


 

 

JOINT SERVICE AND PRICE 

COMPETITIONS FACING NAIVE 

CUSTOMERS 

 

 

 

LI LI 

 

 

 

 

M.Phil  

The Hong Kong  

Polytechnic University 
 

2010 

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author.  In the case where its contents is different from the printed version, the printed version shall prevail.



 

The Hong Kong Polytechnic University 

The Department of Logistics and Maritime Studies 

 

 

JOINT SERVICE AND PRICE 

COMPETITIONS FACING NAIVE 

CUSTOMERS 

 

 

 

LI Li 

 

 

 

A thesis submitted in partial fulfillment of the requirements 

for the Degree of Master of Philosophy 

 

August 2009 





             

                                                                                                                    ABSTRACT  
 

                                                                                                                                                       i 

 

ABSTRACT 

In this paper, we consider a system consisting of two service providers each with 

its queue. Customers are unaware of the service rates and are pragmatic in service 

selections. They each choose a queue to enter based on prices and actual queue lengths 

upon arrival and can in real time change queues before entering service. Under such 

customer behavior assumptions, we first characterize the steady state distributions for 

the queue lengths, for given service rates and prices at the two service providers, and 

then investigate a game in which the two service providers competitively select service 

rates and prices. The results underlie our exploration of the interplay between the two 

competition modes. We also compare system performance with those in existing 

literature that model customer behaviors in a different way than that in this paper, and 

find that the service providers tend to select lower service rates but earn higher profits 

when the customers are unaware of service rates than when they are aware of such 

information; but the uninformed customers are expected to spend more time waiting in 

line. Customers’ state-dependent service selection upon arrival and jockeying between 

the queues aggravate service providers’ capacity under investment and further lengthen 

customers’ duration of stay. 
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CHAPTER 1 

 

INTRODCTION  

 

The service sector encompasses a vast spectrum of business activities including 

trade, hotels and restaurants, communication, corporate services and more. It is a major 

driver of economic growth in today’s world. Its proportions in global GDP and labor 

market have grown from below 30% in 1950’s to nearly 70% ( > 90% in some countries) 

in early 21
st
 century. The continuously growing customer demands and expanding 

service networks expose service providers to fierce competitions. Service speed and 

price, in their different formats, have long been the two main instruments for service 

providers to compete for market shares. It is imperative for managers to understand the 

interplay between the two modes of competitions in service and price to align operations 

and marketing initiatives. In academic arena, existing literature on competitive service 

systems has mainly focused on service speed, whereas the price is not treated as a 

decision variable. Quoted or expected waiting time is often a primary measure whereby 

arriving customers select servers according to predetermined rules. Customers modeled 

in past papers have the privilege to learn the information of the servers’ capacity 

investments and their prevailing service rates; and are sophisticated to derive the 

expected waiting time or lead time, when not committed by the service providers, to 

make server selection accordingly. Moreover, since server selection is based on expected 
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waiting times, customers stay with the queue they pick upon arrival until service 

completion, no matter how the actual services take place.  

In real life, however, customers may not occupy the information stand to be 

aware of the service rates at the servers, and they are naive or non-strategic spot-utility 

maximizers to choose servers based on available information alone. This paper 

contributes to the literature on service operation in a competitive system by modeling the 

behaviors of such naive customers and evaluating the impacts on the servers’ service 

capacities and price decisions as well as the experience of the customers. We build our 

exploration in a service system that consists of two servers each with a separate queue, 

and the customers choose servers based on queue lengths and service charges. The 

customers will not statistically infer the servers’ service rates by use of average waiting 

time and queue length, and choose servers accordingly. One customer selects a server 

and enters its queue upon arrival. And when waiting for service, he can change queues in 

real time before entering into service provided that he feels such a move is beneficial.  

For given service rates and prices at the two servers, we apply difference 

equations to capture the state transitions and derive the steady-state distributions for the 

queue lengths in closed forms. Then, we explore the competitions between servers in 

both service and price in a two-stage game setting. Service capacity takes time to build 

and its investment decision is usually made early. So, we let the two servers 

simultaneously build service capacities in the first stage. Their service rates, once set up, 

are known to each other. It is not a very unrealistic assumption. Since the two service 

providers work in the same industry and serve in the same market, they can in one way 

or another learn of the equipment and labor investments by each other to infer service 
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capacities. Informed of the service rates at each other, the two servers simultaneously 

determine prices in the second stage to affect the market demand. 

We provide a complete characterization of the equilibrium for the two-stage 

game that demands us to tackle a non-trivial system with both continuous and discrete 

elements. We show that neither server chooses to be competitive in price unless its 

service is slow, and the faster server always overprices its opponent. Neither server 

holds absolute competitiveness in both price and service. In a symmetric system where 

the servers incur identical investment costs, they will forfeit price as a competitive 

instrument and each charge the maximum allowable price. Numerical results shed more 

insights on the servers’ behaviors in an asymmetric setting where price competition 

plays a more influential role.  

We have also compared our finding to those obtained in selected existing 

literature, and observe that the servers invest less in capacities and earn higher profits 

when customers are not informed of the servers’ service rates and naive to pick servers 

based on queue lengths than when they are informed and choose servers based on 

expected waiting times. Customer sophistication has its root in the availability of the 

service rate information. Unaware of such information, the naive customers spend more 

time waiting in line on expectation than their sophisticated counterparts. Moreover, the 

state-independent customer allocations in which customers make real-time queue change 

improves the capacity utilization of the servers, inducing them to further lower service 

rates but reap in higher profits.  

The remainder of this paper is organized as follows. We review literature in 

section 2. In section 3, we introduce the model, discuss customers’ dynamic choice 
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process, and derive closed-form solutions of the steady-state distribution for queue 

lengths. We analyze price competition for given service rates in section 4; and explore 

service competition to reveal the complete equilibrium outcomes in section 5. In section 

6, we do a performance comparison of the model in this paper to those in selected 

existing literature under different assumptions of information availability and customer 

behaviors. Finally, we conclude the paper in section 7. 
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CHAPTER 2 

 

LITERATURE REVIEW  

 

2.1   Dynamic Customer Allocation 

 

In our work, naïve or pragmatic customers are allocated in a dynamic way, 

which means arriving customer is allocated to servers depending on the current work 

load of the servers. Our research is related to the stream of work on dynamic customer 

allocation in multi-server queueing system. Naor (1969) explores the behavior of 

strategic customers who aim to minimize their cost in a queueing system. He studies a 

single queue model where a customer can decide whether or not to join a queue. He 

finds that self serving behavior on part of the customer can lead to over congestion. 

Kotiah and Slater (1973) consider two general queueing settings. One is that two servers 

have their own queues and the other is that two servers share a single queue. They 

compare the steady-state performances and show numerically that the two-server-single-

queue model has shorter mean queue length and lead time. Rubinovitch (1985) studies a 

special system of two heterogeneous servers that share a single queue, the M/M2 queue 

setting. The customer at the front of waiting line is randomly assigned to an idle server 

with equal probability. And he characterizes the system performances of this model. 

Singh (1970) compares the performances of M/M/2 queueing systems consisting with 
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homogenous and heterogeneous servers. Customer balking is allowed in his model.  

Konheim et al. (1981) analyze a different queueing setting in which a server splits its 

service capacity between two queues. If one queue is empty, full service capacity is 

granted to the other queue, while if neither queue is empty, the server divides its 

capacity to each queue equally.  Flatto and Hahn (1984,1985) explore the two-server 

queueing system where customers are allocated to each server according to a specific 

generated probability which is related to the queue lengths of servers. 

Shortest queue policy is a widely applied customer allocation policy in existing 

queueing literatures. It means that the arriving customer joins in the queue with shortest 

queue length. Haight (1958) applies differential-difference equations to study the steady 

state performance of a two-queue system with observable queue lengths, where 

customers join the shortest queue upon their arrival. Grassman (1980) carries out a 

numerical study on system performance under the shortest queue policy with limited 

state space. Knessl et al. (1986) investigate the steady-state distribution of the numbers 

of customers in a two-queue system under the shortest queue policy and characterize 

some properties of the solutions. Nakamura (1989) extends Knessl’s work to a 

threshold-type scheduling, in which arriving customers are sent to the buffer of the faster 

server as far as the difference of the two queues does not exceed the threshold value. 

Zhao and Grassman (1990) analyze the case when jockeying is permitted under the 

shortest queue policy. Besides the shorted queue policy, Houck (1987) studies the 

shortest delay policy, in which the arriving customer sent to the queue with shortest 

expected lead time. He conducts numerical study on the system performances. Hassin 

and Haviv (2003) conduct a comprehensive survey of customer allocation policies, 
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customer behaviors and servers operations in queueing systems. Readers can refer to 

their book for an excellent overview. 

 

2.1   Competitive Queueing System 

 

There are several papers that investigate strategic servers in competitive 

queueing systems. Kalai et al. (1992) analyze a system consisting of two servers where 

customers join a single queue by the first-come-first-served (FIFS) rule. Each customer 

is immediately allocated to an idle server or is placed in a queue waiting for the first 

available server. If both servers are idle upon his arrival, customer will choose each 

server with equal probability. To maximize the expected profit, each server decides 

service rate with a cost increasing in capacity and exogenously given service fees. Kalai 

et al. (1992) discuss the equilibrium service rates under this queueing model. Their 

equilibrium analyzing methodology, however, is not correct. In the same multiple-server 

and single-queue setting, Li (1992) investigates the role of inventory in delivery time-

based competition. He shows that the competition can breed a demand of produce-to-

stock, and that delivery-time competition increases the customer’s welfare while 

decreasing the producer’s welfare. Christ and Avi-Itzhak (2002) extend the model of 

Kalai et al. (1992) to allow customer balking and they characterize the equilibrium 

service rates for this game. Bell and Stidham (1983) examine the queueing system where 

customers are allocated to minimize their expected lead time. They compare the results 

under individual and social optimization criteria and find that individuals fail to consider 

the externalities on the others, such as the inconvenience and overcongestion of the 
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faster server. Lee and Cohen (1985) study the competitive allocation policy of customers 

to servers by agents who wish to minimize customers’ expected waiting time. Gilbert 

and Weng (1998) develop a service rate competition model where each server maintains 

a single queue. They expect both servers to have the same expected system time and 

provide a state-independent allocation policy for arriving customers based on that 

assumption. Cachon and Zhang (2007) show how different customer allocations, which 

include state-dependent and state-independent policies, can induce competition among 

servers to achieve different system performances. They discuss how customers obtain 

shortest lead time through choosing allocation policies. In all these studies, however, 

customers pay a fixed fee to each server, and allocation policies are not influenced by 

price.  

Levhari and Luski (1978) model an M/M/2 service system in which customers 

choose the server on the basis of price and expected waiting time. They analyze the price 

competition while the capacity levels are fixed. Chen and Wan (2003) release the 

requirements of this model to allow firms providing different values of service and 

having nonidentical unit costs of waiting. Davison (1988) explores the competition 

among multiple servers which have fixed service rate and decide their prices. But in his 

model, customers have imperfect information. Li and Lee (1994) present a model of 

market competition in which customers make choices with the expected utilities of each 

server with exogenous decided service rates. Firms compete on prices and Customer 

utility is a function of price, quality and delivery speed. However, in all of these papers, 

the service rates are exogenous. Hence, the firms compete only on price. In our model, 
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we analyze both price and service rate decisions, which is a significant distinction 

between the existing papers. 

There are also several papers investigate the decisions of price and capacity for a 

monopolistic single-server queueing system to seek the maximum system value: Dewan 

and Mendelson (1990), Mendelson and Whang (1990), Stidham (1992), Stidham and 

Rump (1998). Taking into account both customers’ delay cost and servers’ capacity cost, 

they study the internal pricing and capacity selection to seek maximum system value. So 

and Song (1998) consider the same problem while maximizing a firm’s profit other than 

system value.  

As for the multiple-server price and capacity competition papers, De Vany and 

Savings (1983) firstly address a richer type of competition in which service providers 

compete with price and service rate. In their model, price and service rate decisions are 

made at the same time. Customers choose server by the full price which consists of price 

and expected waiting time. Deneckere and Peck (1995) consider the similar model in 

which a large number of firms choose prices and capacities simultaneously, and 

customers select firms based on expected utility. However, they assume that customer 

can only access one firm, and do not allow interfirm price dispersion which means the 

firms in their model are homogenous. Ha et al. (2003) studies two suppliers in a supply 

chain serving on buyer, in which pricing and delivery frequency decisions are made in a 

three-stage competitive game. They assume deterministic demand and state-independent 

rule for customers to select service. Reitman (1991) examines competitive capacity and 

pricing decisions when customers make choices on price and delay time. He gives 

numerical results for the capacity and the price in the equilibrium. Lederer and Li (1997) 
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include scheduling as a strategic variable together with price and production rate for 

different types of customers with heterogeneous delay costs. So (2000) analyzes the 

situation when firms use prices and delivery time guarantees to compete for market 

share. In their model, demand rate functions are specified as a special type of logit 

models. Cachon and Harker (2002) develop a model where customers are price- and 

time-sensitive, and service providers face economy of scale. They also investigate the 

impact of outsourcing on competition. Armony and Haviv (2003) study a duopoly 

competition model in which customers make choice by full price, which includes the 

service fee plus expected waiting costs. Allon and Federgruen (2007) consider different 

types of competition which depend on industry dynamics through which the firms make 

strategic choices of service charge and capacity by various sequences. However, the 

competition in those papers is exogenous, while in our model it is determined by the 

customers via a dynamic allocation policy inside the service system. 
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CHAPTER 3 

 

THE MODLE  

 

We consider a two-server system in which each server maintains a separate 

queue. Customers arrive to the system according to a Poisson process at rate λ . The 

service time at server i  is exponentially distributed with rate 
iµ , for 2,1=i . We let 

21 µµ

λ
ρ

+
≡  be the system load factor, and 

21 µµλ −−≡A  the difference between 

arrival rate and aggregate service rate. It is easy to verify 0>A  iff 1>ρ . To attain its 

service rate 
iµ , server i  incurs capacity cost )(

i
C µ , non-negative, increasing, and 

convex. Service cost is normalized to zero. Server i  charges 
i

p  to each customer who 

uses its service. We will interchangeably use price and service charge in this paper.  

To describe system dynamics, we let )(tn
i

, for 2,1=i  and 0≥t , be the number 

of customers in the queue for server i  at time t ; and )(∞=
ii

nn  be its stationary 

counterpart when the system has been in operation for a long time. We are interested in 

the steady state ),( 21 nn .  

Customers are spot utility maximizers. We let the utility, 
iU , that a customer 

obtains by choosing server i , with service charge 
i

p  and queue length, 
i

n , take the form 

bellow: 
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iii
pnU 21 ββ −−= , for 2,1=i ,

1
                      (3.1) 

where, 
1β  and 

2β  are, respectively, the marginal disutilities for queue length and service 

charge. We can normalize the utility function, as given in (1), to 

iii
pnU β−−= , for 2,1=i ,     (3.2) 

and simply call β  the marginal disutility. 

For given prices by the two servers, we define )]([ 21 ppB −≡ β , where ][x  is 

the largest integer no greater than x ; and call it markup. Markup takes integer values 

only. As we will show later, the effect of price competition on customers’ distribution 

between the two queues is solely captured by B . Server 1 is price competitive if 0<B , 

whereas server 2 is price competitive if 0>B . The two servers do not engage in price 

competition if 0=B . When one server is price competitive, we say this server occupies 

a strong price position and its opponent a weak price position. The value of markup 

determines the price positions of the two servers relative to each other. 

Informed of service charges and queue lengths for both servers, an arriving 

customer selects a queue to join by the following rule: He will join 

i) queue i  when 
ji

UU > , for 2,1, =ji  and ji ≠ ; 

ii) the queue for the server that charges lower price when 
21 UU =  but 

21 pp ≠ ; 

iii) the queue for either server with equal probability if 
21 UU =  and 

21 pp = . 

                                                           
1
 The utility function defined in (3.1), while it assumes negative values captures the key features for 

customers’ server selection. We can use utility functions like U=exp(-β1n-β2p) to derive the same results.  
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We let P  be the maximum service charge that customers can accept. If one 

server charges a price higher than P , then no customers will choose its service. 

Therefore, P  can be thought of as the value of service to the customers.  

When a customer is waiting in one queue before he enters into service, we allow 

him to switch to the other queue dynamically, but require that he gain strictly higher 

utility from the move. A customer switching from one queue to the other, regardless of 

his position in the original queue, has to move to the end of the destination queue. 

Observe that whenever opportunity arises for existing customers to switch queues, it 

happens after a server has just completed one service, and it must be the customer at the 

end of one queue who makes the first move. We assume that the customers do not incur 

cost to switch from one queue to the other. Incorporating such switching cost into our 

model is analytically not difficult and does not alter the qualitative nature of the results, 

but makes the expressions be more tedious. 

 

3.1   Steady-State Distribution 

 

            Given the service rates and charges at the two servers, we derive the steady-state 

distributions by analyzing state transitions, taking into consideration the customers’ 

strategic behaviors in selecting queues upon arrival and changing queues while waiting.  

When 1≥ρ , or λµµ ≤+ 21 , the aggregate service capacity is insufficient to 

serve the customers in entirety. As a result, the queue length of each server will go to 

infinity in the long run, no matter how much the servers charge for their services, and 

each server will be completely occupied. 
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To derive the steady-state distribution, we focus on λµµ >+ 21
, or 1<ρ , to 

avoid customer jammed. We denote the steady-state probability for state ),( 21 nn , where 

i
n  is the number of customers in queue i , as ),( 21 nnπ ; and the marginal probability of n 

customers in queue i , as )(n
i

π , for 2,1=i , i.e. ),()( 2

0

1

2

nnn

n

ππ ∑
∞

=

=  and 

),()( 1

0

2

1

nnn

n

ππ ∑
∞

=

= . In the following, we consider three scenarios with respect to the 

relative magnitudes of 1p  and 2p  to derive the steady-state distribution and, particularly, 

the probability that each server is idle, which constitutes the building block for 

equilibrium analysis. 

 

3.1.1. Servers Charge Identical Prices: ppp == 21  
 

Since the two servers charge the same prices, the queue length is the only factor 

influencing customers’ server selection. In this case, the difference in the lengths of the 

queues for the two servers should not be larger than 1. To see this, note that if n 

customers are in queue 1 and n+2 customers are in queue 2, the last customer in queue 2 

can gain higher utility, from pnU β−−−= 22
 to pnU β−−−= 11

, by moving to the end 

of queue 1. On the other hand, a customer other than the last one in queue 2 is unable to 

obtain higher utility by changing queues. Thus, the system state will change from 

( n , 2+n ) to ( 1+n , 1+n ) to reach a temporary stability. As a consequence, the system 

state must take either one of three forms: ( n , n ), ( n , 1+n ), and ( 1+n , n ) for 0≥n . 

The difference equations can be expressed as follows: 
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21 )1,0()0,1()0,0( µπµπλπ +=                                                                                        (3.3) 

2
)0,0()1,1())(0,1( 21

λ
πµπµλπ +=+                                                                               (3.4) 

2
)0,0()1,1())(1,0( 12

λ
πµπµλπ +=+                                                                               (3.5) 

when 1≥n , 

λπλπµµππµµλπ ),1()1,())](,1()1,([))(,( 2121 nnnnnnnnnn −+−+++++=++     (3.6) 

2
),()1,1())(,1( 221

λ
πµπµµλπ nnnnnn +++=+++                                                     (3.7) 

2
),()1,1())(1,( 121

λ
πµπµµλπ nnnnnn +++=+++                                                     (3.8) 

∑∑
∞ ∞

=
1 2

1),( 21

n n

nnπ                                                                                                           (3.9) 

            Solving equations (3.3) to (3.8), we can derive that: 

12
)0,0()0,1(

µ

λ
ππ =                                                                                                       (3.10) 

22
)0,0()1,0(

µ

λ
ππ =                                                                                                       (3.11) 

21

2

2
)0,0()1,1(

µµ

λ
ππ =                                                                                                   (3.12) 

For 1≥n ,  

2),()1,1( ρππ nnnn =++                                                                                              (3.13) 

2)1,(),1( ρππ −=+ nnnn                                                                                              (3.14) 
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2),1()1,( ρππ nnnn −=+                                                                                             (3.15) 

            Substituting equations (3.10) to (3.15) into (3.9), we can derive that: 

1

2

22

2

1

2

2

2

1

2121

22

)(2
)0,0(

µµµµλµλµ

λµµµµ
π

+++

−+
=                                                                         (3.16) 

1

2

22

2

1

2

2

2

1

212

22

)(
)0,1(

µµµµλµλµ

λµµλµ
π

+++

−+
=                                                                        (3.17) 

1

2

22

2

1

2

2

2

1

211

22

)(
)1,0(

µµµµλµλµ

λµµλµ
π

+++

−+
=                                                                        (3.18) 

The probability that server i  is idle is:  

1

2

22

2

1

2

2

2

1

21

22

)2)((
)0(

µµµµλµλµ

µλλµµµ
π

+++

+−+
=

ji

i
,    for 2,1, =ji  and ji ≠ .                           (3.19) 

 

3.1.2. Server 1 Charges Higher Prices: 21 pp >  

 

 Now that service 1 charges a higher price than server 2, it is at a disadvantageous 

position to attract customers, since a customer will choose server 1 only when the queue 

length at server 2 is sufficiently long, i.e., )( 2112 ppnn −+> β . When there is no 

customer in server 1, the queue length for server 2 can be as long as 1+B  before a 

customer may consider server 1. On the other hand, when there are customers in both 

queues, by the same logic as that for the case when 
21 pp = , we can argue that while 

server 2 has a longer queue than server 1, the two queue lengths will not differ by more 

than 1+B  in the steady state.  The difference equations are as follows: 
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2))(0,0(),0(
2

2

n
n

µ

λ
ππ =     ( Bn ≤≤ 20 )                                                                        (3.20) 

22 )1,0()1,0())(,0( µπλπµλπ ++−=+ BBB                                                               (3.21) 

))(1,1(),0())(1,0( 212 µµπλπµλπ +++=++ BBB                                                     (3.22) 

For 11 ≥n ,  

))(1,(),1())(,( 2111111211 µµπλπµµλπ +++++−=+++ BnnBnnBnn                     (3.23) 

ρππ ),1(),( 1111 BnnBnn +−=+                                                                                  (3.24) 

λπµµπµµλπ ),())(1,1())(1,( 1121111211 BnnBnnBnn ++++++=++++                (3.25) 

2

1111 ),1()1,( ρππ BnnBnn +−=++                                                                            (3.26) 

2

1111 ),()1,1( ρππ BnnBnn +=+++                                                                            (3.27) 

∑∑
∞ ∞

=
1 2

1),( 21

n n

nnπ                                                                                                         (3.28) 

              Solving the equations (3.20) to (3.28), we can derive that: 

)(
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)0,0(
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2
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221
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2

µµλµλµ

λµµµλµ
π

−−+

−−−
=

++

+

BB

B

                                             (3.29) 

           The probability that a server is idle is: 

)(

))((
)0(

21

2

2

2

1

22

221

1
µµλµλµ

λµµµλ
π

−−+

−−−
=
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                                                                              (3.30) 

)(

))((
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21

2
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1

221

1

2
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µµλµλµ

λµµµλµ
π

−−+

−−−
=

++

+

BB

B

                                                                             (3.31) 

 

3.1.3. Server 1 Charges Lower Prices: 21 pp <  
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 Server 1 has price advantage over server 2 when it charges a lower price. 

Arriving or existing customers will select server 2 only when there are too many 

customers already waiting for server 1, i.e., )( 1221 ppnn −+> β . Similar to the case 

when 
21 pp > , we can apply the similar logic and analyzing method to list the difference 

equations: 

1))(0,0()0,(
1

1

n
n

µ

λ
ππ =      ( Bn −≤≤ 10 )                                                                      (3.32) 

11 )0,1()0,1())(0,( µπλπµλπ +−+−−=+− BBB                                                          (3.33) 

))(1,1()0,())(0,1( 211 µµπλπµλπ ++−+−=++− BBB                                                (3.34) 

For 12 ≥n , 

))(,1()1,())(,( 2122222122 µµπλπµµλπ ++−+−−=++− nBnnBnnBn                   (3.35) 

ρππ )1,(),( 2222 −−=− nBnnBn                                                                                (3.36) 

λπµµπµµλπ ),())(1,1())(,1( 2221222122 nBnnBnnBn −++++−=+++−              (3.37) 

2

2222 )1,(),1( ρππ −−=+− nBnnBn                                                                         (3.38) 

2

2222 ),()1,1( ρππ nBnnBn −=++−                                                                         (3.39) 

∑∑
∞ ∞

=
1 2

1),( 21

n n

nnπ                                                                                                         (3.40) 

Solving the equations (3.32) to (3.40), we can derive that: 

)(

))((
)0,0(

21

2

1

2

2

121

1

1

µµλµλµ

λµµµλµ
π

−−+

−−−
=

+−+−

+−

BB

B

                                                                         (3.41) 

            The probability that a server is idle is: 

)(

))((
)0(

21

2

1

2

2

121

1

1
1

µµλµλµ

λµµµλµ
π

−−+

−−−
=

+−+−

+−

BB

B

                                                                           (3.42) 
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)(

))((
)0(

21

2

1

2

2

22

121
2

µµλµλµ

λµµµλ
π

−−+

−−−
=

+−+−

+−+−

BB

BB

                                                                          (3.43) 

With these steady-state distributions for the number of customers in the two 

queues, for given service rates and charges, we are ready to investigate the competition 

between the servers in price and service. 
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CHAPTER 4 

 

PRICE COMPETITION GAME  

 

Each server maximizes its own profit by investing in a service rate and charging 

a price. We formulate a two-stage game. In the first stage, the two servers 

simultaneously invest in their capacities to attain service rates. In the second stage, 

knowing the service rates at each other, they charge prices simultaneously. The 

customers are unaware of the exact service rates, but are informed of service charges and 

can observe queue lengths. We apply backward induction to first analyze price 

competition game for given service rates; and then explore service competition to obtain 

the complete equilibrium scenario.   

 

4.1   Profit Functions 

 

            For given service rates at the two servers, we now explore the value of price 

competition to the serves. The price at one server, say i , determines the unit revenue for 

each service it provides and in the meantime competes against the service charge by 

server ij ≠ . Higher service charge increases revenue from each completed service, but 

causes the server to lose customers to its opponent.  
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If λµµ ≤+ 21
, or 1≥ρ , the aggregate service capacity is insufficient to handle 

all the customers so that both queues will be fully occupied no matter how the customers 

choose and switch between queues. The expected profit of server i  is: 

)(
iiii

Cp µµ −⋅=Π , for 2,1=i .       (4.1) 

Where )(
i

C µ is the capacity cost, and ,0)0( =C ,0)( >⋅′C  and 0)( >⋅′′C  are assumed. 

Service charges do not exert substantial effects on the distribution of customers between 

the queues. To maximize its own profit, each server will charge the highest price that 

customers can accept. i.e., P .  

We next consider the situation when 1<ρ , for which the steady-state queue-

length distributions were derived in section 3.1. The expected number of customers that 

server i , for 2,1=i , serves is 
ii

µπ )]0(1[ − ; and we can write its expected profit as 

)()()()]0(1[)|(
iiiiiiiijii

CBfpCppp µµµµπ −⋅⋅=−⋅−⋅=Π ,     (4.2)

   

where, )0(1)(
ii

Bf π−≡  is the fraction of time that sever i  is busy, and we call it the 

occupancy rate. Larger occupancy rate implies larger market share. By the results in 

Chapter 3, we can express )(Bf
i

 as:  
















<
+

+

=
+++

++

>
+

−

=

+−+−

+−+−

++

+

0， 0，
22

)(

0，)(

)(

2

1

2

2

1

1

2

2

2

2

11

2

2

2

1

2

2

121

2

2

2

2

2

1

2

2

1

B
A

A

B

B
A

Bf

BB

BB

BB

B

  

     

µλµ

λµλµ

µµµµλµλµ

λµµµµλ

µλµ

µλλ

; and 
















<
+

−

=
+++

++

>
+

+

=

+−+−

+−

++

++

0，)(

0，
22

)(

0，
)(

2

1

2

2

1

2

2

2

11

2

2

22

21

2

2

2

2

1

1

2

2

1

2

B
A

B

B
A

A

Bf

BB

B

BB

BB

  

     

21

21

µλµ

µλλ

µµµµλµλµ

λµµµµλ

µλµ

λµλµ

. 



             

CHAPTER 4                                                                                           PRICE COMPETITION GAME  
 

                                                                                                                                                      22 

For given service rates at the two servers, )(Bf
i

 is solely a function of markup, 

)]([ 21 ppB −= β , which we know determines the price positions of the two servers 

relative to each other. Given 02 ≥p , server 1 can choose any price in 









+

−
+

ββ

B
p

B
p 22 ,

1
 for IB ∈  to attain the same occupancy rate. If it targets a markup 

of B  with respect to 
2p , then it will charge 

β

B
pp += 21

 to reap in the highest unit 

revenue. Server 1’s problem of finding the best price is then equivalent to that of finding 

the best markup. Server 2’s price decision for given server 1’s price is similar. Note, 

however, to target a markup of IB ∈ , server 2 marks down its price relative to that at 

server 1 and charges 
β

B
pp −= 12

, for given 
1p . Lemma 4.1 shows the sensitivities of 

occupancy rates with respect to markup and service rates.  

Lemma 4.1: Given the service rates at the two servers, 
1µ  and 

2µ , and customer 

arrival rate λ , with λµµ <+ 21 ,  

1. )(1 Bf  decreases in B, and )(2 Bf  increases in B;  

2. )(Bf
i

 decreases in 1µ  and 2µ , for 2,1=i . 

Part 1) of Lemma 4.1 quantifies the intuition that, as the markup increases, the 

server that charges a higher price is less frequently patronized by customers. Part 2) 

shows that, for given markup, the occupancy rates of both servers decrease as either 

server raises its service speed. A higher service rate at one server exerts a direct impact 

on reducing the amount of time that this server spends serving customers. Meanwhile, 

faster service offers this server a competitive edge to attract customers that may 
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otherwise have chosen the other server, thus downsizing the pool of customers that go to 

its opponent and exerting an indirect impact on lowering the opponent’s occupancy rate.  

To further investigate price competition and, particularly, the effects of markup 

on the profits of the two servers, we define, for 2,1=i , and IB ∈ , 

)1(
1

)( −⋅
−

≡ B
B

BH
f

ii
ε

β
,                                                        (4.3) 

where, 
)()1(

)1(

)1()1(

)1()1()(
)1(

BfBf

Bf

BfB

BfBBBf
B

ii

i

i

iif

i

−−

−
⋅

−−

−−−
=−ε  is the elasticity of the 

part of server i ’s expected revenue that is attributable to markup, i.e., the indicator for 

price competition, with respect to its occupancy rate, evaluated at 1−B . That is, 

)1( −B
f

i
ε  is the percentage change in )1()1( −− BfB

i
 relative to the percentage change 

in )1( −Bf
i

. We can think of )(BH
i

 as the marginal change in server i ’s revenue due to 

a marginal change in its occupancy rate that is associated with an increase in markup 

from 1−B  to B .  

Consider server 1 first. For given 
2p , as markup rises from 1−B  to B , its profit 

change can be expressed by: 

[ ]( )211111121121 )()()1()1(
1

)( pBHBfBfBf
B

pBf
B

p −−−=−






 −
+−








+=∆ µµ

β
µ

β
, 

where, by (4.3) and Lemma 4.1, 
)()1(

)1()1()(1
)(

11

11
1

BfBf

BfBBBf
BH

−−

−−−
⋅≡

β
. 

As server 1 raises markup from 1−B  to B , its occupancy rate will drop and 

customers will turn to server 2. Server 1 incurs a loss of 2p  for marginal reduction in 

occupancy rate that is however accompanied by a marginal change of )(1 BH  in revenue. 
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If 0)(1 <BH , a higher markup lowers server 1’s revenue. 0)( 21 <− pBH , and 
1∆  is 

negative so that server 1 will not raise markup to B  from 1−B , for any price at server 2. 

If 0)(1 >BH , as markup increases, server 1 earns higher revenue that may be able to 

make up its loss due to reduced occupancy rate and bring higher profit. For any IB ∈ , 

)(1 BH  sets a threshold for 2p  such that server 1 earns higher profit by raising markup 

from 1−B  to B  when )(12 BHp < .  

Similarly, for any given 1p , as markup rises from 1−B  to B , server 2’s price is 

lowered from 
β

1
1

−
−

B
p  to 

β

B
p −1

, and the change in its profit is: 

[ ] ))(()1()()1(
1

)( 212222212212 BHpBfBfBf
B

pBf
B

p −⋅−−=−






 −
−−








−=∆ µµ

β
µ

β
, 

where, by (4.3) and Lemma 4.1, 
)1()(

)1()1()(1
)(

22

22
2

−−

−−−
⋅=

BfBf

BfBBBf
BH

β
. Server 2 weighs 

the gain due to higher occupancy rate against the change in revenue as markup 

incrementally changes. If 0)(2 <BH , then 02 >∆  and it is beneficial for server 2 to 

raise markup from 1−B  to B , for any price by server 1. If 0)(2 >BH , it is possible that 

server 1 reaps in lower profit by lowering price. )(2 BH  sets the threshold for 1p  such 

that server 2 earns higher profit by raising markup from 1−B  to B  whenever 

)(21 BHp > .  

In Lemma 4.2, we characterize the properties of )(BH
i

.  

Lemma 4.2: Let )(BH
i

 be as defined in (4.3). Then 

1. )(1 BH  decreases in B  when λµ >2
; decreases in B  for 0≤B  but increases in 
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B  for 0>B  when λµ <2
.  

2. )(2 BH  increases in B when λµ >1 ; decreases in B  for 0≤B  but increases in B  

for 0>B  when λµ <1 .  

Lemma 4.2 shows that the sensitivities of )(BH
i

 with respect to B  are 

influenced by the opponents’ service rates and reflects the interplay between the two 

modes of competition in price and service. The service rates at the servers build up the 

platform upon which they engage in price competition. Suppose server 2 has enough 

capacity to serve all customers, its speedy service makes server 1 receive relatively 

limited contribution from its own service capacity on its market share and resort to price 

as a vital weapon. Raising markup weakens server 1’s price position; although it may 

still result in higher revenue, it is a less and less attractive strategic choice.  

On the other hand, if server 2 is unable to serve the entire market on its own, 

server 1’s service capacity can earn it decent market share when it charges the same 

price as server 2. Its price position affects the value of higher markups. When its price 

position is strong ( 0<B ), raising markup will deprive it of this advantage and the 

marginal contribution to revenue by higher markup will reduce. When server 1 is in a 

weak price position ( 0>B ) (and relies mainly on service capacity to earn market share), 

raising markups, while further weakening its price position, can be a lucrative option due 

to the higher profit margin thus generated, especially when server 2’s price is so low that 

the marginal loss due to lowered market share is weak. By Lemma 4.2 and the fact that 

0)0( >
i

H , Corollary 1 is straightforward. 

Corollary 4.1: Let )(BH
i

 be as defined in (4.3). Then 
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1. When λµ >2
, there exists 01 >B  such that 0)(1 >BH  for 

1BB <  and 0)(1 ≤BH  

otherwise; when λµ <2 , 0)(1 >BH .  

2. When λµ >1 , there exists 02 <B  such that 0)(2 >BH  for 2BB >  and 0)(2 ≤BH  

otherwise; when λµ <1 , 0)(2 >BH . 

Hence, server 1 has the potential to earn higher profit by imposing higher 

markup and weakening its price competitiveness, unless server 2 has high service 

capacity ( λµ >2 ) and is highly price competitive ( 01 >≥ BB ) as well, i.e., server 2 is 

competitive in both price and service. Similarly, server 2 has the potential to earn higher 

profit by imposing higher markup to strengthen price competitiveness, unless server 1 is 

very fast ( λµ >1
) and is highly price competitive )0( 2 << BB  as well, i.e., server 1 is 

competitive in both price and service. 

We now examine server 1’s profit function 
1Π  for given 

2p . Analysis of server 

2’s profit function for given server 1’s price is in a similar vein. 1Π  assumes different 

functional forms when ],[ 21 Ppp ∈  and ],0[ 21 pp ∈ , since server 1’s price positions 

relative to server 2 differ in the two cases.  

Case 1: ],[ 21 Ppp ∈  

By (3.31) and (4.2), we can write the expected profit of server 1 as 

2

111

21

2

2

2

1

2

2

1211
)(

)(
)|( µµ

µµλµλµ

λµλ
⋅−⋅













−−+

−
⋅=Π

++

+

cppp
BB

B

, for ],[ 21 Ppp ∈ .     (4.4) 

Lemma 4.3 shows the properties of )|( 211 ppΠ  in this case. 

Lemma 4.3: Suppose ],[ 21 Ppp ∈ . For given 02 ≥p :  
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1. When λµ >2
, )|( 211 ppΠ  increases in 

1p  for 
U

Bppp +≤≤ 212 ; but decreases 

in 1p  for PpBp
U

≤<+ 12 , where 
U

B  satisfies )()1( 121 UU
BHpBH ≤<+ . 

2. When λµ <2 , )|( 211 ppΠ  decreases in 1p  for 
D

Bppp +≤≤ 212 ; but increases 

in 1p  for PpBp
D

≤<+ 12 , where 
D

B  satisfies )1()( 121 +≤<
DD

BHpBH . 

Now that server 1 is in weak price position, i.e., 0>B , the service capacity at 

server 2 influences how its profit change as it further weakens price competitiveness. 

When server 2 has sufficiently high service capacity ( λµ >2
), server 1 mainly competes 

in price with server 2. The price charged by server 2 determines the marginal loss in 

profit due to smaller market share associated with an increase in markup. When server 

1’s markup is low, raising it may bring about higher revenue to offset the loss due to 

lower occupancy rate and earns server 1 higher profit. When server 1’s markup is high, 

the loss in market share will eat into the gain in revenue and lower its profit. 
U

B  defined 

in part 1) of Lemma 4.3, for given 2p , establishes a threshold markup above which 

server 1’s profit ceases to increase. On the other hand, when server 2 has insufficient 

service capacity, i.e., λµ <2 , server 1’s service capacity can win it decent share of 

market demand when it charges the same price as server 2. Raising price will cost it 

market share and may hurt its profit. The drop in profit will continue until its price is 

high enough to make the negative marginal loss in market share insubstantial; 
D

B  in part 

2) of Lemma 4.3 defines threshold markup in this case. 

Case 2: ],0[ 21 pp ∈  
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By (3.42) and (4.2), when server 1 charges a lower price than server 2, its expected 

profit can be written as: 

2

111

21

2

1

2

2

21

1

1

2

2

1211
)(

)(
)|( µµ

µµλµλµ

µµλλµλµ
⋅−⋅













−−+

−−+
⋅=Π

+−+−

+−+−

cppp
BB

BB

, for ],0[ 21 pp ∈ .   (4.5) 

Lemma 4.4 shows the functional shape of )|( 211 ppΠ  in this case.  

Lemma 4.4: For given 
2p , )|( 211 ppΠ  is increasing in 

1p  for 
L

Bpp +≤≤ 210 ; but is 

decreasing in 1p  for 212 ppBp
L

≤<+ , where 
L

B  satisfies )()1( 121 LL
BHpBH ≤<+ .  

Server 1 is price competitive by charging a lower price than server 2. In this 

situation, by Lemma 2, as server 1 raises price with associated increase in markup, a 

weakened price position stills bring about higher revenue but marginal contribution 

decreases. Provided that server 2’s price, 
2p , is not too high, the marginal increase in 

revenue can offset the marginal loss due to reduced market share to bring higher profit to 

server 1; otherwise server 1 suffers profit loss by raising markup. Lemma 4 identifies a 

threshold 
L

B  for given 2p , such that server 1 earns higher profit as it raises markup till 

L
B  and loses profit afterwards. The profit function then displays a quasi-concave pattern. 

 

4.2   Best-Response Price 

 

We derive the equilibrium prices by the two servers by use of the best-response 

price curve. The properties for the profits of the two servers help us derive the best-

response price for one server, given the price charged by the other server. To ease the 

expressions, we introduce four thresholds values for markup B .  
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In words, 0B  and 
P

B  are the best markups for server 1 when sever 2 charges 

zero price and P , respectively. As we will show later, they set the upper and lower 

bounds on the best-response markup by server 1. Similarly, 0B  and PB  are the best 

markups for server 2 when server 1 charges zero price and P , respectively; and set the 

upper and lower bounds on the best-response markup by server 2. 

 

4.2.1   Best-Response Price of Server 1 

 

The best-response price by server 1 for given 2p  is implied in Proposition 4.1 for 

different service speeds at server 2. We use the convention: 

},min{ yxyx ≡∧ , },max{ yxyx ≡∨ .  

Proposition 4.1: Suppose that the two servers select service rates 1µ  and 2µ , for given 

price 
2p  by server 2, the best-response price of server 1 is: 

1) When λµ >2
,  
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β

M  

3) 
221 )( ppp −  decreases in 

2p . 

Figure 4.1 plots server 1’s best-response curves shown in Proposition 1. Server 

1’s best-response price is piece-wise linear with 
2p , but not continuous with the 

breakpoints at )(1 BH  for IB ∈  due to discrete nature of markup. For server 1, server 

2’s price determines the marginal loss in profit due to reduced occupancy rate. Its best-

response markup is the largest B  at which marginal increase in revenue, )(1 BH , is 

larger than 2p . The maximum allowable price and zero enforce upper and lower bounds 

respectively on the value of its price. Suppose that server 2 is fast enough to serve all 

that customers. When 2p  is low, i.e., )0(12 Hp < , the profit loss due to lowered 

occupancy rate associated with a weaker price position is low to server 1, who is safe to 

charge a higher price to enjoy higher unit revenue. As 2p  increases, the contribution to 

profit from market share is larger and the room for server 1 to raise price is smaller so 

that it will enforce lower markup. When 2p  is high, i.e., )0(12 Hp > , server 1 tends to 

be price competitive by charging lower price than server 2. 
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a.     λµ >2
 

 

b.     λµ <2
 

Figure 4.1. Best Response Curve of Server 1 

If server 2 does not have enough service capacity, server 1 has more flexibility to 

strike balance between the two competition instruments in service rate and price. When 

2p  is low, i.e., )0(0 12 Hp ≤< , the loss in profit due to lowered occupancy rate with 

higher markup is weak, server 1 tends to enforce the highest possible markup and relies 

more on service to compete in market. When server 2 charges a high price, i.e., 
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)0(12 Hp > , the contribution to profit by occupancy rate is high, which induces server 1 

to seek strong price position. As shown in Figure 4.1, server 1 will charge a lower price 

than server 2, with specific markup value determined by )(1 BH . 

An important property of the best response price curve is that server 1’s markup 

with respect to 
2p , 

221 )( ppp − , decreases with 
2p . It reaches the maximum value 0B  

when 02 =p , and the minimum value 
P

B  when Pp =2 . Server 1 tends to charge high 

if server 2’s price is low, when the high profit margin exerts a stronger effect on its 

profit even at the cost of smaller market share. As server 2 bids higher, reducing markup 

can induce more customers to visit server 1, but its absolute service charge does not 

necessarily drop, and its profit will eventually increase. Therefore, as its opponent raises 

price, further competing on price is a less attractive decision by one server. 

 

4.2.2   Best-Response Price of Server 2 

 

The best-response price of server 2, for given price by server 1, can be derived in 

the similar vein as that for server 1. For completeness, we show the results in 

Proposition 4.2. 

Proposition 4.2: Suppose that the two servers select service rates 1µ  and 2µ , for given 

1p  by server 1, the best response of server 2 is 

1) When λµ >1
, 

),1()(     ,0)( 212112 +≤<∨









∧







−= BHpBHifP

B
ppp

β
 ],[ 0 PBBB ∈ . 
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2) When λµ <1
, 
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4.3   Price Equilibrium 

 

By the best-response price functions by the two servers, we can establish the 

existence and the specific forms for the equilibrium prices, which are characterized in 

Theorem 4.1.  

Theorem 4.1: Suppose that the two servers set service rates at 
1µ  and 

2µ  respectively. 

The equilibrium of the price competition game, ),( *

2

*

1 pp , is: 

1) When λµ >1
 and λµ >2

,  

 )1()(0 21

*

1 









∧+∧








+∨= PBH

B
BHp

β
 and  *

1

*

2
β

B
pp −= , if 0)( >BY  and 

0)1( <+BY  for BBB ≤≤ , where )()()( 21 BH
B

BHBY −+=
β

, )()( 0 P
BBB ∨≡ , and 

PBBB ∧≡ 0 . 

2) When λµ >1  and λµ <2 , 

 *

1 Pp =  and 0 
*

2 ∨







−=

β

PB
Pp , if )0(1HBP P ≤−  and )1()( 22 +≤< PP BHPBH . 

3) When λµ <1
 and λµ >2

, 
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0*

1 ∨







+=

β
P

B
Pp  and Pp =*

2
, if )1(2H

B
P

P ≤+
β

 and )()1( 11 PP
BHPBH ≤≤+ . 

4) When λµ <1
 and λµ <2

, 

a.  *

1 Pp =  and 0 *

2 ∨







−=

β

PB
Pp , if )0(1HBP P ≤−  and 

)1()( 22 +≤< PP BHPBH . 

b.  *

2

*

1 Ppp == , if )1(2HP ≤  and )0(1HP ≤ . 

c. 0*

1 ∨







+=

β
P

B
Pp  and Pp =*

2 , if )1(2H
B

P
P ≤+

β
 and 

)()1( 11 PP
BHPBH ≤<+ . 

Theorem 4.1 has embedded in it a relationship between price and service 

competitions, which we specify in Proposition 4.3. 

Proposition 4.3: In the equilibrium of price competition,   **

ji
pp >  only if 

ji
µµ > , for 

2,1, =ji  and ji ≠ . 

Proposition 3 establishes that it is not to the best interest of a server to 

outperform its opponent in both speed and price. A server, if it chooses to overcharge its 

opponent and lose price competitiveness, must be faster in service. On the other hand, if 

the two servers set the same service rates, then price competition does not bring 

additional value to them and they will each charge the maximum allowable price. Hence, 

price and service competitiveness do not co-exist, but instead are substitutable to each 

other.  
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As shown in Theorem 4.1, the specific price equilibrium is critically influenced 

by the service rates. To explore further on the effects of service rates, we consider two 

situations, one in which each server has enough capacity to serve the entire market, and 

the other in which at least one server does not have enough capacity.  

 

4.3.1   Both Servers Have Enough Capacity ,1 λµ > λµ >2  

 

When both servers are fast in serving the customers, prices are vital for them to 

compete in the market. The equilibrium condition given in part i) of Theorem 1 involves 

a new function, )()()( 21 BH
B

BHBY −+=
β

, to delimit regions for specific outcomes. 

We consider B  as a continuous variable for the moment. For given markup B , we know 

that )(1 BH  is the price for 
2p  to which server 1’s best price is 

β

B
BHp += )(11

; 

whereas )(2 BH  is the price for 1p  to which server 2 earns the best profit by accepting 

that markup. So, for a specific B  to arise in equilibrium, both servers have to agree on 

the relative price positions it implies, and the two prices of 
β

B
BH +)(1

 and )(2 BH  must 

be equal. Now that B  is discrete, )(BY , as the difference between the two prices, 

delimits the equilibrium partition. Lemma 4.5 shows some properties of )(BY . 

Lemma 4.5: Let )(BY  be defined in Theorem 1, then: 

1. It decreases in B .  

2. When λµ >1
 and λµ >2

, it increases in 
1µ , and decreases in 

2µ .  
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3. When λµµ >> 21
, Given 

2µ  and B , there exists ),( 21 Bµµ  at which 0)( =BY ; 

and ),( 21 Bµµ  increases in both 2µ  and B . 

By parts 1) and 2) of Lemma 4.5 and the equilibrium characterization in 

Theorem 4.1, the service rates at the two servers influence the equilibrium markup. 

Server 2 tends to be more price competitive, i.e., the value of B  increases, as the service 

at server 1 is faster, i.e., 
1µ  increases, or its own service is slower, i.e., 

2µ  decreases. On 

the other hand, server 1 will be more price competitive, i.e., the value of B  decreases, as 

the service at server 2 becomes faster, or its own service slower. This echoes our earlier 

finding that one server is price competitive only when it is not service competitive. 

     

a.     Markups 
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                                               b.     Prices 

Figure 4.2. Price Equilibrium, when λµ >1
 and λµ >2

 

Consider the specific situation when server 1 is faster than server 2, i.e., 

λµµ >> 21
. The analysis for the case λµµ >> 12

 follows by symmetry. By part 3) of 

Lemma 4.5, we can rewrite the existence condition in part i) of Theorem 4.1 as 

),()1,( 21121 BB µµµµµ >>+ . Figure 4.2 demonstrates price equilibrium. The discrete 

markup causes the equilibria to reside in strips, while the equilibrium pattern is 

symmetric around equal-service-rate line. For given service rate at server 2, 
2µ , the 

equilibrium markup is IB ∈  when the service rate at server 1 is in 

)),(),1,(( 2121 BB µµµµ + . When the two servers have comparable service rates, they will 

each charge the maximum allowable price, i..e, further price competition is of no value 

to the servers. Given the service rate at server 2, as server 1 raises service rate above 
2µ , 

server 2 charges lower price and the markup non-decreases, relegating server 1 to a 

weaker price position. Note that server 2 always charges threshold price )(1 BH  to 
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induce server 1 to accept markup B  and charge 
β

B
BH +)(1 . Similar observations apply 

when server 2 has higher service rate than server 1. 

 

4.3.2   At Least One Server Lacks Enough Capacity 

 

There are three possible cases: 1) λµ >1  and λµ <2 ; 2) λµ <1  and λµ >2 ; 3) 

λµ <1  and λµ <2 . We first consider the case where server 1 has enough capacity, 

whereas server 2 does not. Server 2 will rely on lowering price to compete for market 

share, whereas server 1, thanks to its advantageous position in service speed, will weigh 

the values of engaging in one more layer of price competition. Part ii) of Theorem 1 

shows, if equilibrium exists, server 1, by charging the highest possible price to enjoy the 

best unit revenue, will not turn to price competition and server 2 makes best-response 

price decision, with specific value dependent on the prevailing service rates, or the 

extent of service competition.  

For the sake of partitioning equilibrium space, we define 

)1()/)0((),,( 2121 +∧+= PPP BHBHBZ βµµ .      (4.10) 

The existence condition, as given in part (ii) of Theorem 1, can be rewritten as 

),,()( 212 PP BZPBH µµ<< . 

Recall that, by (4.8), PB  is server 2’s optimal markup when server 1 charges P . 

),,( 21 PBZ µµ , as defined in (4.10), locates the specific value for PB  and identify 

existence of pure-strategy equilibrium. 
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Lemma 4.6: Let ),,( 21 PBZ µµ  be defined in (4.10). 

1.  It is decreasing in 
1µ  and 

2µ . 

2. For given P  and 2µ , there exists )( P
z

Bµ  such that PBZ P ≥),,( 21 µµ  for 

)(1 P
z

Bµµ ≤  and PBZ P <),,( 21 µµ  otherwise; and )( P
G

Bµ  such that 

PBH P ≥)(2
 for )(1 P

G
Bµµ ≤  and PBH P <)(2

. )( P
G

Bµ  and )( P
z

Bµ  decrease in 

2µ  and increasing in PB . 

By Lemma 4.6, for given P  and 
2µ , price equilibrium in pure strategy exists 

when )()( 1 P
z

P
G

BB µµµ ≤< . Figure 4.3 demonstrates this condition as well as the 

equilibrium in this case. While equilibrium markup, if exists, appears in strips, it is 

likely that pure-strategy price equilibrium do not exist, which happens when the service 

rates fall in the shaded areas. Mixed-strategy price equilibria exist in these situations, but 

it is difficult to derive. So we choose not to pursue in that direction. Excluding the non-

existence areas, the general trend is that, as server 1 speeds up, server 2 will choose to be 

more price competitive. 

 
a.     Markups 
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b.     Prices 

Figure 4.3. Price Equilibrium, when λµ >1  and λµ <2  

The price equilibrium for case 2) is in a similar vein. In case 3) where neither 

server has enough capacity, both servers will pick the maximum service charge in any 

equilibrium. So they purely rely on service competition to share the market by charging 

the highest price to reap in the best unit revenue. Combining the results for all the 

scenarios, we can partition the whole space for the service rates by ),( 21 µµ B , )(B
z

µ  

and )(B
G

µ , with specific equilibrium for each area in Figure 4.4 and Figure 4.5. 

 

Figure 4.4. Markup, Given Service Rate 
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Figure 4.5. Equilibrium Price, Given Service Rate 
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CHAPTER 5 

 

SERVICE RATE COMPETITION GAME  

 

By the equilibrium for the price competition, derived in Chapter 4, the two 

servers engage in a game to invest in their respective service capacities. In this stage, 

servers choose service rates 1µ  and 2µ  simultaneously to maximize their profits. With 

the results of equilibrium prices and the equilibrium existence conditions in Chapter 4, 

we can solve the service rate competition game. 

 

5.1   Symmetric System 

 

To facilitate the equilibrium expressions, we consider a specific functional form 

for the capacity cost, 2( )
i i i i

C cµ µ= , and 0>
i

c  for 1,2i = .  For a symmetric system, 

where the two servers incur the same marginal capacity costs, that is ccc == 21 . By 

substituting the equilibrium price derived in Chapter 4 into profit functions, we can 

completely characterize equilibrium service rates to obtain the system behavior, as 

shown in Proposition 5.1.  

Proposition 5.1: In a symmetric system where the two servers have the same investment 

costs, i.e., ccc == 21
, in the equilibrium, if 

λ

P
c

2
< , then 
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1. The service rate at server i , 
*

i
µ , for 2,1=i , is: 

λ
λ

µµ
6

1

12

16

12

4
3

233
*

2

*

1 −+==
K

c

c

K
,             (5.1) 

where )427( λcPPa −≡  and ]33227[
22

acPcK +−≡ λλ . 
*

i
µ  decreases 

with capacity cost c , increases with the maximum price P  and arrival rate λ . 

2. The price charged by server i , 
*

i
p , for 2,1=i , is Ppp == *

2

*

1 .  

3. The profit of server i , 
*

i
Π , for 2,1=i , is: 

2

3

233
*

2

*

1
6

1

12

16

12

4

2








−+−=Π=Π λ

λλ

K

c

c

K
c

P
.   (5.2) 

The equilibrium is symmetric across servers in symmetric systems, and the 

resultant aggregate service rate is higher than arrival rate. Note that, by charging 

maximum allowable prices, the two servers do not engage in price competition, 

forfeiting price as a weapon to compete for customers, but rely on service speed to share 

the market. Lower capacity cost allows servers to build up higher service rates. Now that 

each server charges P , as its value increases, the unit revenue from a completed service 

is higher, which makes the servers able to afford the increase in capacity cost to build 

higher service capacities. Further, as more customers arrive, the servers speed up their 

services. 

             

5.2   Asymmetric System 
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For the asymmetric system, two servers’ margin costs are not identical, that is 

21 cc ≠ . It is hard to derive closed-form analytical solutions of the equilibrium service 

rates. However, we can always conduct comprehensive set of numerical studies to 

explore further insights.  

We first investigate the effects of capacity costs on the prices, service rates, and 

profits, by fixing server 1’s capacity cost and varying that at server 2. Note that, opposite 

to what we observed in symmetric system, the two servers may engage in price 

competition to complement service competition in the asymmetric system, depending on 

how price influences customers’ utility, captured by marginal disutility β . 
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Figure 5.1. Effects of Capacity Costs, when Customers are Price Insensitive 

Figure 5.1 reveals typical outcomes when marginal disutility is low, 2.0=β . 

The other parameters for the data in this figure are 0.2=λ , 0.11 =c , and 20=P . When 

customer is insensitive to price, the servers choose not to compete in price, but resort to 

the highest allowable price Ppp == *

2

*

1 . It is intuitive that the server with higher 

capacity cost invests in lower service rate, i.e., 
**

ji
µµ ≥  iff 

ij
cc ≥ , for 2,1, =ji  and 

ji ≠ . As shown in Figure 5.1, as server 2’ capacity cost, 
2c , increases, it lowers service 

rate. The effect of 2c  on server 1’s service is, however, not monotone. As 2c  increases 

in ),0[ 1c  when server 1 incurs higher capacity cost, server 1 has tendencies to set higher 

service rate as its cost disadvantage shrinks, until its capacity cost is equal to that at the 

opponent. As 2c  increases in ),[ 1 +∞c , server 1 has lower capacity cost and can 

outperform its opponent in service speed. However, the marginal contribution to revenue 

by further increasing service rate may not be high enough to offset the increase in 
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capacity cost. Figure 5.1.a shows that server 1 tends to lower service rate, provided it 

maintains faster service speed. Moreover, as shown in Figure 5.1.b, server 2’s capacity 

cost increases, server 1’s profit strictly increases while server 2’s profit decreases; the 

two servers earn the same profit when their capacity costs are identical. 

We next examine the situation when customers are sensitive to prices. Figure 5.2 

shows the typical outcome when the marginal disutility is large. The parameters to draw 

this figure are 0.2=λ , 0.11 =c , 2=β , and 5.6=P . Part a. and b. show the effects of 

server 2’s capacity cost on service rates and prices at the servers. The two servers make 

similar service capacity decisions and do not quite engage in price competition when 

their capacity costs are comparable to each other. When 
2c  is low enough, server 2 has 

the cost advantage to build higher service capacity and overprice server 1, which poses 

itself at a weak price position. When 
2c  is high enough, however, server 2 builds lower 

service rate and underprices server 1. Hence, when their capacity costs differ 

substantially from each other, the servers rely on substitutable competitive weapons: the 

one with cost advantage relies on fast service and the other on low price. This echoes our 

finding that the competitiveness in price and service do not co-exist in the service 

system. 
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Figure 5.2. Effects of Capacity Costs, when Customers are Price Sensitive 

The population size of customers also affects the servers’ competition outcomes. 

To explore its effects in the asymmetric service system, we vary customer arrival rate to 

examine the effects on servers’ behaviors. Intuitively, the servers invest more in service 

capacities as more customers arrive and higher customer arrival rate brings about higher 

profits to them, which are demonstrated in Figure 5.3, where the parameters to generate 

the data are 0.2=P , 0.11 =c , 5.02 =c  and 2.0=β .  
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Figure 5.3. The Effect of Customer Arrival Rate 

Figure 5.4 illustrates how service rates changes with the maximum service 

charge, P , based on the problem instance: 0.2=λ , 0.11 =c , 5.02 =c  and 2.0=β . As 
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we discussed before, the maximum charge P  reflects the customers’ service valuation. 

While server 2 invests more in service capacity and earns higher profit than server 1 due 

to its lower capacity cost, both servers make more capacity investments and earn higher 

profits when their services are more valuable to customers. A plausible explanation is 

that: as the customers value their services more, the servers have stronger incentives to 

raise service charges. In the competitive setting, however, a higher service charge may 

cost a server its market share, so servers each make more investment in capacity to 

provide faster service with the mounted investment cost paid off by the higher service 

charge.  
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Figure 5.4. The Effects of Maximum Service Charged 
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CHAPTER 6 

 

PERFORMANCE COMPARISIONS 

 

Our approach to model customer behaviors in the service system is different 

from those in the existing literature. Customers in our model are uninformed of the 

service providers’ service rates and are “pragmatic” decision makers to select service 

provider based on observed queue lengths; while customers in the past papers are 

informational rich and sophisticated enough to derive expected waiting times, whereby 

they can choose service providers more intelligently. Different levels of information 

held by customers with their corresponding service selection behaviors critically 

influence the service providers’ service investments and price decisions. Moreover, we 

assumed that customers select between the two service providers in real time, while 

several models in the existing literature have customers allocated to service providers by 

a system manager under certain policy not influenced by the actual system states.  

In this section, to examine the effects of customer behaviors on system 

performance, we compare our findings to those in Li and Lee (1994), hereinafter 

referred to as LL (1994), So (2000), Bell and Stidham (1983), hereinafter referred to as 

BS (1983), and Gilbert and Weng (1998), hereinafter referred to as GW (1998). The 

customer selection criterion in So (2000), BS (1983), and GW (1998) are captured by 

allocation formulas, while those in LL (1994) and this paper by utility functions.  
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We first provide the relevant results before making comparisons. LL (1994) 

assumes customers select service providers based on price and expected waiting time 

that depends on queue length and service rate; and the utility that one customer obtains 

by selecting service provider i  takes the form: 

( 1)/       
 for 1, 2

                              

i i i i

i

r n p if p P
U i

Otherwise

µ β− + − ≤
= =

−∞
,                 (6.1) 

where 
i

p  is the price charged by server i , P  the customers’ reservation price (similar 

to the maximum allowable price in our model), β  and r  are respectively the marginal 

disutilities of price and expected waiting time. The resulting utility function is similar in 

nature to the one we use, as given in (3.1). However, while LL (1994) also makes use of 

the observable queue lengths, it differs fundamentally from our model by assuming 

customers are aware of the service rates and incorporating that information into the 

utility function.  

With service rate information available to all the customers, instead of actual 

system state such as queue length, some earlier models apply state-independent 

allocation policies to distribute customers between the service providers to achieve 

target long-run performances. So (2000) assumes that customers select service providers 

by expected lead-time and price, and presents the demand for each service provider by a 

multiplicative competitive interaction (MCI) model: 

1

1 1
( ) for 1, 2i i

i

i i j j

p t
i

p t p t

β

β β
λ λ

− −

− − − −
= =

+
,                                           (6.2) 

where 
i

p  is server i’s price, 
i

t  is the expected lead time and β  is  price elasticity. 



             

CHAPTER 6                                                                          PERFORMANCE COMPARISIONS  
 

                                                                                                                                                   54 

In other papers, customers do not select service providers; system managers 

allocate them according to certain allocation rule that depends on service rates, while 

price is usually not treated as a decision factor. BS (1983) designs a rule to minimize the 

customer’s expected lead time under which the demand for each service provider, i
λ

, 

takes the form: 

                         ( )( ) for 1, 2
i

i i i j

i j

i
µ

λ µ µ µ λ
µ µ

= − + − =
+

.                                  (6.3) 

GW (1998) assumes that a system manager aims to equalize the customers’ 

expected waiting times at the two service providers, and the demand to each of them is 

                                       

 for , 1,2 and 1
( ( ))      

2

j i

i

i i j

i j i j

otherwise

λ λ µ µ

λ
µ µ µ λ +

+ ≤


= = ≠
− + −



     (6.4) 

To screen out the effects of the availability of service rate information to 

customers on system performance, we compare our model with LL (1994), with real-

time service selection assumed in both models. Figure 6.1 displays the typical outcomes 

where the service providers incur different capacity costs. The base parameter values for 

Figure 6.1 are 0.11 =c , 0.2=λ , 20=P , 1=r , and 0.1=β .  
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a)   *

i
Π  vs 2c  

 

 b)   *

i
t  vs 2c  

 

Figure 6.1. Effects of Availability of Service Rate Information 

Observe that the service providers invest in lower service rates but earn higher 

profits, while customers spend longer time waiting in line in our model than in LL 

(1994). It is mainly attributed to the different information stands held by customers in 
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the two models. The customers in our model are unaware of the service rates and their 

pragmatic service selections rely on actual queue lengths and prices. Knowing this, the 

service providers do not have strong incentives to invest in service and would let the 

random nature do its work. On the contrary, the customers, as modeled in LL (1994), are 

aware of the service rates and use them directly in service selections. As a result, each 

service provider is prompted to raise investment; but the higher capacity cost is not paid 

off by revenue, and its profit suffers. 

To study the effects of customers’ real-time service selection on system 

performance, we compare our model to So (2000), GW (1998), and BS (1983). Figure 

6.2 displays typical comparison outcomes for the symmetric settings with base 

parameters 0.2=c , 0.1=λ , and 0.1=b .  

 

    a)    *µ  vs P  
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    b)   *
t  vs P  

 

  c)   *Π  vs P   

Figure 6.2. Effects of Customers’ Service Selection Behavior in Symmetric Systems 

Figure 6.3 displays the comparison results of asymmetric systems with base 

parameter values 0.11 =c , 0.1=λ , 20=P , and 0.1=β . Since BS (1983) and GW 

(1998) focus on symmetric systems, only So (2000) is examined here.  



             

CHAPTER 6                                                                          PERFORMANCE COMPARISIONS  
 

                                                                                                                                                   58 

 

a)   *

i
Π  vs 2c  

 

b)   *

i
t  vs 2c  

Figure 6.3. Effects of Customers’ Service Selection Behavior in Asymmetric 

Systems 

In both symmetric and asymmetric systems, service providers invest less in 

service rates, earn higher profits, but customers spend more time waiting in line in our 

model than in either of the selected models. Notice that the differences, as revealed 
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between Figures 8 and 10, are attributed to both the availability of service rate 

information to customers and their service selection behaviors. The performance gaps in 

Figure 6.3 are notably wider than those in Figure 6.1, which implies that, besides 

availability of service rate information, customers’ real-time service selection exerts an 

additional effect to lower the service provider’s capacity investments and lengthen the 

customers’ stay in system. On top of the differences originating from information 

availability, customers’ state-dependent service selection upon arrival and jockeying 

between queues, as assumed in our model, lowers the chance for waiting customers and 

idle service providers to co-exist, particularly when service providers charge comparable 

prices. As a consequence, service providers that face customers making real-time service 

selections expect to achieve a higher capacity utilization than those whose customers 

commit to one service provider in advance. So they further lower capacity investments 

in service and detain customers longer, but reap in higher profits. 
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CHAPTER 7 

 

CONCLUDING REMARKS  

In this work, we have analyzed a service system consisting of two servers each 

with its own queue. Customers’ utility from one server is influenced by its service 

charge and the number of customers waiting in its queue. An arrival customer chooses to 

join the queue for a server that gives higher utility. A customer waiting for service in one 

queue can change to the other queue as long as such a move can bring strictly higher 

utility to him. We call these naïve or pragmatic behaviors by customers who are unaware 

of service rate information. To our best knowledge, this is the first paper to model 

pragmatic consumer behaviors in a competitive service system.  

For given service rates and charges at the two servers, we derive the steady-state 

distributions for the queue lengths in closed forms, taking into consideration customers’ 

information stand and server-selection behaviors. Then we explore the servers’ joint 

competition in service and price, and study the interplay between these two modes of 

competition. We have conducted a complete analysis for a symmetric system, and turn 

to a set of numerical studies to gain more understandings for an asymmetric system. 

Among the interesting results, we find that neither server will try to hold competitive 

advantages in both price and service. In a symmetric system, the two servers will forfeit 

price as a competitive instrument and rely solely on service speeds to compete in the 

market. We have also compared the results in our model to those in existing literature, 

which assumes that the customers are aware of the servers’ service rates to make 
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sophisticated server selections; and found that the service providers invest less in service 

rates and earn higher profits but the customers spend longer time in line when the 

customers lack server information and make pragmatic decisions as modeled in our 

work.  

Several directions seem promising for future research. One extension is to study 

different kind of capacity cost functions. In this paper, we do not consider the 

operational cost. In reality, however, operation cost exists when servers provide service 

and usually it is not linear with demand. Therefore, the operational cost and scale of 

economy can be considered to explore further insights. We only study the duopoly 

setting so a second extension would be considering the generalization of multiple 

servers’ competition (more than 2 servers).  
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APPENDIX: Mathematical Proofs 

 

Proof of Lemma 4.1: 

Part 1) 

We only prove the monotonicity of )(1 Bf . The proof of )(2 Bf  is similar and we 

omit the proof process here. 
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So )(1 Bf  decreases with B .   

Part 2) 

When 0>B , 
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we can know that )(1 Bf  decreases with 2µ . 

With the same logic and method, we can prove that when 0<B , )(1 Bf  also 

decreases with 1µ  and 2µ . 
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conclude that )(1 Bf  decreases with 1µ  and 2µ . The proof for )(2 Bf  is similar so 

we omit the process here. �  

 

Proof of Lemma 4.2 

Part 1) 
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It is easy to verify that 0>N  if λµ <2 ; but 0≤N  otherwise. 
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Thus, 0<N . 0)]1()()][()1([ 1111 >+−−−= BfBfBfBfD , so )()1( 11 BHBH <+ .   

Therefore, )(1 BH  is decreasing in B when 0<B . 

 

Combine the above two cases, we conclude that when λµ >2 , )(1 BH  is 

decreasing in B ; when λµ <2 , )(1 BH  is increasing in B  for 0≥B , but is 

decreasing in B  for 0<B .  

 

Part 2) The proof of )(2 BH ’s property is similar to that of )(1 BH , we omit the 

details.  �  

 

Proof of Lemma 4.3 

When ],[ 21 Ppp ∈ , for given 1µ , 2µ  and 2p , if ββ /)1(/ 21 +<−≤ BppB , it is 

easy to see that 1Π  is linear and increasing in 1p . So β/21 Bpp +=  for +∈ IB . 

)]1()][1()([)|/)1(()|/( 12111221221 +−+−=++Π−+Π BHpBfBfpBppBp µββ  

])()][()1([)|/)1(()|/( 21111221221 pBHBfBfpBppBp −−−=−+Π−+Π µββ  

By Lemma 4.2, )(1 BH  decreases in B  when λµ >2 . If )()1( 121 BHpBH ≤<+ , 

then )|/)1(()|/( 221221 pBppBp ββ ++Π>+Π   
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and )|/)1(()|/( 221221 pBppBp ββ −+Π≥+Π . 

Let )}()1(:{ 121 BHpBHIBB
U

≤<+∈= +
.  

)( 11 pΠ  reaches the maximum when β/21 U
Bpp += . Thus, )( 11 pΠ  increases in 

1p  if β/212 U
Bppp +≤≤ ; and decreases in 1p , if PpBp

U
≤<+ 12 / β . 

By Lemma 2, )(1 BH  increases in B  when λµ <2 . If )1()( 121 +≤< BHpBH , 

then )|/)1(()|/( 221221 pBppBp ββ ++Π≤+Π  

and )|/)1(()|/( 221221 pBppBp ββ −+Π<+Π .  

Let )}1()(:{ 121 +≤<∈= +
BHpBHIBB

D
.  

)( 11 pΠ  reaches the minimum when β/21 D
Bpp += . Thus, )( 11 pΠ  decreases in 

1p  for β/212 D
Bppp +≤≤ ; and increases in 1p  for PpBp

D
≤<+ 12 / β . 

 

Proof of Lemma 4.4 

When ],0[ 21 pp ∈ , for given 1µ , 2µ  and 2p , if ββ /)1(/ 21 +<−≤ BppB , it is 

easy to observe that 1Π  is linear and increasing in 1p . So β/21 Bpp +=  for 

−∈ IB . 

)]1()][1()([)|/)1(()|/( 12111221221 +−+−=++Π−+Π BHpBfBfpBppBp µββ  

])()][()1([)|/)1(()|/( 21111221221 pBHBfBfpBppBp −−−=−+Π−+Π µββ  

By Lemma 4.2, )(1 BH  decreases in B . Thus, if )()1( 121 BHpBH ≤<+ , 

)|/)1(()|/( 221221 pBppBp ββ ++Π>+Π   

and )|/)1(()|/( 221221 pBppBp ββ −+Π≥+Π . 

Let )}()1(:{ 121 BHpBHIBB
L

≤<+∈= − .  

)( 11 pΠ  reaches the maximum when β/21 L
Bpp += . Thus, )( 11 pΠ  increases in 
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1p  if β/0 21 L
Bpp +≤< ; and decreases in 1p , if 212 / ppBp

L
≤<+ β . 

 

Proof of Proposition 4.1 

1) λµ >2  

For given 2p , 1µ  and 2µ , let the best response of server 1 be 

β/)()( 2221 pBppp += . 

By Lemma 4.3, if )()1( 121 BHpBH ≤<+ , server 1’s best price is β/21 Bpp += .  

So )}()1(:{)( 1212 BHpBHIBpB ≤<+∈= . As )(1 BH  decreases in B, )( 2pB  

decreases in 2p . )( 2pB  reaches it maximum at 02 =p  with value 0B , and 

reaches its minimum at Pp =2  with value 
P

B . 

2) λµ <2  

We consider the cases when 21 pp ≥  and 21 pp <  separately, and combine them to 

get the best response of server 1. 

Case 1) 21 pp ≥ , 0)]([ 21 ≥−≡ ppB β .  

])()][()1([)|/)1(()|/( 21111221221 pBHBfBfpBppBp −−−=−+Π−+Π µββ . 

If )0(0 12 Hp ≤< , )|()|/)1(()|/( 221221221 pppBppBp Π>−+Π>+Π Lββ . So 

there is only one local maximum for )|( 211 ppΠ  at P .  

If )0(12 Hp > , there might exist two local maxima for )|( 211 ppΠ , one at 2p  and 

the other at P .  

But 0])0()][0()1([)|/1()|( 21111221221 <−−−=−Π−Π pHffpppp µβ .  

So at this time, the optimal price is β/1)( 221 −= ppp .  

Hence, Ppp =)( 21  when )0(0 12 Hp ≤< ; and  /)()( 2221 βpBppp +=  for 
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0)( 2 <pB , when )0(12 Hp > . 

Case 2) 21 pp <  

The proof is similar to the case of λµ >2 . So we omit the proof process here. 

Combining the two cases, we have the best response function of server 1.  

3) β/)()( 2221 pBppp =− . β/)( 2pB  is decreasing in 2p  is obvious by its 

forms. �  

 

Proof of Proposition 4.2 

The proof for Proposition 2 is similar to that for Proposition 1, we omit the proof 

process and details. �  

 

Proof of Theorem 4.1:  

Here we only prove the first and second cases. The proofs for the remaining two 

cases are similar and hence omitted. 

1) λµ >1  and λµ >2  

By Proposition 1, if 21 pp ≥ , we can get the best response function of two servers: 

),()1(     ,0))/(()( 121221 BHpBHifPBppp ≤<+∨∧+= β ],[ 0BBB
P

∈  

),1()(     ,0))/(()( 212112 +≤<∨∧−= BHpBHifPBppp β ],[ 0 p
BBB ∈  

Only if BBB == 21  and the best response curves of two servers have intersections, 

the price equilibrium might exist. At this time, the best response functions are:  

β/21 Bpp +=  for  )()1( 121 BHpBH ≤<+ ; 

β/12 Bpp −=  for )1()( 212 +≤< BHpBH . 
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The necessary and sufficient condition of the price equilibrium to exist is that the two 

lines must have intersections or share a common part. That is: 

0)(/)( 21 >−+ BHBBH β  and 0)1(/)1()1( 21 <+−+++ BHBBH β ; 

or 0)( >BY  and 0)1( <+BY . 

Under such conditions, the equilibrium prices are:
 

*

2

*

1
β

B
pp +=  and 

) )1()/)(((0 21

*

1 PBHBBHp ∧+∧+∨= β . 

2) λµ >1  and λµ <2  

In this case, *

2

*

1 pp ≥ . The best response functions of two servers are: 

　)0(0   ,)( 1221 HpifPpp ≤<= , and 









+≤≤<∨−

<≤+≤<∨−

=

)1()(   ,0)/(

    　　　　　　　

)0(　)1()(   ,0)/(

)(

2121

2121

12

PPP

P

BHPpBHifBp

BBBHpBHifBp

pp

β

β

M  

Only when PBB =  do the best response curves of the two servers have 

intersections, and price equilibrium exist. For this case, the best response functions 

are:  

Pp =1 , for )0(0 12 Hp ≤< ; and 

β/12 PBpp −= , for )1()( 212 +≤≤< PP BHPpBH . 

The two curves must have intersections or share a common part. That is: 

)0(1HBP P ≤−  and )1()( 22 +≤< PP BHPBH  

Under such conditions,  *

1 Pp = and 0) /(*

2 ∨−= βPBPp .  

By the same logic and analyzing methods, we can find the equilibrium prices 

together with their existence conditions for the other cases. �  



 

                                                                        APPENDIX 

 

 71 

 

Proof of Proposition 4.3:  

Let 
1

1
µ

λ
=m , 

2

2
µ

λ
=m . Suppose that *

2

*

1 pp > , that is β/*

2

*

1 Bpp += , for 1≥B . 

When λµ >2  and λµ >1 , the condition for the equilibrium to exist is: 0)( >BY  

and 0)1( <+BY . Assume at equilibrium, 21 µµ ≤ . We will show later that )(BY  

decreases in B and increases in 1µ . When 1=B , 21 µµ = , )(BY  reaches its 

maximum value.  

0
1

1
)1()0(

)0(21
)1(

11

11 <−=







−

−

−
=

ββ ff

mf
Y , which does not satisfy existence condition 

0)1( >Y , and contradicts the assumption that it is the equilibrium. Thus, only if 

21 µµ > , *

2

*

1 pp > .  

When λµ >2  and λµ <1 , by the analysis above, we can show that at equilibrium, 

*

1p  can not be larger than *

2p . And, similarly for the case when λµ <2  and 

λµ >1 . 

When λµ <2 and λµ <1 , if *

2

*

1 pp > , by the best response functions: 

)0(0 12 Hp ≤<  and )1()( 212 +≤< PP BHpBH , for 0>PB .  

As shown later, )(2 PBH  increases in PB , its lowest value is 12 )1( pH < . )1(2H  

is then lowest point on server 1’s best response curve. If equilibrium exists, the two 

best response curves must have intersections. That is, )1(/1)0(0 21 HH −+< β . 

When λµµ <≤ 21 , )1()0( 11 HH < , and by the above proof, 

0)1(/1)1()1(/1)0( 2121 <−+<−+ HHHH ββ . It means the equilibrium can not exist 

in this case, which contradicts the assumption.  
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Thus, *

2

*

1 pp >  only if 21 µµ > .         �  

 

Proof of Lemma 4.5:  

Part 1)  

When 0>B , for given 1µ , 2µ , 
)1()(

)1(1
)()(

22

2
1

−−

−
−=

BfBf

Bf
BHBY

β
. 

Let 
)1()(

)1(
)(

22

2

−−

−
=

BfBf

Bf
Bk . 

)]1()()][()1([

)1()1()(

)1()(

)1(

)()1(

)(
)()1(

2222

22

2

2

22

2

22

2

−−−+

+−−
=

−−

−
−

−+
=−+

BfBfBfBf

BfBfBf

BfBf

Bf

BfBf

Bf
BkBk

))((

))((

)(

)(
)1()1()(

1

2

1

1

3

2

3

1

1

21

1

2

2

1

2

22

2

2

1

2

2

1

1

2

22

2

2
AA

AA

A

A
BfBfBf

BBBB

BBBB

BB

BB

++++

−++

++

+

++

++
−

+

+
=+−−

µλµµλµ

µλµµλµλ

µλµ

µλµλ
 

22

2

2

1

1

2

1

1

3

2

3

1

3

2

2/3

2

2/3

1

2/3

2

2/3

121

2

))()((

))()(()(

AAA

AAA

BBBBBB

BBBBBB

++++++

+++++

+++

−−+−
=

µλµµλµµλµ

µλµλµµλµµµλ

Since 0<A , 02/3

2

2/3

1 >− ++ BB
Aµλµ .  

By our earlier proofs, 1µλ −  and A
xx

12 µλµ +  have the same signs for 0>x .  

Thus, the value of 2/3

2

2/3

1

++ + BB
Aµλµ  is between 1

2

1

1

++ + BB
Aµλµ  and 

2

2

2

1

++ + BB
Aµλµ . Then, 0

))()((

))((
22

2

2

1

1

2

1

1

3

2

3

1

3

2

2/3

2

2/3

1 >
+++

−+
++++++

++

AAA

A

BBBBBB

BB

µλµµλµµλµ

µλµλµ
.  

0)1()1()( 22

2

2 >+−− BfBfBf  and )()1( BkBk >+ . )(Bk  decreases in B . By 

Lemma 4.2, )(1 BH  decreases in B . So )()()( 1 BkBHBY −=  decreases in B  for 

0≥B . The proof to show )(BY  decreases in B  when 0<B  is similar, and we 

omit the details. 

 

Part 2) 
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Let 1
1

1 <=
µ

λ
m , 1

2

2 <=
µ

λ
m , 0)( 2121 <−−= mmmmD . 

We first prove for the case when 0>B .  

The system handles all customers, so that λµµ =+ 2211 )()( BfBf , or 

2

11
2

)(
)(

µ

µλ Bf
Bf

−
= .  

By substitution , we have 







−

−−

−−
= B

BfBf

mBf
BY

)()1(

)1(21
)(

11

11

β
. 

We define 
)()1(

)1(2
)(

11

11
1

BfBf

mBf
J

−−

−−
=µ . 







 −

+++⋅








−+

−
+

−
−= +

+

+

+

++

1

2

2

2

2

2

221

2

2

2

2

22

2
1

)(
)]1)(2)[(

)(

)(
)(

µ

λµλ

µ

λ

µ

λ
λ

µλµµ

λλµ

µ

λµ
µ BB

B

B

B

BB

J

2

1

2

2

221

2

2

2

2

22

2

1

2

2

2

2

2

2

2

21

2

2

1

1

)(

)(

)(
            

)(
)]1)(2)[(

)(

)()(

µ

λµλ

µλµµ

λλµ

µ

λµ

µ

λµλ

µ

λ

µ

λ
λ

µλµµ

λλµ

µ

µ

−
⋅








−+

−
+

−
+







 −

+++⋅
−+

−
=

∂

∂

+

+

+

++

+

+

+

B

B

B

BB

BB

B

B
J

 

Since λµ >2 , 0
)(

)]1)(2)[(
)(

)(

1

2

2

2

2

2

2

2

21

2

2 >






 −

+++
−+

− +

+

+

µ

λµλ

µ

λ

µ

λ
λ

µλµµ

λλµ BB

B

B

 and 

0
)(

)(

)(
2

1

2

2

221

2

2

2

2

22

2 >
−










−+

−
+

−
+

+

+

++

µ

λµλ

µλµµ

λλµ

µ

λµ
B

B

B

BB

. So 0
)(

1

1 >
∂

∂

µ

µJ
, and )(BY  

increases in 1µ . 

Let 
)()1(

)1(2
)(

11

1
2

BfBf

Bf
k

−−

−
=µ , and 

)()1(
)(

11

1
2

BfBf

m
l

−−
=µ . Then 

)()()( 22 µµ lkBY −= . 

Since 0
)(

)1(
)(

3

2

2

2

21
1 >

+

−
=

+

+

Dm

mmm
Bf

B

B

, 
Dm

Dm

BfBf

Bf
k

B

)1(

)(2

)()1(

)1(2
)(

2

3

2

11

1
2

−

+
=

−−

−
=

+

µ . 

        
)1(

)])(12()1](1)3[(2
22

2

3

221

2

2

2 Dm

DmDDmmmB

m

k
BB

−

+−+−−++
=

∂

∂ ++
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The numerator is )(2]1)1()1[(2 3

2

2

2

2

22

2

2 DmDmmmmBD
BBBB +−++−+−+ ++++ .  

Since 12 <m , 2

1

2

2

2 mmm
BB <<< ++

L , and 02

2

3

2 <<+<+ ++
LDmDm

BB , we have 

0]1)1)[(1(1)1()1( 2

1

2

2

22

2

22

2

2 <−−−+−=−+−+ ++++
L

BBBBB
mmmBmmmmB .  

So the numerator is positive. As the denominator is always positive, 0
2

>
∂

∂

m

k
.  

As 1
2

2 <=
µ

λ
m , 0

2

<
∂

∂

µ

k
, i.e., )( 2µk decreases with 2µ . 

Next we consider )( 2µl  and examine its denominator only since its numerator in 

insensitive to 2µ . 

23

2

2

1

2

2

2

1

221

2

1

)(

)]()()[()1()(

Dm

DmDmDmmmm

m

Bf

B

BBB

+

++++−
=

∂

∂
+

+++
L

. 

Let )()()()2( 2

1

2

2

2 DmDmDmBX
BB ++++=+ ++

L , and it is easy to show 

0)2( <+BX . 

[ ]
( ) ( )22

2

23

2

32

2

52

2

2

2221

2

1

2

1 )())(1()1()1()1()(

DmDm

DmmDBXmmmm

m

Bf

m

Bf

BB

BBB

++

++−+−−
=

∂

−∂
−

∂

∂
++

++

 

.)())(1()1()())(1()1( 32

2

42

2

2

2

32

2

52

2

2

2 DmmDBXmDmmDBXm
BBBB ++−+−>++−+− ++++

32

2

42

2

2

2 )())(1()1( DmmDBXm
BB ++−+− ++  

[ ])3()1()2()1()1()( 2

2

2

2 ++−+++−+= +
BXBXBXDBXmDm

B  

DmmBDmBXBXBX
B

22

23

2

2 )]1)(1(2[)3()1()2( −+−+−=++−+ +  

0))(( 2/)3(

2

2/)3(

2

23

2 <+−=− +++
DmDmDm

BBB , and 0)]1)(1(2[ 22 <−+− DmmB . 

We can conclude that 0)3()1()2(2 <++−+ BXBXBX . 

02

2 <++
Dm

B , and 0)1()1( 2 <+− DBXm .  

So 0)3()1()2()1()1)[(( 2

2

2 >++−+++−++
BXBXBXDBXmDm

B .  
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Since 0)())(1()1( 32

2

52

2

2

2 >++−+− ++
DmmDBXm

BB , 0
)1()(

2

1

2

1 <
∂

−∂
−

∂

∂

m

Bf

m

Bf
 for 

12 <m .  

Therefore, 0
)1()(

2

1

2

1 >
∂

−∂
−

∂

∂

µµ

BfBf
, and hence 0

)(

2

2 >
∂

∂

µ

µl
, i.e., )( 2µl  increases in 

2µ . As a consequence, )()()( 22 µµ lkBY −=  is a decreasing function of 2µ . 

The proofs to show that )(BY  increases with 1µ  and 2µ  when 0>B . As for the 

case when 0<B , the proofs are similar and we omit the details.  

 

Part 3)  

By Theorem 1, when λµ >1  and λµ >2 , the existence condition for the price 

equilibrium is 0)( >BY  and 0)1( <+BY  ( IB ∈ ). )(BY  increases with 1µ . 

Then, for given 2µ  and B , there is a unique solution of 1µ  to 0)( =BY . Let it be 

),( 21 Bµµ , so that 0)( >BY  when ),( 211 Bµµµ > . For given B , applying the 

Implicit Function Theorem to 0),,( 21 =µµBY , we have 

1

2

2

21

)(

)(

),(

µ

µ

µ

µµ

∂

∂

∂

∂

=
∂

∂

BY

BY

B
. 

Since 0
)(

2

<
∂

∂

µ

BY
 and 0

)(

1

>
∂

∂

µ

BY
, 0

),(

2

21 >
∂

∂

µ

µµ B
, i.e., ),( 21 Bµµ  increases in 

2µ . The proof to show that ),( 21 Bµµ  increases in B  is similar.   �  

 

Proof of Lemma 4.6 

Part 1)  



 

                                                                        APPENDIX 

 

 76 

Let 1
1

1 <=
µ

λ
m , 1

2

2 >=
µ

λ
m , 0)( 2121 <−−= mmmmD . 

Define 
22

2

1

2

3

2

2

2

)(

))((

)(

)1(
)(

Dm

DmDm

Bf

Bf
Bl

B

BB

+

++
=

−
=

+

++

, for any +∈ IB . 

33

2

3

2

3

2

1

2

2

2

2

1

2
2

1

2

1 )(

)()1(

)(

)1(
)(

)(
)1(

)(

Dm

Dmmm

Bf

Bf
m

Bf
Bf

m

Bf

m

Bl

B

BB

+

−−
=

−
∂

∂
−

∂

−∂

=
∂

∂
+

++

. 

By our earlier proof, 0))(1( 2

22 >+− +
Dmm

B , so that 0
)(

1

>
∂

∂

m

Bl
.  

B
BfBf

Bf
BH +

−−

−
=

)1()(

)1(
)(

22

2
2 ,  

and 0
)]1()([

)1(
)(

)(
)1(

)(
2

22

2

1

2
2

1

2

1

2 >
−−

−
∂

∂
−

∂

−∂

=
∂

∂

BfBf

Bf
m

Bf
Bf

m

Bf

m

BH
. 

So )(2 BH  increases with 1m , and hence decreases with 1µ . 

With the same logic as that in the proof of Lemma 5, we can show 

0
)()1(

2

2

2

2 >
∂

∂
>

∂

−∂

m

Bf

m

Bf
 when λµ <2 . Since )1()( 22 −> BfBf , we can obtain that: 

0)1(
)()1(

)1(
)(

)(
)1(

2

1

2

1

2
2

1

2
2

1

2 >−








∂

∂
−

∂

−∂
>−

∂

∂
−

∂

−∂
Bf

m

Bf

m

Bf
Bf

m

Bf
Bf

m

Bf
.  

That is 0
)(

2

2 >
∂

∂

m

BH
. )(2 BH  increases with 2m , and hence decreases with 2µ .  

Thus, )1(2 +PBH  decreases with 1µ  and 2µ . 

Similarly, we can prove that )0(1H  decreases with both 1µ  and 2µ .  

Therefore, ),,( 21 PBZ µµ  is decreasing in 1µ  and 2µ .  

 

Part 2)  
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We have proved that ),,( 21 PBZ µµ  is decreasing in 1µ . For given P  and 2µ , 

there exists a unique solution of 1µ  which satisfies 0),,( 21 =− PBZ Pµµ . Let this 

solution be )( P
z

Bµ . Then, PBZ P ≥),,( 21 µµ  if )(1 P
z

Bµµ ≤ , and 

PBZ P <),,( 21 µµ  if )(1 P
z

Bµµ > . Since )(2 PBH  decreases with 1µ , there is a 

unique solution to )(1 P
G

Bµµ =  s.t. PBH P ≥)(2  for )(1 P
G

Bµµ ≤  and 

PBH P <)(2 . By the Implicit Function Theorem, both )( P
G

Bµ  and )( P
z

Bµ  

decrease in 2µ  and increase in PB .         �  

 

Proof of Proposition 5.1 

In a symmetric system, the two servers have the same capacity investment costs, i.e., 

ccc == 21 . We substitute the equilibrium prices into the profit functions, and find 

that the equilibrium service rates exist when Ppp == *

2

*

1  and the corresponding 

service rates are: 

λ
λ

µµ
6

1

12

16

12

4
3

233
*

2

*

1 −+==
K

c

c

K
,  

where )427( λcPPa −≡  and ]33227[22
acPcK +−≡ λλ .  

Substituting the equilibrium prices and service rates in the profit function, we have 

2

3

233
*

2

*

1
6

1

12

16

12

4

2








−+−=Π=Π λ

λλ

K

c

c

K
c

P
.         

In the symmetric system, we know that *

2

*

1 µµ = , and λµµ >+ *

2

*

1 , so 
2

*

1

λ
µ > . 

Since the profit will not be negative, that is 0)(
2

2* >−
i

c
P

µ
λ

. Therefore, we can 

obtain that 
λ

P
c

2
< . 
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