

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

The Hong Kong Polytechnic University

The Department of Industrial and Systems Engineering

A Concurrency Integrity Model for

Distributed Product Data Management

CHAN Edmond Cheuk Kit

A thesis submitted in partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

January 2009

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written,

nor material that has been accepted for the award of any other degree or

diploma, except where due acknowledgement has been made in the text.

CHAN Edmond Cheuk Kit

Abstract

i

Abstract

In today’s manufacturing environment, enterprises having work groups

geographically dispersed are not uncommon. In addition, different tasks of the

product lifecycle are distributed at different geographic locations. A product

data management (PDM) system is therefore required for controlling the

distribution and maintaining the integrity of the product data throughout its

entire life cycle. Multiple accesses to the system residing on multiple sites will

cause concurrency problems. It is crucial that concurrency control must be

provided to protect the data against a variety of possible threats, in particular,

data inconsistencies must be avoided and relationships between data must be

maintained. In particular, the current PDM technology is not completely

suitable for PDM in distributed manufacturing environment. Thus, this

research aims to develop a foundation in concurrent engineering support for

distributed product data management (DPDM).

This research begins with reviewing the suitability of existing database

management systems for product data within the scope of data architecture.

These systems are based on the technology for managing business data. In

other words, they are not efficient when employed to handle product data.

Therefore, an ontological approach for representing product data is proposed to

describe the relationships between all the objects within a DPDM system.

To secure the consistency of a DPDM system, the functions of the system must

be error-free. A DPDM system specification is necessary. Firstly, a graphical

representation model is developed to express the PDM functions. UML

(Unified Modeling Language) sequence diagrams are used to model the actions

of each of the functions and their interactions between users and the system.

Temporal logic is then used to construct the formula of these functions. The

model is further extended to represent DPDM functions.

Given that the traditional concurrency control methods were not purposely

developed to meet the need of DPDM, the requirements for data storage and

Abstract

ii

manipulation for DPDM systems are not well supported. Therefore, a

concurrent control method that caters for version management and product

architecture in DPDM is proposed. This research demonstrates how granularity

and versioning are incorporated into a lock-based concurrency control model.

The concurrent accessibility of an example product data is explained to

illustrate the adjustability according to the actions taken by the users and the

architecture of the corresponding data object.

Locking is one of the well-known concurrency control techniques and more

likely to be encountered in practice. Although lock-based concurrency control

methods guarantee serializability of data access, the systems have the risk of

deadlock as the transactions may wait for unavailable locks. An integer

programming based mathematical model employing transaction scheduling is

proposed to prevent the threat of deadlock by controlling transaction

executions in DPDM system while efficiency is maintained.

To validate the performance of the proposed methods, the strict two-phase

locking (2PL) method, the two-phase granularity version (GV) locking method,

the 2PL transaction scheduling method, and the hybrid GV transaction

scheduling method are evaluated through simulation experiments. Read and

Write accesses to composite objects are used to illustrate the comparisons

between the models. Their performances are evaluated by comparing the

number of late transactions. It shows that the GV locking model and the

transaction scheduling model are better than the strict PL method while the

hybrid model can substantially improve the concurrency of DPDM system.

Publications

iii

Publications Arising From the Thesis

Chan, E. C. K. & Yu, K. M. (2007). A concurrency control model for PDM

systems. Computers in Industry, 58(8-9), 823-831.

Chan, E. C. K. & Yu, K. M. (2007). A framework of ontology-enabled product

knowledge management. International Journal of Product
Development 4(3-4), 241 – 254.

Chan, E. C. K. & Yu, K. M. Conflict Avoidance using Integer Programming

Transaction Scheduling for Product Data Management. Computers in
Industry. (Under Review)

Chan, E. C. K. & Yu, K. M. A model for project-based environmental

compliance management for SMEs. International Journal of Product
Development. (Under Review)

Acknowledgements

iv

Acknowledgements

First and foremost I would like to thank my supervisor, Dr K. M. Yu for his

contributions towards the algorithm, implementation and presentation of this

thesis. His comments regarding the applications of PDM system has been most

useful. Also his insight and guidance he provided throughout the entire

research period has been invaluable.

Finally, I would like to thank my family for their care and encouragement. I

would never have completed my study without their supports.

The fear of the LORD is the beginning of wisdom,

and knowledge of the Holy One is understanding.

Proverbs 9:10

Table of Contents

v

Table of Contents
ABSTRACT i

PUBLICATIONS ARISING FROM THE THESIS iii

ACKNOWLEDGEMENT iv

LIST OF FIGURES x

LIST OF TABLES xiii

NOTATIONS xiv

CHAPTER 1 INTRODUCTION 1.1

1.1 Background 1.1

1.2 Key Issues and Problems 1.3

1.3 Research Objectives 1.5

1.4 Significance of the Research 1.5

1.5 Organisation of the Thesis 1.6

CHAPTER 2 LITERATURE REVIEW 2.1

2.1 Introduction to Product Data Management System 2.1

2.1.1 Workflow and Process Management 2.2

2.1.2 Product Structure Management 2.3

2.1.3 Classification 2.3

2.1.4 Program Management 2.4

2.2 Data Model for PDM System 2.4

2.2.1 Object Oriented Approach 2.5

2.2.2 Object Oriented Technology for PDM System 2.5

2.2.3 Ontology 2.6

2.3 System Modeling and Specification 2.7

2.3.1 Graphical Modeling Tools 2.7

2.3.2 Formal Specification 2.11

2.4 Concurrency Control 2.13

2.4.1 Two Phase Locking 2.14

2.4.2 Granularity Locking 2.15

2.4.3 Version Locking 2.16

Table of Contents

vi

2.4.4 Flow Graph Locking 2.16

2.4.5 Timestamp Ordering 2.17

2.4.6 Deadlock 2.18

2.5 Limitations of Existing Approaches 2.20

2.5.1 Justification of Tools and Techniques Adopted 2.22

CHAPTER 3 ONTOLOGICAL DATA MODELING IN PDM

SYSTEM 3.1

3.1 Application of Ontology to PDM 3.1

3.1.1 Procedure of Creating Ontology 3.2

3.1.2 Evolvable Ontology with Options of Instance 3.6

3.2 Mechanism of Ontology-Enabled PDM System 3.6

3.2.1 Notations of the Data Model 3.7

3.2.2 Definition of Data Category 3.8

3.3 Ontology Management Functions 3.9

3.3.1 Item Insertion 3.10

3.3.2 Ontology Creation 3.11

3.3.3 Ontology Retrieval 3.13

CHAPTER 4 ONTOLOGY-BASED ENVIRONMENTAL

COMPLIANCE MANAGEMENT SYSTEM 4.1

4.1 Background on Environmental Compliance 4.1

4.2 Environmental Compliance Management System 4.2

4.2.1 Information Management Tools 4.3

4.2.2 Architecture of PDM System 4.4

4.3 The Model of Ontology-Enabled ECM System 4.6

4.3.1 Structure of the System 4.6

4.3.2 The Compliance Analysis Module 4.8

4.4 Implementation of ECM System 4.10

4.4.1 Software for Implementation 4.11

4.4.2 The Compliance Analysis Module – ECM System 4.11

4.4.3 Illustrative Example 4.12

Table of Contents

vii

CHAPTER 5 REPRESENTATION OF PDM FUNCTIONS IN

UML SEQUENCE DIAGRAM 5.1

5.1 PDM User Functions 5.1

5.1.1 Description of PDM System User Functions 5.2

5.1.2 Description of PDM System Intrinsic Functions 5.3

5.2 Use of Sequence Diagram 5.4

5.2.1 Registering data in PDM System 5.4

5.2.2 Check-Out in PDM System 5.5

5.2.3 Check-In in PDM System 5.6

5.2.4 Release in PDM System 5.7

5.2.5 Obsoletion in PDM System 5.8

5.2.6 Deletion in PDM System 5.9

5.3 DPDM User Functions 5.10

5.3.1 Description of DPDM System User Functions 5.11

5.3.2 Description of DPDM System Intrinsic Functions 5.11

5.3.3 Registering data in DPDM system 5.12

5.3.4 Check-out in DPDM system 5.13

5.3.5 Check-In in DPDM System 5.15

5.3.6 Release in DPDM System 5.16

5.3.7 Obsoletion in DPDM System 5.17

5.3.8 Deletion in DPDM System 5.18

CHAPTER 6 CONCURRENCY CONTROL

SPECIFICATION 6.1

6.1 Concurrency Problems in DPDM System 6.1

6.1.1 The Lost Update Problem 6.3

6.1.2 The Dependency Problem 6.4

6.3 Basic 2PL Protocol in Sequence Diagram 6.5

6.4 Formal Specification of Concurrency Control 6.7

6.4.1 Temporal Logic 6.7

6.4.2 Integration of Sequence Diagram and Temporal Logic 6.8

6.4.3 Representation of Serialisability in Temporal Logic 6.9

6.4.4 Specification of Two Phase Locking in Temporal Logic 6.9

Table of Contents

viii

CHAPTER 7 CONCURRENCY CONTROL METHOD FOR

DPDM SYSTEM 7.1

7.1 Formal Description of the Method 7.1

7.1.1 Locks with Version 7.2

7.1.2 Notations and Types of Functions 7.6

7.2 Implementation 7.7

7.2.1 Check-out and Release Processes 7.8

7.2.2 View Process 7.9

7.2.3 Obsolete Process 7.11

7.2.4 Function of Redlining 7.11

7.3 Case Study 7.12

CHAPTER 8 DPDM DEADLOCK AVOIDANCE 8.1

8.1 Transaction Scheduling Problem in DPDM System 8.1

8.1.1 Problem of Deadlocks 8.2

8.1.2 Definition of Transaction 8.3

8.1.3 Deadlock Avoidance 8.3

8.1.4 Objective of the Model 8.5

8.2 Set Partitioning Problem 8.8

8.2.1 Formulation of Concurrent Transaction Scheduling Problem 8.10

8.2.2 Solution Approach 8.14

CHAPTER 9 SIMULATIONS AND PERFORMANCE

EVALUATION 9.1

9.1 General Information of the Simulation 9.1

9.1.1 Event Oriented Simulation 9.2

9.2 Simulations and Results of Various Models 9.3

9.2.1 Two Phase Locking (2PL) Model 9.4

9.2.2 Granularity Version Locking 9.7

9.2.3 Transaction Scheduling 9.12

9.2.4 The Combined Model 9.18

Table of Contents

ix

CHAPTER 10 DISCUSSION 10.1

10.1 DPDM System Representation 10.1

10.2 DPDM Specifications 10.1

10.3 Granularity Version Locking Method 10.2

10.4 Transaction Scheduling Method 10.3

CHAPTER 11 CONCLUSIONS 11.1

11.1 Contribution of the Research 11.1

11.1.1 Data Modeling for DPDM system 11.1

11.1.2 Graphical and Logical Representation of DPDM Specifications 11.2

11.1.3 Granularity Version Locking for PDM/DPDM system 11.2

11.1.4 Transaction Scheduling Method for DPDM Deadlock

Avoidance 11.3

11.2 Future Research 11.4

11.2.1 Standard Object Oriented Database Language 11.4

11.2.2 Utilisation of the capability of an ontology based PDM system 11.4

11.2.3 Automatic Translation from UML Sequence Diagrams to

Formal Semantics 11.5

11.2.4 Relaxation of Two Phase Locking 11.5

11.2.5 Dynamic Programming for Concurrent Transaction Scheduling 11.6

REFERENCES Ref.1

APPENDIX A EDRAWING PLUG-IN A.1

Key Features of eDrawing Plug-in A.A.1

Creating an eDrawing Files A.A.1

Sending an eDrawing file A.A.2

Markup Tools A.A.2

APPENDIX B CONSTRAINT BRANCHING 1

Bounding Procedure and Termination Criterion B.3

List of Figures

x

List of Figures

Figure 2.1 User accesses a PDM system through the system interface. 2.2

Figure 2.2 Bank Teller state transition diagram 2.9

Figure 2.3 Deadlock occurs when transaction are requesting data from
each other ... 2.19

Figure 3.1 Framework of ontology-enabled PDM system.................... 3.2

Figure 3.2 (a) Assembly drawing of an ink cartridge holder 3.3

Figure 3.2 (b) Drawing of an ink cartridge holder in exploded view.......... 3.3

Figure 3.3 Create classes ... 3.5

Figure 3.4 Creating an instance of ink cartridge.................................... 3.5

Figure 3.5 Relationship of data classes of PDM system........................ 3.8

Figure 3.6 Algorithm for inserting new item into an ontology............ 3.10

Figure 3.7 Algorithm for creating a new ontology 3.11

Figure 3.8 Creating new ontology in accordance with the object’s
complexity.. 3.12

Figure 3.9 Algorithm for ontology retrieval .. 3.13

Figure 4.1 Overview of the three-tier architecture 4.5

Figure 4.2 Model of environmental compliance management system .. 4.8

Figure 4.3 Procedure of compliance analysis 4.10

Figure 4.4 Start up page of ECM System .. 4.13

Figure 4.5 BOM display of the product being analysed 4.14

Figure 4.6 Data schema of part database in ECM System................... 4.15

Figure 4.7 Analysis on the grading of parts... 4.16

Figure 4.8 Report showing the compliant status of the product 4.17

Figure 4.9 ECM System created analysis report in DXF format......... 4.18

Figure 5.1 Flow of data under the operation of various PDM functions5.2

Figure 5.2 Sequence diagram for registering data 5.5

List of Figures

xi

Figure 5.3 Sequence diagram for checking out data object 5.6

Figure 5.4 Sequence diagram for checking-in data object..................... 5.7

Figure 5.5 Sequence diagram for releasing data object 5.8

Figure 5.6 Sequence diagram for data object obsoletion....................... 5.9

Figure 5.7 Sequence diagram for deleting data object........................... 5.9

Figure 5.8 Sequence diagram for registering data in DPDM system .. 5.13

Figure 5.9 Sequence diagram for checking out data object in DPDM
system... 5.14

Figure 5.10 Sequence diagram for checking-in objects in DPDM system
.. 5.15

Figure 5.11 Sequence diagram for releasing objects in DPDM system 5.17

Figure 5.12 Sequence diagram for obsoleting objects in DPDM system
.. 5.18

Figure 5.13 Sequence diagram for deleting objects in DPDM system.. 5.19

Figure 6.1 Basic database operations: Read and Write 6.2

Figure 6.2 The lost update problem... 6.3

Figure 6.3 Dependency problem: Referencing an undone data object .. 6.4

Figure 6.4 Dependency problem: Undoing the work of other transaction
.. 6.5

Figure 6.5 Basic two phase locking protocol... 6.6

Figure 7.1 Lock granules hierarchy ... 7.3

Figure 7.2 Illustration of lock compatibility.. 7.5

Figure 7.3 Check-out/Release process on part data object pdr with one
direct assembly... 7.8

Figure 7.4 Check-out/Release process on part data object pdr with more
than one direct assembly .. 7.9

Figure 7.5 Viewing a part with more than one direct assembly 7.10

Figure 7.6 Versioning of redlining .. 7.12

Figure 7.7 The object class .. 7.13

Figure 7.8 Product structure of the ink jet printer................................ 7.14

List of Figures

xii

Figure 7.9 (a) The assembly of pivot link ... 7.14

Figure 7.9 (b) The part of ink cartridge latch .. 7.14

Figure 7.10 The design of the ink cartridge latch is being modified 7.15

Figure 7.11 The design of ink cartridge lid is being modified 7.16

Figure 8.1 Execution precedence graph... 8.4

Figure 8.2 Outcome of executing transactions without scheduling....... 8.8

Figure 8.3 Illustration of integer programming for transaction scheduling
problem... 8.14

Figure 8.4 Proposed model of transaction scheduling for DPDM systems
.. 8.17

Figure 9.1 Composition of data objects in database 9.4

Figure 9.2 Histogram of the late transactions in the basic model.......... 9.7

Figure 9.3 Histogram of the tardy transactions in the granularity version
locking model ... 9.10

Figure 9.4 Histogram of the tardy transactions in the transaction
scheduling model.. 9.16

Figure 9.5 Histogram of the tardy transactions in the combined model
.. 9.20

Figure A.1 Showing dimension of a hole using Dimension function.A.A.3

Figure A.2 Adding comment to a documentA.A.3

List of Tables

xiii

List of Tables

Table 4.1 Structure of web technology and PDM system...................... 4.6

Table 6.1 The truth table of repeat function to perform repetitive addition
.. 6.12

Table 7.1 Compatibility matrix for granularity locking......................... 7.4

Table 9.1 Attributes of transactions in system simulation example....... 9.2

Table 9.2 Example of event oriented simulation on PDM system......... 9.3

Table 9.3 Transaction examples of event orientated simulation of PDM
system... 9.5

Table 9.4 Simulation of two-phase locking with Wound-Wait and FIFO
policy.. 9.6

Table 9.5 Average late transactions in the basic model 9.6

Table 9.6 Transactions in granularity version locking simulation......... 9.9

Table 9.7 Simulation example of granularity version locking in FIFO . 9.9

Table 9.8 Mean of late transactions of granularity version locking..... 9.11

Table 9.9 Summary of measures for comparing the basic model and the
granularity version locking model 9.12

Table 9.10 Three transactions in the simulation of transaction scheduling
method.. 9.15

Table 9.11 Simulation example of transaction scheduling method 9.15

Table 9.12 Mean tardy transactions of transaction scheduling model ... 9.17

Table 9.13 Summary of measures for comparing the basic model and the
transaction scheduling model... 9.17

Table 9.14 Simulation example of combined model.............................. 9.19

Table 9.15 Mean tardy transactions of the combined model 9.21

Table 9.16 Statistical summary of performance comparison................. 9.22

Notations

xiv

Notations

db Database

{ }1 2, ,..., nPD pd pd pd= Product data object set

{ }1 2, ,..., nAD ad ad ad= Assembly data object set

R Read process

W Write process

#sd Number of data objects d in the system

#ad Number of assemblies a

#pd Number of parts p

∅ Empty set

⊕ Exclusive or

∈ Member of

⊂ Proper subset

→ Execute

⇒ Imply

{ }1 2, ,..., nO o o o= Ontology set

s PDM server

u PDM user

Opt Operation

T Transaction

t Time

U Undo process

p Next: In the next moment in time that p will be
true.

p● Previous: In the previous moment in time that p
was true.

p� Henceforth: For all future time p is true.

�p Has been: from the preceding moment in time that

p is true (including now)

p� Eventually: At some future time p is true.

p◆ Once: p holds at some preceding position.

Notations

xv

p qU Until : p is always true until the time when q
becomes true

p qW Unless: () ()p q p∨U □

{ }1 2, ,..., nf f f=F Function set

{ }1 2, ,..., nΓ = ϕ ϕ ϕ Criteria set

ws Workspace

S(p) Lock part p in Shared mode

rS(p) Release the Shared lock of part p

X(p) Lock part p in Exclusive mode

rX(p) Release the Exclusive lock of part p

V(p) Lock part p in Versioned mode

rV(p) Release the Versioned lock of part p

IS(a) Lock an assembly a in Intent Shared mode

rIS(a) Release the Intent Shared lock of assembly a

IV(a) Lock an assembly a in Intent Version mode

rIV(a) Release the Intent Version lock of assembly a

d.RLi
 Redlining (version i) of data object d

{ }1 2, ,..., nT T Tτ = Transaction set

{ }1 2, ,..., nT d d d= Data object required by transaction T

c Cost of executing a transaction

jPU Union of partition j

A Constraint matrix of linear programming

admT Coefficient of mode of lock m on data object d by

transaction T

yd Auxiliary binary variable of data object d

M Arbitrary large number

y Binary variable

Chapter 1 Introduction

1.1

Chapter 1

Introduction

1.1 Background

Product data management (PDM) systems have emerged over the last two

decade due to the increasing growth of “islands of automation” within an

organization [Harris 1996]. These systems were originally in-house solutions

of many large corporations who found their progress being seriously restrained

by paper-based systems. Early PDM systems were designed to improve the

management of initial release of the data to manufacturing process.

Nowadays there are many comparable products launched to the market

contemporarily, resulting in very keen competition between manufacturing

companies. In order to improve their competitiveness, manufacturers may need

to produce complex products with more functions in addition to innovative

design and better quality in a short time frame. However, complex products

require multidisciplinary design teams to master the design and to comply with

safety and environmental regulations. In addition, for many enterprises, the

different tasks of the product lifecycle are distributed at different geographic

locations. Traditional centralized PDM systems are not designed to provide a

communication infrastructure for the whole project network. In response to

these new challenges, PDM system enhances collaborative work by online

access and electronic interchange of product data [Manji 1995]. The new

generation PDM systems enable enterprises to conduct its business activities in

a more efficient way via ingenious management of product information. PDM

systems are no longer limited to managing only information created in the

designing phase but in the entire product lifecycle.

With the advent of the internet- and web-based technologies, PDM systems can

now be executed more effectively and efficiently. The efficiency and quality of

design and manufacturing processes can be greatly improved by product

Chapter 1 Introduction

1.2

information sharing and visualization in the system. The development of web-

based PDM system is essential for supporting collaborative design and

manufacturing at geographically dispersed sites [Rezayat 2000, Yeh & You

2002, Zhang, et al. 2004]. The web-based PDM system facilitates the process

of data exchanging and sharing in order to increase the throughput of product

data transaction.

Heavy daily information flow among the design offices and production plants

is anticipated when there are more accesses to the data of the PDM systems.

Proper management and seamless integration are crucial to the success of the

business. The lack of communication among different product development

stages often causes data consistency problems in product lifecycle. These

problems become more prominent when companies lowering their operation

cost by locating their production plants and design teams in different countries.

Also, each of the companies’ departments implements their own information

management systems such as Enterprise Resource Planning (ERP), Customer

Relation Management (CRM), and other manufacturing information systems.

In such case, a centralized PDM system lacks the ability to provide a

collaborative working environment to all the involved parties. Therefore, the

concept of concurrent engineering, integrated product and process development,

and others are introduced [Chen 1997]. They are accompanied with the PDM

system to manage all product related data and provide data retrieval for product

design and production. Distributed Product Data Management (DPDM) system

has been developed to provide a solution to the above problems.

In addition to providing functions of ordinary centralized PDM systems,

DPDM systems are able to distribute product data to remote sites by breaking

down the geographical boundaries between distributed sites over a computer

network. Thus, the efficiency of the product development and production

process can be improved when the information flow is orderly controlled in a

collaborative working environment.

Chapter 1 Introduction

1.3

1.2 Key Issues and Problems

There are a number of commercial PDM systems and their extension, namely

Product Lifecycle Management systems, such as Dassault’s PDMWorks and

ENOVIA MatrixOne, Siemens’s Teamcenter, Product Dossier, PTC’s

Windchill, and several others vendors like Agile, Consensus, Smart Solutions,

and Right Angle [Miller, et al. 1999]. These systems provide PDM basic

functions. Nonetheless they have some limitations and problems for managing

product data in the distributed and collaborative manufacturing environment.

Some PDM systems are a further development of their past versions, which

were designed in a time when modern computing technologies were not

available. The newer versions claim they have collaborative operatability

simply by integrating web-based technologies to provide data communication

within an enterprise. The existing systems are designed for local application

and to manage data sharing on one centralized database. In a distributed

environment, each of the dispersed sites possesses a local PDM system to

manage its own local data; it is not possible for these systems to share the

product data in a consistent manner and to communicate with each other

correctly without proper concurrency control. It is obvious that the existence of

a computer network or a collection of data is not sufficient to form a distributed

product data management (DPDM) system.

The major ERP providers, SAP and Oracle also provide tools specifically

designed for DPDM as an extension module of their software applications.

These state-of-the-art software applications often only address the needs of

business data management. They are specific tools or technology applications

that optimize only part of the production process. Moreover, the differences in

the data architecture between business data and product data limit the efficacy

of these systems in the distributed manufacturing environment. ERP system is

designed fundamentally for managing numerical data, such as the inventory

data, customer information, production line schedules etc. and this is not

suitable for product data, which is consisted of both the physical data (e.g.

specifications, images, and CAD drawings) and the meta-data. Therefore, these

Chapter 1 Introduction

1.4

conventional information management systems are not considered as a suitable

choice for managing contemporary product data. Although customization of

ERP system for specific needs is not uncommon, customizing an ERP package

can be complicated. Most businesses will implement the best practices

embedded in the acquired ERP system. Because of the special nature of the

customization and the ‘one off’ aspect of the work, the cost of customization is

expected to be high. Another factors that makes adoption of customized ERP

as a DPDM system unfavourable is that the work delivered as customization is

not covered by the ERP vendors maintenance agreement, there is no warranty

the customizations would be inline with the next upgrade of the core product.

Also, the customization may not be properly documented; new users may have

difficulties in learning the customized module. Without the specification of the

customization, the effort of the development will be wasted if someone who is

responsible for system maintenance cannot remap the work to the updated

system. A representation of DPDM system functions is needed to unify the

underlying structures and the relationship of the product data and the system.

In a data management system, data model is important for the system design.

Many PDM systems have adopted relational model of data as the underlying

formalism due to their maturity and powerful features, consequently Relational

Data Base Management System (RDBMS) has been chosen to be the

cornerstone of PDM system architecture and design. This approach has

overlooked the differences between the nature of product data and commercial

data. In product development, different types of product data are generated and

the data objects are usually very complicated. RDBMS is not efficient in

managing large variety of data types and complex data objects. There is clearly

a need for defining a data model of the product data in order to develop a

robust DPDM system. Researches devoted to concurrency control (CC) in

relational database indeed are not designed for handling distribution of product

data, the application of these CC methods in PDM systems may yield

unsatisfactory results and put data integrity in jeopardy.

Chapter 1 Introduction

1.5

1.3 Research Objectives

Given the shortcomings in implementing DPDM systems with the existing data

management technology mentioned in the previous sections, this research

focuses on bridging the gap by investigating the theoretical aspects of DPDM

system. The specific objectives of this research are:

i. To develop a data model specifically for product data management system,

such that the representation of information about a product can be

precisely defined.

ii. To establish a specification of DPDM functions that enables product data

to be correctly organized and maintained.

iii. To develop a concurrency control model for providing deadlock free

concurrent information and control flows to DPDM system.

1.4 Significance of the Research

This research aims to establish rigorous theoretical foundation in concurrent

engineering support for distributed product data management. The research

introduces ontology for modeling and specifying the data structure. This can

concisely depict the relationships between products and basic components of

which they are composed with related product data. This provides a data model

for generic workflow which can respond efficiently to a heavy data exchange

and sharing in a collaborative environment. In order to develop an error-free

enterprise-independent PDM system, a generic representation PDM

specification will be formulated in temporal logic. With the generic

specification, the PDM system performance will no longer be tied up to any

implementation tool nor the enterprise needs to adapt its workflow to suit only

existing technology.

Chapter 1 Introduction

1.6

1.5 Organisation of the Thesis

The thesis consists of eleven chapters. The outline of the thesis is as follows:

Chapter 1: The problems that occur in distributed product data management

are described and the objectives of the research are stated.

Chapter 2: Background and recent development of database management

system are reviewed. These include introduction to PDM system

and its functionalities and other data management systems,

methods of system representation, and current techniques on

maintaining data consistency.

Chapter 3: This chapter introduces a semantic data model by the use of

ontology. The model attempts to facilitate query processing and

integrity checking of PDM system model.

Chapter 4: The development of a framework in environmental compliance

management (ECM) system by employing a PDM system and

web technology is proposed. An ECM system is implemented to

show how it helps a company to analyse the compliance of a

product in the two directives, RoHS (Restriction of the use of

certain Hazardous Substances in electrical and electronic

equipment) and WEEE (Waste Electrical and Electronic

Equipment).

Chapter 5: The representations of PDM system and distributed PDM

(DPDM) system using UML sequence diagram and first order

logic are presented. The advantages of integrating the graphical

representation tool with formal notation are also discussed.

Chapter 6: This chapter specifies concurrency control for DPDM system

using UML sequence diagrams and propositional temporal logic.

Chapter 1 Introduction

1.7

The approach is illustrated by specifying the two-phase locking

method.

Chapter 7: A granularity versioning (GV) concurrent control model for

PDM system that can also cater for version management and

product architecture is presented in this chapter. A lock-based

concurrency control model which utilises granularity and

versioning to improve concurrency of distributed system is

discussed.

Chapter 8: A transaction scheduling (TS) algorithm is proposed to

eliminate the threat of deadlock in concurrency control. It

discusses the use of integer programming based scheduling

technique to control transaction executions in a PDM system.

Chapter 9: Simulation experiments are conducted to evaluate the

performance of the proposed models. The capability of

integrating various concurrency control methods with the TS

algorithms is demonstrated.

Chapter 10: The limitations and the future research of the proposed

approaches for system specifications and concurrency control

for DPDM system are discussed.

Chapter 11: This chapter presents the conclusion and the contribution of this

study.

Chapter 2 Literature Review

2.1

Chapter 2

Literature Review

2.1 Introduction to Product Data Management System

The primary functionality of a PDM system is to provide a secure repository

for storing product definition information and other functions in a PDM system

will be defined in the later sections [Philpotts 1996]. A functional view of a

PDM system is shown in Figure 2.1. A PDM system consists of a product

database and a meta-database; users can only access the product data through

the system interface and retrieve their information by querying the meta-

database. Data controlled by PDM cannot be accessed without going through

the proper PDM system’s procedures and users can only store and retrieve data

using check-in and check-out functions respectively.

The meta-database of a PDM system stores information of a product, so that its

changes and list of authorised personnel can be tracked. Some information like

the physical location of a data is hidden from users and applications; this

procedure guarantees that there is no direct access to the product database.

Hence, the data integrity can be maintained by monitoring and controlling all

transactions between users and the system.

Chapter 2 Literature Review

2.2

User Local Workspace

Private Date

Product Data Management System

Transaction Base
Data Controller

Meta-Data

Processor

Transaction Base

Product Database

CAD/CAM/CAE

Documents

Inventory

Figure 2.1 User accesses a PDM system through the system interface

2.1.1 Workflow and Process Management

A piece of product information passes through a sequence of processes before

it can be used in the other stages of a product lifecycle. Product lifecycle

management (PLM) is one of the cornerstones of a corporation's information

technology structure. PLM is a systematic process for managing the entire

lifecycle of a product from its conception, through design and manufacture, to

service and disposal. By implementing PDM system to support PLM,

organisations can work with the production information according to their

Chapter 2 Literature Review

2.3

predefined business processes regardless of place and time. The workflow of

product information is commonly divided into four stages: initiation,

verification, approval, and release [CIMdata 1996]. These repetitive processes

can be programmed within PDM systems, the objective is to ensures that all

product information go through the predefined sequence of processes. The

efficiency of the workflow can also be improved by workflow and process

management as a PDM system can proactively progress a document to its next

stage of process when the work in the current stage is completed.

2.1.2 Product Structure Management

In a PDM system, product data can be organised according to the product

structure; the structure is usually determined by the relations between each

component of a product. This facilitates users to determine easily which

information will be affected when changes are made [Miller, et al. 1999].

2.1.3 Classification

PDM classification functions group parts, processes and other design

information by common attributes [ASME 1998, SolidWorks 2005]. Searches

for alternatives can be performed based on the values of attributes defined in

the system for a particular item. Standard and similar parts can be found more

easily, the product development time frame can be shortened when engineers

and designers can re-use them instead of reinventing from scratch. Moreover,

PDM systems facilitate capturing solutions from product development

processes for future reference. For instance, a new designing approach for a

new project may be potentially useful in other project. The approach can be

documented and stored into the system and this allows people to look for

solutions when they deal with similar problems.

Chapter 2 Literature Review

2.4

2.1.4 Project Management

PDM systems provide project management functions to monitor project

progress [Kim, et al. 1998, IBM Corporation 2007]. Projects are shown in work

breakdown structure, so that the progress of tasks can be tracked easily.

Completion of the product data required for each task is recorded against the

plan, which enables users to see how a project proceeds in terms of the data’s

status.

2.2 Data Model for PDM System

A number of research issues must be addressed in order to develop an efficient

concurrency control for PDM system. In designing and analyzing a PDM

system, product modeling is an inevitable step. Product data model explains the

relationships between components of a design and the various activities of a

PDM system. In a data management system, data model is important for the

system design. A semantic product data model was presented by Shaw, Susan

Bloor, & Pennington [Shaw, et al. 1989] to support product design and

manufacturing. Additional data modeling characteristic such as

parameterization and data sharing have been introduced to support engineering

design. Based on the semantic model in Chonoles and Quatrani [Chonoles &

Quatrani 1996], Stadlbauer proposed a product data model for design support

using functional skeletons [Stadlbauer 1992]. This feature represents the main

functional flows in a product and allows the efficient storage of designs as well

as the generation of verified products. A data model called Engineering Data

Model (EDM) has been introduced by Pahng, Senin, and Wallace [Pahng, et al.

1998]. Their model is for representing design and engineering information,

which defines a small set of structures capable of depicting a wide range of

semantics necessary for engineering design.

In the early 80’s, many relational database systems were introduced.

Traditional RDBMS have been developed to meet the needs of business

Chapter 2 Literature Review

2.5

applications, such as accounts, payroll, inventory control etc. These systems

are based on the classical record-oriented data model that views data as a

collection of relations, each having a collection of records stored in a table. The

traditional database technology has several shortcomings in managing the data

of new applications in computer-aided design and computer-aided manufacture.

The environment of these next generation applications often requires long

duration and cooperative transactions. There is a need for the ability to deal

with complex data for computer-aided applications since the requirements of

database system for product data management in term of both the data

structures and the data model are very different to relational database systems.

2.2.1 Object-Oriented Approach

The technique of object-oriented for database system has emerged in two

decades. Object-oriented (OO) methods organize both the information, and the

process that manipulates the information to maintain a direct correspondence

between real-world and database objects without losing their integrity and

identity. In fact, OO database management systems (OODBMS’s) provide

more advantages over RDBMSs in many perspectives [Mansour, et al. 1995].

Researches in OODBMS have accelerated the move in designing information

systems from conventional approach to OO. One of the characteristics of

OODBMS is to provide the ability to describe the aggregation relationships

between an object and objects of which it is composed for the purpose of

storage and operation. The aggregation concept becomes the fundamental of

versions [Chou & Kim 1986] and composite objects [Won, et al. 1989], which

represent the version-of relationship and part-of relationship respectively.

Various PDM systems today support these features.

2.2.2 Object-Oriented Technology for PDM System

PDM system architecture and design are also shifted from conventional

approach to OO. For instance, Zhang proposed an open architecture [Zhang, et

Chapter 2 Literature Review

2.6

al. 1995]. In particular, the components of the product data definition model,

especially the principle and mechanism of the OODBMS are discussed.

Architecture of Teamcenter Engineering of Siemens [Siemens 2008] also

adapts a modular and object-oriented approach to provide a comprehensive

framework to support the entire product life cycle. Rumbaugh’s object

modeling technique (OMT) has been adopted for the system design. Using the

OO paradigm, an object-based data model is proposed for PDM system [Kim,

et al. 1997, Liou 1994]. However, there is a limitation in the scope of the

modeling that the model can only be used to manage drawings, parts, and

product structure. To satisfy more requirements of real application, an

extensible and general PDM system framework model is discussed [Kim, et al.

1998]. OO technology is applied to construct the generalized object model.

However, the framework is based on RDBMS instead of OODBMS, the

constructed object model cannot be mapped into RDB.

2.2.3 Ontology

Ontology has been limited to the study of philosophy in the past, it is now

applied to a number of areas and its importance is recognised in many research

fields. It is therefore necessary to clarify the intended meanings of the terms

that will be used in designing PDM system. Firstly, the distinction between

“Ontology” and an “ontology” is considered. The former is referred to as a

subject of study in philosophy that is concerned with the nature of existence,

and the latter is referred to as a logical theory accounting for the intended

meaning of a formal vocabulary [Guarino 1998]. Bernaras, Laresgoti, and

Corera [Bernaras, et al. 1996] stated that ontology is a mechanism that

explicitly defines a domain with specifications of concepts, objects, relations

and axioms. In other words, an ontology is a description of the properties of

objects and the relations existing between different sorts of objects. Also, Patil,

Dutta, and Sriram [Patil, et al. 2005] proposed an ontology-based framework to

enable semantic interoperability between different application domains. A

semantic equivalence matrix is introduced to resolve the ambiguities due to

differences in meaning and syntaxes in different domains. Logic reasoning is

Chapter 2 Literature Review

2.7

used to determine the semantic equivalences between application ontology and

product semantic. Mapping of the results to the matrix is performed to

determine the exact equivalent concepts.

An ontology can serve as a frame of reference for the discussion of the

essential concepts of OO architecture. It has played a strategic role for

developing object class [Eden & Hirshfeld 2001]; avoiding duplicate similar

actions [Gruber 1993]; enumerating and standardizing important terms used

[Chandrasekaran, et al. 1999]; and changing and updating legacy data in an

effective way [Ding & Foo 2002]. Ontologies help people and computers to

access the information they need, and effectively communicate with each other,

since they describe the semantics of a domain in a way that humans can

understand and computer can process.

2.3 System Modeling and Specification

In order to develop software that solves a particular problem, the desired

properties needed to be achieved are usually written up in natural language.

Such description is called a specification. From the specification, a model of

the system can be built, which helps users to understand the reality and have

computer simulations. Therefore, the specification should be defined as

accurate as possible. However, it is widely agreed that a natural language

cannot be considered as a good specification language. This is due to the fact

that computers are not capable of understanding the meaning of natural

language. The informality of such descriptions may cause ambiguities which

could eventually result in serious flaws. So system analysts would try to define

the problems to be solved by the software and generate a requirement analysis

in a more formal approach.

2.3.1 Graphical Modeling Tools

Formal specification has to be unambiguous so that system developers can

understand the requirements, develop a system that operates accordingly and

Chapter 2 Literature Review

2.8

be able to verify that the specifications do not have any contradiction which

would lead to inconsistency. These formal specifications are usually symbolic

encodings of real-world constraints into some kind of logic. However, classical

formal methods, namely mathematical proof, are not widely accepted in the

industry since too many streams people can use to specify a system, although

classical methods guarantee the correctness of a system without exhaustive

tests [Drusinsky 2006]. A practical alternative of formal methods is graphical

modeling. Graphical modeling languages are commonly used for specifying

interactive systems and reactive systems. A few popular diagrammatic system

analysis tools and their applications will be reviewed in this section.

The processes of systems can be modelled by Data Flow Diagram (DFD) that

is introduced by Yourdon and Constantine [Yourdon 1979]. A DFD is a tool

that shows how data enters and leaves a particular process. A network of

processes is created by linking up the major activities of a software system

with data flow paths. Formalism of DFD defined in graph theory [Sree, et al.

1990, Tao & Kung 1991] and formal semantics approach [Adler 1988, Gary, et

al. 1999, Vazquez 1994] are proposed to make DFD models verifiable.

Approaches for extending DFD for Modeling dynamic behaviours of real time

systems have been presented in [Gomaa 1984, Kuo & Karimi 1988]. Examples

of data flow-based systems are satellite image storage system [Abernethy &

Kelly 1992] and an information system for a local health care agency [Farrell

& Myers 1981]. One reason original DFD’s are rarely used for system

modeling nowadays is that they have not been standardized, since there are so

many conventions. The other reason is that DFD’s does not model time-

dependent behaviour well, such as when processes are created or deleted.

These make DFD’s unsuitable for modeling event-driven systems of which

events are supposed to be responded immediately when they occurred and

processes have indefinable start and finish time.

A graphical modeling tool commonly used for defining event-driven systems is

State Transition Diagrams (STD). STDs consist of a collection of nodes that

represent states, connected by edges that represent state transition. State is the

status that an object must be in before considering changing into another status.

Chapter 2 Literature Review

2.9

Transition is an event that changes the state of an object to a specific state.

Figure 2.1 is the state diagram of an automatic teller machine (ATM) [Langer

2008]. The boxes in the STD represent the possible statuses that exist in an

ATM. The arrows are the events that trigger a change of state of an ATM. For

example, when the ATM is in the “Enter Valid Card” state, the event of

entering a valid bank card changes the state of asking for a valid card to

prompting a password. At this state, if the bank card is invalid, the ATM will

go to the state of “Enter Valid Card”, otherwise, it will ask the user to enter the

password. The reason for using STD to model a system that never ends is

because it can show the current state of a system and the ability to decide the

state it goes to based on the input condition, unlike DFD that reflect only the

data flow of a process. Therefore, STD is more suitable than DFD in modeling

an on-going system that moving from one status to another without a definite

end.

Enter Valid Card

Insert Password

Main Menu

Deposit Funds Transfer Funds Withdraw Funds Inquiry

Enter Valid Bank Card Invalid Card or “Time Out”

Valid Password

Invalid Password or “Time Out”

Select “Deposit”

Select “Transfer”

Select “Withdraw”

Select “Inquiry”

Complete Activity

Figure 2.2 Bank Teller state transition diagram

Statechart is a variant of STD and have been used to support the design of

interactive and automated systems. It extends STD with three techniques to

enrich the modeling power expressiveness [Wieringa 2003]. In particular,

parallelism allows statechart to represent concurrent processes in one diagram.

Chapter 2 Literature Review

2.10

This technique is valuable for the design of DBMS’s. Leong [Leong 2002] uses

statecharts to model some of the DPDM system functions. Although statechart

is a highly structured and economical description language for specifying

system behaviours, like many other visual languages, the definition of the

formal semantics of statechart has proved to be extremely challenging due to

the richness of the language.

Unified Modeling Language (UML) [OMG 2007] is another popular graphical

modeling tool to represent a system specification. UML was created with the

goals of unifying the best features of different existing languages and of

creating an industry standard. UML has been considered by many industrial

and academic researchers as a promising system modeling language, because it

is a semi-formal notation that is relatively easy to use and it is provided with

code generation tools. However, the detailed system requirements are often

overly simplified when being specified using standard template in natural

language, thus system analysts may incorrectly interpret the UML function

specifications and create many defects in the system development [Deepali, et

al. 2005]. Furthermore, UML is not an executable specification language and

there is no standard on how to validate such models, thus formal approach is

needed for verifying UML-specified models.

In PDM system design, it is not uncommon to use various types of diagrams

for different purposes. In the process-based PDM system approach [Chen &

Tsao 1998], product development processes are described by flow charts,

statecharts are used to describe changes to the objects and their relationship

over time and the flow of data in processes are shown in DFD’s to specify the

data transfer between computers and servers in a PDM system. Later, a UML-

based approach for implementing PDM system is proposed. The inter-

relationship between data, retrieving method, and integration of the PDM into

the product development process are of concern [Eynard, et al. 2004].

Chapter 2 Literature Review

2.11

2.3.2 Formal Specification

In order to develop a system that works correctly, its functions need to be

precisely described, such that people can examine their correctness, that is, the

system can be tested whether it produces correct result generally and predicted

with great accuracy under extreme conditions. The formal descriptions are

referred to as specification. It is not uncommon that error-prone systems have a

loosely-defined and incomplete specification. Precise specifications are

essential for systems and the correctness is achieved by writing them in formal

language. Logic is the tool chosen to establish the specification of a PDM

system, as logic is a formal language for constructing arguments about

situations in such a way that they can be reasoned formally. Prior to

construction of a PDM system, it is worth to build a model in order to test that

the design is correct. The benefit of this model is that it helps system designers

to experiment the behaviour of the system operating under extreme conditions,

thus avoid costly errors if unexpected events were happened.

A specification for describing the properties of a system can be represented

with the formal language. Then the correctness of the system can be verified by

checking the well formed logic description formulae that represent the system.

As far as the formal notations are concerned, the classical logics, such as

proposition and predicate logics, are not enough for DPDM specification. A

system is classified as a reactive system if its role is to maintain ongoing

interactions with its environment [Manna & Pnueli 1992]. Examples of

reactive systems are communication networks, ATM machines, telephone

systems, etc. Some reactive systems are not intended to terminate. Such

systems have to be specified in terms of their continual behaviour. The main

concern of reactive systems is that they do not operate in an orderly sequence

of input, process and output. In many cases, a system may receive many new

inputs from the environment, correctness of the systems becomes difficult to

maintain as the number of interactions grow. As a result, time-varying change

management is the standard. To cater for this feature, temporal logic deduction

information management is a potential candidate.

Chapter 2 Literature Review

2.12

Temporal logic was originally developed in order to represent tense in natural

language. It is a well-developed branch of modal logic [Hughes & Cresswell

1968] and has been put forward by Pnueli [Pnueli 1981] and others as a useful

tool for dealing with computer programs and digital hardware. It has been

applied to the formal specification and verification of concurrent and

distributed systems. For example, in the case study of knowledge reasoning

[Dixon 2006], a knowledge game called Cluedo is specified using KLn, which

is a logic combining propositional linear temporal logic with a multi-agent

technique. A system is developed for a player to find out the identity of other

players in a game by inferring the past moves using a resolution base approach.

Wood [Wood 1990] specifies the operation of elevators to demonstrate the

appropriateness of temporal logic for system specification. An elevator model

is built separately according to a subset of the logical formulas using the State

Machine Language. Temporal logic is suggested to be a good representational

tool for specifying concurrent systems. Also, a model of concurrent program

executing n disjoint processes in a shared memory environment modelled in

temporal logic is presented in [Pnueli 1981]. It demonstrates that specification

of the nondeterministic behaviour of a program can be described using

temporal logic.

Temporal logic is popular within computer science because it can formally

specify the critical properties of systems, such as safety condition, liveness

condition, and fairness condition.

Safety: These conditions are those that must not occur in the operations of a

system. In the PDM system condition, for example, a transaction must lock

a data object. Another example of a safety condition is that no more than

one transaction give a write-lock to a data object.

Liveness: These conditions specify what the system must do. For example,

whenever any transaction wants to lock a data object, it will eventually be

permitted to do so.

Chapter 2 Literature Review

2.13

Fairness: These conditions describe how nondeterministic specifications are to

be resolved. For example, if a data object is free, and two transactions

request the data object simultaneously by specifying the action to be taken,

the fairness condition could express which transaction can have the priority

to access the data object every time such a race condition occurs.

These conditions are typically expressed by giving a set of relationships

enumerating the temporal constraints among events and actions. The temporal

logic chosen to describe the concurrency model in this research is Propositional

Temporal Logic (PTL) introduced by Pnueli [Manna & Pnueli 1992]. PTL is

an extension of propositional logic with the additional temporal operators, and

it does not permit explicit quantification on the variable time. It has been used

for specification and synthesis of communicating processes [Manna & Wolper

1984]. Given that the database operations are event-based and the time of their

presences are indefinite, PTL would provide an adequate expressiveness for

specifying models without the complexity of the quantitative of time variable

[Bellini, et al. 2000].

2.4 Concurrency Control

A PDM system consists of a number of components and the heavy flows of

data within the system and between its users are expected. The data flows are

further complicated within distributed DBMS’s that support collaborative

design and manufacturing at geographically dispersed sites. The web-based

PDM system not only facilitate the process of data exchanging and sharing but

also the number of transactions that access the database will be increased. A

concurrent control mechanism is needed to coordinate concurrent accesses to a

database to maintain data integrity.

A set of transactions can be executed serially or concurrently, a schedule is

serial if all the database operations of one transaction are executed before any

operation of the others. That is, the transactions are not interleaved. On the

Chapter 2 Literature Review

2.14

other hand, if database operations from different transactions can be executed

in parallel or interleave, a schedule is concurrent. Concurrency problems arise

when there are two or more concurrent operations executed on a data object

and at least one of which is a write operation. Such improper concurrent

execution of a set of transactions violates the database consistency. As database

consistency can be preserved by executing transactions serially. Therefore, if a

concurrent execution of transactions is equivalent to any serial execution of

those transactions, then the concurrent execution is serializable and it preserves

the database consistency as well [Bernstein, et al. 1979]. Because of the

serializability criterion, the database system needs to know only the sets of data

objects whose access is required by transactions and their operations, it makes

the serializability to be the well adopted correctness criterion for concurrent

schedules.

In order to preserve the database consistency, some kinds of control

mechanisms are clearly needed to ensure that concurrent transactions do not

interfere with each other. This control, called concurrency control, manages a

schedule of the database transactions, which is an arrangement of the execution

of a transaction set. Since a schedule is correct if the execution of the set of

transactions is serializable, the goal of database concurrency control is to

ensure that all executions are serializable. Concurrency control is well studied

in traditional DBMS’s. However, there are relatively few studies that address

this issue in PDM systems. Two most popular concurrency control mechanisms

in traditional DBMS’s will be reviewed in the following sections. In fact, many

practical DBMS concurrency control algorithms are variation of the two basic

techniques: locking [Eswaran, et al. 1976] and timestamp ordering [Li 1987].

2.4.1 Two Phase Locking

The two phase locking (2PL) technique is devised to control potential conflicts

between read and write operations. It guarantees serializability by preventing a

transaction from obtaining a lock on any data object after releasing it to another

transaction [Bernstein, et al. 1979]. It requires each transaction to obtain a

Chapter 2 Literature Review

2.15

read-lock or a write-lock on a data object before starting the reading or writing

processes respectively. When a transaction requests a read-lock on a data

object, this lock will only be granted if no other transactions have already held

a write-lock on it. Similarly, a write-lock will only be granted if no other

transactions have already held a read-lock or a write-lock on this data object.

Once a transaction has acquired any lock, the transaction enters a growing

phase. The moment a lock is released, the transaction enters a shrinking phase

and is not allowed to acquire any more locks. The 2PL protocol is popular

because of the ease of implementation due to its great simplicity. However,

2PL has the risk of deadlock as the transactions may wait for unavailable locks.

Several 2PL-based techniques have been proposed to alleviate the deadlock

problem for obtaining a higher degree of concurrency.

2.4.2 Granularity Locking

A product may consist of a single part, e.g. a screw, to as many as millions of

parts, like a Boeing 747. The latter may structure into various systems,

subsystems, assemblies and parts. However, PDM literatures seldom consider

product architecture issue in the study of concurrency control. The product

hierarchies should be used collaboratively with the concurrency control

algorithms. A database can be organized as a hierarchy of lockable units

[Carey 1983]. Granularity refers to the size of data unit that can be locked. The

finer the granularity, the greater the concurrency; the coarser, the fewer locks

to be set and tested [Jun 2000]. When a transaction sets a lock on a data object

at a given level of hierarchy, it will implicitly lock all its descendents as well.

The intention to lock at the higher levels of the hierarchy should be set before

setting access lock at a lower level. A granularity locking applied to composite

objects proposed by [Gary, et al. 1975]. However, this locking protocol does

not recognise a composite object as a single lockable granule and may suffer

from excessive overhead or restrictions on the data.

The lock overhead, data contention and resource contention are factors

affecting the performance of different lock granularity [Ng & Hung 1995]. The

Chapter 2 Literature Review

2.16

finer the lock granularity adopted, the more the lock overhead involved and the

higher is the degree of both the data contention and the resource contention.

When the transactions access the database sequentially, or the system is heavily

loaded, coarse granularity is preferred for transactions accessing large number

of data objects. When the transactions access the database randomly or the

system is lightly loaded, fine granularity is a better choice for small or mixed

transactions.

2.4.3 Version Locking

In product development, product designers will not only use the most recent

version of the data object but also the previous one. Therefore, several versions

of the same data object must be kept properly. A new version of data object is

produced for each write on that data object. Version control helps to keep track

of the evolution of the data objects being designed. It also allows rollback of

changes made to file by storing the data corresponding to a context. Reisdorph

[Reisdorph 1999] suggested using file history list to perform version control. A

model of version is proposed by Talens, Chabane, and Colinas [Talens, et al.

1993] to facilitate the storage of version by avoiding information redundancy

between successive versions. In addition, version control can be implemented

with concurrency control, such as multiversion timestamp algorithm and

multiversion lock-based with timestamp algorithm [Bernstein & Goodman

1983]. An adaptable constrained two versions two phase locking scheme is

proposed for synchronizing the read and write lock request on the different

versions of data [Goel, et al. 2000].

2.4.4 Flow Graph Locking

Flow graph locking (FGL) [Eich 1988] is a non-2PL locking method. This

technique is based upon data flow graph and obtains serializability in execution

of transactions as a product of data flow scheduling. A data flow graph is a

directed graph where nodes represent operations to be performed and arcs

Chapter 2 Literature Review

2.17

indicated scheduling constraints on the operations. Data flow along the arcs

from operation to operation. The flow graph locking illustrated the data

dependencies that exist between transactions, where the transactions are

represented by the nodes with the progression of the locks directed by the arcs.

This specialized data flow graph is called database flow graph. The FGL

guarantees deadlock free and serializability. However, a transaction may have

to lock data items that it does not access, which will increase locking overhead

and lengthens the waiting time. Additional non-2PL protocols have been

proposed for data organized as directed acyclic graphs (DAG) [Kedem &

Silberschatz 1979, 1980, Yannakakis, et al. 1979]. These methods restrict the

order in which data items can be locked based upon the graphical structure of

the data. The DAG methods may require more data items to be locked than

would be required with 2PL. Some methods may incur cascading rollbacks to

ensure serializability. A cascading rollback occurs when the termination and

rollback of one unfinished transaction causes the termination and rollback of

other unfinished transactions.

2.4.5 Timestamp Ordering

Timestamp ordering (T/O) [Li 1987] technique assigns to each transaction a

unique identifier which is its start time. When a transaction tries to issue a

read-lock or write-lock on data object d, read(d) or write(d), the algorithm will

compare the timestamp TS of read_TS(d) and write_TS(d) to determine which

is the oldest timestamp among all timestamps of transactions that have read

data object d successfully and the oldest timestamp among all the timestamps

of transactions that have written d successfully. This ensures that the timestamp

order of transaction execution is not violated. During a read action, if read(d)

of a transaction T with timestamp TS is younger than read_TS(d), the read(d)

request is rejected and transaction T is aborted, else it is executed. If the order

is violated, then transaction T is aborted and resubmitted to the system as a new

transaction with a new timestamp. During a write action if write(d) of a

transaction T with timestamp TS is younger than

Chapter 2 Literature Review

2.18

{ }_ (), _ ()max read TS d write TS d , the write(d) request is rejected and

transaction T is aborted, else it is executed. An aborted reaction is restarted

with a new timestamp. This technique ensures deadlock free. However, there is

a possibility of restarting and blocking if a transaction is continually aborted

and restarted. Using timestamp and the knowledge of readsets and writesets, a

deadlock free concurrency control scheme has been proposed by [Dasgupta &

Kedem 1983]. The Delay/Reread protocol achieves consistency by requiring

some write actions to be delayed and some reads to be reread [Mohan, et al.

1985]. Major drawbacks to this method are the overhead and requirement that

some data are read twice.

2.4.6 Deadlock

Locking is one of the well-known concurrency control technique and more

likely to be encountered in practice. The benefit of locking is the absence of

cascading rollbacks. However, 2PL has the risk of deadlock as the transactions

may wait for unavailable locks. Although locking guarantees serializable

schedules, it is not necessarily deadlock free. Deadlock is a situation in which

two or more transactions are waiting for data objects that are locked by others.

Locking protocols can be modified to avoid the occurrence of deadlock.

Deadlocks must not exist to ensure that every transaction will eventually be

executed. The main approaches for resolving deadlock are either deadlock

detection or deadlock avoidance.

Data dependency of the transactions can be determined by finding a cycle in a

Wait-For Graph. Deadlock occurs when a cycle is formed among a set of

transactions. An occurrence of a deadlock between two transactions, T1 and T2,

using a graph is illustrated in Figure 2.3. Trees are used to represent

transactions, the starting node of a tree is labelled with the transaction name,

other nodes are the data that locked by the transaction. Undirected arcs in a tree

represent the relations between data and the transaction and directed arcs depict

the request of data issued by the transaction, where the tail of the arc is at the

Chapter 2 Literature Review

2.19

starting node of a transaction which makes the request and the tail is pointed to

data which is being requested. A cycle exists when the starting node and the

end node of a path are the same. It shows that the transactions that are included

in the cycle are said to be deadlocked. Suppose T2 does not need data object d1

to process, T1 will be the only transaction waiting a data which is locked by

other transaction, then only arc a1 is present in the graph and no cycle is formed,

likewise for the presence of a2 only. Deadlocks occur when concurrency

control using locks is implemented to a PDM system. Common approach of

selecting the transaction to be restarted comes in two versions, called Wound-

Wait and Wait-Die [Bernstein & Goodman 1983]. Both versions determine the

action upon T1 if it is older than T2 when T1 requests a lock on a data that is

already locked by T2. T1 will be rolled back in Wound-Wait and will be waiting

until T2 completes its operations in Wait-Die.

Figure 2.3 Deadlock occurs when transaction are requesting data from

each other

Chapter 2 Literature Review

2.20

2.5 Limitations of Existing Approaches

Concurrency control has been studied in many database applications. In

particular, many works have been devoted to real-time database management

system (RTDBMS). Applications of RTDBMS can be found in network

management systems, military command and control management, and

program trading in the stock market. Abbott and Garcia [Abbott & Garcia-

Molina 1992] identified that conventional database systems do not emphasize

the notion of deadlines for transactions. The concurrency control schemes

designed for these databases lacked the ability to determine an execution

schedule based on the time constraints of individual transaction. Various

scheduling algorithms have been developed to schedule real-time tasks to meet

their timing constraints [Charles 1982, Liu & James 1973, Zhao, et al. 1987],

given the arrival time, deadline, estimated processing time, and priority of each

task. Yu [Yu, et al. 1994] states that “traditional real-time scheduling usually

does not address the data consistency issue, whereas consistency may have to

be maintained by the concurrency control in database systems.” In addition to

meeting the deadline requirements, there are other differences exist between

conventional database and DPDM.

An adoption of any of these methods would not be an ideal solution for

resolving concurrency problems of a DPDM system. Design and

manufacturing workflow can be streamlined by implementing suitable DPDM

system that manages all product-related data in an organized manner. One

major function of DPDM system is to maintain data integrity and to provide

accurate data when required [Leong, et al. 2003]. Above all, the differences

between the natures of DPDM systems and conventional database systems

limit the efficacy of these methods. Timestamping method is described as an

optimistic scheme, since it assumes that conflicts are unlikely to happen in

practice. One advantage of the scheme is that no updates are ever written to the

database prior to successful completion of commit processing, so such restarts

do not require any updates to be undone. The major drawback of the scheme is

that restarting transactions waste all the effort which has already been spent on

Chapter 2 Literature Review

2.21

the works. The effect of restart on databases somehow depends on the nature of

the files. For example, a drawing design is being simultaneously altered by two

CAD engineers, since this technique allows multiple accesses to data and

performs checking at commit time to see whether a conflict did in fact occur.

Hence, it is definitely that there is one engineer will have to redo his/her work

if the work is submitted later than the other one. Many previous works use

transactions rollback as a means for preserving consistency and deadlock

freedom. These rollbacks require a considerable amount of overhead, and

therefore degrade performance of the system. This performance cost had been

considered acceptable since concurrent database systems in the past had a few

transactions concurrently active. With the advent of network technologies, a

number of machines accessing global databases and other resources is

enormous. The amount of concurrency in a typical PDM system can be

expected to rise dramatically. In such an environment, the use of rollbacks as a

means for preserving consistency will become more burdensome.

On the other hands, locking schemes are considered pessimistic; as they

assume that every piece of data accessed might be needed by other transactions

and therefore better be locked. The effect of acquiring the lock is to prevent

other transactions from changing the data objects in question. Despite 2PL

outperforms the basic T/O and FGL in most cases [Carey & Livny 1989,

Thomasian 1998], 2PL is not completely suitable for concurrency control in

PDM systems. For example, if a DPDM system adopts 2PL technique as its

concurrency control algorithm, each DPDM user must make sure that he/she

can lock all the files that are required to be worked on that day. This is because

other users will only release their files until the work completed under the 2PL

technique.

One factor that influences DPDM concurrency is the data complexity. Among

the functions of the DPDM system, concurrency control is essential to the

checkout, release, obsolete, view, redlining, and references. In order to provide

the control over the data access, most DPDM systems establish a set of access

rules that determine what data can be accessed, in what mode and at what point

in the product life cycle. This is complicated when a part or drawing belongs to

Chapter 2 Literature Review

2.22

a certain assembly. In such instance, the modification to the assembly can

cause the part to be locked out for write access until the process is completed.

The more number of components of a data object has, the data object is more

likely to be amended by more users. Locking all the data related to the data

objects for making changes reduce the degree of concurrency or overall system

throughput. A procedure that can isolate only the affected parts of the data will

be helpful to conduct DPDM with efficiency. Therefore, a concurrency control

should be specifically designed with the consideration to the unique

characteristics of DPDM systems.

2.5.1 Justification of Tools and Techniques Adopted

In order to develop a concurrency control model for DPDM system, the

meanings of objects and functions of a DPDM system and their relations must

be precisely described. An ontology for DPDM system is developed in the

research. Since by representing the semantics of data in a machine-processable

form, ontology based reasoning service can provide consistency checking to

the systems with respect to queries and assertions using the semantics defined

in the ontology.

The proposed specifications of the PDM and DPMD functions in this research

are developed using UML sequence diagrams. Sequence diagrams facilitate the

specification process by allowing visual iteration through the operations, and

also possess the expressiveness for both sequential and parallel operations. The

diagrammatic specifications are then described in First Order Logic (FOL) and

Propositional Temporal Logic (PTL). However, specifying DPDM functions in

FOL alone is not sufficient to express the continual behaviour and time-varying

changes of a dynamic system, and PTL is a complement to a formal

specification for DPDM system.

Granularity Version locking proposed in this research is developed based upon

the concurrency protocol proposed by Gary [Gary, et al. 1975]. Because 2-PL

protocol never forces a transaction to be rolled back and never requires data to

be reread. Version and Intent Version locks are introduced to lock the current

Chapter 2 Literature Review

2.23

version of the data object at part and assembly level respectively, this allow the

data object to be readable by other users while a new version is being created.

The avoidance of deadlocks is achieved by scheduling the execution order of

transactions subject to the compatibility of locks applied on data objects using

integer programming.

Chapter 3 Ontological Data Modeling in PDM System

3.1

Chapter 3

Ontological Data Modeling in PDM
System

3.1 Application of Ontology to PDM

General concepts, such as actions, time and items can be formalized with

reference to ontologies that are explicit specifications of conceptualisation. A

method of design that based on generic ontology is presented in [Garcia, et al.

2004]. The significance of this effort is that it creates an ontology that specifies

attributes and functional requirements of elements defined in a model. The case

study of project development showed that the participants can work more

effectively and have a high level of mutual consistency by using the project

with ontology. Ontologies are needed to interpret the common understanding

of structure of information among people and to enable reuse of domain

knowledge. They provide a common vocabulary of an area and define - with

different levels of formality - the meaning of terms and relations between them

[Bansler & Havn 2003]. They also maintain the consistency of the system by

guiding individuals’ perception of products in accordance with the formal

definition of ontologies.

An ontology that represents elements of the product development process

forms the basis of the PDM system. The framework of an ontological PDM

system that integrates an ontology-development tool, Protégé [Noy &

McGuinness 2003], with a commercial PDM system, PDMWorks [SolidWorks

2005], is shown in Figure 3.1. The objective of creating an ontology-enabled

PDM system is to create a repository for managing the definitions of objects

for product development. By collecting data and information from various

projects involved in the product development process, users can use the

ontology-development tool to categorize this information using formal

semantics for developing specification of concurrency control in PDM systems.

Chapter 3 Ontological Data Modeling in PDM System

3.2

User

Workspace

Private Files

PDM Functions

Workflow

Management

Product Structure

Management
Classification

Project

Management

Applications

CAD/CAM/CAE

BoM

PDM Server

Ontology

Repository

Meta Data Query

Processor

Project Database Product Database

Figure 3.1 Framework of ontology-enabled PDM system

3.1.1 Procedure of Creating Ontology

A design of an ink cartridge holder of a printer from PDMWorks [Corporation

2004] shown in Figure 3.2 is used as an example to illustrate the procedure of

developing ontology for the product development process using Protégé. The

description of the six phases of the ontology development process is listed as

follows:

Chapter 3 Ontological Data Modeling in PDM System

3.3

Figure 3.2 (a) Assembly drawing of an ink cartridge holder

Figure 3.2 (b) Drawing of an ink cartridge holder in exploded view

Chapter 3 Ontological Data Modeling in PDM System

3.4

1. Determine Scope

Determine the types of information that the ontology should provide

temporal best practice and the domain that it should cover and the method

of collecting the data from the PDM system.

2. Enumerate Terms

Demodularize the product into atomic parts and itemizes the important

terms like “Cartridge Lid”, “Latch”, and “Pivot Link” and their properties

are essential in standardizing the creation of classes (Figure 3.3).

3. Define Classes

Define classes for storing entities with similar characteristics or functions.

4. Define Properties

Define properties such as dimensions and colour of an object.

5. Define Constraints

Describe the set of possible values like minimum and maximum values for

a slot is defined.

6. Create Instances

The class becomes a direct type of the instance and slot values are assigned

to the instance frame (Figure 3.4).

Normally, the ontology development process in reality is more complicated

than what has just been described. It often turns out to be a lengthy iterative

process that involves repeatedly going through the phases in arbitrary order,

except the phase of determine scope, before the ontology is formalized.

Chapter 3 Ontological Data Modeling in PDM System

3.5

Figure 3.3 Create classes

Figure 3.4 Creating an instance of ink cartridge

Chapter 3 Ontological Data Modeling in PDM System

3.6

3.1.2 Evolvable Ontology with Options of Instance

Ontology-enabled PDM provides users with the flexibility in changing the

specifications of a product. Once the ontology of a product has been formalized,

the users need not go through the whole designing process to modify the

product design; they can start at a specific phase that best describes the work

nature. For example, if the colour of a cartridge latch needs to be changed, the

users start at the fourth phase to change the latch with the right colour and

directly go to the sixth phase to create a new instance. Certainly, users need to

go through more phases when more modifications have to be made. For

instance, the engineers would like to alter the dimensions of the ink carriage.

The number and size of the components ink carriage can hold are also affected.

Because the constraints of the object have to be redefined, the engineers have

to start the redesign process from the fourth to the sixth phase of the

development process.

3.2 Mechanism of Ontology-Enabled PDM System

PDM systems and ontology are tools for storing product data and reasoning

behaviour across domains and projects. As mentioned in previous sections, the

aim of this work is to design an implementation tool for building an ontology

repository using information supplied by users. The framework lets users

organise their works within a company in the form of a project, and this brings

up many excellent features such as high flexibility, interdisciplinary work, and

promoting innovation [Disterer 2002]. However, it is likely that groups of

people would work on the same set of data objects concurrently, thus it is

desirable to have a system that is capable to manage the access to the product

ontology.

The organisation of physical objects into categories is a vital part of developing

a PDM system. Categories serve to provide a sufficient description of

relationship between system components and the data of physical objects. This

Chapter 3 Ontological Data Modeling in PDM System

3.7

allows the system developer to define the specification of the system using

formal semantics. First order logic (FOL) has been selected to discuss the

content and organisation of ontology. FOL makes it easy to state facts about

categories, either by relating object to categories or by quantifying over their

members. Certain aspects of the real world are hard to capture in FOL, for

example the temporal relationships between objects, their changes over time

and sequences of operations of the PDM system. Although the ability to handle

dynamic behaviours of the system and data objects is very important, it is

better to lay down the most general definitions and postpone the discussion of

time dependency until Chapter 5.

3.2.1 Notations of the Data Model

This section describes the notations used throughout the study. More notations

will be introduced in later sections. The notations introduced here are for

describing the sets used to make the formula more concise and readable.

The sets in the systems are:

The product database: db

Set of actions on the dataset:
 { },Opt R W= , where R and W are the read and

write actions on the dataset respectively.

Set of data class: { },db PD AD= , where { }1 2, , , mPD pd pd pd= K is the part

data objects set and { }1 2, , , nAD ad ad ad= K is the assembly data object set.

PD is a subset of the database db and AD is a proper subset of PD. The Venn

diagram below depicts the relations of the sets in the PDM system.

AD P Dand PD db⊂ ⊆

Chapter 3 Ontological Data Modeling in PDM System

3.8

Figure 3.5 Relationship of data classes of PDM system

3.2.2 Definition of Data Category

The total number of data object in PDM system #sd is the sum of the

components of which the database db consists.

 # # #sd pd ad= + (3.1)

The number of components in each category cannot be a negative value.

 # ,# 0pd ad≥ (3.2)

For data object d to be a part, it must consist of only one data object

 (# 1)d PD d∈ ⇒ = (3.3)

For a data object d to be an assembly, it must be composed of at least two

objects in either data classes and it cannot include itself as one of its

components. The object is built of two sets of objects, where α is a set of

assemblies and β is a set of parts.

Chapter 3 Ontological Data Modeling in PDM System

3.9

{ }

{ } { }
{ } { }

1

1

, | # # 2

where , , |

, , |

n i

n i

d AD d

ad ad i a AD d

pd pd i p PD d

∈ ⇒ = α β α + β ≥

α = ∅ ∨ ∀ ∈ ∧ α ∉

β = ∅ ∨ ∀ ∈ ∧ β∉

K

K

 (3.4)

Since all objects in the database must either be a part or an assembly, where ⊕

is the symbol of exclusive-or,

d db d PD d AD∀ ∈ ∈ ⊕ ∈ (3.5)

Thus, all data objects in the database must consist of at least one component.

 # 1d db d∀ ∈ ≥ (3.6)

Based on (3.4), an assembly is composed of a number of parts and assemblies,

the relation from A into P is:

 { }1 1
1

, , | { , , } (#)
k

n i k iAD ad ad i ad pd pd PD pd pd

AD PD

= ∀ = ⊂ ∧ <∑

∴ ⊂

K K
(3.7)

3.3 Ontology Management Functions

In order to accomplish the integration of ontology engineering and DPDM

system, three basic rules for managing the ontologies through the interface

were developed. The rules and their corresponding algorithms are listed as

follows:

The terms being used in the framework are:

c(d) : class to which data object d belongs

dt : data object d at time t

v(d) : version of data object d

Chapter 3 Ontological Data Modeling in PDM System

3.10

The atomic sentences that state facts in the framework:

insert(d, oi) : object d is inserted into ontology oi

retrieve(d, oi) : object d is retrieved from ontology oi

return(d) : object d is returned

p(d, ai) : d is a part of assembly data object ai

3.3.1 Item Insertion

Let g be the item to be inserted to the ontology oi in the ontology set

1 2 { , ,..., ,..., }j nO o o o o= , which contains n ontologies. For g to be added, the

class of oi and g must be the same and no item in oi is the same as g, the rule for

item insertion is defined with a form like the following and the algorithm of

item insertion is stated in Figure 3.6

(,) (,)i ip d o insert d o→ (3.8)

Figure 3.6 Algorithm for inserting new item into an ontology

begin

 /*Search for the ontology o in O and add g into o if exists*/

 while i < m and insert = FALSE

 if o exists and x does not exist in o then

 insert d into o

 insert = TRUE

 end-if

 end-while

 /*Create new ontology for storing object d*/

 if insert = FALSE then

 ontology_creation(o, subject, keywords)

 insert g into o

 end-if

end

Chapter 3 Ontological Data Modeling in PDM System

3.11

3.3.2 Ontology Creation

Let n be the ontology that is intended to be added to the ontology set O; class

be the class of a subject to which the ontology belongs and keywords be a set of

words or sentence that best describes the nature of the ontology. The class k

identifies the domain to which an ontology belongs, keywords are used to

search the depth level at which the new ontology is supposed to be in an

ontology set. The rule of creating a new ontology in an ontology set is defined

as follows and the algorithm of this rule is shown in Figure 3.7.

() () (,)m i i n m n n id o c o c d d d insert d o¬∃ ∈ = ∧ = → (3.9)

Figure 3.7 Algorithm for creating a new ontology

begin

 /*use the keywords to determine the level at which o should be*/

 if on is inserted to the current level of the hierarchy then

 match = TRUE

 add on to the current level

 /*Search the hierarchy of the existing ontology according to the subject

 specified*/

 while i<m and match = FALSE

 if relation between oi and O ≠ relation between on and O and

 class(i) ≠ class(n) then

 /*Recursion – the algorithm searches down the hierarchy of the ontology

 until there is a match*/

 ontology_creation(oi, on, keywords)

 match = TRUE

 end-if

 i = i + 1

 end-while

 end-if

end

Chapter 3 Ontological Data Modeling in PDM System

3.12

In the proposition of the ontology creation, oy can be the ontology set or an

ontology at any level that is a predecessor in the relationship with the new

ontology ox. For instance, the relationships between the objects are described in

the following sentence: “Cartridge lid is installed in an ink cartridge, which is

an assembly that is installed in an inkjet printer”, where the hierarchical

relationship between the objects in the sentence is illustrated in Figure 3.8.

Suppose item cartridge lid is to be added to the ontology set, the sentence

shows that cartridge lid is part of an ink cartridge, which is part of an inkjet

printer. Therefore, the ontology of inkjet printer is the predecessor of ink

cartridge’s and cartridge lid’s ontologies. The ontologies at the upper levels of

the hierarchy can be refined into a number of ontologies, they are the

description of objects that are constituents of others. The process of ontology

creation stops when the physical meaning of the further refinement of an object

is not of any interest or importance to the users.

Figure 3.8 Creating new ontology in accordance with the object’s complexity

Chapter 3 Ontological Data Modeling in PDM System

3.13

3.3.3 Ontology Retrieval

Suppose the ontology set O holds a number of ontologies that contain the class

of subject j and xj be the item in j that the user would like to retrieve from O.

Since the users may have created their own ontologies on the specific subject,

therefore the algorithm will return ontologies of synonymous concepts by

taking into account of attributes and structural equivalencies. The following

rule is defined for retrieving ontology of relevant subject requested by the user

from the ontology set. The algorithm for ontology retrieval is shown in Figure

3.9.

)()()(oreturnocxcOo →≡∈∀ (3.10)

Figure 3.9 Algorithm for ontology retrieval

In this chapter, an ontology-based data model is described in first order logic.

The relationship of object and product database is defined through the two

categories: part and assembly. The functions of the ontology-enabled PDM

system provide users a practical way to access the synonymous information for

solving the problem they are currently facing. By organising objects into

begin

 /* Search for ontologies which contain subject that is equivalent to k, then they

 will be stored in a list L and returned*/

 for i = 1 to m

 if kj ≡ then appends oi to L

 end-if

 end-for

 /* Return L if it is not an empty set */

 if ≠L ∅ then

 return L

 end-if

end

Chapter 3 Ontological Data Modeling in PDM System

3.14

categories, users can infer their compositions from the perceived properties of

the objects, and then use category information to make predictions about the

objects. For example, the mass of a composite object is the sum of the masses

of the parts. An implementation of the system for environmental compliance

analysis is described in chapter 4. A model makes use of collaborative product

design and manufacturing information management as the basis for

environmental product development to analyse the content of hazardous

materials in a product will be discussed.

Chapter 4 Ontology-based Environmental Compliance Management System

4.1

Chapter 4

Ontology-based Environmental
Compliance Management System

Apart from increasing pressure of shortening the time for product design and

manufacturing, new laws are now forcing manufacturers to remove lead and

other hazardous substances from their equipments, and to take responsibility

for the eventual recycling of their products. Regulations on materials used in

the products and on the influence of using the products on the environment

have now become stringent and expect to be more restrictive. However,

complex products require multidisciplinary design teams to master the design

and to comply with safety and environmental regulations. One way to cope

with these is to adopt a product development system that provides guidance on

environmental issues.

4.1 Background on Environmental Compliance

Environmental damage caused by human drew attention to the impact of

chemicals on the environment. People are encouraged to carefully dispose of

unusable goods according to the type of material in early days, so that the

potentially useful materials can be recycled. However, there are some goods

that are difficult to be recycled; they have to be disposed of by other means like

landfill and incineration. These methods may be environmental damaging and

unsustainable. Furthermore, non-renewable resources are still being depleted

and environmental pollution is increasing. Thus, many developed countries

have progressed an extra step further on their environment protection policies,

the European Union (EU) has implemented two new environmental directives:

RoHS (Restriction of the use of certain Hazardous Substances in electrical and

electronic equipment) and WEEE (Waste Electrical and Electronic Equipment).

The RoHS directive took effect on 1st July 2006, which restricts the use of six

hazardous materials in the manufacture of various types of electronic and

Chapter 4 Ontology-based Environmental Compliance Management System

4.2

electrical equipment. It is closely linked with WEEE, whose purpose is to

improve the reuse, recycling, and recovery in order to reduce the amount of

disposal equipment and the contents going to landfill. For RoHS in EU, it

requires that everything that can be identified as a homogeneous material must

meet the content limit. The regulatory process is becoming more stringent,

failing to comply with the regulations means that the products are banned. The

manufacturers would not only suffer loss from not fulfilling the order but also

ruins the company’s reputation. The concern is further complicated when

different countries have their own standards on the amount of substances

presented in each product [Bergeson 2006].

In the past, companies are only required to develop and produce goods and

services that are of consistently high quality, having shorter lead times and less

expensive. Environmental issues have become important particularly in

product development [Partidario & Vergragt 2002], environmental protection

policies imposed by different countries make product development a very

difficult and complicated task [Fawzi 2007]. Firms are now developing

environmental policies for their operating facilities, services, and supply chain

partners while trying to maintain consistency with new regulations. Many

enterprises manufacture their products using materials and parts procured from

various vendors. However, product development activities often exceed the

boundary of one firm, the availability of information and resources are usually

very low. Meanwhile, these companies often have difficulties in identifying

whether all of the materials used are conforming to regulations. Consequently,

they generally have difficulties in handling environmental issues with their

production activities [Leistner 1999].

4.2 Environmental Compliance Management System

This section will begin by defining environmental management, after which the

suitability of PDM system as the basis of environmental management system

will be discussed. Environmental management is defined as encompassing all

efforts to minimize the negative environmental impact of the firm’s products

Chapter 4 Ontology-based Environmental Compliance Management System

4.3

throughout their life cycle [Sayre 1996]. An environmental management

system prevents adverse environmental effects and improves environmental

performance by institutionalizing various environmental programs and

practices such as initiating environment-related performance measures and

developing green technologies, processes, and products.

Many firms realise the necessity to incorporate their supply chains with

environmental compliance management (ECM). For example, in order for a

firm to respond to customers’ needs and to ensure its approach to the market in

accordance with the regulations for hazardous materials, e.g. WEEE & RoHS

Directives, it has to understand the environmental impacts of the parts and

components supplied from its suppliers. In addition, the regulations for product

take-back require it to expand its environmental responsibility to the entire life

cycle of products. To respond to these requirements, firms have to incorporate

an ECM system with their product design process and supply chain

management.

4.2.1 Information Management Tools

To achieve the above improvements requires dealing with different enterprise

functions and information sources. There are a number of commercial

information management applications available in the market, such as:

- Product Data Management systems (e.g. PDMWorks [SolidWorks 2004],

SmarTeam [IBM Corporation 2007], etc.) will keep track the data and

information required to design products. PDM is used to work with

electronic documents including CAD drawing, BOM, and product

configuration.

- Enterprise Resource Planning systems (e.g. SAP [Keller & Teufel 1998])

will centralise all data and processes of an organization into one single

database.

Chapter 4 Ontology-based Environmental Compliance Management System

4.4

- Life Cycle Assessment (e.g. SimaPro 7 [PRé Consultants 2007], GaBi 4

[PE International 2007], DFE [Boothroyd Dewhurst Inc. 2007], etc.) is a

tool that examines every stage of the life of products, including the

production phase, distribution, use, and final disposal of the product.

- Compliance Management Applications (e.g. Materials Compliance Central

[Enovia MatrixOne 2006], Compliance Management [Corporation 2007b])

will provide companies the ability to verify the compliance of a product by

verifying the information of its material contents and to identify the non-

compliant parts that are used.

These state-of-the-art software applications offer only partial responses to the

needs of environmental compliance. They are specific tools or technology

applications that optimize only parts of the product development process.

Moreover, they are enterprise-centric information systems that require long

time to set up and are not designed to provide a communication infrastructure

for the whole project network. These inadequacies discourage establishments

of virtual enterprise to work on ad-hoc developments of environmental

compliance products.

An innovative methodology is thus proposed such that it enables different

companies to incorporate their existing applications and decision-support

functions into a web-based environment. The system can provide a distributed

environment with enough flexibility to companies who have limited resources

to form a working platform for developing environmental compliant products.

4.2.2 Architecture of PDM System

Like many other multi-client applications, PDM follows the three-tier

architecture. Software development has been evolving in the last two decades;

three-tier architecture divides an application into three distinct software agent.

Multi-tier architecture is an open, distributed approach that separates the client

into two parts – user interface, logic processing and the database, the overview

Chapter 4 Ontology-based Environmental Compliance Management System

4.5

of a three-tiered application is shown in Figure 4.1. Other than the advantage

of storing data remotely from users, the three-tier architecture is intended to

allow any of the three tiers to be upgraded or replaced independently as

requirements or technology change. A classic example of the three-tier

architecture is the World Wide Web (WWW), where web browsers form the

client tier, the database server forms the third tier, and the TCP/IP serves as the

second tier. Given that PDM systems are developed based on the three-tiered

distributed architecture, there are a number of similarities between web

technology and PDM methodology, in terms of architecture and conceptual

module.

Figure 4.1 Overview of the three-tier architecture

The architecture of a PDM system can be divided into three tiers: the first tier

is the user interface of the system, the second tier is the PDM logic server, and

the third tier is the PDM database or repository as shown in Table 4.1. The

table also shows that PDM methodology resembles web technology in the

sense of their structures. The internet has brought the world a tremendous

influence in communication. The use of web technology with PDM systems

can create a network between enterprises and enhance departmental

collaboration. The complement of web technology to PDM systems can create

an affordable ECM system and helps companies to overcome the obstacles

existed in environmental complied supply chain management.

Chapter 4 Ontology-based Environmental Compliance Management System

4.6

Web technology PDM system

1st tier Web browser PDM user interface

2nd tier
Web / Application

server
PDM logic server

3rd tier
Web distributed

database
PDM database /

repository

Table 4.1 Structure of web technology and PDM system

4.3 The Model of Ontology-Enabled ECM System

An ECM system can be created by integrating web-technology with ontology-

enabled PDM systems. This system possesses all PDM functions that allow a

company to manage its product data locally. In addition, the system can also

manage remote product data from its suppliers implicitly provided that a

channel for data transfer is available to connect the management systems of the

involved companies in the supply chain by the internet.

4.3.1 Structure of the System

The model of the ECM is designed to provide a foundation for companies to

use existing PDM system to facilitate the implementation of ECM. Its structure

is illustrated in Figure 4.2 and descriptions of the stages involved are presented.

1. Product design – When a product design team starts designing a product,

the Compliance Analysis Module will create a new ontology for the new

project in project database to categorize the meta-data of all the relevant

product and document.

2. PDM system – It is the central unit of the ECM system for all the parties

involved in the production process to communicate and to work on the

project. The description of the module will be explained in more details in

later sections.

Chapter 4 Ontology-based Environmental Compliance Management System

4.7

3. Production planning – Given that the product design passes the relevant

compliance, the ECM system will notify the production planning unit to

assess the operational ability of the existing production system on

manufacturing this new design and to determine the amount of materials

required and the production schedule.

4. Procurement – After production planning has been completed, procurement

will start sourcing the materials. Information of the materials selected is

retrieved from the PDM system and stored into the project database

through the analysis module. Purchase Orders will be sent to the suppliers

once the materials satisfy the compliance standards.

5. Suppliers – Sometimes information of materials and parts are not available

in the PDM system, the module will prompt the suppliers to provide the

missing information. In case the suppliers are not able to supply any of the

materials, they will reply the company using the system. The module will

search through the PDM ontology repository for alternatives and suggest

them to the design team.

The model has been designed to adapt the product development process in a

project-oriented nature. A project database is established in the initiation of a

new product development project. This gives a greater flexibility to the product

developers as each project has its own complexity of technical objectives, since

many management systems often provide a general management model, which

may fail to capture the complicate relationship between each of the parties

involved.

This model provides a unique entry point to all activities and data associated to

the project by using the PDM system to control the access to the project

database. This will allow independent data maintenance to the product

development company and its suppliers. Through the use of web technology,

the distributed environment facilitates remote site design teams to be able to

update product data from any location directly accessing the project database.

Chapter 4 Ontology-based Environmental Compliance Management System

4.8

Also, companies will no longer be tied up to any information management

technology nor change their current streamlined practice for the sake of fitting

to a particular commercial tool.

Ontology-enabled PDM System

User

Procurement

Suppliers
Production

planning

Compliance

Analysis Module

Meta Data Query

Processor
Ontology

Repository

Product DatabaseProject Database

Figure 4.2 Model of environmental compliance management system

4.3.2 The Compliance Analysis Module

In order to provide a collaborative working environment for users from all

related companies in the supply chain, a web-enabled PDM system is utilised

to manage all product-related data and to provide data retrieval for product

design and production. To analyse whether a product is compliant to a set of

regulations, users must start the process by using the unique interfaces of the

Chapter 4 Ontology-based Environmental Compliance Management System

4.9

Compliance Analysis Module for security and data integrity reasons. The

procedure of analysing the compliancy of a design shown in Figure 4.3 is

described as follows:

1. Data acquisition - In the beginning of the compliance analysis, the user

selects the product need to be analysed, the module will then retrieve all

the relevant information from the PDM system database.

2. Supplementary data - Depending on the completeness of the data and

the kind of analysis to be performed on the product, the module will

prompt the user to input the missing information or search the PDM

system database of the company who supplied the part in question.

3. Compliance analysis – The data of the selected product will be verified

against the corresponding regulations. Any violation of the regulation

will be identified and necessary remedial action will be suggested to the

user. At this stage, the user can configure the application to display the

result according to region specific regulations to where the product is

exported.

4. Preliminary report – Checklist of the analysis is drafted in the report.

Marginal passes of any limits will be highlighted. All violations will be

recorded and possible remedial actions will be listed in the preliminary

report.

5. Re-analysis – Any non-compliance parts will be identified. The module

will automatically search for alternatives in the PDM system. The user

can make a component change based on the recommendation and the

new design will be analysed again.

6. Format report – The preliminary report is formatted to the standard

format required by the authority that established the regulations. The

final report is then stored to the PDM system for the next analysis in

case of alternations are made to the product. Instead of performing a

Chapter 4 Ontology-based Environmental Compliance Management System

4.10

full analysis, a partial analysis can be run by detecting the changes and

evaluate their effects accordingly.

Data acquisition

Input/Modify

supplementary data

Analysis

Preliminary report

Format report

PDM system

Existing

information

Compliance Analysis

Module

Design Accepted

Updated

information

No

Yes

Figure 4.3 Procedure of compliance analysis

4.4 Implementation of ECM System

This section presents the implementation of the model using a PDM system

and shows how the environmental management system helps a company to

analyse the compliance of a product in the WEEE directive in a timely manner.

Chapter 4 Ontology-based Environmental Compliance Management System

4.11

4.4.1 Software for Implementation

The system is designed and implemented using normal client/server

architecture with several free and some relatively inexpensive commercial

tools.

PDMWorks – In this research, the PDM system - PDMWorks Enterprise has

been chosen for developing the ECM system. It is the latest product data

management (PDM) software from SolidWorks® to help engineers and

product managers work more efficiently in teams while automating

workflow. The reason of choosing this PDM system is that the software

supplies comprehensive controls to help the design team avoid the

possibility of overwriting files or making other errors than could add time

and cost to their schedule. It helps organizations better control each design

project while streamlining development.

PHP - The interface of the system is developed using PHP. It is a widely-used

general-purpose scripting language that is especially suited for Web

development and can be embedded into HTML. PHP can be deployed on

most web servers and on almost every OS platform free of charge.

MySQL – It is the database system used in the implementation. MySQL runs

on many OS platforms including Linux, Windows, etc., which provides a

great flexibility in configuration.

4.4.2 The Compliance Analysis Module – ECM System

The Compliance Analysis Module is the second tier of a multi-tier architecture

system that is responsible for processing users’ requests. An application called

ECM System is the process-tier in the PDM system which aims to provide the

effective use of the network infrastructure, to facilitate the cooperation between

the users, to support workflow automation, to efficiently manage document

retrieval, and to provide the user a suitable interface in order. ECM System is

Chapter 4 Ontology-based Environmental Compliance Management System

4.12

developed to analyse the compliancy of products efficiently based on the EMS

model described in the previous section. In general, ECM System provides a

co-operating channel with PDM software through importing CSV (Comma

Separated Variables) report and exporting drawing file. The CSV report is

generated by the PDM software from the bill of materials of the project. In case

of any missing of necessary data, the user can input those missing data into

ECM System by the preset form. It will analyse the data and generate a

compliance report when the data acquisition is completed. The user can decide

to export the report or modify the current data depending on the report. The

exported report is in engineering drawing file format for better integration with

PDM software, and it could be previewed in the PDM software directly

through eDrawing plug-in. More information on the plug-in is listed in

Appendix A. At the beginning of the analysis process, the user can select to

create a new project or open an existing project for modification.

4.4.3 Illustrative Example

A case study is presented in this section to illustrate the compliance analysis

using ECM System with PDMWorks. In the process of designing a new

product, the user is prompted to provide some basic project information for

compliance analysis that includes the project title, the appropriate WEEE

product category and the product’s lifetime. The start-up page of ECM System

asks a user to enter the name of the project and select the category to which the

product belongs is shown in Figure 4.4.

Chapter 4 Ontology-based Environmental Compliance Management System

4.13

Figure 4.4 Start up page of ECM System

The new project is created and written into the project database. After entering

the general information using the predefined template, ECM System will

prompt the user to provide the data of all parts in use in the project by selecting

the data from the product database in the PDM system. In case of using new

part data, they must be registered before use through the meta-data processor.

A new ontology is created for the new design by analysing the relationships

between each of the parts and assemblies in the product. Like PDMWorks, the

part data can be exported by the reporting function to make a CSV report file.

The BOM of the product will be displayed to the user for inspection in case

there is any data missing, as shown in Figure 4.5.

Chapter 4 Ontology-based Environmental Compliance Management System

4.14

Figure 4.5 BOM display of the product being analysed

Chapter 4 Ontology-based Environmental Compliance Management System

4.15

Data in CSV files will be stored into the part database of ECM System directly.

The data structure of the part database in shown in Figure 4.6.

Figure 4.6 Data schema of part database in ECM System

After importing data from the PDM system, ECM System checks the

availability of data required for compliance analysis. In case of any data

missing, ECM System will locate the data using the information of supplier of

the specific parts stored in the PDM system. It will automatically connect the

PDM system with the supplier’s system and retrieve the data if both companies

are committed to work collaboratively. Conversely, ECM System will alert the

user that the analysis is performed upon incomplete information and the result

may vary from the inclusion of the missing data.

Once the compliance analysis of the product is completed, a compliance report

will be generated. The user can now view the result of the analysis that shows

the level of reuse, recycling, and recovery. The grading of the compliance

criteria is listed for each part of the product and the compliant status of the

product is also enclosed. An example of a compliance analysis report is shown

in Figure 4.7 and 4.8.

Chapter 4 Ontology-based Environmental Compliance Management System

4.16

Figure 4.7 Analysis on the grading of parts

Chapter 4 Ontology-based Environmental Compliance Management System

4.17

Figure 4.8 Report showing the compliant status of the product

The report can be previewed immediately and the user can choose to modify

the part data or export the report. The report is formatted as a drawing file for

performing a better integration with the PDM software. The analysis result can

be exported as DXF format for PDMWorks import. DXF format provides a

simple interface, easy to read, generates clean code, and has a very small

footprint in terms of RAM and disk space requirements. Figure 4.9 is the report

in DXF format. The report shows that the product being examined passes the

WEEE directive, but fails to comply with the RoHS directive. The content of

each of the six restricted substances is listed in the report, ECM System

identified the lead content of the product exceeds the limit. The parts that

contain the concerning substance are listed in the descending order of the

content.

Chapter 4 Ontology-based Environmental Compliance Management System

4.18

Figure 4.9 ECM System created analysis report in DXF format

An environmental compliance management system developed upon an

ontology-enabled PDM system and web technology is discussed in this chapter.

The model includes a compliance analysis module that retrieves product data

from a PDM system to analyse the content of hazardous materials in a product.

Information regarding the design of interest can be compiled by checking all its

assemblies and parts. The ontological organisation of the components

facilitates the verification of the content of materials and parts used within the

product, thus the losses incurred from violating environmental regulations can

be prevented. Chapter 5 will describe the functions of PDM system using UML

sequence diagrams and formal notations. Common concurrency problems in a

distributed data management environment and the difficulties of developing the

specification of PDM system will also be discussed.

Chapter 5 Representation of PDM Functions in UML Sequence Diagram

5.1

Chapter 5

Representation of PDM Functions in
UML Sequence Diagram

5.1 PDM User Functions

PDM provides benefits in every area of product design and development. Almost

everyone in an organisation can gain an advantage through the use of this

technology. A PDM system possesses a number of functions to support any

particular type of product development. This chapter provides a summary of the

functionality of PDM systems. CIMdata [CIMdata 2005] divided the basic

functionality of PDM systems into two main categories: user functions and utility

functions. The user functions allow users to store, retrieve, and manage the data in

a PDM system and the database consistency is depending on the order of the

executions of these functions. A PDM system commonly involves two kinds of

data storage. Figure 5.1 summarises the data flow in a PDM system under the

operations of the basic function of document management. An electronic vault is a

repository to store all kinds of product information that are used in a collaborative

work environment. Only authorized users of the PDM system can gain access to

the vault, it is necessary for the users to check out the required files from the vault

before any file operation is processed. Once the user has ownership of the files,

they are copied to the user’s local workspace, such that the user can work more

efficiently with the files locally. The basic PDM system functions are the common

operations to work with data objects in a PDM system. These functions are

categorized into two main groups: user functions and intrinsic functions. The six

user functions allow users to store, retrieve, and manage the data in a PDM system.

User functions are blocks of actions to be performed upon evocation. Intrinsic

functions are the actions that respond to the user functions and cannot be evoked

by users directly. Descriptions of the basic functions of PDM system are covered

in the following sections.

Chapter 5 Representation of PDM Functions in UML Sequence Diagram

5.2

Figure 5.1 Flow of data under the operation of various PDM functions

5.1.1 Description of PDM System User Functions

PDM_Register(d) Upload a newly created data object to the PDM database if

the object does not exist in the database.

PDM_CheckOut(d) Save the data object to the workspace from the PDM

database if the object is available for specific tasks.

PDM_CheckIn(d) A previously checked-out object becomes available for

other accesses. A new version of the data object will be

uploaded if it has been modified.

PDM_Release(d) The data object can no longer be modified if it is released.

PDM_Obsolete(d) The obsoleted data object cannot be retrieved for any tasks.

PDM_Delete(d) The deleted data object is removed from the PDM database

and no longer exist in the system.

Chapter 5 Representation of PDM Functions in UML Sequence Diagram

5.3

5.1.2 Description of PDM System Intrinsic Functions

Exist(data object, server)

Return true if the data object exists in the PDM system by checking the metadata

in a server, false otherwise. This function also sets the existence of the data object

in the system.

Save(origin, destination, data object)

Save function makes a copy of the data object to other place. It takes three

arguments, they are the system components in which the data object is residing,

the locations that is going to store the object and the objects to be transferred in

the respective order.

Available(data object)

Return true if the data object is available for a specific operation. The availability

of an object is determined by the mode of lock that is applied by actions other

users subjected to their operations. This function also sets the availability of the

data object in the system.

Modifiable(data object)

Return true if the data object can be modified.

Erase(data object)

The data object is removed from the PDM system if it is in obsoleted state.

Chapter 5 Representation of PDM Functions in UML Sequence Diagram

5.4

5.2 Use of Sequence Diagram

The proposed approach for integrating UML and a formal language does not

regard all of the diagrams specified on UML specification. In this study, the UML

sequence diagram is chosen as the visual modeling tool given that interactions

among objects take place in a specified sequence, and the sequence takes time to

go from beginning to end. First order logic (FOL) will be used to describe the

specifications of these functions. The order of the sequence of actions can be

clearly presented in the sequence diagrams and that facilitates the process of

developing the specification of the system with formal notations in which system

developers can verify its correctness properties.

Summary of the user functions are illustrated using the UML sequence diagrams.

Sequence diagrams are read from the top to the bottom and left to right. The

construct of the FOL formulas that based on the order of the function predicates

are asserted. A function predicate can be asserted to hold at any state of the

lifespan of an object. Unless function predicates are refuted, they will remain hold

from the state at which functions are evoked. An action function is an expression

of the executability of the specific function. For example, PDM_Register(d) holds

when the data object d can be registered to a PDM system. Likewise, property

function reflects the particular property of the object, i.e. Available(d) = T means

that d is available for operations.

5.2.1 Registering data in PDM System

The process of registering a new data object saves a copy from the user’s

workspace to the data fault of the PDM system, which is shown in Figure 5.2.

PDM server verifies the meta-data to determine whether it already exists in the

database. The registered data object can then be accessed by other authorized

users. If the data object is an existing data object, the server will inform the user to

ascertain that the original would not be overwritten unintentionally.

Chapter 5 Representation of PDM Functions in UML Sequence Diagram

5.5

Figure 5.2 Sequence diagram for registering data

The following definition of the register function said that if the data object to be

registered does not exist in the data vault by checking the metadata in the server, it

will be saved to the data vault.

[]_ () (,) (, ,)PDM Register d Exist d s Save s db d⇔ ¬ → (5.1)

5.2.2 Check-Out in PDM System

In many commercial PDM systems, user is only allowed to check out unoccupied

documents, the following sequence diagram illustrates a standard check-out

process. The system decides the check-out process based on whether the

document is occupied or not. If it is being occupied, then the check out process

fails. Otherwise, the system will lock the document in the data vault and grant the

ownership of the document to the user. A PDM system with a multi-granularity

locking mechanism has a different check out process. The check out request will

only be declined if the data object is write-locked. In other cases, the system will

lock the data object with a shared read lock and a read access is granted to the user.

To cater for the transference in distributed environment, the data object is

transferred to the PDM server to which the user issues the check out request and

then saved to the user’s workspace.

Chapter 5 Representation of PDM Functions in UML Sequence Diagram

5.6

Figure 5.3 Sequence diagram for checking out data object

The check-out function is well defined if data object d is resided in the database

db and the availability of d must be ascertained. The data object d is then

transferred to the server s and saved to the workspace ws and d is no longer

available for other users.

_ () [| () (, ,)

()]

PDM CheckOut d d db Available d Save s ws d

Available d F

⇔ ∈ →
⇒ →

 (5.2)

5.2.3 Check-In in PDM System

Figure 5.4 shows the process of saving a copy of the modified data object to the

data vault of the system by using the check-in function. The process invokes the

version control module to revise the attributes of the modified data object in the

meta-database. Version control is an internal procedure for managing properties of

data object in a PDM system. This creates or updates the meta-data, such as

changes or version, for the data file according to the rules established by the

system administrator. Having the right to override the rules of revision, the user

can manipulate the revision to some extent.

Chapter 5 Representation of PDM Functions in UML Sequence Diagram

5.7

User PDM server

CheckIn

VersionControl

PDM Database

Save

alt

[modified]

Figure 5.4 Sequence diagram for checking-in data object

The check-in function is defined as passing data object d' to the data vault from

where it was drawn. This function has two formulas: either (5.3) or (5.4) will

determine the validity of the process. In (5.3), the check-in object is the original

one that has been checked-out, that is'd d= , then the data object becomes

available again. In (5.4), the data object has been modified from 'd d→ , the new

version is checked-in to the database and become available for other users.

_ (') [| ' _ ()

()]

PDM CheckIn d d db d d PDM CheckOut d

Available d T

⇔ ∈ = ∧
⇒ →

 (5.3)

_ (') [| ' _ ()

(() ('))]

PDM CheckIn d d db d d PDM CheckOut d

Available d T Register d

⇔ ∈ → ∧
⇒ → ∧

 (5.4)

5.2.4 Release in PDM System

The release function restricts further modification to a data object. Figure 5.6

illustrates the process of the function in PDM system. The data objects cannot be

modified anymore once it is finalised and approved by authorised users.

Chapter 5 Representation of PDM Functions in UML Sequence Diagram

5.8

User PDM server PDM Database

Release

Available

alt

[available]

NoUpdate

Inform

[else]

Figure 5.5 Sequence diagram for releasing data object

The formula of release function requires checking whether the data object d is

available before further process. Once the data object is released, this object

cannot be modified anymore.

_ () [() ()]PDM Release d Available d Modifiable d F⇔ ⇒ → (5.5)

5.2.5 Obsoletion in PDM System

The server checks whether there is any user accessing the data item on which the

obsolete functions is acting. Once a data item is in an obsoleted state, all of its

corresponding information cannot be used in any project starts thereafter. Occupy

is an internal function to check the data object d is in-use or a component of any

project in the system. If the inference of occupy is true, it means that the data

object is either being used by someone or is part of other project, thus d cannot be

obsoleted. Otherwise, if the process is successfully processed, then d becomes

inaccessible.

Chapter 5 Representation of PDM Functions in UML Sequence Diagram

5.9

Figure 5.6 Sequence diagram for data object obsoletion

The formula of obsoletion ensures that the to-be-obsoleted data object d is not

included in any project and occupied by any user. Once d is obsoleted, the data

object in the PDM database is no longer accessible.

_ () [() ()]PDM Obsolete d Available d Available d F⇔ ⇒ → (5.6)

5.2.6 Deletion in PDM System

This function erases the chosen data item that must have been obsoleted.

Figure 5.7 Sequence diagram for deleting data object

Chapter 5 Representation of PDM Functions in UML Sequence Diagram

5.10

The following formula is the specification of Delete function. It defines that the

data object d must be obsoleted. This implies that d is longer used in any project,

then the server will invoke the Erase function to delete the data object, and

therefore it is no longer an element of the database db.

_ () [() ()]PDM Delete d Obsolete d Erase d d db⇔ → ⇒ ∉ (5.7)

5.3 DPDM User Functions

A Distributed Product Database Management (DPDM) system is one in which the

database is spread among several sites and application programs. The DPDM

operates more or less like the PDM system. DPDM system consists of all PDM

functions in order to manage the product data at the local database. In addition,

DPDM system must provide the data transfer between databases at different sites.

The DPDM functions and their logical formulas are shown in this section. In the

following illustrations, each of the PDM servers in the DPDM system holds a

copy of the same meta-data. The advantage of administrating the meta-database is

obvious: because each organisational unit within the enterprise will maintain data

that is relevant to its own operations, it is often not necessary for each database to

keep a copy of the actual data object, users from other sites may not require some

of the data at all, thus unnecessary data flows between the servers are avoided.

The distributed arrangement also improves the efficiency of processing by

keeping the data close the place where it is most frequently used. Retrieving data

from remote databases that possess the data when needed allows better data

accessibility.

The group of function predicates used in constructing FOL formulas for PDM

system are also used in developing those for DPDM system. Nonetheless, the

function predicates take more arguments in order to handle the more complicated

relationships between computers and servers in which the related actions take

place. For example, the _ ()PDM CheckIn d function for PDM system checks in

the data object d to the PDM database and the system has implemented only one

centralised database to store the data. Although, DPDM system is composed of

Chapter 5 Representation of PDM Functions in UML Sequence Diagram

5.11

several PDM servers and databases, it does not require users to explicitly specify

the components of the system involved when they use these functions. Therefore,

a user function in both PDM and DPDM system takes the same number of

arguments. On the other hand, DPDM system needs to handle interactions

between a number of system components, its intrinsic functions have to take extra

arguments to show the components involved in an action. For instance, the

intrinsic function for checking the availability of a data object in a DPDM system,

(,)ravailable d s , has an extra argument showing that the specific server is being

checked.

5.3.1 Description of DPDM System User Functions

The following DPDM user functions perform the same actions of the respective

PDM functions. However, the operations involved in each DPDM functions are

slightly different and will be described in later section.

DPDM_Register(d)

DPDM_CheckOut(d)

DPDM_CheckIn(d)

DPDM_Release(d)

DPDM_Obsolete(d)

DPDM_Delete(d)

 5.3.2 Description of DPDM System Intrinsic Functions

The following DPDM intrinsic functions take more arguments than respective

functions in PDM system.

Available(data object, server)

Chapter 5 Representation of PDM Functions in UML Sequence Diagram

5.12

Return true if the data object is available in particular servers for a specific

operation. The availability of an object is determined by the mode of lock that is

applied by actions other users subjected to their operations. This function also

sets the availability of the data object in the servers of the DPDM system.

Modifiable(data object, server)

Return true if the data object can be modified in the server. This function also sets

the whether the data object can be modified or not.

Erase(data object, server)

The data object is removed from the server in a DPDM system if it is in obsoleted

state.

5.3.3 Registering data in DPDM system

The process of registering a new data object in DPDM system saves a copy from

the user’s workspace to the local PDM data fault, which is shown in Figure 5.8.

The local PDM server verifies its meta-data to determine whether it already exists

in the local database. If the data object being registered exists in the DPDM

system, the system will inform the user to ascertain that the original would not be

overwritten unintentionally. In a situation where the data object is new to the

DPDM system, the data object is saved to the local database and the meta-data of

the object is written to meta-database of all PDM servers in the DPDM system.

Chapter 5 Representation of PDM Functions in UML Sequence Diagram

5.13

User Local PDM Server Local PDM Database Remote PDM Server

Register

alt

[exist]

[else]

Inform

Save

Exist

exist

Exist

Remote PDM Database

Figure 5.8 Sequence diagram for registering data in DPDM system

The following definition of the register function for DPDM system said that if the

data object d to be registered does not exist in the local meta-database at the local

server sl, it will be saved to the local database dbl and the meta-data of d is written

to the meta-database in the local server and in all remote servers of the DPDM

system. The (,)i Exist d si∀ function updates all servers s that d exists in the

PDM system.

[]_ () (,) ((, ,) (,)l l l iDPDM Register d Exist d s Save s db d i Exist d s⇔ ¬ → ∧ ∀ (5.8)

5.3.4 Check-out in DPDM system

As in PDM system, the DPDM system decides the check-out process based on

whether the requested data object is occupied or not. Figure 5.9 shows the process

of check out function of DPDM system. If the requested data object is being

occupied, then the check out process fails and the user is informed. Otherwise, the

system will grant the ownership of the data object to the user by changing the

status of the data object in all the meta-databases. If the data object resides in the

local database, the local server will retrieve the data object from the database and

then saves it to the user’s workspace. On the other hand, to cater for the

transference in distributed environment, if the requested data object is in one of

Chapter 5 Representation of PDM Functions in UML Sequence Diagram

5.14

the remote databases, the local server will retrieve the data object from the remote

database and saves it to the local database before transferring it to the user’s

workspace.

Figure 5.9 Sequence diagram for checking out data object in DPDM system

The check-out function is well defined if data object d is resided either in the local

database dbl or in one of the remote database dbr. In the first scenario in which d

is in the local database, the local PDM database passes the data object to the local

server sl first. In the later scenario in which the requested object is resided in a

remote database, d will be saved to local database dbl from the remote database

dbr. At the end of the check-out process for both of the scenarios, the availability

Chapter 5 Representation of PDM Functions in UML Sequence Diagram

5.15

of d in the meta-database in all DPDM servers is changed to false and the data

object is saved to the workspace ws.

_ () [| ((,) ((,) (,)))

(, ,) ((, ,) (,))]
l l l r

r l l i

DPDM CheckOut d d db r Available d s Exist d db Exist d db

Save db db d Save s ws d i Available d s F

⇔ ∈ ∃ ∧ ∨
→ → ∧ ∀ →
 (5.9)

5.3.5 Check-In in DPDM System

Figure 5.10 shows the process of saving a copy of the modified data object to the

data vault of the system by using the check in function of DPDM system. The

function is similar to the PDM system’s version with some additional processes in

updating the system record. The process invokes the version control module to

revise the attributes of the modified object in the meta-database and to update the

meta-database of the remote PDM servers.

Figure 5.10 Sequence diagram for checking-in objects in DPDM system

In DPDM system, the check-in function is defined as passing data object d' to the

local data vault. This function has two formulas: either (5.10) or (5.11) will

Chapter 5 Representation of PDM Functions in UML Sequence Diagram

5.16

determine the validity of the process. In (5.10), the check-in object is the original

one that has been checked-out, that is'd d= , and becomes available again. In

(5.11), the data object has been modified from 'd d→ , the old version of the data

object is checked-in to the local database and become available for other users and

the new version is registered to the DPDM system by the Register function. Both

formulas ensure that the process updates the availability of d is updated to true in

meta-database of all remote servers.

_ (') [| ' _ ()

(,)]
l

i

DPDM CheckIn d d db d d DPDM CheckOut d

i Available d s T

⇔ ∈ = ∧
⇒∀ →

 (5.10)

_ (') [| ' _ ()

(,) (')]
l

i

DPDM CheckIn d d db d d DPDM CheckOut d

i Available d s T Register d

⇔ ∈ → ∧
⇒∀ → ∧

 (5.11)

5.3.6 Release in DPDM System

The release function restricts further modification to a data object. In Figure 5.11,

the sequence diagram shows that the data object cannot be modified anymore

once it is finalised and approved by authorised users. The local PDM server

executes the NoUpdate(d) function to modify the status of the data object in meta-

databases at all the remote PDM servers.

Chapter 5 Representation of PDM Functions in UML Sequence Diagram

5.17

Figure 5.11 Sequence diagram for releasing objects in DPDM system

The formula of release function is required to ascertain that the user is eligible to

hold the ownership of the data object d. If d is not occupied, then it can be

released. That is, all copies of this object become non-modifiable once they have

been released.

_ () [() (,))]iDPDM Release d Available d i Modifiable d s F⇔ ⇒∀ → (5.12)

5.3.7 Obsoletion in DPDM System

The obsolete function in DPDM system asserts the occupancy of the data object

on which the obsolete function is acting. Once the data object is an obsoleted state,

all corresponding information of this object cannot be used in any project

thereafter. Figure 5.12 is the sequence diagram showing the process involved in

the obsolete function.

Chapter 5 Representation of PDM Functions in UML Sequence Diagram

5.18

Figure 5.12 Sequence diagram for obsoleting objects in DPDM system

The slight difference of the obsolete function between the centralised and

distributed PDM system is that the local PDM server in DPDM system will

update the new status of the object in the meta-database in all remote servers, so

that the users connecting to the other PDM servers will know that the data object

has been obsoleted at the moment they access it.

_ () [() (,)]iDPDM Obsolete d Available d i Available d s F⇔ ⇒∀ → (5.13)

5.3.8 Deletion in DPDM System

This function erases the chosen data object that must have been obsoleted in the

DPDM system. The following sequence diagram illustrates the process of delete

function in DPDM system. Determining the selected data object already obsoleted

is to ensure that it is not included in any other project and is not being accessed by

other users, so that the deletion will not induce data inconsistency to the system.

Chapter 5 Representation of PDM Functions in UML Sequence Diagram

5.19

Figure 5.13 Sequence diagram for deleting objects in DPDM system

The following formula is the specification of Delete function in DPDM system. It

defines that the data object d must be obsoleted. This implies that d is no longer

used in any project, then the server will invoke the Erase function to delete all the

copies of this data object in all PDM databases, and therefore d is no longer an

element of any database db.

_ () [() (,)]i iDPDM Delete d Obsolete d i Erase d s d db⇔ → ∀ ⇒ ∉

The user functions of PDM system and DPDM systems are illustrated and defined

using the UML sequence diagrams and First Order Logic in this chapter. In the

next chapter, common concurrency problems and the specification of a well-

known concurrency control in DPDM system is illustrated in the same approach.

Chapter 6 Concurrency Control Specification

6.1

Chapter 6

Concurrency Control Specification

6.1 Concurrency Problems in DPDM System

Design and manufacturing workflow can be streamlined by implementing suitable

DPDM system that manages all product-related data in an organized manner. One

major function of DPDM systems is to maintain data integrity and to provide

accurate data when required [Leong, et al. 2003]. The large amount of interactions

between the system and the users will give rise to concurrency problems that all

data management systems need to overcome.

A transaction is a sequence of actions on some data objects of database. Each

action can be categorized into either of the two fundamental database operations:

read and write. The read operation returns the content of the data object. The write

operation creates a new version of the data object and overwrites the old content

or adds to the database if it is newly created. The simple relations among users

and a database system when a transaction is executed are depicted using a

sequence diagram in Figure 6.1. When the user wants to read the particular data

object from the database, he/she selects the data item using the interface provided

by the database system. The checkout function is executed to retrieve the data

item from the database. The server processes the function by checking the

directory to determine the availability of the file. If this data object is available in

the database, the server will then transfer it to the user. After referencing the item,

the user notifies the server that he/she no longer needs to access it and the

connection between the user’s computer and the database server will be

disconnected. However, if the data item has been modified or is newly created, the

user will be prompted to upload it to the database. The server checks the meta-

data directory to see if the data object already exists in the database. A new item is

written to the database and its meta-data to the directory. Depending on the

controlling methods that the system has implemented, the existing data object will

Chapter 6 Concurrency Control Specification

6.2

either be overwritten by the newly modified content or a new version is saved to

the database along with the old version.

User Server DatabaseWorkspace

DownloadFile

CheckOut

[Exist]: Transfer

Save

UploadFile

CheckIn

Overwrite

[exist]

alt

Write

[else]

Write

EndTransaction

Disconnect

Read

Available

Available

 Figure 6.1 Basic database operations: Read and Write

In general, database operations can be executed concurrently within a transaction.

Concurrency problems arise when two or more actions are accessing the same

data and at least one of which is a write action. [Date 2004] classified the

concurrency problems into three ways in which a transaction produces an

unexpected result as a consequence of interleaving operations from different

Chapter 6 Concurrency Control Specification

6.3

transactions in an inconsistent manner. Two concurrency problems that are related

to DPDM systems are illustrated by the following examples in UML sequence

diagrams. Sequence diagrams are read from the top to the bottom and left to right.

6.1.1 The Lost Update Problem

Let Opti be an operation from the i th transaction of a PDM system, Ti, performing

on a file is either a read, write and undo process { }, ,i i i iOpt R W U= . The lost

update problem is presented by means of a sequence diagram in Figure 6.2. The

example begins when data object d receives a read operation Rp from transaction

Tp at time t1, activation lines are rendered on the lifelines of Tp and Tq to indicate

that these objects are active. Tq accesses the same file at time t2; write operations

Wp from Tp and Wq from Tq update the file at time t3 and t4 respectively. The

diagram clearly shows that Rq cannot read the update by Tp, and therefore the

work done by Tq does not base on the content at time t3, instead it worked on the

file seen at time t2, which are the same as those seen at t1. Since Wp is processed

after Rq, the update of Wq indeed would not contain the work of Wp, the update by

Tp is lost at time t4 when Wq is committed.

Figure 6.2 The lost update problem

Chapter 6 Concurrency Control Specification

6.4

6.1.2 The Dependency Problem

Consider the situation illustrated in Figure 6.3. Transaction Tp updates data object

d at time t1 and transaction Tq reads the update at time t2. That update is then

undone at time t3. As the consequence of Up from Tp, Tq has retrieved a data object

that now no longer exists after time t3. As a result, Tq might produce incorrect

output, because the value it had is before time t1. The problem becomes more

complicated if other transaction has updated the file before the undo is processed.

In the second example shown in Figure 6.4, Tq reads the file at time t2 that was

updated at time t1 by Tp and updates it by write operation Wq at time t3. Wq

become dependent on Wp, however it is discarded with the undo operation Up at

time t4 in which Tp is supposed to undo its write operations Wp. The dependency

problem turns out to be another version of the lost update problem.

Transaction p Data object dTransaction q

t1

t2

t3

Wp

Up

Rq

Figure 6.3 Dependency problem: Referencing an undone data object

Chapter 6 Concurrency Control Specification

6.5

Figure 6.4 Dependency problem: Undoing the work of other transaction

6.3 Basic 2PL Protocol in Sequence Diagram

From studying a number of proposed algorithms, the literature review suggested

that they are developed on the basis of two well-known mechanisms for

controlling concurrency: two-phase locking (2PL) and timestamp ordering (T/O).

The 2PL approach introduced by Eswaran [Eswaran, et al. 1976] is chosen as the

basis of the proposed concurrency control model. The reason for choosing 2PL to

illustrate the proposed specification approach is that it is a more appropriate

concurrency method for DPDM systems. Unlike real-time systems, the activities

in DPDM environment often have long lifespan, abortions of transactions incurred

from any violation of the time orders in T/O models are intolerable.

Two-phase locking method preserves database consistency by avoiding read and

write operations processed from different transactions concurrently on the same

data object. A transaction must obtain a read-lock or a write-lock on a data object

before starting the read or write operation respectively. Conflicts occur when a

transaction requests a lock on a data object that has been locked; the request will

not be granted under the following two situations: 1) one is a read lock and the

other is a write lock, and 2) both are write locks. Figure 6.5 is a UML sequence

Chapter 6 Concurrency Control Specification

6.6

diagram illustrating the 2PL method. Database operations are omitted from the

diagram for simplicity. It is also necessary for each transaction to lock each data

object before acting on it.

Figure 6.5 Basic two phase locking protocol

In the growing phase, a transaction can request locks on the available free data

objects. If the data object requested has already been locked, the request will be

reprocessed. 2PL forces transactions to wait for the unavailable locks. If this

waiting is uncontrolled, deadlocks will be arisen. The shrinking phase of a

transaction begins when one of its locks has been released. During this phase, the

transaction cannot obtain any more locks on any data object. Consistency is

Chapter 6 Concurrency Control Specification

6.7

established by dividing the locking procedure into two phases. The first phase is

growing phase as the transaction is allowed to request locks. By releasing a lock,

the transaction enters the shrinking phase. In this phase, the transaction cannot

obtain additional locks. Eswaran gave an example where a non-two-phase

schedule may lead to inconsistency and suggested that 2PL is a sufficient

condition for preserving database consistency. In the case of transactions which

are not processing any data object in common, they can be scheduled consistently

in any order without violating the consistency, since there is no interaction in

between.

6.4 Formal Specification of Concurrency Control

Formal specification has to be unambiguous so that system developers can

understand the requirements and develop a system that operates accordingly and

able to verify that the specifications do not have any contradiction which would

lead to inconsistency. It is widely agreed that a natural language cannot be

considered as a good specification language. This is due to the fact that computers

are not capable of understanding the meaning of natural language. Meanwhile,

classical formal methods, namely mathematical proof, are not widely accepted in

the industry since there are too many streams that people can use to specify a

system, although classical methods guarantee the correctness of a system without

exhaustive tests [Drusinsky 2006].

6.4.1 Temporal Logic

The branch of temporal logic chosen to describe the concurrency model in this

research is Propositional Temporal Logic (PTL) introduced by Pnueli [Manna &

Pnueli 1992]. Other than the standard propositional connectives ¬ (not), ∧ (and),

∨ (or), ⊕ (exclusive or) and ⇒ (implies), the typical temporal operators used to

construct the formulas of the 2PL method are as follows:

Chapter 6 Concurrency Control Specification

6.8

p Next: In the next moment in time that p will be true.

p● Previous: In the previous moment in time that p was true.

p� Henceforth: For all future time p is true.

p+ Has been: from the preceding moment in time that p is true (including

now)

p� Eventually: At some future time p is true.

p◆ Once: p holds at some preceding position.

p qU Until : p is always true until the time when q becomes true

p qW Unless: () ()p q p∨U □

6.4.2 Integration of Sequence Diagram and Temporal Logic

This section illustrates the syntax and describes the semantics of the integration of

temporal logic and sequence diagram. The UML sequence diagrams in previous

sections are shown for these purposes. The construct of the temporal logic

formulas is based on the order of the function predicates being asserted. A

function predicate can be asserted to hold at any state of the lifespan of a data

object. Unless function predicates are refuted, they will remain hold from the state

at which functions are evoked. Consider the lost update problem shown in Figure

5.2, transaction Tp evokes the read function Rp, (,)pRead T d is asserted to hold

until the transaction evokes the write function Wp that changes the properties of d,

the state of Rp is no longer hold because Tp cannot read and write the same data

object simultaneously. However, the transaction evokes a new function processing

the same data object does not necessarily change the state of the previous function

predicate given that earlier function predicates are not conflicting with the newly

evoked functions.

Chapter 6 Concurrency Control Specification

6.9

6.4.3 Representation of Serializability in Temporal Logic

The notion of locking is the mechanism of 2PL for preserving database

consistency in distributed environments. Locking protocol ensures that

transactions access data objects serially by blocking later conflicting operations.

That is, the operation of the earlier transaction must be completed before the

operations of other transactions start if they are incompatible and the transactions

are in no way interleaved.

Serializability can be achieved by executing a set of concurrent transactions one at

a time in some unspecified serial order. The mutual exclusive formula below is

asserted to hold when only one function in the conflicting set will be processed on

a data object.

1 2() (() () ())nd f f d f d f d⊕ ⇔ ∈ ¬ ∧ ¬ ∧ ∧ ¬F F K□◇ □◇ (6.1)

Formula (6.1) states that it should always be only one function accessing the

object, given that { }, ,1 2 , nf f f= LF is a set of functions that cause inconsistency

when processing on the same object concurrently. It is clear that the specification

()d⊕F□◇ is true if and only if at most one process is operating on the data object

d. A state in which the specification is false is a state in which mutual exclusion is

violated.

6.4.4 Specification of Two Phase Locking in Temporal Logic

2PL method ensures that transactions access a data object in a mutually exclusive

manner. This protocol results in an additional set of actions called lock and unlock.

In the sequence diagram, the data object enters the critical section once locked by

a transaction. It represents all the activity that has to be performed without any

interference. Non-termination of the critical statement corresponds to one process

accessing the data object and never releasing it to the other processes.

() (,)Critical d i Own i d⇔ ∃+ i (6.2)

Chapter 6 Concurrency Control Specification

6.10

A data object d is said to be in its critical section if it is owned by a transaction. A

critical region is shown in the sequence diagram when d is locked, this means that

only the transaction that owns d is entitled to process it and no other transaction

can access the data object.

The logical formulas use two predicates to model conditions of a transaction. The

predicate Lock(T,d) is true when transaction T locks the data object d, which also

implies that T has been granted the right to access d. Another predicate

Unlock(T,d) is true when T releases its lock on d, and it surrenders the right to

access d. For defining the actions, the predicate Own(T,d) is introduced to state

the ownership of a particular data object. It holds true if T has the ownership of d.

The definitions of lock and unlock are as follow:

()(,) () () (,) (,)Lock T d Critical d ShrinkingPhase T Own T d Unlock T d ⇔ ¬ ∧ ¬ ⇒ U

 (6.3)

Its premise consists of two predicates: ()Critical d¬ and ()ShrinkingPhase T¬ , it

states that a transaction locks data objects only in growing phase and the data

objects requested must not be in critical section. The consequent of Lock(T, d)

holds when T is granted the ownership of the data object until the lock is released.

A data object is in critical state when it has been locked by a transaction.

()() (,) (,)ShrinkingPhase T d Unlock T d Own T d¬ ⇔ ∃ ∧◆
(6.4)

Shrinking phase is antonymous to growing phase. That is, a transaction is in

shrinking phase then it could not be in growing phase. Therefore either one of two

phases is needed to be defined in order to indicate the status of a transaction. The

definition states that the transaction is in shrinking phase once it releases all of its

locks.

(,) [(,) (,)]Unlock T d Own T d Own T d⇔ ⇒ ¬+ □ (6.5)

Chapter 6 Concurrency Control Specification

6.11

It is obvious that the transaction must have locked the data object d and have the

ownership of d in the pervious instant of time. When T unlocks d, it gives up its

ownership of the entity.

(,) (,) (,) (,)kTransfer d ws Lock T d Issue ws d Copy d ws⇔ ∧ ⇒◆ (6.6)

This function ensures that an entity is transferred to the workspace from which the

transaction is issued. Data object d is transferred to workspace ws once locked by

transaction Tk, given that Tk is issued from ws.

()(,), (,) (,) (,)k k jRepeat Lock T d Unlock d Lock T d j Unlock T d ⇔ ∀ ∈ τ τU
(6.7)

The function repeats the locking action until Tk locks the data object. The

requesting transaction will not be able to lock the data object until all other

transactions that have locked it release their lock. The action of locking a data

object will repeat, given that the transaction cannot lock the data object.

The Repeat function executes a set of actions A continuously until the whole set

of criteria Γ is met. All kinds of repetitive tasks can be expressed by this formula.

[](,)Repeat Γ ⇔ ΓU A A (6.8)

The following truth table illustrates the execution of a formula:

([1] [1],[4])Repeat x x i i i← + ∧ ← + =

Chapter 6 Concurrency Control Specification

6.12

i 0 1 2 3 4 5

i ← i +1 T T T T T T

i = 4 F F F F T F

x 1 2 3 4 5 6

x←x+1 T T T T T T

(x← x+1) ∧ (i ← i +1) Υ (i = 4) T T T T T F

Table 6.1 The truth table of repeat function to perform repetitive addition

A for-loop of adding 1 to the variable x in 5 iterations is expressed using repeat

function. The pre-conditions of the for-loop are not included in the formula for

simplicity, x is five and i is zero as the loop starts. The loop stops when the

iterator i equals to 4. Although the assignment functions

1x x← + and 1i i← + always hold, the specification of the formula

[1] [1] [4]x x i i i← + ∧ ← + =U no longer holds when the iterator will not be equal

to 4 once it was reached. Thus, the function repeat terminates as it is evaluated to

false.

A state of the system is defined by an assignment of truth values to the function

predicates. The consistency of the system can be verified by evaluating the

sequence of the function predicates. The valid sequence of states of a system is

described by the temporal logic specification for the system. The precise

conditions represented by these formulas of the specification depend on the details

of an implementation. Suppose transaction T has locked the data object d, and

there is another transaction trying to access d, a formula is needed to determine

that d is not being accessed by any transaction. The state of the function can be

either specified as (,)Lock T d+ to indicate that d has been locked by T or

as (,)Lock T d to indicate that d is locked by T in the very instant of time when

checking is preformed. In the proposed approach, representation of specifications

in simple form is preferred over complex ones.

Developing system requirements are not an easy task. This chapter described the

use of temporal logic in interpreting the UML sequence diagram. In particular, the

integrated approach was illustrated through expressing the specifications of the

Chapter 6 Concurrency Control Specification

6.13

basic two-phase locking. In this way, system developers can enjoy the simplicity

of UML while the correctness properties of models can be formally proved. By

having a sound theoretical basis, concurrency control models can be simulated

first before implementation. The description of new models can be tested for

correctness and optimized in performance. The following chapter describes a

concurrency control model that integrates the concept of granularity and

versioning. The model is designed on the basis of the specifications of two phase

locking protocol and the objective is to improve the concurrent accessibility of a

DPDM system.

Chapter 7 Concurrency Control Method for DPDM System

7.1

Chapter 7

Concurrency Control Method for
DPDM System

Many variations of concurrency control schemes have been introduced to

improve concurrency and system performance in conventional database

environment, but an adoption of any of these methods would not be an ideal

solution for resolving concurrency problems of a PDM system. Above all, the

differences between the natures of DPDM systems and conventional database

systems limit the efficacy of these methods.

Locking all the data related to the objects for making changes reduce the

degree of concurrency or overall system throughput. One factor that influences

PDM concurrency is data complexity. The more number of components of an

object has, the data is more likely to be amended by more users. A procedure

that can isolate only the affected parts of the data will be helpful to conduct

PDM with efficiency. The approach presented in this chapter introduces

several types of lock based on the data complexity and the user’s actions.

7.1 Formal Description of the Method

The proposed hybrid concurrency control model for DPDM integrates

granularity locking and versioning technique. For the former, the model

considers each assembly to be divided into different smaller assemblies that are

composed of a number of parts. The model also assumes that when a user

updates an assembly, a user checks out the lowest level assembly, that is, the

direct assembly to which the targeted object belongs rather than checking out a

large assembly with many assemblies in the writing process. However, this

assumption is not applicable in the case of reading an assembly. For version

management, a new concurrency control model that integrates locking

granularity with version control is devised. In this model, whenever a user

Chapter 7 Concurrency Control Method for DPDM System

7.2

checks out (updates) a data object, a new version of the data object will be

created. No other users are allowed to check out the new version while the

current version can still be read by others. After the user has completed the

update, he/she then checks in the new version of file back to the vault. Other

users can now check out the latest version of the file from the vault.

7.1.1 Locks with Version

Three standard modes of lock [Gary, et al. 1975], Shared (S), Exclusive (X),

and Intent Shared (IS), are adopted in this model and two new modes of lock,

Version (V) and Intent Version (IV), are introduced to support versioned

concurrency control of a data object during its update process. The server to

which the workspace of the user is connected will lock the related data objects

using one of those locks according to the operation of the user. The availability

of the data objects is determined by the compatibility of the applied lock. Each

transaction can hold exactly one lock on each data object. The parts (leaf nodes)

can be locked in S, X or V mode; IV mode is used in level 0 assembly; IS mode

is used from project to level 0 assembly. The lock granules precedence graph in

Figure 7.1 shows how the locks are applied to data objects in different levels of

complexity. The vault stores a number of projects and each is composed of

various assemblies. Data objects in these levels hold an IS lock when they are

accessed. The assembly to which the simple parts directly belong is at level 0,

where IV lock is applied to the assemblies at the lowest complexity level (level

0) and S, V, and X locks are applied to parts that belong to a data object that is

accessed by a user.

Chapter 7 Concurrency Control Method for DPDM System

7.3

Figure 7.1 Lock granules hierarchy

The principles of locks with version are described as follows.

• S lock on a leaf node permits other users to read the same node

concurrently but prevents any updating of the node

• V lock on a leaf node implies a new version of the part is being created

while the current version is still readable by other users.

• X lock on a leaf node implies the node is the new version being created

by a user at the same time excludes any other user from accessing the

node.

• IS lock of a data object specifying its descendant parts will be explicitly

locked in S lock.

• IV lock of a level 0 assembly implies that explicit locking is being done

on some parts in V lock.

For instance, to read the data object d, transaction Tk first locks the direct

assembly of d in IS lock, and then locks d in S lock. To update d, Tk first locks

Vault

Assembly (Higher level)

Assembly (Level 1)

Assembly (Level 0)

Part

Project IS lock

IV lock

S, V, X lock

Chapter 7 Concurrency Control Method for DPDM System

7.4

the direct (level 0) assembly of N in IV lock, and then it locks d in V lock.

Locks should be released in leaf-to-root order before the end of a transaction or

in any order at the end of the transaction. Table 7.1 is the lock compatibility

matrix. It shows that the concurrency power of S is larger than V as two locks

are compatible with S while one lock is compatible with V in the request mode.

The compatibility of V lock is weaker than S lock, since it is compatible with

other S locks only but not with any lock of other types. Lastly, at the part level,

X lock is the most restrictive lock as it is not compatible with any lock at all.

Table 7.1 Compatibility matrix for granularity locking

Suppose there are three transactions T1, T2, and T3 in the system, T1 and T2

apply a S lock on the data object d, which is the version 1 of k. T1 is going to

modify d, so it promotes the lock on d to a V lock. Since d1 has been locked

with a V lock already, the request of a V lock on d from T2 is blocked. Once T1

modifies d, a copy of this data object is created, that is d’ in this example. An X

lock is automatically applied on d’ for T1. T3 accesses d, because the object is

still V locked by T1, so the system only grants it a S lock. T3 also tries to access

d’, however, T1 has not released the X lock on the object, so the request of T3 is

blocked.

S X V IS IV
S Yes No Yes N/A* N/A
X No No No N/A N/A
V Yes No No N/A N/A
IS N/A N/A N/A Yes Yes
IV N/A N/A N/A Yes No

Current Mode

Request Mode

*N/A – not applicable since S, V, X locks are used in parts while IS and IV locks are used in assemblies

Chapter 7 Concurrency Control Method for DPDM System

7.5

T1 T2 d

S lock

S lock

V lock

d'

X lock

T3

S lock

V lock

S lock

Figure 7.2 Illustration of lock compatibility

For the same reason, the concurrency power of IS lock is higher than IV lock.

The type of lock applied on a data object is determined by the concurrency

power in some cases. For example, when a data object already held a lock

during transaction T1, and a transaction T2 request is permitted, another lock is

going to apply onto the same data object. However, as only one lock can be

held by a data object in this model, the concurrency power is used to determine

which lock dominates the sharing ability of the data object. The larger the

concurrency power, the higher the sharing ability and the higher the potential

risk of data lost. In order to maintain system security and to ensure that the

transaction mechanism does not conflict with the compatibility matrix in the

system, the type of lock chosen may be the one with the less sharing ability.

Chapter 7 Concurrency Control Method for DPDM System

7.6

7.1.2 Notations and Types of Functions

As defined in Section 3.2.2, #sd has been denoted as the total number of data

objects including all assemblies and parts in the DPDM database (vault),

assemblies data objects are denoted as { }1 2, ,..., mAD ad ad ad= and part data

objects are denoted as { }1 2, ,..., nPD pd pd pd= where m and n are the index

number of assembly and part data objects in the PDM system respectively.

Thus,

{ } { }1 2 1 2, (, ,...,), (, ,...,)m ndb PD AD ad ad ad pd pd d= = (7.1)

The following actions are those of the PDM system that can perform on the

data objects:

S(pd) Lock part data pd in Shared mode.

rS(pd) Release the Shared lock of part data pd.

X(pd) Lock part data pd in Exclusive mode.

rX(pd) Release the Exclusive lock of part data pd.

V(pd) Lock part data pd in Versioned mode.

rV(pd) Release the Versioned lock of part data pd.

IS(ad) Lock an assembly data ad in Intent Shared mode.

rIS(ad) Release the Intent Shared lock of assembly data ad.

IV(ad) Lock an assembly data ad in Intent Version mode.

rIV(ad) Release the Intent Version lock of assembly data ad.

When a transaction is invoked, one or more of the following functions will be

executed.

Lock(d,L) holds if data object d can be locked in lock mode L.

M(d) holds if data object d has been modified.

P(d) returns a set of parts data object that consist of object d.

A(d) returns a set of assembly data object that includes data

object d.

Chapter 7 Concurrency Control Method for DPDM System

7.7

A new temporal logic operator called Consequent is introduced for defining the

specifications in a more succinct form.

()(, ,) ()C p q r p p q r⇔ → ∧ Wr● (7.2)

The above definition says that once p holds, then p and q are always true unless

r becomes true.

7.2 Implementation

This section presents the implementation of the model to a DPDM system and

how the functions regulate the operations of the system in order to safeguard

the integrity of the data. A DPDM system is a platform for making the proper

product data available to the right people at the right time. When building

database applications, it is not sufficient to install only a database. There must

be specific tools that enable a speed-up of data flow and activities. A data

controller is built into the DPDM system for managing the access to the data in

the system. In a situation when a person issues a transaction to access a file in

the system, the data controller will trigger the meta-data processor to determine

the files that will be affected by the transaction. The data controller will carry

out appropriate actions to the file affected based on the query result. In case a

new transaction conflicts with other executing transactions, the new transaction

will be stored in the transaction base to wait for the file(s) it requests. The

pending transaction will be assessed again when the conflicting transactions

have been completed.

Chapter 7 Concurrency Control Method for DPDM System

7.8

7.2.1 Check-out and Release Processes

Checking out or releasing a part data object pd implies that the user wants to

update the property of a data object from the vault. As mentioned in the

previous section, this model assumes each user to check-out/release the lowest

level assembly rather than checking out a large assembly when updating a data

object. The model applies the following rule to control the check-out and

update operations of the system.

1

() (((,), (), ()), (), ()) ()

()

r r r r

r

ad A d C C Lock ad IV IV ad rIV ad V pd rV pd M pd

X pd +

∈ ∧
→

(7.3)

The user first locks the direct assembly of that data object in IV mode, and then

locks it in V mode. After the version r of the part object pdr is checked out, a

new version of the 1rpd + will be created. Concurrently, the IV lock on pdr is

released and the current version (pdr) is readable by other users. Figures 7.3

and 7.4 illustrate the Check-out/Release process on pdr with one and more than

one direct assembly respectively.

Figure 7.3 Check-out/Release process on part data object pdr with one

direct assembly

Chapter 7 Concurrency Control Method for DPDM System

7.9

Figure 7.4 Check-out/Release process on part data object pdr with more

than one direct assembly

After the modification to the data object is completed, the new version of the

data object is then checked back into the vault and all the locks will be released

in leaf-to-root order.

1 1() (() ()) ()r r rad A pd rX pd rV pd rIV ad+ +∈ → →� � (7.4)

Simultaneously, the server will notify those users u who have checked out an

assembly that contains the modified part a new version is now available. The

following is the logical interpretation of the action after modification is done to

pdr.

1: _ () | () () ()r ru Check out ad ad A rX Notify upd pd +∈ →� � (7.5)

7.2.2 View Process

To allow a user to view the part data object rpd , the system first locks its

direct assembly in IS mode, and then locks rpd in S mode. The following

definition of transition of locks is illustrated by the locking order of the view

process in Figure 7.5.

() ((,), (), ()) ()r rad A pd C Lock ad IS IS ad rIS ad S pd∈ → (7.6)

Chapter 7 Concurrency Control Method for DPDM System

7.10

Figure 7.5 Viewing a part with more than one direct assembly

After viewing the part, the system releases the locks in leaf-to-root order.

Notice that the following formula uses _ symbol (that is, underscore) to

indicate the anonymous variable. The third variable of the Consequent operator

is an action that will refute the state of the two predicates. Unless either any

assembly in set A or the part pdr is locked by any type of locks, the affected

data objects remain unlock from the state at which functions were evoked.

() ((), (), (_, _))r rad A pd C rS pd rIS ad L∈ (7.7)

Similarly, to view assembly data object adr, the system locks both the direct

ancestor and the assembly primarily in IS mode, and then locks its descendants

in S mode:

() | () (((,), (), ()), (), ()

((,), (), ())

r r r rad A ad pd P ad C C Lock ad IS IS ad rIS ad IS ad rIS ad

C Lock pd S S pd rS pd

∈ ∈
∧

 (7.8)

All locks applied on assembly data object rad are released also in leaf-to-root

order after viewing:

() | () ((,), ()) ()r r rad A ad pd P ad C Lock ad IS IS ad S ad∈ ∈ → (7.9)

Chapter 7 Concurrency Control Method for DPDM System

7.11

7.2.3 Obsolete Process

To move a part data object pd to the obsolete vault, the part should not be

locked in any mode. The status of the part should conform to the following rule.

((),)Lock S X V pd¬ ∨ ∨ (7.10)

Similarly, to obsolete assembly data object ad from the vault, the PDM system

must ensure that the assembly and its parts are not locked in any mode. In other

words, they are not being used by any users. The following rule checks the

condition for all data objects involved.

((),)Lock IS IV ad¬ ∧ (7.11)

7.2.4 Function of Redlining

Redlining is the visual annotation of CAD files to facilitate the communication

between individual PDM users, for example, it reminds the edited places of

updated version. Redlining is not a necessity to each CAD file. The model

treats this function as an extra component towards the CAD files. The notation

of redlining dr.RLi denotes the version i of redlining of the version r of the data

object d is visible to users. By default, redlining of the file is turned on and set

“visible” with version i to remind the PDM user to edit according to the

amendment remarks annotating the CAD file. Being a supplementary note to a

CAD file, the version of redlining may be different from the CAD file. When

undergoing check-out or release process, the version of the CAD file is

incremented while the version of redlining remains unchanged if the user does

not make any amendment on it. If the version of redlining remains unchanged,

the redlining function can be turned off until a new version of redlining is

created. New version of redlining will be created by the user explicitly by the

“save” action. To include this function into the lifecycle of the PDM files, the

Chapter 7 Concurrency Control Method for DPDM System

7.12

notation for the redlining being turned off will be replaced by dr and in which

the redlining being turned on will be replaced by dr
.RLi. Three possibilities

regarding the versioning of redlining are illustrated in the Figure 7.6. The

example starts with a data object with redlining d1.RL1.

1. The user modified only the supplementary note and then the system

updates the version of redlining of this data object from d1.RL1 to d1.RL2

without changing the versioning of the data object.

2. The user modified the data object without making any changes to the

redlining, thus the system updates the version of the object d1.RL1 to

d2.RL1 but not the redlining.

3. The user modified both the data object and its redlining; the system

updates the version of d and the redlining to d2.RL2.

Figure 7.6 Versioning of redlining

7.3 Case Study

The proposed concurrency control model has four classes namely, Object,

Project, Part, and Assembly. The attributes of class Object include file name,

version, description, redlining, r_version, and other information of the

Chapter 7 Concurrency Control Method for DPDM System

7.13

document as shown in Figure 7.7. Attribute redlining stores the visibility of

redlining of the data object, attribute r_version stores the version of redlining

and attribute version stores the version of the data object. Class Part and

Assembly are children of Object; they inherit the attributes of Object and add

in some more attributes for themselves. S, X, V, IS, and IV store the

accessibility of S, X, V, IS, and IV locks. The part and assembly arrays store the

descendants of the current assembly. Class Project contains two attributes in

array type which store the data objects of the current project.

Figure 7.7 The object class

The implementation of the proposed model will be illustrated via a case study

to manage the product data for an ink jet printer production [SolidWorks 2005],

which consists of CAD files of parts and assemblies. Figure 7.8 shows a

section of the product structure of an ink jet printer. In the example, the ink jet

printer consists of three assemblies: ink cartridge assembly, ink jet top

assembly, and electronic assembly. Each of them consists of a number of

assemblies and parts. In the case study, the focus will be on the ink cartridge

assembly.

Class Object
{
private:
 // Object information
 string Name[100];
 …
 string Owner[10];

 int redlining=1; // true=1, false=0
 int r_version = 1;

int version = 1;
}

Chapter 7 Concurrency Control Method for DPDM System

7.14

Figure 7.8 Product structure of the ink jet printer

For simplicity, all files of the ink jet printer are assumed to be newly created

with version 1. The ink jet printer belongs to the project level, while the ink

cartridge and the pivot link belongs to the assembly (level 1) and the assembly

(level 0) respectively, and are shown in Figure. 7.9 (a) and (b).

Figure 7.9 (a) The assembly of

pivot link

Figure 7.9 (b) The part of ink

cartridge latch

Figure 7.10 shows the variety of locks being applied to the data object in

accordance with their complexity level when the design of the ink cartridge

latch is going to be modified. The process is started by locking the file of pivot

link in IV mode and the ink cartridge latch in V mode. The ink cartridge and the

ink jet printer are locked in IS mode because IV mode can only be used in the

Chapter 7 Concurrency Control Method for DPDM System

7.15

level 0 assembly. After that, the ink cartridge latch with version 1 is checked

out from the vault to make modification. A file of the ink cartridge latch with

version 2 will be created and will be locked in X mode. All modifications of the

design are made in this file. Ink jet printer, ink cartridge, pivot link and ink

cartridge latch with version 1 are still readable by other user except ink

cartridge latch with version 2.

Project

Assembly (Level 1)

Assembly (Level 0)

Part

Inkjet Printer

Inkjet Cartridge

Pivot Link

Ink Cartridge Latch

(Version 1)

Ink Cartridge Latch

(Version 2)

Ink Cartridge Link

Support

IS = 1, IV = 0

IS = 1, IV = 0

IS = 0, IV = 1

S=0, X=1, V=0 S=0, X=0, V=1 S=0, X=0, V=0

Figure 7.10 The design of the ink cartridge latch is being modified

To illustrate the concurrency ability of the IV locking mode, suppose a user

wants to modify file B, the design of the link cartridge lid, while file A, the

design of the pivot link is under modification. Since the file of ink cartridge,

the antecedent of file A, is locked in IS mode, its direct descendant other than

file A can be modified by others. Although it has already been locked in IS

mode, the locking mode on this file is now converted to IV mode because its

lock locking properties dominates. The process of locking mode conversion on

a file when there are more than one direct descendants being modified

Chapter 7 Concurrency Control Method for DPDM System

7.16

concurrently is shown in Figure 7.11. The file of link cartridge lid with version

1 is locked in V mode and a file of version 2 is created which is locked in X

mode for modification. After the modification of the ink cartridge lid, file with

version 2 is checked back into the vault and all the locks are released in leaf-to-

root order. The notifications to the direct assembly of the ink cartridge lid are

triggered (ink cartridge and ink jet printer) to inform the users that a new

version of the part is now available. In the meantime, as the file of ink cartridge

is no longer affected by the IV lock, it will change back to IS lock. Finally, the

locks on the data objects involved will be released when all the above

modifications are completed.

Figure 7.11 The design of ink cartridge lid is being modified

In product developments, product data are mainly composed of the information

of assemblies and parts, which are often managed in distributed computing

environments. DPDM systems are often utilized for managing the data access.

When modifying the design of a product, a number of independent tasks may

Chapter 7 Concurrency Control Method for DPDM System

7.17

be performed to different components of products. However, locking all

corresponding files and their parts with one single lock limits the concurrency

of the DPDM system. The efficiency of a product development will thus be

slowed down.

A new concurrency control model is presented in this chapter that improves the

concurrency ability of DPDM systems by adjusting the accessibility of data

objects in accordance with the action to be performed by the users and the

product architecture of the physical entity. The model allows more

simultaneous access to the product data by switching the type of locks being

applied. However, there is a trade-off on the number of concurrent accesses

and lock conflicts. The finer the granularity, the greater the overhead on lock

testing will be.

A methodology which enables the incorporation of a scheduling technique and

integrated locking method to improve the performance of DPDM systems will

be presented in the next chapter. The efficiency can be further enhanced by

considering factors that affect the accessibility of product data when granting

access permissions to transactions when constructing the transaction schedule.

Chapter 8 DPDM Deadlock Avoidance

8.1

Chapter 8

DPDM Deadlock Avoidance

8.1 Transaction Scheduling Problem in DPDM System

Concurrent access to a database system is a way to increase the flow of

information. Many concurrency control methods have been proposed over the

last few decades, but an adoption of any of these methods would not be an

ideal solution for resolving concurrency problems of a DPDM system. Above

all, the differences between the natures of DPDM systems and conventional

database systems limit the efficacy of these methods. It is because these

methods were purposefully designed for managing conventional database

systems. Furthermore, these methods are absent from taking the account of

durations and deadlines of transactions and the precedence of execution of

transactions. However, engineering applications often require consistent and

long-term detainment of large volume of data and meeting project deadline is

crucial to the success of the business. It is therefore important to develop a

concurrency control mechanism that can incorporate with the ability of

scheduling in order to increase the concurrent access of the PDM systems

while data integrity is maintained.

While improving concurrency of a PDM system is a critical factor in

facilitating a fast information flow, a tool for producing the best schedule

without sacrificing the data consistency is developed. In the proposed

transaction scheduling model, the basic unit of product data granularity

considered is the data object. A transaction accesses a set of data object. If the

set of required data objects are all ready for access, the transaction holds lock

of these files and will be processed, otherwise the transaction has to wait until

all the files are lock-free. The locking technique employed in the proposed

model has been described in Chapter 6. Read lock restricts the data to be read

only by the transaction that applies this lock and exclusive lock allows

Chapter 8 DPDM Deadlock Avoidance

8.2

transactions to both read and write to the data locked. Exclusive locks cannot

be applied to the data that have already been locked by other transactions;

conversely, no other transactions can apply any lock to the exclusively locked

data object. This will certainly guarantee that no concurrent transactions will be

able to update these data before the locks are released.

8.1.1 Problem of Deadlocks

Maintaining the integrity of a database is of crucial importance in a shared

environment. This goal can be achieved by producing a serializable schedule of

transaction executions [Date 2004] and graph theory is employed to determine

the serializability of schedules [Eich 1988]. Locking is one of the well-known

concurrency control technique and more likely to be encountered in practice. A

transaction can obtain a lock on a data by issuing a request to the system and

perform appropriate actions depending on the lock type. The basic idea is that

when a transaction T needs an assurance that some data objects it is interested

in will not be altered, thus T acquires a lock on these data objects. The effect of

acquiring the lock is to prevent other transactions from changing the data

objects in question. However, locking has the risk of deadlock as the

transactions may wait for unavailable locks [Philip & Nathan 1981]. Although

locking guarantees serializable schedules, it is not necessarily deadlock free. A

deadlock occurs when a set of two or more transactions are requesting data

locked by others in the set. Thus, these transactions will wait to be executed

forever if none of them is cancelled. Thus, deadlocks must not exist to ensure

that every transaction will eventually be executed. The main approaches for

resolving deadlock are deadlock detection and deadlock avoidance. The

conflict resolution employed in the proposed model is called transaction

scheduling. This approach involves scheduling transactions for execution in a

way that two transactions will not be processed concurrently if a deadlock will

occur.

Chapter 8 DPDM Deadlock Avoidance

8.3

8.1.2 Definition of Transaction

Let { }nTT ,,1 K=τ be a set of transactions to be executed in a DPDM system.

Each transaction 1 2{ , , , }nT d d d= K requires a set of atomic data d to be

executed. Atomic data are data that ought not to be granularised any further.

Transactions can be divided into two categories: mature and pending

transactions. The former is a transaction that every data object required for the

process is available upon request and can be executed immediately. Conversely,

the latter are transactions that have to wait as one or more required data objects

are locked by other transactions.

Each transaction has a latest start time lt, a deadline dt, and an estimated

processing time pt. The latest start time is the time that the transaction should

be processed for not missing its deadline. The latest start time of a transaction

is lt dt pt= − . The deadline is the time at which the transaction should be

completed. These parameters are known to the system when the transaction

arises. However, the action of transactions upon the data objects may not be

determined. The type of locks on which the transactions applied is set to be

read locks for the sake of concurrency unless users specify that they are likely

to change the content of the files during the transactions. Methods for

improving the concurrency of a system will be discussed in later sections.

8.1.3 Deadlock Avoidance

The methods adopted by the transaction scheduling model to prevent the

occurrences of deadlock and minimise the tardiness of transactions are

described in this section. A transaction scheduling problem for DPDM system

can be depicted as a graph. The source node S is the DPDM system which

contains all the data, where the transactions and the precedence of the

execution are represented by vertices and directed arcs respectively. The

direction of the edges indicates the dependency between the vertices. The

vertex at the head of the arc requires some data files from the vertex at the tail.

Chapter 8 DPDM Deadlock Avoidance

8.4

The sequence of execution of transactions is represented by passing data

objects from one node to another until all transaction nodes have been passed.

Suppose a set of transactions, { }321 ,, TTT=τ is to be executed,

where φ=∩ 21 TT and there are some data objects which are accessed by both

T1 and T3, that is, 1 3()d d T T∃ ∈ ∩ , where the action of one transaction

conflicts with the action of the other. The directed graph corresponding to the

situation is depicted in Figure 8.1. In this example, there are two possible

sequences of execution. Suppose T1 is going to modify the content of the data

object d and T3 requires reference to d. Since writing and reading functions are

conflicting functions if performed concurrently, T1 and T3 cannot be executed

concurrently or the serializability will be violated and the database may

become inconsistent. Therefore, these three transactions must be executed in

either one of the following two sequences to preserve consistency. The first

alternative is to execute both T1 and T2, and then T3 or to execute both T2 and

T3, and then T1. The first sequence incurs a total cost

1 1 3 3 2 2, , , , , ,()s T T s s T T s s T T sc c c c c c+ + + + + and the second sequence incurs a total

cost
3 3 1 1 2 2, , , , , ,()s T T s s T T s s T T sc c c c c c+ + + + + . The best sequence of execution is

determined by finding a route that goes through all the nodes once with the

minimum total cost, where the cost from node i to node j is ci,j.

T3

T1

T2

cs,2cs,1

cs,3

c2,S

S

c3,S

c1,S

Figure 8.1 Execution precedence graph

Chapter 8 DPDM Deadlock Avoidance

8.5

An optimal solution to the problem can be computed by finding a cycle that

goes through all the vertices with the least total length. Problems of such cycle

for networks are known as Travelling Salesperson Problem (TSP) and no

efficient algorithms have been developed to solve it. However, determining the

complete cycle is not necessary in transaction scheduling for DPDM systems.

This is because new transactions may emerge any time, the priorities of new

transactions may be higher than those existing transactions. The solution is no

longer valid and a new schedule has to be computed and the effort of

determining the schedule of the waiting transactions would be wasted.

8.1.4 Objective of the Model

The main objective of transaction scheduling is to minimise the number of

missing deadlines. Some transactions may unavoidably miss their deadlines.

Subsequent actions have to be taken to handle these transactions. For the nature

of transaction in DPDM systems, a transaction that misses its deadline will not

become worthless. All transactions must be completed even though they are

tardy. Tardiness of transactions is considered to be the secondary objective in

which the proposed model minimises. The priority of tardy transactions

becomes an issue for the system; there are at least two alternatives available.

The first option is to consider that the tardy transactions should receive higher

priority to other transactions, as they should be completed as soon as possible.

Secondly, these transactions can be processed in later time, since they already

missed the deadline and their urgency diminished.

In order to improve the concurrency and efficiency of a DPDM system, the

following objectives of the transaction scheduling model are posed to ensure

reasonable and correct decisions are made:

• Minimise the total number of deadlines missed

• Minimise the tardiness of late transactions

Chapter 8 DPDM Deadlock Avoidance

8.6

Firstly, the schedule should include as many transactions as possible, to ensure

the transactions are processed before deadline. Secondly, it must consider the

concurrency of a DPDM system. These two goals often conflict with each

other, as trying to meet one goal will worsen the quality of the other. The

objective of the model is to create the best quality transaction schedule, where

the quality of a schedule is determined by the level of divergence from the

target of each of the two goals. The following features were deemed to be

factors that affect the quality of a schedule:

1. Complexity of product development

The time required at an early stage of developing a new product is

inevitably longer than to fine tune the product at a later stage.

Modifications are made frequently to the design, thus it is likely that files

are locked in exclusive mode and concurrent access cannot be exercised.

2. Stage of product life cycle

The rate of retrieval and modification of files depends on the stage of the

product life cycle. CAD files and specifications are retrieved and updated

frequently in the beginning of the cycle. However, these files are often

retrieved for referencing in the production stage and updates are rarely

made. Conversely, production line capacity reports of production plant are

less relevant to a product in designing phase, but the reports would be

accessed frequently when the product comes into production.

3. Revision and modification

It is possible to modify existing parts for designing a new product. Then a

newer version of the parts is created and transactions that access the earlier

version of the files would not be affected. In contrast, when the part needs

Chapter 8 DPDM Deadlock Avoidance

8.7

to be revised, all the associated files must be exclusively locked and no

transaction is allowed to access these files. Transactions of revision would

be assigned a cost, which is determined based on the number of

transactions that are waiting for the data to be revised, thus the execution

priority can be adjusted accordingly.

4. Deadline of a transaction

Transaction that is close to its deadline should receive a higher priority than

those that are unlikely to be tardy. This is because the company may be

penalized for breaching agreements if orders are not fulfilled by the

deadlines. The cost associated with deadline depends on a set of

transactions that are waiting to access a common set of files. To ensure that

transactions have sufficient time to be completed, the slack time st of

mature transactions is computed as:

st = dt – pt – ct

where ct is the current time, d is the deadline and pt is the estimated

processing time of a transaction. For pending transactions, which are

waiting for the files that are locked by the transactions in execution, the

slack time is computed as:

st = dt – pt – lt

where lt is the latest start time of the transactions and equals to the latest

completion time of transaction which locks the files required by the

pending transaction. The slack time of pending transactions is computed

after the slack time of mature transactions were calculated. The priority of

the mature transactions could be changed if the execution of these

transactions leads to an overdue of some pending transactions, given that

such changes do not violate the order of works. The system first computes

the slack times of mature transactions. The slack time of pending

transactions is then calculated based on the completion time of all the

Chapter 8 DPDM Deadlock Avoidance

8.8

executing transactions that hold the required files. A transaction having a

negative slack time will be tardy and the deadline-related cost will affect

the schedule. Figure 8.2 illustrates the influence of processing mature

transactions to pending transactions. Suppose that there are two mature

transactions Tm1 and Tm2 and one pending transaction Tp1 in a DPDM

system. Both mature and pending transactions require a common set of files

for process. The attributes of the transactions are listed in the figure. Some

files that Tp1 requires are locked by other executing transactions and the

latest completion time of which is 1 time unit. However, other files which

Tp1 needs are requested by Tm1 and Tm2, transactions which will become

mature when they gain the access. The latest completion time of the two

mature transactions is 3 units and this will be the expected start time of Tp

if the system decides to process the mature transactions and subsequently

Tp cannot be completed by its deadline.

1 2 3 4 5 6 7 8 9 10

Deadline of Tp2

Deadline of

Tm2 and Tp1

Tm1

Tm2

Tp1

Transaction d p t e Completion s

Tm1 8 3 0 0 3 5

Tm2 6 2 0 0 2 4

Tp1 6 4 1 3 7 -1

Figure 8.2 Outcome of executing transactions without scheduling

8.2 Set Partitioning Problem

This section describes the formulation of Integer Programming (IP) to model

the transaction scheduling problem. Scheduling problems are often large and

difficult to solve, such problems can be solved using the optimization

techniques that are based on Linear Programming formulations [Ryan & Foster

Chapter 8 DPDM Deadlock Avoidance

8.9

1981] or Lagrangian relaxation [Ceria, et al. 1998]. These techniques are

usually rigorous and provide a guarantee of optimality. The problems

formulated as linear programs are commonly solved using the revised simplex

method.

The following matrix-vector notation is used throughout this chapter and basic

understanding of the revised simplex method for linear programming can be

found in [Salkin 1989].

Set Partitioning Problem (SPP) is one particular integer linear program that is

used extensively in scheduling. Given:

1. {1, , }I m= K

2. A collection of subsets 1 2{ , , , }nP P P P= … , where each Pj ⊂ P

3. A cost function c(Pj)

Then, some subsets from { }1,...,J n⊂ define a partition of I where,

1. IPj
Jj

=
∈
U

2. j kP P∩ = ∅ for all { }, 1, , ,j k n j k∈ ≠K

The set partitioning problem tries to seek a minimum cost partition:

min ()

. . partitions

j
j J

c P

s t J I

∈
∑

Chapter 8 DPDM Deadlock Avoidance

8.10

The set partitioning problem has an alternative integer linear program

formulation:

{ }j

minimise

subject to:

0,1

where

1 if containselements

0 otherwise

1 if is in the partition

0 otherwise

T

j

ij

j

j

c x

Ax e

x j

p j
a

p
x

=
∈ ∀

=

=

 (8.1)

where e is an appropriately sized column vector of 1’s.

The SPP is the basis of many large-scale scheduling problems, where each

element of I can be considered as data object required, and the sets pj represent

the transactions to be processed. The solution to SPP is the set of schedules that

performs each transaction exactly once and has the minimum cost. The SPP is

often formulated as a set covering problem for scheduling problems by

replacing the equality constraints with inequality restriction, it implies that the

data objects can be accessed concurrently by more than one transactions.

8.2.1 Formulation of Concurrent Transaction Scheduling Problem

An IP can be formulated as a set covering problem by considering it as a

problem of choosing a subset of transactions to process with the lowest

possible cost that meets the constraints of concurrent access of files in which

some data can be accessed by exactly one transaction at a time and some can

be accessed concurrently by more than one transactions. The modes of locks

which transactions apply to data objects create the constraints of the

Concurrent Transaction Scheduling Problem (CTSP). Thus, there are five

Chapter 8 DPDM Deadlock Avoidance

8.11

constraints for each of the data objects in the database, one type of lock mode

create a constraint of the CTSP. The constraint is described as follows:

Let K be the number of transactions waiting to be executed

 M be the number of lock modes

 D be the number of data objects

1 if transaction applies mode of lock on data object

0 otherwisedmT
T m d

a

=

1 if transaction is processed

0 otherwiseT
T

x

=

Let bdm be the number of concurrent accesses to data object d for each mode of

lock m, the column vector admT is referred to as the request of lock mode m on

d by transaction T, thus the concurrent access constraints are defined.

{ }
1

1

1

,

1

1

X

V X

V X

K

dmT T d
T

K

dVT T d d
T

K

dXT T d d
T

a x My m S V

a x y y d PD

a x y y

=

=

=

≤ =

+ + ≤ ∀ ∈

+ + ≤

∑

∑

∑

 (8.2)

{ }
1

()
1

1

,

1

1

X

IV X

IV X

K

dmT T d
T

K

d IV T T d d
T

K

dXT T d d
T

a x My m IS IV

a x y y d AD

a x y y

=

=

=

≤ =

+ + ≤ ∀ ∈

+ + ≤

∑

∑

∑

 (8.3)

Chapter 8 DPDM Deadlock Avoidance

8.12

The first three constraints restrict the mode of locks applied to data objects that

belong to a part. The first constraint allows multiple shared accesses to a data

object if it is not exclusively locked, since V mode lock on a part data object

implies that a new version of the part is being created while the current version

is still readable by other users. The second and third constraints require that

the data object can either be locked in V mode or X mode. In other words, one

of these constrains need not be satisfied so long as the other one is. Since both

constraints need to be included in the problem formulation, auxiliary binary

variable y and a large number M are introduced in the model to accommodate

the fact that that not both need to be satisfied together but at least one of the

constraints must hold. The constraints of data access can be written in the

above mentioned form.

The large number M acts as infinity so it must be chosen to be larger than any

possible constraint value. Since y is either 0 or 1, we will have one constraint

maintaining as zero so that the solution cannot be both allowing some

transactions to apply shared locks and an exclusive lock to a data object

simultaneously. Consider that there are two transactions T1 and T2 that want to

read the data object d. Each of the transactions applies a lock in shared mode

to the data object. Also, suppose there is another transaction T3 is going to

modify the data object and apply an X lock to d. The equivalent problem is

given as follows:

1 2

3 1
X

X

d

d

x x My

x y

+ ≤

+ ≤
 (8.4)

Because there is no transaction applying any V lock to the data object, so the

second constraint does not appear in the problem.

Taking the choice y = 0, transaction T3 will apply an exclusive lock to data

object and no read lock can be applied to d concurrently since the right hand

side value of the first constraint becomes zero as a consequence of satisfying

the second constraint. Conversely if y = 1, the first constraint is active and

Chapter 8 DPDM Deadlock Avoidance

8.13

does not allow T3 to apply an exclusive lock while the second constraint

restricts the value of x3 to zero and the data objects can hold as many shared

lock as possible if the first constraint has no limit.

Assume processing transaction T has a cost cT and a cost Z incurred if the

transaction is not processed. The number of unprocessed transactions can be

minimized by setting Z to a very large value. The problem can be formulated as:

{ }

{ }

1

1

1

1

1

()
1

1

min

,

1

1

,

1

1

,

X

V X

V X

X

IV X

IV X

V

K K

T T T
T T

K

dmT T d
T

K

dVT T d d
T

K

dXT T d d
T

K

dmT T d
T

K

d IV T T d d
T

K

dXT T d d
T

T d

c x Z K x

a x My m S V

a x y y d PD

a x y y

a x My m IS IV

a x y y d AD

a x y y

x y

=

=

=

=

=

=

=

+ −

≤ =

+ + ≤ ∀ ∈

+ + ≤

≤ =

+ + ≤ ∀ ∈

+ + ≤

∑ ∑

∑

∑

∑

∑

∑

∑

{ }, , 0,1
IV Xd dy y =

Figure 8.3 is an example of the above notation. In this example, transaction T1

is trying to lock data object d1 and d2 in shared mode and d3 in version mode.

T2 is going to lock d1 in exclusive mode and d3 in shared mode. Concurrently,

T3 tries to lock d1 and d4 in shared mode and exclusive mode respectively.

There are a few of solutions to this problem, the first solution is to process T1

and T3 concurrently and to run T2 when both transactions complete their tasks

later. Executing T1 and T3 will force y1X to be 1 and the constraint of exclusive

Chapter 8 DPDM Deadlock Avoidance

8.14

lock on d1X is satisfied, T2 would therefore not include in the solution in this

scenario.

Alternatively, T2 can be processed first and leave both T1 and T3 to later time.

According to the mutually exclusive rule (6.1), the serializability will be

violated if T2 is executed concurrently with either T1 or T3, because T2 is going

to modify d1, T1 and T3 require its content for their tasks, both of these

transactions will have the risk of using incorrect content.

 Transaction
T1 T2 T3 y1V y1X y2V y2X y3V y3X y4IV y4X y5IV y5X

min Cost 12 5 7

 d1S 1 1 -M 0

 d1V 1 1 1

 d1X 1 1 1 1

 d2S 1 -M 0

Part d2V 1 1 1

 d2X 1 1 1

 d3S 1 -M 0

 d3V 1 1 1 1

 d3X 1 1 1

 d4IS -M 0

 d4IV 1 1 1

Assembly d4X 1 1 1 1

 d5IS -M 0

 d5IV 1 1 1

 d5X 1 1 1

Figure 8.3 Illustration of integer programming for transaction scheduling

problem

8.2.2 Solution Approach

≤

Chapter 8 DPDM Deadlock Avoidance

8.15

The proposed model comprises of two phases and continues iteratively when

executing transactions complete their operations and release the locks on the

files. The separation of the model into two phases facilitates alternations of

methods used in future. Figure 8.4 shows the process of finding a transaction

schedule in DPDM system. The activities in each stage of the process are as

followed:

Construction phase: Evaluate the effect of executing a transaction to the

DPDM system. A column is constructed to represent the demand of data

object for each of the transactions and a cost that reflects the effect of

executing a transaction is assigned the column.

1. User request: When a user decides to access the PDM system, a new

transaction is initiated.

2. Specifying actions: the actions to be performed are specified by the user in

this stage. Actions are selected from the set of predefined operations. A

finite number of actions can be performed by the user upon the data.

Namely, the actions are creating new data or new versions, viewing,

modifying, and obsoleting existing data.

3. Action interpretation: The system will interpret the actions and perform

appropriate locking operations on the data according to the predefined

rules.

4. Transaction generation: An appropriate sized binary column vector will be

created for each user request. The value of an element is 1 if the user

needs the particular data object for the task and 0 means otherwise.

5. Calculating cost of transaction: After constructing the column, a score will

be given to reflect its priority. The maturity of the files required, the type

of operations to be acting on the files and the deadline of the tasks are the

factors considered in the cost calculation. The procedure will be detailed

in later section.

Chapter 8 DPDM Deadlock Avoidance

8.16

6. Transaction base: All pending transactions are stored here. It also

maintains the record of transaction-in-progress. It will be activated when

there is a new transaction arrived and when there is a transaction

completed, as some immature transactions become ready to be executed.

A transaction batch, which includes all the pending transactions and

transaction-in-progress, will be passed to the transaction scheduler when it

is called.

Solution phase: Solve the integer programming problem defined by the

transactions that are ready to be executed using an optimization engine

and update the essential information for the construction phase of this

solution approach.

7. Transaction scheduler: After receiving transaction batch, it will compute a

schedule that includes a subset of transactions to be executed. The

selection of transactions is restricted by the access control, such that any

conflicting multiple accesses to files are ruled out. The objective of the

schedule is to minimize the number of tasks missing their deadlines.

Unexecuted transactions will return to the transaction base and wait until

required files are available.

8. Locking affected data: Specific lock will be applied on the data files

according to the actions. For modification, the user who issues the

transaction will be granted the ownership of the files. Only the owner can

check in a modified version of that data files.

9. Transaction completed: All data locked for the transaction are disengaged.

The transaction is removed from the transaction base. In turn, the base

will compile a new transaction batch for creating a new schedule.

Chapter 8 DPDM Deadlock Avoidance

8.17

Action interpretation

User request

Specifying actions

Execute ?

Transaction

generation

Transaction scheduler

Locking affected data

Process the

transaction

Further operation

Transaction

Completed

Construction

phase

Solution phase

Yes

No

Transaction Base

Calculating cost of

transaction

Remove

No

Yes

Figure 8.4 Proposed model of transaction scheduling for DPDM systems

Chapter 9 Simulations and Performance Evaluation

9.1

Chapter 9

Simulations and Performance
Evaluation

The algorithm presented in the previous chapters, of which was evaluated in a

number of simulations. Four concurrency models simulated in this study are

listed below, the procedures and results of these simulations are discussed in

later sections.

1. Basic two-phase locking with First-In-First-Out (FIFO) policy.

2. Granularity version locking with First-In-First-Out (FIFO) policy.

3. Basic two-phase locking with transaction scheduling.

4. Combining granularity version locking with transaction scheduling.

9.1 General Information of the Simulation

The idea of having more concurrent accesses to the data of a PDM system is to

have more tasks completed on time. In the simulations, the measure of

performances of the models is the number of transactions that completed after

their deadline, that is, the late transaction. The deadline of each transaction is

defined as:

Deadline = Arrival Time + Processing Time

That is, if a transaction cannot start immediately when it arrived, the

transaction will be counted as a late transaction.

The exponential distribution has been used to model inter-arrival times when

arrivals are completely random and to model service times that are highly

variable. The arrival time of a transaction is generated by adding a randomly-

Chapter 9 Simulations and Performance Evaluation

9.2

generated inter-arrival time between transactions to the arrival time of the last

transaction. The inter-arrival time is an exponentially distributed variable with

a parameter λ , which is the number of arrivals per unit time. The processing

time of a transaction is the time for the transaction to complete its task, and

implies that the data objects required for the task are locked during the process.

The processing time is also assumed to be exponentially distributed. The

number of data objects required by a transaction is set as a random variable

from a normal distribution.

9.1.1 Event Oriented Simulation

The simulation process begins by generating a set of transactions to be

executed. Each of the transactions is given the following attributes: arrival time,

processing time, number of data objects, and a list of data objects required to

process. Each of these items is generated from a statistical distribution that best

describes the phenomenon.

After a set of transactions were generated, the simulated system starts

processing the data request of transactions. Suppose transaction T1 has already

locked data object d1 and d3, and there are two new transactions T2 and T3

presented in the system with their attributes listed in the Table 9.1.

Transaction Arrival Time
Processing

time
Deadline Data Object Required

1 2 8 12 1, 3

2 8 12 22 2, 3

3 10 2 14 2

Table 9.1 Attributes of transactions in system simulation example

Chapter 9 Simulations and Performance Evaluation

9.3

The simulation process of the above example is given and illustrated in Table

9.2. The simulation time is advanced to time 2 as it is the arrival time of T1. T2

arrives at time 8 before the completion of T1, so the simulation time is

incremented to time 8. However, T2 cannot start its process because one of its

required data object, namely d3, is locked by T1. Thus, the simulation clock is

next advanced to time 10, which is the time of T3 arrival. T2 cannot start

immediately as T3 has locked d2 at time 8. The completion time of T2 is

calculated when it locked d2 as the simulation knows that T1 will release the

lock on d3 at time 11 and the processing time of T3 is 12. Therefore, the

simulation clock jumps to time 23 in which T3 starts the process and completes

at time 25, which is later than its deadline.

 Data Object

Clock Transaction Event 1 2 3

0

2 1
T1 arrives
T1 locks d1, d3

(1,11) (1,11)

8 1,2
T2 arrives
T2 locks d2

(1,11) (2,23) (1,11)

10 1,2,3 T3 arrives (1,11) (2,23) (1,11)

11 2,3
T1 unlocks d1, d3
T2 locks d3

 (2,23) (2,23)

23 3
T2 unlocks d2, d3
T3 locks d2

 (3,25)

25 T3 unlocks d2

Table 9.2 Example of event oriented simulation on PDM system

9.2 Simulations and Results of Various Models

The procedures and result analysis of the four concurrency control models

simulations are discussed in this section. All models were simulated to process

10000 transactions. There are 1000 data objects in the test, of which every 50th

Chapter 9 Simulations and Performance Evaluation

9.4

data objects are considered as objects of level 1 assembly, every 20th objects

are considered as of level 0 assembly and others are considered as at part level.

The composition of data objects in the simulation is illustrated on Figure 9.1.

Figure 9.1 Composition of data objects in database

The arrival of transactions in these simulations follows an exponential

distribution with inter-arrival rate of 0.01. The processing time of each

transaction follows the same distribution with a mean processing time of 100

time units, and 1000 replications are simulated on all the models. The system is

assumed that 80% of the accesses are read operations and 20% of which are

write operations. The type of access operation to each data object is randomly

assigned according to the proportions have just mentioned. The first model

simulated is the two-phase locking with FIFO policy, which is named as the

basic model in the study. Then, other concurrency control models will be

simulated with the same sets of transactions and their results will be compared

with the basic model using paired samples t-tests to evaluate their performance.

9.2.1 Two Phase Locking (2PL) Model

The procedure of simulating the two phase locking model of chapter 6 is

described in this section. In this model, transactions start locking their required

files which are free of locks once they are arrived, the deadlock avoidance

implemented in this model is Wound-Wait method, where a younger

transaction can wait for the data object until an older transaction releases the

lock, otherwise, if the requesting transaction is older than the transaction that

locks the data object, the younger transaction is rolled back and restarted to

prevent occurrence of deadlock. If a transaction requests a data objects that is

Chapter 9 Simulations and Performance Evaluation

9.5

at level 0 assembly, it requires locking all the parts of which the data object is

composed. Likewise, if the data object requested is at assembly level, the

transaction requires holding locks on all the object’s components. Considering

that there are two transactions shown in Table 9.3 to be processed using two-

phase locking in FIFO policy. The illustration of the simulation process is

shown in Table 9.4.

Transaction Arrival Time Processing time Deadline Data Object Required

1 1 8 12 1, 2

2 5 12 22 2, 3

Table 9.3 Transaction examples of event orientated simulation of PDM

system

In the simulation, transaction T1 arrives and applies a read locks on data objects

d1 and write lock on d2 at time 1. The system updates the status of these data

objects and indicates that they will be freed on time 9. The system clock is then

incremented to time 5 in which the next event occurs, that is, T2 arrives and

applies a write lock on d3 and waits for d2, as write lock is mutually exclusive

to other locks. Suppose T1 requires the content of d3 for its task in time 6, under

the rule of Wound-Wait method, T2 is restarted and unlocks d3, because it is

younger than T1. Therefore, T1 locks d3 at time 6 and T2 waits for both d2 and d3

until time 9.

Chapter 9 Simulations and Performance Evaluation

9.6

Clock Transaction Event 1 2 3
0

1 1
T 1 arrives

T 1 locks d1 , d3
R(1,9) W(1,9)

5 1, 2

T 2 arrives

T 2 locks d3

T 2 waits for d2

R(1,9) W(1,9) W(2,17)

6 1, 2

T 1 requests d3

restart T2

T 1 locks d3

R(1,9) W(1,9) W(1,9)

9 2
T 1 unlocks d1 , d2 , d3

T 2 locks d2 , d3
R(2,21) W(2,21)

21 T 2 unlocks d2 , d3

Data Object

Table 9.4 Simulation of two-phase locking with Wound-Wait and FIFO

policy

Simulation Result

A sample mean of late transactions is calculated to analyse the simulation

results of the basic two phase locking model. The model was simulated with

10000 transactions in each replication and the number of late transactions was

observed at the end of the process. The sample mean of late transactions over

1000 replications is shown in Table 9.5. The average number of late

transactions of this concurrency control model is 189.50. The performance of

other concurrency models described in later sections will be evaluated by

comparing their simulation results with this result.

 N Mean Std. Deviation Std. Error Mean

FIFO_2PL 1000 189.50 351.566 11.117

Table 9.5 Average late transactions in the basic model

Chapter 9 Simulations and Performance Evaluation

9.7

The histogram in Figure 9.2 is based on the number of late transactions in

10000 transactions over 1000 replications. The start interval starts at 0 and

interval width is 50. In the evaluation the basic model, 379 replicas have 0-25

late transaction, 185 replicas have 26-75 late transactions, and 96 replicas have

76-125 late transactions. The replicas of these three intervals constitute more

than 66% of all observations. Notice that there are some replications having a

very large number of late transactions. The worst case of the simulation in the

basic model has 3488 late transactions.

Figure 9.2 Histogram of the late transactions in the basic model

9.2.2 Granularity Version Locking

In the simulation of this model, transactions lock the data objects using the

proposed method described in Chapter 7. The model also adopted the Wound-

Wait method as its deadlock avoidance. The example transactions to be

processed and the simulation of the model are shown in Tables 9.6 and 9.7

respectively.

Chapter 9 Simulations and Performance Evaluation

9.8

In the simulation example of the granularity version locking, there are two

transactions to be processed. The task of T1 is to modify a level 0 assembly,

which is the data object d10 in the system. It also requires the content of d9 to be

processed. Therefore, T1 locks d9 and d10 in Shared mode and Intent Version

mode respectively in time 1. In time 2, T1 begins modifying d10, and a new

version of the data object is created. A new data object, d10.2, is immediately

locked in exclusive mode to prevent any concurrent access from other

transactions. The simulation clock then forwards to time 4 at which T2 arrives

and locks the required data object. T2 needs to refer to the content of d10 for

modifying d18, thus it locks d10.1 in Intent Shared mode. Also, T2 must lock the

direct assembly of d18 in Intent Version mode and lock d18 in Version mode

before modification. In the next time unit, a new version of d18 is created by T2

and is locked in exclusive mode until the process completes. Since there is no

other events occur before T2 completes, the clock jumps to time 14 at which T2

finishes modifying d18 and releases all its locks. T1 completes its task and

releases the locks on d9, d10.1, and d10.2 in time 21.

Chapter 9 Simulations and Performance Evaluation

9.9

Table 9.6 Transactions in granularity version locking simulation

Clock Transaction Event 9 10.1 18.1 20 10.2 18.2

0

1 1
T 1 arrives

T 1 locks d9 , d10
S(1,21) IV(1,21)

2 1 T 1 modifies d10 S(1,21) IV(1,21) X(1,21)

4 1, 2
T 2 arrives

T 2 locks d10 , d18 , d20
S(1,21)

IV(1,21)
IS(2,14)

V(2,14) IV(2,21) X(1,21)

5 1,2 T 2 modifies d18 S(1,21)
IV(1,21)
IS(2,14)

V(2,14) IV(2,21) X(1,21) X(2,14)

14 1 T 2 unlocks d10 , d18 , d20 S(1,21) IV(1,21) X(1,21)

21 T 1 unlocks d9 , d10

Table 9.7 Simulation example of granularity version locking in FIFO

Arrival Time Processing time Deadline Data Object Required

1 20 25 9, 10

4 10 16 18, 20

Chapter 9 Simulations and Performance Evaluation

9.10

Evaluation of Granularity Version Locking

The granularity version locking (GVL) model was simulated with 10000

transactions in each replication and the number of late transactions was

observed at the end of the process. The resulting frequency distribution is

displayed in Figure 9.3. The left-skewed histogram indicates that most of the

replications have fewer than 500 late transactions. There are 403 replicas have

0-25 late transaction, 154 replicas have 26-75 late transactions, and 94 replicas

have 76-125 late transactions. There are a few replicas having large number of

late transactions and the worst result in GVL model has 2259 late transactions.

Figure 9.3 Histogram of the tardy transactions in the granularity version

locking model

The sample means of late transactions over 1000 replications of the basic

model and granularity version model are shown in Table 9.8. FIFO_2PL is the

result of the two phase locking model and has average late transactions of

189.50 in 1000 replications. FIFO_GVL is the result of the GVL in Wound-

Chapter 9 Simulations and Performance Evaluation

9.11

Wait deadlock avoidance and FIFO queuing discipline and its average late

transactions is 164.73.

Paired Samples StatisticsPaired Samples StatisticsPaired Samples StatisticsPaired Samples Statistics

 Mean N Std. Deviation Std. Error Mean

 FIFO_2PL 189.50 1000 351.566 11.117

 FIFO_GVL 164.73 1000 304.554 9.631

Table 9.8 Mean of late transactions of granularity version locking

Paired sample t-test is done to compare the average number of late transactions

in the two models to ensure that the observed differences are due to difference

in performances of the designs. The null hypothesis here would be that the

average late transactions are same under the concurrency control of the basic

model and the granularity version model.

The purpose of this statistical analysis is to validate that the granularity version

locking performs better than the basic two phase locking. In Table 9.9, the

mean, standard deviations and standard error of mean of these differences are

calculated by the paired value of each replication obtained from FIFO_2Pl and

FIFO_GVL. The two-tailed p-value is 0.000, which is less than the

conventional 5% or 1% level of significance. Therefore, the null hypothesis

can be rejected and the average late transactions in the basic model are indeed

more than the granularity version model. Owing to the fact that the difference

between the mean late transactions of the basic model and the proposed locking

model (189.50 - 164.73 = 24.77) is totally to the right of zero, then there is a

strong evidence that the basic model has more late transactions than the

proposed locking model. This implies that the performance of granularity

version model is better than the basic model.

Chapter 9 Simulations and Performance Evaluation

9.12

Paired Samples TestPaired Samples TestPaired Samples TestPaired Samples Test

Paired Differences t df Sig. (2-tailed)

95% Confidence Interval

of the Difference

Mean

Std. Deviation

Std. Error Mean

Lower Upper

 FIFO_2PL –

FIFO_GVL
24.77 57.002 1.803 21.23 28.31 13.741 999 .000

Table 9.9 Summary of measures for comparing the basic model and the

granularity version locking model

9.2.3 Transaction Scheduling

The simulation of the proposed transaction scheduling method with the basic

two phase locking concurrency control of chapter 8 is described in this section.

The model can be formulated as a set covering problem by considering the

following list of constraints to ensuring the data integrity of a PDM system:

1. A write lock is applied to a data object that will be modified.

2. No lock can be applied to data objects that hold an exclusive lock.

3. Write lock cannot be applied to files that hold any locks.

4. Multiple read locks can be applied to files.

In two phase locking, data objects that are read locked allow multiple read-only

accesses; the other constraints in this IP are accesses that determined by write

locks. Transactions that are trying to modify read locked data objects and to

read data objects that are write-locked will be excluded from the scheduling

process, because these transactions will not be processed anyway due to the

violation of the constraints. Thus, mature and pending transactions that require

only lock-free data objects will be included. Access conflicts occur when some

transactions are requesting a write lock to a data object, and other transactions

are trying to apply read locks to it. Using notations described in earlier sections

of this chapter, the restrictions to prevent the occurrence of conflicts form the

constraints of the model as below, where the column vector a represents the

Chapter 9 Simulations and Performance Evaluation

9.13

request of two lock modes, R (Read) and W (Write) on data object d by

transaction T.

{ }

11
min

. . 1

, 0,1

T

TdWT d

d

T d

K

T T T

TdRT

K

T

K

T
K

T

s t

Z K x

a x y

My

x y

c x

a x

==

∑

−∑

−∑

∑

=

≤

≤

+

 (9.1)

Transactions in a PDM system require a set of data objects to complete a task.

They are represented as columns in the IP matrix in the model. There are two

constraints on each of the data objects in the system. The first constraint in the

model guarantees that data objects hold at most one write lock. The second

constraint allows a data object an unlimited number of read locks. These

constraints are mutually exclusive alternatives. Noted that in this simulation

model, all data objects of parts of which the assembly level data object is

subjected to modification are also locked in exclusive mode by the requesting

transaction. A simulation example of this model is presented.

Considering that the three transactions listed in Table 9.10 are to be executed.

Their simulated executions in this model are illustrated in Table 9.11. At time 1

on the simulation clock, transaction T1 arrives and locks the data object d10 for

modification, since T1 intends to modify a level 0 assembly object, it has to

write-lock all the data objects of which d10 is composed, that is, d1-10 are all

locked in write mode from time 1 until the task of T1 completes. During the

execution of T1, T2, and T3 arrive at time 4 and 5 respectively. None of both can

be executed immediately upon their arrivals as some of the data objects they

require are locked in write mode by T1. In the creation of columns for T2 and T3,

which is step 5 of the transaction scheduling model shown in Figure 8.5, both

of these transactions are passed to the transaction base. However the

transaction scheduler is not evoked. This is because the model notices that both

Chapter 9 Simulations and Performance Evaluation

9.14

transactions cannot be executed under the definition of mutual exclusion (6.1).

At time 6, T1 completes the task and releases the data objects it has locked.

Since T2 requires reading d7 and T3 decides to modify it. The transaction

scheduler is triggered to select which transaction is to be processed. The

schedule is determined by finding a solution with the minimal processing cost.

One of the components of a transaction cost is related to its processing time

and deadline. In this case T3 is chosen to be processed in time, because it has a

tighter deadline than T2. Thus, T3 locks d7, d8, and d9. The clock jumps to time

16 at which T3 finishes its task and releases the locks on d7. Afterward, T2 locks

its requested data objects and completes its task at time 25.

Chapter 9 Simulations and Performance Evaluation

9.15

Transaction Arrival Time Processing time Deadline Data Object Required

1 1 6 10 10

2 4 9 25 7, 16, 17

3 5 10 16 7, 8, 9

Table 9.10 Three transactions in the simulation of transaction scheduling method

Clock Transaction Event 7 8 9 10 16 17

0

1 1
T1 arrives

T1 locks d 1-10

W(1,6) W(1,6) W(1,6) W(1,6)

4 1, 2 T2 arrives W(1,6) W(1,6) W(1,6) W(1,6)

5 1, 2, 3 T3 arrives W(1,6) W(1,6) W(1,6) W(1,6)

6 2, 3
T1 unlocks d 1-10

T3 locks d 7 , d 8 , d 9
R(3,16) R(3,16) R(3,16)

16 2
T3 unlocks d 7 , d 8 , d 9

T2 locks d 7 , d 16 , d 17
W(2,25) R(2, 25) R(2, 25)

25 T2 unlocks d 7 , d 16 , d 17

Data Object

Table 9.11 Simulation example of transaction scheduling method

Chapter 9 Simulations and Performance Evaluation

9.16

Evaluation of Transaction Scheduling

The transaction scheduling model was simulated with 10000 transactions in

each replication and the number of late transactions was observed at the end of

the process. The frequency distribution in Figure 9.4 shows that there are 395

replicas in the simulation have 0-25 late transaction, 189 replicas have 26-75

late transactions, and 91 replicas have 76-125 late transactions. There are a few

replicas having large number of late transactions and the worst result in TS

model has 2941 late transactions.

Figure 9.4 Histogram of the tardy transactions in the transaction scheduling

model

The sample means of tardy transactions over 1000 replications of the basic

model and transaction scheduling model are shown in Table 9.12. TS_2PL is

the simulation result of the transaction scheduling model with two phase

locking concurrency control and the average tardy transactions of this model

are 177.10.

Chapter 9 Simulations and Performance Evaluation

9.17

Paired Samples StatisticsPaired Samples StatisticsPaired Samples StatisticsPaired Samples Statistics

 Mean N Std. Deviation Std. Error Mean

 FIFO_2PL 189.50 1000 351.566 11.117

 TS_2PL 177.10 1000 301.348 9.529

Table 9.12 Mean tardy transactions of transaction scheduling model

Because the observations of the tardy transactions contain random variation, in

order to validate that the observed differences are not due to the random

fluctuation inherent in the models, paired sample t-test is done to compare the

average number of tardy transactions in the two models. The null hypothesis

here would be that the average tardy transactions are same under the execution

of transactions in FIFO queuing discipline and in scheduling model. The test

summary is shown in Table 9.13.

Paired Samples TestPaired Samples TestPaired Samples TestPaired Samples Test

Paired Differences t df Sig. (2-tailed)

95% Confidence Interval

of the Difference

Mean

Std. Deviation

Std. Error Mean

Lower Upper

 FIFO_2PL -

TS_2PL
12.40 81.505 2.577 7.35 17.46 4.813 999 .000

Table 9.13 Summary of measures for comparing the basic model and the

transaction scheduling model

The analysis summary shows that the two-tailed p-value is 0.000, which is less

than the conventional 5% or 1% level of significance. Therefore, the null

hypothesis can be rejected and the average tardy transactions in the basic

model are different to the transaction scheduling model. Given that the

confidence interval for the difference of the mean tardy transactions of the

basic model and the transaction scheduling model

(7.35 < FIFO_2PL - TS_2PL < 17.46) lies completely above zero and so

provides strong evidence that the basic model certainly has more tardy

transactions than the transaction scheduling model, that is, the performance of

the transaction model is better than the basic model.

Chapter 9 Simulations and Performance Evaluation

9.18

9.2.4 The Combined Model

The simulation of a model combining the granularity version locking and

transaction scheduling deadlock avoidance method is described in this section.

The simulation of the combined model described in Section 8.2.1 is illustrated

using the transaction example in Table 9.10. The simulation of the execution

of these transactions is shown in Table 9.14. At time 1 of the simulation clock,

transaction T1 locks the data object d10 in Intent Version mode for modification.

T1 has to lock all the data objects of which d10 is composed, d1-9, in Intent

Versions mode. At time 2, T1 starts modifying d10 and creates the second

version of d10. The simulation clock then forwards to time 4 at which T2 arrives

and tries to lock the required data object. However, the transaction scheduler is

not evoked as the data object, d7, that T2 intends to modify has already been

locked in Version mode by T1. The rule of granularity version locking does not

allow concurrent V locks applied on the same data object. The simulation time

is then incremented to time 5, T3 arrives and locks d7-9 in Shared mode as locks

of Shared mode and Version are compatible. At time 6, T1 completes the task

and releases all the data objects it has locked; the release event evokes the

transaction scheduler to determine new transaction execution. Subsequently, T2

locks d7 in Version mode and d8 and d9 in Shared mode. In the next time

increment, T2 modifies d7 and a new version of the data object is created. Since

there is no event happens between times 8 and 14, the simulation clock jumps

to time 15 at which T2 completes the task and releases all the locks.

Chapter 9 Simulations and Performance Evaluation

9.19

Clock Transaction Event 7.1 7.2 8 9 10.1 10.2 16 17

0

1 1
T 1 arrives

T 1 locks d 1-10
V(1,6) V(1,6) V(1,6) IV(1,6)

2 1 T 1 modifies d 10 V(1,6) V(1,6) V(1,6) IV(1,6) X(1,6)

4 1, 2 T 2 arrives V(1,6) V(1,6) V(1,6) IV(1,6) X(1,6)

5 1, 2, 3
T 3 arrives

T 3 locks d 7 , d 8 ,d 9

V(1,6)

S(3,15)

V(1,6)

S(3,15)

V(1,6)

S(3,15)
IV(1,6) X(1,6)

6 2, 3
T 1 unlocks d 1-10

T 2 locks d 7 , d 16 , d 17

S(3,15)

V(2,15)
S(3,15) S(3,15) S(2,15) S(2,15)

7 2 T 2 modifies d 7
S(3,15)

V(2,15)
X(2,15) S(3,15) S(3,15) S(2,15) S(2,15)

15 2
T 3 unlocks d 7 , d 8 , d 9

T 2 unlocks d 7 , d 16 , d 17

Data Object

Table 9.14 Simulation example of combined model

Chapter 9 Simulations and Performance Evaluation

9.20

Evaluation of Combined Model

The model simulated in this section adopts the granularity version locking as

concurrency control and the transaction scheduling as deadlock avoidance. The

combined model is also simulated with the same 1000 replications of 10000

transactions that were used to evaluate the other models described in the

previous sections. The simulation result of the combined model (TS_GVL) is

plotted in Figure 9.5. The histogram in Figure 9.5 represents the frequency of

replicas in the simulation of the combined model. There are 434 replicas

having 0-25 late transaction, 179 replicas having 26-75 late transactions, and

75 replicas in the interval between 76-125 late transactions. This model has

fewer replicas that are having large number of late transactions and the worst

result in the combined model has 2177 late transactions. The mean average

tardy transactions of this model are 157.97 as shown in Table 9.15.

Figure 9.5 Histogram of the tardy transactions in the combined model

Chapter 9 Simulations and Performance Evaluation

9.21

Paired Samples StatisticsPaired Samples StatisticsPaired Samples StatisticsPaired Samples Statistics

 Mean N Std. Deviation Std. Error Mean

Pair 1 FIFO_2PL 189.50 1000 351.566 11.117

 TS_GVL 157.97 1000 288.218 9.114

Pair 2 TS_2PL 177.10 1000 301.348 9.529

 TS_GVL 157.97 1000 288.218 9.114

Pair 3 FIFO_GVL 164.73 1000 304.554 9.631

 TS_GVL 157.97 1000 288.218 9.114

Table 9.15 Mean tardy transactions of the combined model

The performance of the combined model is compared with other models using

paired t-tests and the statistical summary is shown in Table 9.16. The first row

of the table is the comparison of the basic model (FIFO_2PL) and the

combined model (TS_GV). The difference of the mean tardy transaction of the

two models is 31.53 (189.50 – 157.97) and the confidence interval of the

difference is (27.21, 35.85). Given that the two-tailed p-value is 0.000, which is

less than the conventional 5% or 1% level of significance, there is strong

evidence that the performance of the two models are not the same. In addition,

the confidence interval for the difference of the mean tardy transactions of

these models lies completely above zero and so provides strong evidence that

the basic model certainly has more tardy transactions than the transaction

scheduling model. This implies that the performance of the combined model is

better than the basic model.

The performance of the combined model (TS_GVL) is also compared with the

granularity version locking (FIFO_GVL) and the transaction model (TS_2PL).

As shown in Table 9.15, the mean tardy transactions of the combined model

are fewer than models that adopt the scheduling technique or the version

locking concurrency control only. The mean difference between TS_2PL and

TS_GVL is 19.13 (177.10 - 157.97) and between FIFO_GV and TS_GVL is

6.76 (164.73-157.97). Given that p-values from respective analyses are less

than the level of significance, the hypothesis of considering that there is no

difference between the combined model and the other two can be rejected.

Furthermore, the confidence intervals of mean differences are also well above

zero for the comparison of TS_2PL - TS_GVL (15.86, 22.39) and FIFO_GVL

- TS_GV (5.15, 8.38). To conclude, the combined model that integrates both

Chapter 9 Simulations and Performance Evaluation

9.22

the transaction scheduling method and the granularity version locking is better

than using either the transaction scheduling or the granularity version locking

alone.

Paired Samples TestPaired Samples TestPaired Samples TestPaired Samples Test

 Paired Differences t df Sig. (2-tailed)

 Mean Std. Deviation Std. Error Mean

95% Confidence Interval of

the Difference

 Lower Upper

Pair 1 FIFO_2PL -

TS_GVL
31.53 69.672 2.203 27.21 35.85 14.311 999 .000

Pair 2 TS_2PL -

TS_GVL
19.13 52.620 1.664 15.86 22.39 11.495 999 .000

Pair 3 FIFO_GVL -

TS_GVL
6.76 26.047 .824 5.15 8.38 8.210 999 .000

Table 9.16 Statistical summary of performance comparison

Chapter 10 Discussion

10.1

Chapter 10

Discussion

Issues related to the development of concurrency integrity model for DPDM

system are discussed in this chapter.

10.1 DPDM System Representation

Data model of PDM system is presented in an ontological approach. A

production PDM system that adopts this data model representation can be

updated for new application-specific features because it can incorporate new

concepts and relations. The ontology of PDM system provides a set of terms

with which to describe the facts about PDM system, which include the

relations between data objects and the behaviours of the functions. This study

has defined some relations of components between objects and only the

definitions of the necessary functions have been described for the investigation

of concurrency integrity maintenance mechanism of PDM system. Also,

object-oriented concept is adopted to organise and process the information

according to the description of the real world objects. The model works best on

object-oriented PDM system. However, most of the existing systems will need

to be converted or need to interface to the object oriented systems. The design

of the new systems will need to be adjusted to accommodate the needs of these

legacy systems.

10.2 DPDM Specifications

The ontology provides some important semantics and relations on which the

specifications of PDM functions are developed. UML sequence diagram is

chosen as the diagrammatic modeling tool for the specification development.

Despite that there are many graphical modeling tools available, sequence

Chapter 10 Discussion

10.2

diagrams are an intuitive visual notation for showing the time ordering of

events between system components in a PDM system. However, when used for

specification, sequence diagrams represent classes of objects instead of

individual data objects and external system components. Also, the lack of

formal semantics creates additional complexity to the validation of the

specifications of PDM system model, since there is no standard on how such

model can be simulated. In this study, temporal logic formulae are derived

from the sequence diagrams to demonstrate the viability of using UML as a

front-end for a formal notation and to overcome the UML limitations. Among a

number of types of temporal logic, the UML sequence diagrams are translated

from Propositional Temporal Logic (PTL) formulae. The preference for PTL is

based on the balance between the expressiveness and the ease of readability

and learning. The formulae in PTL can be easily modified into Timed

Propositional Temporal Logic (TPTL), an extended version of PTL, when

measure of time units between events is needed.

10.3 Granularity Version Locking Method

Concurrency control in PDM systems is more complex than in database system

for business data management like bank account and stock trading. The main

factors for this added complexity are long-duration process in product

development and the existence of multiple-valid states of data objects.

Engineering change is a norm rather than an exception in contemporary

product development. As a result, time-varying change management and

version management are the standard. Granularity version locking proposed in

this study addresses these problems for concurrency control in DPDM systems

and improves concurrency ability of DPDM systems by adjusting the

accessibility of data objects in accordance with the action to be performed by

the users and the product architecture of the physical object. The total number

of lock modes in the proposed model is five. The result of the simulations

shows that the locking model worked efficiently on a distributed PDM system

and the integration with the transaction scheduling method successfully

decreased the number of tardy transactions. Although coarse granularity and

Chapter 10 Discussion

10.3

fewer locks incur less overhead in testing, setting, and maintaining these locks,

the disadvantage is that there will be less concurrency [Date 2004]. The

balance between shareability and degree of concurrency has been researched

for a long time [Gary, et al. 1975, Lee & Liou 1996]. There is no definite

answer to the issue since the performance really depends on the characteristics,

for example, system environment, data model, complexity of data etc. of a

system on which the concurrency control is implemented.

10.4 Transaction Scheduling Method

Problems of keeping the PDM system in a consistent state occur when there are

concurrent accesses to the data. A PDM system must provide transaction on an

equivalent mechanism for concurrency control not only for regular transactions

but also for long duration ones. In order to maintain the consistency of a PDM

system, the transactions must process according to the concurrency control to

ensure the executions are serializable. The method proposed transaction

scheduling is a deadlock avoidance mechanism that is formulated as an integer

programming in which the constraints represent the inherent meanings of the

formulae in a concurrency control. From the simulations in Chapter 9, it shows

that the method works seamlessly with the basic 2PL and the granularity

version locking protocols. It ensures that there is no deadlock by controlling a

transaction to lock the whole set of requested data objects, instead of allowing

it to lock them once they are available. The occurrence of livelock is also

eliminated because the cost of a transaction inversely proportional to its

waiting time, the longer a transaction waits, the smaller its cost. Thus, the

transactions will be processed eventually. The method also reduces the number

of tardy transactions as a result of ordering the transactions by their deadlines

and other attributes. The simulations of the transaction scheduling method

assumed that the attributes of transactions do not change during the process.

However, the work of the product development will be affected and changes

are unavoidable. Thus, the schedule computed in each of the iterations is

optimal, the overall schedule of the execution of all the known transactions

may not be optimal, since the attributes of the transaction cost will be changed

Chapter 10 Discussion

10.4

by the execution of other transactions and new transactions may emerge from

time to time.

Chapter 11 Conclusions

11.1

Chapter 11

Conclusions

PDM commercial tools have been available in the market for nearly a decade.

These tools enable enterprises to conduct its business activities in a more

efficient way via ingenious management of product information. With the

advent of the internet and web based technologies, PDM systems can now be

executed more effectively and efficiently. The development of web-based

PDM system is essential for supporting collaborative design and manufacturing

at geographically dispersed sites. Heavy information flow among the design

offices and production plants is anticipated everyday and its proper

management and seamless integration is crucial to the success of the business.

However, the contemporary commercial PDM systems cannot meet this

challenge as they are ad-hoc solutions. Thus, this research focuses on bridging

the gap by investigating the theoretical aspects of PDM system.

11.1 Contribution of the Research

The reported methodology is a step forward to develop a generic analysis tool

for making DPDM system implementation commercial tool-independent. The

major contributions of this research are shown below:

11.1.1 Data Modeling for DPDM system

In order to develop a generic representation scheme that can properly model

and document enterprise-dependent workflow for current and future use,

defining a PDM system using ontology seems to be a suitable approach

because ontology is an explicit specification of a conceptualization. The

definitions of data objects, functions, and their relations are denoted in formal

Chapter 11 Conclusions

11.2

axioms that constrain the meaning. With such an ontology, existing

commercial PDM systems can be described by the set of representational terms.

Adoption of OO technology in PDM system is encouraged. In particular, a

model that provides a guideline for implementing environmental compliance

management (ECM) system by employing a PDM system and web-technology

is proposed. The model includes a logic process unit that retrieves product data

from PDM systems to analyse the content of hazardous materials in a product.

Finally, an ontology-based ECM system for WEEE and RoHS compliance was

developed and tested.

11.1.2 Graphical and Logical Representation of DPDM Specifications

The specification of PDM/DPDM system are presented using UML sequence

diagram. Since UML diagrams cannot enumerate all the possible scenario

arises from interactions between the systems and its users, therefore

specification in formal notation is needed for verification on consistency of

concurrent processes. The core PDM/DPDM functions are formulated using

first order logic based upon the ontological data model. The formal language

provides a computer-processable format, such that error-free checking and

resource minimal analysis can be performed. This provides a sound procedure

for the determination of semantic equivalences between a semi-formal notation

and a formal language. Given that the product data involves real time

management of resources, this research introduces temporal logic to specify the

dynamic behaviour of PDM/DPDM system. Such incorporation facilitates

modifications to the specification in FOL while maintaining its validity and

consistency.

11.1.3 Granularity Version Locking for PDM/DPDM system

This research introduces a granularity version locking protocol for

PDM/DPDM system which allows more concurrent accesses to the data by

carefully selecting the type of locks being applied for the corresponding action.

Chapter 11 Conclusions

11.3

The operations of this concurrency model are specified in PTL. Since temporal

logic is powerful tool for describing temporal behaviour, and was chosen as the

specification technique for that reason. Such that the model can be used to

determine to what extent verification is possible in the future. Also, two modes

of lock, Version lock (V) and Intent Version (IV), are introduced to support

versioned concurrency control of a data object during its update process. V lock

is applied to a data object of part level when a user modifies it; a new version

of the data object is being created while the current version is shareable for

other users. IV lock is applied to an assembly level data object when a data

object of its parts is being modified. These two types of lock allow the current

version of the data object can be viewed by other transactions but disallow

modification in order to maintain the data consistency.

11.1.4 Transaction Scheduling Method for DPDM Deadlock Avoidance

A correctness criterion of distributed databases is that transactions are executed

in a serializable schedule. To ensure an interleaved execution of transactions

produces the same effect as a serial execution of those same transactions,

conflicting transactions must not process concurrently and the order of

executions is critical. Any concurrency control that bases on the strict two-

phase locking protocol can be used to solve the concurrency problems.

However, locking has problems of its own, in particular, the problem of

deadlock.

In this research, a transaction scheduling algorithm for PDM/DPDM system is

proposed to prevent the occurrence of deadlocks. An integer programming

based scheduling technique is used to control transaction executions in a

system. The algorithm is designed to improve the concurrency of a system by

ordering the process order of transactions according to their status. This is also

integratable to various concurrency control methods; such that the performance

of a system can be improved without sacrificing the data consistency and it can

be implemented to any existing PDM/DPDM systems.

Chapter 11 Conclusions

11.4

11.2 Future Research

Based on the research in the correctness of PDM/DPDM system, future

investigations are suggested on the following areas:

11.2.1 Standard Object Oriented Database Language

One of the goals of object oriented modeling is to preserve a direct

correspondence between real world and database objects, such that the

relationships between their components can be represented and identified

easily. However, none of the commercial PDM systems is truly designed on the

OO based model. They are built on the top of a relational database system and

therefore cannot fully utilise the benefits of the advantages of OO data model

over traditional relational data model. In order to develop an operational

OOPDM system, the concern of standard semantics for OO database

computation must be addressed.

11.2.2 Utilisation of the capability of an ontology based PDM system

The use of ontology in PDM system is demonstrated through the

implementation of an environmental constraint compliance management

system. The ontologies defined in product development can be seen as meta-

data that represent semantics of the data. Ontology based reasoning service can

utilise such semantics to provide a good approximation. A result from an

analysis based on incomplete information may be inaccurate, which could

impair the production process if the missing data leads to incompliance. By

adding an estimation function to predict the probability of incompliance, user

can make a decision based on the estimation computed by referencing to past

projects. The efficiency of a production process can be improved since there

are many stages and resources involved in manufacturing products, a company

can be benefited from no halting in the product development and production

flows for unavailable information.

Chapter 11 Conclusions

11.5

11.2.3 Automatic Translation from UML Sequence Diagrams to Formal

Semantics

UML sequence diagram is a good tool for modeling the dynamic aspects of a

system. In this research, the basic functions of PDM system are represented in

sequence diagrams. However, sequence diagram is not the ultimate answer to

the requirement specification problems because of its semi-formality. These

functions are then written as temporal logic formulas that can be reasoned and

verified. Because of the complexity of temporal logic, modellers seldom use it

to specify and reason systems they design. Thus, a graphical modeling tool that

automatically generates models in a formal notation is valuable. To cater for

these features, sequence diagram and temporal logic are good companions for

the implementation of a graphical formal notation tool.

11.2.4 Relaxation of Two Phase Locking

Two phase locking protocol enforces that transactions must not request a new

lock after releasing some lock in order to maintain the data consistency of a

database. Eswaran [Eswaran, et al. 1976] shows that two phase restriction

sometimes is not a necessary condition for consistency. For example, in a PDM

system, data objects become constant after released. These data objects can no

longer be modified by any transaction and by no mean they will get into an

inconsistent state. Thus, a processing transaction that accesses these data

objects in a non-two phase manner will not become inconsistent. And there are

many situations that two phase restriction is not necessary. Therefore, it seems

difficult to give nontrivial necessary conditions for a PDM system to be

consistent. Further research should be conducted on two phase locking

relaxation as this will help in improving the efficiency of the transaction

scheduling algorithm since transactions need not be included into the

scheduling process if they can lock and unlock data objects without impairing

the consistency of the system.

Chapter 11 Conclusions

11.6

11.2.5 Dynamic Programming for Concurrent Transaction Scheduling

The proposed transaction scheduling method is designed to eliminate the

occurrence of deadlocks by ordering the execution of transactions that access

some data objects concurrently according to their costs. The resultant schedule

constructed by the method is composed of a set of transactions to be executed

which constitute the lowest processing cost “in that instant”. However, the

choice of transactions to be processed will affect the costs of the pending

transactions and of the future schedules. In other words, the schedule is only a

locally optimal solution. Thus, the whole schedule, which is the constitution of

a series of schedules for the execution of all the known transactions, may not

be the best overall solution. In order to compute a global optimal schedule,

dynamic programming is a potential candidate to cope with the dynamic

behaviour of the transactions. Consider the transaction scheduling problem

solved at each stage, constructs a number of possible schedules, which are

referred as states in dynamic programming. At each of the succeeding stages,

the cost and the validity of transactions changes according to the decision in

each state of the preceding stage. The schedule with the lowest cost in the final

stage will be the optimal solution for the transaction scheduling problem.

References

Ref.1

References

Abbott, R. K. & Garcia-Molina, H. (1992). Scheduling real-time transactions:

A performance evaluation. ACM Transactions on Database Systems,
17(3), 513-560.

Abernethy, K. & Kelly, J. C. (1992). Comparing object-oriented and data flow
models - a case study. Proceedings of the 1992 ACM annual conference
on Communications, 541-547.

Adler, M. (1988). Algebra for data flow diagram process decomposition. IEEE
Transactions on Software Engineering, 14(2), 169-183.

ASME (1998). PDM for the enterprise, Mechanical Engineering, 120, 84:
American Society of Mechanical Engineers.

Bansler, J. P. & Havn, E. C. (2003). Building community knowledge systems:

an empirical study of IT-support for sharing best practices among
managers. Knowledge and Process Management, 10, 156-163.

Bellini, P., Mattolini, R., & Nesi, P. (2000). Temporal logics for real-time
system specification. ACM Comput. Surv., 32(1), 12-42.

Bergeson, L. L. (2006). RoHS, WEEE and related EU directives. Pollution
Engineering, 38(9), 15-15.

Bernaras, A., Laresgoiti, I., Bartolome, N., & Corera, J. (1996). Ontology for
fault diagnosis in electrical networks. Proceedings of the International
Conference on Intelligent Systems Applications to Power Systems, 199-
203.

Bernstein, P. A. & Goodman, N. (1983). Multiversion concurrency control -
theory and algorithms. ACM Trans. Database Syst., 8(4), 465-483.

Bernstein, P. A., Shipman, D. W., & Wong, W. S. (1979). Formal Aspects of
Serializability in Database Concurrency Control. Software Engineering,
IEEE Transactions on, SE-5(3), 203-216.

Boothroyd Dewhurst Inc. (2007). DFMA® Design For Manufacture and
Assembly. Retrieved 17/09/2007, from
http://www.dfma.com/software/index.html

Carey, M. J. (1983). Granularity hierarchies in concurrency control.
Proceedings of the 2nd ACM SIGACT-SIGMOD symposium on
Principles of database systems, 156-165.

Carey, M. J. & Livny, M. (1989). Parallelism and concurrency control
performance in distributed database machines. Proceedings of the 1989
ACM SIGMOD international conference on Management of data, 122-
133.

References

Ref.2

Ceria, S., Nobili, P., & Sassano, A. (1998). A Lagrangian-based heuristic for
large-scale set covering problems. Math. Programming, 81(2, Ser. B),
215--228.

Chandrasekaran, B., Josephson, J. R., & Benjamins, V. R. (1999). What are
ontologies, and why do we need them? Intelligent Systems and Their
Applications, IEEE [see also IEEE Intelligent Systems], 14(1), 20-26.

Charles, M. (1982). Preemptive Scheduling with Release Times, Deadlines,
and Due Times. J. ACM, 29(3), 812-829.

Chen, Y. M. (1997). Development of a computer-aided concurrent net shape
product and process development environment. Robotics and
Computer-Integrated Manufacturing, 13(4), 337-360.

Chen, Y. M. & Tsao, T. H. (1998). A structured methodology for
implementing engineering data management. Robotics and Computer-
Integrated Manufacturing, 14(4), 275-296.

Chonoles, M. J. & Quatrani, T. (1996). Succeeding with the Booch and OMT
methods : a practical approach; Lockheed Martin Advanced Concepts
Center, Rational Software Corporation: Addison-Wesley.

Chou, H. T. & Kim, W. (1986). Unifying framework for version control in a
CAD Environment. Proceeding of Twelfth International Conference on
Very Large Data Bases, 336-344.

CIMdata. (1996). Product Data Management: The Definition, An Introduction
to Concepts, Benefits, and Terminology (Fourth ed.): CIMdata.

CIMdata. (2005). SolidWorks Office professional: PDMWorks. SolidWorks

Corp.

Dasgupta, P. & Kedem, Z. M. (1983). A Non-Two-Phase Locking Protocol for
Concurrency Control in General Databases. Paper presented at the
Proceedings of the 9th International Conference on Very Large Data
Bases.

Dassault Systèmes SolidWorks Corporation (2008). eDRAWINGS. from

http://www.edrawingsviewer.com/

Date, C. J. (2004). An introduction to database systems (8th ed.).
Pearson/Addison Wesley.

Deepali, K., Krishna, G. M., Ulka, S., & Venkatesh, R. (2005). Visual
specification and analysis of use cases. Proceedings of the 2005 ACM
symposium on Software visualization, 77-85.

Ding, Y. & Foo, S. (2002). Ontology research and development. Part 1 - a
review of ontology generation. Journal of Information Science, 28(2),
123-136.

References

Ref.3

Disterer, G. (2002). Management of project knowledge and experiences.
Journal of Knowledge Management, 6(5), 512.

Dixon, C. (2006). Using temporal logics of knowledge for specification and
verification--a case study. Journal of Applied Logic, 4(1), 50-78.

Drusinsky, D. (2006). Modeling and verification using UML statecharts: a
working guide to reactive system design, runtime monitoring and
execution-based model checking: Newnes.

Eden, A. H. & Hirshfeld, Y. (2001). Principles in formal specification of object
oriented design and architecture. Proceedings of the 2001 conference
of the Centre for Advanced Studies on Collaborative research, p.3,

November 05-07, 2001, Toronto, Ontario, Canada.

Eich, M. H. (1988). Graph directed locking. Software Engineering, IEEE
Transactions on, 14(2), 133-140.

Enovia MatrixOne (2006). Materials Compliance Central.Retrieved 19/09/2007,
from
http://www.matrixone.com/matrixonesolutions/materialscompliancecen
tral.html

Eswaran, K. P., Gray, J. N., Lorie, R. A., & Traiger, I. L. (1976). The notions
of consistency and predicate locks in a database system. Commun. ACM,
19(11), 624-633.

Eynard, B., Gallet, T., Nowak, P., & Roucoules, L. (2004). UML based
specifications of PDM product structure and workflow. Computers in
Industry, 55(3), 301-316.

Farrell, M. W. & Myers, J. R. (1981). Applying structured tools and techniques
to the development of software for a small computer system.
Proceedings of the 1981 ACM SIGSMALL symposium on Small systems
and SIGMOD workshop on Small database systems, 1-8.

Fawzi, H. (2007). Networks as a means of supporting the adoption of
organizational innovations in SMEs: the case of Environmental
Management Systems (EMSs) based on ISO 14001. Corporate Social
Responsibility and Environmental Management, 14(3), 167-181.

Garcia, A. C. B., Kunz, J., Ekstrom, M., & Kiviniemi, A. (2004). Building a
project ontology with extreme collaboration and virtual design and
construction. Advanced Engineering Informatics, 18(2), 71-83.

Gary, J. N., Lorie, R. A., & Putzolu, G. R. (1975). Granularity of locks in a
large shared data base. Proceedings of the International Conference on
Very Large Data Bases, 428-451.

Gary, T. L., Tim, W., & Albert, L. B. (1999). Formal semantics for SA style
data flow diagram specification languages. Proceedings of the 1999
ACM symposium on Applied computing, 526-532.

References

Ref.4

Goel, S., Bhargava, B., & Madria, S. K. (2000). An adaptable constrained
locking protocol for high data contention environments: correctness and
performance. Information and Software Technology, 42(9), 599-608.

Gomaa, H. (1984). A software design method for real-time systems. Commun.
ACM, 27(9), 938-949.

Gruber, T. R. (1993). A translation approach to portable ontology
specifications. Knowledge Acquisition, 5(2), 199-220.

Guarino, N. (1998). Formal Ontology and Information Systems. Proceedings
of the 1st International Conference on Formal Ontologies in
Information Systems, FOIS'98, Trento, Italy. IOS Press, 3-15.

Harris, S. B. (1996). Business strategy and the role of engineering product data
management: a literature review and summary of the emerging research
question. Journal of Engineering Manufacture, 210(B3), 207-220.

Hughes, G. E. & Cresswell, M. J. (1968). An introduction to modal logic:
Methuen.

IBM Corporation (2007). ENOVIA SmarTeam. Retrieved 16/09/2007, from
http://www-306.ibm.com/software/applications/plm/smarteam/

Jun, W. C. (2000). A multi-granularity locking-based concurrency control in
object-oriented database systems. Journal of Systems and Software,
54(3), 201-217.

Kedem, Z. & Silberschatz, A. (1979). Controlling concurrency controlling
using locking protocols. Annual Symposium on Foundations of
Computer Science, 274-285.

Kedem, Z. & Silberschatz, A. (1980). Non-two-phase locking protocols with

shared and exclusive locks. Very Large Data Bases Conference, 309-
317.

Keller, G. & Teufel, T. (1998). SAP R/3 process-oriented implementation:

iterative process prototyping/ translated by Audrey Weinland. Harlow:
Addison Wesley Longman.

Kim, J. A., Kim, J. H., & Park, N. (1998). Development of PDM framework
and customization environment. Technology of Object-Oriented
Languages, 1998. TOOLS 28. Proceedings, 40-49.

Kim, S. H., Oh, T. H., & Park, J. Y. (1997). The object-oriented modeling for
product data management. Computer Applications in Production and
Engineering, 33-46.

Kuo, F. Y. & Karimi, J. (1988). User interface design from a real time
perspective. Commun. ACM, 31(12), 1456-1466.

References

Ref.5

Langer, A. M. (2008). Analysis and design of information systems (3rd ed.).
Springer.

Lee, S. Y. & Liou, R. L. (1996). A multi-granularity locking model for
concurrency control in object-oriented database systems. IEEE
Transactions on Knowledge and Data Engineering , 8(1), 144-156.

Leistner, M. (1999). The Growth and Environment Scheme. Greener
Management International (27), 79.

Leong, K. K. (2002). An architecture for web-based distributed product data
management. MPhil thesis, Dept. of Industrial & Systems Engineering,
The Hong Kong Polytechnic University, Hong Kong.

Leong, K. K., Yu, K. M., & Lee, W. B. (2003). A security model for
distributed product data management system. Computers in Industry,
50(2), 179-193.

Li, O. K. V. (1987). Performance models of timestamp ordering concurrency
control algorithms in distributed databases. IEEE Transactions on
Computers, 36(9), 1041-1051.

Liou, D. J. E. (1994). An object-oriented database approach to manufacturing
information systems with emphasis on production management. PhD
thesis, Arizona State University.

Liu, C. L. & James, W. L. (1973). Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. J. ACM, 20(1),
46-61.

Manji, J. F. (1995). Data/document management: Making PDM pay. Machine
Design, 67(11), 81.

Manna, Z. & Pnueli, A. (1992). The temporal logic of reactive and concurrent
systems. Springer-Verlag.

Manna, Z. & Wolper, P. (1984). Synthesis of Communicating Processes from
Temporal Logic Specifications. ACM Trans. Program. Lang. Syst., 6(1),
68-93.

Mansour, Z., Val, C., & Dale, C. (1995). A survey of current object-oriented
databases. SIGMIS Database, 26(1), 14-29.

Miller, E., MacKrell, J., & Mendel, A. (1999). PDM buyer's guide: product
data management systems for improving processes and products (7th
ed.). CIMdata.

Mohan, C., Fussell, D., Kedem, Z. M., & Silberschatz, A. (1985). Lock
conversion in non-two-phase locking protocols. IEEE Transactions on
Software Engineering, SE-11(1), 15-22.

References

Ref.6

Ng, S. H. & Hung, S. L. (1995). Multigranularity locking in multiple job
classes transaction processing system. SIGMOD Rec., 24(1), 27-32.

Noy, N. F. & McGuinness, D. L. (2003). Ontology Development 101: A Guide
to Ceating Your First Ontology. from
http://protege.stanford.edu/publications/ontology_development/ontolog
y101.html

OMG (2007). Object Management Group Unified Modeling Language
Specification Version 2.1.1. from http://www.uml.org/#UML2.0

Pahng, F., Senin, N., & Wallace, D. (1998). Distribution modeling and
evaluation of product design problems. Computer-Aided Design, 30(6),
411-423.

Partidario, P. J. & Vergragt, J. (2002). Planning of strategic innovation aimed
at environmental sustainability: actor-networks, scenario acceptance
and backcasting analysis within a polymeric coating chain. Futures,
34(9-10), 841-861.

Patil, L., Dutta, D., & Sriram, R. (2005). Ontology-based exchange of product
data semantics. IEEE Transactions on Automation Science and
Engineering, 2(3), 213-225.

PE International (2007). The new Generation GaBi 4. Retrieved 27/09/2007,
from http://www.gabi-software.com/gabi/gabi-4/

Philip, A. B. & Nathan, G. (1981). Concurrency Control in Distributed
Database Systems. ACM Comput. Surv., 13(2), 185-221.

Philpotts, M. (1996). An introduction to the concepts, benefits and terminology
of product data management. Industrial Management & Data Systems,
96(4), 11.

Pnueli, A. (1981). The temporal semantics of concurrent programs. Theoretical
Computer Science, 13(1), 45-60.

PRé Consultants (2007, 18/09/2007). SimaPro 7. Retrieved 17/09/2007, from
http://www.pre.nl/simapro/simapro_lca_software.htm

Prior, A. (1967). Past, Present and Future. Oxford University Press.

Reisdorph, K. (1999). Why use version control? . Delphi Developer’s Journal,
5(1), 14-16.

Rezayat, M. (2000). The Enterprise-Web portal for life-cycle support.
Computer-Aided Design, 32(2), 85-96.

Ryan, D. M. & Foster, B. A. (1981). Integer Programming Approach To
Scheduling. Computer Scheduling of Public Transport, Urban
Passenger Vehicle and Crew Scheduling, 269-280.

References

Ref.7

Salkin, H. M. (1989). Foundations of integer programming / Harvey M. Salkin,
Kamlesh Mathur ; with contributions by Robert Haas. North-Holland.

Sayre, D. (1996). Inside ISO 14000 : the competitive advantage of
environmental management / Don Sayre. Delray Beach, Fla. :: St. Lucie
Press.

Shaw, H. K., Susan Bloor, M., & Pennington, A. (1989). Product Data Models.
Research in Engineering Design, 1(1), 43-50.

Siemens (2008). Explore the Greater Powers of Teamcenter Solutions. from
http://www.plm.automation.siemens.com/en_us/products/teamcenter/so
lutions_by_product/index.shtml

SolidWorks (2004). SolidWorks 2005 PDMWorks.

SolidWorks (2005). SolidWorks Office professional: PDMWorks. SolidWorks
Corp.

Sree, N., Rebecca, W., & Prebhu, G. M. (1990). Knowledge-based graph
theoretic analysis of data flow diagrams: integrating CASE tools with
expert systems. Proceedings of the 1990 ACM SIGBDP conference on
Trends and directions in expert systems, 58-71.

Stadlbauer, H. (1992). Product data model for design support using functional
skeletons. The 1992 ASME International Computers in Engineering
Conference and Exposition; San Francisco, CA; USA; 02-06 Aug. 1992,
149-154.

Talens, G., Chabane, O., & Colinas, M. F. (1993). Versions of Simple and
Composite Objects. Proceedings of the 19th International Conference
on Very Large Data Bases, 62-72.

Tao, Y. & Kung, C. (1991). Formal definition and verification of data flow
diagrams. Journal of Systems and Software, 16(1), 29-36.

Thomasian, A. (1998). Concurrency control: methods, performance, and
analysis. ACM Comput. Surv., 30(1), 70-119.

UGS Corporation (2007). Compliance Management. from
http://www.ugs.com/en_us/products/teamcenter/solutions_by_product/c
ompliance_management.shtml

Vazquez, F. (1994). Identification of complete data flow diagrams. SIGSOFT
Softw. Eng. Notes, 19(3), 36-40.

Wieringa, R. (2003). Design methods for reactive systems : Yourdon, Statemate,
and the UML / R.J Wieringa. San Francisco, Calif. :: Morgan
Kaufmann Publishers.

Won, K., Bertino, E., & Garza, J. F. (1989). Composite objects revisited. ACM
SIGMOD Record 18, 337-347.

References

Ref.8

Wood, W. G. (1990). Temporal logic case study In Lecture Notes in Computer
Science (Vol. 407, pp. 257-263): Springer Berlin / Heidelberg.

Yannakakis, M., Papadimitriou, C. H., & Kung, H. T. (1979). Locking policies:
Safety and freedom from deadlock. Annual Symposium on Foundations
of Computer Science 286-297.

Yeh, S. C. & You, C. F. (2002). STEP-based data schema for implementing

product data management system. International Journal of Computer
Integrated Manufacturing, 15(1), 1-17.

Yourdon, E. (1979). Structured design: fundamentals of a discipline of
computer program and systems design. Prentice Hall.

Yu, P. S., Wu, K. L., Lin, K. J., & Son, S. H. (1994). On real-time databases:
concurrency control and scheduling. Proceedings of the IEEE, 82(1),
140-156.

Zhang, S., Shen, W., & Ghenniwa, H. (2004). A review of Internet-based
product information sharing and visualization. Computers in Industry,
54(1), 1-15.

Zhang, X., Wang, T., Wan, L., & Zhou, J. (1995). Open architecture and
implementation for product data management. High Technology Letters,
1(2), 1-6.

Zhao, W., Ramamritham, K., & Stankovic, J. A. (1987). Preemptive scheduling
under time and resource contraints. IEEE Transactions on Computers,
C-36(8), 949-960.

Appendix A eDrawings Plug-in

A.1

Appendix A

eDrawings Plug-in

The types of features and functions of “eDrawings” plug-in being used in

developing the environmental compliance system presented in Chapter 4, are

described in this appendix. eDrawings [Dassault Systèmes SolidWorks

Corporation 2008] is a free e-mail-enabled program included with SolidWorks

that let users share designs with the people who need to see to them. It is

available in the standard or professional version; the standard version gives the

user the power to view, create and share 3D models and 2D drawings in

eDrawings (eDRW, ePRT, eASM), DXF, and DWG format files. This version

can be downloaded freely from www.eDrawingsViewer.com. The professional

version includes additional capabilities to markup and measure a model, user

license can be purchased from the website.

Key Features of eDrawings Plug-in

Everyone in the design process can collaborate more effectively with

eDrawings and various CAD software programs using the following features.

Creating an eDrawings file

To make a file viewable with eDrawings viewer, the corresponding drawing

file must be published using the eDrawings publisher. By saving the file that is

already open in a CAD application into the one of the following appropriate

formats:

• Part document. Save as eDrawings (*.eprt)

• Assembly document. Save as eDrawings (*.easm)

• Drawing document. Save as eDrawings (*.edrw)

Appendix A eDrawings Plug-in

A.2

Sending an eDrawings file

eDrawings files can be sent to other using send function in eDrawing viewer.

The email contains detailed instructions for the recipient about how to use the

eDrawings application. By sending the files in an email using one of the

following options, the receiver does not need to download anything to view the

files.

• eDrawings file (.edrw, .eprt, .easm). Attaches a copy of the active

document saved as an eDrawings file.

• Zip (.zip). Attaches a copy of the file as an executable (.exe) file, saved

in a zip file. The recipient needs an application to unzip the file.

• HTML page (.htm). Attaches a copy of the file as an HTML file. If

your default outgoing mail format is set to HTML, the eDrawings

HTML is embedded directly in the email.

• Executable (.exe). Attaches a copy of the file as an executable (.exe)

file.

Markup Tools

Markup tools is an optional tool that enhances the eDrawings application and is

only available in professional version. Notes, dimension (Figure A.1), text

(Figure A.2), and graphical elements to the model can be added using the

markup tools. eDrawings automatically saves markup files as threaded

comments with the eDrawings file. Markup data can be saved separately, as a

markup file, without the models. In such a way, it facilities the reviewing

process when several people review the file. For example, reviewers can add

comments, and then send you only a markup file.

Appendix A eDrawings Plug-in

A.3

Figure A.1 Showing dimension of a hole using Dimension function

Figure A.2 Adding comment to a document

Appendix B Constraint Branching

B.1

Appendix B

Constraint Branching

In Chapter 8, given an optimal fractional solution to the linear program

relaxation, an integer solution may be found using branch and bound. Effective

branching strategies have been developed to solve complex problems in a

reasonable amount of time.

The conventional variable branching strategy [Salkin 1989] can be used to

solve the fractional problem. Each node of the branch and bound tree

corresponds to a linear programming problem in which certain variables have

been chosen and constrained to take integer values. In the branching process, a

selected node is branched on by imposing two constraints separately on a

single fractional variable xf, these constraints are

 ()
 ()branch1

branch0

−≥

−≤

ff

ff

xx

xx

and two new linear programming problems are created as the result.

For set partitioning problems, the 0-branch constraint has minimal effect on the

objective function, as there are likely to be many alternative variables available

to enter the basis at little cost. Because the objective value hardly increases on

the 0-branch, the bounding process will be less effective. For large-scale

problem, it is likely that there will be many nodes and branches explored to

find an integer solution. Contrarily, the 1-branch effectively forces the variable

to the value of one. This has a significant effect on the solution to the 1-branch

problem and often increases the objective function, which can aid the bounding

process. Variables that cover any constraint covered by xf will be eliminated

and fewer numbers of variables need to be priced as the branching process goes

on.

Appendix B Constraint Branching

B.2

An alternative approach is to use the constraint branching method developed

by Ryan and Foster [Ryan & Foster 1981]. The basic concept of constraint

branching is to branch on a set of variables rather than a single variable, the set

is defined by a pair of constraints (s and t). The branch is defined by

{ }

(,)

Identify a pair of constraints and

. . 0 1

(,) | 1and 1

j
j J s t
j Basis

sj tj

s t

s t x

where J s t j a a

∈
∈

∑< <

= = =

The 0-branch indicates that s and t must not be covered by a single variable and

is implemented by banning all variables in J(s,t). Alternatively, the 1-branch

indicates that s and t must be covered together and is implemented by forcing

variables in the complementary set ()tsJ , to be zero, where

() () (){ }1and0or0and1|, ===== tjsjtjsj aaaajtsJ

A standard method to determine the branch in set partitioning problem is to

select s and t, so that both s and t are equality constraints and the objective

function value of the linear programming problem is maximized. Depth-first 1-

branch search is implemented to evaluate the ranch and bound tree.

The constraint branching strategy is more effective than the conventional

variable branching. Many variables are eliminated from the problem on both

the 0-branch and 1-branch, since the set of variables are banned on either

branch, this allows a balanced tree to be developed and the bounding process

on 0-branch becomes as effective as on 1-branch. This branching strategy

requires fewer branches than the conventional strategy. The constraint

branching strategy has been found to be effective in solving large-scale integer

programming problems

Appendix B Constraint Branching

B.3

Bounding Procedure and Termination Criterion

The final aspect of the branch and bound process used for the problem is to

determine the bounding procedure and tree search termination criteria. The

bounding procedure applied is to use the objective value of the integer solution

found as a bound during the tree search. Beside the bounding procedure, there

are two related tree search termination criteria. If an integer solution is found

excesses within some percentage of the relaxed linear programming solution,

then the branch and bound process is terminated. Another criterion is the

number of nodes searched in the process. If a number of nodes searched reach

the predefined limit, then the process is terminated. Such premature

terminations are to recognize that the most important point of the branch and

bound process is to find a feasible integer solution in a reasonable amount of

time. Although better solutions may exist elsewhere in the branch and bound

tree, the extra time required to find such solution can be substantial and result

in little improvement.

