

)2CRB(R) here decreases very slightly

with increasing ρ0c whether inside of outside the near field.

4.4 Derivation of the Acoustic Vector-Sensor’s Near-Field

Near-Boundary Array-Manifold

4.4.1 Extending the Measurement Model from No-Boundary to Near-

Boundary

In the last section, the near-field measurement model with acoustic vector-sensor is pre-

sented, where model presumes no boundary near the acoustic vector-sensor. When a

boundary exists near the acoustic vector-sensor, the measurement model largely changes

due to the superposition of reflected wave and the incident wave at the receiver. [59] has

investigated the measurement model with a boundary near the acoustic vector sensor, and

the model variation brought by different boundary surface (reflection coefficient). How-

ever, [59] assumes far-field case where the incident waves are regarded to have plane wave

front. On the contrary, in this section, a near-field measurement model is proposed to

have a near boundary beside the acoustic vector-sensor

Similarly, as illustrated in Figure 4.2, assume the acoustic vector-sensor is at the origin

r0 = [0, 0, 0]T , and a reflecting boundary is the plane z = −d. rs = [xs, ys, zs]T and r =

[x, y, z]T are the position vectors of the source and an arbitrary point near the boundary

respectively. rms = [xs, ys,−zs − 2d]T denotes the position of the mirror source with

respect to the boundary plane.

Consider a wave being emitted form a source in near-field traveling in a quiescent,

isotropic, homogeneous, infinite fluid half space, bounded by an infinite planar interface.

When the wave hits the boundary, it produces a reflected wave traveling back into the

fluid and one or more transmitted waves that continue to propagate past the interface. If

the incident wave is monochromatic, the reflected wave is also monochromatic but exhibits

a change of amplitude and phase. At position r and time t, the complex pressure fields in

the fluid, due to the incident and reflected waves, are given by

pi(r, t) =
A

|r− rs| exp
{
j
[
ωt− kT

i (r− rs)
]}

(4.27)

pr(r, t) =
ΓA

|r− rms| exp
{
j
[
ωt− kT

r (r− rms)
]}

(4.28)

where rs = [xs, ys, zs]T and rms = [xs, ys,−zs−2d]T denote the positions of the source and

the mirror source with respect to the reflecting boundary respectively. A is the complex

amplitude of the incident wave at rs, ω is the angular frequency, and Γ is the complex

reflection coefficient, which specifies the attenuation and phase change of the reflected

wave. ki and kr denote the incident and reflected wavenumber vectors at r. Physical

considerations require that the normal particle velocities on either side of the boundary

are equal, which implies that the incident and reflected waves travel along the boundary
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Figure 4.2: Illustration

with identical velocities. This means that the reflected wavenumber vector kr is obtained

by reflecting the incident wavenumber vector in the plane of the interface.

Note that the wavenumber vector points in the direction of propagation of the wave

and has modulus 2π/λ, where λ is the wavelength in the fluid. In our coordinate system

in Figure 4.2,

ki =
2π

λ

r− rs

|r− rs| (4.29)

kr =
2π

λ

r− rms

|r− rms| (4.30)

where r − rs = [x− xs, y − ys, z − zs]
T and r − rms = [x− xs, y − ys, z + zs + 2d]T , and

| · | denotes the Euclidean distance.

The total field in the fluid is given by the superposition of the incident and reflected

waves that interfere to form a standing wave pattern. By combining equation (4.27),

(4.28), (4.29), (4.30), the total pressure field at the acoustic vector-sensor r0 equals

p(r0, t) = pi(r0, t) + pr(r0, t)

=
[

1
|r0 − rs| exp

(
−j

2π

λ
|r0 − rs|

)
+

Γ(r0)
|r0 − rms| exp

(
−j

2π

λ
|r0 − rms|

)]
A exp (jωt)

= ap A exp(jωt) (4.31)

where

ap =
exp

(
−j 2π

λ

√
x2

s + y2
s + z2

s

)
√

x2
s + y2

s + z2
s

+
Γ(r0) exp

(
−j 2π

λ

√
x2

s + y2
s + z2

s + 4dzs + 4d2
)

√
x2

s + y2
s + z2

s + 4dzs + 4d2
(4.32)
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The total particle velocity at r, i.e., v(r, t), is related to the total pressure p(r, t) by

the Eulers equation ρ0
∂v(r,t)

∂t = −∇p(r, t) (equation 1-3.7 in [145]) of the time harmonic

sound where v(r, t) = |v(r, t)|ejωt, so that

ρ0jωv(r, t) = −∇ [pi(r, t) + pr(r, t)] (4.33)

where ρ0 is the ambient fluid density, ∇ =
[

∂
∂x , ∂

∂y , ∂
∂z

]T
denotes the gradient operator in

the Cartesian coordinate. Hence the total velocity field at the acoustic vector-sensor r0

can be expressed as

v(r0, t) =
jA exp(jωt)

ωρ0
∇

[
1

|r− rs| exp
(
−j

2π

λ
|r− rs|

)
+

Γ
|r− rms| exp

(
−j

2π

λ
|r− rms|

)] ∣∣∣∣
r=r0

=
jAλ exp(jωt)

2πρ0c
[ax, ay, az]

T (4.34)

where [ax, ay, az]T can be calculated with MATLAB Symbolic Math Toolbox as

ax =
(

j
2π

λ

√
x2

s + y2
s + z2

s + 1
)

exp
(
−j

2π

λ

√
x2

s + y2
s + z2

s

) (
x2

s + y2
s + z2

s

)− 3
2 xs

+

[(
j 2π

λ

√
x2

s + y2
s + z2

s + 4dzs + 4d2 + 1
x2

s + y2
s + z2

s + 4dzs + 4d2

)
xsΓ(r0) +

∂Γ
∂x

∣∣∣∣
r=r0

]

exp
(
−j 2π

λ

√
x2

s + y2
s + z2

s + 4dzs + 4d2
)

√
x2

s + y2
s + z2

s + 4dzs + 4d2
(4.35)

ay =
(

j
2π

λ

√
x2

s + y2
s + z2

s + 1
)

exp
(
−j

2π

λ

√
x2

s + y2
s + z2

s

) (
x2

s + y2
s + z2

s

)− 3
2 ys

+

[(
j 2π

λ

√
x2

s + y2
s + z2

s + 4dzs + 4d2 + 1
x2

s + y2
s + z2

s + 4dzs + 4d2

)
ysΓ(r0) +

∂Γ
∂y

∣∣∣∣
r=r0

]

exp
(
−j 2π

λ

√
x2

s + y2
s + z2

s + 4dzs + 4d2
)

√
x2

s + y2
s + z2

s + 4dzs + 4d2
(4.36)

az =
(

j
2π

λ

√
x2

s + y2
s + z2

s + 1
)

exp
(
−j

2π

λ

√
x2

s + y2
s + z2

s

) (
x2

s + y2
s + z2

s

)− 3
2 zs

+

[
−

(
j 2π

λ

√
x2

s + y2
s + z2

s + 4dzs + 4d2 + 1
x2

s + y2
s + z2

s + 4dzs + 4d2

)
zsΓ(r0) +

∂Γ
∂z

∣∣∣∣
r=r0

]

exp
(
−j 2π

λ

√
x2

s + y2
s + z2

s + 4dzs + 4d2
)

√
x2

s + y2
s + z2

s + 4dzs + 4d2
(4.37)

Combining equation (4.31) to (4.34), the manifold of the acoustic vector sensor in

near-field and near a reflecting boundary can be obtained by omitting the common factors

anear−boundary
near−field =

[
ax, ay, az, −j

2π

λ
ρ0c ap

]T

(4.38)

It can be seen that the acoustic vector-sensor manifold above is in the Cartesian co-

ordinate, and it depends on the source’s position rs. It’s more indicative and informative

if the manifold could be expressed in the spherical coordinate such that the manifold

dependence on the transmitter receiver distance, the receiving DOA can be revealed. Re-

ferring to the geometry in Figure 4.2, denote the distance from the source to the acoustic
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vector-sensor as R, denote the receiving azimuth and elevation angles at r0 as φ and ψ,

respectively. Then with xs = R cos φ cos ψ, ys = R sinφ cos ψ, and zs = R sin ψ, the

manifold in equation (4.38) can be rewritten in spherical coordinate as

anear−boundary
near−field =




exp(−j 2πR
λ )

R2

(
j 2πR

λ + 1
)
cos φ cos ψ +

exp
“
−j 2π

λ

√
R2+4Rd sin ψ+4d2

”
√

R2+4Rd sin ψ+4d2[(
j 2π

λ

√
R2+4Rd sin ψ+4d2+1

R2+4Rd sin ψ+4d2

)
R cos φ cos ψ Γ(r0) + ∂Γ

∂x

∣∣
r=r0

]
,

exp(−j 2πR
λ )

R2

(
j 2πR

λ + 1
)
sinφ cos ψ +

exp
“
−j 2π

λ

√
R2+4Rd sin ψ+4d2

”
√

R2+4Rd sin ψ+4d2[(
j 2π

λ

√
R2+4Rd sin ψ+4d2+1

R2+4Rd sin ψ+4d2

)
R sinφ cos ψ Γ(r0) + ∂Γ

∂y

∣∣
r=r0

]
,

exp(−j 2πR
λ )

R2

(
j 2πR

λ + 1
)
sin ψ +

exp
“
−j 2π

λ

√
R2+4Rd sin ψ+4d2

”
√

R2+4Rd sin ψ+4d2[
−

(
j 2π

λ

√
R2+4Rd sin ψ+4d2+1

R2+4Rd sin ψ+4d2

)
R sinψ Γ(r0) + ∂Γ

∂z

∣∣
r=r0

]
,

−j 2π
λ ρ0c

[
exp(−j 2πR

λ )
R +

Γ(r0) exp
“
−j 2π

λ

√
R2+4Rd sin ψ+4d2

”
√

R2+4Rd sin ψ+4d2

]




(4.39)

If Γ is independent of the position r, and R → +∞, by noting that

lim
R→+∞

(√
R2 + 4Rd sinψ + 4d2 −R

)
= 2d sinψ and ∇Γ = 0, omitting the common fac-

tors and simplifying equation (4.39) results in the far-field near-boundary manifold

anear−boundary
far−field =




cos φ cos ψ
[
1 + Γ(r0) exp

(
−j 4πd sin ψ

λ

)]
,

sinφ cos ψ
[
1 + Γ(r0) exp

(
−j 4πd sin ψ

λ

)]
,

sinψ
[
1− Γ(r0) exp

(
−j 4πd sin ψ

λ

)]
,

−ρ0c
[
1 + Γ(r0) exp

(
−j 4πd sin ψ

λ

)]




(4.40)

which is identical to equation (8) in [59]. Note that equation (8) in [59] normalizes the

pressure field by −ρ0c, and normalizes all lengths by the wavelength λ. Although R and

d in equation (4.39) can also be normalized by λ, we don’t suggest the normalization,

because the manifold’s dependence on the signal’s frequency should not be overlooked.

Furthermore, although equations (4.39) looks complicated, one may see that each

component of the manifold vector is a summations of two terms. If the 2nd terms are

omitted, the manifold becomes the near-field no-boundary case

ano−boundary
near−field =




cos φ sinψ

sinφ sinψ

cos ψ
ρ0cq

1+( λ
2πR)2

exp
(
j arctan λ

2πR

)




(4.41)

This implies that the manifold variation brought by a near boundary is purely reflected

in the 2nd additive terms. It can be easily explained, because the existence of the near

boundary produces the additive reflected pressure field and velocity field in equation (4.31)

and (4.34).
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Similarly, if R → +∞, then equation (4.41) degenerates to the classic far-field no-

boundary acoustic vector-sensor manifold

ano−boundary
far−field =




cos φ sinψ

sinφ sinψ

cos ψ

ρ0c




(4.42)

where the pressure field is usually normalized to 1 by the scaler ρ0c.

4.4.2 Discussion on Reflection Coefficient & Boundary Surface

Denote the specific acoustic impedance on the boundary Zs(ψm, ω), where ψm is the inci-

dent angle on the boundary surface in Figure 4.2, then the plane-wave reflection coefficient

can be expressed as (equation (5) in [97], equation (2) in [167])

Γp(ψm, ω) =
Zs(ψm, ω) cos ψm − ρ0c

Zs(ψm, ω) cos ψm + ρ0c
(4.43)

Denote the boundary loss factor

L(ξ) = 1 + i
√

πξ exp(−ξ2)erfc (−iξ) (4.44)

where L(+∞) = 0, and L(0) = 1 (page 69 of [8]). The parameter ξ is also known as the

numerical distance, defined by

ξ(rs, ω) =

√
|rm − rs|ω

2c
(1 + i)

[
cos ψm +

ρ0c

Zs(ψm, ω)

]
(4.45)

Hence, the complex reflection coefficient applied in the near-field spherical wave prop-

agation is specifically determined according to [97]

Γ(rs, ω) = Γp(ψm, ω) + [1− Γp(ψm, ω)]L(ξ) (4.46)

Note that the complex reflecting coefficient Γ depends on the source position rs (or

ψm equivalently) and the signal frequency ω, where it’s generally a complicated function.

However there are some ideal cases of practical interests that simplify the situation. Listed

below are three reflection cases [59] which are commonly assumed in acoustics and they

are idealized as some typical situation in practice. The common point of these three

idealizations is that the Zs is independent of ψm.

(A) If |Zs| → ∞, then Γp → 1, and Γ → 1 for all incident angles, and for all values of the

boundary loss factor. This is usually known as the perfect reflection. Such a surface

is called a rigid boundary and occurs at high frequency in hull-mounted sonar and

in room acoustics.

(B) If |Zs| → 0, then Γp → −1, and Γ → 2L(ξ)− 1. Such a boundary is called Pressure-

release boundary and occurs at low frequency in a vessel’s hull or at the water surface.

However, unlike the case in the far-field that the reflection coefficient is independent

of the incident angle, the reflection coefficient for near-field depends on both the

distance and the incident angle.

77



(C) If |Zs| is independent of the incident angle, such a boundary surface is called locally

reacting boundary. The porous sound-absorbing materials and grass-covered ground

could be regarded as locally reacting.

For the rigid boundary, Γ(rs, ω) = 1 is a constant for any source position and frequency,

and the boundary loss factor has no impact on the complex reflection coefficient. The

acoustic vector-sensor’s manifold is simply shown in equation (4.39) by setting ∂Γ
∂x

∣∣
r=r0

= 0,
∂Γ
∂y

∣∣
r=r0

= 0, ∂Γ
∂z

∣∣
r=r0

= 0, and Γ(r0) = 1.

For the pressure-release and/or locally reacting boundary surfaces, the exact expression

of the near-field near-boundary manifold becomes very complicated because it depends on
∂Γ
∂x

∣∣
r=r0

, ∂Γ
∂y

∣∣
r=r0

, and ∂Γ
∂z

∣∣
r=r0

. However, for a even more ideal case where the boundary

loss factor is independent of the source position, then the manifold can be simplified by

setting ∂Γ
∂x

∣∣
r=r0

= 0, ∂Γ
∂y

∣∣
r=r0

= 0, and ∂Γ
∂z

∣∣
r=r0

= 0 in equation (4.39).

4.5 Summary

This chapter derives the near-field array-manifold for an acoustic vector-sensor, with no-

boundary and near-boundary.

For the no-boundary case, comparing with the far-field array-manifold, the near-

boundary array-manifold has a complex-phase existing between the pressure measure-

ment and the particle-velocity vector measurement. This phase-difference depends on the

wavelength-normalized source-sensor distance R
λ and the propagation-medium’s ρ0c, but

not on the azimuth-elevation arriving angles. For three-dimensional source-localization,

the azimuth-elevation arrival-angle estimation accuracy could remain the same for the

near-field case as for the far-field case. However, the distance-estimation could have a

wavelength-normalized accuracy that decreases almost linearly with decreasing R
λ outside

the near field, but becomes largely flat inside the near field. Furthermore, this distance-

estimation could also be independent of the source’s azimuth-elevation arrival direction.

For the near-boundary case, the proposed near-field array-manifold is much more com-

plicated than the far-field array-manifold. It depends not only on the source’s DOA, range,

and frequency, but also the gradient of the boundary surface reflection coefficient. How-

ever, when the ideal grid boundary is considered, the array-manifold could be largely

simplified.
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Chapter 5

Near-field “Blind” Source

Localization Using a Spatially

Extended Acoustic Vector-Sensor

5.1 Preliminary

5.1.1 Literature Review of Source Localization in Sensor Network

Source localization is increasingly important in the sensor network. [109] and [198] overview

various localization methods which may be classified into 5 categories.

(1) Global Positioning System (GPS) offers very accurate localization, but requires com-

plicated hardware at each sensor-node. GPS is expensive, power-hungry, hence un-

suited for small networks or ad hoc networks.

(2) In the DOA (or AOA) approaches as [19], [87], [84], [28], [2], [94], [141], [75], [107],

the source’s DOA is estimated at each sensor-node with respect to that node, Each

DOA-estimate constitute a straight line of possible locations of the emitter. The

intersection of all such lines gives the emitter’s location. This DOA-based approach

requires at each node the complex and expensive hardware, e.g, antenna-array or

ultrasound receiver.

(3) Ranging techniques, such as TOA/TDOA and (Receiving Signal Strength Indicator)

RSSI. The TOA/TDOA approaches are often more accurate than RSSI approaches.

However, the former approaches require highly accurate time-synchronization and

iterative solution to the nonlinear equations. On the contrary, the RSSI-based ap-

proaches [96], [169], [30], [162], [29], [204], [90], [4], [49], and [197] require no addi-

tional hardware but are sensitive to any changes in the propagation environment.

(4) The Maximum Likelihood (ML) approaches [158], [131], [169], [204], [4], [130], [159],

[112], and [182]. can be highly accurate, but require prior knowledge of the noise

statistics, computationally an initial guess to start off the iteration.
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The scenario in this section is more adverse than many sensor-networking scenarios,

where the emitter constitutes a sensor-node in the network [169], [30], [204], [90], [4],

[49], [197]. There, the emitter may act cooperatively, for example, emitting a signature

waveform a priori known to the other sensors. This chapter deals with the case of a

non-cooperative node, in that no such signature a priori info known.

This chapter will deploy a single velocity-sensor triad which is separated from the

pressure-sensor. The velocity-sensor triad and the pressure-sensor can thus be regarded as

a two-nodes sensor network. However, the to-be-located source here is not a sensor node

in the sensor network.

5.1.2 The Proposed Localization Approach with a Spatially Extended

Acoustic Vector-Sensor

As shown in the last chapter, when a velocity-sensor triad is located at the coordinates’

origin, its 3× 1 array manifold equals [125, 115]:

av(φ, ψ) def=




sinψ cos φ

sin ψ sinφ

cos ψ


 (5.1)

where π/2 ≤ ψ ≤ π/2 symbolizes the elevation angle measured from the x-y plane,

0 ≤ φ < 2π denotes the azimuth angle measured from the positive x-axis, u = cos ψ cos φ

refers to the direction-cosine along the x-axis, v = cos ψ sinφ refers to the direction-cosine

along the y-axis, and w = sin ψ refers to the direction-cosine along the z-axis.

It is clear from (5.1) that a velocity-sensor triad measures all three Cartesian compo-

nents of the acoustic-velocity vector-field, thereby recognizing the vector-field nature (i.e.,

the velocity-field) of the acoustic wavefield. An estimate of (5.1) would allow the estimation

of the incident source’s azimuth-elevation angle-of-arrival (AOA). This direction-finding

approach differs from the more customary interferometry approaches, which deploy only

pressure-sensors and which treat the acoustical wavefield merely as a scalar wavefield (i.e.,

intensity-field).

This velocity-sensor-triad approach of direction finding is versatile: This velocity-

sensor-triad array manifold in (5.1) is independent of the incident signal frequency, the

incident signal bandwidth, and the incident source’s location in the near field as opposed

to the far field – all these due to the spatial co-location of all constituent sensors of a

velocity-sensor triad. In contrast, an array of spatially displaced pressure-sensors (being a

spatial finite-impulse-response (FIR filter)) has a directivity dependent on the frequency-

dependent inter-sensor spatial phase-factor.

The measurement model of the velocity-sensor triad was introduced to the signal pro-

cessing research community in [125] and [59]. Direction-finding algorithms that exploit

the vector-sensor’s unique array-manifold have been developed for maximum-likelihood-

based DOA-estimation [63], [6], for Capon-based spectrum estimation [58], for ESPRIT-

based DOA-estimation [187], [188], [190], [191], [172], [205, 196], for MUSIC-based DOA-
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estimation [191], [27], for Root-MUSIC-based DOA-estimation [189], for Quaternion-

MUSIC-based DOA-estimation [118], for least-squares-based DOA-estimation [60], for

beamspace-based DOA-estimation [58], [26], [106], and for DOA-tracking [101], [192].

The present work advances a new approach that exploits the directionality in the

acoustic particle-velocity field, in conjunction with the DOA and RSSI methods discussed

in the last subsection. The new approach would require a velocity-sensor triad and a

dislocated pressure-sensor, each of which is physically compact and may be placed at

sensor-nodes in any arbitrary known locations. The acoustic velocity-sensor triad mea-

sures the three Cartesian components of the incident acoustic particle-velocity field and

reports its estimated RSSI and azimuth-elevation DOA-estimate of the source. The acous-

tic pressure-sensor measures its RSSI. By fusing the data from the velocity-sensor triad and

the pressure-sensor, three-dimensional source localization can be realized. The proposed

three-dimensional geolocation algorithm couples the uni-acoustic-vector-sensor DOA esti-

mate [172], with a power-level (RSSI) algorithm to be presented later.

The proposed method needs not communicate the entire data-stream across the sensor-

network, as in cross-correlation methods. Moreover, the proposed method can accommo-

date non-free-space propagation models of path-loss exponent of any arbitrary known

value.

Unlike purely RSSI-based methods, the proposed approach can localize the source in

3D space with only two sensor nodes (a velocity-sensor triad and a dislocated pressure-

sensor), while the purely RSSI-based methods requires at least 5 sensor nodes [183].

Unlike methods using two or more microphone-arrays, the proposed approach can

locate either the narrowband or the wideband source in either far-field or near-field.

The proposed method can contribute to “command, control, communications, comput-

ers, intelligence, surveillance and reconnaissance” (C4ISR) systems. For example, aircrafts

and helicopters emit sounds at extremely high pressures, and they often constitute the pre-

dominant acoustic source despite background noises. This proposed method could thus

be useful for unattended passive monitoring of aircrafts and helicopters in the air or on

the ground (say, in an airport).

5.2 The Measurement Data Model for the Near-Field Source-

Localization Problem Using a “Spatially Extended” Acous-

tic V ector-Sensor

The measurement system is a “spatially distributed” four-component acoustic vector-

sensor, which consists of (i) a velocity-sensor triad centered at the Cartesian coordinates

(0, 0, 0) plus (ii) an isotropic pressure-sensor located at (D, 0, 0). Please see Figure 5.1. A

point-source, located in the upper half-space of the three-dimensional Cartesian coordi-

nates (xs, ys, zs)1 in either the near field or the far field, emits a real-valued signal
√

PT s(t).

The signal has a constant transmitted power PT , unknown to the receive-sensors. The
1Or, in the spherical coordinates (rv, φs, ψs), where rv ≥ 0, 0 ≤ φs < 360◦ and 0 ≤ ψs ≤ 90◦.
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Figure 5.1: Geometry illustration in 3D space.

unit-power signal s(t) may have arbitrary and, possibly, an a priori unknown frequency-

spectrum.

The velocity-sensor triad makes a 3× 1 data-measurement at time t:

zv(t) = av(φs, ψs)
√

P (rv) s(t− τ(rv)) + nv(t) (5.2)

where rv =
√

x2
s + y2

s + z2
s symbolizes the unknown separation between the emitter and

the velocity-sensor triad, P (rv) = PT
rn
v K denotes the power of the signal at the velocity-

sensor triad2, τ(rv) = rv
c refers to the signal’s propagation time from the emitter to the

velocity-sensor triad, c represents the propagation speed, and nv(t) refers to a zero-mean

stochastic sequence of additive noise uncorrelated over time and uncorrelated across its

three components.

Similarly, the pressure-sensor makes a scalar measurement at time t:

zp(t) =
√

P (rp) s(t− τ(rp)) + np(t) (5.4)

where rp =
√

(xs −D)2 + y2
s + z2

s symbolizes the unknown separation between the emitter

and the pressure-sensor, P (rp) = PT
rn
p K denotes the power of the signal at the pressure-

sensor, τ(rp) = rp

c refers to the signal’s propagation time from the emitter to the pressure-

sensor, and np(t) refers to an uncorrelated noise zero-mean sequence not cross-correlated

with nv(t).
2P (rv) and P (rp) relate to the path-loss model of the environment. Usually, the path-loss Lp is regarded

as inversely proportional to the power of the distance R from the the transmitter to the receiver, that is,
Lp

Rn = K where K is a constant, and n is a positive exponent which usually differs in different propagation

environment. When n = 2, this is widely known as inverse-square law in physics. Apply the path-loss

model to our application, 8
<
:

P (rv) = PT
rn

v K

P (rp) = PT
rn

p K

(5.3)

For different environments, the constant K may also vary. However, before the source estimation algo-

rithm being applied, K in a specific environment could be obtained by measuring the Tx-Rx distance,

transmitting and receiving powers in an experiment in that specific environment.
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Over N time-instants, the overall observed data equal:

Z =

[
zv(t1) · · · zv(tN )

zp(t1) · · · zp(tN )

]
=

[
Zv

zp

]
(5.5)

The present problem is to estimate {φs, ψs, rv} based on Z.

5.3 Localization Algorithm

The source localization is divided into two stages. At the first stage, the direction-of-

arrival (DOA) of the receiving signal is estimated by the 3-element vector sensor. At the

second stage, the source is located by comparing the receiving power levels between the

3-element vector sensor and the pressure sensor.

5.3.1 Azimuth-Elevation Angle-of-Arrival Estimation Using a Velocity-

Sensor Triad

[124], [125], [172].

Towards estimating av(φs, ψs), form an acoustic particle-velocity-field correlation-matrix

R =
[

zv(t1) · · · zv(tN )
] [

zv(t1) · · · zv(tN )
]H

(5.6)

where the superscript H denotes the Hermitian transposition.

The velocity-sensor-triad array-manifold av(φs, ψs) may be estimated via the eigen-

vector âv corresponding to the largest-magnitude eigenvalue of R. In an hypothetical

noiseless scenario, âv = ejηav(φs, ψs), where η symbolizes an unknown phase.

Hence, (5.1) gives the azimuth-angle and elevation-angle estimates:

φ̂s = arctan
[âv]2
[âv]1

(5.7)

ψ̂s = arccos |[âv]3| (5.8)

where [âv]k symbolizes the kth entry in âv. In terms of the Cartesian coordinates, the

incident source must therefore lie on the straight line,

`1 =
{

x, y = tan φ̂sx, z =
x

cos φ̂s tan ψ̂s

> 0
}

(5.9)

Two-dimensional direction finding has thus been accomplished using a single velocity-

sensor triad with no prior information of the signal’s bandwidth and spectra. This is

viable because the array manifold in (5.1) is entirely independent of signal frequency, due

to the spatial co-location of its constituent sensors. The complicating effects of a near-

field wave-front’s curvature is avoided here because of the spatial co-location of the three

velocity-sensors.
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5.3.2 Received Signal Strength Indication (RSSI)

The estimates (P̂v, P̂p) of P (rv) and P (rp) may be obtained from (5.5):

P̂v =
1
N

[
Z(1)

v ,Z(2)
v ,Z(3)

v

] [
Z(1)

v ,Z(2)
v ,Z(3)

v

]H
(5.10)

P̂p =
1
N

zpzH
p , (5.11)

where Z(1)
v , Z(2)

v , and Z(3)
v are the 1st, 2nd and 3rd row of Zv, respectively.

Let PT be the emitter’s transmission power that produces (a) P (rv) at the velocity-

sensor triad located at a distance of rv from the emitter, and (b) P (rp) at the pressure-

sensor at a distance of rp from the emitter. The propagation-path power-loss model gives:

P̂v =
PT

rn
1 K

(5.12)

P̂p =
PT

rn
2 K

. (5.13)

The incident source must then lie on a spherical surface of radius r1 centered at the

velocity-sensor triad at (0, 0, 0), as well as on a spherical surface of radius r2 centered at

the pressure-sensor at (D, 0, 0). These two spheres are defined, respectively, as

x2 + y2 + z2 = r2
1 (5.14)

(x−D)2 + y2 + z2 = r2
2. (5.15)

These two spheres intersect as this following circle perpendicular to the x-axis:

`2 :





x = 1
2D

[(
PT

P̂vK

) 2
n −

(
PT

P̂pK

) 2
n

]
+ D

2

y2 + z2 =
(

PT

P̂vK

) 2
n − x2,

(5.16)

which is a circle perpendicular to the x-axis.

As PT varies, the circle `2 would span a curved manifold m3. To determine this

manifold, combine (5.12), (5.13), (5.14), and (5.15) to eliminate PT to give:

m3 :
x2 + y2 + z2

(x−D)2 + y2 + z2
=

β

α
(5.17)

where α =
(
P̂v

) 2
n and β =

(
P̂p

) 2
n .

The intersection between the straight line `1 and the surface m3 gives the emitter’s

three-dimensional location.

For P̂v = P̂p, equation (5.17) degenerates to a plane perpendicular to the x-axis.

Combine (5.9) and (5.17) to give the estimates:




x̂ = D
2

ŷ = aD
2

ẑ = bD
2

(5.18)

where a = tan φ̂s and b = 1
cos φ̂s tan ψ̂s

.
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For P̂v 6= P̂p, equation (5.17) can be rewritten as

m4 :
(

x− Dβ

α− β

)2

+ y2 + z2 =
(

D
√

αβ

α− β

)2

(5.19)

which represents a sphere. Please see Figure 5.1.

combine (5.9) and (5.19) to give the estimates:





x̂ = −Dβ±D
√

β2+β(α−β)(1+a2+b2)

(α−β)(1+a2+b2)

ŷ = ax̂

ẑ = bx̂

(5.20)

As in the over-the-horizon air-defense application, the enemy’s signal source is pre-

sumed to be nearer to the velocity-sensor than the pressure sensor. Hence the received

power level at the velocity-sensor is expected to be higher than the received power level

at the pressure-sensor, that is, P̂v > P̂p, or α > β.

When α > β,

β2 + β (α− β)
(
1 + a2 + b2

) ≥ β2 + β (α− β) = αβ > β2 > 0 (5.21)

Let x̂+ and x̂− denote the two x-axis solutions in (5.20), and apply the second inequal-

ity to these two solutions, then it’s clear that x̂+ > 0 and x̂− < −2Dβ
(α−β)(1+a2+b2)

< 0. Note

that the last inequality guarantees that the solutions are real.

The corresponding solutions of x̂+ and x̂− on z-axis must have opposite sign because

x̂+x̂− < 0. From equation (5.9), the straight line `1 always has z > 0. Hence, whether x̂+

or x̂− should be picked is determined by the direction of `1.

5.4 Elimination of The Ambiguity

Let x̂+ and x̂− denote the two x-axis solutions in (5.20). There are three disjoint cases,

depending on whether β2 + β (α− β)
(
1 + a2 + b2

)
exceeds, equals, or is less than zero.

These cases are separately discussed in the three following subsections. Because α, β, a,

and b are all obtainable from the observed data Z, the selection among these three case is

by the data.

5.4.1 If β2 + β (α− β) (1 + a2 + b2) > 0

Under condition A, x̂+ and x̂− are both real-value and x̂+ 6= x̂−.

If P̂v > P̂p (α > β), then

√
β2 + β (α− β) (1 + a2 + b2) ≥

√
β2 + β (α− β) =

√
αβ > β (5.22)

The first inequality holds because (1 + a2 + b2) ≥ 1. From the first equation of (5.20), it’s

clear that x̂+ > 0 and x̂− < −2Dβ
(α−β)(1+a2+b2)

< 0. Because 0 < φs < 90◦ and 0 < θs < 90◦,

x̂− means this intersection is not at the first octant of the Cartesian coordinate. So this

intersection is not the location estimate and the ambiguity is eliminated because the real
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estimate is x̂s = x̂+. This elimination of ambiguity is easy to understand because when

the velocity-sensor triad is inside the sphere `3, the line `1 intersects the sphere `3 at two

points which are on the opposite directions. However, our DOA estimation suggests only

one of these two directions. Hence, the ambiguity is eliminated.

If P̂v = P̂p (α = β), the sphere `3 degenerates to a plane, and there is only one solution

without ambiguity which is already given out in the last section as x̂s = x̂+ = x̂− = D
2 .

If P̂v < P̂p (α < β), then

√
β2 + β (α− β) (1 + a2 + b2) ≤

√
β2 + β (α− β) =

√
αβ < β (5.23)

From the first equation of (5.20), it’s clear that 0 < x̂+ < x̂− < −2Dβ
(α−β)(1+a2+b2)

, which

means the two intersections between `1 and `3 are all at the first octant, and the ambiguity

can not be eliminated as in the case where P̂v > P̂p.

Note that the pressure sensor locates at (D, 0, 0), let’s consider the following factor-

ization.

x̂−D =
−Dβ ±D

√
β2 + β (α− β) (1 + a2 + b2)

(α− β) (1 + a2 + b2)
−D

=
D

√
β + (α− β) (1 + a2 + b2)

(
−

√
β + (α− β) (1 + a2 + b2)±√β

)

(α− β) (1 + a2 + b2)
(5.24)

From equation (5.24), it can be seen that x̂+ −D < 0 and x̂− −D > 0, which means

x̂+ and x̂− are at two sides of the pressure sensor’s x-coordinate D respectively. In our

application, since the pressure sensor locates right beside boundary (could be a wall of a

room), and the source is actually inside this bounding space, the ambiguity is physically

eliminated. The location estimate is x̂s = x̂+.

5.4.2 If β2 + β (α− β) (1 + a2 + b2) = 0

Under this condition, (α− β)
(
1 + a2 + b2

)
= −β. And there’s only one intersection be-

tween the line `1 and the sphere `3, without ambiguity. This solution can be derived out

from equation (5.20) as 



x̂s = D

ŷs = aD

ẑs = bD

(5.25)

Note that the reason why there is no ambiguity is different from the one in the last

subsection where P̂v = P̂p. In that case, there’s no ambiguity because the sphere `3

degenerates to a plane and there is only one intersection between the line `1 and the

plane. Here, the line `1 cut the sphere `3 at the only point.

5.4.3 If β2 + β (α− β) (1 + a2 + b2) < 0

Under this condition, there’s on real-value solution for equation (5.20), which indicates

that the line `1 and the sphere `3 have no intersection. This happens when the estimate

P̂v, P̂h, φ̂s and θ̂s are not accurate. However, it doesn’t mean that we have no way to
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do the estimation at all. In this case, a numerical search method is used to estimate the

source. As one may foresee, usually the estimation will not be accurate when we are forced

to use this method.

To numerically find the estimate of the source location, the following algorithm could

be applied. Since the source’s DOA is estimated, the line `1 is determined. Assume on grid

point i of `1, a series of hypothesized power levels are assumed as Pj,i, j = 1, 2, . . .. Their

corresponding receiving power levels at the velocity-sensor triad and the pressure sensor

can be calculated from the path-loss model as Pj,i(rv) and Pj,i(rp), respectively. Find the

least squared error of grid point i as LSEi = min
j=1,2,...

(
|Pj,i(rv)− P̂v|2 + |Pj,i(rp)− P̂p|2

)
.

And then the estimate of the source location is the grid point which corresponds to the

smallest LSE among LSEi, i = 1, 2, . . ..

5.5 Cramer-Rao Bound Analysis for Sinusoid Source Signal

5.5.1 CRB Derivation

In this section, the Cramer-Rao bound of the proposed measurement model will be an-

alyzed. Note that in our proposed measurement model, the only characteristic of the

source signal
√

Pss(t) and the noise nv(t), np(t) is that they should have time invariant

power. In other words, the source signal needs not to be narrow band, the noises need not

to be white or Gaussian as in many previous research works, which is one of the major

advantages of the proposed measurement model. However, to simplify the analysis, the

following assumptions are made:

A1 nv(t) and np(t) are zero-mean white Gaussian processes not cross-correlated with

each other. The spatial covariance matrix for [nT
v (t), np(t)]T is Γ = σ2I4, where Ii is

i-order identity matrix, σ2 is an unknown deterministic constant.

A2 The source signal is sinusoid with power Ps, radial frequency ωs, and initial phase

εs, all unknown deterministic constants.

Thus, for the proposed near-field path-loss measurement model with dislocated acoustic

vector sensor, the data model can be rewritten from equation (5.2) and (5.4) as

Z(t) =

[
av(φs, ψs)Av sin

[
ωs

(
t− rv

c

)
+ εs

]

Ap sin
[
ωs

(
t− rp

c

)
+ εs

]
]

+

[
nv(t)

np(t)

]
(5.26)

where Av =
√

2Ps
rn
v K , Ap =

√
2Ps
rn
p K , rp =

√
r2
v − 2Drv cos φs sinψs + D2.
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Define θ = [φs, ψs, rv, Ps, ωs, εs, σ
2]T . Under assumptions A1 and A2, Z ∼ N(µ(θ),Γ(θ)),

where

µ(θ) def=

[
Av av ⊗ s1

Ap s2

]
, (5.27)

Γ(θ) = σ2I4N , (5.28)

s1
def=




sin
[
ωs

(
t1 − rv

c

)
+ εs

]

sin
[
ωs

(
t2 − rv

c

)
+ εs

]
...

sin
[
ωs

(
tN − rv

c

)
+ εs

]




, (5.29)

s2
def=




sin
[
ωs

(
t1 − rp

c

)
+ εs

]

sin
[
ωs

(
t2 − rp

c

)
+ εs

]
...

sin
[
ωs

(
tN − rp

c

)
+ εs

]




, (5.30)

3 and ⊗ denotes the Kronecker product, Ps, ωs, εs and σ2 are nuisance parameters.

Hence, the FIM (Fisher Information Matrix) with respect to θ equals [77]

bJ(θ)ci,j =
(

∂µ(θ)
∂θi

)T

Γ−1(θ)
(

∂µ(θ)
∂θj

)
+

1
2
tr

[
Γ−1(θ)

∂Γ(θ)
∂θi

Γ−1(θ)
∂Γ(θ)
∂θj

]
(5.31)

where b·ci,j represents the (i, j)-th entry of the matrix.

The elements of the vector ∂µ(θ)/∂θ are

∂µ(θ)
∂φs

=

[
Av

∂av
∂φs

⊗ s1

∂Ap

∂φs
s2 + Ap

∂s2
∂φs

]
(5.32)

∂µ(θ)
∂ψs

=

[
Av

∂av
∂ψs

⊗ s1

∂Ap

∂ψs
s2 + Ap

∂s2
∂ψs

]
(5.33)

∂µ(θ)
∂rv

=

[
∂Av
∂rv

av ⊗ s1 + Av av ⊗ ∂s1
∂rv

∂Ap

∂rv
s2 + Ap

∂s2
∂rv

]
(5.34)

∂µ(θ)
∂Ps

=

[
∂Av
∂Ps

av ⊗ s1

∂Ap

∂Ps
s2

]
(5.35)

∂µ(θ)
∂ωs

=

[
Av av ⊗ ∂s1

∂ωs

Ap
∂s2
∂ωs

]
(5.36)

∂µ(θ)
∂εs

=

[
Av av ⊗ ∂s1

∂εs

Ap
∂s2
∂εs

]
(5.37)

∂µ(θ)
∂σ2

= O4N,1 (5.38)

where Oi,j is i× j zero matrix.

3In the 2nd equation above, note that Γ who represents the temporal-spatial covariance is a 4N-by-4N

matrix but not 4-by-4.
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Using equation (5.32) to (5.38), the FIM J(θ) can be element-wise obtained. Hence,

the Cramer-Rao bound for φs, ψs and rv are [77]

CRB(φs) = bJ−1(θ)c1,1 (5.39)

CRB(ψs) = bJ−1(θ)c2,2 (5.40)

CRB(rv) = bJ−1(θ)c3,3 (5.41)

5.5.2 Simulation

In the simulation, the source signal is modeled as a sinusoid wave with constant power

Ps = 104. The source location in near-field is (φs = 102◦, ψs = 23◦, rv = 12) (i.e. (xs =

−0.9749, ys = 4.5863, zs = 11.0461)). The separation between the velocity-sensor triad

and the pressure-sensor is D = 20. For path-loss model, the common free space model is

used, where n = 2 and K = 1. Totally N = 500 time samples were used in the simulation.

100 Monte Carlos runs are conducted for signal to noise ratio (SNR) from -10 dB

to 60 dB. The standard deviation of estimates of azimuth, elevation and radial distance,

together with the Cramer-Rao bounds are shown in Figure 5.2a to 5.3a, respectively. From

the figures, the standard deviations of φ̂ is less than 0.1 when SNR is approximately no less

than 2 dB, the standard deviations of ψ̂ is less than 0.1 when SNR is approximately no less

than -4 dB, and the standard deviations of r̂v is less than 1 when SNR is approximately

no less than 7 dB.
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Figure 5.2a: Standard deviation of φ̂s versus

received SNR over 100 Mont Carlo simulation,

N = 500
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Figure 5.2b: Standard deviation of ψ̂s versus

received SNR over 100 Mont Carlo simulation,

N = 500

Let es =
√

(x̂s − xs)2 + (ŷs − ys)2 + (ẑs − zs)2 denotes the source location estimation

error, which determines the largest radius of a sphere containing all the estimated source

location. The relative-estimation-error ( es
rv

) hence indicates the accuracy of the estimation

and the performance of the source localization algorithm. Figure 5.4 shows the mean
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Figure 5.3a: Standard deviation of r̂v versus

received SNR over 100 Mont Carlo simulation,

N = 500
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Figure 5.3b: Mean value of r̂v versus received

SNR
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Figure 5.4: Mean relative-estimation-error versus received SNR

relative-estimation-error versus signal to noise ratio (SNR). It can be seen that the mean

relative-estimation-error of the source location in 3D space is within 1% of the radial

distance from the source to the velocity-sensor triad, when the SNR is no less than ap-

proximate 5 dB.
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5.6 Summary

In this chapter, we proposes a DOA and RSSI-based geolocation algorithm with a spatially

extended acoustic vector-sensor to locate a near-field source in 3D space. The proposed

algorithm needs no iterative and/or grid search, and no priori information of the noise

statistics. The algorithm is simple and fast, which is very adequate to small and/or ad

hoc networks. The closed-form solution is derived, and the CRB of the measurement

model is analyzed.
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Chapter 6

Beacon-Aided Adaptive

Localization of Noise-Sources

Aboard a Pass-By Rail-Car Using

a Track-Side Microphone-Array

6.1 Preliminary

Railway noise-pollution degrades the public health of neighborhoods near rail-tracks. The

World Health Organization and the European Commission both warn of adverse physio-

logical effects for humans under long exposure to high noise levels. These adverse effects

include hearing impairment in children and cardiovascular harm. Such health-hazardous

train noise-pollution is especially problematic in densely populated cities, like Hong Kong.

Indeed, 16% of Hong Kong’s population is exposed at home to unacceptably loud traffic

noise. Furthermore, train-noise investigation is increasingly imperative in many coun-

tries, due to a modal shift from road-transport and air-transport, to rail-transport for

environmental reasons.

Annoying and health-hazardous noise-pollution could be reduced if the offending noise-

sources’ individual locations could be pin-pointed on the rail-car carriage. Such train noises

are highly varied and unpredictable in their temporal / spectral / spatial / directional

structures, because the noises arise amid complex factors like the train speed, the roughness

of the wheel/rail, the aerodynamic contours of the rail-car’s carriage, the rail-car’s internal

components.

(a) There can be no assumption of any temporal stationarity in the noise waveforms,

which could instead be impulsive, on-and off irregularly.

(b) The noise-sources are generally not point-like in spatial extent, nor emitting isotrop-

ically over the azimuth and the elevation. Instead, the onboard noise-sources likely

produce spatially diffuse and directional echoes.
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(c) The rail-car noise-sources may lie in the near field of the roadside receiving-microphone(s),

invalidating the customary planar-wavefront assumption.

(d) These onboard noise-sources move through three-dimensional space with a variable

speed (unknown to the algorithm), as the rail-car treads along its track (which may

be curved and has varying elevation).

(e) These onboard noise-sources move in a cluster, but present themselves to the roadside

receiving-microphone(s) at varying aspect-angles as the track twists and turns.

(f) Localization needs to be achieved despite loud interfering sound-sources (e.g., car

traffic, construction noise, pedestrian noise) that are common in urban neighbor-

hoods, but that are altogether uncontrollable, a priori unknown, and unpredictable.

The use of an array of multiple microphones, instead of a single microphone, allows az-

imuth (or azimuth-elevation) directional beam-forming. Wayside emissions (from acoustic

sources aboard a pass-by train) have been measured by an immobile microphone-array

placed along the track-side (since at least as early as the late 1970s) in [80, 9, 10, 21, 175,

11, 120, 64, 173, 40, 22, 151, 81, 117]. However, [80, 21, 175, 11, 120, 64, 40, 151, 81, 117]

explain little or nothing of the beamforming algorithm used. They appear to be using the

traditional “delay-and-sum” (DAS) algorithm or the “sweeping focus” algorithm in [9],

[10]. The “delay-and-sum” (DAS) beamformer forms a spatial filter, focussed towards a

pre-set direction-of-arrival, which may be temporally adjusted to track the pass-by rail-

car’s movement in the “sweeping focus” mode. The rail-car’s movement is often estimated

by auxiliary infrastructure, such as infrared light barriers [9, 10, 11], optical gates [21],

[173], radar, or video cameras. The microphone-array’s “delay-and-sum” beamformer, in

order to track the mobile train, would “sweep” its focus in synchronization with the radar

/ video estimate of the train’s movement. All these presume (A) a pre-existing infrastruc-

ture of radar / video train-tracking apparatus, and (B) prior synchronization of the radar

/ video system with the microphone array.

To avoid such pre-existing infra-structure and prior synchronization, this paper pro-

poses a simple measurement-system consisting of:

(i) an array of calibrated microphones placed at a unknown location besides a rail-track

of unknown spatial geometry.

(ii) two humanly inaudible acoustic beacons at known locations on the exterior of the

rail-car carriage near the carriage’s two ends.

No other track-side auxiliary hardware (such as infrared light barrier, radar, photo cells, or

video cameras needed in many existing systems) will be required in the proposed scheme

to track the moving train’s motion. This hardware simplification will enhance system

affordability, operational simplicity, and measurement accuracy.

This work is the first in the open literature, to the best of the authors’ knowl-

edge, to propose the use of on-board acoustic beacon signals to self-synchronize with
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the microphone-array and to track the rail-car. 1 These beacons will provide reference-

signals (with time-frequency characteristics a priori known to the microphone-array), for

“reference-signal distortionless-response minimum-variance” (DRMV) beamforming at the

microphone-array, to track the rail-car’s motions. These beacons have these characteris-

tics:

(1) The beacons will be placed near the rail-car carriage’s two ends to facilitate inter-

polative scanning of the carriage’s middle sections.

(2) The beacons will be placed away from the likely locations of the dominant noise-

sources2

(3) Each beacon’s acoustic emittance will be narrowband, so that each beacon-signal

may be isolated using narrowband bandpass filtering, resulting in minimal “contam-

ination” from the noise-sources. This means that much of the noise-sources’ power

(which lies outside this narrow passband) would not affect the DRMV beamforming.

(4) The beacons are to transmit at an intensity inaudible to humans, who may be on or

off the train.

These beacon-aided rail-car tracking also means that no prior knowledge is any longer

needed of the spatial geometry between the rail-track and the roadside microphone-array.

This contrasts with [80, 9, 10, 21, 175, 11, 120, 64, 173, 40, 22, 151, 81, 117] – all of which

appear to need such prior knowledge.

Moreover, [80, 9, 10, 175, 120, 64, 173, 81] achieve only one-dimensional source-

localization along the length of the rail-car, whereas [21, 11, 40, 22, 151, 117] are capable

for two-dimensional length-height source-localization. In contrast, this proposed scheme

can potential localize the sources in three dimension, along the rail-car’s length, height,

and width.

The rest of this paper is organized as follows: Section 6.2 will describe the first al-

gorithmic step in the proposed scheme – beacon-aided rail-car tracking. Section 6.3 will

describe the second algorithmic step in the proposed scheme – localization of the onboard

noise-sources with respect to the moving rail-car’s carriage. Section 6.4 will validate the

proposed scheme via Monte Carlo simulations. Section 6.5 will do the same via anechoic

chamber testing. Section 6.6 will conclude the entire paper.

1Beacon sources are graphically indicated in a Bruel & Kjaer Power-Point file, entitled “Pass-By Beam-

forming”, which contains no further information on the “why”, the “what”, the “for what”, or the “how”

of the “beacons”.
2Prior train-noise studies show that the rail-car’s dominant wayside noises come from the rail wheels.

94



Figure 6.1: The spatial geometry between the ith onboard emitter impinging from an

elevation-angle of θi(t) and an azimuth-angle of φi(t)) towards the ` = 1st microphone

(which lies on the x-axis).

6.2 The Proposed Algorithmic Step #1: Beacon-Aided Rail-

Car Tracking

6.2.1 The Measurement Model for Subsequent Algorithmic Develop-

ment

To estimate the three-dimensional positions of the sound sources, needed is an array at

least two-dimensional in aperture. Place such an array of L microphones next to a straight

section (which needs not to be) of the rail-track. Traveling down this rail-track is a rail-car,

equipped with two acoustic beacons, as described in the preceding section. In between

these two beacons, there exist a (possibly unknown) number of polluting noise-sources.

Figure 6.1 show the spatial geometry between the pass-by rail-car and the microphone-

array. This figure also define the mathematical notation subsequently used.

As the rail-car may pass in front of the microphone-array as close as only a few me-

ters,3 near-field considerations hold in the subsequent analysis. That is, the microphone

array manifold depends implicitly on the sources’ Cartesian coordinates in 3D space, or

alternatively on both the DOA (azimuth angle & elevation angle) and the radial distance

between any onboard noise-source and any microphone. However, these three geometric

parameters (i.e., the x-, y-, and z-coordinate) are geometrically inter-dependent, given the

(a priori known) spatial relationships between the rail-track and the microphone array in

Figure 6.1.

3Given 2L2/λ as the demarcation between the far field and the near field, the onboard noise-source are

in the near-field of the microphone-array.
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At time t, the microphone-array collects an L× 1 vector-measurement,

χ(t) = b1(t)a(xb1(t), yb1(t), zb1(t), f1) + b2(t)a(xb2(t), yb2(t), zb2(t), f2) +
I(t)∑

i=1

∫

{xi(t),yi(t),zi(t)}
[pi(xi(t), yi(t), xi(t), f, t)a(xi(t), yi(t), zi(t), f)] dfdxi(t)dyi(t)dzi(t)

+n(t) (6.1)

where

a(xi, yi, zi, f) =
[
1, e−j 2πf

c
(Si,2−Si,1), e−j 2πf

c
(Si,3−Si,1), · · · , e−j 2πf

c
(Si,L−Si,1)

]T
(6.2)

denotes the near-field steering-vector for a point-source impinging from (xi(t), yi(t), zi(t))

as a pure-tone signal at frequency f and time t. Moreover, c denotes the speed of sound,

and Si,` =√
(xi − x`)2 + (yi − y`)2 + (zi − z`)2 equals the distance from the ith source to the `th

sensor locates at (x`, y`, z`), ∀` = 1, 2, 3, · · · , L. Furthermore, b1(t) and b2(t) refer to the

two beacons’ pure-tone signals (with their frequencies a priori known to the microphone

array), a(·, ·, ·) represents the microphone-array’s known array-manifold, (xb1 , yb1 , zb1) and

(xb2 , yb2 , zb2) refer to coordinates of b1(t) and b2(t), respectively. Lastly, {xi(t), yi(t), zi(t)}
refers to the unknown spatial spread of the ith onboard noise-source, pi(xi(t), yi(t), zi(t), f, t)

denotes the ith onboard noise-source’s power at time t, and n(t) denotes an L× 1 vector

of unknown thermal noises.

The above measurement model can thus accommodate onboard noise-sources that

are spatially spread, spatio-temporally non-stationary (in the stochastic sense), and/or

on-and-off irregularly. Indeed, also possibly unknown is the total number I(t) of such

noise-sources at any time instant t.

6.2.2 Adaptive Localization of Beacons Aboard the Moving Rail-Car in

the Microphone-Array’s Near Field via Reference-Signal Beam-

forming

This proposed scheme needs first to track the rail-car, before localizing the onboard noise-

sources with reference to the rail-car itself. This rail-car tracking is aided by two beacons,

but no radar, no photo cell, and no video camera. The pure-tone beacons’ frequencies are

a priori known to the algorithm. The microphone-array can form two “reference-signal”

beams [185], [179] to separately (but simultaneously) track each of the two beacons. For

the beam that tracks the first beacon, that beam’s spectrum would peak at the first

beacon’s instantaneous location (xb1(t), yb1(t), zb1(t)) (with respect to the microphone-

array). This coordinate estimate (x̂b1(t), ŷb1(t), ẑb1(t)) locates that beacon’s instantaneous

spatial location without any prior knowledge of the spatial geometry. The algorithmic

details are presented below, using the first beacon as an example. Similar processing

applies to the second beacon.

First, as each beacon’s frequency is a priori known to the receiver, the out-of-band

noises may be suppressed to improve the signal-to-noise ratio (SNR) at the beamformer
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Table 6.1: Summary of the RLS Adaptation Steps

For each discrete-time index n, initialize the algorithm by setting

w(b1)(n, 0) = 0 and P(0) = δ−1I, where δ is a small positive constant.

For the iteration-index m = 1, 2, ...M , do:

π(m) =
[
χ(b1)(n−M + m)

]H
P(m− 1)

κ(m) = γ + π(m)χ(b1)(n−M + m)

k(m) =
P(m− 1)χ(b1)(n−M + m)

κ(m)

α(m) = b(n−M + m)−
[
w(b1)(n,m− 1)

]H
χ(b1)(n−M + m)

w(b1)(n,m) = w(b1)(n,m− 1) + k(m)α∗(m)

P′(m− 1) = k(m)π(m)

P(m) =
1
γ

[
P(m− 1)−P′(m− 1)

]

After the above iteration, set w(b1)
opt (n) = w(b1)(n,M).

input, by band-passing all microphones’ received data χ(t) individually at the first beacon’s

(a priori known) frequency f1 to give χ(b1)(t).

If the L × 1 microphone-array data χ(b1)(t) and the beacon’s reference signal b1(t)

were jointly stationary over time (in the stochastic sense), the L × 1 reference-signal

beamforming weight vector would equal:

w(b1)
opt = arg min

w
E{|wHχ(b1)(t)− b1(t)|2}

=




E

{
χ(b1)(t)

(
χ(b1)

)H
(t)

}

︸ ︷︷ ︸
def
= R

χ(b1),χ(b1)




−1

E{χ(b1)(t)b1(t)}︸ ︷︷ ︸
def
= r

χ(b1),b1

(6.3)

where the superscript H denotes the Hermitian operator.

In reality, {χ(b1)(t),χ(b2)(t)} and the onboard noise-source s’ intensities {pi(xi(t), yi(t), zi(t), t),∀i}
are jointly non-stationary in general. Moreover, Rχ(b1),χ(b1) and rχ(b1),b1

are a priori

unknown. Hence, for any t = nTs (where Ts represents the time-sampling period), re-

place (6.3) by:

w(b1,n)
opt =

[
R̂χ(b1),χ(b1)(n)

]−1
r̂χ(b1),b1

(n) (6.4)
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where

R̂χ(b1),χ(b1)(n) =
[
(1Lγ)¯X(b1)(n)

] (
X(b1)(n)

)H
(6.5)

r̂χ(b1),b1
(n) =

[
(1Lγ)¯X(b1)(n)

]
(b1(n))H (6.6)

X(b1)(n) =
[
χ(b1)(n−M + 1),χ(b1)(n−M + 2), . . . ,χ(b1)(n)

]
,

b1(n) = [b1(n−M + 1), b1(n−M + 2), . . . , b1(n)] ,

γ =
[
γM−1, γM−2, . . . , γ0

]
,

and M denotes window size of the processed data, ¯ signifies an element-by-element

matrix-product, 1L symbolizes an L × 1 vector of all ones, and 0 < γ ≤ 1 represents a

“forgetting factor” to de-emphasize the more dated data. 4

A computationally efficient method to update (6.5) and (6.6) for (6.4) is the “recursive

least squares” (RLS) algorithm [61] and is summarized in Table 6.1. Other adaptive

algorithms could be used in place of RLS, of course.

The beacon’s location, at time t = nTs, is estimated as:

(x̂b1(n), ŷb1(n), ẑb1(n)) = arg max
x,y,z

∣∣∣∣
(
w(b1)

opt (n)
)H

a(x, y, z, fb1)
∣∣∣∣

︸ ︷︷ ︸
=B(b1)(x,y,z,n)

, (6.8)

Similarly, (x̂b2(n), ŷb2(n), ẑb2(n)) may be computed.

4Occasionally, the data-correlation matrix R̂χ(b1),χ(b1)(n) could be ill-conditioned; and the matrix-

inversion in (6.4) becomes numerically unstable. To alleviate this problem, set

R̂χ(b1),χ(b1)(n) = I, ∀n, (6.7)

instead of using (6.5). The resulting beamformer can be shown to be equivalent to that obtained using

(6.5) for noiseless data.
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6.3 The Proposed Algorithmic Step #2: Localization of

Noise-Sources w.r.t. the Moving Rail-Car’s Carriage

The two beacons’ above-estimated locations help to locate the rail-car. Spatial match-

filtering (i.e., delay-and-sum beamforming) will next scan the rail-car’s three-dimensional

space to locate any onboard acoustic noise-source. The location-power-spectrum is defined

as:

Pf (x, y, z) =
1
M

n∑

m=n−M+1

∣∣∣∣∣∣∣
aH (x̂b1(n) + x, ŷb1(n) + y, ẑb1(n) + z, f) γn−mχ̄(m)︸ ︷︷ ︸

weighted data

∣∣∣∣∣∣∣

2

,(6.9)

where {χ̄(m)} is obtained by notch-filtering {χ(m)}, with notches at the (a priori known)

frequencies fb1 and fb2 to suppress the two beacons.

As the array-manifold a(·, ·, ·, f) is a function of frequency, the location-power-spectrum

in (6.9) depends on the scanning-frequency. Hence, the above electronic scanning spec-

trum is frequency-specific. As the noise-sources could be spectrally colored, the scanning

needs to be performed over many frequency-bins and then summed to give the composite

spectrum,

Prms(x, y, z) =

√√√√√√ 1
J

J∑

j=1




Pfj
(x, y, z)∣∣∣max

∀x,y,z
{
Pfj

(x, y, z)
}∣∣∣




2

(6.10)

The amplitude-normalization in (6.10) aims to avoid domination of the composite spec-

trum by any single scanning-frequency’s spectrum.
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6.4 Validation of the Proposed Scheme by Monte Carlo

Simulations

The track-side array consists of 10×10 identical isotropic microphones, placed on a vertical

rectangular grid, of horizontal non-uniform grid-spacings [0.5, 2.5, 3.5, 2.5, 2, 1.5, 2.5, 2, 3]λ

and vertical non-uniform grid-spacings [1.5, 2, 3, 0.5, 2.5, 2.5, 2, 4, 2]λ, with λ = 0.115 me-

ter (i.e., the wavelength of the 3kHz beacon). The rail-car travels at 40 km/h (i.e., 11

meters/second) along a straight rail-track, making an α = 15◦ angle with the microphone-

array’s horizontal axis. This rail-car ’s length, width, and height are respectively 23

meters, 3 meters, and 4.8 meters. Two beacons, placed at two corners of the rail-car,

have the Cartesian coordinates of (−4.2,−5.5, 0.8) and (−7.2, 17.5, 5.6), at time-sample

n = 1. (See Figure 6.1.) The corresponding beacon-tones are at 3kHz (with a wavelength of

0.115 meter) and 2kHz, of unity power, and with statistically independent initial temporal

phases (randomly distributed over [0, 2π)) across Monte Carlo trials. Two noise-sources

are aboard the rail-car carriage, at (−6.2, 2.7, 2.4) and (−4.8, 12.1, 3.3), at time-sample

n = 1. The additive thermal noise is zero-mean, spatio-temporally white, Gaussian, with

a total power equal to 1
100 of each onboard noise-source’s power.
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Figure 6.2: Beacon-tracking error in the algorithm’s step #1.

Figure 6.2 demonstrates the performance of the proposed beacon-localization step of

Section 6.2 in tracking the first beacon. The performance metric is defined as

de(n) =
√

[xb1(600)− x̂b1(600)]2 + [yb1(600)− ŷb1(600)]2 + [zb1(600)− ẑb1(600)]2.(6.11)

Figure 6.2’s SIR considers the first beacon as the signal, but all onboard noise-sources

plus thermal noise as interference. The results in Figure 6.2 are obtain without bandpass-

filtering around the beacon for SIR-enhancement. Each data-point therein is averaged
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Figure 6.3: The power-contour map along the rail-car’s cross-section, with SIR = −10dB,

n = 600, M = 30, and γ = 1.

Figure 6.4: The power-contour map along the rail-car’s length from the side, with SIR

= −10dB, n = 600, M = 30, and γ = 1.

from 20 independent Monte Carlo trials. For the present scenario, Figure 6.2 suggests

that the proposed algorithm can track the rail-car to within 10cm for an SIR as low as

-30 dB – allowing the proposed scheme to operate with inaudible beacons.

Figure 6.3 and 6.4 map the rail-car, cross-sectionally and longitudinally,5 in power-

scan contours, averaged from 20 independent Monte Carlo trials, at time-sample n = 600,

under SIR = -10 dB. These power-scans are for the single scanning-frequency of fb1 , with-

out any notch-filter pre-processing6 nor any spectral averaging of (6.10).7 The black “x”

icons, on these power-scan maps, locate the two onboard noise-sources’ actual positions of

(x1(n = 600), y1(n = 600), z1(n = 600)) = (−2, 8.2, 1.6)+(xb1(n = 600), yb1(n = 600), zb1(n = 600)),

(x2(n = 600), y2(n = 600), z2(n = 600)) = (−0.6, 17.6, 2.5)+(xb2(n = 600), yb2(n = 600), zb2(n = 600)).

The proposed scanning algorithm here locates the two onboard noise-sources to roughly

coincide with the power-contour’s peaks.

5The cross-sectional map in Figure 6.3 is averaged from 100 longitudinal cuts, evenly spaced along the

length of the rail-car. The longitudinal map in Figure 6.4 is averaged from 100 cross-sectional cuts, evenly

spaced along the width of the rail-car.
6Hence, χ(m) substitutes for χ̄(m) in (6.9).
7The fb1 beacon is too weak to show up in the power-contour maps. The fb2 beacon does not appear,

because the scanning-frequency is fb1 .
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6.5 Validation of the Proposed Scheme by Anechoic Cham-

ber Experiments

Figure 6.5: The model rail-car (for anechoic-chamber testing) mounts several loud-speakers

(as beacons or onboard noise-sources) on a 1.1-meter long steel bar. The inter-loud-speaker

spacing is identical. Each loudspeaker is 25mm in diameter and is driven by a voice coil.

The microphone-array (for anechoic-chamber testing) has 12 identical microphones: Bruel

& Kjaer Type 4935. The inter-microphone spacings in mm: 145.05, 124.88, 134.94, 151.96,

30, 115.05, 83.33, 41.54, 134.94, 181.96, and 198.38.

Anechoic chamber experiments, deploying a model-train, further verify the proposed

algorithm’s efficacy. Most acoustic reflections would be absorbed by the walls, the roof,

and the floor of the anechoic chamber, which thus constituted a free-field propagation-

environment to mimic a controlled outdoor environment.

Figure 6.5 is a photograph of the equipments set up in the anechoic chamber. There, a

1.1-meter long model-train had two beacons, b1(t) and b2(t), were pure-tones at 1 kHz and

0.5 kHz, at respective positions of 0 and 1.1 meters along the length of the model-train and

with respective intensities of 55dB and 66dB. MAC iPods fed independent white Gaussian

noises of 56dB intensity, to two loudspeakers at positions 0.37 and 0.73 meters along the

model-train’s length, to mimic onboard noise-sources. This model-train was manually

string-pulled along a 4.7 meter wooden track, with a variable speed roughly 0.085 to 0.17

meter per second.8 In parallel to, and 1.1 meters away from, the rail-track was a linear

array of twelve identical, but non-uniformly spaced, microphones. The onboard sources
8This would scale to about 8 to 15 km per hour, as the model-train constitutes a 1

24
scale-down model

of an actual carriage of 23 to 25 meters long.
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can thus be located only along the carriage’s length (but not along its height nor along

its width) by this one-dimensional array. This above-described track/array geometry was

a priori known to the algorithm. Each microphone’s measurement was sampled at 65.536

kHz. There were M = 1000 time-samples; and n = 1049575. The Bruel & Kjaer Type

3560D frequency-analyzer was used.
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Figure 6.6: For algorithmic step #1: The beacon-tracking azimuth-spectrum

B(b1)(·, ·, ·, n = 1049575) from anechoic chamber data.

Figure 6.7: For algorithmic step #2: The carriage-scanning composite spectrum Prms(·, ·, ·)
(amplitude-normalized to give a unit-height peak) from anechoic chamber data.
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Recall that the earlier developed algorithm presumes complex-value for the micro-

phones data in (6.1). Actual measurements (χ(re)(t)) are, of course, real-value. Hence,

the Hilbert Transform is used to convert the measured data to their equivalent complex-

value analytical signals χ(t) = χ(re)(t) + χ(im)(t). Specifically, the `th-element [χ(t)]` of

χ(t) is obtained as:

[χ(im)(t)]` =
1
π

∫ +∞

−∞

[χ(re)(τ)]`
t− τ

dτ (6.12)

For the beacon tracking step: Figure 6.6 verifies the efficacy of the beacon-tracking

algorithm, computing the beamformer weights via (6.7), at various values of the forgetting

factor λ, with the azimuth-angle respectively estimated as −20.6◦, −19.7◦, −19.8◦. 9

For the rail-car scanning step: Figure 6.7 shows the composite azimuth-spectrum,

formed from J = 10 different scanning-frequencies, evenly distributed from 0.5kHz to

5kHz. There in Figure 6.7, the two red solid lines mark the two noise-sources’ true locations

onboard the toy-car. A forgetting factor of γ = 1 was used. The proposed scheme can

roughly locate the two onboard noise-sources here to within about a foot.

6.6 Summary

Herein proposed is a new method to localize noise-sources onboard a rail-car, passing

along rail-track with a prior unknown speed. No auxiliary apparatus, besides two onboard

beacons, is needed to synchronize the trackside microphone-array’s data with the rail-car’s

movements. Three-dimensional source-localization is thereby made possible even with no

prior knowledge of the spatial geometry between the roadside microphone-array and the

rail-track, according to limited Monte Carlo simulations. Limited anechoic chamber testing

verifies the proposed scheme’s efficacy for one-dimensional source-localization.

9The mobile rail-car’s true azimuth-angle at any particular time-instant has not be exactly determined,

partly because the rail-car was hand pulled. However, this would not hinder the localization of the onboard

noise-sources with reference to the rail-car frame.
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Chapter 7

Conclusion

In Chapter 2, we thoroughly assessed geometric models in terms of their DOA-distributions

against all empirical data available from the open literature.

In Chapter 3, a new geometric model for the uplink/downlink multipahs’ TOA-distribution

is proposed. The proposed TOA-model can better fit certain empirical data than can cus-

tomary geometric models can.

In chapter 4, we pioneer the AVS near-field measurement-model, based on rigorous

acoustic physics. Section 4.1 to 4.3 derive the near-field model, with no boundary near

the acoustic vector-sensor. The closed-form CRB is derived and analyzed. Section 4.4

extends the measurement model to allow the boundary case.

In chapter 5, we propose a new algorithm to geolocate a source in 3D near-field space,

using only one spatially spread acoustic vector-sensor. This algorithm requires no prior

knowledge of the temporal structure of the impinging signal, nor any iterative solution.

However, this method can allow only one incident source with constant emitting power - a

limitation common to basically all ”received signal Strength Indication” (RSSI) methods

of geolocation.

A new adaptive ”beamforming” signal-processing algorithm is developed in chapter 6

to locate noise-sources aboard a rail-car that passes by a track-side immobile microphone-

array. This proposed microphone-array beamformer tracks the rail-car’s spatial movement,

with the aid of two inaudible acoustic beacons placed abroad the rail-car. The proposed

scheme then localizes the noise-sources with reference to the rail-car’s coordinates. No

auxiliary infrastructure (e.g., no radar nor video-camera) is needed besides the onboard

beacons. Monte Carlo simulations and anechoic chamber experiments verify the proposed

scheme’s efficacy.

Some future work may be conducted, such as

(1) In Chapter 2 and 3, to further study the landmobile channel model, some new

geometric models which can more efficiently describe the empirical data in the open

literature could be proposed.

(2) In Chapter 4 and 5, the near-field source location problem using acoustic vector-

sensor, can be further investigated with the presence of different type of reflection
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boundary. Such as how would different material of the reflection boundary can affect

the source localization accuracy.

(3) In Chapter 6, we study the sound source location onboard a moving train. However,

only lab test was conducted to verify the efficacy of the algorithm. In the future,

a field test may take place, with the cooperation from H.K. MTR, to further apply

our algorithm in practice.

106



Bibliography

[1] A. Abdi, H. Guo & P. Sutthiwan, “A New Vector Sensor Receiver for Underwater

Acoustic Communication,” IEEE Oceans Conference, 2007.

[2] A. M. Ali, K. Yao, T. C. Collier, C. E. Taylor, D. T. Blumstein & L. Girod, “An

Empirical Study of Collaborative Acoustic Source Localization,” International Con-

ference on Information Processing in Sensor Networks, pp. 41-50, 2007.

[3] A. Andrade & D. Covarrubias, “Radio Channel Spatial Propagation Model for Mo-

bile 3G in Smart Antenna System,” IEICE Transactions on Communications, vol.

E86-B, no. 1, pp. 213-220, January 2003.

[4] D. Anzai & S. Hara, “Experimental Evaluation of a Simple Outlier RSSI Data Re-

jection Algorithm for Localization Estimation in Wireless Sensor Networks,” IEICE

Transactions on Communications, vol. E91-B, no. 11, pp. 3442-3449, November

2008.

[5] M. R. Arias & B. Mandersson, “Time Domain Cluster PDF and Its Application in

Geometry Based Statistical Channel Models,” IEEE International Symposium on

Personal, Indoor and Mobile Radio Communications, 2007.

[6] K. P. Arunkumar & G. V. Anand, “Multiple Source Localization in Shallow Ocean

using a Uniform Linear Horizontal Array of Acoustic Vector Sensors,” IEEE Region

10 Conference, 2007.

[7] K. P. Arunkumar & G. V. Anand, “Source Localisation in Shallow Ocean using a

Vertical Array of Acoustic Vector Sensors,” European Signal Processing Conference,

2007.

[8] K. Attenborough, “Sound Propagation Close To The Ground,” Annu. Rev. Fluid

Mech., 2002.

[9] B. Barsikow, W.F. King III & E. Pfizenmaier, “Wheel/Rail Noise Generated by a

High-Speed Train Investigated with a Line Array of Microphones,” Journal of Sound

& Vibration, no. 118, pp. 99-122, October 1987.

[10] B. Barsikow, & W. F. King III, “On Removing the Doppler Frequency Shift from

Array Measurements of Railway Noise,” Journal of Sound & Vibration, no. 120, pp.

190-196, January 1988.

107



[11] B. Barsikow, “Experiences with Various Configurations of Microphone Arrays Used

to Locate Sound Sources on Railway Trains Operated by the DB AG,” Journal of

Sound & Vibration, no. 193, no. 1, pp. 283-293, May 1996.

[12] M. D. Batariere, T. K. Blankenship & J. F. Kepler, “Wideband MIMO Mobile Im-

pulse Response Measurements at 3.7 GHz,” IEEE Vehicular Technology Conference,

vol. 1, pp. 26-30, Spring 2002.

[13] M. R. Benjamin, D. Battle, D. Eickstedt, H. Schmidt & A. Balasuriya, “Autonomous

Control of an Autonomous Underwater Vehicle Towing a Vector Sensor Array,” IEEE

International Conference on Robotics and Automation, pp. 4562-4569, 2007.

[14] M. J. Berliner & J. F. Lindberg, Acoustical Particle Velocity Sensors: Design, Per-

formance and Applications, Woodbury, New York, U.S.A.: AIP Press, 1996.

[15] D. D. N. Bevan, V. T. Ermolayev, A. G. Flaksman & I. M. Averin, “Gaussian

Channel Model for Mobile Multipath Environment,” EURASIP Journal on Applied

Signal Processing, vol. 2004, no. 9, pp. 1321-1329, 2004.

[16] J. J. Blanz, A. Klein & W. Mohr, “Measurement-based Parameter Adaptation of

Wideband Spatial Mobile Radio Channel Models,” IEEE Symposium on Spread

Spectrum Techniques and Applications, vol. 1, pp. 22-25, 1996.

[17] N. Blaunstein & E. Tsalolihin, “Signal Distribution in the Azimuth, Elevation, and

Time-Delay Domains in Urban Radio Commnicatio Links,” IEEE Antennas & Prop-

agation Magazine, vol. 46, no. 5, pp. 171-178, October 2004.

[18] J. Blumenthal, R. Grossmann, F. Golatowski & D. Timmermann, “Weighted Cen-

troid Localization in Zigbee-based Sensor Networks,” IEEE International Sympo-

sium on Intelligent Signal Processing, pp. 1-6, 2007.

[19] R. Blumrich & J. Altmann, “Medium-range Localisation of Aircraft via Triangu-

lation,” Applied Acoustics, vol. 61, no. 1, pp. 65-82, September 2000. New York,

U.S.A.: AIP Press, 1996.

[20] F. Bohagen, P. Orten & G. E. Oien, “Design of Optimal High-Rank Line-of-Sight

MIMO Channels,” IEEE Transactions on Wireless Communications, vol. 6, no. 4,

pp. 1420-1425, April 2007.

[21] S. Bruhl & K. P. Schmitz, “Noise Source Localization on High Speed Trains Using

Different Array Types,” Inter-Noise Conference, Leuven, Belgium, pp. 1311-1314,

1993.

[22] S. Bruhl & A. Roder, “Acoustic Noise Source Modelling Based on Microphone Array

Measurements,” Journal of Sound & Vibration, no. 231, pp. 611-617, March 2000.

108



[23] G. C. Chen & W. S. Hodgkiss, “VLF Source Localization with a Freely Drifting

Acoustic Sensor Array,” IEEE Journal of Oceanic Engineering, vol. 18, no. 3, pp.

209-223, July 1993.

[24] T.-A. Chen, M. P. Fitz, W.-Y. Kuo & M. D. Zoltowski, “A Space-Time Model for

Frequency Nonselective Rayleigh Fading Channels with Applications to Space-Time

Modems,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 7, pp.

1175-1190, July 2000.

[25] J. Zhao, H. Chen & J. Li, “Two-Dimensional Direction Finding for Low-Attitude

Targets Based on Intensity Measurement Using an Acoustics Vector Sensor,” Acta

Acustica, vol. 29, no. 3, pp. 277-283, May 2004.

[26] H.-W. Chen & J.-W. Zhao, “Wideband MVDR Beamforming for Acoustic Vector

Sensor Linear Array,” IEE Proceedings – Radar, Sonar & Navigation, vol. 151, no.

3, pp. 158-162, June 2004.

[27] H.-W. Chen & J. Zhao, “Coherent Signal-Subspace Processing of Acoustic Vector

Sensor Array for DOA Estimation of Wideband Sources,” Signal Processing, vol. 85,

pp. 837-847, April 2005.

[28] C.-E. Chen, A. M. Ali & H. Wang, “Design and Testing of Robust Acoustic Arrays for

Localization and Enhancement of Several Bird Sources,” International Conference

on Information Processing in Sensor Networks, 2006.

[29] S. Choi, C. R. Berger, S. Zhou, & P. Willett, “Estimation of Target Trajectories

Based on Distributed Channel Energy Measurements,” IEEE International Confer-

ence on Information Fusion, pp. 1-6, 2008.

[30] H. C. Chu & R. H. Jan, “A GPS-less, Outdoor, Self-positioning Method for Wireless

Sensor Networks,” Ad Hoc Networks, vol. 5, pp. 547-557, July 2007.

[31] J. A. Clark & G. Tarasek, “Localization of Radiating Sources along the Hull of a

Submarine Using a Vector Sensor Array,” IEEE Oceans Conference, 2006.

[32] H. Cox, “Super-Directivity Revisited,” IEEE Instrumentation & Measurement Tech-

nology Conference, pp. 87-90, 2004.

[33] H. Cox & H. Lai, “Endfire Supergain with a Uniform Line Array of Pressure and

Velocity Sensors,” Asilomar Conference on Signals, Systems and Computers, pp.

2271-2275, 2006.

[34] P. J. Cullen, P. C. Fannin & A. Molina, “Wide-Band Measurement and Analysis

Techniques for the Mobile Radio Channel,” IEEE Transactions on Vehicular Tech-

nology, vol. 42, no. 4, pp. 589-603, November 1993.

109



[35] H.-E. de Bree, W. F. Druyvesteyn, E. Berenschot & M. Elwenspoek, “Three-

Dimension Sound Intensity Measurements Using Microflown Particle Velocity Sen-

sors,” IEEE International Conference on Electro Mechanical Systems, pp. 124-129,

1999.

[36] Y. L. C. de Jong & M. H. A. J. Herben, “High-Resolution Angle-of-Arrival Measure-

ment of the Mobile Radio Channel,” IEEE Transactions on Antennas and Propaga-

tion, vol. 47, pp. 1677-1687, November 1999.

[37] Y. L. C. de Jong & M. H. A. J. Herben, “Experimental Verification of Ray-Tracing

Based Propagation Prediction Models for Urban Microcell Environments,” IEEE

Vehicular Technology Conference, pp. 1434-1438, Fall 1999.

[38] Y. L. C. de Jong, M. H. A. J. Herben & A. Mawira, “Transmission of UHF Ra-

diowaves through Buildings in Urban Microcell Environments,” Electronics Letters,

vol. 35, no. 9, pp. 743-745, 29th April 1999.

[39] F. Desharnals & G. L. D’Spain, “Acoustic Intensity Measurements with Swallow

Floats,” Canadian Acoustics, vol. 22, part 3, pp. 159-160, September 1994.

[40] M. G. Dittrich & M. H. A. Janssens, “Improved Measurement Methods for Railway

Rolling Noise,” Journal of Sound & Vibration, no. 231, pp. 595-609, March 2000.

[41] G. L. D’Spain, W. S. Hodgkiss & G. L. Edmonds, “Energetics of the Deep Ocean’s

Infrasonic Sound Field,” Journal of the Acoustical Society of America, vol. 89, no.

3, pp. 1134-1158, March 1991.

[42] G. L. D’Spain, W. S. Hodgkiss & G. L. Edmonds, “The Simultaneous Measurement

of Infrasonic Acoustic Particle Velocity and Acoustic Pressure in the Ocean by Freely

Drifting Swallow Floats,” IEEE Journal of Oceanic Engineering, vol. 16, no. 1, pp.

195-207, April 1991.

[43] G. L. D’Spain, W. S. Hodgkiss, G. L. Edmonds, J. C. Nickles, F. H. Fisher & R.

A. Harriss, “Initial Analysis of The Data From The Vertical DIFAR Array,” IEEE

Oceans Conference, vol. 1, pp. 346-351, 1992.

[44] G. L. D’Spain, “Relationship of Underwater Acoustic Intensity Measurements to

Beamforming,” Canadian Acoustics, vol. 22, part 3, pp. 157-158, September 1994.

[45] P. C. F. Eggers, “Generation of Base Station DOA Distribution by Jacobi Transfor-

mation of Scattering Areas,” Electronics Letters, vol. 34, no. 1, pp. 24-26, January

8, 1998.

[46] P. Eggers, I. Kovacs, K. Djama, J. B. Andersen & K. Olesen, “Assessment of UMTS

Up/Down-Link Channel Balance in Adaptive BS Antenna Systems,” IEEE Vehicular

Technology Conference, vol. 1, pp. 82-86, Fall 2002.

110



[47] R. B. Ertel, P. Cardieri, K. W. Sowerby, T. S. Rappaport & J. H. Reed, “Overview

of Spatial Channel Models for Antenna Array Communication Systems,” IEEE Per-

sonal Communications, vol. 5, no. 1, pp. 10-22, February 1998.

[48] R. B. Ertel & J. H. Reed, “Angle and Time of Arrival Statistics for Circular and

Elliptical Scattering Models,” IEEE Journal on Selected Areas in Communications,

vol. 17, no. 11, pp. 1829-1840, November 1999.

[49] J. Y. Fang, H. C. Chu, R. H. Jan & W. Yang, “A Multiple Power-level Approach for

Wireless Sensor Network Positioning,” Computer Networks, vol. 52, pp. 3101-3118,

December 2008.

[50] F. Haihong, L. Guolong & H. Junying, “The Direction Estimation Using Combined

Sensor with Pressure and Particle Velocity,” Acta Acustica, vol. 25, no. 6, November

2000.

[51] B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus & K. I. Pedersen, “Channel

Parameter Estimation in Mobile Radio Environments Using the SAGE Algorithm,”

IEEE Journal on Selected Areas in Communications, vol. 17, no. 3, pp. 434-450,

March 1999.

[52] J. Fuchs & H. Chuberre, “A Deconvolution Approach to Source Localization,” IEEE

Signal Processing Transaction, vol. 42, no. 6, pp. 1462-1470, June 1994.

[53] A. Giorgetti, M. Chiani, M. Shafi & P. J. Smith, “Level Crossing Rates and MIMO

Capacity Fades: Impacts of Spatial/Temporal Channel Correlation,” International

Conference on Communications, vol. 5, pp. 3046-3050, 2003.

[54] L. Guanfang, Z. Anbang, H. Junying & S. Guocang, “The Application of Empirical

Mode Decomposition in Target-starting Sound Detection,” IEEE Vehicle Power and

Propulsion Conference, 2008.

[55] S. Guiqing, Y. Desen, J. Lanyue & S. Shengguo, “Maximum Likelihood Ratio Detec-

tion and Maximum Likelihood DOA Estimation Based on the Vector Hydrophone,”

Acta Acustica, vol. 28, no. 1, January 2003.

[56] S. Guiqing & L. Qihu, “Acoustic Vector Sensor Signal Processing,” Acta Acustica,

vol. 29, no. 6, November 2004.

[57] C. H. Hansen, Noise Control : From Concept to Application, London, U.K. : Taylor

& Francis, 2005.

[58] M. Hawkes & A. Nehorai, “Acoustic Vector-Sensor Beamforming and Capon Di-

rection Estimation,” IEEE Transactions on Signal Processing, vol. 46, no. 9, pp.

2291-2304, September 1998.

111



[59] M. Hawkes & A. Nehorai, “Acoustic Vector-Sensor Processing in the Presence of a

Reflecting Boundary,” IEEE Transactions on Signal Processing, vol. 48, no. 11, pp.

2981-2993, November 2000.

[60] M. Hawkes & A. Nehorai, “Wideband Source Localization Using a Distributed

Acoustic Vector-Sensor Array,” IEEE Transactions on Signal Processing vol. 51,

no. 6, pp. 1479-1491, June 2003.

[61] S. Haykin, Adaptive Filter Theory, 2nd edtion, U.S.A.: Prentice-Hall, 1991.

[62] J. He, S. Jiang, J. Wang & Z. Liu, “Direction Finding in Spatially Correlated

Noise Fields with Arbitrarily-Spaced and Far-Separated Subarrays at Unknown Lo-

cations,” IET Radar, Sonar & Navigation, vol. 3, no. 3, pp. 278-284, June 2009.

[63] B. Hochwald & A. Nehorai, “Identifiability in Array Processing Models with Vector-

Sensor Applications,” IEEE Transactions on Signal Processing, vol. 44, no. 1, pp.

83-95, January 1996.

[64] G. Holzl, “Low Noise Goods Wagons,” Journal of Sound & Vibration, no. 193, pp.

359-366, May 1996.

[65] V. J. Hughes, J. G. Boulton, J. M. Coles, T. R Empson and N. J. Kerry, “Why

an Optically-Based Hydrophone Works Better,” Sensor Review, vol. 7, no. 3, pp.

123-126, July 1987.

[66] J. Hui, H. Liu, M. Fan & G. Liang, “Study on the Physical Basis of Pressure and

Particle Velocity Combine Processing,” Chinese Journal of Acoustics, vol. 20, no. 3,

pp. 203-212, 2001.

[67] R. Janaswamy, “Angle and Time of Arrival Statistics for the Gaussian Scatter Den-

sity Model,” IEEE Transactions on Wireless Communications, vol. 1, no. 3, pp.

488-497, July 2002.

[68] L. Jiang & S. Y. Tan, “Simple geometrical-based AOA model for mobile commu-

nication systems,” Electronics Letters, vol. 40, no. 19, pp. 1203-1205, September

2004.

[69] L. Jiang & S. Y. Tan, “Geometrical-Based Propagation Model for Mobile Commu-

nication Systems,” International Conference on Microwave and Millimeter Wave

Technology, pp. 834-837, 2004.

[70] L. Jiang & S. Y. Tan, “Geometrically-Based Channel Model for Mobile-

Communication Systems,” Microwave and Optical Technology Letters, vol. 45, no.

6, pp. 522-527, June 2005.

[71] M. A. Josserand & C. Maerfeld, “PVF2 Velocity Hydrophone,” Journal of the Acous-

tical Society of America, vol. 78, no. 3, pp. 860-867, 1985.

112



[72] M. Kalivodaa, U. Danneskiold-Samseb, F. Krugerc & B. Barsikow, “EU Rail Noise:

a Study of European Priorities and Strategies for Railway Noise Abatement” Journal

of Sound & Vibration, no. 267, part 3, pp. 387-396, October 2003.

[73] M. Kalivodaa, M. Kudrnaa & G. Presle, “Application of MetaRail Railway Noise

Measurement Methodology: Comparison of Three Track Systems,” Journal of Sound

& Vibration, no. 267, pp. 701-707, October 2003.

[74] K. Kalliola & P. Vainikainen, “Characterization System for Radio Channel of Adap-

tive Array Antennas,” IEEE International Symposium on Personal, Indoor & Mobile

Radio Communications, vol. 1, pp. 95-99, 1997.

[75] L. M. Kaplan, T. Damarla & T. Pham, “QoI for Passive Acoustic Gunfire Localiza-

tion,” IEEE International Conference on Mobile Ad Hoc and Sensor Systems, pp.

754-759, 2008.

[76] A. Kavak, W. Yang & G. Xu, “Characterization of Fast Fading Wireless Vector

Channels,” Asilomar Conference, vol. 1, pp. 780-784, 1998.

[77] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Upper

Saddle River, NJ: Prentice-Hall, 1993.

[78] N. M. Khan, M. T. Simsim & P. B. Rapajic, “A Generalized Model for the Spatial

Characteristics of the Cellular Mobile Channel,” IEEE Transactions on Vehicular

Technology, vol. 57, no. 1, pp. 22-37, January 2008.

[79] W. F. King III, “On the Role of Aerodynamically Generated Sound in Determining

Wayside Noise Levels from High Speed Trains,” Journal of Sound & Vibration, no.

54, part 3, pp. 361-378, October 1977.

[80] W. F. King III & D. Bechert, “On the Sources of Wayside Noise Generated by

High-Speed Trains,” Journal of Sound & Vibration, no. 66, pp. 311-332, October

1979.

[81] T. Kitagawa & D.J. Tohmpson, “Comparison of Wheel/Rail Noise Radiation on

Japanese Railways Using the TWINS Model and Microphone Array Measurement,”

Journal of Sound & Vibration, no. 293, pp. 496-509, June 2006.

[82] A. Klein & W. Mohr, “A Statistical Wideband Mobile Radio Channel Model In-

cluding the Directions-of-Arrival,” IEEE International Symposium Spread Spectrum

Technology and Applications vol. 1, pp. 102-106, 1996.

[83] C. Kloch, G. Liang, J. B. Andersen, G. F. Pedersen & H. L. Bertoni, “Comparison

of measured and Predicted Time Dispersion and Direction of Arrival for Multipath

in a Small Cell Environment,” IEEE Transactions on Antennas & Propagation, vol.

49, no. 9, pp. 1254-1263, September 2001.

113



[84] T. B. Koay, P. J. Seeking, M. Chitre, S. P. Tan & M. Hoffmann-Kuhnt, “Advanced

PANDA for High Speed Autonomous Ambient Noise Data Collection and Boat

Tracking - System and Results,” IEEE Oceans Conference - Asia Pacific, 2006.

[85] A. Kuchar, M. Taferner, M. Tangemann & C. Hoek, “Field Trial with

GSM/DCS1800 Smart Antenna Base Station,” IEEE Vehicular Technology Con-

ference, vol. 1, pp. 42-46, Fall 1999.

[86] A. Kuchar, J. P. Rossi & E. Bonek, “Directional Macro-Cell Channel Characteriza-

tion from Urban Measurements,” IEEE Transactions on Antennas and Propagation,

vol. 48, no. 2, pp. 137-146, February 2000.

[87] Y. Kung, J. C. Chen & R. E. Hudson, “Maximum-Likelihood Acoustic Source Lo-

calization: Experimental Results,” IEEE International Conference on Acoustcis,

Speech & Signal Processing, vol. 3, pp. 2949-2952, 2002.

[88] H. Lai, K. Bell & H. Cox, “DOA Estimation Using Vector Sensor Arrays,” Asilomar

Conference, pp. 293-297, 2008.

[89] M. Larsson, “Spatio-Temporal Channel Measurements at 1800 MHz for Adaptive

Antennas,” IEEE Vehicular Technology Conference, vol. 1, pp. 376-380, Fall 1999.

[90] E. E. L. Lau & W. Y. Chung, “Accuracy Refinement Algorithm for Mobile Target

Location Tracking by Radio Signal Strength Indication Approach,” IEICE Trans-

actions on Fundamentals of Electronics, Communications and Computer Sciences,

vol. E91-A, no. 7, pp. 1659-1666, July 2008.

[91] J. Laurila, A. F. Molisch & E. Bonek, “Influence of the Scatterer Distribution on

Power Delay Profiles and Azimuthal Power Spectra of Mobile radio Channels,” Inter-

national Symposium Spread Spectrum Technology & Applications, vol. 1, pp. 267-271,

1998.

[92] J. Laurila, K. Kalliola, M. Toeltsch, K. Hugl, P. Vainikainen & E. Bonek, “Wide-

Band 3-D Characterization of Mobile Radio Channels in Urban Environment,” IEEE

Transactions on Antennas & Propagation, vol. 50, no. 2, pp. 233-243, February 2002.

[93] C. L. LeBlanc, Handbook of Hydrophone Element Design Technology, Naval Under-

water Systems Center Technical Report 5813, 1978.

[94] . Ledeczi, G. Kiss, B. Feher, P. Volgyesi & G. Balogh, “Acoustic Source Localization

Fusing Sparse Direction of Arrival Estimates,” International Workshop on Intelligent

Solutions in Embedded Systems, 2006.

[95] C. B. Leslie, J. M. Kendall & J. L. Jones, “Hydrophone for Measuring Particle

Velocity,” Journal of the Acoustical Society of America, vol. 28, no. 4, pp. 711-715,

July 1956.

114



[96] D. Li & Y. H. Hu, “Energy-based Collaborative Source Localization Using Acoustic

Microsensor Array,” EURASIP Journal on Applied Signal Processing, vol. 4, pp.

321-337, 2003.

[97] K. M. Li & K. K. Lu, “Propagation of Sound in Long Enclosures,” Journal of

Acoustical Society of America, vol. 116, no. 5, pp. 2759-2770, November 2004.

[98] J. C. Liberti & T. S. Rappaport, “A Geometrically Based Model for Line-of-Sight

Multipath Radio Channels,” IEEE Vehicular Technology Conference, vol. 2, pp.

844-848, 1996.

[99] J. C. Liberti, Jr. & T. S. Rappaport, Smart Antennas for Wireless Communications:

IS-95 and Third Generation CDMA Applications, Upper Saddle River, New Jersey,

USA: Prentice Hall, 1999.

[100] S. Y.-D. Lien & M. Cherniakov, “Analytical Approach for Multipath Delay Spread

Power Distribution,” IEEE Global Telecommunications Conference, pp. 3680-685,

1998.

[101] X. Liu, J. Xiang & Y. Zhou, “Passive Tracking and Size Estimation of Volume Target

Based on Acoustic Vector Intensity,” Chinese Journal of Acoustics, vol. 20, no. 3,

pp. 225-238, 2001.

[102] M. E. Lockwood & D. L. Jones, “Beamformer Performance with Acoustic Vector

Sensors in Air,” Journal of the Acoustical Society of America, vol. 119, no. 1, pp.

608-619, January 2006.

[103] M. P. Lotter & P. van Rooyen, “Modeling Spatial Aspects of Cellular CDMA/SDMA

Systems,” IEEE Communications Letters, vol. 3, no. 5, pp. 128-131, May 1999.

[104] D. Lubman, “Antifade Sonar Employs Acoustic Field Diversity to Recover Signals

from Multipath Fading,” in Design, Performance and Applications, pp. 335-344,

Woodburg, New York, U.S.A.: AIP Press, 1996.

[105] D. Lubman, “Antifade Sonar Employs Acoustic Field Diversity to Recover Signals

from Multipath Fading,” in Design, Performance and Applications, pp. 335-344,

Woodburg, New York, U.S.A.: AIP Press, 1996.

[106] Q. Lu, S. Yang, J. Zhang & S. Piao, “High Resolution DOA Estimation in Beam

Space Based on Acoustic Vector-Sensor Array,” Journal of Harbin Engineering Uni-

versity, vol. 25, no. 4, pp. 440-445, August 2004.

[107] N. Ma & C. S. Chia, “Target Localization by Two Fixed Non-Coherent Passive

Linear Arrays,” IEEE Oceans Conference, 2008.

[108] S. Mahmoud, Z. M. Hussain & P. OShea, “Space-Time Geometrical-Based Chan-

nel Models: A Comparative Study,” Australian Telecommunications, Networks and

Applications Conference, 2003.

115



[109] G. Mao, B. Fidan & B. D. O. Anderson, “Wireless Sensor Network Localization

Techniques,” Computer Networks, vol. 51, pp. 2529-2553, July 2007.

[110] B. H. Maranda, “The Statistical Accuracy of an Arctangent Bearing Estimator,”

IEEE Oceans Conference, vol. 4, pp. 2127-2132, 2003.

[111] U. Martin, “Spatio-temporal Radio Channel Characteristics in Urban Macrocells,”

IEE Proceedings on Radar, Sonar, and Navigation, vol. 145, no. 1, pp. 42-49, Febru-

ary 1998.

[112] E. Masazade, R. Niu, P. K. Varshney & M. Keskinoz, “An Energy Efficient Iter-

ative Method for Source Localization in Wireless Sensor Networks,” IEEE Annual

Conference on Information Sciences and Systems, pp. 623-628, 2009.

[113] P. A. Matthews, D. Molkdar & B. Mohebbi, “Direction of Arrival and Frequency

Response Measurements at UHF,” International Conference on Mobile Radio &

Personal Communications, pp. 43-47, 1989.

[114] J. D. Maynard, E. G. William & Y. Lee, “Nearfield Acoustic Holography: I. Theory

of Generalized Holography and the Development of NAH,” Journal of Acoustical

Society of America, vol. 78, no. 4, pp. 1395-1413, October 1985.

[115] J. A. McConnell, “Analysis of a Compliantly Suspended Acoustic Velocity Sensor,”

Journal of the Acoustical Society of America, vol. 113, no. 3, pp. 1395-1405, March

2003.

[116] J. F. McEachern, J. A. McConnell, J. Jamieson & D. Trivett, “ARAP - Deep Ocean

Vector Sensor Research Array,” IEEE Oceans Conference, 2006.

[117] C. Mellet, F. Letourneaux, F. Poisson & C. Talotte, “High Speed Train Noise Emis-

sion: Latest Investigation of the Aerodynamic/Rolling Noise Contribution,” Journal

of Sound & Vibration, no. 293, pp. 535-546, June 2006.

[118] S. Miron, N. Le Bihan & J. I. Mars, “Quaternion-MUSIC for Vector-Sensor Array

Processing,” IEEE Transactions on Signal Processing, vol. 54, no. 4, pp. 1218-1229,

April 2006.

[119] P. E. Mogensen, K. I. Pedersen, P. Leth-Espensen, B. Fleury, F. Frederiksen, K. Ole-

sen & S. L. Larsen, “Preliminary Measurement Results from an Adaptive Antenna

Array Testbed for GSM/UMTS,” IEEE Vehicular Technology Conference, vol. 3,

pp. 1592-1596, 1997.

[120] Y. Moritoh, Y. Zenda, & K. Nagakura, “Noise Control of High Speed Shinkansen,”

Journal of Sound & Vibration, no. 193, pp. 319-334, May 1996.

[121] P. M. Morse & K. U. Ingard, Theoretical Acoustics, New York, U.S.A.: McGraw-Hill,

1968.

116



[122] S. Muhammed, Al-Ahmadi & A. U. H. Shiekh, “Spatial Domain Modeling of Mi-

crocellular Systems Operating in Multipath Nakagami Channels,” Personal, Indoor

and Mobile Radio Communications Conference, vol. 4, pp. 1942-1946, September

2002.

[123] K. G. Nagananda & G. V. Anand “Subspace Intersection Method of Bearing Estima-

tion in Shallow Ocean Using Acoustic Vector Sensors,” European Signal Processing

Conference, 2008

[124] A. Nehorai & E. Paldi, “Performance Analysis of Two Direction Estimation Al-

gorithms Using an Acoustic Vector-Sensor Array Processing,” IEEE International

Conference on Acoustics, Speech, Signal Processing, vol. 4, pp. 360-363, April 1993.

[125] A. Nehorai & E. Paldi, “Acoustic Vector-Sensor Array Processing,” IEEE Transac-

tions on Signal Processing, vol. 42, no. 10, pp. 2481-2491, September 1994.
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