THE HONG KONG
Q POLYTECHNIC UNIVERSITY
& Fenian

Pao Yue-kong Library
BEREEE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the
printed version, the printed version shall prevail.

The Hong Kong Polytechnic University

The Department of Industrial and Systems Engingerin

A Concurrency Integrity Model for

Distributed Product Data Management

CHAN Edmond Cheuk Kit

A thesis submitted in partial fulfillment of thegq@rements for the
Degree of Doctor of Philosophy

January 2009

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

CERTIFICATE OF ORIGINALITY

| hereby declare that this thesis is my own work and that, to the best of my
knowledge and belief, it reproduces no material previously published or written,
nor material that has been accepted for the award of any other degree or

diploma, except where due acknowledgement has been made in the text.

CHAN Edmond Cheuk Kit

Abstract

Abstract

In today’s manufacturing environment, enterprisesvifig work groups
geographically dispersed are not uncommon. In exiditifferent tasks of the
product lifecycle are distributed at different gesgghic locations. A product
data management (PDM) system is therefore requioedcontrolling the
distribution and maintaining the integrity of theoguct data throughout its
entire life cycle. Multiple accesses to the systesiding on multiple sites will
cause concurrency problems. It is crucial that aamnicy control must be
provided to protect the data against a varietyassible threats, in particular,
data inconsistencies must be avoided and relatipmidietween data must be
maintained. In particular, the current PDM techgglas not completely
suitable for PDM in distributed manufacturing ewowviment. Thus, this
research aims to develop a foundation in concureagineering support for
distributed product data management (DPDM).

This research begins with reviewing the suitabilaf existing database
management systems for product data within the esadpdata architecture.
These systems are based on the technology for nmgnagsiness data. In
other words, they are not efficient when employedhéndle product data.
Therefore, an ontological approach for represemmogluct data is proposed to

describe the relationships between all the objettan a DPDM system.

To secure the consistency of a DPDM system, thetifums of the system must
be error-free. A DPDM system specification is neeeg. Firstly, a graphical
representation model is developed to express th&l Rinctions. UML
(Unified Modeling Language) sequence diagrams aegl to model the actions
of each of the functions and their interactionsseein users and the system.
Temporal logic is then used to construct the foamofl these functions. The

model is further extended to represent DPDM fumdio

Given that the traditional concurrency control nogkth were not purposely

developed to meet the need of DPDM, the requiresnntdata storage and

Abstract

manipulation for DPDM systems are not well suppbrtdherefore, a
concurrent control method that caters for versicenmagement and product
architecture in DPDM is proposed. This researchatetrates how granularity
and versioning are incorporated into a lock-basmtterrency control model.
The concurrent accessibility of an example proddata is explained to
illustrate the adjustability according to the anidaken by the users and the

architecture of the corresponding data object.

Locking is one of the well-known concurrency cohtiechniques and more
likely to be encountered in practice. Although ldzsed concurrency control
methods guarantee serializability of data accédsssystems have the risk of
deadlock as the transactions may wait for unavialdbcks. An integer
programming based mathematical model employings&etion scheduling is
proposed to prevent the threat of deadlock by odlimg transaction

executions in DPDM system while efficiency is mained.

To validate the performance of the proposed methtids strict two-phase
locking (2PL) method, the two-phase granularitysi@n (GV) locking method,
the 2PL transaction scheduling method, and the ithy®V transaction
scheduling method are evaluated through simulagigperiments. Read and
Write accesses to composite objects are used ustrdte the comparisons
between the models. Their performances are evalubye comparing the
number of late transactions. It shows that the ®%kihg model and the
transaction scheduling model are better than thet L. method while the

hybrid model can substantially improve the conawryeof DPDM system.

Publications

Publications Arising From the Thesis

Chan, E. C. K. & Yu, K. M. (2007). A concurrencyntml| model for PDM
systemsComputers in Industry, $8-9), 823-831.

Chan, E. C. K. & Yu, K. M. (2007). A framework ohtmlogy-enabled product
knowledge management. International Journal of Product
Development B8-4), 241 — 254.

Chan, E. C. K. & Yu, K. M. Conflict Avoidance usirigteger Programming
Transaction Scheduling for Product Data Managent@amputers in
Industry. (Under Review)

Chan, E. C. K. & Yu, K. M. A model for project-basesnvironmental

compliance management for SMHsternational Journal of Product
Development(Under Review)

Acknowledgements

Acknowledgements

First and foremost | would like to thank my supsori Dr K. M. Yu for his
contributions towards the algorithm, implementatanmd presentation of this
thesis. His comments regarding the applicationB@# system has been most
useful. Also his insight and guidance he providédoughout the entire

research period has been invaluable.

Finally, | would like to thank my family for theicare and encouragement. |
would never have completed my study without theppsrts.

Tbefear (yrtbe LORD is the beginning gpwisdom,

and knowledge of the Holy One is understanding.

Proverbs 9:10

Table of Contents

Table of Contents

ABSTRACT i
PUBLICATIONS ARISING FROM THE THESIS i
ACKNOWLEDGEMENT v
LIST OF FIGURES X
LIST OF TABLES Xiii
NOTATIONS XV
CHAPTER 1 INTRODUCTION 1.1
1.1 Background 1.1
1.2 Key Issues and Problems 1.3
1.3 Research Objectives 15
1.4 Significance of the Research 15
15 Organisation of the Thesis 1.6
CHAPTER 2 LITERATURE REVIEW 2.1
2.1 Introduction to Product Data Management System 21

2.1.1 Workflow and Process Management

2.1.2 Product Structure Management

2.1.3 Classification 2.3
2.1.4 Program Management 24
2.2 Data Model for PDM System 2.4
2.2.1 Object Oriented Approach 2.5
2.2.2 Object Oriented Technology for PDM System
2.2.3 Ontology 2.6
2.3 System Modeling and Specification 2.7
2.3.1 Graphical Modeling Tools 2.7
2.3.2 Formal Specification 2.11
2.4 Concurrency Control 2.13
2.4.1 Two Phase Locking 2.14
2.4.2 Granularity Locking 2.15
2.4.3 Version Locking 2.16

Table of Contents

2.4.4 Flow Graph Locking
2.4.5 Timestamp Ordering
2.4.6 Deadlock
2.5 Limitations of Existing Approaches

2.5.1 Justification of Tools and Techniques Adopted

CHAPTER 3 ONTOLOGICAL DATA MODELING IN PDM

SYSTEM

3.1 Application of Ontology to PDM
3.1.1 Procedure of Creating Ontology
3.1.2 Evolvable Ontology with Options of Instance
3.2 Mechanism of Ontology-Enabled PDM System
3.2.1 Notations of the Data Model
3.2.2 Definition of Data Category
3.3 Ontology Management Functions
3.3.1 Item Insertion
3.3.2 Ontology Creation
3.3.3 Ontology Retrieval

CHAPTER 4 ONTOLOGY-BASED ENVIRONMENTAL
COMPLIANCE MANAGEMENT SYSTEM

4.1 Background on Environmental Compliance
4.2 Environmental Compliance Management System
4.2.1 Information Management Tools
4.2.2 Architecture of PDM System
4.3 The Model of Ontology-Enabled ECM System
4.3.1 Structure of the System
4.3.2 The Compliance Analysis Module
4.4 Implementation of ECM System
4.4.1 Software for Implementation
4.4.2 The Compliance Analysis Module — ECM System

4.4.3 lllustrative Example

Vi

2.16
2.17
2.18
2.20
2.22

3.1
3.1
3.2
.63
3.6
3.7
3.8
3.9
3.10
3.11
3.13

4.1
4.1
4.2
4.3
4.4
4.6
4.6
4.8
4.10
411
114
412

Table of Contents

CHAPTER 5 REPRESENTATION OF PDM FUNCTIONS IN

UML SEQUENCE DIAGRAM

51 PDM User Functions

5.1.1
5.1.2

Description of PDM System User Functions

Description of PDM System Intrinsic Functions

5.2 Use of Sequence Diagram

5.2.1
5.2.2
5.2.3
5.24
5.2.5
5.2.6

Registering data in PDM System
Check-Out in PDM System
Check-In in PDM System
Release in PDM System
Obsoletion in PDM System
Deletion in PDM System

53 DPDM User Functions

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8

Description of DPDM System User Functions
Description of DPDM System Intrinsic Funcgon
Registering data in DPDM system

Check-out in DPDM system

Check-In in DPDM System

Release in DPDM System

Obsoletion in DPDM System

Deletion in DPDM System

CHAPTER 6 CONCURRENCY CONTROL

SPECIFICATION

6.1 Concurrency Problems in DPDM System

6.1.1
6.1.2

The Lost Update Problem
The Dependency Problem

6.3 Basic 2PL Protocol in Sequence Diagram

6.4 Formal Specification of Concurrency Control

6.4.1
6.4.2
6.4.3
6.4.4

Temporal Logic
Integration of Sequence Diagram and Tempargic
Representation of Serialisability in Tempdradjic

Specification of Two Phase Locking in Tempaxagic

vii

5.1
5.1
5.2
5.3
5.4
5.4
5.5
5.6
5.7
5.8
5.9
5.10
151
5.11
5.12
5.13
5.15
5.16
5.17
5.18

6.1
6.1
6.3
6.4
6.5
6.7
6.7
6.8
6.9
6.9

Table of Contents

CHAPTER 7 CONCURRENCY CONTROL METHOD FOR

DPDM SYSTEM

7.1 Formal Description of the Method

7.1.1
7.1.2

Locks with Version

Notations and Types of Functions

7.2 Implementation

7.2.1
71.2.2
7.2.3
7.2.4

Check-out and Release Processes
View Process
Obsolete Process

Function of Redlining

7.3 Case Study

CHAPTER 8 DPDM DEADLOCK AVOIDANCE

8.1 Transaction Scheduling Problem in DPDM System

8.1.1
8.1.2
8.1.3
8.1.4

Problem of Deadlocks
Definition of Transaction
Deadlock Avoidance
Objective of the Model

8.2 Set Partitioning Problem

8.2.1
8.2.2

Formulation of Concurrent Transaction SchieduProblem
Solution Approach

CHAPTER 9 SIMULATIONS AND PERFORMANCE

EVALUATION

9.1 General Information of the Simulation

9.11

Event Oriented Simulation

9.2 Simulations and Results of Various Models

9.2.1
9.2.2
9.2.3
9.24

Two Phase Locking (2PL) Model
Granularity Version Locking
Transaction Scheduling

The Combined Model

viii

7.1
7.1
7.2
7.6
7.7
7.8
7.9
7.11
7.11
7.12

8.1

8.2
8.3
8.3
8.5
8.8
8.10
8.14

9.1
9.1
9.2
9.3
9.4
9.7
9.12
9.18

Table of Contents

CHAPTER 10 DISCUSSION 10.1
10.1 DPDM System Representation 10.1
10.2 DPDM Specifications 10.1
10.3 Granularity Version Locking Method 10.2
10.4 Transaction Scheduling Method 10.3

CHAPTER 11 CONCLUSIONS 11.1
11.1 Contribution of the Research 11.1

11.1.1 Data Modeling for DPDM system 111
11.1.2 Graphical and Logical Representation of DP&pécifications 11.2
11.1.3 Granularity Version Locking for PDM/DPDM $gm 11.2
11.1.4 Transaction Scheduling Method for DPDM Deekl
Avoidance 11.3
11.2 Future Research 114
11.2.1 Standard Object Oriented Database Language 14 1

11.2.2 Utilisation of the capability of an ontologgsed PDM system 11.4
11.2.3 Automatic Translation from UML Sequence Dégs to

Formal Semantics 11.5
11.2.4 Relaxation of Two Phase Locking 115
11.2.5 Dynamic Programming for Concurrent Transac8cheduling 11.6

REFERENCES Ref.1
APPENDIX A EDRAWING PLUG-IN Al
Key Features of eDrawing Plug-in AA.l
Creating an eDrawing Files AA.l
Sending an eDrawing file A.A.2
Markup Tools AA.2
APPENDIX B CONSTRAINT BRANCHING 1
Bounding Procedure and Termination Criterion B.3

List of Figures

List of Figures

Figure 2.1
Figure 2.2

Figure 2.3

Figure 3.1

Figure 3.2 (a)

Figure 3.2 (b)

Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7

Figure 3.8

Figure 3.9
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 5.1

Figure 5.2

User accesses a PDM system througly#tens interface. 2.2
Bank Teller state transition diagram..............cccceeeeeeeenn. 2.9

Deadlock occurs when transaction areasting data from

€aCh OtNer ... 2.19
Framework of ontology-enabled PDM system.............. 3.2
Assembly drawing of an ink cartridhgéder 3.3
Drawing of an ink cartridge holderexploded view.......... 3.3
Create ClaSSEesScooiiiiimmmmmn et 3.5
Creating an instance of ink cartridge............ccccceeeeeeeennn. 3.5
Relationship of data classes of PDMesgst..................... 3.8
Algorithm for inserting new item into antology............ 3.10
Algorithm for creating a new ontology........ccceeeeeeen... 3.11

Creating new ontology in accordance withobject’'s

(070 101 0] 1221 Y2 3.12
Algorithm for ontology retrievalccoooeviiivieiiiiiinnnns 3.13
Overview of the three-tier architecture.................c......... 4.5

Model of environmental compliance mamagyet system .. 4.8

Procedure of compliance analysis cececceeeceeeiieeeeeeenenee. 4.10
Start up page of ECM Systemcccoorvveevvviiiiiiiinnnn, 4.13
BOM display of the product being anatiyse.................. 4.14
Data schema of part database in ECMeByst............... 4.15
Analysis on the grading of parns. cc....ceiiiennnenn. 4.16
Report showing the compliant statuhefgroduct.......... 4.17
ECM System created analysis report irr@o¢mat......... 4.18

Flow of data under the operation ofoxegs PDM functions 5.2

Sequence diagram for registering data......................... 5.5

List of Figures

Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12

Figure 5.13
Figure 6.1
Figure 6.2
Figure 6.3

Figure 6.4

Figure 6.5
Figure 7.1
Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5
Figure 7.6
Figure 7.7

Figure 7.8

Sequence diagram for checking out dajeco................... 5.6
Sequence diagram for checking-in dagacbb................... 5.7
Sequence diagram for releasing datatbje................... 5.8
Sequence diagram for data object obenlet................... 5.9
Sequence diagram for deleting data tbjec.................... 5.9

Sequence diagram for registering daFABM system .. 5.13

Sequence diagram for checking out dajiecbin DPDM
SY S OIM e 5.14

Sequence diagram for checking-in objecDPDM system
... 5.15

Sequence diagram for releasing objed$DM system 5.17

Sequence diagram for obsoleting objad¥?DM system

Sequence diagram for deleting objecBRDM system.. 5.19
Basic database operations: Read ane& Writ................... 6.2
The lost update problemouceeiiiiiis 6.3
Dependency problem: Referencing an uadaia object.. 6.4

Dependency problem: Undoing the worktber transaction

... 6.5
Basic two phase locking protocol.cccoevevveeeeiiiennen.. 6.6
Lock granules hierarchy ... eeveeeveiiiiiiiiieeeeeenn 7.3
lllustration of lock compatibility..............iiiiiiinin. 7.5
Check-out/Release process on part djeatpd with one

direct assemblyooeuiiiiiiii s 7.8
Check-out/Release process on part djeatpd with more

than one direct assembly ..., 7.9
Viewing a part with more than one distembly 7.10
Versioning of redlining ... 7.12
The 0bjeCt Classovvveviceeeeeecce e, 7.13
Product structure of the ink jet printer............cccccceeenn.. 7.14

Xi

List of Figures

Figure 7.9 (a)

Figure 7.9 (b)

Figure 7.10
Figure 7.11
Figure 8.1
Figure 8.2

Figure 8.3

Figure 8.4

Figure 9.1
Figure 9.2

Figure 9.3

Figure 9.4

Figure 9.5

Figure A.1

Figure A.2

The assembly of PIVOL liNKcceeerrveiiiiiiiiiiiiee e 7.14
The part of ink cartridge latCh..............ooooeiiiiiiiiiiiiinnnns 7.14

The design of the ink cartridge lakcheing modified..... 7.15

The design of ink cartridge lid is lgemodified 7.16
Execution precedence graph.......cccccevvviiiiiiiiiieeeeeeeeee, 8.4
Outcome of executing transactions witlsaheduling....... 8.8

lllustration of integer programming faansaction scheduling

PrOBIEM e 8.14
Proposed model of transaction sched@inPDM systems
... 8.17
Composition of data objects in datahase...................... 9.4
Histogram of the late transactions enlihsic model.......... 9.7

Histogram of the tardy transactionsim granularity version
locking Model ... 9.10

Histogram of the tardy transactiondmtransaction
scheduling model...........cccooiiiiiin 9.16

Histogram of the tardy transactionsin¢ombined model

Showing dimension of a hole using Diniengunction.A.A.3

Adding comment to a documentccc.......oooeeeeininns A.A3

Xii

List of Tables

List of Tables

Table 4.1

Table 6.1

Table 7.1
Table 9.1
Table 9.2

Table 9.3

Table 9.4

Table 9.5
Table 9.6
Table 9.7
Table 9.8

Table 9.9

Table 9.10

Table 9.11
Table 9.12

Table 9.13

Table 9.14
Table 9.15

Table 9.16

Structure of web technology and PDM swste.................. 4.6
The truth table of repeat function tdfqren repetitive addition
... 6.12
Compatibility matrix for granularity loglg......................... 7.4
Attributes of transactions in system sation example....... 9.2
Example of event oriented simulation DiVPsystem......... 9.3

Transaction examples of event orientateuilation of PDM

SYSTRIM ...t 9.5
Simulation of two-phase locking with WdiwWait and FIFO
POLCY .. 9.6
Average late transactions in the basideha...................... 9.6
Transactions in granularity version lagksimulation......... 9.9

Simulation example of granularity verdiocking in FIFO. 9.9
Mean of late transactions of granularéssion locking..... 9.11

Summary of measures for comparing thé& basdel and the
granularity version locking modelcccceeeeeveeeeeeeenn. 9.12

Three transactions in the simulationtrafsaction scheduling
METNOA. ... e 9.15

Simulation example of transaction schiedgumethod 9.15
Mean tardy transactions of transactitieduling model ... 9.17

Summary of measures for comparing tlsécbaodel and the

transaction scheduling model.............cccceceeeeeeviieeveiiens 9.17
Simulation example of combined model....................... 9.19
Mean tardy transactions of the combmedel 9.21
Statistical summary of performance campa................. 9.22

Xiii

Notations

Notations

db
PD={pd, pd,... pd}

AD={ad, ad,..., aq}
R

W

#sd

#ad

#pd

O 0O o O™

®p

Up

Hp

&p

Database

Product data object set

Assembly data object set

Read process

Write process
Number of data object$in the system
Number of assemblies
Number of parte
Empty set

Exclusive or

Member of

Proper subset
Execute

Imply

Ontology set

PDM server
PDM user
Operation
Transaction
Time

Undo process

Next In the next moment in time thatwill be

true.

Previous In the previous moment in time thpt
was true.

Henceforth: For all future timep is true.

Has been from the preceding moment in time that

p is true (including now)

Eventually: At some future time is true.

Once p holds at some preceding position.

Xiv

Notations

pUQq

P q
F={f,f,..f}

I':{(I)l,(bz,...,(l)n}
WS

S(p)
rS(p)
X(p)
rX(p)
V(p)
V(p)
IS(a)
rIS(a)
IV(a)
riv(a)
d.RL
={1,T,,...T}

T={d.d,...d}

Until: p is always true until the time wheqg
becomes true

Unless(pU q)O0(p)
Function set

Criteria set

Workspace

Lock partp in Shared mode

Release the Shared lock of part

Lock partp in Exclusive mode

Release the Exclusive lock of pprt

Lock partp in Versioned mode

Release the Versioned lock of part

Lock an assemblg in Intent Shared mode
Release the Intent Shared lock of asserably
Lock an assemblgin Intent Version mode
Release the Intent Version lock of assenably

Redlining (version) of data objectl

Transaction set

Data object required by transactidn

Cost of executing a transaction

Union of partition|

Constraint matrix of linear programming
Coefficient of mode of lockn on data objeat by
transactionl

Auxiliary binary variable of data objedt
Arbitrary large number

Binary variable

XV

Chapter 1 Introduction

Chapter 1

Introduction
1.1 Background

Product data management (PDM) systems have emengedthe last two
decade due to the increasing growth of “islandsawtomation” within an
organization [Harris 1996]. These systems wereirmalty in-house solutions
of many large corporations who found their progfesisig seriously restrained
by paper-based systems. Early PDM systems wergrdsbito improve the

management of initial release of the data to martufang process.

Nowadays there are many comparable products ladntbethe market
contemporarily, resulting in very keen competitibetween manufacturing
companies. In order to improve their competitiven@sanufacturers may need
to produce complex products with more functionsaddition to innovative
design and better quality in a short time framewkler, complex products
require multidisciplinary design teams to masterdiesign and to comply with
safety and environmental regulations. In additifor, many enterprises, the
different tasks of the product lifecycle are distied at different geographic
locations. Traditional centralized PDM systems raoé designed to provide a
communication infrastructure for the whole projeetwork. In response to
these new challenges, PDM system enhances coltalmonaork by online
access and electronic interchange of product ds@njj 1995]. The new
generation PDM systems enable enterprises to comtdumusiness activities in
a more efficient way via ingenious management oflpct information. PDM
systems are no longer limited to managing only rimfation created in the

designing phase but in the entire product lifecycle

With the advent of the internet- and web-basedrteldyies, PDM systems can
now be executed more effectively and efficientlizeTefficiency and quality of

design and manufacturing processes can be greajbyoved by product

11

Chapter 1 Introduction

information sharing and visualization in the syst8ine development of web-
based PDM system is essential for supporting cofktive design and
manufacturing at geographically dispersed siteszfigat 2000, Yeh & You
2002, Zhang, et al. 2004]. The web-based PDM sys$aeititates the process
of data exchanging and sharing in order to incrélasehroughput of product
data transaction.

Heavy daily information flow among the design ofscand production plants
Is anticipated when there are more accesses tdataeof the PDM systems.
Proper management and seamless integration arglctoi¢he success of the
business. The lack of communication among diffeqaiduct development
stages often causes data consistency problemsouglr lifecycle. These
problems become more prominent when companies iogvéheir operation
cost by locating their production plants and deseams in different countries.
Also, each of the companies’ departments implem#rgs own information
management systems such as Enterprise Resouraarigld&RP), Customer
Relation Management (CRM), and other manufactunrigrmation systems.
In such case, a centralized PDM system lacks thktyalbo provide a
collaborative working environment to all the invetl parties. Therefore, the
concept of concurrent engineering, integrated prodnd process development,
and others are introduced [Chen 1997]. They arerapanied with the PDM
system to manage all product related data and geadata retrieval for product
design and production. Distributed Product Data &gment (DPDM) system

has been developed to provide a solution to theeapmblems.

In addition to providing functions of ordinary cealized PDM systems,
DPDM systems are able to distribute product dateemnaote sites by breaking
down the geographical boundaries between distribsies over a computer
network. Thus, the efficiency of the product depelent and production
process can be improved when the information flswrderly controlled in a

collaborative working environment.

1.2

Chapter 1 Introduction

1.2 Key Issues and Problems

There are a number of commercial PDM systems agid ¢éixtension, namely
Product Lifecycle Management systems, such as Diss®DMWorks and
ENOVIA MatrixOne, Siemens’'s Teamcenter, Product $&s PTC's
Windchill, and several others vendors like AgilnSensus, Smart Solutions,
and Right Angle [Miller, et al. 1999]. These systemrovide PDM basic
functions. Nonetheless they have some limitatiors @roblems for managing
product data in the distributed and collaborativenaofacturing environment.
Some PDM systems are a further development of fhest versions, which
were designed in a time when modern computing t@olges were not
available. The newer versions claim they have bollative operatability
simply by integrating web-based technologies toviol® data communication
within an enterprise. The existing systems aregtesi for local application
and to manage data sharing on one centralized atab In a distributed
environment, each of the dispersed sites possesdesal PDM system to
manage its own local data; it is not possible faese systems to share the
product data in a consistent manner and to comrateiwith each other
correctly without proper concurrency control. Ibisvious that the existence of
a computer network or a collection of data is notisient to form a distributed

product data management (DPDM) system.

The major ERP providers, SAP and Oracle also peovambls specifically
designed for DPDM as an extension module of theftware applications.
These state-of-the-art software applications oftety address the needs of
business data management. They are specific todiecbnology applications
that optimize only part of the production procddsreover, the differences in
the data architecture between business data andigirdata limit the efficacy
of these systems in the distributed manufacturimgrenment. ERP system is
designed fundamentally for managing numerical dst&h as the inventory
data, customer information, production line scheduétc. and this is not
suitable for product data, which is consisted ofhbihe physical data (e.g.
specifications, images, and CAD drawings) and tle¢rdata. Therefore, these

1.3

Chapter 1 Introduction

conventional information management systems areosidered as a suitable
choice for managing contemporary product data. Al customization of
ERP system for specific needs is not uncommonpmiging an ERP package
can be complicated. Most businesses will implemtdr@ best practices
embedded in the acquired ERP system. Because dpehaal nature of the
customization and the ‘one off’ aspect of the wahle cost of customization is
expected to be high. Another factors that makeptamlo of customized ERP
as a DPDM system unfavourable is that the workvdedid as customization is
not covered by the ERP vendors maintenance agreethere is no warranty
the customizations would be inline with the nexgraale of the core product.
Also, the customization may not be properly docute@nnew users may have
difficulties in learning the customized module. Wtt the specification of the
customization, the effort of the development w#l wasted if someone who is
responsible for system maintenance cannot remapvtrk to the updated
system. A representation of DPDM system functienaeeded to unify the

underlying structures and the relationship of tredpct data and the system.

In a data management system, data model is impddathe system design.
Many PDM systems have adopted relational modelavd @és the underlying
formalism due to their maturity and powerful fe@sirconsequently Relational
Data Base Management System (RDBMS) has been chtusepe the
cornerstone of PDM system architecture and designs approach has
overlooked the differences between the nature @fiyt data and commercial
data. In product development, different types afdpict data are generated and
the data objects are usually very complicated. RI3BM not efficient in
managing large variety of data types and compléa dhjects. There is clearly
a need for defining a data model of the product datorder to develop a
robust DPDM system. Researches devoted to conayrreontrol (CC) in
relational database indeed are not designed fadlimgndistribution of product
data, the application of these CC methods in PDMtesys may yield
unsatisfactory results and put data integrity opgrdy.

14

Chapter 1 Introduction

1.3 Research Objectives

Given the shortcomings in implementing DPDM systevith the existing data
management technology mentioned in the previousiosse this research
focuses on bridging the gap by investigating theothtical aspects of DPDM

system. The specific objectives of this researeh ar

I. To develop a data model specifically for produdadaanagement system,
such that the representation of information aboupraduct can be

precisely defined.

ii. To establish a specification of DPDM functions thatibles product data

to be correctly organized and maintained.

iii. To develop a concurrency control model for proudideadlock free

concurrent information and control flows to DPDMssm.

1.4 Significance of the Research

This research aims to establish rigorous theoletamandation in concurrent
engineering support for distributed product datanagement. The research
introduces ontology for modeling and specifying ttaga structure. This can
concisely depict the relationships between prodaaots basic components of
which they are composed with related product detigs provides a data model
for generic workflow which can respond efficiently a heavy data exchange
and sharing in a collaborative environment. In orgdedevelop an error-free
enterprise-independent PDM system, a generic reptason PDM
specification will be formulated in temporal logidVith the generic
specification, the PDM system performance will nader be tied up to any
implementation tool nor the enterprise needs tetitis workflow to suit only
existing technology.

15

Chapter 1 Introduction

1.5 Organisation of the Thesis

The thesis consists of eleven chapters. The outhitiee thesis is as follows:

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

The problems that occur in distributextipct data management

are described and the objectives of the reseaechtated.

Background and recent development cdbdge management
system are reviewed. These include introductioR@d system
and its functionalities and other data managemgstems,
methods of system representation, and current igebs on

maintaining data consistency.

This chapter introduces a semantic naddel by the use of
ontology. The model attempts to facilitate querggasssing and
integrity checking of PDM system model.

The development of a framework in emritental compliance
management (ECM) system by employing a PDM systaeth a
web technology is proposed. An ECM system is imgletad to
show how it helps a company to analyse the comgdiaof a
product in the two directives, RoHS (Restrictiontloé use of
certain Hazardous Substances in electrical andtretec
equipment) and WEEE (Waste Electrical and Electroni
Equipment).

The representations of PDM system arsdrilolited PDM
(DPDM) system using UML sequence diagram and orsker
logic are presented. The advantages of integratiegyraphical

representation tool with formal notation are alscdssed.

This chapter specifies concurrency obrior DPDM system

using UML sequence diagrams and propositional teatpogic.

1.6

Chapter 1 Introduction

Chapter 7:

Chapter 8:

Chapter 9:

Chapter 10:

Chapter 11:

The approach is illustrated by specifying the tvage locking
method.

A granularity versioning (GV) concurresantrol model for
PDM system that can also cater for version manageraed
product architecture is presented in this chapielock-based
concurrency control model which utilises granuiariand
versioning to improve concurrency of distributedsteyn is

discussed.

A transaction scheduling (TS) algoritien proposed to
eliminate the threat of deadlock in concurrency tcmn It
discusses the use of integer programming baseddsiong
technique to control transaction executions in #Fystem.

Simulation experiments are conducted ewaluate the
performance of the proposed models. The capabitfy
integrating various concurrency control methodshwthie TS

algorithms is demonstrated.
The limitations and the future redeaof the proposed
approaches for system specifications and concwrenatrol

for DPDM system are discussed.

This chapter presents the conclusidrtla contribution of this

study.

1.7

Chapter 2 Literature Review

Chapter 2

Literature Review

2.1 Introduction to Product Data Management System

The primary functionality of a PDM system is to yide a secure repository
for storing product definition information and otHanctions in a PDM system
will be defined in the later sections [Philpotts96p A functional view of a
PDM system is shown in Figure 2.1. A PDM systemstsis of a product
database and a meta-database; users can only doeqe®duct data through
the system interface and retrieve their informatlmn querying the meta-
database. Data controlled by PDM cannot be accesgbdut going through
the proper PDM system’s procedures and users dgrstare and retrieve data

using check-in and check-out functions respectively

The meta-database of a PDM system stores informafia product, so that its
changes and list of authorised personnel can bkeda Some information like
the physical location of a data is hidden from sisend applications; this
procedure guarantees that there is no direct adoeise product database.
Hence, the data integrity can be maintained by todng and controlling all

transactions between users and the system.

2.1

Chapter 2 Literature Review

User Local Workspace

Private Date

4
Product Data Management System

» Data Controller

Transaction Base

A

‘ /l\
Meta-Data v

Processor
/ Product Database
Y CAD/CAM/CAE
Documents
Transaction Base
Inventory

~_

Figure 2.1 User accesses a PDM system througlysitens interface

2.1.1 Workflow and Process Management

A piece of product information passes through aisege of processes before
it can be used in the other stages of a produetyidle. Product lifecycle
management (PLM) is one of the cornerstones ofrpocation’'s information
technology structure. PLM is a systematic processnfianaging the entire
lifecycle of a product from its conception, throudgsign and manufacture, to
service and disposal. By implementing PDM system stgpport PLM,
organisations can work with the production inforimataccording to their

2.2

Chapter 2 Literature Review

predefined business processes regardless of phatéme. The workflow of
product information is commonly divided into fourtages: initiation,
verification, approval, and release [CIMdata 1998]ese repetitive processes
can be programmed within PDM systems, the objedsvi® ensures that all
product information go through the predefined segeeof processes. The
efficiency of the workflow can also be improved prkflow and process
management as a PDM system can proactively progrdssument to its next

stage of process when the work in the current seagempleted.

2.1.2 Product Structure Management

In a PDM system, product data can be organisedra@iogpto the product
structure; the structure is usually determined Iy telations between each
component of a product. This facilitates users &exdnine easily which

information will be affected when changes are madider, et al. 1999].

2.1.3 Classification

PDM classification functions group parts, processesl other design

information by common attributes [ASME 1998, Solidiks 2005]. Searches
for alternatives can be performed based on theegald attributes defined in
the system for a particular item. Standard andlampiarts can be found more
easily, the product development time frame canHmetened when engineers
and designers can re-use them instead of reinygefrtom scratch. Moreover,

PDM systems facilitate capturing solutions from duct development

processes for future reference. For instance, a designing approach for a
new project may be potentially useful in other pobj The approach can be
documented and stored into the system and thisvalleeople to look for

solutions when they deal with similar problems.

2.3

Chapter 2 Literature Review

2.1.4 Project Management

PDM systems provide project management functionsmimnitor project

progress [Kim, et al. 1998, IBM Corporation 2007}ojects are shown in work
breakdown structure, so that the progress of tasks be tracked easily.
Completion of the product data required for eadk ta recorded against the
plan, which enables users to see how a projecepdscin terms of the data’s

status.

2.2 Data Model for PDM System

A number of research issues must be addressedén tar develop an efficient
concurrency control for PDM system. In designingl aanalyzing a PDM
system, product modeling is an inevitable stepdBcbdata model explains the
relationships between components of a design amdsdhnious activities of a
PDM system. In a data management system, data n®dm@lportant for the
system design. A semantic product data model wesepted by Shaw, Susan
Bloor, & Pennington [Shaw, et al. 1989] to suppprbduct design and
manufacturing. Additional data modeling charactaris such as
parameterization and data sharing have been irgeatito support engineering
design. Based on the semantic model in ChonolesQaradrani [Chonoles &
Quatrani 1996], Stadlbauer proposed a product mwaidel for design support
using functional skeletons [Stadlbauer 1992]. Ta&ture represents the main
functional flows in a product and allows the ef#ict storage of designs as well
as the generation of verified products. A data rhod#éed Engineering Data
Model (EDM) has been introduced by Pahng, Senid \&allace [Pahng, et al.
1998]. Their model is for representing design andimeering information,
which defines a small set of structures capabldegficting a wide range of

semantics necessary for engineering design.

In the early 80’s, many relational database systemese introduced.
Traditional RDBMS have been developed to meet theda of business

2.4

Chapter 2 Literature Review

applications, such as accounts, payroll, inventawgtrol etc. These systems
are based on the classical record-oriented dateeitbdt views data as a
collection of relations, each having a collectidmexords stored in a table. The
traditional database technology has several shoitggs in managing the data
of new applications in computer-aided design andmaer-aided manufacture.
The environment of these next generation applinatioften requires long
duration and cooperative transactions. There iged rfor the ability to deal
with complex data for computer-aided applicatiomge the requirements of
database system for product data management in ¢érinoth the data
structures and the data model are very differentltional database systems.

2.2.1 Object-Oriented Approach

The technique of object-oriented for database sydtas emerged in two
decades. Object-oriented (OO) methods organize thetinformation, and the
process that manipulates the information to maingadirect correspondence
between real-world and database objects withouhdosheir integrity and
identity. In fact, OO database management systed@DBMS’s) provide
more advantages over RDBMSs in many perspectivem$iur, et al. 1995].
Researches in OODBMS have accelerated the movesigrdng information
systems from conventional approach to OO. One ef dharacteristics of
OODBMS is to provide the ability to describe thegagation relationships
between an object and objects of which it is coradofor the purpose of
storage and operation. The aggregation conceptniescdhe fundamental of
versions [Chou & Kim 1986] and composite objectopvet al. 1989], which
represent the version-of relationship and part-@htionship respectively.

Various PDM systems today support these features.

2.2.2 Object-Oriented Technology for PDM System

PDM system architecture and design are also shifteth conventional

approach to OO. For instance, Zhang proposed am aqphitecture [Zhang, et

2.5

Chapter 2 Literature Review

al. 1995]. In particular, the components of thedoici data definition model,
especially the principle and mechanism of the OO[BMre discussed.
Architecture of Teamcenter Engineering of Sieme8gerhens 2008] also
adapts a modular and object-oriented approach dwige a comprehensive
framework to support the entire product life cyclRumbaugh’'s object
modeling technique (OMT) has been adopted for yiséem design. Using the
OO paradigm, an object-based data model is proplmsdeDM system [Kim,

et al. 1997, Liou 1994]. However, there is a liita in the scope of the
modeling that the model can only be used to marageings, parts, and
product structure. To satisfy more requirements rehl application, an
extensible and general PDM system framework maddiscussed [Kim, et al.
1998]. OO technology is applied to construct theegalized object model.
However, the framework is based on RDBMS insteadOG@IDBMS, the

constructed object model cannot be mapped into RDB.

2.2.3 Ontology

Ontology has been limited to the study of philogojh the past, it is now
applied to a number of areas and its importancedasgnised in many research
fields. It is therefore necessary to clarify théemded meanings of the terms
that will be used in designing PDM system. Firstlye distinction between
“Ontology” and an “ontology” is considered. The rfwar is referred to as a
subject of study in philosophy that is concernethwine nature of existence,
and the latter is referred to as a logical theagoanting for the intended
meaningof a formal vocabulary [Guarino 1998]. Bernarasydsgoti, and
Corera [Bernaras, et al. 1996] stated that ontoleyya mechanism that
explicitly defines a domain with specifications aincepts, objects, relations
and axioms. In other words, an ontology is a dpson of the properties of
objects and the relations existing between diffesents of objects. Also, Patil,
Dutta, and Sriram [Patil, et al. 2005] proposeaatology-based framework to
enable semantic interoperability between differapplication domains. A
semantic equivalence matrix is introduced to resdhe ambiguities due to

differences in meaning and syntaxes in differemhadios. Logic reasoning is

2.6

Chapter 2 Literature Review

used to determine the semantic equivalences betaggitation ontology and
product semantic. Mapping of the results to thermais performed to

determine the exact equivalent concepts.

An ontology can serve as a frame of reference fer discussion of the
essential concepts of OO architecture. It has plagestrategic role for
developing object class [Eden & Hirshfeld 2001]piang duplicate similar
actions [Gruber 1993]; enumerating and standargizmportant terms used
[Chandrasekaran, et al. 1999]; and changing andtinqudlegacy data in an
effective way [Ding & Foo 2002]. Ontologies helpopée and computers to
access the information they need, and effectivefyraunicate with each other,
since they describe the semantics of a domain mag that humans can

understand and computer can process.

2.3 System Modeling and Specification

In order to develop software that solves a paricyroblem, the desired
properties needed to be achieved are usually wriife in natural language.
Such description is called a specification. From $pecification, a model of
the system can be built, which helps users to wtaled the reality and have
computer simulations. Therefore, the specificatsimuld be defined as
accurate as possible. However, it is widely agrdeat a natural language
cannot be considered as a good specification |layeguEhis is due to the fact
that computers are not capable of understandingnteaning of natural

language. The informality of such descriptions ncayse ambiguities which
could eventually result in serious flaws. So systaralysts would try to define
the problems to be solved by the software and gémer requirement analysis

in a more formal approach.

2.3.1 Graphical Modeling Tools

Formal specification has to be unambiguous so $lyatem developers can

understand the requirements, develop a systemoffetites accordingly and

2.7

Chapter 2 Literature Review

be able to verify that the specifications do notenany contradiction which
would lead to inconsistency. These formal spedifics are usually symbolic
encodings of real-world constraints into some lofndbgic. However, classical
formal methods, namely mathematical proof, are wiolely accepted in the
industry since too many streams people can uspdafg a system, although
classical methods guarantee the correctness oftansywithout exhaustive
tests [Drusinsky 2006]. A practical alternativefofmal methods is graphical
modeling. Graphical modeling languages are commaskd for specifying
interactive systems and reactive systems. A fewljaogliagrammatic system
analysis tools and their applications will be revael in this section.

The processes of systems can be modelled by Dava Biagram (DFD) that
is introduced by Yourdon and Constantine [Yourd®79]. A DFD is a tool
that shows how data enters and leaves a partiqutazess. A network of
processes is created by linking up the major ds/iof a software system
with data flow paths. Formalism of DFD defined iragh theory [Sree, et al.
1990, Tao & Kung 1991] and formal semantics apgdrdaciler 1988, Gary, et
al. 1999, Vazquez 1994] are proposed to make DFDletsoverifiable.
Approaches for extending DFD for Modeling dynam&héaviours of real time
systems have been presented in [Gomaa 1984, Kuar&niK1988]. Examples
of data flow-based systems are satellite imageageosystem [Abernethy &
Kelly 1992] and an information system for a locekth care agency [Farrell
& Myers 1981]. One reason original DFD’s are rarelyed for system
modeling nowadays is that they have not been stdizgal, since there are so
many conventions. The other reason is that DFD’'esdnot model time-
dependent behaviour well, such as when processesranted or deleted.
These make DFD’s unsuitable for modeling eventairigystems of which
events are supposed to be responded immediately Wiey occurred and

processes have indefinable start and finish time.

A graphical modeling tool commonly used for defopievent-driven systems is
State Transition Diagrams (STD). STDs consist ablection of nodes that
represent states, connected by edges that repasmtransition. State is the

status that an object must be in before consideat@nging into another status.

2.8

Chapter 2 Literature Review

Transition is an event that changes the state oflgect to a specific state.
Figure 2.1 is the state diagram of an automatlertehachine (ATM) [Langer
2008]. The boxes in the STD represent the possitaitises that exist in an
ATM. The arrows are the events that trigger a ckawfgstate of an ATM. For
example, when the ATM is in the “Enter Valid Cardtate, the event of
entering a valid bank card changes the state ahgdlor a valid card to
prompting a password. At this state, if the banidda invalid, the ATM wiill
go to the state of “Enter Valid Card”, otherwigewill ask the user to enter the
password. The reason for using STD to model a syst@t never ends is
because it can show the current state of a systehthee ability to decide the
state it goes to based on the input condition kenDFD that reflect only the
data flow of a process. Therefore, STD is moreaslgt than DFD in modeling
an on-going system that moving from one statusntwibeer without a definite
end.

Enter Valid Card |
4
Enter Valid Bank Card Invalid Card or “Time Out”
N
Insert Password
Valid Password
A Invalid Password or “Time Out”
N Main Menu
Select “Deposit”
Select “Withdraw”
Select “Inquiry”
Select “Transfer”
Y A
Deposit Funds Transfer Funds Withdraw Funds Inquiry

Complete Activity
Figure 2.2 Bank Teller state transition diagram
Statechart is a variant of STD and have been useslipport the design of
interactive and automated systems. It extends STD three techniques to

enrich the modeling power expressiveness [Wieri@@@3]. In particular,

parallelism allows statechart to represent conotippeocesses in one diagram.

2.9

Chapter 2 Literature Review

This technique is valuable for the design of DBM&song [Leong 2002] uses
statecharts to model some of the DPDM system fanstiAlthough statechart
is a highly structured and economical descriptianglage for specifying
system behaviours, like many other visual languagjes definition of the

formal semantics of statechart has proved to beeely challenging due to
the richness of the language.

Unified Modeling Language (UML) [OMG 2007] is anethpopular graphical
modeling tool to represent a system specificatidblL was created with the
goals of unifying the best features of differentisérg languages and of
creating an industry standard. UML has been corsidey many industrial
and academic researchers as a promising systenlingpld@éguage, because it
Is a semi-formal notation that is relatively easyuse and it is provided with
code generation tools. However, the detailed systegquirements are often
overly simplified when being specified using stamdéemplate in natural
language, thus system analysts may incorrectlyrpree the UML function

specifications and create many defects in the syskevelopment [Deepali, et
al. 2005]. Furthermore, UML is not an executablecsication language and
there is no standard on how to validate such models formal approach is

needed for verifying UML-specified models.

In PDM system design, it is not uncommon to useouartypes of diagrams
for different purposes. In the process-based PDMesy approach [Chen &
Tsao 1998], product development processes are idedcby flow charts,

statecharts are used to describe changes to teet®lgnd their relationship
over time and the flow of data in processes areveha DFD’s to specify the

data transfer between computers and servers inNa 8Btem. Later, a UML-

based approach for implementing PDM system is mego The inter-

relationship between data, retrieving method, amelgration of the PDM into
the product development process are of concerndilyret al. 2004].

2.10

Chapter 2 Literature Review

2.3.2 Formal Specification

In order to develop a system that works corredtl,functions need to be
precisely described, such that people can exarhgie ¢orrectness, that is, the
system can be tested whether it produces corrsutt rgenerally and predicted
with great accuracy under extreme conditions. Tomnél descriptions are
referred to as specification. It is not uncommoaet &rror-prone systems have a
loosely-defined and incomplete specification. Pecispecifications are
essential for systems and the correctness is athigy writing them in formal
language. Logic is the tool chosen to establish dpecification of a PDM
system, as logic is a formal language for congimgctarguments about
situations in such a way that they can be reasdoechally. Prior to
construction of a PDM system, it is worth to bualanodel in order to test that
the design is correct. The benefit of this modéehat it helps system designers
to experiment the behaviour of the system operatimder extreme conditions,

thus avoid costly errors if unexpected events waggpened.

A specification for describing the properties obystem can be represented
with the formal language. Then the correctness@fstystem can be verified by
checking the well formed logic description formuthat represent the system.
As far as the formal notations are concerned, thssical logics, such as
proposition and predicate logics, are not enoughDiBDM specification. A
system is classified as a reactive system if ite i® to maintain ongoing
interactions with its environment [Manna & Pnuel®92]. Examples of
reactive systems are communication networks, ATMchirees, telephone
systems, etc. Some reactive systems are not irdetmleterminate. Such
systems have to be specified in terms of theirinaat behaviour. The main
concern of reactive systems is that they do notatpen an orderly sequence
of input, process and output. In many cases, @&sysbhay receive many new
inputs from the environment, correctness of thdéesys becomes difficult to
maintain as the number of interactions grow. Assult, time-varying change
management is the standard. To cater for this featemporal logic deduction

information management is a potential candidate.

211

Chapter 2 Literature Review

Temporal logic was originally developed in orderépresent tense in natural
language. It is a well-developed branch of modgld [Hughes & Cresswell
1968] and has been put forward by Pnueli [Pnueill @nd others as a useful
tool for dealing with computer programs and digite@lrdware. It has been
applied to the formal specification and verificatioof concurrent and
distributed systems. For example, in the case saidynowledge reasoning
[Dixon 2006], a knowledge game called Cluedo isc8ea usingKLy, which

is a logic combining propositional linear tempolagic with a multi-agent
technique. A system is developed for a playernd Bbut the identity of other
players in a game by inferring the past moves uaingsolution base approach.
Wood [Wood 1990] specifies the operation of elekattm demonstrate the
appropriateness of temporal logic for system spetibn. An elevator model
is built separately according to a subset of tlggckl formulas using the State
Machine Language. Temporal logic is suggested ta geod representational
tool for specifying concurrent systems. Also, a eloof concurrent program
executingn disjoint processes in a shared memory environmesdelled in
temporal logic is presented in [Pnueli 1981]. Imdbmstrates that specification
of the nondeterministic behaviour of a program dan described using

temporal logic.

Temporal logic is popular within computer scienaxduse it can formally
specify the critical properties of systems, suchsafety condition, liveness

condition, and fairness condition.

Safety: These conditions are those that must nadroo the operations of a
system. In the PDM system condition, for exampl&aasaction must lock
a data object. Another example of a safety contlitiothat no more than

one transaction give a write-lock to a data object.
Liveness: These conditions specify what the systenst do. For example,

whenever any transaction wants to lock a data ghjewill eventually be

permitted to do so.

2.12

Chapter 2 Literature Review

Fairness: These conditions describe how nondetestigirspecifications are to
be resolved. For example, if a data object is fese two transactions
request the data object simultaneously by spedgfifie action to be taken,
the fairness condition could express which transaaan have the priority

to access the data object every time such a rawhtmm occurs.

These conditions are typically expressed by givangset of relationships
enumerating the temporal constraints among evertsaations. The temporal
logic chosen to describe the concurrency moddiigresearch is Propositional
Temporal Logic (PTL) introduced by Pnueli [MannaR&aueli 1992]. PTL is
an extension of propositional logic with the aduhtl temporal operators, and
it does not permit explicit quantification on thariable time. It has been used
for specification and synthesis of communicatingcesses [Manna & Wolper
1984]. Given that the database operations are das#d and the time of their
presences are indefinite, PTL would provide an ad#x expressiveness for
specifying models without the complexity of the ntiative of time variable
[Bellini, et al. 2000].

2.4 Concurrency Control

A PDM system consists of a number of componentsthacheavy flows of
data within the system and between its users greated. The data flows are
further complicated within distributed DBMS’s thaupport collaborative
design and manufacturing at geographically dispestes. The web-based
PDM system not only facilitate the process of datehanging and sharing but
also the number of transactions that access trebase will be increased. A
concurrent control mechanism is needed to cooreioahcurrent accesses to a
database to maintain data integrity.

A set of transactions can be executed seriallyamrcarrently, a schedule is

serial if all the database operations of one trelitsa are executed before any
operation of the others. That is, the transactiams not interleaved. On the

2.13

Chapter 2 Literature Review

other hand, if database operations from differesntgactions can be executed
in parallel or interleave, a schedule is concurr@uncurrency problems arise
when there are two or more concurrent operatiorsgred on a data object
and at least one of which is a write operation. hSimaproper concurrent
execution of a set of transactions violates thalukge consistency. As database
consistency can be preserved by executing transacserially. Therefore, if a
concurrent execution of transactions is equivatenany serial execution of
those transactions, then the concurrent execuigeralizable and it preserves
the database consistency as well [Bernstein, etl@I9]. Because of the
serializability criterion, the database system seedknow only the sets of data
objects whose access is required by transactiothghesir operations, it makes
the serializability to be the well adopted correst criterion for concurrent

schedules.

In order to preserve the database consistency, skim#s of control
mechanisms are clearly needed to ensure that genturansactions do not
interfere with each other. This control, called @amency control, manages a
schedule of the database transactions, which &rangement of the execution
of a transaction set. Since a schedule is corfdbiei execution of the set of
transactions is serializable, the goal of datab@m®currency control is to
ensure that all executions are serializable. Caroay control is well studied
in traditional DBMS’s. However, there are relatidééw studies that address
this issue in PDM systems. Two most popular comrway control mechanisms
in traditional DBMS’s will be reviewed in the folldng sections. In fact, many
practical DBMS concurrency control algorithms aegiation of the two basic

techniques: locking [Eswaran, et al. 1976] and sitaep ordering [Li 1987].

2.4.1 Two Phase Locking

The two phase locking (2PL) technique is devisedatairol potential conflicts
between read and write operations. It guarantegaizability by preventing a
transaction from obtaining a lock on any data dlgdier releasing it to another

transaction [Bernstein, et al. 1979]. It requiregle transaction to obtain a

2.14

Chapter 2 Literature Review

read-lock or a write-lock on a data object befdegtsg the reading or writing
processes respectively. When a transaction req@estad-lock on a data
object, this lock will only be granted if no otheansactions have already held
a write-lock on it. Similarly, a write-lock will dg be granted if no other
transactions have already held a read-lock or geMock on this data object.
Once a transaction has acquired any lock, the actio®i enters a growing
phase. The moment a lock is released, the transaetiters a shrinking phase
and is not allowed to acquire any more locks. TR& Protocol is popular
because of the ease of implementation due to @atgimplicity. However,
2PL has the risk of deadlock as the transactionswagt for unavailable locks.
Several 2PL-based techniques have been proposatietaate the deadlock

problem for obtaining a higher degree of concuryenc

2.4.2 Granularity Locking

A product may consist of a single part, e.g. awcte as many as millions of
parts, like a Boeing 747. The latter may structur® various systems,
subsystems, assemblies and parts. However, PDMtlites seldom consider
product architecture issue in the study of conauwyecontrol. The product
hierarchies should be used collaboratively with t@ncurrency control
algorithms. A database can be organized as a tigranf lockable units
[Carey 1983]. Granularity refers to the size ofadanit that can be locked. The
finer the granularity, the greater the concurrertbg, coarser, the fewer locks
to be set and tested [Jun 2000]. When a transaséitsna lock on a data object
at a given level of hierarchy, it will implicitlyock all its descendents as well.
The intention to lock at the higher levels of therarchy should be set before
setting access lock at a lower level. A granuldotking applied to composite
objects proposed by [Gary, et al. 1975]. Howeueis tocking protocol does
not recognise a composite object as a single ldekatanule and may suffer

from excessive overhead or restrictions on the.data

The lock overhead, data contention and resourcdecton are factors
affecting the performance of different lock gramitja][Ng & Hung 1995]. The

2.15

Chapter 2 Literature Review

finer the lock granularity adopted, the more thekloverhead involved and the
higher is the degree of both the data contentiahthe resource contention.
When the transactions access the database sedjyeatithe system is heavily
loaded, coarse granularity is preferred for tratisas accessing large number
of data objects. When the transactions access dtabase randomly or the
system is lightly loaded, fine granularity is atbetchoice for small or mixed

transactions.

2.4.3 Version Locking

In product development, product designers will anly use the most recent
version of the data object but also the previoues diherefore, several versions
of the same data object must be kept properly. v wersion of data object is
produced for each write on that data object. Versiantrol helps to keep track
of the evolution of the data objects being desigriedlso allows rollback of
changes made to file by storing the data correspgrid a context. Reisdorph
[Reisdorph 1999] suggested using file historytlisperform version control. A
model of version is proposed by Talens, Chabang,Golinas [Talens, et al.
1993] to facilitate the storage of version by awwgdinformation redundancy
between successive versions. In addition, versariral can be implemented
with concurrency control, such as multiversion tstaenp algorithm and
multiversion lock-based with timestamp algorithmefBstein & Goodman
1983]. An adaptable constrained two versions twasphlocking scheme is
proposed for synchronizing the read and write loeguest on the different
versions of data [Goel, et al. 2000].

2.4.4 Flow Graph Locking

Flow graph locking (FGL) [Eich 1988] is a non-2Packing method. This

technique is based upon data flow graph and obsanalizability in execution

of transactions as a product of data flow schedulf data flow graph is a
directed graph where nodes represent operatiorize tperformed and arcs

2.16

Chapter 2 Literature Review

indicated scheduling constraints on the operati@asa flow along the arcs
from operation to operation. The flow graph lockifystrated the data
dependencies that exist between transactions, wtieretransactions are
represented by the nodes with the progressioneoloitks directed by the arcs.
This specialized data flow graph is called databidee graph. The FGL

guarantees deadlock free and serializability. Hewea transaction may have
to lock data items that it does not access, whiithinerease locking overhead
and lengthens the waiting time. Additional non-2Btotocols have been
proposed for data organized as directed acycliplgraDAG) [Kedem &

Silberschatz 1979, 1980, Yannakakis, et al. 197Bgse methods restrict the
order in which data items can be locked based tlipergraphical structure of
the data. The DAG methods may require more datasit®d be locked than
would be required with 2PL. Some methods may immascading rollbacks to
ensure serializability. A cascading rollback occutsen the termination and
rollback of one unfinished transaction causes émmination and rollback of

other unfinished transactions.

2.4.5 Timestamp Ordering

Timestamp ordering (T/O) [Li 1987] technique assida each transaction a
unique identifier which is its start time. Whenransaction tries to issue a
read-lock or write-lock on data objesitread(d)or write(d), the algorithm will
compare the timestampS of read_TS(d)andwrite_TS(d)to determine which

is the oldest timestamp among all timestamps afsaations that have read
data objectd successfully and the oldest timestamp among alltithestamps

of transactions that have writtdrsuccessfully. This ensures that the timestamp
order of transaction execution is not violated. iBgira read action, ifead(d)

of a transactiom with timestampl'Sis younger thamead_TS(d)theread(d)
request is rejected and transactiois aborted, else it is executed. If the order
is violated, then transactidnis aborted and resubmitted to the system as a new
transaction with a new timestamp. During a writgicac if write(d) of a

transaction T with timestamp TS is younger than

2.17

Chapter 2 Literature Review

max read_ T$ 3 write TEH , the write(d) request is rejected and

transactionT is aborted, else it is executed. An aborted reads restarted
with a new timestamp. This technique ensures dekdtee. However, there is
a possibility of restarting and blocking if a trangon is continually aborted
and restarted. Using timestamp and the knowledgeaufsets and writesets, a
deadlock free concurrency control scheme has besgoped by [Dasgupta &
Kedem 1983]. The Delay/Reread protocol achievesistency by requiring
some write actions to be delayed and some realle t@read [Mohan, et al.
1985]. Major drawbacks to this method are the owadhand requirement that

some data are read twice.

2.4.6 Deadlock

Locking is one of the well-known concurrency cohttechnique and more
likely to be encountered in practice. The benefitocking is the absence of
cascading rollbacks. However, 2PL has the riskeafdibck as the transactions
may wait for unavailable locks. Although locking agantees serializable
schedules, it is not necessarily deadlock freedlded is a situation in which
two or more transactions are waiting for data disj¢icat are locked by others.
Locking protocols can be modified to avoid the aoence of deadlock.
Deadlocks must not exist to ensure that every & will eventually be
executed. The main approaches for resolving dekdiwe either deadlock

detection or deadlock avoidance.

Data dependency of the transactions can be detedntiy finding a cycle in a
Wait-For Graph. Deadlock occurs when a cycle isnfst among a set of
transactions. An occurrence of a deadlock betweertrtansactions, ;Tand T,

using a graph is illustrated in Figure 2.3. Trees ased to represent
transactions, the starting node of a tree is ladelith the transaction name,
other nodes are the data that locked by the tréinsat)ndirected arcs in a tree
represent the relations between data and the tamsand directed arcs depict

the request of data issued by the transaction, eviner tail of the arc is at the

2.18

Chapter 2 Literature Review

starting node of a transaction which makes theesigand the tail is pointed to
data which is being requested. A cycle exists wienstarting node and the
end node of a path are the same. It shows thdtahsactions that are included
in the cycle are said to be deadlocked. Suppedees not need data objekt

to process;; will be the only transaction waiting a data whishlocked by
other transaction, then only argspresent in the graph and no cycle is formed,
likewise for the presence of, anly. Deadlocks occur when concurrency
control using locks is implemented to a PDM syst€ummon approach of
selecting the transaction to be restarted comésarnversions, called Wound-
Wait and Wait-Die [Bernstein & Goodman 1983]. Be#irsions determine the
action uponTy if it is older thanT, whenT; requests a lock on a data that is
already locked by>. Ty will be rolled back in Wound-Wait and will be waigj
until T, completes its operations in Wait-Die.

Figure 2.3 Deadlock occurs when transaction arelegting data from

each other

2.19

Chapter 2 Literature Review

2.5 Limitations of Existing Approaches

Concurrency control has been studied in many da&lapplications. In
particular, many works have been devotedel-time databasenanagement
system (RTDBMS). Applications of RTDBMS can be found iretwork
management systems, military command and controhagement, and
program trading in the stock market. Abbott and dizafAbbott & Garcia-
Molina 1992] identified that conventional databagstems do not emphasize
the notion of deadlines for transactions. The comocy control schemes
designed for these databases lacked the abilitgdetermine an execution
schedule based on the time constraints of individtensaction. Various
scheduling algorithms have been developed to sthedal-time tasks to meet
their timing constraints [Charles 1982, Liu & Jani®¥ 3, Zhao, et al. 1987],
given the arrival time, deadline, estimated proicgssme, and priority of each
task. Yu [Yu, et al. 1994] states that “traditiomahl-time scheduling usually
does not address the data consistency issue, vheoeaaistency may have to
be maintained by the concurrency control in datalsstems.” In addition to
meeting the deadline requirements, there are daltifarences exist between

conventional database and DPDM.

An adoption of any of these methods would not beidwal solution for
resolving concurrency problems of a DPDM system.sige and
manufacturing workflow can be streamlined by impéeng suitable DPDM
system that manages all product-related data irorganized manner. One
major function of DPDM system is to maintain datéegrity and to provide
accurate data when required [Leong, et al. 200Bpv& all, the differences
between the natures of DPDM systems and convemtdaimbase systems
limit the efficacy of these methods. Timestampingtimod is described as an
optimistic scheme, since it assumes that confliets unlikely to happen in
practice. One advantage of the scheme is that datep are ever written to the
database prior to successful completion of commatgssing, so such restarts
do not require any updates to be undone. The ndagovback of the scheme is
that restarting transactions waste all the effdriclv has already been spent on

2.20

Chapter 2 Literature Review

the works. The effect of restart on databases somelepends on the nature of
the files. For example, a drawing design is beingutaneously altered by two
CAD engineers, since this technique allows multipteesses to data and
performs checking at commit time to see whetheord#lict did in fact occur.
Hence, it is definitely that there is one enginedl have to redo his/her work
if the work is submitted later than the other oN&any previous works use
transactions rollback as a means for preservingsistancy and deadlock
freedom. These rollbacks require a considerableuamof overhead, and
therefore degrade performance of the system. Tdn®imance cost had been
considered acceptable since concurrent databatssys the past had a few
transactions concurrently active. With the adveinhetwork technologies, a
number of machines accessing global databases #mt oesources is
enormous. The amount of concurrency in a typicalMPBystem can be
expected to rise dramatically. In such an enviramiiae use of rollbacks as a

means for preserving consistency will become maorddnsome.

On the other hands, locking schemes are considpesdimistic; as they
assume that every piece of data accessed migtdduked by other transactions
and therefore better be locked. The effect of aauyithe lock is to prevent
other transactions from changing the data objattguestion. Despite 2PL
outperforms the basic T/O and FGL in most casemd{ & Livny 1989,
Thomasian 1998], 2PL is not completely suitable doncurrency control in
PDM systems. For example, if a DPDM system adoptls &2chnique as its
concurrency control algorithm, each DPDM user mmuake sure that he/she
can lock all the files that are required to be vearlon that day. This is because
other users will only release their files until therk completed under the 2PL
technique.

One factor that influences DPDM concurrency isdh& complexity. Among
the functions of the DPDM system, concurrency canis essential to the
checkout, release, obsolete, view, redlining, afdrences. In order to provide
the control over the data access, most DPDM sysestablish a set of access
rules that determine what data can be accessedhahmode and at what point

in the product life cycle. This is complicated wreepart or drawing belongs to

2.21

Chapter 2 Literature Review

a certain assembly. In such instance, the modificato the assembly can
cause the part to be locked out for write access tlne process is completed.
The more number of components of a data objectthasjata object is more
likely to be amended by more users. Locking all da¢a related to the data
objects for making changes reduce the degree afucmency or overall system
throughput. A procedure that can isolate only tiected parts of the data will
be helpful to conduct DPDM with efficiency. Theredpa concurrency control
should be specifically designed with the considenatto the unique

characteristics of DPDM systems.

2.5.1 Justification of Tools and Techniques Adopted

In order to develop a concurrency control model RPDM system, the
meanings of objects and functions of a DPDM sysaewh their relations must
be precisely described. An ontology for DPDM systendeveloped in the
research. Since by representing the semanticstafinla machine-processable
form, ontology based reasoning service can proemesistency checking to
the systems with respect to queries and assemising the semantics defined

in the ontology.

The proposed specifications of the PDM and DPMDchams in this research
are developed using UML sequence diagrams. Sequkageams facilitate the
specification process by allowing visual iteratithmough the operations, and
also possess the expressiveness for both sequamtigdarallel operations. The
diagrammatic specifications are then describedrst Brder Logic (FOL) and
Propositional Temporal Logic (PTL). However, spgici§ DPDM functions in
FOL alone is not sufficient to express the contifaghaviour and time-varying
changes of a dynamic system, and PTL is a complenena formal

specification for DPDM system.

Granularity Version locking proposed in this reskas developed based upon
the concurrency protocol proposed by Gary [Garglel975]. Because 2-PL
protocol never forces a transaction to be rolleckkmnd never requires data to

be reread. Version and Intent Version locks amodhtced to lock the current

2.22

Chapter 2 Literature Review

version of the data object at part and assembbl lmspectively, this allow the
data object to be readable by other users whilevaversion is being created.
The avoidance of deadlocks is achieved by schegldfia execution order of
transactions subject to the compatibility of loeplied on data objects using

integer programming.

2.23

Chapter 3 Ontological Data Modeling in PDM System

Chapter 3

Ontological Data Modeling in PDM
System

3.1 Application of Ontology to PDM

General concepts, such as actions, time and iteaansbe formalized with
reference to ontologies that are explicit spediftces of conceptualisation. A
method of design that based on generic ontologyasented in [Garcia, et al.
2004]. The significance of this effort is that ieates an ontology that specifies
attributes and functional requirements of eleméefmed in a model. The case
study of project development showed that the ppeids can work more
effectively and have a high level of mutual coresisty by using the project
with ontology. Ontologies are needed to interphet tommon understanding
of structure of information among people and tobdmaeuse of domain
knowledge. They provide a common vocabulary of mea and define - with
different levels of formality - the meaning of tesrand relations between them
[Bansler & Havn 2003]. They also maintain the cetesicy of the system by
guiding individuals’ perception of products in amtance with the formal

definition of ontologies.

An ontology that represents elements of the prodietelopment process
forms the basis of the PDM system. The frameworlammfontological PDM
system that integrates an ontology-development, tébtégé [Noy &
McGuinness 2003], with a commercial PDM system, Rdiks [SolidWorks
2005], is shown in Figure 3.1. The objective cdating an ontology-enabled
PDM system is to create a repository for managhegdefinitions of objects
for product development. By collecting data andoinfation from various
projects involved in the product development precassers can use the
ontology-development tool to categorize this infatibon using formal

semantics for developing specification of concucyecontrol in PDM systems.

3.1

Chapter 3 Ontological Data Modeling in PDM System

/ User \
Applications
Workspace
CAD/CAM/CAE
- Private Files

PDM Functions

Workflow Product Structure e Project
Classification
Management Management Management
Meta Data Query Ontology
Processor Repository
Project Database Product Database
\\ PDM Server /

Figure 3.1 Framework of ontology-enabled PDM system

3.1.1 Procedure of Creating Ontology

A design of an ink cartridge holder of a printesrfr PDMWorks [Corporation

2004] shown in Figure 3.2 is used as an exampikugirate the procedure of
developing ontology for the product developmentcpes using Protégé. The
description of the six phases of the ontology dewelent process is listed as

follows:

3.2

Chapter 3 Ontological Data Modeling in PDM System

Figure 3.2 (&) Assembly drawing of an ink cartridgdder

Figure 3.2 (b) Drawing of an ink cartridge holderexploded view

3.3

Chapter 3 Ontological Data Modeling in PDM System

1. Determine Scope
Determine the types of information that the ontglaghould provide
temporal best practice and the domain that it shoalver and the method

of collecting the data from the PDM system.

2. Enumerate Terms
Demodularize the product into atomic parts and ites the important
terms like “Cartridge Lid”, “Latch”, and “Pivot Lki’ and their properties

are essential in standardizing the creation oselagFigure 3.3).

3. Define Classes

Define classes for storing entities with similaadcteristics or functions.

4. Define Properties

Define properties such as dimensions and coloanaibject.

5. Define Constraints
Describe the set of possible values like minimum araximum values for

a slot is defined.

6. Create Instances
The class becomes a direct type of the instanceslahdalues are assigned

to the instance frame (Figure 3.4).

Normally, the ontology development process in tgak more complicated
than what has just been described. It often tumst@ be a lengthy iterative
process that involves repeatedly going throughpihases in arbitrary order,

except the phase determine scopédefore the ontology is formalized.

3.4

Chapter 3 Ontological Data Modeling in PDM System

CLASS BROWSER |

For Project: @ Inkjet printer

Clas= Hierarchy

e & X

-

S THIMG
SYSTEM-CLASS
O Inkjet prirter
@ Part
@ Cartridge Lid
& Cartridge Extractor
© Cartricge Motherboard

>

v

@ Cartridge Latch

0 Cartricige Holder
@ Ink Carriage
@ Link Support
¥ O Sub-Assmehly
@ Pivot Link

ciassomowsen 0

For Project: @ Ink Cartricos

Class Hierarchy

Figure 3.3

INSTANCE EDITOR
For Instance: # InkCartridge-001

L

THING
> SYSTEM-CLASS
| Ink Cartrigde (1)
¥ ®Pati)
@ Cartridge Lid (1)
@ Cartriclge Extractor (1)
@ Cartridge Motherboard (1)
@ Cartriclge Latch (1)
@ Cartridge Holder (1)
@ Ink Carriage (1)
@ Link Support (1)
¥ @ Sub-Assmebly
@ Pivot Link (1)

e Id

Create classes

{instance of Ink Cartrigde, internal name is...| | o

InkCartriclge-001

Parts

P A 3

Sub Assembiy Py ‘:":‘ ¢

CL-001
& CE-001
% CcMB-001
% CH-001
InkC-001

4 PL-0O1

i

|v

Figure 3.4

3.5

Creating an instance of ink cartridge

Chapter 3 Ontological Data Modeling in PDM System

3.1.2 Evolvable Ontology with Options of Instance

Ontology-enabled PDM provides users with the fléitibin changing the
specifications of a product. Once the ontology pf@duct has been formalized,
the users need not go through the whole designmgeps to modify the
product design; they can start at a specific phlaaebest describes the work
nature. For example, if the colour of a cartridgieth needs to be changed, the
users start at the fourth phase to change the laiiththe right colour and
directly go to the sixth phase to create a newaimst. Certainly, users need to
go through more phases when more modifications havee made. For
instance, the engineers would like to alter theettisions of the ink carriage.
The number and size of the components ink cargagehold are also affected.
Because the constraints of the object have to defireed, the engineers have
to start the redesign process from the fourth te #ixth phase of the

development process.

3.2 Mechanism of Ontology-Enabled PDM System

PDM systems and ontology are tools for storing pobddata and reasoning
behaviour across domains and projects. As mentionpcevious sections, the
aim of this work is to design an implementationl ttws building an ontology
repository using information supplied by users. Themework lets users
organise their works within a company in the forharoject, and this brings
up many excellent features such as high flexibiityerdisciplinary work, and
promoting innovation [Disterer 2002]. However, & likely that groups of
people would work on the same set of data objectwrently, thus it is
desirable to have a system that is capable to neattegaccess to the product

ontology.
The organisation of physical objects into categoisea vital part of developing

a PDM system. Categories serve to provide a safficidescription of
relationship between system components and theodiqiaysical objects. This

3.6

Chapter 3 Ontological Data Modeling in PDM System

allows the system developer to define the spetifinaof the system using
formal semantics. First order logic (FOL) has beetected to discuss the
content and organisation of ontology. FOL makesagy to state facts about
categories, either by relating object to categooe®y quantifying over their

members. Certain aspects of the real world are t@mmhpture in FOL, for

example the temporal relationships between obj¢btsr changes over time
and sequences of operations of the PDM systemoiddjin the ability to handle

dynamic behaviours of the system and data objectgery important, it is

better to lay down the most general definitions posdtpone the discussion of
time dependency until Chapter 5.

3.2.1 Notations of the Data Model

This section describes the notations used througheustudy. More notations
will be introduced in later sections. The notatiangoduced here are for
describing the sets used to make the formula mameise and readable.

The sets in the systems are:

The product databaseb

Set of actions on the datas@tpt={ R VV} , whereR andW are theread and

write actions on the dataset respectively.

Set of data classh={ PD, AD}, wherePD={pd, pd,...., pg} is the part

data objects set andD={ad, ad,..., ad} is the assembly data object set.

PD is a subset of the databalieandAD is a proper subset of PD. The Venn
diagram below depicts the relations of the sethénPDM system.

AD U P Dand PDC! dt

3.7

Chapter 3 Ontological Data Modeling in PDM System

db

PD

Figure 3.5 Relationship of data classes of PDMesyst

3.2.2 Definition of Data Category

The total number of data object in PDM systesd # the sum of the

components of which the databakeconsists.

#sd=# pd+ # ac (3.1)

The number of components in each category cannatrisgative value.

#pd,#ad= 0 (3.2)

For data objeatl to be a part, it must consist of only one datacibj

dOPD= (#d=1) (3.3)

For a data objeadl to be an assembly, it must be composed of at least

objects in either data classes and it cannot ieclitdelf as one of its

components. The object is built of two sets ofeclg, wheren is a set of
assemblies anlis a set of parts.

3.8

Chapter 3 Ontological Data Modeling in PDM System

dOAD= d={a,B|#a+ #3= 3

where a ={00} O{ad, ... ad, Pia0 AQ DaO d 34)

B={0}{pd,..., pd |Oi pO PO ORO d

Since all objects in the database must either fertaor an assembly, wheré

is the symbol of exclusive-or,
Od Odb dO PDO d AC (3.5)
Thus, all data objects in the database must cooisatleast one component.
OdOdb #d=1 (3.6)

Based on (3.4), an assembly is composed of a nuaflgarts and assemblies,

the relation fromA into P is:

UADOPD

3.3 Ontology Management Functions

In order to accomplish the integration of ontologygineering and DPDM
system, three basic rules for managing the ontetodginrough the interface
were developed. The rules and their correspondiggrithms are listed as

follows:
The terms being used in the framework are:
c(d) : class to which data objedtbelongs

d: : data objecd at timet

v(d) : version of data object

3.9

Chapter 3 Ontological Data Modeling in PDM System

The atomic sentences that state facts in the framew
inser{(d, o) : objectd is inserted into ontology;
retrievgd, o)) : objectd is retrieved from ontologg
return(d) : objectd is returned

p(d, &) : dis a part of assembly data objact

3.3.1 Item Insertion

Let g be the item to be inserted to the ontologyin the ontology set
O ={q, 0,..., 9,..., @ }, which contains ontologies. Fog to be added, the
class ofo; andg must be the same and no itenoirs the same ag the rule for

item insertion is defined with a form like the fmNing and the algorithm of

item insertion is stated in Figure 3.6

p(d,q) - inser(d 9 (3.8)

begin
/*Search for the ontologyin O and addj into o if exists*/
while i < mand insert = FALSE

if o existsand x does not exist io then

inserd into o
insert = TRUE
end-if
end-while

[*Create new ontology for storing objet{

if insert = FALSEhen
ontology_creation(subject, keywords
inserg into o

end-if

end

Figure 3.6 Algorithm for inserting new item into antology

3.10

Chapter 3 Ontological Data Modeling in PDM System

3.3.2 Ontology Creation

Let n be the ontology that is intended to be added ¢ootiitology seO; class
be the class of a subject to which the ontologpihgs ankeywordse a set of
words or sentence that best describes the natutieeodntology. Theslass k
identifies the domain to which an ontology belongeywordsare used to
search the depth level at which the new ontologgupposed to be in an
ontology set. The rule of creating a new ontolagymn ontology set is defined
as follows and the algorithm of this rule is shawrrigure 3.7.

-, 00 do)=dd)I¢=d- insettqd (3.9)

begin
[*use the keywords to determine the level bicivo should be*/
if 0, is inserted to the current level of the hierarttign
match = TRUE
addo, to the current level
[*Search the hierarchy of the existingtabogy according to the subije
specified*/
whileixm and match = FALSE
ifrelation between; andO # relation between, andO and
clasy(# classf) then
/"Recursion -the algorithm searches down the hierarchy of titelogy
until there is a match*/

ontology_creatiory;, 0,, keyword$

match = TRUE
end-if
izi+1l
end-while
end-if
end

Figure 3.7 Algorithm for creating a new ontology

3.11

Chapter 3 Ontological Data Modeling in PDM System

In the proposition of the ontology creatiamw, can be the ontology set or an
ontology at any level that is a predecessor inrtiationship with the new
ontologyoy. For instance, the relationships between the tbpe described in
the following sentencéCartridge lid isinstalled in anink cartridge,which is

an assembly that isistalled in an inkjet printer”, where the hierarchical
relationship between the objects in the sentenddustrated in Figure 3.8.
Suppose itentartridge lid is to be added to the ontology set, the sentence
shows thatartridge lid is part of anink cartridge which is part of arnnkjet
printer. Therefore, the ontology ahkjet printer is the predecessor ank
cartridge’s andcartridge lid’sontologies. The ontologies at the upper levels of
the hierarchy can be refined into a number of agels, they are the
description of objects that are constituents oehThe process of ontology
creation stops when the physical meaning of thihéurefinement of an object

Is not of any interest or importance to the users.

Level 3 Inkjet Printer
Cartridge .
Level 2 Holder Top Housing
Cartridge
] extractor
Level 1 L—— Cartridge Lid

L Pivot Link

Figure 3.8 Creating new ontology in accordance withobject’s complexity

3.12

Chapter 3 Ontological Data Modeling in PDM System

3.3.3 Ontology Retrieval

Suppose the ontology s8tholds a number of ontologies that contain thesclas
of subjectj andx; be the item irj that the user would like to retrieve fro;m
Since the users may have created their own ontdagn the specific subject,
therefore the algorithm will return ontologies ofnenymous concepts by
taking into account of attributes and structuralireglencies. The following
rule is defined for retrieving ontology of relevamtbject requested by the user
from the ontology set. The algorithm for ontologyrieval is shown in Figure
3.9.

OoOdO c¢(x)=c(o) —» return(o) (3.10)

begin
[* Search for ontologies which contain subjdwttis equivalent té&, then they
will be stored in a list and returned*/
fori=1tom
if j =kthen append®; toL
end-if

end-for

/* ReturnL if it is not an empty set */

if LZ O then
return L
end-if
end

Figure 3.9 Algorithm for ontology retrieval

In this chapter, an ontology-based data model s&rd@ed in first order logic.
The relationship of object and product databasdeitned through the two
categories;part and assembly The functions of the ontology-enabled PDM
system provide users a practical way to accessyth@nymous information for

solving the problem they are currently facing. Bsgamising objects into

3.13

Chapter 3 Ontological Data Modeling in PDM System

categories, users can infer their compositions fthenperceived properties of
the objects, and then use category information aenpredictions about the
objects. For example, the mass of a composite blgebe sum of the masses
of the parts. An implementation of the systemdovironmental compliance
analysis is described in chapter 4. A model malsesof collaborative product
design and manufacturing information management tlas basis for

environmental product development to analyse theterd of hazardous

materials in a product will be discussed.

3.14

Chapter 4 Ontology-based Environmental Complianem&gement System

Chapter 4

Ontology-based Environmental
Compliance Management System

Apart from increasing pressure of shortening theetfor product design and
manufacturing, new laws are now forcing manufactite remove lead and
other hazardous substances from their equipmentstatake responsibility

for the eventual recycling of their products. Regioins on materials used in
the products and on the influence of using the yetsdon the environment
have now become stringent and expect to be morkicte®. However,

complex products require multidisciplinary desigarhs to master the design
and to comply with safety and environmental regofet. One way to cope
with these is to adopt a product development syskeinprovides guidance on

environmental issues.

4.1 Background on Environmental Compliance

Environmental damage caused by human drew atteritiothe impact of
chemicals on the environment. People are encourtgedrefully dispose of
unusable goods according to the type of materiatdrly days, so that the
potentially useful materials can be recycled. Hosvethere are some goods
that are difficult to be recycled; they have todigposed of by other means like
landfill and incineration. These methods may beiremvnental damaging and
unsustainable. Furthermore, non-renewable resoweestill being depleted
and environmental pollution is increasing. Thus,nypnaeveloped countries
have progressed an extra step further on their@mwient protection policies,
the European Union (EU) has implemented two newrenmental directives:
RoHS (Restriction of the use of certain Hazardouiss&nces in electrical and
electronic equipment) and WEEE (Waste Electrical Brectronic Equipment).
The RoHS directive took effect ofi' July 2006, which restricts the use of six

hazardous materials in the manufacture of varigypes of electronic and

4.1

Chapter 4 Ontology-based Environmental Complianem&gement System

electrical equipment. It is closely linked with WEEwhose purpose is to
improve the reuse, recycling, and recovery in otdereduce the amount of
disposal equipment and the contents going to |dnéfor RoHS in EU, it
requires that everything that can be identified d®mogeneous material must
meet the content limit. The regulatory process esdming more stringent,
failing to comply with the regulations means the products are banned. The
manufacturers would not only suffer loss from ndfilfing the order but also
ruins the company’s reputation. The concern ishfrrtcomplicated when
different countries have their own standards on dh®ount of substances

presented in each product [Bergeson 2006].

In the past, companies are only required to devalugph produce goods and
services that are of consistently high quality,ihgwshorter lead times and less
expensive. Environmental issues have become immporparticularly in
product development [Partidario & Vergragt 2002hvironmental protection
policies imposed by different countries make praddevelopment a very
difficult and complicated task [Fawzi 2007]. Firnse now developing
environmental policies for their operating facégi services, and supply chain
partners while trying to maintain consistency witew regulations. Many
enterprises manufacture their products using naseaind parts procured from
various vendors. However, product development dietss often exceed the
boundary of one firm, the availability of informati and resources are usually
very low. Meanwhile, these companies often havécdities in identifying
whether all of the materials used are conformingetgulations. Consequently,
they generally have difficulties in handling enviroental issues with their

production activities [Leistner 1999].

4.2 Environmental Compliance Management System

This section will begin by defining environmentahnagement, after which the
suitability of PDM system as the basis of environtaé management system
will be discussed. Environmental management isnedfias encompassing all

efforts to minimize the negative environmental itpaf the firm’s products

4.2

Chapter 4 Ontology-based Environmental Complianem&gement System

throughout their life cycle [Sayre 1996]. An enviroental management
system prevents adverse environmental effects ammtoves environmental
performance by institutionalizing various enviromt& programs and
practices such as initiating environment-relatedfgpemance measures and

developing green technologies, processes, and giadu

Many firms realise the necessity to incorporateirttseipply chains with
environmental compliance management (ECM). For ¢t@rin order for a
firm to respond to customers’ needs and to engsir@piproach to the market in
accordance with the regulations for hazardous naddere.g. WEEE & ROHS
Directives, it has to understand the environmenmtglacts of the parts and
components supplied from its suppliers. In additibie regulations for product
take-back require it to expand its environmentapaomsibility to the entire life
cycle of products. To respond to these requiremdintss have to incorporate
an ECM system with their product design process a&uogply chain

management.

4.2.1 Information Management Tools

To achieve the above improvements requires dealitty different enterprise
functions and information sources. There are a mmdf commercial

information management applications available enrttarket, such as:

- Product Data Management systems (e.g. PDMWorksd\®arks 2004],
SmarTeam [IBM Corporation 2007], etc.) will keegdk the data and
information required to design products. PDM is dude work with
electronic documents including CAD drawing, BOM, darproduct

configuration.
- Enterprise Resource Planning systems (e.g. SARdK&I Teufel 1998])

will centralise all data and processes of an omgitn into one single

database.

4.3

Chapter 4 Ontology-based Environmental Complianem&gement System

- Life Cycle Assessment (e.g. SimaPro 7 [PRé Conwslta007], GaBi 4
[PE International 2007], DFE [Boothroyd Dewhurst.I2007], etc.) is a
tool that examines every stage of the life of pasguincluding the

production phase, distribution, use, and final dssp of the product.

- Compliance Management Applications (e.g. Matei@dsnpliance Central
[Enovia MatrixOne 2006], Compliance Management fiooation 2007b])
will provide companies the ability to verify therapliance of a product by
verifying the information of its material conterdaad to identify the non-
compliant parts that are used.

These state-of-the-art software applications offely partial responses to the
needs of environmental compliance. They are spetdols or technology

applications that optimize only parts of the prdddevelopment process.
Moreover, they are enterprise-centric informatigistems that require long
time to set up and are not designed to providenanuanication infrastructure
for the whole project network. These inadequacissadirage establishments
of virtual enterprise to work on ad-hoc developrmsematf environmental

compliance products.

An innovative methodology is thus proposed such tha&nables different
companies to incorporate their existing applicaticand decision-support
functions into a web-based environment. The systamprovide a distributed
environment with enough flexibility to companiesavhave limited resources

to form a working platform for developing environmi@l compliant products.

4.2.2 Architecture of PDM System

Like many other multi-client applications, PDM folls the three-tier
architecture. Software development has been ewpivirthe last two decades;
three-tier architecture divides an application ititeee distinct software agent.
Multi-tier architecture is an open, distributed eggrh that separates the client

into two parts — user interface, logic processing the database, the overview

4.4

Chapter 4 Ontology-based Environmental Complianem&gement System

of a three-tiered application is shown in Figurg. 40ther than the advantage
of storing data remotely from users, the three-éimhitecture is intended to
allow any of the three tiers to be upgraded oraegd independently as
requirements or technology change. A classic e¥angb the three-tier
architecture is the World Wide Web (WWW), where wabwsers form the
client tier, the database server forms the thed and the TCP/IP serves as the
second tier. Given that PDM systems are developseéd on the three-tiered
distributed architecture, there are a number ofilaiities between web
technology and PDM methodology, in terms of aratitee and conceptual

module.

\J

\

User Interface P Logic Processing Database

J
A

\J

Distributed Computing Infrasture

Figure 4.1 Overview of the three-tier architecture

The architecture of a PDM system can be divided thtee tiers: the first tier
is the user interface of the system, the secomdstitne PDM logic server, and
the third tier is the PDM database or repositorysiagwn in Table 4.1. The
table also shows that PDM methodology resembles t@ebnology in the
sense of their structures. The internet has biotigh world a tremendous
influence in communication. The use of web techgglavith PDM systems
can create a network between enterprises and eaha®spartmental
collaboration. The complement of web technologPM systems can create
an affordable ECM system and helps companies tocomee the obstacles

existed in environmental complied supply chain nggmaent.

4.5

Chapter 4 Ontology-based Environmental Complianem&gement System

Web technology PDM system

1% tier Web browser PDM user interface

Web / Application

2"d tiar PDM logic server
server
34 Web distributed PDM database /
er database repository

Table 4.1 Structure of web technology and PDM syste

4.3 The Model of Ontology-Enabled ECM System

An ECM system can be created by integrating webrtelogy with ontology-
enabled PDM systems. This system possesses all fabdtions that allow a
company to manage its product data locally. In @aldi the system can also
manage remote product data from its suppliers uitpli provided that a
channel for data transfer is available to conneetmhanagement systems of the

involved companies in the supply chain by the mer

4.3.1 Structure of the System

The model of the ECM is designed to provide a fafiwth for companies to
use existing PDM system to facilitate the impleraéinoh of ECM. Its structure

is illustrated in Figure 4.2 and descriptions @& ftages involved are presented.

1. Product design — When a product design team siaggning a product,
the Compliance Analysis Module will create a newobtrgy for the new
project in project database to categorize the rdata-of all the relevant

product and document.

2. PDM system — It is the central unit of the ECM systfor all the parties
involved in the production process to communicatd o work on the
project. The description of the module will be eipkd in more details in

later sections.

4.6

Chapter 4 Ontology-based Environmental Complianem&gement System

3. Production planning — Given that the product deggsses the relevant
compliance, the ECM system will notify the prodoctiplanning unit to
assess the operational ability of the existing potidn system on
manufacturing this new design and to determineatimeunt of materials

required and the production schedule.

4. Procurement — After production planning has beanpieted, procurement
will start sourcing the materials. Information dfet materials selected is
retrieved from the PDM system and stored into tmejegt database
through the analysis module. Purchase Orders wikdnt to the suppliers

once the materials satisfy the compliance standards

5. Suppliers — Sometimes information of materials pads are not available
in the PDM system, the module will prompt the sigagl to provide the
missing information. In case the suppliers areaié¢ to supply any of the
materials, they will reply the company using theteyn. The module will
search through the PDM ontology repository for raldives and suggest

them to the design team.

The model has been designed to adapt the produetogenent process in a
project-oriented nature. A project database isbéisteed in the initiation of a
new product development project. This gives a grefxibility to the product
developers as each project has its own complekityahnical objectives, since
many management systems often provide a generagearent model, which
may fail to capture the complicate relationshipwssn each of the parties

involved.

This model provides a unique entry point to alhatés and data associated to
the project by using the PDM system to control #ueess to the project
database. This will allow independent data maimieaato the product
development company and its suppliers. Throughutee of web technology,
the distributed environment facilitates remote siésign teams to be able to

update product data from any location directly astoeg the project database.

4.7

Chapter 4 Ontology-based Environmental Complianem&gement System

Also, companies will no longer be tied up to anjormation management
technology nor change their current streamlinedtpm@ for the sake of fitting
to a particular commercial tool.

User

‘ Production

planning ‘ ‘ Suppliers ‘

‘ Procurement ‘

Compliance
Analysis Module

-~

Meta Data Query Ontology
Processor Repository

Project Database Product Database

Ontology-enabled PDM System

Figure 4.2 Model of environmental compliance mamagyat system

4.3.2 The Compliance Analysis Module

In order to provide a collaborative working envinoent for users from all
related companies in the supply chain, a web-edaB@M system is utilised
to manage all product-related data and to providia detrieval for product
design and production. To analyse whether a progucompliant to a set of

regulations, users must start the process by ubmginique interfaces of the

4.8

Chapter 4 Ontology-based Environmental Complianem&gement System

Compliance Analysis Module for security and datsegnity reasons. The
procedure of analysing the compliancy of a desigows in Figure 4.3 is

described as follows:

1. Data acquisition - In the beginning of the compt@mnalysis, the user
selects the product need to be analysed, the madiikben retrieve all

the relevant information from the PDM system dasaba

2. Supplementary data - Depending on the completenietse data and
the kind of analysis to be performed on the prodtied module will
prompt the user to input the missing informationsearch the PDM

system database of the company who supplied thenpauestion.

3. Compliance analysis — The data of the selectedygtadill be verified
against the corresponding regulations. Any violatod the regulation
will be identified and necessary remedial actiol e suggested to the
user. At this stage, the user can configure thdicgtipn to display the
result according to region specific regulationsMioere the product is

exported.

4. Preliminary report — Checklist of the analysis rafted in the report.
Marginal passes of any limits will be highlighte&l violations will be
recorded and possible remedial actions will bedish the preliminary

report.

5. Re-analysis — Any non-compliance parts will be tdesd. The module
will automatically search for alternatives in thBM® system. The user
can make a component change based on the recomtioendad the

new design will be analysed again.

6. Format report — The preliminary report is formattedthe standard
format required by the authority that establishied tegulations. The
final report is then stored to the PDM system fog hext analysis in

case of alternations are made to the product. ddsté performing a

4.9

Chapter 4 Ontology-based Environmental Complianem&gement System

full analysis, a partial analysis can be run byedthg the changes and
evaluate their effects accordingly.

Compliance Analysis

Module
o s A
Existing T
information Data acquisition
4
Input/Modify
supplementary data
v
Analysis
v
PDM system ..
Preliminary report
y y
No
Design Accepted
Updated Yes
information
Format report

Figure 4.3 Procedure of compliance analysis

4.4 Implementation of ECM System

This section presents the implementation of the ehoding a PDM system
and shows how the environmental management syst&ps la company to

analyse the compliance of a product in the WEEEdtive in a timely manner.

4.10

Chapter 4 Ontology-based Environmental Complianem&gement System

4.4.1 Software for Implementation

The system is designed and implemented using norolignt/server
architecture with several free and some relativielgxpensive commercial

tools.

PDMWorks — In this research, the PDM system - PDMM¥ENterprise has
been chosen for developing the ECM system. It ésl#ftest product data
management (PDM) software from SolidWdtke help engineers and
product managers work more efficiently in teams lgvhautomating
workflow. The reason of choosing this PDM systenthat the software
supplies comprehensive controls to help the dedmpm avoid the
possibility of overwriting files or making otherrers than could add time
and cost to their schedule. It helps organizatlwetser control each design

project while streamlining development.

PHP - The interface of the system is developedguBidP. It is a widely-used
general-purpose scripting language that is espgcidited for Web
development and can be embedded into HTML. PHPbeadeployed on
most web servers and on almost every OS platfoee df charge.

MySQL — It is the database system used in the impigation. MySQL runs
on many OS platforms including Linux, Windows, etehich provides a

great flexibility in configuration.

4.4.2 The Compliance Analysis Module — ECM System

The Compliance Analysis Module is the second tfea multi-tier architecture
system that is responsible for processing useggiasts. An application called
ECM System is the process-tier in the PDM systernthvhims to provide the
effective use of the network infrastructure, talfeate the cooperation between
the users, to support workflow automation, to éfitly manage document

retrieval, and to provide the user a suitable fatar in order. ECM System is

411

Chapter 4 Ontology-based Environmental Complianem&gement System

developed to analyse the compliancy of producisiefftly based on the EMS
model described in the previous section. In gen&@M System provides a
co-operating channel with PDM software through imijpg CSV (Comma
Separated Variables) report and exporting drawitegy The CSV report is
generated by the PDM software from the bill of mate of the project. In case
of any missing of necessary data, the user cart itqmse missing data into
ECM System by the preset form. It will analyse tlieta and generate a
compliance report when the data acquisition is deted. The user can decide
to export the report or modify the current dataetepng on the report. The
exported report is in engineering drawing file fatnfor better integration with
PDM software, and it could be previewed in the PDBbftware directly
through eDrawing plug-in. More information on thdéugein is listed in
Appendix A. At the beginning of the analysis pragethe user can select to
create a new project or open an existing projactrifodification.

4.4.3 lllustrative Example

A case study is presented in this section to i&ustthe compliance analysis
using ECM System with PDMWorks. In the process ebkigning a new
product, the user is prompted to provide some basgect information for
compliance analysis that includes the project ,tittee appropriate WEEE
product category and the product’s lifetime. Thatstip page of ECM System
asks a user to enter the name of the project dadtsbe category to which the

product belongs is shown in Figure 4.4.

412

Chapter 4 Ontology-based Environmental Complianem&gement System

o5 ECM System =[] [E3]

ECM SYSTEM

New Project

Pr[}jer::t Title: Ink Cartridge Halder

Eateg ory: 6. Hectrical and electronic tools -

Export to EU Country? [#

Figure 4.4 Start up page of ECM System

The new project is created and written into thgqmiodatabase. After entering
the general information using the predefined tetepl&CM System will
prompt the user to provide the data of all partsse in the project by selecting
the data from the product database in the PDM syshe case of using new
part data, they must be registered before use ghrtlue meta-data processor.
A new ontology is created for the new design bylysiag the relationships
between each of the parts and assemblies in tligroLike PDMWorks, the
part data can be exported by the reporting fundibtomake a CSV report file.
The BOM of the product will be displayed to the @ inspection in case
there is any data missing, as shown in Figure 4.5.

4.13

Chapter 4 Ontology-based Environmental Complianem&gement System

re; =

o=l ECM System = || = |[wE3a]

BILL OF MATERIAL
Project: Ink Cartridge Holder
Part Material
Cartridge lid SPIE2 HOPE - High Density Polthylene -

Oty 1 Wat DD& kg Recyclable? [¥]
Cartridge back board EF‘I#Z HOPE - High Density Pohthylene -

Gty |1 Wat 0.03 kg Recyclable? [¥]
Cartridge extractor SPIR2 HDPE - High Density Polythylene -

Qty 1 Wat 0.06 kg Recyclable? [V]
Cartridge latch SPI#2 HDPE - High Density Polythylene -

Qy 1 Wat 002 kg Recyclable? [¥]
Cartridge holder SPI#2 HOPE - High Density Pohthylene -

Gty |1 Wat 01 kg Recyclable? [¥]
Ink: Camiage SPIE2 HOPE - High Density Polthylene -

Oty 1 Wat 01 kg Recyclable? [¥]
Link Suppart SPIE2 HDPE - High Density Polthylene -

Gty 1 Wat 0.02 kg Recyclable? [¥]
Pivot fink SPIR2 HDPE - High Density Polythylene -

Qty 1 Wat 0.06 kg Recyclable? [V]
l Save | l Cancel]

Figure 4.5 BOM display of the product being anatdlyse

4.14

Chapter 4 Ontology-based Environmental Complianem&gement System

Data in CSV files will be stored into the part deiae of ECM System directly.
The data structure of the part database in showigure 4.6.

0.* 1 1.* 1
Part Material Material Category
PK 1D : int() PK 1D : int() PK 1D :int()
FK' ProjectID : int() FK CategoryID : int() Name : text
Name : text Name : text
Quantity : text
Mass : int()
FK MateriallD : int() 0.+ | 0.+ 1
FK RoHS MatID : int() . Project - Category
RoHS MatMass : float
PK ID : int() PK ID :int()
0.* Name : text Name : text
FK CategoryID : int()
Created : float
0.1
RoHS Material Note:
table name
PK ID :int() Key
Name : text PK: Primary Key | gey filed name : data type
Limit : float FK : Foreign Key

Figure 4.6 Data schema of part database in ECMe8yst

After importing data from the PDM system, ECM Systechecks the
availability of data required for compliance an#@ysin case of any data
missing, ECM System will locate the data usingitifermation of supplier of
the specific parts stored in the PDM system. It ailtomatically connect the
PDM system with the supplier’'s system and retriéneedata if both companies
are committed to work collaboratively. Conversé&{;M System will alert the
user that the analysis is performed upon incompigtegmation and the result

may vary from the inclusion of the missing data.

Once the compliance analysis of the product is deta@, a compliance report
will be generated. The user can now view the regulbhe analysis that shows
the level of reuse, recycling, and recovery. Thadgrg of the compliance
criteria is listed for each part of the product @ahd compliant status of the
product is also enclosed. An example of a compéatalysis report is shown
in Figure 4.7 and 4.8.

4.15

Chapter 4 Ontology-based Environmental Complianem&gement System

. ™

a2 ECM System =l

ANALYSIS

Project: Ink Cartridge Holder

Ignore Part Recvclable Recovery
] Cartridge lid @ 1333% o
[Cartridge back board @ 667 o
[Cartridge extractor @ 13.33% o
L Cartridge latch @ 4.44% %
L] Cartridge holder @ 22.722% =
[l ink Camiage @ 22225 %
I Link: Support @ 4.44% =
(] Fivot link @ 1333% 5
| Modify BOM | | Repot |

Figure 4.7 Analysis on the grading of parts

4.16

Chapter 4 Ontology-based Environmental Complianem&gement System

a5 ECM System E@
COMPLIANT REPORT

Project Ink Cartridge Holder Category 6. Electrical and electronic tools

WEEE RoHs

Rate of component, material and Status: Pass

substance reuse and recycling:

Requirement: 75% Substance Requirement Current Rating

Current Rating: 95 - 99% Lead 0.1% 0%
Mercury 0.1% 0%

Status: Pass Hexavalent o o
Chromi 0.1% 0%
Cadum 0.01% 0%
PEB 0.1% 0%
PEDE 0.1% 0%

Export Report

Figure 4.8 Report showing the compliant statudefgroduct

The report can be previewed immediately and the cae choose to modify
the part data or export the report. The reporbimatted as a drawing file for
performing a better integration with the PDM softeial' he analysis result can
be exported as DXF format for PDMWorks import. DXdfmat provides a

simple interface, easy to read, generates cleae,cand has a very small
footprint in terms of RAM and disk space requiretsefigure 4.9 is the report
in DXF format. The report shows that the produdhfeexamined passes the
WEEE directive, but fails to comply with the RoHBedtive. The content of

each of the six restricted substances is listedh& report, ECM System

identified the lead content of the product excetids limit. The parts that

contain the concerning substance are listed indéscending order of the
content.

4.17

Chapter 4 Ontology-based Environmental Complianem&gement System

4 ebrawings - [Sample.dxf]

A=)
‘4@ Fle View Tools Window Help = IEi.il
PEZAD QaqSh B[R GE 4mp |
7l COMPLIANT REPORT

' Project Ink Cartridge Holder Category 6. Electrical and electronic tools
&
< WEEE RoHs
s Rate of component, material and Status: Pass
) substance reuse and recycling:

Requirement: 75% Substance Requirement Current Rating

Caurrent Rating- 95 - 99% Lead

Status: Pass

(3

Ready —|@ DRAWINGS® & @

Figure 4.9 ECM System created analysis report i Bo¢mat

An environmental compliance management system dpedl upon an
ontology-enabled PDM system and web technologysisudsed in this chapter.
The model includes a compliance analysis module réteieves product data
from a PDM system to analyse the content of hazerdoeaterials in a product.
Information regarding the design of interest carcdmmpiled by checking all its
assemblies and parts. The ontological organisattbnthe components
facilitates the verification of the content of nréés and parts used within the
product, thus the losses incurred from violatingiemmental regulations can
be prevented. Chapter 5 will describe the funct@inBDM system using UML
sequence diagrams and formal notations. Commonuc@amcy problems in a
distributed data management environment and tlieutfes of developing the

specification of PDM system will also be discussed.

4.18

Chapter 5 Representation of PDM Functions in UMbunce Diagram

Chapter 5

Representation of PDM Functions in
UML Sequence Diagram

5.1 PDM User Functions

PDM provides benefits in every area of product glesind development. Almost
everyone in an organisation can gain an advanthgeugh the use of this
technology. A PDM system possesses a number oftifunscto support any
particular type of product development. This chapt®vides a summary of the
functionality of PDM systems. CliMdata [CIMdata 2(Q08ivided the basic
functionality of PDM systems into two main categgtiuser functions and utility
functions. The user functions allow users to stmjeve, and manage the data in
a PDM system and the database consistency is degeond the order of the
executions of these functions. A PDM system commamiolves two kinds of
data storage. Figure 5.1 summarises the data fhoev PDM system under the
operations of the basic function of document mameege. An electronic vault is a
repository to store all kinds of product informatithat are used in a collaborative
work environment. Only authorized users of the PBydtem can gain access to
the vault, it is necessary for the users to chetklme required files from the vault
before any file operation is processed. Once tlee bhas ownership of the files,
they are copied to the user’s local workspace, shahthe user can work more
efficiently with the files locally. The basic PDMWsem functions are the common
operations to work with data objects in a PDM gsyst@hese functions are
categorized into two main groups: user functiond emrinsic functions. The six
user functions allow users to store, retrieve, matage the data in a PDM system.
User functions are blocks of actions to be perfarmpon evocation. Intrinsic
functions are the actions that respond to the fusetions and cannot be evoked
by users directly. Descriptions of the basic fumtsi of PDM system are covered

in the following sections.

5.1

Chapter 5 Representation of PDM Functions in UMbunce Diagram

Data Vault <

A

Delete < Check out Register
y ! !
Obsolete Release < Workspace >—
Checkin |
Figure 5.1 Flow of data under the operation ofoxegs PDM functions

5.1.1 Description of PDM System User Functions

PDM_Reqgistend)

PDM_CheckOutf)

PDM_Checking)

PDM_Release)

PDM_Obsoleted)

PDM_Deleteg)

Upload a newly created data object to the PDMukde if

the object does not exist in the database.

Save the data object to the workspace from théVPD

database if the object is available for specifeksa

A previously checked-out object becomes availatole
other accesses. A new version of the data objeltbei
uploaded if it has been modified.

The data object can no longer be modified i§ iteleased.

The obsoleted data object cannot be retrievedrigrtasks.

The deleted data object is removed from the PRkhlohse

and no longer exist in the system.

5.2

Chapter 5 Representation of PDM Functions in UMbunce Diagram

5.1.2 Description of PDM System Intrinsic Functions

Exist(data objectserve)

Returntrue if the data object exists in the PDM system byc&iregy the metadata
in a serverfalseotherwise. This function also sets the existenah@fdata object
in the system.

Save(rigin, destinationdata objec}

Save function makes a copy of the data object teroplace. It takes three
arguments, they are the system components in whieldata object is residing,
the locations that is going to store the object tedobjects to be transferred in
the respective order.

Available(data object

Returntrue if the data object is available for a specific gtiem. The availability
of an object is determined by the mode of lock tsaapplied by actions other
users subjected to their operations. This funcéilmo sets the availability of the
data object in the system.

Modifiable(data object

Returntrue if the data object can be modified.

Erasefata object

The data object is removed from the PDM systermi& in obsoleted state.

5.3

Chapter 5 Representation of PDM Functions in UMbunce Diagram

5.2 Use of Sequence Diagram

The proposed approach for integrating UML and anfdrlanguage does not
regard all of the diagrams specified on UML speaition. In this study, the UML
sequence diagram is chosen as the visual modawiggtven that interactions
among objects take place in a specified sequemckthee sequence takes time to
go from beginning to end. First order logic (FOL)lIve used to describe the
specifications of these functions. The order of seguence of actions can be
clearly presented in the sequence diagrams andfdlditates the process of
developing the specification of the system withnfal notations in which system

developers can verify its correctness properties.

Summary of the user functions are illustrated usiigUML sequence diagrams.
Sequence diagrams are read from the top to therbo#éind left to right. The
construct of the FOL formulas that based on themwod the function predicates
are asserted. A function predicate can be asséotdtbld at any state of the
lifespan of an object. Unless function predicatesrafuted, they will remain hold
from the state at which functions are evoked. Afmoa function is an expression
of the executability of the specific function. Fetample, PDM_Registat) holds
when the data objeat can be registered to a PDM system. Likewise, ptgpe
function reflects the particular property of thgeal, i.e. Availabled) = T means

thatd is available for operations.

5.2.1 Registering data in PDM System

The process of registering a new data object save®py from the user’s

workspace to the data fault of the PDM system, twwhg&cshown in Figure 5.2.

PDM server verifies the meta-data to determine hdreit already exists in the
database. The registered data object can then dessed by other authorized
users. If the data object is an existing data dpfbe server will inform the user to
ascertain that the original would not be overwnittmintentionally.

5.4

Chapter 5 Representation of PDM Functions in UMbunce Diagram

c
D
[0}
=

PDM server PDM Database

Register

Exist

alt .
Fail

[exist]

Save

[No] T i i

Figure 5.2 Sequence diagram for registering data

The following definition of the register functiomid that if the data object to be
registered does not exist in the data vault by kihgahe metadata in the server, it

will be saved to the data vault.

PDM _Registef d = [~ Exigt d)s- Sage s ,di (5.1)

5.2.2 Check-Outin PDM System

In many commercial PDM systems, user is only alldwecheck out unoccupied
documents, the following sequence diagram illusgaf standard check-out
process. The system decides the check-out procassdbon whether the
document is occupied or not. If it is being occdpithen the check out process
fails. Otherwise, the system will lock the documenthe data vault and grant the
ownership of the document to the user. A PDM systath a multi-granularity
locking mechanism has a different check out pracése check out request will
only be declined if the data object is write-lock&dother cases, the system will
lock the data object with a shared read lock arehd access is granted to the user.
To cater for the transference in distributed enviment, the data object is
transferred to the PDM server to which the usardsghe check out request and

then saved to the user’s workspace.

5.5

Chapter 5 Representation of PDM Functions in UMbunce Diagram

User PDM server PDM Database

CheckOut

T
|
|
|
:
|
Available !

alt

Transfer

Save

[available]

Fail

[else] ! !

Figure 5.3 Sequence diagram for checking out dajieco

The check-out function is well defined if data aftjd is resided in the database
db and the availability of d must be ascertained. Taa objectd is then
transferred to the servexr and saved to the workspawes and d is no longer

available for other users.

PDM _CheckOut g = [dI dp Availab{e)d» Sdve s,wk

= Availablg d - H (-2)

5.2.3 Check-In in PDM System

Figure 5.4 shows the process of saving a copy efbdified data object to the
data vault of the system by using the check-in tionc The process invokes the
version control module to revise the attributeshaf modified data object in the
meta-database. Version control is an internal ghoefor managing properties of
data object in a PDM system. This creates or updHte meta-data, such as
changes or version, for the data file accordinghte rules established by the
system administrator. Having the right to overrile rules of revision, the user

can manipulate the revision to some extent.

5.6

Chapter 5 Representation of PDM Functions in UMbugnce Diagram

(]
D
=

PDM server PDM Database

> VersionControl

T

|

|

|

|

|

|

|

|

|

|

|

|

:

|

Save |

: LI

L [modified] ! |

Checkin

alt

Figure 5.4 Sequence diagram for checking-in dajacob

The check-in function is defined as passing dajacbldl’ to the data vault from
where it was drawn. This function has two formulegher (5.3) or (5.4) will
determine the validity of the process. In (5.3g ttheck-in object is the original
one that has been checked-out, that'sd, then the data object becomes
available again. In (5.4), the data object has beedified fromd - d', the new

version is checked-in to the database and becorikmbhe for other users.

PDM _Checkifd) = [dI dip &= @ PDM CheckOut) (5.3)
= Availablg d - T] '

PDM _Checki{d) = [dJ dbp d- @ PDM CheckOut)

: . (5.4)
= (Availablg d - TO Registdr gh]

5.2.4 Release in PDM System

The release function restricts further modificatimna data object. Figure 5.6
illustrates the process of the function in PDM egst The data objects cannot be

modified anymore once it is finalised and approbgduthorised users.

5.7

Chapter 5 Representation of PDM Functions in UMbugnce Diagram

PDM server PDM Database

o
D
[~

Release

T
|
|
|
:
|
Available !

alt

NoUpdate

[available]

Inform

[else] i |

Figure 5.5 Sequence diagram for releasing databbje

The formula of release function requires checkirtiethier the data object is
available before further process. Once the datacbbp released, this object

cannot be modified anymore.

PDM _ Releasé §l = [Availab{e)d= Modifialfle)d>] (5.5)

5.2.5 Obsoletion in PDM System

The server checks whether there is any user acgeg® data item on which the
obsolete functions is acting. Once a data itermian obsoleted state, all of its
corresponding information cannot be used in anyeptctarts thereafter. Occupy
is an internal function to check the data obpbcs in-use or a component of any
project in the system. If the inference of occupytrue, it means that the data
object is either being used by someone or is dastheer project, thud cannot be

obsoleted. Otherwise, if the process is succegshribcessed, thed becomes

inaccessible.

5.8

Chapter 5 Representation of PDM Functions in UMbugnce Diagram

C
I3
D
=

PDM server PDM Database

Obsolete

T
|
|
|
:
|
Available !

alt
NoAccess

[not
occupied]

Inform

[else] i |

Figure 5.6 Sequence diagram for data object obsnlet

The formula of obsoletion ensures that the to-bsotdied data objeat is not
included in any project and occupied by any usercedl is obsoleted, the data

object in the PDM database is no longer accessible.

PDM _Obsolet¢ d = [Available d= Availalle)ds] (5.6)

5.2.6 Deletion in PDM System

This function erases the chosen data item that hawst been obsoleted.

('
D
=

PDM server PDM Database

Delete

T
|
|
|
i
Obsolete :

alt
Erase

[obsoleted]

fail

[else] : |

Figure 5.7 Sequence diagram for deleting data bbjec

5.9

Chapter 5 Representation of PDM Functions in UMbunce Diagram

The following formula is the specification &feletefunction. It defines that the
data objectd must be obsoleted. This implies tlais longer used in any project,
then the server will invoke th&rase function to delete the data object, and

therefore it is no longer an element of the datadas

PDM _Deletd d = [Obsolete)~ Eratede> [d (5.7)

5.3 DPDM User Functions

A Distributed Product Database Management (DPDMjesy is one in which the
database is spread among several sites and apmpligatograms. The DPDM
operates more or less like the PDM system. DPDMegsysconsists of all PDM
functions in order to manage the product data atldbal database. In addition,
DPDM system must provide the data transfer betvdegabases at different sites.
The DPDM functions and their logical formulas ah®@wsn in this section. In the
following illustrations, each of the PDM serverstiie DPDM system holds a
copy of the same meta-data. The advantage of asinating the meta-database is
obvious: because each organisational unit withénethterprise will maintain data
that is relevant to its own operations, it is oftext necessary for each database to
keep a copy of the actual data object, users frimarsites may not require some
of the data at all, thus unnecessary data flows/drsi the servers are avoided.
The distributed arrangement also improves the ieffy of processing by
keeping the data close the place where it is meguently used. Retrieving data
from remote databases that possess the data wheslechallows better data

accessibility.

The group of function predicates used in constngckOL formulas for PDM
system are also used in developing those for DP#lem. Nonetheless, the
function predicates take more arguments in ordératdle the more complicated
relationships between computers and servers inhathie related actions take
place. For example, theDM _ Checklir{ dfunction for PDM system checks in
the data objeatl to the PDM database and the system has implementgdne

centralised database to store the data. Althougp)ND system is composed of

5.10

Chapter 5 Representation of PDM Functions in UMbunce Diagram

several PDM servers and databases, it does noreeaagers to explicitly specify
the components of the system involved when theythesse functions. Therefore,
a user function in both PDM and DPDM system takes $same number of
arguments. On the other hand, DPDM system needbatalle interactions
between a number of system components, its intrilasictions have to take extra
arguments to show the components involved in aforactor instance, the
intrinsic function for checking the availability afdata object in a DPDM system,

availablg d s), has an extra argument showing that the speafiees is being

checked.

5.3.1 Description of DPDM System User Functions

The following DPDM user functions perform the saawtions of the respective
PDM functions. However, the operations involvedeach DPDM functions are
slightly different and will be described in latercsion.

DPDM_Register)
DPDM_CheckOutf)
DPDM_Checking)
DPDM_Releasel)
DPDM_Obsoleted)
DPDM_Deleted)

5.3.2 Description of DPDM System Intrinsic Functios

The following DPDM intrinsic functions take moregaments than respective
functions in PDM system.

Available(data objectserve)

5.11

Chapter 5 Representation of PDM Functions in UMbunce Diagram

Returntrue if the data object is available in particular sesvéor a specific
operation. The availability of an object is detared by the mode of lock that is
applied by actions other users subjected to thearations. This function also

sets the availability of the data object in thevees of the DPDM system.

Modifiable(data objectserve)

Returntrue if the data object can be modified in the serVéis function also sets

the whether the data object can be modified or not.

Erasefata objectserve)

The data object is removed from the server in a MRYstem if it is in obsoleted

State.

5.3.3 Registering data in DPDM system

The process of registering a new data object in MRYstem saves a copy from
the user’s workspace to the local PDM data fautiictv is shown in Figure 5.8.
The local PDM server verifies its meta-data to deiee whether it already exists
in the local database. If the data object beingsteged exists in the DPDM
system, the system will inform the user to ascertiaat the original would not be
overwritten unintentionally. In a situation wheifgetdata object is new to the
DPDM system, the data object is saved to the Idatdbase and the meta-data of

the object is written to meta-database of all P@@¥ers in the DPDM system.

5.12

Chapter 5 Representation of PDM Functions in UMbunce Diagram

User Local PDM Server Local PDM Database Remote PDM Server Remote PDM Database

|
|
} Register
|

> exist

Save

|
|
|
|
|
|
|
|
|
|
|
|
alt |
|
|

1]
> Exist i

I
|
I
|
I
|
I
|
I
|
I
|
|
|
I
|
I
|
I
|
I
| !
Exist |
|

U

[exist]

I
|
I
|
I
|
I
|
I
|
I
|
|
|
I
|
I
|
I
|
I
|
I
|
I
|
I
]
|
I
I
|
Inform |
I
|
\

[else]

Figure 5.8 Sequence diagram for registering daABDM system

The following definition of the register functioorfDPDM system said that if the
data object to be registered does not exist in the local ndetabase at the local
servers, it will be saved to the local databati® and the meta-data dfis written

to the meta-database in the local server and inealbte servers of the DPDM

system. Thelli Exist(d, s) function updates all servessthat d exists in the

PDM system.

DPDM _ Registet d = [~ Exigt d,3—~ (Safe,s, do)@d i Exist;¢] (5.8)

5.3.4 Check-out in DPDM system

As in PDM system, the DPDM system decides the cloetkprocess based on
whether the requested data object is occupied tofFmgure 5.9 shows the process
of check out function of DPDM system. If the reqeesdata object is being
occupied, then the check out process fails andigke is informed. Otherwise, the
system will grant the ownership of the data objecthe user by changing the
status of the data object in all the meta-databd#dse data object resides in the
local database, the local server will retrieve daéa object from the database and
then saves it to the user's workspace. On the ollzrd, to cater for the

transference in distributed environment, if theuessied data object is in one of

5.13

Chapter 5 Representation of PDM Functions in UMbugnce Diagram

the remote databases, the local server will re¢ribe data object from the remote
database and saves it to the local database bwtmsferring it to the user’'s

workspace.

User Local PDM Server Local PDM Database Remote PDM Server Remote PDM Database
| | | | |
| | | | |
! CheckOut ! \ \ \
| | | | |

| | |

| | |

| | |

> Available | | |

| | |

| | |

alt ! ! |
alt | | |
Retrieve \ \ \

| | |

| |

Transfer W ‘ | |

| |

[local] 1 1 1
Rétrieve i i

| | |

i Retrieve i

i !
i Transfer W ‘

| T

Transfer i

| | |

| | |

| | |

Save | | |

| | |

il | |

[remote] ‘ ! !
| | |

> UpdateAvail | ! !

| | |

UpdateAvail 3 3

I

+ |

Save i U i
[available] ! } !
| | |

| | |

Fail 1 1 |
sl | i 1 1 1

Figure 5.9 Sequence diagram for checking out dajiecbin DPDM system

The check-out function is well defined if data atje is resided either in the local

databaselb or in one of the remote databali®. In the first scenario in whict

is in the local database, the local PDM databasegsathe data object to the local
servers first. In the later scenario in which the requdstdject is resided in a

remote databasel, will be saved to local databadg from the remote database
db.. At the end of the check-out process for bothhef $cenarios, the availability

5.14

Chapter 5 Representation of PDM Functions in UMbugnce Diagram

of d in the meta-database in all DPDM servers is chaigefalse and the data
object is saved to the workspaee

DPDM _CheckOu¢ § - [d dHO ¢ Available,d I (Exist d, 9B Eisdb)))

—~ Savé dp, db ¥ (Saye,s w9dO i Availaple,ds)]F
(5.9)

5.3.5 Check-In in DPDM System

Figure 5.10 shows the process of saving a copkiefriodified data object to the
data vault of the system by using the check in tioncof DPDM system. The
function is similar to the PDM system’s versionw#ome additional processes in
updating the system record. The process invokeve¢hgon control module to
revise the attributes of the modified object in theta-database and to update the

meta-database of the remote PDM servers.

ser Local PDM server Local PDM database Remote PDM database

|
|
Checkin l
|

alt

Save

|
|
|
|
|
|
|
|
> VersionControl !
|
|
|
|
|
|

1]

[modified]

> UpdateAvail
UpdateAvail
|
| |
| |
L [I
| |
| |

Figure 5.10 Sequence diagram for checking-in objecDPDM system

In DPDM system, the check-in function is definedhassing data object to the
local data vault. This function has two formulasther (5.10) or (5.11) will

5.15

Chapter 5 Representation of PDM Functions in UMbunce Diagram

determine the validity of the process. In (5.18¢ theck-in object is the original
one that has been checked-out, that'isd, and becomes available again. In
(5.11), the data object has been modified fdom d', the old version of the data
object is checked-in to the local database andrbeavailable for other users and
the new version is registered to the DPDM systenthByregisterfunction. Both
formulas ensure that the process updates the bwigylaf d is updated to true in

meta-database of all remote servers.

DPDM _Checkifd) - [dI dif ¢= @ DPDM CheckOut)

@ (5.10)
= [Oi Available(d, §) - T]

DPDM _Checkirfd) - [dI dbf d- & DPDM CheckQut)

. . . (5.11)
= [0i Available(d, $) - TO Registér 9

5.3.6 Release in DPDM System

The release function restricts further modificatiora data object. In Figure 5.11,
the sequence diagram shows that the data objecbtdr® modified anymore
once it is finalised and approved by authorisedrsus€éhe local PDM server
executes the NoUpdat(function to modify the status of the data objeaneta-

databases at all the remote PDM servers.

5.16

Chapter 5 Representation of PDM Functions in UMbugnce Diagram

ser Local PDM server Local PDM Database Remote PDM server Remote PDM Database

|
|
|
Release |
|

|
|
|
|
|
|
. |
Available }

at NoUpdate

T
|
|
|

NoUpdate

[available]

Fail

[else] I I

Figure 5.11 Sequence diagram for releasing objed¥DM system

The formula of release function is required to asde that the user is eligible to
hold the ownership of the data objett If d is not occupied, then it can be
released. That is, all copies of this object becowe-modifiable once they have
been released.

DPDM _ Releasé §l = [Availab{e)d= 0O i Modifial{le,d)s-)F (5.12)

5.3.7 Obsoletion in DPDM System

The obsolete function in DPDM system asserts tlwaimency of the data object
on which the obsolete function is acting. Oncedat object is an obsoleted state,
all corresponding information of this object canrmé used in any project
thereafter. Figure 5.12 is the sequence diagrarnwisigothe process involved in
the obsolete function.

5.17

Chapter 5 Representation of PDM Functions in UMbugnce Diagram

ser Local PDM server Local PDM Database Remote PDM server Remote PDM Database

T T

|
1
|
Release !
1

]
|
|
|
|
}
Available 3

alt NoAccess

NoAccess

[available]

Fail

[else] I I

Figure 5.12 Sequence diagram for obsoleting objad¥?DM system

The slight difference of the obsolete function betw the centralised and
distributed PDM system is that the local PDM serirerDPDM system will
update the new status of the object in the metabdae in all remote servers, so
that the users connecting to the other PDM semvél&now that the data object
has been obsoleted at the moment they access it.

DPDM _ Obsolet¢ g = [Available d= 0 i Availalle,d)s- | (5.13)

5.3.8 Deletion in DPDM System

This function erases the chosen data object that hmave been obsoleted in the
DPDM system. The following sequence diagram illatsts the process of delete
function in DPDM system. Determining the selectathdbject already obsoleted
is to ensure that it is not included in any othejgct and is not being accessed by

other users, so that the deletion will not induatadnconsistency to the system.

5.18

Chapter 5 Representation of PDM Functions in UMbugnce Diagram

ser Local PDM server Local PDM Database Remote PDM server Remote PDM Database

T | |

i
|
Delete |
|

Obsolete

|
|
|
|
|
|
|
|
|
L

alt
Erase

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

(I

1)

[obsoleted]

Fail

[else]

Figure 5.13 Sequence diagram for deleting objecBRDM system

The following formula is the specification Bleletefunction in DPDM system. It
defines that the data objettmust be obsoleted. This implies thiats no longer
used in any project, then the server will invoke Enasefunction to delete all the
copies of this data object in all PDM databases, therefored is no longer an

element of any databadeé.

DPDM _ Deletg g < [Obsolete)d- [0 i Eragée d)s> [d ;¢

The user functions of PDM system and DPDM systerasllastrated and defined
using the UML sequence diagrams and First Ordeid_ogthis chapter. In the
next chapter, common concurrency problems and pleeification of a well-

known concurrency control in DPDM system is illaséd in the same approach.

5.19

Chapter 6 Concurrency Control Specification

Chapter 6

Concurrency Control Specification

6.1 Concurrency Problems in DPDM System

Design and manufacturing workflow can be streandling implementing suitable
DPDM system that manages all product-related aegmiorganized manner. One
major function of DPDM systems is to maintain dattegrity and to provide
accurate data when required [Leong, et al. 2008. [&rge amount of interactions
between the system and the users will give riseotecurrency problems that all

data management systems need to overcome.

A transaction is a sequence of actions on some algects of database. Each
action can be categorized into either of the twadaAmental database operations:
read and write. The read operation returns theecwrf the data object. The write
operation creates a new version of the data olbjedtoverwrites the old content
or adds to the database if it is newly created. Jihgle relations among users
and a database system when a transaction is eseamnte depicted using a
sequence diagram in Figure 6.1. When the user wantsad the particular data
object from the database, he/she selects the teéatauising the interface provided
by the database system. The checkout function esw®&d to retrieve the data
item from the database. The server processes thetidn by checking the
directory to determine the availability of the filé this data object is available in
the database, the server will then transfer ihéouser. After referencing the item,
the user notifies the server that he/she no lomgsds to access it and the
connection between the user's computer and thebasea server will be
disconnected. However, if the data item has beedifrad or is newly created, the
user will be prompted to upload it to the databdge server checks the meta-
data directory to see if the data object alreadstexn the database. A new item is
written to the database and its meta-data to thectdiry. Depending on the

controlling methods that the system has implemertedexisting data object will

6.1

Chapter 6 Concurrency Control Specification

either be overwritten by the newly modified contenta new version is saved to
the database along with the old version.

User Workspace Server Database
T T T T
| | | |

Read | . | | |
: DownloadFile : : :
f | |
: CheckOut : :
| L |
: Available :
| .
|
|
|
: [Exist]: Transfer
| |
: Save :

Write | 1 | |

ﬂ ! UploadFile ! !
t | |
: Checkin : :
| |
| Available |
: 1
|
| alt)
1 Overwrite
|
|
i lexis_ | | __ i
|
| Write
|
| [else] | |
| | |
! ! !
i i i
| | |
: EndTransaction : :

| |

| Disconnect | |
| ml |
|] I_I |

Figure 6.1 Basic database operations: Read anig Wri

In general, database operations can be executedirtently within a transaction.
Concurrency problems arise when two or more actemesaccessing the same
data and at least one of which is a write actiddat¢ 2004] classified the
concurrency problems into three ways in which andagtion produces an
unexpected result as a consequence of interleampagations from different

6.2

Chapter 6 Concurrency Control Specification

transactions in an inconsistent manner. Two coeoaasr problems that are related
to DPDM systems are illustrated by the followingaeples in UML sequence

diagrams. Sequence diagrams are read from the tibye tbottom and left to right.

6.1.1 The Lost Update Problem

Let Opt be an operation from tH& transaction of a PDM systerf, performing

on a file is either a read, write and undo pro@sts={ R, W, U} . The lost

update problem is presented by means of a sequiageam in Figure 6.2. The
example begins when data objeateceives a read operati® from transaction

Tp at timety, activation lines are rendered on the lifelined,pdndT, to indicate

that these objects are activig.accesses the same file at titgewrite operations
W, from T, and W, from Ty update the file at timé& andt, respectively. The
diagram clearly shows th&, cannot read the update By, and therefore the
work done byT, does not base on the content at tigyénstead it worked on the
file seen at timé,, which are the same as those seemn. &inceW,, is processed
afterR;, the update of\j; indeed would not contain the work 8§, the update by
Tp is lost at timé,; whenW, is committed.

Transaction p Transaction g Data object d

t, | i Ro :
|
|
|
|
tz ' e
W
ts
|
|
|
|
W,
ty l i
|
I

Figure 6.2 The lost update problem

6.3

Chapter 6 Concurrency Control Specification

6.1.2 The Dependency Problem

Consider the situation illustrated in Figure 6.8afsactionl, updates data object
dat timet; and transactioy reads the update at tintg That update is then
undone at timés. As the consequence 0f, from Ty, Tq has retrieved a data object
that now no longer exists after timg As a result,Tq might produce incorrect
output, because the value it had is before timé&he problem becomes more
complicated if other transaction has updated tleebiefore the undo is processed.
In the second example shown in Figure @4treads the file at time that was
updated at timd; by T, and updates it by write operatiofy at timets. Wy
become dependent ofi,, however it is discarded with the undo operatijnat
time t, in which T, is supposed to undo its write operatidis The dependency

problem turns out to be another version of the Upstate problem.

Transaction p Transaction g Data object d
	W,

t4 .
|
|
|
|
ty ! Al E
UP
t3 T
|
|
|
|
|
I

T T
|
|

Figure 6.3 Dependency problem: Referencing an uadaia object

6.4

Chapter 6 Concurrency Control Specification

Transaction p Transaction g Data object d
	We :

t1 | : |
|
|
| R
|
q
13 '
Wy
i3 .
|
|
|
|
U
g :
I

Figure 6.4 Dependency problem: Undoing the wor&tber transaction

6.3 Basic 2PL Protocol in Sequence Diagram

From studying a number of proposed algorithms,liteeature review suggested
that they are developed on the basis of two wedwkm mechanisms for
controlling concurrency: two-phase locking (2PLdamestamp ordering (T/O).
The 2PL approach introduced by Eswaran [Eswaraal, 49976] is chosen as the
basis of the proposed concurrency control modet. rElason for choosing 2PL to
illustrate the proposed specification approachhiat tit is a more appropriate
concurrency method for DPDM systems. Unlike remletisystems, the activities
in DPDM environment often have long lifespan, aloms of transactions incurred

from any violation of the time orders in T/O modate intolerable.

Two-phase locking method preserves database censysby avoiding read and
write operations processed from different transasticoncurrently on the same
data object. A transaction must obtain a read-tmci write-lock on a data object
before starting the read or write operation respelgt Conflicts occur when a

transaction requests a lock on a data object @mtken locked; the request will
not be granted under the following two situatiohs.one is a read lock and the

other is a write lock, and 2) both are write lockgyure 6.5 is a UML sequence

6.5

Chapter 6 Concurrency Control Specification

diagram illustrating the 2PL method. Database djmers are omitted from the

diagram for simplicity. It is also necessary focledransaction to lock each data

object before acting on it.

Transaction Server Object
Growing Phase i i i
loop | | |
| | |
— | |
Lock ! |
1 |
Available |
1
alt
Lockltem
ATTTTI
Critical | I
Transfer region : :
[available] | |
t |
| |
RequestNotGranted : :
| |
| |
> Reprocess ! '
[else] e : :
| | |
! | |
While no lock has | | |
been released | I I
I | 1
! | |
Once a lock is released : : :
|
| | |
Shrinking Phase : I I
loop : : :
Unlock : | |
1
|
) Unlockltem I :
Until all locks are released | T I PR
1 1 1

Figure 6.5

Basic two phase locking protocol

In the growing phase, a transaction can reque&slon the available free data

objects. If the data object requested has alreaéy locked, the request will be

reprocessed. 2PL forces transactions to wait fer uhavailable locks. If this

waiting is uncontrolled, deadlocks will be arisefhe shrinking phase of a

transaction begins when one of its locks has bekased. During this phase, the

transaction cannot obtain any more locks on anw ddgject. Consistency is

6.6

Chapter 6 Concurrency Control Specification

established by dividing the locking procedure itw@ phases. The first phase is
growing phase as the transaction is allowed toasglocks. By releasing a lock,
the transaction enters the shrinking phase. In pgthisse, the transaction cannot
obtain additional locks. Eswaran gave an examplergsha non-two-phase
schedule may lead to inconsistency and suggestad 2RL is a sufficient
condition for preserving database consistencyhéndase of transactions which
are not processing any data object in common, ¢heybe scheduled consistently
in any order without violating the consistency,cgirnthere is no interaction in

between.

6.4 Formal Specification of Concurrency Control

Formal specification has to be unambiguous so #Hyatem developers can
understand the requirements and develop a systanopierates accordingly and
able to verify that the specifications do not hawy contradiction which would

lead to inconsistency. It is widely agreed that atural language cannot be
considered as a good specification language. Shisie¢ to the fact that computers
are not capable of understanding the meaning afralatanguage. Meanwhile,

classical formal methods, namely mathematical pragd not widely accepted in
the industry since there are too many streamsbaple can use to specify a
system, although classical methods guarantee tfiectioess of a system without

exhaustive tests [Drusinsky 2006].

6.4.1 Temporal Logic

The branch of temporal logic chosen to describecthecurrency model in this
research is Propositional Temporal Logic (PTL)adtrced by Pnueli [Manna &
Pnueli 1992]. Other than the standard propositi@oeainectives- (not), [1(and),
L(or), O (exclusive or) and= (implies), the typical temporal operators used to

construct the formulas of the 2PL method are devid:

6.7

Chapter 6 Concurrency Control Specification

Op Next In the next moment in time thatwill be true.

®p Previous In the previous moment in time thawas true.

ap Henceforth: For all future timep is true.

+p Has been from the preceding moment in time tlpeits true (including
now)

<p Eventually: At some future time is true.

®p Once p holds at some preceding position.

pUQq Until: p is always true until the time wherbecomes true

pW q Unless(pUaq)O(p)

6.4.2 Integration of Sequence Diagram and Temporalogic

This section illustrates the syntax and descrihessemantics of the integration of
temporal logic and sequence diagram. The UML sezpiellagrams in previous
sections are shown for these purposes. The cohstfuthe temporal logic

formulas is based on the order of the function joedds being asserted. A
function predicate can be asserted to hold at #ate ®f the lifespan of a data
object. Unless function predicates are refutedy thidl remain hold from the state
at which functions are evoked. Consider the lostaig problem shown in Figure

5.2, transactionT, evokes the read functioR,, Read T, dJis asserted to hold

until the transaction evokes the write functidp that changes the propertiesdof
the state oR, is no longer hold becaudg cannot read and write the same data
object simultaneously. However, the transactiorkesa new function processing
the same data object does not necessarily chaageate of the previous function
predicate given that earlier function predicates rast conflicting with the newly

evoked functions.

6.8

Chapter 6 Concurrency Control Specification

6.4.3 Representation of Serializability in TemporalLogic

The notion of locking is the mechanism of 2PL foregerving database
consistency in distributed environments. Lockingotpcol ensures that
transactions access data objects serially by bigclater conflicting operations.
That is, the operation of the earlier transactionstmbe completed before the
operations of other transactions start if theyincempatible and the transactions

are in no way interleaved.

Serializability can be achieved by executing ao$ebncurrent transactions one at
a time in some unspecified serial order. The muéxalusive formula below is
asserted to hold when only one function in the loctivig set will be processed on

a data object.

CooF(d) = fOF 00(=1f,(d) O=f,(d) O... 0 f(d) (6.1)

Formula (6.1) states that it should always be amyg function accessing the
object, given tha¥ ={f,f, - f,}is a set of functions that cause inconsistency
when processing on the same object concurrentlg.diear that the specification
OCoF(d) is true if and only if at most one process is afiag on the data object

d. A state in which the specification is false istate in which mutual exclusion is
violated.

6.4.4 Specification of Two Phase Locking in Tempotd.ogic

2PL method ensures that transactions access alojatat in a mutually exclusive
manner. This protocol results in an additionalodetctions called lock and unlock.
In the sequence diagram, the data object entersritical section once locked by
a transaction. It represents all the activity thas to be performed without any
interference. Non-termination of the critical statnt corresponds to one process
accessing the data object and never releasinghetother processes.

Critical (d) =+ 00 Own(i, d) (6.2)

6.9

Chapter 6 Concurrency Control Specification

A data objecd is said to be in its critical section if it is owhby a transaction. A
critical region is shown in the sequence diagraremwhis locked, this means that
only the transaction that owmkis entitled to process it and no other transaction

can access the data object.

The logical formulas use two predicates to modelddmns of a transaction. The
predicateLocKT,d) is true when transactiohlocks the data object, which also
implies that T has been granted the right to accessAnother predicate
UnlockT,d) is true whenT releases its lock od, and it surrenders the right to
accesd. For defining the actions, the predic&@evn(T,d) is introduced to state
the ownership of a particular data object. It hdtde if T has the ownership of

The definitions ofock andunlockare as follow:

Lock(T, d « [~ Critical d) O~ ShrinkingPhage)E>(Own T)d Unk{E,d))]
(6.3)

Its premise consists of two predicatesCritical (d) and-ShrinkingPhasg 7, it

states that a transaction locks data objects onlgrowing phase and the data
objects requested must not be in critical sectidme consequent dfockT, d)
holds wher is granted the ownership of the data object aiméllock is released.

A data object is in critical state when it has beked by a transaction.
= ShrinkingPhasg)'«E»O(D d Unlogk, T)dl Own T))((6.4)

Shrinking phase is antonymous to growing phaset T$aa transaction is in

shrinking phase then it could not be in growinggehd herefore either one of two
phases is needed to be defined in order to inditbatestatus of a transaction. The
definition states that the transaction is in shrigkphase once it releases all of its

locks.

Unlock(T, d) = [+ OWQ T d=0C-~ Own T 4 (6.5)

6.10

Chapter 6 Concurrency Control Specification

It is obvious that the transaction must have locleddata objeall and have the
ownership ofd in the pervious instant of time. Wha@nunlocksd, it gives up its

ownership of the entity.

Transfe(d w$ — € Lock, T ¥ Issge w9 Cdgpy d) (6.6)

This function ensures that an entity is transfetoethe workspace from which the
transaction is issued. Data objeads transferred to workspaees once locked by

transactionTy, given thafTy is issued fronws

Repeaf Lock,T 3 Unlodk, W<~ | Lo¢k.T)@ OO Unlogk,T)lc (6.7)

The function repeats the locking action unfi locks the data object. The
requesting transaction will not be able to lock theta object until all other
transactions that have locked it release their.lddle action of locking a data

object will repeat, given that the transaction adriack the data object.

The Repeatfunction executes a set of actioAscontinuously until the whole set

of criterial" is met. All kinds of repetitive tasks can be exged by this formula.

RepeafA,l) = [A U T] (6.8)

The following truth table illustrates the executmina formula:

Repeaf x- »*1C0 i #1],[F4])

6.11

Chapter 6 Concurrency Control Specification

i 0 1 2 3 4 5

i< i+l T T T T T T

i=4 F F F F T F

X 1 2 3 4 5 6

X<X+1 T T T T T T
(Xx<x+1)O(<i+)Y (i=4) T T T T T F

Table 6.1 The truth table of repeat function tdqren repetitive addition

A for-loop of adding 1 to the variablein 5 iterations is expressed usirgpeat
function. The pre-conditions of the for-loop aret mecluded in the formula for
simplicity, x is five andi is zero as the loop starts. The loop stops when th
iterator 1 equals to 4. Although the assignment functions
X<~ X+1 and i «i+1 always hold, the specification of the formula
[X « x+1]O[i « i+1] U[i =4] no longer holds when the iterator will not be dqua
to 4 once it was reached. Thus, the functigmeatterminates as it is evaluated to

false.

A state of the system is defined by an assignmetruth values to the function
predicates. The consistency of the system can Iiéiede by evaluating the
sequence of the function predicates. The valid esecgi of states of a system is
described by the temporal logic specification fdwe tsystem. The precise
conditions represented by these formulas of theispation depend on the details
of an implementation. Suppose transactiohas locked the data objedt and
there is another transaction trying to acogsa formula is needed to determine
thatd is not being accessed by any transaction. The sfathe function can be
either specified asLock(T, d) to indicate thatd has been locked by or

asLock(T, d)to indicate thatd is locked byT in the very instant of time when

checking is preformed. In the proposed approagiresentation of specifications

in simple form is preferred over complex ones.
Developing system requirements are not an easy Tds& chapter described the

use of temporal logic in interpreting the UML segce diagram. In particular, the

integrated approach was illustrated through exprgsthe specifications of the

6.12

Chapter 6 Concurrency Control Specification

basic two-phase locking. In this way, system dgweds can enjoy the simplicity
of UML while the correctness properties of modeds de formally proved. By
having a sound theoretical basis, concurrency obmtodels can be simulated
first before implementation. The description of newdels can be tested for
correctness and optimized in performance. The viollg chapter describes a
concurrency control model that integrates the cpncef granularity and
versioning. The model is designed on the basis@fspecifications of two phase
locking protocol and the objective is to improve ttoncurrent accessibility of a
DPDM system.

6.13

Chapter 7 Concurrency Control Method for DPDM Syste

Chapter 7

Concurrency Control Method for
DPDM System

Many variations of concurrency control schemes hheen introduced to
improve concurrency and system performance in auiweal database
environment, but an adoption of any of these metheduld not be an ideal
solution for resolving concurrency problems of aMPBystem. Above all, the
differences between the natures of DPDM systemscansgentional database

systems limit the efficacy of these methods.

Locking all the data related to the objects for mgkchanges reduce the
degree of concurrency or overall system throughpuage factor that influences
PDM concurrency is data complexity. The more nundfezomponents of an
object has, the data is more likely to be amendethbre users. A procedure
that can isolate only the affected parts of theadaitl be helpful to conduct
PDM with efficiency. The approach presented in thlspter introduces

several types of lock based on the data complaxitythe user’s actions.

7.1 Formal Description of the Method

The proposed hybrid concurrency control model foPOM integrates
granularity locking and versioning technique. Fbe tformer, the model
considers each assembly to be divided into diffeseraller assemblies that are
composed of a number of parts. The model also assuhmat when a user
updates an assembly, a user checks out the loexdtdssembly, that is, the
direct assembly to which the targeted object bedanagher than checking out a
large assembly with many assemblies in the wripingcess. However, this
assumption is not applicable in the case of readm@ssembly. For version
management, a new concurrency control model th#&tgiates locking

granularity with version control is devised. Inghinodel, whenever a user

7.1

Chapter 7 Concurrency Control Method for DPDM Syste

checks out (updates) a data object, a new verdidheodata object will be
created. No other users are allowed to check aumndw version while the
current version can still be read by others. After user has completed the
update, he/she then checks in the new versioneobéick to the vault. Other

users can now check out the latest version ofithérém the vault.

7.1.1 Locks with Version

Three standard modes of lock [Gary, et al. 1978hr&d §), Exclusive K),
and Intent SharedS), are adopted in this model and two new modesdk,|
Version /) and Intent VersionlY), are introduced to support versioned
concurrency control of a data object during its atpdprocess. The server to
which the workspace of the user is connected wdklthe related data objects
using one of those locks according to the operaifahe user. The availability
of the data objects is determined by the compdtitof the applied lock. Each
transaction can hold exactly one lock on each dbgact. The parts (leaf nodes)
can be locked it X or V mode;lV mode is used in level 0 assemidiy;mode

is used from project to level 0 assembly. The lgknules precedence graph in
Figure 7.1 shows how the locks are applied to dajects in different levels of
complexity. The vault stores a number of projectd aach is composed of
various assemblies. Data objects in these levdts dolS lock when they are
accessed. The assembly to which the simple padstlji belong is at level O,
wherelV lock is applied to the assemblies at the lowestalexity level (level

0) andS V, andX locks are applied to parts that belong to a dajacbbhat is

accessed by a user.

7.2

Chapter 7 Concurrency Control Method for DPDM Syste

Vault

ISlock Project

Assembly (Higher level)

Assembly (Level 1)

Assembly (Level 0)

IV lock

S, V, X lock Part

Figure 7.1 Lock granules hierarchy

The principles of locks with version are descrilbsdollows.

S lock on a leaf node permits other users to rea shme node

concurrently but prevents any updating of the node

V lock on a leaf node implies a new version of the s being created
while the current version is still readable by othesers.

Xlock on a leaf node implies the node is the nergiva being created
by a user at the same time excludes any otherfu@maraccessing the
node.

IS lock of a data object specifying its descendantspaill be explicitly
locked inSlock.

IV lock of a level 0 assembly implies that explicitking is being done

on some parts iN lock.

For instance, to read the data objdcttransactionTy first locks the direct

assembly ofl in IS lock, and then lockd in Slock. To updatel, Ty first locks

7.3

Chapter 7 Concurrency Control Method for DPDM Syste

the direct (level 0) assembly of in IV lock, and then it locksl in V lock.
Locks should be released in leaf-to-root order teefbe end of a transaction or
in any order at the end of the transaction. Tablei§ the lock compatibility
matrix. It shows that the concurrency powelSo$ larger tharV as two locks
are compatible witls while one lock is compatible wit¥ in the request mode.
The compatibility ofV lock is weaker thai® lock, since it is compatible with
otherSlocks only but not with any lock of other typessily, at the part level,

Xlock is the most restrictive lock as it is not qmatible with any lock at all.

Request Mode
S X \% IS v
S Yes No Yes N/A* N/A
X No No No N/A N/A
Current Mode \% Yes No No N/A N/A
IS N/A N/A N/A Yes Yes
v N/A N/A N/A Yes No

*N/A — not applicable since S, V, X locks are used in parts while IS and IV locks are used in assemblies

Table 7.1 Compatibility matrix for granularity lack

Suppose there are three transactidnsl,, and T3 in the systemT; and T;
apply aSlock on the data objed;, which is the version 1 &. T;is going to
modify d, so it promotes the lock athto aV lock. Sinced; has been locked
with aV lock already, the request oMalock on d from T,is blocked.OnceT;
modifiesd, a copy of this data object is created, that im this example. ArX
lock is automatically applied odi for T;1. T3 accessed, because the object is
still V locked byT, so the system only grants iBdock. T3 also tries to access
d’, however,T; has not released thelock on the object, so the requesflegfis
blocked.

7.4

Chapter 7 Concurrency Control Method for DPDM Syste

-
| K

|0\>

————] =

I
:
S lock |
I
T
I
I
I

V lock

S lock

S Ioclzr

*

Figure 7.2 lllustration of lock compatibility

For the same reason, the concurrency powe® édck is higher thanV lock.
The type of lock applied on a data object is deteesh by the concurrency
power in some cases. For example, when a datatodjeady held a lock
during transactiof;, and a transactiol, request is permitted, another lock is
going to apply onto the same data object. Howeagronly one lock can be
held by a data object in this model, the conculygawer is used to determine
which lock dominates the sharing ability of the adabject. The larger the
concurrency power, the higher the sharing abilitg ¢he higher the potential
risk of data lost. In order to maintain system sigland to ensure that the
transaction mechanism does not conflict with thengatibility matrix in the

system, the type of lock chosen may be the onetivéhess sharing ability

7.5

Chapter 7 Concurrency Control Method for DPDM Syste

7.1.2 Notations and Types of Functions

As defined in Section 3.2.2:sd has been denoted as the total number of data

objects including all assemblies and parts in tHeDDI database (vault),

assemblies data objects are denoted@s{ad, ad,,..., ag} and part data

objects are denoted @D ={ pd, pd,,..., pg} wherem andn are the index

number of assembly and part data objects in the R)dlem respectively.
Thus,

db={ PD, A} ={(ad, ad, ..., ag),(pd, pd..., d) (7.1)

The following actions are those of the PDM systérat ttan perform on the

data objects:

Spd) Lock part datgpdin Shared mode.

rS(pd) Release the Shared lock of part dada

X(pd) Lock part datgpd in Exclusive mode.

rX(pd) Release the Exclusive lock of part dpth

V(pd) Lock part datgdin Versioned mode.

rV(pd) Release the Versioned lock of part dada

IS(ad) Lock an assembly datalin Intent Shared mode.
riIS(ad) Release the Intent Shared lock of assembly aldta
IV(ad) Lock an assembly dagalin Intent Version mode.

riV(ad) Release the Intent Version lock of assembly dédta

When a transaction is invoked, one or more of tlewing functions will be

executed.

Lock(d,L) holds if data objedd can be locked in lock mode L.
M(d) holds if data objeal has been modified.

P(d) returns a set of parts data object that con$igbjectd.
A(d) returns a set of assembly data object that irdudhta

objectd.

7.6

Chapter 7 Concurrency Control Method for DPDM Syste

A new temporal logic operator called Consequemitioduced for defining the

specifications in a more succinct form.

C(p.gr) < (@p-(pdgwrn (7.2)

The above definition says that orrlolds, therp andq are always true unless

r becomes true.

7.2 Implementation

This section presents the implementation of theehtmla DPDM system and
how the functions regulate the operations of th&tesy in order to safeguard
the integrity of the data. A DPDM system is a mati for making the proper
product data available to the right people at tigatrtime. When building
database applications, it is not sufficient toalisbnly a database. There must
be specific tools that enable a speed-up of data #ind activities. A data
controller is built into the DPDM system for managjithe access to the data in
the system. In a situation when a person issueanadction to access a file in
the system, the data controller will trigger thetaneata processor to determine
the files that will be affected by the transactidhe data controller will carry
out appropriate actions to the file affected basedhe query result. In case a
new transaction conflicts with other executing sactions, the new transaction
will be stored in the transaction base to wait tloe file(s) it requests. The
pending transaction will be assessed again whercdhéicting transactions

have been completed.

1.7

Chapter 7 Concurrency Control Method for DPDM Syste

7.2.1 Check-out and Release Processes

Checking out or releasing a part data obptimplies that the user wants to
update the property of a data object from the vaiit mentioned in the
previous section, this model assumes each usdreicke@ut/release the lowest
level assembly rather than checking out a largeraBly when updating a data
object. The model applies the following rule to tohthe check-out and

update operations of the system.

ad0Ad) QQLockadly, IV ay rI a)), ¥V pd, rv pel ¥ py
- X(pd™)

(7.3)

The user first locks the direct assembly of thaaddject inlV mode, and then
locks it inV mode. After the version of the part objecpd is checked out, a
new version of thepd™will be created. Concurrently, tH® lock on pd is
released and the current versiguf) is readable by other users. Figures 7.3
and 7.4 illustrate the Check-out/Release procegxlowith one and more than
one direct assembly respectively.

(IV Lock) (Level 0 Assembly)
a
pdr+] <__pdr b (Pal’t)

(X' Lock) (¥ Lock)
--- New version

Figure 7.3 Check-out/Release process on part deatpd with one
direct assembly

7.8

Chapter 7 Concurrency Control Method for DPDM Syste

(IV Lock) (IV Lock)

c a (Level 0 Assembly)
d pd1<- par b (Part)
(X Lock) (¥ Lock)
--------- Reference
-=-- New version

Figure 7.4 Check-out/Release process on part daextepd with more
than one direct assembly

After the modification to the data object is comete the new version of the

data object is then checked back into the vaultahithe locks will be released

in leaf-to-root order.

ad0 A pd) e(@rX(pd™) - Y pd™h) - rI\ ad (7.4)

Simultaneously, the server will notify those usersho have checked out an
assembly that contains the modified part a newimerns now available. The

following is the logical interpretation of the amti after modification is done to
pd.

u:eCheck out ajl] adl @d) < rXpd™) - Notify) (7.5)

7.2.2 View Process

To allow a user to view the part data objgat’, the system first locks its
direct assemblyn IS mode, and then lockgd" in S mode. The following

definition of transition of locks is illustrated hkifie locking order of the view
process in Figure 7.5.

adJ A pd) Q Lock ad 1p 16 ad riS - (S P (7.6)

7.9

Chapter 7 Concurrency Control Method for DPDM Syste

(IS Lock) (IS Lock)

(Level 0 Assembly)
c a
d pr b (Part)
(S Lock)
.......... Reference

Figure 7.5 Viewing a part with more than one dir@ssembly

After viewing the part, the system releases thé&dom leaf-to-root order.
Notice that the following formula uses _ symbolafths, underscore) to
indicate the anonymous variable. The third varialilthe Consequent operator
is an action that will refute the state of the tpredicates. Unless either any
assembly in sef or the partpd is locked by any type of locks, the affected
data objects remain unlock from the state at whicketions were evoked.

adUA(pd) Qrg pd), rg ayl €.) (7.7)
Similarly, to view assembly data objemdf, the system locks both the direct

ancestor and the assembly primarily$mode, and then locks its descendants

in Smode:

adlJ Alad)| pdl R ad) C CLodkad) (Sad S pd (IS'ad (1S}
OC(Lock(pd §, & pd 1S pYl
(7.8)

All locks applied on assembly data object’ are released also in leaf-to-root

order after viewing:

ad0 Aad)| pdl Rad) € Lok ad IS (S &d- (S'3 (7.9)

7.10

Chapter 7 Concurrency Control Method for DPDM Syste

7.2.3 Obsolete Process

To move a part data objepd to the obsolete vault, the part should not be

locked in any mode. The status of the part shoaldarm to the following rule.

=Lock((SO XOV, pd (7.10)

Similarly, to obsolete assembly data objadfrom the vault, the PDM system
must ensure that the assembly and its parts areciad in any mode. In other
words, they are not being used by any users. Thewiog rule checks the

condition for all data objects involved.

= Lock((ISO IV), ad (7.11)

7.2.4 Function of Redlining

Redlining is the visual annotation of CAD filesfaxilitate the communication
between individual PDM users, for example, it redsirthe edited places of
updated version. Redlining is not a necessity tthe@AD file. The model
treats this function as an extra component towdre<CAD files. The notation
of redliningd”.RL denotes the versidrof redlining of the version of the data
objectd is visible to users. By default, redlining of thie is turned on and set
“visible” with versioni to remind the PDM user to edit according to the
amendment remarks annotating the CAD file. Beirsgigplementary note to a
CAD file, the version of redlining may be differeinom the CAD file. When
undergoing check-out or release process, the wversiothe CAD file is
incremented while the version of redlining remaumghanged if the user does
not make any amendment on it. If the version ofimety remains unchanged,
the redlining function can be turned off until awngersion of redlining is
created. New version of redlining will be creatgdtbe user explicitly by the
“save” action. To include this function into théebycle of the PDM files, the

7.11

Chapter 7 Concurrency Control Method for DPDM Syste

notation for the redlining being turned off will beplaced byd" and in which
the redlining being turned on will be replaced #\RL'. Three possibilities
regarding the versioning of redlining are illustctin the Figure 7.6. The
example starts with a data object with redlinifigRL".

1. The user modified only the supplementary note dmehtthe system
updates the version of redlining of this data obfeam d*.RL" to d*.RL?

without changing the versioning of the data object.

2. The user modified the data object without making ahanges to the
redlining, thus the system updates the versionhef dbjectd".RL' to
d®.RL* but not the redlining.

3. The user modified both the data object and itsimadj; the system
updates the version dfand the redlining tdRL

Supplementary note was
d'.RI? modified without 1
changing the data object

Modified the data object
d.RL! » d°.RL! without changing the 2
supplementary note

Both the supplementary
d’.RI? and the data object were 3
modified

Figure 7.6 Versioning of redlining

7.3 Case Study

The proposed concurrency control model has foussels namely, Object,
Project, Part, and Assembly. The attributes ofscl@bject include file name,

version, description, redliningr_version, and other information of the

7.12

Chapter 7 Concurrency Control Method for DPDM Syste

document as shown in Figure 7.7. Attribute redbinstores the visibility of
redlining of the data object, attributeversion stores the version of redlining
and attribute version stores the version of thea ddiject. Class Part and
Assembly are children of Object; they inherit thtilutes of Object and add

in some more attributes for themselves. X, V, IS, and IV store the
accessibility of§, X, V, IS,and|V locks. The part and assembly arrays store the
descendants of the current assembly. Class Progetains two attributes in

array type which store the data objects of theerurproject.

Class Object

{

private:
I/l Object information
string Name[100];

string Owner[10];
int redlining=1; // true=1, false=0

int r_version = 1;
int version = 1;

Figure 7.7 The object class

The implementation of the proposed model will bastrated via a case study
to manage the product data for an ink jet printedpction [SolidWorks 2005],
which consists of CAD files of parts and assembliegure 7.8 shows a
section of the product structure of an ink jet finin the example, the ink jet
printer consists of three assemblies: ink cartridggsembly, ink jet top
assembly, and electronic assembly. Each of thensistsnof a number of
assemblies and parts. In the case study, the fotdlbe on the ink cartridge

assembly.

7.13

Chapter 7 Concurrency Control Method for DPDM Syste

Inkjet printer

Cartridge Inkjet top Electronic

Assembly assembly assembly
Cartridge Cartridge . . Cartridge . Cartridge
Extractor Lid Pivot link Holder Ink Carriage Motherboard

Cartridge Cart'rldge
latch Link
Support
Figure 7.8 Product structure of the ink jet printer

For simplicity, all files of the ink jet printer @arassumed to be newly created

with version 1. The ink jet printer belongs to {h®ject level, while the ink

cartridge and the pivot link belongs to the assgnleivel 1) and the assembly

(level 0) respectively, and are shown in Figur8.(@) and (b).

Figure 7.9 (a) The assembly of

pivot link

Figure 7.9 (b) The part of ink

cartridge latch

Figure 7.10 shows the variety of locks being apgplie the data object in

accordance with their complexity level when theiglesof the ink cartridge

latch is going to be modified. The process is sthldy locking the file of pivot

link in IV mode and the ink cartridge latch\imode. The ink cartridge and the

ink jet printer are locked in IS mode because IMdmean only be used in the

7.14

Chapter 7 Concurrency Control Method for DPDM Syste

level O assembly. After that, the ink cartridgechatvith version 1 is checked
out from the vault to make modification. A file tife ink cartridge latch with
version 2 will be created and will be lockeddmode. All modifications of the
design are made in this file. Ink jet printer, io&rtridge, pivot link and ink
cartridge latch with version 1 are still readablg dther user except ink

cartridge latch with version 2.

Project Inkjet Printer IS=1,1V =0
Assembly (Level 1) Inkjet Cartridge IS=1,1V =0
Assembly (Level 0) Pivot Link IS=0,1V =1
Part Ink Cartridge Latch Ink Cartridge Latch Ink Cartridge Link
(Version 2) (Version 1) Support
S=0, X=1, V=0 S§=0, X=0, V=1 S§=0, X=0, V=0

Figure 7.10 The design of the ink cartridge lagbheing modified

To illustrate the concurrency ability of th¥ locking mode, suppose a user
wants to modify file B, the design of the link catge lid, while file A, the
design of the pivot link is under modification. &mnthe file of ink cartridge,
the antecedent of file A, is locked in IS mode,diect descendant other than
file A can be modified by others. Although it hdseady been locked iiS
mode, the locking mode on this file is now convérte IV mode because its
lock locking properties dominates. The proces®okihg mode conversion on

a file when there are more than one direct desc#sadbeing modified

7.15

Chapter 7 Concurrency Control Method for DPDM Syste

concurrently is shown in Figure 7.11. The file iokl cartridge lid with version

1 is locked inV mode and a file of version 2 is created which ckéal in X

mode for modification. After the modification ofeghnk cartridge lid, file with

version 2 is checked back into the vault and &lldctks are released in leaf-to-

root order. The notifications to the direct assegmdil the ink cartridge lid are

triggered (ink cartridge and ink jet printer) tofarm the users that a new

version of the part is now available. In the meastias the file of ink cartridge

is no longer affected by tH¥ lock, it will change back t¢S lock. Finally, the

locks on the data objects involved will be releaselden all the above

modifications are completed.

Project

Inkjet Printer

IS=1, IV'=0

As the concurrency power of IV < IS, IV
Assembly (Level 0) Inkjet Cartridge dominates the lock, so IS=0, IV =1
Part Pivot Link Ink Cartrldge Lid o Ink Cartfldge Lid
(version 1) (version 2)
S§=0, X=0, V=1 S§=0, X=1, V=0
%Ink Cartridge Latch Ink Cartridge Latch Ink Cartridge Link
(Version2) | (Version 1) Support
S§=0, X=1, V=0 S§=0, X=0, V=1 S§=0, X=0, V=0
Figure 7.11 The design of ink cartridge lid is lgemodified

In product developments, product data are maintgpmmsed of the information

of assemblies and parts, which are often managetisinbuted computing

environments. DPDM systems are often utilized fanaging the data access.

When modifying the design of a product, a numbemndépendent tasks may

7.16

Chapter 7 Concurrency Control Method for DPDM Syste

be performed to different components of productewever, locking all
corresponding files and their parts with one sirgtk limits the concurrency
of the DPDM system. The efficiency of a product @lepment will thus be

slowed down.

A new concurrency control model is presented is tmapter that improves the
concurrency ability of DPDM systems by adjusting thccessibility of data
objects in accordance with the action to be peréatrby the users and the
product architecture of the physical entity. The dedo allows more

simultaneous access to the product data by swdcthe type of locks being
applied. However, there is a trade-off on the numdfeconcurrent accesses
and lock conflicts. The finer the granularity, theeater the overhead on lock

testing will be.

A methodology which enables the incorporation etheduling technique and
integrated locking method to improve the perforreaot DPDM systems will

be presented in the next chapter. The efficiency lwa further enhanced by
considering factors that affect the accessibilitypwduct data when granting

access permissions to transactions when constgutttentransaction schedule.

7.17

Chapter 8 DPDM Deadlock Avoidance

Chapter 8

DPDM Deadlock Avoidance

8.1 Transaction Scheduling Problem in DPDM System

Concurrent access to a database system is a wayrease the flow of
information. Many concurrency control methods haeen proposed over the
last few decades, but an adoption of any of thesthods would not be an
ideal solution for resolving concurrency problenissdPDM system. Above
all, the differences between the natures of DPDItesys and conventional
database systems limit the efficacy of these methdidis because these
methods were purposefully designed for managingvestional database
systems. Furthermore, these methods are absenttékimy the account of
durations and deadlines of transactions and theedemce of execution of
transactions. However, engineering applicationgroftequire consistent and
long-term detainment of large volume of data an@&tmg project deadline is
crucial to the success of the business. It is thezeimportant to develop a
concurrency control mechanism that can incorporaih the ability of

scheduling in order to increase the concurrent sscad the PDM systems

while data integrity is maintained.

While improving concurrency of a PDM system is atieal factor in

facilitating a fast information flow, a tool for gaucing the best schedule
without sacrificing the data consistency is devebhp In the proposed
transaction scheduling model, the basic unit ofdpod data granularity
considered is the data object. A transaction aeseaset of data object. If the
set of required data objects are all ready for s&cthe transaction holds lock
of these files and will be processed, otherwisetthlesaction has to wait until
all the files are lock-free. The locking technigemployed in the proposed
model has been described in Chapter 6. Read |@tkats the data to be read

only by the transaction that applies this lock axtlusive lock allows

8.1

Chapter 8 DPDM Deadlock Avoidance

transactions to both read and write to the datkeldcExclusive locks cannot
be applied to the data that have already been dotkeother transactions;
conversely, no other transactions can apply anly fodhe exclusively locked
data object. This will certainly guarantee thatcoeacurrent transactions will be

able to update these data before the locks arasesie

8.1.1 Problem of Deadlocks

Maintaining the integrity of a database is of calldmportance in a shared
environment. This goal can be achieved by produaisgrializable schedule of
transaction executions [Date 2004] and graph thegmployed to determine
the serializability of schedules [Eich 1988]. Langiis one of the well-known
concurrency control technique and more likely teeheountered in practice. A
transaction can obtain a lock on a data by issaimgquest to the system and
perform appropriate actions depending on the lgpk.t The basic idea is that
when a transactiom needs an assurance that some data objects terssted
in will not be altered, thu$ acquires a lock on these data objects. The affect
acquiring the lock is to prevent other transactidmmsn changing the data
objects in question. However, locking has the risk deadlock as the
transactions may wait for unavailable locks [Ph&ifNathan 1981]. Although
locking guarantees serializable schedules, it imeoessarily deadlock free. A
deadlock occurs when a set of two or more tranmastare requesting data
locked by others in the set. Thus, these transatwall wait to be executed
forever if none of them is cancelled. Thus, dead#amust not exist to ensure
that every transaction will eventually be execut€de main approaches for
resolving deadlock are deadlock detection and dekdlavoidance. The
conflict resolution employed in the proposed modelcalled transaction
scheduling. This approach involves scheduling txatigns for execution in a
way that two transactions will not be processeccuamntly if a deadlock will

occur.

8.2

Chapter 8 DPDM Deadlock Avoidance

8.1.2 Definition of Transaction

Let 7 ={T,,...,T.} be a set of transactions to be executed in a DRPEM.
Each transactiol ={d, d,, ..., d} requires a set of atomic dath to be

executed. Atomic data are data that ought not tgraaularised any further.
Transactions can be divided into two categories:iturea and pending
transactions. The former is a transaction thatyedata object required for the
process is available upon request and can be edoutmediately. Conversely,
the latter are transactions that have to wait &ovmore required data objects

are locked by other transactions.

Each transaction has a latest start titpea deadlinedt, and an estimated
processing timgt. The latest start time is the time that the tratisa should
be processed for not missing its deadline. Thestatart time of a transaction

islt =dt—pt. The deadline is the time at which the transacsbould be

completed. These parameters are known to the systeam the transaction
arises. However, the action of transactions upenddta objects may not be
determined. The type of locks on which the traneastapplied is set to be
read locks for the sake of concurrency unless usgmsify that they are likely

to change the content of the files during the tatiens. Methods for

improving the concurrency of a system will be dssrd in later sections.

8.1.3 Deadlock Avoidance

The methods adopted by the transaction schedulindemto prevent the
occurrences of deadlock and minimise the tardinelsgransactions are
described in this section. A transaction schegutiroblem for DPDM system
can be depicted as a graph. The source ®ethe DPDM system which
contains all the data, where the transactions dmed pgrecedence of the
execution are represented by vertices and direated respectively. The
direction of the edges indicates the dependencwdmst the vertices. The

vertex at the head of the arc requires some datffom the vertex at the tail.

8.3

Chapter 8 DPDM Deadlock Avoidance

The sequence of execution of transactions is repted by passing data
objects from one node to another until all transachodes have been passed.

Suppose a set of transactions,={T,,T,,T,} is to be executed,
whereTl, n T, = gand there are some data objects which are accegskdth
T: and T3, that is,[d dO(T, n T), where the action of one transaction

conflicts with the action of the other. The diretgraph corresponding to the
situation is depicted in Figure 8.1. In this examphere are two possible
sequences of execution. Suppdses going to modify the content of the data
objectd andT; requires reference th Since writing and reading functions are
conflicting functions if performed concurrently; and Tz cannot be executed

concurrently or the serializability will be violateand the database may
become inconsistent. Therefore, these three traosacmust be executed in

either one of the following two sequences to pnesaonsistency. The first

alternative is to execute boih and T,, and thenl; or to execute botfi, and

T3, and then T;. The first sequence incurs a total cost

(¢, tC . tCc+c FtcC+c;) and the second sequence incurs a total
cost(c,, +¢, .+ C+C +cC+c;). The best sequence of execution is

determined by finding a route that goes throughttal nodes once with the

minimum total cost, where the cost from node nodsj is ci;.

Figure 8.1 Execution precedence graph

8.4

Chapter 8 DPDM Deadlock Avoidance

An optimal solution to the problem can be computgdfinding a cycle that
goes through all the vertices with the least ttaagth. Problems of such cycle
for networks are known as Travelling Salespersooblem (TSP) and no
efficient algorithms have been developed to salvElowever, determining the
complete cycle is not necessary in transactionddhey for DPDM systems.
This is because new transactions may emerge arey thme priorities of new
transactions may be higher than those existing#etions. The solution is no
longer valid and a new schedule has to be compatedl the effort of

determining the schedule of the waiting transastiould be wasted.

8.1.4 Objective of the Model

The main objective of transaction scheduling ismtimimise the number of
missing deadlines. Some transactions may unavgidaids their deadlines.
Subsequent actions have to be taken to handle tizesactions. For the nature
of transaction in DPDM systems, a transaction thigses its deadline will not
become worthless. All transactions must be comgleteen though they are
tardy. Tardiness of transactions is consideredetohle secondary objective in
which the proposed model minimises. The priority tafdy transactions
becomes an issue for the system; there are attlgastlternatives available.
The first option is to consider that the tardy sactions should receive higher
priority to other transactions, as they should bmpleted as soon as possible.
Secondly, these transactions can be processetemtilae, since they already

missed the deadline and their urgency diminished.
In order to improve the concurrency and efficierméya DPDM system, the
following objectives of the transaction schedulmgdel are posed to ensure

reasonable and correct decisions are made:

. Minimise the total number of deadlines missed

. Minimise the tardiness of late transactions

8.5

Chapter 8 DPDM Deadlock Avoidance

Firstly, the schedule should include as many tretias as possible, to ensure

the transactions are processed before deadlinen8lgc it must consider the
concurrency of a DPDM system. These two goals oftenflict with each
other, as trying to meet one goal will worsen thaliy of the other. The
objective of the model is to create the best quatdansaction schedule, where
the quality of a schedule is determined by the ll®fedivergence from the

target of each of the two goals. The following teat were deemed to be

factors that affect the quality of a schedule:

1. Complexity of product development

The time required at an early stage of developingeas product is
inevitably longer than to fine tune the product at later stage.
Modifications are made frequently to the desigmstht is likely that files

are locked in exclusive mode and concurrent acca®sot be exercised.

. Stage of product life cycle

The rate of retrieval and modification of files @éaps on the stage of the
product life cycle. CAD files and specificatione aetrieved and updated
frequently in the beginning of the cycle. Howevtirese files are often
retrieved for referencing in the production stagel aipdates are rarely
made. Conversely, production line capacity repoftproduction plant are
less relevant to a product in designing phase,tihetreports would be

accessed frequently when the product comes intdugtmn.

. Revision and modification

It is possible to modify existing parts for desiggnia new product. Then a
newer version of the parts is created and trarmacthat access the earlier

version of the files would not be affected. In e¢ast, when the part needs

8.6

Chapter 8 DPDM Deadlock Avoidance

to be revised, all the associated files must bdusikely locked and no
transaction is allowed to access these files. Betrens of revision would
be assigned a cost, which is determined based en ntimber of

transactions that are waiting for the data to hsesl, thus the execution

priority can be adjusted accordingly.

Deadline of a transaction

Transaction that is close to its deadline shoutéixe a higher priority than
those that are unlikely to be tardy. This is beeat® company may be
penalized for breaching agreements if orders are fuldilled by the
deadlines. The cost associated with deadline depeyd a set of
transactions that are waiting to access a commoof $iées. To ensure that
transactions have sufficient time to be completibe, slack timest of

mature transactions is computed as:

st=dt—pt—ct
where ct is the current timed is the deadline anght is the estimated
processing time of a transaction. For pending #&etm@ns, which are
waiting for the files that are locked by the trasctgans in execution, the

slack time is computed as:

st=dt—pt—It

wherelt is the latest start time of the transactions ajahbks to the latest
completion time of transaction which locks the dileequired by the
pending transaction. The slack time of pendingdaations is computed
after the slack time of mature transactions weteutated. The priority of
the mature transactions could be changed if thecutiam of these
transactions leads to an overdue of some pendamgdctions, given that
such changes do not violate the order of works. Sjfstem first computes
the slack times of mature transactions. The sldoke tof pending

transactionss then calculated based on the completion timelbfthe

8.7

Chapter 8 DPDM Deadlock Avoidance

executing transactions that hold the required .filegransaction having a
negative slack time will be tardy and the deadheleted cost will affect
the schedule. Figure 8.2 illustrates the influemeprocessing mature
transactions to pending transactions. Supposethigae are two mature
transactionsTy: and Tz and one pending transactidiy, in a DPDM
system. Both mature and pending transactions reguoommon set of files
for process. The attributes of the transactiondisted in the figure. Some
files that Ty, requires are locked by other executing transastiamd the
latest completion time of which is 1 time unit. Hover, other files which
Tp1 Needs are requested By, and Trp, transactions which will become
mature when they gain the access. The latest ctimpleme of the two
mature transactions is 3 units and this will bedRkpected start time df,

if the system decides to process the mature trdosacand subsequently
T, cannot be completed by its deadline.

Transaction| d p t e |Completion| s
Tt 8 3 0 0 3 5
T2 6 2 0 0 2
Tp1 6 | 4| 1] 3 7 -1

Toi Deadline of
TmZ and Tp1
Tm2
| T, | ‘ Deadline of Ty,
I I I I I I I I I

1 2 3 4 5 6 7 8 9 10

Figure 8.2 Outcome of executing transactions witlsacheduling

8.2 Set Partitioning Problem

This section describes the formulation of IntegesgPamming (IP) to model

the transaction scheduling problem. Scheduling lprob are often large and

difficult to solve, such problems can be solvedngsithe optimization

techniques that are based on Linear Programmimguiations [Ryan & Foster

8.8

Chapter 8 DPDM Deadlock Avoidance

1981] or Lagrangian relaxation [Ceria, et al. 1998hese techniques are
usually rigorous and provide a guarantee of opiinalThe problems
formulated as linear programs are commonly sohadguthe revised simplex

method.
The following matrix-vector notation is used thrbogt this chapter and basic
understanding of the revised simplex method foedmprogramming can be

found in [Salkin 1989].

Set Partitioning Problem (SPP) is one particuléeger linear program that is

used extensively in scheduling. Given:

1. 1={,....,m
2. Acollection of subset® ={R, B,..., P}, where eacl?,J P

3. A cost functionc(P))

Then, some subsets frai] {1n} define a partition of where,

2. PnP=0 forall j,kO{L...,n},jzk

The set partitioning problem tries to seek a minimost partition:

min ¥ c(R)
j0d

st J partitionsl|

8.9

Chapter 8 DPDM Deadlock Avoidance

The set partitioning problem has an alternativeegat linear program

formulation:
minimise c' X
subjectto: Ax=e
x 0{0,4 0Oj
where (8.1)
et if p, contains elementg
% o otherwise
1 if p,isinthe partition
X =
"0 otherwise

wheree is an appropriately sized column vector of 1's.

The SPP is the basis of many large-scale schedplioglems, where each
element ofl can be considered as data object required, ansethg represent
the transactions to be processed. The solutio?®iS the set of schedules that
performs each transaction exactly once and hamthienum cost. The SPP is
often formulated as a set covering problem for daheg problems by
replacing the equality constraints with inequaligtriction, it implies that the
data objects can be accessed concurrently by maredne transactions.

8.2.1 Formulation of Concurrent Transaction Scheduhg Problem

An IP can be formulated as a set covering problgncdnsidering it as a
problem of choosing a subset of transactions tacgs® with the lowest
possible cost that meets the constraints of coantiaccess of files in which
some data can be accessed by exactly one transatteotime and some can
be accessed concurrently by more than one transactfhe modes of locks
which transactions apply to data objects create d¢bastraints of the

Concurrent Transaction Scheduling Problem (CTSRusT there are five

8.10

Chapter 8 DPDM Deadlock Avoidance

constraints for each of the data objects in thaltkde, one type of lock mode
create a constraint of the CTSP. The constraiéssribed as follows:

Let K be the number of transactions waiting to be exsstut
M be the number of lock modes
D be the number of data objects

_| 1 iftransactiom appliesmode of look on datgectd
HMTT) 9 otherwise

= 1 if transactionl is process
T 0 otherwise

Let bym be the number of concurrent accesses to datatabjeceach mode of
lock m, the column vectoagntis referred to as the request of lock maden
d by transactio, thus the concurrent access constraints are defined.

K
. AgmrXT< Myg m={ SV
T2

K
D agurXr+ Yy *+ Vg <1 0d0 PO (8.2)
T=1

K
zadXTXT+ Yo t ¥q =1
T=1

K
D agmrXT < Myy m={ IS M

T=1

K
> agqvyrXr * Y, *+ Vg, <1 OdO AC (8.3)
T=1

K
D agxrXr+ Yy, + Vg <1
T

8.11

Chapter 8 DPDM Deadlock Avoidance

The first three constraints restrict the mode ckapplied to data objects that
belong to a part. The first constraint allows npl#ishared accesses to a data
object if it is not exclusively locked, sindemode lock on a part data object
implies that a new version of the part is beingated while the current version
is still readable by other users. The second aird tonstraints require that
the data object can either be locked/imode orX mode. In other words, one
of these constrains need not be satisfied so lsrtheaother one is. Since both
constraints need to be included in the problem fdation, auxiliary binary
variabley and a large numbé are introduced in the model to accommodate
the fact that that not both need to be satisfiggttver but at least one of the
constraints must hold. The constraints of data ssc@an be written in the

above mentioned form.

The large numbel acts as infinity so it must be chosen to be latgan any
possible constraint value. Singas either O or 1, we will have one constraint
maintaining as zero so that the solution cannotbbéh allowing some
transactions to apply shared locks and an exclukigk to a data object
simultaneously. Consider that there are two trammasT; and T, that want to
read the data objedt Each of the transactions applies a lock in shanede

to the data object. Also, suppose there is andifagisactionT; is going to
modify the data objecand apply arX lock tod. The equivalent problem is

given as follows:

X+ X% < Myg,

8.4
X3+ yg <1 84)

Because there is no transaction applying ¥rgck to the data object, so the

second constraint does not appear in the problem.

Taking the choicegy = 0, transactiorils will apply an exclusive lock to data
object and no read lock can be applieditooncurrently since the right hand
side value of the first constraint becomes zera asnsequence of satisfying

the second constraint. Conversely yf= 1, the first constraint is active and

8.12

Chapter 8 DPDM Deadlock Avoidance

does not allowT; to apply an exclusive lock while the second caistr
restricts the value af; to zero and the data objects can hold as mangdhar

lock as possible if the first constraint has natlim

Assume processing transactidnhas a costr and a cosZ incurred if the
transaction is not processed. The number of unpsedesansactions can be

minimized by setting to a very large value. The problem can be formdlate
K K

min - Y crx+Z K=Y %
T=1 T

K
2. Bamr X7 < Myg ={ sV

T=1

K
D agurXrt Vg + ¥y <1 OdO PD
T=1

K
D agxr X+ Yo t ¥g <1
T2

K
Y agmrXT < Myy m={ IS I}
T=1

K
ag(vyTX*r + Yg, + Yo =1 OdO AC
=]

T

K
D agxT X+ Yy, * Yg =1
T2

XT' yd/’ydw ! ydx :{0’]}

Figure 8.3 is an example of the above notatiorthis example, transactioh

Is trying to lock data objeat; andd, in shared mode and in version mode.

T, is going to lockd; in exclusive mode ands in shared mode. Concurrently,
T3 tries to lockd; andd, in shared mode and exclusive mode respectively.
There are a few of solutions to this problem, ihg Solution is to procesE;

and T3 concurrently and to rui, when both transactions complete their tasks

later. Executing’; andTs will force y;xto be 1 and the constraint of exclusive

8.13

Chapter 8 DPDM Deadlock Avoidance

lock ondx is satisfied,T> would therefore not include in the solution insthi

scenario.

Alternatively, T, can be processed first and leave bbtlandT;to later time.
According to the mutually exclusive rule (6.1), tkerializability will be
violated if T, is executed concurrently with eith€f or T3, becausd’ is going
to modify d;, T: and T3 require its content for their tasks, both of these

transactions will have the risk of using incorreghtent.

. T T2 Tz Yiv Yix Yav Yax Yav Yax Yawv Yax Ysiv Ysx
Transaction

min

Cost

125 7
dis 1 1

Part day

Assembly dax 1

Figure 8.3
problem

8.2.2 Solution Approach

8.14

IN

P P ORPFPORPRRPRPRORRLORLEPRLO

lllustration of integer programming fibansaction scheduling

Chapter 8 DPDM Deadlock Avoidance

The proposed model comprises of two phases andncestiteratively when
executing transactions complete their operatiorts refease the locks on the
files. The separation of the model into two phasedlitates alternations of
methods used in future. Figure 8.4 shows the psooé$inding a transaction
schedule in DPDM system. The activities in eaclgestaf the process are as

followed:

Construction phaseEvaluate the effect of executing a transactionthe
DPDM system. A column is constructed to represkatdemand of data
object for each of the transactions and a cost rifégcts the effect of

executing a transaction is assigned the column.

1. User request: When a user decides to access the 8Btdm, a new

transaction is initiated.

2. Specifying actions: the actions to be performedsaeified by the user in
this stage. Actions are selected from the set eflgfined operations. A
finite number of actions can be performed by therugon the data.
Namely, the actions are creating new data or newgioms, viewing,

modifying, and obsoleting existing data.

3. Action interpretation: The system will interpretetlactions and perform
appropriate locking operations on the data accgrdathe predefined

rules.

4. Transaction generation: An appropriate sized bicatymn vector will be
created for each user request. The value of aneglem 1 if the user

needs the particular data object for the task am@@ns otherwise.

5. Calculating cost of transaction: After constructthg column, a score will
be given to reflect its priority. The maturity dfet files required, the type
of operations to be acting on the files and thedlilea of the tasks are the
factors considered in the cost calculation. Theeg@dare will be detailed

in later section.

8.15

Chapter 8 DPDM Deadlock Avoidance

6. Transaction base: All pending transactions areedtohere. It also
maintains the record of transaction-in-progressvillt be activated when
there is a new transaction arrived and when there itransaction
completed, as some immature transactions beconly tesbe executed.
A transaction batch, which includes all the pendirgnsactions and
transaction-in-progress, will be passed to thestation scheduler when it

is called.

Solution phase Solve the integer programming problem defined thg
transactions that are ready to be executed usingptimization engine
and update the essential information for the coottn phase of this

solution approach.

7. Transaction scheduler: After receiving transacbatch, it will compute a
schedule that includes a subset of transaction®etoexecuted. The
selection of transactions is restricted by the s€@®ntrol, such that any
conflicting multiple accesses to files are ruled. dthe objective of the
schedule is to minimize the number of tasks missimgr deadlines.
Unexecuted transactions will return to the trarieadbase and wait until

required files are available.

8. Locking affected data: Specific lock will be appli®n the data files
according to the actions. For modification, the rusdéo issues the
transaction will be granted the ownership of tiesfi Only the owner can

check in a modified version of that data files.
9. Transaction completed: All data locked for the s@gstion are disengaged.

The transaction is removed from the transactiore bas turn, the base

will compile a new transaction batch for creatingeav schedule.

8.16

Chapter 8 DPDM Deadlock Avoidance

Remove

Figure 8.4

I

User request

v
//

Specifying actions

Y

A

Action interpretation

v

Transaction .
eneration Construction
g phase

Y

Calculating cost of
transaction

Y

Transaction Base |e—

y

Transaction scheduler

Locking affected data Solution phase

Yes

y

Process the
transaction

urther operation

No

A J
Transaction
Completed

Proposed model of transaction sched@inPDM systems

8.17

Chapter 9 Simulations and Performance Evaluation

Chapter 9

Simulations and Performance
Evaluation

The algorithm presented in the previous chaptdrajhich was evaluated in a
number of simulations. Four concurrency models &bed in this study are
listed below, the procedures and results of th@selations are discussed in

later sections.

Basic two-phase locking with First-In-First-Out FQ) policy.
Granularity version locking with First-In-First-O(EIFO) policy.
Basic two-phase locking with transaction scheduling

A

Combining granularity version locking with transaotscheduling.

9.1 General Information of the Simulation

The idea of having more concurrent accesses tddteof a PDM system is to
have more tasks completed on time. In the simulatidhe measure of
performances of the models is the number of traisecthat completed after
their deadline, that is, the late transaction. @kadline of each transaction is

defined as:

Deadline = Arrival Time + Processing Time

That is, if a transaction cannot start immediat@ien it arrived, the

transaction will be counted as a late transaction.
The exponential distribution has been used to modet-arrival times when

arrivals are completely random and to model servicees that are highly
variable. The arrival time of a transaction is gated by adding a randomly-

9.1

Chapter 9 Simulations and Performance Evaluation

generated inter-arrival time between transactionthe arrival time of the last

transaction. The inter-arrival time is an exporahtidistributed variable with

a parametei, which is the number of arrivals per unit time.eTprocessing

time of a transaction is the time for the transactio complete its task, and

implies that the data objects required for the &rgklocked during the process.

The processing time is also assumed to be expafgndistributed. The

number of data objects required by a transactiosetsas a random variable

from a normal distribution.

9.1.1 Event Oriented Simulation

The simulation process begins by generating a $eframsactions to be

executed. Each of the transactions is given tHevimhg attributes: arrival time,

processing time, number of data objects, and afistata objects required to

process. Each of these items is generated fromtiatstal distribution that best

describes the phenomenon.

After a set of transactions were generated, theulated system starts

processing the data request of transactions. Seppassactiol; has already

locked data objectl; and d;, and there are two new transactionsand T3

presented in the system with their attributesdistethe Table 9.1.

L

Transaction | Arrival Time Prc?[icr;e]zsmg Deadline | Data Object Require
1 2 8 12 1,3
2 8 12 22 2,3
3 10 2 14 2
Table 9.1 Attributes of transactions in system $ation example

9.2

Chapter 9 Simulations and Performance Evaluation

The simulation process of the above example isngauad illustrated in Table
9.2. The simulation time is advanced to time 2t @s the arrival time off.. T»
arrives at time 8 before the completion ©f, so the simulation time is
incremented to time 8. Howeveél, cannot start its process because one of its
required data object, namdly, is locked byT;. Thus, the simulation clock is
next advanced to time 10, which is the timeTafarrival. T, cannot start
immediately asTz has lockedd, at time 8. The completion time af, is
calculated when it locked, as the simulation knows th@i will release the
lock onds at time 11 and the processing timeTafis 12. Therefore, the
simulation clock jumps to time 23 in whidR starts the process and completes

at time 25, which is later than its deadline.

Data Object
Clock | Transactiorn Event 1 2 3

0
T, arrives

2 1 T1 locks d. ds (1,11) (1,11)
T, arrives

8 1,2 T,locks @ (1,11)| (2,23)| (1,11)

10 1,2,3 [Tz arrives (1,11)| (2,23)| (1,11)
T, unlocks d, s

11 2,3 T, locks & (2,23)] (2,23)
T, unlocks d, ds

23 3 T3 locks d (3.25)

25 T3 unlocks d

Table 9.2 Example of event oriented simulation DiVPsystem

9.2 Simulations and Results of Various Models

The procedures and result analysis of the four wwancy control models
simulations are discussed in this section. All ni®deere simulated to process
10000 transactions. There are 1000 data objedteitest, of which every 80

9.3

Chapter 9 Simulations and Performance Evaluation

data objects are considered as objects of lewsiseémbly, every 3Dobjects
are considered as of level 0 assembly and othersaarsidered as at part level.

The composition of data objects in the simulat®ilustrated on Figure 9.1.

Assembly Assembly Assembly
(Level 0) (Level 0) (Level 1)

d | d | - dig | - doy | - dsog | -

Figure 9.1 Composition of data objects in database

Part Part

The arrival of transactions in these simulationglofes an exponential

distribution with inter-arrival rate of 0.01. Therggessing time of each
transaction follows the same distribution with aamgrocessing time of 100
time units, and 1000 replications are simulate@lbthe models. The system is
assumed that 80% of the accesses are read opsratidn20% of which are
write operations. The type of access operatiorath elata object is randomly
assigned according to the proportions have justtioreed. The first model

simulated is the two-phase locking with FIFO paoligshich is named as the
basic model in the study. Then, other concurrenaytrol models will be

simulated with the same sets of transactions agid thsults will be compared

with the basic model using paired samples t-tesevaluate their performance.

9.2.1 Two Phase Locking (2PL) Model

The procedure of simulating the two phase lockingdeh of chapter 6 is

described in this section. In this model, transedistart locking their required
files which are free of locks once they are arrjvibee deadlock avoidance
implemented in this model is Wound-Wait method, whea younger

transaction can wait for the data object until é&heptransaction releases the
lock, otherwise, if the requesting transaction ldeo than the transaction that
locks the data object, the younger transactiorolied back and restarted to

prevent occurrence of deadlock. If a transactiquests a data objects that is

9.4

Chapter 9 Simulations and Performance Evaluation

at level 0 assembly, it requires locking all thetpaf which the data object is
composed. Likewise, if the data object requestedtisssembly level, the
transaction requires holding locks on all the ofiyecomponents. Considering
that there are two transactions shown in Tablet®8e processed using two-
phase locking in FIFO policy. The illustration dfet simulation process is

shown in Table 9.4.

Transaction Arrival Time | Processing timeDeadlingl Data Object Required
1 1 8 12 1,2
2 5 12 22 2,3
Table 9.3 Transaction examples of event orientaiatulation of PDM
system

In the simulation, transactioh arrives and applies a read locks on data objects
d; and write lock ord, at time 1. The system updates the status of ttiatse
objectsand indicates that they will be freed on time 9e Bgstem clock is then
incremented to time 5 in which the next event ogcthat is, T, arrives and
applies a write lock ods and waits ford,, as write lock is mutually exclusive

to other locks. Suppoda requires the content of for its task in time 6, under
the rule of Wound-Wait method, is restarted and unloclds, because it is
younger tharT,. ThereforeT; locksds at time 6 and, waits for bothd, andd;

until time 9.

9.5

Chapter 9 Simulations and Performance Evaluation

Data Object
Clock | Transaction Event 1 2 3
0
L L T, arrives RLY) | W9
T, locks d;, d3 ’ ’
T, arrives
5 1,2 |T,locks g, R(1,9) [W(1,9(W(2,17
T, walits for d,
T, requests ¢
6 1,2 |restartT, R(1,9) | W(1,9| W(1,9)
T, locks d;
T, unlocks d, d,, ds
9 2 T, locks d., ds R(2,21)[W(2,21
21 T, unlocks @, d3

Table 9.4 Simulation of two-phase locking with WdeWait and FIFO
policy

Simulation Result

A sample mean of late transactions is calculate@rtalyse the simulation
results of the basic two phase locking model. Tueleh was simulated with
10000 transactions in each replication and the rmuroblate transactions was
observed at the end of the process. The sampla ofdate transactions over
1000 replications is shown in Table 9.5. The awveragimber of late
transactions of this concurrency control model 89.50. The performance of
other concurrency models described in later sestioill be evaluated by

comparing their simulation results with this result

N Mean Std. Deviation Std. Error Mean
FIFO_2PL 1000 189.50 351.566 11.117

Table 9.5 Average late transactions in the basidaho

9.6

Chapter 9 Simulations and Performance Evaluation

The histogram in Figure 9.2 is based on the nunabdate transactions in
10000 transactions over 1000 replications. Thet stéerval starts at 0 and
interval width is 50. In the evaluation the basiodel, 379 replicas have 0-25
late transaction, 185 replicas have 26-75 latestretions, and 96 replicas have
76-125 late transactions. The replicas of theseetlmtervals constitute more
than 66% of all observations. Notice that theresan@e replications having a
very large number of late transactions. The waoaseof the simulation in the

basic model has 3488 late transactions.

450 T T T

400 b

350 i

300 o

250 3

200 b

MNumber of replicas

150 =

100 i

50 g

0 500 1000 1500 2000 2500 3000 3500
Number of tardy transactions

Figure 9.2 Histogram of the late transactions enlihsic model

9.2.2 Granularity Version Locking

In the simulation of this model, transactions Idbke data objects using the
proposed method described in Chapter 7. The mdsielaalopted the Wound-
Wait method as its deadlock avoidance. The exant@lesactions to be
processed and the simulation of the model are shawrables 9.6 and 9.7

respectively.

9.7

Chapter 9 Simulations and Performance Evaluation

In the simulation example of the granularity versiocking, there are two
transactions to be processed. The taskKiob to modify a level 0 assembly,
which is the data objeckoin the system. It also requires the conterdsdb be
processed. Therefor@; locks dg and d;p in Shared mode and Intent Version
mode respectively in time 1. In time 2, begins modifyingd;p, and a new
version of the data object is created. A new dajaad, dio,, is immediately
locked in exclusive mode to prevent any concurrantess from other
transactions. The simulation clock then forwardsirtte 4 at whichl, arrives
and locks the required data objett. needs to refer to the content af, for
modifying dig, thus it locksdip 1 in Intent Shared mode. Als®; must lock the
direct assembly ofl;g in Intent Version mode and loakgin Version mode
before modification. In the next time unit, a nearsion ofd, g is created by,
and is locked in exclusive mode until the procesnmetes. Since there is no
other events occur befofle completes, the clock jumps to time 14 at whigh
finishes modifyingd;s and releases all its lock3; completes its task and

releases the locks al, dig 1, anddig 2 in time 21.

9.8

Chapter 9 Simulations and Performance Evaluation

Arrival Time| Processing time Deadline| Data Object Required
1 20 25 9,10
4 10 16 18, 20

Table 9.6 Transactions in granularity version lagksimulation

Clock | Transaction Event 9 10.1 18.1 20 10.p 1842

0
1 1 T, arives S(@1,21) | v@,21

T, locks dy, dy (1.21) (1,
2 1 T, modifies d, S(1,21)| V(1,21 X(1,21

T, arrives IV(1,21)
4 1,2 T, 10cks dh, dyg , g S(1,21) 1S(2,14) V(2,14) [IV(2,21)] X(1,21)

. IV(1,21)

5 1,2 T, modifies dg S(1,21) 1S(2,14) V(2,14) [IV(2,21)] X(1,21)] X(2,14
14 1 T, unlocks dg, dqg , dyo | S(1,21)] V(1,21 X(1,21
21 T,unlocks dy, dqg

Table 9.7 Simulation example of granularity verdiocking in FIFO

9.9

Chapter 9 Simulations and Performance Evaluation

Evaluation of Granularity Version Locking

The granularity version locking (GVL) model was siated with 10000
transactions in each replication and the numberaté transactions was
observed at the end of the process. The resulteguency distribution is
displayed in Figure 9.3. The left-skewed histogradicates that most of the
replications have fewer than 500 late transactidhere are 403 replicas have
0-25 late transaction, 154 replicas have 26-75ttatesactions, and 94 replicas
have 76-125 late transactions. There are a feviceephaving large number of
late transactions and the worst result in GVL mdae 2259 late transactions.

450 T T T

400 i

350 b

300 =

250 =

200 B

Number of replicas

150 =

100 b

50 b

0 ol | | |
0 500 1000 1500 2000 2500 3000 3500
Number of tardy transactions

Figure 9.3 Histogram of the tardy transactionsha granularity version
locking model

The sample means of late transactions over 100lcagpns of the basic
model and granularity version model are shown ibld8.8. FIFO_2PL is the
result of the two phase locking model and has aeeiate transactions of
189.50 in 1000 replications. FIFO_GVL is the resfltthe GVL in Wound-

9.10

Chapter 9 Simulations and Performance Evaluation

Wait deadlock avoidance and FIFO queuing disciplmel its average late
transactions is 164.73.

Paired Samples Statistics

Mean N Std. Deviation Std. Error Mean
FIFO_2PL | 189.50 | 1000 351.566 11.117
FIFO_GVL | 164.73 | 1000 304.554 9.631
Table 9.8 Mean of late transactions of granularéssion locking

Paired sample t-test is done to compare the avenagéer of late transactions
in the two models to ensure that the observedreéifiees are due to difference
in performances of the designs. The null hypothésie would be that the
average late transactions are same under the cencyrcontrol of the basic

model and the granularity version model.

The purpose of this statistical analysis is todeatk that the granularity version
locking performs better than the basic two phaskihg. In Table 9.9, the
mean, standard deviations and standard error oh rakthese differences are
calculated by the paired value of each replicatibtained from FIFO_2PI and
FIFO_GVL. The two-tailed p-value is 0.000, which Iess than the
conventional 5% or 1% level of significance. Theref the null hypothesis
can be rejected and the average late transactiotne ibasic model are indeed
more than the granularity version model. Owinghe tact that the difference
between the mean late transactions of the basiehaod the proposed locking
model (189.50 - 164.73 = 24.77) is totally to tight of zero, then there is a
strong evidence that the basic model has more tlatesactions than the
proposed locking model. This implies that the perfance of granularity

version model is better than the basic model.

9.11

Chapter 9 Simulations and Performance Evaluation

Paired Samples Test

Paired Differences ¢ | df | Sig Q-tailed)

95% Confidence Interval

Mean Std. Deviation Std. Error Mean of the Difference

Lower Upper
FIFO_2PL —
e 57.002 1.803 21.23 2831 | 13.741 | 999 000
Table 9.9 Summary of measures for comparing the basedel and the

granularity version locking model

9.2.3 Transaction Scheduling

The simulation of the proposed transaction schaduiethod with the basic
two phase locking concurrency control of chaptes 8escribed in this section.
The model can be formulated as a set covering @noldy considering the

following list of constraints to ensuring the dateegrity of a PDM system:

A write lock is applied to a data object that viaé modified.
No lock can be applied to data objects that holearusive lock.
Write lock cannot be applied to files that hold dmgks.

w0 NP

Multiple read locks can be applied to files.

In two phase locking, data objects that are reakidd allow multiple read-only

accesses; the other constraints in this IP aresaesehat determined by write
locks. Transactions that are trying to modify réacked data objects and to
read data objects that are write-locked will beleded from the scheduling

process, because these transactions will not beegsed anyway due to the
violation of the constraints. Thus, mature and paméransactions that require
only lock-free data objects will be included. Acgeonflicts occur when some
transactions are requesting a write lock to a dhjact, and other transactions
are trying to apply read locks to it. Using notasalescribed in earlier sections
of this chapter, the restrictions to prevent theuoence of conflicts form the

constraints of the model as below, where the colwexttora represents the

9.12

Chapter 9 Simulations and Performance Evaluation

request of two lock mode® (Read) andW (Write) on data object by

transactionr.
in Scx+z[K-%
min 3% +2(K= x |

K
<1-

K
;adRTXT < Myd
X Yy ={0.3

Transactions in a PDM system require a set of dagacts to complete a task.
They are represented as columns in the IP matrtkermodel. There are two
constraints on each of the data objects in theesysThe first constraint in the
model guarantees that data objects hold at mostwoite lock. The second
constraint allows a data object an unlimited numbkmread locks. These
constraints are mutually exclusive alternativestedothat in this simulation
model, all data objects of parts of which the addgntevel data object is
subjected to modification are also locked in exgkisnode by the requesting

transaction. A simulation example of this modgdriesented.

Considering that the three transactions listedahl& 9.10 are to be executed.
Their simulated executions in this model are illatd in Table 9.11. At time 1
on the simulation clock, transactidn arrives and locks the data objeg for
modification, sincer; intends to modify a level 0 assembly object, is ha
write-lock all the data objects of whiah, is composed, that ish.1p are all
locked in write mode from time 1 until the task Bfcompletes. During the
execution ofTy, T,, andTs arrive at time 4 and 5 respectively. None of bxh
be executed immediately upon their arrivals as sofriae data objects they
require are locked in write mode By In the creation of columns fdr, andTs,
which is step 5 of the transaction scheduling matiewn in Figure 8.5, both
of these transactions are passed to the transatizm®e. However the
transaction scheduler is not evoked. This is bex#hus model notices that both

9.13

Chapter 9 Simulations and Performance Evaluation

transactions cannot be executed under the definitfianutual exclusion (6.1).
At time 6, T; completes the task and releases the data objelts ilocked.
Since T, requires readingl; and T3 decides to modify it. The transaction
scheduler is triggered to select which transaci®orio be processed. The
schedule is determined by finding a solution wite minimal processing cost.
One of the components of a transaction cost ige@l# its processing time
and deadline. In this ca3g is chosen to be processed in time, because & has
tighter deadline tham,. Thus,T; locksd;, ds, andds. The clock jumps to time
16 at whichT; finishes its task and releases the locksloi\fterward, T, locks

its requested data objects and completes its taska 25.

9.14

Chapter 9 Simulations and Performance Evaluation

Transaction | Arrival Time| Processing time | Deadline | Data Object Required
1 1 6 10 10
2 4 9 25 7,16, 17
3 5 10 16 7,8,9

Table 9.10 Three transactions in the simulatiotrasfsaction scheduling method

Data Object

Clock | Transaction Event 7 8 9 10 16 17

0

T, arrives
| | T, locks d , W,6) | W,6) | WA.,6) | W(L6)

1,2 T, arrives W(,e) | W,6) | WA,6) | W(1,6)

5 1,2,3 |75 arrives W(,6) | WL,6) | WA,60 | W(1,6)

T, unlocks d ;
6 2,3 R(@G,16) | R(G,16) | R(@3,16)

T;]OC/CS'dﬁdg,dg

T3 unlocks d 7, dg, do
16 2 TZ locks d7, d[g, d]7 W(2’25) R(2’ 25) R(27 25)

25 T, unlocks d . ds d),

Table 9.11 Simulation example of transaction schiegumethod

9.15

Chapter 9 Simulations and Performance Evaluation

Evaluation of Transaction Scheduling

The transaction scheduling model was simulated W@B800 transactions in
each replication and the number of late transastwas observed at the end of
the process. The frequency distribution in Figure $hows that there are 395
replicas in the simulation have 0-25 late transactil89 replicas have 26-75
late transactions, and 91 replicas have 76-125datsactions. There are a few
replicas having large number of late transactioms$ @e worst result in TS

model has 2941 late transactions.

450 T

400 i

350 &

300 =

250 =

200 —

Number of replicas

150

100

50

—

I | - 1
0 500 1000 1500 2000 2500 3000 3500
Number of tardy transactions

Figure 9.4 Histogram of the tardy transactiondtransaction scheduling

model

The sample means of tardy transactions over 10plications of the basic
model and transaction scheduling model are showralle 9.12. TS _2PL is
the simulation result of the transaction schedulngdel with two phase
locking concurrency control and the average tardpdactions of this model
are 177.10.

9.16

Chapter 9 Simulations and Performance Evaluation

Paired Samples Statistics

Mean N Std. Deviation | Std. Error Mean
FIFO_2PL 189.50 1000 351.566 11.117
TS_2PL 177.10 1000 301.348 9.529

Table 9.12 Mean tardy transactions of transactotreduling model

Because the observations of the tardy transaction&in random variation, in
order to validate that the observed differences rave due to the random
fluctuation inherent in the models, paired samgiest is done to compare the
average number of tardy transactions in the twoetsodrhe null hypothesis
here would be that the average tardy transactimsame under the execution
of transactions in FIFO queuing discipline and chexduling model. The test

summary is shown in Table 9.13.

Paired Samples Test
Paired Differences t ‘ df ‘ Sig. (2-tailed)
95% Confidence Interval
Mean Std. Deviation Std. Error Mean of the Difference
Lower Upper
FIFO_2PL -
TS_2PL 12.40 81.505 2.577 7.35 17.46 4813 | 999 .000

Table 9.13 Summary of measures for comparing ttséclbmodel and the

transaction scheduling model

The analysis summary shows that the two-tailedlpeves 0.000, which is less
than the conventional 5% or 1% level of significand herefore, the null
hypothesis can be rejected and the average taamgactions in the basic
model are different to the transaction schedulingdeh Given that the
confidence interval for the difference of the meardy transactions of the
basic model and the transaction scheduling model
(7.35 <FIFO_2PL-TS 2PL<17.4 lies completely above zero and so

provides strong evidence that the basic model iogtehas more tardy
transactions than the transaction scheduling malat,is, the performance of

the transaction model is better than the basic inode

9.17

Chapter 9 Simulations and Performance Evaluation

9.2.4 The Combined Model

The simulation of a model combining the granulawsrsion locking and
transaction scheduling deadlock avoidance methaessribed in this section.
The simulation of the combined model describedenti®n 8.2.1 is illustrated
using the transaction example in Table 9.10. Timailation of the execution
of these transactions is shown in Table 9.14. et of the simulation clock,
transactionr; locks the data objeck, in Intent Version mode for modification.
T, has to lock all the data objects of whidh is composedd;., in Intent
Versions mode. At time ZJ; starts modifyingd;p and creates the second
version ofd;o. The simulation clock then forwards to time 4 &ich T, arrives
and tries to lock the required data object. Howgtler transaction scheduler is
not evoked as the data objedt, that T, intends to modify has already been
locked in Version mode by;. The rule of granularity version locking does not
allow concurren¥ locks applied on the same data object. The sinmratme

is then incremented to time b3 arrives and lockd;.g in Shared mode as locks
of Shared mode and Version are compatible. At #n€& completes the task
and releases all the data objects it has lockesl;rélease event evokes the
transaction scheduler to determine new transaeti@aution. Subsequently;
locks d;7 in Version mode andls and dg in Shared mode. In the next time
increment, T, modifiesd; and a new version of the data object is createteS
there is no event happens between times 8 andcé4irnulation clock jumps

to time 15 at whici, completes the task and releases all the locks.

9.18

Chapter 9 Simulations and Performance Evaluation

Data Object
Clock | Transaction Event 7.1 7.2 8 9 10.1 10.2 16 17
0
1 | Ly e V(L6 VL6 | Ve | Vs
T bocks g (16) (16) | VL6 | V(L
2 1 T, modities d ; V(1,6) V,6) | Vd,6) | IV(1,6) | X(1,6)
4 1,2 T, amives V(1,6) V,6) | Vd,6) | IV(1,6) | X(1,6)
T'; arrives V(1,6) VL,6) | V(1,6
) 1,23 Ts locksd,, dg.,dy S(3,15) S(3,15) | S@,15) VL6 | X(16)
T, unlocks d ;. S(3,15)
6 2,3 T locks dr, d s, d V2.15) S(3,15) | S@G,15) S2,15) | S(2,15)
. S(3,15)
7 2 T, modities d ; Vo15) X(2,15) | SG3,15) | S@G,15 S(2,15) | S(2,15)
5) T unlocks d,, dg, dy
T, unlocks d,, d 15, d ;7

Table 9.14 Simulation example of combined model

9.19

Chapter 9 Simulations and Performance Evaluation

Evaluation of Combined Model

The model simulated in this section adopts the geaity version locking as
concurrency control and the transaction schedwamdeadlock avoidance. The
combined model is also simulated with the same l@@lications of 10000
transactions that were used to evaluate the othmtelm described in the
previous sections. The simulation result of the lboed model (TS_GVL) is
plotted in Figure 9.5. The histogram in Figure Bepresents the frequency of
replicas in the simulation of the combined modehefe are 434 replicas
having 0-25 late transaction, 179 replicas havifg/2 late transactions, and
75 replicas in the interval between 76-125 lateda&tions. This model has
fewer replicas that are having large number of tedasactions and the worst
result in the combined model has 2177 late tramssct The mean average
tardy transactions of this model are 157.97 as showable 9.15.

450 T

400 i

350 &

300 =

250 =

200 —

Number of replicas

150

100

50

Lol e L 1 1
0 500 1000 1500 2000 2500 3000 3500
Number of tardy transactions

Figure 9.5 Histogram of the tardy transactionshs¢ombined model

9.20

Chapter 9 Simulations and Performance Evaluation

Paired Samples Statistics

Mean N Std. Deviation | Std. Error Mean
Pair 1 FIFO_2PL 189.50 1000 351.566 11.117
TS_GVL 157.97 1000 288.218 9.114
Pair 2 TS_2PL 177.10 1000 301.348 9.529
TS_GVL 157.97 1000 288.218 9.114
Pair 3 FIFO_GVL 164.73 1000 304.554 9.631
TS_GVL 157.97 1000 288.218 9.114

Table 9.15 Mean tardy transactions of the combmedel

The performance of the combined model is compariéd ether models using

paired t-tests and the statistical summary is shiowiable 9.16. The first row
of the table is the comparison of the basic moddF@® 2PL) and the

combined model (TS_GV). The difference of the miady transaction of the
two models is 31.53 (189.50 — 157.97) and the denfte interval of the

difference is (27.21, 35.85). Given that the twikethp-value is 0.000, which is
less than the conventional 5% or 1% level of sigaiice, there is strong
evidence that the performance of the two modelsxateéhe same. In addition,
the confidence interval for the difference of theam tardy transactions of
these models lies completely above zero and sages\strong evidence that
the basic model certainly has more tardy transastithan the transaction
scheduling model. This implies that the performaoicthe combined model is

better than the basic model.

The performance of the combined model (TS_GVL)is® @ompared with the
granularity version locking (FIFO_GVL) and the tsaction model (TS_2PL).
As shown in Table 9.15, the mean tardy transactainte combined model
are fewer than models that adopt the schedulingntque or the version
locking concurrency control only. The mean differerbetween TS_2PL and
TS _GVL is 19.13 (177.10 - 157.97) and between FIB® and TS_GVL is
6.76 (164.73-157.97). Given that p-values from eetipe analyses are less
than the level of significance, the hypothesis ofsidering that there is no
difference between the combined model and the dihiercan be rejected.
Furthermore, the confidence intervals of mean wbfiees are also well above
zero for the comparison of TS 2PL - TS _GVL (15.838,39) and FIFO_GVL
- TS_GV (5.15, 8.38). To conclude, the combined ehdbat integrates both

9.21

Chapter 9 Simulations and Performance Evaluation

the transaction scheduling method and the gratyhaersion locking is better

than using either the transaction scheduling orgta@ularity version locking

alone.
Paired Samples Test
Paired Differences t df Sig. (2-tailed)
95% Confidence Interval of
Mean Std. Deviation Std. Error Mean the Difference
Lower Upper
Pair 1 FIFO_2PL -
TS GVL 31.53 69.672 2.203 27.21 35.85 14.311 999 .000
Pair 2 TS_2PL -
TS GVL 19.13 52.620 1.664 15.86 22.39 11.495 999 .000
Pair3 FIFO_GVL -
TS GVL 6.76 26.047 .824 5.15 8.38 8.210 999 .000
Table 9.16 Statistical summary of performance carmepa

9.22

Chapter 10 Discussion

Chapter 10

Discussion

Issues related to the development of concurrenwgiity model for DPDM

system are discussed in this chapter.

10.1 DPDM System Representation

Data model of PDM system is presented in an onicébgapproach. A
production PDM system that adopts this data modptesentation can be
updated for new application-specific features beeaiti can incorporate new
concepts and relations. The ontology of PDM syspeavides a set of terms
with which to describe the facts about PDM systemhmich include the
relations between data objects and the behaviduttsedfunctions. This study
has defined some relations of components betwegectsband only the
definitions of the necessary functions have beegrilged for the investigation
of concurrency integrity maintenance mechanism 8&MPsystem. Also,
object-oriented concept is adopted to organise @nodess the information
according to the description of the real world atge The model works best on
object-oriented PDM system. However, most of thistang systems will need
to be converted or need to interface to the olgeented systems. The design
of the new systems will need to be adjusted to mocodate the needs of these

legacy systems.

10.2 DPDM Specifications

The ontology provides some important semantics ratations on which the
specifications of PDM functions are developed. Uldégquence diagram is
chosen as the diagrammatic modeling tool for theci§ipation development.

Despite that there are many graphical modelingstaotailable, sequence

10.1

Chapter 10 Discussion

diagrams are an intuitive visual notation for shayvithe time ordering of
events between system components in a PDM systemeWer, when used for
specification, sequence diagrams represent clasfesbjects instead of
individual data objects and external system compitmeAlso, the lack of
formal semantics creates additional complexity ke tvalidation of the
specifications of PDM system model, since theredsstandard on how such
model can be simulated. In this study, temporalcldgrmulae are derived
from the sequence diagrams to demonstrate thelityabf using UML as a
front-end for a formal notation and to overcome WML limitations. Among a
number of types of temporal logic, the UML sequediagrams are translated
from Propositional Temporal Logic (PTL) formulaehelpreference for PTL is
based on the balance between the expressivenesheamse of readability
and learning. The formulae in PTL can be easily iffedl into Timed
Propositional Temporal Logic (TPTL), an extendedsian of PTL, when

measure of time units between events is needed.

10.3 Granularity Version Locking Method

Concurrency control in PDM systems is more compihe in database system
for business data management like bank accounstut trading. The main
factors for this added complexity are long-duratiprocess in product
development and the existence of multiple-validtestaof data objects.
Engineering change is a norm rather than an exmeph contemporary
product development. As a result, time-varying gemanagement and
version management are the standard. Granulansiorelocking proposed in
this study addresses these problems for concurremayol in DPDM systems
and improves concurrency ability of DPDM systems agjusting the
accessibility of data objects in accordance with dletion to be performed by
the users and the product architecture of the phlysbject. The total number
of lock modes in the proposed model is five. Theuleof the simulations
shows that the locking model worked efficiently @mlistributed PDM system
and the integration with the transaction schedulmgthod successfully

decreased the number of tardy transactions. Althagarse granularity and

10.2

Chapter 10 Discussion

fewer locks incur less overhead in testing, settargl maintaining these locks,
the disadvantage is that there will be less coeoay [Date 2004]. The
balance between shareability and degree of conmyrbas been researched
for a long time [Gary, et al. 1975, Lee & Liou 1998 here is no definite
answer to the issue since the performance reafigritis on the characteristics,
for example, system environment, data model, coxiplef data etc. of a

system on which the concurrency control is impletaén

10.4 Transaction Scheduling Method

Problems of keeping the PDM system in a consigté occur when there are
concurrent accesses to the data. A PDM system pnogide transaction on an
equivalent mechanism for concurrency control ndy éor regular transactions
but also for long duration ones. In order to mamtae consistency of a PDM
system, the transactions must process accorditigetgoncurrency control to
ensure the executions are serializable. The metrogosed transaction
scheduling is a deadlock avoidance mechanism $Hatinulated as an integer
programming in which the constraints representitiherent meanings of the
formulae in a concurrency control. From the simala in Chapter 9, it shows
that the method works seamlessly with the basic 2Rt the granularity
version locking protocols. It ensures that theradsdeadlock by controlling a
transaction to lock the whole set of requested dhjects, instead of allowing
it to lock them once they are available. The ocmee of livelock is also
eliminated because the cost of a transaction ielerproportional to its
waiting time, the longer a transaction waits, tineaker its cost. Thus, the
transactions will be processed eventually. The pwtiso reduces the number
of tardy transactions as a result of ordering taadactions by their deadlines
and other attributes. The simulations of the tratfisa scheduling method
assumed that the attributes of transactions dachange during the process.
However, the work of the product development wdl &ffected and changes
are unavoidable. Thus, the schedule computed ih eadhe iterations is
optimal, the overall schedule of the execution Ibfttee known transactions

may not be optimal, since the attributes of thada&tion cost will be changed

10.3

Chapter 10 Discussion

by the execution of other transactions and newstretions may emerge from

time to time.

10.4

Chapter 11 Conclusions

Chapter 11

Conclusions

PDM commercial tools have been available in theketaior nearly a decade.
These tools enable enterprises to conduct its bssimctivities in a more
efficient way via ingenious management of produdbrmation. With the
advent of the internet and web based technolo§B$/ systems can now be
executed more effectively and efficiently. The depenent of web-based
PDM system is essential for supporting collabomtiesign and manufacturing
at geographically dispersed sites. Heavy infornrmatlow among the design
offices and production plants is anticipated evayydand its proper
management and seamless integration is crucidleteuccess of the business.
However, the contemporary commercial PDM systemsnai meet this
challenge as they are ad-hoc solutions. Thusrésisarch focuses on bridging
the gap by investigating the theoretical aspecRi¥ system.

11.1 Contribution of the Research

The reported methodology is a step forward to dgvel generic analysis tool
for making DPDM system implementation commercialdiodependent. The

major contributions of this research are shownwelo

11.1.1 Data Modeling for DPDM system

In order to develop a generic representation schignaiecan properly model
and document enterprise-dependent workflow for esurrand future use,
defining a PDM system using ontology seems to bsuitgable approach
because ontology is an explicit specification ofc@nceptualization. The

definitions of data objects, functions, and thelations are denoted in formal

111

Chapter 11 Conclusions

axioms that constrain the meaning. With such anology, existing
commercial PDM systems can be described by thefsepresentational terms.
Adoption of OO technology in PDM system is encoexhgln particular, a
model that provides a guideline for implementingyimmmental compliance
management (ECM) system by employing a PDM systeanveeb-technology
is proposed. The model includes a logic proceststhat retrieves product data
from PDM systems to analyse the content of hazardaaterials in a product.
Finally, an ontology-based ECM system for WEEE RwmHS compliance was
developed and tested.

11.1.2 Graphical and Logical Representation of DPDMpecifications

The specification of PDM/DPDM system are presentsitig UML sequence
diagram. Since UML diagrams cannot enumerate all ghssible scenario
arises from interactions between the systems asd ugers, therefore
specification in formal notation is needed for fieation on consistency of
concurrent processes. The core PDM/DPDM functamesformulated using
first order logic based upon the ontological datdel. The formal language
provides a computer-processable format, such thatr-ee checking and
resource minimal analysis can be performed. Thasides a sound procedure
for the determination of semantic equivalences betwa semi-formal notation
and a formal language. Given that the product datalves real time

management of resources, this research introdeogsatral logic to specify the
dynamic behaviour of PDM/DPDM system. Such incoation facilitates

modifications to the specification in FOL while m&ining its validity and

consistency.

11.1.3 Granularity Version Locking for PDM/DPDM sysem

This research introduces a granularity version ilogk protocol for
PDM/DPDM system which allows more concurrent acees® the data by

carefully selecting the type of locks being appliedthe corresponding action.

11.2

Chapter 11 Conclusions

The operations of this concurrency model are sgecih PTL. Since temporal
logic is powerful tool for describing temporal belwur, and was chosen as the
specification technique for that reason. Such thatmodel can be used to
determine to what extent verification is possillg¢he future. Also, two modes
of lock, Version lock Y¥) and Intent VersionlY), are introduced to support
versioned concurrency control of a data objectrayits update process.lock

is applied to a data object of part level when er usodifies it; a new version
of the data object is being created while the eurkersion is shareable for
other userslV lock is applied to an assembly level data objelcenva data
object of its parts is being modified. These twpoets of lock allow the current
version of the data object can be viewed by othemsactions but disallow

modification in order to maintain the data consiste

11.1.4 Transaction Scheduling Method for DPDM Deadick Avoidance

A correctness criterion of distributed databaselas transactions are executed
in a serializable schedule. To ensure an interkaseecution of transactions
produces the same effect as a serial executiorhaget same transactions,
conflicting transactions must not process conctiyeand the order of
executions is critical. Any concurrency control ttheses on the strict two-
phase locking protocol can be used to solve thecuwroency problems.
However, locking has problems of its own, in paée, the problem of

deadlock.

In this research, a transaction scheduling algorithor PDM/DPDM system is
proposed to prevent the occurrence of deadlocks.infgger programming
based scheduling technique is used to control ddimm executions in a
system.The algorithm is designed to improve the concuryesfca system by
ordering the process order of transactions accgrttirtheir status. This is also
integratable to various concurrency control methsdsh that the performance
of a system can be improved without sacrificingdhé consistency and it can

be implemented to any existing PDM/DPDM systems.

11.3

Chapter 11 Conclusions

11.2 Future Research

Based on the research in the correctness of PDMKDRystem, future

investigations are suggested on the following areas

11.2.1 Standard Object Oriented Database Language

One of the goals of object oriented modeling is peserve a direct
correspondence between real world and databasectgbjsuch that the
relationships between their components can be septed and identified
easily. However, none of the commercial PDM systentsily designed on the
OO based model. They are built on the top of aioelal database system and
therefore cannot fully utilise the benefits of twdvantages of OO data model
over traditional relational data model. In order develop an operational
OOPDM system, the concern of standard semantics GQ database

computation must be addressed.

11.2.2 Utilisation of the capability of an ontology based®DM system

The use of ontology in PDM system is demonstratbédough the
implementation of an environmental constraint coamme management
system. The ontologies defined in product develaognecan be seen as meta-
data that represent semantics of the data. Ontdlaggd reasoning service can
utilise such semantics to provide a good approxonatA result from an
analysis based on incomplete information may bednete, which could
impair the production process if the missing da@ads to incompliance. By
adding an estimation function to predict the prolitgtoof incompliance, user
can make a decision based on the estimation coohfiyteeferencing to past
projects. The efficiency of a production process ba improved since there
are many stages and resources involved in manuifagtproducts, a company
can be benefited from no halting in the producteligement and production

flows for unavailable information.

11.4

Chapter 11 Conclusions

11.2.3 Automatic Translation from UML Sequence Diagrams toFormal

Semantics

UML sequence diagram is a good tool for modeling dignamic aspects of a
system. In this research, the basic functions dfiRfystem are represented in
sequence diagrams. However, sequence diagram thaaitimate answer to
the requirement specification problems becausesotemi-formality. These
functions are then written as temporal logic forasuthat can be reasoned and
verified. Because of the complexity of temporalitognodellers seldom use it
to specify and reason systems they design. Thgighical modeling tool that
automatically generates models in a formal notatsomaluable. To cater for
these features, sequence diagram and temporal dogigood companions for

the implementation of a graphical formal notatioalt

11.2.4 Relaxation of Two Phase Locking

Two phase locking protocol enforces that transastimust not request a new
lock after releasing some lock in order to maintdie data consistency of a
database. Eswaran [Eswaran, et al. 1976] showstWwtphase restriction
sometimes is not a necessary condition for comsigtd=or example, in a PDM
system, data objects become constant after rele@dbede data objects can no
longer be modified by any transaction and by nonmigey will get into an
inconsistent state. Thus, a processing transadhah accesses these data
objects in a non-two phase manner will not becamsensistent. And there are
many situations that two phase restriction is remtessary. Therefore, it seems
difficult to give nontrivial necessary conditionserfa PDM system to be
consistent. Further research should be conductedwan phase locking
relaxation as this will help in improving the efé@acy of the transaction
scheduling algorithm since transactions need notirm@uded into the
scheduling process if they can lock and unlock défacts without impairing

the consistency of the system.

11.5

Chapter 11 Conclusions

11.2.5 Dynamic Programming for Concurrent Transaction Scheluling

The proposed transaction scheduling method is dedigo eliminate the
occurrence of deadlocks by ordering the executiottamsactions that access
some data objects concurrently according to thestsc The resultant schedule
constructed by the method is composed of a seangactions to be executed
which constitute the lowest processing cost “int timstant”. However, the
choice of transactions to be processed will aftbet costs of the pending
transactions and of the future schedules. In otleeds, the schedule is only a
locally optimal solution. Thus, the whole schedwjch is the constitution of
a series of schedules for the execution of allki@wn transactions, may not
be the best overall solution. In order to computglabal optimal schedule,
dynamic programming is a potential candidate toeceopth the dynamic
behaviour of the transactions. Consider the tramsacscheduling problem
solved at each stage, constructs a number of pessidhedules, which are
referred as states in dynamic programming. At eddhe succeeding stages,
the cost and the validity of transactions change®raing to the decision in
each state of the preceding stage. The scheduiethatiowest cost in the final

stage will be the optimal solution for the trangatischeduling problem.

11.6

References

References

Abbott, R. K. & Garcia-Molina, H. (1992). Schedyimeal-time transactions:
A performance evaluatiolACM Transactions on Database Systems,
17(3), 513-560.

Abernethy, K. & Kelly, J. C. (1992). Comparing otj@riented and data flow
models - a case studyroceedings of the 1992 ACM annual conference
on Communication®41-547.

Adler, M. (1988). Algebra for data flow diagram pess decompositiohEEE
Transactions on Software Engineering(24 169-183.

ASME (1998). PDM for the enterprisdlechanical Engineering120, 84:
American Society of Mechanical Engineers.

Bansler, J. P. & Havn, E. C. (2003). Building conmty knowledge systems:
an empirical study of IT-support for sharing besagices among
managersKknowledge and Process Management, I55-163.

Bellini, P., Mattolini, R., & Nesi, P. (2000). Terogal logics for real-time
system specificatiodMACM Comput. Surv., §2), 12-42.

Bergeson, L. L. (2006). RoHS, WEEE and related Etdctives. Pollution
Engineering, 3®), 15-15.

Bernaras, A., Laresgoiti, I., Bartolome, N., & CaeJ. (1996). Ontology for
fault diagnosis in electrical networkBroceedings of the International
Conference on Intelligent Systems Applicationsawét Systemsl99-
203.

Bernstein, P. A. & Goodman, N. (1983). Multiversioancurrency control -
theory and algorithm#®CM Trans. Database Syst(43, 465-483.

Bernstein, P. A., Shipman, D. W., & Wong, W. S.{2R2 Formal Aspects of
Serializability in Database Concurrency Cont&ftware Engineering,
IEEE Transactions on, SH®), 203-216.

Boothroyd Dewhurst Inc. (2007). DFMA® Design For mifacture and
Assembly. Retrieved 17/09/2007, from
http://www.dfma.com/software/index.html

Carey, M. J. (1983). Granularity hierarchies in @omency control.
Proceedings of the 2nd ACM SIGACT-SIGMOD symposam
Principles of database systeni$6-165.

Carey, M. J. & Livny, M. (1989). Parallelism and ncoirrency control
performance in distributed database machiResceedings of the 1989
ACM SIGMOD international conference on Managemdrdata 122-
133.

Ref.1

References

Ceria, S., Nobili, P., & Sassano, A. (1998). A Laggian-based heuristic for
large-scale set covering problenhdath. Programming, 82, Ser. B),
215--228.

Chandrasekaran, B., Josephson, J. R., & BenjaiWin®. (1999). What are
ontologies, and why do we need theimlligent Systems and Their
Applications, IEEE [see also IEEE Intelligent Syssg, 141), 20-26.

Charles, M. (1982). Preemptive Scheduling with Beée Times, Deadlines,
and Due Times]. ACM, 293), 812-829.

Chen, Y. M. (1997). Development of a computer-aidedcurrent net shape
product and process development environmeRbbbotics and
Computer-Integrated Manufacturing, 43, 337-360.

Chen, Y. M. & Tsao, T. H. (1998). A structured nuwblogy for
implementing engineering data manageme&uabotics and Computer-
Integrated Manufacturing, 14), 275-296.

Chonoles, M. J. & Quatrani, T. (1996@ucceeding with the Booch and OMT
methods : a practical approach; Lockheed Martin &dved Concepts
Center, Rational Software CorporatioAddison-Wesley.

Chou, H. T. & Kim, W. (1986). Unifying framework rfoversion control in a
CAD EnvironmentProceeding of Twelfth International Conference on
Very Large Data Base836-344.

ClMdata. (1996)Product Data Management: The Definition, An Introtion
to Concepts, Benefits, and Terminoldgypurth ed.): CIMdata.

ClMdata. (2005).SolidWorks Office professional: PDMWorkSolidWorks
Corp.

Dasgupta, P. & Kedem, Z. M. (1983).Non-Two-Phase Locking Protocol for
Concurrency Control in General DatabaseBaper presented at the
Proceedings of the 9th International ConferenceVery Large Data
Bases.

Dassault Systemes SolidWorks Corporation (2008)RAWINGS. from
http://www.edrawingsviewer.com/

Date, C. J. (2004).An introduction to database system8th ed.).
Pearson/Addison Wesley.

Deepali, K., Krishna, G. M., Ulka, S., & VenkatesR, (2005). Visual
specification and analysis of use cag@®ceedings of the 2005 ACM
symposium on Software visualizatiGir-85.

Ding, Y. & Foo, S. (2002). Ontology research andedepoment. Part 1 - a
review of ontology generatiodournal of Information Science, €9,
123-136.

Ref.2

References

Disterer, G. (2002). Management of project knowtedand experiences.
Journal of Knowledge Managemen(5h 512.

Dixon, C. (2006). Using temporal logics of knowledfpr specification and
verification--a case studyournal of Applied Logic, @), 50-78.

Drusinsky, D. (2006)Modeling and verification using UML statecharts: a
working guide to reactive system design, runtimenitoong and
execution-based model checkihgwnes.

Eden, A. H. & Hirshfeld, Y. (2001Principles in formal specification of object
oriented design and architectureroceedings of the 2001 conference
of the Centre for Advanced Studies on Collaborative research, p.3,
November 05-07, 2001, Toronto, Ontario, Canada.

Eich, M. H. (1988). Graph directed lockin@oftware Engineering, IEEE
Transactions on, 12), 133-140.

Enovia MatrixOne (2006). Materials Compliance CehRetrieved 19/09/2007,
from
http://www.matrixone.com/matrixonesolutions/matkstampliancecen
tral.html

Eswaran, K. P., Gray, J. N., Lorie, R. A., & Traige L. (1976). The notions
of consistency and predicate locks in a databastersyCommun. ACM,
19(11), 624-633.

Eynard, B., Gallet, T., Nowak, P., & Roucoules, (2004). UML based
specifications of PDM product structure and workfldComputers in
Industry, 5%3), 301-316.

Farrell, M. W. & Myers, J. R. (1981). Applying stitured tools and techniques
to the development of software for a small compussstem.
Proceedings of the 1981 ACM SIGSMALL symposiunmall Systems
and SIGMOD workshop on Small database systérm8s

Fawzi, H. (2007). Networks as a means of supporting adoption of
organizational innovations in SMEs: the case of iEEnvnental
Management Systems (EMSs) based on ISO 1406dporate Social
Responsibility and Environmental Managemen({31,4167-181.

Garcia, A. C. B., Kunz, J., Ekstrom, M., & KivinienA. (2004). Building a
project ontology with extreme collaboration andtwad design and
constructionAdvanced Engineering Informatics, (28 71-83.

Gary, J. N., Lorie, R. A., & Putzolu, G. R. (1978ranularity of locks in a
large shared data bas&roceedings of the International Conference on
Very Large Data Baseg28-451.

Gary, T. L., Tim, W., & Albert, L. B. (1999). Forrhaemantics for SA style
data flow diagram specification languag&oceedings of the 1999
ACM symposium on Applied computibg@6-532.

Ref.3

References

Goel, S., Bhargava, B., & Madria, S. K. (2000). Adaptable constrained
locking protocol for high data contention enviromtge correctness and
performancelnformation and Software Technology (2R 599-608.

Gomaa, H. (1984). A software design method for-tiea¢ systemsCommun.
ACM, 279), 938-949.

Gruber, T. R. (1993). A translation approach to tgde ontology
specificationsKnowledge Acquisition,(2), 199-220.

Guarino, N. (1998). Formal Ontology and Informati®ystemsProceedings
of the 1st International Conference on Formal Oogiés in
Information Systems, FOIS'98, Trento, Italy. IO843r3-15.

Harris, S. B. (1996). Business strategy and the eblengineering product data
management: a literature review and summary oétherging research
questionJournal of Engineering Manufacture, AB3), 207-220.

Hughes, G. E. & Cresswell, M. J. (196&n introduction to modal logic
Methuen.

IBM Corporation (2007). ENOVIA SmarTeam. Retridv&6/09/2007, from
http://www-306.ibm.com/software/applications/plméseam/

Jun, W. C. (2000). A multi-granularity locking-baseoncurrency control in
object-oriented database systermdsurnal of Systems and Software,
54(3), 201-217.

Kedem, Z. & Silberschatz, A. (1979). Controllingncarrency controlling
using locking protocols.Annual Symposium on Foundations of
Computer Scienc®74-285.

Kedem, Z. & Silberschatz, A. (1980)on-two-phase locking protocols with
shared and exclusive lockgery Large Data Bases Conference, 309-
317.

Keller, G. & Teufel, T. (1998)SAP R/3 process-oriented implementation:
iterative process prototyping/ translated by Audi¥ginland.Harlow:
Addison Wesley Longman.

Kim, J. A., Kim, J. H., & Park, N. (1998). Developmt of PDM framework
and customization environmentTechnology of Object-Oriented
Languages, 1998. TOOLS 28. Proceed,dgs49.

Kim, S. H., Oh, T. H., & Park, J. Y. (1997). Thej@eti-oriented modeling for
product data managemer@omputer Applications in Production and
Engineering 33-46.

Kuo, F. Y. & Karimi, J. (1988). User interface dgsifrom a real time
perspectiveCommun. ACM, 312), 1456-1466.

Ref.4

References

Langer, A. M. (2008)Analysis and design of information systef8sl ed.).
Springer.

Lee, S. Y. & Liou, R. L. (1996). A multi-granulayitlocking model for
concurrency control in object-oriented databasetesys. IEEE
Transactions on Knowledge and Data Engineerinfl),8.44-156.

Leistner, M. (1999). The Growth and Environment &ub. Greener
Management Internationd®7), 79.

Leong, K. K. (2002)An architecture for web-based distributed produatad
managementMPhil thesis, Dept. of Industrial & Systems Engirieg,
The Hong Kong Polytechnic University, Hong Kong.

Leong, K. K., Yu, K. M., & Lee, W. B. (2003). A sedty model for
distributed product data management syst€wmputers in Industry,
50(2), 179-193.

Li, O. K. V. (1987). Performance models of timespaordering concurrency
control algorithms in distributed databaséBEE Transactions on
Computers, 3@®), 1041-1051.

Liou, D. J. E. (1994)An object-oriented database approach to manufaatyri
information systems with emphasis on production agament.PhD
thesis, Arizona State University.

Liuy C. L. & James, W. L. (1973). Scheduling Algbms for
Multiprogramming in a Hard-Real-Time Environmedt.ACM, 2@1),
46-61.

Maniji, J. F. (1995). Data/document management: RalRDM pay.Machine
Design, 6711), 81.

Manna, Z. & Pnueli, A. (1992 he temporal logic of reactive and concurrent
systemsSpringer-Verlag.

Manna, Z. & Wolper, P. (1984). Synthesis of Comngating Processes from
Temporal Logic Specification&CM Trans. Program. Lang. Syst(1$,
68-93.

Mansour, Z., Val, C., & Dale, C. (1995). A survelyaurrent object-oriented
databasesSIGMIS Database, Z6), 14-29.

Miller, E., MacKrell, J., & Mendel, A. (1999PDM buyer's guide: product
data management systems for improving processegeotiicts(7th
ed.). CIMdata.

Mohan, C., Fussell, D., Kedem, Z. M., & Silbersahaf. (1985). Lock
conversion in non-two-phase locking protocdlSEE Transactions on
Software Engineering, SE{11), 15-22.

Ref.5

References

Ng, S. H. & Hung, S. L. (1995). Multigranularity dking in multiple job
classes transaction processing systelMOD Rec., 24), 27-32.

Noy, N. F. & McGuinness, D. L. (2003). Ontology [2éepment 101: A Guide

to Ceating Your First Ontology. from
http://protege.stanford.edu/publications/ontologgvelopment/ontolog
y101.html

OMG (2007). Object Management Group Unified Modglihhanguage
Specification Version 2.1.1. fromttp://www.uml.org/#UML2.0

Pahng, F., Senin, N., & Wallace, D. (1998). Disitibn modeling and
evaluation of product design problen@mputer-Aided Design, 8),
411-423.

Partidario, P. J. & Vergragt, J. (2002). Plannifigtoategic innovation aimed
at environmental sustainability: actor-networksersrio acceptance
and backcasting analysis within a polymeric coatihgin. Futures,
34(9-10), 841-861.

Patil, L., Dutta, D., & Sriram, R. (2005). Ontoleggsed exchange of product
data semanticsIEEE Transactions on Automation Science and
Engineering, B3), 213-225.

PE International (2007). The new Generation GaBRRdtrieved 27/09/2007,
from http://www.gabi-software.com/gabi/gabi-4/

Philip, A. B. & Nathan, G. (1981). Concurrency Quhtin Distributed
Database System&CM Comput. Surv., 13), 185-221.

Philpotts, M. (1996). An introduction to the conteenefits and terminology
of product data managemeidustrial Management & Data Systems,
96(4), 11.

Pnueli, A. (1981). The temporal semantics of corentrprogramsTheoretical
Computer Science, (B), 45-60.

PRé Consultants (2007, 18/09/2007). SimaPro 7.idRett 17/09/2007, from
http://www.pre.nl/simapro/simapro Ica software.htm

Prior, A. (1967)Past, Present and Futur®xford University Press.

Reisdorph, K. (1999). Why use version contral®lphi Developer’s Journal,
5(1), 14-16.

Rezayat, M. (2000). The Enterprise-Web portal fde-¢ycle support.
Computer-Aided Design, 82), 85-96.

Ryan, D. M. & Foster, B. A. (1981). Integer Programg Approach To

Scheduling. Computer Scheduling of Public Transport, Urban
Passenger Vehicle and Crew Scheduyl2gP-280.

Ref.6

References

Salkin, H. M. (1989)Foundations of integer programming / Harvey M. 8alk
Kamlesh Mathur ; with contributions by Robert HaBi®rth-Holland.

Sayre, D. (1996).Inside ISO 14000 : the competitive advantage of
environmental management / Don Saypelray Beach, Fla. :: St. Lucie
Press.

Shaw, H. K., Susan Bloor, M., & Pennington, A. (2R8roduct Data Models.
Research in Engineering Desigr{l1}), 43-50.

Siemens (2008). Explore the Greater Powers of Teatac Solutions. from
http://www.plm.automation.siemens.com/en us/praslteamcenter/so
lutions by product/index.shtml

SolidWorks (2004)SolidWorks 2005 PDMWorks

SolidWorks (2005)SolidWorks Office professional: PDMWorksolidWorks
Corp.

Sree, N., Rebecca, W., & Prebhu, G. M. (1990). Kedge-based graph
theoretic analysis of data flow diagrams: integrgtCASE tools with
expert systemsProceedings of the 1990 ACM SIGBDP conference on
Trends and directions in expert systeb3-71.

Stadlbauer, H. (1992). Product data model for daesigpport using functional
skeletons.The 1992 ASME International Computers in Enginagrin
Conference and Exposition; San Francisco, CA; USAD6 Aug. 1992
149-154.

Talens, G., Chabane, O., & Colinas, M. F. (1993rsibns of Simple and
Composite ObjectsProceedings of the 19th International Conference
on Very Large Data Basg62-72.

Tao, Y. & Kung, C. (1991). Formal definition andriieation of data flow
diagramsJournal of Systems and Software(1)629-36.

Thomasian, A. (1998). Concurrency control: methodsrformance, and
analysisACM Comput. Surv., 30), 70-119.

UGS Corporation (2007). Compliance Management. from
http://www.ugs.com/en us/products/teamcenter/swhstiby product/c
ompliance management.shtml

Vazquez, F. (1994). Identification of complete détav diagrams.SIGSOFT
Softw. Eng. Notes, {3), 36-40.

Wieringa, R. (2003)Design methods for reactive systems : YourdonefSiate,
and the UML / R.J WieringaSan Francisco, Calif. :: Morgan
Kaufmann Publishers.

Won, K., Bertino, E., & Garza, J. F. (1989). Compmsbjects revisitedACM
SIGMOD Record 18337-347.

Ref.7

References

Wood, W. G. (1990). Temporal logic case studyLéature Notes in Computer
SciencgVol. 407, pp. 257-263): Springer Berlin / Heidexdg.

Yannakakis, M., Papadimitriou, C. H., & Kung, H.(I979). Locking policies:
Safety and freedom from deadlo&nnual Symposium on Foundations
of Computer Scienc86-297.

Yeh, S. C. & You, C. F. (2002). STEP-based datemehfor implementing
product data management systdnternational Journal of Computer
Integrated Manufacturing, %), 1-17.

Yourdon, E. (1979).Structured design: fundamentals of a discipline of
computer program and systems deskrentice Hall.

Yu, P. S., Wu, K. L., Lin, K. J., & Son, S. H. (189 On real-time databases:
concurrency control and schedulifgroceedings of the IEEE, @D,
140-156.

Zhang, S., Shen, W., & Ghenniwa, H. (2004). A rewief Internet-based
product information sharing and visualizati@@omputers in Industry,
54(1), 1-15.

Zhang, X., Wang, T., Wan, L., & Zhou, J. (1995). édparchitecture and
implementation for product data managemeligh Technology Letters,
1(2), 1-6.

Zhao, W., Ramamritham, K., & Stankovic, J. A. (128 reemptive scheduling

under time and resource contrailtSEE Transactions on Computers,
C-36(8), 949-960.

Ref.8

Appendix A eDrawings Plug-in

Appendix A
eDrawings Plug-in

The types of features and functions of “eDrawingfig-in being used in
developing the environmental compliance systemeprtes! in Chapter 4, are
described in this appendix. eDrawings [Dassault teédyes SolidWorks
Corporation 2008] is a free e-mail-enabled prognactuded with SolidWorks
that let users share designs with the people wiea ne see to them. It is
available in the standard or professional versibea;standard version gives the
user the power to view, create and share 3D moaleds 2D drawings in
eDrawings (eDRW, ePRT, eASM), DXF, and DWG formikgst This version

can be downloaded freely fromww.eDrawingsViewer.comThe professional

version includes additional capabilities to markamqm measure a model, user

license can be purchased from the website.

Key Features of eDrawings Plug-in

Everyone in the design process can collaborate neifectively with

eDrawings and various CAD software programs udegdllowing features.

Creating an eDrawings file

To make a file viewable with eDrawings viewer, tt@responding drawing
file must be published using the eDrawings publisBg saving the file that is
already open in a CAD application into the oneld following appropriate

formats:

« Part document. Save aBrawings (*.eprt)
+ Assembly document. Save @Brawings (*.easm)

« Drawing document. Save aBPrawings (*.edrw)

Al

Appendix A eDrawings Plug-in

Sending an eDrawings file

eDrawings files can be sent to other using sendtiimm in eDrawing viewer.
The email contains detailed instructions for th@pient about how to use the
eDrawings application. By sending the files in anaé using one of the
following options, the receiver does not need taload anything to view the

files.

+ eDrawings file (.edrw, .eprt, .easm)Attaches a copy of the active

document saved as an eDrawings file.

+ Zip (.zip). Attaches a copy of the file as an executalarq file, saved
in a zip file. The recipient needs an applicatiomnzip the file.

« HTML page (.htm). Attaches a copy of the file as an HTML file. If
your default outgoing mail format is set to HTMIhet eDrawings
HTML is embedded directly in the email.

« Executable (.exe)Attaches a copy of the file as an executald&g

file.

Markup Tools

Markup tools is an optional tool that enhancesetbeawings application and is
only available in professional version. Notes, disien (Figure A.1l), text
(Figure A.2), and graphical elements to the model be added using the
markup tools. eDrawings automatically saves marKigs as threaded
comments with the eDrawings file. Markup data carshved separately, as a
markup file, without the models. In such a wayfatilities the reviewing
process when several people review the file. Famgpte, reviewers can add

comments, and then send you only a markup file.

A.2

Appendix A eDrawings Plug-in

T L —er] CEx
nﬁ(g View Took \indow Help =S
@ H % @2 @ a7 g y @ L om Bl B

Save Print.. Zoom Fit Zoom Area Zoom Rotabe PEﬂ Shaded PErspechve SE‘EG{ Home Mass Props Previous Stop Next Play
@ & ﬁ & @ ¥ @ 1L 9 a @
Front Back left Right Top Botm Tsomemc (o | Messwe Section sm
a ag

Mew Reply Options
= I Mariup Comments
™ Edmond Chan - Comme
@, Edmond Chan - Comme

THOOs 080> ﬁ(‘;ﬁ‘

£l I)
Created: 3/10/2008 - 6:05:38
Description:

)

) surveys POMWorks Enterpre: Suryey - Tk us what vou ek —|@ DRAWINGS® & @

Figure A.1 Showing dimension of a hole using Dimengunction

 SolidWorks eDrawings - [3Cuts. SLDPRT] EEX

ﬂ Fie view Took Window Help) N=EY
@ H % 2 @ 8 7 g @ B« E B B
Save Print.. Zoom Fit Zoom Area Zoom Rotate | Pan Shaded | Perspective \ Select Home Mass Props Po-ewxm Stof Next Play

@lﬁ@@@.iimﬂﬂ

Right Top Bottom Isometric flormzl To Measure Section Stamp

B
New Reply Options
= ‘ Markup Comments.
 ®_ Edmond Chan - Comme
l Edmond Chan - Comme

1'.e::99'®|:|/| aRVrS B

Cmﬂlm 3!1()!2003 502‘22
Description:

)| Auatstie: 2009 0.0 for downioed —|@DRAWINGS® ~ 8

Figure A.2 Adding comment to a document

A3

Appendix B Constraint Branching

Appendix B

Constraint Branching

In Chapter 8, given an optimal fractional solutitm the linear program
relaxation, an integer solution may be found usirapch and bound. Effective
branching strategies have been developed to saweplex problems in a

reasonable amount of time.

The conventional variable branching strategy [$alkD89] can be used to
solve the fractional problem. Each node of the dthmamnd bound tree
corresponds to a linear programming problem in fwidertain variables have
been chosen and constrained to take integer vdluéise branching process, a
selected node is branched on by imposing two cains$r separately on a

single fractional variablg these constraints are

%, | (0-branch
x, =[x, | (L-branch)

and two new linear programming problems are creasetthe result.

For set partitioning problems, the 0-branch comstitaas minimal effect on the
objective function, as there are likely to be mattgrnative variables available
to enter the basis at little cost. Because thectibge value hardly increases on
the O-branch, the bounding process will be lesgctffe. For large-scale
problem, it is likely that there will be many nodasd branches explored to
find an integer solution. Contrarily, the 1-brareffectively forces the variable
to the value of one. This has a significant effacthe solution to the 1-branch
problem and often increases the objective functidrich can aid the bounding
process. Variables that cover any constraint cavesex; will be eliminated
and fewer numbers of variables need to be pricedeabranching process goes

on.

B.1

Appendix B Constraint Branching

An alternative approach is to use the constraiahdming method developed
by Ryan and Foster [Ryan & Foster 1981]. The basitcept of constraint
branching is to branch on a set of variables ratiemn a single variable, the set

is defined by a pair of constraintsgndt). The branch is defined by

Identify a pair of constraints and
st 0< ¥ x<1

j0J (s,t)
jOBasis

where J(s)={ i §}=1and;;1=}_

The 0-branch indicates theandt must not be covered by a single variable and
is implemented by banning all variablesJ¢s,t) Alternatively, the 1-branch

indicates thas andt must be covered together and is implemented hyrigr

variables in the complementary s, t) to be zero, where
J(st)={j 1a, =1anda, = 0)or(a, = 0anda, =1}

A standard method to determine the branch in seitipaing problem is to
selects andt, so that bothks andt are equality constraints and the objective
function value of the linear programming problenmiaximized. Depth-first 1-

branch search is implemented to evaluate the randtbound tree.

The constraint branching strategy is more effectivan the conventional
variable branching. Many variables are eliminatexf the problem on both
the O-branch and 1-branch, since the set of vasabke banned on either
branch, this allows a balanced tree to be devel@pedthe bounding process
on O-branch becomes as effective as on 1-brancts. Gitanching strategy
requires fewer branches than the conventional egfyat The constraint
branching strategy has been found to be effectiwolving large-scale integer

programming problems

B.2

Appendix B Constraint Branching

Bounding Procedure and Termination Criterion

The final aspect of the branch and bound proceed t® the problem is to
determine the bounding procedure and tree searahintion criteria. The
bounding procedure applied is to use the objestalee of the integer solution
found as a bound during the tree search. Besidedbhaeding procedure, there
are two related tree search termination critefianl integer solution is found
excesses within some percentage of the relaxedrlipogramming solution,
then the branch and bound process is terminatedth&n criterion is the
number of nodes searched in the process. If a nuofbedes searched reach
the predefined limit, then the process is termidat&uch premature
terminations are to recognize that the most impon@int of the branch and
bound process is to find a feasible integer salutioa reasonable amount of
time. Although better solutions may exist elsewher¢he branch and bound
tree, the extra time required to find such soluttan be substantial and result

in little improvement.

B.3

